
OSF/Motif

Programmer’s Guide

Revision 1.2

Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

The information contained within this document is subject to
change without notice.
OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental
consequential damages in connection with the furnishing, perfor-
mance, or use of this material.

All rights are reserved. No part of this publication may be photo-
copied, reproduced, or translated into another language without the
prior written consent of the Open Software Foundation, Inc.

Copyright 1989, 1990, 1991, 1992 Open Software Foundation, Inc.
Copyright 1989 Digital Equipment Corporation
Copyright 1987, 1988, 1989, 1992 Hewlett-Packard Company
Copyright 1988 Massachusetts Institute Of Technology
Copyright 1988 Microsoft Corporation
ALL RIGHTS RESERVED
FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND
THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the
delivery of, this computer software, the rights of the Government regarding its use, reproduc-
tion and disclosure are as set forth in Section 52.227-19 of FARS Computer Software-
Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is sub-
ject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is sub-
ject to restrictions as set forth in paragraph (b)(3)(B) of the rights in Technical Data and Com-
puter Software clause in DAR 7-104.9(a). This computer software is submitted with "res-
tricted rights." Use duplication or disclosure is subject to the restrictions as set forth in

NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer Software-Restricted
Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data
General" then the "Alternate III" Clause applies.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA
ADP Schedule Contract.

Unpublished—All rights reserved under the Copyright Laws of the
United States.

This notice shall be marked on any reproduction of this data, in
whole or in part.

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are
trademarks of the Open Software Foundation, Inc.
DEC and DIGITAL are registered trademarks of Digital Equipment
Corporation.
X Window System is a trademark of the Massachusetts Institute of
Technology.

Contents33333333333333333333333333

Preface ix
Audience ix
Applicability ix
Purpose x
Document Usage x
Related Documents xii
Typographic and Keying
Conventions xii

Keyboard
Conventions xiii
Mouse Conventions xiv

Problem Reporting xiv
Chapter 1. Introduction 1-1

1.1 The X Window System 1-2
1.2 Xlib, Xt, and Motif 1-5

1.2.1 Xlib 1-6
1.2.2 Xt 1-7
1.2.3 Motif 1-13
1.2.4 Using Xlib, Xt, and

Motif 1-18
1.3 Widget Classes and

Hierarchy 1-19
1.3.1 Xt Classes 1-19
1.3.2 Motif Classes 1-20

1.4 Header Files and Libraries 1-25

iv

Contents

Chapter 2. The Motif Programming Model 2-1
2.1 A User-Centered Model 2-3
2.2 Separating Interface from

Application 2-5
2.3 Building Blocks: Primitive Widgets and

Gadgets 2-7
2.3.1 Label and Separator 2-8
2.3.2 Buttons 2-9
2.3.3 ScrollBar 2-10
2.3.4 List 2-10
2.3.5 Text 2-11

2.4 Managers 2-11
2.4.1 Frame 2-12
2.4.2 Scale 2-12
2.4.3 PanedWindow 2-13
2.4.4 ScrolledWindow and

MainWindow 2-13
2.4.5 RowColumn 2-14
2.4.6 BulletinBoard, Form, MessageBox,

SelectionBox 2-16
2.4.7 DrawingArea 2-17

2.5 Shells 2-18
2.5.1 VendorShell 2-19
2.5.2 DialogShell 2-19
2.5.3 MenuShell 2-20

2.6 Applications, Top-Level Widgets, and
Dialogs 2-20
2.6.1 Applications 2-21
2.6.2 Top-Level Widgets 2-22
2.6.3 Dialogs 2-22

2.7 Resources: User and Program
Customization 2-23

2.8 Handling Input and Output 2-25
Chapter 3. Structure of a Motif Program 3-1

3.1 Including Header Files 3-2
3.2 Initializing the Intrinsics 3-3

v

OSF/Motif Programmer’s Guide

3.2.1 The Initial Resource
Database 3-4

3.3 Creating Widgets 3-11
3.3.1 Specifying Resource

Values 3-12
3.4 Adding Callback Procedures 3-18
3.5 Making Widgets Visible 3-22

3.5.1 Managing Widgets 3-22
3.5.2 Realizing Widgets 3-23
3.5.3 Mapping Widgets 3-25
3.5.4 Multiple Screens, Displays, and

Applications 3-25
3.6 Entering the Event Loop 3-27

Chapter 4. Structure of a Program Using UIL and
MRM 4-1
4.1 Structure of a UIL Module 4-3

4.1.1 module Clause 4-4
4.1.2 Module-Level

Declarations 4-4
4.1.3 include Directive 4-5
4.1.4 value Declaration 4-6
4.1.5 identifier Declaration 4-7
4.1.6 procedure

Declaration 4-7
4.1.7 object Declaration 4-8
4.1.8 list Declaration 4-13
4.1.9 end module Clause 4-15

4.2 Structure of a Program Using
MRM 4-15
4.2.1 Including Header

Files 4-15
4.2.2 Initializing the

Intrinsics 4-16
4.2.3 Initializing MRM 4-16
4.2.4 Opening UID Files 4-16
4.2.5 Registering Callbacks and

Identifiers 4-18

vi

Contents

4.2.6 Fetching Information from UID
Files 4-20

4.2.7 Closing the UID File 4-22
4.2.8 Defining Callback

Procedures 4-22
4.2.9 Making Widgets

Visible 4-23
4.2.10 Entering the Event

Loop 4-24
Chapter 5. Basic Controls 5-1

5.1 Core, RectObj, XmPrimitive, and XmGadget
Classes 5-1
5.1.1 Core 5-1
5.1.2 RectObj 5-2
5.1.3 XmPrimitive 5-2
5.1.4 XmGadget 5-3

5.2 Labels, Buttons, and
Separators 5-3
5.2.1 Labels 5-4
5.2.2 Buttons 5-5
5.2.3 Separators 5-9

5.3 ScrollBar 5-9
5.4 Scale 5-11
5.5 List 5-14
5.6 Text and TextField 5-17

Chapter 6. Menus and Options 6-1
6.1 Menu Components: Buttons, RowColumn,

MenuShell 6-2
6.1.1 Buttons 6-2
6.1.2 RowColumn 6-3
6.1.3 MenuShell 6-5

6.2 MenuBar 6-6
6.3 Popup Menu 6-7
6.4 PulldownMenu 6-9
6.5 OptionMenu 6-10

vii

OSF/Motif Programmer’s Guide

6.6 RadioBox and CheckBox 6-12
6.7 TearOffMenus 6-14

Chapter 7. Dialogs 7-1
7.1 BulletinBoard and

DialogShell 7-2
7.1.1 BulletinBoard 7-2
7.1.2 Activation, Cancellation, and

Help 7-3
7.1.3 DialogShell 7-5
7.1.4 Initial Focus 7-6

7.2 Making a Selection:
SelectionBox 7-7

7.3 Choosing a Pathname:
FileSelectionBox 7-9

7.4 Command 7-11
7.5 MessageBox 7-12
7.6 Form 7-14

Chapter 8. Text 8-1
8.1 Text and TextField 8-1
8.2 Selection 8-3

8.2.1 Mouse Selection 8-5
8.2.2 Keyboard Selection 8-7

8.3 Text Editing and Callbacks 8-8
8.4 Text Resources and

Geometry 8-12
8.5 Convenience Routines 8-14
8.6 ScrolledText 8-15
8.7 Storing Text in a File 8-16
8.8 Sharing Text Sources 8-17

Chapter 9. Scrolling, Panes, and Frames 9-1
9.1 ScrolledWindow 9-1

viii

Contents

9.1.1 Automatic and Application-Defined
Scrolling 9-2

9.1.2 Other Resources 9-3
9.2 Automatic Scrolling 9-5

9.2.1 Traversing to Obscured
Widgets 9-7

9.2.2 Example of Automatic
Scrolling 9-8

9.3 Application-Defined
Scrolling 9-13
9.3.1 Example of Application-Defined

Scrolling 9-15
9.4 MainWindow 9-25
9.5 Frame 9-27
9.6 PanedWindow 9-30

Chapter 10. Managing Geometry 10-1
10.1 Xt and Geometry

Management 10-2
10.1.1 Widget Class

Procedures 10-2
10.1.2 Geometry Change

Requests 10-4
10.1.3 The geometry_manager

Procedure 10-5
10.1.4 Intermediate Geometry

Requests 10-7
10.1.5 XtSetValues 10-9
10.1.6 The resize Procedure 10-10
10.1.7 Preferred Size and

Location 10-12
10.1.8 Exposure and

Redisplay 10-13
10.2 Shells and Their Children 10-14
10.3 Manager Widgets and Their

Children 10-15

ix

OSF/Motif Programmer’s Guide

10.4 Managing Geometry Using
RowColumn 10-16

10.5 Managing Geometry Using BulletinBoard
and DrawingArea 10-21

10.6 Managing Geometry Using
Form 10-23

Chapter 11. Internationalization 11-1
11.1 Issues in Internationalized

Applications 11-1
11.1.1 Internationalization and

Localization 11-1
11.1.2 Obtaining Input 11-4
11.1.3 Displaying Output 11-6
11.1.4 Locales and

Localization 11-6
11.2 Compound Strings, Fonts, and Text

Display 11-7
11.2.1 Compound String

Components 11-7
11.2.2 Fonts, Font Lists, and Font

Sets 11-14
11.2.3 Compound Strings and Font

Lists 11-21
11.2.4 Text and TextField Widgets and Font

Lists 11-24
11.3 Localizing Applications 11-25

11.3.1 Techniques for
Localization 11-25

11.3.2 Resources and
Localization 11-32

11.3.3 UIL and Localization 11-35
11.3.4 Message Catalogs and

Localization 11-39
11.3.5 Images, Pixmaps, and

Localization 11-41
11.3.6 Comparing Approaches to

Localization 11-42

x

Contents

11.4 Advanced Topics in
Internationalization 11-43
11.4.1 Internationalization and Text

Input 11-43
11.4.2 Compound Strings and Compound

Text 11-49
Chapter 12. Color and Pixmaps 12-1

12.1 Default Colors 12-2
12.1.1 Borders 12-3
12.1.2 Backgrounds 12-3
12.1.3 Foregrounds 12-3
12.1.4 Shadows 12-4
12.1.5 Focus Highlights 12-6
12.1.6 Arming and Selection 12-6

12.2 Application-Defined Color
Generation 12-7

12.3 Colormaps 12-9
12.4 Using Pixmaps 12-10

Chapter 13. Input, Focus, and Keyboard
Navigation 13-1
13.1 Focus Models 13-3
13.2 Controlling Keyboard

Navigation 13-4
13.2.1 Sensitivity 13-6
13.2.2 XmNtraversalOn 13-8
13.2.3 Tab Groups 13-8
13.2.4 Initial Focus 13-14
13.2.5 Traversing to Obscured

Widgets 13-15
13.2.6 XmProcessTraversal 13-17
13.2.7 Focus Callbacks 13-22

13.3 Translations and Actions 13-23
13.3.1 Translation Table

Format 13-23
13.3.2 Using Translations 13-25
13.3.3 Actions 13-27

xi

OSF/Motif Programmer’s Guide

13.3.4 Bindings for osf
Keysyms 13-29

13.4 Mnemonics and Accelerators 13-31
13.5 Event Handlers 13-34

Chapter 14. Graphics and Text in a
DrawingArea 14-1
14.1 DrawingArea: A General-Purpose

Widget 14-1
14.2 Event Handling and

Callbacks 14-2
14.2.1 Handling Resize

Events 14-3
14.2.2 Handling Exposure

Events 14-8
14.2.3 Handling Input

Events 14-11
14.3 Using a DrawingArea in a

ScrolledWindow 14-15
14.4 Using a DrawingArea for

Graphics 14-16
14.5 DrawingArea and Advanced Text

Editing 14-22
14.5.1 Text Output 14-22
14.5.2 Text Input 14-24

Chapter 15. Drag and Drop 15-1
15.1 User Overview of Drag and

Drop 15-1
15.1.1 Overview of User

Interaction 15-1
15.1.2 Overview of Drag Over

Effects 15-2
15.1.3 Overview of Drag Under

Effects 15-5
15.1.4 Overview of Drop

Effects 15-6

xii

Contents

15.2 Technical Overview of Drag and
Drop 15-7
15.2.1 Complexity of Drag and Drop

Programs 15-8
15.2.2 Drag Sources and Drop

Sites 15-19
15.2.3 Protocols 15-20
15.2.4 Drag and Drop Widget

Classes 15-22
15.2.5 Drag and Drop

Functions 15-23
15.2.6 Targets 15-25
15.2.7 Operations 15-26
15.2.8 Overview of Programmer

Responsibilities 15-28
15.3 Drag and Drop Protocols 15-32

15.3.1 Drag Protocols 15-33
15.3.2 Choosing the Protocol and Visual

Style 15-35
15.3.3 Drop Protocol 15-39

15.4 Drop Receiver Responsibilities for
Dragging 15-41
15.4.1 Establishing a Drop

Site 15-42
15.4.2 XmNdragProc 15-51

15.5 Drag Initiator Responsibilities for
Dragging 15-63
15.5.1 Recognizing a Drag Has

Started 15-63
15.5.2 Starting a Drag With

XmDragStart 15-64
15.5.3 Overriding Existing Drag

Sources 15-66
15.5.4 Drag-over Visual

Effects 15-67
15.5.5 Drag Callbacks 15-80
15.5.6 Getting Data about the Current Drop

Site 15-84
15.5.7 Cancelling the Drag 15-84

xiii

OSF/Motif Programmer’s Guide

15.6 Drop Receiver Responsibilities for
Dropping 15-85
15.6.1 The XmNdropProc 15-86
15.6.2 XmDropTransfer 15-89
15.6.3 Cancelling a Drop 15-92
15.6.4 Providing Help 15-93

15.7 Drag Initiator Responsibilities for
Dropping 15-101
15.7.1 XmNdropStartCallback 15-102
15.7.2 Dealing with Requests for

Transfer 15-103
15.7.3 XmNdropFinishCallback 15-106
15.7.4 XmNdragDropFinishCallback . . . 15-107

Chapter 16. Interclient Communication 16-1
16.1 Window Managers, ICCCM, and

Shells 16-1
16.1.1 Application Startup 16-2
16.1.2 Window

Configuration 16-3
16.1.3 Icons 16-8
16.1.4 Window Groups 16-10
16.1.5 Menus and Dialogs 16-11
16.1.6 Input Focus 16-12
16.1.7 Colormaps 16-14
16.1.8 Application Shutdown and

Restart 16-16
16.2 MWM Properties and

Resources 16-18
16.2.1 Decorations 16-18
16.2.2 Functions 16-19
16.2.3 Input Mode 16-19
16.2.4 Window Menu 16-20
16.2.5 MWM Messages 16-20
16.2.6 MWM Information 16-21

16.3 Atom and Protocol
Management 16-21

16.4 Selections 16-23
16.4.1 Selection Types 16-24

xiv

Contents

16.4.2 Targets 16-25
16.4.3 Text Conversion 16-26
16.4.4 Incremental

Transfers 16-28
16.4.5 The Xt Selection

Interface 16-29
16.5 The Motif Clipboard 16-31

16.5.1 Copying Data to the
Clipboard 16-31

16.5.2 Retrieving Data from the
Clipboard 16-34

16.5.3 Utility Routines 16-35
Appendix A. The Widget Meta-Language

Facility A-1
A.1 Using WML A-2

A.1.1 Building WML A-4
A.1.2 Running WML A-5
A.1.3 Installing UIL A-7
A.1.4 Building UIL A-8

Appendix B. Drag and Drop Example Program B-1
B.1 DNDDemo.h B-3
B.2 DNDDemo.c B-9
B.3 DNDDraw.c B-61

Index . Index-1

xv

OSF/Motif Programmer’s Guide

LIST OF FIGURES

Figure 11-1. Information External to the
Application 11-2

Figure 11-2. Compound String Relationships With Explicit
Tag 11-22

Figure 11-3. Compound String Relationships With
XmFONTLIST_DEFAULT_TAG 11-24

Figure 11-4. Text Widget Pre-Edit and Status Areas Using
over-the-spot 11-45

Figure 11-5. Text Widget Pre-Edit Area After Next Character
Entry 11-46

Figure 11-6. Input Method and Input Contexts 11-47
Figure 11-7. Text Widget Pre-Edit and Status Areas Using off-

the-spot 11-49
Figure 11-8. Reason for Compound Text 11-50
Figure 15-1. A Drag Icon 15-3
Figure 15-2. A Label Widget Receiver Before and After

Drag 15-9
Figure 15-3. A ScrollBar Widget as Drag Source 15-14
Figure 15-4. A Label Widget 15-44
Figure 15-5. Special Shaped Drop Site 15-47
Figure 15-6. Default Drag Under Animation 15-50
Figure 15-7. Simulated Drop Sites 15-57
Figure 15-8. A Drag Icon 15-69
Figure 15-9. Source Icons 15-70

Figure 15-10. Operation Icons 15-72
Figure 15-11. Copy and Noop Drag Icons 15-72

xvi

Contents

Figure 15-12. An Attach_Hot Icon 15-74
Figure 15-13. Custom Source Icon 15-76
Figure 15-14. Help Dialog Box 15-95

Figure B-1. Drag and Drop Demonstration B-1

xvii

OSF/Motif Programmer’s Guide

LIST OF TABLES

TABLE 3-1. Steps in Writing Widget Programs 3-2
TABLE 11-1. Areas and Typical Character Sets 11-3
TABLE 11-2. Widgets With A Font List Resource 11-19

xviii

Preface

The OSF/Motif Programmer’s Guide describes how to use the
OSF/Motif TM application programming interface to create Motif TM

applications. The book gives an overview of the architecture of the
Motif widget set, explains features of the Motif toolkit, and presents
a model and examples for constructing Motif applications.

Audience

This document is written for designers and developers of Motif pro-
grams. It does not provide sufficient information to develop new
Motif widgets, although widget developers need to be familiar with
the facilities and the issues discussed in this book.

This document assumes that the reader is familiar with the Ameri-
can National Standards Institute (ANSI) C programming language.
It also assumes that the reader has a general understanding of the
X Window System, the Xlib library, and the X Toolkit Intrinsics
(Xt).

Applicability

This is Revision 1.2 of this document. It applies to Release 1.2 of
the OSF/Motif software system.

ix

OSF/Motif Programmer’s Guide

Purpose

The purpose of this guide is to explain how to write application pro-
grams using the Motif toolkit. After reading this book, you should
have a general understanding of the Motif toolkit and the Motif
widget set and should be able to write applications that use them.
This guide is not intended to explain how to develop new classes of
widgets.

Document Usage

This document is organized into 16 chapters and two appendixes.

• Chapter 1 introduces the book and gives an overview of the X
Window System, Xlib, Xt, and Motif.

• Chapter 2 summarizes the structure of the Motif widget hierar-
chy and discusses general principles for writing Motif programs.

• Chapter 3 explains the structure and general elements of a Motif
application.

• Chapter 4 describes the structure of a program that uses the
User Interface Language (UIL) and Motif Resource Manager
(MRM).

• Chapter 5 discusses most of the primitive widgets that form the
building blocks of a Motif application.

• Chapter 6 describes how to use the RowColumn widget to build
menus, radio boxes, and check boxes.

x

Preface

• Chapter 7 describes the widgets most appopriate for conducting
dialogs with the user.

• Chapter 8 explains the Motif Text and TextField widgets, which
provide general display and editing of text.

• Chapter 9 discusses composite widgets commonly used to con-
tain other widgets in the application.

• Chapter 10 discusses the process of negotiating the layout of
widgets and describes the layout-management policies of partic-
ular Motif widgets.

• Chapter 11 is a guide to internationalizing applications and pro-
viding text, font, and other information that is specific to partic-
ular language environments.

• Chapter 12 explains how Motif uses colors and pixmaps and how
an application can provide its own.

• Chapter 13 discusses issues in handling input, including key-
board focus and traversal, translations, and actions.

• Chapter 14 describes DrawingArea, a general-purpose widget for
displaying graphics and handling user input at a low level.

• Chapter 15 is an extensive discussion of the Motif drag and drop
interface, with which the user transfers data by manipulating
iconic representations with the pointer.

• Chapter 16 discusses communication between an application
and other clients, including the Motif Window Manager (MWM),
by means of resources, selections, protocols, and properties.

• Appendix A describes the Widget Meta-Language (WML) facil-
ity, which generates portions of the UIL compiler to support new
widget sets.

• Appendix B is an extended example program using the drag and
drop interface.

xi

OSF/Motif Programmer’s Guide

Related Documents

For additional information about OSF/Motif, refer to the following
documents:

• The OSF/Motif Programmer’s Reference provides detailed refer-
ence information for programmers writing Motif applications.

• The Application Environment Specification (AES) User Environ-
ment Volume defines a stable set of routines for creating user
interface applications.

• The OSF/Motif Style Guide explains the principles of user inter-
face design for application developers.

• The OSF/Motif User’s Guide explains how to interact with
OSF/Motif applications.

For additional information about Xlib and Xt, refer to the following
X Window System documents:

• Xlib—C Language X Interface is the specification for Xlib.

• X Toolkit Intrinsics—C Language Interface is the specification
for Xt.

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements
that an application or user must use literally, such as
functions, data types, commands, flags, and

xii

Preface

pathnames. Bold words also indicate the first use of
a term included in the glossary.

Italic Italic words or characters represent variable values
and arguments that an application or user must sup-
ply.

Constant width
Examples and information that the system displays
appear in this typeface.

< > Angle brackets enclose the name of a key on the key-
board.

ComponentName
Components of the user interface are represented by
upper-case letters for each major word in the name of
the component, such as PushButton.

Keyboard Conventions

Because not all keyboards are the same, it is difficult to specify keys
that are correct for every manufacturer’s keyboard. To solve this
problem, this guide describes keys using a virtual key mechan-
ism. The term virtual implies that the keys as described do not
necessarily correspond to a fixed set of actual keys. Instead, virtual
keys are linked to actual keys by means of virtual bindings. A
given virtual key may be bound to different physical keys for
different keyboards.

See chapter 13 of this book for information on the mechanism for
binding virtual keys to actual keys. For details see the
VirtualBindings(3X) reference page in the OSF/Motif
Programmer’s Reference.

xiii

OSF/Motif Programmer’s Guide

Mouse Conventions

Mouse buttons are described in this guide using a virtual button
mechanism to better describe behavior independent from the
number of buttons on the mouse. This guide assumes a 3-button
mouse. On a 3-button mouse, the leftmost mouse button is usually
defined as BSelect, the middle mouse button is usually defined as
BTransfer, and the rightmost mouse button is usually defined as
BMenu. For details about how virtual mouse buttons are usually
defined, see the VirtualBindings(3X) reference page in the
OSF/Motif Programmer’s Reference.

Problem Reporting

If you have any problems with the software or documentation,
please contact your software vendor’s customer service department.

xiv

Chapter 1. Introduction

OSF/Motif is a graphical user interface, a means by which an
application program can obtain input from and display output to a
user of the application. Motif provides the intermediary mechan-
isms for communication between the application and the user. To
both sides, these mechanisms appear as a set of objects with graphi-
cal representations on the screen. The program creates and
displays objects of a variety of types provided by Motif for showing
the user particular kinds of output and requesting particular kinds
of input. The user supplies input by manipulating the screen
representations of these objects with the pointer, the keyboard, or
both.

This book explains the Motif application programming inter-
face. This is the set of facilities that Motif gives an application
developer to create and interact with a Motif interface for the appli-
cation. This book is not a reference work; that is, it does not
attempt to describe the API in exhaustive detail. Its focus is on giv-
ing an overview of the Motif architecture, explaining the concepts
and conventions required to use the API, and providing examples.
This book complements other volumes in the OSF/Motif documenta-
tion set:

• The OSF/Motif Programmer’s Reference describes each element
of the Motif programming interface in detail. It is organized into
reference pages, one for each element of the interface.

• The Application Environment Specification (AES) User Environ-
ment Volume describes which elements of the interface an appli-
cation should use for maximum portability. All implementations
of OSF/Motif must support the interfaces described in the AES.

• The OSF/Motif Style Guide describes how an application should
use the interface for maximum consistency with other Motif
applications.

• The OSF/Motif User’s Guide describes the appearance and
interaction style of Motif from the user’s point of view.

1−1

OSF/Motif Programmer’s Guide

The Motif API as supplied by OSF is implemented in the C pro-
gramming language. Motif requires that an application written in
C conform to American National Standards Institute (ANSI) C.
This book assumes knowledge of ANSI C, which is explained by
other published reference and tutorial books. It is also possible to
write applications in other languages, including C++, but this book
gives explanations and examples only for applications written in C.

1.1 The X Window System

Motif is based on the X Window System, often abbreviated as X.
The X Window System is fundamentally a protocol by which an
application can generate output on a computer that has a bit-
mapped display and can receive input from devices associated with
the display.

X is based on a client-server computing model. The application
program is the client, communicating via the X protocol with a
server that handles the direct output to and input from the display.
This model has several important features:

• The client and server may be running on the same machine or on
different machines, communicating over a network.

• Only the server need concern itself with the display hardware.
The X protocol is hardware independent, so a client can run
without alteration using any kind of display that supports the
protocol.

• A server may handle multiple clients on the same display at the
same time. These clients may communicate with each other,
using the server to transfer information.

1−2

Introduction

• A client may communicate with multiple servers.

A display is an abstraction that represents the input and output
devices controlled by a single server. Usually a display consists of a
keyboard, a pointing device, and one or more screens. A screen is
an abstraction that represents a single bitmapped output device.

Each client creates one or more windows on one or more screens of a
given display. A window is a rectangular area of the screen on
which the client displays output. Windows are arranged in hierar-
chies of children and parents. The server maintains a tree of win-
dows for each screen. The top-level window is the root window of
the screen. Each client typically creates at least one window as a
child of the root window, and any other client windows are descen-
dants of these top-level client windows. Windows may overlap, and
the server maintains a stacking order for all windows on a screen.
A child window may extend beyond the boundaries of its parent, but
output is clipped or suppressed outside the parent’s borders.

A client asks the server to create and destroy windows, but the win-
dows themselves are resources controlled by the server. The server
maintains other resources, including the following:

• A pixmap is a rectangular off-screen area into which an applica-
tion can draw output. Both windows and pixmaps are draw-
ables or entities on which a client can display output. The units
of height and width in windows and pixmaps are pixels. Each
pixel has a given depth, represented as a number of bits or
planes. Thus, each pixel has an integral value whose range
depends on the depth of the drawable. A one-bit-deep pixmap is
called a bitmap. Each pixel in a bitmap has two possible values,
0 and 1.

• A colormap is an association between pixel values and colors.
Each color is represented by a triple of red, green, and blue
values that result in a particular color on a particular screen.
Each window has an associated colormap that determines what

1−3

OSF/Motif Programmer’s Guide

color is used to display each pixel.

• A font is a collection of glyphs usually used to display text.

• A cursor is an object containing information needed for a graph-
ical representation of the position of the pointer. It consists of a
source bitmap, a shape bitmap, a hotspot or location represent-
ing the actual pointer position, and two colors.

• A graphics context or GC is a collection of attributes that
determine how any given graphics operation affects a drawable.
Each graphics operation on a drawable is executed using a given
GC specified by the client. Some attributes of a GC are the fore-
ground pixel, background pixel, line width, and clipping region.

• A property is a named data structure associated with a window.
Clients often use properties to communicate with each other.

Each client opens a connection to one or more servers. Clients and
servers interact by means of requests, replies, errors, and
events. A client sends a request to the server asking it to take
some action, such as creating a window or drawing a line into a pix-
map. Some requests, such as requests for information, cause the
server to generate replies to the client. A request that results in an
error condition may cause the server to generate an error report to
the client. The server executes requests from each client in the
order in which it receives the requests from that client, although
the server may execute requests from other clients at any time.

The server notifies clients of changes of state by means of events.
An event may be a side effect of a client request, or it may have a
completely asynchronous cause, such as the user’s pressing a key or
moving the pointer. In addition, a client may send an event, via the
server, to another client.

Each client asks the server to send that client events of particular
types that occur with respect to particular windows. The server
generally reports an event with respect to some window. For

1−4

Introduction

example, the keyboard is conceptually attached to a window, known
as the focus window. When the user presses a key, the server usu-
ally reports an event with respect to the focus window. If a client
has asked the server to send it events of type KeyPress occurring
with respect to some window, the server sends that client an event
whenever the user presses a key while that window has the focus.

From the point of view of a client reading events from the server,
events that result from that client’s own requests arrive in the order
in which it makes the requests. However, those events may be
interspersed with events that result from other causes, such as user
input or another client’s actions. Furthermore, the client may
buffer requests and the server may buffer events before actually
transmitting them, so an event may arrive long after the client
makes the request that generates the event.

The point is that for the most part event processing in X is
inherently asynchronous. Most client applications continually loop,
reading an event, processing the event (possibly making requests
during the processing), and then reading another event. The client
cannot assume, for example, that a given input event was generated
after a given client request just because the client read the event
after it made the request. Many events have timestamps that indi-
cate when the server actually generated the events. A client that
depends on the temporal ordering of events must often examine
these timestamps.

1.2 Xlib, Xt, and Motif

1−5

OSF/Motif Programmer’s Guide

1.2.1 Xlib

X clients do not have to deal with the server at the level of the X
protocol. X includes a C language client interface to the protocol,
called Xlib. Among the Xlib facilities are the following:

• Routines for creating and managing the basic server resources,
including windows, pixmaps, fonts, cursors, GCs, and properties

• Routines for rendering text and graphics into drawables

• Buffering of requests to the server and queuing of events from
the server

• Data structures representing events of all types, and routines for
selecting and reading events

• Routines for handling colormaps and for using device-
independent color spaces

• Routines for generating text input and output in different locales

• The X resource manager (Xrm), a database of options specified
by the user or the application

The resource manager is the keystone of a fundamental tenet of X:
that the user and application should control the appearance,
interaction style, and other optional characteristics of a client. For
example, the background and foreground colors and the fonts used
by an application might be represented as resources. Typically, an
application provides default values for such resources but allows the
user to override the defaults.

A resource is a triple consisting of a name, a class, and a value. A
class may include a set of resources with different names.
Resources may be arranged hierarchically: a name and class may
consist of components, each identifying the name or class of a par-
ticular level of the hierarchy. The fully qualified name or class

1−6

Introduction

of a resource is the list of names or classes at all levels, starting
with the name or class of the application and ending with the name
or class of the resource itself.

The resource manager permits a user or application to specify
resource values in a file, on the command line while starting the
application, or by calling an Xrm routine in the program. A
resource specification must include either the name or the class of
the resource, but it may be either partially or fully qualified accord-
ing to name, class, or a mixture of name and class components. The
resulting resource database may include a variety of general and
specific resource specifications. When an application queries the
database for a resource value, it supplies a fully qualified name and
class. The resource manager uses a search algorithm that returns
the value from the most specific specification that matches the
requested name and class.

1.2.2 Xt

Although Xlib provides the fundamental means of interacting with
the X server, developing a complex application using only Xlib
would be a formidable task. Xlib essentially supplies the primitives
for an X client. A complex application needs to combine these prim-
itives into constructs that handle aspects of interaction with the
server in a more general way.

X includes a library, the X Toolkit Intrinsics (abbreviated Xt), that
supplies some of these higher-level interfaces. Three of the most
important Xt contributions are the following:

• Objects, known as widgets, used to hold data and present an
interface to the user

1−7

OSF/Motif Programmer’s Guide

• Management of widget geometry

• Dispatching and handling of events

1.2.2.1 Widgets

At the heart of Xt is a set of data abstractions built on an object
metaphor. Each of these objects, called a widget, is a combination
of state and procedure. Each instance of a widget is a member of a
class. A widget class holds a set of procedures and data structures
that are common to all widgets of that class. A widget instance
contains the procedures and data structures that are particular to
that single widget. A widget instance also has a pointer to its class.

Each widget class typically provides the general behavior associated
with a particular kind of interaction with the user. For example,
Motif has a widget class designed to let the user enter and edit text.
This class provides the general behavior to support text input and
display, including editing, selection, cutting, and pasting of text.
The class has data structures related not only to the content of the
text but also to the appearance of the widget’s on-screen representa-
tion. To use this class, an application creates an instance of this
class of widget and provides some of its own data and procedures for
the widget instance.

Xt supports single inheritance of widget classes. That is, a widget
class may be a subclass of another class, its superclass. A subclass
is often a specialized variant of a more general superclass. The sub-
class may inherit, override, or supplement the procedures and data
structures of its superclass. Xt generally supplies widget classes
designed to be superclasses for other classes. Motif supplies the
subclasses of which the the application constructs widget instances.
The "Widget Classes and Hierarchy" section summarizes the Motif

1−8

Introduction

and Xt widget class hierarchy.

Widget instances form another, separate hierarchy. Every widget
except the top-level widget (or widgets) in an application has a
parent widget. Widgets of some classes, called composites, may
have children. Other kinds of widgets, often called either primi-
tives or gadgets, generally do not have children. An application
constructs one or more trees of widget instances made up of compo-
sites, primitives, and gadgets. For example, a menu may consist of
a composite parent representing the menu and a number of primi-
tive children representing buttons. The menu and its children are
one branch of the overall widget tree of the application.

Xt and Motif provide all the widget classes that most applications
need. It is possible for an application to define new widget classes,
but this requires knowledge of Xt and of Motif internals that is
beyond the scope of this book. A typical application creates widget
instances of the built-in classes, providing its own procedures and
data for its widgets.

Xt uses an extension of the resource mechanism to represent the
widget instance data that is available to an application. Each
widget class defines a set of resources that apply to widgets of that
class. A class may inherit or override the resources of its superc-
lasses as well.

A widget class declares a name and a class for each of its resources.
Xt and Motif give each widget class has a name, and the application
gives each widget instance a name. Finally, the application
developer provides a name and a class for the application itself. For
a given resource of a given widget, the fully qualified name is the
list of names beginning with the application name, continuing with
the name of the top-level widget and then with the names of descen-
dant widgets down to the name of the given widget, and ending
with the name of the resource. The fully qualified class is the list of
classes beginning with the application class, continuing with the
class of the top-level widget and then with the classes of descendant

1−9

OSF/Motif Programmer’s Guide

widgets down to the class of the given widget, and ending with the
class of the resource.

The user, the application, and the widget class combine to provide
values for resources and thus to control the appearance and other
attributes of components of the application. Both the user and the
application developer can provide either specific or general
specifications for widget resources in several resource files and on
the command line. They can also supply different resource
specifications depending on the locale, the characteristics of the
screen, or arbitrary customization criteria.

When the application starts up, Xt combines these specifications
into an initial resource database. When the application creates a
widget, Xt assigns initial values to the widget’s resources using a
specification from the database, from values supplied by the appli-
cation at creation time, or from defaults supplied by the widget
class. After creating a widget, the application can use the XtGet-
Values routine to retrieve the value of a widget resource and the
XtSetValues routine to supply a new value for a resource.

1.2.2.2 Widget Geometry

Most widgets either have an associated window or occupy a defined
rectangular area of their parent’s window. Each widget has a
height, width, and a position with respect to its parent, expressed
as the x and y coordinates of the upper left corner of the widget.
Specification of the dimensions of widgets and their positions with
respect to each other constitutes the layout or geometry of the
application.

Application geometry results from the interaction of several factors:

1−10

Introduction

• The user or application may supply values for resources that
influence geometry, such as the height and width of a widget.

• A window manager, a special client that controls the positions
and sizes of top-level windows, runs on most displays. Motif pro-
vides a window manager called the Motif Window Manager
(MWM). The user can change the size of most top-level windows
by means of window manager facilities.

• A child widget may have preferences about its size. For exam-
ple, a widget that displays a label may wish to be wide enough to
display all the text of the label.

• A parent widget may have preferences about the sizes and loca-
tions of its children. For example, a menu widget may wish to
lay out its button children aligned in a given number of rows or
columns.

The process of accounting for all these factors and determining
widget layout is known as geometry management. Xt provides the
essential means of handling geometry management:

• All widgets have resources that specify, either directly or
indirectly, the geometry intended by the user or the application.

• Xt has special widgets known as shells whose function is
largely to handle interaction between the application and out-
side agents such as window managers.

• Widget class procedures may ask the widget’s parent to change
the widget’s geometry, may calculate a preferred size, and may
recalculate the widget’s layout when the widget is given a new
size.

• Parent widgets have ultimate control over the geometry of their
children. A widget class procedure of a parent may accept or
reject a child’s request to change its geometry. In general a
parent may change a child’s geometry at any time.

1−11

OSF/Motif Programmer’s Guide

A child is managed when it and its parent are prepared to negotiate
geometry. In general widgets are eligible to appear on the screen
only after they are managed.

See chapter 10 for more information on geometry management and
the specific management policies of Motif widgets.

1.2.2.3 Event Handling

Xt has an event-handling procedure that reads events from the
server and dispatches them to appropriate widgets. Each widget
that has an associated window may also have a translation
table. This table maps descriptions of events to names of pro-
cedures, known as actions. When Xt reads an event associated
with a widget, it looks up the event description in the translation
table and dispatches the event to the associated action routine.

An application can provide its own action routine, but most such
routines are supplied by the widget class. An action routine often
takes some action on its own and then notifies the application by
invoking an application procedure known as a callback. Many
widgets have resources whose value is a list of callback procedures.
The widget invokes the procedures on these lists at specified times,
often when the widget receives certain kinds of events. Xt supplies
other means for an application to receive and respond to events, but
many applications need only add appropriate callback procedures.
These callbacks do most of the "work" of the application in the
course of interacting with the user.

The Xt event-handling mechanism leads naturally to an event-
driven structure for an application program. Most applications
have the same general form:

1−12

Introduction

• Initialize the application

• Create and manage the application widgets

• Provide callback procedures to be invoked by widgets

• Enter the Xt event-dispatching loop, which usually does not
return

See chapter 3 for more information about the structure of a Motif
application.

1.2.3 Motif

Xt provides the substrate for creating a set of widgets responsible
for specific aspects of a user interface. Motif uses the Xt substrate
to build both base classes and specialized subclasses of widgets for a
variety of purposes. The "Widget Classes and Hierarchy" section
outlines the Motif widget set.

In addition to supplying widgets, Motif adds a number of features
that are of general use to applications and users. The following sec-
tions summarize some of these features.

1.2.3.1 Visual Style

Motif widgets have a distinctive visual style. Many widgets have
shadows with a three-dimensional look that makes the widget
appear to be raised above or depressed below the background. A
widget that has keyboard focus may have a rectangular highlight
border. When the user presses the BSelect mouse button and focus

1−13

OSF/Motif Programmer’s Guide

is in a button, the color of the button face changes to indicate that
the user has selected or "pressed" the button.

Motif automatically generates default colors for widget foregrounds,
shadows, highlights, and selections states. The user or application
can supply its own colors or pixmaps as values for widget resources.

See chapter 12 for more information on colors and pixmaps in Motif.

1.2.3.2 Selections and Drag and Drop

The X Window System establishes conventions for clients to follow
in allowing the user to transfer data from one application to
another. These transfers operate via selections of several kinds,
including primary, secondary, and clipboard selections. A selection
is a shared resource that can be owned by only one client at a time
for a given display. When the user wants to transfer data from one
application to another, the receiving client asks the selection owner
to convert the data into a form the receiving client understands, and
then the receiver inserts the data. This mechanism can also
transfer data between one widget and another in the same applica-
tion.

The Motif Text and TextField widgets support primary, secondary,
and clipboard selections. Motif also has routines that handle the
clipboard selection, allowing an application to copy data easily to
and from the clipboard. Xt provides more general routines for
transferring data by means of selections.

Motif has an extensive drag and drop mechanism for transferring
data. The user begins a transfer by pressing the BTransfer mouse
button with the pointer over a data source. The user then drags an
iconic representation of the data to a spot that can receive the data,
called a drop site. When the user releases BTransfer the data is

1−14

Introduction

moved, copied, or linked to the drop site.

The Motif Text, TextField, List, and Label subclasses automatically
support drag and drop transfer of textual and some pixmap data.
Motif includes an extensive programming interface of objects and
routines that allow an application to establish its own drag sources
and drop sites, control negotiation between sender and receiver,
customize the visual elements, and convert arbitrary kinds of data.

See chapter 16 for information on selections and the Motif clipboard
interface. See chapter 15 for an extensive discussion of drag and
drop.

1.2.3.3 Keyboard Traversal

Motif provides two styles of transferring keyboard focus from widget
to widget. In one style, the widget that contains the pointer has
focus. In the other style, the user presses a key or the BSelect but-
ton to move focus to another widget, and the pointer location does
not otherwise affect the focus.

In the second style, Motif distinguishes between traversal to a com-
posite or a widget with internal navigation, called a tab group, and
navigation to a widget or element within a tab group. Motif has a
number of resources and routines to control traversal using this
style.

See chapter 13 for more information on keyboard traversal and
other input issues.

1−15

OSF/Motif Programmer’s Guide

1.2.3.4 Compound Strings and Font Lists

Motif represents much textual data using a data type called a com-
pound string. This is a byte stream consisting of components
representing text, a display direction, and a font list element
tag. A compound string can have multiple text segments, possibly
with different directions and font list element tags. Motif uses com-
pound strings to represent all text except that in the Text and Text-
Field widgets.

For each widget that can contain text, Motif maintains font infor-
mation using a data type called a font list. This is a list of
entries, each consisting of a font list element tag and either a font
or a font set. A font set is a construct representing a group of fonts
needed to display text in the locale of the application.

When Motif displays the text of a compound string segment, it
matches the segment’s font list element tag with a font list element
tag from the widget’s font list. It then uses the associated font or
font set to display the text of the segment. A special font list ele-
ment tag indicates text to be parsed in the encoding of the locale
and displayed using the fonts needed in that locale.

See chapter 11 for more information on compound strings and font
lists, particularly for information on preparing an application for
different language environments.

1.2.3.5 Motif Window Manager

The Motif Window Manager (MWM) is a Motif client that is capable
of managing windows of either Motif or non-Motif applications.
MWM provides window decorations and functions for moving,

1−16

Introduction

resizing, raising, lowering, maximizing, and minimizing windows.
The user can display icons either on the root window or in an icon
box. MWM has many resources that permit the user to customize
its appearance and behavior.

See chapter 16 for more information on the application interfaces to
MWM. See the mwm(1X) reference page in the OSF/Motif
Programmer’s Reference for information on MWM resources and
functions.

1.2.3.6 UIL and MRM

Motif has a specification language called the User Interface
Language (UIL). The developer uses UIL to define widgets and
data in a text file. The developer then compiles this file into a
binary format. At run time the application, using Motif Resource
Manager (MRM) routines, retrieves the widget descriptions and
data definitions from the binary file, and MRM creates the widgets
and data structures from these descriptions.

UIL and MRM work in conjunction with the Motif toolkit. The
application defines callback procedures and interacts with the widg-
ets as if it were using the Motif toolkit alone. By using UIL to
define the program’s widget hierarchies, the developer can separate
the user interface specification from the application code. A
developer can change the interface by editing and recompiling a text
file without recompiling and relinking the application program. As
with resource files, a developer can use separate UIL files to contain
text, font lists, and other data specific to particular locales.

See chapter 4 for information on using UIL and MRM in an applica-
tion. See the UIL(5X) reference page in the OSF/Motif
Programmer’s Reference for information on UIL syntax.

1−17

OSF/Motif Programmer’s Guide

1.2.4 Using Xlib, Xt, and Motif

Xt is built atop Xlib, and Motif is built atop Xt. One goal of Xt is to
give applications a set of high-level interfaces and objects that
relieve the program of the need to deal with many primitive Xlib
routines. A goal of Motif is to give applications still higher-level
interfaces and particularly a versatile set of widgets to relieve the
program of the need to define its own widgets for most tasks.

However, Xt does not strive to replace all Xlib interfaces, and Motif
does not strive to replace all Xt interfaces. Even a simple Motif
application must use basic Xt routines to initialize the toolkit,
manage widgets, create windows for widgets, get and set resources,
add callback routines, and enter the event-dispatching loop.

Many Motif applications do not need to call Xlib routines. However,
Motif does not have its own graphics routines, color-space facilities,
or support for application management of input methods. Programs
that need these features must either use vendor-supplied tools or
call Xlib routines directly.

As a general rule, an application should use the highest-level inter-
faces sufficient for the tasks at hand. Not only does this usually
result in a concise program, but it also ensures that the program
functions as intended when a higher-level procedure supersedes a
lower-level procedure.

For example, Xlib, Xt, and Motif all have routines to set keyboard
focus to a window or widget. Xt and Motif both maintain internal
state that keeps track of focus changes. If a Motif application uses
the Xt or Xlib routine, it may cause Motif or Xt to become internally
inconsistent.

By convention, the names of Xlib routines and data structures begin
with "X"; the names of Xt routines and data structures begin with
"Xt"; and the names of Motif routines and data structures begin

1−18

Introduction

with "Xm".

This book does not document Xlib or Xt interfaces. A Motif applica-
tion developer must have a working knowledge of basic Xt applica-
tion interfaces and should have at least general familiarity with
Xlib. For more information on Xlib, see the X Consortium Standard
Xlib—C Language X Interface. For more information on Xt, see the
X Window System document X Toolkit Intrinsics—C Language
Interface.

1.3 Widget Classes and Hierarchy

This section gives a brief overview of the hierarchy of widget classes
in Xt and Motif. Chapter 2 discusses this hierarchy in more detail.

1.3.1 Xt Classes

Xt defines the base classes for all widgets. Core is the fundamental
class for all widgets that can have windows. Core has basic
resources for a widget’s geometry, background color, translations,
and sensitivity to input. Widgetlike objects—called gadgets in
Motif—that do not have windows are subclasses of RectObj. This
class has geometry resources but no colors or translations.

Composite is the base class for all widgets that can have children.
This class maintains a list of its children and is responsible for
managing their geometry. Constraint is a subclass of Composite
that maintains additional data for each child, represented by con-
straint resources for the child.

1−19

OSF/Motif Programmer’s Guide

Shell is the base class for shell widgets. Shells envelop other widg-
ets whose windows are children of the root window. Shells are
responsible for interaction with the window manager. Shell is a
subclass of Composite. Xt has the following subclasses of Shell:

OverrideShell
Envelops widgets that the window manager should
ignore, such as menus

WMShell Superclass for shells that need to interact specifically
with the window manager

VendorShell Subclass of WMShell that implements toolkit-specific
behavior

TransientShell
Subclass of VendorShell for widgets such as dialogs
that appear briefly on behalf of other widgets

TopLevelShell
Subclass of VendorShell for top-level widgets for
components of the application

ApplicationShell
Subclass of TopLevelShell for the top-level widget
that represents the application as a whole

1.3.2 Motif Classes

Motif has three broad groups of widgets: primitives and gadgets,
managers, and shells.

1−20

Introduction

1.3.2.1 Primitives and Gadgets

Primitives are widgets that have no children. They are commonly
the fundamental units of input and output, and they are usually
building blocks for composite widgets. XmPrimitive, a subclass of
Core, is the base class for all primitives. XmPrimitive has basic
color resources and provides keyboard traversal behavior.

XmPrimitive is used only as a superclass for classes with more
specific behavior. Following are the subclasses of Motif primitives:

XmSeparator
Used to separate other widgets; usually appears as a
line.

XmLabel Displays text or a pixmap. As superclass for buttons,
provides specialized behavior, such as keyboard
traversal, inside menus

XmCascadeButton, XmDrawnButton, XmPushButton, XmToggleBut-
ton Subclasses of XmLabel that perform some action
when activated or "pressed" by the user. Subclasses
have roles as menu activators, toggles, pushbuttons,
and small graphics areas.

XmScrollBar
Control that moves a scroll widget horizontally or
vertically with respect to a fixed viewport on the
scroll.

XmList Array of textual items from which the user can select
one or more entries.

XmText Widget for display and possibly editing of text. May
be multiline or constrained to a single line. XmText-
Field is a variant optimized for single-line text.

1−21

OSF/Motif Programmer’s Guide

Gadgets are variants of primitives that have no windows. Gadgets
have geometry, but they inherit colors from their parents and
depend on their parents to dispatch input events to them.
XmGadget, a subclass of RectObj, is the base class for gadgets.
Gadget variants exist for separators, labels, and most button
classes.

See chapter 8 for more information on the Text and TextField widg-
ets. See chapter 5 for more information on other primitives.

1.3.2.2 Managers

A manager is a widget that generally has children and manages
their geometry. XmManager, a subclass of Constraint, is the base
class for managers. This class has special responsibilities when it
has gadget children. It provides color resources that its gadget chil-
dren inherit, and it dispatches input events to appropriate gadgets.
Following are the subclasses of Motif managers:

XmFrame Surrounds a child with a shadow and a margin.

XmScale Displays a value within a range and optionally allows
the user to supply a new value.

XmPanedWindow
Arranges children, called panes, vertically from top to
bottom. May insert a control called a sash that lets
the user adjust the size of a pane.

XmScrolledWindow
Provides a viewport onto a child widget that behaves
as a virtual scroll. Manages ScrollBars to move the
scroll with respect to the viewport.

1−22

Introduction

XmMainWindow
Subclass of ScrolledWindow that provides support for
a MenuBar and other specialized areas.

XmRowColumn
Implements menus, radio boxes, and check boxes,
usually consisting of button children. Can be used to
lay out arbitrary widgets in rows, columns, or two-
dimensional formations.

XmBulletinBoard
Superclass for dialogs, widgets that present informa-
tion to the user or seek information from the user.
The dialog widget may be a BulletinBoard, which pro-
vides general behavior, or a specialized subclass.
Common subclasses present a list from which the
user makes a selection; display file names and allow
the user to choose one; ask the user to enter a com-
mand; and display a message. One subclass, XmForm,
performs general constraint-based geometry manage-
ment for its children.

XmDrawingArea
General-purpose manager suitable for use as a canvas
for graphics operations.

See the following chapters for more information on Motif manager
widgets:

• RowColumn—chapter 6 for menus; chapter 10 for geometry
management

• BulletinBoard subclasses—chapter 7 for dialogs; chapter 10 for
geometry management

• ScrolledWindow, MainWindow, PanedWindow, Frame—chapter
9

1−23

OSF/Motif Programmer’s Guide

• DrawingArea—chapter 14

1.3.2.3 Shells

Motif has three shell classes:

VendorShell Motif-specific implementation of the Xt class. Among
other responsibilities, manages communication with
MWM.

XmDialogShell
Subclass of TransientShell that envelops dialogs.
Cooperates with BulletinBoard in popping up and
positioning transient dialogs.

XmMenuShell
Subclass of OverrideShell that envelops menus.

1.3.2.4 Other Motif Classes

Motif uses a number of specialized objects that are not intended to
be used in creating widgets. These objects exist primarily to hold
resources and other information that would be difficult to make
available in another way. XmDisplay holds resources specific to a
given display, and XmScreen holds resources specific to each screen
on which the application has created a widget. The drag and drop
interface includes objects representing several aspects of a drag and
drop transaction, including the general context, drop sites, drag
icons, and data transfers.

1−24

Introduction

1.4 Header Files and Libraries

Xlib, Xt, and Motif all have header files that an application must
include. However, the Motif header files themselves include the
required Xt files, which in turn include the required Xlib files. An
application usually needs to include only the proper Motif files.

All Motif applications must include the file <Xm/Xm.h>. This file
contains definitions that all applications need. Each Motif widget
also has an include file. An application must include the header
files for all widgets it creates. In addition, some groups of Motif
routines have their own header files. Required include files for each
Motif widget and routine are documented in the OSF/Motif
Programmer’s Reference.

Instead of using a large number of include files for particular widg-
ets and routines, an application can include <Xm/XmAll.h>. This
file incorporates all documented Motif header files.

When building a Motif application, a developer must link the pro-
gram with the appropriate libraries. Xlib, Xt, the Motif toolkit, and
MRM have separate libraries. An application that does not use
MRM must be linked with the Motif toolkit, Xt, and Xlib libraries.
An application that uses MRM must be linked with these libraries
and also with the MRM library. A developer might also need to link
the application with additional libraries, depending on the platform
and operating system. Consult your system administrator and ven-
dor documentation for more information on the libraries required
for Motif applications.

1−25

Chapter 2. The Motif Programming
Model

OSF/Motif accommodates a variety of application programming
styles. An application can accomplish most tasks, such as handling
a particular kind of user input or displaying a particular kind of
output, in more than one way. While this flexibility is one of the
strengths of OSF/Motif, the toolkit has been designed with a set of
programming principles in mind. This chapter explains at a gen-
eral level the intended uses of Motif widgets and other features of
the toolkit. The next chapter outlines the structure of common
Motif programs, and succeeding chapters explain toolkit features in
more detail.

The following general principles make sense in writing any Motif
program:

• Adopt a user-centered perspective. In most Motif programs, the
application does its work in response to commands or other
input from the user. An important part of interface design is
deciding precisely which commands, options, and other informa-
tion the user can give the application. The interface then con-
sists largely of procedures that execute the user’s commands or
otherwise respond to the user’s input.

• Separate the design of the core application and the user inter-
face. The core application should not depend on a particular
user interface. Often it’s a good idea to specify a set of generic
routines and data structures for obtaining input and displaying
output. The developer can then implement these routines in
different ways to provide different user interfaces for the applica-
tion.

• Follow the OSF/Motif Style Guide in designing the user inter-
face. Although an application can use Motif widgets in many
configurations, users find some more common, intuitive, and
comfortable than others. The OSF/Motif Style Guide contains
requirements and recommendations for compliant applications,
and it offers more advice on application design.

2−1

OSF/Motif Programmer’s Guide

• Outline the widget hierarchy. Once you have settled on one or
more combinations of widgets, you may find the implementation
more tractable if you sketch a genealogy of all the widgets the
program uses. Constructing a widget tree can reveal gaps and
awkwardness in the design. Attaching dialogs and menus to the
hierarchy may help ensure consistency and completeness in the
presentation and solicitation of information.

• Use high-level interfaces when possible. A Motif application
must use some X Toolkit Intrinsics (Xt) interfaces, and it may
call other public Xt and Xlib routines. For some tasks, such as
drawing graphics, an application must call lower-level routines.
However, Motif provides interfaces such as resources, callback
lists, and convenience routines to handle many common tasks.
Motif also includes both simple and composite widgets that do
most of the work related to their specific functions, such as text
editing or constraint-based geometry management. Using a
high-level Motif interface instead of a comparable series of
lower-level calls can make code simpler and more maintainable.

• Use resource files and the User Interface Language (UIL) to
specify characteristics of the interface. Avoid locking the user-
interface specification and data into the application code. Using
resources gives the user the power to override application-
supplied default behavior. UIL provides the opportunity to
separate the widget hierarchy from the application. With both
resources and UIL, the developer can change the interface
without recompiling the application code. These mechanisms
also provide the means to tailor the interface and data for partic-
ular language environments.

2−2

The Motif Programming Model

2.1 A User-Centered Model

A basic principle of Motif and Xt programming is that the user is in
charge of the application. Except in unusual circumstances, the
program takes action in response to commands or other input from
the user. In fact, a typical Motif program spends most of its real
time waiting for the user to provide input.

The fundamental object type in a Motif interface is the widget.
Some widgets can display output or process input or both; some
widgets serve to contain other widgets. A widget is usually associ-
ated with a window or a rectangular area of the screen. A widget
also has attributes, called resources, which can often be set by the
user or the application. An application organizes widgets into one
or more hierarchies or trees of parent widgets and their children.

Motif and Xt define a set of widget types or classes. A widget class
may be a subclass of another class; in that case it inherits some of
the attributes and behavior of the superclass. Motif has three basic
classes of widgets:

• Primitives are the basic units of input and output. Primitives
usually do not have children. Specialized Motif primitives
include labels, separators, buttons, scroll bars, lists, and text
widgets. Some primitive classes have equivalent objects called
gadgets. These are just like primitives except that, to enhance
performance, they have no associated windows.

• Managers are composite widgets that contain primitives, gadg-
ets, or other managers. Managers are responsible for the
geometrical arrangement of their children. They also process
and dispatch input to their gadget children. Specialized Motif
managers include frames, scrolled and paned windows, menus,
constraint-based geometry managers, and several kinds of dia-
logs.

2−3

OSF/Motif Programmer’s Guide

• Shells are widgets whose main purpose is to communicate with
the window manager. Most shells have only one child, and they
maintain the same size and position as the child. Specialized
Motif shells exist to envelop applications, dialogs, and menus.

Defining a widget hierarchy is one of the two main tasks of a Motif
application. The other is to define a set of callback procedures.
Callbacks are the primary means by which the application responds
to user input. When the user takes an action like pressing a key or
a mouse button, the X server sends the application an event. Xt
dispatches these events to the appropriate widget, usually the one
to which the user directed the input. Xt maps the event to one or
more widget action routines. The action may change the state of
the widget and, if the application has asked to be notified of that
action, may "call back" to the program by invoking an application
callback procedure.

Many Motif widgets have resources that are lists of callback pro-
cedures. Motif invokes a list of callbacks when the user takes an
action that has a particular meaning. For example, most buttons
have callbacks that Motif invokes when the user activates the but-
ton. The user may activate the button in a number of ways, such as
by pressing the KActivate key or the BSelect mouse button. The
events that constitute activation and other meaningful user actions
are defined in a general way in the OSF/Motif Style Guide and are
documented for specific widgets in the OSF/Motif Programmer’s
Reference.

The user action may cause Motif to change to the state and appear-
ance of a widget. For example, when the user presses KActivate in
a PushButton, Motif may make the button appear to be depressed
and then released, like a mechanical push button. The action may
have other effects depending on the context. For example, Motif has
a dialog widget called a FileSelectionBox, used for finding and
selecting files. When the user activates the "filter" PushButton in a
FileSelectionBox, Motif searches for and displays the names of files

2−4

The Motif Programming Model

that match a pattern displayed elsewhere in the FileSelectionBox.

In general Motif takes care of changing the state and appearance of
a widget to correspond to the user’s action. By default, though, this
action has no effect on the application. The application programmer
must interpret the meaning of the action for the application by pro-
viding a callback routine, which Motif invokes when the user takes
that action. The callback routine may change the state of the appli-
cation, as by changing the value of a variable when the user selects
a new value from a Scale widget. The callback may cause the appli-
cation to take an action. It may also change the state of one or
more widgets itself, or it may create an entirely new widget hierar-
chy.

When both Motif and the application have finished responding to a
user action, the application waits for the user to provide more input.
Xt provides a routine in which applications spend most of their
time. This routine waits for an event, dispatches it to the appropri-
ate widget, and then waits for another event. After initializing the
toolkit and creating the initial widget hierarchy, most applications
enter this loop and remain there until the user terminates the pro-
gram.

Motif and Xt provide other ways for applications to direct and
respond to events, but for simple programs, virtually the entire
interface between the user and the application consists of callback
routines.

2.2 Separating Interface from Application

A widely accepted principle of application design is that a core
application should not rely on a specific user interface. Separating
the application from the interface allows developers to work on the

2−5

OSF/Motif Programmer’s Guide

two components independently. It also allows the program to run
with different interfaces without changing the core application.
This makes it easier to port the application to more than one inter-
face and to experiment with different configurations of a single
interface.

Many applications need to collect input from the user and to display
output in some form. It may be easier to separate the core applica-
tion from the user interface if the developer specifies a set of generic
input and output routines along with any necessary data structures.
If these generic interfaces have no dependence on specific user inter-
faces, they can be implemented in different ways for different inter-
faces without changing the core application. They form a module
for communication between the core application and the interface.

The Motif implementation of the interface module consists of code to
perform the following tasks:

• Initialize the Intrinsics

• Create the widget hierarchy

• Define callback procedures

• Make widgets visible

• Enter a loop that waits for and responds to user input

These steps are explained in detail in chapter 3.

The User Interface Language (UIL) helps enforce the separation of
the interface from the core application. With UIL, the developer
defines widgets and their characteristics in a text file and then com-
piles the text file into a binary format. At run time the application,
using Motif Resource Manager (MRM) routines, retrieves the widget
descriptions from the binary file, and MRM creates the widgets from
these descriptions. The UIL file can also define data such as text
strings and colors, and MRM can retrieve the data at run time.

2−6

The Motif Programming Model

In this way, an application can remove the description of the widget
hierarchy from the program code. In its source code, the application
defines callback procedures and interacts with the widgets as if it
were using the Motif toolkit alone. Provided that the application
has defined all the callback procedures it needs, a developer can
change the widget hierarchy by editing and recompling the UIL file
without recompiling and relinking the source program.

2.3 Building Blocks: Primitive Widgets and
Gadgets

Primitive widgets are the fundamental units of input and output in
Motif. Primitives are commonly the widgets at the leaves of an
application’s widget hierarchy. These widgets do not have children
of their own. The name primitive does not imply simplicity; some
primitives, such as the Text widget, have quite complicated
behavior. Primitive is meant to contrast with manager, a widget
that usually has children. It also suggests a basic component from
which composite widgets are built. Primitives are often referred to
as controls.

The XmPrimitive Motif widget class is the superclass for all primi-
tives. XmPrimitive is itself a subclass of the fundamental Xt
widget class, Core. Core has resources that describe the widget’s
width, height, and x and y coordinates with respect to its parent.
Other Core resources control characteristics of the window, such as
its background color; whether or not the widget can receive input
events; and the mapping that Xt uses to translate events into calls
to the widget’s action routines.

XmPrimitive adds two groups of features to the Core class. One
group consists of resources to control additional visual

2−7

OSF/Motif Programmer’s Guide

characteristics, including the characteristic three-dimensional sha-
dow and a highlighting rectangle that can appear when the widget
is the focus for keyboard input. The second group controls keyboard
traversal, the use of the keyboard to move focus from one widget
to another. This group includes several resources and a set of
translations and actions that allow the user to move the keyboard
focus to another widget by pressing an arrow key. XmPrimitive
also provides callbacks to let the application provide help informa-
tion when the user presses KHelp.

The XmGadget widget class is the superclass for all gadgets.
XmGadget is a subclass of the Xt widget class RectObj. This class
provides resources to determine the dimensions and position of the
gadget’s rectangular area inside its parent. XmGadget is equivalent
to XmPrimitive, with two exceptions:

• Gadgets have no color or pixmap resources; they inherit these
from their parents.

• Gadgets do not have translations or actions. A gadget’s parent
controls keyboard traversal from the gadget to another widget,
and it dispatches events to the gadget when appropriate.

XmPrimitive and XmGadget are used only as superclasses for other
classes of widgets. XmPrimitive and XmGadget are not instanti-
able; an application cannot create an actual widget that is an
instance of either of these classes. Motif has several specialized
subclasses of primitives and gadgets, summarized in the following
sections.

2.3.1 Label and Separator

Labels provide the ability to display static (uneditable) text or a pix-
map. A Label or LabelGadget itself is useful for displaying a

2−8

The Motif Programming Model

message, title, or description. Label and LabelGadgets are also
superclasses for buttons used as menu items, toggles, or controls.

A Label can display either text or a pixmap. When a Label displays
text, it uses a construct called a compound string. This is stream
of bytes that represents zero or more pieces of text, each with an
associated tag and display direction. When Motif displays the com-
pound string, it matches each tag with a tag in the widget’s font
list and uses the corresponding font or fonts from the font list to
display the text.

A Separator or SeparatorGadget separates controls or groups of con-
trols. It usually appears as a horizontal or vertical line and sup-
ports several styles of line drawing.

Labels and Separators are described in more detail in chapter 5.

2.3.2 Buttons

A button is a basic control that performs some action when the user
activates it. Buttons commonly appear in menus, RadioBoxes and
CheckBoxes, SelectionBoxes and MessageBoxes. Motif has the fol-
lowing classes of buttons:

• A CascadeButton or CascadeButtonGadget is used inside a
menu and, when activated, usually causes a PulldownMenu to
appear.

• A PushButton or PushButtonGadget can appear either inside or
outside a menu. It performs some action determined by the
application. When a PushButton is armed, or ready to be
activated, it changes its appearance so that it looks as if the user
has pressed it in. When it is disarmed it reverts to the appear-
ance of extending out.

2−9

OSF/Motif Programmer’s Guide

• ToggleButtons and ToggleButtonGadgets have one of two states:
like toggle switches, they are either on or off. They can appear
in menus or in nonmenu RowColumn WorkAreas, including
RadioBoxes and CheckBoxes.

• A DrawnButton is an empty button surrounded by a shadow
border. It is intended to be used as a PushButton but with
graphics drawn by the application.

Buttons are described in more detail in chapter 5.

2.3.3 ScrollBar

A widget can act as a viewport onto a virtual scroll. The scroll is a
plane with text, graphics, a list of items, or other contents. The
viewport is a fixed-size window onto a portion of the scroll.

A ScrollBar is the control that moves the viewport horizontally or
vertically relative to the underlying scroll. A ScrollBar consists of a
rectangle, called the scroll region, representing the full size of the
scroll. It has a smaller rectangle, called the slider, within the scroll
region, representing the position and size of the viewport relative to
the full scroll. The ScrollBar usually has arrow graphics at both
ends of the larger rectangle.

ScrollBars are described in more detail in chapter 5.

2.3.4 List

A List is an array of textual items from which the user selects one
or more entries. Each item is a compound string. A List has four

2−10

The Motif Programming Model

modes for selecting items, two allowing the user to select one item
at a time and two allowing the user to select more than one item in
either contiguous or discontiguous ranges.

Lists are described in more detail in chapter 5.

2.3.5 Text

Text is a widget for displaying and possibly editing text. When the
Text is editable and the user presses a key that represents a text
character, that character is inserted into the text. Other transla-
tions and actions allow the user to navigate or to select, cut, copy,
paste, or scroll the text.

The text in a Text widget can be multiline or constrained to be a
single line. In a single-line widget, actions that move up and down
one line in a multiline widget instead traverse to another widget,
and pressing KTab moves the keyboard focus to another group of
widgets instead of inserting a Tab character. A TextField is essen-
tially the same as a Text widget in single-line mode, except that its
performance is optimized for single-line text operations.

Text is described in more detail in chapters 5 and 8.

2.4 Managers

A manager is a widget that usually contains children, either primi-
tives or other managers. One responsibility of a manager is to posi-
tion and shape its children so that the configuration of the children
is appropriate for the manager’s specialized purpose. Another

2−11

OSF/Motif Programmer’s Guide

responsibility is to determine whether a gadget child should process
an input event and, if so, to dispatch the event to that child.

The XmManager Motif widget class is the superclass for all
managers. XmManager is a subclass of Core. Like XmPrimitive,
XmManager has resources to control colors or pixmaps used for the
foreground, shadows, and highlighting rectangle. Most managers
do not have shadows or highlighting rectangles, but gadget children
inherit the related resources. Managers also have resources that
control keyboard traversal, and they provide callbacks for process-
ing user requests for help. In addition, they have translations and
actions for dispatching input events to gadget children, usually to
the child that is the current focus of keyboard events.

XmManager is not an instantiable widget class; it is used only as a
subclass for other widgets. Motif has several specialized subclasses
of managers, summarized in the following sections.

2.4.1 Frame

A Frame is a simple manager that surrounds a single child with a
shadow and a margin. A Frame can also have another child that
appears as a title for the Frame.

Frames are discussed in more detail in chapter 9.

2.4.2 Scale

A Scale is a manager that functions as a control. It displays a value
within a range and optionally allows the user to supply a new

2−12

The Motif Programming Model

value. Its appearance and behavior are much like those of a
ScrollBar without arrows. It also has a title and can display the
current value next to the slider. If the application adds other chil-
dren to a Scale, the Scale positions them evenly along the rectangu-
lar area that represents the range of values, and these children
then act as tic marks or value labels.

Scales are discussed in more detail in chapter 5.

2.4.3 PanedWindow

A PanedWindow arranges its children vertically from top to bottom
and forces them all to have the same width. Each child is a pane of
the window. Between each pair of panes, PanedWindow inserts an
optional Separator and a control called a sash. By manipulating a
sash with the mouse or keyboard, the user can increase or decrease
the height of the pane above. PanedWindow has resources to con-
trol the margins, the spacing between panes, and the appearance of
the sashes. Each pane of a PanedWindow has resources specifying
a maximum and minimum height and whether or not either the
pane itself or the PanedWindow should be allowed to resize the
pane without user intervention.

PanedWindow is discussed in more detail in chapter 9.

2.4.4 ScrolledWindow and MainWindow

A ScrolledWindow manages a viewport and ScrollBars to implement
a window onto a virtual scroll. Via the ScrollBars or keyboard scrol-
ling commands, the user can move the viewport to display different

2−13

OSF/Motif Programmer’s Guide

portions of the underlying scroll.

ScrolledWindow is capable of performing scrolling operations
automatically. In this mode the application creates the widget that
represents the scroll as a child of the ScrolledWindow. The Scrol-
ledWindow then creates a clipping window to act as the viewport;
creates and manages the ScrollBars; and moves the viewport with
respect to the scroll when the user issues a scrolling command.

ScrolledWindow can also allow the application to perform scrolling
operations. In this mode the application must create and manage
the ScrollBars and must change the contents of the viewport in
response to the user’s scrolling commands.

List and Text widgets are often used as virtual scrolls. Motif has
convenience routines to create List and Text widgets inside Scrol-
ledWindows, and the resulting ScrolledList and ScrolledText widg-
ets perform scrolling operations without intervention by the appli-
cation.

MainWindow is a subclass of ScrolledWindow that is intended as
the primary window in an application. In addition to a viewport
and ScrollBars, MainWindow includes an optional MenuBar and
optional command window and message window.

ScrolledWindow and MainWindow are described in more detail in
chapter 9.

2.4.5 RowColumn

RowColumn implements both menus and nonmenu WorkAreas.
Menus are widgets that allow the user to make choices among
actions or states. Motif offers four basic kinds of menu:

2−14

The Motif Programming Model

• A MenuBar usually appears in the application’s MainWindow
and sometimes in other components. It most often consists of a
row of CascadeButtons that, when activated, cause Pulldown-
Menus to appear.

• A PopupMenu contains a set of choices that apply to a com-
ponent of the application. The menu is not visible until the user
takes an action that posts it, It can contain buttons that take
action directly or CascadeButtons that cause PulldownMenus to
appear.

• A PulldownMenu is associated with a CascadeButton in a Menu-
Bar, a PopupMenu, or another PulldownMenu. The menu is not
visible until the user posts it by activating the associated Cas-
cadeButton. Like a PopupMenu, a PulldownMenu can contain
buttons that take action directly or CascadeButtons that cause
other PulldownMenus to appear.

• An OptionMenu allows the user to choose among one set of
choices, usually mutually exclusive attributes or states. It con-
sists of a label, a CascadeButtonGadget whose label shows the
currently selected option, and a PulldownMenu containing but-
tons that represent the set of options.

One use for a nonmenu RowColumn WorkArea is to contain a set of
ToggleButtons constituting a RadioBox or a CheckBox. When the
user selects a ToggleButton, its state changes from on to off of from
off to on. Another use is to lay out an arbitrary set of widgets in a
row, column, or two-dimensional formation.

RowColumn is discussed in more detail in chapter 6.

2−15

OSF/Motif Programmer’s Guide

2.4.6 BulletinBoard, Form, MessageBox, Selection-
Box

Dialogs are container widgets that provide a means of communicat-
ing between the user and the application. A dialog widget usually
asks a question or presents some information to the user. In some
cases, the application is suspended until the user provides a
response.

The usual superclass for a dialog widget is XmBulletinBoard. The
dialog widget can be either a BulletinBoard itself or one of its more
specialized subclasses. BulletinBoard is a container with no
automatically created children; it supplies general behavior needed
by most dialogs. Its subclasses provide child widgets and specific
behavior tailored to particular types of dialogs:

• A SelectionBox is a BulletinBoard subclass that allows the user
to select a choice from a list. It usually contains a List, an edit-
able text field displaying the choice, and three or four buttons for
accepting or canceling the choice and seeking help.

• A FileSelectionBox is a specialized SelectionBox for choosing a
file from a directory. It contains two text fields, one containing a
file search pattern and the other containing the selected file
name; two lists, one displaying file names and the other display-
ing subdirectories; and a set of buttons.

• A Command is a specialized SelectionBox for entering a com-
mand. Its main components are a text field for editing the com-
mand and a list representing the command history.

• A MessageBox is a BulletinBoard subclass for displaying mes-
sages to the user. It usually contains a message symbol, a mes-
sage label, and up to three buttons. Motif provides distinct sym-
bols for several kinds of messages: errors, warnings, information,
questions, and notifications that the application is busy.

2−16

The Motif Programming Model

• A TemplateBox is a specialized MessageBox that allows the
application to build a custom dialog with additional children
such as a MenuBar and added buttons.

• A Form is a BulletinBoard subclass that performs constraint-
based geometry management. The children of a Form have
resources that represent attachments to other children or to the
Form, offsets from the attachments, and relative positions
within the Form. The Form calculates the positions and sizes of
its children based partly on these constraints. This layout func-
tion makes Form useful outside dialogs as well.

Dialogs are discussed in more detail in chapter 7.

2.4.7 DrawingArea

A DrawingArea is a manager suited for use as a canvas containing
graphical objects. An application must interact with a
DrawingArea at a somewhat lower level than with other Motif
widgets, but a DrawingArea provides the application with more
fine-grained information about events. DrawingArea has callbacks
to notify the application when the widget is exposed or resized and
when it receives keyboard or mouse input. An application generally
must use Xlib routines to draw into the DrawingArea, and the
application is responsible for updating the contents when necessary.
The flexibility of a DrawingArea makes it a useful widget for imple-
menting both graphical and text features not provided by other
Motif widgets.

DrawingArea is discussed in more detail in chapter 15.

2−17

OSF/Motif Programmer’s Guide

2.5 Shells

Users of X Window System applications normally employ a window
manager, a special application that may control the positions, sizes,
and border decorations of top-level windows on the display. Motif
supplies its own window manager, the Motif Window Manager
(MWM), but Motif applications can cooperate with other window
managers as well.

A window manager communicates with other applications via a pro-
tocol defined in an X Window System document, the Inter-Client
Communication Conventions Manual (ICCCM). Xt and Motif define
a group of widgets whose main responsibility is to envelop other
widgets and communicate with the window manager. These widg-
ets are called shells.

A shell is nearly invisible to the application. Each shell has a single
managed child, and the shell’s window usually remains coincident
with the child’s window. The application must create shells when
needed, but many Motif convenience routines that create widgets
also create shells automatically. Once it has created a shell, the
application may not need to handle the shell again. For example,
an application can position or resize a Motif shell by positioning or
resizing the child widget.

Each widget with a top-level window—that is, a window whose
parent is the root window of the screen—needs to be enclosed in a
shell. This is true of the main application widget, but it is also true
of dialogs, menus, and any top-level widgets other than the main
application widget. Motif provides three classes of shell: Vendor-
Shell, DialogShell, and MenuShell.

2−18

The Motif Programming Model

2.5.1 VendorShell

VendorShell is the shell class that provides Motif-specific behavior
for shells other than those surrounding menus. It is responsible for
communication between the application and MWM. VendorShell is
a superclass for other classes. TopLevelShell is an Xt subclass of
VendorShell that surrounds a top-level widget in an application.
ApplicationShell is another Xt subclass of VendorShell that sur-
rounds the main widget in the application.

Many applications create only one ApplicationShell. A program can
create this shell explicitly, or it can use the Xt convenience routine
XtAppInitialize to initialize the application and create the Appli-
cationShell automatically.

2.5.2 DialogShell

XmDialogShell is a VendorShell subclass that envelops dialogs.
Although the window manager takes account of dialogs, they are
usually transient; they appear to provide information to or solicit
information from the user, and then they disappear. DialogShell is
a subclass of the Xt TransientShell class, which keeps track of the
application to which the dialog belongs. Users cannot iconify a dia-
log separately from the main application window.

DialogShell is designed to have a child that is a subclass of Bul-
letinBoard. Most Motif convenience routines that create dialogs
create DialogShell parents automatically.

2−19

OSF/Motif Programmer’s Guide

2.5.3 MenuShell

XmMenuShell is the class of shell that surrounds PopupMenus and
PulldownMenus. MenuShell is a subclass of the Xt OverrideShell
class. This class enables the shell to bypass the window manager.
Most Motif convenience routines that create PopupMenus and
PulldownMenus create MenuShell parents automatically.

2.6 Applications, Top-Level Widgets, and Dia-
logs

Primitives, managers, and shells are the components Motif provides
for building an interface. A developer assembles these components
into the broadest units of the program: dialogs, top-level widgets,
and the application itself.

One approach to this construction is to specify the connection
between the core application and the user interface. The developer
determines what information the application needs to obtain from
and present to the user. From this assessment the developer
specifies a generic interface to the application and then implements
a Motif version using particular combinations of widgets.

Another approach is to design the user interface from the applica-
tion level down to specific widgets. The developer decides what the
top-level components of the application should be and how they
relate to each other. From this assessment the developer designs a
combination of widgets that presents the application clearly to the
user and permits a graceful transition from one task to another.
The developer can then finely adjust the visual appearance of the
interface.

2−20

The Motif Programming Model

In practice a developer is likely to use both the bottom-up and top-
down approaches at different stages of the program design. The
approaches converge at the level of the application.

2.6.1 Applications

The application is the highest level of abstraction of a Motif pro-
gram. In one sense the application embodies the entire program.
In another sense the application is the primary widget in the pro-
gram. The user may cause other widgets to appear, but the applica-
tion is the focus of activity and is usually the first widget to appear
when the user starts the program.

The widget that represents the application is commonly a MainWin-
dow. For many applications, the essential operations should be
available from the MenuBar at the top of the MainWindow. By
browsing through the MenuBar, the user can quickly determine
what general functions the application provides. The activation
callbacks for the buttons in menus that are pulled down from the
MenuBar initiate the general operations of the application. The
OSF/Motif Style Guide contains requirements and recommenda-
tions for the contents of the application MenuBar and its Pulldown-
Menus.

The MainWindow usually contains a large scrollable work area.
Single-component applications usually perform most of their work
using this region. Other applications may require more than one
work area.

An ApplicationShell encloses the main widget of an application.
The developer can use the Xt function XtAppCreateShell to create
an ApplicationShell directly or can let Xt create the shell during a
call to XtAppInitialize.

2−21

OSF/Motif Programmer’s Guide

Usually a program has only one application, but sometimes a pro-
gram comprises multiple logical applications. In this case the pro-
gram may have more than one main window, each enveloped in a
separate ApplicationShell.

2.6.2 Top-Level Widgets

Although it is unusual for a program to have more than one logical
application, it is more common for an application to require multi-
ple top-level widgets. For example, a mail-processing program may
consist of a component for reading mail and another for composing
and sending it.

Each major component of an application may reside in a top-level
widget. Each top-level widget must be enclosed in a TopLevelShell
or an ApplicationShell. One approach is to have a single Applica-
tionShell for the application, with each TopLevelShell a popup child
of the ApplicationShell. The program does not create a window for
the ApplicationShell. Another approach is to designate one top-
level widget the application, enclosed in an ApplicationShell, and
make the other TopLevelShells popup children of the Application-
Shell. A popup child is one whose window is a child of the root win-
dow and whose geometry is not managed by its parent widget.

Multiple top-level widgets are discussed in more detail in chapter 3.

2.6.3 Dialogs

Dialogs are transient components used to display information about
the current state of the application or to obtain specific information

2−22

The Motif Programming Model

from the user. A dialog widget is usually a BulletinBoard or one of
its subclasses, enclosed in a DialogShell. The DialogShell is a
popup child of another widget in the hierarchy. Its window is a
child of the root window, but the user cannot iconify a dialog
separately from the main application.

A dialog can be modal—that is, it can prevent other parts of the
application from processing input while the dialog is active. It can
also be modeless, so that the user can interact with the rest of the
application while the dialog is visible. Motif has convenience rou-
tines that create both the dialog widget and the DialogShell for
several kinds of information.

Dialogs are discussed in more detail in chapter 7.

2.7 Resources: User and Program Customiza-
tion

A widget, a class of widgets, and an application as a whole has a set
of attributes that the program can examine and that the user and
program may be able to specify. These attributes are implemented
as X resources. Xlib has a facility called the X resource manager
(Xrm) whose purpose is to establish and query databases of
resources. Xt and Motif build on Xrm to make resources the reposi-
tory of publicly available attributes of widgets as well as applica-
tions.

Xt maintains databases of resources that apply to several levels:

• To the application as a whole

• To the display on which an application is running

2−23

OSF/Motif Programmer’s Guide

• To the screen on which a widget hierarchy is created

• To a class of widgets

• To an individual widget

The user can specify resources at any of these levels via resource
files or the command line used to start the program. The applica-
tion can also specify resources via resource files.

Each application has a name and a class; each widget within an
application has a name and a class; and each resource has a name
and a class. When supplying resource values in a file or on the com-
mand line, the user or the application specifies the scope of the
resource value by qualifying the resource according to its name or
class. For example, a user might specify that all resources of the
class Background should have a particular value for all widgets; or
the user might specify that only the resource named background
within a particular hierarchy of named widgets should have a par-
ticular value. The qualification mechanism allows resource values
to be specified at any level of generality or specificity.

Most widget classes define a set of resources, by name and class,
that apply to those classes. Subclasses inherit superclass resources,
unless a subclass overrides the superclass resource specification. A
widget class also defines a default value for each of its resources,
used in case the user and the application do not provide another
value.

When an application starts up, Xt constructs an initial database of
resource values. This database is derived from a combination of
user and application resource files and the command line. Some
resources in the database may have different values depending on
the display or the screen on which the application is running. When
an application creates a widget, Xt uses this initial database in
combination with the widget class resource defaults to supply
values for the widget’s resources. The application can override
these values by supplying arguments to the routine that creates the

2−24

The Motif Programming Model

widget. It can set a resource value after creating the widget by
using the Xt function XtSetValues.

Setting resources is the primary means by which an application
changes the attributes of a widget. An application should be care-
ful, however, not to override the user’s specification of many
resources governing such characteristics as visual appearance and
the policy for determining which widget has keyboard focus. In gen-
eral the application should set only those resources necessary for
the proper functioning of the program. An application can specify
preferences for other resource values in an application defaults file.
Xt reads this file when an application starts up, but a user can over-
ride the values supplied there.

The process by which Xt creates the initial resource database is dis-
cussed in more detail in chapter 3.

2.8 Handling Input and Output

The X server communicates input to a client via input events asso-
ciated with a window. In the simplest case, when a keyboard or
pointer event occurs, the X server sends the event to the client that
has expressed interest in events of that type on the window that
contains the pointer. However, processing can be more complex. A
client can grab a pointer button or key, the pointer or keyboard, or
the entire server; the client then receives the relevant events. A
client can set the input focus to some window, and the X server
then reports events with respect to this window even if the pointer
is outside this window.

To insulate applications from such complexities, Xt and Motif sup-
ply facilities for low-level processing of user input to an application:

2−25

OSF/Motif Programmer’s Guide

• A VendorShell resource, XmNkeyboardFocusPolicy, allows the
user or application to determine whether keyboard events go to
the widget that contains the pointer or the widget in which the
user presses BSelect (a "click-to-type" policy).

• In the click-to-type model, the user can also use keys to navigate
from widget to widget or from one group of widgets to another.

• Xt provides the basic event-dispatching loop used by most appli-
cations. Xt takes events out of the application’s queue and
dispatches them to the appropriate widget, usually the widget
that has input focus. Xt usually invokes an action associated
with the particular event via a table of translations from event
specifications to action routines. The action, in turn, often
invokes a callback list.

• Motif and Xt provide mnemonics and accelerators, which are
shortcuts for taking actions associated with a widget when the
widget does not have input focus. A mnemonic is a keysym for a
key that activates a visible button in a menu. An accelerator
is a description for an event that invokes an action routine via a
translation.

Most applications can use these high-level interfaces, allowing Xt
and Motif to process user input at lower levels. If an application
needs more control, it can also provide its own event handler, a
routine invoked by the Xt dispatching loop when the widget receives
events of the specified type. An application can also provide its own
event-dispatching loop.

Issues of input, focus, and keyboard navigation are discussed in
more detail in chapter 13.

For most widgets, Xt and Motif handle low-level output processing
as well. For example, in a Label or Text widget, when an applica-
tion changes the text to be displayed, Motif automatically
redisplays the contents of the widget. Most widgets have resources
that control the appearance of the output, such as the fonts used to

2−26

The Motif Programming Model

display text.

Motif provides the DrawingArea widget for applications that need
to produce graphic output or that need more control or flexibility in
displaying text. DrawingArea is discussed in more detail in chapter
15.

2−27

Chapter 3. Structure of a Motif Pro-
gram

OSF/Motif uses the same event-driven programming model as the X
Toolkit Intrinsics. At its core, a Motif application waits for the user
to provide input, usually by pressing a key, moving the mouse, or
clicking a mouse button. Such an action by the user causes the X
server to generate one or more X Window System events. Xt listens
for these events and dispatches them to the appropriate Motif
widget, usually the widget to which the user directed the input.
The widget may take some action as a result of the user input. If
the application has asked to be notified of that action, the widget
"calls back" to the application—it invokes an application callback
procedure. When both Motif and the application have finished
responding to the user input, the application waits for the the user
to provide more input. This cycle of user-initiated events and appli-
cation response, here called the event loop, continues until the
user terminates the application.

For simple applications, the Intrinsics and Motif toolkits do every-
thing necessary for dispatching user input to widgets. The applica-
tion must take the following actions:

• Include the required header files

• Initialize the Intrinsics

• Create one or more widgets

• Define callback procedures and attach them to widgets

• Make the widgets visible

• Enter the event loop

This chapter discusses each of these actions. The following table
summarizes these steps and some of the procedures the application
needs to call. Note that some of these steps are different when the
application uses UIL and MRM. See chapter 4 for more informa-
tion.

3−1

OSF/Motif Programmer’s Guide

TABLE 3-1. Steps in Writing Widget Programs

222
Step Description Related Functions22211 11 11 11

1 Include required
header files.

#include <Xm/Xm.h>
#include <Xm/widget.h>

2 Initialize Xt Intrinsics XtAppInitialize()222
Do steps 3 and 4
for each widget.

3 Create widget XtSetArg()
XtCreateManagedWidget()
or
XmCreate<WidgetName>()
followed by
XtManageChild(widget)

4 Add callback routines XtAddCallback()222
5 Realize widgets XtRealizeWidget(parent)
6 Enter event loop XtAppMainLoop()2221

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

3.1 Including Header Files

All Motif applications must include the file <Xm/Xm.h>. This file
contains definitions that all applications need. It also includes the
Xt header files <X11/Intrinsic.h> and <X11/StringDefs.h>.

Each Motif widget also has an include file. An application must
include the header files for all widgets it creates. In addition, some
groups of Motif routines have their own header files. For example,
an application that uses any of the Motif clipboard routines must

3−2

Structure of a Motif Program

include the file <Xm/CutPaste.h>. Required include files for each
Motif widget and routine are documented in the OSF/Motif
Programmer’s Reference.

Following is an example of the inclusion of header files for an appli-
cation that uses only a Text widget:

#include <Xm/Xm.h>
#include <Xm/Text.h>

3.2 Initializing the Intrinsics

The first task of a Motif application is to initialize the Intrinsics.
Most applications can perform the initialization by calling the rou-
tine XtAppInitialize. This is a convenience routine that combines
several initialization steps, each of which the application can take
separately by calling a specialized Xt routine:

• Initialize the state of the Intrinsics. An application can also do
this by calling XtToolkitInitialize.

• Create an application context. Xt uses this construct to contain
the information it associates with each instance of an applica-
tion. Its purpose is to allow multiple instances of an application
to run in a single address space. Most applications need only
create an application context and pass it to Intrinsics routines
that take an application context as an argument. The data type
is XtAppContext. An application can create an application con-
text explicitly by calling XtCreateApplicationContext.

• Open a connection to a display and attach it to an application
context. When an application uses XtAppInitialize, the

3−3

OSF/Motif Programmer’s Guide

display specification comes from the command line invoking the
application or from the user’s environment. After opening the
display, Xt builds a resource database by processing resource
defaults and command-line options. The construction of this
database is described in the next section. An application can
perform these steps explicitly by calling XtOpenDisplay. If an
application already has an open display as a result of calling
XOpenDisplay, it can attach the display to an application con-
text and build the initial resource database by calling
XtDisplayInitialize.

• Create a top-level shell widget for the application. XtAppIni-
tialize creates an ApplicationShell and returns it as the
function’s return value. An application can create a top-level
shell by calling XtAppCreateShell.

Following is an example of a simple call to XtAppInitialize:

int main(int argc, char **argv)
{

Widget app_shell;
XtAppContext app;
app_shell = XtAppInitialize(&app, "Example",

(XrmOptionDescList) NULL, 0, &argc, argv,
(String *) NULL, (ArgList) NULL, 0);

}

3.2.1 The Initial Resource Database

The XtDisplayInitialize routine builds the initial resource data-
base for the application. An application rarely needs to call this
routine directly; it is called by XtOpenDisplay, which in turn is
called by XtAppInitialize.

3−4

Structure of a Motif Program

XtDisplayInitialize builds a separate resource database for each
display connection. The initial database combines resource settings
from the command line, the display, an application class defaults
file, and user defaults files that may be specialized according to the
application or the host on which the application is running. The
application class defaults and the user’s per-application defaults
may be further specialized according to the language environment
and possibly according to a general-purpose customization
resource. The resources in the initial database may pertain to par-
ticular widgets or widget classes or to the application as a whole.
When the application creates widgets, the resource settings from
the database are often the source for the initial values of widget
resources.

The remainder of this section describes the order in which
XtDisplayInitialize loads each component of the database and
how it derives the location of that component.

3.2.1.1 File Search Paths

In loading the application class defaults and the user’s per-
application defaults, XtDisplayInitialize calls XtResolvePath-
name to determine which files to read. XtResolvePathname uses file
search paths. Each path is a set of patterns that may contain spe-
cial character sequences for which XtResolvePathname substitutes
runtime values when it searches for a file. It uses the following sub-
stitutions in building the path:

• %N is replaced by class name of the application, as specified by
the application-class argument to XtAppInitialize, XtOpen-
Display, or XtDisplayInitialize.

• %C is replaced by the value of the customization resource.

3−5

OSF/Motif Programmer’s Guide

• %L is replaced by the display’s language specification. This may
come from the xnlLanguage resource, the locale of the applica-
tion, or an application callback procedure. See chapter 11 for
more information. The format of the language specification is
implementation-dependent; it may have language, territory, and
codeset components.

• %l is replaced by the language part of the language specification.

• %t is replaced by the territory part of the language specification.

