OSF/Motif

Programmer’s Guide

Revision 1.2

Open Software Foundation

11 Cambridge Center
Cambridge, MA 02142

The information contained within this document is subject to
change without notice.
OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental
consequential damages in connection with the furnishing, perfor-
mance, or use of this material.

All rights are reserved. No part of this publication may be photo-
copied, reproduced, or translated into another language without the
prior written consent of the Open Software Foundation, Inc.

Copyrightd 1989, 1990, 1991, 1992 Open Software Foundation, Inc.
Copyrightd 1989 Digital Equipment Corporation

Copyrightd 1987, 1988, 1989, 1992 Hewlett-Packard Company
Copyrightd 1988 Massachusetts Institute Of Technology
Copyright[] 1988 Microsoft Corporation

ALL RIGHTS RESERVED

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND
THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the
delivery of, this computer software, the rights of the Government regarding its use, reproduc-
tion and disclosure are as set forth in Section 52.227-19 of FARS Computer Software-
Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is sub-
ject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is sub-
ject to restrictions as set forth in paragraph (b)(3)(B) of the rights in Technical Data and Com-
puter Software clause in DAR 7-104.9(a). This computer software is submitted with "res-
tricted rights." Use duplication or disclosure is subject to the restrictions as set forth in

NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer Software-Restricted
Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data
General" then the "Alternate 111" Clause applies.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA
ADP Schedule Contract.

Unpublished—All rights reserved under the Copyright Laws of the
United States.

This notice shall be marked on any reproduction of this data, in
whole or in part.

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are
trademarks of the Open Software Foundation, Inc.

DEC and DIGITAL are registered trademarks of Digital Equipment
Corporation.

X Window System is a trademark of the Massachusetts Institute of
Technology.

Contents

Preface

Chapter 1.

Audience .
Applicability
Purpose

Document Usage
Related Documents

Typographic and Keylng

Conventions .
Keyboard
Conventions

Mouse Conventions

Problem Reporting

Introduction

11
1.2

1.3

1.4

The X Window System

Xlib, Xt, and Motif
1 Xlib

2 Xt)
3 Motif
4

PRPRRP

2.
2.
2.
2.

Motif

Widget Classes and
Hierarchy . . .
1.3.1 Xt Classes .
1.3.2 Motif Classes .

Header Files and Libraries

Using Xlllb Xt, ‘and

Xii
Xiii
Xiv
Xiv
1-1
1-5
1-6

1-13
1-18

1-19
1-19
1-20

1-25

Chapter 2. The Motif Programming Model

Chapter 3.

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

A User-Centered Model .

Separating Interface from
Application

Building Blocks: Primitive Wldgets and
Gadgets . .

231 Label and Separator

Buttons .

ScrollBar

List .

Text .

agers .
Frame

Scale .
PanedWmdow .
ScrolledWindow and
MainWindow .
RowColumn

S OIRWRNE

SelectionBox
DrawingArea .

O N NN NNNNZ NN
2 B DA PEERD WWWW

= D
WNPFP= o 01 AWNPF

(72}

\./er%dolrsﬁell.
DialogShell
MenuShell

lications, Top-Level Widgets, and
ialogs . e
A Appllcatlons .o

6.2 Top-Level Wldgets

2.6.3 Dialogs . .

Resources: User and Program
Customization

nonon

p

'O

MNOD> DN
)

Handling Input and Output

Structure of a Motif Program .

3.1
3.2

Including Header Files
Initializing the Intrinsics

BulletinBoard, 'Fo-rm MessageBox'

Contents

2-1
2-3

P
&

LT
QOO N® bW WNNFP RPOOWO©O

ISENENENIN TSI SIS I NISISISIENININ
NRRR PR RR RPRRRE RRE

n
Y

-2
-2

rl\)l\)l\)
N
NN O

2-23
2-25

3-2
3-3

OSF/Motif Programmer’s Guide

Vi

Chapter 4.

3.3

3.2.1 The Initial Resource
Database)

Creating Widgets . . .
3.3.1 Specifying Resource
Values

3.4 Adding Callback Procedures

3.5

3.6

Struc
MRM

4.1

4.2

Making Widgets Visible .
3.5. Managing Widgets .
Realizing Widgets
Mapping Widgets

O'IU'IU'I
rhwPk

3.
3.
3.
Applications

Entering the Event Loop
ture of a Program Usmg UIL and

Structure of a UIL Module .
module Clause
Module-Level
Declarations

include Directive
value Declaration
identifier Declaration
procedure
Declaration .
object Declaration
list Declaration .
end module Clause .

IN
=
=

Q@ HrEA BABDL by

tructure of a Program Using
Including Header
Files . . .
Initializing the
Intrinsics . .
Initializing MRM .
Opening UID Files .
Registering Callbacks and
Identifiers . Coe

pOYNO N NbDps BPRERE PR RRE R
arw N Hzg Ooo~N oouhw N

AAA A BZ

Multiple Screens, Dl;splays and'

3-11

3-12
3-18

3-22
3-22
3-23
3-25

3-25

w
N
~

A BAbADSA bbA b

=]
gwo~N ~Nooh bW R

EENEN

N
=
a

4-15
4-16
4-16
4-16

4-18

4.2.6

4.2.7
4.2.8

4.2.9
4.2.10

Fetching Information from UID
Files . . G
Closing the UID File

Defining Callback

Procedures .

Making Widgets

Visible . .

Entering the Event

Loop . .o

Chapter 5. Basic Controls .

Chapter 6.

5.1 Core, RectObj, XmPrimitive, and XmGadget

5.2

5.3
5.4
55
5.6

6.1 Menu Components: Buttons, RowColumn,

6.2
6.3
6.4
6.5

Classes

1
522
5.2.3

5

5.

5.

Labels, Buttons, and
Separators

5.2.

Core . .
RectObj
XmPrimitive
XmGadget .

Labels
Buttons
Separators

ScrollBar .

Scale
List

Text and TextField
Menus and Options

MenuShell

6.1.1
6.1.2
6.1.3

Buttons .
RowColumn
MenuShell

MenuBar
Popup Menu
PulldownMenu
OptionMenu

Contents

4-20
4-22

4-22
4-23
4-24

&
=

U‘IU‘I(IJ'IU'IU'I
WNNPRFP P

G
ooabhw

o
©

Vii

OSF/Motif Programmer’s Guide

Chapter 7.

Chapter 8.

Chapter 9.

viii

6.6
6.7

RadioBox and CheckBox
TearOffMenus

Dialogs

7.1

7.2

7.3

7.4
7.5
7.6
Text
8.1
8.2

8.3
8.4

8.5
8.6
8.7
8.8

BulletinBoard and
DialogShell . .
7.1.1 BuIIetlnBoard

Help .
DlalogSheII
Initial Focus

NN
BB B
Dw N

Making a Selection:
SelectionBox

Choosing a Pathname:
FileSelectionBox

Command

MessageBox

Form

Text and TextField
Selection . .
8.2.1 Mouse Selection .

8.2.2 Keyboard Selection

Text Editing and Callbacks

Text Resources and
Geometry

Convenience Routines
ScrolledText

Storing Text in a File
Sharing Text Sources

Scrolling, Panes, and Frames

9.1

ScrolledWindow

Activation, Cancellaﬁon and

7-9
7-11
7-12
7-14
8-1
8-1

8-5
8-7

8-8

8-12
8-14
8-15
8-16
8-17

9-1

9-1

Chapter 10.

9.2

9.3

9.4
9.5
9.6

9.1.1 Automatic and Appllcatlon Defined
Scrolling .o
9.1.2 Other Resources

Automatic Scrolling . .

9.2.1 Traversingto Obscured
Widgets :

9.2.2 Example of Automatic
Scrolling

Application-Defined

Scrolling . .

9.3.1 Example of Appllcatlon Defined
Scrolling .

MainWindow
Frame
PanedWindow

Managing Geometry .

10.1

10.2
10.3

Xt and Geometry

Management . .

10.1.1 Widget Class
Procedures .

10.1.2 Geometry Change
Requests . . .

10.1.3 The geometry_ manager
Procedure .

10.1.4 Intermediate Geometry
Requests . .o

10.1.5 XtSetValues :

10.1.6 The resize Procedure

10.1.7 Preferred Size and
Location .

10.1.8 Exposure and
Redisplay

Shells and Their Children

Manager Wldgets and Their
Children .

Contents

9-3
9-5

9-7
9-8

9-13
9-15
9-25
9-27
9-30
10-1
10-2
10-2
10-4
10-5
10-7
10-9
10-10
10-12
10-13
10-14

10-15

OSF/Motif Programmer’s Guide

Chapter 11.

10.4 Managing Geometry Usmg
RowColumn . .

10.5 Managing Geometry Usmg BulletinBoard
and DrawingArea . .

10.6 Managing Geometry Usmg

Form

Internationalization .

11.1 Issues in Internationalized
Applications

11.2

11.3

1111

11.1.2
11.13
1114

Internatlonallzatlon and
Localization .)
Obtaining Input .
Displaying Output
Locales and

Localization

Compound Strings, Fonts, and Text

Display

11.2.1
11.2.2
11.2.3
1124

Compound String
Components . . .
Fonts, Font Lists, and Font
Sets .

Compound Strlngs and Font
Lists

Text and'TextFleId Wldgets and Font'

Lists

Localizing Appllcatlons .

11.3.1
11.3.2

11.3.3
11.3.4

11.3.5
11.3.6

Techniques for
Localization

Resources and
Localization .

UIL and Localization
Message Catalogs and
Localization

Images, Pixmaps, and
Localization :
Comparing Approaches to
Localization .o

10-16

10-21

10-23
111
111
11-1
11-4
11-6

11-6

11-7
11-7
11-14
11-21

11-24
11-25

11-25

11-32
11-35

11-39
11-41
11-42

Chapter 12.

Chapter 13.

11.4 Advanced Topics in
Internationalization
11.4.1 Internationalization and Text
Input

11.4.2 Compound Strlngs and Compound '

Text .
Color and Pixmaps

12.1 Default Colors .
12.1.1 Borders . . .
12.1.2 Backgrounds .
12.1.3 Foregrounds
12.1.4 Shadows . .
12.1.5 Focus nghllghts .
12.1.6 Arming and Selection

12.2 Application-Defined Color
Generation

12.3 Colormaps
12.4 Using Pixmaps

Input, Focus, and Keyboard
Navigation Co

13.1 Focus Models

13.2 Controlling Keyboard
Navigation
13.2.1 Sensitivity .
13.2.2 XmNtraversalOn
13.2.3 Tab Groups
13.2.4 Initial Focus .
13.2.5 Traversing to Obscured

Widgets :

13.2.6 XmProcessTraversaI
13.2.7 Focus Callbacks .

13.3 Translations and Actions
13.3.1 Translation Table
Format . . .
13.3.2 Using Translations .
13.3.3 Actions . .

Contents

11-43
11-43

11-49
12-1

12-2
12-3
12-3
12-3
12-4
12-6
12-6

12-7
12-9
12-10

Xi

OSF/Motif Programmer’s Guide

Chapter 14.

Chapter 15.

Xii

13.4
13.5

13.3.4 Bindings for osf
Keysyms

Mnemonics and Accelerators
Event Handlers

Graphics and Text in a
DrawingArea

14.1

14.2

14.3

14.4

14.5

DrawingArea: A GeneraI-Purpose

Widget

Event Handling and

Callbacks . . .

14.2.1 Handling Resize
Events . . .

14.2.2 Handling Exposure
Events . . .

14.2.3 Handling Input
Events

Using a DrawingArea in a
ScrolledWindow

Using a DrawingArea for
Graphics . .o

DrawingArea and Advanced Text

Editing . .
14.5.1 Text Output
14.5.2 Text Input

Drag and Drop

15.1

User Overview of Drag and

Drop

15.1.1 Overview of User
Interaction . .

15.1.2 Overview of Drag Over
Effects . . .

15.1.3 Overview of Drag ‘Under
Effectso

15.1.4 Overview of Drop
Effects .o

13-29
13-31
13-34

14-1

14-1

14-2
14-3
14-8
14-11

14-15

14-16

14-22
14-22
14-24

15-1
15-1
15-1
15-2
15-5
15-6

15.2 Technical Overview of Drag and

15.3

15.4

155

Drop .

15.2.1 CompIeX|ty of Drag and Drop
Programs . . .

15.2.2 Drag Sources and Drop
Sites . . e

15.2.3 Protocols . .

15.2.4 Drag and Drop Wldget
Classes . .

15.2.5 Drag and Drop
Functions

15.2.6 Targets .

15.2.7 Operations . .

15.2.8 Overview of Programmer
Responsibilities

Drag and Drop Protocols

15.3.1 Drag Protocols . .

15.3.2 Choosing the Protocol and Visual
Style : . .

15.3.3 Drop Protocol

Drop Receiver Responsibilities for
Dragging . oo
154.1 Establlshlng a Drop

Site . .
15.4.2 XmNdragProc

Drag Initiator Responsibilities for
Dragging . . .
155.1 Recognlzmg a Drag Has
Started . . . :
15.5.2 Starting a Drag With
XmDragStart .
15.5.3 Overriding EX|st|ng Drag
Sources . . .
15.5.4 Drag-over Visual
Effects . . .
15.5.5 Drag Callbacks

15.5.6 Getting Data about the Current Drop

Site . .
15.5.7 Cancelling the Drag

Contents

15-7
15-8

15-19
15-20

15-22
15-23
15-25
15-26

15-28

15-32
15-33

15-35
15-39

15-41

15-42
15-51

15-63
15-63
15-64
15-66

15-67
15-80

15-84
15-84

Xiii

OSF/Motif Programmer’s Guide

15.6 Drop Receiver Responsibilities for

Dropping . e e 15-85
15.6.1 The XmNdropProc e 15-86
15.6.2 XmDropTransfer 15-89
15.6.3 CancellingaDrop 15-92
15.6.4 ProvidingHelp 15-93
15.7 Drag Initiator Responsibilities for
Dropping . e 15-101
15.7.1 XmNdropStartCaIIback Ce e 15-102
15.7.2 Dealing with Requests for
Transfer . G 15-103
15.7.3 XmNdropFlnlshCaIIback e 15-106
15.7.4 XmNdragDropFlnlshCaIIback o 15-107
Chapter 16. Interclient Communication 16-1
16.1 Window Managers, ICCCM, and
Shells 16-1
16.1.1 Application Startup 16-2
16.1.2 Window
Configuration 16-3
16.1.3 Icons - G 16-8
16.1.4 Window Groups e e 16-10
16.1.5 Menusand Dialogs 16-11
16.1.6 InputFocus 16-12
16.1.7 Colormaps . e 16-14
16.1.8 Application Shutdown and
Restart 16-16
16.2 MWM Properties and
Resources . . e 16-18
16.2.1 Decorations 16-18
16.2.2 Functions 16-19
16.2.3 InputMode 16-19
16.2.4 Window Menu 16-20
16.2.5 MWM Messages 16-20
16.2.6 MWM Information 16-21
16.3 Atom and Protocol
Management 16-21
16.4 Selections . Ce e 16-23
16.4.1 Selection Types e 16-24

Xiv

Appendix A.

Appendix B.

Index

Contents

16.4.2 Targets 16-25
16.4.3 Text Conversion 16-26
16.4.4 Incremental
Transfers 16-28
16.4.5 The Xt Selection
Interface 16-29
16.5 The Motif Clipboard . . e e 16-31
16.5.1 Copying Data to the
Clipboard . . Ce e 16-31
16.5.2 Retrieving Data from the
Clipboard 16-34
16.5.3 Utility Routines 16-35
The Widget Meta- Language
Facility -

A-1

Al UsmgWML .o A-2
A.1.1 Building WMLo A-4
A.l.2 RunningWML A-5
A.1.3 Installing UIL A-7
A.1.4 Building UIL . A-8

B-1

Drag and Drop Example Program .o
B.1 DNDDemo.h B-3

B.2 DNDDemo.c e e, B-9
B.3 DNDDraw.c B-61
Index-1

XV

OSF/Motif Programmer’s Guide

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.

Figure 11-6.
Figure 11-7.

Figure 11-8.
Figure 15-1.
Figure 15-2.

Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.
Figure 15-10.
Figure 15-11.

XVi

LIST OF FIGURES

Information External to the
Application

Compound Strlng Relatlonshlps With Epr|C|t
Tag

Compound String Relatlonshlps With
XMFONTLIST_DEFAULT_TAG .

Text Widget Pre-Edit and Status Areas Usmg
over-the-spot

Text Widget Pre-Edit Area After Next Character
Entry .

Input Method and Input Contexts

Text Widget Pre-Edit and Status Areas Usmg off-
the-spot

Reason for Compound Text .
A Drag Icon

A Label Wldget Receiver Before and After
Drag .

A ScrollBar Wldget as Drag Source
A Label Widget .

Special Shaped Drop Site

Default Drag Under Animation
Simulated Drop Sites .

A Drag Icon

Source Icons .

Operation Icons

Copy and Noop Drag Icons

11-2

11-22

11-24

11-45

11-46
11-47

11-49
11-50
15-3

15-9
15-14
15-44
15-47
15-50
15-57
15-69
15-70
15-72
15-72

Figure 15-12.
Figure 15-13.
Figure 15-14.

Figure B-1.

An Attach_Hot Icon

Custom Source Icon

Help Dialog Box

Drag and Drop Demonstration

Contents

15-74
15-76
15-95

B-1

XVii

OSF/Motif Programmer’s Guide

LIST OF TABLES

TABLE 3-1. Steps in Writing Widget Programs
TABLE 11-1. Areas and Typical Character Sets
TABLE 11-2. Widgets With A Font List Resource

XViii

3-2
11-3
11-19

Preface

The OSF/Motif Programmer’s Guide describes how to use the
OSF/Motif ™ application programming interface to create Motif™
applications. The book gives an overview of the architecture of the
Motif widget set, explains features of the Motif toolkit, and presents
a model and examples for constructing Motif applications.

Audience

This document is written for designers and developers of Motif pro-
grams. It does not provide sufficient information to develop new
Motif widgets, although widget developers need to be familiar with
the facilities and the issues discussed in this book.

This document assumes that the reader is familiar with the Ameri-
can National Standards Institute (ANSI) C programming language.
It also assumes that the reader has a general understanding of the
X Window System, the Xlib library, and the X Toolkit Intrinsics
(Xt).

Applicability

This is Revision 1.2 of this document. It applies to Release 1.2 of
the OSF/Motif software system.

OSF/Maotif Programmer’s Guide

Purpose

The purpose of this guide is to explain how to write application pro-
grams using the Motif toolkit. After reading this book, you should
have a general understanding of the Motif toolkit and the Motif
widget set and should be able to write applications that use them.
This guide is not intended to explain how to develop new classes of
widgets.

Document Usage

This document is organized into 16 chapters and two appendixes.

- Chapter 1 introduces the book and gives an overview of the X
Window System, Xlib, Xt, and Motif.

- Chapter 2 summarizes the structure of the Motif widget hierar-
chy and discusses general principles for writing Motif programs.

- Chapter 3 explains the structure and general elements of a Motif
application.

= Chapter 4 describes the structure of a program that uses the
User Interface Language (UIL) and Motif Resource Manager
(MRM).

- Chapter 5 discusses most of the primitive widgets that form the
building blocks of a Motif application.

= Chapter 6 describes how to use the RowColumn widget to build
menus, radio boxes, and check boxes.

Preface

Chapter 7 describes the widgets most appopriate for conducting
dialogs with the user.

Chapter 8 explains the Motif Text and TextField widgets, which
provide general display and editing of text.

Chapter 9 discusses composite widgets commonly used to con-
tain other widgets in the application.

Chapter 10 discusses the process of negotiating the layout of
widgets and describes the layout-management policies of partic-
ular Motif widgets.

Chapter 11 is a guide to internationalizing applications and pro-
viding text, font, and other information that is specific to partic-
ular language environments.

Chapter 12 explains how Motif uses colors and pixmaps and how
an application can provide its own.

Chapter 13 discusses issues in handling input, including key-
board focus and traversal, translations, and actions.

Chapter 14 describes DrawingArea, a general-purpose widget for
displaying graphics and handling user input at a low level.

Chapter 15 is an extensive discussion of the Motif drag and drop
interface, with which the user transfers data by manipulating
iconic representations with the pointer.

Chapter 16 discusses communication between an application
and other clients, including the Motif Window Manager (MWM),
by means of resources, selections, protocols, and properties.

Appendix A describes the Widget Meta-Language (WML) facil-
ity, which generates portions of the UIL compiler to support new
widget sets.

Appendix B is an extended example program using the drag and
drop interface.

Xi

OSF/Maotif Programmer’s Guide

Related Documents

For additional information about OSF/Motif, refer to the following
documents:

- The OSF/Motif Programmer’s Reference provides detailed refer-
ence information for programmers writing Motif applications.

- The Application Environment Specification (AES) User Environ-
ment Volume defines a stable set of routines for creating user
interface applications.

- The OSF/Motif Style Guide explains the principles of user inter-
face design for application developers.

- The OSF/Motif User's Guide explains how to interact with
OSF/Motif applications.

For additional information about Xlib and Xt, refer to the following
X Window System documents:

- Xlib—C Language X Interface is the specification for Xlib.

- X Toolkit Intrinsics—C Language Interface is the specification
for Xt.

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bol d Bol d words or characters represent system elements
that an application or user must use literally, such as
functions, data types, commands, flags, and

Xii

Preface

pathnames. Bol d words also indicate the first use of
a term included in the glossary.

Italic I t al i ¢ words or characters represent variable values
and arguments that an application or user must sup-
ply.

Constant width
Examples and information that the system displays
appear in this typeface.

< > Angle brackets enclose the name of a key on the key-
board.
ComponentName

Components of the user interface are represented by
upper-case letters for each major word in the name of
the component, such as PushButton.

Keyboard Conventions

Because not all keyboards are the same, it is difficult to specify keys
that are correct for every manufacturer’'s keyboard. To solve this
problem, this guide describes keys using a virtual key mechan-
ism. The term vi rtual implies that the keys as described do not
necessarily correspond to a fixed set of actual keys. Instead, virtual
keys are linked to actual keys by means of virtual bi ndings. A
given virtual key may be bound to different physical keys for
different keyboards.

See chapter 13 of this book for information on the mechanism for
binding virtual keys to actual keys. For details see the
Virtual Bindings(3X) reference page in the OSF/Motif
Programmer’s Reference.

Xiii

OSF/Maotif Programmer’s Guide

Mouse Conventions

Mouse buttons are described in this guide using a virtual button
mechanism to better describe behavior independent from the
number of buttons on the mouse. This guide assumes a 3-button
mouse. On a 3-button mouse, the leftmost mouse button is usually
defined as BSel ect, the middle mouse button is usually defined as
BTr ansf er, and the rightmost mouse button is usually defined as
BMenu. For details about how virtual mouse buttons are usually
defined, see the Virtual Bi ndi ngs(3X) reference page in the
OSF/Motif Programmer’s Reference.

Problem Reporting

Xiv

If you have any problems with the software or documentation,
please contact your software vendor’s customer service department.

Chapter 1. Introduction

OSF/Motif is a graphi cal user interface, a means by which an
application program can obtain input from and display output to a
user of the application. Motif provides the intermediary mechan-
isms for communication between the application and the user. To
both sides, these mechanisms appear as a set of objects with graphi-
cal representations on the screen. The program creates and
displays objects of a variety of types provided by Motif for showing
the user particular kinds of output and requesting particular kinds
of input. The user supplies input by manipulating the screen
representations of these objects with the pointer, the keyboard, or
both.

This book explains the Motif application programmng inter-
face. This is the set of facilities that Motif gives an application
developer to create and interact with a Motif interface for the appli-
cation. This book is not a reference work; that is, it does not
attempt to describe the API in exhaustive detail. Its focus is on giv-
ing an overview of the Motif architecture, explaining the concepts
and conventions required to use the API, and providing examples.
This book complements other volumes in the OSF/Motif documenta-
tion set:

- The OSF/Motif Programmer’s Reference describes each element
of the Motif programming interface in detail. It is organized into
reference pages, one for each element of the interface.

- The Application Environment Specification (AES) User Environ-
ment Volume describes which elements of the interface an appli-
cation should use for maximum portability. All implementations
of OSF/Motif must support the interfaces described in the AES.

- The OSF/Motif Style Guide describes how an application should
use the interface for maximum consistency with other Motif
applications.

- The OSF/Motif User's Guide describes the appearance and
interaction style of Motif from the user’s point of view.

1-1

OSF/Maotif Programmer’s Guide

The Motif API as supplied by OSF is implemented in the C pro-
gramming language. Motif requires that an application written in
C conform to American National Standards Institute (ANSI) C.
This book assumes knowledge of ANSI C, which is explained by
other published reference and tutorial books. It is also possible to
write applications in other languages, including C++, but this book
gives explanations and examples only for applications written in C.

1.1 The X Window System

1-2

Motif is based on the X Window System, often abbreviated as X.
The X Window System is fundamentally a protocol by which an
application can generate output on a computer that has a bit-
mapped display and can receive input from devices associated with
the display.

X is based on a client-server computing model. The application
program is the client, communicating via the X protocol with a
server that handles the direct output to and input from the display.
This model has several important features:

= The client and server may be running on the same machine or on
different machines, communicating over a network.

= Only the server need concern itself with the display hardware.
The X protocol is hardware independent, so a client can run
without alteration using any kind of display that supports the
protocol.

- A server may handle multiple clients on the same display at the
same time. These clients may communicate with each other,
using the server to transfer information.

Introduction

- A client may communicate with multiple servers.

A di spl ay is an abstraction that represents the input and output
devices controlled by a single server. Usually a display consists of a
keyboard, a pointing device, and one or more screens. A screen is
an abstraction that represents a single bitmapped output device.

Each client creates one or more wi nhdows on one or more screens of a
given display. A window is a rectangular area of the screen on
which the client displays output. Windows are arranged in hierar-
chies of children and parents. The server maintains a tree of win-
dows for each screen. The top-level window is the root w ndow of
the screen. Each client typically creates at least one window as a
child of the root window, and any other client windows are descen-
dants of these top-level client windows. Windows may overlap, and
the server maintains a stacking order for all windows on a screen.
A child window may extend beyond the boundaries of its parent, but
output is cl i pped or suppressed outside the parent’s borders.

A client asks the server to create and destroy windows, but the win-
dows themselves are resources controlled by the server. The server
maintains other resources, including the following:

- A pi xmap is a rectangular off-screen area into which an applica-
tion can draw output. Both windows and pixmaps are draw
abl es or entities on which a client can display output. The units
of height and width in windows and pixmaps are pi xel s. Each
pixel has a given depth, represented as a number of bits or
pl anes. Thus, each pixel has an integral value whose range
depends on the depth of the drawable. A one-bit-deep pixmap is
called a bi t map. Each pixel in a bitmap has two possible values,
0 and 1.

- A col ormap is an association between pixel values and colors.
Each color is represented by a triple of red, green, and blue
values that result in a particular color on a particular screen.
Each window has an associated colormap that determines what

1-3

OSF/Maotif Programmer’s Guide

1-4

color is used to display each pixel.
- Afont is a collection of glyphs usually used to display text.

- Acursor is an object containing information needed for a graph-
ical representation of the position of the pointer. It consists of a
source bitmap, a shape bitmap, a hot spot or location represent-
ing the actual pointer position, and two colors.

- A graphics context or GC is a collection of attributes that
determine how any given graphics operation affects a drawable.
Each graphics operation on a drawable is executed using a given
GC specified by the client. Some attributes of a GC are the fore-
ground pixel, background pixel, line width, and clipping region.

- Aproperty is a named data structure associated with a window.
Clients often use properties to communicate with each other.

Each client opens a connection to one or more servers. Clients and
servers interact by means of requests, replies, errors, and
events. A client sends a request to the server asking it to take
some action, such as creating a window or drawing a line into a pix-
map. Some requests, such as requests for information, cause the
server to generate replies to the client. A request that results in an
error condition may cause the server to generate an error report to
the client. The server executes requests from each client in the
order in which it receives the requests from that client, although
the server may execute requests from other clients at any time.

The server notifies clients of changes of state by means of events.
An event may be a side effect of a client request, or it may have a
completely asynchronous cause, such as the user’s pressing a key or
moving the pointer. In addition, a client may send an event, via the
server, to another client.

Each client asks the server to send that client events of particular
types that occur with respect to particular windows. The server
generally reports an event with respect to some window. For

Introduction

example, the keyboard is conceptually attached to a window, known
as the f ocus window. When the user presses a key, the server usu-
ally reports an event with respect to the focus window. If a client
has asked the server to send it events of type KeyPress occurring
with respect to some window, the server sends that client an event
whenever the user presses a key while that window has the focus.

From the point of view of a client reading events from the server,
events that result from that client’s own requests arrive in the order
in which it makes the requests. However, those events may be
interspersed with events that result from other causes, such as user
input or another client’'s actions. Furthermore, the client may
buffer requests and the server may buffer events before actually
transmitting them, so an event may arrive long after the client
makes the request that generates the event.

The point is that for the most part event processing in X is
inherently asynchronous. Most client applications continually loop,
reading an event, processing the event (possibly making requests
during the processing), and then reading another event. The client
cannot assume, for example, that a given input event was generated
after a given client request just because the client read the event
after it made the request. Many events have ti mest anps that indi-
cate when the server actually generated the events. A client that
depends on the temporal ordering of events must often examine
these timestamps.

1.2 Xlib, Xt, and Motif

1-5

OSF/Maotif Programmer’s Guide

1.2.1 Xlib

1-6

X clients do not have to deal with the server at the level of the X
protocol. X includes a C language client interface to the protocol,
called Xlib. Among the Xlib facilities are the following:

- Routines for creating and managing the basic server resources,
including windows, pixmaps, fonts, cursors, GCs, and properties

- Routines for rendering text and graphics into drawables

- Buffering of requests to the server and queuing of events from
the server

- Data structures representing events of all types, and routines for
selecting and reading events

- Routines for handling colormaps and for using device-
independent color spaces

- Routines for generating text input and output in different locales

- The X resource manager (Xrm), a database of options specified
by the user or the application

The resource manager is the keystone of a fundamental tenet of X:
that the user and application should control the appearance,
interaction style, and other optional characteristics of a client. For
example, the background and foreground colors and the fonts used
by an application might be represented as resources. Typically, an
application provides default values for such resources but allows the
user to override the defaults.

A resource is a triple consisting of a name, a class, and a value. A
class may include a set of resources with different names.
Resources may be arranged hierarchically: a name and class may
consist of components, each identifying the name or class of a par-
ticular level of the hierarchy. The fully qualified name or class

Introduction

of a resource is the list of names or classes at all levels, starting
with the name or class of the application and ending with the name
or class of the resource itself.

The resource manager permits a user or application to specify
resource values in a file, on the command line while starting the
application, or by calling an Xrm routine in the program. A
resource specification must include either the name or the class of
the resource, but it may be either partially or fully qualified accord-
ing to name, class, or a mixture of name and class components. The
resulting resource database may include a variety of general and
specific resource specifications. When an application queries the
database for a resource value, it supplies a fully qualified name and
class. The resource manager uses a search algorithm that returns
the value from the most specific specification that matches the
requested name and class.

1.2.2 Xt

Although Xlib provides the fundamental means of interacting with
the X server, developing a complex application using only Xlib
would be a formidable task. Xlib essentially supplies the primitives
for an X client. A complex application needs to combine these prim-
itives into constructs that handle aspects of interaction with the
server in a more general way.

X includes a library, the X Toolkit Intrinsics (abbreviated Xt), that
supplies some of these higher-level interfaces. Three of the most
important Xt contributions are the following:

= Objects, known as widgets, used to hold data and present an
interface to the user

1-7

OSF/Maotif Programmer’s Guide

- Management of widget geometry

- Dispatching and handling of events

1.2.2.1 Widgets

1-8

At the heart of Xt is a set of data abstractions built on an object
metaphor. Each of these objects, called a wi dget, is a combination
of state and procedure. Each instance of a widget is a member of a
class. A widget cl ass holds a set of procedures and data structures
that are common to all widgets of that class. A widget i nst ance
contains the procedures and data structures that are particular to
that single widget. A widget instance also has a pointer to its class.

Each widget class typically provides the general behavior associated
with a particular kind of interaction with the user. For example,
Motif has a widget class designed to let the user enter and edit text.
This class provides the general behavior to support text input and
display, including editing, selection, cutting, and pasting of text.
The class has data structures related not only to the content of the
text but also to the appearance of the widget's on-screen representa-
tion. To use this class, an application creates an instance of this
class of widget and provides some of its own data and procedures for
the widget instance.

Xt supports single inheritance of widget classes. That is, a widget
class may be a subclass of another class, its superclass. A subclass
is often a specialized variant of a more general superclass. The sub-
class may inherit, override, or supplement the procedures and data
structures of its superclass. Xt generally supplies widget classes
designed to be superclasses for other classes. Motif supplies the
subclasses of which the the application constructs widget instances.
The "Widget Classes and Hierarchy" section summarizes the Motif

Introduction

and Xt widget class hierarchy.

Widget instances form another, separate hierarchy. Every widget
except the top-level widget (or widgets) in an application has a
parent widget. Widgets of some classes, called conposites, may
have children. Other kinds of widgets, often called either prim -
tives or gadgets, generally do not have children. An application
constructs one or more trees of widget instances made up of compo-
sites, primitives, and gadgets. For example, a menu may consist of
a composite parent representing the menu and a number of primi-
tive children representing buttons. The menu and its children are
one branch of the overall widget tree of the application.

Xt and Motif provide all the widget classes that most applications
need. It is possible for an application to define new widget classes,
but this requires knowledge of Xt and of Motif internals that is
beyond the scope of this book. A typical application creates widget
instances of the built-in classes, providing its own procedures and
data for its widgets.

Xt uses an extension of the resource mechanism to represent the
widget instance data that is available to an application. Each
widget class defines a set of resources that apply to widgets of that
class. A class may inherit or override the resources of its superc-
lasses as well.

A widget class declares a name and a class for each of its resources.
Xt and Motif give each widget class has a hame, and the application
gives each widget instance a name. Finally, the application
developer provides a name and a class for the application itself. For
a given resource of a given widget, the fully qualified name is the
list of names beginning with the application name, continuing with
the name of the top-level widget and then with the names of descen-
dant widgets down to the name of the given widget, and ending
with the name of the resource. The fully qualified class is the list of
classes beginning with the application class, continuing with the
class of the top-level widget and then with the classes of descendant

1-9

OSF/Maotif Programmer’s Guide

widgets down to the class of the given widget, and ending with the
class of the resource.

The user, the application, and the widget class combine to provide
values for resources and thus to control the appearance and other
attributes of components of the application. Both the user and the
application developer can provide either specific or general
specifications for widget resources in several resource files and on
the command line. They can also supply different resource
specifications depending on the locale, the characteristics of the
screen, or arbitrary customization criteria.

When the application starts up, Xt combines these specifications
into an initial resource database. When the application creates a
widget, Xt assigns initial values to the widget's resources using a
specification from the database, from values supplied by the appli-
cation at creation time, or from defaults supplied by the widget
class. After creating a widget, the application can use the Xt Get -
Val ues routine to retrieve the value of a widget resource and the
Xt Set Val ues routine to supply a new value for a resource.

1.2.2.2 Widget Geometry

1-10

Most widgets either have an associated window or occupy a defined
rectangular area of their parent’s window. Each widget has a
height, width, and a position with respect to its parent, expressed
as the x and y coordinates of the upper left corner of the widget.
Specification of the dimensions of widgets and their positions with
respect to each other constitutes the layout or geonetry of the
application.

Application geometry results from the interaction of several factors:

Introduction

- The user or application may supply values for resources that
influence geometry, such as the height and width of a widget.

- A wi ndow nanager, a special client that controls the positions
and sizes of top-level windows, runs on most displays. Motif pro-
vides a window manager called the Motif Window Manager
(MWM). The user can change the size of most top-level windows
by means of window manager facilities.

- A child widget may have preferences about its size. For exam-
ple, a widget that displays a label may wish to be wide enough to
display all the text of the label.

- A parent widget may have preferences about the sizes and loca-
tions of its children. For example, a menu widget may wish to
lay out its button children aligned in a given number of rows or
columns.

The process of accounting for all these factors and determining
widget layout is known as geonetry nanagenent. Xt provides the
essential means of handling geometry management:

- All widgets have resources that specify, either directly or
indirectly, the geometry intended by the user or the application.

- Xt has special widgets known as shells whose function is
largely to handle interaction between the application and out-
side agents such as window managers.

- Widget class procedures may ask the widget's parent to change
the widget's geometry, may calculate a preferred size, and may
recalculate the widget's layout when the widget is given a new
size.

- Parent widgets have ultimate control over the geometry of their
children. A widget class procedure of a parent may accept or
reject a child’'s request to change its geometry. In general a
parent may change a child’'s geometry at any time.

1-11

OSF/Maotif Programmer’s Guide

A child is managed when it and its parent are prepared to negotiate
geometry. In general widgets are eligible to appear on the screen
only after they are managed.

See chapter 10 for more information on geometry management and
the specific management policies of Motif widgets.

1.2.2.3 Event Handling

1-12

Xt has an event-handling procedure that reads events from the
server and dispatches them to appropriate widgets. Each widget
that has an associated window may also have a translation
tabl e. This table maps descriptions of events to names of pro-
cedures, known as acti ons. When Xt reads an event associated
with a widget, it looks up the event description in the translation
table and dispatches the event to the associated action routine.

An application can provide its own action routine, but most such
routines are supplied by the widget class. An action routine often
takes some action on its own and then notifies the application by
invoking an application procedure known as a cal | back. Many
widgets have resources whose value is a list of callback procedures.
The widget invokes the procedures on these lists at specified times,
often when the widget receives certain kinds of events. Xt supplies
other means for an application to receive and respond to events, but
many applications need only add appropriate callback procedures.
These callbacks do most of the "work"” of the application in the
course of interacting with the user.

The Xt event-handling mechanism leads naturally to an event-
driven structure for an application program. Most applications
have the same general form:

Introduction

Initialize the application

Create and manage the application widgets

Provide callback procedures to be invoked by widgets

Enter the Xt event-dispatching loop, which usually does not
return

See chapter 3 for more information about the structure of a Motif
application.

1.2.3 Motif

Xt provides the substrate for creating a set of widgets responsible
for specific aspects of a user interface. Motif uses the Xt substrate
to build both base classes and specialized subclasses of widgets for a
variety of purposes. The "Widget Classes and Hierarchy" section
outlines the Motif widget set.

In addition to supplying widgets, Motif adds a number of features
that are of general use to applications and users. The following sec-
tions summarize some of these features.

1.2.3.1 Visual Style

Motif widgets have a distinctive visual style. Many widgets have
shadows with a three-dimensional look that makes the widget
appear to be raised above or depressed below the background. A
widget that has keyboard focus may have a rectangular hi ghl i ght
border. When the user presses the BSel ect mouse button and focus

1-13

OSF/Maotif Programmer’s Guide

is in a button, the color of the button face changes to indicate that
the user has selected or "pressed" the button.