• %c is replaced by the codeset part of the language specification.

• %% is replaced by %.

If the language specification is not defined, or if one of its parts is
missing, a % element that references it is replaced by NULL.

The paths contain a series of elements separated by colons. Each
element denotes a filename, and the filenames are looked up left-
to-right until one of them succeeds. Before doing the lookup, substi-
tutions are performed.

Note: The Intrinsics use the X/Open convention of collaps-
ing multiple adjoining slashes in a filename into one
slash.

3.2.1.2 Initial Database Components

The XtDisplayInitalize function loads the resource database by
merging in resources from these sources, in order of precedence
(that is, each component takes precedence over the following com-
ponents):

• The application command line

3−6

Structure of a Motif Program

• Per-host user environment resource file on the local host

• Screen-specific resources for the default screen of the display

• Resource property on the server or user preference resource file
on the local host

• Application-specific user resource file on the local host

• Application-specific class resource file on the local host

3.2.1.3 Command-Line Specifications

XtDisplayInitialize calls the X Resource Manager function
XrmParseCommand to extract resource settings from the command
line by which the user invoked the application. The arguments and
number of arguments on the command line come from the argv
and argc arguments to XtAppInitialize, XtOpenDisplay, or
XtDisplayInitialize. Xt maintains a standard set of command-
line options, such as –background and –geometry, for specifying
resource settings. An application can specify additional options in
arguments to XtAppInitialize, XtOpenDisplay, or XtDisplayIni-
tialize. The user can supply the –xrm option to set any resource
in the database.

3.2.1.4 Per-Host User Resources

To load the per-host user environment resources, XtDisplayIni-
tialize uses the filename specified by the XENVIRONMENT environ-
ment variable. If XENVIRONMENT is not defined,
XtDisplayInitialize looks for the file $HOME/.Xdefaults-host,
where host is the name of the host on which the application is

3−7

OSF/Motif Programmer’s Guide

running (that is, the name of the client host, not the server host).

3.2.1.5 Screen-Specific Resources

To load screen-specific resources, XtDisplayInitialize looks for a
SCREEN_RESOURCES property on the root window of the default
screen of the display. The SCREEN_RESOURCES property typi-
cally results from invoking the xrdb command when some
resources are not defined for all screens.

Note: When Xt needs to fetch resources for a screen other
than the default screen of the display—for example,
when creating a widget on another screen—it uses
the SCREEN_RESOURCES property of that screen
instead of the SCREEN_RESOURCES property of
the default screen.

3.2.1.6 Server or User-Preference Resources

To load the server resource property or user preference file,
XtDisplayInitialize first looks for a RESOURCE_MANAGER
property on the root window of the display’s screen 0. The
RESOURCE_MANAGER property typically results from invoking
the xrdb command when some resources are defined for all
screens. If that property does not exist, XtDisplayInitialize
looks for the file $HOME/.Xdefaults.

3−8

Structure of a Motif Program

3.2.1.7 User Application File

To load the user’s application resource file, XtDisplayInitialize
performs the following steps:

1. Use XUSERFILESEARCHPATH to look up the file, performing
appropriate substitutions.

2. If that fails, or if XUSERFILESEARCHPATH is not defined, and if
XAPPLRESDIR is defined, use an implementation-dependent
search path containing at least seven entries, in the following
order and with the following directory prefixes and substitu-
tions:

$XAPPLRESDIR with %C, %N, %L or with %C, %N, %l, %t, %c
$XAPPLRESDIR with %C, %N, %l
$XAPPLRESDIR with %C, %N
$XAPPLRESDIR with %N, %L or with %N, %l, %t, %c
$XAPPLRESDIR with %N, %l
$XAPPLRESDIR with %N
$HOME with %N

where $XAPPLRESDIR is the value of the XAPPLRESDIR
environment variable and $HOME is the user’s home directory.

3. If XAPPLRESDIR is not defined, use an implementation-
dependent search path containing at least six entries, in the
following order and with the following directory prefixes and
substitutions:

3−9

OSF/Motif Programmer’s Guide

$HOME with %C, %N, %L or with %C, %N, %l, %t, %c
$HOME with %C, %N, %l
$HOME with %C, %N
$HOME with %N, %L or with %N, %l, %t, %c
$HOME with %N, %l
$HOME with %N

3.2.1.8 Application Class Resource File

To load the application-specific class resource file, XtDisplayIni-
tialize performs the appropriate substitutions on the path
specified by the XFILESEARCHPATH environment variable. If that
fails, or if XFILESEARCHPATH is not defined, XtDisplayInitialize
uses an implementation-dependent search path containing at least
six entries, in the following order and with the following substitu-
tions:

%C, %N, %S, %T, %L or %C, %N, %S, %T, %l, %t, %c
%C, %N, %S, %T, %l
%C, %N, %S, %T
%N, %S, %T, %L or %N, %S, %T, %l, %t, %c
%N, %S, %T, %l
%N, %S, %T

where the substitution for %S is usually NULL and the substitu-
tion for %T is usually app-defaults.

If no application-specific class resource file is found, XtDisplayIn-
itialize looks for any fallback resources that may have been
defined by a call to XtAppInitialize or XtAppSet-
FallbackResources.

3−10

Structure of a Motif Program

3.3 Creating Widgets

The top-level widget returned by XtAppInitialize or
XtAppCreateShell is the root of a program’s widget hierarchy for
a given display or logical application. After initializing the Intrin-
sics, the application can proceed to create the remainder of the
widget hierarchy it needs to start the program.

Widget creation is a two-stage process. In the first stage, the
application creates the widget hierarchy but does not assign win-
dows to the widgets. In the second stage the application assigns
windows and makes them visible. These stages are separate
because otherwise window geometry might have to be recomputed
each time a child is added. This computation can require a great
deal of communication with the X server and take a long time.
Instead, initial window geometry is computed only once. For more
information see the section "Making Widgets Visible" below.

The general routine for creating a widget is XtCreateWidget. The
required arguments to this routine are the widget’s name, class,
and parent widget. You can also provide initial resource values for
the widget, as discussed in the next section. XtVaCreateWidget is
a version of XtCreateWidget that uses a variable-length argument
list.

Motif has a convenience routine for creating a widget of each Motif
class. The name of such a routine is usually XmCreate<widget>,
where widget represents the widget class. For example, the con-
venience routine for creating a Text widget is XmCreateText.
These routines do not require the widget-class argument.

Some convenience routines, such as XmCreateMenuBar, create spe-
cialized widgets. These routines usually set some initial resource
values to configure the widget for a particular use—for example, to
configure a RowColumn widget for use as a MenuBar. In some

3−11

OSF/Motif Programmer’s Guide

cases, such as XmCreatePulldownMenu and XmCreateScrol-
ledList, these routines create a widget hierarchy rather than a
single widget. The documentation for each convenience routine in
the OSF/Motif Programmer’s Reference explains what the routine
does.

Using a Motif creation routine is generally preferable to calling
XtCreateWidget. In addition to creating multiple widgets and set-
ting appropriate resources, these routines sometimes perform
optimizations. For example, some convenience routines add
XmNdestroyCallback procedures to free memory when the widget
is destroyed.

Note: Every widget except a top-level widget must have a
parent at the time the widget is created.

An application can use XtDestroyWidget to destroy a widget.

3.3.1 Specifying Resource Values

An application can specify values for resources when it creates a
widget and anytime thereafter. It can retrieve resource values
after creating a widget.

3.3.1.1 Widget Initialization

When an application creates a widget, the creation routine sets
the widget’s initial resource values from the following sources, in
order (that is, each succeeding component takes precedence over
preceding components):

3−12

Structure of a Motif Program

• Default values for resources specified by the widget class and
its superclasses

• Resource values from the initial resource database

• Resource values specified by the application in its call to the
widget creation routine

Each widget class can have its own initialize procedure. After
setting the initial resource values, the widget creation routine
calls the initialize procedure for each class in the widget’s class
hierarchy, in superclass-to-subclass order. The initialize pro-
cedure can set new values for resources, possibly based on other
resource values in the widget or its ancestors. In some cases an
initialize procedure forces a resource to have a particular value,
regardless of whether the user or application has specified another
value. In other cases the initialize procedure might set a
resource value only if the user or application has not specified
another value.

The documentation for each widget class in the OSF/Motif
Programmer’s Reference lists the data type and default value for
each resource. For resources whose default values are computed
dynamically, the documentation describes how the default values
are determined.

3.3.1.2 Arguments that Specify Resource Values

To specify initial resource values in a call to a widget creation rou-
tine, an application supplies two arguments: a list of elements
representing resource settings and an integer specifying the
number of elements in the list. Each element in the list is a
structure of type Arg. This structure has two members: a string
representing the name of the resource and a value specifier

3−13

OSF/Motif Programmer’s Guide

representing the resource value. The value specifier is of type
XtArgVal. This is a data type large enough to hold a long or one
of several types of pointers to other data. If the resource value is
of a type small enough to fit into an XtArgVal, the value specifier
contains the resource value itself; otherwise, it contains a pointer
to the actual value. For most resources, an application supplies
integer values (including such types as Position and Dimension)
directly in the value specifier; otherwise, the application supplies
a pointer to the value.

The most common way to set up a list of resource specifications is
to declare a list of Arg elements large enough to hold all the
specifications and then to use XtSetArg to insert each
specification into the list. An application should always use a
sequence of calls to XtSetArg in the following way to avoid mis-
takes in building the list:

...
Widget text;
Arg args[10];
Cardinal n;

n = 0;
XtSetArg(args[n], XmNrows, 10); n++;
XtSetArg(args[n], XmNcolumns, 80); n++;
text = XmCreateText("text", parent, args, n);

Instead of using lists of Arg structures, the variable-argument
routines that specify resource values take a variable number of
pairs of resource names and values as arguments. The resource
value in each pair is of type XtArgVal, with the same meaning as
the value in an Arg structure. The application can provide two
special strings in place of a resource name. If the name is
XtVaNestedList, the next argument is interpreted as a nested list
of name-value pairs. If the name is XtVaTypedArg, the next four

3−14

Structure of a Motif Program

arguments supply the resource value and cause it to be converted
from one data type to another, as described below.

3.3.1.3 Setting Resource Values

To specify resource values after a widget has been created, an
application uses XtSetValues or XtVaSetValues. XtSetValues
takes a list of resource specifications in the same format as that
used when creating a widget:

...
Arg args[10];
Cardinal n;

n = 0;
XtSetArg(args[n], XmNrows, 10); n++;
XtSetArg(args[n], XmNcolumns, 80); n++;
XtSetValues(text, args, n);

Each widget class can have its own set_values procedure. After
setting the values specified in the argument list, XtSetValues
calls the set_values procedure for each class in the widget’s class
hierarchy, in superclass-to-subclass order. The set_values pro-
cedure can set new values for resources other than those specified
in the arguments to XtSetValues. This usually happens when
the value of one resource depends on the value of another. Setting
a new value for a resource that affects the widget’s geometry can
also cause Motif to recompute the widget’s layout. In some cases a
set_values procedure forces a resource to have a particular value,
regardless of whether the application has specified another value.

3−15

OSF/Motif Programmer’s Guide

3.3.1.4 Retrieving Resource Values

To retrieve resource values, an application uses XtGetValues or
XtVaGetValues. The arguments are the same as those for XtSet-
Values, except that in place of a value for each resource is an
address in which Motif stores the requested value:

...
Arg args[10];
Cardinal n;
short nrows, ncolumns;

n = 0;
XtSetArg(args[n], XmNrows, &nrows); n++;
XtSetArg(args[n], XmNcolumns, &ncolumns); n++;
XtGetValues(text, args, n);

3.3.1.5 Resource Value Data Types

The documentation for each widget class in the OSF/Motif
Programmer’s Reference lists the data types to use when setting
and retrieving values for resources. The user and application do
not always have to supply data of the type documented. Motif has
routines, called converters, that convert resource values from one
data type to another. For example, when a value for the resource
database comes from a file or the command line, Motif processes
the value as a string. Motif and Xt have routines to convert
strings to most common resource types, including Boolean, Dimen-
sion, Position, Pixel, and XmFontList.

3−16

Structure of a Motif Program

When using the standard widget creation routines, XtSetValues,
and XtGetValues, an application must supply resource values or
addresses of the types the widget expects. But when using the
variable-argument versions of these routines, the application can
supply values of any types for which routines exist to convert data
of those types into values of the expected types. To provide for a
resource conversion, the application supplies XtVaTypedArg in
place of a resource name in the arglist. In place of the resource
value, the application supplies four arguments:

• The resource name

• A string representing the type of the value supplied

• The value itself (of type XtArgVal)

• An integer representing the number of bytes in the value

For example, the following call converts the string supplied into
the compound string that Motif expects for a PushButton label:

...
char *label = "Button";

XtVaSetValues(button, XtVaTypedArg, XmNlabelString,
XmRString, label, strlen(label) + 1, NULL);

3.3.1.6 Resource Values and Memory Management

The application is responsible for allocating and freeing memory
needed for resource values it supplies when initializing a widget
or setting new values. For most resources whose values are not
immediate data, including strings, compound strings, and font
lists, Motif makes copies of values the application supplies at

3−17

OSF/Motif Programmer’s Guide

widget creation or in a call to XtSetValues. In these cases the
application can free the memory it has allocated anytime after the
widget creation routine or XtSetValues returns:

...
char *label = "Button";
XmString label_cs;

label_cs = XmStringCreateSimple(label);
XtVaSetValues(button, XmNlabelString, label_cs, NULL);
XmStringFree(label_cs);

For resources whose values are not immediate data, XtGetValues
sometimes makes a copy of values and sometimes does not. For
example, Motif always makes copies of compound strings retrieved
by XtGetValues, but it does not make copies of lists of compound
strings (data of type XmStringTable). Motif usually copies simple
strings retrieved by XtGetValues. An application should free
compound strings retrieved by XtGetValues, but in general it
should not free values of other types unless the documentation for
the particular resource in the OSF/Motif Programmer’s Reference
says the application must free that value.

The standard routines an application should use to allocate
memory are XtMalloc and XtNew. The standard routine to free
memory is XtFree. Some Motif data types have memory-
managementroutines that an application should use instead of the
more general Xt routines. For example, use XmStringFree to free
memory for a compound string, and use XmFontListFree to free
memory for a font list.

3.4 Adding Callback Procedures

3−18

Structure of a Motif Program

Callback routines are the heart of a Motif application. Many
widget classes have resources whose values are lists of callback
procedures. When the user acts on a widget—for example, when
the user presses a PushButton—Motif invokes the callback rou-
tines in the corresponding callback list. If an application needs to
take some action when the user presses a PushButton, it supplies
a callback routine and adds that routine to the appropriate call-
back list.

Callbacks are not the only means by which Motif can notify an
application of a user action. An application can also supply its
own action routines and event handlers. The main difference
between these kinds of procedures is the level of abstraction at
which Motif or Xt invokes the procedures:

• The Xt event dispatcher calls an event handler whenever an
event of a particular type occurs in a specified widget.

• The Xt translation manager calls an action routine when an
event sequence matches an event specification in a widget
translation table. In a translation table, actions are associated
with event specifications. More than one event sequence can
invoke the same action routine.

• A Motif widget invokes callback procedures when user input
signifies an action that is meaningful to the widget, such as
activating a PushButton. Widgets often invoke callbacks from
action routines. More than one action can invoke the same
callback list.

Most applications use only callback procedures. Action routines
and event handlers are discussed in chapter 13.

Each callback procedure is a function of type XtCallbackProc.
The procedure takes three arguments: a widget and two pointers
to data. The first pointer is to data that the application has told
the widget to pass back to the application when the callback pro-
cedure is invoked. The second pointer is to data that the widget

3−19

OSF/Motif Programmer’s Guide

passes to all callbacks on the callback list. A callback procedure
returns no value.

The application data argument is primarily for passing data that
the application maintains separately from the widget itself. The
widget data argument for most Motif widgets is a pointer to a
structure containing information that varies by widget class. For
example, when the user changes the value of a ToggleButton,
Motif invokes callback procedures with a pointer to an XmTog-
gleButtonCallbackStruct structure as the third argument. This
structure has three members:

• An integer indicating the reason for invoking the callback.
When the user changes the value, the reason is
XmCR_VALUE_CHANGED. Usually the reason is identified by a
symbol beginning with the characters XmCR.

• A pointer to the XEvent that triggered the callback.

• An integer that indicates the new state of the ToggleButton,
either selected or unselected.

The documentation for each widget class in the OSF/Motif
Programmer’s Reference describes any callback structures that the
widget passes to callback procedures as widget data. Note that a
callback procedure can change the values of some members of
these structures. Because the order of procedures in a callback
list is unspecified, an application that uses multiple callback pro-
cedures in the same list must use caution in changing these
values.

Following is a simple callback procedure that an application
might use to set the state of a valve when the user changes the
value of a ToggleButton. The application data passed in the call-
back in this example might be a pointer to a valve object associ-
ated with the ToggleButton:

void ToggleValueChangedCB(Widget toggle, XtPointer app_data,

3−20

Structure of a Motif Program

XtPointer widget_data)
{

Valve *valve_p = (Valve *) app_data;
XmToggleButtonCallbackStruct *toggle_info =

(XmToggleButtonCallbackStruct *) widget_data;
ChangeValveState(*valve_p,

((Boolean) toggle_info->set == TRUE) ? VALVE_ON : VALVE_OFF);
}

To register a callback procedure with a widget, an application
uses XtAddCallback or XtAddCallbacks after declaring the call-
back procedure and creating the widget. The following code frag-
ment creates a ToggleButton for each valve in a global list of
valves:

...
char name[20];
Widget toggles[N_VALVES];
int i;
Valve *valve_p;

for(i = 0, valve_p = valves; i < N_VALVES; i++, valve_p++) {
sprintf(name, "valve_state_%d", i);
toggles[i] = XmCreateToggleButton(parent, name,

(ArgList) NULL, 0);
XtAddCallback(toggles[i], XmNvalueChangedCallback,

(XtCallbackProc) ToggleValueChangedCB,
(XtPointer) valve_p);

}

To remove a callback procedure from a callback list, use
XtRemoveCallback or XtRemoveCallbacks. Because Motif some-
times adds its own callbacks to callback lists, do not use
XtRemoveAllCallbacks to remove all callbacks from a list.

3−21

OSF/Motif Programmer’s Guide

3.5 Making Widgets Visible

Creating a widget does not by itself make the widget visible.
Widgets become visible when the following conditions exist:

• The widget and its ancestors are managed. A widget is
managed when the Xt and Motif geometry managers take
account of the widget when computing the positions and sizes
of widgets they display.

• The widget and its ancestors are realized. A widget is real-
ized when it has an associated window.

• The widget and its ancestors are mapped. A widget is mapped
when its window is displayed.

An application can manage, realize, and map widgets in separate
steps, but each of these actions affects the others.

3.5.1 Managing Widgets

Parent widgets are responsible for managing the geometry of their
children. A child can ask the parent to be given some size or posi-
tion, but the parent decides whether or not to grant the request.
A parent can move or resize a child without the child’s permission.
The process by which parent and child widgets interact to deter-
mine widget geometry is described in chapter 10.

An application tells a widget to manage a child widget’s geometry
by calling XtManageChild or XtManageChildren. If the parent is
realized, XtManageChild calls the parent class’s change_managed
procedure. This procedure can change the size or position of any
of the parent’s children. After calling the parent’s

3−22

Structure of a Motif Program

change_managed procedure, XtManageChild realizes the child and,
if the child’s XmNmappedWhenManaged resource is True, maps it.

If the parent is not realized, XtManageChild marks the child as
managed. Xt defers calling the parent’s change_managed pro-
cedure until the parent is realized.

When managing more than one child of a realized parent, it is
more efficient to call XtManageChildren than to call
XtManageChild separately for each child being managed. Widget
layout can be computationally expensive, and XtManageChild
invokes the parent’s change_managed procedure each time it is
called. XtManageChildren calls the parent’s change_managed pro-
cedure only once for all children being managed.

An application tells a widget not to manage a child widget’s
geometry by calling XtUnmanageChild or XtUnmanageChildren.
By managing and unmanaging widgets, an application can alter-
nately display more than one set of children without having to
create and destroy widgets each time the configuration of the
application changes. In addition, managing a Motif dialog or
PopupMenu causes the widget to pop up, and unmanaging it
causes the widget to pop down.

To create a widget and then manage it in the same call, an appli-
cation can use XtCreateManagedWidget or XtVa-
CreateManagedWidget. The Motif routines that create widgets of
particular classes return unmanaged widgets. When using these
routines, the application must manage the widgets using XtUn-
manageChild or XtUnmanageChildren.

3.5.2 Realizing Widgets

3−23

OSF/Motif Programmer’s Guide

An application uses XtRealizeWidget to realize a widget. This
routine does the following:

• In post-order, traverses the tree whose root is the widget and
calls the class change_managed procedure for any widget in the
tree that has managed children.

• Recursively traverses the tree whose root is the widget and
calls the class realize procedure for any widget in the tree
that is managed. The realize procedure creates the widget’s
window.

• Maps the widget’s managed children whose XmNmappedWhen-
Managed resource is True. If the widget is a top-level widget
whose XmNmappedWhenManaged resource is True, XtReal-
izeWidget maps the widget.

Note these implications:

• Geometry negotiation proceeds from bottom up; then window
creation proceeds from top down

• After a widget is realized, all its managed descendants are
realized and, by default, mapped

• If no widget in the tree is realized, all geometry negotiation
between parents and their managed children takes place
before any widget is realized

When making a widget tree visible for the first time, it is usually
best to manage all children before realizing any widgets, and then
to realize only the top-level widget. This causes all initial sizing
and positioning of children to take place and the overall size of the
top-level window to be determined before any windows exist,
minimizing interaction with the X server. It also allows the appli-
cation to realize all widgets with a single call to XtReal-
izeWidget.

3−24

Structure of a Motif Program

3.5.3 Mapping Widgets

Most applications do not explicitly map or unmap widgets’ win-
dows. Mapping usually takes place as part of the process of
managing or realizing widgets. But it is possible to keep Xt from
mapping windows at these times by setting a widget’s XmNmap-
pedWhenManaged to False. In that case, the application must
explicitly use XtMapWidget to map the widget. An application can
use XtUnmapWidget to unmap a widget.

The effect of making a widget managed but unmapped is different
from the effect of making a widget unmanaged. When a widget is
unmanaged, its parent takes no account of it in laying out its chil-
dren. When a widget is managed, its parent is likely to leave
room for it in the widget layout. When the parent is mapped, the
space allocated for a managed but unmapped child is filled with
the parent’s background rather than the child’s window.

3.5.4 Multiple Screens, Displays, and Applications

An application can run on more than one display. In this case it
must use XOpenDisplay to open a connection to each display and
must then call XtDisplayInitialize separately for each display
connection. It need not create a separate application context for
each display.

Note: XtDisplayInitialize modifies its argv and argc
arguments. If an application needs to call
XtDisplayInitialize more than once, it must save
these arguments before the first call and use a copy
of the saved arguments on each call.

3−25

OSF/Motif Programmer’s Guide

The application should use XtAppCreateShell to create at least
one top-level widget for each display on which it runs. Because
Xt maintains a separate resource database for each display, a
child widget running on a different display from that of its parent
would use incorrect initial resource settings.

An application can also run on more than one screen within a
display. Such an application opens and initializes the display
only once, no matter how many screens it uses within the display.
However, the application also needs a widget on each screen,
whose window is a child of the root window for that screen, to
serve as the root of the widget hierarchy for the screen.

One approach to using multiple screens is to create a single,
unrealized ApplicationShell for the display. The application then
creates one TopLevelShell for each screen as a popup child of the
ApplicationShell. Although a shell normally has only one
managed child, it can have more than one popup child. The appli-
cation uses XtAppCreateShell to create the ApplicationShell and
XtCreatePopupShell to create each TopLevelShell. If no screen
is specified for the ApplicationShell, XtAppCreateShell sets the
XmNscreen resource for this widget to the default screen of the
display. In the argument list passed to XtCreatePopupShell, the
application must specify the proper value for XmNscreen for each
TopLevelShell so that the shell is created on the intended screen.

The application does not manage the TopLevelShells. To realize
and map the TopLevelShells, the program uses XtPopup with a
grab_kind argument of XtGrabNone.

int main(int argc, char **argv)
{

Widget app_shell, top_shell;
XtAppContext app;
Display *display;
char name[20];

3−26

Structure of a Motif Program

Arg args[5];
Cardinal n;
int i;
app_shell = XtAppInitialize(&app, "Example",

(XrmOptionDescList) NULL, 0, &argc, argv,
(String *) NULL, (ArgList) NULL, 0);

display = XtDisplay(app_shell);
for (i = 0; i < ScreenCount(display); i++) {

sprintf(name, "top_shell_%d", i);
n = 0;
XtSetArg(args[n], XmNscreen,

ScreenOfDisplay(display, i)); n++;
top_shell = XtCreatePopupShell(name,

topLevelShellWidgetClass, app_shell,
args, n);

/* Create and manage descendants of top shell */
...
/* Realize and map the top shell */
XtPopup(top_shell, XtGrabNone);

}
...

}

It is possible for a program to have multiple logical applications
on the same display. In this case it can use XtAppCreateShell to
create a separate top-level widget for each logical application.

3.6 Entering the Event Loop

3−27

OSF/Motif Programmer’s Guide

The last step in a Motif application is to enter the event loop.
Most applications simply call XtAppMainLoop. This routine waits
for user input and dispatches the resulting events to the appropri-
ate event-handling procedures, usually in the widget in which the
input occurs. XtAppMainLoop is an infinite loop; it never returns.
An application should provide for a user action to terminate the
program and should exit as a result of that action, usually in a
callback routine.

3−28

Chapter 4. Structure of a Program
Using UIL and MRM

The User Interface Language (UIL) allows an application developer
to separate the specification of particular widget hierarchies from
the application source code. The application defines widgets and
their characteristics in a text file, which the developer compiles into
a User Interface Definition (UID) file in binary format. At run time
the application, using Motif Resource Manager (MRM) routines,
retrieves the widget descriptions from the binary file, and MRM
creates the widgets from these descriptions. The application defines
callback procedures and interacts with the widgets as if it were
using the Motif toolkit alone.

UIL offers several advantages over toolkit-only applications:

• UIL enforces the separation of the user interface specification
from the application.

• A developer can change the interface by editing and recompiling
a text file without recompiling and relinking the application pro-
gram.

• The UIL compiler generates warnings for errors that the
developer otherwise would not discover until running the pro-
gram, if then. For example, the UIL compiler checks the spel-
ling of resource names.

• The toolkit may handle large databases more efficiently when
they are represented as UID files rather than resource files.

An application that uses UIL has two separate components: the
UIL file and the application program.

The UIL file consists mainly of definitions of the application’s
widget hierarchy. The declaration for each widget typically
includes the following components:

• Widget type

• Widget children

4−1

OSF/Motif Programmer’s Guide

• Initial resource values

• Declarations for callback procedures

The UIL file can also define values for data such as compound
strings, colors, and icons.

The structure of the application program is similar to that of a
toolkit-only program. The chief difference is that instead of expli-
citly creating each widget, the program uses MRM routines to
retrieve widget definitions from the UID file and to create the widg-
ets themselves. The program might also use MRM routines to
retrieve data values defined in the UIL file. An application program
using UIL must take the following actions:

• Include the required header files

• Initialize the Intrinsics

• Initialize MRM

• Open the UID file

• Register the names of callback procedures and values of
identifiers specified in the UID file

• Retrieve and create widgets and data defined in the UID file

• Close the UID file

• Define callback procedures

• Make the widgets visible

• Enter the event loop

4−2

Structure of a Program Using UIL and MRM

4.1 Structure of a UIL Module

A UIL module is a block of declarations and definitions for the
values, procedures, literals, and objects that make up a user inter-
face specification. Each UIL file contains either one complete
module or, if the file is to be included in another UIL file, at least
one complete top-level construct within a module.

Each module has the following structure:

• module clause

• Zero or more declarations for the module as a whole

• Zero or more include directives

• Zero or more value declarations

• Zero or more identifier declarations

• Zero or more procedure declarations

• Zero or more object declarations

• Zero or more list declarations

• end module clause

This section discusses the components of a UIL module, but it does
not describe the UIL syntax in detail. For more information, see
the UIL(5X) reference page in the OSF/Motif Programmer’s Refer-
ence.

4−3

OSF/Motif Programmer’s Guide

4.1.1 module Clause

Each module begins with the declaration module name. The key-
word module must be in lower case.

4.1.2 Module-Level Declarations

Several optional declarations at the beginning of the module modify
characteristics of the module as a whole:

names Specifies whether names in the UIL file are stored
in a case-sensitive or case-insensitive way. The
following declaration, the default, means that
names are stored as they appear in the UIL file,
and all UIL keywords must be in lower case:

names = case_sensitive

The following declaration means that all names
are stored in upper case, and UIL keywords can
be in upper, lower, or mixed case:

names = case_insensitive

The entire names declaration itself must be in
lower case, and it affects only the part of the
module that follows it.

character_set The character_set clause declares the default
character set for strings and compound strings
specified in the module by double quotes
("string"). In the absence of this clause UIL

4−4

Structure of a Program Using UIL and MRM

derives the default character set from the
language environment in which the UIL file is
compiled. This does not affect the character set of
strings specified in the module by single quotes
(’string’). UIL derives the character set of these
strings from the language environment in which
the UIL file is compiled. The character set in this
clause must be either a keyword representing one
of the character sets UIL knows about or a charac-
ter set returned by the character_set function.

objects The objects clause specifies whether UIL should
define objects of the specified types as widgets or
gadgets. For example, this declaration specifies
that UIL should define objects of type XmPushBut-
ton to be gadgets:

objects = { XmPushButton = gadget; }

A declaration for an individual object can override
this specification.

4.1.3 include Directive

The include directive includes the contents of a file in the current
module. The directive consists of the keywords include file fol-
lowed by a string representing the file name. If the file name has a
full directory specification, UIL searches that directory for the file.
Otherwise, UIL searches the directory of the main UIL source file
and then the directory of the current UIL source file. The –I option
to the uil command adds a directory to the search list.

4−5

OSF/Motif Programmer’s Guide

Included files are useful for definitions common to more than one
UIL module. In conjunction with the –I option to uil, they are also
useful in internationalizing applications. Localized definitions for
strings, font lists, and the like can reside in files included from
different directories depending on language environment. In this
case the include directives should not specify the directories;
instead, you can use the –I option to uil to compile files for
different language environments without editing or duplicating UIL
files.

4.1.4 value Declaration

The value clause defines one or more names and associates them
with values. The names can stand for the values elsewhere in the
module.

The specification for each value is either a literal expression or a
call to a UIL function that generates a value. Each value has a UIL
type that depends on the representation of the literal or the type of
value returned by the UIL function. For more information on UIL
types, literals, and functions, see the UIL(5X) reference page in the
OSF/Motif Programmer’s Reference.

By default the names and their associated values are private to the
module. The value declaration can also export a value to other
modules or import a value from another module. For each name
declared to be imported, MRM at run time assigns the value from
the corresponding exported declaration for that name in another
module.

In this example, the value id_1 is exported:

value
id_1 : exported 1;

4−6

Structure of a Program Using UIL and MRM

label_1 : compound_string(’Off’);

Another module can use the value id_1 as follows:

value
id_1 : imported integer;

4.1.5 identifier Declaration

An identifier clause declares one or more names that can appear
elsewhere in the module. At run time MRM assigns values to these
names from data defined in the application program. The applica-
tion uses the MrmRegisterNames or MrmRegisterNamesInHierarchy
routine to establish the correspondence between UIL identifier
names and application-defined data. The UIL compiler performs no
type checking on identifiers.

The following example identifies names for x and y values that the
application defines at run time:

identifier
app_x_value;
app_y_value;

4.1.6 procedure Declaration

A procedure clause declares names of callback procedures or of
creation routines for user-defined widgets. The application program
itself defines the actual procedures. As with identifiers, the

4−7

OSF/Motif Programmer’s Guide

application must use MrmRegisterNames or MrmRegister-
NamesInHierarchy to associate the procedure names with the
actual procedures at run time.

For a callback procedure, the procedure declaration can also
specify the type of data represented by the second argument (the
application data pointer) to the callback routine:

procedure
toggle_cb (integer);
push_button_cb (integer);

4.1.7 object Declaration

An object clause defines a widget or gadget and assigns a name
that can stand for the object elsewhere in the UIL module. As with
values, an object definition by default is private to the UIL module,
but the object clause can declare it to be exported or imported. In
addition to the UIL name, the object clause specifies the object’s
type and a list (enclosed in braces) that can define children, initial
resource values, and callback procedures.

4.1.7.1 Object Type

The object type specification is a keyword that is usually the same
as the name of the corresponding toolkit widget class. For example,
the type keyword for a MainWindow is XmMainWindow and for a
PushButton is XmPushButton. UIL also allows type specifications
that correspond to toolkit convenience routines for creating some
kinds of specialized widgets, including menus, dialogs, ScrolledList,

4−8

Structure of a Program Using UIL and MRM

and ScrolledText. For example, the keyword XmPulldownMenu
specifies a PulldownMenu, and the keyword XmPromptDialog
specifies a PromptDialog.

The object clause can also specify that the object is to be either a
widget or a gadget, overriding the default specified by the objects
clause. For example, the following defines a PushButtonGadget:

object
pb : XmPushButton gadget {};

Alternately, an object clause an specify a gadget by using the
gadget class name (e.g., XmPushButtonGadget) as the type
specification.

4.1.7.2 Children

An object clause can specify the children of a composite widget.
This specification appears inside the object list section and consists
of the keyword controls followed by a list of child declarations.
The declaration for each child consists of an object type and, usu-
ally, a name that refers to the definition for the child widget in its
own object clause. Instead of a name for the child, the declaration
can contain an entire local definition for the child widget in the form
of an object list section. The child declaration can optionally begin
with the keyword managed or unmanaged, which specifies whether or
not MRM should manage the child after creating it. The default is
to manage the child.

Some manager widgets automatically create children. For example,
MainWindow creates three separators to separate its main com-
ponents. The controls list can contain declarations for these chil-
dren so that the UIL file can specify resource values for them. The

4−9

OSF/Motif Programmer’s Guide

declaration for an automatically created child begins with a
specification of the name of the child, formed by prepending Xm_ to
the actual name of the child widget. The names of automatically
created children are documented in the reference pages for the
manager widgets in the OSF/Motif Programmer’s Reference.

Following is an example of specifications for child widgets:

object
main_win : XmMainWindow {

controls {
XmMenuBar main_menu;
Xm_Separator1 sep_1;
XmScrolledText text_win;

};
};

In general a child widget can be of any type the Motif toolkit allows
for a child of the parent widget. In some cases the type of the child
differs from the Motif toolkit class. For example, dialogs and menus
require shells as their parents, but in UIL a dialog or menu is
declared to be a direct child of its parent, with no intervening shell.
MRM creates the shell at run time. In this way UIL and MRM act
like the Motif convenience routines for creating dialogs and menus.

Some widget hierarchies in UIL are slightly different from the
corresponding hierarchies in the toolkit. For example, in UIL a
PulldownMenu in an OptionMenu is described as a child of the
OptionMenu, not of the OptionMenu’s parent as it is in the toolkit.
In a PulldownMenu system from a MenuBar or a PopupMenu, each
PulldownMenu is a child of the associated CascadeButton, not of
the CascadeButton’s parent as it is in the toolkit. For more infor-
mation, see chapter 6.

4−10

Structure of a Program Using UIL and MRM

4.1.7.3 Resource Values

An object clause can specify resource values for MRM to pass to
the widget’s creation function. This specification appears inside the
object list section and consists of the keyword arguments followed
by a list of resource declarations. The declaration for each resource
consists of the name of the resource as in the toolkit (e.g.,
XmNheight) followed by = and a value for the resource. The type of
the value must be of the proper UIL type for that resource. For
information on the required UIL type for each resource, see Appen-
dix C of the OSF/Motif Programmer’s Reference.

Following is an example of specifications for initial resource values:

object
main_win : XmScrolledText {

arguments {
XmNrows = 10;
XmNwordWrap = true;
XmNbackground = color(’red’);

};
};

In some cases UIL provides a value for a resource related to a
resource that appears in a specification. For example, if a
specification contains a value for XmNitems in a List, UIL provides
the appropriate value for XmNitemCount.

4.1.7.4 Callback Procedures

An object clause can specify procedures to appear in callback lists
for the object. This specification appears inside the object list

4−11

OSF/Motif Programmer’s Guide

section and consists of the keyword callbacks followed by a list of
callback list declarations. The declaration for each callback list con-
sists of the name of the callback resource as in the toolkit (e.g.,
XmNactivateCallback) followed by = and a value specification for
the resource.

In addition to appropriate toolkit resources, the specification can
include the special callback list name MrmNcreateCallback. MRM
invokes callback procedures on this list when it creates the widget.
These procedures provide a means for the application to identify the
widget ID of a widget created by MRM.

The value specification can be one of two forms:

• If the callback list contains only one procedure, the specification
consists of the keyword procedure followed by the procedure
name and, optionally, a value in parentheses for the application
data argument to the procedure.

• If the callback list contains more than one procedure, the
specification consists of the keyword procedures followed by a
list of procedure specifications. Each specification consists of the
procedure name and, optionally, a value in parentheses for the
application data argument to the procedure.

The UIL compiler issues a warning if a procedure specification con-
tains an application data argument whose type does not match the
argument type in the corresponding procedure declaration.

The application uses the MrmRegisterNames or MrmRegister-
NamesInHierarchy routine to establish the correspondence between
UIL procedure names and the application-defined procedures.

Following is an example of specifications for a callback list:

object
pb : XmPushButton {

callbacks {

4−12

Structure of a Program Using UIL and MRM

XmNactivateCallback = procedure pb_activate_cb (pb_ident);
};

};

4.1.8 list Declaration

A list clause defines one or more lists of specifications for
resources, callbacks, procedures, or widget children. Each list has a
symbolic name that the application can use to refer to the list else-
where in the UIL file, usually in an object declaration. The main
use for this clause is to define lists of specifications that are common
to more than one object definition.

A list clause consists of the keyword list followed by one or more
list specifications. Each list specification contains the name, type,
and contents of the list. Following are the four kinds of lists:

• A list of resources consists of the keyword arguments followed by
a list of resource specifications.

• A list of callbacks consists of the keyword callbacks followed by
a list of callback specifications.

• A list of procedures consists of the keyword procedures followed
by a list of procedure specifications.

• A list of widget children consists of the keyword controls fol-
lowed by a list of specifications for the children.

In each case the form of the list is the same as that of the
corresponding clause of an object declaration.

Following is an example of a list declaration:

list

4−13

OSF/Motif Programmer’s Guide

pb_activate_procs : procedures {
pb_ac_proc_1 ();
pb_ac_proc_2 ();

};

list
pb_callbacks : callbacks {

XmNactivateCallback = pb_activate_procs;
XmNarmCallback = procedure pb_arm_proc ();

};

list
pb_args : arguments {

XmNheight = 10;
XmNbackground = color(’red’);

};

object
pb_1 : XmPushButton {

arguments {
arguments pb_args;
XmNlabelString = pb_label_1;

};
callbacks pb_callbacks;

};

object
pb_2 : XmPushButton {

arguments {
arguments pb_args;
XmNlabelString = pb_label_2;

};
callbacks pb_callbacks;

};

4−14

Structure of a Program Using UIL and MRM

list
menu_items : controls {

XmPushButton pb_1;
XmPushButton pb_2;

};

object
menu_1 : XmPulldownMenu {

controls menu_items;
};

4.1.9 end module Clause

Each UIL module must end with an end module clause.

4.2 Structure of a Program Using MRM

4.2.1 Including Header Files

An application that uses MRM must include all the header files it
would need if it did not use MRM. These include <Xm/Xm.h>,
header files specific to each widget the program uses, and any
header files needed by Motif routines. In addition, the application
must include the file <Mrm/MrmPublic.h>. This file contains
definitions needed by the MRM routines.

4−15

OSF/Motif Programmer’s Guide

Following is an example of the inclusion of header files for an appli-
cation that uses only a Text widget and MRM:

#include <Mrm/MrmPublic.h>
#include <Xm/Xm.h>
#include <Xm/Text.h>

4.2.2 Initializing the Intrinsics

The application initializes the Intrinsics as in any other program,
usually by calling XtAppInitialize. You must call XtDisplayIni-
tialize either directly or indirectly before opening any UID files.

4.2.3 Initializing MRM

An application that uses MRM must initialize MRM by calling
MrmInitialize before fetching any widgets from UID files. It is a
good idea to call MrmInitialize before using any other MRM rou-
tines.

4.2.4 Opening UID Files

After initializing MRM and the Intrinsics, the application uses
MrmOpenHierarchyPerDisplay to find and open one or more UID
files that contain the widget definitions and other information to be
loaded. MrmOpenHierarchyPerDisplay uses search paths in much
the same way XtDisplayInitialize uses them to build the initial

4−16

Structure of a Program Using UIL and MRM

resource database. One argument to MrmOpenHierarchyPer-
Display is a list of UID file names, each of which represents either
a full pathname or a name to be substituted in a file search path.
The search path comes from the UIDPATH environment variable or, if
UIDPATH is not set, from a series of default paths. MrmOpenHierar-
chyPerDisplay calls XtResolvePathname to search these paths.
When it uses a search path, MrmOpenHierarchyPerDisplay looks
for files first using a suffix of .uid and then using a NULL suffix.

As with the initial resource database, UID files can reside in
different directories depending on the language environment. The
search paths can include these substitutions, as well as others
recognized by XtResolvePathname:

• %N is replaced by class name of the application

• %L is replaced by the display’s language specification

• %l is replaced by the language part of the language specification

• %U is replaced by the current file name from the list of file
names passed as an argument to MrmOpenHierarchyPerDisplay

MrmOpenHierarchyPerDisplay returns an ID that identifies the list
of open UID files for subsequent calls to routines that load data
from the files. On each request to load data, MRM searches the list
of files in order. This ordered list of open files is the UID hierarchy.
The program can retrieve data from the hierarchy until it calls
MrmCloseHierarchy.

Following is an example of a call to MrmOpenHierarchyPerDisplay.
The example initializes MRM and the Intrinsics, opens a UID
hierarchy, and closes the hierarchy.

int main(int argc, char **argv)
{

Widget app_shell;
XtAppContext app;

4−17

OSF/Motif Programmer’s Guide

static String file_names[] = { "app_1", "app_2" };
MrmHierarchy hierarchy_id;

app_shell = XtAppInitialize(&app, "Example",
(XrmOptionDescList) NULL, 0, (Cardinal *) &argc, argv,
(String *) NULL, (ArgList) NULL, 0);

MrmInitialize();
switch (MrmOpenHierarchyPerDisplay(XtDisplay(app_shell),

(MrmCount) XtNumber(file_names), file_names,
(MrmOsOpenParamPtr *) NULL, &hierarchy_id)) {

case MrmSUCCESS:
if (MrmCloseHierarchy(hierarchy_id) == MrmSUCCESS) {

exit 0;
} else {

fprintf(stderr, "Unable to close UID hierarchy.\n");
exit 1;

}
case MrmNOT_FOUND:

fprintf(stderr, "Unable to open UID files.\n");
exit 1;

default:
fprintf(stderr, "Unable to open UID hierarchy.\n");
exit 1;

}
}

4.2.5 Registering Callbacks and Identifiers

The application must register the names of all callback procedures
and identifiers defined in the UIL files. Registering the names asso-
ciates the symbolic names in the UIL files with procedures and data
defined in the program. MrmRegisterNames and

4−18

Structure of a Program Using UIL and MRM

MrmRegisterNamesInHierarchy accomplish this task. Names
registered by MrmRegisterNames are global to all UID hierarchies;
names registered by MrmRegisterNamesInHierarchy are local to a
particular hierarchy. When MRM looks up the program-defined
value associated with a name in a given hierarchy, it searches first
for an association local to the hierarchy and then for a global associ-
ation.

Following is an example using MrmRegisterNames:

void PBActivateCB_1(Widget pb, XtPointer app_data,
XtPointer widget_data);

void PBActivateCB_2(Widget pb, XtPointer app_data,
XtPointer widget_data);

void PBArmCB(Widget pb, XtPointer app_data,
XtPointer widget_data);

static MrmRegisterArg cb_list[] = {
{ "pb_ac_proc_1", (XtPointer) PBActivateCB_1 },
{ "pb_ac_proc_2", (XtPointer) PBActivateCB_2 },
{ "pb_arm_proc", (XtPointer) PBArmCB }

};

...
if (MrmRegisterNames(cb_list, (MrmCount) XtNumber(cb_list))

== MrmSUCCESS) {
...

} else {
...

}

4−19

OSF/Motif Programmer’s Guide

4.2.6 Fetching Information from UID Files

MRM can fetch the following information from UID files:

• Named widgets, defined by object clauses, and their descen-
dants. Use MrmFetchWidget or MrmFetchWidgetOverride.

• Named color literals, defined by color or rbg functions and
appearing in value clauses. Use MrmFetchColorLiteral.

• Named icon literals, defined by icon functions and appearing in
value clauses. Use MrmFetchIconLiteral.

• Other named literals appearing in value clauses. Use
MrmFetchLiteral or MrmFetchSetValues.

MRM can fetch literals appearing in value clauses only if they are
defined as exported.

After creating a top-level shell, using XtAppInitialize or
XtAppCreateShell, the application can use MrmFetchWidget to
fetch the child of the top-level shell and its descendants. For each
widget in the tree, MrmFetchWidget does the following:

• Calls the appropriate widget creation routine, passing it the ini-
tial resource values defined in the arguments specification in the
object clause

• Adds the callback routines defined in the callbacks
specification of the object clause

• Calls any MrmNcreateCallback callbacks

• Manages all child widgets unless they are defined to be
unmanaged

The application does not have to fetch all widgets at the beginning
of the program. To create widgets such as menus and dialogs as
needed, the application can call MrmFetchWidget at any time.

4−20

Structure of a Program Using UIL and MRM

The application can fetch the same widget definition more than
once. MRM creates a new widget each time, essentially using the
UIL definition as a template. MrmFetchWidgetOverride is useful
here, as it allows the application to override the initial resource
values specified in the UIL file.

Following is a simple example using MrmFetchWidget to create the
main widget hierarchy for an application:

int main(int argc, char **argv)
{

Widget app_shell, top_level;
XtAppContext app;
static String file_names[] = { "app_1", "app_2" };
MrmHierarchy hierarchy_id;
MrmType top_level_class;

MrmInitialize();
app_shell = XtAppInitialize(&app, "Example",

(XrmOptionDescList) NULL, 0, (Cardinal *) &argc, argv,
(String *) NULL, (ArgList) NULL, 0);

switch (MrmOpenHierarchyPerDisplay(XtDisplay(app_shell),
(MrmCount) XtNumber(file_names), file_names,
(MrmOsOpenParamPtr *) NULL, &hierarchy_id)) {

case MrmSUCCESS:
if (MrmFetchWidget(hierarchy_id, "top_level", app_shell,

&top_level, &top_level_class) != MrmSUCCESS) {
fprintf(stderr, "Unable to fetch top-level widget.\n");

}
if (MrmCloseHierarchy(hierarchy_id) == MrmSUCCESS) {

exit 0;
} else {

fprintf(stderr, "Unable to close UID hierarchy.\n");
exit 1;

}

4−21

OSF/Motif Programmer’s Guide

case MrmNOT_FOUND:
fprintf(stderr, "Unable to open UID files.\n");
exit 1;

default:
fprintf(stderr, "Unable to open UID hierarchy.\n");
exit 1;

}
}

4.2.7 Closing the UID File

MrmCloseHierarchy closes all files in the specified UID hierarchy.
The application can close and reopen a hierarchy, but usually it
does not close a hierarchy until it is finished reading data from the
UID files. When the application uses multiple hierarchies, operat-
ing system limits on the number of open files may make it neces-
sary to close one hierarchy before opening another.

4.2.8 Defining Callback Procedures

An application that uses MRM defines callback procedures in the
same way as an application that uses only the toolkit. For call-
backs delared in UIL files, the application must use MrmRegister-
Names or MrmRegisterNamesInHierarchy to associate the UIL call-
back procedure names with the actual procedures defined in the
program.

An application can create widgets, such as dialogs and Popup-
Menus, as the program needs them. If these widgets are defined in
UIL files, a callback procedure can call MrmFetchWidget to fetch

4−22

Structure of a Program Using UIL and MRM

them from UID files.

4.2.9 Making Widgets Visible

MrmFetchWidget never manages the widget the application is fetch-
ing. It does manage all other widgets in the tree whose root is the
widget being fetched, except for widgets declared unmanaged in the
UIL file. MrmFetchWidget does not realize any widgets in the tree.

The application must manage any unmanaged widgets created by
MrmFetchWidget, and it must realize all widgets it wants to make
visible. In the simple case where the application fetches the entire
widget hierarchy at the beginning of the program, it typically
manages the widget it fetches and then realizes the top-level shell:

int main(int argc, char **argv)
{

Widget app_shell, top_level;
XtAppContext app;
static String file_names[] = { "app_1", "app_2" };
MrmHierarchy hierarchy_id;
MrmType top_level_class;

MrmInitialize();
app_shell = XtAppInitialize(&app, "Example",

(XrmOptionDescList) NULL, 0, (Cardinal *) &argc, argv,
(String *) NULL, (ArgList) NULL, 0);

switch (MrmOpenHierarchyPerDisplay(XtDisplay(app_shell),
(MrmCount) XtNumber(file_names), file_names,
(MrmOsOpenParamPtr *) NULL, &hierarchy_id)) {

case MrmSUCCESS:
if (MrmFetchWidget(hierarchy_id, "top_level", app_shell,

&top_level, &top_level_class) == MrmSUCCESS) {

4−23

OSF/Motif Programmer’s Guide

XtManageChild(top_level);
XtRealizeWidget(app_shell);

} else {
fprintf(stderr, "Unable to fetch top-level widget.\n");

}
if (MrmCloseHierarchy(hierarchy_id) == MrmSUCCESS) {

exit 0;
} else {

fprintf(stderr, "Unable to close UID hierarchy.\n");
exit 1;

}
case MrmNOT_FOUND:

fprintf(stderr, "Unable to open UID files.\n");
exit 1;

default:
fprintf(stderr, "Unable to open UID hierarchy.\n");
exit 1;

}
}

4.2.10 Entering the Event Loop

As with toolkit applications that do not use MRM, a program using
MRM typically calls XtAppMainLoop to enter the event loop after
realizing the top-level shell.

4−24

Chapter 5. Basic Controls

Controls are widgets and gadgets with which the user interacts
directly. They form the leaves of the widget tree whose root is the
application’s top-level shell. In most cases controls are subclasses of
XmPrimitive or XmGadget, and their parents are subclasses of
XmManager. (XmScale is a manager, but in many ways the applica-
tion treats it as a primitive.) Motif provides the following basic con-
trols:

• Labels, buttons, and separators

• ScrollBar

• Scale

• List

• Text and TextField

5.1 Core, RectObj, XmPrimitive, and
XmGadget Classes

Nearly all the basic controls are subclasses of XmPrimitive or
XmGadget. XmPrimitive, in turn, is a subclass of the Intrinsics
Core class, and XmGadget is a subclass of the Intrinsics RectObj
class.

5.1.1 Core

The Core class provides basic attributes of all widgets that have
associated windows. It has the following groups of resources:

• Specifications of the widget’s x and y coordinates, width and
height, and border width.

5−1

OSF/Motif Programmer’s Guide

• A resource specifying whether or not the widget is sensitive, or
able to receive input events from the Intrinsics event manager.

• Characteristics of the window, including background and border
color or pixmap, colormap, depth, and screen.

• A resource controlling whether or not the Intrinsics map the
window when the widget is managed.

• A table associating translations with actions.

• A set of accelerators, a translation table bound in the context of
a particular widget.

5.1.2 RectObj

RectObj is the foundation for gadget classes; it is essentially Core
without the attributes related to having a window. RectObj
resources control the position and dimensions of the gadget’s rec-
tangular area within its parent widget. A RectObj resource also
determines whether or not the gadget is sensitive.

5.1.3 XmPrimitive

XmPrimitive is the fundamental Motif class for all basic control
widgets—widgets that do not have children. It includes the follow-
ing resources and behavior:

• Foreground color, top and bottom shadow colors or pixmaps, and
shadow thickness.

• Thickness and color or pixmap for the highlighting rectangle,
displayed when the widget has keyboard focus.

5−2

Basic Controls

• Resources to determine whether the user can traverse to the
widget and whether or not it is a tab group.

• A resource to determine what unit of measurement the widget
uses for size and position resources.

• Callbacks for the widget to invoke when the user presses KHelp.

• A resource for the application to use in associating arbitrary
data with the widget.

• Translations and actions for keyboard traversal to another
widget.

5.1.4 XmGadget

XmGadget is the fundamental Motif class for all basic control gadg-
ets. It is equivalent to XmPrimitive, with two major exceptions:

• It has no resources for colors or pixmaps. A gadget inherits
these from its parent; therefore, all gadgets within a Manager
have the same colors or pixmaps.

• It has no translations or actions. The Manager parent controls
traversal between its gadget children, keeps track of gadgets
that have input focus, and dispatches events to them.

5.2 Labels, Buttons, and Separators

5−3

OSF/Motif Programmer’s Guide

5.2.1 Labels

Labels provide the ability to display static (uneditable) text or a pix-
map. A Label or LabelGadget itself is useful for displaying a mes-
sage, title, or description. Label and LabelGadgets are also superc-
lasses for buttons used as menu items, toggles, or controls.

The application can specify the following characteristics of Labels,
LabelGadgets, and their subclasses:

• A compound string or pixmap to be displayed. When using a
pixmap, the application can supply a separate pixmap to be
displayed when the widget is insensitive.

• A font list for displaying the compound string.

• Resources to determine the positioning of the text or pixmap
within the widget. One sets of resources determines the space
allocated for the margins; another determines the distance
between the margins and the text or pixmap inside. The
XmNalignment and XmNstringDirection resources together
determine whether the text or pixmap is centered or is left or
right justified within the widget.

• A resource, XmNrecomputeSize, that determines whether the
widget attempts to remain large enough to contain the text or
pixmap. When this resource is True and a resource that affects
the size of the text or pixmap, the margins, or the widget itself is
changed, the widget tries to resize itself to be just large enough
to contain the text or pixmap.

In addition, Label and LabelGadget provide the following facilities
for button subclasses in menus:

• A keysym used as a mnemonic to select the button. The user can
activate the button by pressing the mnemonic key when the but-
ton is visible.

5−4

Basic Controls

• An accelerator, a KeyPress event by which the user can activate
the button whether or not it is visible. Accelerators are sup-
ported only for PushButtons and ToggleButtons in Pulldown-
Menus and PopupMenus.

• Translations and actions for keyboard traversal within the menu
or menu system.

5.2.2 Buttons

A button is a basic control that performs some action when the user
activates it. Buttons commonly appear in menus, RadioBoxes and
CheckBoxes, SelectionBoxes and MessageBoxes. This section
describes some of the functions of each subclass.

5.2.2.1 CascadeButtons

A CascadeButton or CascadeButtonGadget is used inside a menu
and, when activated, usually causes a PulldownMenu to appear.
CascadeButtons have the following resources and behavior:

• A pixmap displayed at one end of the widget in a PopupMenu or
PulldownMenu to indicate that activating the CascadeButton
posts another menu.

• A resource, XmNsubMenuId, that holds the widget ID of the
PulldownMenu posted when the user activates the button.

• XmNactivateCallback callbacks, which the widget invokes when
the user activates it, and XmNcascadingCallback callbacks,
which the widget invokes just before posting a PulldownMenu.

5−5

OSF/Motif Programmer’s Guide

• A resource to provide a delay between the time the mouse enters
the widget and the time it posts a menu.

• Translations and actions to activate the widget and to post and
unpost PulldownMenus. In general, pressing BSelect or drag-
ging BSelect into the widget posts the PulldownMenu. Releas-
ing BSelect in the widget causes the PulldownMenu to remain
posted and enables keyboard traversal. When keyboard traver-
sal is enabled, pressing KActivate or KSelect in the widget
posts the PulldownMenu and enables keyboard traversal in that
menu.

5.2.2.2 PushButtons

A PushButton or PushButtonGadget can appear either inside or
outside a menu. It performs some action determined by the applica-
tion. When a PushButton is armed, or ready to be activated, it
changes its appearance so that it looks as if the user has pressed it
in. When it is disarmed it reverts to the appearance of extending
out. PushButtons provide the following behavior:

• Callbacks that the widget invokes when it is armed, disarmed,
and activated. The application usually provides only an XmNac-
tivateCallback procedure to perform the action associated with
the button.

• Resources to provide a color or pixmap to be displayed when the
button is armed and not inside a menu. When a button in a
menu is armed, the top and bottom shadows switch colors.

• A resource to determine whether or not the widget considers
multiple mouse clicks distinct from single mouse clicks.

• A resource to determine whether or not the button is marked as
the default button when outside a menu. In a BulletinBoard,

5−6

Basic Controls

the default button is the one activated when the user presses
KActivate and no other button has keyboard focus. The default
button has a distinctive shadow whose thickness is controlled by
the XmNdefaultButtonShadowThickness resource.

• Translations to arm, disarm, and activate the button. In gen-
eral, pressing BSelect on a button or, in a menu, dragging
BSelect or traversing to a button arms it. Releasing BSelect or
pressing KActivate or KSelect in the widget activates and
disarms it.

5.2.2.3 ToggleButtons

ToggleButtons and ToggleButtonGadgets have one of two states:
like toggle switches, they are either "on" or "off". They can appear
in menus or in nonmenu RowColumn WorkAreas, including
RadioBoxes and CheckBoxes. In a RadioBox only one ToggleButton
at a time can be on; in a CheckBox more than one ToggleButton can
be on. ToggleButtons can have indicators with distinctive shapes to
distinguish whether or not more than one button at a time can be
set. However, it is the RowColumn parent, not the ToggleButton,
that controls this behavior.

ToggleButtons have the following characteristics:

• Callbacks that the widget invokes when it is armed or disarmed
and when it changes state. The widget invokes the
XmNvalueChangedCallback callbacks when the button’s state
changes from on to off or from off to on.

• Resources to control the appearance of the indicator. If XmNindi-
catorOn is False or if XmNvisibleWhenOff is False and the but-
ton is in the off state, no indicator is displayed. Otherwise,
XmNindicatorType determines whether the indicator shows that

5−7

OSF/Motif Programmer’s Guide

only one or more than one button at a time can be on.

• A color or pixmap to be displayed when the button is armed and
XmNfillOnSelect is True.

• Pixmaps to be displayed when the button is selected and the
Label or LabelGadget superclass’s XmNlabelType is XmPIXMAP.

• Translations to arm and disarm the button and to change its
state. In general, pressing BSelect on a button or, in a menu,
dragging BSelect or traversing to a button arms it. Releasing
BSelect or pressing KActivate or KSelect in the widget
changes its state and disarms it.

5.2.2.4 DrawnButtons

A DrawnButton is an empty button surrounded by a shadow border.
It is intended to be used as a PushButton but with graphics drawn
by the application. Like a PushButton, it has translations and
actions to arm, disarm, and activate the button and invoke the
corresponding callbacks. If XmNpushButtonEnabled is True, it
draws the shadow so that the button appears pressed in when
armed and popped out when disarmed.

Other than this, the application must manage the button’s visual
appearance. It has XmNexposeCallback and XmNresizeCallback
callbacks to notify the application that the button has been exposed
or resized and therefore needs to be redrawn. The application must
be careful not to draw within the button’s shadows or highlight
areas. The application can use a clipping rectangle in the widget’s
graphics context that takes account of the button’s
XmNhighlightThickness and XmNshadowThickness.

5−8

Basic Controls

5.2.2.5 ArrowButtons

An ArrowButton or ArrowButtonGadget is a button with an arrow
graphic and a shadow. A resource controls the direction of the
arrow. Unlike other buttons it is not a subclass of XmLabel or XmLa-
belGadget, but is has some of the same behavior as other buttons.
It has callbacks that the widget invokes when armed, disarmed, or
activated. It has translations and actions similar to those of other
buttons to arm, disarm, or activate the button.

5.2.3 Separators

A Separator or SeparatorGadget separates controls or groups of con-
trols. It usually appears as a horizontal or vertical line and sup-
ports several styles of line drawing. Resources control its orienta-
tion and the type of line it draws. One line style consists of no line
at all. This allows the application to control the appearance of the
separator by setting its XmNbackgroundColor or XmNbackground-
Pixmap.

5.3 ScrollBar

A widget can act as a viewport onto a virtual scroll. The ScrollBar
is the control that moves the viewport horizontally or vertically
relative to the underlying scroll. A ScrollBar consists of a rectangle,
called the scroll region, representing the full size of the scroll. It
has a smaller rectangle, called the slider, within the scroll region,
representing the position and size of the viewport relative to the full

5−9

OSF/Motif Programmer’s Guide

scroll. The ScrollBar usually has arrow graphics at both ends of the
larger rectangle.

A ScrollBar has translations and actions that allow the user to
move the slider. By clicking on an arrow, the user moves the slider
one small increment in the direction of the arrow. By clicking in the
scroll region between an arrow and the slider, the user moves the
slider a larger increment (the page increment) in the direction of the
arrow. When the ScrollBar has keyboard focus the user can use the
keyboard to move the slider in this way. The user can also drag the
slider using the mouse.

By itself the ScrollBar does not have an association with a widget
acting as a viewport onto a scroll. Most applications use a Scrol-
ledWindow, a Manager widget with a child to be scrolled and possi-
bly with one or two ScrollBars to control the scrolling. ScrolledWin-
dow can automatically control the interaction between the scrolled
child and the ScrollBars, or it can allow the application to control
the interaction. For more information see chapter 9.

ScrollBar has a number of resources that allow the application to
use it to control scrolling:

• A minimum value (XmNminimum), representing the position of the
slider at one end of the scroll region, and a maximum value
(XmNmaximum), representing the position of the slider at the other
end of the scroll region. These values can be in any integral
units the application chooses so long as the maximum is greater
than the minimum.

• The length of the slider (XmNsliderSize) between 1 and
(XmNmaximum – XmNminimum).

• A value (XmNvalue), ranging between XmNminimum and (XmNmax-
imum – XmNsliderSize), representing the current position of the
slider between the maximum and minimum values.

5−10

Basic Controls

• Values for the increment (XmNincrement) and page increment
(XmNpageIncrement) by which the user can move the slider.

• A resource (XmNprocessingDirection) that determines whether
the minimum value is on the left or right for horizontal
ScrollBars or is on the bottom or top for vertical ScrollBars.

• Distinct callbacks that the widget invokes when the user moves
the slider by one increment in either direction, by one page
increment in either direction, or all the way to either end of the
scroll region. The widget invokes other callbacks as the user
drags the slider and when the user stops dragging the slider.
The application does not have to provide routines for all these
callback lists; if it provides only an XmNvalueChangedCallback
procedure, the widget invokes that procedure whenever the
ScrollBar value changes (except during interactive dragging of
the slider).

• Resources to control the color of the scroll region, whether the
ScrollBar is horizontal or vertical, whether or not the ScrollBar
has arrows, and delays before the widget moves the slider con-
tinuously as the user presses and holds BSelect on an arrow or
the scroll region.

Two convenience routines, XmScrollBarGetValues and
XmScrollBarSetValues, allow the application to get and set the
value, slider size, increment, and page increment in one call.

5.4 Scale

A Scale displays a value within a range and optionally allows the
user to supply a new value. Its appearance and behavior are much
like those of a ScrollBar without arrows. It also has a title and can
display the current value next to the slider.

5−11

OSF/Motif Programmer’s Guide

Like a ScrollBar, a Scale has minimum, maximum, and current
integral values. The application has no access to the slider size,
and the current value ranges between the minimum and maximum.
The increment by which the arrow keys move the slider is always 1,
but the application can supply a multiple increment (XmNscaleMul-
tiple) analogous to ScrollBar’s XmNpageIncrement. Scale has two
callback lists: XmNvalueChangedCallback, invoked when the user
changes the value but is not in the process of dragging the slider,
and XmNdragCallback, invoked when the user changes the value
while dragging the slider.

Scale also has resources controlling whether the orientation is verti-
cal or horizontal and which end of the Scale represents the
minimum value. Other resources control aspects of the Scale’s
appearance, including the width and height, the title string,
whether or not the Scale displays the current value next to the
slider, the number of decimal places in the displayed value, and a
font list for the title and value.

Two convenience routines, XmScaleGetValue and XmScaleSet-
Value, allow the application to get and set the value.

By default a Scale has no labels or tic marks along the rectangle in
which the slider moves. The application can add these by creating a
series of widgets—such as LabelGadgets or SeparatorGadgets—as
children of the Scale. For example, LabelGadgets could display
values at intervals between the minimum and maximum, or
SeparatorGadgets could display short lines as tic marks. The Scale
positions any children, in order of creation, along the rectangle con-
taining the slider, as follows:

• A single child appears in the middle of the rectangle

• If there are two children, the first appears at the top (for a verti-
cal Scale) or left (for a horizontal scale) of the rectangle, and the
other child appears at the bottom or right of the rectangle

5−12

Basic Controls

• If there are more than three children, they appear at equal inter-
vals along the rectangle ranging from top to bottom or from left
to right

The following example creates a Scale with five tic marks:

#define NUM_TICS 5
Widget parent, scale, tics[NUM_TICS];
Arg args[10];
Cardinal i, n;
unsigned char scale_orientation, tic_orientation;
Dimension tic_long_dim = 10, tic_short_dim = 5;
Dimension tic_width, tic_height;
char tic_name[10];
...
scale = XmCreateScale(parent, "scale", args, n);
XtManageChild(scale);
...
n = 0;
XtSetArg(args[n], XmNorientation, &scale_orientation); n++;
XtGetValues(scale, args, n);
if (scale_orientation == XmHORIZONTAL) {

tic_orientation = XmVERTICAL;
tic_width = tic_short_dim;
tic_height = tic_long_dim;

} else {
tic_orientation = XmHORIZONTAL;
tic_width = tic_long_dim;
tic_height = tic_short_dim;

}

for (i = 0; i < NUM_TICS; i++) {
sprintf(tic_name, "tic_%d", i);
n = 0;
XtSetArg(args[n], XmNseparatorType, XmSINGLE_LINE); n++;

5−13

OSF/Motif Programmer’s Guide

XtSetArg(args[n], XmNorientation, tic_orientation); n++;
XtSetArg(args[n], XmNwidth, tic_width); n++;
XtSetArg(args[n], XmNheight, tic_height); n++;
tics[i] = XmCreateSeparatorGadget(scale, tic_name, args, n);

}
XtManageChildren(tics, NUM_TICS);
...

5.5 List

A List is an array of textual items from which the user selects one
or more entries. Each item is a compound string. List has four
modes, controlled by the XmNselectionPolicy resource, for select-
ing items:

• Single Select. At most one item is selected. Performing the
selection action on an item toggles the selection state of the item
and deselects any other selected item.

• Browse Select. At most one item is selected. Performing the
selection action on an item selects the item and deselects any
other selected item. Dragging BSelect through the list moves
the selection along with the cursor.

• Multiple Select. Any number of items can be selected. Perform-
ing the selection action on an item toggles the selection state of
the item but does not deselect any other selected item.

• Extended Select. Any number of items can be selected. The user
can select either continuous or discontinuous ranges of items,
depending on the mouse buttons used or, when using the key-
board, on whether the List is in Normal Mode or Add Mode:

5−14

Basic Controls

— Pressing BSelect or, in Normal Mode, KSelect on an item
selects the item and deselects any other selected item. Drag-
ging BSelect or pressing or dragging BExtend following a
BSelect action selects all items between the item under the
pointer and the item on which BSelect was pressed. In Nor-
mal Mode, KExtend and shifted navigation have the same
effect as pressing BExtend following a BSelect action.

— Pressing BToggle or, in Add Mode, KSelect on an item tog-
gles the selection state of the item but does not deselect any
selected item. Dragging BToggle or pressing or dragging
BExtend following a BToggle action sets the selection state of
all items between the item under the pointer and the item on
which BToggle was pressed to the state of the item on which
BToggle was pressed. In Add Mode, KExtend and shifted
navigation have the same effect as pressing BExtend follow-
ing a BToggle action.

When the user makes a selection, the List invokes one of four call-
back lists, depending on the selection policy:

Selection Policy Callback List
Single Select XmNsingleSelectionCallback
Browse Select XmNbrowseSelectionCallback
Multiple Select XmNmultipleSelectionCallback
Extended Select XmNextendedSelectionCallback

By default the List does not invoke a callback list when the List is
in Single Select or Extended Select mode and the user drags the
mouse cursor over a new item. It does invoke the callbacks when
the user releases the mouse button. If XmNautomaticSelection is
True, the List invokes the callbacks while the user is dragging the
mouse.

The widget data passed to selection callback routines contains both
the selected items—the compound strings—and integers represent-
ing the positions within the list of the selected items. The first item

5−15

OSF/Motif Programmer’s Guide

in the list is at position 1, the second item at position 2, and so on.

List has another callback list, XmNdefaultActionCallback, which
it invokes when the user double clicks or presses KActivate on an
item. The widget data passed to these callback routines contains
only the item at the location cursor and its position, not the selected
items. When the user performs the default action via a double click,
the List calls the appropriate selection callbacks on the first click
and the XmNdefaultActionCallback callbacks on the second click.

List includes several other sets of resources:

• Arrays and counts of the List items and selected items

• The number of items, XmNvisibleItemCount, that the list can
display at one time, and the position in the List of the first visi-
ble item

• Several resources that affect the appearance of the list items:
font list, justification (XmNstringDirection), spacing between
items, and margins between the items and the List border

• The maximum time interval between clicks for a double click

• A resource (XmNlistSizePolicy) that determines what the List
does when an item is too wide to fit into the List: it can keep its
size and, if a ScrolledList, add a horizontal ScrollBar; grow to
accommodate the item; or try to grow and, if it fails to accommo-
date the item but is a ScrolledList, add a ScrollBar

• A resource that determines whether the ScrollBars in a Scrol-
ledList are displayed at all times or only when needed.

ScrolledList is a List inside a ScrolledWindow. The application can
use XmCreateScrolledList to create one.

In addition to its resources, List has a variety of convenience rou-
tines that allow the application to add, remove, select, and deselect
items; specify the first or last visible item; find the position of an
item or the positions of the selected items; set Add Mode; and scroll

5−16

Basic Controls

the List horizontally.

5.6 Text and TextField

Text is a widget for displaying and, optionally, editing text. When
the Text is editable and the user presses a key that represents a
text character, that character is inserted into the text. Other trans-
lations and actions allow the user to navigate or to select, cut, copy,
paste, or scroll the text.

For more information on Text and TextField, see chapter 8.

5−17

Chapter 6. Menus and Options

A menu is a widget that allows the user to make a choice among
actions or states. When the menu is visible, the user makes a
choice by activating a button in the menu, usually by pressing
BSelect, KSelect, or KActivate on the button. Some buttons also
have mnemonics that allow the user to activate them by pressing
the mnemonic keys when the menu is visible. Buttons can also
have accelerators, which activate the buttons whether or not the
menu is visible.

Motif has four basic kinds of menu:

• MenuBar. This menu is normally always managed within some
component of an application, often the MainWindow. It usually
consists of a row of CascadeButtons. When the user activates a
button in the menu, a PulldownMenu menu appears with one
set of top-level choices that apply to the application component.

• PopupMenu. This menu contains a set of choices that apply to a
component of the application. The menu is not visible until the
user takes an action that posts it, usually pressing BMenu in the
associated component or pressing KMenu when the component
has keyboard focus. A PopupMenu can contain buttons that
take action or change state directly. It can also contain Cascade-
Buttons that cause PulldownMenus to appear.

• PulldownMenu. This menu is associated with a CascadeButton
in a MenuBar, a PopupMenu, or another PulldownMenu. The
menu is not visible until the user posts it by activating the asso-
ciated CascadeButton. Like a PopupMenu, a PulldownMenu can
contain buttons that take action or change state directly. It can
also contain CascadeButtons that cause other PulldownMenus to
appear.

• OptionMenu. This menu allows the user to choose among one
set of choices, usually mutually exclusive attributes or states. It
consists of a label, a selection area, and a PulldownMenu. The
selection area is a CascadeButtonGadget whose label shows the
currently selected option. The PulldownMenu contains the set of

6−1

OSF/Motif Programmer’s Guide

options. The user posts the PulldownMenu by activating the
CascadeButtonGadget or by pressing MAlt along with a
mnemonic. When the user activates a button in the Pulldown-
Menu, that button becomes the newly selected option.

RowColumn is the widget that Motif uses as a menu. A
RowColumn can also be a nonmenu WorkArea. One use for a Wor-
kArea is to contain a set of ToggleButtons constituting a RadioBox
or a CheckBox. When the user selects a ToggleButton, its state
changes from on to off of from off to on. In a RadioBox, only one
ToggleButton at a time can be on; in a CheckBox, more than one
ToggleButton can be on.

RowColumn performs special geometry management to align and
lay out its children in a variety of ways. An application can use a
RowColumn WorkArea to take advantage of the RowColumn
geometry management for a set of widgets. For details see chapter
10.

6.1 Menu Components: Buttons, RowColumn,
MenuShell

6.1.1 Buttons

The user makes a choice in a menu by activating one of the buttons
in the menu. CascadeButtons, PushButtons, and ToggleButtons
and their gadget variants are most commonly used in menus.

Note: Motif does not support DrawnButtons or ArrowBut-
tons in menus, though they can appear in a

6−2

Menus and Options

RowColumn WorkArea. To give a menu button a dis-
tinctive appearance, use a PushButton with a label
type of XmPIXMAP and supply XmNlabelPixmap and
XmNlabelInsensitivePixmap resources.

The application learns of the user’s choice through the appropriate
button callback lists:

• When the user activates a CascadeButton, the button calls the
XmNcascadingCallback callbacks. If the button has an
attached PulldownMenu after these callbacks return, the button
posts the menu. Otherwise, the button calls the XmNactivate-
Callback callbacks.

• When the user activates a PushButton, the button calls the
XmNactivateCallback callbacks.

• When the user activates a ToggleButton, the button calls the
XmNvalueChangedCallback callbacks.

Buttons in a menu have translations and actions that arm, disarm,
and activate the buttons. These actions also post and unpost
menus in the hierarchy at appropriate times. The buttons inherit
menu traversal translations and actions from XmLabel. These
actions allow the user to move from button to button within a menu
and from menu to menu within the menu hierarchy.

6.1.2 RowColumn

The parent of the buttons in a menu is a RowColumn widget.
RowColumn interacts with its button children in these ways:

• In a menu (but not a WorkArea), it ensures that all children are
CascadeButtons, PushButtons, ToggleButtons, Labels, or
Separators (or their gadget variants). If the XmNisHomogeneous

6−3

OSF/Motif Programmer’s Guide

resource is True, it ensures that all children are of the class
specified by XmNentryClass.

• It lays out its children and, if XmNisAligned is True, aligns the
labels of children that are XmLabel or XmLabelGadget subc-
lasses.

• It stores, in the XmNmenuHistory resource, the widget ID of the
last menu item selected.

• It allows the application to supply a single callback list for all
button children. If XmNentryCallback is not NULL, it disables
the XmNactivateCallback and XmNvalueChangedCallback call-
backs for its button children and arranges for the buttons to call
the XmNentryCallback callbacks instead.

• If XmNradioBehavior is True, it ensures that only one Tog-
gleButton at a time is normally selected. It also changes the
default values for XmNindicatorType and XmNvisibleWhenOff
for its ToggleButton children to the one-of-many, always-
displayed style.

• It has additional resources for MenuBars and OptionMenus,
described below.

In addition to XmNentryCallback, RowColumn also has XmNmap-
Callback and XmNunmapCallback callbacks. These callbacks apply
only to PopupMenus and PulldownMenus. The XmNmapCallback
callbacks are called just before the menu is posted, and
theXmNunmapCallback callbacks are called just after the menu is
unposted. They are useful for changing the menu to reflect the
current state of the application. For example, a XmNmapCallback
callback can use XtSetSensitive to make some menu items insen-
sitive if they are not applicable in the current state of the program.

6−4

Menus and Options

6.1.3 MenuShell

The windows associated with PopupMenus and PulldownMenus
are top-level windows. That is, the parent window of such a menu
is the root window of the screen, not the window associated with
the parent widget. This allows the menu to appear anywhere on
the screen without being clipped by the parent widget’s window.

The parent widget of each PopupMenu and PulldownMenu
RowColumn must be a MenuShell. It is actually the MenuShell’s
window that is the top-level window. XmMenuShell is a subclass of
OverrideShell, so the window manager ignores MenuShell’s win-
dows.

A MenuShell is often invisible to the application. The Motif con-
venience routines for creating PopupMenus and PulldownMenus
automatically create MenuShell parents for these menus. When a
PulldownMenu is the child of a PopupMenu or another Pulldown-
Menu, the child’s MenuShell is actually the child of the parent’s
MenuShell. The convenience routines for creating PulldownMenus
manage these relations automatically.

Motif arranges for the RowColumn’s window to coincide with the
MenuShell’s window. Setting XmNheight, XmNwidth, or XmNbor-
derWidth for either a MenuShell or its child sets that resource to
the same value in both the parent and the child. For a child of a
MenuShell, setting XmNx or XmNy sets the corresponding resource of
the parent but does not change the child’s position relative to the
parent. XtGetValues for the child’s XmNx or XmNy yields the value
of the corresponding resource in the parent. The x and y coordi-
nates of the child’s upper left outside corner relative to the parent’s
upper left inside corner are both zero minus the value of XmNbor-
derWidth.

To change any geometry-related resources of a PopupMenu or
PulldownMenu, an application should always specify these

6−5

OSF/Motif Programmer’s Guide

resources for the RowColumn child, not the MenuShell parent.

If an application needs to create a MenuShell explicitly, it should
create the MenuShell as a popup child of its parent (using
XtCreatePopupShell or XtVaCreatePopupShell). All Motif con-
venience routines that create MenuShells do this automatically,
and an application rarely needs to create a MenuShell directly.

6.2 MenuBar

All children of a MenuBar must be CascadeButtons or CascadeBut-
tonGadgets. The MenuBar attempts to place its button children in
a single row. If it does not have enough room, it tries to wrap the
remaining children into additional rows.

An application should treat specially the button, if any, that pulls
down a help menu. The application should set the MenuBar
RowColumn’s XmNmenuHelpWidget to the widget ID of this button.
The MenuBar attempts to place this button at one of the lower
corners of the MenuBar, as specified by the OSF/Motif Style Guide.

In a MenuBar all buttons typically have associated Pulldown-
Menus. Each PulldownMenu associated with a button in a Menu-
Bar must be a child of the MenuBar. (More precisely, each
PulldownMenu’s MenuShell must be a child of the MenuBar.)
Each button’s XmNsubMenuId resource must be set to the widget ID
of the associated PulldownMenu. Set XmNsubMenuId to the widget
ID of the PulldownMenu RowColumn, not of the PulldownMenu’s
MenuShell.

The Motif convenience routines XmCreateMenuBar, XmCreateSim-
pleMenuBar, and XmVaCreateSimpleMenuBar all create MenuBars.

6−6

Menus and Options

6.3 Popup Menu

A PopupMenu is normally invisible. When the user takes some
action—usually pressing BMenu or KMenu—in a widget that has a
PopupMenu, the menu is posted. The user moves from item to item
in the menu by dragging BMenu or, when keyboard traversal is
enabled, by keyboard traversal actions. Motif unposts the menu
when the user activates an item in the menu system (other than a
CascadeButton), presses KCancel, or releases or clicks BMenu out-
side a menu item.

A PopupMenu RowColumn must have a MenuShell parent. The
parent of the MenuShell is the widget with which the PopupMenu
is associated. Because the MenuShell is a popup child of its parent,
the parent can be any widget (but not a gadget); it does not have to
be a subclass of Composite. The Motif convenience routines that
create PopupMenus automatically create a MenuShell as the
parent of the PopupMenu RowColumn.

The PopupMenu’s XmNmenuPost resource specifies the button event
that posts the menu. The event can be any button press, possibly
with modifiers. To allow the user to post a PopupMenu using the
mouse, the application has to take these actions:

• Provide an event handler (using XtAddEventHandler) for button
press events for the widget with which the PopupMenu is asso-
ciated. The second argument (the client_data argument) to
the event handler should be the PopupMenu RowColumn.

• In the event handler, the application can call XmMenuPosition
to locate the PopupMenu at the point where the user pressed
the mouse button, or it can position the menu itself.

• In the event handler, manage the PopupMenu RowColumn. If
the button event matches the event description in the
RowColumn’s XmNmenuPost resource, Motif makes the

6−7

OSF/Motif Programmer’s Guide

PopupMenu visible when the application manages it. Other-
wise, Motif unmanages the PopupMenu and does not post it.

The PopupMenu is realized, if necessary, the first time it is posted.

Following is an example:

void ButtonEventHandler(Widget widget, XtPointer popup,
XEvent *event, Boolean *continue)

{
XmMenuPosition((Widget) popup, (XButtonPressedEvent *)

event);
XtManageChild((Widget) popup);

}

...
Widget parent, popup;
popup = XmCreatePopupMenu(parent, "popup", args, n);
XtAddEventHandler(parent, ButtonPressMask, False,

(XtEventHandler) ButtonEventHandler,
(XtPointer) popup);

...

Posting a PopupMenu via the keyboard is controlled by the
PopupMenu’s XmNmenuAccelerator and XmNpopupEnabled
resources. XmNmenuAccelerator specifies a key event that may
post the menu. XmNpopupEnabled specifies whether or not this
event actually posts the menu. It also determines whether or not
accelerators and mnemonics in the PopupMenu and its submenus
are enabled.

An application can have only one active PopupMenu at a time for a
particular widget. If the widget has more than one PopupMenu,
the application should set XmNpopupEnabled to True for the active
menu and set XmNpopupEnabled to False for all inactive menus.
The application must also arrange for its button event handler to

6−8

Menus and Options

manage the proper PopupMenu on a popup button event. One pos-
sible implementation is for the event handler to call a function that
returns the appropriate PopupMenu, depending on the state of the
application.

6.4 PulldownMenu

A PulldownMenu is always associated with another RowColumn.
It becomes visible when the user activates a CascadeButton in the
associated RowColumn. It becomes invisible when the user
traverses upward or laterally in the menu hierarchy, activates a
button in the hierarchy (other than a CascadeButton in the menu
or a descendant), presses KCancel, or clicks or releases a mouse
button outside a menu item.

A PulldownMenu must have the following relations with other
widgets:

• It must be the value of the XmNsubMenuId resource of the Cas-
cadeButton that is to post the menu.

• It must have a MenuShell as its parent. The Motif convenience
routines that create PulldownMenus create MenuShell parents
automatically.

• The MenuShell must have the proper parent, depending on the
kind of RowColumn with which the PulldownMenu is associ-
ated. The MenuShell is a popup child of its own parent. Follow-
ing are the required parents of the MenuShell:

— If the PulldownMenu is to be pulled down from a MenuBar,
the parent must be the MenuBar.

— If the PulldownMenu is to be pulled down from a Popup-
Menu or another PulldownMenu, the parent must be that

6−9

OSF/Motif Programmer’s Guide

PopupMenu or PulldownMenu. Actually, the parent is the
other menu’s MenuShell; but the parent parameter to the
Motif convenience routines that create PopupMenus must be
the other menu itself (the RowColumn), not its MenuShell
parent.

— If the PulldownMenu is to be pulled down from an Option-
Menu, the parent must be the parent of the OptionMenu.

6.5 OptionMenu

An OptionMenu lets the user choose among a set of usually mutu-
ally exclusive options. The OptionMenu is always visible. It con-
sists of a label (a LabelGadget), a selection area (a CascadeBut-
tonGadget), and an associated PulldownMenu. The label of the
CascadeButtonGadget displays the currently selected option, one of
the items in the PulldownMenu. When the user activates the Cas-
cadeButtonGadget, the PulldownMenu becomes visible with the
currently selected item directly above the selection area. When the
user activates an item in the PulldownMenu, the PulldownMenu is
unposted and the item the user chose becomes the currently
selected option.

The PulldownMenu normally contains only PushButtons. It must
not contain any ToggleButtons, and Motif does not support Cas-
cadeButtons.

RowColumn has a number of resources for use specifically with an
OptionMenu:

XmNlabelString
The text of the label. Setting this resource also sets
the XmNlabelString of the LabelGadget.

6−10

Menus and Options

XmNmnemonic
A keysym that, when pressed along with the MAlt
modifier, posts the PulldownMenu. Motif underlines
the first character in the label string that matches
the mnemonic and that is in a segment whose font
list element tag matches XmNmnemonicCharSet. Set-
ting this resource also sets the XmNmnemonic of the
LabelGadget.

XmNmnemonicCharSet
The font list element tag used for underlining the
mnemonic. Setting this resource also sets the
XmNmnemonicCharSet of the LabelGadget.

XmNsubMenuId
The widget ID of the PulldownMenu. Setting this
resource also sets the XmNsubMenuId of the Cascade-
ButtonGadget.

If the application needs to get or set any of these four resources for
the LabelGadget or CascadeButtonGadget, it should always get or
set it in the OptionMenu RowColumn, not the gadget itself. To get
or set other resources for the gadgets, the application should use
XmOptionLabelGadget or XmOptionButtonGadget and then call
XtGetValues or XtSetValues on the returned widget ID. A user or
application can also specify resource values in resource files by
using the names of the gadgets, "OptionLabel" and "OptionButton".

Setting the XmNmenuHistory resource also has a special effect in
OptionMenus. Setting XmNmenuHistory to an item in the
PulldownMenu makes that item the currently selected option. It
updates the label of the CascadeButtonGadget and causes the
PulldownMenu to appear, when posted, with the selected item over
the CascadeButtonGadget.

XmCreateOptionMenu creates an OptionMenu RowColumn and its
LabelGadget and CascadeButtonGadget children. It does not

6−11

OSF/Motif Programmer’s Guide

create the associated PulldownMenu.

The following example creates a simple OptionMenu with three
options:

Widget parent, pulldown, option, pb1, pb2, pb3;
Arg args[10];
Cardinal n;

...
n = 0;
pulldown = XmCreatePulldownMenu(parent, "option_pd", args, n);
pb1 = XmCreatePushButtonGadget(pulldown, "option_pb1", args, n);
pb2 = XmCreatePushButtonGadget(pulldown, "option_pb2", args, n);
pb3 = XmCreatePushButtonGadget(pulldown, "option_pb3", args, n);
XtSetArg(args[n], XmNsubMenuId, pulldown); n++;
XtSetArg(args[n], XmNmenuHistory, pb2); n++;
option = XmCreateOptionMenu(parent, "option_rc", args, n);

...

The following app-defaults file provides labels and mnemonics for
an English-language locale:

*option_pb1.labelString : Option 1
*option_pb2.labelString : Option 2
*option_pb3.labelString : Option 3
*option_rc.labelString : Options
*option_rc.mnemonic : O

6.6 RadioBox and CheckBox

RadioBoxes and CheckBoxes are collections of ToggleButtons. The
difference is that in a RadioBox only one ToggleButton at a time

6−12

Menus and Options

can be set; in a CheckBox more than one ToggleButton can be set.

RadioBoxes and CheckBoxes are usually implemented as Wor-
kAreas, though it is possible to implement them as menus. Usually
the application intends for the box to remain visible after the user
sets a ToggleButton, particularly in a CheckBox. The application
can implement a transient RadioBox or CheckBox by placing a
WorkArea inside a dialog.

The following RowColumn resources specifically control the
behavior of a RadioBox or CheckBox:

XmNradioBehavior
When True, the RowColumn ensures that at most
one ToggleButton is set at a time. Setting this
resource to True also causes the ToggleButton
resource XmNindicatorType to default to
XmONE_OF_MANY and XmNvisibleWhenOff to default
to True.

XmNradioAlwaysOne
When both this resource and XmNradioBehavior are
True, RowColumn ensures that one ToggleButton is
always set. The user is not allowed to unset a Tog-
gleButton when no other ToggleButton is set.

For a RadioBox implemented as a WorkArea, the default value for
XmNisHomogeneous is True, and by default RowColumn allows only
ToggleButton and ToggleButtonGadget children.

Note that the application can foil the RowColumn’s enforcement of
XmNradioBehavior and XmNradioAlwaysOne, even when these
resources are True. The application can use XtSetValues to set
the state of the ToggleButtons, and it can manage and unmanage
ToggleButtons regardless of their state. The behavior of a
RadioBox is undefined if the application takes actions that contrad-
ict XmNradioBehavior or XmNradioAlwaysOne.

6−13

OSF/Motif Programmer’s Guide

XmCreateRadioBox creates a WorkArea RadioBox and initializes
XmNradioBehavior to True.

A CheckBox is most often a collection of ToggleButtons in a Wor-
kArea with XmNradioBehavior set to False. By default the Tog-
gleButton XmNindicatorType is XmN_OF_MANY and XmNvisi-
bleWhenOff is True.

6.7 TearOffMenus

An application can allow the user to "tear off" a PulldownMenu or
PopupMenu. When the user tears off a menu, Motif unposts that
menu and any posted menu descendants. It gives the menu a
TransientShell parent and then maps the parent as a top-level win-
dow. The torn-off menu has window-manager decorations, and its
title is the label of the CascadeButton that posts the menu in the
original menu system.

The user can interact with the torn-off menu just as in the menu
hierarchy. When the user activates buttons in a torn-off menu, the
actions take effect but the torn-off menu remains posted. When the
user takes an action that unposts the torn-off menu, such as press-
ing KCancel, the menu returns to its original position in the menu
hierarchy. If the user reposts the original menu from the menu
hierarchy while the torn-off menu is posted, an inactive representa-
tion of the torn-off menu remains visible, but the menu itself is
unposted and then reposted within the menu hierarchy.

When a menu in a menu system can be torn off, a distinctive tear-
off button appears at the beginning of the menu. The user can tear
off the menu by activating the tear-off button as with any other
button in the menu. The user can also tear off the menu by press-
ing BTransfer in the tear-off button. The user can then drag the

6−14

Menus and Options

torn-off menu to another position on the screen and fix its position
by releasing BTransfer.

Menus cannot be torn off by default. The application must allow
the user to tear off a menu by setting the RowColumn resource
XmNtearOffModel to XmTEAR_OFF_ENABLED. When the user tears
off a menu, the XmNtearOffMenuActivateCallback callbacks are
invoked just before the XmNmapCallback callbacks. When the user
unposts a torn-off menu, the XmNtearOffMenuDeactivateCallback
callbacks are invoked just after the XmNunmapCallback callbacks.

6−15

Chapter 7. Dialogs

Dialogs are container widgets that provide a means of communicat-
ing between the user and the application. A dialog widget usually
asks a question or presents some information to the user. In some
cases, the application is suspended until the user provides a
response.

Dialogs are similar to menus. Both seek input from the user. Like
PopupMenus and PulldownMenus, dialogs appear in top-level win-
dows and are more or less transient. Making a selection typically
unposts a PopupMenu or PulldownMenu and often pops down a dia-
log. There are two chief differences:

• Unless torn off, menus are usually modal: the user must make a
selection from the menu or unpost it before interacting with
other parts of the application. Dialogs can be either modal or
modeless. In a modeless dialog, the user can interact with other
parts of the application before returning to the dialog.

• Menu components are limited to buttons, labels, and separators.
Dialogs can contain other, sometimes arbitrary, kinds of widg-
ets, such as List and Text. Dialogs permit more complex interac-
tion with the user and allow the application to solicit a broader
range of information.

Menus are well suited to allowing the user to make a single choice
from a constrained set. Dialogs are appropriate for displaying infor-
mation about a transient or unusual state of the program and for
obtaining complex input from the user. Whether to use a dialog or a
menu is not always clear. In fact, a TearOffMenu combines aspects
of both. For more information on using menus and dialogs, see the
OSF/Motif Style Guide.

7−1

OSF/Motif Programmer’s Guide

7.1 BulletinBoard and DialogShell

From the application’s point of view, a dialog is a widget that is a
subclass of XmBulletinBoard inside a DialogShell. BulletinBoard
is intended to be the usual superclass for a dialog widget. The dia-
log widget can be either a BulletinBoard itself or one of its more
specialized subclasses. BulletinBoard is a container with no
automatically created children; it supplies general behavior needed
by most dialogs. Its subclasses provide child widgets and specific
behavior tailored to particular types of dialogs.

BulletinBoard and its subclasses can also function outside a Dialog-
Shell, as part of the application’s main window. One subclass,
Form, is particularly useful in providing constraint-based geometry
management for a collection of child widgets.

7.1.1 BulletinBoard

BulletinBoard provides the following resources and behavior:

• Activation and cancellation of the dialog. BulletinBoard installs
accelerators for KActivate and KCancel. Unless focus is in
another button, KActivate activates the XmNdefaultButton if it
is sensitive. KCancel activates the XmNcancelButton if it is sen-
sitive. Subclasses set the XmNdefaultButton and XmNcancel-
Button.

• A resource, XmNdialogStyle, that determines whether the dia-
log is modal or modeless. Three modal styles exist:

— Primary application modal—Among the dialog and its ances-
tors, input goes only to the dialog, but the user can iteract

7−2

Dialogs

with other parts of the application or with other applications.

— Full application modal—Within the application, input goes
only to the dialog, but the user can interact with other appli-
cations.

— System modal—Input goes only to the dialog; the user cannot
interact with other applications.

• Callbacks invoked when the BulletinBoard is mapped and
unmapped and when it gains input focus.

• Geometry-management resources and class methods that imple-
ment several resizing policies and that allow the BulletinBoard
to interact with its subclasses in managing complex collections of
descendant widgets. The geometry-related resources are
XmNmarginHeight, XmNmarginWidth and XmNresizePolicy. For
more information on BulletinBoard’s geometry management, see
chapter 10.

7.1.2 Activation, Cancellation, and Help

Often a dialog has one or more actions, associated with buttons,
that apply to the dialog as a whole. Some common actions are
"activate", "cancel", and "help". BulletinBoard deals specially with
activation and cancellation. BulletinBoard allows the user to
"activate" or "cancel" the dialog from anywhere within the Bulletin-
Board (except, in the case of activation, when a button has the
focus).

BulletinBoard has a resource, XmNdefaultButton, whose value is a
button descendant that represents the default activation action.
When the user presses KActivate in a button that has keyboard
focus, that button’s KActivate actions are called. If the user

7−3

OSF/Motif Programmer’s Guide

presses KActivate and no button has focus, BulletinBoard calls the
KActivate actions for the XmNdefaultButton if it is sensitive. If
the user presses KActivate in a List, Text, or TextField descendant,
the KActivate actions for that widget are invoked first, and then
BulletinBoard calls the KActivate actions for the XmNdefaultBut-
ton.

BulletinBoard has another resource, XmNcancelButton, whose
value is a button descendant that represents the default cancella-
tion action. When the user presses KCancel anywhere within the
BulletinBoard, BulletinBoard calls the KActivate actions for the
XmNcancelButton if it is sensitive.

The "help" action works differently. Often the application
represents "help" for the dialog as a whole by providing a Help but-
ton. When the user activates this button, the application provides
help for the dialog. In general the application can provide help via
an XmNactivateCallback procedure for the Help button. Some Bul-
letinBoard subclasses create Help buttons automatically. These
widgets add a procedure to the Help button’s XmNactivateCallback
list that invokes the dialog’s XmNhelpCallback procedures when the
Help button is activated. In these cases the application can provide
help via the dialog’s XmNhelpCallback procedures.

If the user presses KHelp elsewhere in the BulletinBoard, this
action usually invokes the XmNhelpCallback callbacks for the
widget with the focus. If this widget has no XmNhelpCallback pro-
cedures, Motif looks up the widget hierarchy for the first ancestor
with a non-NULL XmNhelpCallback list and invokes those pro-
cedures. By providing an XmNhelpCallback procedure for the dialog
itself, the application can ensure that the user sees help for the dia-
log as a whole when the descendant widget with focus has no help
information of its own.

7−4

Dialogs

7.1.3 DialogShell

DialogShell is the Motif shell widget that contains dialogs. It is a
subclass of TransientShell, which is a subclass of VendorShell. Dia-
logShell inherits much of VendorShell’s behavior in interacting with
the window manager and in providing geometry management for
off-the-spot input methods.

DialogShell cooperates extensively with BulletinBoard, and some of
DialogShell’s features for containing dialogs assume that its child is
a BulletinBoard or BulletinBoard subclass. Often the application
does not need to deal directly with the DialogShell at all. The Motif
convenience routines that create dialogs automatically create a Dia-
logShell as the popup child of the parent shell.

To pop up the dialog, the application does not call XtPopup on the
DialogShell but instead manages the child of the DialogShell.
DialogShell’s change_managed procedure pops up the dialog when
the child is managed and pops it down when the child is
unmanaged, providing that the child’s XmNmappedWhenManaged
resource is True. If a BulletinBoard child’s XmNautoUnmanage
resource is initialized to True, the BulletinBoard is automatically
unmanaged when its OK and cancel buttons are activated.

DialogShell notifies its BulletinBoard child via the XmNmapCallback
and XmNunmapCallback procedures when the child is about to be
mapped and unmapped.

Like VendorShell, DialogShell ensures that when no off-the-spot
input method exists the DialogShell window remains coincident
with the child window. Setting XmNx and XmNy for the child sets
these resources for the shell, without changing the child’s position
relative to the child. Setting XmNheight, XmNwidth and XmNbor-
derWidth for the child usually sets these resources to the same
value in the DialogShell. When a BulletinBoard child is managed

7−5

OSF/Motif Programmer’s Guide

with its XmNdefaultPosition resource set to True, DialogShell
centers the dialog with respect to the parent.

BulletinBoard has two resources that allow the user or application
to customize a parent DialogShell’s interaction with the window
manager. XmNdialogTitle provides a title for the window
manager, and XmNnoResize determines whether or not the dialog
MWM frame includes resize controls. To affect other aspects of
interaction with the window manager, the user or application must
set the appropriate DialogShell resources.

XmCreateBulletinBoardDialog creates a BulletinBoard and a
parent DialogShell.

7.1.4 Initial Focus

When the XmNkeyboardFocusPolicy of a shell is XmEXPLICIT, Motif
uses the Manager resource XmNinitialFocus in determining which
component of a manager receives initial focus in these cir-
cumstances:

• When the manager is the child of a shell and the shell hierarchy
receives focus for the first time

• When focus is inside the shell hierarchy, the manager is a com-
posite tab group, and the user traverses to the manager via the
keyboard

Following are the default values of XmNinitialFocus for Bulletin-
Board and its subclasses:

• For BulletinBoard, Form, and MessageBox, the default is the
value of XmNdefaultButton

7−6

Dialogs

• For SelectionBox and its subclasses, the default is the text edit
area

7.2 Making a Selection: SelectionBox

SelectionBox is a BulletinBoard subclass that generally allows the
user to select an item from a list. By default a SelectionBox
includes the following children:

• A scrolling list of alternatives

• An editable text field for the selected alternative

• Labels for the list and text field

• Three or four buttons

The default buttons are OK, Cancel, and Help. By default an Apply
button is also created; if the parent of the SelectionBox is a Dialog-
Shell it is managed, and otherwise it is unmanaged.

An application can add additional children to the SelectionBox. The
first child is used as a work area. The value of XmNchildPlacement
determines whether the work area is placed above or below the Text
area, or above or below the List area. Additional children are laid
out in the following manner:

• MenuBar—The first MenuBar child is placed at the top of the
window

• Buttons—All XmPushButton widgets or gadgets and their subc-
lasses are placed after the OK button in the order of their crea-
tion

• The layout of additional children that are not in these categories
is undefined

7−7

OSF/Motif Programmer’s Guide

The user can select an item in two ways: by scrolling through the
list and selecting the desired item or by entering the item name
directly into the text edit area. Selecting an item from the list
causes that item name to appear in the selection text edit area.
SelectionBox installs accelerators, the value of XmNtextAccelera-
tors, on the text edit widget. The default accelerators bind KUp,
KDown, KBeginLine, KEndLine, and KRestore events in the text edit
widget to SelectionBox actions that select an item in the List and
replace the text edit widget value with that List item.

SelectionBox provides XmNokCallback, XmNcancelCallback,
XmNhelpCallback, and XmNapplyCallback lists, which the Selec-
tionBox invokes when the corresponding button is activated.
Activation of the OK button may invoke either the XmNokCallback
list or the XmNnoMatchCallbackList. When the user activates the
OK button and either the XmNmustMatch resource is False or the
text in the text edit area matches a List item, SelectionBox invokes
the XmNokCallback procedures. When the user activates the OK
button, XmNmustMatch is True, and the text in the text edit area
does not match a List item, SelectionBox invokes the XmNnoMatch-
Callback procedures.

SelectionBox has two subclasses, FileSelectionBox and Command,
which are described in later sections. XmCreateSelectionDialog
creates a standard SelectionBox and a DialogShell parent.
XmCreatePromptDialog creates a variant SelectionBox dialog con-
taining a text edit area and label and OK, Cancel, and Help but-
tons. A PromptDialog has an unmanaged Apply button, and it has
no List or List label. It is intended for the application to prompt the
user for brief text input.

The XmNdialogType resource determines which of the standard
SelectionBox children are created and managed. The value usually
depends on the application’s use of the SelectionBox:

• XmDIALOG_SELECTION usually indicates a standard SelectionBox
dialog.

7−8

Dialogs

• XmDIALOG_WORK_AREA indicates a SelectionBox outside a Dialog-
Shell. The Apply button is unmanaged.

• XmDIALOG_PROMPT indicates a PromptDialog.

• XmDIALOG_COMMAND indicates a Command subclass.

• XmDIALOG_FILE_SELECTION indicates a FileSelectionBox sub-
class.

SelectionBox has resources for supplying text, label strings, and list
items for its children. The widget IDs of the children of a Selection-
Box and its subclasses are not available as resources. The applica-
tion can retrieve the widget IDs of the automatically created chil-
dren by using XtNameToWidget or by calling one of the convenience
routines Motif provides for this purpose: XmSelectionBoxGetChild,
XmFileSelectionBoxGetChild, and XmCommandGetChild.

7.3 Choosing a Pathname: FileSelectionBox

FileSelectionBox is a subclass of SelectionBox designed for finding
and selecting files. By default a FileSelectionBox contains the same
children as a standard SelectionBox, with the addition of a second
ScrolledList, a second text edit area, and the corresponding labels.
By default the Apply button is labeled "Filter".

One of the text areas, the directory mask area, holds a directory
mask specifying a base directory to be searched and a search pat-
tern. The other text area, the selection area, holds the name of the
selected file. One of the Lists, the directory list, displays the sub-
directories of the current base directory. The other List, the file list,
displays all the files, subdirectories, or both in the base directory
that match the search pattern.

7−9

OSF/Motif Programmer’s Guide

The user can select a new base directory to examine by scrolling
through the list of directories and selecting the desired directory or
by editing the directory mask. Selecting a new directory from the
directory list does not change the search pattern. A user can select
a new search pattern by editing the directory mask. Double clicking
or pressing KActivate on a directory in the directory list initiates a
search for files and subdirectories in the new directory, using the
current search pattern.

Activating the Filter button, the directory list, or the directory mask
text area causes the FileSelectionBox to initiate a file search. The
FileSelectionBox uses three procedures, each the value of a
resource, in conducting the search: the XmNqualifySearchDa-
taProc, the XmNdirSearchProc and the XmNfileSearchProc. The
XmNqualifySearchDataProc extracts the base directory and the
search pattern from the directory mask. The XmNdirSearchProc
uses the data returned by the XmNqualifySearchDataProc to
update the directory list. The XmNfileSearchProc uses the data
returned by the XmNqualifySearchDataProc to update the file list.

The user can select a file by scrolling through the list of filenames
and selecting the desired file or by entering the filename directly
into the text edit area. Selecting a file from the list causes that
filename to appear in the file selection text edit area. The user
confirms the selection by activating the OK button, the file list, or
the selection text area.

FileSelectionBox uses the SelectionBox callback lists to notify the
application when the user activates one of the buttons. The applica-
tion can also provide one or more of the three procedures that
FileSelectionBox uses to conduct a search. For a specification of the
input to and output from these routines, see the
XmFileSelectionBox(3X) reference page in the OSF/Motif
Programmer’s Reference.

The application can remove the directory list, the file list, or both.
The application must unmanage the ScrolledWindow parent of the

7−10

Dialogs

List and the corresponding label. An application can also add addi-
tional children to a FileSelectionBox, which manages any additional
children in the same way as SelectionBox.

XmCreateFileSelectionDialog creates a FileSelectionBox and a
parent DialogShell.

7.4 Command

Command is a SelectionBox subclass intended for entering a com-
mand. It contains the SelectionBox text edit area, List, and List
label, but no buttons. The application can add only one additional
work area child to the Command. A Command usually appears as
part of the application’s main window rather than as a dialog.

The user specifies a command by adding text to the text area or by
selecting an item from the List, which represents the command his-
tory. Whenever the text edit area changes, Command invokes the
XmNcommandChangedCallback procedures. The user enters a com-
mand by activating the List or the text edit area. When the user
enters a command, Command appends the command to the history
list and invokes the XmNcommandEnteredCallback procedures.

Command has a number of resources that are aliases for Selection-
Box resources dealing with the List and text edit area. Command
also has an XmNhistoryMaxItems resource, which specifies the max-
imum length of the history list. After the list reaches this length,
Command deletes the first item in the list before appending a newly
entered command.

7−11

OSF/Motif Programmer’s Guide

7.5 MessageBox

MessageBox is a BulletinBoard subclass intended for a dialog con-
sisting of a single user interaction. By default a MessageBox has
the following components:

• A LabelGadget with a pixmap label symbolizing the type of
interaction the MessageBox represents

• A LabelGadget with a compound string label representing the
text of the message

• A SeparatorGadget separating the message symbol and text
from the other children

• Three buttons: OK, Cancel, and Help

Typically the message symbol and text are on top and the buttons
on the bottom, with the separator between. The application can
add additional children to a MessageBox. Additional children are
laid out in the following manner:

• The first MenuBar child is placed at the top of the window.

• All XmPushButton widgets or gadgets, and their subclasses are
placed after the OK button in the order of their creation.

• A child that is not in these categories is treated as a work area
and is placed above the row of buttons. If a message label exists,
the child is placed below the label. If a message pixmap exists,
but a message label is absent, the child is placed on the same
row as the pixmap. The child behaves as a work area and grows
or shrinks to fill the space above the row of buttons. The layout
of multiple work area children is undefined.

Several convenience routines create MessageBox widgets with Dia-
logShell parents for particular kinds of interactions. For most of

7−12

Dialogs

these routines, the principal difference in the type of MessageBox
they create is that each uses a distinct default symbol pixmap.
When it creates the symbol pixmap, MessageBox uses XmGetPix-
mapByDepth to find a pixmap with a name that corresponds to the
type of interaction. Each dialog type is also associated with a value
of the XmNdialogType resource. The following table shows the
correspondence between creation routine, XmNdialogType, and sym-
bol pixmap name:

222
Convenience Routine XmNdialogType Pixmap Name222
XmCreateErrorDialog XmDIALOG_ERROR xm_error
XmCreateInformationDialog XmDIALOG_INFORMATION xm_information
XmCreateMessageDialog XmDIALOG_MESSAGE
XmCreateQuestionDialog XmDIALOG_QUESTION xm_question
XmCreateTemplateDialog XmDIALOG_TEMPLATE
XmCreateWarningDialog XmDIALOG_WARNING xm_warning
XmCreateWorkingDialog XmDIALOG_WORKING xm_working2221
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

A MesssageDialog and a TemplateDialog have no default symbol
pixmap. A TemplateDialog is a special MessageBox variant that is
intended for application customization and that, by default, has no
children except the separator.

Like SelectionBox, MessageBox has XmNokCallback, XmNcancel-
Callback, and XmNhelpCallback lists to inform the application
when the user activates a button. MessageBox has resources for
supplying label strings and the symbol pixmap for its children. The
widget IDs of the children of a MessageBox not available as
resources. The application can retrieve the widget IDs of the
automatically created children by using XtNameToWidget or by cal-
ling XmMessageBoxGetChild.

7−13

OSF/Motif Programmer’s Guide

7.6 Form

Form is a BulletinBoard subclass whose main purpose is to provide
constraint-based geometry management for arbitrary children.
Form has a number of constraint resources that it uses to place chil-
dren with respect to the Form, positions within the form, and other
children. Most Form-specific behavior is related to this geometry
management. Form has no default children of its own. But as a
BulletinBoard subclass, Form is an appopriate container for use in
dialogs. XmCreateFormDialog creates a Form and a DialogShell
parent.

For information on Form’s geometry management, see chapter 10.

7−14

Chapter 8. Text

OSF/Motif has widgets for displaying two kinds of text: static text,
as in labels and messages, and editable text. Static text usually
appears in Label widgets or Label subclasses, including buttons,
and in Lists. The application or user can specify initial text for
Labels or Lists via resource or UIL files, but the user cannot edit
the text. The application can replace the text during the program
by setting the appropriate resources. In Labels and Label subc-
lasses and in Lists, Motif represents text as compound strings.
These are byte streams that contain the text itself and tags that the
toolkit matches with tags in font lists in order to select the
appropriate fonts or font sets to display the text.

For editing text, Motif provides Text and TextField widgets. The
displayed text in these widgets may or may not be editable, depend-
ing on the value of the XmNeditable resource. When the Text is
editable and the user enters a text character, that character is
inserted into the text. Other translations and actions allow the
user to navigate or to select, cut, copy, paste, or scroll the text. In
Text and TextField widgets Motif represents text as strings of
either multibyte (char) or wide (wchar_t) characters. The Text
widget uses a single font or font set from a font list to display the
text.

This chapter discusses the Text and TextField widgets. Labels and
their subclasses are discussed in chapter 5, and compound strings,
font lists, and localization of text are discussed in chapter 11. It is
possible for an application to construct its own text-editing widget
using a DrawingArea. This is discussed in chapter 14.

8.1 Text and TextField

The text in a Text widget can be multiline or constrained to be a
single line, depending on the value of the XmNeditMode resource. In

8−1

OSF/Motif Programmer’s Guide

multiline Text, pressing KUp moves the insertion cursor, the point at
which new text is inserted, to the previous line, and pressing KDown
moves the insertion cursor to the next line. Other actions move the
insertion cursor forward and backward by paragraphs. Pressing
KSpace, KTab, or KEnter causes the corresponding character to be
inserted into the text. For this reason some virtual key bindings
are different in Text from those in other widgets:

22
Virtual Key Bindings22

Virtual Key Actual Key Events22
KActivate Ctrl<Key>Return

<Key>osfActivate22
KExtend Ctrl Shift<Key>space

Shift<Key>osfSelect22
KNextField Ctrl<Key>Tab22
KSelect Ctrl<Key>space

<Key>osfSelect2211
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

In a single-line widget, pressing KSpace still inserts a space into the
text. However, KUp and KDown now move keyboard focus to the pre-
vious or next traversable widget, and KTab traverses to the next tab
group. KEnter invokes the XmNactivateCallback callbacks. The
actions for moving by paragraphs have no effect. In other words, a
single-line Text widget acts more as a simple control than a field
control.

A TextField is essentially the same as a Text widget in single-line
mode, except that its performance is optimized for single-line text
operations. Although TextField has a complete set of convenience
routines of its own, the widget argument to the Text convenience
routines can be either a Text or a TextField widget.

8−2

Text

8.2 Selection

Both Text and TextField allow the user to cut, copy, and paste text
using the clipboard, primary transfer, or secondary transfer. The
user can also drag and drop text within a widget, between widgets,
or from a Label or List widget to a Text or TextField widget. In all
cases, the user first selects text in some widget and then inserts the
selected text into a Text or TextField widget.

This section explains how selection works in Text and TextField.
Understanding selection requires understanding of several con-
cepts: primary selection, secondary selection, clipboard
selection, the destination widget, the insertion cursor, the
selection anchor, and pending delete.

Selections are the primary means of exchanging data between X
clients. A selection is a piece of data. Each display may have
several kinds of selections, but only one selection of each kind can
exist at any time on the display. A client owns each selection, and
the selection is attached to a window. Clients can acquire or give
up ownership of a selection and can request that the owner convert
the selection into some data type and place the results on a property
of a particular window. This mechanism makes it possible to select
and then cut, copy, or paste data from one client to another. Selec-
tions are discussed in detail in the X Window System document
Inter-Client Communication Conventions Manual (ICCCM).

Text and TextField support transfers using the three kinds of selec-
tion common to all X clients:

Primary The primary selection is the principal selection on
the display. When we talk about selecting text
or about the selection, unless we qualify these
terms we are referring to the primary selection.

8−3

OSF/Motif Programmer’s Guide

Secondary The secondary selection is used to transfer data
without disturbing the primary selection. Text
and TextField use the secondary selection for
quick transfer, in which the user selects and then
moves or copies text using a single series of mouse
gestures.

Clipboard The clipboard selection usually holds data cut or
copied from one client and available to be pasted
into another. Text and TextField provide actions
for cutting and copying text to the clipboard and
for pasting text from the clipboard.

The destination is the widget that at any particular time would
receive the selection if the user were to invoke a move, copy, or
paste operation. A Text or TextField widget must be both sensitive
and editable to become the destination. When the XmNkeyboard-
FocusPolicy of the shell is XmEXPLICIT, an editable widget becomes
the destination when it receives keyboard focus. When the XmNkey-
boardFocusPolicy is XmPOINTER, an editable widget becomes the
destination when it receives any mouse button or keyboard input.
If the destination widget becomes insensitive or uneditable, there is
no destination widget.

The insertion cursor is an I-beam cursor that shows where text,
including a selection, would be inserted in a Text or TextField
widget. The insertion cursor appears as a solid I-beam when the
widget is in normal mode (explained below) and when it is either
the widget with keyboard focus or the destination widget. Other-
wise, the insertion cursor appears as a stippled I-beam.

The anchor is a position in the text of a widget that marks one
boundary of a selection or a potential selection. For example, the
user can select a range of text by pressing, dragging, and releasing
BSelect. The anchor is set at the point of the button press, and the
selection extends to the point of the button release. When the user
takes an action to extend an existing selection, Motif first adjusts

8−4

Text

the anchor using a balance-beam method: it moves the anchor to
the end of the existing selection that is farthest from the point of
the button or key press that initiates the extend action.

Text and TextField have an XmNpendingDelete resource. When the
value of this resource is True, as it is by default, some user actions
cause a selection to be deleted. When a selection exists and the
insertion cursor is not disjoint from it, an operation that inserts
text, including a transfer of the secondary or clipboard selection,
deletes the primary selection before inserting the text. Also, when a
selection exists and the insertion cursor is not disjoint from it, an
operation that deletes text deletes the primary selection instead of
the text that would otherwise be removed. When XmNpending-
Delete is False, these operations do not delete the selection.

8.2.1 Mouse Selection

The user makes a primary selection with BSelect. Pressing
BSelect deselects any existing selection and moves the insertion
cursor and the anchor to the position in the text where the button is
pressed. Dragging BSelect selects all text between the anchor and
the pointer position, deselecting any text outside that range.
Releasing BSelect moves the insertion cursor to the position where
the button is released. Clicking BSelect deselects any existing
selection and moves the insertion cursor and the anchor to the posi-
tion where BSelect is released.

BExtend extends a selection using the balance-beam method. When
the user presses BExtend, the selection becomes anchored at the
edge of the selection farthest from the pointer position. When the
user releases BExtend, the selection extends from the anchor to the
position where BExtend is released, and any text outside that range
is deselected. The insertion cursor moves to the position where

8−5

OSF/Motif Programmer’s Guide

BExtend is released.

Clicking BToggle moves the insertion cursor to the position where
BToggle is released without affecting the selection.

Clicking BTransfer moves the insertion cursor to the position
where BTransfer is released. Then, unless the insertion cursor is
in the midst of the selection, it copies the primary selection to the
insertion cursor and moves the insertion cursor to the end of the
copied text. The original selection remains selected. Clicking
MShift BTransfer has the same effect except that it moves the pri-
mary selection to the insertion cursor, deleting the original selection
if possible.

Dragging MAlt BTransfer outside of the primary selection starts a
secondary selection consisting of all text between the position of the
pointer and the position where MAlt BTransfer was pressed.
Releasing MAlt BTransfer copies the secondary selection to the
insertion cursor in the destination widget. Before copying the
secondary selection, if the destination contains the primary selec-
tion and the insertion cursor is not disjoint from it, this action
deletes the primary selection. Dragging MAlt MShift BTransfer
also makes a secondary selection, and releasing MAlt MShift
BTransfer moves the secondary selection to the destination widget.

Dragging BTransfer with the insertion cursor positioned within a
primary selection initiates a drag operation. The user may press a
modifier key to indicate whether the drag is a copy, move, or link
operation. Releasing BTransfer either in the same Text widget or a
different widget moves the insertion cursor to the position where
BTransfer is released, drops the selected text at that point, and
moves the insertion cursor to the end of the dropped text.

Pressing KCancel during the operation aborts the operation and no
data exchange occurs. If the user presses KHelp over a drop site,
the user has the option to continue or to cancel the drop operation
in response to the help information that the application provides.

8−6

Text

8.2.2 Keyboard Selection

Selection operations available with the mouse, except secondary
selection, are also available from the keyboard. Text has two key-
board selection modes, Normal Mode and Add Mode. In Normal
Mode, if text is selected, a navigation operation deselects the
selected text and moves the anchor to the current position of the
insertion cursor before navigating. In Add Mode, navigation opera-
tions have no effect other than navigation. In both modes, pressing
KSelect has the same effect as pressing BSelect at that position.

In Normal mode, when the widget contains the primary selection
and the insertion cursor is disjoint from it, any operation that
inserts or pastes text into the widget (except a transfer of the pri-
mary selection from the same widget) first deselects the primary
selection. In Add Mode such an operation does not deselect the pri-
mary selection.

Pressing KExtend extends the current selection to the insertion cur-
sor using the balance-beam method. The current selection becomes
anchored at the edge of the selection farthest from the insertion cur-
sor. The selection then extends from the anchor to the insertion
cursor, and any text outside that range is deselected.

Shifted navigation operations also extend a selection. In Normal
Mode, if no text is selected, a shifted navigation operation moves
the anchor to the insertion cursor, navigates, selects the navigated
text, and deselects any text outside that range. In the remaining
cases—Normal Mode and Add Mode with any selection—a shifted
navigation operation extends the selection using the balance-beam
method. Before navigation, the current selection becomes anchored
at the edge of the selection farthest from the insertion cursor. After
navigation, the selection extends from the anchor to the insertion
cursor, and any text outside that range is deselected.

8−7

OSF/Motif Programmer’s Guide

KPrimaryCopy copies the primary selection to the insertion cursor.
KPrimaryCut cuts the primary selection to the insertion cursor.

KCopy copies the current selection in the Text widget to the clip-
board; KCut cuts the selection; and KPaste inserts the contents of
the clipboard at the insertion cursor.

8.3 Text Editing and Callbacks

Text has a number of callback lists for communication with the
application. Text invokes callbacks whenever the widget gains or
loses focus, when it gains or loses the primary selection, before the
insertion cursor is moved or text is modified, and when the text
string changes or the activate() action is invoked.

Text passes these callbacks a pointer to either an XmAnyCallback-
Struct or an XmTextVerifyCallbackStruct (or XmTextVer-
ifyCallbackStructWcs) structure. The two verification structures
contain the current and new positions of the insertion cursor; the
starting and ending positions of the text to be modified; a pointer to
an XmTextBlockRec (or XmTextBlockRecWcs) structure with infor-
mation about the text to be modified; and a boolean in/out doit
member that the callback procedure can set to tell the widget
whether or not to go ahead with the modification.

Following is a summary of the callbacks:

• XmNmotionVerifyCallback. Text invokes this list, passing a
pointer to an XmTextVerifyCallbackStruct as the widget data,
before moving the insertion cursor. The application can prevent
the action by setting the doit member of the callback struct to
False.

8−8

Text

• XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs.
Text invokes this list, passing a pointer to an XmTextVer-
ifyCallbackStruct (or XmTextVerifyCallbackStructWcs) as
the widget data, before deleting or inserting any text. The appli-
cation can prevent the action by setting the doit member of the
callback struct to False.

• XmNvalueChangedCallback. Text invokes this list, passing a
pointer to an XmAnyCallbackStruct as the widget data, after
text is inserted or deleted.

• XmNfocusCallback. Text invokes this list, passing a pointer to
an XmAnyCallbackStruct as the widget data, when the widget
gains input focus.

• XmNlosingFocusCallback. Text invokes this list, passing a
pointer to an XmTextVerifyCallbackStruct as the widget data,
before the widget loses input focus. The application can prevent
the action by setting the doit member of the callback struct to
False.

• XmNgainPrimaryCallback. Text invokes this list, passing a
pointer to an XmAnyCallbackStruct as the widget data, when
the widget gains ownership of the primary selection.

• XmNlosePrimaryCallback. Text invokes this list, passing a
pointer to an XmAnyCallbackStruct as the widget data, when
the widget loses ownership of the primary selection.

• XmNactivateCallback. Text invokes this list, passing a pointer
to an XmAnyCallbackStruct as the widget data, when the
activate() action is invoked. By default no translations are
bound to this action, but in a single-line Text widget or a Text-
Field widget, pressing KEnter invokes
theXmNactivateCallback callbacks.

These callbacks provide a great deal of flexibility for an application
to alter the behavior of the Text widget. For example, an

8−9

OSF/Motif Programmer’s Guide

application can prevent text from being inserted, as when the user
types a password, by means of the XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs callbacks. The application can
prevent any text from appearing by setting the doit member of the
XmTextVerifyCallbackStruct (or XmTextVerifyCallback-
StructWcs) to False. The application can also alter the text to
appear by creating a new text string and setting the ptr member of
the XmTextBlockRec structure (or the wcsptr member of the
XmTextBlockRecWcs structure) to the new string.

Following is an example of an XmNmodifyVerifyCallback that sub-
stitutes a string of characters for any text a user enters. Because
the XmNmodifyVerifyCallback procedures are most commonly
invoked after the user enters a character, this routine usually sub-
stitutes the replacement string for each character the user types.
This example could be used with a single-line Text widget as part of
a simple password-entry program. In this case the XmNmodifyVeri-
fyCallback procedure would need additional code to save the char-
acters the user types, and the program would need an XmNactivate-
Callback procedure to check whether the saved characters match
the password.

/* XmNmodifyVerifyCallback procedure that
* replaces text the user enters
* with a replacement string passed in as
* application data. */
void ModifyVerifyCB(Widget w, XtPointer app_data,

XtPointer widget_data)
{
char *replace_string = (char *) app_data;
XmTextVerifyCallbackStruct *widget_info =
(XmTextVerifyCallbackStruct *) widget_data;

if (widget_info->text->length > 0) {
widget_info->text->length = strlen(replace_string);
widget_info->text->ptr = replace_string;

8−10

Text

}
}

Text and TextField differ from most other Motif widgets in that cal-
ling some convenience routines and setting some resources causes
the widget to invoke callback procedures. In general:

• Setting resources or calling convenience routines that change the
contents of the text invokes the XmNmodifyVerifyCallback and
XmNmodifyVerifyCallbackWcs callbacks. If these procedures
allow the text to be modified, the XmNvalueChangedCallback
callbacks are invoked.

• Setting resources or calling convenience routines that change the
position of the insertion cursor invokes the XmNmotionVerify-
Callback callbacks.

• Setting resources or calling convenience routines that cause the
widget to gain the primary selection invokes the XmNgainPri-
maryCallback callbacks.

• Setting resources or calling convenience routines that cause the
widget to lose the primary selection invokes the XmNlosePri-
maryCallback callbacks.

If the application needs to distinguish between callbacks invoked as
a result of user action and callbacks invoked as a result of applica-
tion action (such as setting a resource or calling a convenience rou-
tine), it needs to set a flag before taking the application action and
clear the flag afterward.

8−11

OSF/Motif Programmer’s Guide

8.4 Text Resources and Geometry

In addition to the resources discussed above, Text has many others,
including the following:

• The text itself, XmNvalue or XmNvalueWcs. The text is
represented to the application as an array of either char ele-
ments (for XmNvalue) or wchar_t elements (for XmNvalueWcs).
The application can set or get either resource.

• Resources representing the insertion cursor position and blink
rate, the position of text at the top of the window, and whether
the insertion cursor is always visible. A text position (of type
XmTextPosition) is an integer representing the number of char-
acters from the beginning of the buffer.

• A resource (XmNmaxLength) representing the maximum length of
the text string that the user can enter.

• A resource (XmNwordWrap) that specifies whether lines are bro-
ken at word boundaries. Breaking a line at a word boundary
does not insert a newline into the text.

In addition, Text and TextField have several resources that deter-
mine the geometry of the widget:

• Two resources, XmNmarginHeight and XmNmarginWidth, that
determine the margins between the text and the shadow, if
present. Text and TextField also use the Primitive resources
that determine shadow and highlight appearance.

• The font list (XmNfontList) that the widget uses to select a font
or font set to display the text.

• Resources that specify the number of rows of text (XmNrows) and
the number of horizontal character positions (XmNcolumns).
Single-line Text and TextField always have one row.

8−12

Text

• Resources that determine whether or not the widget grows verti-
cally (XmNresizeHeight) or horizontally (XmNresizeWidth) to
accommodate all its text. XmNresizeHeight does not apply to
single-line Text or TextField.

• Resources that apply only when the widget is inside a Scrol-
ledWindow whose XmNvisualPolicy is XmVARIABLE.
XmNscrollHorizontal determines whether or not the widget
should have a horizontal ScrollBar and should scroll horizontally
instead of growing when the text expands beyond the width allo-
cated for it. XmNscrollVertical determines whether or not the
widget should have a vertical ScrollBar and should scroll verti-
cally instead of growing when the text expands beyond the
height allocated for it. XmNscrollLeftSide and XmNscrollTop-
Side determine which side of the widget receives the correspond-
ing ScrollBar. These resources do not apply to TextField, and
XmNscrollVertical and XmNscrollLeftSide do not apply to
single-line Text.

XmNresizeWidth is initialized to False when XmNscrollHorizontal
is True or XmNwordWrap is True. XmNresizeHeight is initialized to
False when XmNscrollVertical is True.

If the user or application initializes or sets a specific height
(XmNheight) or width (XmNwidth), that value is used as the
corresponding dimension of the widget. In addition, if a height is
specified XmNrows is recalculated based on that height, and if a
width is specified XmNcolumns is recalculated based on that width.

If the user or application initializes or sets XmNrows but not
XmNheight, the geometry calculation depends on the value of
XmNresizeHeight. If XmNresizeHeight is True, the height of the
widget is the greater of the height needed to display XmNrows of text
and the height needed to display all the text. If XmNresizeHeight
is False, as it is by default, the height of the widget is the height
needed to display all the text. The same relations hold for
XmNcolumns, XmNwidth, and XmNresizeWidth.

8−13

OSF/Motif Programmer’s Guide

If the user or application does not initialize either XmNrows or
XmNheight, the geometry calculation depends on the value of
XmNresizeHeight. If XmNresizeHeight is True, the height of the
widget is the height needed to display all the text. If
XmNresizeHeight is False, the height of the widget is the height
needed to display the default for XmNrows, which is one row of text.
The same relations hold for XmNcolumns, XmNwidth, and
XmNresizeWidth, except that the default number of columns is 20.

If the contents of the text (XmNvalue or XmNvalueWcs) change, as a
result of user editing or an action by the application, the geometry
calculation depends on the value of XmNresizeHeight. If
XmNresizeHeight is True, the height of the widget is the height
needed to display all the text. If XmNresizeHeight is False, the
height of the widget does not change. The same relations hold for
XmNvalue, XmNvalueWcs, XmNresizeWidth, and the width of the
widget.

If the application sets another resource that affects the height
needed by the widget, such as XmNmarginHeight or XmNfontList,
the geometry calculation depends on the value of XmNresizeHeight.
If XmNresizeHeight is True, the height of the widget is the height
needed to display all the text with the new resource values. If
XmNresizeHeight is False, the height of the widget is the height
needed to display XmNrows of text using the new resources. The
same relations hold for these resources, XmNresizeWidth,
XmNcolumns, and the width of the widget.

8.5 Convenience Routines

Text has convenience routines to permit the application to perform
many functions, including these:

8−14

Text

• Insert and replace text.

• Cut, copy, and paste using the clipboard.

• Get and set the editable state, the insertion cursor position, the
maximum length of text, the primary selection and its position,
the source, the text string, and the position of the first character
displayed. All routines that have parameters or return values
that are strings have both char * and wchar_t * versions.

• Convert between a text position and x and y coordinates.

• Display text at a given position and scroll the text.

8.6 ScrolledText

ScrolledText is a Text widget inside a ScrolledWindow. The appli-
cation can use XmCreateScrolledText to create one. This routine
creates both Text and ScrolledWindow widgets and forces the fol-
lowing initial values for ScrolledWindow resources:

• XmNscrollingPolicy is set to XmAPPLICATION_DEFINED.

• XmNvisualPolicy is set to XmVARIABLE.

• XmNscrollBarDisplayPolicy is set to XmSTATIC.

• XmNshadowThickness is set to 0.

8−15

OSF/Motif Programmer’s Guide

8.7 Storing Text in a File

A common requirement of many text editors is the ability to read
text from a file, allow the user to edit the text, and then store the
text in a file. An application usually obtains pathnames from the
user by means of a FileSelectionBox, often invoked as a dialog from
a MenuBar File Menu. Following are very simple routines that use
ANSI C input/output facilities to read text from a file into a Text
widget and save text from a Text widget into a file:

void ReadTextFromFile(Widget w, char *filename)
{
FILE *file;
char buffer[MAXSIZE];
char *ptr, *end;
XmTextPosition last_pos;
if (file = fopen(filename, "r")) {
XmTextSetString(w, "");
ptr = buffer;
end = buffer + MAXSIZE - 1;
while((val = getc(file)) != EOF) {
if (ptr < end) {
*ptr++ = (char) val;

} else {
*ptr = ’\0’;
last_pos = XmTextGetLastPosition(w);
XmTextReplace(w, last_pos, last_pos, buffer);
ptr = buffer;

}
}
if (ptr > buffer) {
*ptr = ’\0’;
last_pos = XmTextGetLastPosition(w);

8−16

Text

XmTextReplace(w, last_pos, last_pos, buffer);
}
(void) fclose(file);

}
}

void SaveTextToFile(Widget w, char *filename)
{
FILE *file;
char *text;
if (file = fopen(filename, "w")) {
text = XmTextGetString(w);
(void) fputs(text, file);
(void) fclose(file);
XtFree(text);

}
}

8.8 Sharing Text Sources

Each Text widget has a data structure of type XmTextSource that
functions as the source and sink of text for the widget. The source
is the value of the XmNsource resource.

Two or more Text widgets can share the same source. In this case,
editing of Text in one widget changes the text of the source and
therefore the text of all widgets that share that source. For exam-
ple, an application might use a PanedWindow with multiple text
widgets, each functioning as a "window" onto a single text source.
Editing changes in one pane are reflected in all Text panes that
share the same source.

8−17

OSF/Motif Programmer’s Guide

An application creates a Text source by creating a Text widget. The
program uses XmTextGetSource or XtGetValues for the XmNsource
resource to obtain that widget’s source. The application then
creates another Text widget, supplying the source obtained from the
first widget via XmTextSetSource, the initialization arglist, or
XtSetValues of the XmNsource resource.

Setting a Text source destroys the existing source of the widget if no
other widgets are sharing that source. To replace a Text source but
keep it for later use, the application can create an unmanaged Text
widget and set its source to the Text source the program wants to
keep.

If the application does not supply a source, Text creates a default
string source.

8−18

Chapter 9. Scrolling, Panes, and
Frames

Chapters 6 and 7 discuss the OSF/Motif Manager widgets used to
construct menus and dialogs. Motif also provides more general-
purpose managers intended for use in main application windows
and some dialogs. This chapter discusses widgets that perform the
following functions:

• Establishing a viewport for a larger underlying scroll

• Providing a main application window with a combination of
standard and custom components

• Placing a shadowed frame around a widget and an optional title
at the top

• Creating multiple subwindows for a composite with adjustable
boundaries between the subwindows

9.1 ScrolledWindow

Frequently a collection occupies an area that is too large to display
within an application or that may grow or shrink as the user adds
or deletes data. Examples include text in a Text widget, items in a
List, and graphical objects in a DrawingArea or other canvas.
Three approaches exist for handling this problem:

• Set a fixed size for the widget. The disadvantage of this
approach is that when the collection grows beyond the bounds of
the widget, part of the collection is not visible.

• Allow the widget to make geometry requests to expand or con-
tract, perhaps up to some maximum or down to some minimum
size. The disadvantages of this approach are that it may disrupt
the application’s visual layout and that the widget is able to
grow only within limits, perhaps not at all.

9−1

OSF/Motif Programmer’s Guide

• Treat the collection as a virtual scroll, with the widget acting as
a (more or less) fixed-size viewport onto the scroll. The user can
move the viewport to expose obscured portions of the scroll.

The ScrolledWindow widget implements the last approach. It is a
Manager with one or two ScrollBar children, a child widget that
acts as the virtual scroll, and in some cases another child that acts
as a viewport onto the scroll. By using the ScrollBars or keyboard
scrolling commands, the user moves the viewport to expose part of
the scroll.

9.1.1 Automatic and Application-Defined Scrolling

ScrolledWindow implements two scrolling models: automatic and
application-defined.

In automatic scrolling, the application creates a widget to serve as
the virtual scroll, and the ScrolledWindow creates the ScrollBars
and a widget to serve as a fixed-size viewport onto the scroll. The
application adjusts the size of the scroll widget as necessary to con-
tain the entire collection. The ScrolledWindow adjusts the
appropriate ScrollBar resources so that the size and position of the
slider reflect the position of the viewport in relation to the scroll and
the proportion of the scroll’s entire size that the viewport
represents. The ScrolledWindow also handles the user’s interaction
with the ScrollBars, moving the viewport in relation to the scroll as
the user manipulates the ScrollBars. Usually the application need
have no interaction with the ScrollBars or the widget that serves as
the viewport.

In application-defined scrolling, the application must create the
ScrollBars as well as the widget that acts as the virtual scroll and,
if necessary, a separate viewport widget. The application must

9−2

Scrolling, Panes, and Frames

determine how large to make the viewport widget and what portion
of the data to display in the viewport. The application handles all
interaction with the ScrollBars. It must adjust the appropriate
ScrollBar resources if it wants the size and position of the slider to
reflect the relation of the viewport to the underlying scroll. It must
also move the viewport in relation to the scroll as the user interacts
with the ScrollBars.

The ScrolledWindow resource XmNscrollingPolicy determines the
scrolling model. Possible values are XmAUTOMATIC and
XmAPPLICATION_DEFINED. The default is XmAPPLICATION_DEFINED.

9.1.2 Other Resources

In addition to XmNscrollingPolicy, ScrolledWindow has two sets
of resources.

One set of resources holds the components of the ScrolledWindow.
An application usually does not have to set any of these resources;
the ScrolledWindow examines the class and other characteristics of
each child as it is created and sets the appropriate resource. If the
application needs to supply a new ScrollBar or scroll widget after
creating the initial component, it can use either XtSetValues or
XmScrolledWindowSetAreas.

XmNclipWindow
The value is the ID of the viewport widget created by
the ScrolledWindow in automatic scrolling. This
resource applies only when the XmNscrollingPolicy
is XmAUTOMATIC. It is a read-only resource; the appli-
cation cannot set a new value.

XmNhorizontalScrollBar
The value is the ID of the horizontal ScrollBar. The

9−3

OSF/Motif Programmer’s Guide

ScrolledWindow creates this ScrollBar and sets the
value of this resource when the XmNscrollingPolicy
is XmAUTOMATIC. In application-defined scrolling, the
application must create and manage the ScrollBar,
but the ScrolledWindow automatically sets the value
of this resource to its widget ID.

XmNverticalScrollBar
The value is the ID of the vertical ScrollBar. The
ScrolledWindow creates this ScrollBar and sets the
value of this resource when the XmNscrollingPolicy
is XmAUTOMATIC. In application-defined scrolling, the
application must create and manage the ScrollBar,
but the ScrolledWindow automatically sets the value
of this resource to its widget ID.

XmNworkWindow
The value is the ID of the widget that serves as the
scroll. The application has to create and manage this
widget, but it usually does not have to set this
resource. When the application creates a child of the
ScrolledWindow that is not a ScrollBar, the Scrol-
ledWindow automatically sets the value of this
resource to its widget ID.

The second set of resources specifies the layout of the ScrolledWin-
dow:

XmNscrollBarDisplayPolicy
This resource determines whether the ScrolledWin-
dow always displays managed ScrollBars or displays
them only when the corresponding dimensions of the
scroll exceed those of the viewport. Possible values
are XmAS_NEEDED and XmSTATIC. The value is forced
to XmSTATIC when the scrolling policy is
XmAPPLICATION_DEFINED and defaults to
XmAS_NEEDED when the scrolling policy is

9−4

Scrolling, Panes, and Frames

XmAUTOMATIC.

XmNscrollBarPlacement
This resource determines where the ScrolledWindow
places the horizontal and vertical ScrollBars. The
possible values are constants that specify on which
sides of the viewport the ScrolledWindow places the
two ScrollBars: XmTOP_LEFT, XmTOP_RIGHT,
XmBOTTOM_LEFT, and XmBOTTOM_RIGHT.

XmNscrolledWindowMarginHeight
This resource specifies the margins between the top
and bottom sides of the ScrolledWindow and the first
child on each side.

XmNscrolledWindowMarginWidth
This resource specifies the margins between the left
and right sides of the ScrolledWindow and the first
child on each side.

XmNspacing
This resource specifies the distance between each
ScrollBar and the viewport.

9.2 Automatic Scrolling

In the automatic scrolling model, the ScrolledWindow creates a
fixed-size viewport and handles all interaction with the ScrollBars.
The application usually needs to take only the following steps:

• Create and manage a ScrolledWindow, supplying a value of
XmAUTOMATIC for XmNscrollingPolicy in the argument list
passed to the creation function

9−5

OSF/Motif Programmer’s Guide

• Create and manage a widget child of the ScrolledWindow to
serve as the scroll

• Adjust the size of the scroll widget, typically using XtSetValues
of XmNheight and XmNwidth, as necessary to contain all the data
in the scroll

The ScrolledWindow automatically creates a widget to serve as the
viewport and sets XmNclipWindow to the ID of this widget. It also
creates horizontal and vertical ScrollBars and sets XmNhorizontal-
ScrollBar and XmNverticalScrollBar to the appropriate IDs of
the ScrollBars. The ScrolledWindow attaches callback procedures
to the ScrollBars to handle user interaction with the ScrollBars.

The ScrolledWindow sets the ScrollBar resource XmNincrement to a
small fraction of the height or width of the viewport. It sets the
ScrollBar resource XmNpageIncrement to a large fraction of the
height or width of the viewport. If the ScrolledWindow resizes the
viewport, it recomputes the values of these resources.

The ScrolledWindow sets the ScrollBar resources XmNmaximum,
XmNminimum, and XmNsliderSize so that the size of the slider
reflects the proportion of the entire scroll that the viewport
represents. If the application resizes the scroll or if the Scrol-
ledWindow resizes the viewport, the ScrolledWindow recomputes
the values of some or all of these resources.

If the value of XmNscrollBarDisplayPolicy is XmAS_NEEDED, as it
is by default in automatic scrolling, the ScrolledWindow displays a
ScrollBar only if the size of the scroll exceeds the size of the
viewport in the relevant dimension. If the value of XmNscrollBar-
DisplayPolicy is XmSTATIC, the ScrolledWindow always displays
both ScrollBars.

As the user manipulates a ScrollBar and changes its XmNvalue, the
ScrolledWindow moves the scroll with respect to the viewport. For
example, if the user moves the slider down in a vertical ScrollBar,
the ScrolledWindow moves the scroll up with respect to the

9−6

Scrolling, Panes, and Frames

viewport.

The ScrolledWindow may need to move the scroll (and set a
ScrollBar’s XmNvalue) in circumstances other than the user’s
interaction with the ScrollBar. For example, if the viewport is at
the bottom of the scroll and the application reduces the height of the
scroll, the ScrolledWindow must move the scroll down with respect
to the viewport. In this case it reduces the ScrollBar’s XmNmaximum
and XmNvalue.

In automatic scrolling the application should not try to set any of
the following resources:

• The XmNx or XmNy of any child of the ScrolledWindow

• Any geometry resources of the viewport (the XmNclipWindow)

• The XmNmaximum, XmNminimum, XmNvalue, XmNincrement, or
XmNpageIncrement of a ScrollBar

The application can add callbacks of its own to a ScrollBar, but
because the ScrolledWindow adds its own callbacks, the application
must not call XtRemoveAllCallbacks for a ScrollBar.

The application or user can specify other resources, such as those
that determine appearance, for the ScrolledWindow or its children.
The names of the automatically created ScrollBars are
"HorScrollBar" and "VertScrollBar".

9.2.1 Traversing to Obscured Widgets

By default it is not possible to use keyboard traversal to move to a
widget that is inside the scroll but outside the viewport. For exam-
ple, if the user presses KNextField and the next field is not within
the viewport, focus does not move to that field. The user must first

9−7

OSF/Motif Programmer’s Guide

use the ScrollBars or a scrolling command to position the viewport
so that the target widget is no longer obscured.

ScrolledWindow has a callback list, XmNtraverseObscuredCall-
back, that allows an application to make it possible to traverse to
widgets that are in the scroll but not in the viewport. The callback
list is invoked when the user tries to traverse to such a widget in a
ScrolledWindow with automatic scrolling. The callback procedure is
passed a pointer to an XmTraverseObscuredCallbackStruct struc-
ture, which contains the reason (XmCR_OBSCURED_TRAVERSAL), the
event, the widget that is the target of the traversal, and the traver-
sal direction passed to XmProcessTraversal.

Usually the callback procedure can allow traversal to the target
widget simply by calling XmScrollVisible. This function takes as
arguments the ScrolledWindow, the target widget, and requested
margins between the target widget and the edges of the viewport.
The function moves the work area with respect to the viewport to
make the obscured widget visible. This function applies only to
ScrolledWidgets with automatic scrolling.

When ScrolledWindows are nested and focus is in an inner Scrol-
ledWindow, the XmNtraverseObscuredCallback callbacks of the
inner ScrolledWindow are invoked first if necessary. If the destina-
tion widget remains outside the viewport of the first ancestor Scrol-
ledWindow, that ScrolledWindow’s XmNtraverseObscuredCallback
callbacks are invoked, and so on up the widget hierarchy.

9.2.2 Example of Automatic Scrolling

This section contains the scrolling-related portions of an example
program that uses a ScrolledWindow with an automatic scrolling
policy. The ScrolledWindow is actually a MainWindow, a subclass

9−8

Scrolling, Panes, and Frames

of ScrolledWindow that is often the containing manager for the pri-
mary window of an application. (MainWindow is discussed in a
later section of this chapter.) The scroll widget is a DrawingArea.

The application allows the user to create a simple map in the
DrawingArea. The user can use the mouse to establish points
representing cities and to draw lines between the cities. The appli-
cation contains a TextField that allows the user to enter the name
of a city and then to create a button child of the DrawingArea
located at the city and containing the city’s name as its label. The
user can adjust the size of the DrawingArea by manipulating two
Scales, one for the height of the DrawingArea and the other for the
width. Other parts of the application save and retrieve the map
data.

This section contains only the portions of the application that relate
directly to creating and maintaining the ScrolledWindow. These
include:

• Creating the MainWindow with an automatic scrolling policy

• Creating the DrawingArea child of the ScrolledWindow

• Resizing the DrawingArea in response to the user’s interaction
with the Scales

• Establishing an XmNtraverseObscuredCallback procedure

/*---
** Create a Main Window with a menubar, a command panel containing
** 2 scales and a textfied, and a workarea.
** Also put in the graphic structure the workarea info and the
** textfield ids.
*/
void CreateApplication (
Widget parent,
Graphic * graph)
{

9−9

OSF/Motif Programmer’s Guide

Widget main_window, menu_bar, menu_pane, cascade,
button, comw, scale ;

Arg args[5];
int n ;

/* Create automatic MainWindow.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_window = XmCreateMainWindow (parent, "main_window", args, n);

XtAddCallback (main_window, XmNtraverseObscuredCallback, TravCB, NULL);

XtManageChild (main_window);

...

/* Create work_area in MainWindow
*/
n = 0;
XtSetArg (args[n], XmNresizePolicy, XmRESIZE_NONE); n++ ;
XtSetArg (args[n], XmNmarginWidth, 0); n++ ;
XtSetArg (args[n], XmNmarginHeight, 0); n++ ;
graph->work_area = XmCreateDrawingArea(main_window, "work_area", args, n);
XtAddCallback (graph->work_area, XmNexposeCallback, DrawCB,

(XtPointer)graph);
XtAddCallback (graph->work_area, XmNresizeCallback, DrawCB,

(XtPointer)graph);
XtAddCallback (graph->work_area, XmNinputCallback, DrawCB,

(XtPointer)graph);
XtManageChild (graph->work_area);

/* Create a commandWindow in MainWindow with text and scales
*/
n = 0;

9−10

Scrolling, Panes, and Frames

comw = XmCreateRowColumn(main_window, "comw", args, n);
XtManageChild (comw);
n = 0;
XtSetArg (args[n], XmNcommandWindow, comw); n++;
XtSetValues (main_window, args, n);

/* find the initial size of the work_area and report to the scales */
n = 0;
XtSetArg (args[n], XmNwidth, &graph->old_width); n++;
XtSetArg (args[n], XmNheight, &graph->old_height); n++;
XtGetValues (graph->work_area, args, n);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNvalue, graph->old_width); n++;
scale = XmCreateScale(comw, "scale_w", args, n); /* scale_w is the name */
XtAddCallback (scale, XmNvalueChangedCallback, ValueCB,

(XtPointer)graph->work_area);
XtManageChild (scale);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNvalue, graph->old_height); n++;
scale = XmCreateScale(comw, "scale_h", args, n);
XtAddCallback (scale, XmNvalueChangedCallback, ValueCB,

(XtPointer)graph->work_area);
XtManageChild (scale);

n = 0;
graph->textf = XmCreateTextField(comw, "textf", args, n);
XtManageChild (graph->textf);

/* Set MainWindow areas
*/
XmMainWindowSetAreas (main_window, menu_bar, comw, NULL, NULL,

9−11

OSF/Motif Programmer’s Guide

graph->work_area);
}

/*---
** TravCB - callback for traverseObscure
*/
void TravCB (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{

XmTraverseObscuredCallbackStruct * tocs =
(XmTraverseObscuredCallbackStruct *) call_data ;

XmScrollVisible(w, tocs->traversal_destination, 20, 20) ;
}

/*---
** ValueCB - callback for scales
*/
void ValueCB (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{

Arg args[5];
int n ;
int value ;
Widget workarea = (Widget) client_data ;

/* get the value outof the Scale */
n = 0;
XtSetArg (args[n], XmNvalue, &value); n++;
XtGetValues (w, args, n);

9−12

Scrolling, Panes, and Frames

n = 0;
if (strcmp(XtName(w), "scale_w") == 0) { /* width scale */

XtSetArg (args[n], XmNwidth, value); n++;
} else {

XtSetArg (args[n], XmNheight, value); n++;
}
XtSetValues (workarea, args, n);

}

9.3 Application-Defined Scrolling

In application-defined scrolling, the application is responsible for all
aspects of the interactions among the scroll, the viewport, and the
ScrollBars. The ScrolledWindow remains responsible for geometry
and layout, but the application must adjust both the ScrollBars and
the scroll position in response to the user’s scrolling actions.

Because this model requires more work on the part of the applica-
tion, it is most suitable for programs in which automatic scrolling is
not adequate. For example, an application may contain a text edi-
tor or browser that reads only enough of a file to fill the viewport.
This application must be informed of the user’s scrolling actions so
that it can read more of the file when necessary.

The application implements a scheme of its choosing for the rela-
tionship between the scroll and the viewport. Following are two
common models:

• A fixed-size viewport widget as the parent of a variable-sized
scroll widget that contains the data. The application resizes the
scroll widget as necessary to contain all the data. As the user
interacts with the ScrollBar, the application moves the scroll

9−13

OSF/Motif Programmer’s Guide

widget with respect to the viewport, which clips the scroll. This
is the model that ScrolledWindow uses for automatic scrolling.

• A single widget that serves as the viewport, with the scroll con-
tained in internal data structures or a combination of data struc-
tures and files. The application expands the internal structures
as necessary to contain all the data. As the user interacts with
the ScrollBar, the application retrieves the appropriate portion
of the data from the internal structures or files and displays that
portion of the data in the viewport. This is the model that the
Motif ScrolledList and ScrolledText widgets use.

In both models, the application must be notified when the viewport
is resized. It may need to adjust the scroll with respect to the
viewport, and it must recompute ScrollBar resources to reflect the
new relation between the viewport and the scroll. If the viewport is
a DrawingArea the application can use the XmNresizeCallback
callbacks for this purpose. Otherwise, the application can establish
an event handler for ConfigureNotify events.

The application needs to take the following steps to use
application-defined scrolling:

• Create and manage a ScrolledWindow, horizontal and vertical
ScrollBar children, and a child to serve as the viewport.

• If the application is using a separate widget as the scroll, create
and manage that widget as a child of the viewport widget.

• Add callbacks to the ScrollBars to notify the application when
the user interacts with the ScrollBars. The application should at
least provide a procedure for the XmNvalueChangedCallback list.

• Add a callback (such as the DrawingArea XmNresizeCallback)
or an event handler to the viewport widget to notify the applica-
tion when the widget is resized.

• Based on the initial relationship between the viewport and the
scroll, supply initial values for the ScrollBars’ XmNincrement,

9−14

Scrolling, Panes, and Frames

XmNpageIncrement, XmNmaximum, XmNminimum, XmNvalue, and
XmNsliderSize resources.

• Adjust the size of the scroll widget or internal data structures as
necessary to contain the data in the scroll.

• As the data in the scroll changes, recompute the ScrollBars’
XmNmaximum and XmNsliderSize and perhaps XmNminimum and
XmNvalue to reflect the new relation between the viewport and
the scroll.

• When the viewport is resized, if necessary reposition and resize
the scroll with respect to the viewport. Recompute the
ScrollBars’ XmNsliderSize and XmNpageIncrement and possibly
other resources to reflect the new relation between the viewport
and the scroll.

• As the user interacts with the ScrollBars, if a separate scroll
widget exists, reposition the scroll with respect to the viewport.
If no separate scroll widget exists, bring in additional data from
files if necessary, recompute which portion of the data to make
visible, and redisplay the viewport. If the size of the scroll has
changed, recompute the ScrollBar resources to reflect the new
relation between the viewport and the scroll.

9.3.1 Example of Application-Defined Scrolling

This section contains the scrolling-related portions of an example
program that uses a ScrolledWindow with an application-defined
scrolling policy. As in the example of automatic scrolling, the Scrol-
ledWindow is a MainWindow, and the scroll widget is a
DrawingArea. In this example the scroll widget also serves as the
viewport widget, and the scroll data is maintained in internal data
structures.

9−15

OSF/Motif Programmer’s Guide

The application is a simple file browser for C source code. The user
selects a file name. The program reads the file and parses it (in the
C locale) into an internal table of lines. The application displays in
the DrawingArea as many lines as will fit into the current dimen-
sions of the DrawingArea.

The application uses only a vertical ScrollBar, which allows the
user to browse through the file. After reading the file, the program
sets the ScrollBar’s XmNminimum and XmNvalue to 0, its XmNmaximum
to the number of lines in the file, and its XmNsliderSize to lesser of
the number of lines in the file and the number of lines that can be
displayed in the viewport.

The program establishes a ScrollBar XmNvalueChangedCallback
and a DrawingArea XmNexposeCallback that redisplay the lines in
the viewport. The redisplay procedure fetches and displays lines
from the internal data structure, starting with the line indicated by
the ScrollBar’s XmNvalue and proceeding to the last line that fits in
the viewport. The program also establishes a DrawingArea
XmNresizeCallback that recomputes the ScrollBar’s XmNslider-
Size and XmNvalue based on the number of lines that can be
displayed in the viewport. The application does not resize the
DrawingArea itself.

This section contains only the portions of the application that relate
directly to creating and maintaining the ScrolledWindow. These
include:

• Creating the MainWindow with an application-defined scrolling
policy

• Creating the DrawingArea and vertical ScrollBar children of the
ScrolledWindow

• Establishing an XmNactivateCallback callback for the OK but-
ton of the FileSelectionBox invoked from the file menu Open but-
ton

9−16

Scrolling, Panes, and Frames

• Establishing a ScrollBar XmNvalueChangedCallback

• Establishing a DrawingArea XmNexposeCallback and
XmNresizeCallback

/*---
** Internal data structure to hold file info.
*/
typedef struct {

Widget work_area ;
Widget v_scrb ;
String file_name ;
XFontStruct * font_struct ;
GC draw_gc ;
char ** lines ;
int num_lines ;

} FileData ;

/*---
** Create an app_defined Main Window with a Menubar to load a file
** Add the vertical scrollbar and the workarea to filedata.
*/
void CreateApplication (
Widget parent,
FileData * filedata)
{

Widget main_window, menu_bar, menu_pane, cascade,
button ;

Arg args[5];
int n ;

/* Create app_defined MainWindow.
* XmAPPLICATION_DEFINED is the default; not necessary to
* specify it here.
*/

9−17

OSF/Motif Programmer’s Guide

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAPPLICATION_DEFINED); n++;
main_window = XmCreateMainWindow (parent, "main_window", args, n);
XtManageChild (main_window);

/* Create MenuBar in MainWindow.
*/

...

/* Create "File" PulldownMenu with Open and Quit buttons
*/

n = 0;
menu_pane = XmCreatePulldownMenu (menu_bar, "menu_pane", args, n);

n = 0;
button = XmCreatePushButton (menu_pane, "Open...", args, n);
XtManageChild (button);

/* pass the file data to the Open callback */
XtAddCallback (button, XmNactivateCallback, OpenCB, (XtPointer)filedata);
n = 0;
button = XmCreatePushButton (menu_pane, "Quit", args, n);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, QuitCB, NULL);

n = 0;
XtSetArg (args[n], XmNsubMenuId, menu_pane); n++;
cascade = XmCreateCascadeButton (menu_bar, "File", args, n);
XtManageChild (cascade);

/* Create "Help" PulldownMenu with Help button.
*/

9−18

Scrolling, Panes, and Frames

...

/* Create vertical scrollbar only
*/
n = 0;
XtSetArg (args[n], XmNorientation, XmVERTICAL); n++;
filedata->v_scrb = XmCreateScrollBar (main_window, "v_scrb", args, n);
XtAddCallback (filedata->v_scrb, XmNvalueChangedCallback, ValueCB,

(XtPointer)filedata);
XtManageChild (filedata->v_scrb);

/* Create work_area in MainWindow
*/
n = 0;
filedata->work_area = XmCreateDrawingArea(main_window, "work_area", args, n);
XtAddCallback (filedata->work_area, XmNexposeCallback, DrawCB,

(XtPointer)filedata);
XtAddCallback (filedata->work_area, XmNresizeCallback, DrawCB,

(XtPointer)filedata);
XtManageChild (filedata->work_area);

/* Set MainWindow areas
*/
XmMainWindowSetAreas (main_window, menu_bar, NULL, NULL,

filedata->v_scrb,
filedata->work_area);

}

/*---
** OpenCB - callback for Open button
*/
void OpenCB (
Widget w, /* widget id */
XtPointer client_data, /* data from application */

9−19

OSF/Motif Programmer’s Guide

XtPointer call_data) /* data from widget class */
{

static Widget fsb_box = NULL ;

if (!fsb_box) {
fsb_box = XmCreateFileSelectionDialog (w, "Load file",

NULL, 0);
/* just propagate the file information */
XtAddCallback (fsb_box, XmNokCallback, ReadCB, client_data);

}

XtManageChild (fsb_box);
}

/*---
** ReadCB - callback for fsb activate
*/
void ReadCB (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{

FileData * filedata = (FileData *) client_data ;
String file_name ;
Arg args[5];
int n, slider_size ;
Dimension height ;

file_name = XmTextGetString(
XmFileSelectionBoxGetChild(w, XmDIALOG_TEXT)) ;

if (!BuildLineTable(filedata, file_name)) {
WarnUser (w, "Cannot open %s0, file_name);

} else {
filedata->file_name = file_name ;

9−20

Scrolling, Panes, and Frames

/* ok, we have a new file, so reset some values */
n = 0;
XtSetArg (args[n], XmNheight, &height); n++;
XtGetValues (filedata->work_area, args, n);

slider_size = (height - 4) / (filedata->font_struct->ascent
+ filedata->font_struct->descent) ;

if (slider_size <= 0) slider_size = 1 ;
if (slider_size > filedata->num_lines)

slider_size = filedata->num_lines ;

n = 0 ;
XtSetArg (args[n], XmNsliderSize, slider_size); n++;
XtSetArg (args[n], XmNmaximum, filedata->num_lines); n++;
XtSetArg (args[n], XmNvalue, 0); n++;
XtSetValues (filedata->v_scrb, args, n);

/* clear and redraw */
XClearWindow(XtDisplay(filedata->work_area),

XtWindow(filedata->work_area));
ReDraw (filedata);

}
}

/*---
** ValueCB - callback for scrollbar
*/
void ValueCB (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{

FileData * filedata = (FileData *) client_data ;

/* clear and redraw, dumb dumb.. */

9−21

OSF/Motif Programmer’s Guide

XClearWindow(XtDisplay(filedata->work_area),
XtWindow(filedata->work_area));

ReDraw(filedata);
}

/*---
** DrawCB - callback for drawing area
*/
void DrawCB (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{

XmDrawingAreaCallbackStruct * dacs =
(XmDrawingAreaCallbackStruct *) call_data ;

FileData * filedata = (FileData *) client_data ;
XSetWindowAttributes xswa;

static Boolean first_time = True ;

switch (dacs->reason) {
case XmCR_EXPOSE:

if (first_time) {
/* Change once the bit gravity of the Drawing Area; default

is north west and we want forget, so that resize
always generates exposure events */

first_time = False ;
xswa.bit_gravity = ForgetGravity ;
XChangeWindowAttributes(XtDisplay(w), XtWindow(w),

CWBitGravity, &xswa);
}

ReDraw(filedata) ;

9−22

Scrolling, Panes, and Frames

break ;
case XmCR_RESIZE:

ReSize(filedata) ;

break ;
}

}

void ReDraw(
FileData * filedata)
{

/* Display as many line as slider_size actually shows, since
slider_size is computed relative to the work_area height */

Cardinal i ;
int value, slider_size ;
Arg args[5];
int n ;
Position y ;

if (filedata->num_lines == 0) return ;

n = 0;
XtSetArg (args[n], XmNvalue, &value); n++;
XtSetArg (args[n], XmNsliderSize, &slider_size); n++;
XtGetValues (filedata->v_scrb, args, n);

for (i = value, y = 2 + filedata->font_struct->ascent;
i < value + slider_size ;
i++, y += (filedata->font_struct->ascent

+ filedata->font_struct->descent)) {
XDrawString(XtDisplay(filedata->work_area),

XtWindow(filedata->work_area),
filedata->draw_gc,
4, y,

9−23

OSF/Motif Programmer’s Guide

filedata->lines[i], strlen(filedata->lines[i]));
}

}

void ReSize(
FileData * filedata)
{

/* Just update the scrollbar internals here, don’t bother to redisplay
since the gravity is none */

Arg args[5];
int n ;
int value, slider_size ;
Dimension height ;

if (filedata->num_lines == 0) return ;

n = 0;
XtSetArg (args[n], XmNheight, &height); n++;
XtGetValues (filedata->work_area, args, n);

/* sliderSize is the number of visible lines */
slider_size = (height - 4) / (filedata->font_struct->ascent

+ filedata->font_struct->descent) ;
if (slider_size <= 0) slider_size = 1 ;
if (slider_size > filedata->num_lines)

slider_size = filedata->num_lines ;

n = 0;
XtSetArg (args[n], XmNvalue, &value); n++;
XtGetValues (filedata->v_scrb, args, n);

/* value shouldn’t change that often but there are cases
where it matters */

if (value > filedata->num_lines - slider_size)

9−24

Scrolling, Panes, and Frames

value = filedata->num_lines - slider_size;

n = 0;
XtSetArg (args[n], XmNsliderSize, slider_size); n++;
XtSetArg (args[n], XmNvalue, value); n++;
XtSetArg (args[n], XmNmaximum, filedata->num_lines); n++;
XtSetValues (filedata->v_scrb, args, n);

}

9.4 MainWindow

Motif provides a widget, MainWindow, that serves as a template for
the primary window of most applications. MainWindow is a sub-
class of ScrolledWindow. In addition to the viewport and ScrollBar
components of the ScrolledWindow, MainWindow has an optional
MenuBar, Command window, and Message window.

MainWindow lays out these components in a manner compliant
with the OSF/Motif Style Guide specifications for the primary win-
dow of an application. The MenuBar, if present, spans the top of
the MainWindow horizontally. By default the Command window, if
present, spans the MainWindow horizontally just below the Menu-
Bar. The ScrolledWindow viewport and ScrollBars are below the
Command window, and the Message window is below the Scrol-
ledWindow viewport or horizontal ScrollBar. If the MainWindow
resource XmNcommandWindowLocation is set to
XmCOMMAND_BELOW_WORKSPACE at the time the MainWindow is
created, the Command window is located below the ScrolledWindow
viewport or horizontal ScrollBar.

If the MainWindow resource XmNshowSeparator is True, the
MainWindow automatically creates up to three SeparatorGadgets

9−25

OSF/Motif Programmer’s Guide

to separate the components. The names of these automatically
created SeparatorGadgets are "Separator1", "Separator2", and
"Separator3". The application can retrieve their widget IDs by
using the functions XmMainWindowSep1, XmMainWindowSep2, and
XmMainWindowSep3.

In addition to the ScrolledWindow resources that hold the widget
IDs of the ScrollBars, scroll widget, and viewport widget, MainWin-
dow has resources that hold the widget IDs of the other MainWin-
dow components:

XmNcommandWindow
The value is the widget ID of the Command window.
If a child is a Command widget and no Command
window exists, MainWindow automatically sets the
value of this resource to the child’s widget ID.

XmNmenuBar
The value is the widget ID of the MenuBar. If a child
is a MenuBar and no MainWindow MenuBar exists,
MainWindow automatically sets the value of this
resource to the child’s widget ID.

XmNmessageWindow
The value is the widget ID of the Message window.
After creating the Message window, the application
must use XtSetValues to set the value of this
resource to the child’s widget ID.

MainWindow has a convenience routine, XmMainWindowSetAreas, to
establish both the MainWindow and the ScrolledWindow com-
ponents. XmMainWindowSetAreas does not set the Message window;
an application must use XtSetValues of XmNmessageWindow to set
the Message window. An application that has no Message window
and uses only standard components for the other MainWindow chil-
dren may not need to call XmMainWindowSetAreas or XtSetValues
for the component resources, but it is good practice to make these

9−26

Scrolling, Panes, and Frames

calls. If an application uses a Message window or has additional
MainWindow children beyond the standard components, it must
call XmMainWindowSetAreas and XtSetValues for XmNmessageWin-
dow.

An application takes the following steps to use MainWindow:

• Create and manage the MainWindow, usually as a child of the
ApplicationShell. If the scrolling mode is to be automatic, sup-
ply an initial value of XmAUTOMATIC for XmNscrollingPolicy.

• Create and manage the components of the MainWindow.

• If necessary call XmMainWindowSetAreas or XtSetValues for the
MainWindow components.

• Take any other actions needed to regulate the ScrolledWindow
components. These actions are discussed in the descriptions of
automatic and application-defined scrolling above.

For examples of using MainWindow with both automatic and
application-defined scrolling policies, see the ScrolledWindow exam-
ples elsewhere in this chapter.

9.5 Frame

Frame is a simple manager that encloses a child and displays a sha-
dow around it. An application usually uses a Frame to provide a
shadow for a widget, such as a RowColumn WorkArea, that does
not display a shadow itself. The Frame resource XmNshadowType
determines the type of shadow to draw. The resources XmNmar-
ginHeight and XmNmarginWidth specify the margin between the
shadow and the border of the child.

9−27

OSF/Motif Programmer’s Guide

Frame can also have one other child that serves as a title. Frame
places the title above the principal child of the Frame. The follow-
ing constraint resources determine the Frame’s treatment of the
child:

XmNchildType
The value is a constant that tells the Frame whether
the child is the principal (work area) child, the title,
or another kind of child. Possible values are
XmFRAME_WORKAREA_CHILD (the default),
XmFRAME_TITLE_CHILD, and XmFRAME_GENERIC_CHILD.
When the value is XmFRAME_GENERIC_CHILD Frame
does not include the child in its layout.

XmNchildHorizontalAlignment
The value specifies the alignment of the title with
respect to the left and right inner edges of the Frame
(determined by the child’s XmNchildHorizontalSpac-
ing). Following are the possible values:

• XmALIGNMENT_BEGINNING—The title is placed at
the left inner edge when the Frame’s XmNstring-
Direction is XmSTRING_DIRECTION_L_TO_R, other-
wise at the right inner edge. This is the default.

• XmALIGNMENT_END—The title is placed at the right
inner edge when the Frame’s XmNstringDirec-
tion is XmSTRING_DIRECTION_L_TO_R, otherwise
at the left inner edge.

• XmALIGNMENT_CENTER—The title is centered
betweent the edges.

XmNchildHorizontalSpacing
The value is the minimum distance between the title
and the shadow along the left and right edges of the
Frame. The default is the Frame’s XmNmarginWidth.

9−28

Scrolling, Panes, and Frames

XmNchildVerticalAlignment The value specifies the alignment of
the title with respect to the shadow along the top
edge of the Frame. Following are the possible values:

• XmALIGNMENT_BASELINE_BOTTOM—The baseline of
the last line of text in the title is even with the
shadow along the top edge of the Frame.

• XmALIGNMENT_BASELINE_TOP—The baseline of the
first line of text in the title is even with the sha-
dow along the top edge of the Frame.

• XmALIGNMENT_CENTER—The center of the title is
even with the shadow along the top edge of the
Frame. This is the default.

• XmALIGNMENT_WIDGET_BOTTOM—The bottom edge
of the title is even with the shadow along the top
edge of the Frame.

• XmALIGNMENT_WIDGET_TOP—The top edge of the
title is even with the shadow along the top edge of
the Frame.

Following is a UIL specification for an example Frame with a Label
title and a Form child (not defined here):

object exampleFrame : XmFrame {
controls {

XmLabel { arguments {
XmNchildType = XmFRAME_TITLE_CHILD;
XmNchildHorizontalSpacing = 4;
XmNchildVerticalAlignment = XmALIGNMENT_WIDGET_BOTTOM;

}; };
XmForm exampleForm;

};
};

9−29

OSF/Motif Programmer’s Guide

9.6 PanedWindow

PanedWindow is a manager that lays out its children vertically
from top to bottom and, by default, places a separator between each
pair of children. Each child spans the width of the PanedWindow,
which resizes children to be as wide as the widest child. When pos-
sible the PanedWindow grows to accommodate the width of the wid-
est child and the heights of all the children.

Usually PanedWindow allows the user to adjust the height of each
pane. When a pane is adjustable, PanedWindow creates a control
called a sash and places it below the pane that it controls. By mani-
pulating the sash with the mouse or keyboard commands, the user
changes the height of the pane above. This may also change the
height of a pane below the sash.

PanedWindow has the following resources to control general
appearance:

XmNmarginHeight
The value specifies the margin between the
PanedWindow’s top and bottom shadows and the chil-
dren nearest those shadows.

XmNmarginWidth
The value specifies the margin between the
PanedWindow’s left and right shadows and the chil-
dren nearest those shadows.

XmNseparatorOn
The value determines whether or not PanedWindow
displays a separator between each pair of panes.

XmNspacing
The value is the distance between each pane.

9−30

Scrolling, Panes, and Frames

The following PanedWindow resources control the appearance of the
sashes:

XmNsashHeight
The value specifies the height of each sash.

XmNsashIndent
The value specifies the distance between each sash
and the inner margin of the left or right side of the
PanedWindow. If the value is positive, the sash is
offset from the near (left) side of the PanedWindow.
If the value is negative, the sash is offset from the far
(right) side of the PanedWindow. If the value is
greater than the width of the PanedWindow minus
the width of the sash, the sash is placed flush against
the near side of the PanedWindow.

XmNsashShadowThickness
The value specifies the shadow thickness for each
sash.

XmNsashWidth
The value specifies the width of each sash.

PanedWindow has one other resource, XmNrefigureMode. When
this resource is set to False, the PanedWindow does not recompute
its layout when either the user or the application resizes a pane or
when the PanedWindow is resized.

PanedWindow children have a number of constraint resources that
PanedWindow uses to determine the positions and size limitations
of the panes:

XmNallowResize
The value specifies whether the PanedWindow grants
resize requests from the pane. When the value is
False (the default) and the pane is realized,
PanedWindow refuses such requests, but it allows the

9−31

OSF/Motif Programmer’s Guide

user to resize the pane if it is adjustable. For exam-
ple, if the application attempts to change the height
or width of the pane via XtSetValues, PanedWindow
does not allow the change. If the value is True or if
the pane is not realized, PanedWindow grants
requests by the pane to change its size if possible.

XmNpaneMaximum
The value is the maximum height to which the user
or application can resize the pane. If this value is the
same as the value of XmNpaneMinimum, the pane can-
not be resized at all, and PanedWindow does not
display a sash at the bottom of the pane.

XmNpaneMinimum
The value is the minimum height to which the user or
application can resize the pane. If this value is the
same as the value of XmNpaneMaximum, the pane can-
not be resized at all, and PanedWindow does not
display a sash at the bottom of the pane.

XmNpositionIndex
The value is the ordinal position of the pane in the
PanedWindow’s list of pane children. The application
or user can specify the value as an integer between 0
and the number of children already in the list, or as
the value XmLAST_POSITION (the default), which
means the child is inserted at the end of the list. If
specifying a new value causes the order of children in
the list to change, PanedWindow recomputes its lay-
out according to the new order of children: the first
pane is displayed at the top of the PanedWindow, the
second child below the first, and so on.

XmNskipAdjust"
The value specifies whether or not the PanedWindow
resizes the pane when the PanedWindow itself is

9−32

Scrolling, Panes, and Frames

resized or when the user resizes another pane. When
the value is True, PanedWindow does not resize this
pane under these circumstances, but the user can still
resize the pane if XmNpaneMaximum is greater than
XmNpaneMinimum. The default is False.

9−33

Chapter 10. Managing Geometry

The geometry of a widget comprises its size, location, and stacking
order. Widgets often have preferred sizes and perhaps locations.
For example, a Label widget may prefer to be just large enough to
display the text of the label. But composite widgets usually have
preferences or constraints in laying out their children, and these
may conflict with the preferences of the child widgets. Further-
more, the user or the application can change a widget’s geometry at
any time, as by resizing the top-level window. Geometry manage-
ment is the process by which the user, parent widgets, and child
widgets negotiate the actual sizes and locations of the widgets in
the application.

Following are some common occasions for geometry changes:

• The application manages or unmanages a child widget.

• The application sets a geometry resource.

• The application sets a resource, and this setting causes one of
the geometry resources to change. For example, setting a new
label for a Label widget may cause a geometry change.

• The user resizes a top-level window via the window manager.

• The user resizes a pane of a PanedWindow.

Following are the basic Core and RectObj resources that determine
widget geometry:

XmNx Specifies the x-coordinate of the upper left outside
corner (outside the border) of the widget’s window.
The value is relative to the upper left inside corner
(inside the border) of the parent window.

XmNy Specifies the y-coordinate of the upper left outside
corner (outside the border) of the widget’s window.
The value is relative to the upper left inside corner
(inside the border) of the parent window.

XmNwidth Specifies the inside width (excluding the border) of
the widget’s window.

10−1

OSF/Motif Programmer’s Guide

XmNheight Specifies the inside height (excluding the border) of
the widget’s window.

XmNborderWidth
Specifies the width of the border that surrounds the
widget’s window on all four sides.

10.1 Xt and Geometry Management

The Intrinsics provide the basic mechanisms and policies that
underlie geometry management in Motif. The fundamental princi-
ple of geometry management is that parent widgets control the
geometry of their children. Child widgets request changes to their
geometry; parent widgets respond to requests from their children
and change the geometry of their children directly.

10.1.1 Widget Class Procedures

Six widget class procedures, two in the parent and four in the child,
handle most of the work of geometry management:

• The parent’s change_managed procedure. When a child is
managed or unmanaged, the parent often must move or resize
some of its children. In the change_managed procedure, the
parent can move a child by calling XtMoveWidget, resize a child
by calling XtResizeWidget, or both move and resize a child by
calling XtConfigureWidget. These functions update the
appropriate geometry resources of the child and, if the child is
realized, reconfigure the child’s window.

10−2

Managing Geometry

• The parent’s geometry_manager procedure. This function
receives and acts on requests from child widgets to change their
geometry. The geometry_manager procedure can grant a
request, deny a request, or suggest a compromise to the child. If
the procedure grants the request, it updates the appropriate
geometry resources of the child. If the child is realized, the
parent can either reconfigure the child’s window itself or let the
Intrinsics reconfigure the window. To make all geometry
changes itself, the procedure can call XtMoveWidget,
XtResizeWidget, or XtConfigureWidget.

• The child’s set_values procedure. Whenever the application or
user sets one of the basic geometry resources—XmNx, XmNy,
XmNwidth, XmNheight, or XmNborderWidth—Xt automatically
makes a request to the widget’s parent for the geometry change.
In the set_values procedure the widget can determine whether
a change to another resource requires a geometry change. If so,
it can simply change one or more of the geometry resources, and
Xt makes the appropriate geometry request of the parent. If the
parent denies the request, Xt restores the geometry resources to
the values they had before the call to XtSetValues.

• The child’s set_values_almost procedure. When the user or
the application sets one of the widget’s geometry resources, the
parent may suggest a compromise geometry change. The child’s
set_values_almost procedure determines whether to accept the
compromise, reject the compromise, or request an alternate
geometry change.

• The child’s resize procedure. When a parent calls
XtResizeWidget or XtConfigureWidget with a size change, Xt
makes the changes to the child’s geometry resources and window
and then invokes the child’s resize procedure to inform the
child of the size change. This procedure makes any internal
changes necessary to conform to the new dimensions. If the
child is itself a composite widget, its resize procedure may

10−3

OSF/Motif Programmer’s Guide

move or resize its own children.

• The child’s query_geometry procedure. A parent widget may
take account of a child’s preferred geometry in determining its
layout. The parent calls XtQueryGeometry, which invokes the
child’s query_geometry procedure. The child can accept the
parent’s intended geometry change, inform the parent of the
child’s preferred geometry, or indicate that the child’s current
geometry is its preferred geometry. The parent can use the
results however it wants.

10.1.2 Geometry Change Requests

A widget uses XtMakeGeometryRequest to make a request to its
parent for a change in its geometry. The widget can also use XtMak-
eResizeRequest, a simple interface to XtMakeGeometryRequest for
requests to change width or height. Primitive widgets seldom
invoke XtMakeGeometryRequest directly. They usually generate
geometry requests indirectly when the application sets a resource
that requires a geometry change. Composite widgets often make
geometry requests when they try to accommodate requests from
their children. For example, when a child asks to grow, the parent
may ask its own parent to grow as well. In such cases the parent’s
geometry_manager procedure invokes XtMakeGeometryRequest
directly.

If the requesting widget is unmanaged, its parent is not realized, or
the requested geometry resource values are the same as the current
values, XtMakeGeometryRequest makes the requested changes and
returns XtGeometryYes. If the widget is being destroyed, it returns
XtGeometryNo. Otherwise, it invokes the parent’s
geometry_manager procedure. If the geometry_manager procedure
approves the request, XtMakeGeometryRequest returns

10−4

Managing Geometry

XtGeometryYes. If the geometry_manager procedure denies the
request, XtMakeGeometryRequest returns XtGeometryNo. If the
geometry_manager procedure suggests a compromise geometry,
XtMakeGeometryRequest returns XtGeometryAlmost. In this case
the widget can accept the compromise by immediately making
another geometry request with the compromise parameters.

The second argument to XtMakeGeometryRequest is a pointer to an
XtWidgetGeometry structure. This structure contains the parame-
ters of the widget’s geometry request: the intended x, y, width,
height, border width, and stacking mode. The structure also con-
tains a bitmask with a bit for each parameter. If a bit is set, the
widget intends to set the corresponding parameter to the intended
value. If a bit is not set, the widget does not care about the
corresponding parameter, and the parent is free to change it.

The third argument to XtMakeGeometryRequest is a pointer to
another XtWidgetGeometry structure. This argument is valid only
when the return value is XtGeometryAlmost. In that case the argu-
ment, if not NULL, returns the parameters of the parent’s
compromise geometry.

10.1.3 The geometry_manager Procedure

When a managed child widget makes a geometry request of a real-
ized parent, XtMakeGeometryRequest invokes the parent’s
geometry_manager procedure. The arguments are the same as
those to XtMakeGeometryRequest. This routine examines the bit-
mask (the request_mode member) and the requested geometry
parameters in the XtWidgetGeometry structure provided by the
child. If the geometry_manager routine can satisfy the request, it
has two choices:

10−5

OSF/Motif Programmer’s Guide

• Change the appropriate geometry resources of the child, and
return XtGeometryYes to XtMakeGeometryRequest. If the child
is a widget, XtMakeGeometryRequest then calls XConfigureWin-
dow to change the geometry of the child’s window. If the child is
not a widget, XtMakeGeometryRequest clears both the old and
the new areas occupied by the child. XtMakeGeometryRequest
does not call the child’s resize procedure. It returns
XtGeometryYes to the child.

• Call XtConfigureWidget, XtMoveWidget, or XtResizeWidget on
the child, and return XtGeometryDone to XtMakeGeometryRe-
quest. XtConfigureWidget, XtMoveWidget, and
XtResizeWidget configure the child’s window or clear the old
and new areas occupied by the child, and when the child’s size
changes they call its resize procedure. XtMakeGeometryRe-
quest returns XtGeometryYes to the child.

To satisfy a child’s geometry request, the geometry_manager rou-
tine may need to move or resize other children. It uses XtConfi-
gureWidget, XtMoveWidget, or XtResizeWidget to do this. A
geometry_manager procedure that returns XtGeometryDone calls
these routines on the child making the request as well. The
difference between answers of XtGeometryDone and XtGeometryYes
is as follows:

• XtGeometryDone means that the geometry_manager routine has
called the child’s resize procedure if the child’s size changes.
XtGeometryYes means that neither the geometry_manager rou-
tine nor XtMakeGeometryRequest calls the child’s resize pro-
cedure. The caller of XtMakeGeometryRequest must call the
child’s resize procedure if necessary.

• XtGeometryDone means that the geometry_manager routine has
configured the child’s window or cleared the old and new areas
occupied by the child. XtGeometryYes means that XtMak-
eGeometryRequest should do this.

10−6

Managing Geometry

Note: The geometry_manager procedures for Motif widgets
return XtGeometryYes, not XtGeometryDone, and
they do not call the resize procedure of the child
making the geometry request.

The geometry_manager procedure may be able to satisfy some but
not all of a child’s request. For example, it may be able to grant
the requested width but not the requested height. In this case the
geometry_manager procedure may offer the child a compromise
geometry. It fills in the reply XtWidgetGeometry structure with
the parameters it intends to allow, and it sets the corresponding bit
in the reply bitmask for any parameter it intends to change from
the value requested. It then caches these parameters and returns
XtGeometryAlmost to the child. If the child immediately makes
another geometry request using the compromise parameters, the
geometry_manager procedure must grant the request if it can.

10.1.4 Intermediate Geometry Requests

Often a parent widget must change its own geometry in order to
satisfy a child’s request. The parent’s geometry_manager pro-
cedure uses XtMakeGeometryRequest to ask its own parent for a
geometry change. If XtMakeGeometryRequest to the grandparent
returns XtGeometryYes, the parent’s actions depend on whether
the widget set’s policy is for a geometry_manager procedure to
return XtGeometryDone or XtGeometryYes when it grants a
request:

• With an XtGeometryDone policy, the geometry_manager pro-
cedure calls the requesting widget’s resize procedure. During
a successful intermediate request, the grandparent’s
geometry_manager procedure calls the parent’s resize pro-
cedure. The parent widget’s geometry_manager and resize

10−7

OSF/Motif Programmer’s Guide

procedures must cooperate to ensure that before the child’s
request is granted the child ends up with the geometry it
requested and the child’s resize procedure has been called.
The parent’s geometry_manager procedure then returns
XtGeometryDone.