Motif automatically generates default colors for widget foregrounds,
shadows, highlights, and selections states. The user or application
can supply its own colors or pixmaps as values for widget resources.

See chapter 12 for more information on colors and pixmaps in Motif.

1.2.3.2 Selections and Drag and Drop

1-14

The X Window System establishes conventions for clients to follow
in allowing the user to transfer data from one application to
another. These transfers operate via sel ecti ons of several kinds,
including primary, secondary, and clipboard selections. A selection
is a shared resource that can be owned by only one client at a time
for a given display. When the user wants to transfer data from one
application to another, the receiving client asks the selection owner
to convert the data into a form the receiving client understands, and
then the receiver inserts the data. This mechanism can also
transfer data between one widget and another in the same applica-
tion.

The Motif Text and TextField widgets support primary, secondary,
and clipboard selections. Motif also has routines that handle the
clipboard selection, allowing an application to copy data easily to
and from the clipboard. Xt provides more general routines for
transferring data by means of selections.

Motif has an extensive drag and drop mechanism for transferring
data. The user begins a transfer by pressing the BTr ansf er mouse
button with the pointer over a data source. The user then drags an
iconic representation of the data to a spot that can receive the data,
called a drop site. When the user releases BTransfer the data is

Introduction

moved, copied, or linked to the drop site.

The Motif Text, TextField, List, and Label subclasses automatically
support drag and drop transfer of textual and some pixmap data.
Motif includes an extensive programming interface of objects and
routines that allow an application to establish its own drag sources
and drop sites, control negotiation between sender and receiver,
customize the visual elements, and convert arbitrary kinds of data.

See chapter 16 for information on selections and the Motif clipboard
interface. See chapter 15 for an extensive discussion of drag and
drop.

1.2.3.3 Keyboard Traversal

Motif provides two styles of transferring keyboard focus from widget
to widget. In one style, the widget that contains the pointer has
focus. In the other style, the user presses a key or the BSel ect but-
ton to move focus to another widget, and the pointer location does
not otherwise affect the focus.

In the second style, Motif distinguishes between traversal to a com-
posite or a widget with internal navigation, called atab group, and
navigation to a widget or element within a tab group. Motif has a
number of resources and routines to control traversal using this
style.

See chapter 13 for more information on keyboard traversal and
other input issues.

1-15

OSF/Maotif Programmer’s Guide

1.2.3.4 Compound Strings and Font Lists

Motif represents much textual data using a data type called a com
pound string. This is a byte stream consisting of components
representing text, a display direction, and a font |ist el enent
tag. A compound string can have multiple text segments, possibly
with different directions and font list element tags. Motif uses com-
pound strings to represent all text except that in the Text and Text-
Field widgets.

For each widget that can contain text, Motif maintains font infor-
mation using a data type called a font list. This is a list of
entries, each consisting of a font list element tag and either a font
or a font set. A font set is a construct representing a group of fonts
needed to display text in the locale of the application.

When Motif displays the text of a compound string segment, it
matches the segment’s font list element tag with a font list element
tag from the widget's font list. It then uses the associated font or
font set to display the text of the segment. A special font list ele-
ment tag indicates text to be parsed in the encoding of the locale
and displayed using the fonts needed in that locale.

See chapter 11 for more information on compound strings and font
lists, particularly for information on preparing an application for
different language environments.

1.2.3.5 Motif Window Manager

The Motif Window Manager (MWM) is a Motif client that is capable
of managing windows of either Motif or non-Motif applications.
MWM provides window decorations and functions for moving,

1-16

Introduction

resizing, raising, lowering, maximizing, and minimizing windows.
The user can display icons either on the root window or in an icon
box. MWM has many resources that permit the user to customize
its appearance and behavior.

See chapter 16 for more information on the application interfaces to
MWM. See the mwr(1X) reference page in the OSF/Motif
Programmer’s Reference for information on MWM resources and
functions.

1.2.3.6 UIL and MRM

Motif has a specification language called the User Interface
Language (UIL). The developer uses UIL to define widgets and
data in a text file. The developer then compiles this file into a
binary format. At run time the application, using Motif Resource
Manager (MRM) routines, retrieves the widget descriptions and
data definitions from the binary file, and MRM creates the widgets
and data structures from these descriptions.

UIL and MRM work in conjunction with the Motif toolkit. The
application defines callback procedures and interacts with the widg-
ets as if it were using the Motif toolkit alone. By using UIL to
define the program’s widget hierarchies, the developer can separate
the user interface specification from the application code. A
developer can change the interface by editing and recompiling a text
file without recompiling and relinking the application program. As
with resource files, a developer can use separate UIL files to contain
text, font lists, and other data specific to particular locales.

See chapter 4 for information on using UIL and MRM in an applica-
tion. See the UL(5X) reference page in the OSF/Motif
Programmer’s Reference for information on UIL syntax.

1-17

OSF/Maotif Programmer’s Guide

1.2.4 Using Xlib, Xt, and Motif

1-18

Xt is built atop Xlib, and Motif is built atop Xt. One goal of Xt is to
give applications a set of high-level interfaces and objects that
relieve the program of the need to deal with many primitive Xlib
routines. A goal of Motif is to give applications still higher-level
interfaces and particularly a versatile set of widgets to relieve the
program of the need to define its own widgets for most tasks.

However, Xt does not strive to replace all Xlib interfaces, and Motif
does not strive to replace all Xt interfaces. Even a simple Motif
application must use basic Xt routines to initialize the toolkit,
manage widgets, create windows for widgets, get and set resources,
add callback routines, and enter the event-dispatching loop.

Many Motif applications do not need to call Xlib routines. However,
Motif does not have its own graphics routines, color-space facilities,
or support for application management of input methods. Programs
that need these features must either use vendor-supplied tools or
call Xlib routines directly.

As a general rule, an application should use the highest-level inter-
faces sufficient for the tasks at hand. Not only does this usually
result in a concise program, but it also ensures that the program
functions as intended when a higher-level procedure supersedes a
lower-level procedure.

For example, Xlib, Xt, and Motif all have routines to set keyboard
focus to a window or widget. Xt and Motif both maintain internal
state that keeps track of focus changes. If a Motif application uses
the Xt or Xlib routine, it may cause Motif or Xt to become internally
inconsistent.

By convention, the names of Xlib routines and data structures begin
with "X"; the names of Xt routines and data structures begin with
"Xt"; and the names of Motif routines and data structures begin

Introduction

with "Xm".

This book does not document Xlib or Xt interfaces. A Motif applica-
tion developer must have a working knowledge of basic Xt applica-
tion interfaces and should have at least general familiarity with
Xlib. For more information on Xlib, see the X Consortium Standard
Xlib—C Language X Interface. For more information on Xt, see the
X Window System document X Toolkit Intrinsics—C Language
Interface.

1.3 Widget Classes and Hierarchy

This section gives a brief overview of the hierarchy of widget classes
in Xt and Motif. Chapter 2 discusses this hierarchy in more detail.

1.3.1 Xt Classes

Xt defines the base classes for all widgets. Cor e is the fundamental
class for all widgets that can have windows. Core has basic
resources for a widget's geometry, background color, translations,
and sensitivity to input. Widgetlike objects—called gadgets in
Motif—that do not have windows are subclasses of Rect Qbj . This
class has geometry resources but no colors or translations.

Conposi t e is the base class for all widgets that can have children.
This class maintains a list of its children and is responsible for
managing their geometry. Constrai nt is a subclass of Conposite
that maintains additional data for each child, represented by con-
strai nt resources for the child.

1-19

OSF/Maotif Programmer’s Guide

Shel | is the base class for shell widgets. Shells envelop other widg-
ets whose windows are children of the root window. Shells are
responsible for interaction with the window manager. Shell is a
subclass of Conposi t e. Xt has the following subclasses of Shel | :

Overri deShel |
Envelops widgets that the window manager should
ignore, such as menus

Wishel | Superclass for shells that need to interact specifically
with the window manager

Vendor Shel | Subclass of Wbshel | that implements toolkit-specific
behavior

Transi ent Shel |
Subclass of Vendor Shel | for widgets such as dialogs
that appear briefly on behalf of other widgets

TopLevel Shel |
Subclass of Vendor Shel | for top-level widgets for
components of the application

Appl i cationShel |
Subclass of TopLevel Shel | for the top-level widget
that represents the application as a whole

1.3.2 Motif Classes

1-20

Motif has three broad groups of widgets: primitives and gadgets,
managers, and shells.

Introduction

1.3.2.1 Primitives and Gadgets

Primitives are widgets that have no children. They are commonly
the fundamental units of input and output, and they are usually
building blocks for composite widgets. XnPri mtive, a subclass of
Core, is the base class for all primitives. XnPrinitive has basic
color resources and provides keyboard traversal behavior.

XnPrimtive is used only as a superclass for classes with more
specific behavior. Following are the subclasses of Motif primitives:

XBepar at or

XnlLabel

Used to separate other widgets; usually appears as a
line.

Displays text or a pixmap. As superclass for buttons,
provides specialized behavior, such as keyboard
traversal, inside menus

XnmCascadeBut t on, XnDr awnBut t on, XnPushBut t on, XnToggl eBut -

Xntcr ol | Bar

Xnbi st

XnText

ton Subclasses of XmLabel that perform some action
when activated or "pressed" by the user. Subclasses
have roles as menu activators, toggles, pushbuttons,
and small graphics areas.

Control that moves a scroll widget horizontally or
vertically with respect to a fixed viewport on the
scroll.

Array of textual items from which the user can select
one or more entries.

Widget for display and possibly editing of text. May
be multiline or constrained to a single line. Xnirext -
Fi el d is a variant optimized for single-line text.

1-21

OSF/Maotif Programmer’s Guide

Gadgets are variants of primitives that have no windows. Gadgets
have geometry, but they inherit colors from their parents and
depend on their parents to dispatch input events to them.
XnGadget, a subclass of Rect (hj, is the base class for gadgets.
Gadget variants exist for separators, labels, and most button
classes.

See chapter 8 for more information on the Text and TextField widg-
ets. See chapter 5 for more information on other primitives.

1.3.2.2 Managers

1-22

A manager is a widget that generally has children and manages
their geometry. XmManager, a subclass of Constrai nt, is the base
class for managers. This class has special responsibilities when it
has gadget children. It provides color resources that its gadget chil-
dren inherit, and it dispatches input events to appropriate gadgets.
Following are the subclasses of Motif managers:

Xnr ane Surrounds a child with a shadow and a margin.

Xscal e Displays a value within a range and optionally allows
the user to supply a new value.

XnmPanedW ndow

Arranges children, called panes, vertically from top to
bottom. May insert a control called a sash that lets
the user adjust the size of a pane.

Xnscr ol | edW ndow
Provides a viewport onto a child widget that behaves
as a virtual scroll. Manages ScrollBars to move the
scroll with respect to the viewport.

Introduction

Xmvai nW ndow
Subclass of ScrolledWindow that provides support for
a MenuBar and other specialized areas.

XnmRowCol umm
Implements menus, radio boxes, and check boxes,
usually consisting of button children. Can be used to
lay out arbitrary widgets in rows, columns, or two-
dimensional formations.

XnmBul | et i nBoar d

Superclass for dialogs, widgets that present informa-
tion to the user or seek information from the user.
The dialog widget may be a BulletinBoard, which pro-
vides general behavior, or a specialized subclass.
Common subclasses present a list from which the
user makes a selection; display file names and allow
the user to choose one; ask the user to enter a com-
mand; and display a message. One subclass, Xror m
performs general constraint-based geometry manage-
ment for its children.

XnDr awi ngAr ea
General-purpose manager suitable for use as a canvas
for graphics operations.

See the following chapters for more information on Motif manager
widgets:

- RowColumn—chapter 6 for menus; chapter 10 for geometry
management

- BulletinBoard subclasses—chapter 7 for dialogs; chapter 10 for
geometry management

= ScrolledWindow, MainWindow, PanedWindow, Frame—chapter
9

1-23

OSF/Maotif Programmer’s Guide

- DrawingArea—chapter 14

1.3.2.3 Shells

Motif has three shell classes:

Vendor Shel | Motif-specific implementation of the Xt class. Among
other responsibilities, manages communication with
MWM.

XnDi al ogShel |
Subclass of Transi ent Shel |l that envelops dialogs.
Cooperates with BulletinBoard in popping up and
positioning transient dialogs.

XmvenuShel |
Subclass of Overri deShel | that envelops menus.

1.3.2.4 Other Motif Classes

Motif uses a number of specialized objects that are not intended to
be used in creating widgets. These objects exist primarily to hold
resources and other information that would be difficult to make
available in another way. XnD spl ay holds resources specific to a
given display, and Xnscr een holds resources specific to each screen
on which the application has created a widget. The drag and drop
interface includes objects representing several aspects of a drag and
drop transaction, including the general context, drop sites, drag
icons, and data transfers.

1-24

Introduction

1.4 Header Files and Libraries

Xlib, Xt, and Motif all have header files that an application must
include. However, the Motif header files themselves include the
required Xt files, which in turn include the required Xlib files. An
application usually needs to include only the proper Motif files.

All Motif applications must include the file <Xm Xm h>. This file
contains definitions that all applications need. Each Motif widget
also has an include file. An application must include the header
files for all widgets it creates. In addition, some groups of Motif
routines have their own header files. Required include files for each
Motif widget and routine are documented in the OSF/Motif
Programmer’s Reference.

Instead of using a large number of include files for particular widg-
ets and routines, an application can include <Xm XmAl | . h>. This
file incorporates all documented Motif header files.

When building a Motif application, a developer must link the pro-
gram with the appropriate libraries. Xlib, Xt, the Motif toolkit, and
MRM have separate libraries. An application that does not use
MRM must be linked with the Motif toolkit, Xt, and Xlib libraries.
An application that uses MRM must be linked with these libraries
and also with the MRM library. A developer might also need to link
the application with additional libraries, depending on the platform
and operating system. Consult your system administrator and ven-
dor documentation for more information on the libraries required
for Motif applications.

1-25

Chapter 2. The Motif Programming
Model

OSF/Motif accommodates a variety of application programming
styles. An application can accomplish most tasks, such as handling
a particular kind of user input or displaying a particular kind of
output, in more than one way. While this flexibility is one of the
strengths of OSF/Motif, the toolkit has been designed with a set of
programming principles in mind. This chapter explains at a gen-
eral level the intended uses of Motif widgets and other features of
the toolkit. The next chapter outlines the structure of common
Motif programs, and succeeding chapters explain toolkit features in
more detail.

The following general principles make sense in writing any Motif
program:

- Adopt a user-centered perspective. In most Motif programs, the
application does its work in response to commands or other
input from the user. An important part of interface design is
deciding precisely which commands, options, and other informa-
tion the user can give the application. The interface then con-
sists largely of procedures that execute the user’'s commands or
otherwise respond to the user’s input.

- Separate the design of the core application and the user inter-
face. The core application should not depend on a particular
user interface. Often it's a good idea to specify a set of generic
routines and data structures for obtaining input and displaying
output. The developer can then implement these routines in
different ways to provide different user interfaces for the applica-
tion.

- Follow the OSF/Motif Style Guide in designing the user inter-
face. Although an application can use Motif widgets in many
configurations, users find some more common, intuitive, and
comfortable than others. The OSF/Motif Style Guide contains
requirements and recommendations for compliant applications,
and it offers more advice on application design.

2-1

OSF/Maotif Programmer’s Guide

2-2

- Outline the widget hierarchy. Once you have settled on one or

more combinations of widgets, you may find the implementation
more tractable if you sketch a genealogy of all the widgets the
program uses. Constructing a widget tree can reveal gaps and
awkwardness in the design. Attaching dialogs and menus to the
hierarchy may help ensure consistency and completeness in the
presentation and solicitation of information.

Use high-level interfaces when possible. A Motif application
must use some X Toolkit Intrinsics (Xt) interfaces, and it may
call other public Xt and Xlib routines. For some tasks, such as
drawing graphics, an application must call lower-level routines.
However, Motif provides interfaces such as resources, callback
lists, and convenience routines to handle many common tasks.
Motif also includes both simple and composite widgets that do
most of the work related to their specific functions, such as text
editing or constraint-based geometry management. Using a
high-level Motif interface instead of a comparable series of
lower-level calls can make code simpler and more maintainable.

Use resource files and the User Interface Language (UIL) to
specify characteristics of the interface. Avoid locking the user-
interface specification and data into the application code. Using
resources gives the user the power to override application-
supplied default behavior. UIL provides the opportunity to
separate the widget hierarchy from the application. With both
resources and UIL, the developer can change the interface
without recompiling the application code. These mechanisms
also provide the means to tailor the interface and data for partic-
ular language environments.

The Motif Programming Model

2.1 A User-Centered Model

A basic principle of Motif and Xt programming is that the user is in
charge of the application. Except in unusual circumstances, the
program takes action in response to commands or other input from
the user. In fact, a typical Motif program spends most of its real
time waiting for the user to provide input.

The fundamental object type in a Motif interface is the wi dget.
Some widgets can display output or process input or both; some
widgets serve to contain other widgets. A widget is usually associ-
ated with a wi ndow or a rectangular area of the screen. A widget
also has attributes, called r esour ces, which can often be set by the
user or the application. An application organizes widgets into one
or more hierarchies or trees of parent widgets and their children.

Motif and Xt define a set of widget types or cl asses. A widget class
may be a subclass of another class; in that case it inherits some of
the attributes and behavior of the superclass. Motif has three basic
classes of widgets:

- Primtives are the basic units of input and output. Primitives
usually do not have children. Specialized Motif primitives
include labels, separators, buttons, scroll bars, lists, and text
widgets. Some primitive classes have equivalent objects called
gadget s. These are just like primitives except that, to enhance
performance, they have no associated windows.

- Managers are composite widgets that contain primitives, gadg-
ets, or other managers. Managers are responsible for the
geometrical arrangement of their children. They also process
and dispatch input to their gadget children. Specialized Motif
managers include frames, scrolled and paned windows, menus,
constraint-based geometry managers, and several kinds of dia-
logs.

2-3

OSF/Maotif Programmer’s Guide

2-4

- Shel | s are widgets whose main purpose is to communicate with
the window manager. Most shells have only one child, and they
maintain the same size and position as the child. Specialized
Motif shells exist to envelop applications, dialogs, and menus.

Defining a widget hierarchy is one of the two main tasks of a Motif
application. The other is to define a set of cal | back procedures.
Callbacks are the primary means by which the application responds
to user input. When the user takes an action like pressing a key or
a mouse button, the X server sends the application an event. Xt
dispatches these events to the appropriate widget, usually the one
to which the user directed the input. Xt maps the event to one or
more widget acti on routines. The action may change the state of
the widget and, if the application has asked to be notified of that
action, may "call back" to the program by invoking an application
callback procedure.

Many Motif widgets have resources that are lists of callback pro-
cedures. Motif invokes a list of callbacks when the user takes an
action that has a particular meaning. For example, most buttons
have callbacks that Motif invokes when the user acti vat es the but-
ton. The user may activate the button in a number of ways, such as
by pressing the KActi vat e key or the BSel ect mouse button. The
events that constitute activation and other meaningful user actions
are defined in a general way in the OSF/Motif Style Guide and are
documented for specific widgets in the OSF/ Mbti f Progranmer’s
Ref erence.

The user action may cause Motif to change to the state and appear-
ance of a widget. For example, when the user presses KActi vat e in
a PushButton, Motif may make the button appear to be depressed
and then released, like a mechanical push button. The action may
have other effects depending on the context. For example, Motif has
a dialog widget called a FileSelectionBox, used for finding and
selecting files. When the user activates the "filter" PushButton in a
FileSelectionBox, Motif searches for and displays the names of files

The Motif Programming Model

that match a pattern displayed elsewhere in the FileSelectionBox.

In general Motif takes care of changing the state and appearance of
a widget to correspond to the user’s action. By default, though, this
action has no effect on the application. The application programmer
must interpret the meaning of the action for the application by pro-
viding a callback routine, which Motif invokes when the user takes
that action. The callback routine may change the state of the appli-
cation, as by changing the value of a variable when the user selects
a new value from a Scale widget. The callback may cause the appli-
cation to take an action. It may also change the state of one or
more widgets itself, or it may create an entirely new widget hierar-
chy.

When both Motif and the application have finished responding to a
user action, the application waits for the user to provide more input.
Xt provides a routine in which applications spend most of their
time. This routine waits for an event, dispatches it to the appropri-
ate widget, and then waits for another event. After initializing the
toolkit and creating the initial widget hierarchy, most applications
enter this loop and remain there until the user terminates the pro-
gram.

Motif and Xt provide other ways for applications to direct and
respond to events, but for simple programs, virtually the entire
interface between the user and the application consists of callback
routines.

2.2 Separating Interface from Application

A widely accepted principle of application design is that a core
application should not rely on a specific user interface. Separating
the application from the interface allows developers to work on the

2-5

OSF/Maotif Programmer’s Guide

2-6

two components independently. It also allows the program to run
with different interfaces without changing the core application.
This makes it easier to port the application to more than one inter-
face and to experiment with different configurations of a single
interface.

Many applications need to collect input from the user and to display
output in some form. It may be easier to separate the core applica-
tion from the user interface if the developer specifies a set of generic
input and output routines along with any necessary data structures.
If these generic interfaces have no dependence on specific user inter-
faces, they can be implemented in different ways for different inter-
faces without changing the core application. They form a module
for communication between the core application and the interface.

The Motif implementation of the interface module consists of code to
perform the following tasks:

- Initialize the Intrinsics

Create the widget hierarchy

Define callback procedures

Make widgets visible

Enter a loop that waits for and responds to user input
These steps are explained in detail in chapter 3.

The User Interface Language (UIL) helps enforce the separation of
the interface from the core application. With UIL, the developer
defines widgets and their characteristics in a text file and then com-
piles the text file into a binary format. At run time the application,
using Motif Resource Manager (MRM) routines, retrieves the widget
descriptions from the binary file, and MRM creates the widgets from
these descriptions. The UIL file can also define data such as text
strings and colors, and MRM can retrieve the data at run time.

2.3

The Motif Programming Model

In this way, an application can remove the description of the widget
hierarchy from the program code. In its source code, the application
defines callback procedures and interacts with the widgets as if it
were using the Motif toolkit alone. Provided that the application
has defined all the callback procedures it needs, a developer can
change the widget hierarchy by editing and recompling the UIL file
without recompiling and relinking the source program.

Building Blocks: Primitive Widgets and
Gadgets

Primitive widgets are the fundamental units of input and output in
Motif. Primitives are commonly the widgets at the leaves of an
application’s widget hierarchy. These widgets do not have children
of their own. The name primitive does not imply simplicity; some
primitives, such as the Text widget, have quite complicated
behavior. Primitive is meant to contrast with manager, a widget
that usually has children. It also suggests a basic component from
which composite widgets are built. Primitives are often referred to
ascontrol s.

The XnPrim tive Motif widget class is the superclass for all primi-
tives. XnPrinitive is itself a subclass of the fundamental Xt
widget class, Core. Core has resources that describe the widget's
width, height, and x and y coordinates with respect to its parent.
Other Cor e resources control characteristics of the window, such as
its background color; whether or not the widget can receive input
events; and the mapping that Xt uses to translate events into calls
to the widget's action routines.

XnmPrimtive adds two groups of features to the Core class. One
group consists of resources to control additional visual

2-7

OSF/Maotif Programmer’s Guide

characteristics, including the characteristic three-dimensional sha-
dow and a highlighting rectangle that can appear when the widget
is the focus for keyboard input. The second group controls keyboar d
traversal , the use of the keyboard to move focus from one widget
to another. This group includes several resources and a set of
translations and actions that allow the user to move the keyboard
focus to another widget by pressing an arrow key. XnPrimtive
also provides callbacks to let the application provide help informa-
tion when the user presses KHel p.

The XmGadget widget class is the superclass for all gadgets.
XnmGadget is a subclass of the Xt widget class Rect (bj . This class
provides resources to determine the dimensions and position of the
gadget’s rectangular area inside its parent. Xnadget is equivalent
to XnPrinitive, with two exceptions:

- Gadgets have no color or pixmap resources; they inherit these
from their parents.

- Gadgets do not have translations or actions. A gadget's parent
controls keyboard traversal from the gadget to another widget,
and it dispatches events to the gadget when appropriate.

XnPrimtive and XmGadget are used only as superclasses for other
classes of widgets. XnPrimtive and XmGadget are not i nstanti -
abl e; an application cannot create an actual widget that is an
instance of either of these classes. Motif has several specialized
subclasses of primitives and gadgets, summarized in the following
sections.

2.3.1 Label and Separator

Labels provide the ability to display static (uneditable) text or a pix-
map. A Label or LabelGadget itself is useful for displaying a

2-8

The Motif Programming Model

message, title, or description. Label and LabelGadgets are also
superclasses for buttons used as menu items, toggles, or controls.

A Label can display either text or a pixmap. When a Label displays
text, it uses a construct called a conpound string. This is stream
of bytes that represents zero or more pieces of text, each with an
associated tag and display direction. When Motif displays the com-
pound string, it matches each tag with a tag in the widget’'s f ont
l'i st and uses the corresponding font or fonts from the font list to
display the text.

A Separator or SeparatorGadget separates controls or groups of con-
trols. It usually appears as a horizontal or vertical line and sup-
ports several styles of line drawing.

Labels and Separators are described in more detail in chapter 5.

2.3.2 Buttons

A button is a basic control that performs some action when the user
activates it. Buttons commonly appear in menus, RadioBoxes and
CheckBoxes, SelectionBoxes and MessageBoxes. Motif has the fol-
lowing classes of buttons:

- A CascadeButton or CascadeButtonGadget is used inside a
menu and, when activated, usually causes a PulldownMenu to
appear.

= A PushButton or PushButtonGadget can appear either inside or
outside a menu. It performs some action determined by the
application. When a PushButton is armed, or ready to be
activated, it changes its appearance so that it looks as if the user
has pressed it in. When it is disarmed it reverts to the appear-
ance of extending out.

2-9

OSF/Maotif Programmer’s Guide

- ToggleButtons and ToggleButtonGadgets have one of two states:
like toggle switches, they are either on or off. They can appear
in menus or in nonmenu RowColumn WorkAreas, including
RadioBoxes and CheckBoxes.

- A DrawnButton is an empty button surrounded by a shadow
border. It is intended to be used as a PushButton but with
graphics drawn by the application.

Buttons are described in more detail in chapter 5.

2.3.3 ScrollBar

A widget can act as a viewport onto a virtual scroll. The scroll is a
plane with text, graphics, a list of items, or other contents. The
viewport is a fixed-size window onto a portion of the scroll.

A ScrollBar is the control that moves the viewport horizontally or
vertically relative to the underlying scroll. A ScrollBar consists of a
rectangle, called the scroll region, representing the full size of the
scroll. It has a smaller rectangle, called the slider, within the scroll
region, representing the position and size of the viewport relative to
the full scroll. The ScrollBar usually has arrow graphics at both
ends of the larger rectangle.

ScrollBars are described in more detail in chapter 5.

2.3.4 List

A List is an array of textual items from which the user selects one
or more entries. Each item is a compound string. A List has four

2-10

The Motif Programming Model

modes for selecting items, two allowing the user to select one item
at a time and two allowing the user to select more than one item in
either contiguous or discontiguous ranges.

Lists are described in more detail in chapter 5.

2.3.5 Text

Text is a widget for displaying and possibly editing text. When the
Text is editable and the user presses a key that represents a text
character, that character is inserted into the text. Other transla-
tions and actions allow the user to navigate or to select, cut, copy,
paste, or scroll the text.

The text in a Text widget can be multiline or constrained to be a
single line. In a single-line widget, actions that move up and down
one line in a multiline widget instead traverse to another widget,
and pressing KTab moves the keyboard focus to another group of
widgets instead of inserting a Tab character. A TextField is essen-
tially the same as a Text widget in single-line mode, except that its
performance is optimized for single-line text operations.

Text is described in more detail in chapters 5 and 8.

2.4 Managers

A manager is a widget that usually contains children, either primi-
tives or other managers. One responsibility of a manager is to posi-
tion and shape its children so that the configuration of the children
is appropriate for the manager's specialized purpose. Another

2-11

OSF/Maotif Programmer’s Guide

responsibility is to determine whether a gadget child should process
an input event and, if so, to dispatch the event to that child.

The XmManager Motif widget class is the superclass for all
managers. Xmrianager is a subclass of Core. Like XnPrimtive,
Xmvanager has resources to control colors or pixmaps used for the
foreground, shadows, and highlighting rectangle. Most managers
do not have shadows or highlighting rectangles, but gadget children
inherit the related resources. Managers also have resources that
control keyboard traversal, and they provide callbacks for process-
ing user requests for help. In addition, they have translations and
actions for dispatching input events to gadget children, usually to
the child that is the current focus of keyboard events.

XmManager is not an instantiable widget class; it is used only as a
subclass for other widgets. Motif has several specialized subclasses
of managers, summarized in the following sections.

2.4.1 Frame

A Frame is a simple manager that surrounds a single child with a
shadow and a margin. A Frame can also have another child that
appears as a title for the Frame.

Frames are discussed in more detail in chapter 9.

2.4.2 Scale

2-12

A Scale is a manager that functions as a control. It displays a value
within a range and optionally allows the user to supply a new

The Motif Programming Model

value. Its appearance and behavior are much like those of a
ScrollBar without arrows. It also has a title and can display the
current value next to the slider. If the application adds other chil-
dren to a Scale, the Scale positions them evenly along the rectangu-
lar area that represents the range of values, and these children
then act as tic marks or value labels.

Scales are discussed in more detail in chapter 5.

2.4.3 PanedWindow

A PanedWindow arranges its children vertically from top to bottom
and forces them all to have the same width. Each child is a pane of
the window. Between each pair of panes, PanedWindow inserts an
optional Separator and a control called a sash. By manipulating a
sash with the mouse or keyboard, the user can increase or decrease
the height of the pane above. PanedWindow has resources to con-
trol the margins, the spacing between panes, and the appearance of
the sashes. Each pane of a PanedWindow has resources specifying
a maximum and minimum height and whether or not either the
pane itself or the PanedWindow should be allowed to resize the
pane without user intervention.

PanedWindow is discussed in more detail in chapter 9.

2.4.4 ScrolledWindow and MainWindow

A ScrolledWindow manages a viewport and ScrollBars to implement
a window onto a virtual scroll. Via the ScrollBars or keyboard scrol-
ling commands, the user can move the viewport to display different

2-13

OSF/Maotif Programmer’s Guide

portions of the underlying scroll.

ScrolledWindow is capable of performing scrolling operations
automatically. In this mode the application creates the widget that
represents the scroll as a child of the ScrolledWindow. The Scrol-
ledWindow then creates a clipping window to act as the viewport;
creates and manages the ScrollBars; and moves the viewport with
respect to the scroll when the user issues a scrolling command.

ScrolledWindow can also allow the application to perform scrolling
operations. In this mode the application must create and manage
the ScrollBars and must change the contents of the viewport in
response to the user’s scrolling commands.

List and Text widgets are often used as virtual scrolls. Motif has
convenience routines to create List and Text widgets inside Scrol-
ledWindows, and the resulting ScrolledList and ScrolledText widg-
ets perform scrolling operations without intervention by the appli-
cation.

MainWindow is a subclass of ScrolledWindow that is intended as
the primary window in an application. In addition to a viewport
and ScrollBars, MainWindow includes an optional MenuBar and
optional command window and message window.

ScrolledWindow and MainWindow are described in more detail in
chapter 9.

2.4.5 RowColumn

2-14

RowColumn implements both menus and nonmenu WorkAreas.
Menus are widgets that allow the user to make choices among
actions or states. Motif offers four basic kinds of menu:

The Motif Programming Model

A MenuBar usually appears in the application’s MainWindow
and sometimes in other components. It most often consists of a
row of CascadeButtons that, when activated, cause Pulldown-
Menus to appear.

- A PopupMenu contains a set of choices that apply to a com-
ponent of the application. The menu is not visible until the user
takes an action that posts it, It can contain buttons that take
action directly or CascadeButtons that cause PulldownMenus to
appear.

= A PulldownMenu is associated with a CascadeButton in a Menu-
Bar, a PopupMenu, or another PulldownMenu. The menu is not
visible until the user posts it by activating the associated Cas-
cadeButton. Like a PopupMenu, a PulldownMenu can contain
buttons that take action directly or CascadeButtons that cause
other PulldownMenus to appear.

- An OptionMenu allows the user to choose among one set of
choices, usually mutually exclusive attributes or states. It con-
sists of a label, a CascadeButtonGadget whose label shows the
currently selected option, and a PulldownMenu containing but-
tons that represent the set of options.

One use for a nonmenu RowColumn WorkArea is to contain a set of
ToggleButtons constituting a RadioBox or a CheckBox. When the
user selects a ToggleButton, its state changes from on to off of from
off to on. Another use is to lay out an arbitrary set of widgets in a
row, column, or two-dimensional formation.

RowColumn is discussed in more detail in chapter 6.

2-15

OSF/Maotif Programmer’s Guide

2.4.6 BulletinBoard, Form, MessageBox, Selection-

2-16

Box

Dialogs are container widgets that provide a means of communicat-
ing between the user and the application. A dialog widget usually
asks a question or presents some information to the user. In some
cases, the application is suspended until the user provides a
response.

The usual superclass for a dialog widget is XnBul | eti nBoard. The
dialog widget can be either a BulletinBoard itself or one of its more
specialized subclasses. BulletinBoard is a container with no
automatically created children; it supplies general behavior needed
by most dialogs. Its subclasses provide child widgets and specific
behavior tailored to particular types of dialogs:

- A SelectionBox is a BulletinBoard subclass that allows the user
to select a choice from a list. It usually contains a List, an edit-
able text field displaying the choice, and three or four buttons for
accepting or canceling the choice and seeking help.

- A FileSelectionBox is a specialized SelectionBox for choosing a
file from a directory. It contains two text fields, one containing a
file search pattern and the other containing the selected file
name; two lists, one displaying file names and the other display-
ing subdirectories; and a set of buttons.

- A Command is a specialized SelectionBox for entering a com-
mand. Its main components are a text field for editing the com-
mand and a list representing the command history.

- A MessageBox is a BulletinBoard subclass for displaying mes-
sages to the user. It usually contains a message symbol, a mes-
sage label, and up to three buttons. Motif provides distinct sym-
bols for several kinds of messages: errors, warnings, information,
guestions, and notifications that the application is busy.

The Motif Programming Model

- A TemplateBox is a specialized MessageBox that allows the
application to build a custom dialog with additional children
such as a MenuBar and added buttons.

- A Form is a BulletinBoard subclass that performs constraint-
based geometry management. The children of a Form have
resources that represent attachments to other children or to the
Form, offsets from the attachments, and relative positions
within the Form. The Form calculates the positions and sizes of
its children based partly on these constraints. This layout func-
tion makes Form useful outside dialogs as well.

Dialogs are discussed in more detail in chapter 7.

2.4.7 DrawingArea

A DrawingArea is a manager suited for use as a canvas containing
graphical objects. An application must interact with a
DrawingArea at a somewhat lower level than with other Motif
widgets, but a DrawingArea provides the application with more
fine-grained information about events. DrawingArea has callbacks
to notify the application when the widget is exposed or resized and
when it receives keyboard or mouse input. An application generally
must use Xlib routines to draw into the DrawingArea, and the
application is responsible for updating the contents when necessary.
The flexibility of a DrawingArea makes it a useful widget for imple-
menting both graphical and text features not provided by other
Motif widgets.

DrawingArea is discussed in more detail in chapter 15.

2-17

OSF/Maotif Programmer’s Guide

2.5 Shells

2-18

Users of X Window System applications normally employ a window
manager, a special application that may control the positions, sizes,
and border decorations of top-level windows on the display. Motif
supplies its own window manager, the Motif Window Manager
(MWM), but Motif applications can cooperate with other window
managers as well.

A window manager communicates with other applications via a pro-
tocol defined in an X Window System document, the Inter-Client
Communication Conventions Manual (ICCCM). Xt and Motif define
a group of widgets whose main responsibility is to envelop other
widgets and communicate with the window manager. These widg-
ets are called shells.

A shell is nearly invisible to the application. Each shell has a single
managed child, and the shell's window usually remains coincident
with the child’s window. The application must create shells when
needed, but many Motif convenience routines that create widgets
also create shells automatically. Once it has created a shell, the
application may not need to handle the shell again. For example,
an application can position or resize a Motif shell by positioning or
resizing the child widget.

Each widget with a top-level window—that is, a window whose
parent is the root window of the screen—needs to be enclosed in a
shell. This is true of the main application widget, but it is also true
of dialogs, menus, and any top-level widgets other than the main
application widget. Motif provides three classes of shell: Vendor-
Shell, DialogShell, and MenuShell.

The Motif Programming Model

2.5.1 VendorShell

Vendor Shel | is the shell class that provides Motif-specific behavior
for shells other than those surrounding menus. It is responsible for
communication between the application and MWM. VendorShell is
a superclass for other classes. TopLevelShell is an Xt subclass of
VendorShell that surrounds a top-level widget in an application.
ApplicationShell is another Xt subclass of VendorShell that sur-
rounds the main widget in the application.

Many applications create only one ApplicationShell. A program can
create this shell explicitly, or it can use the Xt convenience routine
Xt Appl nitialize to initialize the application and create the Appli-
cationShell automatically.

2.5.2 DialogShell

XnDi al ogShel | is a VendorShell subclass that envelops dialogs.
Although the window manager takes account of dialogs, they are
usually transient; they appear to provide information to or solicit
information from the user, and then they disappear. DialogShell is
a subclass of the Xt TransientShell class, which keeps track of the
application to which the dialog belongs. Users cannot iconify a dia-
log separately from the main application window.

DialogShell is designed to have a child that is a subclass of Bul-
letinBoard. Most Motif convenience routines that create dialogs
create DialogShell parents automatically.

2-19

OSF/Maotif Programmer’s Guide

2.5.3 MenuShell

XmvenuShel | is the class of shell that surrounds PopupMenus and
PulldownMenus. MenuShell is a subclass of the Xt OverrideShell
class. This class enables the shell to bypass the window manager.
Most Motif convenience routines that create PopupMenus and
PulldownMenus create MenuShell parents automatically.

2.6 Applications, Top-Level Widgets, and Dia-

2-20

logs

Primitives, managers, and shells are the components Motif provides
for building an interface. A developer assembles these components
into the broadest units of the program: dialogs, top-level widgets,
and the application itself.

One approach to this construction is to specify the connection
between the core application and the user interface. The developer
determines what information the application needs to obtain from
and present to the user. From this assessment the developer
specifies a generic interface to the application and then implements
a Motif version using particular combinations of widgets.

Another approach is to design the user interface from the applica-
tion level down to specific widgets. The developer decides what the
top-level components of the application should be and how they
relate to each other. From this assessment the developer designs a
combination of widgets that presents the application clearly to the
user and permits a graceful transition from one task to another.
The developer can then finely adjust the visual appearance of the
interface.

The Motif Programming Model

In practice a developer is likely to use both the bottom-up and top-
down approaches at different stages of the program design. The
approaches converge at the level of the application.