• With an XtGeometryYes policy, the geometry_manager pro-
cedure does not call the requesting widget’s resize procedure.
During a successful intermediate request, the grandparent’s
geometry_manager procedure does not call the parent’s resize
procedure. The parent widget’s geometry_manager procedure
updates the requesting child’s geometry fields and may resize
other children, but it should not call the requesting child’s
resize procedure. The parent may call its own resize pro-
cedure so long as that routine does not call the requesting
child’s resize procedure. The parent’s geometry_manager pro-
cedure then returns XtGeometryYes.

Sometimes the parent needs to make a geometry request to its own
parent just to find out whether the grandparent will accept a pro-
posed change. For example, the parent may intend to offer a
compromise geometry to the child but must first determine whether
the grandparent will allow the parent to change its own geometry
in order to offer the compromise. In this case the parent does not
want the grandparent actually to make the proposed change; it just
wants the grandparent to tell the parent whether the change is
acceptable.

In making its own geometry request to the grandparent, the parent
sets the XtCWQueryOnly bit in the request bitmask. The
grandparent can return XtGeometryYes but must not actually
change any of its children. The parent then returns XtGeometryAl-
most to the child, along with its compromise parameters. If the
child accepts the compromise, the parent repeats its request to the
grandparent without setting XtCWQueryOnly. The grandparent
should grant the parent’s request, and the parent can then grant

10−8

Managing Geometry

the child’s request.

If the grandparent’s response is XtGeometryAlmost and the parent
still wishes to offer a compromise to the child, it caches the
grandparent’s reply and returns XtGeometryAlmost to the child. If
the child accepts this compromise, the parent then makes another
request of the grandparent, using the cached compromise parame-
ters from the grandparent and without setting XtCWQueryOnly.
The grandparent should grant the parent’s request, and the parent
can then grant the child’s request.

10.1.5 XtSetValues

When a user or application invokes XtSetValues on a geometry
resource, XtSetValues makes a geometry request. After invoking
all the widget’s set_values procedures, XtSetValues checks for
changes to any geometry resources. If any of those resources have
changed, it sets their values to those in effect before XtSetValues
was called and then makes a geometry request with the new values
as the requested geometry parameters. If the geometry request
returns XtGeometryYes, XtSetValues calls the widget’s resize
procedure. If the parent’s geometry_manager procedure returns
XtGeometryDone, XtSetValues does not call the widget’s resize
procedure.

If the geometry request returns XtGeometryNo or XtGeometryAl-
most, XtSetValues calls the widget’s set_values_almost pro-
cedure, passing it the request and reply XtWidgetGeometry struc-
tures. If the request returns XtGeometryNo, the bitmask in the
reply structure is 0. The set_values_almost procedure can accept
a compromise geometry by copying the reply parameters into the
request structure. It can also construct another request by altering
the request structure, or it can end the negotiation by setting the

10−9

OSF/Motif Programmer’s Guide

request bitmask to 0. If the request bitmask is nonzero when the
set_values_almost procedure returns, XtSetValues makes
another geometry request and treats the result in the same way as
for the original request.

A widget’s set_values procedure can initiate a geometry request
by changing any of the geometry resources. For example, if XtSet-
Values is invoked on a Label’s text, the set_values procedure can
calculate how large the widget should be to contain the new text
and then set the relevant geometry fields accordingly. The
set_values procedure should not do any resizing itself; in particu-
lar, it should not resize any child widgets, because the geometry
request might be denied. Resizing is usually done in the widget’s
resize procedure. The widget’s set_values_almost procedure
may need to restore some widget state in the event the geometry
request is denied.

10.1.6 The resize Procedure

A widget’s resize procedure is invoked in the following cir-
cumstances:

• By XtConfigureWidget or XtResizeWidget when the parent
resizes the widget

• By XtSetValues when the widget’s geometry resources are
changed and the resulting geometry request returns
XtGeometryYes

• By the parent’s geometry_manager procedure when it grants
the widget’s geometry request and is about to return
XtGeometryDone

In addition, a shell’s resize procedure is invoked when the size of
the shell is changed, often by a user via the window manager.

10−10

Managing Geometry

When the resize procedure is called the widget’s geometry
resources contain the new values. The resize procedure uses
these values to recalculate the widget’s layout. In the process it
may move or resize child widgets. The resize procedure must take
its geometry resource values as given; it may not issue a geometry
request.

A composite widget’s resize procedure may need coordination with
its geometry_manager procedure in handling a geometry request
from a child when the parent must make its own geometry request
to accommodate the child. If the widget set’s geometry_manager
procedures return XtGeometryYes, a parent’s geometry_manager
procedure may call the parent’s resize procedure after a successful
request to the grandparent. In this case the resize procedure
should not resize the child widget making the original geometry
request. This problem can be avoided if the geometry_manager
and resize procedures call a common subroutine that performs
layout, taking as an argument the child that is making the request
(if any) so that the layout routine can avoid resizing that child.

If the widget set’s geometry_manager procedures return
XtGeometryDone, the grandparent’s geometry_manager procedure
calls the parent’s resize procedure during a successful request to
the grandparent. In this case the child’s geometry resources may
be different from the geometry parameters it is requesting at the
time the parent’s resize procedure is called. This problem can be
avoided if the parent’s geometry_manager procedure sets the child’s
geometry resources to the requested values before making its own
geometry request, setting them back to the original values if the
parent’s request is refused.

10−11

OSF/Motif Programmer’s Guide

10.1.7 Preferred Size and Location

When calculating its layout, a parent widget may take account of a
child’s preferred size and location. The parent uses XtQuer-
yGeometry to inquire about a child’s preferred geometry. The
parent passes to XtQueryGeometry pointers to two XtWidget-
Geometry structures, one containing the parameters that the
parent intends to impose and the other containing the preferred
parameters returned by the child. XtQueryGeometry then calls the
child’s query_geometry procedure with pointers to these two
XtWidgetGeometry structures.

The child’s query_geometry procedure determines the widget’s pre-
ferred geometry and stores the parameters into the return
XtWidgetGeometry structure, setting corresponding bits in the bit-
mask for fields that it cares about. It then returns one of these
values:

• If the parent’s intended geometry is acceptable, it returns
XtGeometryYes

• If the parent’s and child’s parameters differ for some field that
both widget care about, or if the child has expressed interest in
a field that the parent does not care about, it returns
XtGeometryAlmost

• If the child’s preferred geometry is the same as its current
geometry, it returns XtGeometryNo

After the query_geometry procedure returns, XtQueryGeometry
fills in any fields in the return XtWidgetGeometry structure that
the child does not care about with the current values of the
resources in the child widget. XtQueryGeometry returns the value
returned by the query_geometry procedure.

Most composite widgets should call XtQueryGeometry whenever
they intend to change the geometry of a child that is not in the

10−12

Managing Geometry

process of making a geometry request. A geometry_manager pro-
cedure should not call XtQueryGeometry for the child making the
request. For a widget making a geometry request, the requested
geometry is the preferred geometry.

This can be problem for widget sets whose geometry_manager pro-
cedures call the resize procedure for the child making the request
and then return XtGeometryDone. During a successful intermedi-
ate geometry request, the grandparent calls the parent’s resize
procedure. This procedure in turn may resize the child making the
original request, but it cannot reliably use XtQueryGeometry to
determine the child’s preferred geometry. Indeed, the parent’s
resize procedure may not know which child is making the request
or even that it is being invoked as a result of a child’s geometry
request. The parent widget’s geometry_manager procedure may
need to arrange to communicate this information to the parent’s
resize procedure.

10.1.8 Exposure and Redisplay

A widget may recompute its layout in its resize, set_values, or
geometry_manager procedure, but usually it does not actually gen-
erate the window contents in those procedures. A widget usually
regenerates its window contents in response to an Expose event,
which causes the widget’s expose procedure to be invoked. This
procedure takes as arguments the widget, the event, and the set of
rectangles to be redisplayed. Using the current state of the widget
(including its geometry resources), the expose procedure generates
the contents of either the affected rectangles or the window as a
whole.

XtConfigureWidget, XtResizeWidget, and XtMoveWidget call
XConfigureWindow, XMoveWindow, or XClearArea as appropriate.

10−13

OSF/Motif Programmer’s Guide

These functions cause the server to generate Expose events when
necessary. XtMakeGeometryRequest also calls XConfigureWindow
or XClearArea when the parent’s geometry_manager procedure
returns XtGeometryYes. When the geometry_manager procedure
returns XtGeometryDone it must call XConfigureWindow or
XClearArea itself (perhaps indirectly).

10.2 Shells and Their Children

Shell widgets encapsulate application widgets, principally to com-
municate with the window manager. Motif has three shell classes
based on Intrinsics shell classes:

VendorShell Subclass of WMShell and superclass for other
shell classes that contain both persistent top-
level widgets and dialogs

XmDialogShell Subclass of TransientShell (which is a sub-
class of VendorShell) used to contain dialog
widgets, commonly subclasses of XmBulletin-
Board

XmMenuShell Subclass of OverrideShell used to contain
RowColumn PulldownMenu and PopupMenu
widgets

A shell has only one managed child. Except when a shell contains
an off-the-spot input method, the shell’s window is coincident with
the child’s window. The geometry_manager procedures of the shell
classes treat geometry requests from the child as geometry
requests for the shell, and the resize procedures of the shell
classes make the child the same size as the shell. Applications
should usually change the geometry of the child, not of the shell.

10−14

Managing Geometry

In particular, setting XmNheight, XmNwidth, or XmNborderWidth for
either a shell or its child sets that resource to the same value in
both the parent and the child. For a child of a shell, setting XmNx or
XmNy sets the corresponding resource of the parent but does not
change the child’s position relative to the parent. XtGetValues for
the child’s XmNx or XmNy yields the value of the corresponding
resource in the parent. The x and y coordinates of the child’s upper
left outside corner relative to the parent’s upper left inside corner
are both zero minus the value of XmNborderWidth.

The exception is a VendorShell or DialogShell that contains an off-
the-spot input method. In this case the input method appears
inside the shell and below the application widget. The conventions
for geometry parameters are the same as for other shells, except
that the values of XmNheight for the child and the shell are not
identical. The height of the shell is the sum of the height and
border width of the application window and the height of the area
occupied by the input method.

When the Shell resource XmNallowShellResize is False, a shell’s
geometry_manager procedure returns XtGeometryNo for all
geometry requests from a realized child.

10.3 Manager Widgets and Their Children

Each Primitive widget has resources that determine its layout or
contents. For example, the size of a Text widget depends on the
values of the XmNrows, XmNcolumns, XmNmarginHeight, and XmNmar-
ginWidth Text resources; the XmNhighlightThickness and
XmNshadowThickness Primitive resources; and the basic Core
geometry resources. In addition, when the Text XmNresizeHeight
or XmNresizeWidth resource is True, the size of the widget can
depend on the size of the text (the XmNvalue resource). Setting any

10−15

OSF/Motif Programmer’s Guide

of these resources can cause Text to generate a geometry request.

Manager widgets have their own layout policies, which they use in
responding to geometry requests from their children or to resizing
by their parents. These policies are determined by the Manager’s
own resources and, for some Managers, by its constraint resources.

Constraints are resources defined by the Manager but associated
with each child. An application or user initializes, sets, or gets con-
straint resources for the child as if they were resources defined by
the child’s class. Initialization, XtSetValues, and XtGetValues for
the child operate on the parent’s constraint resources associated
with that child. The Manager has constraint initialize and
set_values procedures that allow it to set other constraints and
recompute its layout.

Motif uses constraints in determining the layout of Form,
PanedWindow, and Frame widgets. Motif also uses constraints to
adjust the positions of child widgets in PanedWindow and
RowColumn. The Form widget is discussed in a later section of
this chapter. PanedWindow and Frame are discussed in chapter 9.

10.4 Managing Geometry Using RowColumn

In addition to its role as the menu widget, RowColumn provides
general-purpose layout and geometry management for child widg-
ets arranged in rows, columns, or grids. The default RowColumn
type, XmWORK_AREA, provides the layout features but not the menu
semantics.

RowColumn’s layout is controlled by two sets of resources. One set
determines the position of children within the parent. The other
set specifies whether RowColumn adjusts the internal layout
characteristics of the children, such as margins and text alignment.

10−16

Managing Geometry

The two primary resources that control child positioning are
XmNorientation and XmNpacking. XmNorientation determines
whether RowColumn lays out its children in rows or columns.
When XmNorientation is XmVERTICAL—the default for a
WorkArea—the layout is column-major. When XmNorientation is
XmHORIZONTAL the layout is row-major.

XmNpacking controls the general style of the layout. The resource
has three possible values:

• XmPACK_TIGHT—RowColumn places children one after the other
along the major dimension (for example, in a column when
XmNorientation is XmVERTICAL). It proceeds until no more chil-
dren fit along that dimension and then begins a new row or
column. When XmNorientation is XmVERTICAL and the vertical
distance remaining in the current column is too small to accom-
modate the child being placed, RowColumn begins a new
column if XmNresizeHeight is False or the RowColumn cannot
become larger. When placing children in a column, RowColumn
does not alter their heights, but it makes the width of each child
in the column equal to the width of the widest child in that
column. Analogous rules apply to row-major layouts.
XmPACK_TIGHT is the default value for XmNpacking in a Wor-
kArea.

• XmPACK_COLUMN—RowColumn makes the width and height of
each child identical. The width is the maximum width of all
children, and the height is the maximum height. RowColumn
uses the value of XmNnumColumns to determine the maximum
number of columns (in XmVERTICAL orientation) or rows (in
XmHORIZONTAL orientation) to produce. RowColumn tries to
create XmNnumColumns columns (or rows) with an equal number
of children in each column (or row).

• XmPACK_NONE—RowColumn does not change the position of any
child. Unless XmNresizeWidth is False, it tries to grow large
enough to enclose the greatest x extent of any child. Unless

10−17

OSF/Motif Programmer’s Guide

XmNresizeHeight is False, it tries to grow large enough to
enclose the greatest y extent of any child.

Several other resources influence the position and size of children:

XmNadjustLast
This resource applies only when XmNpacking is
XmPACK_TIGHT or XmPACK_COLUMN. When True and
the orientation is vertical, RowColumn increases the
widths of children in the last column when necessary
so that all children extend to the right edge of the
RowColumn. When True and the orientation is hor-
izontal, RowColumn increases the heights of children
in the last row when necessary so that all children
extend to the bottomn edge of the RowColumn.

XmNentryBorder
When nonzero, specifies the border width for all chil-
dren of the RowColumn. When zero, RowColumn
does not alter the border width of its children.

XmNmarginHeight
Specifies the amount of space between the top edge of
the RowColumn and the first item in each column
and between the bottom edge of the RowColumn and
the last item in each column.

XmNmarginWidth
Specifies the amount of space between the left edge of
the RowColumn and the first item in each row and
between the right edge of the RowColumn and the
last item in each row.

XmNresizeHeight
When True, RowColumn adjusts its own height when
possible to accommodate its children. When False,
RowColumn does not request a new height during
layout.

10−18

Managing Geometry

XmNresizeWidth
When True, RowColumn adjusts its own width when
possible to accommodate its children. When False,
RowColumn does not request a new width during
layout.

XmNspacing This resource applies only when XmNpacking is
XmPACK_TIGHT or XmPACK_COLUMN. Specifies the
amount of vertical space between each child in a
vertical orientation and the amount of horizontal
space between each child in a horizontal orientation.

RowColumn also has several resources that can cause the
RowColumn to change the internal layout of some classes of chil-
dren:

XmNadjustMargin
This resource applies only to children that are subc-
lasses of XmLabel and XmLabelGadget. When True
and the orientation is vertical, RowColumn sets the
XmNmarginLeft and XmNmarginRight for all children
to the maximum values for those resources among all
children. When True and the orientation is horizon-
tal, RowColumn sets the XmNmarginTop and XmNmar-
ginBottom for all children to the maximum values
for those resources among all children. In Popup-
Menus and PulldownMenus RowColumn adjusts the
margins only for button children, not for labels.

XmNentryAlignment
This resource applies only to children that are subc-
lasses of XmLabel and XmLabelGadget. When
XmNisAligned is True, RowColumn sets the
XmNalignment of all children to the value specified by
XmNentryAlignment. Following are the possible
values:

10−19

OSF/Motif Programmer’s Guide

• XmALIGNMENT_BEGINNING—The child’s text or pix-
map is aligned with the left edge of the child’s
window

• XmALIGNMENT_CENTER—The child’s text or pixmap
is aligned with the center of the child’s window

• XmALIGNMENT_END—The child’s text or pixmap is
aligned with the right edge of the child’s window

In menus RowColumn sets the alignment only for
button children, not for labels.

XmNentryVerticalAlignment
This resource applies only to children that are subc-
lasses of XmLabel, XmLabelGadget, XmText, and
XmTextField. It also applies only when XmNpacking
is XmPACK_COLUMN (in either orientation) or when
XmNpacking is XmPACK_TIGHT and the orientation is
horizontal. The value specifies a reference point for
aligning the children in any row:

• XmALIGNMENT_BASELINE_BOTTOM—Causes the last
baseline of each child in a row to align with the
last baseline of the tallest child in the row. This
resource is applicable only when all children in a
row contain textual data.

• XmALIGNMENT_BASELINE_TOP—Causes the first
baseline of each child in a row to align with the
first baseline of the tallest child in the row. This
resource is applicable only when all children in a
row contain textual data.

• XmALIGNMENT_BOTTOM—Causes the bottom edge of
the last line of text contained in each child to
align with the bottom edge of the last line of text
of the tallest child in the row.

10−20

Managing Geometry

• XmALIGNMENT_CENTER—Causes the center of each
child to align vertically with the center point esta-
blished by the tallest child in the row.

• XmALIGNMENT_TOP—Causes the top edge of the
first line of text contained in each child to align
with the top edge of the first line of text of the tal-
lest child in the row.

XmNisAligned
When True, RowColumn sets the XmNalignment
resources of children that are subclasses of XmLabel
or XmLabelGadget to the value specified by XmNen-
tryAlignment.

10.5 Managing Geometry Using Bulletin-
Board and DrawingArea

BulletinBoard and DrawingArea are two container widgets with
similar geometry policies. These widgets have three geometry-
related resources in common:

XmNmarginHeight
Specifies the amount of space between the top sha-
dow of the widget and the top edge of any child and
between the bottom shadow of the widget and the
bottom edge of any child. When the value of this
resource is greater than 0, the widget ensures that
the top edges of all children are below the widget’s
top margin.

XmNmarginWidth
Specifies the amount of space between the left sha-
dow of the widget and the left edge of any child and

10−21

OSF/Motif Programmer’s Guide

between the right shadow of the widget and the right
edge of any child. When the value of this resource is
greater than 0, the widget ensures that the left edges
of all children are to the right of the widget’s left
margin.

XmNresizePolicy
Determines the widget’s policy with regard to resize
requests from its children. Following are the possi-
ble values:

• XmRESIZE_NONE—The widget has a fixed size
determined by its XmNwidth and XmNheight. The
widget does not accept any geometry requests
that would cause it to grow, but it may accept
requests (without changing its own size) that
would not cause it to grow. The widget also
reports its current size as its own preferred size.

• XmRESIZE_GROW—The widget can grow but not
shrink. If its own parent approves, the widget
accepts geometry requests that cause it to grow in
order to enclose its children. It may accept
requests (without changing its own size) that
would not cause it to grow. When queried about
its own preferred size, the widget calculates its
layout and reports as its preference the greater of
the calculated width and height and the current
width and height.

• XmRESIZE_ANY—The widget tries to accommodate
geometry requests that would cause it to grow or
shrink in order to enclose its children, requesting
changes to its own size when necessary. When
queried about its own preferred size, the widget
calculates its layout and reports the calculated
width and height as its preference.

10−22

Managing Geometry

In addition to these policies, BulletinBoard has geometry facilities
that allow it to interact with subclasses in laying out complex col-
lections of children. For example, SelectionBox has a List contain-
ing choices, a Text selection area, labels for the list and selection
area, and three or four buttons. Usually the list appears above the
selection area. The buttons appear equally spaced in a row below
the selection area.

Additional children may be added to the SelectionBox after crea-
tion. The first child is used as a work area. The value of XmNchild-
Placement determines if the work area is placed above or below the
Text area, or above or below the List area. Additional children are
laid out in the following manner:

• Menubar—The first menu bar child is placed at the top of the
window.

• Buttons—All XmArrowButton, XmDrawnButton, XmPushButton,
and XmToggleButton widgets or gadgets, and their subclasses
are placed after the OK button in the order of their creation.

• The layout of additional children that are not in the above
categories is undefined.

10.6 Managing Geometry Using Form

Form is a container widget that provides the most comprehensive
facilities for controlling the layout of children. Constraints are
placed on children of the Form to define attachments for each of the
child’s four sides. These attachments can be to the Form, to
another child widget or gadget, to a relative position within the
Form, or to the initial position of the child. The attachments deter-
mine the layout behavior of the Form when resizing occurs. Form
is a subclass of BulletinBoard, so the resources and general

10−23

OSF/Motif Programmer’s Guide

geometry policies of BulletinBoard apply to Form as well.

Each child has 17 Form constraint resources, four for each side of
the child and one, XmNresizable, that applies to the child as a
whole. Following is a description of XmNresizable and the con-
straint resources that apply to the top side of a child:

XmNresizable This Boolean resource specifies whether or not a
child’s request for a new size is (conditionally)
granted by the Form. If this resource is set to True
the request is granted if possible. If this resource is
set to False the request is always refused.

If a child has both left and right attachments, its
width is completely controlled by the Form, regard-
less of the value of the child’s XmNresizable
resource. If a child has a left or right attachment but
not both, the child’s XmNwidth is used in setting its
width if the value of the child’s XmNresizable
resource is True. These conditions are also true for
top and bottom attachments, with height acting like
width.

XmNtopAttachment
Specifies attachment of the top side of the child. It
can have following values:

• XmATTACH_NONE—Do not attach the top side of the
child. If XmNbottomAttachment is also
XmATTACH_NONE, this value is ignored and the
child is given a default top attachment.

• XmATTACH_FORM—Attach the top side of the child
to the top side of the Form.

• XmATTACH_OPPOSITE_FORM—Attach the top side of
the child to the bottom side of the Form. XmNto-
pOffset can be used to determine the visibility of

10−24

Managing Geometry

the child.

• XmATTACH_WIDGET—Attach the top side of the
child to the bottom side of the widget or gadget
specified in the XmNtopWidget resource. If
XmNtopWidget is NULL, XmATTACH_WIDGET is
replaced by XmATTACH_FORM, and the child is
attached to the top side of the Form.

• XmATTACH_OPPOSITE_WIDGET—Attach the top side
of the child to the top side of the widget or gadget
specified in the XmNtopWidget resource.

• XmATTACH_POSITION—Attach the top side of the
child to a position that is relative to the top side of
the Form and in proportion to the height of the
Form. This position is determined by the XmNtop-
Position and XmNfractionBase resources.

• XmATTACH_SELF—Attach the top side of the child
to a position that is proportional to the current y
value of the child divided by the height of the
Form. This position is determined by the XmNtop-
Position and XmNfractionBase resources.
XmNtopPosition is set to a value proportional to
the current y value of the child divided by the
height of the Form.

XmNtopOffset Specifies the constant offset between the top side of
the child and the object to which it is attached. The
relationship established remains, regardless of any
resizing operations that occur.

XmNtopPosition
This resource is used to determine the position of the
top side of the child when the child’s XmNtopAttach-
ment is set to XmATTACH_POSITION. In this case the
position of the top side of the child is relative to the

10−25

OSF/Motif Programmer’s Guide

top side of the Form and is a fraction of the height of
the Form. This fraction is the value of the child’s
XmNtopPosition resource divided by the value of the
Form’s XmNfractionBase. For example, if the child’s
XmNtopPosition is 50, the Form’s XmNfractionBase
is 100, and the Form’s height is 200, the position of
the top side of the child is 100.

XmNtopWidget
Specifies the widget or gadget to which the top side of
the child is attached. This resource is used if XmNto-
pAttachment is set to either XmATTACH_WIDGET or
XmATTACH_OPPOSITE_WIDGET.

These constraint resources interact with the following resources of
the Form itself:

XmNfractionBase
Specifies the denominator used in calculating the
relative position of a child widget using
XmATTACH_POSITION constraints. The value must not
be 0.

If the value of a child’s XmNleftAttachment (or
XmNrightAttachment) is XmATTACH_POSITION, the
position of the left (or right) side of the child is rela-
tive to the left side of the Form and is a fraction of
the width of the Form. This fraction is the value of
the child’s XmNleftPosition (or XmNrightPosition)
resource divided by the value of the Form’s XmNfrac-
tionBase.

If the value of a child’s XmNtopAttachment (or
XmNbottomAttachment) is XmATTACH_POSITION, the
position of the top (or bottom) side of the child is rela-
tive to the top side of the Form and is a fraction of
the height of the Form. This fraction is the value of

10−26

Managing Geometry

the child’s XmNtopPosition (or XmNbottomPosition)
resource divided by the value of the Form’s XmNfrac-
tionBase.

XmNhorizontalSpacing
Specifies the offset for right and left attachments.

XmNrubberPositioning
Indicates the default near (left) and top attachments
for a child of the Form. (Note: Whether this
resource actually applies to the left or right side of
the child and its attachment may depend on the
value of the XmNstringDirection resource.)

The default left attachment is applied whenever ini-
tialization or XtSetValues leaves the child without
either a left or right attachment. The default top
attachment is applied whenever initialization or
XtSetValues leaves the child without either a top or
bottom attachment.

If this Boolean resource is set to False, XmNleftAt-
tachment and XmNtopAttachment default to
XmATTACH_FORM, XmNleftOffset defaults to the
current x value of the left side of the child, and
XmNtopOffset defaults to the current y value of the
child. The effect is to position the child according to
its absolute distance from the left or top side of the
Form.

If this resource is set to True, XmNleftAttachment
and XmNtopAttachment default to
XmATTACH_POSITION, XmNleftPosition defaults to a
value proportional to the current x value of the left
side of the child divided by the width of the Form,
and XmNtopPosition defaults to a value proportional
to the current y value of the child divided by the

10−27

OSF/Motif Programmer’s Guide

height of the Form. The effect is to position the child
relative to the left or top side of the Form and in pro-
portion to the width or height of the Form.

XmNverticalSpacing
Specifies the offset for top and bottom attachments.

Following are some important considerations in using a Form:

• Every child must have an attachment on either the left or the
right. If initialization or XtSetValues leaves a widget without
such an attachment, the result depends upon the value of
XmNrubberPositioning.

If XmNrubberPositioning is False, the child is given an XmNlef-
tAttachment of XmATTACH_FORM and an XmNleftOffset equal to
its current x value.

If XmNrubberPositioning is True, the child is given an XmNlef-
tAttachment of XmATTACH_POSITION and an XmNleftPosition
proportional to the current x value divided by the width of the
Form.

In either case, if the child has not been previously given an x
value, its x value is taken to be 0, which places the child at the
left side of the Form.

• If you want to create a child without any attachments, and then
later (e.g., after creating and managing it, but before realizing
it) give it a right attachment via XtSetValues, you must set its
XmNleftAttachment to XmATTACH_NONE at the same time.

• The XmNresizable resource controls only whether a geometry
request by the child will be granted. It has no effect on whether
the child’s size can be changed because of changes in geometry
of the Form or of other children.

• Every child has a preferred width, based on geometry requests
it makes (whether they are granted or not).

10−28

Managing Geometry

• If a child has attachments on both the left and the right sides,
its size is completely controlled by the Form. It can be shrunk
below its preferred width or enlarged above it, if necessary, due
to other constraints. In addition, the child’s geometry requests
to change its own width may be refused.

• If a child has attachments on only its left or right side, it will
always be at its preferred width (if resizable, otherwise at is
current width). This may cause it to be clipped by the Form or
by other children.

• If a child’s left (or right) attachment is set to XmATTACH_SELF, its
corresponding left (or right) offset is forced to 0. The attach-
ment is then changed to XmATTACH_POSITION, with a position
that corresponds to x value of the child’s left (or right) edge. To
fix the position of a side at a specific x value use XmATTACH_FORM
or XmATTACH_OPPOSITE_FORM with the x value as the left (or
right) offset.

• Unmapping a child has no effect on the Form except that the
child is not mapped.

• Unmanaging a child unmaps it. If no other child is attached to
it, or if all children attached to it and all children recursively
attached to them are also all unmanaged, all of those children
are treated as if they did not exist in determining the size of the
Form.

• When using XtSetValues to change the XmNx resource of a child,
you must simultaneously set its left attachment to either
XmATTACH_SELF or XmATTACH_NONE. Otherwise, the request is
not granted. If XmNresizable is False, the request is granted
only if the child’s size can remain the same.

• A left (or right) attachment of XmATTACH_WIDGET, where
XmNleftWidget (or XmNrightWidget) is NULL, acts like an
attachment of XmATTACH_FORM.

10−29

OSF/Motif Programmer’s Guide

• If an attachment is made to a widget that is not a child of the
Form, but an ancestor of the widget is a child of the Form, the
attachment is made to the ancestor.

All these considerations are true of top and bottom attachments as
well, with top acting like left, bottom acting like right, y acting like
x, and height acting like width.

10−30

Chapter 11. Internationalization

Internationalization is a method of application development that
allows the application to be run in many different languages
without rewriting the code or recompiling. This chapter describes
how to design applications to utilize Motif’s internationalization
capability. It is not a general discussion of internationalization.

11.1 Issues in Internationalized Applications

There are several important issues to keep in mind when consider-
ing the design of an application so that it takes advantage of Motif’s
internationalization capabilities.

11.1.1 Internationalization and Localization

An internationalized application contains no code that is dependent
on the user’s language, the characters needed to represent that
language, or any formats (such as date and currency) that the user
expects to see and interact with. Motif accomplishes this by
separating language and custom dependent information from the
application and saving it outside the application.

The next figure shows the kinds of information that should be exter-
nal to an application to simplify internationalization.

11−1

OSF/Motif Programmer’s Guide

Figure 11-1. Information External to the Application

By keeping the language and culture dependent information apart
from the application source code, the application does not need to be
rewritten or recompiled to be marketed in a different countries.
Instead, the only requirement is for the external information to be
localized to accommodate local language and custom.

Localizing the application includes the process of translating cer-
tain parts of the external information into the appropriate language
and storing the translated information in files that are then
accessed by the application. In addition, the application may be
told the format to use to display time, date, and the other language
or culture dependent formats shown in the previous figure.

Every language consists of a set of characters that, either individu-
ally or in combination, represents meaningful words or concepts in
the language. The set of characters is called a character set. The
set of binary values needed to represent all the characters in a
language is called a coded character set or, more simply, a code
set. Several attempts were started long ago to standardize

11−2

Internationalization

character sets and continue to this day. The most commonly used
code set for English is the American National Standard Code for
Information Interchange, more familiarly known as ASCII. It origi-
nally used a 7-bit encoding scheme plus an eighth bit for error con-
trol. Using 7 bits for character representation allows 128 unique
binary values. Later versions use the eighth bit as a code bit allow-
ing 255 characters. Both are fine for English and some other alpha-
betic languages, but neither is suitable for ideographic languages
such as Chinese, Japanese, and Korean. Ideographic languages
represent a concept or an idea as a single character, consequently
there are thousands of characters in the language and two or more
bytes are needed to represent the characters.

Other standard code sets have been developed to accommodate
other languages. The ISO8859 standard is perhaps the most com-
monly used of these. Different versions of the ISO8859 standard
exist for various areas of the world. The following table shows a
typical language and character set relationship for various areas.

TABLE 11-1. Areas and Typical Character Sets

222
Area or Language Character Set222
English ASCII, ISO8859-1
Western Europe ISO8859-1
Eastern Europe ISO8859-2
Northern Europe ISO8859-3
Russia (Cyrillic) ISO8859-5
Hebrew ISO8859-6
Greek ISO8859-7, 8, 9
Japan Shift JIS
Japan UJIS22211
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

See the specifications for the American National Standards Insti-
tute (ANSI) C and the X/Open Portability Guide, Issue 3 (XPG3) for

11−3

OSF/Motif Programmer’s Guide

more information on standards involved in internationalization.

11.1.2 Obtaining Input

Special considerations must be made for the user of an application
to input characters in the local written language. Virtually all
applications require some action on the part of the user, often ask-
ing for input in one form or another. For example, an application
can ask the user to input information in text form, such as name,
home address, and so on. The user must then enter this informa-
tion by typing it on the keyboard in the normal manner. This is
done with relative ease in an English-based application but can
become more complex when other language text is desired.

Motif uses Xlib functions to provide the basic support for obtaining
input in a Text widget.

11.1.2.1 The Problems

Many languages are expressed by means of an alphabet made up of
characters or letters. The letters are arranged in groups to form
meaningful words. A keyboard suitable for the language normally
contains all the letters of the alphabet, plus the standard numerals
and punctuation marks. The problem arises when the keyboard
does not have all the alphabet characters. This can happen when a
German user is using an English-based keyboard and needs a Ger-
man character such as "β."

A far more involved example is the case of defining a keyboard to
use for the ideographic languages. There are literally thousands of
characters needed to represent an ideograqphic language.

11−4

Internationalization

Obviously, no reasonable keyboard can be constructed with a single
key for each character.

11.1.2.2 The Solution

Motif solves these input problems by using an input method, which
is a layer of mapping between the keyboard keys (or combinations
of keys) that the user types and the text data that is passed to the
application. For example, the Swedish user with an English key-
board who needs the letter "O/ " must enter a combination of keys-
trokes (this varies among vendors but could be 1Extend char 12222222222277777777777 1O 1222777 1 / 12277 as
an example) rather than just one keystroke. This is very similar to
the act of using the 1Shift 12222277777 key to access upper case letters.

An ideographic language’s input method is often based on the
language’s phonetics but there are also input methods based on a
common graphics property of certain characters. The latter method
involves defining a key to map to a common graphic symbol that is
the basis for multiple characters. The phonetic method is more
commonly used. It requires a phonetic (alphabet-based) writing
system. The number of phonetic signs or characters is few enough
that a unique key is assigned to each phoneme. Characters are
entered by pressing the appropriate phonetic keys. In several popu-
lar input methods, the user types a phonetic representation of a
spoken word and the input method determines which characters are
pronounced that way. If only one character meets this criterion, it
is displayed. If more than one character meets the criterion, a list
of all characters found is displayed and the user chooses the desired
one. It is then passed to the application. See the section "Interna-
tionalization and Text Input" for more information on input
methods.

11−5

OSF/Motif Programmer’s Guide

11.1.3 Displaying Output

Displaying the output produced by an application intended for
international use also requires some consideration. To display text,
it must have the appropriate content, encoding and fonts. For
example, many languages, especially ideographic ones, require
more than one font. Bitmaps and pixmaps must be localized as
well. An icon that is an appropriate or meaningful symbol in one
country may be totally inappropriate or meaningless in another.

11.1.4 Locales and Localization

A locale is the language environment determined by the application
at run time. XPG3 defines locale as a means of specifying three
characteristics of a language environment that may be needed for
localization: language, territory, and code set. Motif supports only
one locale per application; that is, an application can set the locale
only once, at start-up time.

Motif uses the locale to help find:

• Resource files.

• UID files.

• Bitmap files.

• Fonts used to display text and labels.

• Text input method.

The ANSI C method of setting the locale in an application is to use
the function setlocale. How setlocale obtains a language when
the language is not explicitly referenced in the call to setlocale is
system dependent. For example, on POSIX systems, the

11−6

Internationalization

environment variable LANG is used. The locale name is also used to
establish a path to the localized files of information. How this is
actually accomplished is explained in the section "Localizing Appli-
cations".

11.2 Compound Strings, Fonts, and Text
Display

A compound string is a means of encoding text so that it can be
displayed in many different languages or fonts without changing
anything in the program. Motif uses compound strings to display all
text except that in the Text and TextField widgets. This section
explains the structure of a compound string, the interaction with it
and a font list, and then focuses on those aspects that are important
to the internationalization process. This section describes the struc-
ture of a compound string and the interaction between a compound
string and a font list that determines how the compound string is
displayed.

11.2.1 Compound String Components

A compound string is a byte stream in ASN.1 encoding, consisting of
tag-length-value segments. Semantically, a compound string has
components that contain the text to be displayed, a tag (called a
font list element tag) that will be matched with an element of a font
list, and an indicator denoting the direction in which it is to be
displayed.

A compound string component can be one of four types:

11−7

OSF/Motif Programmer’s Guide

• A font list element tag.

— The font list element tag XmFONTLIST_DEFAULT_TAG indicates
that the text is encoded in the codeset of the current locale.

— Other font list element tags are used later to match text with
particular entries in a font list.

• A direction identifier.

• The text of the string. For internationalized applications, the
text falls into two broad categories: either the text requires local-
ized treatment or it does not.

• Separator.

The following section describes each of the compound string com-
ponents:

Font list element tag The font list element tag is a string
value that correlates the text component
of a compound string to a font or a font set
in a font list.

Direction The relationship between the order in
which characters are entered on the key-
board and the order in which the charac-
ters are displayed on the screen. For
example, the display order is left to right
in English, French, German, and Italian
and right to left in Hebrew and Arabic.

Text The text to be displayed.

Separator A separator is a special form of a com-
pound string component that has no
value. It is used to separate other seg-
ments.

11−8

Internationalization

Motif uses the specified font list element tag identified in the text
component to display the compound string. A specified font list ele-
ment tag is used until a new font list element tag is encountered.
Motif provides a special font list element tag,
XmFONTLIST_DEFAULT_TAG, that matches a font that is correct for
the current codeset. It identifies the default entry in a font list. See
the section "Compound Strings and Font Lists" for more informa-
tion.

The direction segment of a compound string specifies the direction
in which the text is displayed. Direction can be left-to-right or
right-to-left.

11.2.1.1 Compound Strings and Resources

Compound strings are used to display all text except that in the
Text and TextField widgets. The compound string is set into the
appropriate widget resource so that it can be displayed. For exam-
ple, the label for the PushButton widget is inherited from the Label
widget, and the resource is XmNlabelString, which is type
XmString. This means that the resource expects a value that is a
compound string. A compound string can be created programmati-
cally or defined in a resource file.

11.2.1.1.1 Setting a Compound String Programmatically

An application can set this resource programmatically by creating
the compound string using one of the compound string convenience
functions. There are several such functions:

XmStringCreate This function creates a com-
pound string with text and a

11−9

OSF/Motif Programmer’s Guide

font list element tag, both of
which are arguments in the
function call.

XmStringCreateLocalized This function creates a com-
pound string in the encoding
of the current locale and
automatically sets the font
list entry tag to
XmFONTLIST_DEFAULT_TAG.

The following code segment shows one way to set XmNlabelString
for a PushButton programmatically:

Widget button;
Args args[10];
int n;
XmString button_label;

.

.
button_label = XmStringCreateLocalized (locvar, XmFONTLIST_DEFAULT_TAG);
/* locvar is a variable assumed to contain locale-encoded text. *
/* Create an argument list for the button */
n = 0;
XtSetArg (args[n], XmNlabelString, button_label); n++;

/* Create and manage the button */
button = XmCreatePushButton (toplevel, "button", args, n);
XtManageChild (button);
XmStringFree (button_label);

11−10

Internationalization

11.2.1.1.2 Setting a Compound String in a Defaults File

In an internationalized program, the label string for the button
label should be obtained from an external source. For example, the
button label can come from a resource file instead of the program.
For this example, assume that the PushButton is a child of a Form
widget called form1.

*form1.button.labelString: Push Here

Here, Motif’s string-to-compound-string converter produces a com-
pound string from the resource file text. This converter always uses
XmFONTLIST_DEFAULT_TAG.

11.2.1.2 Compound Strings in UIL

Three basic mechanisms exist for specifying strings in UIL files:

• As string literals, which may be stored in UID files as either
NULL-terminated strings or compound strings

• As compound strings

• As wide-character strings

Both string literals and compound strings consist of text, a charac-
ter set, and a writing direction. For string literals and for com-
pound strings with no explicit direction, UIL infers the writing
direction from the character set. The UIL concatenation operator
(&) concatenates both string literals and compound strings.

Whether UIL stores string literal in UID files as NULL-terminated
strings or as compound strings, it stores information about each
string’s character set and writing direction along with the text. In

11−11

OSF/Motif Programmer’s Guide

general UIL stores string literals or string expressions as compound
strings in UID files under the following conditions:

• When a string expression consists of two or more literals with
different character sets or writing directions

• When the literal or expression is used as a value that has a com-
pound string data type (such as the value of a resource whose
data type is compound string)

UIL recognizes a number of keywords specifying character sets.
UIL associates parsing rules, including parsing direction and
whether characters have 8 or 16 bits, for each character set it recog-
nizes. It is also possible to define a character set using the UIL
CHARACTER_SET function.

The syntax of a string literal is one of the following:

’[character_string]’
[#char_set]"[character_string]"

For each syntax, the character set of the string is determined as fol-
lows:

• For a string declared as ’string’, the character set is the
codeset component of the LANG environment variable if it is set in
the UIL compilation environment, or the value of
XmFALLBACK_CHARSET if LANG is not set or has no codeset. By
default the value of XmFALLBACK_CHARSET is ISO8859-1, but ven-
dors may supply different values.

• For a string declared as #char_set"string", the character set
is char_set.

• For a string declared as "string", the character set depends on
whether or not the module has a CHARACTER_SET clause and on
whether or not the UIL compiler’s use_setlocale_flag is set:

— If the module has a CHARACTER_SET clause, the character set
is the one specified in that clause.

11−12

Internationalization

— If the module has no CHARACTER_SET clause but the uil com-
mand was invoked with the –s option or the Uil function was
invoked with the use_setlocale_flag set, UIL calls setlo-
cale and parses the string in the current locale. The charac-
ter set of the resulting string is XmFONTLIST_DEFAULT_TAG.

— If the module has no CHARACTER_SET clause and the uil com-
mand was invoked without the –s option or the Uil function
was invoked without the use_setlocale_flag, the character
set is the codeset component of the LANG environment vari-
able if it is set in the UIL compilation environment, or the
value of XmFALLBACK_CHARSET if LANG is not set or has no
codeset.

UIL always stores a string specified using the COMPOUND_STRING
function as a compound string. This function takes as arguments a
string expression and optional specifications of a character set,
direction, and whether or not to append a separator to the string. If
no character set or direction is specified, UIL derives it from the
string expression, as described above.

Note that certain predefined escape sequences, beginning with a
backslash, may appear in string literals, with these exceptions:

• A string in single quotes can span multiple lines, with each new-
line escaped by a backslash. A string in double quotes cannot
span multiple lines.

• Escape sequences are processed literally inside a string that is
parsed in the current locale (a localized string).

For more information on UIL string and compound string syntax,
see the UIL(5X) reference page.

11−13

OSF/Motif Programmer’s Guide

11.2.2 Fonts, Font Lists, and Font Sets

Motif uses font sets and font lists to display text. A font defines set
of glyphs that represent the characters in a given language. A font
set is a group of fonts that are needed to display text for a given
locale. A font list is a list of fonts, font sets, or a combination of the
two, that may be used. Motif has convenience functions to create a
font list.

11.2.2.1 Font List Structure

Motif requires a font list for text display. A font list is a list of font
structures, font sets, or both, each of which has a tag to identify it.
A font set ensures that all characters in the current languaage can
be displayed. With font structures, the responsibility for ensuring
that all characters can be displayed rests with the programmer.

Each entry in a font list is in the form of a {tag, element} pair,
where element can be either a single font or a font set. The applica-
tion can create a font list entry from either a single font or a font
set. For example, the following code segment creates a font list
entry for a font set:

char font1[] = "-adobe-courier-medium-r-normal--10-100-75-75-M-60";
font_list_entry = XmFontListEntryLoad (display, font1,

XmFONT_IS_FONT, "font_tag");

XmFontListEntryLoad loads a font or creates and loads a font set.
There are four arguments to the function:

display The display on which the font list is to be used

11−14

Internationalization

font_name A string that represents either a font name or a
base font name list, depending on the type argu-
ment

type A value that specifies whether font_name refers to
a font name or a base font name list

tag A string that represents the tag for this font list
entry

If type is XmFONT_IS_FONTSET, XmFontListEntryLoad creates a
font set in the current locale from the value in font_name. The
character set(s) of the fonts specified in the font set are dependent
on the locale. If type is XmFONT_IS_FONT, XmFontListEntryLoad
opens the font found in font_name. In either case, the font or font
set is placed into a font list entry.

Now, the following code creates a font list, using the
font_list_entry just created:

XmFontList font_list;
XmFontListEntry font_list_entry;

.

.
font_list = XmFontListAppendEntry (NULL, font_list_entry);
XmFontListEntryFree (font_list_entry);

The code example above creates a new font list and appends the
entry font_list_entry to it.

Once a font list has been created, XmFontListEntryAppend adds a
new entry to it. The following example uses XmFontListEn-
tryCreate to create a new font list entry for an existing font list:

XFontSet font2;
char *font_tag;
XmFontListEntry font_list_entry2;

11−15

OSF/Motif Programmer’s Guide

.

.
font_list_entry2 = XmFontListEntryCreate (font_tag, XmFONT_IS_FONT_SET,

(XtPointer)font2);

font2 specifies an XFontSet returned by XCreateFontSet. The
arguments to XmFontListEntryCreate are font_tag,
XmFONT_IS_FONT_SET, and font2, which are the tag, type, and font,
respectively. The tag and the font set are the {tag, element} pair of
the font list entry.

Now, to add this entry to the font list, use XmFontListAppendEntry
again, only this time its first parameter specifies the existing font
list:

font_list = XmFontListAppendEntry(font_list, font_list_entry2);
XmFontListEntryFree(font_list_entry2);

11.2.2.2 Font Lists and Resources

The syntax for specifying a font list in a resource file depends on
whether the list contains fonts, font sets, or both.

• To obtain a font, specify a font and an optional font list element
tag. If the tag is present, it should be preceded by an equal sign
(=). If the tag is not present, do not use the equal sign. Entries
specifying more than one font are separated by commas.

• To obtain a font set, specify a base font list and an optional font
list element tag. The tag should be preceded by a colon (:)
instead of an equal sign. If the tag is not present, the colon must
still be present as this is what distinguishes a font from a font
set in the resource declaration. Fonts specified in the base font

11−16

Internationalization

list are separated by semicolons (;). Entries specifying more
than one font set are separated by commas.

If the font list element tag is not present in either case, Motif uses
the default XmFONTLIST_DEFAULT_TAG. Here are some examples:

• Specifying a font:

— Using the default font list element tag:

*fontList: fixed
*fontList:\
-adobe-courier-medium-r-normal--10-100-75-75-M-60-iso8859-1

— Specifying a font list element tag:

*fontList: fixed=ROMAN, 8x13bold=BOLD

— Specifying two fonts, one with the default font list element
tag and one with an explicit tag:

*fontList: fixed, 8x13bold=BOLD

• Specifying a font set:

— List the fonts explicitly without specifying a font list element
tag:

*fontList: -JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120;\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150:

— Let Xlib select the fonts without specifying a font list element
tag:

fontList: --*-*-R-Normal--*-180-100-100-*-*:

11−17

OSF/Motif Programmer’s Guide

— List the fonts explicitly and specify a font list element tag as
MY_TAG:

*fontList: -JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120;\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150:MY_TAG

— Let Xlib select the fonts and specify a font list element tag as
MY_TAG:

fontList: --*-*-R-Normal--*-180-100-100-*-*:MY_TAG

— List the fonts explicitly and specify a font list element tag for
bold fonts but use the default font list element tag for
medium fonts:

*fontList: -JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120;\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150:,\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120;\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150:BOLD

— Let Xlib select the fonts and specify a font list element tag for
bold fonts and use the default font list element tag for the
others:

fontList: --*-*-R-Normal--*-180-100-100-*-*:,\
-*-*-Bold-R-Normal--*-180-100-100-*-*:BOLD

11−18

Internationalization

11.2.2.3 Font List Resource Defaults

A font list resource exists for a number of different widgets. Motif
uses a hierarchy system to determine the font list it should use.
There are several font list resources for VendorShell, XmBulletin-
Board, and XmMenuShell. These resources can be set, either pro-
grammatically or in resource files. VendorShell and XmMenuShell
have some common font list resources but one of them, XmNdefault-
FontList, exists only for compatibility with earlier Motif releases.
The widgets that have a font list resource (or resources) are listed in
the following table. Note that in some cases the resource is not
named XmNfontList.

TABLE 11-2. Widgets With A Font List Resource

22
Widget Resource Name22

VendorShell XmNdefaultFontList
VendorShell XmNbuttonFontList
VendorShell XmNlabelFontList
VendorShell XmNtextFontList
XmMenuShell XmNbuttonFontList
XmMenuShell XmNdefaultFontList
XmMenuShell XmNlabelFontList
XmLabel XmNfontList
XmLabelGadget XmNfontList
XmList XmNfontList
XmScale XmNfontList
XmText XmNfontList
XmTextField XmNfontList
XmBulletinBoard XmNbuttonFontList
XmBulletinBoard XmNlabelFontList
XmBulletinBoard XmNtextFontList22

11−19

OSF/Motif Programmer’s Guide

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The three resources XmNbuttonFontList, XmNlabelFontList, and
XmNtextFontList are used to specify a font list for descendants of a
type associated with the resource. For example, XmNbutton-
FontList specifies the font list used for button descendants of Ven-
dorShell, XmBulletinBoard, and XmMenuShell. If a button’s
XmNfontList is NULL at initialization, the font list for the button is
set by searching the parent hierarchy of the button widget or gadget
for an ancestor that is a subclass of VendorShell, XmBulletin-
Board, or XmMenuShell. If such an ancestor is found, the button’s
font list is set to the value of XmNbuttonFontList in the ancestor
widget. If no such ancestor is found, the result is implementation
dependent.

11.2.2.4 Font Lists in UIL

UIL has three functions for use in creating font lists: FONT, FONTSET,
and FONT_TABLE. FONT and FONTSET create font list entries.
FONT_TABLE creates a font list from these font list entries.

The FONT function creates a font list entry containing a font
specification. The argument is a string representing an XLFD font
name. The FONTSET function creates a font list entry containing a
font set specification. The argument is a comma-separated list of
XLFD font names representing a base name font list.

Both FONT and FONTSET have optional CHARACTER_SET parameters
that specify the font list element tag for the font list entry. In both
cases, if no CHARACTER_SET parameter is specified, UIL determines
the font list element tag as follows:

11−20

Internationalization

• If the module contains no CHARACTER_SET declaration and if the
uil command was invoked with the –s option or the Uil func-
tion was invoked with the use_setlocale_flag set, the font list
element tag is XmFONTLIST_DEFAULT_TAG.

• Otherwise, the font list element tag is the codeset component of
the LANG environment variable if it is set in the UIL compilation
environment, or the value of XmFALLBACK_CHARSET if LANG is not
set or has no codeset.

The FONT_TABLE function creates a font list from a comma-
separated list of font list entries, created by FONT or FONTSET. The
resulting font list can be used as the value of a font list resource. If
a single font list entry is supplied as the value for such a resource,
UIL converts the entry to a font list.

11.2.3 Compound Strings and Font Lists

When Motif displays a compound string, it associates each segment
with a font or font set by means of the font list element tag for that
segment. The application must have loaded the desired font or font
set, created a font list that contains that font or font set and its
associated font list element tag, and created the compound string
segment with the same tag.

Motif follows a set search procedure when when it binds a com-
pound string to a font list entry:

1. Motif searches the font list for an exact match with the font
list element tag specified in the compound string. If it finds a
match, the compound string is bound to that font list entry.

2. If the above does not provide a binding between the compound
string and the font list, Motif binds the compound string to the
first element in the font list, regardless of its font list element

11−21

OSF/Motif Programmer’s Guide

tag.

For backward compatibility, if an exact match is not found,
XmFONTLIST_DEFAULT_TAG in either a compound string or a font list
matches the tag that would result from creating a compound string
or font list entry with a tag of XmSTRING_DEFAULT_CHARSET.

The next figure shows the relationships between a compound string,
a font set, and a font list when the font list element tag is set to
something other than XmFONTLIST_DEFAULT_TAG.

Figure 11-2. Compound String Relationships With Explicit Tag

The next example shows how to use a tag we’ll call tagb.

XFontStruct *font1;
XmFontListEntry font_list_entry;
XmFontList font_list;
XmString label_text;
char *tagb; /* Font list element tag */
char *fontx; /* Initialize to XLFD or font alias */
char *button_label; /* Contains button label text */

.

.
font1 = XLoadQueryFont (XtDisplay(toplevel), fontx);

11−22

Internationalization

font_list_entry = XmFontListEntryCreate (tagb, XmFONT_IS_FONT,
(XtPointer)font1);

font_list = XmFontListAppendEntry (NULL, font_list_entry);
XmFontListEntryFree (font_list_entry);

label_text = XmStringCreate (button_label, tagb);

XLoadQueryFont loads the font and then XmFontListEntryCreate
creates a font list entry. The application must create an entry and
then append it to an existing font list or create a new font list. In
either case, use XmFontListAppendEntry. Since there is no font list
in place, the code example above has NULL for the font list argu-
ment. XmFontListAppendEntry creates a new font list called
font_list with a single entry, font_list_entry. To add
another entry to font_list, follow the same procedure but supply
a non-NULL font list argument.

The following figure shows the relationships between a compound
string, a font set, and a font list when the font list element tag is set
to XmFONTLIST_DEFAULT_TAG. In this case the value field is locale
text.

11−23

OSF/Motif Programmer’s Guide

Figure 11-3. Compound String Relationships With
XmFONTLIST_DEFAULT_TAG

The previous figure shows how a compound string is related to a
font list and a font set when the font list element tag is
XmFONTLIST_DEFAULT_TAG. Here, the default tag points to
Font_Set_A, which in turn identifies the fonts needed to display the
characters in the language.

11.2.4 Text and TextField Widgets and Font Lists

The Text and TextField widgets display text information. To do so,
they must be able to select the correct font in which to display the
information. The Text and TextField widgets follow a set search
pattern to find the correct font.

11−24

Internationalization

1. Search the font list for an entry that is a font set and has a
font list element tag of XmFONTLIST_DEFAULT_TAG. If a match
is found, use that font list entry. No further searching occurs.

2. Search the font list for an entry that specifies a font set. Use
the first one found.

3. If no font set is found, use the first font in the font list.

A font set is desired because that insures that there are glyphs for
every character in the locale.

11.3 Localizing Applications

An internationalized application can be tailored to operate in many
areas of the world, each with its own requirements for the language
and customs to be used. This section explains some methods for
localizing an application.

11.3.1 Techniques for Localization

Although there are different methods to localize an application,
there are some common considerations:

• The application should not explicitly code any language-
dependent information in the application. This includes strings,
fonts and language-dependent pixmaps.

• The application should isolate text, fonts, and pixmaps, and
translate them into the languages needed. Usually this informa-
tion is stored in separate directories by language.

11−25

OSF/Motif Programmer’s Guide

This section describes how the user, the application developer, and
the implementation combine to establish the language environment
of the application. It then discusses two general approaches to
localizing applications. Succeeding sections focus on four aspects of
localizing information in Motif programs:

• Resource files

• UID files

• Message catalogs

• X bitmap files

Many aspects of localization depend on the particular operating sys-
tem, Motif implementation, and user environment in which the
application runs. The following must all cooperate for correct locali-
zation to occur:

• The operating system’s locale mechanism, if any

• The Motif implementation

• The application itself

• The user’s system administrator

• The user’s language environment

11.3.1.1 Establishing the Language Environment

The term language environment refers to the set of localized data
that the application needs in order to run correctly in the user
specified locale. A language environment supplies the rules associ-
ated with a specific language. In addition, the language environ-
ment consists of any externally stored data, such as localized
strings or text used by the application. For example, the menu

11−26

Internationalization

items displayed by an application might be stored in separate files
for each language supported by the application. This type of data
can be stored in resource files, UID files, or, on XPG3-compliant sys-
tems, message catalogs.

A single language environment is established when an application
executes. The actual language environment in which an application
operates is specified by the application user, often either by setting
an environment variable (LANG on POSIX-based systems) or by set-
ting the xnlLanguage resource. The application then sets the
language environment based on the user’s specification. The appli-
cation can do this either by using setlocale in a language pro-
cedure established by XtSetLanguageProc, or by using a method
that does not call setlocale. In either case, Xt caches a per-
display language string that is used by XtResolvePathname to find
resource, bitmap, and UIL files.

An application that supplies a language procedure may either pro-
vide its own or use an Xt default procedure. In either case, the
application establishes the language procedure by calling XtSet-
LanguageProc before calling XtAppInitialize. When a language
procedure is installed, Xt calls it in the process of constructing the
initial resource database. Xt uses the value returned by the
language procedure as its per-display language string.

The default language procedure performs the following tasks:

• Sets the locale. On ANSI C-based systems, this is done by using
this code:

setlocale(LC_ALL, language);

where language is the value of xnlLanguage or the empty
string ("") if xnlLanguage is not set. When xnlLanguage is not
set, the locale is generally derived from an environment variable
(LANG on POSIX-based systems).

11−27

OSF/Motif Programmer’s Guide

• Calls XSupportsLocale to verify that the locale just set is sup-
ported. If not, a warning message is issued and the locale is set
to "C."

• Calls XSetLocaleModifiers specifying the empty string.

• Returns the value of the current locale. On ANSI C-based sys-
tems, this is the result of calling:

setlocale(LC_ALL, NULL);

The application can use the default language procedure by making
the call to XtSetLanguageProc in this manner:

XtSetLanguageProc(NULL, NULL, NULL);
.
.

toplevel = XtAppinitialize(...);

By default Xt does not install any language procedure. If the appli-
cation does not call XtSetLanguageProc, Xt uses as its per-display
language string the value of the xnlLanguage resource if it is set. If
xnlLanguage is not set, Xt derives the language string from the
environment. On POSIX-based systems, this is the value of the
LANG environment variable.

It is important to note that the per-display language string that
results from this process is implementation dependent and that Xt
provides no public means of examining the language string once it
is established. The following vary by operating system and by Motif
implementation:

• The mechanism, if any, used to set the locale

• On ANSI C-based systems, the value returned by setlocale

• The possible values of any environment variables used to estab-
lish the language environment

11−28

Internationalization

• Whether or not xnlLanguage is used and, if so, its possible
values

Furthermore, by supplying its own language procedure, an applica-
tion may use any procedure it wants for setting the language string.

11.3.1.2 Using Locales

The locale provides local information to an application based on the
user’s language, territory, and codeset. Both language and territory
are needed because some languages are spoken in more than one
country and more than one language may be spoken in some coun-
tries (Belgium, Canada, and Switzerland are examples).

Information in resource, UID, and image files can be localized and
stored in separate directories by language. The Xt function
XtResolvePathname uses the run-time locale to determine the
proper directory to use.

On XPG3-compliant systems, an application can use message cata-
logs to localize text and messages. A message catalog file exists for
each language, and each is usually stored in a separate directory by
language.

The locale method of localizing compound strings and font lists con-
sists of the following steps:

1. Establish a language procedure before calling XtAppInitial-
ize. The language procedure calls setlocale.

2. Localize the compound strings and font lists using resource
files, message catalogs, or UID files. Normally, do not specify
any font list element tags other than
XmFONTLIST_DEFAULT_TAG.

11−29

OSF/Motif Programmer’s Guide

3. Use font sets in resource or UID file font lists.

4. Use XmStringCreateLocalized to create compound strings in
the program. This function only has one argument, a text
string, and automatically sets the font list element tag to
XmFONTLIST_DEFAULT_TAG.

The run-time locale determines which fonts are used to display text.
This is accomplished in the following manner:

• Motif calls XtResolvePathname to load resource or UID files that
specify the names of fonts for font sets. XtResolvePathname
uses a file search path that may vary depending on the display’s
language string.

• XCreateFontSet uses the locale to determine the fonts to be
used from the base font name and the locale charset.

In this method the application usually does not specify font list ele-
ment tags other than XmFONTLIST_DEFAULT_TAG. It is possible to
supply explicit font list element tags with locale-dependent text.
For example, text might be displayed using large and small fonts or
bold and italic fonts. The application can do this with special tags
in both the compound string and the font list associated with it. In
the font list, match the tag with a font set specification that sup-
plies the desired attribute (point size, for example). When the
application creates the font set, the charset comes from the locale.
For example, a resource file might specify a font list in the following
manner to obtain fonts with a different point size:

fontList: --*-*-R-Normal--*-120-100-100-*-*:,\
-*-*-*-R-Normal--*-180-100-100-*-*:BIG,\
-*-*-*-R-Normal--*-80-100-100-*-*:SMALL

In this case the application should also map the tags to
XmFONTLIST_DEFAULT_TAG in the Motif registry of font list element
tags. See the section "Compound Strings and Compound Text" for

11−30

Internationalization

more information.

11.3.1.3 Localization without Locales

In this method, the locale is not set in the program, and a language
procedure is not needed. Instead, the user specifies the language
environment using either xnlLanguage or an environment variable
such as LANG. As when the application uses locales, resource, UID,
and image files are localized and stored in separate directories by
language. XtResolvePathname uses the display’s language string
in the same way to determine the proper locations of these files.

Message catalogs are not used in this method. Also, in this case
Text and TextField cannot accommodate 16-bit data.

The non-locale method of localizing compound strings and font lists
consists of these steps:

1. Localize compound strings using UIL files. Note that resource
files cannot be used for compound strings because the string-
to-compound-string converter always uses
XmFONTLIST_DEFAULT_TAG Localized font lists can appear in
resource files.

2. Specify explicit font list element tags other than
XmFONTLIST_DEFAULT_TAG in both compound strings and font
lists.

3. Use font names with explicit charset components in resource
or UIL files. Do not use font sets.

4. To create compound strings in the program, use
XmStringCreate with the font list element tag set to some-
thing other than XmFONTLIST_DEFAULT_TAG.

11−31

OSF/Motif Programmer’s Guide

11.3.2 Resources and Localization

The resources used in an application that are subject to internation-
alization are stored in files external to the application. These
resources include

• All labels, particularly those that identify controls. Such labels
are defined as type XmString, meaning they are compound
strings.

• Text strings, that is strings of text that are not compound
strings.

• Font lists.

11.3.2.1 Initial Resource Database

The information in the external resource files is used when Xt
builds the initial resource database. The XtDisplayInitalize
function loads the resource database by merging in resources from
these sources, in order of precedence (that is, each component takes
precedence over the following components):

• The application command line

• Per-host user environment resource file on the local host

• Screen-specific resources for the default screen of the display

• Resource property on the server or user preference resource file
on the local host

• Application-specific user resource file on the local host

• Application-specific class resource file on the local host

11−32

Internationalization

Localization applies to two components of the initial resource data-
base: the application-specific user and class resources. Localized
resources that are controlled by the programmer are in the applica-
tion class resource file, and localized resources that are controlled
by the user are in the user resource file. Note that the user
resources take precedence over the application class resources.

11.3.2.2 Resource File Locations

XtDisplayInitialize calls XtResolvePathname to load both the
user and the class resources.

To load the user’s application resource file, XtDisplayInitialize
uses the value of the XUSERFILESEARCHPATH environment variable
as the search path. If that variable is not set or if the search path
fails to find the file, and if the environment variable XAPPLRESDIR is
defined, XtDisplayInitialize next tries an implementation-
dependent search path with a number of entries that include XAP-
PLRESDIR and the user’s home directory. If XAPPLRESDIR is not set
or if that search path fails, XtDisplayInitialize tries another
implementation-dependent search path with a number of entries
that include the user’s home directory.

To load the application-specific class resource file, XtDisplayIni-
tialize uses the value of the XFILESEARCHPATH environment vari-
able as the search path. If that variable is not set or if the search
path fails to find the file, XtDisplayInitialize tries an
implementation-dependent search path.

The search paths for both files may contain any substitutions recog-
nized by XtResolvePathname. That routine substitutes the
display’s language string for %L. In an implementation-dependent
manner, it substitutes the language, territory, and codeset

11−33

OSF/Motif Programmer’s Guide

components of the language string for %l, %t, and %c, respectively.
This mechanism allows Xt to load different resource files for
different languages, as specified by the display’s language string.

The display’s language string is determined by the application’s
language procedure, if present, or else by the value of the
xnlLanguage resource or by the environment. The language string
associated with any particular language and the search paths used
to find the resource files depend on the system vendor, the Motif
vendor, the application, and the user’s system administrator.
Determining the actual directories in which localized resource files
reside requires coordination among all these sources.

In general, an application developer prepares a set of localized
application class resource files, one for each language the applica-
tion supports. The developer may also need to supply a language
procedure appropriate for one or more of the systems on which the
application will run. The application vendor must arrange for the
resource files to be installed in the correct directories, depending on
the operating system and the Motif implementation on which the
application will run.

11.3.2.3 An Example

Following is an example of an application class defaults file for a
simple program that creates a MainWindow with a Text widget.
The font list specification includes a single font set with a default
tag. This resource file would be appropriate for an application that
uses locales.

fontList: --*-*-R-Normal--*-180-100-100-*-*:
*Text1.value: Hier ist etwas Text fur das Text Widget.\n
Gemischter 8-und 16-bit Text.

11−34

Internationalization

*version_box.messageString: Dies ist i18n Demo Version
*version_box.okLabelString: Schliessen
*version_box.dialogTitle: I18n Demo Version
*pgm_ver_btn.labelString: I18n Demo Version
*events_btn.labelString: Aktionen
*help_btn_menu.labelString: Hilfe
*help_btn_cascade.labelString: Hilfe
*help_box.messageString: Leider ist keine Hilfe hier.
*help_box.okLabelString: Schliessen
*help_box.dialogTitle: i18n Demo Hilfe
*stop_btn.labelString: Enden

11.3.3 UIL and Localization

The general models for localizing applications using UIL are the
same as those for applications that do not use UIL. An application
developer creates separate UIL files, each containing string and
resource values for a particular language. UIL files can also be
used in conjuction with localized resource and pixmap files. As with
localization of resource files, there are two basic approaches to local-
izing UIL files: one that uses locales and one that does not.

11.3.3.1 Preparing Localized UID Files

When using locales with UIL, an application developer should take
the following steps:

• Do not use a CHARACTER_SET declaration for the module.

11−35

OSF/Motif Programmer’s Guide

• When creating compound strings in a UIL file, use double quotes
and no character set specification for the text.

• When creating font lists in a UIL file, use font sets, not fonts.
Do not specify character sets for the font sets.

• Before compiling a UIL file using the uil command, set up any
environment variables (such as LANG) or other mechanisms the
system vendor recommends to establish the locale that is
appropriate for the UIL file to be compiled. Invoke the uil com-
mand with the –s option. This enables the UIL compiler to set
the locale and parse double quoted strings without explicit char-
acter sets in the locale’s encoding. It also ensures that localized
compound strings and font list entries are created with font list
element tags of XmFONTLIST_DEFAULT_TAG.

• Before using the Uil function to compile a UIL file, set the locale
that is appropriate for the UIL file to be compiled. In the
Uil_command_type structure that is the first argument to the
Uil function, set the use_setlocale_flag member to 1. This
has the same effect as invoking the uil command with the –s
option.

When localizing UIL files without using locales, an application
developer should take the following steps:

• When using single quotes for the text of compound strings, sup-
ply a CHARACTER_SET declaration for the module.

• When using double quotes for the text of compound strings, sup-
ply an explicit character set for each segment.

• When creating font lists in a UIL file, use fonts, not font sets.
Specify an explicit character set for each font.

• When compiling a UIL file using the uil command, do not
invoke the command with the –s option. The UIL compiler does
not set the locale, and it parses each string using rules derived
from the explicitly specified character set for that string.

11−36

Internationalization

• When compiling a UIL file using the Uil function, set the
use_setlocale_flag member of the Uil_command_type struc-
ture to 0. This has the same effect as invoking the uil command
without the –s option.

The UIL compiler processes a single source file for each invocation
of the uil command or the Uil function. However, UIL has an
INCLUDE FILE directive that is similar to the C preprocessor’s
#include directive. If the file argument for this directive is not an
absolute pathname, the compiler searches for the file in a series of
directories. These include the directory of the main UIL source file
and any directories specified via the –I option to the uil command
or the include_dir member of the Uil_command_type structure for
the Uil function.

One strategy for maintaining localized UIL source files is to place
only language-independent information in the main UIL source file
and to put all language-dependent information in included files that
are in separate directories for each language. Then a developer can
compile the UIL files for different languages without editing any
UIL files. When using locales, set up the environment for the
intended locale. Whether using locales or not, then invoke the UIL
compiler with the proper include directory for the intended
language.

In general, a developer can mix localized UIL files with localized
resource files. For example, the developer might specify compound
strings in UIL files and font lists in resource files. Note one excep-
tion: it is not practical to use resource files to localize compound
strings without using locales. This is because no resource file syn-
tax exists for supplying an explicit font list element tag for a com-
pound string.

For resource values that the user may override, the developer must
use resource files or fallback resources or must in some way ensure
that the user’s resource settings can override the developer’s set-
tings from the UIL file.

11−37

OSF/Motif Programmer’s Guide

11.3.3.2 MRM and Localized UID Files

Once the developer has generated localized UID files, the vendor
and the user’s system administrator must arrange for these files to
be installed in the appropriate directories for the system where the
program is to run. As with resource files, these directories depend
on configurations established by the operating system vendor, the
Motif vendor, and the system administrator.

MrmOpenHierarchyPerDisplay takes as an argument a list of
names of UID files. It calls XtResolvePathname to find each file the
list. If a file name is an absolute pathname, that pathname is the
search path for XtResolvePathname. Otherwise, MrmOpenHierar-
chyPerDisplay constructs a search path in the following way:

• If the environment variable UIDPATH is set, the value of that
variable is the search path

• If UIDPATH is not set but XAPPLRESDIR is set, MrmOpenHierarchy-
PerDisplay uses a default search path with entries that include
$XAPPLRESDIR, the user’s home directory, and vendor-dependent
system directories

• If neither UIDPATH nor XAPPLRESDIR is set, MrmOpenHierarchy-
PerDisplay uses a default search path with entries that include
the user’s home directory and vendor-dependent system direc-
tories

These paths may include the substitution field %U. In each call to
XtResolvePathname, MrmOpenHierarchyPerDisplay substitutes the
current file name from the list of UID files for %U. The paths may
also include other substitution fields accepted by XtResolvePath-
name. In particular, XtResolvePathname substitutes the display’s
language string for %L, and it substitutes the components of the
display’s language string (in a vendor-dependent way) for %l, %t,
and %c. If necessary MrmOpenHierarchyPerDisplay searches the

11−38

Internationalization

path twice, first with %S mapped to .uid and then with %S mapped
to NULL. The substitution field %T is always mapped to uid.

The usual mechanism for employing localized UID files is to use a
search path that contains one of the substitutions derived from the
display’s language string. As with resource files, the vendor and
system administrator must ensure that the directories where the
localized UID files reside match the display’s language string (or
the appropriate component of the language string).

11.3.4 Message Catalogs and Localization

On an XPG3-compliant system, an application can use message
catalogs to localize text. The format of message catalogs is imple-
mentation dependent, and the application must take steps to coordi-
nate the locations of the message catalogs with the locations of
resource, UID, and image files. Use of message catalogs requires
these steps:

• Using an implementation-dependent method, prepare a separate
message catalog containing text to be localized for each
language.

• Arrange to have the message catalogs installed in the appropri-
ate directories on the systems on which the application will run.

• Arrange for the user’s environment to be set up correctly so that
the application can read the message catalog appropriate to the
language.

• In the program, use the catopen function to open a message
catalog and the catclose function to close it.

• Use the catgets function to read text from an open message
catalog.

11−39

OSF/Motif Programmer’s Guide

• If necessary, convert the text to the target format (such as a
compound string) and, for resources, supply the text in the
appropriate widget creation argument list or call to XtSet-
Values.

The catopen function takes as an argument the name of the mes-
sage catalog file. If this is an absolute pathname, catopen opens
that file. Otherwise, catopen uses the value of the NLSPATH
environment variable as a search path. This path can contain a
number of substitution fields. The file name passed to catopen is
substituted for %N. The value of the LANG environment variable is
substituted for %L, and its language, territory, and codeset com-
ponents are substituted for %l, %t, and %c, respectively.

Note that these values may not be the same as the display’s
language string or its components. An application and software
vendor that use message catalogs must coordinate the locations of
message catalogs with those of localized resource, UID, and image
files, which usually depend on the display’s language string. One
possible strategy is to call catopen with an absolute pathname con-
structed by calling XtResolvePathname with the value of NLSPATH
as the search path argument. XtResolvePathname substitutes the
display’s language string and its components for %L, %l, %t, and %c
in $NLSPATH. In this way the application can use a single mechan-
ism, the display’s language string, to distinguish file locations by
language. The software vendor must still arrange for the user’s sys-
tem administrator to install the message catalogs in the correct
locations and to ensure that NLSPATH is appropriately set in the
user’s environment.

11−40

Internationalization

11.3.5 Images, Pixmaps, and Localization

A pixmap is a screen image that is stored in memory so that it can
be recalled and displayed when needed. Motif has a number of pix-
map resources that allow the application to supply pixmaps for
backgrounds, borders, shadows, label and button faces, drag icons,
and other uses. As with text, some pixmaps may be specific to par-
ticular language environments; these pixmaps need to be localized.

Motif maintains caches of pixmaps and images. The function
XmGetPixmapByDepth searches these caches for a requested pixmap.
If the requested pixmap is not in the pixmap cache and a
corresponding image is not in the image cache, XmGetPixmapBy-
Depth searches for an X bitmap file whose name matches the
requested image name. XmGetPixmapByDepth calls XtResolvePath-
name to search for the file. If the requested image name is an abso-
lute pathname, that pathname is the search path for XtResol-
vePathname. Otherwise, XmGetPixmapByDepth constructs a search
path in the following way:

• If the environment variable XBMLANGPATH is set, the value of that
variable is the search path

• If XBMLANGPATH is not set but XAPPLRESDIR is set, XmGetPixmap-
ByDepth uses a default search path with entries that include
$XAPPLRESDIR, the user’s home directory, and vendor-dependent
system directories

• If neither XBMLANGPATH nor XAPPLRESDIR is set, XmGetPixmapBy-
Depth uses a default search path with entries that include the
user’s home directory and vendor-dependent system directories

These paths may include the substitution field %B. In each call to
XtResolvePathname, XmGetPixmapByDepth substitutes the
requested image name for %B. The paths may also include other
substitution fields accepted by XtResolvePathname. In particular,

11−41

OSF/Motif Programmer’s Guide

XtResolvePathname substitutes the display’s language string for
%L, and it substitutes the components of the display’s language
string (in a vendor-dependent way) for %l, %t, and %c. The substi-
tution field %T is always mapped to bitmaps, and %S is always
mapped to NULL.

As with resource and UID files, the usual mechanism for employing
localized X bitmap files is to use a search path that contains one of
the substitutions derived from the display’s language string. As
with resource and UID files, the vendor and system administrator
must ensure that the directories where the localized X bitmap files
reside match the display’s language string (or the appropriate com-
ponent of the language string).

See chapter 12 for more information on images and pixmaps.

11.3.6 Comparing Approaches to Localization

The locale approach allows an application to use existing interna-
tionalization routines. On the other hand, the application is limited
in portability to systems that support the same internationalization
standards (XPG3, POSIX, or ANSI). This approach is also only
applicable to applications using a single language.

The non-locale approach only addresses the aspect of isolating infor-
mation from the application and insuring that it uses the proper
localized version of this information. The disadvantage is that
there is more work for the programmer and there may be non-
standard functionality. The advantages are that there is
guaranteed portability across all platforms that support Motif, and
that it allows handling of multiple character sets for specialized
applications that require this functionality.

11−42

Internationalization

11.4 Advanced Topics in Internationalization

This section covers some advanced topics dealing with internation-
alization.

11.4.1 Internationalization and Text Input

An application subject to internationalization presents some unique
problems when it deals with text input. The application must be
able to correctly interpret and process text input in any language.
This section explains how an application accomplishes this.

11.4.1.1 Input Method

Although there are many different keyboards in use, sometimes cer-
tain characters in an alphabetic language are not directly available
on any keyboard. In this case, the user must type a combination of
keys to input the desired character. The number of characters in an
ideographic language far exceeds the capability of any keyboard and
makes it impossible to have a keyboard with all of the language’s
symbols. In this case, input is usually accomplished based on the
language’s phonetics. These cases illustrate the concept of an input
method. An input method is simply the mechanism that is used to
map between the keys typed by a user and the resulting characters
that are input to the application. A common feature of many input
methods is that the application user may type combinations of keys
to create a single character. Creating characters from keystrokes is
called pre-editing.

11−43

OSF/Motif Programmer’s Guide

Input methods may require several areas to display the actual keys-
trokes.

• The Status Area is an output-only window that identifies the
style of input (phonetic, numeric, stroke and radial, etc.) and the
current status of an input method interaction.

• The Pre-Edit Area displays the intermediate text for languages
that are composed before the application acts on the data. There
are several possible locations for the pre-edit area. These are:

— Over-the-spot displays the data in an input method window
that is placed over the point of insertion.

— Off-the-spot displays the pre-edit window inside the appli-
cation window (usually at the bottom) but not at the point of
insertion.

— Root-window uses a pre-edit window that is a child of the
root window.

A VendorShell resource, XmNpreeditType determines which
style is used for a Text or TextField input method. The syntax,
possible values, and default value of this resource are implemen-
tation dependent.

• The Auxiliary Area is used for popup menus and customizing
dialogs that some input methods use.

Input methods are supplied by vendors and are implementation
dependent. The VendorShell resource XmNinputMethod is an
implementation-dependent string that specifies the input method
portion of the locale modifiers. If a value is supplied for this
resource, Motif uses it to set the locale modifiers before opening an
input method for Text or TextField.

The following figure shows one possible program window with a
Text widget using over-the-spot interaction for Japanese text input.
The status area indicates that phonetic input is in use and insert

11−44

Internationalization

mode is enabled. The pre-edit area shows that the letter "H" has
been entered. Since there is no Hiragana phonetic equivalent, the
"H" appears in the pre-edit window.

Figure 11-4. Text Widget Pre-Edit and Status Areas Using over-the-spot

The following figure shows the same window after a "u" has been
entered following the "H" shown in the previous figure.

11−45

OSF/Motif Programmer’s Guide

Figure 11-5. Text Widget Pre-Edit Area After Next Character Entry

Here the pre-edit area is displaying the phonetic equivalent of the
English letters "hu" in Hiragana.

11.4.1.2 Input Context

An input context is the mechanism used to provide the state
information needed to manage the information flow between the
application and the input method. It is a combination of an input
method, a locale specifying the encoding of character strings to be
returned, an application window, and internal state information.
The following figure shows the relationships involved. The input
method is determined by the locale specified by the application user.

11−46

Internationalization

Figure 11-6. Input Method and Input Contexts

11.4.1.3 Input and the Motif Text widget

The Motif Text and TextField widgets, when editable, provide a
transparent connection to the locale-specific input method for text
input. The application programmer specifies an appropriate font
set in the Text or TextField XmNfontList resource and creates
either widget as a descendant of VendorShell. VendorShell pro-
vides geometry management of the status and pre-edit areas. It
also supplies a visual separator between the status area window
and the application’s top level window.

Setting the VendorShell resource XmNpreeditType dictates the
location of the input method window. With an off-the-spot input
method, the pre-edit and status area windows appear at the bottom

11−47

OSF/Motif Programmer’s Guide

of the application window.

11.4.1.4 Text Input Using a DrawingArea

An application that needs special text processing may use a
DrawingArea for text input and output. For internationalized text
input with any widget other than Text or TextField, the application
must use the Xlib input method facilities. These allow the applica-
tion to open an input method and input context and to obtain input
from the input method. When using these facilities, an application
may also need to handle input method geometry management, focus
management, event filtering, and other issues. For more informa-
tion, see Xlib—C Language X Interface.

11.4.1.5 Geometry Management of Pre-edit and Status Areas

When using an off-the-spot input method with the Text or TextField
widget, the pre-edit and status areas are below the client’s main
window but inside the VendorShell. VendorShell accomplishes the
necessary geometry management. If the application uses either
XtGetValues or XtSetValues to get or set the height (XmNheight) of
VendorShell, the height includes the height of the input method
area.

The following figure shows a Text widget using an off-the-spot input
method. The distance "h" is the additional height that the input
manager needs to display the status and pre-edit areas. Note that
in off-the-spot, the pre-edit area is at the bottom of the interaction.

11−48

Internationalization

Figure 11-7. Text Widget Pre-Edit and Status Areas Using off-the-spot

11.4.2 Compound Strings and Compound Text

Compound text is the standard format for exchanging textual data
between X window system applications. This is necessary when the
user moves text displayed in one codeset to another window with
text in a different codeset. For example, the following figure shows
two windows, one titled "UJIS" and the other titled "Shift JIS."

11−49

OSF/Motif Programmer’s Guide

Figure 11-8. Reason for Compound Text

Both windows represent a Motif Text widget, one with some
Japanese UJIS characters displayed, and the other with some Shift
JIS characters. If the user wants to cut text from one window and
paste it in the other window, compound text is used to pass data
between the two. The Motif Text widget does this automatically.

If one of the widgets in the previous figure is a Label widget instead
of a Text widget, a different situation exists. This is because the
Label widget has its text data in compound string format, while the
text widget data is a simple character string. In order to pass text
data between a Text or TextField widget and any other widget, the
application needs to convert the compound string to compound text.

11−50

Internationalization

Motif has two functions, XmCvtXmStringToCT and XmCvtCTToXm-
String, for converting between compound strings and compound
text.

XmCvtXmStringToCT converts a compound string to compound text.
The converter uses the font list tag associated with a given com-
pound string segment to select a compound text format for that seg-
ment. A registry defines a mapping between font list tags and com-
pound text encoding formats. The converter uses the following algo-
rithm for each compound string segment:

1. If the compound string segment tag is mapped to
XmFONTLIST_DEFAULT_TAG in the registry, the converter passes
the text of the compound string segment to XmbTextListTo-
TextProperty with an encoding style of XCompoundTextStyle
and uses the resulting compound text for that segment.

2. If the compound string segment tag is mapped to an MIT
registered charset in the registry, the converter creates the
compound text for that segment using the charset (from the
registry) and the text of the compound string segment as
defined in the X Consortium Standard Compound Text Encod-
ing.

3. If the compound string segment tag is mapped to a charset in
the registry that is neither XmFONTLIST_DEFAULT_TAG nor an
MIT registered charset, the converter creates the compound
text for that segment using the charset (from the registry) and
the text of the compound string segment as an "extended seg-
ment" with a variable number of octets per character.

4. If the compound string segment tag is not mapped in the regis-
try, the result is implementation dependent.

An application can use XmRegisterSegmentEncoding to map a font
list element tag to a compound text encoding format. For example,
the application may be using a font list element tag of "BOLD" to
identify a compound text segment consisting of localized text to be

11−51

OSF/Motif Programmer’s Guide

displayed in a bold font. To ensure that the segment is treated as
localized text when converted to compound text, the tag "BOLD"
should be mapped to XmFONTLIST_DEFAULT_TAG as follows:

char *old_encoding = XmRegisterSegmentEncoding("BOLD",
XmFONTLIST_DEFAULT_TAG);

XtFree(old_encoding);

XmCvtCTToXmString converts compound text to a compound string.
This function is implementation dependent.

See chapter 16 for more information on transferring data between
applications. The compound text format is described in the X Con-
sortium Standard Compound Text Encoding.

11−52

Chapter 12. Color and Pixmaps

Motif uses colors and pixmaps for several general purposes:

• To fill window backgrounds and borders

• To draw text and graphics in window foregrounds

• To generate shadows with a three-dimensional appearance

• To highlight the widget that has keyboard focus

• To indicate that a button is armed or selected

Motif uses other pixmaps for specific purposes:

• As the application’s icon for use by the window manager

• For drag icons and drop site animation

• As a CascadeButton symbol indicating that a menu is attached
to the CascadeButton

• As a MessageBox symbol indicating the type of message
displayed

• As the face of a button when the button is insensitive

All of these colors and pixmaps are represented as resources. The
user or application can set the resource values via resource files,
and the application can set them using XtSetValues.

Motif also uses a number of pixmaps that are not represented as
resources. The user and application cannot change these. Among
these fixed pixmaps are the following:

• The pixmaps used to stipple insensitive widgets

• The pixmaps used to draw arrows in ScrollBars

• The pixmaps used to create the default source cursor icons in
Text, TextField, List, and Label subclasses

12−1

OSF/Motif Programmer’s Guide

12.1 Default Colors

The following resources determine the colors or pixmaps generally
used in Motif:

Borders Core resources XmNborderColor and XmNbor-
derPixmap.

Backgrounds Core resources XmNbackground and XmNback-
groundPixmap.

Foregrounds Primitive and Manager resource XmNfore-
ground; Label and LabelGadget resources
XmNlabelPixmap and XmNlabelInsensi-
tivePixmap.

Shadows Primitive and Manager resources XmNbot-
tomShadowColor, XmNbottomShadowPixmap,
XmNtopShadowColor, and XmNtopShadowPix-
map.

Focus highlights
Primitive and Manager resources
XmNhighlightColor and XmNhighlightPix-
map.

Arming and selection PushButton and PushButtonGadget resources
XmNarmColor and XmNarmPixmap; ToggleBut-
ton and ToggleButtonGadget resources
XmNarmColor, XmNselectPixmap, and
XmNselectInsensitivePixmap; ScrollBar
resource XmNtroughColor.

The following sections describe these groups of resources and their
defaults.

12−2

Color and Pixmaps

12.1.1 Borders

The border color or border pixmap is used to fill the border of a
widget if XmNborderWidth is greater than 0. Note that the border is
outside the widget; that is, it is not within the area determined by
the widget’s XmNheight and XmNwidth. If the user or application
supplies a value for XmNborderPixmap, that pixmap is used to fill
the border; otherwise, XmNborderColor is used.

If the application resource reverseVideo is False or unspecified,
the default for XmNborderColor is the black pixel of the widget’s
screen. If reverseVideo is True, the default for XmNborderColor is
the white pixel of the widget’s screen.

12.1.2 Backgrounds

The background color or background pixmap is used to fill a widget
before anything else is displayed in it. If the user or application
supplies a value for XmNbackgroundPixmap, that pixmap is used to
fill the background; otherwise, the XmNbackground color is used. A
gadget inherits the background color and background pixmap of its
parent.

The default for XmNbackground is implementation dependent.

12.1.3 Foregrounds

12−3

OSF/Motif Programmer’s Guide

The foreground color is used to display text and most graphics in a
widget. Most widgets use the XmNforeground color for this purpose.
Label, LabelGadget, and their subclasses, including buttons, have
pixmap resources that are used for the face of the label or button
when XmNlabelType is set to XmPIXMAP. In this case the XmNlabel-
Pixmap is used for the face when the widget is sensitive, and the
XmNlabelInsensitivePixmap is used when the widget is insensi-
tive. A gadget inherits the foreground color of its parent.

The default for XmNforeground is a color that contrasts with the
background color, based on the XmScreen resource XmNfore-
groundThreshold. The value of this resource is an integer between
0 and 100, inclusive, that specifies a level of perceived brightness
for a color. If the perceived brightness of the background color is
equal to or below this level, Motif treats the background as "dark"
when computing the default foreground color. If the perceived
brightness of the background color is above this level, Motif treats
the background as "light" when computing the default foreground
color. When the background is "dark", the default foreground is
white; when the background is "light", the default foreground is
black.

12.1.4 Shadows

The top shadow color or top shadow pixmap is used to draw the top
and left sides of the three-dimensional shadow at the edge of some
widgets. If the user or application supplies a value for XmNtopSha-
dowPixmap, that pixmap is used for the top and left sides; otherwise,
XmNtopShadowColor is used.

The bottom shadow color or bottom shadow pixmap is used to draw
the bottom and right sides of the three-dimensional shadow. If the
user or application supplies a value for XmNbottomShadowPixmap,

12−4

Color and Pixmaps

that pixmap is used for the bottom and right sides; otherwise,
XmNbottomShadowColor is used.

A gadget inherits the top and bottom shadow colors and pixmaps of
its parent.

In computing the defaults for XmNtopShadowColor and XmNbot-
tomShadowColor, Motif uses the XmScreen resources
XmNdarkThreshold and XmNlightThreshold. The value of each
resource is an integer between 0 and 100, inclusive, that specifies a
level of perceived brightness for a color. If the perceived brightness
of the background color is equal to or below the XmNdarkThreshold,
Motif treats the background as "dark" when computing the default
shadow colors. If the perceived brightness of the background color
is above the XmNlightThreshold, Motif treats the background as
"light" when computing the default shadow colors. Otherwise, Motif
treats the background as "medium" when computing the defaults.

Motif computes the defaults in the following way, depending on the
perceived brightness of the background:

Dark background
The top and bottom shadow colors are interpolated
toward white from the background, with the top sha-
dow color shifted more toward white than the bottom
shadow color.

Light background
The top and bottom shadow colors are interpolated
toward black from the background, with the bottom
shadow color shifted more toward black than the top
shadow color.

Medium background
The top shadow color is interpolated toward white
from the background, and the bottom shadow color is
interpolated toward black from the background.

12−5

OSF/Motif Programmer’s Guide

12.1.5 Focus Highlights

The highlight color or highlight pixmap is used to draw the
highlighting rectangle around widgets that have keyboard focus. If
the user or application supplies a value for XmNhighlightPixmap,
that pixmap is used for the highlight; otherwise,
XmNhighlightColor is used. The highlight color is also used to
draw the location cursor around List items that have keyboard
focus. A gadget inherits the highlight color and highlight pixmap of
its parent.

The default highlight color is the same as the default foreground
color.

12.1.6 Arming and Selection

In PushButtons and PushButtonGadgets outside menus, the
XmNarmColor color is used as the button background when the
XmNfillOnArm resource is True and the user arms the button. In
PushButtons and PushButtonGadgets outside menus, the
XmNarmPixmap is used as the button face (the label area) when the
XmNlabelType is XmPIXMAP and the user arms the button.

In ToggleButtons and ToggleButtonGadgets outside menus, the
XmNselectColor is used to fill the toggle indicator when the XmNin-
dicatorOn and XmNfillOnSelect resources are both True and the
user sets the toggle. For sensitive ToggleButtons and ToggleBut-
tonGadgets outside menus, the XmNselectPixmap is used as the
button face (the label area) when the XmNlabelType is XmPIXMAP
and the toggle is set. For insensitive ToggleButtons under these
conditions, the XmNselectInsensitivePixmap is used as the button

12−6

Color and Pixmaps

face.

In ScrollBars, the XmNtroughColor is used to fill the part of the
slider area that is not taken up by the slider.

Motif computes a single default, known as the select color, for
XmNarmColor, XmNselectColor, and XmNtroughColor. Motif uses
the XmScreen resources XmNdarkThreshold and XmNlightThres-
hold to determine whether the background is "dark", "light", or
"medium" in the same way as for shadow colors. Motif then com-
putes the default in the following way:

Dark background
The select color is interpolated toward white from the
background.

Light background
The select color is interpolated toward black from the
background.

Medium background
The select color is interpolated toward black from the
background.

12.2 Application-Defined Color Generation

Motif generates default colors whenever the application creates a
widget for which one or more of the color resources has no specified
value. Motif does not regenerate default colors when an application
changes the value of XmNbackground via XtSetValues.

An application can use XmChangeColor to recalculate default colors
for a widget based on a new background and set the appropriate
color resources in the widget. For primitives and managers,

12−7

OSF/Motif Programmer’s Guide

XmChangeColor sets XmNbackground, XmNforeground, XmNtopSha-
dowColor, and XmNbottomShadowColor. For widgets and gadgets
with select colors, XmChangeColor also sets the appropriate
resources for those colors.

An application can use XmGetColors to produce default colors for a
given background color without setting any resources. XmGetColors
takes as arguments a screen pointer, a colormap, and a background
pixel representing a color allocated in the colormap. XmGetColors
also has return arguments that are pointers to pixel values for the
foreground, top shadow, bottom shadow, and select colors. The
function generates default colors for the given background. For
each of the return arguments that is not NULL, XmGetColors allo-
cates a color in the colormap and returns the pixel value at the
address specified by the argument.

By default XmChangeColor and XmGetColors calculate colors as
described in the discussion of default colors above. An application
can use XmSetColorCalculation to change the procedure that
these routines use and that Motif uses to calculate default colors
when the application creates a widget. XtSetColorCalculation
takes as its only argument a procedure of type XmColorProc. It sets
Motif’s color-calculation procedure to the new XmColorProc and
returns the color-calculation procedure used previously.
XmSetColorCalculation does not change the procedure used by
XmChangeColor, XmGetColors, and Motif to calculate default colors
for a monochrome screen.

Motif calls the XmColorProc when it needs to compute default colors
or when the application calls XmChangeColor or XmGetColors. The
XmColorProc takes five arguments, all pointers to XColor struc-
tures. The red, green, blue, and pixel members of the first struc-
ture are filled in with the background color. The procedure calcu-
lates red, green, and blue values for the foreground, select, top
shadow, and bottom shadow colors and fills in the other four XColor
structures with these values.

12−8

Color and Pixmaps

The procedure should not allocate color cells for any of these colors.
Motif caches the returned XColor structures and allocates a color
when it needs a pixel value. Usually Motif allocates a color when it
computes the default value for a resource, when the application
calls XmChangeColor, or when the application calls XmGetColors
with a non-NULL value for one of the return pixel values. When
allocating colors as a result of widget creation or a call to
XmChangeColor, Motif uses the colormap of the widget. When allo-
cating colors as a result of a call to XmGetColors, Motif uses the
colormap passed as an argument to the function.

XmGetColorCalculation returns the color-calculation procedure
being used at the time of the call to that routine. Calling
XmSetColorCalculation with an argument of NULL restores the
Motif default color-calculation procedure.

12.3 Colormaps

The colormap used by a widget is the value of the Core resource
XmNcolormap. An application that does not supply its own colormap
does not need to set this resource. The default for a top-level shell
is the default colormap of the screen. For other widgets, the default
is copied from the parent.

An application that uses its own colormap should not use XtAppIni-
tialize to create the top-level shell, because the shell would then
use the screen’s default colormap. Instead, the application should
open the display, create the colormap, and then call XtAppCreate-
Shell with the colormap as the XmNcolormap argument.

If an application uses different colormaps for some windows in its
hierarchy, it must tell the window manager about those colormaps
by setting a WM_COLORMAP_WINDOWS property on the top-

12−9

OSF/Motif Programmer’s Guide

level window. See chapter 16 for more information.

For more information about colormaps, see Xlib—C Language X
Interface.

12.4 Using Pixmaps

Motif uses pixmaps supplied by the application or the user for
widget borders, backgrounds, labels, shadows, focus highlights, and
button arming or selection indicators. Motif also uses other pix-
maps that the application or user can supply for more specific pur-
poses: as application icon, drag icons, CascadeButton menu indica-
tors, MessageBox symbols, and labels for insensitive buttons.

Motif provides facilities for an application to install and cache
images and pixmaps. Motif also has string-to-pixmap resource con-
verters that retrieve pixmaps from the cache or install them from
files in X bitmap format. Because of these converters both applica-
tions and users can specify pixmaps as resource values from
resource files or the command line.

An application can use XmGetPixmapByDepth to retrieve or create a
pixmap with a specified name, screen, foreground, background, and
depth. XmGetPixmapByDepth finds or creates a pixmap in the fol-
lowing way:

• It searches the pixmap cache for a pixmap matching the
specified name, screen, foreground, background, and depth. If it
finds a matching pixmap, it returns the pixmap.

• If it does not find a matching pixmap in the cache, it searches
the image cache for an image matching the specified name. If it
finds a matching image, it creates and caches a pixmap of the
specified depth on the specified screen, transfers the image to the

12−10

Color and Pixmaps

pixmap, and returns the pixmap.

• If it does not find a matching image in the cache, it uses
XtResolvePathname to search for a file of the specified name.
The search path comes from the environment variable XBMLANG-
PATH or, if XBMLANGPATH is not set, from a default search path. If
it finds such a file, it assumes that the file is in X bitmap format,
reads the file, and creates and caches an image in XYBitmap for-
mat. It then creates and caches a pixmap of the specified depth
on the specified screen, transfers the image to the pixmap, and
returns the pixmap.

• If it does not find a matching X bitmap file, it returns
XmUNSPECIFIED_PIXMAP.

Motif preinstalls a number of images in the image cache. The
names and characteristics of these images are documented in the
XmInstallImage(3X) reference page. Motif offers two ways for an
application to provide its own image as the source for a pixmap to
be created by XmGetPixmapByDepth:

• The application can create its own image, usually via
XCreateImage or XGetImage. The image can be of any depth.
The application can then call XmInstallImage to install the
image in the image cache by name.

• The application or user can create a file in X bitmap format and
install the file under an appropriate name in a directory that is
in the search path used by XmGetPixmapByDepth. For a descrip-
tion of the X bitmap format, see Xlib—C Language X Interface.

Both of these mechanisms have advantages and disadvantages. An
application using XmInstallImage can create an image of any
depth. However, if it intends to use the image name in a resource
specification, it must be sure to call XmInstallImage before creating
any widgets that use the image.

12−11

OSF/Motif Programmer’s Guide

An application using an X bitmap file is limited to creating an
image of depth 1. However, the image is always available for use
by a resource converter, and the application can use the search path
mechanism of XtResolvePathname for such purposes as supplying
different images for different locales.

XmInstallImage does not make a copy of the image when it caches
it. The application must not destroy the image until it removes the
image from the cache, using XmUninstallImage. An application can
use XmDestroyPixmap to free a pixmap cached by XmGetPixmapBy-
Depth. XmDestroyPixmap does not actually destroy the pixmap
until all references to it are freed.

12−12

Chapter 13. Input, Focus, and Key-
board Navigation

The X server communicates with clients by means of various classes
of events. Among these are events denoting input from the key-
board and mouse (and, in some X extensions, input from other dev-
ices). Each event is associated with a window, and the X server
sends the event to any client that has expressed interest in events
of that type on that window.

In the simplest case, when a keyboard or pointer event occurs, the X
server sends the event to the client that has expressed interest in
events of that type on the window that contains the pointer. If no
such client exists, the server searches up the window’s hierarchy
until it finds a client that has expressed interest in events of that
type on an ancestor window. In many cases, however, event pro-
cessing is more complex:

• A client can grab a pointer button or key, the pointer or key-
board, or the entire server. The grabbing client then receives
the relevant events for the duration of the grab.

• A client can set the input focus to some window. Keyboard
events that would normally be reported to this window or one of
its inferiors are reported as usual, but other events are reported
with respect to the focus window. Window managers typically
use this technique to implement a "click-to-type" interaction
style, in which the user clicks the pointer on some window, and
that window retains the keyboard focus regardless of the posi-
tion of the pointer. Other clients, often in cooperation with the
window manager, can set the focus to a particular window
within the application hierarchy.

To insulate applications from the complexities of X event handling,
Xt and Motif have developed higher-level facilities based on widg-
ets:

• Motif supplies a VendorShell resource, XmNkeyboardFocusPol-
icy, to allow a user or application to control the model of key-
board focus in the VendorShell and its descendants. Keyboard

13−1

OSF/Motif Programmer’s Guide

focus can be with the widget the contains the pointer or with the
widget in which the user presses BSelect.

• In the click-to-type model, the user can also use keys to navigate
from widget to widget. Motif provides a model of tab groups,
which are widgets or sets of widgets to which the user moves via
KNextField and KPrevField. Within a tab group, the user
traverses between widgets using KUp, KDown, KLeft, and KRight.
Motif supplies resources to control whether or not a widget con-
stitutes a tab group and whether or not the user can traverse to
it via the keyboard. Motif also has a general routine, XmPro-
cessTraversal, for use by the application in moving keyboard
focus to a widget or tab group. The Motif menu system has a
specialized traversal mechanism.

• Xt provides the basic event-dispatching loop used by most appli-
cations. Xt takes events out of the application’s queue and
dispatches them to the appropriate widget, usually the widget
that has input focus. Xt usually invokes an action associated
with the particular event via a table of translations from event
specifications to action routines. The action, in turn, often
invokes a callback list. An application primarily responds to
events by means of its callback routines. At a lower level, it can
also provide its own event handler, a routine invoked by the Xt
dispatching loop when the widget receives events of the specified
type.

• Motif and Xt provide mnemonics and accelerators, which are
shortcuts for taking actions associated with a widget when the
widget does not have input focus. A mnemonic is a keysym for a
key that activates a visible button in a menu. An accelerator
is a description for an event that invokes an action routine via a
translation.

13−2

Input, Focus, and Keyboard Navigation

13.1 Focus Models

Motif provides two models for determining which widget within an
application receives keyboard events. The focus model is deter-
mined for all descendants of a VendorShell by the value of the Ven-
dorShell resource XmNkeyboardFocusPolicy:

• When the value is XmEXPLICIT, the widget under the pointer
does not necessarily receive keyboard events. The user must
take an action other than moving the pointer to transfer key-
board focus to a widget. The user can usually transfer focus to a
widget by pressing BSelect on that widget or by using a key-
board navigation action to traverse to the widget.

When the value is XmEXPLICIT, a widget must be traversable
to receive keyboard events. In general, a widget is traversable
when its XmNsensitive, XmNancestorSensitive, and
XmNtraversalOn resources are True and when the widget and its
ancestors are managed, realized, mapped, and viewable. See the
section "Controlling Keyboard Navigation" for more information.

• When the value is XmPOINTER, the widget under the pointer
receives keyboard events, unless that widget is insensitive. Key-
board navigation operations are not available. However, the
user can still use the keyboard to traverse a menu system.
KMenuBar moves focus to the MenuBar, and KMenu posts a pop-
up menu if available. When the user posts a menu via KMenu or
via BSelect Release, KActivate, or KSelect in a CascadeBut-
ton, keyboard navigation operations are available in the menu
until the menu is unposted. When the user exits the menu sys-
tem, keyboard focus returns to the widget under the pointer.

MWM provides two parallel focus models for determining which
top-level window receives keyboard events. The focus model is
determined by the value of the mwm resource keyboardFocusPolicy:

13−3

OSF/Motif Programmer’s Guide

• When the value is "explicit", the window under the pointer does
not necessarily receive keyboard events. The user must take an
action other than moving the pointer to transfer keyboard focus
to a window. The user can usually transfer focus to a window by
pressing BSelect on that window or by using KNextFamilyWin-
dow, KPrevFamilyWindow, KNextWindow, or KPrevWindow to
traverse to the window.

• When the value is "pointer", the widget under the pointer
receives keyboard events. Keyboard window navigation opera-
tions are not available.

When the focus policy is "explicit", four boolean mwm resources can
be set to True to allow a window to receive keyboard focus automat-
ically at specified times:

autoKeyFocus when the window with focus is iconified or
unmapped (gives focus to the window that last
had it)

deiconifyKeyFocus when the window is iconified
raiseKeyFocus when the window is raised to the top of the

stack
startupKeyFocus when the window is mapped

13.2 Controlling Keyboard Navigation

In order to receive keyboard focus when the shell’s XmNkeyboard-
FocusPolicy is XmEXPLICIT, a widget or gadget must meet the fol-
lowing conditions:

• The widget and its ancestors must not be in the process of being
destroyed.

13−4

Input, Focus, and Keyboard Navigation

• The widget and its ancestors must be sensitive. A widget is
sensitive when its XmNsensitive and XmNancestorSensitive
resources are both True.

• The XmNtraversalOn resource for the widget and its ancestors
must be True.

• The widget must be viewable. This means that the widget and
its ancestors must be managed, realized, and (except for gadg-
ets) mapped. Furthermore, in general, some part of the widget’s
rectangular area must be unobscured by the widget’s ancestors.

In a ScrolledWindow with an XmNscrollingPolicy of XmAU-
TOMATIC, a widget that is obscured because it is not within the
clip window may be traversable if some part of the widget is
within the work area and if an XmNtraverseObscuredCallback
routine can make the widget unobscured by scrolling the win-
dow.

Most managers cannot receive focus even if they meet all these con-
ditions. In general only primitives and gadgets are eligible to
receive focus. A DrawingArea can receive focus if it meets the con-
ditions above and if, in addition, it has no child whose XmNtraver-
salOn resource is True.

XmGetFocusWidget takes a widget argument that identifies a
widget hierarchy, up to the nearest shell ancestor. It returns the
widget in that hierarchy that has keyboard focus or that last had
focus when the user navigated away from that hierarchy.

An application can use XmIsTraversable and XmGetVisibility to
determine whether a widget is eligible to receive focus. XmIs-
Traversable returns True if the widget argument meets all the
conditions described in this section. Otherwise, it returns False.
This routine generally returns False if the widget argument is a
composite, even if it has traversable children.

13−5

OSF/Motif Programmer’s Guide

XmGetVisibility returns a value indicating the visibility of the
widget argument:

• XmVISIBILITY_FULLY_OBSCURED—The widget is completely
obscured by its ancestors or is not visible for some other reason
(such as being unmapped or unrealized)

• XmVISIBILITY_PARTIALLY_OBSCURED—Some part of the widget’s
rectangular area is obscured by its ancestors

• XmVISIBILITY_UNOBSCURED—None of the widget’s rectangular
area is obscured by its ancestors

Note that a fully obscured widget may be traversable if it is inside
the work area of an automatic ScrolledWindow with an XmNtraver-
seObscuredCallback list. See the section "Traversing to Obscured
Widgets" for more information.

13.2.1 Sensitivity

Unless a widget is sensitive, Xt does not dispatch keyboard or
pointer events to the widget. An insensitive widget therefore can-
not receive keyboard focus.

A widget can be sensitive only when all its ancestors are sensitive.
Two boolean resources determine sensitivity: XmNsensitive and
XmNancestorSensitive. XmNsensitive indicates whether the
widget itself is sensitive, and XmNancestorSensitive indicates
whether all ancestors are sensitive.

An application uses the function XtIsSensitive to find out whether
a widget is sensitive. This function returns True when XmNsensi-
tive and XmNancestorSensitive are both True; otherwise, it
returns False.

13−6

Input, Focus, and Keyboard Navigation

The function XtSetSensitive changes the sensitivity of a widget.
With an argument of False, this function sets XmNsensitive to
False and sets each child’s XmNancestorSensitive to False. With
an argument of True, this function sets XmNsensitive to True and,
if the widget’s XmNancestorSensitive is also True, it sets each
child’s XmNancestorSensitive to True. The function then recur-
sively descends the widget tree. For each descendant whose
XmNsensitive and XmNancestorSensitive are both True, it sets
XmNancestorSensitive to True for that widget’s children. Other-
wise, it sets XmNancestorSensitive to False for the descendant
widget’s children.

In this way XtSetSensitive ensures that each widget’s XmNances-
torSensitive is True only when the parent’s XmNsensitive and
XmNancestorSensitive are both True. In other words, the widget
is sensitive only when it and all its ancestors are sensitive. To
maintain this relation an application should always use XtSetSen-
sitive to change a widget’s sensitivity instead of calling XtSet-
Values on the widget’s resources.

Note that XtSetSensitive does not modify any resources for pop-up
children. If the parent widget is insensitive when a pop-up child is
created, the child’s XmNancestorSensitive will be False. XtSet-
Sensitive on the parent widget will not change this value, and the
child will remain insensitive. To avoid this problem, an application
that creates a DialogShell or a MenuShell should either ensure that
the parent is sensitive when the child is created or specify a value of
True for the child’s XmNancestorSensitive. One way to do this is
in a resource file:

*XmMenuShell.ancestorSensitive: True
*XmDialogShell.ancestorSensitive: True

When a widget or gadget is insensitive, Motif indicates the insensi-
tivity to the user by stippling or graying the widget.

13−7

OSF/Motif Programmer’s Guide

13.2.2 XmNtraversalOn

XmNtraversalOn determines whether or not a widget is eligible to
receive keyboard focus when XmNkeyboardFocusPolicy is XmEXPLI-
CIT. When XmNtraversalOn is False and XmNkeyboardFocusPolicy
is XmEXPLICIT, it is not possible for the user to give keyboard focus
to the widget, even if the widget is sensitive and viewable.
XmNtraversalOn has no effect when XmNkeyboardFocusPolicy is
XmPOINTER.

The default value for XmNtraversalOn is True for most Motif widg-
ets. Following are the exceptions:

• Separator and SeparatorGadget, where XmNtraversalOn is
forced to False

• ScrollBar, where XmNtraversalOn defaults to True when it is the
child of a ScrolledWindow whose XmNscrollingPolicy is XmAU-
TOMATIC and to False otherwise

• Label and LabelGadget, where XmNtraversalOn is forced to
False inside menus and defaults to False otherwise

• RowColumn, where XmNtraversalOn defaults to True in a Wor-
kArea and is not applicable otherwise

13.2.3 Tab Groups

A tab group is a collection of traversable widgets or a single widget
that contains a collection of traversable elements. When the shell’s
XmNkeyboardFocusPolicy is XmEXPLICIT, the user traverses to a
tab group using KNextField and KPrevField. Within a tab group,
when the focus is on a non-tab-group widget or an element, the user

13−8

Input, Focus, and Keyboard Navigation

traverses to another non-tab-group widget or another element using
KUp, KDown, KLeft, and KRight.

A tab group is always represented by a widget or gadget. When the
group is a collection of widgets, the tab group is typically the
manager that is the parent of the widgets. When the group is a sin-
gle widget like List or Text, the tab group is that widget itself.

The arrow keys do not traverse to tab groups or to non-tab-group
widgets or elements outside the current tab group. To traverse to
another tab group using the keyboard, the user must press KNext-
Field or KPrevField.

To be eligible for traversal, a tab group must meet all the conditions
discussed in the section "Controlling Keyboard Navigation" above,
except that a manager that is a tab group and meets the other con-
ditions is eligible for traversal as long as it contains a descendant
that can receive focus. If the tab group does not meet these condi-
tions, the KNextField and KPrevField actions ignore the tab group.

Within a tab group, non-tab-group widgets must also meet all the
conditions discussed in the section "Controlling Keyboard Naviga-
tion" to be eligible for traversal. If they do not meet these condi-
tions, the arrow key actions ignore the widgets.

Whether or not a widget is a tab group is determined by the value of
the XmNnavigationType resource. The two primary values for this
resource are XmTAB_GROUP, which indicates that the widget is a tab
group, and XmNONE, which indicates that it is not.

When the user traverses to the next or previous tab group, the
direction of the traversal is usually determined by the relative loca-
tions of the current and target groups. In a left-to-right language
environment, traversal to each subsequent tab group proceeds from
left to right and top to bottom. At the bottom right, traversal wraps
to the tab group at the top left. Traversal to previous tab groups
proceeds in the opposite direction.

13−9

OSF/Motif Programmer’s Guide

The application can control the order of traversal by specifying an
XmNnavigationType of XmEXCLUSIVE_TAB_GROUP for a widget in the
hierarchy. When any widget in a hierarchy has an XmNnavigation-
Type of XmEXCLUSIVE_TAB_GROUP, KNextField and KPrevField do
not move to any widgets in that hierarchy that have been desig-
nated tab groups by means of an XmNnavigationType of
XmTAB_GROUP. But KNextField and KPrevField do move to widgets
whose XmNnavigationType is XmSTICKY_TAB_GROUP, even if some
widgets are exclusive tab groups. Thus, an application that uses
XmEXCLUSIVE_TAB_GROUP to control traversal must be sure that all
tab groups have an XmNnavigationType of either
XmEXCLUSIVE_TAB_GROUP or XmSTICKY_TAB_GROUP.

When any widget in a hierarchy has an XmNnavigationType of
XmEXCLUSIVE_TAB_GROUP, traversal to subsequent tab groups does
not depend on the relative locations of the groups. Instead, it
proceeds to widgets in the order in which their XmNnavigationType
resources were specified as XmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP, either by creating the widgets with that
value or by calling XtSetValues. That is, traversal proceeds to the
widget whose XmNnavigationType was next specified to be
XmEXCLUSIVE_TAB_GROUP or XmSTICKY_TAB_GROUP. Traversal to
previous tab groups proceeds in the opposite direction.

Within a tab group whose XmNnavigationType is
XmEXCLUSIVE_TAB_GROUP, the arrow keys do not behave the same
way as they would if the XmNnavigationType were either
XmTAB_GROUP or XmSTICKY_TAB_GROUP. With XmTAB_GROUP or
XmSTICKY_TAB_GROUP, the direction of traversal via the arrow keys
depends on the relative locations of the tab group’s children.
KRight moves to the next traversable child to the right of the child
with the focus; KDown moves to the next traversable child below the
child with the focus; and so on.

With XmEXCLUSIVE_TAB_GROUP, traversal via the arrow keys
depends on the order of the tab group’s list of children, not on the

13−10

Input, Focus, and Keyboard Navigation

relative locations of the children. KRight has the same effect as
KDown: both move to the next traversable child in the tab group’s list
of children. KLeft has the same effect as KUp: both move to the pre-
vious traversable child in the tab group’s list of children.

There are three principal differences between
XmEXCLUSIVE_TAB_GROUP and XmSTICKY_TAB_GROUP:

• XmEXCLUSIVE_TAB_GROUP has the effect of disabling traversal to
tab groups that have an XmNnavigationType of XmTAB_GROUP.
XmSTICKY_TAB_GROUP does not; it simply ensures that traversal
to that tab group is possible even when some widget in the
hierarchy has an XmNnavigationType of
XmEXCLUSIVE_TAB_GROUP.

• XmEXCLUSIVE_TAB_GROUP changes the order of traversal of tab
groups within the widget hierarchy. XmSTICKY_TAB_GROUP does
not.

• XmEXCLUSIVE_TAB_GROUP changes the order of traversal of widg-
ets inside the tab group. XmSTICKY_TAB_GROUP does not.

The function XmAddTabGroup has the same effect as calling XtSet-
Values with an XmNnavigationType of XmEXCLUSIVE_TAB_GROUP.
The function XmRemoveTabGroup has the same effect as calling
XtSetValues with an XmNnavigationType of XmNONE. XmAddTab-
Group and XmRemoveTabGroup are obsolete and exist for compatibil-
ity with earlier releases of OSF/Motif.

All Motif managers except RowColumn have a default XmNnaviga-
tionType of XmTAB_GROUP. In RowColumn, XmNnavigationType is
not applicable for MenuBars, PulldownMenus, and PopupMenus.
For a WorkArea the default is XmTAB_GROUP, and for an Option-
Menu the default is XmNONE.

All Motif primitives except List, ScrollBar, Text, and TextField have
a default XmNnavigationType of XmNONE. The default for List, Text,
and TextField is XmTAB_GROUP, and the default for ScrollBar is

13−11

OSF/Motif Programmer’s Guide

XmSTICKY_TAB_GROUP. These are all controls that have their own
internal navigation.

Motif sets the navigation type of widgets in some situations. In par-
ticular:

• The child of a shell always behaves as a tab group, no matter
what the value of its XmNnavigationType.

• Panes and sashes inside PanedWindows have a default XmNnavi-
gationType of XmTAB_GROUP. If the XmNnavigationType of a
pane is XmNONE when the pane is created, Motif sets the value of
that resource to XmTAB_GROUP.

• SelectionBox and its subclasses set the XmNnavigationType of
their automatically created List and Text children to
XmSTICKY_TAB_GROUP.

The function XmGetTabGroup returns the tab group that contains a
widget. If the widget itself is a tab group or a shell, it returns that
widget. If neither the widget nor any ancestor up to the nearest
shell is a tab group, it returns the nearest ancestor that is a shell.
Otherwise, it returns the nearest ancestor that is a tab group.

13.2.3.1 Controlling Tab Group Traversal Order

By default, KNextField and KPrevField traverse to successive tab
groups in order of layout, from left to right and top to bottom,
within a parent tab group, before proceeding in layout order to the
next tab group that is a sibling of the parent. Traversal order
changes when any widget in a shell hierarchy has an XmNnaviga-
tionType of XmEXCLUSIVE_TAB_GROUP. In this case KNextField and
KPrevField traverse only to widgets in the hierarchy whose XmNna-
vigationType is either XmEXCLUSIVE_TAB_GROUP or

13−12

Input, Focus, and Keyboard Navigation

XmSTICKY_TAB_GROUP. The traversal order is the order in which the
widgets’ XmNnavigationType was specified to be either
XmEXCLUSIVE_TAB_GROUP or XmSTICKY_TAB_GROUP.

This mechanism gives an application the means to control tab group
traversal order. An application must do the following:

• Ensure that at least one widget in the shell hierarchy has an
XmNnavigationType of XmEXCLUSIVE_TAB_GROUP

• Ensure that all widgets that the application wants to be tab
groups have an XmNnavigationType of either
XmEXCLUSIVE_TAB_GROUP or XmSTICKY_TAB_GROUP

• Specify values for the tab groups’ XmNnavigationType, via either
creation argument lists or XtSetValues, in the order in which
the tab groups are to be traversed

Note that when a tab group has an XmNnavigationType of
XmEXCLUSIVE_TAB_GROUP, traversal to non-tab-group widgets inside
that tab group proceeds in the order in which the children appear in
their parents’ XmNchildren lists. If the application wants to specify
the order of tab group traversal but still wants traversal of non-
tab-group widgets to proceed according to layout, it should select
one widget in the hierarchy to have an XmNnavigationType of
XmEXCLUSIVE_TAB_GROUP. This tab group should contain no
non-tab-group widgets. For example, it could be the MainWindow if
the MainWindow contains only tab groups, or it could be a primitive
tab group, such as List or Text. The application should then specify
an XmNnavigationType of XmSTICKY_TAB_GROUP for all other tab
groups in the hierarchy.

13−13

OSF/Motif Programmer’s Guide

13.2.4 Initial Focus

A tab group may contain any combination of tab group and non-
tab-group widgets. A tab group that contains other widgets cannot
receive focus itself. When the user traverses to a composite tab
group, Motif gives focus to some widget within the tab group.

Motif uses the Manager resource XmNinitialFocus in determining
which widget receives focus. The value of XmNinitialFocus is a
widget that meets the following conditions:

• The widget must be either a tab group or a non-tab-group widget
that can receive keyboard focus. In general a widget can receive
keyboard focus when it is a primitive, a gadget, or a manager
(such as a DrawingArea with no traversable children) that acts
as a primitive.

• The widget must not be a descendant of a tab group that is itself
a descendant of the manager. That is, the widget cannot be con-
tained within a tab group that is nested inside the manager.

• The widget and its ancestors must have a value of True for their
XmNtraversalOn resources.

If the widget does not meet these conditions, XmNinitialFocus is
treated as if the value were NULL.

Motif uses XmNinitialFocus to determine which widget receives
focus in these situations:

• When the manager is the child of a shell and the shell hierarchy
receives focus for the first time

• When focus is inside the shell hierarchy, the manager is a com-
posite tab group, and the user traverses to the manager via the
keyboard

13−14

Input, Focus, and Keyboard Navigation

Motif then determines focus as follows:

• If XmNinitialFocus is a traversable non-tab-group widget, that
widget receives focus.

• If XmNinitialFocus is a traversable tab group, that tab group
receives focus. If that tab group is a composite with descendant
tab groups or traversable non-tab-group widgets, these pro-
cedures are used recursively to assign focus to a descendant of
that tab group.

• If XmNinitialFocus is NULL, the first traversable non-tab-
group widget that is not contained within a nested tab group
receives focus.

• If XmNinitialFocus is NULL and no traversable non-tab-group
widget exists, the first traversable tab group that is not con-
tained within a nested tab group receives focus. If that tab
group is a composite with descendant tab groups or traversable
non-tab-group widgets, these procedures are used recursively to
assign focus to a descendant of that tab group.

If a shell hierarchy regains focus after losing it, focus returns to the
widget that had the focus at the time it left the hierarchy.

The use of XmNinitialFocus is undefined if the manager is a Menu-
Bar, PulldownMenu, PopupMenu, or OptionMenu.

13.2.5 Traversing to Obscured Widgets

In general, a widget is not eligible to receive focus unless some part
of its rectangular area is unobscured by its ancestors. However, it
may be possible to traverse to a widget that is a descendant of a
ScrolledWindow whose XmNscrollingPolicy is XmAUTOMATIC, even
if that widget is not within the ScrolledWindow’s clip window.

13−15

OSF/Motif Programmer’s Guide

Traversal to such a widget is possible under the following condi-
tions:

• Some part of the widget’s rectangular area is within the bounds
of the ScrolledWindow’s work window.

• The ScrolledWindow’s clip window is completely unobscured by
its ancestors. If the ScrolledWindow is a descendant of another
ScrolledWindow, it must be unobscured by the ancestor’s work
window but may be outside the ancestor’s clip window.

• The ScrolledWindow has a procedure on its XmNtraverseOb-
scuredCallback list that can bring some part of the widget’s
rectangular area into the clip window.

• The widget meets the other conditions for receiving focus
described in the section "Controlling Keyboard Focus" above.

Whenever the user attempts to traverse to such a widget and the
widget is partially or fully obscured by the clip window, Motif calls
the ScrolledWindow’s XmNtraverseObscuredCallback procedures.
If the ScrolledWindow has one or more ancestor ScrolledWindows,
Motif calls the XmNtraverseObscuredCallback list for each Scrol-
ledWindow whose clip window obscures the traversal target, from
the lowest level of the hierarchy to the highest. The XmNtraver-
seObscuredCallback procedure can try to bring the widget into the
clip window if necessary, usually by calling XmScrollVisible. If
the target widget is traversable after the XmNtraverseObscured-
Callback procedures are invoked, that widget receives focus.

A procedure can determine the visibility of a widget by calling
XmGetVisibility.

13−16

Input, Focus, and Keyboard Navigation

13.2.6 XmProcessTraversal

The principal routine for traversing to a widget is XmPro-
cessTraversal. Motif uses this routine to effect traversal when the
user presses an arrow key, KNextField, or KPrevField. An applica-
tion can use XmProcessTraversal to implement its own traversal
actions.

XmProcessTraversal takes two arguments, a widget and a constant
specifying a traversal action. The routine uses the widget argument
to identify the hierarchy that contains the widget and that has its
root at the nearest shell. If that shell does not currently have the
focus, any changes to the element with focus within that shell will
not occur until the next time the shell receives focus.

The traversal action argument identifies one of three kinds of action
to take. The following descriptions of these actions refer to travers-
able non-tab-group widgets and traversable tab groups. A travers-
able non-tab-group widget is a widget that is not a tab group and
that meets all the conditions for receiving focus discussed in the sec-
tion "Controlling Keyboard Navigation" above. A traversable tab
group is a tab group widget that meets the same conditions, except
that a manager that is a tab group and meets the other conditions
is also traversable as long as it contains a descendant that can
receive focus.

The routine begins the traversal action from the widget in the
hierarchy that currently has keyboard focus or that last had focus
when the user traversed away from the shell hierarchy.

• Traversal to a non-tab-group widget. This kind of traversal is
possible only when the widget that currently has focus is not a
tab group. Also, these actions do not move focus from one tab
group to another. The actions first determine the containing tab
group. This is the tab group containing the widget that

13−17

OSF/Motif Programmer’s Guide

currently has focus. The actions traverse only to a non-tab-
group widget within the containing tab group.

— XmTRAVERSE_RIGHT—If the XmNnavigationType of the con-
taining tab group is not XmEXCLUSIVE_TAB_GROUP, focus
moves to the next traversable non-tab-group widget to the
right of the widget that currently has focus. At the right side
of the tab group this action wraps to the non-tab-group
widget at the left side and next toward the bottom. At the
lower right corner of the tab group this action wraps to the
non-tab-group widget at the upper left.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP, focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the
order in which the widgets appear in their parents’ XmNchil-
dren lists. After the last widget in the tab group, this action
wraps to the first non-tab-group widget.

— XmTRAVERSE_LEFT—If the XmNnavigationType of the contain-
ing tab group is not XmEXCLUSIVE_TAB_GROUP, focus moves to
the next traversable non-tab-group widget to the left of the
widget that currently has focus. At the left side of the tab
group this action wraps to the non-tab-group widget at the
right side and next toward the top. At the upper left corner
of the tab group this action wraps to the non-tab-group
widget at the lower right.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP, focus moves to the previous
traversable non-tab-group widget in the tab group, proceed-
ing in the reverse order in which the widgets appear in their
parents’ XmNchildren lists. After the first widget in the tab
group, this action wraps to the last non-tab-group widget.

— XmTRAVERSE_DOWN—If the XmNnavigationType of the contain-
ing tab group is not XmEXCLUSIVE_TAB_GROUP, focus moves to

13−18

Input, Focus, and Keyboard Navigation

the next traversable non-tab-group widget below the widget
that currently has focus. At the bottom of the tab group this
action wraps to the non-tab-group widget at the top and next
toward the right. At the lower right corner of the tab group
this action wraps to the non-tab-group widget at the upper
left.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP, focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the
order in which the widgets appear in their parents’ XmNchil-
dren lists. After the last widget in the tab group, this action
wraps to the first non-tab-group widget.

— XmTRAVERSE_UP—If the XmNnavigationType of the containing
tab group is not XmEXCLUSIVE_TAB_GROUP, focus moves to the
next traversable non-tab-group widget above the widget that
currently has focus. At the top of the tab group this action
wraps to the non-tab-group widget at the bottom and next
toward the left. At the upper left corner of the tab group this
action wraps to the non-tab-group widget at the lower right.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP, focus moves to the previous
traversable non-tab-group widget in the tab group, proceed-
ing in the reverse order in which the widgets appear in their
parents’ XmNchildren lists. After the first widget in the tab
group, this action wraps to the last non-tab-group widget.

— XmTRAVERSE_NEXT—Focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the
order in which the widgets appear in their parents’ XmNchil-
dren lists. After the last widget in the tab group, this action
wraps to the first non-tab-group widget.

— XmTRAVERSE_PREV—Focus moves to the previous traversable
non-tab-group widget in the tab group, proceeding in the

13−19

OSF/Motif Programmer’s Guide

reverse order in which the widgets appear in their parents’
XmNchildren lists. After the first widget in the tab group,
this action wraps to the last non-tab-group widget.

— XmTRAVERSE_HOME—If the XmNnavigationType of the contain-
ing tab group is not XmEXCLUSIVE_TAB_GROUP, focus moves to
the first traversable non-tab-group widget at the top left
corner of the tab group.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP, focus moves to the first traversable
non-tab-group widget in the tab group, according to the order
in which the widgets appear in their parents’ XmNchildren
lists.

• Traversal to a tab group. These actions first determine the
current widget hierarchy and the containing tab group. The
current widget hierarchy is the widget hierarchy whose root is
the nearest shell ancestor of the widget that currently has focus.
The containing tab group is is the tab group containing the
widget that currently has focus.

— XmTRAVERSE_NEXT_TAB_GROUP—If no tab group in the current
widget hierarchy has an XmNnavigationType of
XmEXCLUSIVE_TAB_GROUP, focus goes to the next traversable
tab group that is to the right of the widget with current focus
and is within the containing tab group. At the right side of
the containing tab group this action wraps to the tab group at
the left side and next toward the bottom. At the lower right
corner of the containing tab group this action recursively
moves up one level in the hierarchy. Focus then goes to the
next traversable tab group that is to the right of the original
containing tab group and is within the tab group that con-
tains that one. At the lower right corner of the topmost tab
group in the hierarchy, this action wraps to the first travers-
able tab group at the upper left corner of the topmost tab
group.

13−20

Input, Focus, and Keyboard Navigation

If any tab group in the current widget hierarchy has an
XmNnavigationType of XmEXCLUSIVE_TAB_GROUP, focus goes
to the next traversable tab group in the hierarchy, in the
order in which the XmNnavigationType resources of the tab
groups were set to XmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP. After the last tab group in the hierar-
chy, this action wraps to the first tab group.

— XmTRAVERSE_PREV_TAB_GROUP—If no tab group in the current
widget hierarchy has an XmNnavigationType of
XmEXCLUSIVE_TAB_GROUP, focus goes to the next traversable
tab group that is to the left of the widget with current focus
and is within the containing tab group. At the left side of the
containing tab group this action wraps to the tab group at the
right side and next toward the top. At the upper left corner
of the containing tab group this action recursively moves up
one level in the hierarchy. Focus then goes to the next
traversable tab group that is to the left of the original con-
taining tab group and is within the tab group that contains
that one. At the upper left corner of the topmost tab group in
the hierarchy, this action wraps to the first traversable tab
group at the lower right corner of the topmost tab group.

If any tab group in the current widget hierarchy has an
XmNnavigationType of XmEXCLUSIVE_TAB_GROUP, focus goes
to the previous traversable tab group in the hierarchy, in the
reverse order in which the XmNnavigationType resources of
the tab groups were set to XmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP. After the first tab group in the hierar-
chy, this action wraps to the last tab group.

• Traversal to any widget. In this case the widget argument is the
widget to which XmProcessTraversal tries to give focus.

— XmTRAVERSE_CURRENT—Focus goes to the widget argument if
that widget is a traversable non-tab-group widget or tab
group.

13−21

OSF/Motif Programmer’s Guide

Note that XmProcessTraversal cannot be called recursively. In
particular, an application cannot call this routine from an
XmNfocusCallback or XmNlosingFocusCallback procedure.

13.2.7 Focus Callbacks

BulletinBoard, Text, and TextField have XmNfocusMovedCallback
callback lists. Motif invokes the procedures on these lists when
these widgets receive keyboard focus. A callback procedure may
change the widget’s state to reflect the new focus, but it should not
try to change the focus and in particular must not call XmPro-
cessTraversal.

Text and TextField also have XmNlosingFocusCallback callback
lists. The Text and TextField traversal actions invoke these pro-
cedures before traversing to another widget. The third argument to
each procedure is a pointer to an XmTextVerifyCallbackStruct
structure whose reason member is XmCR_LOSING_FOCUS. If a call-
back procedure sets the doit member of this structure to False, the
traversal action does not carry out the traversal. In this way the
application can prevent a user from traversing out of the widget by
means of these actions.

Motif also invokes the XmNlosingFocusCallback procedures when
the widget loses focus by some other means. For example, the user
might click BSelect in another traversable widget, or when the
shell’s XmNkeyboardFocusPolicy is XmPOINTER the user might move
the pointer into another widget. In such cases setting the doit
member of the callback structure has no effect.

13−22

Input, Focus, and Keyboard Navigation

13.3 Translations and Actions

In Xt, the primary means of associating an input event with a
widget-specific procedure is the combination of translations and
actions. Each widget (but not gadget) instance contains a table of
translations that maps event descriptions to procedure names.
Each widget instance also has a table of actions that maps these
procedure names to actual procedures. When a widget receives an
input event, the Xt event-dispatching facility looks up the event in
the translation table, looks up the associated procedure in the
action table, and invokes the action procedure itself. This procedure
usually takes some action to change the widget state and often
invokes callback procedures.

13.3.1 Translation Table Format

An application or user specifies a translation table as a string
whose format is defined in X Toolkit Intrinsics—C Language Inter-
face. In general, the table consists of individual translations
separated by "\n". Each translation consists of an event description
sequence, a colon, and one or more associated procedure names.
Each procedure name also has a list of parameters within
parentheses to be passed to the procedure when it is invoked as a
result of that translation.

An event description in general consists of an optional list of
modifiers, an event type within angle brackets (< and >), an
optional repeat count within parentheses, and an optional event
detail. Modifiers apply only to key, button, motion, enter, and leave
events. If an exclamation point (!) precedes the modifiers, then the

13−23

OSF/Motif Programmer’s Guide

modifiers in the list and no others must be asserted for the action to
be invoked. Otherwise, the modifiers in the list must be asserted,
but others may be as well. A tilde (~) before any modifier means
that that modifier must not be asserted. If the modifier list is
empty, any modifiers may be asserted.

The detail field varies depending on the event type. The most com-
mon use is to identify the keysym for a KeyPress or KeyRelease
event.

Event descriptions in a sequence are separated by commas. Mouse
motion is discarded if it occurs between events in a sequence that
does not include explicit motion events. This allows the following
sort of translation to invoke an action even if the mouse moves
between button press and release:

<Btn1Down>,<Btn1Up> : action()

Following are some important considerations in using translations:

• More specific events should always precede less specific events in
the table:

Ctrl<Key>space : action_1()
<Key>space : action_2()

• Translations with event sequences that are noninitial subse-
quences of other translations are not invoked when the events
occur as part of the longer sequence. For example, up_action()
below would not be invoked on a button release that followed a
button press:

<Btn1Down>,<Btn1Up> : click_action()
<Btn1Up> : up_action()

13−24

Input, Focus, and Keyboard Navigation

• Event descriptions that use a repeat count expand into longer
sequences. For example, the following descriptions are more or
less equivalent:

<Btn1Up>(2) : double_click()
<Btn1Up>,<Btn1Down>,<Btn1Up> : double_click()

This result, combined with the implicit insertion of motion
events between any two other events, means that motion trans-
lations cannot exist in a table with multiclick translations.

See X Toolkit Intrinsics—C Language Interface for more information
on the format of translation tables.

13.3.2 Using Translations

One translation table frequently needs to be merged with another.
For example, a user may want to add one or more translations to a
widget’s default translations. A translation table may begin with
one of three directives that specifies how the table is to be merged
with an existing table:

#replace The new translation table should completely replace
any existing table. This is the default if no directive
is specified.

#augment The new translation table should be added to any
existing table. If the two tables contain duplicate
event descriptions, the translations in the existing
table are used.

#override The new translation table should be added to any
existing table. If the two tables contain duplicate
event descriptions, the translations in the new table

13−25

OSF/Motif Programmer’s Guide

are used.

A widget’s translation table is the value of the Core XmNtransla-
tions resource. The initial value is determined in the following
way:

• If a non-NULL value is specified for XmNtranslations in the
widget creation argument list, the widget class translations are
merged with that value, in order, and the resulting table is used.

• Otherwise, the following tables are merged, in order, and the
resulting table is used:

— The widget class translations

— The value of the baseTranslations resource from the
resource database

— The value of the XmNtranslations resource from the resource
database or, if no value was specified, the default value for
the widget’s XmNtranslations

To take advantage of this initialization ordering, an application
should usually provide any translations of its own by specifying a
value for baseTranslations rather than XmNtranslations in an
application class defaults file or a fallback resource list. This essen-
tially reserves XmNtranslations to the user. The application can
change the widget class translations by specifying baseTransla-
tions, and the user can change the application’s translations by
specifying XmNtranslations.

As the value of a widget’s XmNtranslations, a translation table
must be in a parsed format rather than a string. The string-to-
translation-table converter parses a resource string into a transla-
tion table. An application can also use XtParseTranslationTable
to compile a translation table string into the parsed format. The
application can then merge the parsed table with a widget’s
XmNtranslations in three ways:

13−26

Input, Focus, and Keyboard Navigation

• XtAugmentTranslations merges the parsed table in "#augment"
mode

• XtOverrideTranslations merges the parsed table in "#over-
ride" mode

• XtSetValues of XmNtranslations replaces the existing value
with the parsed table

Some Motif widgets merge additional translations in their initial-
ize and set_values methods. This process may make it impossible
for an application or user to override some translations via resource
files. For example, for some widgets it may not be possible to
change traversal translations in this way.

13.3.3 Actions

Each widget instance has a table that maps action procedure
names, as they appear in translation tables, to actual action pro-
cedures. When an action is invoked via a translation, Xt looks up
the action procedure name in this table and calls the associated pro-
cedure.

Each widget class may have its own action table. In addition, an
application can use XtAppAddActions to add entries to an action
table associated with the application context. Only one such table
exists per application context. If a call to XtAppAddActions con-
tains an action name that is already in the table, the action name
becomes associated with the action procedure supplied in the call to
XtAppAddActions, overriding the existing action.

Xt creates a widget’s action table when the widget is realized. It
uses actions from the following action tables, those listed first hav-
ing highest precedence:

13−27

OSF/Motif Programmer’s Guide

• The action tables for the widget’s class and its superclasses, in
subclass-to-superclass order

• The action tables for the parent’s class and its superclasses, in
subclass-to-superclass order, and so on up the widget hierarchy

• The application context action table (created by calls to XtAppAd-
dActions)

This ordering means that an application cannot use XtAppAddAc-
tions to provide a new action procedure for an action name that is
already registered by a widget class. To do that, the application
must supply a translation that maps the event to an action name
that is not registered by the class. The application must then call
XtAppAddActions to supply a procedure for the action name.

An action procedure is a function of type XtActionProc. This func-
tion receives four arguments:

• The widget

• The event, or the last event of a sequence, that caused the pro-
cedure to be invoked

• A list of strings representing the parameters specified for this
action in the translation table

• An integer representing the number of parameters in the param-
eter list

An application can use the parameter list to perform a number of
related actions in a single action routine. For example, a widget
might have the following translations:

c <Key> osfLeft : move-object(left) \n\
c <Key> osfRight : move-object(right) \n\
c <Key> osfUp : move-object(up) \n\
c <Key> osfDown : move-object(down)

13−28

Input, Focus, and Keyboard Navigation

The routine implementing the move-object() action is passed one
of the strings "left", "right", "up", and "down" as the only item in the
parameter list, depending on which key event invoked the action.
The routine performs the action appropriate for this parameter.

13.3.4 Bindings for osf Keysyms

Motif maintains a client-side mechanism for mapping one set of
keysyms to another set. The purpose of this mapping is to allow
Motif widgets and applications to use a single set of keysyms in
translation tables but also make it possible for applications or users
to customize the keysyms used in the translations for the particular
keyboard used with the display.

The names of keysyms eligible for use in translations in this way
begin with the prefix "osf" and are referred to as "osf" keysyms.
Motif maintains a mapping between these "virtual" keysyms and
the "actual" keysyms that correspond to keys on a particular key-
board. When Xt receives a keyboard event, the function
XmTranslateKey translates the keycode of the event to the
appropriate "osf" keysym if a mapping exists for that keysym. Xt
then dispatches the event to the appropriate action routine if a
translation exists for that "osf" keysym.

The mapping between "osf" and actual keysyms is determined at
application startup based on information obtained from one of the
following sources, listed in order of precedence:

• A defaultVirtualBindings application resource in the resource
database.

• A property on the root window, which can be set by mwm on
startup, or by the xmbind client, or on prior startup of a Motif
application.

13−29

OSF/Motif Programmer’s Guide

• A .motifbind file in the user’s home directory.

• A default binding based on the vendor string and optionally the
vendor release of the X server. Motif searches the file
xmbind.alias in the user’s home directory, or in the directory
specified by the environment variable XMBINDDIR, or in the direc-
tory /usr/lib/Xm/bindings.

The file xmbind.alias maps combinations of vendor strings and
vendor release numbers to pathnames. Each pathname represents
a file that contains keysym bindings for a particular vendor string
and optional vendor release number. If Motif fails to find a bind-
ings file for the current display, it uses a set of hard-coded fallback
bindings.

The format of the defaultVirtualBindings resource is similar to
that of a translations string. Each binding consists of an "osf"
keysym, a colon, a key event description (with optional modifiers)
for the actual keysym, and "\n". The format of a .motifbind file or
a file containing vendor bindings is the same, except that each bind-
ing is on a separate line.

Following is an example of a specification for the defaultVirtual-
Bindings resource in a resource file:

*defaultVirtualBindings: \
osfBackSpace : <Key>BackSpace \n\
osfInsert : <Key>InsertChar \n\

...
osfDelete : <Key>DeleteChar

The example specification above appears as follows in a .motifbind
or vendor bindings file:

osfBackSpace : <Key>BackSpace
osfInsert : <Key>InsertChar
...

13−30

Input, Focus, and Keyboard Navigation

osfDelete : <Key>DeleteChar

For more information, see the VirtualBindings(3X) and
xmbind(1X) reference pages.

13.4 Mnemonics and Accelerators

Sometimes it is desirable for an event received by one widget to
activate an action in another. For example, the application may
establish a shortcut for activating a button in a menu: the user can
activate the menu item even when focus is not in the menu. Motif
has two facilities, mnemonics and accelerators, for allowing events
in one widget to invoke actions in another.

A mnemonic is a keysym that identifies a key the user can press to
activate a menu item when the menu is posted. A button in a
MenuBar, PulldownMenu, or PopupMenu can have a mnemonic.
When the button is in a PulldownMenu or PopupMenu that is the
most recently posted menu, the user activates the button by press-
ing the key associated with the mnemonic. When the button is in a
MenuBar, the MenuBar must have focus for the mnemonic to
activate the button. However, the user can activate the button from
within the hierarchy that contains the MenuBar, even if the Menu-
Bar does not have focus, by pressing the key while holding the MAlt
modifier.

An application or user supplies a mnemonic for a button by specify-
ing a value for the Label or LabelGadget resource XmNmnemonic.
When the button is displayed, Motif underlines the first character
in the label string that exactly matches the mnemonic in the char-
acter set specified by XmNmnemonicCharSet. Although the
mnemonic must match a character in the label string exactly in

13−31

OSF/Motif Programmer’s Guide

order to be underlined, the user can activate the mnemonic by
pressing either the shifted or the unshifted key.

An accelerator allows the user to activate a menu item when focus
is anywhere in the hierarchy containing the menu, even if the menu
is not posted. Accelerators are supported only for PushButtons and
ToggleButtons (or their gadget equivalents) in PulldownMenus and
PopupMenus.

An application or user supplies an accelerator for a button by speci-
fying a value for the Label or LabelGadget resource XmNaccelera-
tor. The value is a string in the same format as an event descrip-
tion in a translation table, except that only KeyPress events are
allowed. Thus, an accelerator can have a modifier like MCtrl or
MAlt. XmNacceleratorText is a compound string that describes the
accelerator event, such as "Ctrl+A". Motif displays the accelerator
text to the side of the button’s label string or pixmap.

The following example creates a button with a mnemonic and an
accelerator:

n = 0;
XtSetArg(args[n], XmNmnemonic, XStringToKeysym("A"); n++;
XtSetArg(args[n], XmNaccelerator, "Ctrl<Key>A"); n++;
XtSetArg(args[n], XmNacceleratorText,

XmStringCreateLocalized("Ctrl+A"); n++;
button1 = XmCreatePushButton(file_pane, "Answer", args, n);

Motif’s button accelerators and mnemonics are supported only for
buttons in certain menus. Xt has a more general facility, also called
accelerators, for allowing events in one widget to invoke actions in
another.

Xt accelerators are mappings of event descriptions to actions, in the
same format as a translation table. An application or user supplies
accelerators for a widget as the value of the Core resource XmNac-
celerators. The accelerators map events to actions of this widget,

13−32

Input, Focus, and Keyboard Navigation

called the source widget. The application must then install the
accelerators on a destination widget, using XtInstallAccelera-
tors. This routine takes two arguments: the source widget, whose
XmNaccelerators resource contains the accelerator table; and the
destination widget, where the accelerators are to be installed.
When the user produces an event in the destination widget that
maps to an accelerator in the table, the event invokes the
corresponding action in the source widget.

XtInstallAccelerators merges the accelerators with the destina-
tion widget’s existing translations (the value of XmNtranslations).
Accelerators can be merged in either "#augment" mode, the default,
or "#override" mode. An accelerator table may begin with an "#aug-
ment" directive or a "#override" directive. The "#replace" directive
is ignored.

As with translations, accelerators must be in an internal format
when they are the value of XmNaccelerators. A string-to-
accelerator-table converter parses an accelerator table string from a
resource file. An application can use XtParseAcceleratorTable to
compile an acclerator table string explicitly.

Accelerators are often defined for a parent source widget and
installed on one or more child destination widgets. The Selection-
Box and FileSelectionBox widgets install accelerators, the value of
XmNtextAccelerators, on their text children. The default accelera-
tors bind KUp, KDown, KBeginLine, KEndLine, and KRestore events
in the Text widget to SelectionBox or FileSelectionBox actions that
select an item in the List and replace the Text widget value with
that List item.

13−33

OSF/Motif Programmer’s Guide

13.5 Event Handlers

Many applications can implement their entire input processing by
adding procedures to widget callback lists and by adding mnemon-
ics and accelerators for menu buttons. Some applications change
translations, accelerators, or actions. More rarely, an application
needs finer control over event processing. Such an application can
register an event handler with the Xt event dispatcher.

An event handler is a procedure that the Xt event dispatcher calls
when the application receives events of one or more types. An event
handler procedure is of type XtEventHandler. It receives four argu-
ments: the widget for which the event arrived; any client data
registered with the event handler; a pointer to the event; and a
Boolean return argument telling the Xt dispatch facility whether or
not to call the remaining event handlers registered for this event.
This argument is initialized to True and should rarely be changed.

An application usually registers an event handler using the func-
tion XtAddEventHandler. The arguments are the widget, an event
mask, an indication whether or not the hander should be called for
nonmaskable events, the procedure itself, and any client data to be
passed to the event handler when it is called. The order in which
event handlers are called is undefined when more than one handler
exists for a given widget and event type. However, if the applica-
tion registers the event handler using XtInsertEventHandler, it
can specify that the procedure is to be called either before or after
all currently registered event handlers.

Motif requires an application to provide an event handler if it wants
to post a PopupMenu on a button press. The call to XtAd-
dEventHandler should specify ButtonPressMask as the event mask
and the popup RowColumn as the client data. The event handler
should use XmMenuPosition to position the menu at the x and y

13−34

Input, Focus, and Keyboard Navigation

location of the button press event. It should then manage the
RowColumn. If the button press matches the event specified by the
RowColumn’s XmNmenuPost resource, Motif posts the PopupMenu.
See chapter 6 for more information.

13−35

Chapter 14. Graphics and Text in a
DrawingArea

Most Motif widgets have specific functions. A PushButton activates
an action; a ScrollBar moves a scroll with respect to a viewport; a
RowColumn contains a menu, a RadioBox or CheckBox, or a collec-
tion of widgets laid out in rows and columns. In contrast,
DrawingArea does not have a specific function. It is useful for
implementing a canvas, a specialized text editor, or other custom-
ized portions of an application.

14.1 DrawingArea: A General-Purpose Widget

DrawingArea is a manager with little specific behavior of its own.
It provides basic geometry management for widget and gadget chil-
dren. It also has callback lists that provide the application with
low-level event handling. An application can use these features to
implement a canvas or a more specialized widget.

By default a DrawingArea attempts to adjust its size to contain all
its children just inside its margins. The DrawingArea resource
XmNresizePolicy determines how the DrawingArea responds to
geometry requests from its children. This resource has three possi-
ble values:

• XmRESIZE_ANY—The DrawingArea tries to accept requests that
would cause the DrawingArea to grow or shrink to enclose all its
children. This is the default.

• XmRESIZE_GROW—If its parent approves, the DrawingArea
accepts requests from its children that would cause the
DrawingArea to grow. It may accept requests that would cause
it to shrink, but it does not reduce its size.

• XmRESIZE_NONE—The DrawingArea has a fixed size determined
by its XmNheight and XmNwidth resources. It rejects geometry

14−1

OSF/Motif Programmer’s Guide

requests from its children that would cause the DrawingArea to
grow. It may accept requests that would cause it to shrink, but
it does not reduce its size.

The DrawingArea resources XmNmarginHeight and XmNmarginWidth
also affect geometry management. When the value of XmNmar-
ginHeight is greater than 0, the DrawingArea ensures that the top
edges of all children are inside the top margin. When the value of
XmNmarginWidth is greater than 0, the DrawingArea ensures that
the left edges of all children are inside the left margin.

See chapter 10 for more information on DrawingArea’s geometry
management.

14.2 Event Handling and Callbacks

DrawingArea has callbacks, translations, and actions that inform
the application when the DrawingArea is resized or when it receives
an exposure event or one of many input events. DrawingArea has
the following callbacks:

XmNexposeCallback
DrawingArea invokes these callbacks whenever its
expose widget class procedure is called. The callback
reason is XmCR_EXPOSE.

XmNinputCallback
DrawingArea invokes these callbacks from the
DrawingAreaInput() action. With the default trans-
lations, this action is called when the DrawingArea
receives a key press, key release, button press, or but-
ton release event. The callback reason is
XmCR_INPUT.

14−2

Graphics and Text in a DrawingArea

XmNresizeCallback
DrawingArea invokes these callbacks whenever its
resize widget class procedure is called. The callback
reason is XmCR_RESIZE.

Each callback procedure is passed a pointer to an
XmDrawingAreaCallbackStruct, which includes the reason, the
event (NULL for XmNresizeCallback), and the DrawingArea’s win-
dow.

14.2.1 Handling Resize Events

A widget’s resize procedure is invoked when the widget is resized
by its parent or when the widget’s width or height changes as a
result of XtSetValues. DrawingArea also invokes its own resize
procedure when it has made a successful geometry request of its
parent to change its width or height.

For most widgets the resize procedure recomputes the widget’s
layout to take account of the new size. DrawingArea’s resize pro-
cedure does no layout of its own. It simply invokes the XmNresize-
Callback callbacks. It is the responsibility of these callback pro-
cedures to resize or reposition children or to recompute other con-
tents of the DrawingArea. The callback procedures essentially take
the place of the DrawingArea’s resize procedure.

Note that a resize procedure can be called when the widget is not
realized.

14−3

OSF/Motif Programmer’s Guide

14.2.1.1 Moving and Resizing Children

An XmNresizeCallback procedure should reposition or resize chil-
dren by calling XtMoveWidget, XtResizeWidget, or XtConfi-
gureWidget. Use of these functions is usually restricted to widget
class methods, but for DrawingArea the XmNresizeCallback pro-
cedures act as part of the widget class resize procedure.

A callback procedure could also resize or reposition a child by invok-
ing XtSetValues on one or more of the child’s geometry resources
(XmNx, XmNy, XmNheight, XmNwidth, and XmNborderWidth). This
causes XtSetValues to generate a geometry request on behalf of the
child. This request in turn might cause the DrawingArea to make a
geometry request of its own parent. In particular, when a child’s
request would cause the DrawingArea to change size and when the
XmNresizePolicy of the DrawingArea is XmRESIZE_GROW or
XmRESIZE_ANY, the DrawingArea is likely to make a geometry
request.

However, the Intrinsics forbid a widget’s resize procedure from
making geometry requests. Therefore, an XmNresizeCallback pro-
cedure must take care not to reposition or resize a child in such a
way that the DrawingArea makes a geometry request. The easiest
way to avoid this problem is to use XtMoveWidget, XtResizeWidget,
and XtConfigureWidget, which are guaranteed not to make
geometry requests.

An XmNresizeCallback procedure must take care not to call the
resize procedure for a child that is in the midst of making a
geometry request. This situation can arise when a child makes a
geometry request, perhaps as a result of XtSetValues, that would
cause the DrawingArea to change size. If the DrawingArea’s
geometry_manager procedure issues a successful geometry request,
it invokes its own resize procedure, which in turn calls the
XmNresizeCallback procedures.

14−4

Graphics and Text in a DrawingArea

When this situation arises, the XmNresizeCallback procedure must
not call the requesting child’s resize procedure, whether it does
this directly, as a result of calling XtResizeWidget or XtConfi-
gureWidget, or as a result of a call to XtSetValues that changes
the child’s width or height. If an application causes a DrawingArea
child to make a geometry request—for example, by calling XtSet-
Values for one of the child’s geometry resources—it should store
information in an internal data structure that identifies that child
as making a geometry request. The XmNresizeCallback procedure
should check this information and take care not to call that child’s
resize procedure.

14.2.1.2 Resizing and Redisplay

A resize procedure often recomputes the layout of the widget but
does not actually perform the redisplay. In many cases the act of
resizing the widget generates one or more subsequent exposure
events, and these in turn cause Xt to invoke the widget’s expose
procedure. In general the expose procedure is responsible for
redisplay.

However, resizing a widget does not always generate exposure
events, particularly when the widget is made smaller. This is not a
problem when the widget’s contents consist solely of child widgets
or gadgets. The resize procedure can reposition or resize the chil-
dren, and these actions generate the appropriate exposure events
for both the children and the parent.

A resizing without an exposure event presents a problem when the
contents of the widget include graphics, text, or other decoration
outside child widgets. For example, if the widget displays a shadow
or other decoration around its inside edge, it must redisplay that
decoration when the widget becomes smaller. An application using

14−5

OSF/Motif Programmer’s Guide

a DrawingArea in this way must arrange to redisplay the window
contents when the DrawingArea becomes smaller. Following are
two possible approaches:

• In an XmNresizeCallback procedure, compare the
DrawingArea’s width and height with their previous values. If
either width or height has decreased, redisplay the appropriate
portions of the DrawingArea’s contents. In an internal data
structure, store the width and height as the previous width and
height for use by the next invocation of the XmNresizeCallback
procedure.

• In an XmNexposeCallback procedure, when the procedure is first
invoked set the window’s bit gravity to ForgetGravity. This
causes the window’s contents to be lost and an exposure event to
be generated anytime the window is resized. If the application
does not set the bit gravity of the DrawingArea’s window, the
default set by the toolkit is NorthWestGravity. This usually
causes the server not to generate an exposure event when the
window is made smaller.

DrawingArea itself does not draw shadows, and the default XmNsha-
dowThickness is 0. It is not practical for an application to draw
OSF/Motif shadows itself in a DrawingArea, because the Motif
shadow-drawing interface is not public. An application that wants
shadows with a DrawingArea should place the DrawingArea inside
a Frame.

14.2.1.3 Example of a Resize Procedure

Following is an XmNresizeCallback procedure for a DrawingArea
that contains button children and lines connecting them. The pro-
cedure spreads or contracts the layout of children and lines in

14−6

Graphics and Text in a DrawingArea

proportion to the increase or decrease in size of the DrawingArea.
It uses an internal data structure to hold information about the end
points of the lines and the previous width and height of the
DrawingArea. It assumes that an XmNexposeCallback procedure
redisplays the lines.

void ReSize (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{
Graphic * graph = (Graphic *) client_data ;
Dimension width, height ;
Cardinal i,j ;
Arg args[5];
int n ;
Widget * children ;
Cardinal num_children ;
Position x,y ;
n = 0;
XtSetArg (args[n], XmNwidth, &width); n++;
XtSetArg (args[n], XmNheight, &height); n++;
XtGetValues (w, args, n);
float xratio = (float) width / graph->old_width,
yratio = (float) height / graph->old_height ;

/* reposition and resize the graphic units */
for (i=0; i < graph->num_graphics; i++) {
for (j=0; j < graph->graphics[i].num_points; j++) {
graph->graphics[i].points[j].x *= xratio ;
graph->graphics[i].points[j].y *= yratio ;

}
}

/* reposition the pushbutton children */

14−7

OSF/Motif Programmer’s Guide

n = 0;
XtSetArg (args[n], XmNnumChildren, &num_children); n++;
XtSetArg (args[n], XmNchildren, &children); n++;
XtGetValues (w, args, n);
for (i=0; i < num_children; i++) {
n = 0;
XtSetArg (args[n], XmNx, &x); n++;
XtSetArg (args[n], XmNy, &y); n++;
XtGetValues (children[i], args, n);
XtMoveWidget (children[i], (Position) (x * xratio),

(Position) (y * yratio));
}

/* save width and height for next time */
graph->old_width = width ;
graph->old_height = height ;

}

14.2.2 Handling Exposure Events

Xt calls a widget’s expose procedure when the widget receives an
exposure event. The precise types of events that cause Xt to invoke
the expose procedure are determined by the widget class
compress_exposure field. For DrawingArea, the value of this field
is XtExposeNoCompress. This means that Xt invokes the expose
procedure when the widget receives an Expose event.

When the expose procedure is called, some part of the contents of
the widget’s window have been lost, and the window needs to be
redisplayed. Xt redisplays the contents of widget children by calling
their expose procedures. DrawingArea’s expose procedure calls the
XmNexposeCallback procedures. These callbacks are responsible

14−8

Graphics and Text in a DrawingArea

for redisplaying any contents of the DrawingArea that are outside
the DrawingArea’s children. DrawingArea’s expose procedure then
redisplays the contents of gadget children by calling their expose
procedures.

The X server generates Expose events when parts of a window are
exposed for a variety of reasons, as when the window is raised or
resized. The server determines which portions of the window are
exposed and decomposes these into a series of rectangles. The
server generates a series of Expose events, one for each rectangle.

DrawingArea does not compress exposure events. The expose pro-
cedure, and therefore the XmNexposeCallback list, is called for each
rectangle in an exposure series. A simple callback procedure may
redisplay the entire window on each exposure series. Such a pro-
cedure should examine the count member of the XExposeEvent
structure for the event. A nonzero count indicates that more events
are to follow in the exposure series. The callback procedure should
ignore these events and redisplay the entire window when the
count reaches 0.

A more complex procedure may redisplay only the exposed rectan-
gles. Such a procedure should extract the bounds of each rectangle
from the x, y, width, and height members of each XExposeEvent
structure. The procedure can either redisplay each rectangle
immediately or accumulate all the rectangles in an exposure series
into a region, using XtAddExposureToRegion, and then redisplay
the region.

An application that draws directly into the DrawingArea must be
sure to regenerate the window contents correctly when the
DrawingArea becomes smaller. Making the DrawingArea smaller
does not always generate Expose events. The application can either
perform the redisplay in a XmNresizeCallback procedure or, on the
first invocation of the XmNexposeCallback list, set the window’s bit
gravity to ForgetGravity. This ensures that each resizing of the
DrawingArea generates an Expose event, so the application can

14−9

OSF/Motif Programmer’s Guide

safely leave all redisplay to the XmNexposeCallback procedure.
However, it also means that application must regenerate the entire
contents of the window every time the window is resized.

14.2.2.1 Example of an Expose Procedure

Following is an XmNexposeCallback procedure for a DrawingArea
that contains button children and lines connecting them. The first
time the procedure is invoked, it sets the window’s bit gravity to
ForgetGravity so that resizing the window generates Expose
events. On the last of each series of exposure events, the procedure
redraws all lines. It uses an internal data structure to hold infor-
mation about the end points of the lines.

void Redisplay (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{

XmDrawingAreaCallbackStruct * dacs =
(XmDrawingAreaCallbackStruct *) call_data ;

Graphic * graph = (Graphic *) client_data ;
XExposeEvent * event = (XExposeEvent *) dacs->event;
XSetWindowAttributes xswa;

static Boolean first_time = True ;

if (first_time) {
/* Change once the bit gravity of the Drawing Area; default

is NorthWest and we want Forget, so that resize
always generates exposure events */

14−10

Graphics and Text in a DrawingArea

first_time = False ;
xswa.bit_gravity = ForgetGravity ;
XChangeWindowAttributes(XtDisplay(w), XtWindow(w),

CWBitGravity, &xswa);
}

/* Redisplay only on last event of the series */
if (! event->count) {
for (i=0; i < graph->num_graphics; i++) {
if (graph->graphics[i].type == POLYLINE)
XDrawLines(XtDisplay(w), XtWindow(w),

XDefaultGCOfScreen(XtScreen(w)),
graph->graphics[i].points,
graph->graphics[i].num_points,
CoordModeOrigin);

}
}

}

14.2.3 Handling Input Events

As with any manager, DrawingArea may have three general kinds
of input events within its borders:

• Events that belong to a widget child

• Events that belong to a gadget child

• Events that belong to no child

Xt dispatches events to widget children when appropriate, and the
DrawingArea does not process these. DrawingArea inherits
Manager’s translations for dispatching events to gadget children.

14−11

OSF/Motif Programmer’s Guide

Before calling any Manager action as a result of a button press or
release or a key press or release, DrawingArea calls its own
DrawingAreaInput() action. DrawingArea also calls this action
whenever it receives a button press or release or a key press or
release that does not have an associated Manager action.

The DrawingAreaInput() action simply returns if the input event is
not of type KeyPress, KeyRelease, ButtonPress, ButtonRelease,
or MotionNotify. If the event is of one of these types, and if the
event does not take place within a gadget child of the DrawingArea,
the action calls the XmNinputCallback callbacks.

With the default translations, the result is that the XmNinputCall-
back procedures are invoked whenever the DrawingArea receives a
KeyPress, KeyRelease, ButtonPress, or ButtonRelease event that
does not occur within a child.

The default translations do not invoke the DrawingAreaInput()
action, and therefore the XmNinputCallback procedures, when the
DrawingArea receives a MotionNotify event. An application that
wants its XmNinputCallback procedures invoked on pointer motion
events must install the appropriate translations. When installing a
translation for BtnMotion, the application must override the exist-
ing translations. The following translations cause a motion event to
be sent to any gadget child in which it takes place. If the event does
not take place within a child, the XmNinputCallback procedures are
invoked:

<BtnMotion>:DrawingAreaInput() ManagerGadgetButtonMotion()\n\
<Motion>:DrawingAreaInput()

There is one problem with these translations: because DrawingArea
has translations for BSelect click and double click, the BtnMotion
actions are not invoked when the user moves the pointer while
pressing BSelect. In order to receive these events, the application
must replace the DrawingArea translations, omitting the

14−12

Graphics and Text in a DrawingArea

translations for BSelect click and double click.

14.2.3.1 Example of an Input Procedure

Following is an XmNinputCallback procedure for a DrawingArea
that contains button children and lines connecting them. The pro-
cedure takes action on ButtonPress and MotionNotify events.
When the user presses a mouse button, the procedure retrieves the
text from a TextField elsewhere in the application. If the user has
entered text here, the input procedure creates a PushButton with
the text as the label and places it at the point of the click. If the
TextField contains no text and the user has pressed a button over a
line or PushButton while holding the Shift key, the procedure
deletes the line or PushButton.

If the TextField is empty and the user presses a button without
holding the Shift key, the procedure either starts or finishes draw-
ing a line. The application uses a rubber-banding effect for line
drawing. When it starts a line the procedure sets a flag indicating
it is drawing a line; when it finishes the line, the procedure clears
this flag. When the procedure receives a MotionNotify event and is
in the process of drawing a line, it erases the previous line (using
XOR) and draws a new line from the anchor point to the current
pointer position.

void HandleInput (
Widget w, /* widget id */
XtPointer client_data, /* data from application */
XtPointer call_data) /* data from widget class */
{

XmDrawingAreaCallbackStruct * dacs =

14−13

OSF/Motif Programmer’s Guide

(XmDrawingAreaCallbackStruct *) call_data ;
Graphic * graph = (Graphic *) client_data ;
Arg args[5];
int n ;
String name ;
Widget newpush ;

if (dacs->event->type == ButtonPress) {
name = XmTextFieldGetString(graph->textf) ; /* textfield */
if (strcmp ("", name) != 0) {
n = 0;
XtSetArg (args[n], XmNx, dacs->event->xbutton.x); n++;
XtSetArg (args[n], XmNy, dacs->event->xbutton.y); n++;
newpush = XmCreatePushButton(w, name, args, n);
XtAddCallback (newpush, XmNactivateCallback, PushCB, NULL);
XtManageChild (newpush);

} else
if ((dacs->event->xbutton.state & ShiftMask) &&

(!graph->in_drag)) {
DeleteUnit (graph, dacs->event->xbutton.x,

dacs->event->xbutton.y);
} else {
if (!graph->in_drag) {
StartUnit(graph, dacs->event->xbutton.x,

dacs->event->xbutton.y);
} else {
EndUnit(graph, dacs->event->xbutton.x,

dacs->event->xbutton.y);
}

}
XtFree(name);

} else /* need to get motion events here: app_default should
modify DrawingArea translation with both Motion
and BtnMotion additions */

if (dacs->event->type == MotionNotify) {

14−14

Graphics and Text in a DrawingArea

/* this one just exits if in_drag is False */
DragUnit(graph, dacs->event->xbutton.x,

dacs->event->xbutton.y);
}

}

14.3 Using a DrawingArea in a ScrolledWin-
dow

The ScrolledWindow widget provides a viewport onto a virtual scroll
and allows the user to move the scroll with respect to the viewport
by manipulating ScrollBars. ScrolledWindow offers two scrolling
policies: automatic and application-defined. In automatic scrolling,
the application provides the scroll widget; ScrolledWindow creates a
fixed-size viewport and handles user interaction with the
ScrollBars. In application-defined scrolling, the application pro-
vides the scroll widget and, if necessary, the viewport, and it han-
dles all user interaction with the ScrollBars.

When using separate viewport and scroll widgets with either scrol-
ling policy, an application can use a default DrawingArea as the
scroll widget. When the XmNresizePolicy is XmRESIZE_ANY, the
application can use XtSetValues of XmNx and XmNy to place children
within the DrawingArea. The DrawingArea adjusts its size as
necessary to enclose all the children. The application can also use
XtSetValues of the DrawingArea’s XmNwidth and XmNheight to
change the size of the scroll widget.

An application can also use a DrawingArea as the viewport widget
in application-defined scrolling. One approach is not to use a
separate scroll widget but to maintain a virtual scroll, keeping the
contents in internal data structures and displaying as much of the

14−15

OSF/Motif Programmer’s Guide

contents as will fit into the viewport. The application can use a
default DrawingArea as the viewport widget.

Another approach to application-defined scrolling is to create one
widget as a viewport and another, a child of the viewport, as the
scroll. The application can expand the scroll widget as necessary to
contain all the data. In response to user manipulation of the
ScrollBars, the application can reposition the scroll widget with
respect to the viewport. The viewport acts as a clipping region for
its child, the scroll.

In this approach the application can use a DrawingArea as the
viewport, the scroll widget, or both. When using a DrawingArea as
the viewport, the application must position and resize the scroll
child using XtMoveWidget, XtResizeWidget, or XtConfi-
gureWidget. XtSetValues for the child’s geometry resources does
not work, because the parent’s geometry manager does not permit
the child to move or grow beyond the bounds of the parent.

When a DrawingArea is the viewport widget in a ScrolledWindow
with application-defined scrolling, the XmNresizeCallback pro-
cedure must recompute the ScrollBars’ XmNsliderSize and
XmNpageIncrement and possibly other resources to reflect the new
relation between the viewport and the scroll. It may also need to
reposition and resize the scroll with respect to the viewport.

See chapter 9 for more information on ScrolledWindow, including
examples using DrawingAreas as scrolls in both automatic and
application-defined scrolling.

14.4 Using a DrawingArea for Graphics

14−16

Graphics and Text in a DrawingArea

DrawingArea is an appropriate widget to use as a canvas or as a
manager that requires graphics operations in addition to children.
An application can use Xlib graphics facilities to draw into a
DrawingArea. See Xlib—C Language X Interface for more informa-
tion on Xlib graphics operations.

An interactive graphics application can use the XmNinputCallback
procedure to respond to user input. For example, when the user
presses a mouse button, drags, and then releases the button, this
procedure might draw a line from the point of the button press to
the point of the button release. The XmNinputCallback procedures
are invoked on button press and release events and on key press
and release events. To receive pointer motion events, the applica-
tion can provide translations that invoke the DrawingAreaInput()
action.

An application that needs to produce graphics but does not require
children or interaction with the user in the canvas might use a
DrawnButton instead of a DrawingArea. DrawnButton has no
input callbacks, but it does provide exposure and resize callbacks.

Following is some of the drawing code from the earlier example of a
DrawingArea containing button children and lines connecting them.
This example implements the rubber-band effect in which a line
starts at an anchor point and follows the pointer as the user moves
it.

The example maintains an internal data structure with information
about the DrawingArea and its graphic objects. The application ini-
tially stores a GC for use in drawing and erasing the rubber-band
lines. This GC uses a foreground color that results from XORing
the DrawingArea’s foreground and background. The GC also uses
the GXxor function.

The remainder of the example code updates the internal data struc-
tures and draws lines as appropriate when the user starts a line,
moves the pointer, and ends a line.

14−17

OSF/Motif Programmer’s Guide

/* Initialize data structures */
void InitDraw (
Graphic * graph,
ApplicationData * app_data)
{
XGCValues val ;
Arg args[5];
int n ;
Cardinal i ;

/* create the gc used for the rubber banding effect */
n = 0;
XtSetArg (args[n], XmNforeground, &val.foreground); n++;
XtSetArg (args[n], XmNbackground, &val.background); n++;
XtGetValues (graph->work_area, args, n);

val.foreground = val.foreground ^ val.background ;
val.function = GXxor ;
graph->drag_gc = XtGetGC(graph->work_area,

GCForeground | GCBackground | GCFunction, &val);

graph->in_drag = False ;

graph->num_graphics = 0 ;
for (i=0; i < MAX_GRAPH; i++) {
graph->graphics[i].num_points = 0 ;

}
}

/* Start a line */
void StartUnit (
Graphic * graph,
Position x,
Position y)
{

14−18

Graphics and Text in a DrawingArea

Widget w = graph->work_area ;

graph->drag_point.x = graph->anchor_point.x = x ;
graph->drag_point.y = graph->anchor_point.y = y ;
graph->in_drag = True ;
XDrawLine(XtDisplay(w), XtWindow(w),

graph->drag_gc,
graph->anchor_point.x, graph->anchor_point.y,
graph->drag_point.x, graph->drag_point.y);

}

/* Pointer moved: if drawing a line, erase the last line
* and draw a new line from the anchor to the pointer
* position */
void DragUnit (
Graphic * graph,
Position x,
Position y)
{
Widget w = graph->work_area ;

if (!graph->in_drag) return ;

XDrawLine(XtDisplay(w), XtWindow(w),
graph->drag_gc,
graph->anchor_point.x, graph->anchor_point.y,
graph->drag_point.x, graph->drag_point.y);

graph->drag_point.x = x ;
graph->drag_point.y = y ;

XDrawLine(XtDisplay(w), XtWindow(w),
graph->drag_gc,
graph->anchor_point.x, graph->anchor_point.y,
graph->drag_point.x, graph->drag_point.y);

14−19

OSF/Motif Programmer’s Guide

}

/* Utility routine */
static Boolean NearPoint (
XPoint point,
Position x,
Position y)
{
#define ERROR 5
if ((point.x > x - ERROR) &&

(point.x < x + ERROR) &&
(point.y > y - ERROR) &&
(point.y < y + ERROR)) return True ;

else return False ;
}

/* End a line */
void EndUnit (
Graphic * graph,
Position x,
Position y)
{
Widget w = graph->work_area ;
Cardinal num_points ;

/* no matter what happens, we need to remove the current
* rubber band */
XDrawLine(XtDisplay(w), XtWindow(w),

graph->drag_gc,
graph->anchor_point.x, graph->anchor_point.y,
graph->drag_point.x, graph->drag_point.y);

/* if the given point if the same as the anchor, we’re done with
this polyline, exit drag mode and be ready for the next
graphic unit, i.e., increment num_graphics */

14−20

Graphics and Text in a DrawingArea

if (NearPoint(graph->anchor_point, x, y)) {
graph->in_drag = False ;
/* now see if a new unit needs to be created */
if (graph->graphics[graph->num_graphics].num_points) {
graph->graphics[graph->num_graphics].type = POLYLINE ;
if (graph->num_graphics < MAX_GRAPH) graph->num_graphics ++ ;
else BufferFullError() ;

}
} else {

/* draw the real line and store it in the structure */
XDrawLine(XtDisplay(w), XtWindow(w),

XDefaultGCOfScreen(XtScreen(w)),
graph->anchor_point.x, graph->anchor_point.y,
x, y);

/* first point in a unit is actually special */
num_points = graph->graphics[graph->num_graphics].num_points ;
if (num_points == 0) {
graph->graphics[graph->num_graphics].points[num_points].x =
graph->anchor_point.x ;

graph->graphics[graph->num_graphics].points[num_points].y =
graph->anchor_point.y ;

graph->graphics[graph->num_graphics].num_points ++ ;
num_points ++ ;

}
graph->graphics[graph->num_graphics].points[num_points].x = x ;
graph->graphics[graph->num_graphics].points[num_points].y = y ;
if (graph->graphics[graph->num_graphics].num_points < MAX_POINT)
graph->graphics[graph->num_graphics].num_points ++ ;

else BufferFullError() ;

/* now start the new unit */
graph->drag_point.x = graph->anchor_point.x = x ;

14−21

OSF/Motif Programmer’s Guide

graph->drag_point.y = graph->anchor_point.y = y ;
XDrawLine(XtDisplay(w), XtWindow(w),

graph->drag_gc,
graph->anchor_point.x, graph->anchor_point.y,
graph->drag_point.x, graph->drag_point.y);

}
}

14.5 DrawingArea and Advanced Text Edit-
ing

Some applications may need text-editing capabilities beyond those
provided by the Motif Text widget. For example, the application
may want to display text using different fonts or colors within the
same editor. Such an application might use a DrawingArea to
implement a text editor based on compound strings.

14.5.1 Text Output

An application that uses compound strings can use XmStringDraw
or XmStringDrawImage to display the compound string text in a
DrawingArea. These functions use different Xlib routines to display
compound string segments, depending on whether the segments are
associated with font sets or font structs in the font list. XmString-
Draw uses XmbDrawString to display segments associated with font
sets. It uses XDrawString or XDrawString16 to display segments
associated with font structs. XmStringDrawImage uses XmbDrawIm-
ageString to display segments associated with font sets. It uses

14−22

Graphics and Text in a DrawingArea

XDrawImageString or XDrawImageString16 to display segments
associated with font structs.

An application that does not use compound strings may call the Xlib
text-drawing routines directly. In addition to those mentioned
above, these include XDrawText for text associated with a font and
XmbDrawText for text associated with a font set. Wide-character
versions exist for all the Xmb routines.

An application that draws text must determine where to place the
text, what the width and height of the text will be, and how to move
to the origin of the next text it will draw. For compound strings,
and application can use XmStringExtent, XmStringHeight,
XmStringWidth, and XmStringBaseline to determine the extents of
the text.

An application that does not use compound strings may call Xlib
routines. To determine the extents of a font struct, the application
can examine the ascent, descent, max_bounds, and min_bounds
members of the XFontStruct. To determine the width and extents
of text, the application can call XStringWidth, XTextExtents, and
XTextExtents16.

To determine the extents of a font set, the application can call XEx-
tentsOfFontSet. To determine the width and extents of text, the
application can call XmbTextEscapement, XmbTextExtents, and
XmbTextPerCharExtents. Wide-character versions exist for all the
Xmb routines.

For more information about the Xlib text facilities, see Xlib—C
Language X Interface.

14−23

OSF/Motif Programmer’s Guide

14.5.2 Text Input

To obtain text input in a DrawingArea, an application should use
the Xlib input method facilities. These facilities allow the applica-
tion to open an input method and an input context and to obtain
input from the input method. For more information, see chapter 11
and Xlib—C Language X Interface.

14−24

Chapter 15. Drag and Drop

Drag and drop allows the user to "pick up" objects on the screen,
"drag" them around the display, and "drop" them at a new location,
possibly in another application.

With drag and drop the user can:

• Move text or other information between windows.

• Cause application-specific actions to occur.

• Obtain Help information about drop sites.

This chapter first provides an overview of the drag and drop process
and concepts from both the user’s and the application developer’s
perspectives, then explains the actions of both initiator and receiver
clients during the drag and at the drop, giving code samples.

15.1 User Overview of Drag and Drop

This section describes what the user does and sees during a drag
and drop transaction.

15.1.1 Overview of User Interaction

A drag and drop transaction consists of the following actions:

1. A user presses and holds BTransfer, usually mouse button 2,
over a source object starting a drag transaction. The applica-
tion owning that object is the initiator of the drag. The
current pointer is replaced by a drag icon—a picture
representing the item being dragged.

15−1

OSF/Motif Programmer’s Guide

2. The user moves the pointer. From now until a drop occurs, the
drag icon replaces the mouse pointer.

3. The user drops the object, usually by releasing the mouse but-
ton.

The drag icon can be dropped anywhere on the screen. How-
ever, only certain widgets have registered themselves as drop
sites and are able to process the drop.

Locations on the screen that can accept drops are drop sites
and the application owning that drop site is the destination or
receiver.

The receiver application usually performs some action on the
information represented by the dragged icon. The initiator
application may also perform some action based on the results
of a drag transaction.

A drop can be between applications or within the same application.
An application can be both source and destination of a drop, source
only, destination only, or not participate in drag and drop at all.

The user can request help about a drop site, if available, by drag-
ging to the drop site, and pressing KHelp (usually F1).

The user can cancel the drag at any time by pressing KCancel, usu-
ally Escape.

15.1.2 Overview of Drag Over Effects

The drag icon consists of three parts:

• The source icon is a picture representing the type of the source
object, such as text.

15−2

Drag and Drop

• The state icon can be used to show whether or not the object
being dragged can be dropped at its current location on the
screen.

• The operation icon can be used to show what action should hap-
pen when the drop takes place.

In the following illustration, the running figure is the source icon,
the arrow in the upper left is the state icon, and the rectangles with
the corner folded over indicate a Copy is desired.

Figure 15-1. A Drag Icon

These parts can be combined (blended) and attached to each other
in different ways. The default blending and attachment are shown
in the previous illustration.

Parts of the drag icon may change shape or color as it is being
dragged through potential drop sites, providing visual feedback
about possible drop sites to the user. These changes are drag over
effects.

Applications can use the default drag icon effects, or provide more
sophisticated or custom drag icons. The application or user can cus-
tomize these drag over effects in resource files.

15−3

OSF/Motif Programmer’s Guide

15.1.2.1 Drag States

During a drag, there are three states that describe the relationship
of a drag icon to what is under it at the time:

valid drop site if the drag icon is over a drop site on which it
can potentially be dropped (this is only a hint;
when the drop is actually attempted, further
processing may show that the drop cannot
actually be done)

invalid drop site the drag icon is over a drop site; but it can’t be
dropped there.

no drop site the drag icon is not over a registered drop site.

The default state icon for all three states is the same: an arrow in
the upper left corner of the drag icon. Because the icon is the same
for all three states, it appears not to change during the drag. The
application or the user can provide custom state icons or colors in a
resource file.

15.1.2.2 Drag Operations

The user specifies what action is to take place when the drop occurs
by pressing certain keys when the drag starts or while the drag is in
process:

Shift only Force a move from the initiator to the receiver
client (Move).

Ctrl only Force a copy from the initiator to the receiver
client (Copy).

15−4

Drag and Drop

Shift and Ctrl Force a link between the initiator and receiver
clients (Link).

The operation chosen by the user must be valid for both the drag
source and the drop site, or the drop site will be considered invalid.

If the user doesn’t specify an operation, one is chosen by the toolkit.
It choses an operation that is valid for both the drag source and
drop site. Move is the first choice, Copy is the second, and Link is
the third. If the system can not find a valid operation, the drop site
is considered invalid.

The operation icon reflects the operation chosen by the user or by
the system. If the operation is changed by the user during the drag,
the operation icon changes also.

The operation icon may change as the drag icon moves to different
drop sites if the drop sites accept different operations.

15.1.3 Overview of Drag Under Effects

A widget registered as a drop site may change visually as a drag
icon passes over it. These visual cues are drag under effects. The
sensitive area of the widget is the part that responds to drag and
drop. By default it is the whole widget, but applications can specify
that only parts of the widget respond to drag and drop.

Various highlighting styles are possible:

• A border around the sensitive area of the drop site widget. This
is the default value.

• The sensitive area of the drop site widget looks pushed out.

• The sensitive area of the drop site widget looks pushed in.

15−5

OSF/Motif Programmer’s Guide

• A special pixmap is displayed within the sensitive area of the
drop site widget, overwriting what is normally there.

• No drag under effects are used for the drop site widget.

Applications can use the default drag under visual effects, or create
more sophisticated or custom effects, such as special animation or
sound effects.

15.1.4 Overview of Drop Effects

Visual effects also take place during the drop:

• The drag icon appears to sit over the drop site while the process-
ing for the drop is finishing, but the standard cursor is restored
and can be used normally.

• The source icon appears to melt into the drop site if the drop is
successful.

• The source icon appears to snap back to the source if the drop is
unsuccessful.

• A dialog window containing information about a drop site should
appear if the user has requested help and the receiver client pro-
vides help, otherwise nothing happens.

• The source icon appears to snap back to the source and the pre-
vious X cursor returns if Cancel is requested. All drag under
and drag over effects are removed.

These drop effects cannot be changed by the application or the user.

15−6

Drag and Drop

15.2 Technical Overview of Drag and Drop

This section explains some drag and drop concepts, and provides a
general view of the initiator and receiver duties during the drag and
at the drop.

The Motif 1.2 toolkit for drag and drop consists of:

• widgets and widget classes that provide resources containing
details about the source and destination of the drag

• functions that applications use to manage the widgets and
widget classes.

• protocols that specify how interactions between source and desti-
nation clients are to take place.

• functions that manage messages, call callbacks, decide on the
valid operations for a potential drop, and keep the drop site
status updated.

If the initiator and receiver are in the same client, they share the
same toolkit. If the initiator and receiver are different clients, each
client has a version of the toolkit.