2.6.1 Applications

The application is the highest level of abstraction of a Motif pro-
gram. In one sense the application embodies the entire program.
In another sense the application is the primary widget in the pro-
gram. The user may cause other widgets to appear, but the applica-
tion is the focus of activity and is usually the first widget to appear
when the user starts the program.

The widget that represents the application is commonly a MainWin-
dow. For many applications, the essential operations should be
available from the MenuBar at the top of the MainWindow. By
browsing through the MenuBar, the user can quickly determine
what general functions the application provides. The activation
callbacks for the buttons in menus that are pulled down from the
MenuBar initiate the general operations of the application. The
OSF/Motif Style Guide contains requirements and recommenda-
tions for the contents of the application MenuBar and its Pulldown-
Menus.

The MainWindow usually contains a large scrollable work area.
Single-component applications usually perform most of their work
using this region. Other applications may require more than one
work area.

An ApplicationShell encloses the main widget of an application.
The developer can use the Xt function Xt AppQOr eat eShel | to create
an ApplicationShell directly or can let Xt create the shell during a
call to Xt Appl nitialize.

2-21

OSF/Maotif Programmer’s Guide

Usually a program has only one application, but sometimes a pro-
gram comprises multiple logical applications. In this case the pro-
gram may have more than one main window, each enveloped in a
separate ApplicationShell.

2.6.2 Top-Level Widgets

Although it is unusual for a program to have more than one logical
application, it is more common for an application to require multi-
ple top-level widgets. For example, a mail-processing program may
consist of a component for reading mail and another for composing
and sending it.

Each major component of an application may reside in a top-level
widget. Each top-level widget must be enclosed in a TopLevelShell
or an ApplicationShell. One approach is to have a single Applica-
tionShell for the application, with each TopLevelShell a popup child
of the ApplicationShell. The program does not create a window for
the ApplicationShell. Another approach is to designate one top-
level widget the application, enclosed in an ApplicationShell, and
make the other TopLevelShells popup children of the Application-
Shell. A popup child is one whose window is a child of the root win-
dow and whose geometry is not managed by its parent widget.

Multiple top-level widgets are discussed in more detail in chapter 3.

2.6.3 Dialogs

2-22

Dialogs are transient components used to display information about
the current state of the application or to obtain specific information

The Motif Programming Model

from the user. A dialog widget is usually a BulletinBoard or one of
its subclasses, enclosed in a DialogShell. The DialogShell is a
popup child of another widget in the hierarchy. Its window is a
child of the root window, but the user cannot iconify a dialog
separately from the main application.

A dialog can be nodal —that is, it can prevent other parts of the
application from processing input while the dialog is active. It can
also be nodel ess, so that the user can interact with the rest of the
application while the dialog is visible. Motif has convenience rou-
tines that create both the dialog widget and the DialogShell for
several kinds of information.

Dialogs are discussed in more detail in chapter 7.

2.7 Resources: User and Program Customiza-
tion

A widget, a class of widgets, and an application as a whole has a set
of attributes that the program can examine and that the user and
program may be able to specify. These attributes are implemented
as X resources. Xlib has a facility called the X resource manager
(Xrm) whose purpose is to establish and query databases of
resources. Xt and Motif build on Xrm to make resources the reposi-
tory of publicly available attributes of widgets as well as applica-
tions.

Xt maintains databases of resources that apply to several levels:
- To the application as a whole

- To the display on which an application is running

2-23

OSF/Maotif Programmer’s Guide

2-24

- To the screen on which a widget hierarchy is created
- To a class of widgets
- To an individual widget

The user can specify resources at any of these levels via resource
files or the command line used to start the program. The applica-
tion can also specify resources via resource files.

Each application has a name and a class; each widget within an
application has a name and a class; and each resource has a hame
and a class. When supplying resource values in a file or on the com-
mand line, the user or the application specifies the scope of the
resource value by qualifying the resource according to its name or
class. For example, a user might specify that all resources of the
class Background should have a particular value for all widgets; or
the user might specify that only the resource named background
within a particular hierarchy of named widgets should have a par-
ticular value. The qualification mechanism allows resource values
to be specified at any level of generality or specificity.

Most widget classes define a set of resources, by name and class,
that apply to those classes. Subclasses inherit superclass resources,
unless a subclass overrides the superclass resource specification. A
widget class also defines a default value for each of its resources,
used in case the user and the application do not provide another
value.

When an application starts up, Xt constructs an initial database of
resource values. This database is derived from a combination of
user and application resource files and the command line. Some
resources in the database may have different values depending on
the display or the screen on which the application is running. When
an application creates a widget, Xt uses this initial database in
combination with the widget class resource defaults to supply
values for the widget's resources. The application can override
these values by supplying arguments to the routine that creates the

The Motif Programming Model

widget. It can set a resource value after creating the widget by
using the Xt function Xt Set Val ues.

Setting resources is the primary means by which an application
changes the attributes of a widget. An application should be care-
ful, however, not to override the user’s specification of many
resources governing such characteristics as visual appearance and
the policy for determining which widget has keyboard focus. In gen-
eral the application should set only those resources necessary for
the proper functioning of the program. An application can specify
preferences for other resource values in an application defaults file.
Xt reads this file when an application starts up, but a user can over-
ride the values supplied there.

The process by which Xt creates the initial resource database is dis-
cussed in more detail in chapter 3.

2.8 Handling Input and Output

The X server communicates input to a client via input event s asso-
ciated with a window. In the simplest case, when a keyboard or
pointer event occurs, the X server sends the event to the client that
has expressed interest in events of that type on the window that
contains the pointer. However, processing can be more complex. A
client can grab a pointer button or key, the pointer or keyboard, or
the entire server; the client then receives the relevant events. A
client can set the i nput focus to some window, and the X server
then reports events with respect to this window even if the pointer
is outside this window.

To insulate applications from such complexities, Xt and Motif sup-
ply facilities for low-level processing of user input to an application:

2-25

OSF/Maotif Programmer’s Guide

2-26

A VendorShell resource, Xm\keyboar dFocusPol i cy, allows the
user or application to determine whether keyboard events go to
the widget that contains the pointer or the widget in which the
user presses BSel ect (a "click-to-type" policy).

= In the click-to-type model, the user can also use keys to navigate
from widget to widget or from one group of widgets to another.

- Xt provides the basic event-dispatching loop used by most appli-
cations. Xt takes events out of the application's queue and
dispatches them to the appropriate widget, usually the widget
that has input focus. Xt usually invokes an acti on associated
with the particular event via a table of t r ansl at i ons from event
specifications to action routines. The action, in turn, often
invokes a callback list.

- Motif and Xt provide mmenoni cs and accel erat or s, which are
shortcuts for taking actions associated with a widget when the
widget does not have input focus. A mmenoni ¢ is a keysym for a
key that activates a visible button in a menu. An accel erat or
is a description for an event that invokes an action routine via a
translation.

Most applications can use these high-level interfaces, allowing Xt
and Motif to process user input at lower levels. If an application
needs more control, it can also provide its own event handl er, a
routine invoked by the Xt dispatching loop when the widget receives
events of the specified type. An application can also provide its own
event-dispatching loop.

Issues of input, focus, and keyboard navigation are discussed in
more detail in chapter 13.

For most widgets, Xt and Motif handle low-level output processing
as well. For example, in a Label or Text widget, when an applica-
tion changes the text to be displayed, Motif automatically
redisplays the contents of the widget. Most widgets have resources
that control the appearance of the output, such as the fonts used to

The Motif Programming Model

display text.

Motif provides the DrawingArea widget for applications that need
to produce graphic output or that need more control or flexibility in
displaying text. DrawingArea is discussed in more detail in chapter
15.

2-27

Chapter 3. Structure of a Motif Pro-
gram

OSF/Motif uses the same event-driven programming model as the X
Toolkit Intrinsics. At its core, a Motif application waits for the user
to provide input, usually by pressing a key, moving the mouse, or
clicking a mouse button. Such an action by the user causes the X
server to generate one or more X Window System events. Xt listens
for these events and dispatches them to the appropriate Motif
widget, usually the widget to which the user directed the input.
The widget may take some action as a result of the user input. If
the application has asked to be notified of that action, the widget
"calls back" to the application—it invokes an application callback
procedure. When both Motif and the application have finished
responding to the user input, the application waits for the the user
to provide more input. This cycle of user-initiated events and appli-
cation response, here called the event | oop, continues until the
user terminates the application.

For simple applications, the Intrinsics and Motif toolkits do every-
thing necessary for dispatching user input to widgets. The applica-
tion must take the following actions:

= Include the required header files

Initialize the Intrinsics

Create one or more widgets

Define callback procedures and attach them to widgets

Make the widgets visible
- Enter the event loop

This chapter discusses each of these actions. The following table
summarizes these steps and some of the procedures the application
needs to call. Note that some of these steps are different when the
application uses UIL and MRM. See chapter 4 for more informa-
tion.

3-1

OSF/Maotif Programmer’s Guide

TABLE 3-1. Steps in Writing Widget Programs

Step Description Related Functions
1 Include required #include <Xm/Xm.h>
header files. #include <Xm/widget.h>
2 Initialize Xt Intrinsics XtApplnitialize()

Do steps 3 and 4
for each widget.

3 Create widget XtSetArg()
XtCreateManagedWidget()
or
XmCreate<WidgetName>()
followed by
XtManageChild(widget)

4 Add callback routines XtAddCallback()

(&)]

Realize widgets XtRealizeWidget(parent)
6 Enter event loop XtAppMainLoop()

3.1 Including Header Files

3-2

All Motif applications must include the file <Xm Xm h>. This file
contains definitions that all applications need. It also includes the
Xt header files <X11/ I ntrinsi c. h>and <X11/ Stri ngDef s. h>.

Each Motif widget also has an include file. An application must
include the header files for all widgets it creates. In addition, some
groups of Motif routines have their own header files. For example,
an application that uses any of the Motif clipboard routines must

Structure of a Motif Program

include the file <Xnl Qut Past e. h>. Required include files for each
Motif widget and routine are documented in the OSF/Motif
Programmer’s Reference.

Following is an example of the inclusion of header files for an appli-
cation that uses only a Text widget:

#i ncl ude <Xni Xm h>
#i ncl ude <Xni Text . h>

3.2 Initializing the Intrinsics

The first task of a Motif application is to initialize the Intrinsics.
Most applications can perform the initialization by calling the rou-
tine Xt Appl nitialize. This is a convenience routine that combines
several initialization steps, each of which the application can take
separately by calling a specialized Xt routine:

- Initialize the state of the Intrinsics. An application can also do
this by calling Xt Tool kitInitiali ze.

- Create an application context. Xt uses this construct to contain
the information it associates with each instance of an applica-
tion. Its purpose is to allow multiple instances of an application
to run in a single address space. Most applications need only
create an application context and pass it to Intrinsics routines
that take an application context as an argument. The data type
is Xt AppCont ext. An application can create an application con-
text explicitly by calling Xt O eat eAppl i cat i onCont ext .

- Open a connection to a display and attach it to an application
context. When an application uses XtApplnitialize, the

3-3

OSF/Maotif Programmer’s Guide

display specification comes from the command line invoking the
application or from the user’s environment. After opening the
display, Xt builds a resource database by processing resource
defaults and command-line options. The construction of this
database is described in the next section. An application can
perform these steps explicitly by calling Xt GoenD spl ay. If an
application already has an open display as a result of calling
XpenDi spl ay, it can attach the display to an application con-
text and build the initial resource database by calling
XtDisplaylnitialize.

Create a top-level shell widget for the application. Xt Appl ni -
tialize creates an ApplicationShell and returns it as the
function’s return value. An application can create a top-level
shell by calling Xt AppCr eat eShel | .

Following is an example of a simple call to Xt Appl niti al i ze:

int nmain(int argc, char **argv)

{

W dget app_shel | ;

Xt AppCont ext app;

app_shell = XtApplnitialize(&pp, "Exanple",
(XrnOpt i onDesclLi st) NUL, 0, &argc, argv,
(String *) NAL, (ArgList) NULL, 0);

3.2.1 The Initial Resource Database

3-4

The Xt O spl ayl ni tial i ze routine builds the initial resource data-
base for the application. An application rarely needs to call this
routine directly; it is called by Xt QpenD spl ay, which in turn is
called by Xt Appl nitiali ze.

Structure of a Motif Program

Xt D spl ayl ni tialize builds a separate resource database for each
display connection. The initial database combines resource settings
from the command line, the display, an application class defaults
file, and user defaults files that may be specialized according to the
application or the host on which the application is running. The
application class defaults and the user’s per-application defaults
may be further specialized according to the language environment
and possibly according to a general-purpose custom zation
resource. The resources in the initial database may pertain to par-
ticular widgets or widget classes or to the application as a whole.
When the application creates widgets, the resource settings from
the database are often the source for the initial values of widget
resources.

The remainder of this section describes the order in which
XtDi splaylnitialize loads each component of the database and
how it derives the location of that component.

3.2.1.1 File Search Paths

In loading the application class defaults and the user’s per-
application defaults, Xt Di spl aylnitialize calls Xt Resol vePat h-
nane to determine which files to read. Xt Resol vePat hnane uses file
search paths. Each path is a set of patterns that may contain spe-
cial character sequences for which Xt Resol vePat hname substitutes
runtime values when it searches for a file. It uses the following sub-
stitutions in building the path:

= %N is replaced by class name of the application, as specified by
the application-class argument to Xt Applnitialize, Xt Qpen-
D spl ay, or Xt Di spl aylnitial i ze.

= %C is replaced by the value of the cust om zat i on resource.

3-5

OSF/Maotif Programmer’s Guide

- %L is replaced by the display’s language specification. This may
come from the xnl Language resource, the locale of the applica-
tion, or an application callback procedure. See chapter 11 for
more information. The format of the language specification is
implementation-dependent; it may have language, territory, and
codeset components.

= %l is replaced by the language part of the language specification.
- %t is replaced by the territory part of the language specification.
= %c is replaced by the codeset part of the language specification.
= %% is replaced by %.

If the language specification is not defined, or if one of its parts is
missing, a % element that references it is replaced by NULL.

The paths contain a series of elements separated by colons. Each
element denotes a filename, and the filenames are looked up left-
to-right until one of them succeeds. Before doing the lookup, substi-
tutions are performed.

Note: The Intrinsics use the X/Open convention of collaps-
ing multiple adjoining slashes in a filename into one
slash.

3.2.1.2 Initial Database Components

3-6

The Xt D spl ayl ni tal i ze function loads the resource database by
merging in resources from these sources, in order of precedence
(that is, each component takes precedence over the following com-
ponents):

= The application command line

Structure of a Motif Program

Per-host user environment resource file on the local host

Screen-specific resources for the default screen of the display

Resource property on the server or user preference resource file
on the local host

Application-specific user resource file on the local host

Application-specific class resource file on the local host

3.2.1.3 Command-Line Specifications

XtD splaylnitialize calls the X Resource Manager function
Xr mPar seCommand to extract resource settings from the command
line by which the user invoked the application. The arguments and
number of arguments on the command line come from the argv
and argc arguments to Xt Applnitialize, XtQoenD splay, or
Xt D splayl nitialize. Xt maintains a standard set of command-
line options, such as —background and —geonetry, for specifying
resource settings. An application can specify additional options in
arguments to Xt Appl ni ti al i ze, Xt QoenDi spl ay, or Xt D spl ayl ni -
tialize. The user can supply the —xr moption to set any resource
in the database.

3.2.1.4 Per-Host User Resources

To load the per-host user environment resources, Xt D spl ayl ni -
tialize uses the filename specified by the XENVI RONVENT environ-
ment variable. If XENVI RONMVENT is not defined,
Xt D splaylnitialize looks for the file $HOWE . Xdef aul t s- host,
where host is the name of the host on which the application is

3-7

OSF/Maotif Programmer’s Guide

running (that is, the name of the client host, not the server host).

3.2.1.5 Screen-Specific Resources

To load screen-specific resources, Xt Di spl ayl ni ti al i ze looks for a
SCREEN_RESOURCES property on the root window of the default
screen of the display. The SCREEN_RESOURCES property typi-
cally results from invoking the xrdb command when some
resources are not defined for all screens.

Note: When Xt needs to fetch resources for a screen other
than the default screen of the display—for example,
when creating a widget on another screen—it uses
the SCREEN_RESOURCES property of that screen
instead of the SCREEN_RESOURCES property of
the default screen.

3.2.1.6 Server or User-Preference Resources

3-8

To load the server resource property or user preference file,
XtDisplaylnitialize first looks for a RESOURCE_MANAGER
property on the root window of the display’'s screen 0. The
RESOURCE_MANAGER property typically results from invoking
the xrdb command when some resources are defined for all
screens. If that property does not exist, Xt Di splaylnitialize
looks for the file $HOVE . Xdef aul t s.

Structure of a Motif Program

3.2.1.7 User Application File

To load the user’s application resource file, Xt D spl aylnitialize
performs the following steps:

1.

Use XUSERFI LESEARCHPATH to look up the file, performing
appropriate substitutions.

If that fails, or if XUSERFI LESEARCHPATH is not defined, and if
XAPPLRESDI R is defined, use an implementation-dependent
search path containing at least seven entries, in the following
order and with the following directory prefixes and substitu-
tions:

$XAPPLRESD Rwith %€, %N, % or with %C, 9N, % , % , %
$XAPPLRESDI Rwith %C, %N, %

$XAPPLRESD Rwith %€, 9N

$XAPPLRESD Rwith 9N, % or with 9N, % , % , %
$XAPPLRESD Rwith %N, %

$XAPPLRESD Rwith 9N

$HOVE with 9N

where $XAPPLRESDI R is the value of the XAPPLRESD R
environment variable and $HOME is the user’'s home directory.

If XAPPLRESDI R is not defined, use an implementation-
dependent search path containing at least six entries, in the
following order and with the following directory prefixes and
substitutions:

3-9

OSF/Maotif Programmer’s Guide

$HOMVE with %€, 9N, % or with %C, 9N, % , % , %
$HOVE with %€, %N, %

$HOMVE with %, 9N

$HOVE with 9N, % or with %N, % , % , %

$HOVE with %N, %

$HOMVE with 9N

3.2.1.8 Application Class Resource File

3-10

To load the application-specific class resource file, Xt D spl ayl ni -
tialize performs the appropriate substitutions on the path
specified by the XFI LESEARCHPATH environment variable. If that
fails, or if XFI LESEARCHPATH is not defined, Xt Di spl aylnitiali ze
uses an implementation-dependent search path containing at least
six entries, in the following order and with the following substitu-
tions:

%, W, U, 9T, % or %, N, 9B, 0T, %, % , %
%, WN, U, AT, %

U, WN, U5, A

N, 95, 9T, % or N, 95, o, %, %, %e

N, 95, o, %

N, %5, oAd

where the substitution for % is usually NULL and the substitu-
tion for 99 is usually app- def aul t s.

If no application-specific class resource file is found, Xt D spl ayl n-
itialize looks for any fallback resources that may have been
defined by a call to XtApplnitialize or Xt AppSet-
Fal | backResour ces.

Structure of a Motif Program

3.3 Creating Widgets

The top-level widget returned by XtApplnitialize or
Xt AppCr eat eShel | is the root of a program’s widget hierarchy for
a given display or logical application. After initializing the Intrin-
sics, the application can proceed to create the remainder of the
widget hierarchy it needs to start the program.

Widget creation is a two-stage process. In the first stage, the
application creates the widget hierarchy but does not assign win-
dows to the widgets. In the second stage the application assigns
windows and makes them visible. These stages are separate
because otherwise window geometry might have to be recomputed
each time a child is added. This computation can require a great
deal of communication with the X server and take a long time.
Instead, initial window geometry is computed only once. For more
information see the section "Making Widgets Visible" below.

The general routine for creating a widget is Xt O eat eWdget. The
required arguments to this routine are the widget's name, class,
and parent widget. You can also provide initial resource values for
the widget, as discussed in the next section. Xt VaCr eat eW dget is
a version of Xt Or eat eW dget that uses a variable-length argument
list.

Motif has a convenience routine for creating a widget of each Motif
class. The name of such a routine is usually XnQr eat e<wf dget >,
where wi dget represents the widget class. For example, the con-
venience routine for creating a Text widget is XnQOreat eText.
These routines do not require the widget-class argument.

Some convenience routines, such as XmQr eat eMenuBar , create spe-
cialized widgets. These routines usually set some initial resource
values to configure the widget for a particular use—for example, to
configure a RowColumn widget for use as a MenuBar. In some

3-11

OSF/Maotif Programmer’s Guide

cases, such as XmCreatePul | downMenu and XnOreat eScrol -
| edLi st, these routines create a widget hierarchy rather than a
single widget. The documentation for each convenience routine in
the OSF/Motif Programmer’s Reference explains what the routine
does.

Using a Motif creation routine is generally preferable to calling
Xt Or eat eWdget . In addition to creating multiple widgets and set-
ting appropriate resources, these routines sometimes perform
optimizations. For example, some convenience routines add
Xm\dest r oyCal | back procedures to free memory when the widget
is destroyed.

Note: Every widget except a top-level widget must have a
parent at the time the widget is created.

An application can use Xt Dest r oyW dget to destroy a widget.

3.3.1 Specifying Resource Values

An application can specify values for resources when it creates a
widget and anytime thereafter. It can retrieve resource values
after creating a widget.

3.3.1.1 Widget Initialization

3-12

When an application creates a widget, the creation routine sets
the widget's initial resource values from the following sources, in
order (that is, each succeeding component takes precedence over
preceding components):

Structure of a Motif Program

- Default values for resources specified by the widget class and
its superclasses

- Resource values from the initial resource database

= Resource values specified by the application in its call to the
widget creation routine

Each widget class can have its own ini ti al i ze procedure. After
setting the initial resource values, the widget creation routine
calls theinitialize procedure for each class in the widget's class
hierarchy, in superclass-to-subclass order. The initialize pro-
cedure can set new values for resources, possibly based on other
resource values in the widget or its ancestors. In some cases an
i nitialize procedure forces a resource to have a particular value,
regardless of whether the user or application has specified another
value. In other cases the initialize procedure might set a
resource value only if the user or application has not specified
another value.

The documentation for each widget class in the OSF/Motif
Programmer’s Reference lists the data type and default value for
each resource. For resources whose default values are computed
dynamically, the documentation describes how the default values
are determined.

3.3.1.2 Arguments that Specify Resource Values

To specify initial resource values in a call to a widget creation rou-
tine, an application supplies two arguments: a list of elements
representing resource settings and an integer specifying the
number of elements in the list. Each element in the list is a
structure of type Arg. This structure has two members: a string
representing the name of the resource and a value specifier

3-13

OSF/Maotif Programmer’s Guide

3-14

representing the resource value. The value specifier is of type
Xt ArgVal . This is a data type large enough to hold a | ong or one
of several types of pointers to other data. If the resource value is
of a type small enough to fit into an Xt ArgVal , the value specifier
contains the resource value itself; otherwise, it contains a pointer
to the actual value. For most resources, an application supplies
integer values (including such types as Posi ti on and D mensi on)
directly in the value specifier; otherwise, the application supplies
a pointer to the value.

The most common way to set up a list of resource specifications is
to declare a list of Arg elements large enough to hold all the
specifications and then to use XtSetArg to insert each
specification into the list. An application should always use a
sequence of calls to Xt Set Arg in the following way to avoid mis-
takes in building the list:

W dget text;

Arg args[10];

Car di nal n;

n =0;

Xt Set Arg(args[n], Xm\rows, 10); n++;
Xt Set Arg(args[n], Xm\col ums, 80); n++;

text = XmreateText("text", parent, args, n);

Instead of using lists of Arg structures, the variable-argument
routines that specify resource values take a variable number of
pairs of resource names and values as arguments. The resource
value in each pair is of type Xt ArgVal , with the same meaning as
the value in an Arg structure. The application can provide two
special strings in place of a resource name. If the name is
Xt VaNest edLi st , the next argument is interpreted as a nested list
of name-value pairs. If the name is Xt VaTypedAr g, the next four

Structure of a Motif Program

arguments supply the resource value and cause it to be converted
from one data type to another, as described below.

3.3.1.3 Setting Resource Values

To specify resource values after a widget has been created, an
application uses Xt Set Val ues or Xt VaSet Val ues. Xt Set Val ues
takes a list of resource specifications in the same format as that
used when creating a widget:

Arg args[10];

Car di nal n;

n =0;

Xt Set Arg(args[n], Xm\rows, 10); n++;
Xt Set Arg(args[n], Xm\colums, 80); n++;

Xt Set Val ues(text, args, n);

Each widget class can have its own set val ues procedure. After
setting the values specified in the argument list, Xt Set Val ues
calls the set _val ues procedure for each class in the widget’s class
hierarchy, in superclass-to-subclass order. The set val ues pro-
cedure can set new values for resources other than those specified
in the arguments to Xt Set Val ues. This usually happens when
the value of one resource depends on the value of another. Setting
a new value for a resource that affects the widget's geometry can
also cause Motif to recompute the widget's layout. In some cases a
set _val ues procedure forces a resource to have a particular value,
regardless of whether the application has specified another value.

3-15

OSF/Maotif Programmer’s Guide

3.3.1.4 Retrieving Resource Values

To retrieve resource values, an application uses Xt Get Val ues or
Xt VaGet Val ues. The arguments are the same as those for Xt Set -
Val ues, except that in place of a value for each resource is an
address in which Motif stores the requested value:

Arg args[10] ;

Car di nal n;

short nrows, ncol ums;

n=0;

Xt Set Arg(args[n], Xm\rows, &nrows); n++;
Xt Set Arg(args[n], Xm\col ums, &ncol ums); n++;

Xt Get Val ues(text, args, n);

3.3.1.5 Resource Value Data Types

3-16

The documentation for each widget class in the OSF/Motif
Programmer’s Reference lists the data types to use when setting
and retrieving values for resources. The user and application do
not always have to supply data of the type documented. Motif has
routines, called converters, that convert resource values from one
data type to another. For example, when a value for the resource
database comes from a file or the command line, Motif processes
the value as a string. Motif and Xt have routines to convert
strings to most common resource types, including Bool ean, O ren-
si on, Posi tion, Pi xel , and XnFont Li st .

Structure of a Motif Program

When using the standard widget creation routines, Xt Set Val ues,
and Xt Get Val ues, an application must supply resource values or
addresses of the types the widget expects. But when using the
variable-argument versions of these routines, the application can
supply values of any types for which routines exist to convert data
of those types into values of the expected types. To provide for a
resource conversion, the application supplies Xt VaTypedArg in
place of a resource name in the arglist. In place of the resource
value, the application supplies four arguments:

- The resource name

- A string representing the type of the value supplied

- The value itself (of type Xt ArgVal)

= An integer representing the number of bytes in the value

For example, the following call converts the string supplied into
the compound string that Motif expects for a PushButton label:

char *label = "Button";

Xt VaSet Val ues(button, Xt VaTypedArg, XmN abel String,
XnmRString, label, strlien(label) + 1, NULL);

3.3.1.6 Resource Values and Memory Management

The application is responsible for allocating and freeing memory
needed for resource values it supplies when initializing a widget
or setting new values. For most resources whose values are not
immediate data, including strings, compound strings, and font
lists, Motif makes copies of values the application supplies at

3-17

OSF/Maotif Programmer’s Guide

widget creation or in a call to Xt Set Val ues. In these cases the
application can free the memory it has allocated anytime after the
widget creation routine or Xt Set Val ues returns:

char *| abel = "Button";
XnBtring |abel cs;

| abel _cs = XnBtringO eateSi npl e(l abel);
Xt VaSet Val ues(button, XmN abel String, |abel _cs, NUL);
Xt ri ngFree(l abel _cs);

For resources whose values are not immediate data, Xt Get Val ues
sometimes makes a copy of values and sometimes does not. For
example, Motif always makes copies of compound strings retrieved
by Xt Get Val ues, but it does not make copies of lists of compound
strings (data of type Xn&tri ngTabl €). Motif usually copies simple
strings retrieved by Xt Get Val ues. An application should free
compound strings retrieved by Xt Get Val ues, but in general it
should not free values of other types unless the documentation for
the particular resource in the OSF/Motif Programmer’s Reference
says the application must free that value.

The standard routines an application should use to allocate
memory are Xt Mal | oc and Xt New. The standard routine to free
memory is XtFree. Some Motif data types have memory-
managementroutines that an application should use instead of the
more general Xt routines. For example, use Xntt ri ngFr ee to free
memory for a compound string, and use Xnfont Li st Free to free
memory for a font list.

3.4 Adding Callback Procedures

3-18

Structure of a Motif Program

Callback routines are the heart of a Motif application. Many
widget classes have resources whose values are lists of callback
procedures. When the user acts on a widget—for example, when
the user presses a PushButton—Motif invokes the callback rou-
tines in the corresponding callback list. If an application needs to
take some action when the user presses a PushButton, it supplies
a callback routine and adds that routine to the appropriate call-
back list.

Callbacks are not the only means by which Motif can notify an
application of a user action. An application can also supply its
own action routines and event handlers. The main difference
between these kinds of procedures is the level of abstraction at
which Motif or Xt invokes the procedures:

- The Xt event dispatcher calls an event handler whenever an
event of a particular type occurs in a specified widget.

- The Xt translation manager calls an action routine when an
event sequence matches an event specification in a widget
translation table. In a translation table, actions are associated
with event specifications. More than one event sequence can
invoke the same action routine.

- A Motif widget invokes callback procedures when user input
signifies an action that is meaningful to the widget, such as
activating a PushButton. Widgets often invoke callbacks from
action routines. More than one action can invoke the same
callback list.

Most applications use only callback procedures. Action routines
and event handlers are discussed in chapter 13.

Each callback procedure is a function of type Xt Cal | backPr oc.
The procedure takes three arguments: a widget and two pointers
to data. The first pointer is to data that the application has told
the widget to pass back to the application when the callback pro-
cedure is invoked. The second pointer is to data that the widget

3-19

OSF/Maotif Programmer’s Guide

3-20

passes to all callbacks on the callback list. A callback procedure
returns no value.

The application data argument is primarily for passing data that
the application maintains separately from the widget itself. The
widget data argument for most Motif widgets is a pointer to a
structure containing information that varies by widget class. For
example, when the user changes the value of a ToggleButton,
Motif invokes callback procedures with a pointer to an Xnirog-
gl eButtonCal | backSt ruct structure as the third argument. This
structure has three members:

- An integer indicating the reason for invoking the callback.
When the user changes the value, the reason is
XnCR_VALUE_CHANGED. Usually the reason is identified by a
symbol beginning with the characters XmCR

= A pointer to the XEvent that triggered the callback.

- An integer that indicates the new state of the ToggleButton,
either selected or unselected.

The documentation for each widget class in the OSF/Motif
Programmer’s Reference describes any callback structures that the
widget passes to callback procedures as widget data. Note that a
callback procedure can change the values of some members of
these structures. Because the order of procedures in a callback
list is unspecified, an application that uses multiple callback pro-
cedures in the same list must use caution in changing these
values.

Following is a simple callback procedure that an application
might use to set the state of a valve when the user changes the
value of a ToggleButton. The application data passed in the call-
back in this example might be a pointer to a valve object associ-
ated with the ToggleButton:

voi d Toggl eVal ueChangedCB(W dget toggl e, Xt Pointer app_data,

Structure of a Motif Program

Xt Poi nt er wi dget dat a)

{
Val ve *valve p = (Valve *) app_dat a;
XnmToggl eBut t onCal | backStruct *toggle info =
(XnToggl eButtonCal | backStruct *) wi dget_dat a;
ChangeVal veSt at e(*val ve_p,
((Bool ean) toggle info->set == TRUE) ? VALVE ON : VALVE CFF);
}

To register a callback procedure with a widget, an application
uses Xt AddCal | back or Xt AddCal | backs after declaring the call-
back procedure and creating the widget. The following code frag-
ment creates a ToggleButton for each valve in a global list of
valves:

char nane[20] ;

W dget toggl es[N_VALVES] ;

i nt i;

Val ve *val ve_p;

for(i =0, valve p = valves; i < NVALVES;, i++, valve p++)
sprintf(nane, "valve state %", i);
toggles[i] = XnCreat eToggl eButton(parent, nare,

(ArgList) NUL, 0);

Xt AddCal | back(toggl es[i], Xm\val ueChangedCal | back,
(Xt Cal | backProc) Toggl eVal ueChangedCB,
(XtPointer) valve p);

}

To remove a callback procedure from a callback list, use
Xt RenoveCal | back or Xt RenoveCal | backs. Because Motif some-
times adds its own callbacks to callback lists, do not use
Xt RenmoveAl | Cal | backs to remove all callbacks from a list.

3-21

OSF/Maotif Programmer’s Guide

3.5 Making Widgets Visible

Creating a widget does not by itself make the widget visible.
Widgets become visible when the following conditions exist:

- The widget and its ancestors are nanaged. A widget is
managed when the Xt and Motif geometry managers take
account of the widget when computing the positions and sizes
of widgets they display.

- The widget and its ancestors are real i zed. A widget is real-
ized when it has an associated window.

- The widget and its ancestors are mapped. A widget is mapped
when its window is displayed.

An application can manage, realize, and map widgets in separate
steps, but each of these actions affects the others.

3.5.1 Managing Widgets

3-22

Parent widgets are responsible for managing the geometry of their
children. A child can ask the parent to be given some size or posi-
tion, but the parent decides whether or not to grant the request.
A parent can move or resize a child without the child’'s permission.
The process by which parent and child widgets interact to deter-
mine widget geometry is described in chapter 10.

An application tells a widget to manage a child widget's geometry
by calling Xt ManageChi | d or Xt ManageChi | dren. If the parent is
realized, Xt ManageChi | d calls the parent class’s change_nanaged
procedure. This procedure can change the size or position of any
of the parent's children. After calling the parents

Structure of a Motif Program

change_managed procedure, Xt ManageChi | d realizes the child and,
if the child’'s XmNmappedWienManaged resource is True, maps it.

If the parent is not realized, Xt ManageChi | d marks the child as
managed. Xt defers calling the parent's change_managed pro-
cedure until the parent is realized.

When managing more than one child of a realized parent, it is
more efficient to call Xt MinageChildren than to call
Xt ManageChi | d separately for each child being managed. Widget
layout can be computationally expensive, and Xt ManageChil d
invokes the parent’'s change rmanaged procedure each time it is
called. Xt ManageChi | dr en calls the parent’'s change_managed pro-
cedure only once for all children being managed.

An application tells a widget not to manage a child widget's
geometry by calling Xt UhmanageChi | d or Xt UnmanageChi | dr en.
By managing and unmanaging widgets, an application can alter-
nately display more than one set of children without having to
create and destroy widgets each time the configuration of the
application changes. In addition, managing a Motif dialog or
PopupMenu causes the widget to pop up, and unmanaging it
causes the widget to pop down.

To create a widget and then manage it in the same call, an appli-
cation can use Xt O eat eManagedW dget or XtVa-
Cr eat eManagedW dget . The Motif routines that create widgets of
particular classes return unmanaged widgets. When using these
routines, the application must manage the widgets using Xt Un-
manageChi | d or Xt ULhmanageChi | dr en.

3.5.2 Realizing Widgets

3-23

OSF/Maotif Programmer’s Guide

3-24

An application uses Xt Real i zeWdget to realize a widget. This
routine does the following:

- In post-order, traverses the tree whose root is the widget and
calls the class change _managed procedure for any widget in the
tree that has managed children.

- Recursively traverses the tree whose root is the widget and
calls the class real i ze procedure for any widget in the tree
that is managed. The real i ze procedure creates the widget's
window.

- Maps the widget's managed children whose XniNmappedWen-
Managed resource is True. If the widget is a top-level widget
whose XnNhmappedWhenManaged resource is True, Xt Real -
i zeW dget maps the widget.

Note these implications:

- Geometry negotiation proceeds from bottom up; then window
creation proceeds from top down

- After a widget is realized, all its managed descendants are
realized and, by default, mapped

- If no widget in the tree is realized, all geometry negotiation
between parents and their managed children takes place
before any widget is realized

When making a widget tree visible for the first time, it is usually
best to manage all children before realizing any widgets, and then
to realize only the top-level widget. This causes all initial sizing
and positioning of children to take place and the overall size of the
top-level window to be determined before any windows exist,
minimizing interaction with the X server. It also allows the appli-
cation to realize all widgets with a single call to Xt Real -
i zeWdget .

Structure of a Motif Program
3.5.3 Mapping Widgets

Most applications do not explicitly map or unmap widgets’ win-
dows. Mapping usually takes place as part of the process of
managing or realizing widgets. But it is possible to keep Xt from
mapping windows at these times by setting a widget's Xni\nap-
pedWenhManaged to False. In that case, the application must
explicitly use Xt MapW dget to map the widget. An application can
use Xt UnmapW dget to unmap a widget.

The effect of making a widget managed but unmapped is different
from the effect of making a widget unmanaged. When a widget is
unmanaged, its parent takes no account of it in laying out its chil-
dren. When a widget is managed, its parent is likely to leave
room for it in the widget layout. When the parent is mapped, the
space allocated for a managed but unmapped child is filled with
the parent’s background rather than the child’s window.

3.5.4 Multiple Screens, Displays, and Applications

An application can run on more than one display. In this case it
must use XQpenDi spl ay to open a connection to each display and
must then call Xt Di spl ayl ni ti al i ze separately for each display
connection. It need not create a separate application context for
each display.

Note: Xt Di splaylnitialize modifies its argv and ar gc
arguments. If an application needs to call
Xt D spl ayl ni tial i ze more than once, it must save
these arguments before the first call and use a copy
of the saved arguments on each call.

3-25

OSF/Maotif Programmer’s Guide

3-26

The application should use Xt AppCr eat eShel | to create at least
one top-level widget for each display on which it runs. Because
Xt maintains a separate resource database for each display, a
child widget running on a different display from that of its parent
would use incorrect initial resource settings.

An application can also run on more than one screen within a
display. Such an application opens and initializes the display
only once, no matter how many screens it uses within the display.
However, the application also needs a widget on each screen,
whose window is a child of the root window for that screen, to
serve as the root of the widget hierarchy for the screen.

One approach to using multiple screens is to create a single,
unrealized ApplicationShell for the display. The application then
creates one TopLevelShell for each screen as a popup child of the
ApplicationShell. Although a shell normally has only one
managed child, it can have more than one popup child. The appli-
cation uses Xt AppCr eat eShel | to create the ApplicationShell and
Xt Or eat ePopupShel | to create each TopLevelShell. If no screen
is specified for the ApplicationShell, Xt AppCr eat eShel | sets the
Xm\scr een resource for this widget to the default screen of the
display. In the argument list passed to Xt O eat ePopupShel | , the
application must specify the proper value for XniNscr een for each
TopLevelShell so that the shell is created on the intended screen.