An application can allow any widget to be a drag source or initiator
by specifying a translation for BTransfer Press in that widget.
The corresponding action creates a DragContext which starts the
drag and drop transaction. The toolkit on the initiator side in in
charge during the drag and manages all drag messages and call-
backs.

An application can register any widget as a drop site. The drop site
widget may change visually as a drag icon moves in and out of it,
providing drag under visual clues to the status of the drag. The
application controlling the current drop site is known as the
receiver. The toolkit on the receiver side is in charge of the drop

15−7

OSF/Motif Programmer’s Guide

operation, and manages all drop messages and callbacks.

Each drag source and drop site specifies the types of data it is
prepared to handle and what operations it can perform on that
data.

The state of the drag indicates whether the drag icon is over a valid
drop site, and invalid drop site, or no drop site. For a drop site to be
valid, there must be at least one target type and one operation in
common between the drag source and drop site.

15.2.1 Complexity of Drag and Drop Programs

Applications can use drag and drop functionality on any of several
levels:

• Text, List, Label, and Button widgets are already defined as
drag sources. Text and TextField widgets are registered as drop
sites. So, at the simplest, an application can compile with the
Motif 1.2 libraries, and have those widgets participate in drag
and drop. For instance, text could be selected from one applica-
tion and moved into a text area in another application.

• On a slightly more advanced level, applications can let the
toolkit do most of the work, but provide some customization. For
instance, an application could register a pushbutton as a drop
site, but still use default visual effects. In this case, the applica-
tion would register a widget as a DropSite and provide code to
handle drop and transfer duties. The example programs
DNDlabel.c and DNDscroll.c in Appendix B are at this level.

• A complex application can take much of the control of the drag
and drop itself. It can provide custom visuals for both drag icon
and drop site. It can manage overlapping drop sites. It can have

15−8

Drag and Drop

complex transfers of information. The example program
DNDdemo in Appendix B contains extensive customization.

15.2.1.1 A Simple Drag Receiver

This sample program displays a Label widget and registers it as a
drop site. It accepts compound text, and supports only the Copy
operation (that is, it does not support Move or Link).

When a valid drop is made on the Label widget, its HandleDrop
routine changes the Label widget’s label to compound text passed
from the initiator.

The appropriate #include lines, the DropTransferCallback routine,
the HandleDrop routine, and a few lines in the main routine to
register the drop site are all that is needed to customize a Label
widget to accept a drop and change its label in response. The
details of this additional code are covered in later sections of this
chapter.

Figure 15-2. A Label Widget Receiver Before and After Drag

15−9

OSF/Motif Programmer’s Guide

/* file: DNDlabel.c */

#include <signal.h>
#include <stdio.h>

#include <X11/Xlib.h>
#include <Xm/Xm.h>
#include <Xm/BulletinB.h>
#include <Xm/AtomMgr.h>
#include <Xm/Label.h>

#include <Xm/DragDrop.h>

#include <X11/Xatom.h>

#define MAX_ARGS 10

/* global variables */
Widget myDC;
Atom COMPOUND_TEXT;

/* This routine transfers information from the initiator */
static void TransferProc(w, closure, seltype, type, value, length,

format)
Widget w;
XtPointer closure;
Atom *seltype;
Atom *type;
XtPointer value;
unsigned long *length;
int format;
{

int n;
Arg args[MAX_ARGS];

15−10

Drag and Drop

/* information from the drag initiator is passed in compound
*text format. Convert it to compound string and replace the
* Label label. */

if (*type = COMPOUND_TEXT) {
n = 0;
XtSetArg(args[n], XmNlabelString, XmCvtCTToXmString(value));
n++;
XtSetValues(closure, args, n);
}

}

/* This routine is performed when a drop is made. It decides what
information it wants and uses TransferProc to transfer the data
from the initiator */

static void HandleDrop(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{

XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[MAX_ARGS];
int n;

DropData = (XmDropProcCallback)call_data;

/* set the transfer resources */
n = 0;

/* if the action is not Drop or the operation is not Copy,
* cancel the drop */
if ((DropData->dropAction != XmDROP) ||

15−11

OSF/Motif Programmer’s Guide

(DropData->operation != XmDROP_COPY))
XtSetArg(args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;

else {
/* the drop can continue. Establish the transfer list and
* start the transfer */
transferEntries[0].target = COMPOUND_TEXT;
transferEntries[0].client_data = (XtPointer)w;
transferList = transferEntries;
XtSetArg(args[n], XmNdropTransfers, transferList); n++;
XtSetArg(args[n], XmNnumDropTransfers, 1); n++;
XtSetArg(args[n], XmNtransferProc, TransferProc); n++;
}

/* start the transfer or cancel */
XmDropTransferStart(DropData->dragContext, args, n);

}

/* This program creates a pushbutton with a label, which is
* registered as a drop site. The label changes when compound
* text is dropped on it. */

void main (argc, argv)
unsigned int argc;
char **argv;
{

Arg args[MAX_ARGS];
int n;
Widget topLevel, BulletinB, Label;
XtAppContext app_context;
Atom importList[1];

/* make the supporting widget structure for the Label widget */
topLevel = XtAppInitialize(&app_context, "XMTest", NULL, 0,

&argc, argv, NULL, NULL, 0);

15−12

Drag and Drop

n = 0;
BulletinB = XmCreateBulletinBoard(topLevel, "BulletinB",

args, n);
XtManageChild(BulletinB);

COMPOUND_TEXT = XmInternAtom(XtDisplay(topLevel),
"COMPOUND_TEXT", False);

/* create a Label widget */
n = 0;
Label = XmCreateLabel(BulletinB, "title", args, n);
XtManageChild(Label);

/* register the label as a drop site */
importList[0] = COMPOUND_TEXT;
n = 0;
XtSetArg(args[n], XmNimportTargets, importList); n++;
XtSetArg(args[n], XmNnumImportTargets, 1); n++;
XtSetArg(args[n], XmNdropSiteOperations, XmDROP_COPY);
XtSetArg(args[n], XmNdropProc, HandleDrop); n++;
XmDropSiteRegister(Label, args, n);

XtRealizeWidget(topLevel);
XtAppMainLoop(app_context);

}

15.2.1.2 A Simple Drag Source

This program creates a ScrollBar widget which is to be used as a
drag source. The normal action for Button 2 Press has been over-
ridden to cause call the StartDrag routine, which causes the drag to

15−13

OSF/Motif Programmer’s Guide

begin. The program allows only the Copy operation, and will reply
to requests for compound text.

When a drag is started on the ScrollBar, the default drag icons are
used.

When a transfer request is received by the DragConvertProc rou-
tine, it returns the value of the scrollbar slider converted into com-
pound text.

The code necessary to make a normal ScrollBar widget into a source
for drag and drop is the appropriate #include lines, the DragCon-
vertProc routine, the StartDrag routine, and translation and action
commands. The details of this additional code are covered in later
sections of this chapter.

Figure 15-3. A ScrollBar Widget as Drag Source

/* file: DNDscroll.c */

#include <signal.h>
#include <stdio.h>

#include <X11/Xlib.h>
#include <Xm/Xm.h>
#include <Xm/BulletinB.h>

15−14

Drag and Drop

#include <Xm/ScrollBar.h>
#include <Xm/AtomMgr.h>

#include <Xm/DragDrop.h>

#include <X11/Xatom.h>

#define MAX_ARGS 10

/* global variables */
Widget scrollbar;
Atom COMPOUND_TEXT;

/* this routine returns the value of the scrollbar slider,
* converted into compound text. */

static Boolean DragConvertProc(w, selection, target, typeRtn,
valueRtn, lengthRtn, formatRtn,
max_lengthRtn, client_data,
request_id)

Widget w;
Atom *selection;
Atom *target;
Atom *typeRtn;
XtPointer *valueRtn;
unsigned long *lengthRtn;
int *formatRtn;
unsigned long *max_lengthRtn;
XtPointer client_data;
XtRequestId *request_id;
{

Widget dc;
XmString cstring;
static char tmpstring[100];

15−15

OSF/Motif Programmer’s Guide

int *value;
int n;
Arg args[MAX_ARGS];
char *ctext;
char *passtext;

/* this routine processes only compound text */
if (*target != COMPOUND_TEXT)

return(False);

/* get the value of the scrollbar slider */
n = 0;
XtSetArg(args[n], XmNvalue, &value); n++;
XtGetValues(scrollbar, args, n);

/* convert the slider value to compound text */
sprintf(tmpstring, "%d", value);
cstring = XmStringCreateLocalized(tmpstring);
ctext = XmCvtXmStringToCT(cstring);

passtext = XtMalloc(strlen(ctext)+1);
memcpy(passtext, ctext, strlen(ctext)+1);

/* format the value for transfer. convert the value from
* compound string to compound text for the transfer */
*typeRtn = COMPOUND_TEXT;
*valueRtn = (XtPointer) passtext;
*lengthRtn = strlen(passtext);
*formatRtn = 8;
return(True);

}

/* This routine is performed by the initiator when a drag starts
* (in this case, when mouse button 2 was pressed). It starts
* the drag processing, and establishes a drag context */

15−16

Drag and Drop

static void StartDrag(w, event)
Widget w;
XEvent *event;
{

Arg args[MAX_ARGS];
Cardinal n;
Atom exportList[1];

/* establish the list of valid target types */
exportList[0] = COMPOUND_TEXT;

n = 0;
XtSetArg(args[n], XmNexportTargets, exportList); n++;
XtSetArg(args[n], XmNnumExportTargets, 1); n++;
XtSetArg(args[n], XmNdragOperations, XmDROP_COPY);
XtSetArg(args[n], XmNconvertProc, DragConvertProc); n++;
XmDragStart(w, event, args, n);

}

/* translations and actions. Pressing mouse button 2 overrides
* the normal scrollbar action and calls StartDrag to start a
* drag transaction */

static char dragTranslations[] =
"#override <Btn2Down>: StartDrag()";

static XtActionsRec dragActions[] =
{ {"StartDrag", (XtActionProc)StartDrag} };

/* This routine creates a window with a scrollbar in it. */

void main (argc, argv)
unsigned int argc;
char **argv;
{

15−17

OSF/Motif Programmer’s Guide

Arg args[MAX_ARGS];
int n;
Widget topLevel, BulletinB;
XtAppContext app_context;
Atom importList[1];
XtTranslations parsed_xlations;

/* create widget structure for scrollbar widget */
topLevel = XtAppInitialize(&app_context, "DNDscroll", NULL, 0,

&argc, argv, NULL, NULL, 0);

COMPOUND_TEXT = XmInternAtom(XtDisplay(topLevel),
"COMPOUND_TEXT", False);

n = 0;
BulletinB = XmCreateBulletinBoard(topLevel, "BBoard", args, n);
XtManageChild(BulletinB);

/* override button two press to start a drag */
parsed_xlations = XtParseTranslationTable(dragTranslations);
XtAppAddActions(app_context, dragActions, XtNumber(dragActions));

/* create a scroll bar widget */
n = 0;
XtSetArg(args[n], XmNtranslations, parsed_xlations); n++;
XtSetArg(args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg(args[n], XmNwidth, 150); n++;
scrollbar = XmCreateScrollBar(BulletinB, "testscroll", args, n);
XtManageChild(scrollbar);

XtRealizeWidget(topLevel);
XtAppMainLoop(app_context);

}

15−18

Drag and Drop

15.2.2 Drag Sources and Drop Sites

Text, List, Label, and Button widgets are automatically drag
sources. Applications need do nothing further to use them. An
application can allow any widget to be a drag source by establishing
a callback when BTransfer is pressed within that widget. The
application which owns the widget in which the drop was started is
the initiator.

A drag icon, which is a pictorial representation of the data being
dragged, replaces the normal cursor while the drag is in effect. The
icon may change as it moves around the screen. The actual data is
not being dragged, only a representation of it. The data is
transferred to a new location only when the drop is made, through
the drop transfer protocol.

Any widget can be registered as a drop site. Text and TextField
widgets are automatically registered as drop sites. If an application
wants to use these as drop sites, it need not register them
separately.

The "drop site" is simply the place where the drag is terminated.
The DropSite registry contains information about widgets that have
been registered as drop sites. Although the drag icon can be
dropped anywhere on the screen, only widgets that have been
registered as drop sites can accept information from the initiator.
The receiver is the application controlling the current drop site.

The "sensitive area" is the part of the widget that responds to drag
and drop. By default, the sensitive area is the whole widget. How-
ever, the application can specify that only part of the widget is sen-
sitive.

Widgets that are drop sites can be stacked on each other, with one
widget partially or completely within the boundary of another. The
sensitive areas of lower drop sites are clipped if they are covered by

15−19

OSF/Motif Programmer’s Guide

a higher widget.

The stacking order of the widgets with drop sites can be changed by
the application.

15.2.3 Protocols

The protocol describes how the initiator and receiver clients interact
through the toolkit with each other.

15.2.3.1 Drag Protocols

There are two types of drag protocol:

preregister Does not require messaging.

dynamic Does require messaging.

Applications can support either, both, or neither. If possible, clients
should support both to allow the most flexibility for users. The
Motif 1.2 toolkit automatically supports both unless a user or client
sets resources to force the use of one or the other.

The user can specify which drag protocol to use when the client is
the initiator or receiver. The application can specify drag protocol
in an app-defaults file. If neither the application or the user specify
a protocol, the preregister drag protocol is used.

The toolkit uses the requested protocols and the protocols allowed
by the initiator and receiver clients to arrive at the protocol actually
being used. Therefore, the protocol can change as the drag icon
moves from window to window, depending on which protocols they

15−20

Drag and Drop

both support. If the initiator and receiver cannot agree on a proto-
col, no drag over or drag under visuals effects are shown.

Even if there are no drag over or drag under visual effects, a drop
can still occur using the drop protocol, unless a client has specified
that that that window does not participate in drag and drop.

15.2.3.2 Drop Protocol

The drop protocol is based on the Xt Selection transfer protocol.
The transfer between either client and the toolkit can be incremen-
tal or non-incremental, regardless of how the other client is
transferring. Each client has a procedure to process transfers:
XmNconvertProc for the initiator, and XmNtransferProc for the
receiver. Incremental transfer is indicated by a resource value.

The receiver creates a list of information and target types desired
from the initiator, along with a XmNtransferProc to handle any
processing needed during the transfer. It then calls XmDrop-
TransferStart to start the transfer process. Even if there is no
transfer, the receiver should call this routine, so that the status can
be updated correctly for the initiator.

For each item in the transfer list, the initiator’s XmNconvertProc is
called. This procedure reads and processes the request and returns
the information.

When the transfer has finished, the toolkit on the receiver side
updates the XmNtransferStatus DropTransfer resource to indicate
if the transfer was successful. The receiver’s XmNtransferProc rou-
tine can also update this resource.

15−21

OSF/Motif Programmer’s Guide

15.2.4 Drag and Drop Widget Classes

Motif 1.2 provides a number of Xt objects and widgets to encapsu-
late the underlying protocol, however, these are not mapped onto
the screen.

XmDisplay An object that contains display-specific
information, such as the initiator and
receiver protocol styles.

XmScreen An object that describes screen-specific
information, such as font and default drag
over icons.

XmDragIcon A widget that describes the pixmap, mask,
and attachment of an icon. The source icon,
state icon, operation icon, and the resulting
blended drag icon are all Drag Icons.

XmDragContext A widget that describes the resources
specified by each drag initiator, such as
target type, custom icons, custom colors,
blending model, permitted operations, and
callback routines for various situations
encountered during the drag and drop
transaction.

XmDropSite A drop site database maintains a registry
of the resources unique to each drop site,
such as animation for drag-under effects,
valid target types and operations, and call-
back routines for situations encountered
during a drag and drop transaction. It is
not an Xt object, although it acts like one
with respect to resource fetching.

15−22

Drag and Drop

XmDropTransfer A widget that describes the information
desired from the initiator client and the
procedure used to process the results.

15.2.5 Drag and Drop Functions

Motif 1.2 provides functions to support drag and drop processing:

XmCreateDragIcon Creates any of the parts of a
drag icon (status icon, operation
icon, or source icon) from a cur-
sor or pixmap. This allows cus-
tom icons for all or part of the
drag icon, rather than the
default icons.

XmDragCancel Cancels a drag that is in pro-
gress. This function is called
when the user presses KCancel.

XmDragStart This function is called in the
routine that is performed when
the user starts a drag.
Resources describing the initia-
tor are established. This func-
tion creates a DragContext
object, which is referenced by
other functions whenever infor-
mation about the drag initiator
is needed.

XmDropSiteConfigureStackingOrder Sets the order of overlapping
drop sites. The default order is
the first-registered drop site is

15−23

OSF/Motif Programmer’s Guide

on the bottom and the last-
declared drop site is on top.

XmDropSiteEndUpdate Causes the XmDropSiteUpdate
requests made after XmDropSi-
teStartUpdate to take place.

XmDropSiteQueryStackingOrder Provides information about the
stacking order of overlapping
drop sites. The order can be
changed with XmDropSiteConfi-
gureStackingOrder.

XmDropSiteRegister Registers a drop site. Resources
describing the drop site are
defined.

XmDropSiteRetrieve Retrieves the values of drop site
resources.

XmDropSiteStartUpdate Signals the toolkit to wait until
XmDropSiteEndUpdate is called
to process drop site changes
requested by XmDropSiteUp-
date. This provides a more
efficient way to update several
drop sites than changing them
one at a time.

XmDropSiteUpdate Updates drop site resources for a
single drop site. If a series of
XmDropSiteUpdate requests are
surrounded by XmDropSiteStar-
tUpdate and XmDropSiteEndUp-
date, then the changes will be
made all at once after the end
update request.

15−24

Drag and Drop

XmDropSiteUnregister Removes a drop site. After a
drop site has been unregistered,
it is unavailable as a destination
for a drag.

XmDropTransferAdd Add additional transfer requests
once a transfer has started.

XmDropTransferStart Specifies what information
should be requested from the
drag initiator, and starts the
process to get the information.

XmGetDragContext Returns the DragContext ID
associated with a particular
time stamp.

XmGetXmDisplay Returns the ID for the specified
display.

XmGetXmScreen Returns the ID for a specified
screen. Some resources, such as
the drag icons, are screen-
specific.

XmTargetsAreCompatible Checks if there are any match-
ing targets between the initiator
and destination to help deter-
mine the correct drag state.

15.2.6 Targets

Each drag source and drop site specifies what kinds of data types it
can process, called targets. These targets are atoms, such as
XA_STRING.

15−25

OSF/Motif Programmer’s Guide

The DragContext resources, XmNexportTargets and XmNnumExport-
Targets provide a list and number of the data types provided by the
drag source. These are export targets.

The DropSite resources, XmNimportTargets and XmNnumImportTar-
gets provide a list and number of the data types accepted by the
drop site. These are known as import targets.

Any number of targets may be listed for each source and site. A
drop site is considered valid for a particular drag if at least one of
its targets matches any of the source’s targets and if the source and
drop site operations are compatible.

An application can define anything it wants as a target. Be aware,
however, that other applications might not recognize that target.

15.2.7 Operations

There are three ways that the initiator and receiver can interact
with each other:

• Data can be moved from the initiator to the receiver (Move).

• Data can be copied from the initiator to the receiver (Copy).

• Data can be linked from the receiver to the initiator (Link).

When a drag is started, the initiator provides a list of valid opera-
tions in the DragContext XmNdragOperations resource. When a
drop site is registered, the receiver provides a list of operations it
supports in the DropSite XmNdropSiteOperations resource. These
lists are the values XmDROP_MOVE, XmDROP_COPY, or XmDROP_LINK,
connected by the bitwise OR operator (|). For instance,
XmDROP_MOVE | XmDROP_COPY means that Move and Copy are valid
operations, but Link is not. The value XmDROP_NOOP indicates that

15−26

Drag and Drop

there are no operations possible for a drop at the current site.

Callback structures for both the DragContext and DropSite have
operation and operations fields. The operations field lists all
valid operations if a drop were to occur at this point. The opera-
tion field shows the operations that would happen if a drop
occurred at this point. As the drag icon moves over different poten-
tial drop sites, the values in its callback structures change in
response to what operations the drop sites allow. If there are no
common operations between a drag source and a drop site, the
operation and operations fields are set to XmDROP_NOOP, and the
dropSiteStatus field is set to XmDROP_SITE_INVALID.

The user can specify an operation using key combinations discussed
earlier in this chapter. The use can also change the operation at
any time until the drop starts.

The initiator and the receiver need to be able to handle all the
operations their application supports. If the operation is Move, the
receiver first gets a copy of the data, then tells the initiator that it
can delete the data. If the operation is Copy, both applications have
the data, making two copies of it. If the operation is Link, there is
only one copy of the data, and the receiver establishes a link to that
copy.

15.2.7.1 Drop Site Status

The drag and drop callbacks for both receiver and initiator contain
a dropSiteStatus field. This field is initialized and maintained
by the receiver through the toolkit, although the receiver’s drag and
drop procedures can update it if they wish. This field is used by the
toolkit to determine what drag over and drag under visual effects to
use.

15−27

OSF/Motif Programmer’s Guide

The field indicates the the relation of drag source to the drop site
over which the drag icon is located.

XmDROP_SITE_VALID A drop can take place. There is
at least one matching target and
operation between the drag
source and the drop site.

XmDROP_SITE_INVALID A drop cannot take place.
Either there were no matching
targets, no matching operations,
or the receiver’s XmNdragProc or
XmNdropProc discovered some
other problem that would make
a drop impossible.

XmNO_DROP_SITE The drag icon is not over a drop
site.

If the toolkit on the receiver’s side has set either operation or
operations field to XmDROP_NOOP, it also sets the dropSiteS-
tatus field to XmDROP_SITE_INVALID.

15.2.8 Overview of Programmer Responsibilities

This section provides an overview of the actions of the initiator
client, and the receiver client while a drag and drop transaction is
in progress. The actions are covered in more detail later in the
chapter.

Before a drag starts:

• The user or client can indicate with the protocol resources the
type of protocol and visual effects to be used for the initiator and
receiver if possible.

15−28

Drag and Drop

• The initiator client creates any special icons it wants to use for
drag over effects using XmCreateDragIcon.

The initiator establishes translation or event handlers to react to
BTransfer Press.

• The receiver client registers widgets as potential drop sites using
XmDropSiteRegister, providing information about:

— the shape of the area of the widget sensitive to drag and drop,
if it is not the whole widget.

— valid targets

— optional drag under visual effects.

— an optional XmNdragProc to receive messages during the
drag.

— an XmNdropProc to be performed at the drop.

The receiver can check and change the stacking order of overlap-
ping drop sites with XmDropSiteQueryStackingOrder and
XmDropSiteConfigureStackingOrder.

The receiver can update drop site information using XmDropSi-
teUpdate, XmDropSiteStartUpdate, and XmDropSiteEndUpdate.

The receiver can unregister a drop site with XmDropSiteUnre-
gister.

When the drag starts (typically a BTransfer Press event):

• The toolkit on the initiator’s side is in charge during the drag,
until a drop is made. The initiator client:

— Receives an indication that the user has started a drag.

— Creates a DragContext using XmDragStart, specifying:

— valid targets

15−29

OSF/Motif Programmer’s Guide

— optional callbacks to be performed during the drag.

— a XmNconvertProc to process transfer requests from the
receiver.

— optional custom drag-over visuals.

— optional drop callbacks to be performed when a drop
occurs.

• The receiver client does nothing.

During a drag:

• The user can cancel the drag or change operation.

• The receiver is not involved unless the pointer is within one of
its registered drop sites.

The toolkit on the receiver’s side initializes the dropSiteS-
tatus, operation, and operations fields in the callback
structure

The receiver’s XmNdragProc routine (if one was registered) is
notified of drag source actions within the drop site: drop site
enter, drop site leave, drag icon motion, or change of operation.
This XmNdragProc routine is called only if the drag protocol is
dynamic. It handles any special processing and drag under visu-
als.

If the protocol is preregister, drag under visuals are handled by
the toolkit on the initiator side.

• By default, the initiator need do nothing during a drag.

If the initiator client has registered the appropriate callback rou-
tines, it is notified after the receiver’s XmNdragProc when the
drag is entering or leaving a top level window, entering or leav-
ing a drop site, is in motion, or the user has changed the desired
operation. The values of dropSiteStatus, operation, and
operations in the drag callbacks are initialized by either the

15−30

Drag and Drop

toolkit on the receiver side or XmNdragProc, or by the toolkit on
the initiator side if the pointer is not over a registered drop site.

The initiator can activate custom drag over effects or other spe-
cial processing.

The initiator can cancel the drag in progress by using
XmDragCancel.

• Either client can check the compatibility of export and import
targets with XmTargetsAreCompatible.

Either client can obtain information about the drop site that the
drag icon is over (if any) with XmDropSiteRetrieve.

When the drop occurs:

• The toolkit on the receiver side is in charge during the drop and
transfer.

The receiver’s XmNdropProc routine makes any final checks that
a drop really is possible, and updates the dropSiteStatus,
operations, and operation fields in the XmNdropProc call-
back structure for the initiator to read in its XmNdropStartCall-
back callback structure.

If the drop was the result of the user requesting help, the
receiver’s XmNdropProc displays information in a dialog box, and
waits for a response from the user, before either continuing or
cancelling the drop.

If the drop is valid, the receiver requests transfer information
from the initiator.

Only the receiver can cancel a drop.

• The initiator’s XmNdropStartCallback callback routine is called
after the receiver’s XmNdropProc has finished. The values of the
dropSiteStatus, operation, and operations fields in the
callback structure were set by the toolkit on the receiver side or

15−31

OSF/Motif Programmer’s Guide

XmNdropProc.

Transferring data between initiator and receiver:

• The receiver’s XmNdropProc establishes a list of data and target
formats it wants to receive, and calls the XmDropTransferStart
function. The list can be updated with XmDropTransferAdd dur-
ing the transfer.

The receiver registers a XmNtransferProc to process each
transfer from the initiator.

The receiver can cancel the drop while the transfer is in pro-
gress.

If there is no information to be transferred, or if the drop is can-
celled, the receiver must still call XmDropTransferStart. The
initiator is unable to proceed until it is notified that a transfer
has ended. Only the receiver can cancel a drop

• The initiator’s XmNconvertProc routine is executed in response
to a request from the XmDropTransferStart function called by
the receiver. It returns the information formatted according to
the requested target to the receiver’s XmNtransferProc.

After the drop has finished:

• The initiator’s XmNdropFinishCallback is called when the
transfer is complete. The initiator’s XmNdragDropFinishCall-
back is called after the whole drag and drop transaction has
finished.

15.3 Drag and Drop Protocols

15−32

Drag and Drop

The protocols refer to how the initiator and receiver client use the
toolkit to communicate with each other. There are two drag proto-
col styles that are available. The drop protocol is based on the Xt
Selection protocol.

15.3.1 Drag Protocols

The toolkit on the initiator side is in charge during the drag. The
protocol in effect determines how it will find the information about
drop sites that it needs to manage visuals, and how extensively the
initiator and receiver clients are involved during the drag.

There are two kinds of drag protocol styles:

preregister which stores drop site information in a database
when the drop site is registered. The receiver is not
involved in the drag until a drop occurs. All drag over
and drag under visual effects are managed by the
toolkit on the initiator side.

dynamic which uses messages from the toolkit to the receiver
to find out drop site information. The toolkit on the
receiver side can reply to the messages, or the appli-
cation can take action based on these messages. The
receiver manages the drag under effects.

The code for the initiator is the same regardless of the protocol. The
code for the receiver applications is the same except that in the
dynamic mode, the receiver’s XmNdragProc is called.

The drag protocol in use can change during the course of a drag.
When the drag icon enters or leaves a top level window, the source
and potential drop receiver negotiate a mutually acceptable drag
protocol, as described in a later section.

15−33

OSF/Motif Programmer’s Guide

15.3.1.1 The Preregister Drag Protocol

When a receiver supports the preregister protocol, the toolkit on the
receiver side stores drop site information in a database. The toolkit
on the initiator side manages all drag under effects based on the
information in the drop site database. By setting some drop site
resources appropriately, the receiver can have the toolkit use
different highlighting or pixmaps, but the receiver does not partici-
pate directly in the drag under effects.

With the preregister protocol:

• The toolkit uses pixmap source icons if provided by the client. If
none are provided, it uses bitmap source icons if provided by the
client. If none are provided, it uses Screen icons. The Screen
icons can be either the default icons, or ones provided by the
client or user.

• The server is grabbed by the drag icon.

• The only customization a receiver can perform is providing cus-
tom values for the DropSite visual resources.

• The drag icon can be any size supported by the system on which
the application is running.

15.3.1.2 The Dynamic Drag Protocol

With the dynamic drag protocol, the initiator and receiver commun-
icate with messages through the toolkit.

As the drag icon moves within the receiver’s window, messages are
sent from the toolkit on the initiator side to the toolkit on the

15−34

Drag and Drop

receiver side. Based on these messages, the receiver determines
whether the drag icon is entering, within, or leaving a drop site.
Although the toolkit on the receiver side initializes state and opera-
tion information, the receiver can check and update this informa-
tion further if it registers a XmNdragProc for the drop site. The ini-
tiator receives the updated message in one of its drag-related call-
backs (described later in this chapter), and can take action accord-
ingly.

The dynamic drag protocol allows the receiver to provide more
sophisticated visual effects using the XmNdragProc than the toolkit
can provide alone.

With the dynamic drag procotol:

• The receiver can provide custom drag processing and drag under
visual effects.

• The drag icon must fit in the largest cursor size supported by the
system running the application. If it is too large, it will be trun-
cated to fit.

15.3.2 Choosing the Protocol and Visual Style

The user can specify which drag protocol to use or the application
can specify the drag protocol in resource file.

The preregister drag protocol can be used with a minimum of addi-
tional coding in an application, since the toolkit manages the drag
over visual effects using the default drag icons specified in the
Screens object. Or the application can override the default Screen
icons with custom icons, but still allow the toolkit to manage the
effects.

15−35

OSF/Motif Programmer’s Guide

The dynamic drag protocol requires more work for the application
program, but allows receiver application to provides visual effects
beyond the capabilities of the toolkit.

The drag protocol in use has an effect on the system performance as
described later in this section.

15.3.2.1 Specifying Drag Protocols

Two Display resources specify which protocol the toolkit should try
to use when a client is an initiator or receiver. These resources can
be set by the client in resource file, or by the user.

• XmNdragInitiatorProtocolStyle

• XmNdragReceiverProtocolStyle

They can take the following values (the letter in brackets following
the value is used in the matrix that follows)

XmDRAG_NONE [N] does not participate in drag
and drop. There are no drag
under effects. The drag over
effects depend on the value of
XmNdragInitiatorProtocol-
Style.

XmDRAG_DROP_ONLY [X] doesn’t support either the
preregister mode or the
dynamic mode, but does data
transfer after the drop
occurs. There are no drag
over or drag under visual
effects.

15−36

Drag and Drop

XmDRAG_PREREGISTER [P] supports the preregister
mode only. The visual effects
are managed by the toolkit.

XmDRAG_PREFER_PREREGISTER [PP] supports both protocols, but
prefers the preregister proto-
col. This is the default for
receivers. The visual effects
are determined by the proto-
col actually used.

XmDRAG_PREFER_RECEIVER [R] used by initiators only. Uses
the protocol that the receiver
specifies. This is the default
for initiators. The visual
effects are determined by the
protocol actually used.

XmDRAG_PREFER_DYNAMIC [PD] supports both protocols, but
prefers the dynamic mode.
The visual effects are deter-
mined by the protocol actu-
ally used.

XmDRAG_DYNAMIC [D] supports the dynamic proto-
col only. The drag over and
drag under visual effects are
managed by the clients.

For example:

myclient*dragInitiatorProtocolStyle: DRAG_PREFER_DYNAMIC
myclient*dragReceiverProtocolStyle: DRAG_PREFER_DYNAMIC

If the initiator and receiver have specified the same protocol, that
protocol is used. If they specify different protocols, the protocol that

15−37

OSF/Motif Programmer’s Guide

is used is shown in the table below.
222

Receiver Protocol2222222222222222222222222222222222222
P PP PD D X N

Initiator
Protocol222
P P P P X X N
PP P P P D X N
R P P D D X N
PD P D D D X N
D X D D D X N
X X X X X X N
N N N N N N N2221
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

The XmGetXmDisplay function returns the Display object ID associ-
ated with a specific display. XtGetValues can be used to check the
protocol style resources.

If an XmNdragProc is specified for a drop site, it will be performed
only if the protocol is dynamic. In this case, the XmNdragReceiver-
ProtocolStyle resource should be set to
DRAG_PREFER_DYNAMIC in the app-defaults file, rather than
using the default value.

15.3.2.2 Protocols and Visuals

When the resulting protocol is preregister, a preregister visual style
is used. The server is grabbed. The drag-over visual may be a pix-
map with an arbitrary size whose depth and colormap are the same
as the widget associated with the drag source. The pixmap is
specified in the DragContext XmNsourcePixmapIcon resource, addi-
tionally blended as described below.

15−38

Drag and Drop

When the resulting protocol is dynamic, a dynamic visual style is
always used. The drag-over visual is implemented using the X cur-
sor, which must be a bitmap, and often has limited size (use XQuer-
yBestSize to find out the largest size available per-screen). The
cursor is specified using XmNsourceCursorIcon, additionally
blended as described below.

Users will specify one of the preregister values for XmNdragInitia-
torProtocolStyle because they want good performance when net-
work loading or context switching are problems, or because they
want better drag-over visuals rather than more sophisticated drag-
under visuals. For visual consistency, a preregister visual style is
used whenever possible.

Users will specify one of the dynamic values for XmNdragInitia-
torProtocolStyle because there are clients which use use the
dynamic effects, and for visual consistency, they want to use a
dynamic visual style whenever possible.

Consequently, when the resulting protocol is XmDRAG_NONE or
XmDRAG_DROP_ONLY, the visual style depends upon the value of
XmNdragInitiatorProtocolStyle. When it is XmDRAG_DYNAMIC or
XmDRAG_PREFER_DYNAMIC, the dynamic visual style is used; other-
wise, the preregister visual style is used.

15.3.3 Drop Protocol

When a drop is made, the receiver checks what action should hap-
pen:

• If the user requested help, the receiver should display a dialog
box explaining the consequences of a drop on the site, and deter-
mine if the user wants to continue or cancel the drop.

15−39

OSF/Motif Programmer’s Guide

• If the user requests cancel from the help dialog box, or if the user
presses KCancel, or if the receiver determines that the drop can-
not continue, the receiver sets the number of transfers to zero
and the status to failed to cancel the drop.

• If the drop can continue normally, the receiver starts a transfer.

The drop protocol is a superset of the Xt incremental and non-
incremental protocol, with two main differences:

• The receiver and initiator need only one XmNtransferProc and
XmNconvertProc (the Xt Selection process requires separate pro-
cedures for incremental and non-incremental transfer). They
each specify whether the transfer is incremental or not from
their side of the transfer with DropTransfer and DragContext
resources. If the initiator and receiver use the same incremental
or non-incremental protocol, the toolkit deals with each in the
requested protocol.

• The initiator and receiver are both notified of the completion of
the entire transfer, regardless of how many sub-transfers were
involved

The drop protocol is handled by a DropTransfer widget created by
XmDropTransferStart in the receiver client. The receiver creates a
list of information and target types desired from the initiator, along
with a XmNtransferProc to handle any processing needed during
the transfer. The toolkit processes the requests one at a time, until
it has finished with the list.

The receiver must call XmDropTransferStart, even if the number of
transfer requests is zero. Otherwise, the initiator will keep waiting
for a transfer request.

For each transfer request, the initiator’s XmNconvertProc is called.
This procedure reads and processes the request and returns the
information.

15−40

Drag and Drop

15.4 Drop Receiver Responsibilities for Drag-
ging

The drop receiver responsibilities are covered first in this chapter,
because in the dynamic protocol, motion messages go first to the
receiver client. The receiver evaluates the state of the drag and
sends an updated message to the initiator, which then manages its
drag over visuals based on the results.

The drag receiver has some responsibilities before a drag even
starts:

• It registers widgets as drop sites, providing information about
valid operations, target types accepted, and drag under effects
(animation style). The application can use the default values for
this information, or provide its own values.

• It registers a XmNdropProc that is called when a drop occurs and
which starts the transfer of information from the initiator. This
XmNdropProc also processes any Help information the applica-
tion provides about a drop site.

• It optionally registers a XmNdragProc for use with the dynamic
protocol that is called for events while a drag is within the
widget’s boundaries.

If the drag protocol in effect is preregister, the drop site information
is put in the database as the drop sites are registered and the
receiver client does nothing until a drop is made. All visual effects
are handled by the toolkit.

If the drag protocol is dynamic, messaging begins when the pointer
enters the window containing the drop site. The receiver is given
the opportunity to provide additional processing in its XmNdragProc.
The XmNdragProc:

15−41

OSF/Motif Programmer’s Guide

• Receives messages when the drag icon enters or leaves the drop
site, the operation changes, the drag icon is in motion, or the
drag is cancelled.

• Provides information back to the toolkit about the state of the
drag (valid drop site, invalid drop site, no drop site) and the
operation to be performed when a drop is made.

• Manages any custom drag under visual effects.

15.4.1 Establishing a Drop Site

Text and TextField widgets register themselves as drop sites. An
application must register any other widgets it wants to use for drop
sites. A widget may be registered as only one drop site.

XmDropSiteRegister registers a widget as a drop site, establishes
callbacks to be used when a drag is made through the drop site or a
drop is made in the drop site, and provides target and operation
information. If the protocol is preregister, the information is stored
in a database, which is read by the toolkit during the drag. If the
drag protocol is dynamic, messaging is used to check for possible
drop sites within a widget.

The application must register a XmNdropProc routine to establish a
list of transfer requests and start the transfer. The other resources
can be left at their default values if those values are acceptable to
the application.

The optional XmNdragProc routine is executed only is the drag pro-
tocol is dynamic. It is called in response to events during the drag,
and allows the receiver to provide additional drag under effects or
additional drag processing.

15−42

Drag and Drop

The XmdropSiteOperations resource lists all operations that the
drop site will support, combined by the bitwise OR operations (|).
For instance the default value ...

XmDROP_COPY | XmDROP_MOVE

means that Copy and Move are valid operations, but Link is not.
During a drag, the toolkit on the receiver side compares this list
with the DragContext’s XmNdragOperations list and the user-
selected operation to arrive at the operation that will be performed
if a drop occurs on this site, along with a list of all operations possi-
ble between the initiator and the current drop site.

If an application wishes to use only one operation, such as Copy,
then it should set the XmNdropSiteOperations field to just that
operation to ensure the correct operation and drag icon are chosen
by the toolkit during the drag and drop transaction.

Drop sites that represent "copying devices", such as printers, or
"transformation devices", such as compilers, should perform a Copy
rather than a Move if both are possible.

The XmNdropSiteActivity indicates if the drop site is available for
use:

XmDROP_SITE_ACTIVE The drop site is available for use. This
is the default value.

XmDROP_SITE_INACTIVE The drop site is not available for use. If
the drag icon is moved over the drop
site, both the icon and drop site act as if
the icon were not over a drop site.

The XmDropSiteUnregister function removes a widget from the
DropSite registry. Once a widget is unregistered, it displays no drag
under visual effects and cannot accept a drop.

15−43

OSF/Motif Programmer’s Guide

The difference in an unregistered drop site and an inactive drop
site, is that the inactive drop site is still registered, it still uses
memory, but does not engage in any drag and drop transactions.
One use for inactive drop sites is to provide the correct clipping on
overlapping drop sites. An unregistered drop site is no longer
involved in the drag and drop system. It is the same as a widget
that was never registered.

This code from the main routine in DNDlabel.c in Appendix B gen-
erates a simple drop site on a Label widget. The only target type it
recognizes is compound text. The only operation it will accept is
Copy. The other resources, including drag under effects, are left at
their default values.

Figure 15-4. A Label Widget

Label = XmCreateLabel(BulletinB, "title", args, n);
XtManageChild(Label);

/* register the label as a drop site */
importList[0] = COMPOUND_TEXT;
n = 0;
XtSetArg(args[n], XmNimportTargets, importList); n++;
XtSetArg(args[n], XmNnumImportTargets, 1); n++;
XtSetArg(args[n], XmNdropSiteOperations, XmDROP_COPY);

15−44

Drag and Drop

XtSetArg(args[n], XmNdropProc, HandleDrop); n++;
XmDropSiteRegister(Label, args, n);

XtRealizeWidget(topLevel);
XtAppMainLoop(app_context);

15.4.1.1 Changing a Drop Site

The XmDropSiteUpdate function is used to change drop site
resources for a single drop site. For multiple requests, XmDropSi-
teStartUpdate signals that a series of XmDropSiteUpdate requests
will follow, and XmDropSiteEndUpdate ends the series and
processes the requests at one time.

XmDropSiteUpdate can also be used to change the resource values
of the widgets that register themselves as drop sites (Text and Text-
Field). For instance, an application can change Text’s XmNdropProc
to call a procedure in the application.

15.4.1.2 Specially-Shaped Drop Sites

The shape of a simple drop site can be specified as the union of a set
of specified rectangles clipped by the associated widget.

If only part of the widget is to be sensitive to a drop, it is defined by
a list of rectangles in the XmNdropRectangles resource. If the
resource is NULL, the drop site is the smallest enclosing widget and
the shape of the drop site is the shape of the widget.

15−45

OSF/Motif Programmer’s Guide

The rectangles comprising the drop site need not be contiguous. All
the non-contiguous segments of the drop site act as one; they are all
highlighted the same way at the same time. A drop on one segment
is the same as a drop on any of the other segments. This might look
to the user as if there were several drop sites on a single widget, but
the application handles nested drop sites differently from drop sites
made of non-contiguous segments. Nested drop sites, whether
simulated or real, may have different drag under effects, targets,
operations, or callback procedures.

This example establishes a sensitive area shaped like a plus-sign on
a DrawnButton widget named button 2. Even if the drag icon is
within the button 2 widget, no drag under effects are shown until
the drag icon is within the sensitive area. The area is visible only
when a drag icon enters it and highlighting occurs. The sensitive
area is the only part of the widget that accepts a drop. This code is

15−46

Drag and Drop

not in one of the three example programs included in Appendix B.

Figure 15-5. Special Shaped Drop Site

XRectangle plus[] = {
{30, 0, 30, 30},
{0, 30, 90, 30},
{30, 60, 30, 30},
};
.
.
.

n = 0;
XtSetArg(args[n], XmNimportTargets, importList); n++;
XtSetArg(args[n], XmNnumImportTargets, 1); n++;
XtSetArg(args[n], XmNdropProc, HandleDrop); n++;
XtSetArg(args[n], XmNdropRectangles, plus); n++;

15−47

OSF/Motif Programmer’s Guide

XtSetArg(args[n], XmNnumDropRectangles, 3); n++;
XmDropSiteRegister(Button2, args, n);

15.4.1.3 Nested Drop Sites

A widget can be registered as only one drop site. However, widgets
which are registered as drop sites can be nested within each other,
providing nested drop sites.

The XmNdropSiteType indicates the complexity of the drop site:

XmDROP_SITE_SIMPLE The drop site contains no other drop
sites.

XmDROP_SITE_COMPOSITE The drop site contains other drop
sites. This value is generally associ-
ated with a Manager.

A composite drop site must be registered before any of its children
are registered. If a composite drop site is inactive, so are all of its
children.

The composite and children drop sites do not need to have the same
operations or targets.

A manager which contains a number of widgets with their associ-
ated drop sites need not be a composite drop site unless it is possi-
ble to drop in the background of the manager.

It is possible for an application to simulate nested drop sites on a
single widget, for example a DrawingArea. The process is described
as part of the discussion of the duties of the optional XmNdragProc
routine later in this chapter.

15−48

Drag and Drop

15.4.1.4 Overlapping Drop Sites

Drop sites may overlap. Their stacking order is assumed to
correspond to the order in which they are registered with the first-
registered one on top. The stacking order is checked by calling
XmDropSiteQueryStackingOrder. The stacking order is changed by
calling XmDropSiteConfigureStackingOrder.

When a drop site is overlapped by another drop site, the drag under
effects of the drop site underneath are clipped as appropriate by the
obscuring drop site.

A widget or gadget which is not a drop site may overlap and par-
tially obscure a drop site. To ensure that the drop-site’s drag under
visuals are appropriately clipped by the obscuring widget, such
sibling widgets should be registered as inactive drop sites. Parent
widgets, whether drop sites or not, will clip their children’s drop site
visuals. If a parent has some active and some inactive drop site chil-
dren, it should be registered as an active drop site.

15.4.1.5 Drag Under Visual Effects

Drag under visual effects are displayed only when the pointer is
within the sensitive area of the drop site widget. Various drag
under styles can be chosen in the XmNanimationStyle DropSite
resource:

XmDRAG_UNDER_HIGHLIGHT A solid border around the
sensitive are of the drop
site is used to show the
drop site is valid. This is
the default value.

15−49

OSF/Motif Programmer’s Guide

XmDRAG_UNDER_SHADOW_OUT The sensitive area of the
drop site looks pushed
out when it is valid.

XmDRAG_UNDER_SHADOW_IN The sensitive are of the
drop site look pushed in
when it is valid.

XmDRAG_UNDER_PIXMAP A custom pixmap is used
to indicate the drop site
is valid. The pixmap is
specified in XmNanima-
tionPixmap.

XmDRAG_UNDER_NONE No indication is given
that the drop site is valid.

The following illustration shows the default drag under animation
around the Label widget drop site.

Figure 15-6. Default Drag Under Animation

If the value of XmNanimationStyle is XmDRAG_UNDER_PIXMAP, the
XmNanimationPixmap, XmNanimationMask, and

15−50

Drag and Drop

XmNanimationPixmapDepth resources are used to provide more
information about the pixmap. If the depth does not match the
depth of the window controlling the drop site widget, no animation
occurs. Except for XmDRAG_UNDER_PIXMAP, the colors used for the
visual effects are based on the colors of the widget associated with
the drop site.

The dynamic protocol provides the most control over the drop site
animation. It is the only way to get visual effects that don’t remain
the same for the duration of the drag icon’s stay in the drop site, for
instance a background that flashes.

15.4.2 XmNdragProc

The procedure registered in the DropSite’s XmNdragProc resource is
called only when the dynamic protocol is in effect. This procedure is
optional. Applications that need to provide special drag under
effects or other special processing during a drag can do so with this
procedure.

The XmNdragProc is called in response to messages from the toolkit,
before the initiator’s equivalent drag callback. Fields in the callback
structure provide information to the receiver about the drag.

The reason field in the callback structure indicates why the pro-
cedure was called.

XmCR_DROP_SITE_ENTER_MESSAGE The drag icon hot
spot has entered
the drop site.

XmCR_DROP_SITE_LEAVE_MESSAGE The drag icon hot
spot has left the
drop site.

15−51

OSF/Motif Programmer’s Guide

XmCR_DRAG_MOTION_MESSAGE The drag icon hot
spot has moved.

XmCR_OPERATION_CHANGED_MESSAGE The operation has
changed.

The operations field lists all the operations that are valid for drop
site with the current drag source. The operations field is initial-
ized by the toolkit as follows:

• If the user has selected an operation, the value of operations
is initialized to that operation if it is in the DragContext’s
XmNdragOperations list, else

• The operations field is initialized to the list in the
DragContext’s XmNdragOperations list.

The operation field indicates the type of action a successful drop
will perform. The operation field is initialized by the toolkit as
follows:

• operation is initialized to XmDROP_MOVE if Move is a valid
operation (in both the operations field and the DropSite’s
XmNdropSiteOperations list), otherwise it is initialized to
XmDROP_COPY if Copy is a valid operation, otherwise it is initial-
ized to XmDROP_LINK if Link is a valid operation, otherwise it is
initialized to XmDROP_NOOP.

The dropSiteStatus field provides an indication of whether a
transfer between the initiator and this drop site could occur. The
value that the toolkit selects for the dropSiteStatus field depends
on the reason the XmNdragProc was entered.

• If the reason is motion or drop site leave, and the drop site is the
same as in the last call to XmNdragProc, the dropSiteStatus is
the same as at the end of the previous call.

• Otherwise, if there is at least one target in common and at least
one operation in common, the value is initialized to

15−52

Drag and Drop

XmDROP_SITE_VALID. If not, the value is initialized to
XmDROP_SITE_INVALID.

• If the operation field is XmDROP_NOOP, the dropSiteStatus
field is initialized to XmDROP_SITE_INVALID.

The XmNdragProc can update operation, operations, or dropSi-
teStatus further during its execution. The final values for these
fields are available to the initiator in its drag callback structures. If
the receiver’s XmNdragProc is called more than once while the drag
icon is within the drop site (for instance because of motion events),
the values used by the toolkit when it initializes the drag callback
operations, operation, and dropSiteStatus fields are ones at
the end of the previous call to XmNdragProc.

The animate field tells the toolkit who should provide the drag
under visual effects. It is initially set to True, but the XmNdragProc
can set it to False.

TRUE The toolkit provides the drag under visuals as if the
protocol were preregister.

FALSE The receiver provides the drag under visuals. The
application can provide special visual effects, such as
a blinking background, that are not possible with the
toolkit.

The DragProcCallback routine in the DNDDemo.c program in
Appendix B is an example of a DragProc routine. It can process
every drag message, changes the operations, operation, and
dropSiteStatus as necessary, and sets the animate field to TRUE,
allowing the toolkit to manage the drag under effects. The Drag-
ProcCallback routine is shown in the next section of this chapter.

15−53

OSF/Motif Programmer’s Guide

15.4.2.1 Simulating Nested Drop Sites

A widget can be registered as only a single drop site. However, if
the application needs one or more drop sites entirely enclosed
within another drop site, there are two ways to accomplish this:

• Widgets that contain other widgets that are drop sites should be
registered as composite drop sites as described earlier in this
chapter.

This method allows the toolkit to manage drop site messages
and drag under effects for each nested drop site.

• An application can simulate a multiple drop sites on a single
widget in the XmNdragProc and XmNdropProc routines. Since the
XmNdragProc routine is executed only in the dynamic drag proto-
col mode, this method would not work if the drag procotol chosen
is preregister.

This method requires that the application manage all drag
under effects, since the toolkit is not aware of the simulated
nesting.

To simulate nested drop sites on a single widget:

1. Register the widget as a single active drop site. Set XmNdrop-
SiteOperations to all the operations possible for any of the
nested drop sites. Set XmNimportTargets to all the targets
possible for any of the nested drop sites. Register a XmNdrag-
Proc to provide any special drag under effects for the simu-
lated drop sites.

The operations, operation, and dropSiteStatus fields
are initialized by the toolkit only when this outer drop site is
entered or left. The simulated drop sites must be managed by
the application.

15−54

Drag and Drop

2. When either XmNdragProc or XmNdropProc is called, check the
x and y fields in the callback structure to determine which of
the nested drop sites contains the pointer.

3. If the pointer is within a simulated nested drop site, update
the callback fields as follows:

• When the pointer enters the simulated nested drop site,
save the value of the operations and operation fields.

• Remove any operations from the operations field which
do not apply to the simulated drop site.

• Set operation to the valid operation preferred by the
simulated drop site, or to XmDROP_NOOP if the operations
list does not contain the preferred operation.

• The dropSiteStatus field must reflect the status of the
simulated drop site, so that the initiator can manage drag
over effects correctly.

Set the dropSiteStatus to XmDROP_SITE_VALID if the
operation is allowed in the simulated drop site and if
there is at least one target in common between the simu-
lated drop site and the initiator. (Use the XmTarget-
sAreCompatible routine to check the targets.)

Set the dropSiteStatus to XmDROP_SITE_INVALID if the
operation is not allowed in the simulated drop site, if
there are no targets in common, or if the operation is
XmDROP_NOOP.

• Display appropriate drag under visual effects.

• When the pointer leaves the simulated drop site, restore
the original values of operations and operation that
apply to the outer drop site.

4. If the pointer is not within a simulated drop site, but drops are
allowed in the outer drop site, update the fields as described

15−55

OSF/Motif Programmer’s Guide

above.

5. If the pointer is not within a simulated drop site, and drops
are not allowed in the outer drop site, set the dropSiteS-
tatus field to XmDROP_SITE_INVALID.

If the preregister protocol is in effect, the simulated drop sites can-
not be managed during the move, since XmNdragProc is not per-
formed; but they can be managed at the drop with XmNdropProc.

In the following example, only the top level window, DNDDemo, is
registered as a drop site. The user can create rectangles within the
window that then act like drop sites themselves. The user can drag
and drop colors from one of the six buttons in the lower part of the
window onto the rectangles to change the color of the rectangle.
However, these rectangles are not registered drop sites, they are
simulated.

The user can also drag these rectangles to new locations.

15−56

Drag and Drop

Figure 15-7. Simulated Drop Sites

The RegisterDropSite routine registers the DrawingArea widget
as a drop site. The list of operations and targets may not be valid
for each simulated drop site, but are valid for other simulated drop

15−57

OSF/Motif Programmer’s Guide

sites.

RegisterDropSite(w)
Widget w;
{

Display *display = XtDisplay(w);
Atom targets[3];
Arg args[5];
int n = 0;

/* Only accept moves or copies */
XtSetArg(args[n], XmNdragOperations, XmDROP_COPY | XmDROP_MOVE);
n++;

/* set all possible targets for any of the nested drop sites */
targets[0] = XmInternAtom(display, "_MY_RECTANGLE", False);
targets[1] = XmInternAtom(display, "BACKGROUND", False);
targets[2] = XmInternAtom(display, "PIXMAP", False);
XtSetArg(args[n], XmNimportTargets, targets); n++;
XtSetArg(args[n], XmNnumImportTargets, 3); n++;

/* register a dragProc - necessary for simulating nested drop
* sites
*/
XtSetArg(args[n], XmNdragProc, DragProcCallback); n++;

/* register a dropProc */
XtSetArg(args[n], XmNdropProc, DropProcCallback); n++;
XmDropSiteRegister(w, args, n);

}

The XmNdragProc routine, DragProcCallback, is called whenever a
drag icon enters the registered drop site (the top level window). The

15−58

Drag and Drop

RectFind routine from DNDDraw.c in Appendix B determines if the
pointer is in a simulated drop site. The CheckTargets routine deter-
mines if the object being dragged is one of the six colors (bgFound)
or one of the created rectangles (rectFound). (The value pixFound
to represent a pixmap being dragged is coded in this routine, but
not in the rest of the program.)

The only drag under visual is displayed when a color is dragged to a
rectangle. The outline of the rectangle is highlighted.

The entire DragProcCallback routine is too long to be listed in its
entirety here. The section dealing with the drop site enter message
is used as an example.

static void DragProcCallback(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
{

XmDragProcCallbackStruct *cb = (XmDragProcCallbackStruct *) call;
Display *display = XtDisplay(w);
Boolean rectFound, bgFound, pixFound;
static unsigned char initial_operations;
static unsigned char initial_operation;
RectPtr rect;

CheckTargets(cb->dragContext, display, &rectFound, &bgFound,
&pixFound);

switch(cb->reason) {

case XmCR_DROP_SITE_ENTER_MESSAGE:

/* save the value of the operations and operation
* fields */

15−59

OSF/Motif Programmer’s Guide

initial_operations = cb->operations;
initial_operation = cb->operation;

rect = RectFind(cb->x, cb->y);

/* Remove any operations for the operations field
* which do not apply to the simulated drop site.
*/
if (rect) {

if (bgFound || pixFound) {
cb->operations = XmDROP_COPY;
RectHighlight(w, rect);

}
else if (rectFound) {

cb->operations = cb->operations &
(XmDROP_COPY | XmDROP_MOVE);

RectUnhighlight(w);
}

}
else {

cb->operations = initial_operations &
(XmDROP_COPY | XmDROP_MOVE);

RectUnhighlight(w);
}

/* Set operation to the valid operation preferred by the
* simulated drop site or to XmDROP_NOOP if the
* operations list does not contain the preferred
* operation.
*/
if (rect) {

if (bgFound || pixFound) {

15−60

Drag and Drop

if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

else
cb->operation = XmDROP_NOOP;

}
else if (rectFound) {

if (cb->operations & XmDROP_MOVE)
cb->operation = XmDROP_MOVE;

else if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

else
cb->operation = XmDROP_NOOP;

}

}
else {

if (rectFound) {

if (cb->operations & XmDROP_MOVE)
cb->operation = XmDROP_MOVE;

else if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

else
cb->operation = XmDROP_NOOP;

}
else

cb->operation = initial_operation;

}

15−61

OSF/Motif Programmer’s Guide

/*
* Set dropSiteStatus to XmDROP_SITE_INVALID if the
* operation field is XmDROP_NOOP, or if there are no
* common targets between the source and the nested
* drop site. Otherwise, set dropSiteStatus to
* XmDROP_SITE_VALID.
*/
if (cb->operation == XmDROP_NOOP ||

(rect && (!rectFound && !bgFound && !pixFound)) ||
(!rect && !rectFound))
cb->dropSiteStatus = XmINVALID_DROP_SITE;

else
cb->dropSiteStatus = XmVALID_DROP_SITE;

/*
* Display appropriate drag under visuals. Only
* highlight the rectangle if we are changing
* rectangle attributes.
*/
if (rect && bgFound || pixFound &&

cb->dropSiteStatus == XmVALID_DROP_SITE)
RectHighlight(w, rect);

break;

case XmCR_DROP_SITE_LEAVE_MESSAGE:
.
.
.

15−62

Drag and Drop

15.5 Drag Initiator Responsibilities for Drag-
ging

The application within whose window the user initiated the drag is
considered the drag initiator.

The drag initiator:

• Recognizes the start of a drag (BTransfer Press) within a
widget controlled by the application.

• Establishes a DragContext for the widget, providing information
about operations, targets, and drag over visuals, using the
XmDragStart function.

• Optionally provides special drag over effects.

These steps are covered in the following sections.

15.5.1 Recognizing a Drag Has Started

The initiator client must be able to recognize the BTransfer Press
event within a widget it allows to be a drag source. It may have to
override an already-assigned translation for the widget.

This example from the main routine ofDNDscroll.c in Appendix B
overrides the existing mouse button 2 translation for the ScrollBar
widget, and maps it to the StartDrag routine which will start the
drag transaction.

static char dragTranslations[] =
"#override <Btn2Down>: StartDrag()";

static XtActionsRec dragActions[] =

15−63

OSF/Motif Programmer’s Guide

{ {"StartDrag", (XtActionProc)StartDrag}, };
.
.

XtTranslations parsed_xlations;
.
.

/* override button two press to start a drag */
parsed_xlations = XtParseTranslationTable(dragTranslations);
XtAppAddActions(app_context, dragActions, XtNumber(dragActions));

/* create a scroll bar widget */
n = 0;
XtSetArg(args[n], XmNtranslations, parsed_xlations); n++;
scrollbar = XmCreateScrollBar(BulletinB, "testscroll", args, n);
XtManageChild(scrollbar);

Translation may be more complicated in some editable widgets, in
which BTransfer Click is used for primary transfer, and
BTransfer Motion is used for drag and drop.

15.5.2 Starting a Drag With XmDragStart

Not every widget in an application can be a drag source. Text,
Label, Button, and List widgets are automatically defined as drag
sources. Other widgets must have a translation for BTransfer
assigned to them, establish DragContext resources for the widget,
and call the XmDragStart routine to become drag sources. If the
user tries to drag objects from a widget that isn’t recognized as a
drag source by either the toolkit or the source application, nothing
happens.

15−64

Drag and Drop

The XmDragStart function initiates a drag and creates a DragCon-
text widget. At a minimum, the XmNconvertProc DragContext
resource, must be specified. Other resources are optional, for
instance those specifying drag-over visual effects.

The XmNdragOperations resource lists all the operations that the
initiator will support for this drag source, combined by the bitwise
OR operation (|). During a drag, the toolkit compares this list with
the receiver’s XmNdropSiteOperations list and the user-selected
operation to arrive at the operation that will be performed if a drop
occurs on this site.

If an application wishes to use only one operation, it should set the
XmNdragOperations resource to just that operation to ensure that
the correct operation and drag icon are chosen by the toolkit during
the drag and drop transaction.

This example from DNDscroll.c in Appendix B establishes a target
type of compound text and an operation of Copy, then establishes a
DragContext for this transaction with XmDragStart. This drag
source does not have any custom drag icons or any drag callbacks.

static void StartDrag(w, event)
Widget w;
XEvent *event;
{

Arg args[MAX_ARGS];
Cardinal n;
Atom exportList[1];

/* establish the list of valid target types */
exportList[0] = COMPOUND_TEXT;

n = 0;
XtSetArg(args[n], XmNexportTargets, exportList); n++;
XtSetArg(args[n], XmNnumExportTargets, 1); n++;

15−65

OSF/Motif Programmer’s Guide

XtSetArg(args[n], XmNdragOperations, XmDROP_COPY);
XtSetArg(args[n], XmNconvertProc, DragConvertProc); n++;
XmDragStart(w, event, args, n);

}

If drag or drop callbacks are desired, they are added to the
DragContext’s callback resources. For example, a callback pro-
cedure named EnterCallBack that is performed when the pointer
enters an active drop site could be added as follows:

Widget dc;
.
.
.
dc = XmDragStart(w, event, args, n);
XtAddCallback(dc, XmNdropSiteEnterCallback, EnterCallBack, NULL);

15.5.3 Overriding Existing Drag Sources

XtGetValues is used to check the values of widgets resources esta-
blished as drag sources earlier in the application, and XtSetValues
is used to update these values. The widget ID used is the DragCon-
text, not the source widget ID, so that the change applies only to the
widget during the drag.

If the widget is a pre-defined drag source (Text, Label, Button, or
List), overriding the default behavior becomes more complex. The
widget calls XmDragStart when the drag starts, and the application
cannot call XmDragStart again for the widget. It must update the
existing DragContext. First it must find the DragContext for the
widget, then establish the new behavior. One possible means to
accomplish this is as follows:

15−66

Drag and Drop

• Override the existing Btn2Down translation with a new transla-
tion that calls the widget’s action and also an action supplied by
the application. For the Text widget, this new translation might
look as follows:

<Btn2Down> : process-bdrag() my-drag-start()

• Register the new action, using XtAppAddActions.

• In the new action procedure, call XmGetDragContext to get the
DragContext, and then call XtSetValues to change resource
values. The timestamp argument to XmGetDragContext can be
the timestamp from the event passed to the action routine.

For instance, Text allows the Copy and Move operations. If an
application can support only Copy, it must update the
DragContext’s XmNdragOperations resource.

15.5.4 Drag-over Visual Effects

When the user moves the mouse, a drag icon representing the object
being dragged moves around the screen instead of the usual pointer.
As the icon is dragged over portions of the screen, the icon may
change to show the status of a possible drop. These drag-over
visual effects help the user know how to proceed with the drag.

There are four ways to provide drag-over visual effects:

• Use the default drag-over visuals, specified in the Screen object.
The toolkit manages all the drag over effects.

• Put custom icons and pixmaps in the Screen’s visual resources to
be used as default icons for all drag and drop transactions run-
ning on that Screen. The toolkit manages all the drag over

15−67

OSF/Motif Programmer’s Guide

effects using these new icons. These resources can be modified
by the application or user in a resource file.

• Put custom icons and pixmaps in the DragContext visual
resources for source, state, or operation icons. The application
must monitor the state of the drag using the drag callbacks and
update the DragContext icon values as necessary. The default
icons specified in the Screen object are used only if the value for
the equivalent DragContext visual resource is NULL.

• Manage the drag-over effects entirely in the application by draw-
ing directly to the screen. The toolkit is not used, nor are the
Screen and DragContext visual resources.

If the application provides custom icons and they are unsuitable for
some reason, the toolkit defaults to the Screen drag over visuals.

The drag icon consists of a source icon, combined optionally with a
state icon and an operation icon.

Each drag icon has a hot spot. Since a drag icon could be quite
large, the hot spot provides a single pixel that is used in providing
drag over and drag under effects. For instance, if the drag icon
moves into the area of a valid drop site, neither the drag icon or the
drop site will provide visual clues until the hot spot has moved into
the area. By default, the hot spot is the upper left corner of the
state icon.

In the following illustration, the running figure is the source icon,
the state icon is the arrow in the corner, and the operation icon
shows a Copy will happen if a drop is made. The default blending
and attachment values are used (these terms are described in a

15−68

Drag and Drop

later section).

Figure 15-8. A Drag Icon

15.5.4.1 Source Icon

The source icon is a picture representing the object being dragged.
It can be either a pixmap or cursor. The client can specify a custom
pixmap in the DragContext resource XmNsourcePixmapIcon or a
custom cursor in the XmNsourceCursorIcon resource. If these
resources are NULL or not usable (too large, not a bitmap, or
created on a different screen, for example), the default cursor is
given in the Screen resource XmNdefaultSourceCursorIcon is used.

The pixmap icon is used with the preregister visual style. The
colormap is based on the source widget. The cursor icon is used for
the dynamic visual style.

The following illustration shows the default source icons for general

15−69

OSF/Motif Programmer’s Guide

purpose, List, Label, and Text widgets.

Figure 15-9. Source Icons

15.5.4.2 State Icon

The state icon is a cursor that indicates if the drag is over a valid
drop site, invalid drop site, or no drop site. The default state icons
are in the Screen resources XmNdefaultValidCursorIcon, XmNde-
faultInvalidCursorIcon, and XmNdefaultNoneCursorIcon.

A custom state icon can be specified in the DragContext resource
XmNstateCursorIcon. If this resource is NULL, not a bitmap, or
not defined on the same screen as XmScreen, the default Screen
icons are used. If one is specified here, it must be changed
appropriately as the state of the drag changes, using the drag call-
backs discussed later in this section.

The default state icon for all three states is an arrow, usually shown
at the upper left corner of the operation icon.

Three DragContext resources can be used to change the color of the
drag icon based on the state of the drag:

15−70

Drag and Drop

XmNvalidCursorForeground, XmNinvalidCursorForeground,
XmNnoneCursorForeground. This allows visual feedback about the
drag to the user, without changing the icon shape. For example, the
following lines in a resource file would make the drag icon green
when it was over a valid drop site, red when it was over an invalid
drop site, and yellow when it was not over any drop site:

*.validCursorIcon: green
*.invalidCursorIcon: red
*.noneCursorIcon: yellow

15.5.4.3 Operation Icon

The operation icon is a cursor that indicates what operation is to
happen when the drop is made. The default operation icons are in
the Screen resources XmNdefaultMoveCursorIcon, XmNde-
faultCopyCursorIcon, and XmNdefaultLinkCursorIcon.

A custom operation icon can be specified in the DragContext
resource XmNoperationCursorIcon. If this resource is NULL, not a
bitmap, or not defined on the same screen as Screen, the default
Screen icons are used. If a custom icon is specified, it should be
changed as the operation changes, using the drag callbacks covered
later in this chapter.

The following illustration shows the default Copy, Link, and Move
operation icons.

15−71

OSF/Motif Programmer’s Guide

Figure 15-10. Operation Icons

If the operation in effect is XmDROP_NOOP, meaning that no operation
is possible, then the operation icon is left blank, as shown in the fol-
lowing illustration. This condition also sets the dropSiteStatus
to XmDROP_SITE_INVALID.

Figure 15-11. Copy and Noop Drag Icons

15.5.4.4 Drag Icon Blending and Attachment

The client can specify which of the three icons to mix together to
form the drag icon with the XmNblendModel DragContext resource:

15−72

Drag and Drop

XmBLEND_ALL Use the source icon, state icon,
and operation icon. The hot spot
comes from the state icon. This
is the default value. The order
listed is also the order of the
blend.

XmBLEND_STATE_SOURCE Use only the source icon and
state icon. The hot spot comes
from the state icon.

XmBLEND_JUST_SOURCE Use only the source icon. The
hot spot comes from the source
icon.

XmBLEND_NONE Don’t display any drag icon. The
client handles all drag-over
effects.

The XmNattachment DragIcon resource specifies where the state
and operation icons will be placed on the source icon. The default
placement is both the state and operation icons at the attachment
point of the source icon, with the operation icon on top. The default
value is XmATTACH_NORTH_WEST.

XmNoffsetX and XmNoffsetY are used to place the icon relative to
the attachment point.

If the attachment point is XmATTACH_HOT, the state and operation
icons are attached to the source icon at a point the same x and y dis-
tance from the upper left corner of the source icon as the pointer is
from the upper left corner of the widget containing the source. This
attachment style is particularly useful when the application makes
a custom source icon that exactly reflects the source widget at the
time the drag starts.

In the following illustration, the custom source icon is an outline of
the scrollbar. When the drag was started, the pointer was on the

15−73

OSF/Motif Programmer’s Guide

slider. The operation and state icons are placed at the same loca-
tion on the source icon.

Figure 15-12. An Attach_Hot Icon

When the state or operation icon is blended with a source icon, a
specified point of the icon’s XmNpixmap is aligned with the upper left
corner of the source icon. The resulting XmNpixmap is large enough
to include both, and the resulting XmNmask has 1 bits wherever
either the source icon or source mask did.

If a dynamic cursor style is being used, and the resulting blended
cursor is too large for the screen, the blending is done with the
Screen XmNdefaultSourceCursorIcon instead of the DragContext’s
XmNsourceCursorIcon. If it is still too large, it is clipped relative to
the hot spot (that is, if the hot spot is at an edge, the other edge is
clipped; if the hot spot is in the center, opposite edges are clipped
equally).

15−74

Drag and Drop

15.5.4.5 Visual Style Notes

If XmNsourcePixmapIcon is used, the colormap used for rendering is
that of the DragContext’s reference widget.

If the DragContext XmNblendModel is XmBLEND_NONE, and the
dynamic cursor style is in use, the application must use XChangeAc-
tivePointerGrab to change the cursor. If XmBLEND_NONE is
specified, and the preregister cursor style is in use, the application
can render the cursor directly onto the screen, saving and restoring
the image underneath.

The cursor style can change as the pointer moves from window to
window. An application can tell which style is in use by looking at
the dragProtocolStyle field in the XmNtopLevelEnterCallback
structure, or looking at XmNdragInitiatorProtocolStyle Display
resource in the case of XmDRAG_NONE or XmDRAG_DROP_ONLY.

The resolution and best cursor size can vary from screen to screen.
This is why the default cursor icons are Screen resources. An appli-
cation that wants its source cursor or pixmap to be screen depen-
dent can look for changes in the screen field in the XmNto-
pLevelEnterCallback struct, and update the various icon
DragContext resources appropriately.

15.5.4.6 Creating a Drag Icon

Any of the three parts of a drag icon can be customized: the source
icon, the state icon, and the operation icon.

Use the XmCreateDragIcon function to create any of these parts.
The XmNattachment resource is not used for the source icon. The

15−75

OSF/Motif Programmer’s Guide

other resources specify pixmap, size, and hot spot details. The
DragContext XmNblendModel resource indicates which hot spot is
used for the entire drag icon.

This example from DNDDemo.c in Appendix B creates a source icon
from a bitmap. The source icon is the palette and the state icon is
the paintbrush. (Actually, the state icon is not shown when the
drag starts, because the blend style is XmBLEND_JUST_SOURCE. It is
shown here as if the blend style were XmBLEND_ALL.)

Figure 15-13. Custom Source Icon

The ColorRect function is called when a drag starts from one of the
color rectangles in the lower portion of the window. Among its
other duties, it establishes the drag icon from source bits from the
DNDDraw.c file in Appendix B.

/* If the server will handle a large icon, create one */
if (appInfo->maxCursorWidth >= ICON_WIDTH &&

appInfo->maxCursorHeight >= ICON_HEIGHT) {

source_bits = SOURCE_ICON_BITS;

15−76

Drag and Drop

source_mask = SOURCE_ICON_MASK;
state_bits = STATE_ICON_BITS;
state_mask = STATE_ICON_MASK;
width = ICON_WIDTH;
height = ICON_HEIGHT;

}
else {

/* If the server will handle a small icon, create one */
source_bits = SMALL_SOURCE_ICON_BITS;
source_mask = SMALL_SOURCE_ICON_MASK;
state_bits = SMALL_STATE_ICON_BITS;
state_mask = SMALL_STATE_ICON_MASK;
width = SMALL_ICON_WIDTH;
height = SMALL_ICON_HEIGHT;

}

/* Create the drag cursor icons */
sourceIcon = GetDragIconFromBits(w, source_bits, source_mask,

width, height, background, foreground);

stateIcon = GetDragIconFromBits(w, state_bits, state_mask,
width, height, background, foreground);

/* Setup the arglist for the drag context that is created at
* drag start */
n = 0;
.
.
.
XtSetArg(args[n], XmNsourceCursorIcon, sourceIcon); n++;
XtSetArg(args[n], XmNstateCursorIcon, stateIcon); n++;
.

15−77

OSF/Motif Programmer’s Guide

.

.

/* start the drag. This creates a drag context. */
myDC = XmDragStart(w, event, args, n);

}

The GetDragIconFromBits function turns the bits into a bitmap.

static Widget GetDragIconFromBits(w, bits, mask, width, height,
background, foreground)

Widget w;
char *bits;
char *mask;
Dimension width;
Dimension height;
Pixel background;
Pixel foreground;
{

Pixmap icon, iconMask;
Display *display = XtDisplay(w);

icon = XCreateBitmapFromData(display, DefaultRootWindow(display),
bits, width, height);

iconMask = XCreateBitmapFromData(display,
DefaultRootWindow(display),
mask, width, height);

return(GetDragIcon(w, icon, iconMask, width, height,
background, foreground));

}

15−78

Drag and Drop

The GetDragIcon function uses the bitmap created by the GetDrag-
IconFromBits function to create a drag icon.

static Widget GetDragIcon(w, icon, iconMask, width, height,
background, foreground)

Widget w;
Pixmap icon;
Pixmap iconMask;
Dimension width;
Dimension height;
Pixel background;
Pixel foreground;
{

Widget dragIcon;
Arg args[10];
int n = 0;

XtSetArg(args[n], XmNhotX, ICON_X_HOT); n++;
XtSetArg(args[n], XmNhotY, ICON_Y_HOT); n++;
XtSetArg(args[n], XmNwidth, width); n++;
XtSetArg(args[n], XmNheight, height); n++;
XtSetArg(args[n], XmNmaxWidth, appInfo->maxCursorWidth); n++;
XtSetArg(args[n], XmNmaxHeight, appInfo->maxCursorHeight); n++;
XtSetArg(args[n], XmNbackground, background); n++;
XtSetArg(args[n], XmNforeground, foreground); n++;
XtSetArg(args[n], XmNpixmap, icon); n++;
XtSetArg(args[n], XmNmask, iconMask); n++;
dragIcon = XmCreateDragIcon(w, "dragIcon", args, n);

return(dragIcon);

}

15−79

OSF/Motif Programmer’s Guide

15.5.5 Drag Callbacks

Callbacks notify the initiator of how the drag is proceeding. The
receiver’s XmNdragProc (if any) is first notified of the action and
given a chance to update the operation, operations, and drop-
SiteStatus fields in its callback structure. The new values are
available to the initiator’s drag callback in the appropriate callback
structure.

These drag callbacks are all optional. They provide the means by
which the initiator can monitor the progress of the drag and
manage its visual effects accordingly. Otherwise the toolkit on the
initiator side handles the drag over effects.

XmNdragMotionCallback Called when the drag icon is in
motion.

XmNoperationChangedCallback Called when the user requests a
different operation be performed
on the drop than was previously
in effect.

XmNdropSiteEnterCallback Called when the drag icon enters
a drop site.

XmNdropSiteLeaveCallback Called when the drag icon leaves
a drop site.

XmNtopLevelEnterCallback Called when the drag icon enters
a top-level window or root win-
dow (when changing screens).

XmNtopLevelLeaveCallback Called when the drag icon leaves
a top-level window or root win-
dow (when changing screens).

Callback structures for these routines contain information about the
drag. The structures for XmNdragMotionCallback,

15−80

Drag and Drop

XmNoperationChangedCallback, and XmNdropSiteEnterCallback
contain the operations, operation, and dropSiteStatus fields
(among others), which are initialized by the toolkit before the call-
back is called.

The operations field lists all operations possible for a drop on the
current site, whether the site is registered as a DropSite or not.
The field is initialized as follows:

• If the receiver’s XmNdragProc was called, the value of opera-
tions is the list of operations common to the value of the
XmNdragProc’s operations field at the end of XmNdragProc and
the DropSite’s XmNdropSiteOperations list.

• Otherwise, if the user selected an operation, then operations
is set to that operation if it is in the XmNdragOperations list. If
it isn’t in the list, operations is set to XmDROP_NOOP.

• Otherwise, operations is initialized to the list in the
DragContext’s XmNdragOperations resource.

The operation field shows the operation that will occur if a drop
happens at the current cursor location. It is initialized as follows:

• If the receiver’s XmNdragProc was called, operation is initial-
ized to the value of operation at the end of the XmNdragProc.

• Otherwise, if the pointer is in or entering an active drop site,
operation is set to XmDROP_MOVE if Move is in both opera-
tions and the DropSite’s XmNdropSiteOperations lists; other-
wise to XmDROP_COPY if Copy is in both lists; otherwise to
XmDROP_LINK if Link is in both lists; otherwise to XmDROP_NOOP.

• Otherwise, operation is set to XmDROP_MOVE if Move is a valid
operation (in the operations field) ; otherwise to XmDROP_COPY
if Copy is a valid operation; otherwise to XmDROP_LINK if Link is
a valid operation; otherwise to XmDROP_NOOP.

15−81

OSF/Motif Programmer’s Guide

The dropSiteStatus field in the callback structure indicates if the
drag icon is over a valid drop site, an invalid drop site, or no drop
site. The callback procedure can use this information to display the
appropriate drag over visuals. The dropSiteStatus field is ini-
tialized by the toolkit in the following manner:

• If the pointer is over an active drop site:

— If the receiver’s XmNdragProc was called, dropSiteStatus is
initialized to the value of dropSiteStatus at the end of the
XmNdragProc procedure.

— Otherwise, dropSiteStatus is initialized to
XmDROP_SITE_VALID if there is at least one target and one
operation in common between the initiator and receiver.
Otherwise, it is initialized to XmDROP_SITE_INVALID.

• If the pointer is not over an active drop site, dropSiteStatus is
initialized to XmNO_DROP_SITE.

• If the operation field is XmDROP_NOOP, dropSiteStatus is ini-
tialized to XmDROP_SITE_INVALID.

If the application has not stored the DragContext ID in a global
location, these callbacks can find the DragContext ID by passing the
XmGetDragContext function the timeStamp field from the callback
structure.

This example shows a callback that is called when a new drop site
is entered. It checks the validity of the drop site, and uses one of
three custom source icons, depending on the status.

static void EnterCB(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{

XmDragContext dc;

15−82

Drag and Drop

XmDropSiteEnterCallback EnterData;
Cardinal n;
Arg args[MAX_ARGS];

dc = (XmDragContext)w;
EnterData = (XmDropSiteEnterCallback)call_data;

n = 0;

if (EnterData->dropSiteStatus == XmVALID_DROP_SITE) {
XtSetArg(args[n], XmNsourceCursorIcon, GetValidIcon(w));
n++;
XtSetValues(dc, args, n);
}

if (EnterData->dropSiteStatus == XmINVALID_DROP_SITE) {
XtSetArg(args[n], XmNsourceCursorIcon, GetInvalidIcon(w));
n++;
XtSetValues(dc, args, n);
}

if (EnterData->dropSiteStatus == XmNO_DROP_SITE) {
XtSetArg(args[n], XmNsourceCursorIcon, GetNeutralIcon(w));
n++;
XtSetValues(dc, args, n);
}

}

If a drag callback is desired, it is added to the DragContext’s call-
back resources. For instance, the following example adds a callback
named EnterCB that is performed when the pointer enters an active
drop site:

Widget dc;

dc = XmDragStart(w, event, args, n);
XtAddCallback(dc, XmNdropSiteEnterCallback, EnterCB, NULL);

15−83

OSF/Motif Programmer’s Guide

15.5.6 Getting Data about the Current Drop Site

The initiator can find information about the current drop site with
the XmDropSiteRetrieve function. It must pass in the DragCon-
text, so that the toolkit knows what drop site the request is for. The
initiator can find the value of any drop site resource except the call-
back routines

The following example gets the number and list of import targets
for a drop site. The example shows a drop site enter callback, but it
could be in any of the initiator’s drag callbacks.

XmDropSiteEnterCallback DragData;
.
.
.

n = 0;
XtSetArg(args[n], XmNimportTargets, &importTargets); n++;
XtSetArg(args[n], XmNnumImportTargets, &numImportTargets); n++;
XmDropSiteRetrieve(DragData->DragContext, args, n);

15.5.7 Cancelling the Drag

The drag in progress can be cancelled in either of two ways. Both
ways are treated the same by the toolkit.

• The user can press KCancel.

• The initiator can call the XmDragCancel function if it decides the
drag should not continue for some reason

15−84

Drag and Drop

The initiator is notified of the cancel by the XmNdropStartCallback
with a dropAction field value of XmDROP_CANCEL.

The receiver is notified by a XmCR_DROP_SITE_LEAVE message. This
message is processed by the XmNdragProc in the dynamic protocol
mode. This allows any drag under effects to be undone.

15.6 Drop Receiver Responsibilities for Drop-
ping

When the user releases the drag to start a drop, the toolkit sends a
message to the receiver. The receiver’s XmNdropProc routine
processes it by checking that the proposed targets and actions are
valid, and updates the status and operations fields accordingly.
This information is sent back to the initiator’s XmNdropStartCall-
back routine.

The application receiving a drop must:

• Have registered a XmNdropProc routine to be processed when a
drop is made on the site. This is done as part of registering a
widget as a drop site.

• Make a list of transfer requests. If the drop is cancelled, the
number of transfer requests is set to zero.

• Register a DropTransfer XmNtransferProc to process transfers
from the initiator if the number of transfers is not zero.

• Call XmDropTransferStart at least once, to either cancel the
drop or start the transfer process.

The receiving application may also:

15−85

OSF/Motif Programmer’s Guide

• Provide drop site Help information.

• Cancel a drop.

15.6.1 The XmNdropProc

When a drop occurs (except for a Cancel), a message is sent from the
toolkit on the initiator side to the receiver, and the receiver’s
XmNdropProc is called. Fields in its callback structure provide infor-
mation about the drop to the receiver.

The operations, operation, and dropSiteStatus fields are ini-
tialized by the toolkit in a similar manner to that described for the
receiver’s XmNdragProc earlier in this chapter.

The XmNdropProc routine can update the operations, operation,
and dropSiteStatus field further. The final values are available
to the initiator in its drop callback structures.

The dropAction field indicates if a normal drop is requested, or if
the user requested help. For information about processing a help
request, refer to "Providing Help" later in this chapter.

If the receiver takes too long before ending the XmNdropProc, the
toolkit will time out the drag. Therefore, if the receiver needs to do
any processing before the transfer other than verifying that a
transfer can take place, it should start a new process and end the
XmNdropProc.

Either the XmNdropProc or one of its subprocedures must start a
transfer by calling XmDropTransferStart. The initiator is waiting
for a transfer request to finish its part in the drop. If a drop is not
possible, the drop is cancelled as described below. If a drop is possi-
ble, the XmNdropProc provides the appropriate details to start the
transfer.

15−86

Drag and Drop

The XmNdropProc creates a list of DropTransfer entries, containing
target and client-specific information for each transfer desired.
There is a separate entry for each data-target type combination.
For instance, if the data is desired in both TEXT and
COMPOUND_TEXT forms, there would be two entries on the list.
This list and the number of items in the list are used by XmDrop-
TransferStart to start the transfer.

The receiver establishes the values of the DropTransfer resources
before calling XmDropTransferStart. The DropTransfer resources
are:

XmNdropTransfers The list of drag transfer entries.

XmNincremental Whether to use the incremental
transfer mechanism.

XmNnumDropTransfers The number of transfer entries in the
list. This number is decremented each
time a transfer is made.

XmNtransferProc The procedure to process transferred
information. This procedure is an
XtSelectionCallbackProc procedure.
For details on what that means, refer to
X Toolkit documentation.

XmNtransferStatus Whether the transfer failed or not. The
default value is XmTRANSFER_SUCCESS.

This example from DNDlabel.c in Appendix B creates a transfer
request list of one transfer entry, asking that the initiator send its
data in compound text format. Copy is the only action it accepts;
the rest result in a cancelled drop. The DropTransferCallback rou-
tine receives and processes the data from the initiator.

static void HandleDrop(w, client_data, call_data)
Widget w;

15−87

OSF/Motif Programmer’s Guide

XtPointer client_data, call_data;
{

XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[MAX_ARGS];
int n;

DropData = (XmDropProcCallback)call_data;

/* set the transfer resources */
n = 0;

/* if the action is Help, or the operation is not Copy,
*cancel the drop */
if ((DropData->dropAction != XmDROP) ||
(DropData->operation != XmDROP_COPY))

XtSetArg(args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
else {

/* the drop can continue. Establish the transfer list and
* start the transfer */
transferEntries[0].target = COMPOUND_TEXT;
transferEntries[0].client_data = (XtPointer)w;
transferList = transferEntries;
XtSetArg(args[n], XmNdropTransfers, transferList); n++;
XtSetArg(args[n], XmNnumDropTransfers, 1); n++;
XtSetArg(args[n], XmNtransferProc, DropTransferCallback); n++;
}

/* start the transfer or cancel */
XmDropTransferStart(DropData->dragContext, args, n);

}

If the program could accept transfers in more than one target type,
for instance text and compound text, then a separate transfer entry

15−88

Drag and Drop

is needed for each request:

transferEntries[0].target = COMPOUND_TEXT;
transferEntries[1].target = TEXT;

.

.

.
XtSetArg(args[n], XmNnumDropTransfers, 2); n++;

15.6.2 XmDropTransfer

The toolkit on the receiver side is in charge of the transfer pro-
cedure. Information about the transfer is stored in a DropTransfer
widget, which is created by the XmDropTransferStart routine.

Before calling XmDropTransferStart, the receiver stores a list of
DropTransfer transfer entries in the XmNdropTransfers resource.
Each entry contains target and client-specific information for each
transfer desired. It also registers a procedure to receive transfers
from the initiator in the XmNtransferProc resource. These
resources, along with the other DropTransfer resources, are used by
the XmDropTransferStart function.

The toolkit processes the items on the list, one at a time, decrement-
ing XmNnumDropTransfers each time. When the XmNnumDrop-
Transfers value is zero, the drop is finished. The toolkit on the
receiver side sends a message to the initiator, whose XmNdropFin-
ishCallback is called.

If XmNincremental is True, the Xt Selection incremental transfer
protocol is used between the toolkit and the receiver, regardless of
what the initiator sent. Refer to the Xt documentation for details of
how to use incremental transfer. If the value is False, the transfer

15−89

OSF/Motif Programmer’s Guide

between the toolkit and the receiver is made in one pass, regardless
of how the initiator sent it.

The XmNtransferProc routine receives each transfer from the ini-
tiator. If more than one target type is acceptable to the receiver,
this procedure needs to check which target type was used in this
transfer, and process the transferred data accordingly.

The XmNtransferProc routine can examine and update the Drop-
Transfer resources during the transfer with XtGetValues and
XtSetValues.

The XmDropTransferAdd routine is used to add to the transfer list
after the transfer has begun. For example, this routine is used
when a Move operation is performed, to add a new transfer entry
record telling the initiator to delete the data. It can be used in
other situations where the entire transfer list is not known when
XmDropTransferStart is called.

If there are problems with the drop, it can be cancelled as described
later in the chapter.

This example from DNDlabel.c in Appendix B receives compound
string data from the initiator, and uses it to replace the label of the
Label widget.

static void TransferProc(w, closure, seltype, type, value, length,
format)

Widget w;
XtPointer closure;
Atom *seltype;
Atom *type;
XtPointer value;
unsigned long *length;
int format;
{

int n;

15−90

Drag and Drop

Arg args[MAX_ARGS];

/* information from the drag initiator is passed in compound
* text format. Convert it to compound string and replace the
* Label label. */

if (*type = COMPOUND_TEXT) {
n = 0;
XtSetArg(args[n], XmNlabelString, XmCvtCTToXmString(value));
n++;
XtSetValues(closure, args, n);
}

}

If the program is able to handle more than one target type, this rou-
tine needs to check for them all. For instance:

if (*type = COMPOUND_TEXT) {
/* code to change the label to the compound text passed */
}

else if (*type = TEXT) {
/* code to change the label to the text passed */
}

15.6.2.1 Processing Each Operation

The XmNtransferProc routine must be able to process the data
from the initiator correctly for each operation listed in the DropSite
XmNdropSiteOperations resource .

• If the operation is Copy, the value field contains a pointer to the
data from the initiator. It is used to assign the value to some

15−91

OSF/Motif Programmer’s Guide

element in the receiver’s program. The example above shows a
Copy in effect. When the transfer is finished, both the initiator
and receiver have the data in each of their applications.

• If the operation is Move, data is first copied to the receiver, then
deleted from the initiator. It is important that the initiator not
delete the data before the receiver has it. Therefore, a Move is a
two-step process:

— The first transfer is processed by the initiator like a Copy. It
returns a pointer to the data in the value field.

— When the XmNtransferProc has the data, it uses XmDrop-
TransferAdd to make a new transfer entry for that data, set-
ting the target to DELETE. The initiator will not delete the
data until the receiver has issued this second transfer
request.

At the end of the transfer, the receiver has the only copy of the
data.

• If the operation is Link, the pointer is used to link an element in
the receiver to the data. At the end of the operation, there is
only one copy of the data, belonging to the initiator, but both
applications have access to it.

15.6.3 Cancelling a Drop

A drop can be cancelled only by the receiver, from the XmNdropProc
or any subroutine it calls, such as XmNtransferProc. To cancel a
drop:

• Set the XmNnumDropTransfers DropTransfer resource to zero.
This tells the toolkit that there are no more transfers to make
and the drop is complete.

15−92

Drag and Drop

• Set the XmNtransferStatus to XmTRANSFER_FAILURE. This
information is passed to the initiator in the XmNdropFinished-
Callback structure.

• Call the XmDropTransferStart function if the decision to cancel
the drop was discovered in the XmNdropProc routine. Otherwise,
exit the subroutine.

The transfer will be cancelled at the next transfer request. The
drop is over, and the initiator’s XmNdropFinishCallback and
XmNdragDropFinishCallback routines are called.

This example is from a program’s XmNdropProc routine.

XtSetArg(args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg(args[n], XmNnumDropTransfers, 0); n++;
XmDropTransferStart(DropData->dragContext, args, n);

15.6.4 Providing Help

It might not always be obvious to the user what the result of drop-
ping a particular source on a drop site might be. The user can
request more information about the drop site by pressing KHelp
while the drag icon is over the drop site.

The receiver’s XmNdropProc is called, with a value of XmDROP_HELP
in the dropAction field of its callback structure. If the receiver
supports help, it should post a dialog box, providing information
about the type of drop this site expects, and what it will do when a
successful drop occurs.

The receiver should then exit the XmNdropProc routine, not waiting
for a response from the user. When the XmNdropProc has finished,
the initiator’s XmNdropStartCallback is called with a dropAction

15−93

OSF/Motif Programmer’s Guide

of XmDROP_HELP if the initiator has registered that callback. The
initiator is not expected to do anything at this point, but it could
provide special processing such as changing the drag icon.

Typically, the help dialog box allows the user the opportunity to
continue the drop or to cancel the drop. If more than one operation
is possible, the dialog box should explain the consequences of each
operation and let the user select one. The dialog procedure may
change the operation based on the users selection.

• If the user indicates that the drop should be cancelled, the
receiver’s help procedure should cancel the drop by requesting no
transfers, as described in the previous section.

• If the user indicates that the drop should continue, the help pro-
cedure should call XmDropTransferStart to begin the transfer of
information from the initiator.

In either case, the help procedure must call XmDropTranferStart
before it ends to either start the transfers or notify the initiator that
no transfers will be requested.

The receiver may want to issue help information if a drop is con-
sidered invalid, even if the user hasn’t requested it. If so, the
receiver’s XmNdropProc sets the dropAction field to XmDROP_HELP,
and displays the help dialog box as if help had been requested.

The following example taken from DNDDemo.c in Appendix B shows
how the help dialog box shown in the illustration was created.

15−94

Drag and Drop

Figure 15-14. Help Dialog Box

The XmDropProc DropProcCallback routine checks if the drop is
normal or if there is a request for help.

15−95

OSF/Motif Programmer’s Guide

static void DropProcCallback(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)call;

if (appInfo->highlightRect != NULL)
RectUnhighlight(w);

if (cb->dropAction != XmDROP_HELP)
HandleDrop(w, call);

else
HandleHelp(w, call);

}

The HandleHelp routine displays the help dialog box. The text
presented in the dialog box depends on the drop site and the opera-
tion. Callback routines are registered to be performed when either
of the dialog pushbuttons is pressed.

static void HandleHelp(w, call)
Widget w;
XtPointer call;
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)call;
static XmDropProcCallbackStruct client;
Boolean rectFound, bgFound, pixFound;
XmString helpStr;
RectPtr rect;
Arg args[5];
XmString tempStr, buttonArray[2];

15−96

Drag and Drop

int n = 0;

/* the drop is valid until it is determined invalid */
cb->dropSiteStatus = XmVALID_DROP_SITE;

/* if we haven’t created a help dialog, create one now */
if (helpDialog == NULL) {

XtSetArg(args[n], XmNdialogStyle,
XmDIALOG_FULL_APPLICATION_MODAL); n++;

XtSetArg(args[n], XmNtitle, "Drop Help"); n++;
helpDialog = XmCreateMessageDialog(topLevel, "Help",

args, n);

n = 0;
buttonArray[0] = XmStringCreateSimple("Move");
buttonArray[1] = XmStringCreateSimple("Copy");
XtSetArg(args[n], XmNbuttons, buttonArray); n++;
XtSetArg(args[n], XmNbuttonCount, 2); n++;
XtSetArg(args[n], XmNbuttonSet, 0); n++;
XtSetArg(args[n], XmNsimpleCallback, ChangeOperation); n++;
tempStr = XmStringCreateSimple("Operations:");
XtSetArg(args[n], XmNoptionLabel, tempStr); n++;
helpMenu = XmCreateSimpleOptionMenu(helpDialog, "helpMenu",

args, n);
XmStringFree(tempStr);
XmStringFree(buttonArray[0]);
XmStringFree(buttonArray[1]);

XtAddCallback(helpDialog, XmNokCallback,
(XtCallbackProc) HandleOK, (XtPointer) &client);

XtAddCallback(helpDialog, XmNcancelCallback,
(XtCallbackProc) CancelDrop, (XtPointer) &client);

XtUnmanageChild(XmMessageBoxGetChild(helpDialog,

15−97

OSF/Motif Programmer’s Guide

XmDIALOG_HELP_BUTTON));

XtRealizeWidget(helpDialog);

}

/* pass the necessary callback information along */
client.dragContext = cb->dragContext;
client.x = cb->x;
client.y = cb->y;
client.dropSiteStatus = cb->dropSiteStatus;
client.operation = cb->operation;
client.operations = cb->operations;

/* find the valid targets */
CheckTargets(cb->dragContext, XtDisplay(w), &rectFound,

&bgFound, &pixFound);

/* determine the appropriate help message */
if (rectFound) {

if (cb->operations == XmDROP_MOVE | XmDROP_COPY) {
XtManageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG4,

XmFONTLIST_DEFAULT_TAG);
XtManageChild(XmMessageBoxGetChild(helpDialog,

XmDIALOG_OK_BUTTON));
}
else if (cb->operation == XmDROP_MOVE) {

XtUnmanageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG2,

XmFONTLIST_DEFAULT_TAG);
XtManageChild(XmMessageBoxGetChild(helpDialog,

XmDIALOG_OK_BUTTON));
}

15−98

Drag and Drop

else if (cb->operation == XmDROP_COPY) {
XtUnmanageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG3,

XmFONTLIST_DEFAULT_TAG);
XtManageChild(XmMessageBoxGetChild(helpDialog,

XmDIALOG_OK_BUTTON));
}

}
else if (bgFound || pixFound && cb->operation == XmDROP_COPY) {

XtUnmanageChild(helpMenu);
rect = RectFind(cb->x, cb->y);
if (rect) {

helpStr = XmStringCreateLtoR(HELP_MSG1,
XmFONTLIST_DEFAULT_TAG);

XtManageChild(XmMessageBoxGetChild(helpDialog,
XmDIALOG_OK_BUTTON));

}
else {

helpStr = XmStringCreateLtoR(HELP_MSG5,
XmFONTLIST_DEFAULT_TAG);

XtUnmanageChild(XmMessageBoxGetChild(helpDialog,
XmDIALOG_OK_BUTTON));

}

}
else {

XtUnmanageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG5,

XmFONTLIST_DEFAULT_TAG);
XtUnmanageChild(XmMessageBoxGetChild(helpDialog,

XmDIALOG_OK_BUTTON));
}

15−99

OSF/Motif Programmer’s Guide

/* set the help message into the dialog */
XtSetArg(args[0], XmNmessageString, helpStr);
XtSetValues(helpDialog, args, 1);

/* Free the XmString */
XmStringFree(helpStr);

/* map the help dialog */
XtManageChild(helpDialog);

}

The HandleOK callback routine is performed when the user selects
the OK button. It allows the drop to continue normally by calling
the HandleDrop routine.

static void HandleOK(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)client;

cb->operation = appInfo->operation;
HandleDrop(w, (XtPointer) cb);

}

The CancelDrop callback routine is performed when the user selects
the Cancel button. It cancels the drop by calling XmDropTransfer-
Start with indicators that the drop failed.

15−100

Drag and Drop

static void CancelDrop(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)client;
Arg args[2];

/* On help, we need to cancel the drop transfer */
XtSetArg(args[0], XmNtransferStatus, XmTRANSFER_FAILURE);
XtSetArg(args[1], XmNnumDropTransfers, 0);

/* we need to start the drop transfer to cancel the transfer */
XmDropTransferStart(cb->dragContext, args, 2);

}

15.7 Drag Initiator Responsibilities for Drop-
ping

The drag initiator:

• Registers a XmNconvertProc procedure to format data and send
the formatted data to the receiver.

15−101

OSF/Motif Programmer’s Guide

• Optionally registers a XmNdropStartCallback to be performed
at the drop.

• Optionally registers a XmNdropFinishCallback to be performed
after the drop and transfer have finished.

• Optionally registers a XmNdragDropFinishCallback to be per-
formed after the entire drag and drop transaction has finished.

15.7.1 XmNdropStartCallback

The receiver’s XmNdropProc routine receives the drop message first
if the drop occurred over a widget which was registered as a Drop-
Site. It verifies that a drop is possible, and updates fields in its call-
back structure, which become available to the initiator in its
XmNdropStartCallback callback structure. The initiator can per-
form any actions necessary prior to the transfer of information, for
instance, providing a new drag icon.

The toolkit initializes the operation, operations, and dropSi-
teStatus fields in a manner similar to that described for the
initiator’s drag callbacks earlier in this chapter with one difference:
the initialization for the drag callbacks uses the values at the end of
the receiver’s XmNdragProc, while the initialization for the drop call-
backs uses the values at the end of the receiver’s XmNdropProc.

The dropAction field indicates the action that the receiver has
taken. XmDROP shows that a normal drop is in progress.
XmDROP_CANCEL shows that the receiver has cancelled the drop. If
the action is XmDROP_HELP, the initiator is not expected to do any-
thing, although this callback provides the opportunity to do so if
desired, for instance, changing the drag icon to reflect the Help
request.

15−102

Drag and Drop

This procedure will not know the resolution of the help dialog.
However, if the user chooses to continue, the initiator’s XmNconvert-
Proc routine is called as part of the transfer process, and if the user
chooses to cancel, the receiver’s XmNdropFinishCallback is called
with a dropAction of XmDROP_CANCEL.

15.7.2 Dealing with Requests for Transfer

The drag initiator must register a callback to process transfers in
the XmNconvertProc DragContext resource. This routine is called
when the receiver client invokes XmDropTransferStart. Prior to
calling XmDropTransferStart, the receiver makes a list of the tar-
get formats it wants.

The initiator’s XmNconvertProc callback routine processes transfer
requests from the receiver. The routine should be able to return
information about each object being dragged in each possible target
format for that item.

If the DropTransfer XmNincremental resource is True, information
is transferred between the initiator and the toolkit using the Xt
Selection incremental protocol. If the value is False, the informa-
tion is transferred between the initiator and the toolkit in one pass.
The initiator and receiver need not be using the same incremental
or non-incremental protocol.

This XmNconvertProc routine is called for each target type desired
by the receiver, a single target type for each request. The XmNcon-
vertProc routine should be able to perform any of the operations
listed in the DragContext XmNdragOperations resource on data in
any of the target types listed in the XmNexportTargets resource.

• If the operation is Copy or Link, the XmNconvertProc returns a
pointer to the data. The receiver will use this pointer to copy

15−103

OSF/Motif Programmer’s Guide

this data into its own storage, or establish a link using this
pointer.

• If the operation is Move, the first transfer request has a normal
target type. The XmNconvertProc should return a pointer to
the data, as it would for a Copy.

A second transfer request for the data has a target type of
DELETE. The receiver does not issue this request until it has
received the data and handled it appropriately (such as storing it
in a file). Only then should the initiator delete the data.

In the following example from DNDscroll.c in Appendix B, the rou-
tine returns the value of the scrollbar slider in only one target type,
compound text. This information is passed to the receiver’s
XmNtransferProc routine. This routine is called once for each item
in the receiver’s XmNdropTransfers list. Copy was the only opera-
tion allowed by the application, so this routine need not process any
delete requests from the receiver.

static Boolean DragConvertProc(w, selection, target, typeRtn,
valueRtn, lengthRtn, formatRtn,
max_lengthRtn, client_data,
request_id)

Widget w;
Atom *selection;
Atom *target;
Atom *typeRtn;
XtPointer *valueRtn;
unsigned long *lengthRtn;
int *formatRtn;
unsigned long *max_lengthRtn;
XtPointer client_data;
XtRequestId *request_id;
{

15−104

Drag and Drop

XmString cstring;
static char tmpstring[100];
int *value;
int n;
Arg args[MAX_ARGS];
char *ctext;
char *passtext;

/* this routine processes only compound text */
if (*target != COMPOUND_TEXT)

return(False);

/* get the value of the scrollbar slider */
n = 0;
XtSetArg(args[n], XmNvalue, &value); n++;
XtGetValues(scrollbar, args, n);

/* convert the slider value to compound text */
sprintf(tmpstring, "%d", value);
cstring = XmStringCreateLocalized(tmpstring);
ctext = XmCvtXmStringToCT(cstring);

passtext = XtMalloc(strlen(ctext)+1);
memcpy(passtext, ctext, strlen(ctext)+1);

/* format the value for transfer. convert the value from
* compound string to compound text for the transfer */
*typeRtn = COMPOUND_TEXT;
*valueRtn = (XtPointer) passtext;
*lengthRtn = strlen(passtext);
*formatRtn = 8;
return(True);

}

15−105

OSF/Motif Programmer’s Guide

If the DNDscroll.c program in Appendix B processed more than
one target, such as text and compound text, then this routine would
have to handle both types. For example:

if (*target = COMPOUND_TEXT) {
/* processing to convert the slider to compound string format */
}

else if (*target = TEXT) {
/* processing to convert the slider to text format */
}

else
return(False);

15.7.3 XmNdropFinishCallback

The XmNdropFinishCallback is called when the receiver’s
XmNtransferProc routine has finished processing all the transfers
desired by the receiver.

The completionStatus field indicates whether the entire drop
was successful or not.

The operations, operation, dropSiteStatus, and dropAction
fields are initialized as described for the XmNdropStartCallback
procedure covered earlier in this chapter.

In Motif 1.2, this routine is performed once per drag.

15−106

Drag and Drop

15.7.4 XmNdragDropFinishCallback

The XmdragDropFinishCallback routine is performed when the
complete drag and drop transaction has finished. In Motif 1.2, this
routine is called immediately after the initiator’s XmNdropFinish-
Callback has finished. The initiator frees any remaining structures
it has allocated during the drag.

For example, this sample code destroys any cursor icons that were
created during the drag.

static void DnDFinishCallback(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{

XmDragContext dc;
Widget source_icon, state_icon, op_icon;
Arg args[MAX_ARGS];
int n;

dc = (XmDragContext)w;
source_icon = state_icon = op_icon = NULL;

n = 0;
XtSetArg(args[n], XmNsourceCursorIcon, &source_icon); n++;
XtSetArg(args[n], XmNstateCursorIcon, &state_icon); n++;
XtSetArg(args[n], XmNoperationCursorIcon, &op_icon); n++;
XtGetValues(dc, args, n);

if (source_icon != NULL)
XtDestroyWidget(source_icon);
if (state_icon != NULL)

XtDestroyWidget(state_icon);

15−107

OSF/Motif Programmer’s Guide

if (op_icon != NULL)
XtDestroyWidget(op_icon);

}

15−108

Chapter 16. Interclient Communica-
tion

A Motif application can communicate with another application in a
variety of circumstances:

• When negotiating with a window manager such as MWM

• When the user makes or transfers a primary, secondary, or clip-
board selection

• When the user drags data from one application and drops it in
another

• When the application deals with a resource that is shared with
other clients on the display, such as input focus, the pointer,
grabs, and colormaps

The X Consortium Standard Inter-Client Communication Conven-
tions Manual (ICCCM) defines standards by which X clients should
communicate with each other. The Motif toolkit and MWM comply
with ICCCM. Applications may define private protocols for com-
municating with other applications that share those protocols. If
they do so, they should also conform to ICCCM standards.

16.1 Window Managers, ICCCM, and Shells

ICCCM defines protocols for communication between clients and
window managers. Most of the communication takes place via pro-
perties on an application’s top-level windows. The window manager
can also generate events that are available to the application.

In Motif and Xt, shells handle most communication between an
application and a window manager. An application seldom has to
deal directly with properties or events. The application can usually
specify properties by setting resources of a shell. Shells also select
for and handle most events from the window manager.

16−1

OSF/Motif Programmer’s Guide

This section discusses the relations between some shell resources,
properties, and events concerned with communication between an
application and any window manager. The following section
discusses resources, properties, and events that apply to MWM in
particular.

16.1.1 Application Startup

When a top-level window is mapped, the window manager may
search the resource database for information about the window.
The resource name and class come from the WM_CLASS property
for the window. This property contains two consecutive strings that
identify the instance and class names.

Xt sets the WM_CLASS property when a shell that is a subclass of
WMShell is realized. The instance name is the name of the shell.
For an ApplicationShell, this is generally the name of the applica-
tion passed to XtDisplayInitialize. The class name is the appli-
cation class from the highest-level widget in the hierarchy. For an
ApplicationShell, this is generally the application class passed to
XtDisplayInitialize. If the root widget is not an Application-
Shell, the class name is the widget’s class name.

Most window managers display a name for a top-level window,
often in a title bar. The window name comes from the WM_NAME
property. This property is a string whose encoding is identified by
the type of the property.

A Motif application specifies a window name via the WMShell
resources XmNtitle and XmNtitleEncoding. If the shell is a
TopLevelShell subclass and the XmNiconName resource is not NULL,
the value of that resource is the default for XmNtitle. Otherwise,
the default title is the name of the shell. For a dialog, an

16−2

Interclient Communication

application can supply a title as the value of the BulletinBoard
resource XmNdialogTitle.

XmNtitleEncoding is an atom representing the encoding of the
name. The default title encoding depends on whether or not a
language procedure has been set. If no language procedure has
been set, the default is STRING. If a language procedure has been
set, the title is assumed to be in the encoding of the locale and is
passed to XmbTextListToTextProperty with an encoding style of
XStdICCTextStyle. The returned property is used as the
WM_NAME property. If the title is fully convertible to type
STRING, the encoding is STRING; otherwise, the encoding is
COMPOUND_TEXT.

16.1.2 Window Configuration

A window manager can assign any position and size to a window.
The user and application can supply preferred positions and sizes,
but the window manager is free to use or ignore these as it wishes.

The user generally specifies position and size via the –geometry
option when invoking the command that starts the application. In
Motif, the value specified for –geometry becomes the value of the
Shell XmNgeometry resource. An application should never set this
resource itself; it should reserve it for the user. An application
specifies size and position by supplying values for the Core
resources XmNx, XmNy, XmNheight, XmNwidth, and XmNborderWidth.
When an x, y, width, or height value is specified for both
XmNgeometry and one of the specific geometry resources, the value
from XmNgeometry takes precedence.

The MWM positionIsFrame resource determines whether MWM
interprets x and y values as referring to the upper left corner of the

16−3

OSF/Motif Programmer’s Guide

client window itself or the upper left corner of the frame that MWM
puts around the client window. By default x and y values refer to
the frame.

When a top-level window is mapped, MWM uses the following order
of precedence in determining size and position:

• If the user specifies position and size via the –geometry option,
MWM uses those values.

• If the MWM interactivePlacement resource is True, MWM
waits for the user to select a position using a button press for the
upper left corner of the window. If the user drags the pointer
down and to the right with the mouse button pressed, the user
can then determine the size of the window by releasing the
mouse button. If the user does not determine a size in this way,
MWM uses the window’s XmNwidth and XmNheight.

• If the MWM usePPosition resource is True, or if usePPosition
is nonzero and the window’s XmNx or XmNy is nonzero, MWM
uses the window’s XmNx and XmNy to position the window. MWM
uses the window’s XmNwidth and XmNheight for the window’s
size. If the MWM positionOnScreen resource is True and if the
window would be completely off the screen, MWM alters the win-
dow position so that at least part of the window is on the screen.

• If the MWM clientAutoPlace resource is True, MWM positions
the window with its top left corner offset horizontally and verti-
cally from the last client mapped. MWM uses the window’s
XmNwidth and XmNheight for the window’s size.

• MWM positions the window in the upper left corner of the
screen. MWM uses the window’s XmNwidth and XmNheight for
the window’s size.

Before a window is mapped, the application communicates addi-
tional position and size information to the window manager via the
WM_NORMAL_HINTS property on the window. This property is of

16−4

Interclient Communication

type WM_SIZE_HINTS and contains a number of fields derived
from WMShell resources:

XmNminHeight, XmNminWidth
Specifies the minimum height and width that the
application wishes the widget’s window to have. If an
initial value is supplied for one of these resources but
not for the other, the value of the unspecified resource
is set to 1 when the widget is realized. If no value is
specified for either resource, MWM uses the values
from XmNbaseHeight and XmNbaseWidth if specified.
Otherwise, MWM uses a minimum height and width
of at least 1.

XmNmaxHeight, XmNmaxWidth
Specifies the maximum height and width that the
application wishes the widget’s window to have. If an
initial value is supplied for one of these resources but
not for the other, the value of the unspecified resource
is set to 32767 when the widget is realized. If the
MWM resource maximumClientSize is specified,
MWM uses that value to determine the maximum
window size. Otherwise, MWM uses the maximum
height and width from the WM_NORMAL_HINTS
property, except that the window size may not exceed
the height and width specified by the MWM maximum-
MaximumSize resource.

XmNbaseHeight, XmNbaseWidth
Specifies the base for a progression of preferred
heights and widths for the window manager to use in
sizing the widget. The preferred heights are
XmNbaseHeight plus integral multiples of
XmNheightInc, with a minimum of XmNminHeight and
a maximum of XmNmaxHeight. The preferred widths
are XmNbaseWidth plus integral multiples of

16−5

OSF/Motif Programmer’s Guide

XmNwidthInc, with a minimum of XmNminWidth and a
maximum of XmNmaxWidth. If an initial value is sup-
plied for one of these resources but not for the other,
the value of the unspecified resource is set to 0 when
the widget is realized. If no value is specified for
either resource, MWM uses the values from
XmNminHeight and XmNminWidth if specified. Other-
wise, MWM uses a base height and width of at least
1.

XmNheightInc, XmNwidthInc
Specifies the increment for a progression of preferred
heights and widths for the window manager to use in
sizing the widget. The preferred heights are
XmNbaseHeight plus integral multiples of
XmNheightInc, with a minimum of XmNminHeight and
a maximum of XmNmaxHeight. The preferred widths
are XmNbaseWidth plus integral multiples of
XmNwidthInc, with a minimum of XmNminWidth and a
maximum of XmNmaxWidth. If an initial value is sup-
plied for one of these resources but not for the other,
the value of the unspecified resource is set to 1 when
the widget is realized. If no value is specified for
either resource, MWM uses an increment of 1.

XmNminAspectX, XmNminAspectY
Specifies the numerator and denominator of the
minimum aspect ratio (X/Y) that the application
wishes the widget’s window to have. If no value is
specified for either resource, MWM imposes no
minimum aspect ratio.

XmNmaxAspectX, XmNmaxAspectY
Specifies the numerator and denominator of the max-
imum aspect ratio (X/Y) that the application wishes
the widget’s window to have. If no value is specified

16−6

Interclient Communication

for either resource, MWM imposes no maximum
aspect ratio.

XmNwinGravity
Specifies the window gravity for use by the window
manager in positioning the widget. If no initial value
is specified, the value is set when the widget is real-
ized. If XmNgeometry is not NULL, XmNwinGravity is
set to the window gravity returned by XWMGeometry.
Otherwise, XmNwinGravity is set to NorthWestGrav-
ity.

After a window is mapped, an application can request changes to
window size or position by calling XtSetValues for one or more of
the Core geometry resources. A user can generally employ window
manager facilities to move or resize a top-level window.

Calling XtSetValues for a geometry resource generates a geometry
request that may propagate up the widget hierarchy to the shell.
This may cause the shell to make its own geometry request, and
this invokes the shell’s root_geometry_manager procedure. This
procedure uses XConfigureWindow to ask the window manager to
change the window’s size or position.

If a window manager responds to a configuration request by deny-
ing it or by moving the window without resizing it, the window
manager sends a synthetic ConfigureNotify event. If the window
is resized, the window receives a real ConfigureNotify event.

These events may be handled by either the
root_geometry_manager procedure or a Shell event handler. If the
VendorShell resource XmNuseAsyncGeometry is True, the
root_geometry_manager procedure does not wait for the window
manager to respond to the configuration request, but instead
returns XtGeometryYes. If the WMShell resource XmNwaitForWm is
True and if the window manager grants the configuration request
within the XmNwmTimeout interval, the root_geometry_manager

16−7

OSF/Motif Programmer’s Guide

procedure updates the widget’s geometry resources and returns
XtGeometryYes. Otherwise, the root_geometry_manager pro-
cedure returns XtGeometryNo and relies on the event handler to
reconfigure the widget when it receives a subsequent ConfigureNo-
tify event.

The shell’s ConfigureNotify event handler is invoked when the
user reconfigures a top-level window or when the application
reconfigures a window and this reconfiguration is not handled by
the root_geometry_manager procedure. The event handler updates
the shell’s core geometry fields with the values allowed by the win-
dow manager. If the size of the shell changes, the event handler
calls the shell’s resize procedure. This procedure calls
XtResizeWidget to change the height, width, and border width of
the child to be the same as those of the shell.

16.1.3 Icons

An application uses several properties to communicate with the
window manager about icons associated with top-level windows. A
Motif application can use resources of several Shell subclasses to
specify values for these properties.

When a window is first mapped, it can appear in either its normal
state or iconic state. An application uses a field in the WM_HINTS
property to tell the window manager which initial state it prefers.
A Motif application specifies the initial state by setting the
WMShell resource XmNinitialState or the TopLevelShell resource
XmNiconic. XmNiconic takes precedence over XmNinitialState.
After a window is realized, an application can use XtSetValues for
XmNiconic to either iconify or deiconify the window.

16−8

Interclient Communication

An application can supply a name, a bitmap, or a window for the
window manager to use as an icon. When a top-level window is in
iconic state, the window manager usually displays the icon window
if one is supplied, or else the icon pixmap if one is supplied, or else
the icon name. MWM uses the iconDecoration resource in deter-
mining what aspects of an icon to display.

The icon name comes from the WM_ICON_NAME property. Like
WM_NAME, this property is a string whose encoding is identified
by the type of the property.

A Motif application specifies a icon name via the TopLevelShell
resources XmNiconName and XmNiconNameEncoding. The default
icon name is the name of the shell. XmNiconNameEncoding is an
atom representing the encoding of the name. The default encoding
depends on whether or not a language procedure has been set. If no
language procedure has been set, the default is STRING. If a
language procedure has been set, the icon name is assumed to be in
the encoding of the locale and is passed to XmbTextListToTextPro-
perty with an encoding style of XStdICCTextStyle. The returned
property is used as the WM_ICON_NAME property. If the icon
name is fully convertible to type STRING, the encoding is STRING;
otherwise, the encoding is COMPOUND_TEXT.

An application uses fields in the WM_HINTS property to supply an
icon bitmap and an optional mask for displaying the bitmap in a
nonrectangular shape. A Motif application specifies an icon bitmap
as the value of the WMShell resource XmNiconPixmap, and it
specifies the mask as the value of the WMShell resource XmNicon-
Mask.

An application uses a field in the WM_HINTS property to supply an
icon window. A Motif application specifies an icon window as the
value of the WMShell resource XmNiconWindow. The icon window
must be an InputOutput child of the root window. It must also use
the root visual and the default colormap of the screen. The applica-
tion must not map, unmap, or configure this window. It must,

16−9

OSF/Motif Programmer’s Guide

however, select for Expose events on the window and redisplay the
contents when it receives these events.

The window manager may specify preferred maximum and
minimum sizes and size increments for icon bitmaps and windows.
To do this it puts a WM_ICON_SIZE property on the root window.
MWM uses the iconImageMaximum and iconImageMinimum
resources, with increments of 1, in setting this property. Before an
application specifies an icon bitmap or window, it should use the
Xlib routine XGetIconSizes to check these constraints and then
supply a bitmap or window that is of one of the preferred sizes.

An application can use two fields of the WM_HINTS property to
supply preferred x and y root coordinates for the icon location. A
Motif application specifies these coordinates as the values of the
WMShell resources XmNiconX and XmNiconY. The window manager
may ignore these values. MWM uses the useIconBox, iconPlace-
ment, and iconPlacementMargin resources in determining where to
place icons.

16.1.4 Window Groups

An application can use a field of the WM_HINTS property to supply
the window ID of a window to serve as the "leader" for a group of
windows. The window manager may treat all windows in this
group as a whole for certain purposes, such as showing a single icon
when the entire group is iconified.

A Motif application specifies a window group leader as the value of
the WMShell resource XmNwindowGroup. For VendorShell and its
subclasses, if the shell has a parent, Motif sets the XmNwindowGroup
to the parent’s window at the time that the shell and its parent are
both realized. Otherwise, the default value is

16−10

Interclient Communication

XtUnspecifiedWindowGroup, which means that no window group is
set.

16.1.5 Menus and Dialogs

A window manager may treat dialogs differently from other top-
level windows, and it must not interfere with menus at all.

An application tells a window manager not to decorate or otherwise
interfere with a window by setting the override_redirect attri-
bute of the window to True. A Motif application does this by setting
the Shell resource XmNoverrideRedirect resource to True, or by
using an OverrideShell, which has a default value of True for this
resource. XmMenuShell is a subclass of OverrideShell, and Menu-
Shells are the only widgets that should have a value of True for
XmNoverrideRedirect. An application normally does not supply a
value other than the default for this resource.

An application tells a window manager to treat a window as tran-
sient or secondary by setting the window’s WM_TRANSIENT_FOR
property. This property contains the window ID of another top-level
window, usually the window from which the transient window was
popped up. A Motif application generally specifies this property by
creating a DialogShell, a subclass of TransientShell, which has an
XmNtransientFor resource. The value is a widget, and the default
is set to the shell’s parent at the time that both the shell and its
parent are realized. The window of the XmNtransientFor widget is
used for the WM_TRANSIENT_FOR property. For a shell that is
not a subclass of TransientShell, an application can set the
WMShell XmNtransient resource to True. The XmNwindowGroup is
then used for the WM_TRANSIENT_FOR property. An application
normally does not supply a value other than the default for
XmNtransient or XmNtransientFor.

16−11

OSF/Motif Programmer’s Guide

MWM treats transient windows differently from other top-level win-
dows. By default it keeps transient windows stacked on top of their
primary windows and does not allow transient windows to be
iconified separately from their primary windows. The MWM tran-
sientDecoration and transientFunctions resources determine
which decorations and functions apply to transient windows. An
application can further specify these decorations and functions by
using the VendorShell XmNmwmDecorations and XmNmwmFunctions
resources, explained in a later section.

16.1.6 Input Focus

ICCCM recognizes four models for the relationship between clients
and window managers in setting input focus:

No input
The client does not expect keyboard input and does
not want the window manager to set focus to any of
its windows.

Passive input
The client expects keyboard input and wants the win-
dow manager to set focus to its top-level window. It
does not set focus itself.

Locally active input
The client expects keyboard input and wants the win-
dow manager to set focus to its top-level window. It
may also set focus to one of its subwindows when one
of its windows already has the focus. It does not set
focus itself when the current focus is in a window that
the client does not own.

16−12

Interclient Communication

Globally active input
The client expects keyboard input but does not want
the window manager to set focus to any of its win-
dows. Instead, it sets focus itself, even when the
current focus is in a window that the client does not
own.

An application tells the window which model it prefers by using two
properties:

• If the input field of the WM_HINTS property is True, the appli-
cation wants the window manager to set focus to its top-level
window. If this field is False, the application does not want the
window manager to set focus.

• If the WM_PROTOCOLS property contains a
WM_TAKE_FOCUS atom, the application sometimes sets focus
itself. If the WM_PROTOCOLS property does not contain a
WM_TAKE_FOCUS atom, the application does not set focus
itself.

These combinations are summarized in the following table:
222
Input Model Input field WM_TAKE_FOCUS22
No input False Absent222
Passive True Absent222
Locally active True Present222
Globally active False Present22211
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

A window manager generally does not set input focus to a window
when the WM_HINTS input field is False. A window with a
WM_TAKE_FOCUS protocol may receive a ClientMessage when
the window manager wants the window to accept keyboard focus.
The window may respond by setting the input focus or by ignoring
the message.

16−13

OSF/Motif Programmer’s Guide

A Motif application can set the input field of the WM_HINTS pro-
perty by specifying a value for the WMShell resource XmNinput.
The application can install the WM_TAKE_FOCUS atom on the
WM_PROTOCOLS property by calling XmAddWMProtocols or
XmAddWMProtocolCallback, explained in a later section.

A Motif application normally should avoid setting input focus itself.
The application can control the location of focus within its subwin-
dows by using the VendorShell resource XmNkeyboardFocusPolicy,
the Gadget, Primitive, and Manager resource XmNtraversalOn, and
the XmProcessTraversal routine. If the application wants a widget
to receive no input at all it can use XtSetSensitive to make the
widget insensitive. If the application needs to set focus directly, it
should usually use XtSetKeyboardFocus and avoid using XSetIn-
putFocus. For more information see chapter 13.

A number of MWM resources influence keyboard focus. When key-
boardFocusPolicy is "explicit" (the default), the user must press
BSelect on a window or its decoration to give it focus. When key-
boardFocusPolicy is "pointer", the window that contains the
pointer has the focus. With an explicit policy, other resources deter-
mine whether a window has focus when it is first mapped (star-
tupKeyFocus), deiconified (deiconifyKeyFocus), or raised
(raiseKeyFocus). When autoKeyFocus is True and the window
with focus is iconified or withdrawn, focus passes to the window
that last had focus. When enforceKeyFocus is True, MWM sets
focus to globally active windows.

16.1.7 Colormaps

An application can create and set colormaps for its windows, but
only the window manager should install colormaps. Each window
manager has a colormap focus policy that determines which top-

16−14

Interclient Communication

level window has the colormap focus at a given time. When a win-
dow has colormap focus, the window manager installs one or more
colormaps associated with that window.

If all windows in an application use the same colormap, the applica-
tion need take no special action to tell the window manager to use
that colormap. The window manager keeps track of the colormap
attribute for each top-level window and installs that colormap when
the window has colormap focus.

If an application uses different colormaps for some windows in its
hierarchy, it must tell the window manager about those colormaps
by setting a WM_COLORMAP_WINDOWS property on the top-
level window. This property is a list of windows whose colormaps
the window manager should install when the top-level window has
colormap focus. The list should be in order of priority, with the win-
dows whose colormaps the application would most like to have
installed listed first. The application can use XSetWMColormapWin-
dows to set this property.

On many servers only one hardware colormap can be installed at a
time. This may cause colors in windows that use different color-
maps to be displayed incorrectly when their own colormaps are not
installed. To reduce contention for colormaps, applications should
use the facilities for standard colormaps described in Xlib—C
Language X Interface.

The MWM colormapFocusPolicy resource determines the color-
map focus policy. When the value is "keyboard", the window with
keyboard focus has the colormap focus. When the value if "pointer",
the window under the pointer has the colormap focus, regardless of
whether that window also has keyboard focus. When the value is
"explicit", the colormap focus changes only when the user invokes
the f.focus_color function.

When a window with colormap focus has a
WM_COLORMAP_WINDOWS property, the user can install the

16−15

OSF/Motif Programmer’s Guide

next and previous colormaps on the list by invoking the
f.next_cmap and f.prev_cmap functions.

16.1.8 Application Shutdown and Restart

An application may run under a session manager with facilities for
saving and restoring the state of the application. An application
communicates with a session manager by placing WM_COMMAND
and WM_CLIENT_MACHINE properties on its top-level windows.
WM_COMMAND contain a string that would restart the client in
its current state.

A Motif application should have only one non-NULL
WM_COMMAND property for each logical application (i.e., for each
ApplicationShell hierarchy). Xt sets the WM_COMMAND property
for an ApplicationShell when the shell is realized, using the com-
mand that started the application. Note that if an application is
using an unrealized ApplicationShell with multiple TopLevelShell
popup children, Xt will not place a WM_COMMAND property on
any window, and the application must put this property on some
(possibly unmapped) window in the application.

WM_CLIENT_MACHINE contains a string that represents the
name of the host on which the application is running. Xt sets the
WM_CLIENT_MACHINE for a WMShell or subclass when the shell
is realized.

A session manager can inform an application when a top-level win-
dow is about to be deleted or when the application should try to
save its state. An application expresses interest in these
notifications by adding a WM_DELETE_WINDOW atom or a
WM_SAVE_YOURSELF atom to the WM_PROTOCOLS property.

16−16

Interclient Communication

If a WM_DELETE_WINDOW protocol exists, the session manager
sends a ClientMessage when it wants to delete a top-level window.
The application may ask for user confirmation and may decide to
comply or not comply with the request. If it decides to comply, the
application can either unmap or destroy the window.

If a WM_SAVE_YOURSELF protocol exists, the session manager
sends a ClientMessage when it wants the application to save its
current state in such a way that it could be restored. The applica-
tion should do whatever is necessary to save its internal state and
then update the non-NULL WM_COMMAND property with a com-
mand that will restart the application in its current state. Finally,
the application updates the WM_COMMAND property on the win-
dow that has the WM_SAVE_YOURSELF protocol if it has not
already done so. This informs the session manager that the appli-
cation has finished saving its state.

Motif installs a WM_DELETE_WINDOW protocol for VendorShell
and its subclasses. It also installs a procedure to be called after any
application-supplied WM_DELETE_WINDOW handlers are
invoked. This procedure destroys the widget, unmaps the window,
or does nothing, depending on the value of the VendorShell resource
XmNdeleteResponse. If the procedure destroys an ApplicationShell,
it then exits the application.

An application can add its own WM_DELETE_WINDOW and
WM_SAVE_YOURSELF protocols by using XmAddWMProtocols or
XmAddWMProtocolCallback, explained in a later section.

When the user invokes the f.kill command, MWM sends a
ClientMessage if an application has a WM_DELETE_WINDOW
protocol and a separate ClientMessage if an application has a
WM_SAVE_YOURSELF protocol. If the application has no
WM_DELETE_WINDOW protocol, the f.kill command kills the
client. In this case, if a WM_SAVE_YOURSELF protocol exists,
MWM sends the ClientMessage and then waits for the time
specified by the quitTimeout resource before killing the client.

16−17

OSF/Motif Programmer’s Guide

16.2 MWM Properties and Resources

In addition to the properties and protocols described in ICCCM,
Motif uses properties and protocols of its own. A Motif application
usually specifies these properties via VendorShell and Bulletin-
Board resources.

16.2.1 Decorations

An application expresses preferences for MWM window decorations
by supplying a value for the decorations field of the
_MOTIF_WM_HINTS property on the window. A Motif application
does this by supplying a value for the VendorShell resource
XmNmwmDecorations. The value is the bitwise inclusive OR of one
or more flag bit constants, each of which indicates a preference for
or against a particular decoration. If a value has been supplied for
this resource, MWM displays only those decorations specified by
both XmNmwmDecorations and the MWM clientDecoration
resource (for primary windows) or specified by both XmNmwmDecora-
tions and the MWM transientDecoration resource (for transient
windows). If no value has been supplied for XmNmwmDecorations,
MWM displays the decorations specified by the clientDecoration
or transientDecoration resource.

16−18

Interclient Communication

16.2.2 Functions

An application expresses preferences for MWM window functions by
supplying a value for the functions field of the
_MOTIF_WM_HINTS property on the window. A Motif application
does this by supplying a value for the VendorShell resource
XmNmwmFunctions. The value is the bitwise inclusive OR of one or
more flag bit constants, each of which indicates a preference for or
against a particular function. If a value has been supplied for this
resource, MWM displays only those functions specified by both
XmNmwmFunctions and the MWM clientFunctions resource (for
primary windows) or specified by both XmNmwmFunctions and the
MWM transientFunctions resource (for transient windows). If no
value has been supplied for XmNmwmFunctions, MWM displays the
functions specified by the clientFunctions or transientFunc-
tions resource.

BulletinBoard may change the initial value of XmNmwmFunctions if
its parent is a subclass of VendorShell. The BulletinBoard resource
XmNnoResize determines whether the decorations of the Vendor-
Shell parent include resize controls.

16.2.3 Input Mode

An application can inform MWM that it should impose constraints
on which windows can obtain input. It does so by setting the
input_mode field of the _MOTIF_WM_HINTS property on a win-
dow. A Motif application does this by supplying a value for the Ven-
dorShell resource XmNmwmInputMode. For a BulletinBoard whose
parent is a DialogShell, the application can set XmNmwmInputMode
indirectly by specifying a value for the BulletinBoard resource

16−19

OSF/Motif Programmer’s Guide

XmNdialogStyle.

The possible modes are as follows:

• Modeless—Input goes to any window.

• Primary application modal—Input does not go to ancestors of
this window or their descendants.

• Full application modal—Input goes to this window or its descen-
dants and to other applications but not to other windows in this
application.

• System modal—Input goes only to this window or its descen-
dants.

16.2.4 Window Menu

An application can supply items for MWM to add to the end of the
window menu for a window by specifying a value for the
_MOTIF_WM_MENU property. A Motif application does this by
supplying a value for the VendorShell resource XmNmwmMenu. The
window menu itself is the value of the MWM windowMenu resource.

16.2.5 MWM Messages

An application can specify a message for MWM to send the applica-
tion when the user invokes the f.send_msg function. The applica-
tion places a _MOTIF_WM_MESSAGES atom on the
WM_PROTOCOLS property for the window. The application also
places an atom on the _MOTIF_WM_MESSAGES property. When

16−20

Interclient Communication

the f.send_msg function is invoked with this atom as the argu-
ment, MWM sends the application a ClientMessage. The applica-
tion can use XmAddWMProtocols to place a
_MOTIF_WM_MESSAGES atom on the WM_PROTOCOLS pro-
perty, and it can use XmAddProtocolCallback to place an atom on
the _MOTIF_WM_MESSAGES property and associate it with a rou-
tine to be called when MWM sends the ClientMessage.

16.2.6 MWM Information

MWM maintains a _MOTIF_WM_INFO property on the root win-
dow of each screen it manages. This property is available for appli-
cations to inspect but not to change. The XmIsMotifWMInfo routine
examines this property when determining whether or not MWM is
running.

16.3 Atom and Protocol Management

Motif has two routines that can reduce overhead for applications
that use atoms. XmInternAtom returns an existing atom or (if the
third argument is False) creates and returns an atom that matches
the given string. XmGetAtomName returns the string that matches
the given atom. These functions parallel XInternAtom and XGetA-
tomName, but they cache the atoms and names on the client side and
avoid unnecessary trips to the server.

Motif has a number of routines to help an application install proto-
col atoms and handle ClientMessages sent when the protocols are
invoked. These routines maintain an internal registry of properties,

16−21

OSF/Motif Programmer’s Guide

protocol atoms associated with the properties, and callback routines
associated with the protocol atoms. The application can use these
routines with shells that are subclasses of VendorShell.

XmAddProtocols associates one or more protocol atoms with a pro-
perty for a given shell. If the shell is realized, it adds those proto-
cols to the property for the shell’s window. If the shell is not real-
ized, it arranges for the protocols to be added to the property and for
a ClientMessage event handler to be added at the time the shell is
realized. XmAddWMProtocols is a specialized version that adds pro-
tocols for the WM_PROTOCOLS property.

XmAddProtocolCallback adds a callback routine to a callback list
associated with a protocol. It calls XmAddProtocols if the protocol
has not yet been registered. When the protocol manager’s
ClientMessage event handler receives a ClientMessage for the pro-
tocol, it invokes the procedures on the associated callback list. The
first argument to each callback procedure is the shell associated
with the protocol. The second argument is the client data, if any,
specified in the call to XmAddProtocolCallback. The third argu-
ment is a pointer to an XmAnyCallbackStruct structure whose rea-
son member is XmCR_PROTOCOLS and whose event member is a
pointer to the ClientMessage event. In the ClientMessage event,
the message_type member is the property that contains the proto-
col, the format member is 32, and the data.l[0] member is the
protocol atom. XmAddWMProtocolCallback is a specialized version
of XmAddProtocolCallback that adds a callback for a protocol on
the WM_PROTOCOLS property.

An application can also use XmSetProtocolHooks to specify a rou-
tine to be called before or after a callback list is invoked for a proto-
col. XmSetWMProtocolHooks is a specialized version that adds pre-
and posthooks for a protocol on the WM_PROTOCOLS property.

Once an application has registered a protocol and optional callback
routines, it can make the protocol active or inactive. A protocol is
active if it has been added to the associated property for the

16−22

Interclient Communication

window. A protocol is inactive if it has been removed from the asso-
ciated property. XmActivateProtocol makes a registered protocol
active, and XmDeactivateProtocol makes a protocol inactive.
XmActivateWMProtocol and XmDeactivateWMProtocol are special-
ized versions that activate or inactivate a protocol on the
WM_PROTOCOLS property.

XmRemoveProtocolCallback removes a callback routine from the
callback list associated with the protocol. XmRemoveProtocols
removes one or more protocols and all callbacks associated with
those protocols from the internal registry. If the shell is realized, it
removes those protocols from the associated property. XmRemoveWM-
ProtocolCallback and XmRemoveWMProtocols are specialized ver-
sions that remove callbacks or protocols for the WM_PROTOCOLS
property.

16.4 Selections

Selections are the standard ICCCM mechanism for transferring
data from one application to another on the same display. Each
selection is represented by an atom. The display contains only one
selection of each type. It is owned by a client or by no one and, if
owned, is attached to a window of the owning client. Any client
may assert or remove ownership of a selection.

The data represented by the selection is internal to the client that
owns the selection. If another client wants to obtain the data in the
selection, it asks the owner to convert the selection to some target
type. Each target type is represented by an atom. The owner may
or may not be able to convert the selection to the requested type or
to some other type. If it can convert the selection, the owner places
the converted data into a property on the requesting client’s

16−23

OSF/Motif Programmer’s Guide

window, using the actual target as the type of the property. The
owner sends the requestor a SelectionNotify event when the conver-
sion (whether successful or not) is complete. For a successful
transfer, this event includes the property on the requestor’s window
that contains the converted selection. When the requestor receives
a SelectionNotify event for a successful conversion, it retrieves the
contents of the specified property from its window and then deletes
the property.

16.4.1 Selection Types

ICCCM defines three selections that all clients should support,
although clients may support other selections as well:

PRIMARY The principal selection.

SECONDARY A means of exchanging data without disturbing the
primary selection.

CLIPBOARD The selection often used to "cut" or "copy" data from
one client and "paste" it into another. A client
transfers data to the clipboard by asserting owner-
ship of this selection. A client transfers data from the
clipboard by requesting conversion of the selection.

A separate client may also represent the clipboard.
This client can notice when it loses the selection
(because another client wants to transfer data to the
clipboard), then request a conversion of the selection
and finally reassert ownership.

The Motif Text and TextField widgets support all three of these
selections. The List widget supports only copying of selected items
to the clipboard. Motif also makes use of other selections, notably

16−24

Interclient Communication

for the destination widget and for drag and drop. For more informa-
tion on drag and drop selections, see chapter 15.

16.4.2 Targets

ICCCM lists a number of suggested target atoms that clients may
support. Clients are free to request and perform conversion to these
and to other targets as well. Clients that follow ICCCM must sup-
port only three targets:

TARGETS When a selection owner is asked to convert the selec-
tion to this type, it returns a list of the target types to
which it can convert the selection. By first requesting
a conversion to TARGETS, a client can determine
whether a conversion request of a particular type is
likely to succeed or fail.

MULTIPLE This target signifies a request for a series of conver-
sions. The requestor places in its specified window
property a list of pairs of atoms. Each pair names a
target and a property. The selection owner processes
each pair in order, converting the selection to the
specified target and placing the results in the
specified property. It sends the requestor a Selection-
Notify event when all conversions are complete.

TIMESTAMP The owner returns the timestamp it used to obtain
ownership of the selection.

Some targets have side-effects for the owner. Among these targets
are the following:

DELETE The owner deletes the selection and, if successful,
returns a zero-length property of type NULL.

16−25

OSF/Motif Programmer’s Guide

INSERT_SELECTION
The requestor places in its specified window property
a pair of atoms that names a selection and a target.
The owner requests conversion of the specified selec-
tion to the specified target and places the result at the
location of the selection named in the
INSERT_SELECTION request. The owner then
returns a zero-length property of type NULL. The
Motif Text widget uses this target with the destina-
tion selection when it asks the owner of the destina-
tion selection to insert the secondary selection at the
destination.

INSERT_PROPERTY
The requestor places in its specified window property
some data to be inserted at the location of the selec-
tion named in the request. The owner then returns a
zero-length property of type NULL.

16.4.3 Text Conversion

Conversion of textual selections raises problems because the
requesting client and the selection owner may be in different
locales. A requestor may specify a target type of TEXT, but the
owner may then convert the selection into any encoding that is con-
venient. The type of the returned property indicates what this
encoding is; the type will never be TEXT. The requestor may or
may not be able to convert the value into a useful form.

Converted text is generally of one of three types:

STRING The text includes only characters in ISO8859-1 plus
TAB and NEWLINE.

16−26

Interclient Communication

COMPOUND_TEXT
The text is in compound text format as specified by
the X Consortium Standard Compound Text Encod-
ing.

locale encoding
The text is in the encoding of the selection owner’s
locale. The encoding is represented by the atom used
as the type of the returned property.

A selection owner can use XmbTextListToTextProperty or
XwcTextListToTextProperty to convert text in its own locale to a
text property. The type of the property is determined by the compo-
sition of the text and by the encoding style passed to XmbTextList-
ToTextProperty. Encoding styles exist for converting text to
STRING, COMPOUND_TEXT, and the encoding of the locale.
Another encoding style specifies conversion to STRING if all the
characters in the text can be so converted, or otherwise to
COMPOUND_TEXT.

A Motif application that has text in compound strings can use
XmCvtXmStringToCT to convert a compound string to compound
text. The application can then place the compound text in the
requestor’s property using type COMPOUND_TEXT.

STRING, COMPOUND_TEXT, and the locale encoding can also be
selection targets. To obtain a text selection in its own locale, an
application can request conversion to one of these targets and can
then call XmbTextPropertyToTextList or XwcTextPropertyTo-
TextList to convert the returned property to text in the current
locale. An application can also request conversion to TEXT, but
there is no guarantee that it can convert the returned property to
text in the current locale.

One possible strategy is first to request conversion to TARGETS. If
one of the returned targets is the encoding of the current locale (as
determined by a call to XmbTextListToTextProperty with an

16−27

OSF/Motif Programmer’s Guide

encoding style of XTextStyle), the application can request conver-
sion to that target. Otherwise, if one of the returned targets is
COMPOUND_TEXT, the application can request conversion to that
target. If neither the locale encoding nor COMPOUND_TEXT is
one of the returned targets, the application can request conversion
to STRING or TEXT if the selection owner supports one of those tar-
gets.

A Motif application that has text in compound strings can request
conversion of a selection to COMPOUND_TEXT and can then use
XmCvtCTToXmString to convert the returned property to a compound
string.

16.4.4 Incremental Transfers

When a selection contains a large quantity of data, the selection
owner may place converted data into the returned property incre-
mentally. It signals the requestor that it intends to do this by set-
ting the type of the returned property to INCR and placing into the
property an integer that represents the minimum number of bytes
of data to be transferred. The owner and requestor must then
cooperate in transferring the data.

The requestor starts the interaction by deleting the returned pro-
perty. The owner then appends the first chunk of data to the same
property, giving the property the type of the converted data. The
requestor receives a PropertyNotify event for the new value of the
property, retrieves the data in the property, and deletes the pro-
perty. The owner receives a PropertyNotify event for the deletion of
the property and then appends the next chunk of data to the pro-
perty. This interaction continues until all that data has been
transferred. The owner then writes zero-length data to the pro-
perty, and the requestor deletes the property to terminate the

16−28

Interclient Communication

interaction.

16.4.5 The Xt Selection Interface

Xlib provides routines to set the owner of a selection (XSetSelec-
tionOwner, get the owner of a selection (XGetSelectionOwner), and
convert a selection (XConvertSelection). Applications that use
only the Xlib interface must do additional work to support selec-
tions, such as providing a handler for SelectionRequest events to
convert selections that the application owns.

Xt provides a richer interface for handling selections. This interface
consists of two parallel sets of routines, one for transferring data
atomically and the other for transferring data incrementally. In an
atomic data transfer, the owner converts all data for one selection
request before responding to another request to convert the same
selection. In an incremental data transfer, the owner may need to
start a second conversion before finishing the first conversion for a
given selection. The selection owner and the requestor need not use
the same (atomic or incremental) interface. This distinction is
independent of whether the actual transfer uses the ICCCM incre-
mental (INCR) protocol. For an atomic transfer of a large amount
of data, Xt automatically uses the ICCCM incremental protocol
when necessary.

An application asserts ownership of a selection by calling XtOwn-
Selection for atomic transfers or XtOwnSelectionIncremental for
incremental transfers. In this call the application can supply a pro-
cedure to convert the selection and procedures to be called when the
requestor has retrieved the data and when the application loses
ownership of the selection. For an incremental transfer, the conver-
sion routine can be called multiple times for the same request and
can be called to begin a new conversion before it has transferred all

16−29

OSF/Motif Programmer’s Guide

data for the first request. The conversion routine can obtain the
SelectionRequest event by calling XtGetSelectionRequest. When
calling XtOwnSelectionIncremental the application can also pro-
vide a routine to be called to cancel a conversion in progress. With
either atomic or incremental transfer, an application relinquishes
ownership of the selection by calling XtDisownSelection.

An application requests conversion of a selection by calling XtGet-
SelectionValue or XtGetSelectionValues for atomic transfers or
XtGetSelectionValueIncremental or XtGetSelectionValuesIn-
cremental for incremental transfers. The difference between the
"Value" and "Values" form of each routine is that the "Values" form
allows multiple conversions while guaranteeing that the selection
owner does not change during the call. When invoking one of these
routines, the requestor supplies a routine to be called to deliver the
data from the returned property.

Xt provides a timeout for the period in which a requestor and a
selection owner must respond to each other. The initial value comes
from the selectionTimeout application resource. An application
can use XtAppSetSelectionTimeout to set a new value, and it can
use XtAppGetSelectionTimeout to retrieve the value.

The Motif drag and drop interface uses the Xt selection mechanism.
A drag source supplies a single procedure to convert the selection,
and a drop site supplies a procedure to receive the transferred data.
The drag source and the receiver can determine independently
whether or not to use atomic or incremental transfer. The drag
source does this by specifying a value for the DragContext resource
XmNincremental, and the receiver does this by specifying a value
for the DropTransfer resource XmNincremental. When the drag
source uses atomic transfer, it ignores the arguments to the conver-
sion routine that pertain to incremental transfers.

16−30

Interclient Communication

16.5 The Motif Clipboard

Motif provides a set of routines for dealing with the CLIPBOARD
selection. The Motif clipboard interface allows an application to
assert ownership of the selection and request conversion of the
selection. The interface stores the data in the selection and other
information about the selection on the server. The owner can place
the selection value in these server data structures either at the time
it asserts ownership or at the time a client requests conversion.

By copying the selection value at the time it asserts ownership, an
application can simplify conversion and make the data available for
retrieval even if the owner is killed. By copying the selection value
when a client requests it, an application can avoid converting data
that no client may request. However, in this case the application
may need to make a copy of the data to be transferred. With either
copying mechanism, the data is stored in the Motif clipboard’s
server data structures the first time a client requests the data.

16.5.1 Copying Data to the Clipboard

To assert ownership and copy data to the clipboard, an application
takes these steps:

• It calls XmClipboardStartCopy to begin the interaction

• It makes one or more calls to XmClipboardCopy to place data on
the clipboard

• It terminates the interaction by calling XmClipboardEndCopy or
XmClipboardCancelCopy

16−31

OSF/Motif Programmer’s Guide

An application begins an interaction to copy data to the clipboard by
calling XmClipboardStartCopy. The application passes a display
pointer and timestamp; the ID of a window in the application; a
compound string that could be used to label the data; and, if the
application intends to delay copying the data until it is requested, a
widget ID and a function to be called to convert the data. XmClip-
boardStartCopy returns in one of the arguments a data ID that the
application must later pass to XmClipboardEndCopy or XmClip-
boardCancelCopy. The application must also pass the same win-
dow ID to subsequent clipboard calls in this sequence that it uses in
the call to XmClipboardStartCopy.

After calling XmClipboardStartCopy, the application makes one or
more calls to XmClipboardCopy to place data on the clipboard. Each
call associates the data with a single target (called a format in the
clipboard interface). The application can associate the same data or
different data with more than one target, but it must do so by mak-
ing separate calls to XmClipboardCopy.

If the application passes a NULL data buffer to XmClipboardCopy,
it asserts that it intends to transfer the actual data for that target
when a client requests it. Otherwise, XmClipboardCopy transfers
data to be stored on the clipboard by XmClipboardEndCopy. If the
application makes more than one call to XmClipboardCopy for the
same target, the data is appended to the previously transferred
data for that target.

XmClipboardCopy returns in one of its arguments a data ID that
identifies the data and target specified in this call. An application
that provides actual data at the time a client requests it uses this
ID in its conversion routine to identify the data and target to be
converted. Such an application must store a mapping of the data
ID to the data and target after XmClipboardCopy returns.

The application terminates the interaction by calling XmClipboar-
dEndCopy or XmClipboardCancelCopy. XmClipboardEndCopy stores
in the server data structures the data transferred by the calls to

16−32

Interclient Communication

XmClipboardCopy during this interaction sequence. It also asserts
ownership of the CLIPBOARD selection. If the application calls
XmClipboardCancelCopy instead of XmClipboardEndCopy, the
interaction is terminated without storing any of the transferred
data or asserting ownership of the selection.

If a client later requests data that the owner has declared it would
provide at the time of the request, the clipboard interface invokes
the conversion routine that the owner registered in the call to
XmClipboardStartCopy. This routine receives as arguments the
widget ID passed to XmClipboardStartCopy; the data ID for this
data and target returned by XmClipboardCopy; a private ID the
application may have supplied in the call to XmClipboardCopy; and
a reason for invoking the routine.

The conversion routine is responsible for converting the data to the
requested target. In order to do this it must consult the mapping it
established between the data ID or the private ID and the data and
target when it called XmClipboardCopy. Once the conversion rou-
tine has determined the proper target, it copies the data to the clip-
board. To do this it calls XmClipboardCopyByName, using the data
ID passed to the conversion routine. The application can call
XmClipboardCopyByName more than once if necessary to convert all
the data for this target.

Once an application has copied data to the clipboard in this way, it
no longer asserts that it will convert the same data to the same tar-
get in the future. It can remove the data ID from its mapping of
data IDs to data and targets, and it can free any data it has associ-
ated with this ID if it is not needed for any other purpose.

The clipboard interface calls the conversion routine when a data
item intended for later conversion has been removed from the clip-
board and is no longer needed. For example, another application
may have copied new data to the clipboard. In this case the conver-
sion routine can remove the data ID from its mapping of data IDs to
data and targets, and it can free any data it has associated with

16−33

OSF/Motif Programmer’s Guide

this ID if it is not needed for any other purpose. If the conversion
routine is being called because an item has been removed from the
clipboard, the reason argument to the conversion routine is
XmCR_CLIPBOARD_DATA_DELETE. If the conversion routine is being
called because a client has requested data conversion, the reason
argument is XmCR_CLIPBOARD_DATA_REQUEST.

An application can use XmClipboardWithdrawFormat to rescind its
assertion that it will convert data to a particular target on request.

XmClipboardUndoCopy removes the last item placed on the clip-
board by an application using the same display and window argu-
ments. This function also restores to the clipboard the item that
was on the clipboard before the cancelled copy was done. If the
application calls XmClipboardUndoCopy a second time, the function
restores to the clipboard the item that was removed by the first call
to XmClipboardUndoCopy.

16.5.2 Retrieving Data from the Clipboard

To retrieve data from the clipboard, an application takes these
steps:

• It calls XmClipboardStartRetrieve to begin the interaction

• It makes one or more calls to XmClipboardRetrieve to retrieve
data from the clipboard

• It terminates the interaction by calling XmClipboardEndRe-
trieve

An application begins an interaction to retrieve data from the clip-
board by calling XmClipboardStartRetrieve. The application
passes a display pointer, a timestamp, and the ID of a window in
the application. The application must pass the same window ID to

16−34

Interclient Communication

subsequent clipboard calls in this sequence that it uses in the call to
XmClipboardStartRetrieve. XmClipboardStartRetrieve locks
the clipboard.

After calling XmClipboardStartRetrieve, the application makes
one or more calls to XmClipboardRetrieve to retrieve data from the
clipboard, converted to a given target. The application passes
XmClipboardRetrieve a buffer to receive the data. If this buffer is
not large enough to contain all the data for the given target,
XmClipboardRetrieve returns XmClipboardTruncate. The appli-
cation can make repeated calls to XmClipboardRetrieve to retrieve
the remainder of the data. The function XmClipboardIn-
quireLength returns the length of the data on the clipboard for the
given target. This allows the application to allocate a buffer of the
correct size.

XmClipboardEndRetrieve unlocks the clipboard and ends the
interaction.

16.5.3 Utility Routines

The Motif clipboard interface has routines to lock and unlock the
clipboard, to make inquiries about its contents, and to register new
targets.

XmClipboardLock prevents another application from gaining access
to the Motif clipboard. XmClipboardUnlock allows other applica-
tions to gain access. The clipboard interface automatically locks the
clipboard during calls to XmClipboardStartRetrieve and XmClip-
boardEndRetrieve. At other times an application can use XmClip-
boardLock and XmClipboardUnlock to lock the clipboard explicitly.

The clipboard interface includes four routines for making inquiries
about the clipboard contents:

16−35

OSF/Motif Programmer’s Guide

• XmClipboardInquireCount returns the number of targets for
which data exists on the clipboard.

• XmClipboardInquireFormat returns the name of the target for a
given index of targets on the clipboard. An application could
retrieve the names of all the targets associated with data on the
clipboard by first calling XmClipboardInquireCount to find out
how many such targets exist and then calling XmClipboardIn-
quireFormat with indices from 1 to the number of targets,
inclusive. Note that the first index for XmClipboardInquireFor-
mat is 1, not 0.

• XmClipboardInquireLength returns the number of bytes of data
associated with a given target on the clipboard.

• XmClipboardInquirePendingItems returns a list of pairs of
data ID and private ID for a given target if that target exists on
the clipboard and if the owner has asserted that it will supply
the actual data on request (but has not yet done so).

An application that makes more than one call to an inquiry function
at a time should use XmClipboardLock and XmClipboardUnlock to
lock the clipboard for the duration of the interaction.

XmClipboardRegisterFormat registers a new target with the clip-
board interface. The application supplies the length of the data in
bits along with the name of the target so that the correct byte order
will be maintained when transferring data across platforms. All
targets defined in ICCCM are preregistered; the application does
not have to call XmClipboardRegisterFormat for these.

16−36

Appendix A. The Widget Meta-
Language Facility

The widget meta-language facility (WML) is used to generate the
components of the user interface language (UIL) compiler that can
change depending on the widget set. Using WML you can add sup-
port in UIL for new widgets to the OSF/Motif widget set or for a
totally new widget set.

UIL is made up of:

• Static syntax

• Dynamic syntax

• Data types

The static syntax elements are the basic syntax and keywords of
UIL. The static elements do not change as you modify the widget
set. The static syntax elements of UIL are defined in the file Uil.y.

The dynamic syntax elements are the parts of UIL that change with
the widget set. The dynamic syntax elements describe the widget
and gadget classes supported by UIL including their resources and
hierarchy. The dynamic elements of UIL are defined in WML files.
The dynamic elements of the OSF/Motif widget set are defined in
the file motif.wml.

The data type elements describe the allowable data types for each
widget and gadget resource. Although the data types do not
change, the resources that they are assigned to change with the
widget set. The data types are provided in UIL for better error
checking. The allowable data types for each resource are defined in
the same file as the dynamic syntax elements.

The WML facility combines the static syntax, dynamic syntax, and
data type elements to produce new source code for UIL. This allows
you to modify the dynamic elements of your version of UIL; giving
you the ability to add resources, widgets, gadgets, or even new
widget sets.

A−1

OSF/Motif Programmer’s Guide

Once you have modified your WML file, run the WML facility with
that file as input and compile the new UIL compiler. A number of
useful reports are also created by the WML facility to help you
analyze, debug, and document your changes.

Alternately, you can override the dynamic syntax elements of UIL,
usually defined in the file motif.wml, by compiling a WML file into
a WMD file, which the UIL compiler can read at run time. This pro-
vides a run time method of adding widgets to the existing widget
set, or changing the widget set that the UIL compiler can parse.
This means that you do not need to rebuild the UIL compiler to link
in new widget definitions.

A.1 Using WML

Every time Motif is built, UIL is built from the motif.wml file using
the WML facility. You can create your own WML file in the direc-
tory tools/wml to use in place of motif.wml. By convention, WML
files have a suffix of .wml. Section 23.2 describes how to modify
WML files. After you have created your new WML file, building a
new UIL is a four step process:

1. Build WML.

2. Run WML with your WML file.

3. Install the UIL source files.

4. Build UIL.

All four steps are done as needed each time Motif is built. You
should follow your standard Motif build instructions to rebuild UIL.
In most cases you will simply move to the top of your build tree and
enter make. By default, UIL is built using the motif.wml file from

A−2

The Widget Meta-Language Facility

the tools/wml directory. You can specify a different WML file in
the tools/wml directory with the command line make variable
TABLE as follows:

make TABLE=anyfile.wml

Where anyfile.wml is the name of a WML file in the tools/wml
directory of your Motif build tree.

Each time Motif is built, a default WMD file is also created named
motif.wmd. By convention WMD files use the suffix .wmd. WMD
files provide a method for including new widget definitions into the
UIL compiler without rebuilding the compiler. Rebuilding this file,
or building a new WMD file is a two step process, that closely paral-
lels the first two steps of creating a new UIL compiler:

1. Build WML.

2. Run WML with your WML file.

To rebuild the motif.wmd based on a particular WML file, use the
following make command line:

make TABLE=anyfile.wml motif.wmd

To create a new WMD file based on a particular WML file, use the
following make command line:

make TABLE=anyfile.wml WMDTABLE=anyfile.wmd anyfile.wmd

Where anyfile.wmd is the name of the WMD file you want to
create. In both of the preceding make commands, the make vari-
able TABLE defines which WML file you want to use to create the
WMD file. You can later supply these WMD files for use by UIL
using the command line option -wmd or through the
Uil_command_type data structure elements database, and
database_flag.

A−3

OSF/Motif Programmer’s Guide

You should refer to the OSF/Motif Release Notes for more informa-
tion about building Motif.

The following sections describe how to do each of the four steps
involved in rebuilding UIL independently.

A.1.1 Building WML

WML is built by default when you build Motif. You should only
need to build WML if you want to use it without building Motif.
You need to build WML both to build a new UIL compiler or to
build new WMD files. The WML source is located in the subdirec-
tory tools/wml. Before WML is built, the directory should contain
the files:

Imakefile wml.h wmlparse.y
Makefile wmldbcreate.c wmlresolve.c
README wmllex.l wmlsynbld.c
Uil.y wmlouth.c wmluiltok.l
UilDBDef.h wmloutkey.c wmlutils.c
motif.wml wmloutmm.c
wml.c wmloutp1.c

The files Imakefile and Makefile are used to build and run the
WML facility. The README file contains this technical bulletin. The
files Uil.y and motif.wml are the data files for the static syntax,
dynamic syntax and data type elements of UIL. The files with the
wml prefix are the source files for the WML facility.

A−4

The Widget Meta-Language Facility

To build WML, change to the directory tools/wml, build the make
file for your machine, and build WML using the following com-
mands:

cd tools/wml
make Makefile
make depend
make wmltools

The make file is built from the Imake facility using the make
Makefile and make depend commands. The make Makefile com-
mand produces a machine dependent Makefile for your machine.
The make depend command adds include file dependencies to the
new make file.

After you have built the WML facility the tools/wml directory
should contain the following additional files:

lex.yy.c wmloutkey.o wmlresolve.o
libwml.a wmloutmm.o wmlsynbld.o
wml wmloutp1.o wmluiltok
wml.o wmlparse.c wmlutils.o
wmllex.c wmlparse.h
wmlouth.o wmlparse.o

A.1.2 Running WML

You need to run WML separately only if you do not want to install
and build the new version of UIL. Running WML automatically
builds the WML source files if necessary.

A−5

OSF/Motif Programmer’s Guide

The make motif.wmd command from the tools/wml directory runs
the WML facility. You can specify the WML file to use with the
make variable TABLE.

make motif.wmd TABLE=anyfile.wml

Where anyfile.wml is a WML file in the tools/wml directory. If
you do not set the TABLE make variable, the motif.wml file is used
by default.

Running WML produces the following files:

UIL source filesmake copy copies these files to the clients/uil
directory to be used in building UIL. The UIL
source files are UilConst.h, UilDBDef.h,
UilKeyTab.h, UilLexPars.c, UilLexPars.h,
UilSymArTa.h, UilSymArTy.h, UilSymCSet.h,
UilSymCtl.h, UilSymEnum.h, UilSymGen.h,
UilSymNam.h, UilSymRArg.h, UilSymReas.h,
UilTokName.h, and UilUrmClas.h.

wml.report This report describes the widget set supported by
the newly created UIL sources. You can use it to
help validate your WML source file. It is organized
so you can easily compare it to reference documen-
tation as follows:

• Class names are ordered alphabetically by
name.

• Resources are ordered by ancestor(top down).

• Resources are listed alphabetically, with data-
type and default.

• Reasons are ordered by ancestor then alphabeti-
cally.

A−6

The Widget Meta-Language Facility

• Controls are ordered alphabetically.

• Automatically created children are ordered
alphabetically.

wml-uil.mm This file contains Appendix B of the OSF/Motif
Programmer’s Reference. You can process this file
using tbl, troff and the mm macro package to pro-
duce three tables for each supported widget class.
The first table lists the controls and reasons sup-
ported by the class. The second table lists the
resources for the class, their types and default
values. The third table lists the automatically
created children of the class.

motif.wmd This is the default WMD file.

These files overwrite any existing WML output files in the
tools/wml directory. If you do not want to lose the existing files,
save them somewhere else.

A.1.3 Installing UIL

You need to install the UIL source files separately only if you do not
want to build the new version of UIL. Installing the UIL source
files automatically builds the WML source files and runs WML if
necessary.

The make command from the tools/wml directory installs the UIL
source files in the clients/uil directory. The make all and make
copy commands are synonyms for the make command. This
overwrites the existing source files in the clients/uil directory. If
you do not want to lose your existing source files, save them some-
where else.

A−7

OSF/Motif Programmer’s Guide

You can specify the WML file on the make command line using the
make variable TABLE.

make TABLE=anyfile.wml

Where anyfile.wml is the name of a WML file. If you do not
specify TABLE, motif.wml is used by default.

A.1.4 Building UIL

You only need to build UIL separately if you do not want the new
UIL to reflect the current WML tables. To build UIL separately,
move to the clients/uil directory and enter make.

cd clients/uil
make

You should refer to the OSF/Motif Release Notes for more informa-
tion about building UIL.

A−8

Appendix B. Drag and Drop Exam-
ple Program

Figure B-1. Drag and Drop Demonstration

The DNDDemo program is a complex drag and drop application. It
uses many of the features covered in chapter 15. The application

B−1

OSF/Motif Programmer’s Guide

uses both drag source and drop sites.

The window consists of an array of 6 colors in the lower section,
with an empty drawing area in the upper section. The user can
create a black box within the drawing area by pressing and holding
the mouse button 1 while moving the mouse until the desired size
rectangle is outlined, then releasing the button. There can be as
many rectangles as desired and they can overlap each other. A rec-
tangle can be raised to the top by clicking mouse button 1 on it.

The user can change the color of a particular rectangle by moving
the pointer to one of the six color choices, pressing button 2, and
moving the pointer to the rectangle. A palette in that color becomes
the drag icon. The state icon does not appear while the drag icon is
in the lower section, shows as a slashed circle in the background of
the upper section, and as a paintbrush in the rectangles. When the
mouse button is released to make a drop, the rectangle changes to
the color chosen. If the rectangle is overlapped by another, the
whole rectangle is changed, but only the unobscured part is shown
in the new color.

The rectangles can be moved around the drawing area by pressing
button 2 when the pointer is over the rectangle, holding it, and mov-
ing the mouse until the new location is reached. If the rectangle is
small enough, it is used to create a pixmap for the source drag icon,
otherwise a similarly-shaped smaller pixmap is used for the source
icon.

The program demonstrates the following drag and drop features:

• Drag Source

— Establishes translations.

— Establishes custom drag source targets.

— Starts a drag and creates a drag context.

B−2

Drag and Drop Example Program

— Creates custom drag icons.

— Transfers information to the receiver (about color or location)

• Drop Site

— Establishes simulated drop sites.

— Establishes custom drop site targets.

— Follows the progress of the drag with a XmDragProc routine.

— Requests transfer of information from the source (about color
or location).

The demonstration program actually consists of three files:

• DNDDemo.h contains header information, global constants, and
forward declarations of procedures.

• DNDDemo.c creates the windows and manages the drag and drop
functions.

• DNDDraw.c does not have any drag and drop specific code in it. It
manages creating, coloring, and destroying the rectangles and
bitmaps within the window.

B.1 DNDDemo.h

/*
* file: DNDDemo.h
*
* Header file for the program DNDDemo.
*/

#include <stdio.h>

B−3

OSF/Motif Programmer’s Guide

#include <X11/Xatom.h>
#include <X11/Intrinsic.h>
#include <Xm/Xm.h>
#include <Xm/AtomMgr.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>
#include <Xm/SeparatoG.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>
#include <Xm/MessageB.h>
#include <Xm/DragDrop.h>
#include <Xm/Screen.h>

/* The following is used to layout the color labels */
#define BOX_WIDTH 85
#define BOX_HEIGHT 25
#define BOX_X_OFFSET 95
#define BOX_Y_OFFSET 35
#define BOX_X_MARGIN 10
#define BOX_Y_MARGIN 10

/* The following are used in setting up the drag icons */
#define ICON_WIDTH 32
#define ICON_HEIGHT 32
#define SMALL_ICON_WIDTH 16
#define SMALL_ICON_HEIGHT 16
#define ICON_X_HOT 0
#define ICON_Y_HOT 0

/* Some scales or text entry field could be added to change
* this value */
#define RECT_WIDTH 20
#define RECT_HEIGHT 50

B−4

Drag and Drop Example Program

/* The following defines could be setup as application resources */
#define RECT_START_COLOR "black"
#define HIGHLIGHT_THICKNESS 3
#define HIGHLIGHT_COLOR "Black" /* this is equivalent to

gray60 in the R5 rgb.txt */
#define DRAW_AREA_BG_COLOR "white"
#define DRAW_AREA_FG_COLOR "white"
#define LABEL1_COLOR "#ff5026" /* a soft shade of red */
#define LABEL2_COLOR "orange"
#define LABEL3_COLOR "yellow"
#define LABEL4_COLOR "violet"
#define LABEL5_COLOR "#00C3ff" /* a blue green color */
#define LABEL6_COLOR "green"

#define VALID_CURSOR_FG_COLOR "black"
#define INVALID_CURSOR_FG_COLOR "maroon"
#define NONE_CURSOR_FG_COLOR "maroon"

/*
* This struct is used to contain information about each rectangle
* to use in the dislay routines
*/
typedef struct _RectStruct {

Position x;
Position y;
Dimension width;
Dimension height;
Pixel color;
Pixmap pixmap; /* currently not in use */

} RectStruct, *RectPtr;

/* This struct is used to hold global application information */
typedef struct _AppInfoRec {

GC rectGC; /* graphic context used to draw the

B−5

OSF/Motif Programmer’s Guide

rectangles */
Pixel currentColor; /* color that is currently in the GC */
RectPtr *rectDpyTable; /* the rectangle display table */
int rectsAllocd; /* keeps track of how much the above

table has been alloc’d */
int numRects; /* number of rects that are visible */
RectPtr highlightRect; /* the current highlighted rectangle */
RectPtr clearRect; /* the rectangle that is being moved */
Boolean doMove; /* indicates that a move is being

performed */
Boolean creatingRect; /* indicates that a rect create is being

performed */
unsigned char operation;/* indicates the drop help operation */
unsigned int maxCursorWidth; /* the maximum allowable cursor

width */
unsigned int maxCursorHeight; /* the maximum allowable cursor

height */
Position rectX;
Position rectY;
Position rectX2;
Position rectY2;

} AppInfoRec, *AppInfo;

/*
* This struct is used to pass information
* from the dropProc to the transferProc
*/
typedef struct _DropTransferRec {

Widget widget;
Position x;
Position y;

} DropTransferRec, *DropTransfer;

/*
* This struct is used to pass information

B−6

Drag and Drop Example Program

* from the rectangle dragStart proc to it’s associated
* callback procs.
*/
typedef struct _DragConvertRec {

Widget widget;
RectPtr rect;

} DragConvertRec, *DragConvertPtr;

#ifdef _NO_PROTO

extern void InitializeAppInfo();
extern void StartRect();
extern void ExtendRect();
extern void EndRect();
extern RectPtr RectCreate();
extern RectPtr RectFind();
extern void RectSetColor();
extern Pixel RectGetColor();
extern Pixmap GetBitmapFromRect();
extern void RectHide();
extern void RectFree();
extern void RedrawRectangles();
extern void RectDrawStippled();
extern void RectHighlight();
extern void RectUnhighlight();
extern void RectSetPixmap();
extern void RectRegister();
extern void InitializeRectDpyTable();
extern void CreateLayout();
extern void CreateRectGC();
extern Pixel GetColor();
extern void ColorRect();

#else

B−7

OSF/Motif Programmer’s Guide

extern void InitializeAppInfo(void);
extern void StartRect(Widget, XEvent *, String *, Cardinal *);
extern void ExtendRect(Widget, XEvent *, String *, Cardinal *);
extern void EndRect(Widget, XEvent *, String *, Cardinal *);
extern RectPtr RectCreate(Position, Position, Dimension,

Dimension, Pixel, Pixmap);
extern RectPtr RectFind(Position, Position);
extern void RectSetColor(RectPtr, Display *, Window, Pixel);
extern Pixel RectGetColor(RectPtr);
extern Pixmap GetBitmapFromRect(Widget, RectPtr, Pixel, Pixel,

Dimension *, Dimension *);
extern void RectHide(Display *, Window, RectPtr);
extern void RectFree(RectPtr);
extern void RedrawRectangles(Widget);
extern void RectDrawStippled(Display *, Window, RectPtr);
extern void RectHighlight(Widget, RectPtr);
extern void RectUnhighlight(Widget);
extern void RectSetPixmap(RectPtr, Display *, Window, Pixmap);
extern void RectRegister(RectPtr, Position, Position);
extern void InitializeRectDpyTable(void);
extern void CreateLayout(void);
extern void CreateRectGC(void);
extern Pixel GetColor(char *);
extern void ColorRect(Widget, XEvent *, String *, Cardinal *);

#endif /* _NO_PROTO */

/* The following character arrays hold the bits for the source and
* state icons for both 32x32 and 16x16 drag icons. The source is
* a color palette icon and the state is a paint brush icon.
*/
extern char SOURCE_ICON_BITS[];
extern char SOURCE_ICON_MASK[];
extern char STATE_ICON_BITS[];

B−8

Drag and Drop Example Program

extern char STATE_ICON_MASK[];
extern char INVALID_ICON_BITS[];
extern char SMALL_SOURCE_ICON_BITS[];
extern char SMALL_SOURCE_ICON_MASK[];
extern char SMALL_STATE_ICON_BITS[];
extern char SMALL_STATE_ICON_MASK[];
extern char SMALL_INVALID_ICON_BITS[];

/* The folowing character arrays are for use with the drop help
* dialogs. For internationalization, message catalogs should
* replace these static declarations.
*/
extern char HELP_MSG1[];
extern char HELP_MSG2[];
extern char HELP_MSG3[];
extern char HELP_MSG4[];
extern char HELP_MSG5[];

/* Globals variables */
extern AppInfo appInfo;
extern Widget topLevel;
extern Widget drawingArea;
extern Widget helpDialog;
extern Widget helpLabel, helpMenu;
extern XtAppContext appContext;

B.2 DNDDemo.c

/*

B−9

OSF/Motif Programmer’s Guide

* file: DNDDemo.c
*
* A demo program showing the basic Drag And Drop operations.
*/

#include "DNDDemo.h"

/*
* The folowing character arrays are for use with the drop help
* dialogs. For internationalization, message catalogs should
* replace these static declarations.
*/
char HELP_MSG1[] =
"This drop action will change the color\n\
of the rectangle that the paint palette\n\
icon is dropped on. To accept this drop\n\
press the o.k. button, otherwise press\n\
cancel";

char HELP_MSG2[] =
"This drop action will move the rectangle\n\
to the new position. To accept this drop\n\
press the o.k. button, otherwise press\n\
cancel";

char HELP_MSG3[] =
"This drop action will copy the rectangle\n\
to the new position. To accept this drop\n\
press the o.k. button, otherwise press\n\
cancel";

char HELP_MSG4[] =
"This drop action can either copy or\n\
move the rectangle to the new position.\n\

B−10

Drag and Drop Example Program

Select the operation that you desire.\n\
In the future, use Ctrl with Btn2 to\n\
perform copy operations. The default\n\
operation is move. To accept this drop\n\
press the o.k. button, otherwise press\n\
cancel";

char HELP_MSG5[] =
"This drop action is at an Invalid drop\n\
position. Please cancel this drop \n\
by pressing the cancel button.";

/* Globals variables */
Widget topLevel;
Widget drawingArea;
Widget helpDialog = NULL;
Widget helpLabel, helpMenu;
Widget myDC;
XtAppContext appContext;

/* This function creates the Drag Icon. */
static Widget
#ifdef _NO_PROTO
GetDragIcon(w, icon, iconMask, width, height, background,

foreground)
Widget w;
Pixmap icon;
Pixmap iconMask;
Dimension width;
Dimension height;
Pixel background;
Pixel foreground;
#else

B−11

OSF/Motif Programmer’s Guide

GetDragIcon(Widget w, Pixmap icon, Pixmap iconMask, Dimension width,
Dimension height, Pixel background, Pixel foreground)
#endif /* _NO_PROTO */
{

Widget dragIcon;
Arg args[10];
int n = 0;

XtSetArg(args[n], XmNhotX, ICON_X_HOT); n++;
XtSetArg(args[n], XmNhotY, ICON_Y_HOT); n++;
XtSetArg(args[n], XmNwidth, width); n++;
XtSetArg(args[n], XmNheight, height); n++;
XtSetArg(args[n], XmNmaxWidth, appInfo->maxCursorWidth); n++;
XtSetArg(args[n], XmNmaxHeight, appInfo->maxCursorHeight); n++;
XtSetArg(args[n], XmNbackground, background); n++;
XtSetArg(args[n], XmNforeground, foreground); n++;
XtSetArg(args[n], XmNpixmap, icon); n++;
XtSetArg(args[n], XmNmask, iconMask); n++;
dragIcon = XmCreateDragIcon(w, "dragIcon", args, n);

return(dragIcon);

}

/* This function creates the bitmaps for the icon and the mask
* and then calls GetDragIcon() to create the drag icon.
*/
static Widget
#ifdef _NO_PROTO
GetDragIconFromBits(w, bits, mask, width, height, background,

foreground)
Widget w;
char *bits;

B−12

Drag and Drop Example Program

char *mask;
Dimension width;
Dimension height;
Pixel background;
Pixel foreground;
#else
GetDragIconFromBits(Widget w, char *bits, char *mask,

Dimension width, Dimension height,
Pixel background, Pixel foreground)

#endif /* _NO_PROTO */
{

Pixmap icon, iconMask;
Display *display = XtDisplay(w);

icon = XCreateBitmapFromData(display,
DefaultRootWindow(display), bits, width, height);

iconMask = XCreateBitmapFromData(display,
DefaultRootWindow(display), mask, width, height);

return(GetDragIcon(w, icon, iconMask, width, height,
background, foreground));

}

/* This function creates the rectangle bitmaps for the icon and
* the mask based on the maximum server allowable cursor size
* and then calls GetDragIcon() to create the drag icon.
*/
static Widget
#ifdef _NO_PROTO
GetDragIconFromRect(w, rect, background)
Widget w;

B−13

OSF/Motif Programmer’s Guide

RectPtr rect;
Pixel background;
#else
GetDragIconFromRect(Widget w, RectPtr rect, Pixel background)
#endif /* _NO_PROTO */
{

Pixmap icon, icon_mask;
Pixel foreground = RectGetColor(rect);
Dimension width, height;

/* Create a depth 1 pixmap (bitmap) for use with the drag
icon */

icon = icon_mask = GetBitmapFromRect(w, rect, background,
foreground, &width, &height);

/* use bitmap for both the bitmap and mask */
return(GetDragIcon(w, icon, icon_mask, width, height,

background, foreground));

}

/* This is a selection conversion function that is used in
* converting drag/drop export background color targets.
* The return types follow ICCC standards.
*/
/* ARGSUSED */
Boolean
#ifdef _NO_PROTO
ColorConvert(w, selection, target, type, value, length, format)
Widget w ;
Atom *selection ;
Atom *target ;
Atom *type ;

B−14

Drag and Drop Example Program

XtPointer *value ;
unsigned long *length ;
int *format ;
#else
ColorConvert(Widget w, Atom *selection, Atom *target, Atom *type,
XtPointer *value, unsigned long *length, int *format)
#endif /* _NO_PROTO */
{

Display *display = XtDisplay(w);
Atom BACKGROUND = XmInternAtom(display, "BACKGROUND",

False);
Atom PIXEL = XmInternAtom(display, "PIXEL", False);
Atom TARGETS = XmInternAtom(display, "TARGETS", False);
Atom MULTIPLE = XmInternAtom(display, "MULTIPLE", False);
Atom TIMESTAMP = XmInternAtom(display, "TIMESTAMP",

False);
int MAX_TARGS = 5;
Widget widget;
XtPointer client;
Arg args[1];

/* get the widget that initiated the drag */
XtSetArg(args[0], XmNclientData, &client);
XtGetValues(w, args, 1);
widget = (Widget) client;

/* Make sure we are doing a motif drag by checking if the
* widget that is passed in is a drag context. Make sure the
* widget in the client data is not NULL.
*/
if (!XmIsDragContext(w) || widget == NULL)

return False;

if (*target == BACKGROUND) {

B−15

OSF/Motif Programmer’s Guide

/* Get widget’s background */
Pixel *background;

background = (Pixel *) XtMalloc(sizeof(Pixel));
XtSetArg(args[0], XmNbackground, background);
XtGetValues(widget, args, 1);

/* value, type, length, and format must be set */
*value = (XtPointer) background;
*type = PIXEL;
*length = sizeof(Pixel);
*format = 32;

}
else if (*target == TARGETS) {

/* This target is required by ICCC */
Atom *targs = (Atom *)XtMalloc((unsigned)

(MAX_TARGS * sizeof(Atom)));
int target_count = 0;

*value = (XtPointer) targs;
*targs++ = BACKGROUND;
target_count++;
*targs++ = TARGETS;
target_count++;
*targs++ = MULTIPLE;
target_count++; /* supported in the Intrinsics */
*targs++ = TIMESTAMP;
target_count++; /* supported in the Intrinsics */
*type = XA_ATOM;
*length = (target_count * sizeof(Atom)) >> 2;
*format = 32;

}

B−16

Drag and Drop Example Program

else
return False;

return True;

}

/* This callback procedure resets the drag icon cursor to show
* when the drag is in a valid region . It cause the
* state icon to become visible when a drop is at a valid
* position for drag over effects.
*/
static void
#ifdef _NO_PROTO
DragMotionCallback(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
DragMotionCallback(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

XmDragMotionCallback cb = (XmDragMotionCallback) call;
Arg args[2];
Widget stateIcon, invalidIcon;

if (cb->dropSiteStatus == XmVALID_DROP_SITE) {

stateIcon = (Widget) client;

XtSetArg(args[0], XmNblendModel, XmBLEND_STATE_SOURCE);
XtSetArg(args[1], XmNstateCursorIcon, stateIcon);
XtSetValues(w, args, 2);

B−17

OSF/Motif Programmer’s Guide

}
else if (cb->dropSiteStatus == XmINVALID_DROP_SITE) {

XtSetArg(args[0], XmNdefaultInvalidCursorIcon,
&invalidIcon);

XtGetValues(XmGetXmScreen(XtScreen(w)), args, 1);
XtSetArg(args[0], XmNblendModel, XmBLEND_STATE_SOURCE);
XtSetArg(args[1], XmNstateCursorIcon, invalidIcon);
XtSetValues(w, args, 2);

}
else {

XtSetArg(args[0], XmNblendModel, XmBLEND_JUST_SOURCE);
XtSetValues(w, args, 1);

}

}

/* This callback procedure resets the drag icon cursor to show
* when the drag is in a valid region . It cause the
* state icon to become visible when a drop is at a valid
* position for drag over effects.
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO
DropSiteLeaveCallback(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
DropSiteLeaveCallback(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

B−18

Drag and Drop Example Program

Arg args[1];

XtSetArg(args[0], XmNblendModel, XmBLEND_JUST_SOURCE);
XtSetValues(w, args, 1);

}

/* This callback procedure removes the icons when the drop is
* complete */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
ColorDragDropFinishCB(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
ColorDragDropFinishCB(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

Widget sourceIcon;
Widget stateIcon = (Widget) client;
Arg args[1];

XtSetArg(args[0], XmNsourceCursorIcon, &sourceIcon);
XtGetValues(w, args, 1);

XtDestroyWidget(sourceIcon);
XtDestroyWidget(stateIcon);

}

B−19

OSF/Motif Programmer’s Guide

/* This action procedure sets up the drag data and begins the drag
* operation */
/* ARGSUSED */
void
#ifdef _NO_PROTO
ColorRect(w, event, params, num_params)
Widget w;
XEvent *event;
String *params;
Cardinal *num_params;
#else
ColorRect(Widget w, XEvent *event, String *params,

Cardinal *num_params)
#endif /* _NO_PROTO */
{

static XtCallbackRec dragDropFinishCB[] = {
{ColorDragDropFinishCB, NULL},
{NULL, NULL}

};

static XtCallbackRec dragMotionCB[] = {
{DragMotionCallback, NULL},
{NULL, NULL}

};

static XtCallbackRec dropSiteLeaveCB[] = {
{DropSiteLeaveCallback, NULL},
{NULL, NULL}

};

Atom targets[1];
Widget sourceIcon, stateIcon;
Pixel background, foreground;
char *source_bits, *source_mask;

B−20

Drag and Drop Example Program

char *state_bits, *state_mask;
Dimension width, height;
Arg args[16];
int n = 0;

n = 0;
XtSetArg(args[n], XmNbackground, &background); n++;
XtSetArg(args[n], XmNforeground, &foreground); n++;
XtGetValues(w, args, n);