The application does not manage the TopLevelShells. To realize
and map the TopLevelShells, the program uses Xt Popup with a
grab_ki nd argument of Xt G abNone.

int main(int argc, char **argv)

{
W dget app_shel |, top_shel|;
Xt AppCont ext app;
D spl ay *di spl ay;
char nane[20] ;

Structure of a Motif Program

Arg args[5];
Car di nal n;
i nt i;

app_shell = XtApplnitialize(&pp, "Exanple",
(XrnOpt i onDesclLi st) NUL, 0, &rgc, argv,
(String *) NUL, (ArgList) NULL, 0);

di splay = Xt D spl ay(app_shell);

for (i =0; i < ScreenCount (display); i++) {
sprintf(nane, "top_shell %", i);

n = 0;
Xt Set Arg(args[n], Xm\screen,
ScreenCr D spl ay(di splay, i)); n++;
top_shel | = Xt O eat ePopupShel | (nane,
t opLevel Shel | Wdget A ass,
args, nj;

app_shel |,

/* Oreate and manage descendants of top shell */

/* Realize and map the top shell */
Xt Popup(top_shel |, Xt G abNone);

}

It is possible for a program to have multiple logical applications
on the same display. In this case it can use Xt AppQr eat eShel | to
create a separate top-level widget for each logical application.

3.6 Entering the Event Loop

3-27

OSF/Maotif Programmer’s Guide

3-28

The last step in a Motif application is to enter the event loop.
Most applications simply call Xt AppMai nLoop. This routine waits
for user input and dispatches the resulting events to the appropri-
ate event-handling procedures, usually in the widget in which the
input occurs. Xt AppMai nLoop is an infinite loop; it never returns.
An application should provide for a user action to terminate the
program and should exit as a result of that action, usually in a
callback routine.

Chapter 4. Structure of a Program
Using UIL and MRM

The User Interface Language (UIL) allows an application developer
to separate the specification of particular widget hierarchies from
the application source code. The application defines widgets and
their characteristics in a text file, which the developer compiles into
a User Interface Definition (UID) file in binary format. At run time
the application, using Motif Resource Manager (MRM) routines,
retrieves the widget descriptions from the binary file, and MRM
creates the widgets from these descriptions. The application defines
callback procedures and interacts with the widgets as if it were
using the Motif toolkit alone.

UIL offers several advantages over toolkit-only applications:

- UIL enforces the separation of the user interface specification
from the application.

- A developer can change the interface by editing and recompiling
a text file without recompiling and relinking the application pro-
gram.

- The UIL compiler generates warnings for errors that the
developer otherwise would not discover until running the pro-
gram, if then. For example, the UIL compiler checks the spel-
ling of resource names.

- The toolkit may handle large databases more efficiently when
they are represented as UID files rather than resource files.

An application that uses UIL has two separate components: the
UIL file and the application program.

The UIL file consists mainly of definitions of the application’s
widget hierarchy. The declaration for each widget typically
includes the following components:

- Widget type
- Widget children

4-1

OSF/Maotif Programmer’s Guide

4-2

Initial resource values

Declarations for callback procedures

The UIL file can also define values for data such as compound
strings, colors, and icons.

The structure of the application program is similar to that of a
toolkit-only program. The chief difference is that instead of expli-
citly creating each widget, the program uses MRM routines to
retrieve widget definitions from the UID file and to create the widg-
ets themselves. The program might also use MRM routines to
retrieve data values defined in the UIL file. An application program
using UIL must take the following actions:

Include the required header files
Initialize the Intrinsics
Initialize MRM

Open the UID file

Register the names of callback procedures and values of
identifiers specified in the UID file

Retrieve and create widgets and data defined in the UID file
Close the UID file

Define callback procedures

Make the widgets visible

Enter the event loop

Structure of a Program Using UIL and MRM

4.1 Structure of a UIL Module

A UIL module is a block of declarations and definitions for the
values, procedures, literals, and objects that make up a user inter-
face specification. Each UIL file contains either one complete
module or, if the file is to be included in another UIL file, at least
one complete top-level construct within a module.

Each module has the following structure:

- nodul e clause

- Zero or more declarations for the module as a whole
- Zero or more i ncl ude directives

= Zero or more val ue declarations

- Zeroor moreidentifier declarations

= Zero or more pr ocedur e declarations

- Zero or more obj ect declarations

- Zero or more | i st declarations

- end nodul e clause

This section discusses the components of a UIL module, but it does
not describe the UIL syntax in detail. For more information, see
the U L(5X) reference page in the OSF/Motif Programmer’s Refer-
ence.

4-3

OSF/Maotif Programmer’s Guide

4.1.1 module Clause

Each module begins with the declaration nodul e nane. The key-
word nmodul e must be in lower case.

4.1.2 Module-Level Declarations

4-4

Several optional declarations at the beginning of the module modify
characteristics of the module as a whole:

names

character _set

Specifies whether names in the UIL file are stored
in a case-sensitive or case-insensitive way. The
following declaration, the default, means that
names are stored as they appear in the UIL file,
and all UIL keywords must be in lower case:

nanes = case _sensitive

The following declaration means that all names
are stored in upper case, and UIL keywords can
be in upper, lower, or mixed case:

nanes = case_i nsensitive

The entire nanes declaration itself must be in
lower case, and it affects only the part of the
module that follows it.

The character_set clause declares the default
character set for strings and compound strings
specified in the module by double quotes
("string"). In the absence of this clause UIL

Structure of a Program Using UIL and MRM

derives the default character set from the
language environment in which the UIL file is
compiled. This does not affect the character set of
strings specified in the module by single quotes
(string). UIL derives the character set of these
strings from the language environment in which
the UIL file is compiled. The character set in this
clause must be either a keyword representing one
of the character sets UIL knows about or a charac-
ter set returned by the char act er _set function.

obj ects The obj ect s clause specifies whether UIL should
define objects of the specified types as widgets or
gadgets. For example, this declaration specifies
that UIL should define objects of type XnmPushBut -
t on to be gadgets:

objects = { XnPushButton = gadget; }

A declaration for an individual object can override
this specification.

4.1.3 include Directive

The i ncl ude directive includes the contents of a file in the current
module. The directive consists of the keywords i ncl ude fil e fol-
lowed by a string representing the file name. If the file name has a
full directory specification, UIL searches that directory for the file.
Otherwise, UIL searches the directory of the main UIL source file
and then the directory of the current UIL source file. The —I option
to the ui | command adds a directory to the search list.

4-5

OSF/Maotif Programmer’s Guide

Included files are useful for definitions common to more than one
UIL module. In conjunction with the —I option to ui | , they are also
useful in internationalizing applications. Localized definitions for
strings, font lists, and the like can reside in files included from
different directories depending on language environment. In this
case the include directives should not specify the directories;
instead, you can use the —I option to uil to compile files for
different language environments without editing or duplicating UIL
files.

4.1.4 value Declaration

4-6

The val ue clause defines one or more names and associates them
with values. The names can stand for the values elsewhere in the
module.

The specification for each value is either a literal expression or a
call to a UIL function that generates a value. Each value has a UIL
type that depends on the representation of the literal or the type of
value returned by the UIL function. For more information on UIL
types, literals, and functions, see the U L(5X) reference page in the
OSF/Motif Programmer’s Reference.

By default the names and their associated values are private to the
module. The val ue declaration can also export a value to other
modules or import a value from another module. For each name
declared to be imported, MRM at run time assigns the value from
the corresponding exported declaration for that name in another
module.

In this example, the value i d_1 is exported:

val ue
id1 : exported 1,

Structure of a Program Using UIL and MRM

| abel 1 : conpound_string(’ Of’);
Another module can use the value i d_1 as follows:

val ue
id 1 : inported integer;

4.1.5 identifier Declaration

Anidentifier clause declares one or more names that can appear
elsewhere in the module. At run time MRM assigns values to these
names from data defined in the application program. The applica-
tion uses the M nRegi st er Narres or M nRegi st er Nanesl| nH er ar chy
routine to establish the correspondence between UIL identifier
names and application-defined data. The UIL compiler performs no
type checking on identifiers.

The following example identifies names for x and y values that the
application defines at run time:

identifier
app_x_val ue;
app_y_val ue;

4.1.6 procedure Declaration

A procedure clause declares names of callback procedures or of
creation routines for user-defined widgets. The application program
itself defines the actual procedures. As with identifiers, the

4-7

OSF/Maotif Programmer’s Guide

application must use MnRegisterNames or MnRegister-
Nanesl nH erarchy to associate the procedure names with the
actual procedures at run time.

For a callback procedure, the procedure declaration can also
specify the type of data represented by the second argument (the
application data pointer) to the callback routine:

procedur e
toggl e _cb (integer);
push_button_cb (integer);

4.1.7 object Declaration

An obj ect clause defines a widget or gadget and assigns a name
that can stand for the object elsewhere in the UIL module. As with
values, an object definition by default is private to the UIL module,
but the obj ect clause can declare it to be exported or imported. In
addition to the UIL name, the obj ect clause specifies the object's
type and a list (enclosed in braces) that can define children, initial
resource values, and callback procedures.

4.1.7.1 Object Type

4-8

The object type specification is a keyword that is usually the same
as the name of the corresponding toolkit widget class. For example,
the type keyword for a MainWindow is XmMai nW ndow and for a
PushButton is XmPushButton. UIL also allows type specifications
that correspond to toolkit convenience routines for creating some
kinds of specialized widgets, including menus, dialogs, ScrolledList,

Structure of a Program Using UIL and MRM

and ScrolledText. For example, the keyword XnPul | downMenu
specifies a PulldownMenu, and the keyword XnPronptD al og
specifies a PromptDialog.

The obj ect clause can also specify that the object is to be either a
widget or a gadget, overriding the default specified by the obj ect s
clause. For example, the following defines a PushButtonGadget:

obj ect
pb : XnPushButton gadget {};

Alternately, an obj ect clause an specify a gadget by using the
gadget class name (e.g., XmPushButtonGadget) as the type
specification.

4.1.7.2 Children

An obj ect clause can specify the children of a composite widget.
This specification appears inside the object list section and consists
of the keyword control s followed by a list of child declarations.
The declaration for each child consists of an object type and, usu-
ally, a name that refers to the definition for the child widget in its
own obj ect clause. Instead of a name for the child, the declaration
can contain an entire local definition for the child widget in the form
of an object list section. The child declaration can optionally begin
with the keyword nmanaged or unmanaged, which specifies whether or
not MRM should manage the child after creating it. The default is
to manage the child.

Some manager widgets automatically create children. For example,
MainWindow creates three separators to separate its main com-
ponents. The control s list can contain declarations for these chil-
dren so that the UIL file can specify resource values for them. The

4-9

OSF/Maotif Programmer’s Guide

4-10

declaration for an automatically created child begins with a
specification of the name of the child, formed by prepending Xm_to
the actual name of the child widget. The names of automatically
created children are documented in the reference pages for the
manager widgets in the OSF/Motif Programmer’s Reference.

Following is an example of specifications for child widgets:

obj ect
nai n_wi n : Xmvai nWndow {
control s {
XmvenuBar rmai n_menu;
Xm Separatorl sep_1;
Xngcrol | edText text win;
H
b

In general a child widget can be of any type the Motif toolkit allows
for a child of the parent widget. In some cases the type of the child
differs from the Motif toolkit class. For example, dialogs and menus
require shells as their parents, but in UIL a dialog or menu is
declared to be a direct child of its parent, with no intervening shell.
MRM creates the shell at run time. In this way UIL and MRM act
like the Motif convenience routines for creating dialogs and menus.

Some widget hierarchies in UIL are slightly different from the
corresponding hierarchies in the toolkit. For example, in UIL a
PulldownMenu in an OptionMenu is described as a child of the
OptionMenu, not of the OptionMenu’s parent as it is in the toolkit.
In a PulldownMenu system from a MenuBar or a PopupMenu, each
PulldownMenu is a child of the associated CascadeButton, not of
the CascadeButton’s parent as it is in the toolkit. For more infor-
mation, see chapter 6.

Structure of a Program Using UIL and MRM

4.1.7.3 Resource Values

An obj ect clause can specify resource values for MRM to pass to
the widget’s creation function. This specification appears inside the
object list section and consists of the keyword ar gunent s followed
by a list of resource declarations. The declaration for each resource
consists of the name of the resource as in the toolkit (e.g.,
Xm\hei ght) followed by = and a value for the resource. The type of
the value must be of the proper UIL type for that resource. For
information on the required UIL type for each resource, see Appen-
dix C of the OSF/Motif Programmer’s Reference.

Following is an example of specifications for initial resource values:

obj ect
nmain_win : XnBcroll edText {
argunents {
Xm\rows = 10;
XmNwor dWap = true;
Xm\background = color('red');
h
h
In some cases UIL provides a value for a resource related to a
resource that appears in a specification. For example, if a

specification contains a value for XN t ens in a List, UIL provides
the appropriate value for XmN t enCount .

4.1.7.4 Callback Procedures

An obj ect clause can specify procedures to appear in callback lists
for the object. This specification appears inside the object list

4-11

OSF/Maotif Programmer’s Guide

4-12

section and consists of the keyword cal | backs followed by a list of
callback list declarations. The declaration for each callback list con-
sists of the name of the callback resource as in the toolkit (e.g.,
XmNact i vat eCal | back) followed by = and a value specification for
the resource.

In addition to appropriate toolkit resources, the specification can
include the special callback list name M ni\cr eat eCal | back. MRM
invokes callback procedures on this list when it creates the widget.
These procedures provide a means for the application to identify the
widget ID of a widget created by MRM.

The value specification can be one of two forms:

- If the callback list contains only one procedure, the specification
consists of the keyword procedure followed by the procedure
name and, optionally, a value in parentheses for the application
data argument to the procedure.

- If the callback list contains more than one procedure, the
specification consists of the keyword procedur es followed by a
list of procedure specifications. Each specification consists of the
procedure name and, optionally, a value in parentheses for the
application data argument to the procedure.

The UIL compiler issues a warning if a procedure specification con-
tains an application data argument whose type does not match the
argument type in the corresponding pr ocedur e declaration.

The application uses the M nRegi sterNanes or M nRegi ster-
Nanesl| nH er ar chy routine to establish the correspondence between
UIL procedure names and the application-defined procedures.

Following is an example of specifications for a callback list:
obj ect

pb : XnPushButton {
cal I backs {

Structure of a Program Using UIL and MRM

Xm\act i vat eCal | back = procedure pb_activate cb (pb_ident);
h
h

4.1.8 list Declaration

A list clause defines one or more lists of specifications for
resources, callbacks, procedures, or widget children. Each list has a
symbolic name that the application can use to refer to the list else-
where in the UIL file, usually in an obj ect declaration. The main
use for this clause is to define lists of specifications that are common
to more than one object definition.

Ali st clause consists of the keyword | i st followed by one or more
list specifications. Each list specification contains the name, type,
and contents of the list. Following are the four kinds of lists:

= A list of resources consists of the keyword ar gunent s followed by
a list of resource specifications.

- A list of callbacks consists of the keyword cal | backs followed by
a list of callback specifications.

- A list of procedures consists of the keyword pr ocedur es followed
by a list of procedure specifications.

- A list of widget children consists of the keyword control s fol-
lowed by a list of specifications for the children.

In each case the form of the list is the same as that of the
corresponding clause of an obj ect declaration.

Following is an example of a | i st declaration:

list

4-13

OSF/Maotif Programmer’s Guide

pb_activate procs : procedures {
pb_ac proc_ 1 ();
pb_ac proc 2 ();

}s

list
pb_cal | backs : cal | backs {
Xm\act i vat eCal | back = pb_acti vate_procs;
Xmi\ar nCal | back = procedure pb_armproc ();

}s

list
pb_args : argunents {
Xm\hei ght = 10;
Xm\background = color('red);
h

obj ect
pb_1 : XnPushButton {
argunents {
argunents pb_args;
XN abel String = pb_| abel 1;
H
cal I backs pb_cal | backs;

¥

obj ect
pb 2 : XnPushButton {
argunents {
argurents pb_args;
XnN abel String = pb_I abel _2;
H
cal | backs pb_cal | backs;

}s

4-14

Structure of a Program Using UIL and MRM

list
menu_itens : controls {
XmPushButton pb_1;
XnPushButton pb_2;
I

obj ect
menu_1 : XmPul | downMenu {
control s nmenu_itens;

}s

4.1.9 end module Clause

Each UIL module must end with an end nodul e clause.

4.2 Structure of a Program Using MRM

4.2.1 Including Header Files

An application that uses MRM must include all the header files it
would need if it did not use MRM. These include <Xm Xm h>,
header files specific to each widget the program uses, and any
header files needed by Motif routines. In addition, the application
must include the file <M m MnPublic.h> This file contains
definitions needed by the MRM routines.

4-15

OSF/Maotif Programmer’s Guide

Following is an example of the inclusion of header files for an appli-
cation that uses only a Text widget and MRM:

#i ncl ude <M ni M nPublic. h>
#i ncl ude <Xni Xm h>
#i ncl ude <Xni Text. h>

4.2.2 Initializing the Intrinsics

The application initializes the Intrinsics as in any other program,
usually by calling Xt Appl ni tialize. You must call Xt D spl ayl ni -
tialize either directly or indirectly before opening any UID files.

4.2.3 Initializing MRM

An application that uses MRM must initialize MRM by calling
Mmnitialize before fetching any widgets from UID files. Itis a
good idea to call Mmnitialize before using any other MRM rou-
tines.

4.2.4 Opening UID Files

After initializing MRM and the Intrinsics, the application uses
M mpenH er ar chyPer D spl ay to find and open one or more UID
files that contain the widget definitions and other information to be
loaded. M npenH er ar chyPer D spl ay uses search paths in much
the same way Xt D spl ayl niti al i ze uses them to build the initial

4-16

Structure of a Program Using UIL and MRM

resource database. One argument to M nQpenH erarchyPer -
D spl ay is a list of UID file names, each of which represents either
a full pathname or a name to be substituted in a file search path.
The search path comes from the U DPATH environment variable or, if
U DPATH is not set, from a series of default paths. M nQpenH er ar -
chyPer D spl ay calls Xt Resol vePat hnanme to search these paths.
When it uses a search path, M nmCpenH er ar chyPer D spl ay looks
for files first using a suffix of . ui d and then using a NULL suffix.

As with the initial resource database, UID files can reside in
different directories depending on the language environment. The
search paths can include these substitutions, as well as others
recognized by Xt Resol vePat hnarne:

= %N is replaced by class name of the application
= %L is replaced by the display’s language specification
= %l is replaced by the language part of the language specification

= %U is replaced by the current file name from the list of file
names passed as an argument to M nOpenH er ar chyPer D spl ay

M nmQpenH er ar chyPer D spl ay returns an ID that identifies the list
of open UID files for subsequent calls to routines that load data
from the files. On each request to load data, MRM searches the list
of files in order. This ordered list of open files is the UID hierarchy.
The program can retrieve data from the hierarchy until it calls
M nQ oseH erar chy.

Following is an example of a call to M mCpenH er ar chyPer Di spl ay.
The example initializes MRM and the Intrinsics, opens a UID
hierarchy, and closes the hierarchy.

int main(int argc, char **argv)

{
W dget app_shel | ;

Xt AppCont ext app;

4-17

OSF/Maotif Programmer’s Guide

static String file_names[] = { "app_1", "app_2" };
MnH erarchy hierarchy_id;

app_shell = XtApplnitialize(&pp, "Exanple",
(XrmOpt i onDesclList) NUL, 0, (Cardinal *) &argc, argv,
(String *) NUL, (ArgList) NULL, 0);
Mmnitialize();
swi tch (M nmpenH erar chyPer D spl ay(Xt Di spl ay(app_shel I'),
(M mCount) Xt Nunber (fil e _nanes), file_nanes,
(M msQpenParanfPtr *) NULL, &ierarchy id)) {
case M nBUCCESS:
if (MnQdoseH erarchy(hierarchy_id) == MnBUCCESS) {
exit O;
} else {
fprintf(stderr, "Unhable to close UD hierarchy.\n");
exit 1;
}
case M mNOT_FOUND:
fprintf(stderr, "UWhable to open UD files.\n");
exit 1;
def aul t:
fprintf(stderr, "Unhable to open UD hierarchy.\n");
exit 1;

4.2.5 Registering Callbacks and Identifiers

The application must register the names of all callback procedures
and identifiers defined in the UIL files. Registering the names asso-
ciates the symbolic names in the UIL files with procedures and data
defined in the program. M nmRegi st er Narres and

4-18

Structure of a Program Using UIL and MRM

M nRegi st er Nanesl nH erarchy accomplish this task. Names
registered by M niRegi st er Nanes are global to all UID hierarchies;
names registered by M niRegi st er Nanmes| nH er ar chy are local to a
particular hierarchy. When MRM looks up the program-defined
value associated with a name in a given hierarchy, it searches first
for an association local to the hierarchy and then for a global associ-
ation.

Following is an example using M nRegi st er Nanes:

voi d PBActivateCB 1(Wdget pb, Xt Pointer app_data,
Xt Poi nt er wi dget dat a) ;

voi d PBActivateCB 2(Wdget pb, Xt Pointer app_data,
Xt Poi nt er wi dget dat a);

voi d PBArnCB(Wdget pb, XtPointer app_data,
Xt Poi nt er wi dget dat a);

static MnRegisterArg cb_list[] = {
{ "pb_ac_proc_1", (XtPointer) PBActivateCB 1 },
{ "pb_ac_proc_2", (XtPointer) PBActivateCB 2 },
{ "pb_armproc", (Xt Pointer) PBA nCB }

H

if (MnRegisterNames(cb_list, (MnCount) Xt Nunber(cb list))
== M nBUCCESS) {

} el se {

}

4-19

OSF/Maotif Programmer’s Guide

4.2.6 Fetching Information from UID Files

MRM can fetch the following information from UID files:

Named widgets, defined by obj ect clauses, and their descen-
dants. Use M nfFet chWdget or M nfFet chWdget Overri de.

Named color literals, defined by col or or rbg functions and
appearing in val ue clauses. Use M nfet chCol orLiteral .

Named icon literals, defined by i con functions and appearing in
val ue clauses. Use M nfet chl conLiteral .

Other named literals appearing in value clauses. Use
M ntet chLi t eral or M nfet chSet Val ues.

MRM can fetch literals appearing in val ue clauses only if they are
defined as export ed.

After creating a top-level shell, using XtApplnitialize or
Xt AppCr eat eShel |, the application can use M nfet chWdget to
fetch the child of the top-level shell and its descendants. For each
widget in the tree, M niFet chW dget does the following:

Calls the appropriate widget creation routine, passing it the ini-
tial resource values defined in the ar gunent s specification in the
obj ect clause

Adds the callback routines defined in the call backs
specification of the obj ect clause

Calls any M mi\cr eat eCal | back callbacks

Manages all child widgets unless they are defined to be
unnmanaged

The application does not have to fetch all widgets at the beginning
of the program. To create widgets such as menus and dialogs as
needed, the application can call M nfFet chW dget at any time.

4-20

Structure of a Program Using UIL and MRM

The application can fetch the same widget definition more than
once. MRM creates a new widget each time, essentially using the
UIL definition as a template. M niet chWdget Overri de is useful
here, as it allows the application to override the initial resource
values specified in the UIL file.

Following is a simple example using M nfFet chWdget to create the
main widget hierarchy for an application:

int main(int argc, char **argv)
{
W dget app_shel |, top_level;
Xt AppCont ext app;
static String file_names[] = { "app_1", "app_2" };
MnH erarchy hierarchy_ id;
M nType top_l evel cl ass;

Mmnitialize();
app_shell = XtApplnitialize(&pp, "Exanple",
(XrnmOpti onDesclList) NULL, 0, (Cardinal *) &argc, argv,
(String *) NULL, (ArgList) NUL, 0);
swi tch (M nQpenH erar chyPer D spl ay(Xt D spl ay(app_shel |),
(M nmCount) Xt Nunber (fil e _nanes), file_nanes,
(M mspenParanPtr *) NULL, &hierarchy id)) {
case M nBUCCESS:
i f (MnfetchWdget (hierarchy id, "top_level", app_shell,
&op |level, &op level class) !'= MnBUCCESS) ({
fprintf(stderr, "Unhable to fetch top-level widget.\n");

}

if (MnQdoseH erarchy(hierarchy id) == MnBUCCESS) {
exit O;

} else {
fprintf(stderr, "Unable to close UD hierarchy.\n");
exit 1;

}

4-21

OSF/Maotif Programmer’s Guide

case M mNOT_FQOUND:
fprintf(stderr, "Unhable to open UD files.\n");
exit 1;

def aul t:
fprintf(stderr, "Uhable to open UD hierarchy.\n");
exit 1;

4.2.7 Closing the UID File

M nQ oseH erar chy closes all files in the specified UID hierarchy.
The application can close and reopen a hierarchy, but usually it
does not close a hierarchy until it is finished reading data from the
UID files. When the application uses multiple hierarchies, operat-
ing system limits on the number of open files may make it neces-
sary to close one hierarchy before opening another.

4.2.8 Defining Callback Procedures

4-22

An application that uses MRM defines callback procedures in the
same way as an application that uses only the toolkit. For call-
backs delared in UIL files, the application must use M niRegi st er -
Names or M nRegi st er Nanesl| nH er ar chy to associate the UIL call-
back procedure names with the actual procedures defined in the
program.

An application can create widgets, such as dialogs and Popup-
Menus, as the program needs them. If these widgets are defined in
UIL files, a callback procedure can call M nfet chWdget to fetch

Structure of a Program Using UIL and MRM

them from UID files.

4.2.9 Making Widgets Visible

M ntet chWdget never manages the widget the application is fetch-
ing. It does manage all other widgets in the tree whose root is the
widget being fetched, except for widgets declared unnmanaged in the
UIL file. M nFet chWdget does not realize any widgets in the tree.

The application must manage any unmanaged widgets created by
M nfet chWdget , and it must realize all widgets it wants to make
visible. In the simple case where the application fetches the entire
widget hierarchy at the beginning of the program, it typically
manages the widget it fetches and then realizes the top-level shell:

int main(int argc, char **argv)

{

W dget app_shel |, top_level;

Xt AppCont ext app;

static String file names[] ={ "app_1", "app_2" };
MnH erarchy hierarchy_id;

M nType top_l evel _cl ass;

Mmnitialize();
app_shell = XtApplnitialize(&pp, "Exanple",
(XrmOpti onDescList) NULL, 0, (Cardinal *) &argc, argv,
(String *) NULL, (ArgList) NUL, 0);
swi tch (M nQpenH erarchyPer D spl ay(Xt D spl ay(app_shel |),
(M mCount) Xt Nunber (fil e_nanes), file_nanes,
(M msenParanPtr *) NULL, &ierarchy id)) {
case M nBUCCESS:
i f (MnfFetchWdget (hierarchy id, "top_level", app_shell,
& op_l evel, & op_level class) == MnBUCCESS) {

4-23

OSF/Maotif Programmer’s Guide

Xt ManageChi | d(top_l evel) ;
Xt Real i zeW dget (app_shel |);
} else {
fprintf(stderr, "Unable to fetch top-level widget.\n");

}

if (MnQdoseH erarchy(hierarchy_id) == MnBUCCESS) {
exit O;

} else {
fprintf(stderr, "Unhable to close UD hierarchy.\n");
exit 1;

}

case M mNOT_FOUND:
fprintf(stderr, "Unable to open UD files.\n");
exit 1;

defaul t:
fprintf(stderr, "Unhable to open UD hierarchy.\n");
exit 1;

4.2.10 Entering the Event Loop

As with toolkit applications that do not use MRM, a program using
MRM typically calls Xt AppMai nLoop to enter the event loop after
realizing the top-level shell.

4-24

Chapter 5. Basic Controls

Controls are widgets and gadgets with which the user interacts
directly. They form the leaves of the widget tree whose root is the
application’s top-level shell. In most cases controls are subclasses of
XnPrimtive or XnmGadget, and their parents are subclasses of
XmManager . (Xntcal e is a manager, but in many ways the applica-
tion treats it as a primitive.) Motif provides the following basic con-
trols:

- Labels, buttons, and separators

ScrollBar

Scale
List
Text and TextField

5.1 Core, RectObj, XmPrimitive, and
XmGadget Classes

Nearly all the basic controls are subclasses of XnPrimtive or
XmGadget. XnPrimtive, in turn, is a subclass of the Intrinsics
Cor e class, and Xnzadget is a subclass of the Intrinsics Rect (j
class.

5.1.1 Core

The Core class provides basic attributes of all widgets that have
associated windows. It has the following groups of resources:

- Specifications of the widget's x and y coordinates, width and
height, and border width.

5-1

OSF/Maotif Programmer’s Guide

A resource specifying whether or not the widget is sensitive, or
able to receive input events from the Intrinsics event manager.

Characteristics of the window, including background and border
color or pixmap, colormap, depth, and screen.

A resource controlling whether or not the Intrinsics map the
window when the widget is managed.

A table associating translations with actions.

A set of accelerators, a translation table bound in the context of
a particular widget.

5.1.2 RectObj

Rect (bj is the foundation for gadget classes; it is essentially Core
without the attributes related to having a window. Rect (bj
resources control the position and dimensions of the gadget's rec-
tangular area within its parent widget. A Rect (bj resource also
determines whether or not the gadget is sensitive.

5.1.3 XmPrimitive

5-2

XnPrimtive is the fundamental Motif class for all basic control
widgets—widgets that do not have children. It includes the follow-
ing resources and behavior:

- Foreground color, top and bottom shadow colors or pixmaps, and
shadow thickness.

- Thickness and color or pixmap for the highlighting rectangle,
displayed when the widget has keyboard focus.

Basic Controls

« Resources to determine whether the user can traverse to the
widget and whether or not it is a tab group.

= A resource to determine what unit of measurement the widget
uses for size and position resources.

- Callbacks for the widget to invoke when the user presses KHel p.

= A resource for the application to use in associating arbitrary
data with the widget.

- Translations and actions for keyboard traversal to another
widget.

5.1.4 XmGadget

XmGdget is the fundamental Motif class for all basic control gadg-
ets. Itis equivalent to XnPri m ti ve, with two major exceptions:

- It has no resources for colors or pixmaps. A gadget inherits
these from its parent; therefore, all gadgets within a Manager
have the same colors or pixmaps.

- It has no translations or actions. The Manager parent controls
traversal between its gadget children, keeps track of gadgets
that have input focus, and dispatches events to them.

5.2 Labels, Buttons, and Separators

5-3

OSF/Maotif Programmer’s Guide

5.2.1 Labels

Labels provide the ability to display static (uneditable) text or a pix-
map. A Label or LabelGadget itself is useful for displaying a mes-
sage, title, or description. Label and LabelGadgets are also superc-
lasses for buttons used as menu items, toggles, or controls.

The application can specify the following characteristics of Labels,
LabelGadgets, and their subclasses:

= A compound string or pixmap to be displayed. When using a
pixmap, the application can supply a separate pixmap to be
displayed when the widget is insensitive.

- A font list for displaying the compound string.

- Resources to determine the positioning of the text or pixmap
within the widget. One sets of resources determines the space
allocated for the margins; another determines the distance
between the margins and the text or pixmap inside. The
XmNal i gnment and XnNstringD recti on resources together
determine whether the text or pixmap is centered or is left or
right justified within the widget.

= A resource, Xm\reconput eSi ze, that determines whether the
widget attempts to remain large enough to contain the text or
pixmap. When this resource is True and a resource that affects
the size of the text or pixmap, the margins, or the widget itself is
changed, the widget tries to resize itself to be just large enough
to contain the text or pixmap.

In addition, Label and LabelGadget provide the following facilities
for button subclasses in menus:

- A keysym used as a mnemonic to select the button. The user can
activate the button by pressing the mnemonic key when the but-
ton is visible.

5-4

Basic Controls

= An accelerator, a KeyPr ess event by which the user can activate
the button whether or not it is visible. Accelerators are sup-
ported only for PushButtons and ToggleButtons in Pulldown-
Menus and PopupMenus.

- Translations and actions for keyboard traversal within the menu
or menu system.

5.2.2 Buttons

A button is a basic control that performs some action when the user
activates it. Buttons commonly appear in menus, RadioBoxes and
CheckBoxes, SelectionBoxes and MessageBoxes. This section
describes some of the functions of each subclass.

5.2.2.1 CascadeButtons

A CascadeButton or CascadeButtonGadget is used inside a menu
and, when activated, usually causes a PulldownMenu to appear.
CascadeButtons have the following resources and behavior:

- A pixmap displayed at one end of the widget in a PopupMenu or
PulldownMenu to indicate that activating the CascadeButton
posts another menu.

= A resource, XnNsubMenul d, that holds the widget ID of the
PulldownMenu posted when the user activates the button.

- XmNact i vat eCal | back callbacks, which the widget invokes when
the user activates it, and Xmi\cascadi ngCal | back callbacks,
which the widget invokes just before posting a PulldownMenu.

5-5

OSF/Maotif Programmer’s Guide

- A resource to provide a delay between the time the mouse enters
the widget and the time it posts a menu.

- Translations and actions to activate the widget and to post and
unpost PulldownMenus. In general, pressing BSel ect or drag-
ging BSel ect into the widget posts the PulldownMenu. Releas-
ing BSel ect in the widget causes the PulldownMenu to remain
posted and enables keyboard traversal. When keyboard traver-
sal is enabled, pressing KActivate or KSel ect in the widget
posts the PulldownMenu and enables keyboard traversal in that
menu.

5.2.2.2 PushButtons

5-6

A PushButton or PushButtonGadget can appear either inside or
outside a menu. It performs some action determined by the applica-
tion. When a PushButton is armed, or ready to be activated, it
changes its appearance so that it looks as if the user has pressed it
in. When it is disarmed it reverts to the appearance of extending
out. PushButtons provide the following behavior:

- Callbacks that the widget invokes when it is armed, disarmed,
and activated. The application usually provides only an XimNac-
ti vat eCal | back procedure to perform the action associated with
the button.

- Resources to provide a color or pixmap to be displayed when the
button is armed and not inside a menu. When a button in a
menu is armed, the top and bottom shadows switch colors.

- A resource to determine whether or not the widget considers
multiple mouse clicks distinct from single mouse clicks.

- A resource to determine whether or not the button is marked as
the default button when outside a menu. In a BulletinBoard,

Basic Controls

the default button is the one activated when the user presses
KAct i vat e and no other button has keyboard focus. The default
button has a distinctive shadow whose thickness is controlled by
the XnNdef aul t But t onShadowThi ckness resource.

- Translations to arm, disarm, and activate the button. In gen-
eral, pressing BSel ect on a button or, in a menu, dragging
BSel ect or traversing to a button arms it. Releasing BSel ect or
pressing KActivate or KSel ect in the widget activates and
disarms it.

5.2.2.3 ToggleButtons

ToggleButtons and ToggleButtonGadgets have one of two states:
like toggle switches, they are either "on" or "off". They can appear
in menus or in nonmenu RowColumn WorkAreas, including
RadioBoxes and CheckBoxes. In a RadioBox only one ToggleButton
at a time can be on; in a CheckBox more than one ToggleButton can
be on. ToggleButtons can have indicators with distinctive shapes to
distinguish whether or not more than one button at a time can be
set. However, it is the RowColumn parent, not the ToggleButton,
that controls this behavior.

ToggleButtons have the following characteristics:

- Callbacks that the widget invokes when it is armed or disarmed
and when it changes state. The widget invokes the
Xm\val ueChangedCal | back callbacks when the button’s state
changes from on to off or from off to on.

- Resources to control the appearance of the indicator. If XnN ndi -
cat or On is False or if Xni\vi si bl eWen f is False and the but-
ton is in the off state, no indicator is displayed. Otherwise,
XN ndi cat or Type determines whether the indicator shows that

5-7

OSF/Maotif Programmer’s Guide

only one or more than one button at a time can be on.

= A color or pixmap to be displayed when the button is armed and
Xm\Fi | | OnSel ect is True.

- Pixmaps to be displayed when the button is selected and the
Label or LabelGadget superclass's XnN abel Type is XmPl XNVAP.

- Translations to arm and disarm the button and to change its
state. In general, pressing BSel ect on a button or, in a menu,
dragging BSel ect or traversing to a button arms it. Releasing
BSel ect or pressing KActivate or KSelect in the widget
changes its state and disarms it.

5.2.2.4 DrawnButtons

5-8

A DrawnButton is an empty button surrounded by a shadow border.
It is intended to be used as a PushButton but with graphics drawn
by the application. Like a PushButton, it has translations and
actions to arm, disarm, and activate the button and invoke the
corresponding callbacks. If Xm\pushButtonEnabl ed is True, it
draws the shadow so that the button appears pressed in when
armed and popped out when disarmed.

Other than this, the application must manage the button’s visual
appearance. It has XmNexposeCal | back and Xm\resi zeCal | back
callbacks to notify the application that the button has been exposed
or resized and therefore needs to be redrawn. The application must
be careful not to draw within the button’s shadows or highlight
areas. The application can use a clipping rectangle in the widget's
graphics context that takes account of the button’s
Xm\hi ghl i ght Thi ckness and XniNshadowThi ckness.

Basic Controls

5.2.2.5 ArrowButtons

An ArrowButton or ArrowButtonGadget is a button with an arrow
graphic and a shadow. A resource controls the direction of the
arrow. Unlike other buttons it is not a subclass of XnLabel or XniLa-
bel Gadget , but is has some of the same behavior as other buttons.
It has callbacks that the widget invokes when armed, disarmed, or
activated. It has translations and actions similar to those of other
buttons to arm, disarm, or activate the button.

5.2.3 Separators

A Separator or SeparatorGadget separates controls or groups of con-
trols. It usually appears as a horizontal or vertical line and sup-
ports several styles of line drawing. Resources control its orienta-
tion and the type of line it draws. One line style consists of no line
at all. This allows the application to control the appearance of the
separator by setting its Xm\backgr oundCol or or Xnmi\backgr ound-
Pi xmap.

5.3 ScrollBar

A widget can act as a viewport onto a virtual scroll. The ScrollBar
is the control that moves the viewport horizontally or vertically
relative to the underlying scroll. A ScrollBar consists of a rectangle,
called the scroll region, representing the full size of the scroll. It
has a smaller rectangle, called the slider, within the scroll region,
representing the position and size of the viewport relative to the full

5-9

OSF/Maotif Programmer’s Guide

5-10

scroll. The ScrollBar usually has arrow graphics at both ends of the
larger rectangle.

A ScrollBar has translations and actions that allow the user to
move the slider. By clicking on an arrow, the user moves the slider
one small increment in the direction of the arrow. By clicking in the
scroll region between an arrow and the slider, the user moves the
slider a larger increment (the page increment) in the direction of the
arrow. When the ScrollBar has keyboard focus the user can use the
keyboard to move the slider in this way. The user can also drag the
slider using the mouse.

By itself the ScrollBar does not have an association with a widget
acting as a viewport onto a scroll. Most applications use a Scrol-
ledWindow, a Manager widget with a child to be scrolled and possi-
bly with one or two ScrollBars to control the scrolling. ScrolledWin-
dow can automatically control the interaction between the scrolled
child and the ScrollBars, or it can allow the application to control
the interaction. For more information see chapter 9.

ScrollBar has a number of resources that allow the application to
use it to control scrolling:

= A minimum value (XmNm ni munj, representing the position of the
slider at one end of the scroll region, and a maximum value
(XmNmaxi mur), representing the position of the slider at the other
end of the scroll region. These values can be in any integral
units the application chooses so long as the maximum is greater
than the minimum.

- The length of the slider (Xm\sliderSize) between 1 and
(XmNmaxi mum— XirNm ni munj.