/* If the server will handle a large icon, create one */
if (appInfo->maxCursorWidth >= ICON_WIDTH &&

appInfo->maxCursorHeight >= ICON_HEIGHT) {

source_bits = SOURCE_ICON_BITS;
source_mask = SOURCE_ICON_MASK;
state_bits = STATE_ICON_BITS;
state_mask = STATE_ICON_MASK;
width = ICON_WIDTH;
height = ICON_HEIGHT;

}
else {

/* If the server will handle a small icon, create one */
source_bits = SMALL_SOURCE_ICON_BITS;
source_mask = SMALL_SOURCE_ICON_MASK;
state_bits = SMALL_STATE_ICON_BITS;
state_mask = SMALL_STATE_ICON_MASK;
width = SMALL_ICON_WIDTH;
height = SMALL_ICON_HEIGHT;

}

/* Create the drag cursor icons */

B−21

OSF/Motif Programmer’s Guide

sourceIcon = GetDragIconFromBits(w, source_bits, source_mask,
width, height, background, foreground);

stateIcon = GetDragIconFromBits(w, state_bits, state_mask,
width, height, background, foreground);

/* Setup the arglist for the drag context that is created at
* drag start */
n = 0;
/* initially only show the source icon */
XtSetArg(args[n], XmNblendModel, XmBLEND_JUST_SOURCE); n++;

/* set cursor colors for the drag states */
XtSetArg(args[n], XmNvalidCursorForeground,

GetColor(VALID_CURSOR_FG_COLOR)); n++;
XtSetArg(args[n], XmNinvalidCursorForeground,

GetColor(INVALID_CURSOR_FG_COLOR)); n++;
XtSetArg(args[n], XmNnoneCursorForeground,

GetColor(NONE_CURSOR_FG_COLOR)); n++;

/* set args for the drag cursor icons */
XtSetArg(args[n], XmNcursorBackground, background); n++;
XtSetArg(args[n], XmNcursorForeground, foreground); n++;
XtSetArg(args[n], XmNsourceCursorIcon, sourceIcon); n++;
XtSetArg(args[n], XmNstateCursorIcon, stateIcon); n++;

/*
* set up the available export targets. These are targets that
* we wish to provide data on
*/
targets[0] = XmInternAtom(XtDisplay(w), "BACKGROUND", False);
XtSetArg(args[n], XmNexportTargets, targets); n++;
XtSetArg(args[n], XmNnumExportTargets, 1); n++;

/*

B−22

Drag and Drop Example Program

* identify the conversion procedure and
* the client data passed to the procedure
*/
XtSetArg(args[n], XmNclientData, w); n++;
XtSetArg(args[n], XmNconvertProc, ColorConvert); n++;

/* identify the necessary callbacks */
dragDropFinishCB[0].closure = (XtPointer) stateIcon;
XtSetArg(args[n], XmNdragDropFinishCallback, dragDropFinishCB);
n++;
dragMotionCB[0].closure = (XtPointer) stateIcon;
XtSetArg(args[n], XmNdragMotionCallback, dragMotionCB); n++;
XtSetArg(args[n], XmNdropSiteLeaveCallback, dragMotionCB); n++;

/* set the drag operations that are supported */
XtSetArg(args[n], XmNdragOperations, XmDROP_COPY); n++;

/* start the drag. This creates a drag context. */
myDC = XmDragStart(w, event, args, n);

}

/*
* This is a selection conversion function that is used in
* converting requests for rectangle targets. The return types
* follow ICCC standards.
*/
/* ARGSUSED */
Boolean
#ifdef _NO_PROTO
RectConvert(w, selection, target, type, value, length, format)
Widget w ;
Atom *selection ;
Atom *target ;

B−23

OSF/Motif Programmer’s Guide

Atom *type ;
XtPointer *value ;
unsigned long *length ;
int *format ;
#else
RectConvert(Widget w, Atom *selection, Atom *target, Atom *type,
XtPointer *value, unsigned long *length, int *format)
#endif /* _NO_PROTO */
{

Display *display = XtDisplay(w);
Atom MY_RECT = XmInternAtom(display, "_MY_RECTANGLE", False);
Atom RECT_INFO = XmInternAtom(display, "RECT_INFO", False);
Atom DELETE = XmInternAtom(display, "DELETE", False);
Atom TARGETS = XmInternAtom(display, "TARGETS", False);
Atom MULTIPLE = XmInternAtom(display, "MULTIPLE", False);
Atom TIMESTAMP = XmInternAtom(display, "TIMESTAMP", False);
Atom *targs;
int MAX_TARGS = 6;
int target_count;
DragConvertPtr conv;
Widget widget;
Arg args[1];
RectPtr rect, oldRect;

/* get the widget that initiated the drag */
XtSetArg(args[0], XmNclientData, &conv);
XtGetValues(w, args, 1);
widget = (Widget) conv->widget;

/* Make sure we are doing a motif drag by checking if the
* widget that is passed in is a drag context. Make sure the
* widget in the client data is not NULL.
*/
if (!XmIsDragContext(w) || widget == NULL)

B−24

Drag and Drop Example Program

return False;

if (*target == MY_RECT) {

/* Create a new rectangle using information from the old
retangle */

oldRect = conv->rect;

/* We create create a new rectangle and wait for a delete
* target on the old rectangle instead of just moving the
* old rectangle because the rectangle movement might be an
* interclient move.
*/
rect = RectCreate(oldRect->x, oldRect->y, oldRect->width,

oldRect->height, oldRect->color, oldRect->pixmap);
/* value, type, length, and format must be assigned values */
*value = (XtPointer) rect;
*type = RECT_INFO;
*length = sizeof(Pixel);
*format = 32;

}
else if (*target == DELETE) {

/* delete the old rectangle */
RectHide(XtDisplay(widget), XtWindow(widget), conv->rect);
RectFree(conv->rect);

conv->rect = NULL;
/*
* DELETE target return parameters MUST be assigned as
* follows to ICCC compliant.
*/
*value = NULL;
*type = XmInternAtom(XtDisplay(w), "NULL", False);

B−25

OSF/Motif Programmer’s Guide

*length = 0;
*format = 8;

}
else if (*target == TARGETS) {

/* This target is required by ICCC */
targs = (Atom *)XtMalloc((unsigned)

(MAX_TARGS * sizeof(Atom)));
target_count = 0;

*value = (XtPointer) targs;
*targs++ = MY_RECT;
target_count++;
*targs++ = DELETE;
target_count++;
*targs++ = TARGETS;
target_count++;
*targs++ = MULTIPLE;
target_count++; /* supported in the Intrinsics */
*targs++ = TIMESTAMP;
target_count++; /* supported in the Intrinsics */
*type = XA_ATOM;
*length = (target_count * sizeof(Atom)) >> 2;
*format = 32;

}
else

return False;

return True;

}

B−26

Drag and Drop Example Program

/* This callback procedure removes the old cursor icon */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
RectDragDropFinishCB(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
RectDragDropFinishCB(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

DragConvertPtr conv = (DragConvertPtr) client;
Widget sourceCursorIcon;
Arg args[1];

XtSetArg(args[0], XmNsourceCursorIcon, &sourceCursorIcon);
XtGetValues(w, args, 1);

XtFree((char *) conv);

XtDestroyWidget(sourceCursorIcon);

}

/* This callback procedure redraws the rectangles once the drop
* is completed */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
RectDropFinishCB(w, client, call)
Widget w;
XtPointer client;

B−27

OSF/Motif Programmer’s Guide

XtPointer call;
#else
RectDropFinishCB(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

DragConvertPtr conv = (DragConvertPtr) client;

appInfo->clearRect = NULL;
appInfo->doMove = True;
RedrawRectangles(conv->widget);

}

/* This callback procedure handle the drawing of the target
* rectangle depending of the dropSiteStatus for drag over
* effects.
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO
RectDragMotionCB(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
RectDragMotionCB(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

XmDragMotionCallback cb = (XmDragMotionCallback) call;
DragConvertPtr conv = (DragConvertPtr) client;
Display *display;
Window window;

B−28

Drag and Drop Example Program

RectPtr rect;

if (cb->dropSiteStatus == XmVALID_DROP_SITE) {

/* re-stipple the rectangle when the pointer is inside the
* drop site */
if (appInfo->clearRect == NULL && appInfo->doMove) {

display = XtDisplay(conv->widget);
window = XtWindow(conv->widget);
rect = conv->rect;

RectHide(display, window, rect);
RectDrawStippled(display, window, rect);

}

}
else {

/* re-fill the rectangle when the pointer is outside the
* drop site */
if (appInfo->clearRect != NULL && appInfo->doMove) {

appInfo->clearRect = NULL;
RedrawRectangles(conv->widget);

}

}

}

/* This callback procedure handle the drawing of the target
* rectangle When the operation changes.
*/

B−29

OSF/Motif Programmer’s Guide

/* ARGSUSED */
static void
#ifdef _NO_PROTO
RectOperationChangedCB(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
RectOperationChangedCB(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

XmDragMotionCallback cb = (XmDragMotionCallback) call;
DragConvertPtr conv = (DragConvertPtr) client;
Display *display;
Window window;
RectPtr rect;

/* re-stipple the rectangle when the pointer is inside the drop
* site */
if (appInfo->clearRect == NULL && appInfo->doMove) {

display = XtDisplay(conv->widget);
window = XtWindow(conv->widget);
rect = conv->rect;

RectHide(display, window, rect);
RectDrawStippled(display, window, rect);

}

/* re-fill the rectangle when the operation changes to copy */
if (appInfo->clearRect != NULL && !appInfo->doMove) {

appInfo->clearRect = NULL;
RedrawRectangles(conv->widget);

B−30

Drag and Drop Example Program

}

}

/* This action procedure sets up the drag data and begins the drag
* operation */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
StartMove(w, event, params, num_params)
Widget w;
XEvent *event;
String *params;
Cardinal *num_params;
#else
StartMove(Widget w, XEvent *event, String *params,

Cardinal *num_params)
#endif /* _NO_PROTO */
{

RectPtr rect;
Position x = event->xbutton.x;
Position y = event->xbutton.y;
static XtCallbackRec dragDropFinishCB[] = {

{RectDragDropFinishCB, NULL},
{NULL, NULL}

};

static XtCallbackRec dropFinishCB[] = {
{RectDropFinishCB, NULL},
{NULL, NULL}

};

static XtCallbackRec dragMotionCB[] = {

B−31

OSF/Motif Programmer’s Guide

{RectDragMotionCB, NULL},
{NULL, NULL}

};

static XtCallbackRec operationChangedCB[] = {
{RectOperationChangedCB, NULL},
{NULL, NULL}

};

Atom targets[1];
Display *display = XtDisplay(w);
Widget sourceCursorIcon;
DragConvertPtr conv;
Pixel background, foreground;
Arg args[16];
int n = 0;

/* find a rectangle at the given x,y position */
rect = RectFind(x, y);

/* start move only if it begins on a rectangle */
if (rect) {

XtSetArg(args[0], XmNbackground, &background);
XtGetValues(w, args, 1);

foreground = RectGetColor(rect);
sourceCursorIcon = GetDragIconFromRect(w, rect, background);

/*
* Set up information to pass to the convert
* function and callback procs.
*/
conv = (DragConvertPtr) XtMalloc(sizeof(DragConvertRec));
conv->widget = w;

B−32

Drag and Drop Example Program

conv->rect = rect;

/* On a move operation, draw the current
* rectangle as a stippled outline.
*/
if (!(event->xbutton.state & ControlMask)) {

RectHide(display, XtWindow(w), rect);
RectDrawStippled(display, XtWindow(w), rect);

}
else

appInfo->doMove = False;

/* Setup arglist for the drag context that is created at
* drag start */
n = 0;
/* initially only show the source icon */
XtSetArg(args[n], XmNblendModel, XmBLEND_JUST_SOURCE); n++;

/* set args for the drag cursor icons */
XtSetArg(args[n], XmNcursorBackground, background); n++;
XtSetArg(args[n], XmNcursorForeground, foreground); n++;
XtSetArg(args[n], XmNsourceCursorIcon, sourceCursorIcon);
n++;

/*
* set up the available export targets. These are targets
* that we wish to provide data on
*/
targets[0] = XmInternAtom(display, "_MY_RECTANGLE", False);
XtSetArg(args[n], XmNexportTargets, targets); n++;
XtSetArg(args[n], XmNnumExportTargets, 1); n++;

/*
* identify the conversion procedure and
* the client data passed to the procedure

B−33

OSF/Motif Programmer’s Guide

*/
XtSetArg(args[n], XmNclientData, conv); n++;
XtSetArg(args[n], XmNconvertProc, RectConvert); n++;

/* identify the necessary callbacks and the client data to
* be passed */
dragDropFinishCB[0].closure = (XtPointer) conv;
XtSetArg(args[n], XmNdragDropFinishCallback,

dragDropFinishCB); n++;
dropFinishCB[0].closure = (XtPointer) conv;
XtSetArg(args[n], XmNdropFinishCallback, dropFinishCB); n++;
dragMotionCB[0].closure = (XtPointer) conv;
XtSetArg(args[n], XmNdragMotionCallback, dragMotionCB); n++;
operationChangedCB[0].closure = (XtPointer) conv;
XtSetArg(args[n], XmNoperationChangedCallback,

operationChangedCB); n++;

/* set the drag operations that are supported */
XtSetArg(args[n], XmNdragOperations,

XmDROP_COPY | XmDROP_MOVE); n++;

/* start the drag. This creates a drag context. */
myDC = XmDragStart(w, event, args, n);

}

}

/* This procedure searches through the export targets and
* returns flags to indicate which targets were found
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO

B−34

Drag and Drop Example Program

CheckTargets(w, display, rectFound, bgFound, pixFound)
Widget w;
Display *display;
Boolean *rectFound;
Boolean *bgFound;
Boolean *pixFound;
#else
CheckTargets(Widget w, Display *display, Boolean *rectFound,
Boolean *bgFound, Boolean *pixFound)
#endif /* _NO_PROTO */
{

Atom MY_RECT = XmInternAtom(display, "_MY_RECTANGLE",
False);

Atom BACKGROUND = XmInternAtom(display, "BACKGROUND",
False);

Atom PIXMAP = XmInternAtom(display, "PIXMAP", False);
Atom *exportTargets;
Cardinal numExportTargets;
Arg args[2];
int n;

/* Get list of transfer targets */
n = 0;
XtSetArg(args[0], XmNexportTargets, &exportTargets);
XtSetArg(args[1], XmNnumExportTargets, &numExportTargets);
XtGetValues(w, args, 2);

/* initialize targets found flags */
*rectFound = *bgFound = *pixFound = False;

/* search through the export targets */
for (n = 0; n < numExportTargets; n++) {

if (exportTargets[n] == MY_RECT)

B−35

OSF/Motif Programmer’s Guide

*rectFound = True;
else if (exportTargets[n] == BACKGROUND)

*bgFound = True;
else if (exportTargets[n] == PIXMAP)

*pixFound = True;

}

}

/* This procedure handles drop site messages and performs the
* appropriate drag under effects.
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO
DragProcCallback(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
DragProcCallback(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

XmDragProcCallbackStruct *cb = (XmDragProcCallbackStruct *)
call;

Display *display = XtDisplay(w);
Boolean rectFound, bgFound, pixFound;
static unsigned char initial_operations;
static unsigned char initial_operation;
RectPtr rect;

CheckTargets(cb->dragContext, display, &rectFound, &bgFound,

B−36

Drag and Drop Example Program

&pixFound);

switch(cb->reason) {

case XmCR_DROP_SITE_ENTER_MESSAGE:

/* save the value of the operations and operation
* fields */
initial_operations = cb->operations;
initial_operation = cb->operation;

rect = RectFind(cb->x, cb->y);

/* Remove any operations for the operations field
* which do not apply to the simulated drop site.
*/
if (rect) {

if (bgFound || pixFound) {
cb->operations = XmDROP_COPY;
RectHighlight(w, rect);

}
else if (rectFound) {

cb->operations = cb->operations &
(XmDROP_COPY | XmDROP_MOVE);

RectUnhighlight(w);
}

}
else {

cb->operations = initial_operations &
(XmDROP_COPY | XmDROP_MOVE);

RectUnhighlight(w);
}

B−37

OSF/Motif Programmer’s Guide

/* Set operation to the valid operation preferred by
* the simulated drop site or to XmDROP_NOOP if the
* operations list does not * contain the preferred
* operation.
*/
if (rect) {

if (bgFound || pixFound) {

if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

else
cb->operation = XmDROP_NOOP;

}
else if (rectFound) {

if (cb->operations & XmDROP_MOVE)
cb->operation = XmDROP_MOVE;

else if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

else
cb->operation = XmDROP_NOOP;

}

}
else {

if (rectFound) {

if (cb->operations & XmDROP_MOVE)
cb->operation = XmDROP_MOVE;

else if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

B−38

Drag and Drop Example Program

else
cb->operation = XmDROP_NOOP;

}
else

cb->operation = initial_operation;

}

/*
* Set dropSiteStatus to XmDROP_SITE_INVALID if the
* operation field is XmDROP_NOOP, or if there are no
* common targets between the source and the nested
* drop site. Otherwise, set * dropSiteStatus to
* XmDROP_SITE_VALID.
*/
if (cb->operation == XmDROP_NOOP ||

(rect && (!rectFound && !bgFound && !pixFound)) ||
(!rect && !rectFound))
cb->dropSiteStatus = XmINVALID_DROP_SITE;

else
cb->dropSiteStatus = XmVALID_DROP_SITE;

/*
* Display appropriate drag under visuals. Only
* highlight the rectangle if we are changing rectangle
* attributes.
*/
if (rect && bgFound || pixFound &&

cb->dropSiteStatus == XmVALID_DROP_SITE)
RectHighlight(w, rect);

break;

case XmCR_DROP_SITE_LEAVE_MESSAGE:

B−39

OSF/Motif Programmer’s Guide

/* Only unhighlight the rectangle if previously
* highlighted */
if (appInfo->highlightRect != NULL)

RectUnhighlight(w);
break;

case XmCR_DROP_SITE_MOTION_MESSAGE:

rect = RectFind(cb->x, cb->y);

/*
* Remove any operations for the operations field
* which do not
* apply to the simulated drop site.
*/
if (rect) {

if (bgFound || pixFound) {
cb->operations = XmDROP_COPY;
RectHighlight(w, rect);

}
else if (rectFound) {

cb->operations = cb->operations &
(XmDROP_COPY | XmDROP_MOVE);

RectUnhighlight(w);
}

}
else {

cb->operations = initial_operations &
(XmDROP_COPY | XmDROP_MOVE);

RectUnhighlight(w);
}

/*

B−40

Drag and Drop Example Program

* Set operation to the valid operation preferred by
* the simulated drop site or to XmDROP_NOOP if the
* operations list does not * contain the preferred
* operation.
*/
if (rect) {

if (bgFound || pixFound) {

if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

else
cb->operation = XmDROP_NOOP;

}
else if (rectFound) {

if (cb->operations & XmDROP_MOVE)
cb->operation = XmDROP_MOVE;

else if (cb->operations & XmDROP_COPY)
cb->operation = XmDROP_COPY;

else
cb->operation = XmDROP_NOOP;

}
}
else {

if (rectFound) {
if (cb->operations & XmDROP_MOVE)

cb->operation = XmDROP_MOVE;
else if (cb->operations & XmDROP_COPY)

cb->operation = XmDROP_COPY;
else

cb->operation = XmDROP_NOOP;

B−41

OSF/Motif Programmer’s Guide

}
else

cb->operation = initial_operation;

}

/*
* Set dropSiteStatus to XmDROP_SITE_INVALID if the
* operation field is XmDROP_NOOP, or if there are no
* common targets between the source and the nested
* drop site. Otherwise, set dropSiteStatus to
* XmDROP_SITE_VALID.
*/
if (cb->operation == XmDROP_NOOP ||

(rect && (!rectFound && !bgFound && !pixFound)) ||
(!rect && !rectFound))
cb->dropSiteStatus = XmINVALID_DROP_SITE;

else
cb->dropSiteStatus = XmVALID_DROP_SITE;

/*
* Display appropriate drag under visuals. Only
* highlight the rectangle if we are changing rectangle
* attributes.
*/
if (rect && bgFound || pixFound &&

cb->dropSiteStatus == XmVALID_DROP_SITE)
RectHighlight(w, rect);

break;

case XmCR_OPERATION_CHANGED:

if (rectFound) {

if (cb->operation == XmDROP_MOVE)

B−42

Drag and Drop Example Program

appInfo->doMove = True;
else

appInfo->doMove = False;

}
break;

default:

/* other messages we consider invalid */
cb->dropSiteStatus = XmINVALID_DROP_SITE;
break;

}

/* allow animation to be performed */
cb->animate = True;

}

/* This procedure handles the data that is being transfer */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
TransferProcCallback(w, closure, seltype, type, value, length,

format)
Widget w;
XtPointer closure ;
Atom *seltype ;
Atom *type ;
XtPointer value ;
unsigned long *length ;
int *format ;
#else

B−43

OSF/Motif Programmer’s Guide

TransferProcCallback(Widget w, XtPointer closure, Atom *seltype,
Atom *type, XtPointer value, unsigned long *length, int *format)
#endif /* _NO_PROTO */
{

DropTransfer transferRec = (DropTransfer) closure;
Widget wid = transferRec->widget;
Display *display = XtDisplay(wid);
Atom RECT_INFO = XmInternAtom(display, "RECT_INFO", False);
Atom PIXEL = XmInternAtom(display, "PIXEL", False);
Atom NULL_ATOM = XmInternAtom(display, "NULL", False);
Arg args[10];
RectPtr rect;
int n;

/*
* The delete target returns a NULL_ATOM type and value equal
* to NULL so it isn’t a failure. Otherwise, check for NULL
* value or targets that we don’t support and set transfer
* failure.
*/
if (*type != NULL_ATOM && (!value ||

(*type != RECT_INFO && *type != PIXEL &&
*type != XA_DRAWABLE))) {

n = 0;
/*
* On failures set both transferStatus to
* XmTRANSFER_FAILURE and numDropTransfers to 0.
*/
XtSetArg(args[n], XmNtransferStatus, XmTRANSFER_FAILURE);
n++;
XtSetArg(args[n], XmNnumDropTransfers, 0); n++;
XtSetValues(w, args, n);
/* Free the value if there is one, or we would have a

B−44

Drag and Drop Example Program

* memory leak */
if (value)

XtFree(value);

return;

}

/* Handle pixel type (i.e. change in background) */
if (*type == PIXEL) {

rect = RectFind(transferRec->x, transferRec->y);
RectSetColor(rect, display, XtWindow(wid),

((Pixel)value));
}
/* Handle drawable type (i.e. change in pixmap) */
else if (*type == XA_DRAWABLE) {

rect = RectFind(transferRec->x, transferRec->y);
RectSetPixmap(rect, display, XtWindow(wid),

*((Pixmap *)value));
}
/* Handle rect_info type (i.e. new rectangle) */
else if (*type == RECT_INFO) {

rect = (RectPtr) value;
RectRegister(rect, transferRec->x, transferRec->y);
value = NULL;
/* No need to free, it is being stored in RecTable */

}

/* Free the value if there is one, or we would have a memory
* leak */
if (value)

XtFree(value);

}

B−45

OSF/Motif Programmer’s Guide

/* This procedure frees the data used the data transfer proc that
* was passed from the drop procedure.
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO
DropDestroyCB(w, clientData, callData)
Widget w;
XtPointer clientData;
XtPointer callData;
#else
DropDestroyCB(Widget w, XtPointer clientData, XtPointer callData)
#endif /* NO_PROTO */
{

XtFree((char *)clientData);
}

/* This procedure initiates the drop transfer. */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
HandleDrop(w, call)
Widget w;
XtPointer call;
#else
HandleDrop(Widget w, XtPointer call)
#endif /* _NO_PROTO */
{

static XtCallbackRec dropDestroyCB[] = {
{DropDestroyCB, NULL},
{NULL, NULL}

};

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)call;

B−46

Drag and Drop Example Program

Display *display = XtDisplay(w);
Arg args[10];
int n;
Boolean rectFound, bgFound, pixFound;
DropTransfer transferRec;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntryRec *transferList = NULL;
Cardinal numTransfers = 0;
Boolean transferValid = False;
RectPtr rect;

/* Cancel the drop on invalid drop operations */
if (!(cb->operations & XmDROP_MOVE || cb->operations

& XmDROP_COPY)) {

n = 0;
cb->operation = XmDROP_NOOP;
cb->dropSiteStatus = XmINVALID_DROP_SITE;
XtSetArg(args[n], XmNtransferStatus, XmTRANSFER_FAILURE);
n++;
XtSetArg(args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* Find out which nested dropsite contains the pointer */
rect = RectFind(cb->x, cb->y);

CheckTargets(cb->dragContext, display, &rectFound, &bgFound,
&pixFound);

/* rect !NULL indicates we are within a nested dropsite */
if (rect) {

/* MY_RECT is a possible target, support it first */
if (rectFound)

B−47

OSF/Motif Programmer’s Guide

transferValid = True;
else if (bgFound || pixFound) {

/* support only copy with the BACKGROUND and PIXMAP
* targets */
if (cb->operation != XmDROP_COPY)

cb->operation = XmDROP_COPY;
transferValid = True;

}

}
else {

if (rectFound)
transferValid = True;

}

if (transferValid) {

/* initialize data to send to drop transfer callback */
transferRec = (DropTransfer)

XtMalloc(sizeof(DropTransferRec));
transferRec->widget = w;
transferRec->x = cb->x;
transferRec->y = cb->y;

/* order of support is MY_RECT, then BACKGROUND, then
* PIXMAP */
if (rectFound)

transferEntries[0].target = XmInternAtom(display,
"_MY_RECTANGLE", False);

else if (bgFound)
transferEntries[0].target = XmInternAtom(display,

"BACKGROUND", False);
else if (pixFound)

transferEntries[0].target = XmInternAtom(display,
"PIXMAP", False);

B−48

Drag and Drop Example Program

transferEntries[0].client_data =
(XtPointer) transferRec;

/* Set up move targets */
if (cb->operation == XmDROP_MOVE) {

transferEntries[1].client_data =
(XtPointer) transferRec;

transferEntries[1].target = XmInternAtom(display,
"DELETE", False);

numTransfers = 2;

}
else if (cb->operation == XmDROP_COPY)

numTransfers = 1;

transferList = transferEntries;

/* Setup transfer list */
n = 0;
cb->dropSiteStatus = XmVALID_DROP_SITE;
XtSetArg(args[n], XmNdropTransfers, transferList); n++;
XtSetArg(args[n], XmNnumDropTransfers, numTransfers);
n++;

/* Setup destroy callback to free transferRec */
dropDestroyCB[0].closure = (XtPointer) transferRec;
XtSetArg(args[n], XmNdestroyCallback, dropDestroyCB);
n++;

/* Setup transfer proc to accept the drop transfer data */
XtSetArg(args[n], XmNtransferProc, TransferProcCallback);
n++;

}

B−49

OSF/Motif Programmer’s Guide

else {

n = 0;
cb->operation = XmDROP_NOOP;
cb->dropSiteStatus = XmINVALID_DROP_SITE;
XtSetArg(args[n], XmNtransferStatus,

XmTRANSFER_FAILURE); n++;
XtSetArg(args[n], XmNnumDropTransfers, 0); n++;

}

}

XmDropTransferStart(cb->dragContext, args, n);

}

/* This procedure is used with the drop help dialog to continue
* with the drop */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
HandleOK(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
HandleOK(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)client;

cb->operation = appInfo->operation;

B−50

Drag and Drop Example Program

HandleDrop(w, (XtPointer) cb);

}

/* This procedure is used with the drop help dialog to cancel the
* drop */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
CancelDrop(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
CancelDrop(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)client;
Arg args[2];

/* On help, we need to cancel the drop transfer */
XtSetArg(args[0], XmNtransferStatus, XmTRANSFER_FAILURE);
XtSetArg(args[1], XmNnumDropTransfers, 0);

/* we need to start the drop transfer to cancel the transfer */
XmDropTransferStart(cb->dragContext, args, 2);

}

#ifdef _NO_PROTO
XtCallbackProc ChangeOperation(widget, client_data, call_data)
Widget widget;

B−51

OSF/Motif Programmer’s Guide

caddr_t client_data;
XmAnyCallbackStruct *call_data;
#else
XtCallbackProc ChangeOperation(Widget widget, caddr_t client_data,
XmAnyCallbackStruct *call_data)
#endif
{

if (client_data == 0)
appInfo->operation = XmDROP_MOVE;

else
appInfo->operation = XmDROP_COPY;

}

/* This procedure manages the help dialog and determines which
* message is displayed in the dialog depending on the position
* and the type of drop.
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO
HandleHelp(w, call)
Widget w;
XtPointer call;
#else
HandleHelp(Widget w, XtPointer call)
#endif /* _NO_PROTO */
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)call;
static XmDropProcCallbackStruct client;
Boolean rectFound, bgFound, pixFound;
XmString helpStr;

B−52

Drag and Drop Example Program

RectPtr rect;
Arg args[5];
XmString tempStr, buttonArray[2];
int n = 0;

/* the drop is valid until it is determined invalid */
cb->dropSiteStatus = XmVALID_DROP_SITE;

/* if we haven’t created a help dialog, create one now */
if (helpDialog == NULL) {

XtSetArg(args[n], XmNdialogStyle,
XmDIALOG_FULL_APPLICATION_MODAL); n++;

XtSetArg(args[n], XmNtitle, "Drop Help"); n++;
helpDialog = XmCreateMessageDialog(topLevel, "Help",

args, n);

n = 0;
buttonArray[0] = XmStringCreateSimple("Move");
buttonArray[1] = XmStringCreateSimple("Copy");
XtSetArg(args[n], XmNbuttons, buttonArray); n++;
XtSetArg(args[n], XmNbuttonCount, 2); n++;
XtSetArg(args[n], XmNbuttonSet, 0); n++;
XtSetArg(args[n], XmNsimpleCallback, ChangeOperation); n++;
tempStr = XmStringCreateSimple("Operations:");
XtSetArg(args[n], XmNoptionLabel, tempStr); n++;
helpMenu = XmCreateSimpleOptionMenu(helpDialog, "helpMenu",

args, n);
XmStringFree(tempStr);
XmStringFree(buttonArray[0]);
XmStringFree(buttonArray[1]);

XtAddCallback(helpDialog, XmNokCallback,
(XtCallbackProc) HandleOK, (XtPointer) &client);

XtAddCallback(helpDialog, XmNcancelCallback,

B−53

OSF/Motif Programmer’s Guide

(XtCallbackProc) CancelDrop, (XtPointer) &client);

XtUnmanageChild(XmMessageBoxGetChild(helpDialog,
XmDIALOG_HELP_BUTTON));

XtRealizeWidget(helpDialog);

}

/* pass the necessary callback information along */
client.dragContext = cb->dragContext;
client.x = cb->x;
client.y = cb->y;
client.dropSiteStatus = cb->dropSiteStatus;
client.operation = cb->operation;
client.operations = cb->operations;

/* find the valid targets */
CheckTargets(cb->dragContext, XtDisplay(w), &rectFound,

&bgFound, &pixFound);

/* determine the appropriate help message */
if (rectFound) {

if (cb->operations == XmDROP_MOVE | XmDROP_COPY) {
XtManageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG4,

XmFONTLIST_DEFAULT_TAG);
XtManageChild(XmMessageBoxGetChild(helpDialog,

XmDIALOG_OK_BUTTON));
}
else if (cb->operation == XmDROP_MOVE) {

XtUnmanageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG2,

XmFONTLIST_DEFAULT_TAG);

B−54

Drag and Drop Example Program

XtManageChild(XmMessageBoxGetChild(helpDialog,
XmDIALOG_OK_BUTTON));

}
else if (cb->operation == XmDROP_COPY) {

XtUnmanageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG3,

XmFONTLIST_DEFAULT_TAG);
XtManageChild(XmMessageBoxGetChild(helpDialog,

XmDIALOG_OK_BUTTON));
}

}
else if (bgFound || pixFound && cb->operation == XmDROP_COPY) {

XtUnmanageChild(helpMenu);
rect = RectFind(cb->x, cb->y);
if (rect) {

helpStr = XmStringCreateLtoR(HELP_MSG1,
XmFONTLIST_DEFAULT_TAG);

XtManageChild(XmMessageBoxGetChild(helpDialog,
XmDIALOG_OK_BUTTON));

}
else {

helpStr = XmStringCreateLtoR(HELP_MSG5,
XmFONTLIST_DEFAULT_TAG);

XtUnmanageChild(XmMessageBoxGetChild(helpDialog,
XmDIALOG_OK_BUTTON));

}

}
else {

XtUnmanageChild(helpMenu);
helpStr = XmStringCreateLtoR(HELP_MSG5,

XmFONTLIST_DEFAULT_TAG);
XtUnmanageChild(XmMessageBoxGetChild(helpDialog,

B−55

OSF/Motif Programmer’s Guide

XmDIALOG_OK_BUTTON));
}

/* set the help message into the dialog */
XtSetArg(args[0], XmNmessageString, helpStr);
XtSetValues(helpDialog, args, 1);

/* Free the XmString */
XmStringFree(helpStr);

/* map the help dialog */
XtManageChild(helpDialog);

}

/* The procedure either begins the drop of initiates the help
* dialog depending on the dropAction.
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO
DropProcCallback(w, client, call)
Widget w;
XtPointer client;
XtPointer call;
#else
DropProcCallback(Widget w, XtPointer client, XtPointer call)
#endif /* _NO_PROTO */
{

XmDropProcCallbackStruct *cb = (XmDropProcCallbackStruct *)call;

if (appInfo->highlightRect != NULL)
RectUnhighlight(w);

B−56

Drag and Drop Example Program

if (cb->dropAction != XmDROP_HELP)
HandleDrop(w, call);

else
HandleHelp(w, call);

}

/* This procedure registers the drop targets and the drop site */
static void
#ifdef _NO_PROTO
RegisterDropSite(w)
Widget w;
#else
RegisterDropSite(Widget w)
#endif /* _NO_PROTO */
{

Display *display = XtDisplay(w);
Atom targets[3];
Arg args[5];
int n = 0;

/* Only accept moves or copies */
XtSetArg(args[n], XmNdragOperations, XmDROP_COPY | XmDROP_MOVE);
n++;

/* set all possible targets for any of the nested drop sites */
targets[0] = XmInternAtom(display, "_MY_RECTANGLE", False);
targets[1] = XmInternAtom(display, "BACKGROUND", False);
targets[2] = XmInternAtom(display, "PIXMAP", False);
XtSetArg(args[n], XmNimportTargets, targets); n++;
XtSetArg(args[n], XmNnumImportTargets, 3); n++;

/* register a dragProc - necessary for simulating nested drop

B−57

OSF/Motif Programmer’s Guide

* sites */
XtSetArg(args[n], XmNdragProc, DragProcCallback); n++;

/* register a dropProc */
XtSetArg(args[n], XmNdropProc, DropProcCallback); n++;
XmDropSiteRegister(w, args, n);

}

static void
#ifdef _NO_PROTO
SetInvalidIcon(w)
Widget w;
#else
SetInvalidIcon(Widget w)
#endif /* _NO_PROTO */
{

Widget invalidIcon;
char *invalid_bits;
Dimension width, height;
Arg args[1];

if (appInfo->maxCursorWidth >= ICON_WIDTH &&
appInfo->maxCursorHeight >= ICON_HEIGHT) {
invalid_bits = INVALID_ICON_BITS;
width = ICON_WIDTH;
height = ICON_HEIGHT;

} else {
/* If the server will handle a small icon, create one */
invalid_bits = SMALL_INVALID_ICON_BITS;
width = SMALL_ICON_WIDTH;
height = SMALL_ICON_HEIGHT;

}

B−58

Drag and Drop Example Program

invalidIcon = GetDragIconFromBits(w, invalid_bits, invalid_bits,
width, height, GetColor(DRAW_AREA_FG_COLOR),
GetColor(DRAW_AREA_BG_COLOR));

XtSetArg(args[0], XmNdefaultInvalidCursorIcon, invalidIcon);
XtSetValues(XmGetXmScreen(XtScreen(w)), args, 1);

}

/* This procedure initializes the toolkit and other application
* information */
static void
#ifdef _NO_PROTO
InitializeApplication(argc, argv)
int *argc;
String *argv;
#else
InitializeApplication(int *argc, String *argv)
#endif /* _NO_PROTO */
{

static XtActionsRec new_actions[] = {
{"StartRect", StartRect},
{"ExtendRect", ExtendRect},
{"EndRect", EndRect},
{"StartMove", StartMove},
{"ColorRect", ColorRect},

};
Arg args[5];
Cardinal n = 0;

/* Ininialize struct that hold global information */
InitializeAppInfo();

B−59

OSF/Motif Programmer’s Guide

/* Initialize Toolkit and create shell */
XtSetArg(args[n], XmNwidth, 295); n++;
XtSetArg(args[n], XmNheight, 270); n++;
topLevel = XtAppInitialize(&appContext, "DNDDemo", NULL, 0,

argc, argv, NULL, args, n);

/* Set drag protocol styles */
n = 0;
XtSetArg(args[n], XmNdragInitiatorProtocolStyle,

XmDRAG_PREFER_RECEIVER); n++;
XtSetArg(args[n], XmNdragReceiverProtocolStyle, XmDRAG_DYNAMIC);
n++;
XtSetValues(XmGetXmDisplay(XtDisplay(topLevel)), args, n);

/* Initialize tables for holding rectangle information */
InitializeRectDpyTable();

/* Add new actions for use with translation tables */
XtAppAddActions(appContext, new_actions, 5);

/* Get the display server’s best cursor size */
XQueryBestCursor(XtDisplay(topLevel),

RootWindowOfScreen(XtScreen(topLevel)), 64, 64,
&appInfo->maxCursorWidth, &appInfo->maxCursorHeight);

}

/* This the program start procedure */
void
#ifdef _NO_PROTO
main (argc, argv)
int argc;
String *argv;
#else

B−60

Drag and Drop Example Program

main (int argc, String *argv)
#endif /* _NO_PROTO */
{

/* Initialize toolkit and application global values */
InitializeApplication(&argc, argv);

/* Create main window, drawing area, and color labels */
CreateLayout();

/* Register the drawing area as a drop site */
RegisterDropSite(drawingArea);

SetInvalidIcon(drawingArea);

/* Realize and map widget hiearchy */
XtRealizeWidget(topLevel);

/* Create GC for drawing rectangles */
CreateRectGC();

/* Begin event loop processing */
XtAppMainLoop(appContext);

}

B.3 DNDDraw.c

/*
* file: DNDDraw.c

B−61

OSF/Motif Programmer’s Guide

*
* File containing all the drawing routines needed to run
* DNDDemo program.
*
*/

#include "DNDDemo.h"

/* The following character arrays hold the bits for
* the source and state icons for both 32x32 and 16x16 drag icons.
* The source is a color palette icon and the state is a paint
* brush icon.
*/
char SOURCE_ICON_BITS[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa0,
0xaa, 0x02, 0x00, 0x50, 0x55, 0x07, 0x00, 0x28, 0x00, 0x0c,
0x00, 0x94, 0x42, 0x19, 0x00, 0xca, 0xe5, 0x33, 0x00, 0x85,
0xc6, 0x33, 0x80, 0x42, 0xe7, 0x33, 0x40, 0x81, 0xc3, 0x31,
0xa0, 0x00, 0x00, 0x38, 0x50, 0x00, 0x00, 0x1c, 0x28, 0x00,
0x00, 0x0e, 0x90, 0x02, 0x00, 0x07, 0xc8, 0x05, 0x80, 0x03,
0x90, 0x07, 0xc0, 0x01, 0x48, 0x05, 0xe0, 0x00, 0x90, 0x03,
0x70, 0x00, 0x08, 0x00, 0x30, 0x00, 0x10, 0x14, 0x30, 0x00,
0x08, 0x2a, 0x30, 0x00, 0x10, 0x34, 0x30, 0x00, 0x28, 0x2a,
0x60, 0x00, 0x50, 0x9c, 0xe2, 0x00, 0xa0, 0x40, 0xc4, 0x01,
0x40, 0x01, 0x84, 0x01, 0x80, 0x42, 0x84, 0x03, 0x00, 0x85,
0x03, 0x03, 0x00, 0x0a, 0x00, 0x03, 0x00, 0xf4, 0xff, 0x03,
0x00, 0xf8, 0xff, 0x01, 0x00, 0x00, 0x00, 0x00};

char SOURCE_ICON_MASK[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, 0xff, 0x07, 0x00, 0xf8,
0xff, 0x0f, 0x00, 0xfc, 0xff, 0x1f, 0x00, 0xfe, 0xff, 0x3f,
0x00, 0xff, 0xff, 0x7f, 0x80, 0xff, 0xff, 0x7f, 0xc0, 0xff,
0xff, 0x7f, 0xe0, 0xff, 0xff, 0x7f, 0xf0, 0xff, 0xff, 0x7f,
0xf8, 0xff, 0xff, 0x7f, 0xfc, 0xff, 0xff, 0x7f, 0xfc, 0xff,

B−62

Drag and Drop Example Program

0xff, 0x3f, 0xfc, 0xff, 0xff, 0x1f, 0xfc, 0xff, 0xff, 0x0f,
0xfc, 0xff, 0xff, 0x07, 0xfc, 0xff, 0xff, 0x03, 0xfc, 0xff,
0xff, 0x01, 0xfc, 0xff, 0xff, 0x00, 0xfc, 0xff, 0x7f, 0x00,
0xfc, 0xff, 0x7f, 0x00, 0xfc, 0xff, 0xff, 0x00, 0xfc, 0xff,
0xff, 0x01, 0xfc, 0xff, 0xff, 0x03, 0xf8, 0xff, 0xff, 0x03,
0xf0, 0xff, 0xff, 0x07, 0xe0, 0xff, 0xff, 0x07, 0xc0, 0xff,
0xff, 0x07, 0x80, 0xff, 0xff, 0x07, 0x00, 0xff, 0xff, 0x07,
0x00, 0xfe, 0xff, 0x07, 0x00, 0xfc, 0xff, 0x03};

char STATE_ICON_BITS[] = {
0x00, 0x00, 0x00, 0x00, 0x1e, 0x00, 0x00, 0x00, 0x78, 0x00,
0x00, 0x00, 0xf8, 0x01, 0x00, 0x00, 0xf8, 0x01, 0x00, 0x00,
0xf8, 0x03, 0x00, 0x00, 0xf0, 0x03, 0x00, 0x00, 0xf0, 0x07,
0x00, 0x00, 0xc0, 0x0d, 0x00, 0x00, 0x00, 0x1b, 0x00, 0x00,
0x00, 0x3e, 0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0xfc,
0x00, 0x00, 0x00, 0xf8, 0x01, 0x00, 0x00, 0xf0, 0x03, 0x00,
0x00, 0xe0, 0x07, 0x00, 0x00, 0xc0, 0x0f, 0x00, 0x00, 0x80,
0x1f, 0x00, 0x00, 0x00, 0x3f, 0x00, 0x00, 0x00, 0x7e, 0x00,
0x00, 0x00, 0xfc, 0x00, 0x00, 0x00, 0xf8, 0x01, 0x00, 0x00,
0xf0, 0x01, 0x00, 0x00, 0xe0, 0x03, 0x00, 0x00, 0xc0, 0x07,
0x00, 0x00, 0x80, 0x0f, 0x00, 0x00, 0x00, 0x1f, 0x00, 0x00,
0x00, 0x1e, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x38,
0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0xc0};

char STATE_ICON_MASK[] = {
0x3f, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff, 0x03,
0x00, 0x00, 0xfc, 0x03, 0x00, 0x00, 0xfc, 0x07, 0x00, 0x00,
0xfc, 0x07, 0x00, 0x00, 0xfc, 0x07, 0x00, 0x00, 0xf8, 0x07,
0x00, 0x00, 0xf8, 0x0f, 0x00, 0x00, 0xe0, 0x1f, 0x00, 0x00,
0x00, 0x3e, 0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0xfc,
0x00, 0x00, 0x00, 0xf8, 0x01, 0x00, 0x00, 0xf0, 0x03, 0x00,
0x00, 0xe0, 0x07, 0x00, 0x00, 0xc0, 0x0f, 0x00, 0x00, 0x80,
0x1f, 0x00, 0x00, 0x00, 0x3f, 0x00, 0x00, 0x00, 0xfe, 0x01,
0x00, 0x00, 0xfc, 0x03, 0x00, 0x00, 0xf8, 0x03, 0x00, 0x00,
0xf0, 0x07, 0x00, 0x00, 0xe0, 0x0f, 0x00, 0x00, 0xc0, 0x1f,

B−63

OSF/Motif Programmer’s Guide

0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x7f, 0x00, 0x00,
0x00, 0x7e, 0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0xfe,
0x00, 0x00, 0x00, 0xfc, 0x00, 0x00, 0x00, 0xf0};

char INVALID_ICON_BITS[] = {
0x00, 0xe0, 0x0f, 0x00, 0x00, 0xfc, 0x7f, 0x00, 0x00, 0xff,
0xff, 0x01, 0x80, 0xff, 0xff, 0x03, 0xc0, 0x1f, 0xf0, 0x07,
0xe0, 0x07, 0xc0, 0x0f, 0xf0, 0x07, 0x00, 0x1f, 0xf8, 0x0f,
0x00, 0x3e, 0xf8, 0x1f, 0x00, 0x3c, 0xfc, 0x3f, 0x00, 0x7c,
0x3c, 0x7f, 0x00, 0x78, 0x3c, 0xfe, 0x00, 0x78, 0x1e, 0xfc,
0x01, 0xf0, 0x1e, 0xf8, 0x03, 0xf0, 0x1e, 0xf0, 0x07, 0xf0,
0x1e, 0xe0, 0x0f, 0xf0, 0x1e, 0xc0, 0x1f, 0xf0, 0x1e, 0x80,
0x3f, 0xf0, 0x1e, 0x00, 0x7f, 0xf0, 0x3c, 0x00, 0xfe, 0x78,
0x3c, 0x00, 0xfc, 0x79, 0x7c, 0x00, 0xf8, 0x7f, 0x78, 0x00,
0xf0, 0x3f, 0xf8, 0x00, 0xe0, 0x3f, 0xf0, 0x01, 0xc0, 0x1f,
0xe0, 0x07, 0xc0, 0x0f, 0xc0, 0x1f, 0xf0, 0x07, 0x80, 0xff,
0xff, 0x03, 0x00, 0xff, 0xff, 0x01, 0x00, 0xfc, 0x7f, 0x00,
0x00, 0xe0, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00};

char SMALL_SOURCE_ICON_BITS[] = {
0x80, 0x1f, 0x40, 0x60, 0x20, 0x91, 0x90, 0xaa, 0x08, 0x91,
0x08, 0x40, 0x08, 0x20, 0x08, 0x10, 0x28, 0x10, 0x78, 0x10,
0x28, 0x20, 0x08, 0x41, 0x90, 0x43, 0x20, 0x21, 0x40, 0x10,
0x80, 0x0f};

char SMALL_SOURCE_ICON_MASK[] = {
0x80, 0x1f, 0xc0, 0x7f, 0xe0, 0xff, 0xf0, 0xff, 0xf8, 0xff,
0xf8, 0x7f, 0xf8, 0x3f, 0xf8, 0x1f, 0xf8, 0x1f, 0xf8, 0x1f,
0xf8, 0x3f, 0xf8, 0x7f, 0xf0, 0x7f, 0xe0, 0x3f, 0xc0, 0x1f,
0x80, 0x0f};

char SMALL_STATE_ICON_BITS[] = {
0x0f, 0x00, 0x1e, 0x00, 0x1e, 0x00, 0x3c, 0x00, 0x50, 0x00,
0xe0, 0x00, 0xc0, 0x01, 0x80, 0x03, 0x00, 0x07, 0x00, 0x0e,
0x00, 0x1c, 0x00, 0x18, 0x00, 0x20, 0x00, 0x40, 0x00, 0x80,

B−64

Drag and Drop Example Program

0x00, 0x00};

char SMALL_STATE_ICON_MASK[] = {
0x0f, 0x00, 0x1e, 0x00, 0x1e, 0x00, 0x3c, 0x00, 0x70, 0x00,
0xe0, 0x00, 0xc0, 0x01, 0x80, 0x03, 0x00, 0x07, 0x00, 0x0e,
0x00, 0x1c, 0x00, 0x18, 0x00, 0x20, 0x00, 0x40, 0x00, 0x80,
0x00, 0x00};

char SMALL_INVALID_ICON_BITS[] = {
0xe0, 0x03, 0xf8, 0x0f, 0x1c, 0x1c, 0x1e, 0x30, 0x3e, 0x30,
0x73, 0x60, 0xe3, 0x60, 0xc3, 0x61, 0x83, 0x63, 0x03, 0x67,
0x06, 0x3e, 0x06, 0x3c, 0x1c, 0x1c, 0xf8, 0x0f, 0xe0, 0x03,
0x00, 0x00};

/* Globals variables */
AppInfo appInfo;

/* This is a string to pixel conversion function. */
Pixel
#ifdef _NO_PROTO
GetColor(colorstr)
char *colorstr;
#else
GetColor(char *colorstr)
#endif /* _NO_PROTO */
{

XrmValue from, to;

from.size = strlen(colorstr) +1;
if (from.size < sizeof(String))

from.size = sizeof(String);
from.addr = colorstr;

B−65

OSF/Motif Programmer’s Guide

to.addr = NULL;
XtConvert(topLevel, XmRString, &from, XmRPixel, &to);

if (to.addr != NULL)
return ((Pixel) *((Pixel *) to.addr));

else
return ((XtArgVal) NULL);

}

/* This procedure is used to initialize the application information
* structure */
void
#ifdef _NO_PROTO
InitializeAppInfo()
#else /* _NO_PROTO */
InitializeAppInfo(void)
#endif /* _NO_PROTO */
{

if (!appInfo) {

appInfo = (AppInfo) XtMalloc(sizeof(AppInfoRec));
appInfo->rectGC = NULL;
appInfo->currentColor = 0;
appInfo->rectDpyTable = NULL;
appInfo->rectsAllocd = 0;
appInfo->numRects = 0;
appInfo->highlightRect = NULL;
appInfo->clearRect = NULL;
appInfo->doMove = True;
appInfo->creatingRect = True;
appInfo->operation = XmDROP_MOVE;
appInfo->maxCursorWidth = 64;

B−66

Drag and Drop Example Program

appInfo->maxCursorHeight = 64;
appInfo->rectX = 0;
appInfo->rectY = 0;
appInfo->rectX2 = 0;
appInfo->rectY2 = 0;

}

}

/* This procedure sets the color in the GC for drawing the
* rectangles in a new color.
*/
void
#ifdef _NO_PROTO
SetColor(display, color)
Display *display;
Pixel color;
#else
SetColor(Display *display, Pixel color)
#endif /* _NO_PROTO */
{

/*
* if the GC already has a foreground of this color,
* it would be wasteful to reset the color
*/
if (color != appInfo->currentColor) {

XSetForeground(display, appInfo->rectGC,
(unsigned long) color);

appInfo->currentColor = color;
}

}

B−67

OSF/Motif Programmer’s Guide

/* This function draws the rectangle in the color provided */
static int
#ifdef _NO_PROTO
RectDraw(display, window, rect)
Display *display;
Window window;
RectPtr rect;
#else
RectDraw(Display *display, Window window, RectPtr rect)
#endif /* _NO_PROTO */
{

SetColor(display, rect->color);
XFillRectangle(display, window, appInfo->rectGC, rect->x,

rect->y, rect->width, rect->height);

}

/* This procedure draws the rectangle highlight in a specified
* color */
static void
#ifdef _NO_PROTO
RectDrawHighlight(w, rect, color)
Widget w;
RectPtr rect;
Pixel color;
#else
RectDrawHighlight(Widget w, RectPtr rect, Pixel color)
#endif /* _NO_PROTO */
{

Display *display = XtDisplay(w);
Window window = XtWindow(w);
Pixel currentColor = rect->color;

B−68

Drag and Drop Example Program

XGCValues values;

values.foreground = color;
XChangeGC(display, appInfo->rectGC, GCForeground, &values);

XDrawRectangle(display, window, appInfo->rectGC,
rect->x + 1, rect->y + 1,
rect->width - HIGHLIGHT_THICKNESS,
rect->height - HIGHLIGHT_THICKNESS);

/* Return the GC to it’s previous state */
values.foreground = appInfo->currentColor = currentColor;
XChangeGC(display, appInfo->rectGC, GCForeground, &values);

}

/* This procedure handles redrawing the rectangles. It draws
* them according to the order in the rectangle display table.
* The rectangles at the top of the table are drawn first.
*/
void
#ifdef _NO_PROTO
RedrawRectangles(w)
Widget w;
#else
RedrawRectangles(Widget w)
#endif /* _NO_PROTO */
{

Display *display = XtDisplay(w);
RectPtr rect;
Window window = XtWindow(w);
int i;

B−69

OSF/Motif Programmer’s Guide

for (i = 0; i < appInfo->numRects; i++) {

rect = appInfo->rectDpyTable[i];
/* Only draw the rectangles that haven’t been cleared */
if (rect != appInfo->clearRect) {

RectDraw(display, window, rect);
}
/* Draw the rectangle highlight of the highlight
* rectangle */
if (rect == appInfo->highlightRect) {

RectDrawHighlight(w, rect, GetColor(HIGHLIGHT_COLOR));
}

}

}

/* This procedure will clear the current rectangle and redraw any
* rectangles that were partially cleared by the rectangle that
* was deleted.
*/
/* ARGSUSED */
void
#ifdef _NO_PROTO
RectHide(display, window, rect)
Display *display;
Window window;
RectPtr rect;
#else
RectHide(Display *display, Window window, RectPtr rect)
#endif /* _NO_PROTO */
{

Pixel background, oldColor;

B−70

Drag and Drop Example Program

Arg args[1];

/* Get the background of the drawing area. */
XtSetArg(args[0], XmNbackground, &background);
XtGetValues(drawingArea, args, 1);

/* Save the old color for restoration purposes. */
oldColor = rect->color;

/* Clear the rectangle */
rect->color = background;
RectDraw(display, window, rect);
appInfo->clearRect = rect;

/* redraw the rest of the rectangles */
RedrawRectangles(drawingArea);

/* restore the rectangle color */
rect->color = oldColor;

}

/* This procedure draws the stipple rectangle that is used in
* marking the old rectangle position during a rectangle move
* operation.
*/
/* ARGSUSED */
void
#ifdef _NO_PROTO
RectDrawStippled(display, window, rect)
Display *display;
Window window;
RectPtr rect;
#else
RectDrawStippled(Display *display, Window window, RectPtr rect)

B−71

OSF/Motif Programmer’s Guide

#endif /* _NO_PROTO */
{

register int x = rect->x;
register int y = rect->y;
register Dimension width = rect->width;
register Dimension height = rect->height;
XGCValues values;
XSegment segments[4];

/* Set the rectangle color */
values.foreground = appInfo->currentColor = rect->color;
XChangeGC(display, appInfo->rectGC, GCForeground , &values);

/* Create the segments for drawing the stippled rectangle */
segments[0].x1 = segments[2].x1 = x;
segments[0].y1 = segments[0].y2 = y;
segments[0].x2 = x + width - 1;
segments[1].x1 = segments[1].x2 = x + width - 1;
segments[1].y1 = segments[3].y1 = y;
segments[3].y2 = y + height;
segments[2].y1 = segments[2].y2 = y + height - 1;
segments[3].x1 = segments[3].x2 = x;
segments[2].x2 = x + width;
segments[1].y2 = y + height;

/* Set the line attributes and draw */
XSetLineAttributes(display, appInfo->rectGC, 1, LineOnOffDash,

CapButt, JoinMiter);
XDrawSegments (display, window, appInfo->rectGC, segments, 4);

/* restore the default line settings */
values.line_width = HIGHLIGHT_THICKNESS;
values.line_style = LineSolid;
XChangeGC(display, appInfo->rectGC, GCLineWidth | GCLineStyle,

B−72

Drag and Drop Example Program

&values);

}

/* This procedure sets the highlight rectangle and
* redraws the rectangles. The expose routine will draw
* the highlight around the highlighted rectangle.
*/
/* ARGSUSED */
void
#ifdef _NO_PROTO
RectHighlight(w, rect)
Widget w;
RectPtr rect;
#else
RectHighlight(Widget w, RectPtr rect)
#endif /* _NO_PROTO */
{

if (appInfo->highlightRect != rect) {
appInfo->highlightRect = rect;
RedrawRectangles(w);

}

}

/* This procedure sets the highlight rectangle to NULL and
* redraws the rectangles. The expose routine will clear
* the highlight around the highlighted rectangle.
*/
/* ARGSUSED */
void
#ifdef _NO_PROTO
RectUnhighlight(w)

B−73

OSF/Motif Programmer’s Guide

Widget w;
#else
RectUnhighlight(Widget w)
#endif /* _NO_PROTO */
{

if (appInfo->highlightRect) {
appInfo->highlightRect = NULL;
RedrawRectangles(w);

}

}

/* This function creates and initialized a new rectangle */
RectPtr
#ifdef _NO_PROTO
RectCreate(x, y, width, height, color, pixmap)
Position x;
Position y;
Dimension width;
Dimension height;
Pixel color;
Pixmap pixmap;
#else
RectCreate(Position x, Position y, Dimension width,
Dimension height, Pixel color, Pixmap pixmap)
#endif /* _NO_PROTO */
{

RectPtr rect;

rect = (RectPtr) XtMalloc(sizeof(RectStruct));

rect->x = x;
rect->y = y;

B−74

Drag and Drop Example Program

rect->width = width;
rect->height = height;
rect->color = color;
rect->pixmap = pixmap;

return(rect);

}

/* This procedure will move the rectangle to the end of the
* rectangle display table (effectively raising it to top of
* the displayed rectangles).
*/
static void
#ifdef _NO_PROTO
RectToTop(rect)
RectPtr rect;
#else
RectToTop(RectPtr rect)
#endif /* _NO_PROTO */
{

int i, j;

if (rect) {

/* Get the index to the target rectangle */
for (i = 0; i < appInfo->numRects; i++) {

if (appInfo->rectDpyTable[i] == rect)
break;

}

/* Shift the other rectangles downward */

B−75

OSF/Motif Programmer’s Guide

for (j = i; j < appInfo->numRects - 1; j++)
appInfo->rectDpyTable[j] = appInfo->rectDpyTable[j + 1];

/* Place the target rectangle at the end */
appInfo->rectDpyTable[j] = rect;

}

}

/* This procedure raises the rectangle to the top of the drawing
* area */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
RectRaise(w, rect)
Widget w;
RectPtr rect;
#else
RectRaise(Widget w, RectPtr rect)
#endif /* _NO_PROTO */
{

RectToTop(rect);
RedrawRectangles(w);

}

/* This procedure moves the rectangle the the end of the display
* stack, decrements the number of rectangles, and then frees the
* rectangle.
*/
void

B−76

Drag and Drop Example Program

#ifdef _NO_PROTO
RectFree(rect)
RectPtr rect;
#else
RectFree(RectPtr rect)
#endif /* _NO_PROTO */
{

/* if the rectangle is registered */
if (rect) {

RectToTop(rect);
appInfo->numRects--;
XtFree((char *)rect);

}

}

/* This procedure added the rectangle to the rectangle display
* table (reallocing the table if necessary).
*/
void
#ifdef _NO_PROTO
RectRegister(rect, x, y)
RectPtr rect;
#else
RectRegister(RectPtr rect, Position x, Position y)
#endif /* _NO_PROTO */
{

appInfo->numRects++;

/* rectangles can have their x and y values reset at

B−77

OSF/Motif Programmer’s Guide

* registration time */
rect->x = x;
rect->y = y;

/* realloc the table if it is too small */
if (appInfo->numRects > appInfo->rectsAllocd) {

/* grow geometrically */
appInfo->rectsAllocd *= 2;
appInfo->rectDpyTable = (RectPtr *)

XtRealloc((char *) appInfo->rectDpyTable,
(unsigned) (sizeof(RectPtr) * appInfo->rectsAllocd));

}

/* Add to end of display table */
appInfo->rectDpyTable[appInfo->numRects - 1] = rect;

}

/* This function find the top most rectangle at the given x,y
* position */
RectPtr
#ifdef _NO_PROTO
RectFind(x, y)
Position x;
Position y;
#else
RectFind(Position x, Position y)
#endif /* _NO_PROTO */
{

RectPtr rect;
int i;

B−78

Drag and Drop Example Program

/*
* Search from the end of the rectangle display table

* to find the top most rectangle.
*/

for (i = appInfo->numRects - 1; i >= 0; i--) {

rect = appInfo->rectDpyTable[i];
if (rect->x <= x && rect->x + rect->width >= x &&

rect->y <= y && rect->y + rect->height >= y) {
return(rect);

}

}

/* If a rectangle is not found return NULL */
return(NULL);

}

/* This procedure sets the retangle’s color */
void
#ifdef _NO_PROTO
RectSetColor(rect, display, window, color)
RectPtr rect;
Display *display;
Window window;
Pixel color;
#else
RectSetColor(RectPtr rect, Display *display, Window window,

Pixel color)
#endif /* _NO_PROTO */
{

rect->color = color;

B−79

OSF/Motif Programmer’s Guide

RectDraw(display, window, rect);

}

/* This function gets the retangle’s color */
Pixel
#ifdef _NO_PROTO
RectGetColor(rect)
RectPtr rect;
#else
RectGetColor(RectPtr rect)
#endif /* _NO_PROTO */
{

return(rect->color);
}

/* This procedure sets the retangle’s pixmap. The pixmap portion
* of the rectangle is not currently being used.
*/
/* ARGSUSED */
void
#ifdef _NO_PROTO
RectSetPixmap(rect, display, window, pixmap)
RectPtr rect;
Display *display;
Window window;
Pixmap pixmap;
#else
RectSetPixmap(RectPtr rect, Display *display, Window window,

Pixmap pixmap)
#endif /* _NO_PROTO */
{

B−80

Drag and Drop Example Program

rect->pixmap = pixmap; /* not currently being looked at */
RectDraw(display, window, rect);

}

/* This function gets the retangle’s pixmap. The pixmap portion of
* the rectangle is not currently being used.
*/
/* ARGSUSED */
static Pixmap
#ifdef _NO_PROTO
RectGetPixmap(rect)
RectPtr rect;
#else
RectGetPixmap(RectPtr rect)
#endif /* _NO_PROTO */
{

return (rect->pixmap);
}

/* This procedure gets the retangle’s height and width. */
/* ARGSUSED */
static void
#ifdef _NO_PROTO
RectGetDimensions(rect, width, height)
RectPtr rect;
Dimension *width;
Dimension *height;
#else
RectGetDimensions(RectPtr rect, Dimension *width,

Dimension *height)
#endif /* _NO_PROTO */
{

B−81

OSF/Motif Programmer’s Guide

*width = rect->width;
*height = rect->height;

}

/* This function creates the rectangle bitmaps for the icon. */
Pixmap
#ifdef _NO_PROTO
GetBitmapFromRect(w, rect, background, foreground, widthRtn,

heightRtn)
Widget w;
RectPtr rect;
Pixel background;
Pixel foreground;
Dimension *widthRtn;
Dimension *heightRtn;
#else
GetBitmapFromRect(Widget w, RectPtr rect, Pixel background,
Pixel foreground, Dimension *widthRtn, Dimension *heightRtn)
#endif /* _NO_PROTO */
{

Dimension width, height, maxHeight, maxWidth;
GC fillGC;
Pixmap icon_pixmap;
Display *display = XtDisplay(w);
XGCValues values;

RectGetDimensions(rect, &width, &height);

/* Get the maximum allowable width and height allowed by the
* cursor */
maxWidth = appInfo->maxCursorWidth;
maxHeight = appInfo->maxCursorHeight;

B−82

Drag and Drop Example Program

/* if the dimensions aren’t within the allowable dimensions
* resize then proportionally

*/
if (maxWidth < width || maxHeight < height) {

if (width > height) {
height = (height * maxWidth) / width;
width = appInfo->maxCursorWidth;

} else {
width = (width * maxHeight) / height;
height = appInfo->maxCursorHeight;

}

}

/* Create a depth 1 pixmap (bitmap) for use with the drag
* icon */
icon_pixmap = XCreatePixmap(display, XtWindow(w), width,

height, 1);

/* create a GC for drawing into the bitmap */
fillGC = XCreateGC(display, icon_pixmap, 0,

(XGCValues *)NULL);

/* fill the bitmap with 0’s as a starting point */
XFillRectangle(display, icon_pixmap, fillGC, 0, 0, width,

height);

/* Change GC to be able to create the rectangle with 1’s on
* the bitmap */
values.foreground = 1;
XChangeGC(display, fillGC, GCForeground, &values);

/*
* This draw a filled rectangle. If only a outline is desired

B−83

OSF/Motif Programmer’s Guide

* use the XDrawRectangle() call. Note: the outline does not
* produce very effect icon melting.
*/
XFillRectangle(display, icon_pixmap, fillGC, 0, 0, width,

height);

/* Free the fill GC */
XFreeGC(display, fillGC);

*widthRtn = width;
*heightRtn = height;

return(icon_pixmap);

}

/***

Functions used in Drawing Outlines:

***/

/*
* This procedure changes the GC to do rubberband
* drawing of a rectangle frame .
*/
static void
#ifdef _NO_PROTO
SetXorGC(w)
Widget w;
#else
SetXorGC(Widget w)
#endif /* _NO_PROTO */
{

B−84

Drag and Drop Example Program

unsigned long valueMask = GCFunction | GCForeground |
GCLineWidth;

XGCValues values;

values.function = GXxor;
values.foreground = GetColor(DRAW_AREA_BG_COLOR);
values.line_width = 1;
XChangeGC(XtDisplay(w), appInfo->rectGC, valueMask, &values);

}

/* This procedure returns the GC to it’s initial state. */
static void
#ifdef _NO_PROTO
SetNormGC(w)
Widget w;
#else
SetNormGC(Widget w)
#endif /* _NO_PROTO */
{

unsigned long valueMask = GCFunction | GCLineWidth |
GCForeground;

XGCValues values;

values.function = GXcopy;
values.foreground = appInfo->currentColor;
values.line_width = HIGHLIGHT_THICKNESS;
XChangeGC(XtDisplay(w), appInfo->rectGC, valueMask, &values);

}

/* This procedure returns the values of the current rectangle

B−85

OSF/Motif Programmer’s Guide

* outline */
static void
#ifdef _NO_PROTO
OutlineGetDimensions(x, y, width, height)
Position *x;
Position *y;
Dimension *width;
Dimension *height;
#else
OutlineGetDimensions(Position *x, Position *y, Dimension *width,
Dimension *height)
#endif /* _NO_PROTO */
{

if (appInfo->rectX < appInfo->rectX2) {
*x = appInfo->rectX;
*width = appInfo->rectX2 - *x;

} else {
*x = appInfo->rectX2;
*width = appInfo->rectX - *x;

}

if (appInfo->rectY < appInfo->rectY2) {
*y = appInfo->rectY;
*height = appInfo->rectY2 - *y;

} else {
*y = appInfo->rectY2;
*height = appInfo->rectY - *y;

}

if (*width < 0)
*width = 1;

if (*height < 0)
*height = 1;

B−86

Drag and Drop Example Program

}

static void
#ifdef _NO_PROTO
OutlineDraw(w)
Widget w;
#else
OutlineDraw(Widget w)
#endif /* _NO_PROTO */
{

Position x, y;
Dimension width, height;

OutlineGetDimensions(&x, &y, &width, &height);

XDrawRectangle(XtDisplay(w), XtWindow(w), appInfo->rectGC,
x, y, width, height);

}

/* This procedure sets initializes the drawing positions */
static void
#ifdef _NO_PROTO
OutlineSetPosition(x, y)
Position x;
Position y;
#else
OutlineSetPosition(Position x, Position y)
#endif /* _NO_PROTO */
{

appInfo->rectX = appInfo->rectX2 = x;

B−87

OSF/Motif Programmer’s Guide

appInfo->rectY = appInfo->rectY2 = y;

}

/* This procedure resets outline end position */
static void
#ifdef _NO_PROTO
OutlineResetPosition(x, y)
Position x;
Position y;
#else
OutlineResetPosition(Position x, Position y)
#endif /* _NO_PROTO */
{

appInfo->rectX2 = x;
appInfo->rectY2 = y;

}

/* This action procedure begins creating a rectangle at the x,y
* position of the button event if a rectangle doesn’t already
* exist at that position. Otherwise is raises the rectangle
* to the top of the drawing area.
*/
/* ARGSUSED */
void
#ifdef _NO_PROTO
StartRect(w, event, params, num_params)
Widget w;
XEvent *event;
String *params;
Cardinal *num_params;

B−88

Drag and Drop Example Program

#else
StartRect(Widget w, XEvent *event, String *params,

Cardinal *num_params)
#endif /* _NO_PROTO */
{

Display *display = XtDisplay(w);
RectPtr rect;
Position x = event->xbutton.x;
Position y = event->xbutton.y;

rect = RectFind(x, y);

/* if there isn’t a rectangle at this position, begin creating
* one */
if (!rect) {

appInfo->creatingRect = True;
/* set gc for drawing rubberband outline for rectangles */
SetXorGC(w);
/* set the initial outline positions */
OutlineSetPosition(x, y);
/* Draw the rectangle */
OutlineDraw(w);

}
else

RectRaise(w, rect);

}

/* This action procedure extends the drawing of the outline
* for the rectangle to be created.
*/

B−89

OSF/Motif Programmer’s Guide

/* ARGSUSED */
void
#ifdef _NO_PROTO
ExtendRect(w, event, params, num_params)
Widget w;
XEvent *event;
String *params;
Cardinal *num_params;
#else
ExtendRect(Widget w, XEvent *event, String *params,

Cardinal *num_params)
#endif /* _NO_PROTO */
{

if (appInfo->creatingRect) {

/* erase the old outline */
OutlineDraw(w);
/* set the new outline end positions */
OutlineResetPosition(event->xbutton.x, event->xbutton.y);
/* redraw the outline */
OutlineDraw(w);

}

}

/* This action procedure creates a rectangle depending on the
* dimensions set in the StartRect and ExtendRect action procs.
*/
/* ARGSUSED */
void
#ifdef _NO_PROTO
EndRect(w, event, params, num_params)

B−90

Drag and Drop Example Program

Widget w;
XEvent *event;
String *params;
Cardinal *num_params;
#else
EndRect(Widget w, XEvent *event, String *params,

Cardinal *num_params)
#endif /* _NO_PROTO */
{

Position x, y;
Dimension width, height;
RectPtr rect;

if (appInfo->creatingRect) {

/* erase the last outline */
OutlineDraw(w);
/* return GC to original state */
SetNormGC(w);

/* Get the outline dimensions for creating the rectangle */
OutlineGetDimensions(&x, &y, &width, &height);

/* don’t want to create zero width or height rectangles */
if (width == 0 || height == 0){

appInfo->creatingRect = False;
return;

}

rect = RectCreate(x, y, width, height,
GetColor(RECT_START_COLOR), XmUNSPECIFIED_PIXMAP);

RectDraw(XtDisplay(w), XtWindow(w), rect);

B−91

OSF/Motif Programmer’s Guide

RectRegister(rect, x, y);
appInfo->creatingRect = False;

}

}

/* The procedure assigns new translations the the given widget */
static void
#ifdef _NO_PROTO
SetupTranslations(widget, new_translations)
Widget widget;
char *new_translations;
#else
SetupTranslations(Widget widget, char *new_translations)
#endif /* _NO_PROTO */
{

XtTranslations new_table;

new_table = XtParseTranslationTable(new_translations);
XtOverrideTranslations(widget, new_table);

}

/* This procedure handles exposure events and makes a call to
* RedrawRectangles() to redraw the rectangles
* The rectangles at the top of the table are drawn first.
*/
/* ARGSUSED */
static void
#ifdef _NO_PROTO
HandleExpose(w, closure, call_data)

B−92

Drag and Drop Example Program

Widget w;
XtPointer closure;
XtPointer call_data;
#else
HandleExpose(Widget w, XtPointer closure, XtPointer call_data)
#endif /* _NO_PROTO */
{

RedrawRectangles(w);
}

/* This procedure sets up the drawing area */
static void
#ifdef _NO_PROTO
CreateDrawingArea(parent)
Widget parent;
#else
CreateDrawingArea(Widget parent)
#endif /* _NO_PROTO */
{

static char da_translations[] =
"#replace <Btn2Down>: StartMove() \n\
<Btn1Down>: StartRect() \n\
<Btn1Motion>: ExtendRect() \n\
<Btn1Up>: EndRect() \n\
c <Key>t: XtDisplayTranslations()";

Arg args[10];
int n = 0;
XtTranslations new_table;

new_table = XtParseTranslationTable(da_translations);

/* create drawing area at the top of the form */

B−93

OSF/Motif Programmer’s Guide

n = 0;
XtSetArg(args[n], XmNtranslations, new_table); n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNwidth, 295); n++;
XtSetArg(args[n], XmNheight, 180); n++;
XtSetArg(args[n], XmNresizePolicy, XmRESIZE_NONE); n++;
XtSetArg(args[n], XmNbackground, GetColor(DRAW_AREA_BG_COLOR));
n++;
XtSetArg(args[n], XmNforeground, GetColor(DRAW_AREA_FG_COLOR));
n++;
drawingArea = XmCreateDrawingArea(parent, "drawingArea", args, n);
XtManageChild(drawingArea);

/* add expose callback to redisplay rectangles */
XtAddCallback(drawingArea, XmNexposeCallback, HandleExpose,

(XtPointer) NULL);

}

/* This procedure sets up the area for obtaining rectangle colors */
static void
#ifdef _NO_PROTO
CreateColorPushButtons(parent, separator)
Widget parent;
Widget separator;
#else
CreateColorPushButtons(Widget parent, Widget separator)
#endif /* _NO_PROTO */
{

static char label_translations[] = "<Btn2Down>: ColorRect()";
Widget bulletinBoard;

B−94

Drag and Drop Example Program

Widget children[6];
XmString csString;
Arg args[10];
int n = 0;

/* Creating an empty compound string so the labels will have
* no text. */
csString = XmStringCreateSimple("");

/* Creating 6 color labels */
n = 0;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg(args[n], XmNtopWidget, separator); n++;
XtSetArg(args[n], XmNtopOffset, 2); n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNwidth, 295); n++;
bulletinBoard = XmCreateBulletinBoard(parent, "buletinBoard",

args, n);
XtManageChild(bulletinBoard);

n = 0;
XtSetArg(args[n], XmNx, BOX_X_MARGIN); n++;
XtSetArg(args[n], XmNy, BOX_Y_MARGIN); n++;
XtSetArg(args[n], XmNwidth, BOX_WIDTH); n++;
XtSetArg(args[n], XmNheight, BOX_HEIGHT); n++;
XtSetArg(args[n], XmNlabelString, csString); n++;
XtSetArg(args[n], XmNbackground, GetColor(LABEL1_COLOR)); n++;
XtSetArg(args[n], XmNborderWidth, 1); n++;
children[0] = XmCreatePushButton(bulletinBoard, "PushButton1",

args, n);

/* add translations for manipulating rectangles */
SetupTranslations(children[0], label_translations);

B−95

OSF/Motif Programmer’s Guide

n = 0;
XtSetArg(args[n], XmNx, BOX_X_MARGIN + BOX_X_OFFSET); n++;
XtSetArg(args[n], XmNy, BOX_Y_MARGIN); n++;
XtSetArg(args[n], XmNwidth, BOX_WIDTH); n++;
XtSetArg(args[n], XmNheight, BOX_HEIGHT); n++;
XtSetArg(args[n], XmNlabelString, csString); n++;
XtSetArg(args[n], XmNbackground, GetColor(LABEL2_COLOR)); n++;
XtSetArg(args[n], XmNborderWidth, 1); n++;
children[1] = XmCreatePushButton(bulletinBoard, "PushButton1",

args, n);

/* add translations for manipulating rectangles */
SetupTranslations(children[1], label_translations);

n = 0;
XtSetArg(args[n], XmNx, BOX_X_MARGIN + (2 * BOX_X_OFFSET)); n++;
XtSetArg(args[n], XmNy, BOX_Y_MARGIN); n++;
XtSetArg(args[n], XmNwidth, BOX_WIDTH); n++;
XtSetArg(args[n], XmNheight, BOX_HEIGHT); n++;
XtSetArg(args[n], XmNlabelString, csString); n++;
XtSetArg(args[n], XmNbackground, GetColor(LABEL3_COLOR)); n++;
XtSetArg(args[n], XmNborderWidth, 1); n++;
children[2] = XmCreatePushButton(bulletinBoard, "PushButton3",

args, n);

/* add translations for manipulating rectangles */
SetupTranslations(children[2], label_translations);

n = 0;
XtSetArg(args[n], XmNx, BOX_X_MARGIN); n++;
XtSetArg(args[n], XmNy, BOX_Y_MARGIN + BOX_Y_OFFSET); n++;
XtSetArg(args[n], XmNwidth, BOX_WIDTH); n++;
XtSetArg(args[n], XmNheight, BOX_HEIGHT); n++;
XtSetArg(args[n], XmNlabelString, csString); n++;
XtSetArg(args[n], XmNbackground, GetColor(LABEL4_COLOR)); n++;

B−96

Drag and Drop Example Program

XtSetArg(args[n], XmNborderWidth, 1); n++;
children[3] = XmCreatePushButton(bulletinBoard, "PushButton4",

args, n);

/* add translations for manipulating rectangles */
SetupTranslations(children[3], label_translations);

n = 0;
XtSetArg(args[n], XmNx, BOX_X_MARGIN + BOX_X_OFFSET); n++;
XtSetArg(args[n], XmNy, BOX_Y_MARGIN + BOX_Y_OFFSET); n++;
XtSetArg(args[n], XmNwidth, BOX_WIDTH); n++;
XtSetArg(args[n], XmNheight, BOX_HEIGHT); n++;
XtSetArg(args[n], XmNtopWidget, children[0]); n++;
XtSetArg(args[n], XmNlabelString, csString); n++;
XtSetArg(args[n], XmNbackground, GetColor(LABEL5_COLOR)); n++;
XtSetArg(args[n], XmNborderWidth, 1); n++;
children[4] = XmCreatePushButton(bulletinBoard, "PushButton5",

args, n);

/* add translations for manipulating rectangles */
SetupTranslations(children[4], label_translations);

n = 0;
XtSetArg(args[n], XmNx, BOX_X_MARGIN + (2 * BOX_X_OFFSET)); n++;
XtSetArg(args[n], XmNy, BOX_Y_MARGIN + BOX_Y_OFFSET); n++;
XtSetArg(args[n], XmNwidth, BOX_WIDTH); n++;
XtSetArg(args[n], XmNheight, BOX_HEIGHT); n++;
XtSetArg(args[n], XmNlabelString, csString); n++;
XtSetArg(args[n], XmNbackground, GetColor(LABEL6_COLOR)); n++;
XtSetArg(args[n], XmNborderWidth, 1); n++;
children[5] = XmCreatePushButton(bulletinBoard, "PushButton6",

args, n);

/* add translations for manipulating rectangles */
SetupTranslations(children[5], label_translations);

B−97

OSF/Motif Programmer’s Guide

/* Managing the children all at once helps performance */
XtManageChildren(children, 6);

/* Freeing compound string. It is no longer necessary. */
XmStringFree(csString);

}

/* This procedure initializes the rectangle display table */
void
#ifdef _NO_PROTO
InitializeRectDpyTable()
#else
InitializeRectDpyTable(void)
#endif /* _NO_PROTO */
{

/*
* Initialize display table. This is used to maintain the
* order in which the rectangles are displayed
*/
appInfo->rectDpyTable =

(RectPtr *) XtMalloc((unsigned)sizeof(RectPtr));

/* Initialize rectangle counter. This is used in reallocing
* the tables */
appInfo->rectsAllocd = 1;

}

/* This procedure creates the components to be displayed */
void
#ifdef _NO_PROTO
CreateLayout()

B−98

Drag and Drop Example Program

#else
CreateLayout(void)
#endif /* _NO_PROTO */
{

Widget mainWindow, form, separator;
Arg args[10];
int n = 0;

/* Create main window */
mainWindow = XmCreateMainWindow(topLevel, "mainWindow", args, n);
XtManageChild(mainWindow);

/* Create form for hold drawing area, separator, and color
* labels */
n = 0;
XtSetArg(args[n], XmNwidth, 300); n++;
form = XmCreateForm(mainWindow, "form", args, n);
XtManageChild(form);

/* Create area for drawing rectangles */
CreateDrawingArea(form);

/* Create separator to separate drawing area from color labels */
n = 0;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg(args[n], XmNtopWidget, drawingArea); n++;
XtSetArg(args[n], XmNtopOffset, 5); n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNwidth, 300); n++;
separator = XmCreateSeparatorGadget(form, "separator", args, n);
XtManageChild(separator);

/* Create color labels for changing colors of buttons */

B−99

OSF/Motif Programmer’s Guide

CreateColorPushButtons(form, separator);

/* Make form the work window of the main window */
n = 0;
XtSetArg(args[n], XmNworkWindow, form); n++;
XtSetValues(mainWindow, args, n);

}

/* This procedure initializes the GC for drawing rectangles */
void
#ifdef _NO_PROTO
CreateRectGC()
#else
CreateRectGC(void)
#endif /* _NO_PROTO */
{

XGCValues values;

values.line_style = LineSolid;
values.line_width = HIGHLIGHT_THICKNESS;
values.foreground = appInfo->currentColor =

GetColor(RECT_START_COLOR);
appInfo->rectGC = XCreateGC(XtDisplay(topLevel),

XtWindow(drawingArea),
GCLineStyle | GCLineWidth | GCForeground,
&values);

}

B−100

OSF/Motif Programmer’s Guide

Index33333333333333333333333333

A
active drop site, 15−43
animation style, 15−49
attaching icons, 15−3
auxiliary area, 11−44

B
before a drag, 15−28
blending icons, 15−3
BTransfer, 15−29, 15−63,

15−64

C
callbacks, 15−32, 15−80,

15−103
cancel drag, 15−6
cancelling a drag, 15−31
character set, ISO, 11−3
character set, standard,

11−3
character sets, 11−2
clipping drop sites, 15−48,

15−49
code set, 11−2
coded character set, 11−2
colormap, 15−38
components of a compound

string, 11−7
composite drop site

See Also simple drop
site

compound string, 11−7
compound string

components, 11−7

Index−2

Index

compound string direction,
11−7

compound string font list
element tag, 11−7,
11−9

compound string, direction,
11−9

compound string, relation-
ship to font list,
11−21

compound string, separator,
11−8

compound string, setting
programmatically,
11−9

compound text, 11−49
copy operation, 15−4

D
depth, 15−38
direction, 11−7
drag and drop functions,

15−23
drag and drop overview,

15−28
drag and drop protocols,

15−32

drag and drop transaction,
15−1

drag and drop widget
classes, 15−22

drag and drop, overview,
15−1, 15−7

drag and drop, user over-
view, 15−1

drag callbacks, 15−30,
15−31

drag icon, 15−2, 15−75
drag initiator, 15−1
drag operations, 15−4
drag over effects, 15−2,

15−30, 15−38
drag protocols, 15−20
drag receiver responsibili-

ties, 15−41
drag source, 15−1
drag source resources,

15−65
drag source targets. See

export targets
drag states, 15−4
drag under effects, 15−5,

15−29, 15−34, 15−42,
15−49

drag, cancelling, 15−31
drag, starting, 15−65
DragContext, 15−103
dragging, 15−41

Index−3

OSF/Motif Programmer’s Guide

DragSource, 15−32
DragSource resources,

15−26
DrawingArea, 11−48
drop, 15−2
drop completed, 15−86
drop effects, 15−6
drop protocol, 15−39
drop receiver, 15−85
drop site, 15−2, 15−42
drop site activity, 15−43
drop site register, 15−42
drop site shape, 15−45
drop site stacking, 15−29
drop site targets. See import

targets
drop site type, 15−48
drop sites, 15−41
drop sites, overlapping,

15−49
drop transfer, 15−103
DropSite resources, 15−26
dropSiteStatus, 15−30
DropTransfer widget, 15−40
dynamic protocol, 15−20,

15−33, 15−34, 15−41
dynamic visual style, 15−39

E
Environment, language,

11−26
Escape, 15−2
export targets, 15−26

F
font list, 11−14
font list and Text widget,

11−24
font list and TextField

widget, 11−24
font list element tag, 11−7,

11−9
font list structure, 11−14
font list, relationship to

compound string,
11−21

font list, setting by default,
11−20

font list, setting in resource
files, 11−16

font set, 11−14
fonts, 11−14

Index−4

Index

H
help, 15−31, 15−93
highlighting styles, 15−5

I
icon, 15−2
icon, drag, 15−2
icon, operation, 15−3
icon, source, 15−2
icon, state, 15−3, 15−4
icons, attaching, 15−3
icons, blending, 15−3
ideographic language,

input, 11−4
import targets, 15−26
inactive drop site, 15−43
incremental protocol, 15−40
initial resource database,

11−32
initiator, 15−63
initiator client, 15−29
input, mouse, −0xiv
Input context, 11−46
input method, 11−5, 11−43
Internationalization, 11−1
internationalization issues,

11−1
internationalized text

input, 11−43
internationalized text input

with Text[Field],
11−47

invalid drop site, 15−4
iSO character sets, 11−3

K
KHelp, 15−2

L
Label widget, 15−64
Language environment,

11−26
link operation, 15−5
List widget, 15−64
locale, 11−6, 11−29

Index−5

OSF/Motif Programmer’s Guide

M
messaging, 15−42
mouse, input, −0xiv
move operation, 15−4

N
no drop site, 15−4
non-incremental protocol,

15−40

O
off-the-spot, 11−44
operation icon, 15−3
operations, drag, 15−4
over-the-spot, 11−44
overlapping drop sites,

15−49

P
pixmap, custom, 15−51
pixmap, localizing, 11−41
pre-edit area, 11−44
pre-edit area geometry

management, 11−48
pre-editing, 11−43
preregister protocol, 15−33,

15−34, 15−41
preregister visual style,

15−38
preregistered protocol,

15−20
protocol values, 15−36
protocol, choosing, 15−21,

15−35, 15−38
protocol, drag, 15−33
protocol, drop, 15−21
protocol, specifying, 15−36
protocols, 15−20

R
reason message, 15−51
receiver, 15−2
receiver responsibilities,

15−41

Index−6

Index

resource, drag source, 15−65
resources and localization,

11−32
root-window, 11−44

S
separator, 11−8
setlocale, 11−6
simple drop site

See Also composite
drop site

source icon, 15−2
stacking, drop site, 15−29
standard character sets,

11−3
starting a drag, 15−65
state icon, 15−3, 15−4
status area, 11−44
status area geometry

management, 11−48

T
targets, 15−25, 15−29,

15−30
targets, export, 15−26
targets, import, 15−26
Text and internationalized

text input, 11−47
Text widget, 15−64
Text widget font list search,

11−24
text widgets, 15−42
TextField and internation-

alized text input,
11−47

TextField widget font list
search, 11−24

textfield widgets, 15−42
toolkit, 15−34
transfer protocol, 15−40
transferring data, 15−32
transferring drop informa-

tion, 15−89, 15−103
typographic conventions,

−0xii

Index−7

OSF/Motif Programmer’s Guide

U
user action, 15−28

V
valid drop site, 15−4
virtual buttons, −0xiv
visual style, 15−35, 15−38,

15−39

W
widget classes, 15−22

X
XLoadQueryFont, 11−22
XmConvertProc, 15−32
XmCreateDragIcon, 15−23,

15−29
XmDisplay, 15−22

XmDragCancel, 15−23,
15−31

XmDragContext, 15−22,
15−26, 15−65

XmDragIcon, 15−22
XmDragStart, 15−23,

15−30, 15−65
XmDropSite, 15−22
XmDropSiteConfigureStackingOrder,

15−23, 15−29
XmDropSiteEndUpdate,

15−24, 15−29, 15−45
XmDropSiteQueryStack-

ingOrder, 15−24,
15−29

XmDropSiteRegister,
15−24, 15−29, 15−42

XmDropSiteRetrieve, 15−24
XmDropSiteStartUpdate,

15−24, 15−29, 15−45
XmDropSiteUnregister,

15−25, 15−29, 15−43
XmDropSiteUpdate, 15−24,

15−29, 15−45
XmDropTransfer, 15−23
XmDropTransferAdd,

15−25, 15−32
XmDropTransferStart,

15−21, 15−25, 15−32,
15−40, 15−103

XmFontListAppendEntry,
11−22

XmFontListEntryCreate,

Index−8

Index

11−15, 11−22
XmFontListEntryLoad,

11−14
XmGetDragContext, 15−25
XmGetPixmapByDepth,

11−41
XmGetXmDisplay, 15−25,

15−38
XmGetXmScreen, 15−25
XmNanimationMask, 15−51
XmNanimationPixmap,

15−51
XmNanimationPixmap-

Depth, 15−51
XmNanimationStyle, 15−49
XmNbuttonFontList, 11−20
XmNconvertProc, 15−21,

15−30, 15−32, 15−40,
15−65, 15−103

XmNdefaultFontList, 11−20
XmNdragDropFinishCall-

back, 15−32
XmNdragInitiatorProtocol-

Style, 15−36
XmNdragProc, 15−29,

15−30, 15−38, 15−41,
15−51

XmNdragReceiverProtocol-
Style, 15−36

XmNdropFinishCallback,
15−32

XmNdropProc, 15−29,
15−31

XmNdropRectangles, 15−45
XmNdropSiteActivity,

15−43
XmNdropSiteType, 15−48
XmNdropStartCallback,

15−32
XmNexportTargets, 15−26,

15−65
XmNimportTargets, 15−26
XmNnumExportTargets,

15−26, 15−65
XmNnumImportTargets,

15−26
XmNsourcePixmapIcon,

15−38
XmNtextFontList, 11−20
XmNtransferProc, 15−21,

15−40
XmNtransferStatus, 15−21
XmScreen, 15−22
XmStringCreate, 11−24
XmStringCreateLocalized,

11−10, 11−24
XmStringCreateLtoR,

11−24
XmTargetsAreCompatible,

15−25, 15−31
XtGetValues, 15−38
XtResolvePathname, 11−29

Index−9

OSF/Motif Programmer’s Guide

XtSetLanguageProcedure,
11−29

XtSetValues, 15−38

Index−10