- A value (Xni\val ue), ranging between XmiNm ni numand (Xm\hax-
i rum— Xmi\sl i der Si ze), representing the current position of the
slider between the maximum and minimum values.

Basic Controls

- Values for the increment (XmNi ncrenent) and page increment
(Xm\pagel ncr erent) by which the user can move the slider.

= A resource (XmNpr ocessi ngDi r ect i on) that determines whether
the minimum value is on the left or right for horizontal
ScrollBars or is on the bottom or top for vertical ScrollBars.

- Distinct callbacks that the widget invokes when the user moves
the slider by one increment in either direction, by one page
increment in either direction, or all the way to either end of the
scroll region. The widget invokes other callbacks as the user
drags the slider and when the user stops dragging the slider.
The application does not have to provide routines for all these
callback lists; if it provides only an Xni\val ueChangedCal | back
procedure, the widget invokes that procedure whenever the
ScrollBar value changes (except during interactive dragging of
the slider).

= Resources to control the color of the scroll region, whether the
ScrollBar is horizontal or vertical, whether or not the ScrollBar
has arrows, and delays before the widget moves the slider con-
tinuously as the user presses and holds BSel ect on an arrow or
the scroll region.

Two convenience routines, Xnter ol | Bar Get Val ues and
Xntcr ol | Bar Set Val ues, allow the application to get and set the
value, slider size, increment, and page increment in one call.

5.4 Scale

A Scale displays a value within a range and optionally allows the
user to supply a new value. Its appearance and behavior are much
like those of a ScrollBar without arrows. It also has a title and can
display the current value next to the slider.

5-11

OSF/Maotif Programmer’s Guide

5-12

Like a ScrollBar, a Scale has minimum, maximum, and current
integral values. The application has no access to the slider size,
and the current value ranges between the minimum and maximum.
The increment by which the arrow keys move the slider is always 1,
but the application can supply a multiple increment (XnNscal eMul -
ti pl e) analogous to ScrollBar's Xni\Npagel ncrement . Scale has two
callback lists: Xm\val ueChangedCal | back, invoked when the user
changes the value but is not in the process of dragging the slider,
and Xmi\dr agCal | back, invoked when the user changes the value
while dragging the slider.

Scale also has resources controlling whether the orientation is verti-
cal or horizontal and which end of the Scale represents the
minimum value. Other resources control aspects of the Scale’s
appearance, including the width and height, the title string,
whether or not the Scale displays the current value next to the
slider, the number of decimal places in the displayed value, and a
font list for the title and value.

Two convenience routines, Xntcal eGet Val ue and XnBcal eSet -
Val ue, allow the application to get and set the value.

By default a Scale has no labels or tic marks along the rectangle in
which the slider moves. The application can add these by creating a
series of widgets—such as LabelGadgets or SeparatorGadgets—as
children of the Scale. For example, LabelGadgets could display
values at intervals between the minimum and maximum, or
SeparatorGadgets could display short lines as tic marks. The Scale
positions any children, in order of creation, along the rectangle con-
taining the slider, as follows:

- A single child appears in the middle of the rectangle

- If there are two children, the first appears at the top (for a verti-
cal Scale) or left (for a horizontal scale) of the rectangle, and the
other child appears at the bottom or right of the rectangle

Basic Controls

- If there are more than three children, they appear at equal inter-
vals along the rectangle ranging from top to bottom or from left
to right

The following example creates a Scale with five tic marks:

#define NUM TICS 5

W dget parent, scale, tics[NUMTICS];

Arg args[10] ;

Car di nal i, n;

unsi gned char scale orientation, tic_orientation;

D nensi on tic_long dim= 10, tic_short_dim= 5;
D mensi on tic_width, tic_height;

char tic_nane[10];

scal e = Xn(r eat eScal e(parent, "scale", args, n);
Xt ManageChi | d(scal e) ;

n =0;

Xt Set Arg(args[n], Xm\orientation, &scale orientation); n++;

Xt Get Val ues(scal e, args, n);

if (scale_orientation == XnmHCORI ZONTAL) {
tic_orientati on = XnVERTI CAL,;
tic width = tic_short _dim
tic_height = tic_long_dim

} else {
tic orientation = XnHCR ZONTAL;
ticwidth =tic_long dim
tic_height = tic_short_dim

}

for (i =0; i <NUMTICS, i++) {
sprintf(tic_name, "tic %", i);
n=0;
Xt Set Arg(args[n], Xnmi\separatorType, XnBl NGLE LINE); n++;

5-13

OSF/Maotif Programmer’s Guide

}

Xt Set Arg(args[n], XmNorientation, tic_orientation); n++
Xt Set Arg(args[n], Xm\width, tic wdth); n++;
Xt Set Arg(args[n], Xnmi\height, tic_height); n++;
tics[i] = Xmreat eSepar at or Gadget (scal e, tic_nane, args, n);

Xt ManageChi | dren(tics, NUMTICS);

5.5 List

5-14

A List is an array of textual items from which the user selects one
or more entries. Each item is a compound string. List has four
modes, controlled by the Xni\sel ecti onPol i cy resource, for select-
ing items:

- Single Select. At most one item is selected. Performing the

selection action on an item toggles the selection state of the item
and deselects any other selected item.

Browse Select. At most one item is selected. Performing the
selection action on an item selects the item and deselects any
other selected item. Dragging BSel ect through the list moves
the selection along with the cursor.

Multiple Select. Any number of items can be selected. Perform-
ing the selection action on an item toggles the selection state of
the item but does not deselect any other selected item.

Extended Select. Any number of items can be selected. The user
can select either continuous or discontinuous ranges of items,
depending on the mouse buttons used or, when using the key-
board, on whether the List is in Normal Mode or Add Mode:

Basic Controls

— Pressing BSel ect or, in Normal Mode, KSel ect on an item
selects the item and deselects any other selected item. Drag-
ging BSel ect or pressing or dragging BExt end following a
BSel ect action selects all items between the item under the
pointer and the item on which BSel ect was pressed. In Nor-
mal Mode, KExtend and shifted navigation have the same
effect as pressing BExt end following a BSel ect action.

— Pressing BToggl e or, in Add Mode, KSel ect on an item tog-
gles the selection state of the item but does not deselect any
selected item. Dragging BToggl e or pressing or dragging
BExt end following a BToggl e action sets the selection state of
all items between the item under the pointer and the item on
which BToggl e was pressed to the state of the item on which
BToggl e was pressed. In Add Mode, KExt end and shifted
navigation have the same effect as pressing BExt end follow-
ing a BToggl e action.

When the user makes a selection, the List invokes one of four call-
back lists, depending on the selection policy:

Selection Policy Callback List

Single Select Xm\si ngl eSel ecti onCal | back
Browse Select XmNor owseSel ect i onCal | back
Multiple Select XmiNmul ti pl eSel ect i onCal | back
Extended Select XmNext endedSel ect i onCal | back

By default the List does not invoke a callback list when the List is
in Single Select or Extended Select mode and the user drags the
mouse cursor over a new item. It does invoke the callbacks when
the user releases the mouse button. If XmNaut omati cSel ection is
True, the List invokes the callbacks while the user is dragging the
mouse.

The widget data passed to selection callback routines contains both
the selected items—the compound strings—and integers represent-
ing the positions within the list of the selected items. The first item

5-15

OSF/Maotif Programmer’s Guide

5-16

in the list is at position 1, the second item at position 2, and so on.

List has another callback list, XmiNdef aul t Act i onCal | back, which
it invokes when the user double clicks or presses KActi vat e on an
item. The widget data passed to these callback routines contains
only the item at the location cursor and its position, not the selected
items. When the user performs the default action via a double click,
the List calls the appropriate selection callbacks on the first click
and the Xm\def aul t Acti onCal | back callbacks on the second click.

List includes several other sets of resources:
= Arrays and counts of the List items and selected items

= The number of items, Xm\vi si bl el t enCount , that the list can
display at one time, and the position in the List of the first visi-
ble item

- Several resources that affect the appearance of the list items:
font list, justification (XiNstringDirection), spacing between
items, and margins between the items and the List border

- The maximum time interval between clicks for a double click

= A resource (XnN i st Sl zePol i cy) that determines what the List
does when an item is too wide to fit into the List: it can keep its
size and, if a ScrolledList, add a horizontal ScrollBar; grow to
accommodate the item; or try to grow and, if it fails to accommo-
date the item but is a ScrolledList, add a ScrollBar

« A resource that determines whether the ScrollBars in a Scrol-
ledList are displayed at all times or only when needed.

ScrolledList is a List inside a ScrolledWindow. The application can
use XnOr eat eScr ol | edLi st to create one.

In addition to its resources, List has a variety of convenience rou-
tines that allow the application to add, remove, select, and deselect
items; specify the first or last visible item; find the position of an
item or the positions of the selected items; set Add Mode; and scroll

Basic Controls

the List horizontally.

5.6 Text and TextField

Text is a widget for displaying and, optionally, editing text. When
the Text is editable and the user presses a key that represents a
text character, that character is inserted into the text. Other trans-
lations and actions allow the user to navigate or to select, cut, copy,
paste, or scroll the text.

For more information on Text and TextField, see chapter 8.

5-17

Chapter 6. Menus and Options

A menu is a widget that allows the user to make a choice among
actions or states. When the menu is visible, the user makes a
choice by activating a button in the menu, usually by pressing
BSel ect , KSel ect, or KActi vat e on the button. Some buttons also
have mnemonics that allow the user to activate them by pressing
the mnemonic keys when the menu is visible. Buttons can also
have accelerators, which activate the buttons whether or not the
menu is visible.

Motif has four basic kinds of menu:

- MenuBar. This menu is normally always managed within some
component of an application, often the MainWindow. It usually
consists of a row of CascadeButtons. When the user activates a
button in the menu, a PulldownMenu menu appears with one
set of top-level choices that apply to the application component.

- PopupMenu. This menu contains a set of choices that apply to a
component of the application. The menu is not visible until the
user takes an action that posts it, usually pressing BMenu in the
associated component or pressing KMenu when the component
has keyboard focus. A PopupMenu can contain buttons that
take action or change state directly. It can also contain Cascade-
Buttons that cause PulldownMenus to appear.

- PulldownMenu. This menu is associated with a CascadeButton
in a MenuBar, a PopupMenu, or another PulldownMenu. The
menu is not visible until the user posts it by activating the asso-
ciated CascadeButton. Like a PopupMenu, a PulldownMenu can
contain buttons that take action or change state directly. It can
also contain CascadeButtons that cause other PulldownMenus to
appear.

- OptionMenu. This menu allows the user to choose among one
set of choices, usually mutually exclusive attributes or states. It
consists of a label, a selection area, and a PulldownMenu. The
selection area is a CascadeButtonGadget whose label shows the
currently selected option. The PulldownMenu contains the set of

6-1

OSF/Maotif Programmer’s Guide

options. The user posts the PulldownMenu by activating the
CascadeButtonGadget or by pressing MAt along with a
mnemonic. When the user activates a button in the Pulldown-
Menu, that button becomes the newly selected option.

RowColumn is the widget that Motif uses as a menu. A
RowColumn can also be a nonmenu WorkArea. One use for a Wor-
kArea is to contain a set of ToggleButtons constituting a RadioBox
or a CheckBox. When the user selects a ToggleButton, its state
changes from on to off of from off to on. In a RadioBox, only one
ToggleButton at a time can be on; in a CheckBox, more than one
ToggleButton can be on.

RowColumn performs special geometry management to align and
lay out its children in a variety of ways. An application can use a
RowColumn WorkArea to take advantage of the RowColumn
geometry management for a set of widgets. For details see chapter
10.

6.1 Menu Components: Buttons, RowColumn,

MenuShell

6.1.1 Buttons

6-2

The user makes a choice in a menu by activating one of the buttons
in the menu. CascadeButtons, PushButtons, and ToggleButtons
and their gadget variants are most commonly used in menus.

Note: Motif does not support DrawnButtons or ArrowBut-
tons in menus, though they can appear in a

Menus and Options

RowColumn WorkArea. To give a menu button a dis-
tinctive appearance, use a PushButton with a label
type of XnPl XMAP and supply XmN abel Pi xmap and
XmN abel | nsensi ti vePi xmap resources.

The application learns of the user’s choice through the appropriate
button callback lists:

- When the user activates a CascadeButton, the button calls the
Xm\cascadi ngCal | back callbacks. If the button has an
attached PulldownMenu after these callbacks return, the button
posts the menu. Otherwise, the button calls the Xm\act i vat e-
Cal | back callbacks.

< When the user activates a PushButton, the button calls the
XmNact i vat eCal | back callbacks.

- When the user activates a ToggleButton, the button calls the
Xm\val ueChangedCal | back callbacks.

Buttons in a menu have translations and actions that arm, disarm,
and activate the buttons. These actions also post and unpost
menus in the hierarchy at appropriate times. The buttons inherit
menu traversal translations and actions from XniLabel . These
actions allow the user to move from button to button within a menu
and from menu to menu within the menu hierarchy.

6.1.2 RowColumn

The parent of the buttons in a menu is a RowColumn widget.
RowColumn interacts with its button children in these ways:

= In a menu (but not a WorkArea), it ensures that all children are
CascadeButtons, PushButtons, ToggleButtons, Labels, or
Separators (or their gadget variants). If the XnN sHonbgeneous

6-3

OSF/Maotif Programmer’s Guide

6-4

In

resource is True, it ensures that all children are of the class
specified by Xni\ent r yd ass.

It lays out its children and, if XnN sAl i gned is True, aligns the
labels of children that are XnLabel or Xmiabel Gadget subc-
lasses.

It stores, in the Xm\nenuH st ory resource, the widget ID of the
last menu item selected.

It allows the application to supply a single callback list for all
button children. If XmNentryCal | back is not NULL, it disables
the XmNact i vat eCal | back and Xmi\val ueChangedCal | back call-
backs for its button children and arranges for the buttons to call
the XnNent r yCal | back callbacks instead.

If Xmi\r adi oBehavi or is True, it ensures that only one Tog-
gleButton at a time is normally selected. It also changes the
default values for XN ndi cat or Type and Xmi\vi si bl eWienO f
for its ToggleButton children to the one-of-many, always-
displayed style.

It has additional resources for MenuBars and OptionMenus,
described below.

addition to XmNent ryCal | back, RowColumn also has XmiNrap-

Cal | back and XmN\unnmapCal | back callbacks. These callbacks apply
only to PopupMenus and PulldownMenus. The XnNmapCal | back
callbacks are called just before the menu is posted, and
theXmNunmapCal | back callbacks are called just after the menu is
unposted. They are useful for changing the menu to reflect the
current state of the application. For example, a XmNmapCal | back
callback can use Xt Set Sensi ti ve to make some menu items insen-
sitive if they are not applicable in the current state of the program.

Menus and Options

6.1.3 MenuShell

The windows associated with PopupMenus and PulldownMenus
are top-level windows. That is, the parent window of such a menu
is the root window of the screen, not the window associated with
the parent widget. This allows the menu to appear anywhere on
the screen without being clipped by the parent widget's window.

The parent widget of each PopupMenu and PulldownMenu
RowColumn must be a MenuShell. It is actually the MenuShell’s
window that is the top-level window. XmvenuShel | is a subclass of
OverrideShell, so the window manager ignores MenuShell's win-
dows.

A MenuShell is often invisible to the application. The Motif con-
venience routines for creating PopupMenus and PulldownMenus
automatically create MenuShell parents for these menus. When a
PulldownMenu is the child of a PopupMenu or another Pulldown-
Menu, the child’'s MenuShell is actually the child of the parent’s
MenuShell. The convenience routines for creating PulldownMenus
manage these relations automatically.

Motif arranges for the RowColumn’s window to coincide with the
MenuShell's window. Setting Xm\hei ght, XnNwi dt h, or Xmi\bor -
der Wdt h for either a MenuShell or its child sets that resource to
the same value in both the parent and the child. For a child of a
MenusShell, setting Xm\x or Xm\y sets the corresponding resource of
the parent but does not change the child’s position relative to the
parent. Xt Get Val ues for the child’'s Xmi\x or Xm\y yields the value
of the corresponding resource in the parent. The x and y coordi-
nates of the child’s upper left outside corner relative to the parent’s
upper left inside corner are both zero minus the value of Xm\bor -
der Wdt h.

To change any geometry-related resources of a PopupMenu or
PulldownMenu, an application should always specify these

6-5

OSF/Maotif Programmer’s Guide

resources for the RowColumn child, not the MenuShell parent.

If an application needs to create a MenuShell explicitly, it should
create the MenuShell as a popup child of its parent (using
Xt O eat ePopupShel | or Xt VaC eat ePopupShel). All Motif con-
venience routines that create MenuShells do this automatically,
and an application rarely needs to create a MenuShell directly.

6.2 MenuBar

6—6

All children of a MenuBar must be CascadeButtons or CascadeBut-
tonGadgets. The MenuBar attempts to place its button children in
a single row. If it does not have enough room, it tries to wrap the
remaining children into additional rows.

An application should treat specially the button, if any, that pulls
down a help menu. The application should set the MenuBar
RowColumn’s XnNnmenuHel pW dget to the widget ID of this button.
The MenuBar attempts to place this button at one of the lower
corners of the MenuBar, as specified by the OSF/Motif Style Guide.

In a MenuBar all buttons typically have associated Pulldown-
Menus. Each PulldownMenu associated with a button in a Menu-
Bar must be a child of the MenuBar. (More precisely, each
PulldownMenu’s MenuShell must be a child of the MenuBar.)
Each button’s XnNsubMenul d resource must be set to the widget ID
of the associated PulldownMenu. Set XmiNsubMenul d to the widget
ID of the PulldownMenu RowColumn, not of the PulldownMenu'’s
MenuShell.

The Motif convenience routines XnQr eat eMenuBar , XnQOr eat eSi m
pl eMenuBar , and XmVaQr eat eSi npl eMenuBar all create MenuBars.

Menus and Options

6.3 Popup Menu

A PopupMenu is normally invisible. When the user takes some
action—usually pressing BMenu or KMenu—in a widget that has a
PopupMenu, the menu is posted. The user moves from item to item
in the menu by dragging BMenu or, when keyboard traversal is
enabled, by keyboard traversal actions. Motif unposts the menu
when the user activates an item in the menu system (other than a
CascadeButton), presses KCancel , or releases or clicks BMenu out-
side a menu item.

A PopupMenu RowColumn must have a MenuShell parent. The
parent of the MenuShell is the widget with which the PopupMenu
is associated. Because the MenuShell is a popup child of its parent,
the parent can be any widget (but not a gadget); it does not have to
be a subclass of Conposite. The Motif convenience routines that
create PopupMenus automatically create a MenuShell as the
parent of the PopupMenu RowColumn.

The PopupMenu’s XmNmenuPost resource specifies the button event
that posts the menu. The event can be any button press, possibly
with modifiers. To allow the user to post a PopupMenu using the
mouse, the application has to take these actions:

- Provide an event handler (using Xt AddEvent Handl er) for button
press events for the widget with which the PopupMenu is asso-
ciated. The second argument (the c/ i ent _dat a argument) to
the event handler should be the PopupMenu RowColumn.

- In the event handler, the application can call XmivenuPosi ti on
to locate the PopupMenu at the point where the user pressed
the mouse button, or it can position the menu itself.

= In the event handler, manage the PopupMenu RowColumn. If
the button event matches the event description in the
RowColumn’s Xm\nenuPost resource, Motif makes the

6-7

OSF/Maotif Programmer’s Guide

6-8

PopupMenu visible when the application manages it. Other-
wise, Motif unmanages the PopupMenu and does not post it.

The PopupMenu is realized, if necessary, the first time it is posted.

Following is an example:

voi d ButtonEvent Handl er (W dget wi dget, Xt Pointer popup,
XEvent *event, Bool ean *conti nue)

{
XmMenuPosi ti on((Wdget) popup, (XButtonPressedEvent *)
event);
Xt ManageChi | d((Wdget) popup);
}
W dget parent, popup;

popup = XnCr eat ePopupMenu(parent, "popup", args, n);
Xt AddEvent Handl er (parent, ButtonPressMask, Fal se,
(Xt Event Handl er) ButtonEvent Handl er,
(Xt Pointer) popup);

Posting a PopupMenu via the keyboard is controlled by the
PopupMenu’s XmiNmenuAccel er at or and Xm\popupEnabl ed
resources. XmNnenuAccel er at or specifies a key event that may
post the menu. Xm\popupEnabl ed specifies whether or not this
event actually posts the menu. It also determines whether or not
accelerators and mnemonics in the PopupMenu and its submenus
are enabled.

An application can have only one active PopupMenu at a time for a
particular widget. If the widget has more than one PopupMenu,
the application should set Xnm\popupEnabl ed to True for the active
menu and set Xm\popupEnabl ed to False for all inactive menus.
The application must also arrange for its button event handler to

Menus and Options

manage the proper PopupMenu on a popup button event. One pos-
sible implementation is for the event handler to call a function that
returns the appropriate PopupMenu, depending on the state of the
application.

6.4 PulldownMenu

A PulldownMenu is always associated with another RowColumn.
It becomes visible when the user activates a CascadeButton in the
associated RowColumn. It becomes invisible when the user
traverses upward or laterally in the menu hierarchy, activates a
button in the hierarchy (other than a CascadeButton in the menu
or a descendant), presses KCancel , or clicks or releases a mouse
button outside a menu item.

A PulldownMenu must have the following relations with other
widgets:

< It must be the value of the XniN\subMenul d resource of the Cas-
cadeButton that is to post the menu.

- It must have a MenuShell as its parent. The Motif convenience
routines that create PulldownMenus create MenuShell parents
automatically.

-« The MenuShell must have the proper parent, depending on the
kind of RowColumn with which the PulldownMenu is associ-
ated. The MenuShell is a popup child of its own parent. Follow-
ing are the required parents of the MenuShell:

— If the PulldownMenu is to be pulled down from a MenuBar,
the parent must be the MenuBar.

— If the PulldownMenu is to be pulled down from a Popup-
Menu or another PulldownMenu, the parent must be that

6-9

OSF/Maotif Programmer’s Guide

PopupMenu or PulldownMenu. Actually, the parent is the
other menu’s MenuShell; but the parent parameter to the
Motif convenience routines that create PopupMenus must be
the other menu itself (the RowColumn), not its MenuShell
parent.

— If the PulldownMenu is to be pulled down from an Option-
Menu, the parent must be the parent of the OptionMenu.

6.5 OptionMenu

6-10

An OptionMenu lets the user choose among a set of usually mutu-
ally exclusive options. The OptionMenu is always visible. It con-
sists of a label (a LabelGadget), a selection area (a CascadeBut-
tonGadget), and an associated PulldownMenu. The label of the
CascadeButtonGadget displays the currently selected option, one of
the items in the PulldownMenu. When the user activates the Cas-
cadeButtonGadget, the PulldownMenu becomes visible with the
currently selected item directly above the selection area. When the
user activates an item in the PulldownMenu, the PulldownMenu is
unposted and the item the user chose becomes the currently
selected option.

The PulldownMenu normally contains only PushButtons. It must
not contain any ToggleButtons, and Motif does not support Cas-
cadeButtons.

RowColumn has a number of resources for use specifically with an
OptionMenu:

XmN abel String
The text of the label. Setting this resource also sets
the XmN abel St ri ng of the LabelGadget.

Menus and Options

XmiNmmenoni ¢

A keysym that, when pressed along with the NA t
modifier, posts the PulldownMenu. Motif underlines
the first character in the label string that matches
the mnemonic and that is in a segment whose font
list element tag matches XnNmenoni cChar Set . Set-
ting this resource also sets the XnNmmenoni ¢ of the
LabelGadget.

XmNhmenoni cChar Set
The font list element tag used for underlining the
mnemonic. Setting this resource also sets the
XmNmmenoni cChar Set of the LabelGadget.

XmiNsubMenul d
The widget ID of the PulldownMenu. Setting this
resource also sets the XniNsubMenul d of the Cascade-
ButtonGadget.

If the application needs to get or set any of these four resources for
the LabelGadget or CascadeButtonGadget, it should always get or
set it in the OptionMenu RowColumn, not the gadget itself. To get
or set other resources for the gadgets, the application should use
Xmpt | onLabel Gadget or XmOpti onButtonGadget and then call
Xt Get Val ues or Xt Set Val ues on the returned widget ID. A user or
application can also specify resource values in resource files by
using the names of the gadgets, "OptionLabel" and "OptionButton".

Setting the Xni\nenuH st ory resource also has a special effect in
OptionMenus. Setting XmNrenuH story to an item in the
PulldownMenu makes that item the currently selected option. It
updates the label of the CascadeButtonGadget and causes the
PulldownMenu to appear, when posted, with the selected item over
the CascadeButtonGadget.

XmQOr eat ept | onMenu creates an OptionMenu RowColumn and its
LabelGadget and CascadeButtonGadget children. It does not

6-11

OSF/Maotif Programmer’s Guide

create the associated PulldownMenu.

The following example creates a simple OptionMenu with three

options:
W dget parent, pulldown, option, pbl, pb2, pb3;
Arg args[10];
Car di nal n;
n=0;

pul | down = XmOr eat ePul | downMenu(parent, "option_pd", args, n);
pbl = XnOr eat ePushBut t onGadget (pul | down, "option_pbl", args, n);
pb2 = XnOr eat ePushBut t onGadget (pul | down, "option_pb2", args, n);
pb3 = XnOr eat ePushBut t onGadget (pul | down, "option_pb3", args, n);
Xt Set Arg(args[n], Xmi\NsubMenuld, pulldown); n++;

Xt Set Arg(args[n], XnNrenuH story, pb2); n++;

option = XnOr eat ept i onMenu(parent, "option_rc", args, n);

The following app-defaults file provides labels and mnemonics for
an English-language locale:

*option_pbl.label String : ption 1
*option_pb2.1abel String : ption 2
*option_pb3.label String : ption 3
*option_rc.|abel String : ot i ons
*option_rc. nmenoni c : @)

6.6 RadioBox and CheckBox

RadioBoxes and CheckBoxes are collections of ToggleButtons. The
difference is that in a RadioBox only one ToggleButton at a time

6-12

Menus and Options

can be set; in a CheckBox more than one ToggleButton can be set.

RadioBoxes and CheckBoxes are usually implemented as Wor-
kAreas, though it is possible to implement them as menus. Usually
the application intends for the box to remain visible after the user
sets a ToggleButton, particularly in a CheckBox. The application
can implement a transient RadioBox or CheckBox by placing a
WorkArea inside a dialog.

The following RowColumn resources specifically control the
behavior of a RadioBox or CheckBox:

Xm\r adi oBehavi or
When True, the RowColumn ensures that at most
one ToggleButton is set at a time. Setting this
resource to True also causes the ToggleButton
resource XmN ndi cator Type to default to
XMONE_CF_ MANY and Xm\vi si bl eWwienOF f to default
to True.

Xm\r adi oAl waysOne
When both this resource and Xmi\r adi oBehavi or are
True, RowColumn ensures that one ToggleButton is
always set. The user is not allowed to unset a Tog-
gleButton when no other ToggleButton is set.

For a RadioBox implemented as a WorkArea, the default value for
XmN sHonbgeneous is True, and by default RowColumn allows only
ToggleButton and ToggleButtonGadget children.

Note that the application can foil the RowColumn’s enforcement of
Xm\r adi oBehavi or and Xni\radi oAl wayse, even when these
resources are True. The application can use Xt Set Val ues to set
the state of the ToggleButtons, and it can manage and unmanage
ToggleButtons regardless of their state. The behavior of a
RadioBox is undefined if the application takes actions that contrad-
ict Xmi\r adi oBehavi or or Xni\r adi oAl ways(ne.

6-13

OSF/Maotif Programmer’s Guide

XnOr eat eRadi oBox creates a WorkArea RadioBox and initializes
Xmi\r adi oBehavi or to True.

A CheckBox is most often a collection of ToggleButtons in a Wor-
kArea with Xmi\r adi oBehavi or set to False. By default the Tog-
gleButton XN ndi cator Type is XnN_CF_MANY and Xnm\vi si -
bl eWhen f is True.

6.7 TearOffMenus

6-14

An application can allow the user to "tear off" a PulldownMenu or
PopupMenu. When the user tears off a menu, Motif unposts that
menu and any posted menu descendants. It gives the menu a
TransientShell parent and then maps the parent as a top-level win-
dow. The torn-off menu has window-manager decorations, and its
title is the label of the CascadeButton that posts the menu in the
original menu system.

The user can interact with the torn-off menu just as in the menu
hierarchy. When the user activates buttons in a torn-off menu, the
actions take effect but the torn-off menu remains posted. When the
user takes an action that unposts the torn-off menu, such as press-
ing KCancel , the menu returns to its original position in the menu
hierarchy. If the user reposts the original menu from the menu
hierarchy while the torn-off menu is posted, an inactive representa-
tion of the torn-off menu remains visible, but the menu itself is
unposted and then reposted within the menu hierarchy.

When a menu in a menu system can be torn off, a distinctive tear-
off button appears at the beginning of the menu. The user can tear
off the menu by activating the tear-off button as with any other
button in the menu. The user can also tear off the menu by press-
ing BTransf er in the tear-off button. The user can then drag the

Menus and Options

torn-off menu to another position on the screen and fix its position
by releasing BTr ansf er .

Menus cannot be torn off by default. The application must allow
the user to tear off a menu by setting the RowColumn resource
Xm\t ear Cf f Mbdel to XnMTEAR CFF_ENABLED. When the user tears
off a menu, the XnN ear O f MenuAct i vat eCal | back callbacks are
invoked just before the Xm\hnapCal | back callbacks. When the user
unposts a torn-off menu, the Xni\t ear 0 f MenuDeact i vat eCal | back
callbacks are invoked just after the XmNunmapCal | back callbacks.

6-15

Chapter 7. Dialogs

Dialogs are container widgets that provide a means of communicat-
ing between the user and the application. A dialog widget usually
asks a question or presents some information to the user. In some
cases, the application is suspended until the user provides a
response.

Dialogs are similar to menus. Both seek input from the user. Like
PopupMenus and PulldownMenus, dialogs appear in top-level win-
dows and are more or less transient. Making a selection typically
unposts a PopupMenu or PulldownMenu and often pops down a dia-
log. There are two chief differences:

= Unless torn off, menus are usually nodal : the user must make a
selection from the menu or unpost it before interacting with
other parts of the application. Dialogs can be either modal or
nodel ess. In a modeless dialog, the user can interact with other
parts of the application before returning to the dialog.

= Menu components are limited to buttons, labels, and separators.
Dialogs can contain other, sometimes arbitrary, kinds of widg-
ets, such as List and Text. Dialogs permit more complex interac-
tion with the user and allow the application to solicit a broader
range of information.

Menus are well suited to allowing the user to make a single choice
from a constrained set. Dialogs are appropriate for displaying infor-
mation about a transient or unusual state of the program and for
obtaining complex input from the user. Whether to use a dialog or a
menu is not always clear. In fact, a TearOffMenu combines aspects
of both. For more information on using menus and dialogs, see the
OSF/Motif Style Guide.

7-1

OSF/Maotif Programmer’s Guide

7.1 BulletinBoard and DialogShell

From the application’s point of view, a dialog is a widget that is a
subclass of XnmBul | et i nBoard inside a DialogShell. BulletinBoard
is intended to be the usual superclass for a dialog widget. The dia-
log widget can be either a BulletinBoard itself or one of its more
specialized subclasses. BulletinBoard is a container with no
automatically created children; it supplies general behavior needed
by most dialogs. Its subclasses provide child widgets and specific
behavior tailored to particular types of dialogs.

BulletinBoard and its subclasses can also function outside a Dialog-
Shell, as part of the application’s main window. One subclass,
Form, is particularly useful in providing constraint-based geometry
management for a collection of child widgets.

7.1.1 BulletinBoard

7-2

BulletinBoard provides the following resources and behavior:

- Activation and cancellation of the dialog. BulletinBoard installs
accelerators for KActivate and KCancel. Unless focus is in
another button, KAct i vat e activates the Xmi\def aul t But t on if it
is sensitive. KCancel activates the Xni\cancel Button if it is sen-
sitive. Subclasses set the XmiNdef aul t Butt on and Xni\cancel -
But t on.

- A resource, Xm\di al ogStyl e, that determines whether the dia-
log is modal or modeless. Three modal styles exist:

— Primary application modal—Among the dialog and its ances-
tors, input goes only to the dialog, but the user can iteract

Dialogs

with other parts of the application or with other applications.

— Full application modal—Within the application, input goes
only to the dialog, but the user can interact with other appli-
cations.

— System modal—Input goes only to the dialog; the user cannot
interact with other applications.

- Callbacks invoked when the BulletinBoard is mapped and
unmapped and when it gains input focus.

- Geometry-management resources and class methods that imple-
ment several resizing policies and that allow the BulletinBoard
to interact with its subclasses in managing complex collections of
descendant widgets. The geometry-related resources are
XmiNmar gi nHei ght , XmiNmar gi nW dt h and Ximi\r esi zePol i cy. For
more information on BulletinBoard's geometry management, see
chapter 10.

7.1.2 Activation, Cancellation, and Help

Often a dialog has one or more actions, associated with buttons,
that apply to the dialog as a whole. Some common actions are
"activate", "cancel", and "help". BulletinBoard deals specially with
activation and cancellation. BulletinBoard allows the user to
"activate" or "cancel" the dialog from anywhere within the Bulletin-
Board (except, in the case of activation, when a button has the
focus).

BulletinBoard has a resource, Xm\def aul t But t on, whose value is a
button descendant that represents the default activation action.
When the user presses KActivate in a button that has keyboard
focus, that button’s KActivate actions are called. If the user

7-3

OSF/Maotif Programmer’s Guide

7-4

presses KAct i vat e and no button has focus, BulletinBoard calls the
KActi vat e actions for the XmiNdef aul t Butt on if it is sensitive. If
the user presses KAct i vat e in a List, Text, or TextField descendant,
the KActi vat e actions for that widget are invoked first, and then
BulletinBoard calls the KActi vat e actions for the XniNdef aul t But -
t on.

BulletinBoard has another resource, Xmi\cancel Button, whose
value is a button descendant that represents the default cancella-
tion action. When the user presses KCancel anywhere within the
BulletinBoard, BulletinBoard calls the KActi vat e actions for the
Xm\cancel Butt on if it is sensitive.

The "help" action works differently. Often the application
represents "help" for the dialog as a whole by providing a Help but-
ton. When the user activates this button, the application provides
help for the dialog. In general the application can provide help via
an XimNact i vat eCal | back procedure for the Help button. Some Bul-
letinBoard subclasses create Help buttons automatically. These
widgets add a procedure to the Help button’s XmNact i vat eCal | back
list that invokes the dialog’s Xmi\hel pCal | back procedures when the
Help button is activated. In these cases the application can provide
help via the dialog's Xm\hel pCal | back procedures.

If the user presses KHel p elsewhere in the BulletinBoard, this
action usually invokes the Xmi\hel pCal | back callbacks for the
widget with the focus. If this widget has no Xm\hel pCal | back pro-
cedures, Motif looks up the widget hierarchy for the first ancestor
with a non-NULL Xmi\hel pCal | back list and invokes those pro-
cedures. By providing an Xmi\hel pCal | back procedure for the dialog
itself, the application can ensure that the user sees help for the dia-
log as a whole when the descendant widget with focus has no help
information of its own.

Dialogs

7.1.3 DialogShell

DialogShell is the Motif shell widget that contains dialogs. It is a
subclass of TransientShell, which is a subclass of VendorShell. Dia-
logShell inherits much of VendorShell’s behavior in interacting with
the window manager and in providing geometry management for
off-the-spot input methods.

DialogShell cooperates extensively with BulletinBoard, and some of
DialogShell's features for containing dialogs assume that its child is
a BulletinBoard or BulletinBoard subclass. Often the application
does not need to deal directly with the DialogShell at all. The Motif
convenience routines that create dialogs automatically create a Dia-
logShell as the popup child of the parent shell.

To pop up the dialog, the application does not call Xt Popup on the
DialogShell but instead manages the child of the DialogShell.
DialogShell's change_managed procedure pops up the dialog when
the child is managed and pops it down when the child is
unmanaged, providing that the child’'s XnNrappedWenManaged
resource is True. If a BulletinBoard child's XmNaut oUnnanage
resource is initialized to True, the BulletinBoard is automatically
unmanaged when its OK and cancel buttons are activated.

DialogShell notifies its BulletinBoard child via the XmNnmapCal | back
and Xm\unnmapCal | back procedures when the child is about to be
mapped and unmapped.

Like VendorShell, DialogShell ensures that when no off-the-spot
input method exists the DialogShell window remains coincident
with the child window. Setting Xmi\x and Xni\y for the child sets
these resources for the shell, without changing the child’s position
relative to the child. Setting Xmi\hei ght, Xni\wi dt h and Xni\Nbor -
derWdt h for the child usually sets these resources to the same
value in the DialogShell. When a BulletinBoard child is managed

7-5

OSF/Maotif Programmer’s Guide

7.1.4

7-6

with its XmiNdef aul t Posi ti on resource set to True, DialogShell
centers the dialog with respect to the parent.

BulletinBoard has two resources that allow the user or application
to customize a parent DialogShell’s interaction with the window
manager. XmNdi al ogTitle provides a title for the window
manager, and Xm\noResi ze determines whether or not the dialog
MWM frame includes resize controls. To affect other aspects of
interaction with the window manager, the user or application must
set the appropriate DialogShell resources.

Xm(r eat eBul | eti nBoardD al og creates a BulletinBoard and a
parent DialogShell.

Initial Focus

When the Xm\keyboar dFocusPol i cy of a shell is XnEXPLI A T, Motif
uses the Manager resource XN ni ti al Focus in determining which
component of a manager receives initial focus in these cir-
cumstances:

- When the manager is the child of a shell and the shell hierarchy
receives focus for the first time

= When focus is inside the shell hierarchy, the manager is a com-
posite tab group, and the user traverses to the manager via the
keyboard

Following are the default values of XniNi ni ti al Focus for Bulletin-
Board and its subclasses:

- For BulletinBoard, Form, and MessageBox, the default is the
value of XmN\def aul t But t on

Dialogs

« For SelectionBox and its subclasses, the default is the text edit
area

7.2 Making a Selection: SelectionBox

SelectionBox is a BulletinBoard subclass that generally allows the
user to select an item from a list. By default a SelectionBox
includes the following children:

= A scrolling list of alternatives

- An editable text field for the selected alternative
- Labels for the list and text field

- Three or four buttons

The default buttons are OK, Cancel, and Help. By default an Apply
button is also created; if the parent of the SelectionBox is a Dialog-
Shell it is managed, and otherwise it is unmanaged.

An application can add additional children to the SelectionBox. The
first child is used as a work area. The value of Xni\chi | dPI acerent
determines whether the work area is placed above or below the Text
area, or above or below the List area. Additional children are laid
out in the following manner:

- MenuBar—The first MenuBar child is placed at the top of the
window

= Buttons—All XnPushBut t on widgets or gadgets and their subc-
lasses are placed after the OK button in the order of their crea-
tion

- The layout of additional children that are not in these categories
is undefined

-7

OSF/Maotif Programmer’s Guide

7-8

The user can select an item in two ways: by scrolling through the
list and selecting the desired item or by entering the item name
directly into the text edit area. Selecting an item from the list
causes that item name to appear in the selection text edit area.
SelectionBox installs accelerators, the value of Xni\t ext Accel er a-
tors, on the text edit widget. The default accelerators bind Kup,
KDown, KBegi nLi ne, KEndLi ne, and KRest or e events in the text edit
widget to SelectionBox actions that select an item in the List and
replace the text edit widget value with that List item.

SelectionBox provides XmNokCal | back, XmiNcancel Cal | back,
Xm\hel pCal | back, and XmNappl yCal | back lists, which the Selec-
tionBox invokes when the corresponding button is activated.
Activation of the OK button may invoke either the XniNokCal | back
list or the Xni\noMat chCal | backLi st. When the user activates the
OK button and either the Xmi\nhust Mat ch resource is False or the
text in the text edit area matches a List item, SelectionBox invokes
the XnMNokCal | back procedures. When the user activates the OK
button, XmN\nust Mat ch is True, and the text in the text edit area
does not match a List item, SelectionBox invokes the Xm\noMat ch-
Cal | back procedures.

SelectionBox has two subclasses, FileSelectionBox and Command,
which are described in later sections. Xm(r eat eSel ecti onDi al og
creates a standard SelectionBox and a DialogShell parent.
XmCr eat ePr onpt Di al og creates a variant SelectionBox dialog con-
taining a text edit area and label and OK, Cancel, and Help but-
tons. A PromptDialog has an unmanaged Apply button, and it has
no List or List label. It is intended for the application to prompt the
user for brief text input.

The XmiN\di al ogType resource determines which of the standard
SelectionBox children are created and managed. The value usually
depends on the application’s use of the SelectionBox:

- XnDl ALOG_SELECTI ON usually indicates a standard SelectionBox
dialog.

Dialogs

- XnDl ALOG WIRK_AREA indicates a SelectionBox outside a Dialog-
Shell. The Apply button is unmanaged.

XDl ALOG PROVPT indicates a PromptDialog.
XnDl ALOG_ COWAND indicates a Command subclass.

XDl ALOG FI LE_SELECTI ON indicates a FileSelectionBox sub-
class.

SelectionBox has resources for supplying text, label strings, and list
items for its children. The widget IDs of the children of a Selection-
Box and its subclasses are not available as resources. The applica-
tion can retrieve the widget IDs of the automatically created chil-
dren by using Xt NameToW dget or by calling one of the convenience
routines Motif provides for this purpose: Xntel ecti onBoxGet Chi | d,
XnFi | eSel ecti onBoxCet Chi | d, and XnConmandCet Chi | d.

7.3 Choosing a Pathname: FileSelectionBox

FileSelectionBox is a subclass of SelectionBox designed for finding
and selecting files. By default a FileSelectionBox contains the same
children as a standard SelectionBox, with the addition of a second
ScrolledList, a second text edit area, and the corresponding labels.
By default the Apply button is labeled "Filter".

One of the text areas, the directory mask area, holds a directory
mask specifying a base directory to be searched and a search pat-
tern. The other text area, the selection area, holds the name of the
selected file. One of the Lists, the directory list, displays the sub-
directories of the current base directory. The other List, the file list,
displays all the files, subdirectories, or both in the base directory
that match the search pattern.

7-9

OSF/Maotif Programmer’s Guide

7-10

The user can select a new base directory to examine by scrolling
through the list of directories and selecting the desired directory or
by editing the directory mask. Selecting a new directory from the
directory list does not change the search pattern. A user can select
a new search pattern by editing the directory mask. Double clicking
or pressing KActi vat e on a directory in the directory list initiates a
search for files and subdirectories in the new directory, using the
current search pattern.

Activating the Filter button, the directory list, or the directory mask
text area causes the FileSelectionBox to initiate a file search. The
FileSelectionBox uses three procedures, each the value of a
resource, in conducting the search: the XmNgualifySear chbDa-
t aPr oc, the XmiN\di r Sear chProc and the Xmi\fi | eSear chProc. The
XmN\gual i f ySear chDat aProc extracts the base directory and the
search pattern from the directory mask. The XniNdi r Sear chPr oc
uses the data returned by the XnNqualifySearchDataProc to
update the directory list. The XnNfi | eSear chProc uses the data
returned by the XmiNgual i f ySear chDat aPr oc to update the file list.

The user can select a file by scrolling through the list of filenames
and selecting the desired file or by entering the filename directly
into the text edit area. Selecting a file from the list causes that
filename to appear in the file selection text edit area. The user
confirms the selection by activating the OK button, the file list, or
the selection text area.

FileSelectionBox uses the SelectionBox callback lists to notify the
application when the user activates one of the buttons. The applica-
tion can also provide one or more of the three procedures that
FileSelectionBox uses to conduct a search. For a specification of the
input to and output from these routines, see the
Xnti | eSel ecti onBox(3X) reference page in the OSF/Motif
Programmer’s Reference.

The application can remove the directory list, the file list, or both.
The application must unmanage the ScrolledWindow parent of the

Dialogs

List and the corresponding label. An application can also add addi-
tional children to a FileSelectionBox, which manages any additional
children in the same way as SelectionBox.

Xm(r eat eFi | eSel ecti onD al og creates a FileSelectionBox and a
parent DialogShell.

7.4 Command

Command is a SelectionBox subclass intended for entering a com-
mand. It contains the SelectionBox text edit area, List, and List
label, but no buttons. The application can add only one additional
work area child to the Command. A Command usually appears as
part of the application’s main window rather than as a dialog.

The user specifies a command by adding text to the text area or by
selecting an item from the List, which represents the command his-
tory. Whenever the text edit area changes, Command invokes the
Xm\commandChangedCal | back procedures. The user enters a com-
mand by activating the List or the text edit area. When the user
enters a command, Command appends the command to the history
list and invokes the XmNcomrandEnt er edCal | back procedures.

Command has a number of resources that are aliases for Selection-
Box resources dealing with the List and text edit area. Command
also has an Xmi\hi st or yMaxI t ens resource, which specifies the max-
imum length of the history list. After the list reaches this length,
Command deletes the first item in the list before appending a newly
entered command.

7-11

OSF/Maotif Programmer’s Guide

7.5 MessageBox

MessageBox is a BulletinBoard subclass intended for a dialog con-
sisting of a single user interaction. By default a MessageBox has
the following components:

- A LabelGadget with a pixmap label symbolizing the type of
interaction the MessageBox represents

- A LabelGadget with a compound string label representing the
text of the message

- A SeparatorGadget separating the message symbol and text
from the other children

- Three buttons: OK, Cancel, and Help

Typically the message symbol and text are on top and the buttons
on the bottom, with the separator between. The application can
add additional children to a MessageBox. Additional children are
laid out in the following manner:

= The first MenuBar child is placed at the top of the window.

- All XnPushBut t on widgets or gadgets, and their subclasses are
placed after the OK button in the order of their creation.

- A child that is not in these categories is treated as a work area
and is placed above the row of buttons. If a message label exists,
the child is placed below the label. If a message pixmap exists,
but a message label is absent, the child is placed on the same
row as the pixmap. The child behaves as a work area and grows
or shrinks to fill the space above the row of buttons. The layout
of multiple work area children is undefined.

Several convenience routines create MessageBox widgets with Dia-
logShell parents for particular kinds of interactions. For most of

7-12

Dialogs

these routines, the principal difference in the type of MessageBox
they create is that each uses a distinct default symbol pixmap.
When it creates the symbol pixmap, MessageBox uses Xnet Pi x-
mapByDept h to find a pixmap with a name that corresponds to the
type of interaction. Each dialog type is also associated with a value
of the XnNdi al ogType resource. The following table shows the
correspondence between creation routine, XnNdi al ogType, and sym-
bol pixmap name:

Convenience Routine XmNdialogType Pixmap Name
XmCreateErrorDialog XmDIALOG_ERROR Xm_error
XmCreatelnformationDialog XmDIALOG _INFORMATION xm_information
XmCreateMessageDialog XmDIALOG_MESSAGE
XmCreateQuestionDialog XmDIALOG_QUESTION Xm_question
XmCreateTemplateDialog XmDIALOG TEMPLATE
XmCreateWarningDialog XmDIALOG_WARNING Xm_warning
XmCreateWorkingDialog XmDIALOG_WORKING xm_working

A MesssageDialog and a TemplateDialog have no default symbol
pixmap. A TemplateDialog is a special MessageBox variant that is
intended for application customization and that, by default, has no
children except the separator.

Like SelectionBox, MessageBox has XnmNokCal | back, XniNcancel -
Cal | back, and Xmh\hel pCal | back lists to inform the application
when the user activates a button. MessageBox has resources for
supplying label strings and the symbol pixmap for its children. The
widget IDs of the children of a MessageBox not available as
resources. The application can retrieve the widget IDs of the
automatically created children by using Xt NameToW dget or by cal-
ling XmviessageBoxCGet Chi | d.

7-13

OSF/Maotif Programmer’s Guide

7.6 Form

7-14

Form is a BulletinBoard subclass whose main purpose is to provide
constraint-based geometry management for arbitrary children.
Form has a number of constraint resources that it uses to place chil-
dren with respect to the Form, positions within the form, and other
children. Most Form-specific behavior is related to this geometry
management. Form has no default children of its own. But as a
BulletinBoard subclass, Form is an appopriate container for use in
dialogs. Xm(r eat eFor nD al og creates a Form and a DialogShell
parent.

For information on Form’s geometry management, see chapter 10.

Chapter 8. Text

OSF/Motif has widgets for displaying two kinds of text: static text,
as in labels and messages, and editable text. Static text usually
appears in Label widgets or Label subclasses, including buttons,
and in Lists. The application or user can specify initial text for
Labels or Lists via resource or UIL files, but the user cannot edit
the text. The application can replace the text during the program
by setting the appropriate resources. In Labels and Label subc-
lasses and in Lists, Motif represents text as compound strings.
These are byte streams that contain the text itself and tags that the
toolkit matches with tags in font lists in order to select the
appropriate fonts or font sets to display the text.

For editing text, Motif provides Text and TextField widgets. The
displayed text in these widgets may or may not be editable, depend-
ing on the value of the XmiNedi t abl e resource. When the Text is
editable and the user enters a text character, that character is
inserted into the text. Other translations and actions allow the
user to navigate or to select, cut, copy, paste, or scroll the text. In
Text and TextField widgets Motif represents text as strings of
either multibyte (char) or wide (wchar _t) characters. The Text
widget uses a single font or font set from a font list to display the
text.

This chapter discusses the Text and TextField widgets. Labels and
their subclasses are discussed in chapter 5, and compound strings,
font lists, and localization of text are discussed in chapter 11. It is
possible for an application to construct its own text-editing widget
using a DrawingArea. This is discussed in chapter 14.

8.1 Text and TextField

The text in a Text widget can be multiline or constrained to be a
single line, depending on the value of the XimNedi t Mode resource. In

8-1

OSF/Maotif Programmer’s Guide

8-2

multiline Text, pressing KUp moves the insertion cursor, the point at
which new text is inserted, to the previous line, and pressing KDown
moves the insertion cursor to the next line. Other actions move the
insertion cursor forward and backward by paragraphs. Pressing
KSpace, KTab, or KEnt er causes the corresponding character to be
inserted into the text. For this reason some virtual key bindings
are different in Text from those in other widgets:

Virtual Key Bindings
Virtual Key Actual Key Events

KActivate Ctri<Key>Return
<Key>osfActivate

KExtend Ctrl Shift<Key>space
Shift<Key>osfSelect

KNextField Ctri<Key>Tab

KSelect Ctri<Key>space
<Key>osfSelect

In a single-line widget, pressing KSpace still inserts a space into the
text. However, KUp and KDown now move keyboard focus to the pre-
vious or next traversable widget, and KTab traverses to the next tab
group. KeEnter invokes the XnmiNacti vat eCal | back callbacks. The
actions for moving by paragraphs have no effect. In other words, a
single-line Text widget acts more as a simple control than a field
control.

A TextField is essentially the same as a Text widget in single-line
mode, except that its performance is optimized for single-line text
operations. Although TextField has a complete set of convenience
routines of its own, the widget argument to the Text convenience
routines can be either a Text or a TextField widget.

Text

8.2 Selection

Both Text and TextField allow the user to cut, copy, and paste text
using the clipboard, primary transfer, or secondary transfer. The
user can also drag and drop text within a widget, between widgets,
or from a Label or List widget to a Text or TextField widget. In all
cases, the user first selects text in some widget and then inserts the
selected text into a Text or TextField widget.

This section explains how selection works in Text and TextField.
Understanding selection requires understanding of several con-
cepts: prinmary selection, secondary selection, clipboard
sel ection, the destination widget, the i nserti on cursor, the
selection anchor, and pendi ng del ete.

Sel ecti ons are the primary means of exchanging data between X
clients. A selection is a piece of data. Each display may have
several kinds of selections, but only one selection of each kind can
exist at any time on the display. A client owns each selection, and
the selection is attached to a window. Clients can acquire or give
up ownership of a selection and can request that the owner convert
the selection into some data type and place the results on a property
of a particular window. This mechanism makes it possible to select
and then cut, copy, or paste data from one client to another. Selec-
tions are discussed in detail in the X Window System document
Inter-Client Communication Conventions Manual (ICCCM).

Text and TextField support transfers using the three kinds of selec-
tion common to all X clients:

Primary The primary selection is the principal selection on
the display. When we talk about sel ect i ng text
or about t he sel ecti on, unless we qualify these
terms we are referring to the primary selection.

8-3

OSF/Maotif Programmer’s Guide

8-4

Secondary The secondary selection is used to transfer data
without disturbing the primary selection. Text
and TextField use the secondary selection for
qui ck transfer, in which the user selects and then
moves or copies text using a single series of mouse
gestures.

Clipboard The clipboard selection usually holds data cut or
copied from one client and available to be pasted
into another. Text and TextField provide actions
for cutting and copying text to the clipboard and
for pasting text from the clipboard.

The desti nation is the widget that at any particular time would
receive the selection if the user were to invoke a move, copy, or
paste operation. A Text or TextField widget must be both sensitive
and editable to become the destination. When the Xnm\keyboar d-
FocusPol i cy of the shell is XnEXPLI A T, an editable widget becomes
the destination when it receives keyboard focus. When the Xm\key-
boar dFocusPol i cy is XnPA NTER, an editable widget becomes the
destination when it receives any mouse button or keyboard input.
If the destination widget becomes insensitive or uneditable, there is
no destination widget.

The insertion cursor is an I-beam cursor that shows where text,
including a selection, would be inserted in a Text or TextField
widget. The insertion cursor appears as a solid I-beam when the
widget is in normal node (explained below) and when it is either
the widget with keyboard focus or the destination widget. Other-
wise, the insertion cursor appears as a stippled I-beam.

The anchor is a position in the text of a widget that marks one
boundary of a selection or a potential selection. For example, the
user can select a range of text by pressing, dragging, and releasing
BSel ect . The anchor is set at the point of the button press, and the
selection extends to the point of the button release. When the user
takes an action to extend an existing selection, Motif first adjusts

Text

the anchor using a balance-beam method: it moves the anchor to
the end of the existing selection that is farthest from the point of
the button or key press that initiates the extend action.

Text and TextField have an Xni\pendi nglel et e resource. When the
value of this resource is True, as it is by default, some user actions
cause a selection to be deleted. When a selection exists and the
insertion cursor is not disjoint from it, an operation that inserts
text, including a transfer of the secondary or clipboard selection,
deletes the primary selection before inserting the text. Also, when a
selection exists and the insertion cursor is not disjoint from it, an
operation that deletes text deletes the primary selection instead of
the text that would otherwise be removed. When Xm\pendi ng-
Del et e is False, these operations do not delete the selection.

8.2.1 Mouse Selection

The user makes a primary selection with BSel ect. Pressing
BSel ect deselects any existing selection and moves the insertion
cursor and the anchor to the position in the text where the button is
pressed. Dragging BSel ect selects all text between the anchor and
the pointer position, deselecting any text outside that range.
Releasing BSel ect moves the insertion cursor to the position where
the button is released. Clicking BSel ect deselects any existing
selection and moves the insertion cursor and the anchor to the posi-
tion where BSel ect is released.

BExt end extends a selection using the balance-beam method. When
the user presses BExt end, the selection becomes anchored at the
edge of the selection farthest from the pointer position. When the
user releases BExt end, the selection extends from the anchor to the
position where BExt end is released, and any text outside that range
is deselected. The insertion cursor moves to the position where

8-5

OSF/Maotif Programmer’s Guide

8-6

BExt end is released.

Clicking BToggl e moves the insertion cursor to the position where
BToggl e is released without affecting the selection.

Clicking BTransfer moves the insertion cursor to the position
where BTransf er is released. Then, unless the insertion cursor is
in the midst of the selection, it copies the primary selection to the
insertion cursor and moves the insertion cursor to the end of the
copied text. The original selection remains selected. Clicking
MBhi ft BTransf er has the same effect except that it moves the pri-
mary selection to the insertion cursor, deleting the original selection
if possible.

Dragging MA 't BTransf er outside of the primary selection starts a
secondary selection consisting of all text between the position of the
pointer and the position where MA't BTransfer was pressed.
Releasing MAl't BTransfer copies the secondary selection to the
insertion cursor in the destination widget. Before copying the
secondary selection, if the destination contains the primary selec-
tion and the insertion cursor is not disjoint from it, this action
deletes the primary selection. Dragging MA't Mshift BTransfer
also makes a secondary selection, and releasing MNt Mghift
BTr ansf er moves the secondary selection to the destination widget.

Dragging BTr ansf er with the insertion cursor positioned within a
primary selection initiates a drag operation. The user may press a
modifier key to indicate whether the drag is a copy, move, or link
operation. Releasing BTr ansf er either in the same Text widget or a
different widget moves the insertion cursor to the position where
BTransf er is released, drops the selected text at that point, and
moves the insertion cursor to the end of the dropped text.

Pressing KCancel during the operation aborts the operation and no
data exchange occurs. If the user presses KHel p over a drop site,
the user has the option to continue or to cancel the drop operation
in response to the help information that the application provides.

Text

8.2.2 Keyboard Selection

Selection operations available with the mouse, except secondary
selection, are also available from the keyboard. Text has two key-
board selection modes, Normal Mode and Add Mode. In Normal
Mode, if text is selected, a navigation operation deselects the
selected text and moves the anchor to the current position of the
insertion cursor before navigating. In Add Mode, navigation opera-
tions have no effect other than navigation. In both modes, pressing
KSel ect has the same effect as pressing BSel ect at that position.

In Normal mode, when the widget contains the primary selection
and the insertion cursor is disjoint from it, any operation that
inserts or pastes text into the widget (except a transfer of the pri-
mary selection from the same widget) first deselects the primary
selection. In Add Mode such an operation does not deselect the pri-
mary selection.

Pressing KExt end extends the current selection to the insertion cur-
sor using the balance-beam method. The current selection becomes
anchored at the edge of the selection farthest from the insertion cur-
sor. The selection then extends from the anchor to the insertion
cursor, and any text outside that range is deselected.

Shifted navigation operations also extend a selection. In Normal
Mode, if no text is selected, a shifted navigation operation moves
the anchor to the insertion cursor, navigates, selects the navigated
text, and deselects any text outside that range. In the remaining
cases—Normal Mode and Add Mode with any selection—a shifted
navigation operation extends the selection using the balance-beam
method. Before navigation, the current selection becomes anchored
at the edge of the selection farthest from the insertion cursor. After
navigation, the selection extends from the anchor to the insertion
cursor, and any text outside that range is deselected.

8-7

OSF/Maotif Programmer’s Guide

KPr i mar yCopy copies the primary selection to the insertion cursor.
KPri mar yQut cuts the primary selection to the insertion cursor.

KCopy copies the current selection in the Text widget to the clip-
board; KQut cuts the selection; and KPast e inserts the contents of
the clipboard at the insertion cursor.

8.3 Text Editing and Callbacks

8-8

Text has a number of callback lists for communication with the
application. Text invokes callbacks whenever the widget gains or
loses focus, when it gains or loses the primary selection, before the
insertion cursor is moved or text is modified, and when the text
string changes or the acti vat e() action is invoked.

Text passes these callbacks a pointer to either an XmAnyCal | back-
Struct or an XnWextVerifyCallbackStruct (or XnTextVer-
i fyCal | backSt ruct W¢s) structure. The two verification structures
contain the current and new positions of the insertion cursor; the
starting and ending positions of the text to be modified; a pointer to
an XnText Bl ockRec (or XnText Bl ockRecWs) structure with infor-
mation about the text to be modified; and a boolean in/out doi t
member that the callback procedure can set to tell the widget
whether or not to go ahead with the modification.

Following is a summary of the callbacks:

- Xmi\hot i onVeri fyCal | back. Text invokes this list, passing a
pointer to an Xnirext Veri fyCal | backSt ruct as the widget data,
before moving the insertion cursor. The application can prevent
the action by setting the doi t member of the callback struct to
False.

Text

- Xm\nodi fyVeri fyCal | back or XmNmodi fyVeri fyCal | backVes.
Text invokes this list, passing a pointer to an Xniext Ver -
i fyCal | backStruct (or XnWext VerifyCall backStruct\Ws) as
the widget data, before deleting or inserting any text. The appli-
cation can prevent the action by setting the doit member of the
callback struct to False.

- Xm\val ueChangedCal | back. Text invokes this list, passing a
pointer to an XmAnyCal | backStruct as the widget data, after
text is inserted or deleted.

- Xm\F ocusCal | back. Text invokes this list, passing a pointer to
an XmAnyCal | backSt ruct as the widget data, when the widget
gains input focus.

- XmN osi ngFocusCal | back. Text invokes this list, passing a
pointer to an XnText Veri fyCal | backStruct as the widget data,
before the widget loses input focus. The application can prevent
the action by setting the doit member of the callback struct to
False.

- Xm\gai nPri maryCal | back. Text invokes this list, passing a
pointer to an XmAnyCal | backStruct as the widget data, when
the widget gains ownership of the primary selection.

- XnN osePri naryCal | back. Text invokes this list, passing a
pointer to an XmAnyCal | backStruct as the widget data, when
the widget loses ownership of the primary selection.

- XmNact i vat eCal | back. Text invokes this list, passing a pointer
to an XmAnyCal | backStruct as the widget data, when the
activate() action is invoked. By default no translations are
bound to this action, but in a single-line Text widget or a Text-
Field widget, pressing KEnt er i nvokes
t heXnNact i vat eCal | back callbacks.

These callbacks provide a great deal of flexibility for an application
to alter the behavior of the Text widget. For example, an

8-9

OSF/Maotif Programmer’s Guide

8-10

application can prevent text from being inserted, as when the user
types a password, by means of the Xni\nhodi fyVeri fyCal | back or
XmNmodi f yVeri fyCal | backWs callbacks. The application can
prevent any text from appearing by setting the doi t member of the
XmText Veri fyCal | backSt ruct (or XmText Veri fyCal | back-
Struct Ws) to False. The application can also alter the text to
appear by creating a new text string and setting the ptr member of
the XnText Bl ockRec structure (or the wcsptr member of the
XnText Bl ockRecW s structure) to the new string.

Following is an example of an XmNmodi f yVeri fyCal | back that sub-
stitutes a string of characters for any text a user enters. Because
the Xni\hodi fyVerifyCal | back procedures are most commonly
invoked after the user enters a character, this routine usually sub-
stitutes the replacement string for each character the user types.
This example could be used with a single-line Text widget as part of
a simple password-entry program. In this case the Xni\Nnodi f yVeri -
fyCal | back procedure would need additional code to save the char-
acters the user types, and the program would need an Xm\act i vat e-
Cal | back procedure to check whether the saved characters match
the password.

/* Xm\hodi fyVeri fyCal | back procedure that
* repl aces text the user enters
* with a repl acement string passed in as
* application data. */
voi d Modi fyVerifyCB(Wdget w, Xt Pointer app_data,
Xt Poi nt er wi dget dat a)
{
char *replace string = (char *) app_dat a;
XnText Veri fyCal | backStruct *wi dget _info =
(XnText Veri fyCal | backStruct *) w dget dat a;
if (widget info->text->length > 0) {
wi dget _info->text->length = strlen(replace_string);
w dget _i nfo->text->ptr = replace_string;

Text

}
}

Text and TextField differ from most other Motif widgets in that cal-
ling some convenience routines and setting some resources causes
the widget to invoke callback procedures. In general:

- Setting resources or calling convenience routines that change the
contents of the text invokes the Xmi\nodi f yVeri f yCal | back and
XmNmodi f yVeri fyCal | backWes callbacks. If these procedures
allow the text to be modified, the Xmi\val ueChangedCal | back
callbacks are invoked.

- Setting resources or calling convenience routines that change the
position of the insertion cursor invokes the XmiNmot i onVeri fy-
Cal | back callbacks.

- Setting resources or calling convenience routines that cause the
widget to gain the primary selection invokes the Xnmi\gai nPri -
mar yCal | back callbacks.

- Setting resources or calling convenience routines that cause the
widget to lose the primary selection invokes the XN osePri -
mar yCal | back callbacks.

If the application needs to distinguish between callbacks invoked as
a result of user action and callbacks invoked as a result of applica-
tion action (such as setting a resource or calling a convenience rou-
tine), it needs to set a flag before taking the application action and
clear the flag afterward.

8-11

OSF/Maotif Programmer’s Guide

8.4 Text Resources and Geometry

In addition to the resources discussed above, Text has many others,
including the following:

The text itself, Xm\value or Xmi\val ueWws. The text is
represented to the application as an array of either char ele-
ments (for Xnmi\val ue) or wchar _t elements (for Xm\val ueV¢s).
The application can set or get either resource.

Resources representing the insertion cursor position and blink
rate, the position of text at the top of the window, and whether
the insertion cursor is always visible. A text position (of type
XnText Posi ti on) is an integer representing the number of char-
acters from the beginning of the buffer.

A resource (Xmi\maxLengt h) representing the maximum length of
the text string that the user can enter.

A resource (XimNaor dW ap) that specifies whether lines are bro-
ken at word boundaries. Breaking a line at a word boundary
does not insert a newline into the text.

In addition, Text and TextField have several resources that deter-
mine the geometry of the widget:

8-12

Two resources, XmNmar gi nHei ght and Xni\har gi nWdt h, that
determine the margins between the text and the shadow, if
present. Text and TextField also use the Primitive resources
that determine shadow and highlight appearance.

The font list (Xm\f ont Li st) that the widget uses to select a font
or font set to display the text.

Resources that specify the number of rows of text (Ximi\r ows) and
the number of horizontal character positions (XniNcol ums).
Single-line Text and TextField always have one row.

Text

- Resources that determine whether or not the widget grows verti-
cally (Xm\resi zeHei ght) or horizontally (Xm\resi zeWdth) to
accommodate all its text. Xm\resi zeHei ght does not apply to
single-line Text or TextField.

- Resources that apply only when the widget is inside a Scrol-
ledWindow whose XmNvisualPolicy is XnmVAR ABLE.
XmN\scrol | Hori zont al determines whether or not the widget
should have a horizontal ScrollBar and should scroll horizontally
instead of growing when the text expands beyond the width allo-
cated for it. Xmi\scrol | Vertical determines whether or not the
widget should have a vertical ScrollBar and should scroll verti-
cally instead of growing when the text expands beyond the
height allocated for it. Xmi\scrol | Left Si de and Xm\scr ol | Top-
Si de determine which side of the widget receives the correspond-
ing ScrollBar. These resources do not apply to TextField, and
XmNscrol | Vertical and XnNscrol | Left Side do not apply to
single-line Text.

Xm\r esi zeW dt h is initialized to False when XmiNscrol | Hori zont al
is True or XnNwor dW ap is True. Xnl\r esi zeHei ght is initialized to
False when Xmi\scrol | Verti cal is True.

If the user or application initializes or sets a specific height
(Xm\hei ght) or width (XnNwi dth), that value is used as the
corresponding dimension of the widget. In addition, if a height is
specified Xni\rows is recalculated based on that height, and if a
width is specified XnmNcol unns is recalculated based on that width.

If the user or application initializes or sets Xmi\rows but not
Xm\hei ght, the geometry calculation depends on the value of
Xmi\r esi zeHei ght . If Xml\resi zeHei ght is True, the height of the
widget is the greater of the height needed to display Xni\r ows of text
and the height needed to display all the text. If Xm\resi zeHei ght
is False, as it is by default, the height of the widget is the height
needed to display all the text. The same relations hold for
Xm\col umns, Xmi\wi dt h, and Xni\r esi zeW dt h.

8-13

OSF/Maotif Programmer’s Guide

If the user or application does not initialize either Xni\rows or
Xm\hei ght, the geometry calculation depends on the value of
Xm\r esi zeHei ght . If Xni\r esi zeHei ght is True, the height of the
widget is the height needed to display all the text. |If
Xm\r esi zeHei ght is False, the height of the widget is the height
needed to display the default for Xm\r ows, which is one row of text.
The same relations hold for XnNcolumns, XnmiNwidth, and
Xm\r esi zeW dt h, except that the default number of columns is 20.

If the contents of the text (Xni\val ue or Xni\val ueV¢s) change, as a
result of user editing or an action by the application, the geometry
calculation depends on the value of Xmi\resizeHeight. If
Xm\r esi zeHei ght is True, the height of the widget is the height
needed to display all the text. If Xmi\resizeHei ght is False, the
height of the widget does not change. The same relations hold for
Xm\val ue, Xnmi\val ueWs, Xni\resi zeWdth, and the width of the
widget.

If the application sets another resource that affects the height
needed by the widget, such as XnNhar gi nHei ght or Xmi\f ont Li st ,
the geometry calculation depends on the value of Xni\r esi zeHei ght .
If Xm\r esi zeHei ght is True, the height of the widget is the height
needed to display all the text with the new resource values. If
Xm\r esi zeHei ght is False, the height of the widget is the height
needed to display Xni\r ows of text using the new resources. The
same relations hold for these resources, Xni\resizeWdth,
Xm\col umms, and the width of the widget.

8.5 Convenience Routines

8-14

Text has convenience routines to permit the application to perform
many functions, including these:

Text

- Insert and replace text.
- Cut, copy, and paste using the clipboard.

- Get and set the editable state, the insertion cursor position, the
maximum length of text, the primary selection and its position,
the source, the text string, and the position of the first character
displayed. All routines that have parameters or return values
that are strings have both char * and wchar _t * versions.

- Convert between a text position and x and y coordinates.

- Display text at a given position and scroll the text.

8.6 ScrolledText

ScrolledText is a Text widget inside a ScrolledWindow. The appli-
cation can use XnmOr eat eScrol | edText to create one. This routine
creates both Text and ScrolledWindow widgets and forces the fol-
lowing initial values for ScrolledWindow resources:

- Xm\scrol i ngPol i cy is set to XmAPPLI CATI ON_DEFI NED.
- Xm\vi sual Pol i cy is set to XmVARI ABLE.

- XmNscrol | Bar O spl ayPol i cy is set to XnSTATI C.

- Xm\shadowThi ckness is set to O.

8-15

OSF/Maotif Programmer’s Guide

8.7 Storing Text in a File

8-16

A common requirement of many text editors is the ability to read
text from a file, allow the user to edit the text, and then store the
text in a file. An application usually obtains pathnames from the
user by means of a FileSelectionBox, often invoked as a dialog from
a MenuBar File Menu. Following are very simple routines that use
ANSI C input/output facilities to read text from a file into a Text
widget and save text from a Text widget into a file:

voi d ReadText Fronti | e(Wdget w, char *fil enare)

{
FI LE *file;
char buf f er [MAXSI ZE] ;
char *ptr, *end,

XnText Position |ast_pos;
if (file = fopen(filenanme, "r")) {
XnText Set String(w, "");
ptr = buffer;
end = buffer + MAXSI ZE - 1,
while((val = getc(file)) '= ECGF) {
if (ptr <end) {
*ptr++ = (char) val;
} else {
*ptr = '\0';
| ast _pos = XnText Get Last Position(w);
XnText Repl ace(w, |ast_pos, |ast _pos, buffer);

ptr = buffer;
}
}
if (ptr > buffer) {
*ptr = '\0;

| ast _pos = XnText Get Last Position(w);

Text

XnText Repl ace(w, |ast_pos, |ast_pos, buffer);

}
(void) fclose(file);
}
}
voi d SaveText ToFi | e(Wdget w, char *fil enare)
{
FI LE *file;
char *text;
if (file = fopen(filenanme, "wW)) {
text = XnTextGet String(w;
(void) fputs(text, file);
(void) fclose(file);
Xt Free(text);
}
}

8.8 Sharing Text Sources

Each Text widget has a data structure of type Xnirext Sour ce that
functions as the source and sink of text for the widget. The source
is the value of the XnNsour ce resource.

Two or more Text widgets can share the same source. In this case,
editing of Text in one widget changes the text of the source and
therefore the text of all widgets that share that source. For exam-
ple, an application might use a PanedWindow with multiple text
widgets, each functioning as a "window" onto a single text source.
Editing changes in one pane are reflected in all Text panes that
share the same source.

8-17

OSF/Maotif Programmer’s Guide

8-18

An application creates a Text source by creating a Text widget. The
program uses XnText Get Sour ce or Xt Get Val ues for the XmiNsour ce
resource to obtain that widget's source. The application then
creates another Text widget, supplying the source obtained from the
first widget via XnText Set Source, the initialization arglist, or
Xt Set Val ues of the XmiNsour ce resource.

Setting a Text source destroys the existing source of the widget if no
other widgets are sharing that source. To replace a Text source but
keep it for later use, the application can create an unmanaged Text
widget and set its source to the Text source the program wants to
keep.

If the application does not supply a source, Text creates a default
string source.

Chapter 9. Scrolling, Panes, and
Frames

Chapters 6 and 7 discuss the OSF/Motif Manager widgets used to
construct menus and dialogs. Motif also provides more general-
purpose managers intended for use in main application windows
and some dialogs. This chapter discusses widgets that perform the
following functions:

- Establishing a viewport for a larger underlying scroll

- Providing a main application window with a combination of
standard and custom components

- Placing a shadowed frame around a widget and an optional title
at the top

- Creating multiple subwindows for a composite with adjustable
boundaries between the subwindows

9.1 ScrolledWindow

Frequently a collection occupies an area that is too large to display
within an application or that may grow or shrink as the user adds
or deletes data. Examples include text in a Text widget, items in a
List, and graphical objects in a DrawingArea or other canvas.
Three approaches exist for handling this problem:

- Set a fixed size for the widget. The disadvantage of this
approach is that when the collection grows beyond the bounds of
the widget, part of the collection is not visible.

- Allow the widget to make geometry requests to expand or con-
tract, perhaps up to some maximum or down to some minimum
size. The disadvantages of this approach are that it may disrupt
the application’s visual layout and that the widget is able to
grow only within limits, perhaps not at all.

9-1

OSF/Maotif Programmer’s Guide

- Treat the collection as a virtual scroll, with the widget acting as
a (more or less) fixed-size viewport onto the scroll. The user can
move the viewport to expose obscured portions of the scroll.

The ScrolledWindow widget implements the last approach. It is a
Manager with one or two ScrollBar children, a child widget that
acts as the virtual scroll, and in some cases another child that acts
as a viewport onto the scroll. By using the ScrollBars or keyboard
scrolling commands, the user moves the viewport to expose part of
the scroll.

9.1.1 Automatic and Application-Defined Scrolling

9-2

ScrolledWindow implements two scrolling models: automatic and
application-defined.

In automatic scrolling, the application creates a widget to serve as
the virtual scroll, and the ScrolledWindow creates the ScrollBars
and a widget to serve as a fixed-size viewport onto the scroll. The
application adjusts the size of the scroll widget as necessary to con-
tain the entire collection. The ScrolledWindow adjusts the
appropriate ScrollBar resources so that the size and position of the
slider reflect the position of the viewport in relation to the scroll and
the proportion of the scroll's entire size that the viewport
represents. The ScrolledWindow also handles the user’s interaction
with the ScrollBars, moving the viewport in relation to the scroll as
the user manipulates the ScrollBars. Usually the application need
have no interaction with the ScrollBars or the widget that serves as
the viewport.

In application-defined scrolling, the application must create the
ScrollBars as well as the widget that acts as the virtual scroll and,
if necessary, a separate viewport widget. The application must

Scrolling, Panes, and Frames

determine how large to make the viewport widget and what portion
of the data to display in the viewport. The application handles all
interaction with the ScrollBars. It must adjust the appropriate
ScrollBar resources if it wants the size and position of the slider to
reflect the relation of the viewport to the underlying scroll. It must
also move the viewport in relation to the scroll as the user interacts
with the ScrollBars.

The ScrolledWindow resource XniNscr ol | i ngPol i cy determines the
scrolling model. Possible values are XMAUTOMATIC and
XmAPPLI CATI CN_DEFI NED. The default is XmAPPLI CATI ON_DEFI NED.

9.1.2 Other Resources

In addition to XnNscrol | i ngPol i cy, ScrolledWindow has two sets
of resources.

One set of resources holds the components of the ScrolledWindow.
An application usually does not have to set any of these resources;
the ScrolledWindow examines the class and other characteristics of
each child as it is created and sets the appropriate resource. If the
application needs to supply a new ScrollBar or scroll widget after
creating the initial component, it can use either Xt Set Val ues or
Xngcr ol | edW ndowSet Ar eas.

Xm\cl i pW ndow
The value is the ID of the viewport widget created by
the ScrolledWindow in automatic scrolling. This
resource applies only when the Xm\scrol | i ngPol i cy
is XmAUTQOVATI C. It is a read-only resource; the appli-
cation cannot set a new value.

Xmi\hor i zont al Scrol | Bar
The value is the ID of the horizontal ScrollBar. The

9-3

OSF/Maotif Programmer’s Guide

9-4

ScrolledWindow creates this ScrollBar and sets the
value of this resource when the XmiNscrol | i ngPol i cy
is XMAUTQVATI C. In application-defined scrolling, the
application must create and manage the ScrollBar,
but the ScrolledWindow automatically sets the value
of this resource to its widget ID.

Xm\verti cal Scrol | Bar

The value is the ID of the vertical ScrollBar. The
ScrolledWindow creates this ScrollBar and sets the
value of this resource when the XniNscrol | i ngPol i cy
is XmAUTQVATI C. In application-defined scrolling, the
application must create and manage the ScrollBar,
but the ScrolledWindow automatically sets the value
of this resource to its widget ID.

XrmiNwor kW ndow

The value is the ID of the widget that serves as the
scroll. The application has to create and manage this
widget, but it usually does not have to set this
resource. When the application creates a child of the
ScrolledWindow that is not a ScrollBar, the Scrol-
ledWindow automatically sets the value of this
resource to its widget ID.

The second set of resources specifies the layout of the ScrolledWin-
dow:

Xm\scr ol | Bar Di spl ayPol i cy
This resource determines whether the ScrolledWin-
dow always displays managed ScrollBars or displays
them only when the corresponding dimensions of the
scroll exceed those of the viewport. Possible values
are XmAS_NEEDED and XnSTATI C. The value is forced
to XnSTATIC when the scrolling policy s
XmAPPLI CATI ON_DEFI NED and defaults to
XMAS NEEDED when the scrolling policy is

Scrolling, Panes, and Frames

XmAUTQVATI C.

XmN\scr ol | Bar Pl acenent
This resource determines where the ScrolledWindow
places the horizontal and vertical ScrollBars. The
possible values are constants that specify on which
sides of the viewport the ScrolledWindow places the
two ScrollBars: XnTCP_LEFT, XnTCP_R GHT,
XnBOTTCOM _LEFT, and XnBOTTOM R GHT.

Xmi\scr ol | edW ndowMar gi nHei ght
This resource specifies the margins between the top
and bottom sides of the ScrolledWindow and the first
child on each side.

Xm\scr ol | edW ndowhar gi nWdt h
This resource specifies the margins between the left
and right sides of the ScrolledWindow and the first
child on each side.

Xm\spaci ng
This resource specifies the distance between each
ScrollBar and the viewport.

9.2 Automatic Scrolling

In the automatic scrolling model, the ScrolledWindow creates a
fixed-size viewport and handles all interaction with the ScrollBars.
The application usually needs to take only the following steps:

- Create and manage a ScrolledWindow, supplying a value of
XmAUTOVATI C for XmiNscrol i ngPolicy in the argument list
passed to the creation function

9-5

OSF/Maotif Programmer’s Guide

9-6

- Create and manage a widget child of the ScrolledWindow to
serve as the scroll

- Adjust the size of the scroll widget, typically using Xt Set Val ues
of Xm\hei ght and Ximi\wi dt h, as necessary to contain all the data
in the scroll

The ScrolledWindow automatically creates a widget to serve as the
viewport and sets Xmi\cl i pW ndow to the ID of this widget. It also
creates horizontal and vertical ScrollBars and sets Xm\hori zont al -
Scrol | Bar and Xnmi\verti cal Scrol | Bar to the appropriate IDs of
the ScrollBars. The ScrolledWindow attaches callback procedures
to the ScrollBars to handle user interaction with the ScrollBars.

The ScrolledWindow sets the ScrollBar resource XN ncrement to a
small fraction of the height or width of the viewport. It sets the
ScrollBar resource XnNpagel ncrenent to a large fraction of the
height or width of the viewport. If the ScrolledWindow resizes the
viewport, it recomputes the values of these resources.

The ScrolledWindow sets the ScrollBar resources XniNhvaxi num
XmiNm ni mum and XniN\sl i der Size so that the size of the slider
reflects the proportion of the entire scroll that the viewport
represents. If the application resizes the scroll or if the Scrol-
ledWindow resizes the viewport, the ScrolledWindow recomputes
the values of some or all of these resources.

If the value of XmiNscrol | Bar D spl ayPol i cy is XmAS_NEEDED, as it
is by default in automatic scrolling, the ScrolledWindow displays a
ScrollBar only if the size of the scroll exceeds the size of the
viewport in the relevant dimension. If the value of XmiNscr ol | Bar -
D spl ayPol i cy is XnBTATI C, the ScrolledWindow always displays
both ScrollBars.

As the user manipulates a ScrollBar and changes its Xm\val ue, the
ScrolledWindow moves the scroll with respect to the viewport. For
example, if the user moves the slider down in a vertical ScrollBar,
the ScrolledWindow moves the scroll up with respect to the

Scrolling, Panes, and Frames

viewport.

The ScrolledWindow may need to move the scroll (and set a
ScrollBar's Xni\val ue) in circumstances other than the user’s
interaction with the ScrollBar. For example, if the viewport is at
the bottom of the scroll and the application reduces the height of the
scroll, the ScrolledWindow must move the scroll down with respect
to the viewport. In this case it reduces the ScrollBar’'s XniNnmaxi num
and Xm\val ue.

In automatic scrolling the application should not try to set any of
the following resources:

= The Xm\x or Xm\y of any child of the ScrolledWindow
= Any geometry resources of the viewport (the Xm\cl i pW ndow)

e The XniNrmaxi num XniNm ni num Xmi\val ue, XmN ncrenent, or
XmNpagel ncr enent of a ScrollBar

The application can add callbacks of its own to a ScrollBar, but
because the ScrolledWindow adds its own callbacks, the application
must not call Xt RenoveAl | Cal | backs for a ScrollBar.

The application or user can specify other resources, such as those
that determine appearance, for the ScrolledWindow or its children.
The names of the automatically created ScrollBars are
"HorScrollBar" and "VertScrollBar".

9.2.1 Traversing to Obscured Widgets

By default it is not possible to use keyboard traversal to move to a
widget that is inside the scroll but outside the viewport. For exam-
ple, if the user presses KNext Fi el d and the next field is not within
the viewport, focus does not move to that field. The user must first

9-7

OSF/Maotif Programmer’s Guide

use the ScrollBars or a scrolling command to position the viewport
so that the target widget is no longer obscured.

ScrolledWindow has a callback list, Xni\t raver seCbscur edCal | -
back, that allows an application to make it possible to traverse to
widgets that are in the scroll but not in the viewport. The callback
list is invoked when the user tries to traverse to such a widget in a
ScrolledWindow with automatic scrolling. The callback procedure is
passed a pointer to an XmIr aver seCbscur edCal | backSt ruct struc-
ture, which contains the reason (XnCR_CBSCURED TRAVERSAL), the
event, the widget that is the target of the traversal, and the traver-
sal direction passed to XnPr ocessTr aver sal .

Usually the callback procedure can allow traversal to the target
widget simply by calling XnScrol | Vi si bl e. This function takes as
arguments the ScrolledWindow, the target widget, and requested
margins between the target widget and the edges of the viewport.
The function moves the work area with respect to the viewport to
make the obscured widget visible. This function applies only to
ScrolledWidgets with automatic scrolling.

When ScrolledWindows are nested and focus is in an inner Scrol-
ledWindow, the XmiNtraver seCbscuredCal | back callbacks of the
inner ScrolledWindow are invoked first if necessary. If the destina-
tion widget remains outside the viewport of the first ancestor Scrol-
ledWindow, that ScrolledWindow’s X\t r aver seCbscur edCal | back
callbacks are invoked, and so on up the widget hierarchy.

9.2.2 Example of Automatic Scrolling

This section contains the scrolling-related portions of an example
program that uses a ScrolledWindow with an automatic scrolling
policy. The ScrolledWindow is actually a MainWindow, a subclass

9-8

Scrolling, Panes, and Frames

of ScrolledWindow that is often the containing manager for the pri-
mary window of an application. (MainWindow is discussed in a
later section of this chapter.) The scroll widget is a DrawingArea.

The application allows the user to create a simple map in the
DrawingArea. The user can use the mouse to establish points
representing cities and to draw lines between the cities. The appli-
cation contains a TextField that allows the user to enter the name
of a city and then to create a button child of the DrawingArea
located at the city and containing the city’'s name as its label. The
user can adjust the size of the DrawingArea by manipulating two
Scales, one for the height of the DrawingArea and the other for the
width. Other parts of the application save and retrieve the map
data.

This section contains only the portions of the application that relate
directly to creating and maintaining the ScrolledWindow. These
include:

- Creating the MainWindow with an automatic scrolling policy
= Creating the DrawingArea child of the ScrolledWindow

- Resizing the DrawingArea in response to the user’s interaction
with the Scales

- Establishing an Xn\t r aver seCoscur edCal | back procedure

e

** Oeate a Main Wndow with a nenubar, a command panel contai ni ng
** 2 scales and a textfied, and a workarea.

** A'so put in the graphic structure the workarea info and the

** textfield ids.

*/

void OreateApplication (

W dget par ent ,

Qaphic * graph)

{

9-9

OSF/Maotif Programmer’s Guide

Wdget nai n_wi ndow, nenu_bar, menu_pane, cascade,
button, conw, scale ;

Arg args[5];

int n;

/[* Oreate automatic MinW ndow.
*/
n=20;
XtSet Arg (args[n], Xm\scrollingPolicy, XmAUTOVATIC); n++;
nai n_wi ndow = Xn(Cr eat eMai nW ndow (parent, "mai n_w ndow', args, n);

Xt AddCal | back (mai n_wi ndow, XmiNtraver seCbscuredCal | back, TravCB, NULL);

Xt ManageChi | d (mai n_wi ndow) ;

/* Ceate work _area i n Mai nWndow
*/

n = 0;

XtSet Arg (args[n], Xm\resizePolicy, XnRESIZE NONE); n++ ;

XtSetArg (args[n], XmNmargi nWdth, 0); n++ ;

Xt Set Arg (args[n], XmNmarginHeight, 0); n++ ;

gr aph->wor k_area = XmQOr eat eDr awi ngAr ea(mai n_w ndow, "work_area", args,

Xt AddCal | back (graph->work_area, XmNexposeCal | back, DrawCB,
(Xt Poi nter)graph);

Xt AddCal | back (graph->work_area, Xm\resizeCallback, DrawCB,
(Xt Poi nter)graph);

Xt AddCal | back (graph->work_area, XN nput Cal | back, DrawCB,
(Xt Poi nter)graph);

Xt ManageChi | d (graph->work_area) ;

/* Ceate a commandWndow i n Mai nWndow with text and scal es

*/
n = 0;

9-10

n);

Scrolling, Panes, and Frames

conw = XnOr eat eRowCol umm(mai n_wi ndow, "conw', args, n);
Xt ManageChi | d (conw) ;

n=0;

XtSet Arg (args[n], Xm\commandW ndow, comw); n++;

Xt Set Val ues (mai n_w ndow, args, n);

/* find the initial size of the work area and report to the scales */
n=0;

XtSet Arg (args[n], Xm\width, &graph->old width); n++

XtSet Arg (args[n], Xm\height, &graph->old height); n++;

Xt Get Val ues (graph->work_area, args, n);

n=20;
XtSet Arg (args[n], XmNorientation, XmHOR ZONTAL); n++;
XtSet Arg (args[n], Xm\val ue, graph->old width); n++;
scal e = XnmreateScal e(conw, "scale w', args, n); /* scale wis the nane */
Xt AddCal | back (scal e, Xm\val ueChangedCal | back, Val ueCB,
(Xt Poi nt er) gr aph- >wor k_ar ea) ;
Xt ManageChi | d (scal e);

n=0;

XtSetArg (args[n], XmNorientation, XmHOR ZONTAL); n++;

Xt Set Arg (args[n], Xm\val ue, graph->old_height); n++

scal e = Xmr eat eScal e(conw, "scal e _h", args, n);

Xt AddCal | back (scal e, Xmi\val ueChangedCal | back, Val ueCB,
(Xt Poi nt er) gr aph- >wor k_ar ea) ;

Xt ManageChi | d (scal e);

n = 0;
graph->textf = Xn(reateTextFiel d(conw, "textf", args, n);
Xt ManageChi | d (graph->textf);

/* Set Mi nWndow areas

*/
XmMai nW ndowSet Areas (mai n_w ndow, menu_bar, conw, NUL, NULL,

9-11

OSF/Maotif Programmer’s Guide

gr aph- >wor k_ar ea) ;

}
g
* % TravCB - call back for traverseCbscure
*/
void TravCB (
W dget W, /* widget id */
Xt Poi nt er client_data, [* data fromapplication */
Xt Poi nt er call data) /[* data fromw dget class */
{

Xmr aver seCbscur edCal | backStruct * tocs =

(XnTr aver seChscur edCal | backStruct *) call _data ;

Xngcrol | Vi sible(w, tocs->traversal destination, 20, 20) ;
}
T
* % Val ueCB - call back for scal es
*/
voi d Val ueCB (
W dget W, /* widget id */
Xt Poi nt er client_data, [* data fromapplication */
Xt Poi nt er call _data) /* data fromw dget class */
{

Arg args[5];

int n;

int value ;

Wdget workarea = (Wdget) client_data ;

/* get the value outof the Scale */

n=0;

XtSet Arg (args[n], Xm\val ue, &alue); n++;
Xt Get Val ues (w, args, n);

9-12

Scrolling, Panes, and Frames

n=0;

if (strcnp(XtNane(w), "scale W) == 0) { /* width scale */
XtSetArg (args[n], Xm\width, value); n++

} else {
Xt Set Arg (args[n], Xm\height, value); n++;

}

Xt Set Val ues (workarea, args, n);

9.3 Application-Defined Scrolling

In application-defined scrolling, the application is responsible for all
aspects of the interactions among the scroll, the viewport, and the
ScrollBars. The ScrolledWindow remains responsible for geometry
and layout, but the application must adjust both the ScrollBars and
the scroll position in response to the user’s scrolling actions.

Because this model requires more work on the part of the applica-
tion, it is most suitable for programs in which automatic scrolling is
not adequate. For example, an application may contain a text edi-
tor or browser that reads only enough of a file to fill the viewport.
This application must be informed of the user’s scrolling actions so
that it can read more of the file when necessary.

The application implements a scheme of its choosing for the rela-
tionship between the scroll and the viewport. Following are two
common models:

- A fixed-size viewport widget as the parent of a variable-sized
scroll widget that contains the data. The application resizes the
scroll widget as necessary to contain all the data. As the user
interacts with the ScrollBar, the application moves the scroll

9-13

OSF/Maotif Programmer’s Guide

9-14

widget with respect to the viewport, which clips the scroll. This
is the model that ScrolledWindow uses for automatic scrolling.

A single widget that serves as the viewport, with the scroll con-
tained in internal data structures or a combination of data struc-
tures and files. The application expands the internal structures
as necessary to contain all the data. As the user interacts with
the ScrollBar, the application retrieves the appropriate portion
of the data from the internal structures or files and displays that
portion of the data in the viewport. This is the model that the
Motif ScrolledList and ScrolledText widgets use.

In both models, the application must be notified when the viewport
is resized. It may need to adjust the scroll with respect to the
viewport, and it must recompute ScrollBar resources to reflect the
new relation between the viewport and the scroll. If the viewport is
a DrawingArea the application can use the Xni\resi zeCal | back
callbacks for this purpose. Otherwise, the application can establish
an event handler for Confi gur eNot i fy events.

The application needs to take the following steps to use
application-defined scrolling:

Create and manage a ScrolledWindow, horizontal and vertical
ScrollBar children, and a child to serve as the viewport.

If the application is using a separate widget as the scroll, create
and manage that widget as a child of the viewport widget.

Add callbacks to the ScrollBars to notify the application when
the user interacts with the ScrollBars. The application should at
least provide a procedure for the Xm\val ueChangedCal | back list.

Add a callback (such as the DrawingArea Xm\r esi zeCal | back)
or an event handler to the viewport widget to notify the applica-
tion when the widget is resized.

Based on the initial relationship between the viewport and the
scroll, supply initial values for the ScrollBars’ XmN ncrenent,

Scrolling, Panes, and Frames

Xm\pagel ncrement, XniNnaxi num XimiNmi ni mrum Xni\val ue, and
Xm\sl i der Si ze resources.

- Adjust the size of the scroll widget or internal data structures as
necessary to contain the data in the scroll.

- As the data in the scroll changes, recompute the ScrollBars’
Xm\maxi mum and Xm\sl i der Si ze and perhaps Xmi\mi ni nrum and
Xm\val ue to reflect the new relation between the viewport and
the scroll.

= When the viewport is resized, if necessary reposition and resize
the scroll with respect to the viewport. Recompute the
ScrollBars’ Xni\sl i der Si ze and Xmmi\pagel ncr ement and possibly
other resources to reflect the new relation between the viewport
and the scroll.

- As the user interacts with the ScrollBars, if a separate scroll
widget exists, reposition the scroll with respect to the viewport.
If no separate scroll widget exists, bring in additional data from
files if necessary, recompute which portion of the data to make
visible, and redisplay the viewport. If the size of the scroll has
changed, recompute the ScrollBar resources to reflect the new
relation between the viewport and the scroll.

9.3.1 Example of Application-Defined Scrolling

This section contains the scrolling-related portions of an example
program that uses a ScrolledWindow with an application-defined
scrolling policy. As in the example of automatic scrolling, the Scrol-
ledWindow is a MainWindow, and the scroll widget is a
DrawingArea. In this example the scroll widget also serves as the
viewport widget, and the scroll data is maintained in internal data
structures.

9-15

OSF/Maotif Programmer’s Guide

9-16

The application is a simple file browser for C source code. The user
selects a file name. The program reads the file and parses it (in the
C locale) into an internal table of lines. The application displays in
the DrawingArea as many lines as will fit into the current dimen-
sions of the DrawingArea.

The application uses only a vertical ScrollBar, which allows the
user to browse through the file. After reading the file, the program
sets the ScrollBar’s Xni\Nm ni numand Xm\val ue to 0, its XniNmaxi num
to the number of lines in the file, and its Xm\sl i der Si ze to lesser of
the number of lines in the file and the number of lines that can be
displayed in the viewport.

The program establishes a ScrollBar Xni\val ueChangedCal | back
and a DrawingArea Xm\exposeCal | back that redisplay the lines in
the viewport. The redisplay procedure fetches and displays lines
from the internal data structure, starting with the line indicated by
the ScrollBar’s Xmi\val ue and proceeding to the last line that fits in
the viewport. The program also establishes a DrawingArea
Xm\r esi zeCal | back that recomputes the ScrollBar's Xm\sl i der -
Size and XnN\val ue based on the number of lines that can be
displayed in the viewport. The application does not resize the
DrawingArea itself.

This section contains only the portions of the application that relate
directly to creating and maintaining the ScrolledWindow. These
include:

- Creating the MainWindow with an application-defined scrolling
policy

- Creating the DrawingArea and vertical ScrollBar children of the
ScrolledWindow

- Establishing an XmiNact i vat eCal | back callback for the OK but-
ton of the FileSelectionBox invoked from the file menu Open but-
ton

Scrolling, Panes, and Frames

- Establishing a ScrollBar Xm\val ueChangedCal | back

- Establishing a DrawingArea XmNexposeCal | back and
Xm\r esi zeCal | back

** Internal data structure to hold file info.
*/
typedef struct {

Wdget work area ;

Wdget v_scrb ;

String file_name ;

XFont Struct * font_struct ;

GC draw gc ;

char ** |ines ;

int numlines ;

} FileData ;
)
** Oreate an app_defined Main Wndow with a Menubar to load a file
** Add the vertical scrollbar and the workarea to filedata.
*/
void OreateApplication (
W dget par ent,
FileData * filedata)
{

Wdget nai n_wi ndow, nenu_bar, menu_pane, cascade,

button ;
Arg args[5];

int n;

/[* Oeate app_defined Mai nW ndow.

* XmAPPLI CATICN DEFINED is the default; not necessary to
* gpecify it here.

*/

9-17

OSF/Maotif Programmer’s Guide

9-18

n = 0;

Xt Set Arg (args[n], Xm\scrollingPolicy, XmAPPLI CATION DEFINED); n++;
nai n_wi ndow = Xn(Cr eat eMai nW ndow (parent, "mai n_w ndow', args, n);
Xt ManageChi | d (nmai n_wi ndow) ;

/* Oeate MenuBar in Mai nWndow.
* [

/[* Oeate "File" Pull downMenu with pen and Quit buttons
*/

n = 0;
nenu_pane = XnOr eat ePul | downMenu (nenu_bar, "nenu_pane", args, n);

n = 0;
button = XmOr eat ePushButton (nenu_pane, "Q(pen...", args, n);
Xt ManageChi | d (button);

/* pass the file data to the Cpen cal | back */

Xt AddCal | back (button, XnmNactivateCal |l back, QoenCB, (Xt Pointer)filedata);
n = 0;

button = XmOreat ePushButton (nenu_pane, "Quit", args, n);

Xt ManageChi | d (button);

Xt AddCal | back (button, XmNactivateCall back, QuitCB, NJLL);

n=0;

Xt Set Arg (args[n], Xmi\subMenuld, nenu_pane); n++;

cascade = Xnreat eCascadeButton (nenu_bar, "File", args, n);
Xt ManageChi | d (cascade);

/[* Oeate "Hel p" Pull downMenu with Hel p button.
*/

Scrolling, Panes, and Frames

/* Oeate vertical scrollbar only
*/
n = 0;
XtSet Arg (args[n], XmNorientation, XnVERTICAL); n++;
filedata->v_scrb = XnCreateScrol | Bar (nmai n_w ndow, "v_scrb", args, n);
Xt AddCal | back (filedata->v_scrb, Xm\val ueChangedCal | back, Val ueCB,
(XtPointer)filedata);
Xt ManageChi | d (fil edata->v_scrb);

/* Ceate work _area i n Mai nW ndow
*/

n=20;

filedata->work _area = Xnreat eDrawi ngArea(mai n_w ndow, "work area", args,

Xt AddCal | back (fil edata->work _area, XnNexposeCal | back, DrawCB,
(XtPointer)filedata);

Xt AddCal | back (fil edata->work_area, Xmi\resizeCallback, DrawCB,
(XtPointer)filedata);

Xt ManageChi | d (fil edat a->work_area);

/* Set Mai nWndow ar eas
*/
XmMai nNW ndowSet Areas (mai n_wi ndow, menu_bar, NUL, NULL,
fil edata->v_scrb,
fil edata->work_area);

** QrenCB - call back for pen button

*/

voi d QoenCB (

W dget W, /* widget id */

Xt Poi nt er client_data, [* data fromapplication */

9-19

OSF/Maotif Programmer’s Guide

Xt Poi nt er call _data) [* data fromw dget class */

{
static Wdget fsb box = NULL ;

if (!'fsb_box) {
fsb _box = XnreateFil eSel ectionD al og (w, "Load file",
NULL, 0);
/* just propagate the file information */
Xt AddCal | back (fsb_box, XmNokCal | back, Read(B, client data);

}

Xt ManageChi | d (fsb_box);
}
e
** ReadCB - callback for fsb activate
*/
voi d ReadCB (
W dget w, /* widget id */
Xt Poi nt er client_dat a, /* data fromapplication */
Xt Poi nt er call data) [* data fromwi dget class */
{

FileData * filedata = (FileData *) client_data ;
String fil e_nane ;

Arg args[5];

int n, slider_size;

D nensi on hei ght ;

file_nanme = XnText Get Stri ng(
XnFi | eSel ecti onBoxGet Chi | d(w, XnDI ALOG TEXT)) ;

if (!BuildLineTable(filedata, file_name)) {
WarnUser (w, "Cannot open 90, file nane);
} else {
filedata->file name = file_nane ;

9-20

Scrolling, Panes, and Frames

/* ok, we have a newfile, so reset sone val ues */
n =0;

XtSet Arg (args[n], Xm\height, &height); n++;

Xt Get Val ues (fil edata->work _area, args, n);

slider_size = (height - 4) / (fil edata->font_struct->ascent
+ fil edat a- >f ont _struct - >descent) ;
if (slider_size <= 0) slider_size =1 ;
if (slider_size > filedata->numlines)
slider_size = filedata->numlines ;

n=20;

XtSet Arg (args[n], Xm\sliderSize, slider_size); n++
XtSet Arg (args[n], XmNmaxi mum filedata->numlines); n++;
XtSetArg (args[n], Xm\value, 0); n++;

Xt Set Val ues (filedata->v_scrb, args, n);

[* clear and redraw */

Xd ear Wndow(Xt Di spl ay(fil edat a->work_area),
Xt Wndow(fil edata->work_area));

ReDraw (fil edata);

** Val ueCB - call back for scrollbar

*/

voi d Val ueCB (

W dget W, /* widget id */

Xt Poi nt er client_data, /* data fromapplication */
Xt Poi nt er call _data) [* data fromw dget class */

{
FileData * filedata = (FileData *) client_data ;

/* clear and redraw, dunb dunb.. */

9-21

OSF/Maotif Programmer’s Guide

Xd ear Wndow(Xt Di spl ay(fil edat a->work_area),
Xt Wndow(fil edata->work _area));
ReDraw(fi |l edat a);

** Dr anCB - call back for drawing area
*/

void DranwCB (

W dget W, /* widget id */

Xt Poi nt er client_data, [* data fromapplication */
Xt Poi nt er call _data) /* data fromw dget class */

{

XnDr awi ngAr eaCal | backStruct * dacs =

(XnDr awi ngAr eaCal | backStruct *) call _data ;
FileData * filedata = (FileData *) client_data ;
XSet WndowAt t ri but es xswa;

static Boolean first_time = True ;

swi tch (dacs->reason) {
case XnCR _EXPCBE:
if (first_tine) {

/* Change once the bit gravity of the Drawing Area; default
is north west and we want forget, so that resize
al ways generates exposure events */

first time = Fal se ;

xswa. bit_gravity = ForgetGavity ;

XChangeW ndowAt t ri but es(Xt D spl ay(w), Xt Wndow(w),

QOMBitGavity, &swa);
}

ReDraw(fil edata) ;

9-22

Scrolling, Panes, and Frames

break ;
case XnmCR RES| ZE
ReS ze(fil edata) ;

break ;
}
}
voi d ReDraw(
FileData * filedata)
{

/* Display as many line as slider_size actually shows, since
slider_size is conputed relative to the work_area hei ght */

Cardinal i ;

int value, slider_size ;
Arg args[5];

int n;

Position vy ;

if (filedata->numlines == 0) return ;

n = 0;

Xt Set Arg (args[n], Xm\val ue, &alue); n++

XtSet Arg (args[n], Xm\sliderSize, &slider_size); n++
Xt Get Val ues (filedata->v_scrb, args, n);

for (i =value, y =2 + filedata->font_struct->ascent;
i < value + slider_size ;
i ++, y += (fil edata->font_struct->ascent
+ fil edata->font_struct->descent)) {
XDrawst ri ng(Xt O spl ay(fil edat a- >work_area),
Xt Wndow(fil edat a- >work_ar ea),
fil edat a->draw gc,
4, y,

9-23

OSF/Maotif Programmer’s Guide

filedata->lines[i], strlen(filedata->lines[i]));

}
}
voi d ReS ze(
FileData * filedata)
{

/* Just update the scrollbar internals here, don't bother to redisplay
since the gravity is none */

Arg args[5];

int n;

int value, slider_size ;
D nensi on hei ght ;

if (filedata->numlines == 0) return ;

n = 0;
Xt Set Arg (args[n], Xm\height, &height); n++
Xt Get Val ues (fil edata->work_area, args, n);

/* sliderSize is the nunber of visible lines */
slider_size = (height - 4) / (filedata->font_struct->ascent
+ fil edat a->f ont _struct - >descent) ;
if (slider_size <= 0) slider_size =1 ;
if (slider_size > filedata->numlines)
slider_size = filedata->numlines ;

n = 0;
Xt Set Arg (args[n], Xm\val ue, &alue); n++
Xt Get Val ues (filedata->v_scrb, args, n);

/* val ue shoul dn’t change that often but there are cases

where it matters */
if (value > filedata->numlines - slider_size)

9-24

Scrolling, Panes, and Frames

val ue = filedata->numlines - slider_size;

n=0;

XtSetArg (args[n], Xm\sliderSize, slider_size); n++;

Xt Set Arg (args[n], Xm\value, value); n++;

Xt Set Arg (args[n], XmNmaxi num filedata->numlines); n++
Xt Set Val ues (filedata->v_scrb, args, n);

9.4 MainWindow

Motif provides a widget, MainWindow, that serves as a template for
the primary window of most applications. MainWindow is a sub-
class of ScrolledWindow. In addition to the viewport and ScrollBar
components of the ScrolledWindow, MainWindow has an optional
MenuBar, Command window, and Message window.

MainWindow lays out these components in a manner compliant
with the OSF/Motif Style Guide specifications for the primary win-
dow of an application. The MenuBar, if present, spans the top of
the MainWindow horizontally. By default the Command window, if
present, spans the MainWindow horizontally just below the Menu-
Bar. The ScrolledWindow viewport and ScrollBars are below the
Command window, and the Message window is below the Scrol-
ledWindow viewport or horizontal ScrollBar. If the MainWindow
resource Xm\comrandW ndowLocat i on is set to
XmOOMVAND BELONV WCRKSPACE at the time the MainWindow is
created, the Command window is located below the ScrolledWindow
viewport or horizontal ScrollBar.

If the MainWindow resource XnNshowSeparator is True, the
MainWindow automatically creates up to three SeparatorGadgets

9-25

OSF/Maotif Programmer’s Guide

9-26

to separate the components. The names of these automatically
created SeparatorGadgets are "Separatorl", "Separator2", and
"Separator3". The application can retrieve their widget IDs by
using the functions Xniai nW ndowSepl, Xmivai nW ndowSep2, and
Xmvai W ndowSep3.

In addition to the ScrolledWindow resources that hold the widget
IDs of the ScrollBars, scroll widget, and viewport widget, MainWin-
dow has resources that hold the widget IDs of the other MainWin-
dow components:

Xm\comrandW ndow
The value is the widget ID of the Command window.
If a child is a Command widget and no Command
window exists, MainWindow automatically sets the
value of this resource to the child’s widget ID.

XmNimenuBar
The value is the widget ID of the MenuBar. If a child
is a MenuBar and no MainWindow MenuBar exists,
MainWindow automatically sets the value of this
resource to the child’s widget ID.

XmNmessageW ndow
The value is the widget ID of the Message window.
After creating the Message window, the application
must use Xt SetVal ues to set the value of this
resource to the child’s widget ID.

MainWindow has a convenience routine, Xnivai nW ndowSet Ar eas, to
establish both the MainWindow and the ScrolledWindow com-
ponents. Xmivai nW ndowSet Ar eas does not set the Message window;
an application must use Xt Set Val ues of Xm\hnessageW ndow to set
the Message window. An application that has no Message window
and uses only standard components for the other MainWindow chil-
dren may not need to call Xmvai nW ndowSet Ar eas or Xt Set Val ues
for the component resources, but it is good practice to make these

Scrolling, Panes, and Frames

calls. If an application uses a Message window or has additional
MainWindow children beyond the standard components, it must
call Xmvai nW ndowSet Areas and Xt Set Val ues for XnNnmessageW n-
dow.

An application takes the following steps to use MainWindow:

- Create and manage the MainWindow, usually as a child of the
ApplicationShell. If the scrolling mode is to be automatic, sup-
ply an initial value of XmAUTQVATI C for XmiNscr ol | i ngPol i cy.

- Create and manage the components of the MainWindow.

- If necessary call Xnivai nW ndowSet Ar eas or Xt Set Val ues for the
MainWindow components.

- Take any other actions needed to regulate the ScrolledWindow
components. These actions are discussed in the descriptions of
automatic and application-defined scrolling above.

For examples of using MainWindow with both automatic and
application-defined scrolling policies, see the ScrolledWindow exam-
ples elsewhere in this chapter.

9.5 Frame

Frame is a simple manager that encloses a child and displays a sha-
dow around it. An application usually uses a Frame to provide a
shadow for a widget, such as a RowColumn WorkArea, that does
not display a shadow itself. The Frame resource XmNshadowType
determines the type of shadow to draw. The resources XmiNvar -
gi nHei ght and XnNvar gi nWdt h specify the margin between the
shadow and the border of the child.

9-27

OSF/Maotif Programmer’s Guide

Frame can also have one other child that serves as a title. Frame
places the title above the principal child of the Frame. The follow-
ing constraint resources determine the Frame's treatment of the
child:

Xmi\chi | dType

The value is a constant that tells the Frame whether
the child is the principal (work area) child, the title,
or another kind of child. Possible values are
XnmFRAME WORKAREA CHI LD (the default),
XnFRAME Tl TLE CH LD, and XnFRAME GENERI C CH LD.
When the value is XnFRAME GENERI C CH LD Frame
does not include the child in its layout.

Xmi\chi | dHor i zont al Al i gnnent
The value specifies the alignment of the title with
respect to the left and right inner edges of the Frame
(determined by the child’s XnNchi | dHor i zont al Spac-
i ng). Following are the possible values:

- XmALI GNVENT_BEG NN NG—The title is placed at
the left inner edge when the Frame’s XniNst ri ng-
D rectionis X 8TR NG D RECTICN L_TO R, other-
wise at the right inner edge. This is the default.

- XmALI GNVENT_END—The title is placed at the right
inner edge when the Frame's XnNstringD rec-
tion is XnBTRING DI RECTION L_TO R otherwise
at the left inner edge.

= XmALI GNMENT_CENTER—The title is centered
betweent the edges.

Xmi\chi | dHor i zont al Spaci ng
The value is the minimum distance between the title
and the shadow along the left and right edges of the
Frame. The default is the Frame’s XmNmar gi nW dt h.

9-28

Scrolling, Panes, and Frames

Xmi\chi | dVer ti cal Al'i gnment The value specifies the alignment of
the title with respect to the shadow along the top
edge of the Frame. Following are the possible values:

- XmALI GNVENT_BASELI NE_BOTTOM—The baseline of
the last line of text in the title is even with the
shadow along the top edge of the Frame.

= XmALI GNVENT_BASELI NE_TCP—The baseline of the
first line of text in the title is even with the sha-
dow along the top edge of the Frame.

= XmALI GNMENT_CENTER—The center of the title is
even with the shadow along the top edge of the
Frame. This is the default.

- XmALI GNVENT_W DCGET_BOTTOM—The bottom edge
of the title is even with the shadow along the top
edge of the Frame.

= XmALI GNMENT_W DCGET_TCP—The top edge of the
title is even with the shadow along the top edge of
the Frame.

Following is a UIL specification for an example Frame with a Label
title and a Form child (not defined here):

obj ect exanpl eFrane : XnFrame {
controls {
XmLabel { argunents {

Xni\chi | dType = XnFRAME_TI TLE_CH LD,
Xm\chi | dHor i zont al Spaci ng = 4;
Xmi\chi | dVerti cal Al i gnrent XmALI GNVENT W DCGET_BOTTOM

hoh

XmFor m exanpl eFor m

}s
s

9-29

OSF/Maotif Programmer’s Guide

9.6 PanedWindow

9-30

PanedWindow is a manager that lays out its children vertically
from top to bottom and, by default, places a separator between each
pair of children. Each child spans the width of the PanedWindow,
which resizes children to be as wide as the widest child. When pos-
sible the PanedWindow grows to accommodate the width of the wid-
est child and the heights of all the children.

Usually PanedWindow allows the user to adjust the height of each
pane. When a pane is adjustable, PanedWindow creates a control
called a sash and places it below the pane that it controls. By mani-
pulating the sash with the mouse or keyboard commands, the user
changes the height of the pane above. This may also change the
height of a pane below the sash.

PanedWindow has the following resources to control general
appearance:

Xmi\ar gi nHei ght
The value specifies the margin between the
PanedWindow's top and bottom shadows and the chil-
dren nearest those shadows.

XmNmar gi nWdt h
The value specifies the margin between the
PanedWindow's left and right shadows and the chil-
dren nearest those shadows.

XnNsepar at or n
The value determines whether or not PanedWindow
displays a separator between each pair of panes.

Xm\spaci ng
The value is the distance between each pane.

Scrolling, Panes, and Frames

The following PanedWindow resources control the appearance of the
sashes:

Xm\sashHei ght
The value specifies the height of each sash.

Xm\sashl ndent

The value specifies the distance between each sash
and the inner margin of the left or right side of the
PanedWindow. If the value is positive, the sash is
offset from the near (left) side of the PanedWindow.
If the value is negative, the sash is offset from the far
(right) side of the PanedWindow. If the value is
greater than the width of the PanedWindow minus
the width of the sash, the sash is placed flush against
the near side of the PanedWindow.

Xm\sashShadowThi ckness
The value specifies the shadow thickness for each
sash.

Xm\sashW dt h
The value specifies the width of each sash.

PanedWindow has one other resource, Xmi\ref i gur eMbde. When
this resource is set to False, the PanedWindow does not recompute
its layout when either the user or the application resizes a pane or
when the PanedWindow is resized.

PanedWindow children have a number of constraint resources that
PanedWindow uses to determine the positions and size limitations
of the panes:

Xm\al | owResi ze
The value specifies whether the PanedWindow grants
resize requests from the pane. When the value is
False (the default) and the pane is realized,
PanedWindow refuses such requests, but it allows the

9-31

OSF/Maotif Programmer’s Guide

user to resize the pane if it is adjustable. For exam-
ple, if the application attempts to change the height
or width of the pane via Xt Set Val ues, PanedWindow
does not allow the change. If the value is True or if
the pane is not realized, PanedWindow grants
requests by the pane to change its size if possible.

Xm\paneMaxi mum
The value is the maximum height to which the user
or application can resize the pane. If this value is the
same as the value of Xni\NpaneM ni num the pane can-
not be resized at all, and PanedWindow does not
display a sash at the bottom of the pane.

Xm\paneM ni mum
The value is the minimum height to which the user or
application can resize the pane. If this value is the
same as the value of Xni\NpaneMaxi num the pane can-
not be resized at all, and PanedWindow does not
display a sash at the bottom of the pane.

Xm\posi ti onl ndex

The value is the ordinal position of the pane in the
PanedWindow'’s list of pane children. The application
or user can specify the value as an integer between 0
and the number of children already in the list, or as
the value XnLAST_PCSI TION (the default), which
means the child is inserted at the end of the list. If
specifying a new value causes the order of children in
the list to change, PanedWindow recomputes its lay-
out according to the new order of children: the first
pane is displayed at the top of the PanedWindow, the
second child below the first, and so on.

Xm\ski pAdj ust "
The value specifies whether or not the PanedWindow
resizes the pane when the PanedWindow itself is

9-32

Scrolling, Panes, and Frames

resized or when the user resizes another pane. When
the value is True, PanedWindow does not resize this
pane under these circumstances, but the user can still
resize the pane if Xmi\paneMaxi mum is greater than
Xm\paneM ni mum The default is False.

9-33

Chapter 10. Managing Geometry

The geometry of a widget comprises its size, location, and stacking
order. Widgets often have preferred sizes and perhaps locations.
For example, a Label widget may prefer to be just large enough to
display the text of the label. But composite widgets usually have
preferences or constraints in laying out their children, and these
may conflict with the preferences of the child widgets. Further-
more, the user or the application can change a widget's geometry at
any time, as by resizing the top-level window. Geometry manage-
ment is the process by which the user, parent widgets, and child
widgets negotiate the actual sizes and locations of the widgets in
the application.

Following are some common occasions for geometry changes:
- The application manages or unmanages a child widget.
- The application sets a geometry resource.

- The application sets a resource, and this setting causes one of
the geometry resources to change. For example, setting a new
label for a Label widget may cause a geometry change.

- The user resizes a top-level window via the window manager.

= The user resizes a pane of a PanedWindow.
Following are the basic Core and RectObj resources that determine
widget geometry:

XNk Specifies the x-coordinate of the upper left outside
corner (outside the border) of the widget's window.
The value is relative to the upper left inside corner
(inside the border) of the parent window.

Xy Specifies the y-coordinate of the upper left outside
corner (outside the border) of the widget's window.
The value is relative to the upper left inside corner
(inside the border) of the parent window.

XmiNwi dt h Specifies the inside width (excluding the border) of
the widget's window.

10-1

OSF/Maotif Programmer’s Guide

Xm\hei ght Specifies the inside height (excluding the border) of
the widget's window.

Xm\bor der W dt h
Specifies the width of the border that surrounds the
widget's window on all four sides.

10.1 Xt and Geometry Management

The Intrinsics provide the basic mechanisms and policies that
underlie geometry management in Motif. The fundamental princi-
ple of geometry management is that parent widgets control the
geometry of their children. Child widgets request changes to their
geometry; parent widgets respond to requests from their children
and change the geometry of their children directly.

10.1.1 Widget Class Procedures

10-2

Six widget class procedures, two in the parent and four in the child,
handle most of the work of geometry management:

- The parent’s change_nanaged procedure. When a child is
managed or unmanaged, the parent often must move or resize
some of its children. In the change_nanaged procedure, the
parent can move a child by calling Xt MoveW dget , resize a child
by calling Xt Resi zeWdget, or both move and resize a child by
calling Xt ConfigureWdget. These functions update the
appropriate geometry resources of the child and, if the child is
realized, reconfigure the child’'s window.

Managing Geometry

- The parent's geonetry manager procedure. This function
receives and acts on requests from child widgets to change their
geometry. The georetry_nanager procedure can grant a
request, deny a request, or suggest a compromise to the child. If
the procedure grants the request, it updates the appropriate
geometry resources of the child. If the child is realized, the
parent can either reconfigure the child's window itself or let the
Intrinsics reconfigure the window. To make all geometry
changes itself, the procedure can call XtMveWdget,
Xt Resi zeW dget , or Xt Confi gur eW dget .

The child’s set _val ues procedure. Whenever the application or
user sets one of the basic geometry resources—Xm\kx, Xm\y,
XniNwi dt h, Xmi\hei ght, or Xni\bor der W dt h—Xt automatically
makes a request to the widget's parent for the geometry change.
In the set _val ues procedure the widget can determine whether
a change to another resource requires a geometry change. If so,
it can simply change one or more of the geometry resources, and
Xt makes the appropriate geometry request of the parent. If the
parent denies the request, Xt restores the geometry resources to
the values they had before the call to Xt Set Val ues.

The child's set _val ues_al nost procedure. When the user or
the application sets one of the widget's geometry resources, the
parent may suggest a compromise geometry change. The child's
set _val ues_al nost procedure determines whether to accept the
compromise, reject the compromise, or request an alternate
geometry change.

The child's resize procedure. When a parent calls
Xt Resi zeW dget or Xt Confi gureWdget with a size change, Xt
makes the changes to the child’s geometry resources and window
and then invokes the child’'s resi ze procedure to inform the
child of the size change. This procedure makes any internal
changes necessary to conform to the new dimensions. If the
child is itself a composite widget, its resi ze procedure may

10-3

OSF/Maotif Programmer’s Guide

move or resize its own children.

- The child’'s query_geometry procedure. A parent widget may
take account of a child's preferred geometry in determining its
layout. The parent calls Xt Quer yGeorret ry, which invokes the
child’s query_geonetry procedure. The child can accept the
parent’s intended geometry change, inform the parent of the
child’'s preferred geometry, or indicate that the child’s current
geometry is its preferred geometry. The parent can use the
results however it wants.

10.1.2 Geometry Change Requests

10-4

A widget uses Xt MakeGeonet r yRequest to make a request to its
parent for a change in its geometry. The widget can also use Xt Mak-
eResi zeRequest , a simple interface to Xt MakeGeonet r yRequest for
requests to change width or height. Primitive widgets seldom
invoke Xt MakeGeonet ryRequest directly. They usually generate
geometry requests indirectly when the application sets a resource
that requires a geometry change. Composite widgets often make
geometry requests when they try to accommodate requests from
their children. For example, when a child asks to grow, the parent
may ask its own parent to grow as well. In such cases the parent’s
geonet ry_manager procedure invokes Xt MakeCGeonet ryRequest
directly.

If the requesting widget is unmanaged, its parent is not realized, or
the requested geometry resource values are the same as the current
values, Xt MakeGeonet r yRequest makes the requested changes and
returns Xt Geonet r yYes. If the widget is being destroyed, it returns
Xt Georret r yNo. Otherwise, it invokes the parent’s
geonet ry_manager procedure. If the geomet ry _manager procedure
approves the request, Xt MakeGeonet r yRequest returns

Managing Geometry

Xt GeonetryYes. If the geometry _manager procedure denies the
request, Xt MakeGeonet ryRequest returns Xt GeometryNo. If the
geonet ry_manager procedure suggests a compromise geometry,
Xt MakeGeonet r yRequest returns Xt Geonet r yAl nost. In this case
the widget can accept the compromise by immediately making
another geometry request with the compromise parameters.

The second argument to Xt MakeGeonet r yRequest is a pointer to an
Xt W dget Geonet ry structure. This structure contains the parame-
ters of the widget's geometry request: the intended X, y, width,
height, border width, and stacking mode. The structure also con-
tains a bitmask with a bit for each parameter. If a bit is set, the
widget intends to set the corresponding parameter to the intended
value. If a bit is not set, the widget does not care about the
corresponding parameter, and the parent is free to change it.

The third argument to Xt MakeGeonetryRequest is a pointer to
another Xt Wdget Geonet ry structure. This argument is valid only
when the return value is Xt Geonet r yA nost . In that case the argu-
ment, if not NULL, returns the parameters of the parent’s
compromise geometry.

10.1.3 The geometry_manager Procedure

When a managed child widget makes a geometry request of a real-
ized parent, XtMakeCGeonetryRequest invokes the parent's
geonet ry_manager procedure. The arguments are the same as
those to Xt MakeGeoret ryRequest. This routine examines the bit-
mask (the request_node member) and the requested geometry
parameters in the Xt Wdget Georretry structure provided by the
child. If the geonetry_nanager routine can satisfy the request, it
has two choices:

10-5

OSF/Maotif Programmer’s Guide

10-6

- Change the appropriate geometry resources of the child, and
return Xt Geonet ryYes to Xt MakeCGeonet r yRequest . If the child
is a widget, Xt MakeGeonet r yRequest then calls XConf i gur eW n-
dow to change the geometry of the child's window. If the child is
not a widget, Xt MakeGeonet r yRequest clears both the old and
the new areas occupied by the child. Xt MakeGeonet r yRequest
does not call the child's resize procedure. It returns
Xt Georret r yYes to the child.

- Call Xt Confi gureWdget , Xt MoveW dget , or Xt Resi zeW dget on
the child, and return Xt Georret r yDone to Xt MakeGeonet r yRe-
guest . Xt Confi gur eWdget , Xt MoveW dget , and
Xt Resi zeW dget configure the child’'s window or clear the old
and new areas occupied by the child, and when the child’s size
changes they call its resize procedure. Xt MakeCeonetryRe-
guest returns Xt Georret r yYes to the child.

To satisfy a child’s geometry request, the geornet ry_nanager rou-
tine may need to move or resize other children. It uses Xt Confi -
gureWdget, Xt MoveWdget, or Xt ResizeWdget to do this. A
geomet ry_manager procedure that returns Xt GeonetryDone calls
these routines on the child making the request as well. The
difference between answers of Xt Geonet r yDone and Xt Geonret r yYes
is as follows:

- Xt Geonet r yDone means that the geonet ry_nanager routine has
called the child’s resi ze procedure if the child’s size changes.
Xt Geonet r yYes means that neither the geonet ry _nanager rou-
tine nor Xt MakeGeonet r yRequest calls the child’s resi ze pro-
cedure. The caller of Xt MakeGeoret r yRequest must call the
child’s r esi ze procedure if necessary.

- Xt Geonet r yDone means that the geonet ry_nanager routine has
configured the child’'s window or cleared the old and new areas
occupied by the child. Xt GeormetryYes means that Xt Mak-
eCGeonet r yRequest should do this.

Managing Geometry

Note: The geonetry_nanager procedures for Motif widgets
return Xt GeonetryYes, not Xt GeoretryDone, and
they do not call the resi ze procedure of the child
making the geometry request.

The georret ry_manager procedure may be able to satisfy some but
not all of a child’'s request. For example, it may be able to grant
the requested width but not the requested height. In this case the
geonet ry_manager procedure may offer the child a compromise
geometry. It fills in the reply Xt Wdget Geonetry structure with
the parameters it intends to allow, and it sets the corresponding bit
in the reply bitmask for any parameter it intends to change from
the value requested. It then caches these parameters and returns
Xt Georret r yAl nost to the child. If the child immediately makes
another geometry request using the compromise parameters, the
geonet ry_manager procedure must grant the request if it can.

10.1.4 Intermediate Geometry Requests

Often a parent widget must change its own geometry in order to
satisfy a child’'s request. The parent's geonetry nanager pro-
cedure uses Xt MakeGeonet r yRequest to ask its own parent for a
geometry change. If Xt MakeGeonet r yRequest to the grandparent
returns Xt Georret ryYes, the parent’s actions depend on whether
the widget set's policy is for a geonetry_nanager procedure to
return Xt Georret ryDone or Xt GeonetryYes when it grants a
request:

- With an Xt Georret ryDone policy, the geometry_mnanager pro-
cedure calls the requesting widget's resi ze procedure. During
a successful intermediate request, the grandparent’s
geonet ry_manager procedure calls the parent's resize pro-
cedure. The parent widget's geonetry nmanager and resize

10-7

OSF/Maotif Programmer’s Guide

10-8

procedures must cooperate to ensure that before the child’s
request is granted the child ends up with the geometry it
requested and the child’'s resi ze procedure has been called.
The parent's geonetry nanager procedure then returns
Xt Geonet r yDone.

- With an Xt GeonetryYes policy, the geometry_manager pro-
cedure does not call the requesting widget’s r esi ze procedure.
During a successful intermediate request, the grandparent’s
geonet ry_manager procedure does not call the parent's resi ze
procedure. The parent widget's geonet ry nanager procedure
updates the requesting child’s geometry fields and may resize
other children, but it should not call the requesting child's
resi ze procedure. The parent may call its own resi ze pro-
cedure so long as that routine does not call the requesting
child’s resi ze procedure. The parent’'s geonet ry_nanager pro-
cedure then returns Xt Geonet ryYes.

Sometimes the parent needs to make a geometry request to its own
parent just to find out whether the grandparent will accept a pro-
posed change. For example, the parent may intend to offer a
compromise geometry to the child but must first determine whether
the grandparent will allow the parent to change its own geometry
in order to offer the compromise. In this case the parent does not
want the grandparent actually to make the proposed change; it just
wants the grandparent to tell the parent whether the change is
acceptable.

In making its own geometry request to the grandparent, the parent
sets the XtQONueryOnly bit in the request bitmask. The
grandparent can return Xt GeonetryYes but must not actually
change any of its children. The parent then returns Xt Geonet r yAl -
nost to the child, along with its compromise parameters. If the
child accepts the compromise, the parent repeats its request to the
grandparent without setting Xt ONueryOnly. The grandparent
should grant the parent’s request, and the parent can then grant

Managing Geometry

the child’s request.

If the grandparent’s response is Xt Geonet r yAl nost and the parent
still wishes to offer a compromise to the child, it caches the
grandparent’s reply and returns Xt Geonet r yAl nost to the child. If
the child accepts this compromise, the parent then makes another
request of the grandparent, using the cached compromise parame-
ters from the grandparent and without setting Xt O\uer yQnl y.
The grandparent should grant the parent’s request, and the parent
can then grant the child’s request.

10.1.5 XtSetValues

When a user or application invokes Xt Set Val ues on a geometry
resource, Xt Set Val ues makes a geometry request. After invoking
all the widget's set _val ues procedures, Xt Set Val ues checks for
changes to any geometry resources. If any of those resources have
changed, it sets their values to those in effect before Xt Set Val ues
was called and then makes a geometry request with the new values
as the requested geometry parameters. If the geometry request
returns Xt GeonetryYes, Xt Set Val ues calls the widget's resi ze
procedure. If the parent's geonetry_nanager procedure returns
Xt Georret r yDone, Xt Set Val ues does not call the widget's resi ze
procedure.

If the geometry request returns Xt Geonet ryNo or Xt Geonet r yA -
nost, Xt SetVal ues calls the widget's set val ues_al nost pro-
cedure, passing it the request and reply Xt W dget Geonet ry struc-
tures. If the request returns Xt GeonetryNo, the bitmask in the
reply structure is 0. The set _val ues_al nost procedure can accept
a compromise geometry by copying the reply parameters into the
request structure. It can also construct another request by altering
the request structure, or it can end the negotiation by setting the

10-9

OSF/Maotif Programmer’s Guide

request bitmask to 0. If the request bitmask is nonzero when the
set _val ues_al nost procedure returns, Xt SetValues makes
another geometry request and treats the result in the same way as
for the original request.

A widget’'s set _val ues procedure can initiate a geometry request
by changing any of the geometry resources. For example, if Xt Set -
Val ues is invoked on a Label’s text, the set val ues procedure can
calculate how large the widget should be to contain the new text
and then set the relevant geometry fields accordingly. The
set _val ues procedure should not do any resizing itself; in particu-
lar, it should not resize any child widgets, because the geometry
request might be denied. Resizing is usually done in the widget's
resi ze procedure. The widget's set val ues_al nost procedure
may need to restore some widget state in the event the geometry
request is denied.

10.1.6 The resize Procedure

10-10

A widget's resize procedure is invoked in the following cir-
cumstances:

- By Xt ConfigureWdget or Xt ResizeWdget when the parent
resizes the widget

- By Xt Set Val ues when the widget's geometry resources are
changed and the resulting geometry request returns
Xt Geonet ryYes

- By the parent's geonetry_nanager procedure when it grants
the widget's geometry request and is about to return
Xt Geonet r yDone

In addition, a shell’s r esi ze procedure is invoked when the size of
the shell is changed, often by a user via the window manager.

Managing Geometry

When the resize procedure is called the widget's geometry
resources contain the new values. The resi ze procedure uses
these values to recalculate the widget's layout. In the process it
may move or resize child widgets. The resi ze procedure must take
its geometry resource values as given; it may not issue a geometry
request.

A composite widget's r esi ze procedure may need coordination with
its georet ry_manager procedure in handling a geometry request
from a child when the parent must make its own geometry request
to accommodate the child. If the widget set’'s geomnet ry nanager
procedures return Xt GeonetryYes, a parent’s geonetry_nanager
procedure may call the parent’s r esi ze procedure after a successful
request to the grandparent. In this case the resize procedure
should not resize the child widget making the original geometry
request. This problem can be avoided if the geomnet ry manager
and resi ze procedures call a common subroutine that performs
layout, taking as an argument the child that is making the request
(if any) so that the layout routine can avoid resizing that child.

If the widget set's geonetry nanager procedures return
Xt Geonet r yDone, the grandparent's geonet ry _manager procedure
calls the parent’s r esi ze procedure during a successful request to
the grandparent. In this case the child’'s geometry resources may
be different from the geometry parameters it is requesting at the
time the parent’s r esi ze procedure is called. This problem can be
avoided if the parent’'s geonet ry_nmanager procedure sets the child’s
geometry resources to the requested values before making its own
geometry request, setting them back to the original values if the
parent’s request is refused.

10-11

OSF/Maotif Programmer’s Guide

10.1.7 Preferred Size and Location

10-12

When calculating its layout, a parent widget may take account of a
child’s preferred size and location. The parent uses Xt Quer-
yCGeonetry to inquire about a child's preferred geometry. The
parent passes to Xt QueryGeonetry pointers to two Xt Wdget -
Ceonet ry structures, one containing the parameters that the
parent intends to impose and the other containing the preferred
parameters returned by the child. Xt Quer yGeonet ry then calls the
child’'s query_georetry procedure with pointers to these two
Xt W dget Geonret ry structures.

The child’s query_geonet ry procedure determines the widget's pre-
ferred geometry and stores the parameters into the return
Xt W dget Geonet ry structure, setting corresponding bits in the bit-
mask for fields that it cares about. It then returns one of these
values:

- If the parent’s intended geometry is acceptable, it returns
Xt GeonetryYes

- If the parent's and child’'s parameters differ for some field that
both widget care about, or if the child has expressed interest in
a field that the parent does not care about, it returns
Xt Georret r yAl nost

- If the child’s preferred geometry is the same as its current
geometry, it returns Xt Geonet r yNo

After the query_geonetry procedure returns, Xt QueryGeonetry
fills in any fields in the return Xt Wdget Geonet ry structure that
the child does not care about with the current values of the
resources in the child widget. Xt Quer yGeonetry returns the value
returned by the query_georet ry procedure.

Most composite widgets should call Xt QueryCGeonetry whenever
they intend to change the geometry of a child that is not in the

Managing Geometry

process of making a geometry request. A geonetry_ranager pro-
cedure should not call Xt Quer yGeorret ry for the child making the
request. For a widget making a geometry request, the requested
geometry is the preferred geometry.

This can be problem for widget sets whose geonet ry_manager pro-
cedures call the r esi ze procedure for the child making the request
and then return Xt Geonet r yDone. During a successful intermedi-
ate geometry request, the grandparent calls the parent's resi ze
procedure. This procedure in turn may resize the child making the
original request, but it cannot reliably use Xt QueryCGeonetry to
determine the child’'s preferred geometry. Indeed, the parent’'s
resi ze procedure may not know which child is making the request
or even that it is being invoked as a result of a child’'s geometry
request. The parent widget's geonetry_nanager procedure may
need to arrange to communicate this information to the parent’s
resi ze procedure.

10.1.8 Exposure and Redisplay

A widget may recompute its layout in its resi ze, set _val ues, or
geornet ry_manager procedure, but usually it does not actually gen-
erate the window contents in those procedures. A widget usually
regenerates its window contents in response to an Expose event,
which causes the widget's expose procedure to be invoked. This
procedure takes as arguments the widget, the event, and the set of
rectangles to be redisplayed. Using the current state of the widget
(including its geometry resources), the expose procedure generates
the contents of either the affected rectangles or the window as a
whole.

Xt Confi gureWdget, XtResizeWdget, and XtMveWdget -call
XConfi gur eW ndow, XMoveW ndow, or Xd ear Area as appropriate.

10-13

OSF/Maotif Programmer’s Guide

These functions cause the server to generate Expose events when
necessary. Xt MakeCeorret ryRequest also calls XConfi gur eW ndow
or Xd ear Area when the parent's geonetry manager procedure
returns Xt GeonetryYes. When the geonetry nanager procedure
returns Xt GeorretryDone it must call XConfi gureWndow or
Xd ear Ar ea itself (perhaps indirectly).

10.2 Shells and Their Children

10-14

Shell widgets encapsulate application widgets, principally to com-
municate with the window manager. Motif has three shell classes
based on Intrinsics shell classes:

Vendor Shel | Subclass of W/Bhel | and superclass for other
shell classes that contain both persistent top-
level widgets and dialogs

XnDi al ogShel | Subclass of Transi ent Shel | (which is a sub-
class of Vendor Shel I') used to contain dialog
widgets, commonly subclasses of XnBul | et i n-

Boar d

XmvenuShel | Subclass of Overri deShell used to contain
RowColumn PulldownMenu and PopupMenu
widgets

A shell has only one managed child. Except when a shell contains
an off-the-spot input method, the shell's window is coincident with
the child’'s window. The geonetry_rmanager procedures of the shell
classes treat geometry requests from the child as geometry
requests for the shell, and the resi ze procedures of the shell
classes make the child the same size as the shell. Applications
should usually change the geometry of the child, not of the shell.

Managing Geometry

In particular, setting Xni\hei ght , XmNwi dt h, or XniNbor der Wdt h for
either a shell or its child sets that resource to the same value in
both the parent and the child. For a child of a shell, setting Xim\x or
Xm\y sets the corresponding resource of the parent but does not
change the child’s position relative to the parent. Xt Get Val ues for
the child’'s Xn\x or Xm\y yields the value of the corresponding
resource in the parent. The x and y coordinates of the child’s upper
left outside corner relative to the parent’'s upper left inside corner
are both zero minus the value of Xnmi\bor der W dt h.

The exception is a VendorShell or DialogShell that contains an off-
the-spot input method. In this case the input method appears
inside the shell and below the application widget. The conventions
for geometry parameters are the same as for other shells, except
that the values of Xni\hei ght for the child and the shell are not
identical. The height of the shell is the sum of the height and
border width of the application window and the height of the area
occupied by the input method.

When the Shell resource XmNal | owShel | Resi ze is False, a shell's
geonetry_manager procedure returns Xt GeonetryNo for all
geometry requests from a realized child.

10.3 Manager Widgets and Their Children

Each Primitive widget has resources that determine its layout or
contents. For example, the size of a Text widget depends on the
values of the Xmi\r ows, XniNcol urms, XniNmar gi nHei ght , and XiriNrar -
ginWwdth Text resources; the Xnmi\highlightThi ckness and
Xm\shadowThi ckness Primitive resources; and the basic Core
geometry resources. In addition, when the Text Xni\r esi zeHei ght
or Xm\r esi zeWdt h resource is True, the size of the widget can
depend on the size of the text (the Xmi\val ue resource). Setting any

10-15

OSF/Maotif Programmer’s Guide

of these resources can cause Text to generate a geometry request.

Manager widgets have their own layout policies, which they use in
responding to geometry requests from their children or to resizing
by their parents. These policies are determined by the Manager’'s
own resources and, for some Managers, by its constraint resources.

Constraints are resources defined by the Manager but associated
with each child. An application or user initializes, sets, or gets con-
straint resources for the child as if they were resources defined by
the child’s class. Initialization, Xt Set Val ues, and Xt Get Val ues for
the child operate on the parent’s constraint resources associated
with that child. The Manager has constraint initialize and
set _val ues procedures that allow it to set other constraints and
recompute its layout.

Motif uses constraints in determining the layout of Form,
PanedWindow, and Frame widgets. Motif also uses constraints to
adjust the positions of child widgets in PanedWindow and
RowColumn. The Form widget is discussed in a later section of
this chapter. PanedWindow and Frame are discussed in chapter 9.

10.4 Managing Geometry Using RowColumn

10-16

In addition to its role as the menu widget, RowColumn provides
general-purpose layout and geometry management for child widg-
ets arranged in rows, columns, or grids. The default RowColumn
type, XmMANORK _AREA, provides the layout features but not the menu
semantics.

RowColumn’s layout is controlled by two sets of resources. One set
determines the position of children within the parent. The other
set specifies whether RowColumn adjusts the internal layout
characteristics of the children, such as margins and text alignment.

Managing Geometry

The two primary resources that control child positioning are
XmNori entati on and Xni\packi ng. XnNorientation determines
whether RowColumn lays out its children in rows or columns.
When XmNorientation is XmWERTI CAL—the default for a
WorkArea—the layout is column-major. When XnmNori ent ati on is
XnHORI ZONTAL the layout is row-major.

Xm\packi ng controls the general style of the layout. The resource
has three possible values:

-« XnPACK_TI GHT—RowColumn places children one after the other
along the major dimension (for example, in a column when
XmN\or i ent at i on is XmVERTI CAL). It proceeds until no more chil-
dren fit along that dimension and then begins a new row or
column. When XmNor i ent at i on is XmVERTI CAL and the vertical
distance remaining in the current column is too small to accom-
modate the child being placed, RowColumn begins a new
column if Xm\r esi zeHei ght is Fal se or the RowColumn cannot
become larger. When placing children in a column, RowColumn
does not alter their heights, but it makes the width of each child
in the column equal to the width of the widest child in that
column. Analogous rules apply to row-major layouts.
XPACK Tl GHT is the default value for Xmi\packi ng in a Wor-
kArea.

= XnPACK_COLUMN—RowColumn makes the width and height of
each child identical. The width is the maximum width of all
children, and the height is the maximum height. RowColumn
uses the value of Xm\nunCol utms to determine the maximum
number of columns (in XnVERTI CAL orientation) or rows (in
XHCR ZONTAL orientation) to produce. RowColumn tries to
create Xm\nunCol umtms columns (or rows) with an equal number
of children in each column (or row).

= XnPACK_NONE—RowColumn does not change the position of any
child. Unless Xm\r esi zeWdt h is False, it tries to grow large
enough to enclose the greatest x extent of any child. Unless

10-17

OSF/Maotif Programmer’s Guide

10-18

Xm\r esi zeHei ght is False, it tries to grow large enough to
enclose the greatest y extent of any child.

Several other resources influence the position and size of children:

Xm\adj ust Last

This resource applies only when Xmi\packing is
XPACK Tl GHT or XmPACK COLUWN. When True and
the orientation is vertical, RowColumn increases the
widths of children in the last column when necessary
so that all children extend to the right edge of the
RowColumn. When True and the orientation is hor-
izontal, RowColumn increases the heights of children
in the last row when necessary so that all children
extend to the bottomn edge of the RowColumn.

XmiNent r yBor der
When nonzero, specifies the border width for all chil-
dren of the RowColumn. When zero, RowColumn
does not alter the border width of its children.

Xmi\har gi nHei ght
Specifies the amount of space between the top edge of
the RowColumn and the first item in each column
and between the bottom edge of the RowColumn and
the last item in each column.

XmNmar gi nWdt h
Specifies the amount of space between the left edge of
the RowColumn and the first item in each row and
between the right edge of the RowColumn and the
last item in each row.

Xm\r esi zeHei ght
When True, RowColumn adjusts its own height when
possible to accommodate its children. When False,
RowColumn does not request a new height during
layout.

Managing Geometry

Xm\r esi zeWdt h

Xm\spaci ng

When True, RowColumn adjusts its own width when
possible to accommodate its children. When False,
RowColumn does not request a new width during
layout.

This resource applies only when Xmi\packing is
XPACK TIGHT or XnPACK COLUWN. Specifies the
amount of vertical space between each child in a
vertical orientation and the amount of horizontal
space between each child in a horizontal orientation.

RowColumn also has several resources that can cause the
RowColumn to change the internal layout of some classes of chil-

dren:

XmNadj ust Mar gi n

This resource applies only to children that are subc-
lasses of XnLabel and Xmliabel Gadget. When True
and the orientation is vertical, RowColumn sets the
Xmi\mar gi nLeft and XmiNmar gi nR ght for all children
to the maximum values for those resources among all
children. When True and the orientation is horizon-
tal, RowColumn sets the XnmiNmar gi nTop and XniNmar -
gi nBot t om for all children to the maximum values
for those resources among all children. In Popup-
Menus and PulldownMenus RowColumn adjusts the
margins only for button children, not for labels.

XmNent r yAl i gnent

This resource applies only to children that are subc-
lasses of XnLabel and XrLabel Gadget. When
XN sAligned is True, RowColumn sets the
XmNal i gnent of all children to the value specified by
XmNent ryAl i gnment . Following are the possible
values:

10-19

OSF/Maotif Programmer’s Guide

10-20

- XmALI G\NMENT_BEGQ NN NG—The child’s text or pix-
map is aligned with the left edge of the child's
window

= XmALI GNMVENT _CENTER—The child’s text or pixmap
is aligned with the center of the child's window

= XmALI G\MENT_END—The child’s text or pixmap is
aligned with the right edge of the child’s window
In menus RowColumn sets the alignment only for
button children, not for labels.

XmNent ryVerti cal Al i gnnent

This resource applies only to children that are subc-
lasses of XnLabel, XniLabel Gadget, XnText, and
XnText Fi el d. It also applies only when Xmi\packi ng
is XmPACK COLUWN (in either orientation) or when
Xm\packi ng is XnPACK Tl GHT and the orientation is
horizontal. The value specifies a reference point for
aligning the children in any row:

= XmALI GNVENT_BASELI NE_BOTTOM—Causes the last
baseline of each child in a row to align with the
last baseline of the tallest child in the row. This
resource is applicable only when all children in a
row contain textual data.

« XmALI GNVENT_BASELI NE_TCGP—Causes the first
baseline of each child in a row to align with the
first baseline of the tallest child in the row. This
resource is applicable only when all children in a
row contain textual data.

- XmALI G\NMENT_BOTTOM—Causes the bottom edge of
the last line of text contained in each child to
align with the bottom edge of the last line of text
of the tallest child in the row.

Managing Geometry

« XmALI GNMENT_CENTER—Causes the center of each
child to align vertically with the center point esta-
blished by the tallest child in the row.

= XmALI GNMVENT_TCP—Causes the top edge of the
first line of text contained in each child to align
with the top edge of the first line of text of the tal-
lest child in the row.

XmN sAl i gned
When True, RowColumn sets the XniNali gnnent
resources of children that are subclasses of Xniabel
or XnLabel Gadget to the value specified by XmiNen-
tryAl i gnment .

10.5 Managing Geometry Using Bulletin-
Board and DrawingArea

BulletinBoard and DrawingArea are two container widgets with
similar geometry policies. These widgets have three geometry-
related resources in common:

Xmi\har gi nHei ght

Specifies the amount of space between the top sha-
dow of the widget and the top edge of any child and
between the bottom shadow of the widget and the
bottom edge of any child. When the value of this
resource is greater than 0, the widget ensures that
the top edges of all children are below the widget's
top margin.

XmiNar gi nW dt h
Specifies the amount of space between the left sha-
dow of the widget and the left edge of any child and

10-21

OSF/Maotif Programmer’s Guide

10-22

between the right shadow of the widget and the right
edge of any child. When the value of this resource is
greater than 0, the widget ensures that the left edges
of all children are to the right of the widget's left
margin.

Xm\r esi zePol i cy
Determines the widget's policy with regard to resize
requests from its children. Following are the possi-
ble values:

- XmMRESI ZE NONE—The widget has a fixed size

determined by its XnN\Nwi dt h and Xm\hei ght. The
widget does not accept any geometry requests
that would cause it to grow, but it may accept
requests (without changing its own size) that
would not cause it to grow. The widget also
reports its current size as its own preferred size.

XTRES| ZE GRONMV—The widget can grow but not
shrink. If its own parent approves, the widget
accepts geometry requests that cause it to grow in
order to enclose its children. It may accept
requests (without changing its own size) that
would not cause it to grow. When queried about
its own preferred size, the widget calculates its
layout and reports as its preference the greater of
the calculated width and height and the current
width and height.

XnRESI ZE ANY—The widget tries to accommodate
geometry requests that would cause it to grow or
shrink in order to enclose its children, requesting
changes to its own size when necessary. When
gueried about its own preferred size, the widget
calculates its layout and reports the calculated
width and height as its preference.

Managing Geometry

In addition to these policies, BulletinBoard has geometry facilities
that allow it to interact with subclasses in laying out complex col-
lections of children. For example, SelectionBox has a List contain-
ing choices, a Text selection area, labels for the list and selection
area, and three or four buttons. Usually the list appears above the
selection area. The buttons appear equally spaced in a row below
the selection area.

Additional children may be added to the SelectionBox after crea-
tion. The first child is used as a work area. The value of Xmi\chi | d-
Pl acermrent determines if the work area is placed above or below the
Text area, or above or below the List area. Additional children are
laid out in the following manner:

= Menubar—The first menu bar child is placed at the top of the
window.

« Buttons—All XmArrowBut t on, XnDr awnBut t on, XnPushBut t on,
and XnToggl eBut t on widgets or gadgets, and their subclasses
are placed after the K button in the order of their creation.

- The layout of additional children that are not in the above
categories is undefined.

10.6 Managing Geometry Using Form

Form is a container widget that provides the most comprehensive
facilities for controlling the layout of children. Constraints are
placed on children of the Form to define attachments for each of the
child’'s four sides. These attachments can be to the Form, to
another child widget or gadget, to a relative position within the
Form, or to the initial position of the child. The attachments deter-
mine the layout behavior of the Form when resizing occurs. Form
is a subclass of BulletinBoard, so the resources and general

10-23

OSF/Maotif Programmer’s Guide

geometry policies of BulletinBoard apply to Form as well.

Each child has 17 Form constraint resources, four for each side of
the child and one, Xni\r esi zabl e, that applies to the child as a
whole. Following is a description of Xni\resi zabl e and the con-
straint resources that apply to the top side of a child:

Xm\r esi zabl e This Boolean resource specifies whether or not a
child's request for a new size is (conditionally)
granted by the Form. If this resource is set to True
the request is granted if possible. If this resource is
set to False the request is always refused.

If a child has both left and right attachments, its
width is completely controlled by the Form, regard-
less of the value of the child's Xni\resizabl e
resource. If a child has a left or right attachment but
not both, the child’s XniNwi dt h is used in setting its
width if the value of the child's Xni\resi zabl e
resource is True. These conditions are also true for
top and bottom attachments, with height acting like
width.

Xmi\t opAt t achnent
Specifies attachment of the top side of the child. It
can have following values:

- XmATTACH NONE—Do not attach the top side of the
child. If Xm\bot t omAL t achment is also
XMATTACH NONE, this value is ignored and the
child is given a default top attachment.

- XMATTACH FORM—Attach the top side of the child
to the top side of the Form.

= XMATTACH CPPCsl TE_ FCRM—Attach the top side of
the child to the bottom side of the Form. Xni\ o-
pCr f set can be used to determine the visibility of

10-24

Managing Geometry

the child.

= XMATTACH W DGET—Attach the top side of the
child to the bottom side of the widget or gadget
specified in the Xmi\topWdget resource. If
X\t opWdget is NULL, XmATTACH WDGET is
replaced by XmATTACH FORM and the child is
attached to the top side of the Form.

- XMATTACH CPPCSl TE W DGET—Attach the top side
of the child to the top side of the widget or gadget
specified in the Xm\t opW dget resource.

- XMATTACH PGSl TI ON—Attach the top side of the
child to a position that is relative to the top side of
the Form and in proportion to the height of the
Form. This position is determined by the X\t op-
Posi ti on and Xm\f r act i onBase resources.

= XWMATTACH SELF—Attach the top side of the child
to a position that is proportional to the current y
value of the child divided by the height of the
Form. This position is determined by the X\t op-
Position and Xmi\fractionBase resources.
X\t opPosi tion is set to a value proportional to
the current y value of the child divided by the
height of the Form.

Xm\t opCr f set Specifies the constant offset between the top side of
the child and the object to which it is attached. The
relationship established remains, regardless of any
resizing operations that occur.

Xm\t opPosi ti on
This resource is used to determine the position of the
top side of the child when the child’s Xmi\t opAt t ach-
nment is set to XMATTACH PCSI TI ON. In this case the
position of the top side of the child is relative to the

10-25

OSF/Maotif Programmer’s Guide

10-26

top side of the Form and is a fraction of the height of
the Form. This fraction is the value of the child’s
Xm\t opPosi ti on resource divided by the value of the
Form’s Xni\fr act i onBase. For example, if the child’s
Xm\t opPosi tion is 50, the Form’s Xmi\f r act i onBase
is 100, and the Form’s height is 200, the position of
the top side of the child is 100.

Xm\t opW dget
Specifies the widget or gadget to which the top side of
the child is attached. This resource is used if X\t o-
pAttachnent is set to either XmATTACH WDGET or
XmATTACH COPPCS| TE_W DCET.

These constraint resources interact with the following resources of
the Form itself:

Xm\f r act i onBase
Specifies the denominator used in calculating the
relative position of a child widget using
XmATTACH PGSl Tl ON constraints. The value must not
be 0.

If the value of a child's XnN ef t Atachnent (or
XmM\ri ght Attachnent) is XmATTACH PGSl TI ON, the
position of the left (or right) side of the child is rela-
tive to the left side of the Form and is a fraction of
the width of the Form. This fraction is the value of
the child’'s XnN ef t Posi ti on (or Xmi\ri ght Posi ti on)
resource divided by the value of the Form’s Xn\f r ac-
ti onBase.

If the value of a child's Xnmi\t opAttachnent (or
Xm\bot t omAt t achment) is XmATTACH PCSI TI QN, the
position of the top (or bottom) side of the child is rela-
tive to the top side of the Form and is a fraction of
the height of the Form. This fraction is the value of

Managing Geometry

the child’'s Xn\t opPosi ti on (or Xmi\bot t onfPosi ti on)
resource divided by the value of the Form’s Xnm\f r ac-
ti onBase.

Xm\hor i zont al Spaci ng
Specifies the offset for right and left attachments.

Xmi\r ubber Posi ti oni ng
Indicates the default near (left) and top attachments
for a child of the Form. (Note: Whether this
resource actually applies to the left or right side of
the child and its attachment may depend on the
value of the Xnmi\st ri ngDi r ecti on resource.)

The default left attachment is applied whenever ini-
tialization or Xt Set Val ues leaves the child without
either a left or right attachment. The default top
attachment is applied whenever initialization or
Xt Set Val ues leaves the child without either a top or
bottom attachment.

If this Boolean resource is set to False, XN eft At -
tachment and Xm\topAttachment default to
XATTACH FORM XnNl ef t F f set defaults to the
current x value of the left side of the child, and
Xm\t opCr f set defaults to the current y value of the
child. The effect is to position the child according to
its absolute distance from the left or top side of the
Form.

If this resource is set to True, XN ef t At t achnent
and X\t opAt t achmrent default to
XmATTACH PGSl Tl ON, XN ef t Posi ti on defaults to a
value proportional to the current x value of the left
side of the child divided by the width of the Form,
and Xmi\t opPosi ti on defaults to a value proportional
to the current y value of the child divided by the

10-27

OSF/Maotif Programmer’s Guide

10-28

height of the Form. The effect is to position the child
relative to the left or top side of the Form and in pro-
portion to the width or height of the Form.

Xm\verti cal Spaci ng

Specifies the offset for top and bottom attachments.

Following are some important considerations in using a Form:

- Every child must have an attachment on either the left or the

right. If initialization or Xt Set Val ues leaves a widget without
such an attachment, the result depends upon the value of
Xmi\r ubber Posi ti oni ng.

If Xm\r ubber Posi ti oni ng is False, the child is given an XnN ef -
t At t achrment of XmATTACH FORMand an XmN ef t O f set equal to
its current x value.

If Xm\r ubber Posi ti oni ng is True, the child is given an XN ef -
t Attachment of XmATTACH PGSl TI ON and an XnN ef t Posi ti on
proportional to the current x value divided by the width of the
Form.

In either case, if the child has not been previously given an x
value, its x value is taken to be 0, which places the child at the
left side of the Form.

If you want to create a child without any attachments, and then
later (e.g., after creating and managing it, but before realizing
it) give it a right attachment via Xt Set Val ues, you must set its
XN ef t At t achment to XmATTACH NONE at the same time.

The Xmi\r esi zabl e resource controls only whether a geometry
request by the child will be granted. It has no effect on whether
the child’s size can be changed because of changes in geometry
of the Form or of other children.

Every child has a preferred width, based on geometry requests
it makes (whether they are granted or not).

Managing Geometry

If a child has attachments on both the left and the right sides,
its size is completely controlled by the Form. It can be shrunk
below its preferred width or enlarged above it, if necessary, due
to other constraints. In addition, the child’'s geometry requests
to change its own width may be refused.

If a child has attachments on only its left or right side, it will
always be at its preferred width (if resizable, otherwise at is
current width). This may cause it to be clipped by the Form or
by other children.

If a child’s left (or right) attachment is set to XmATTACH SELF, its
corresponding left (or right) offset is forced to 0. The attach-
ment is then changed to XmATTACH PCSI TI ON, with a position
that corresponds to x value of the child’s left (or right) edge. To
fix the position of a side at a specific x value use XnATTACH FORM
or XmATTACH CPPCsl TE FORM with the x value as the left (or
right) offset.

Unmapping a child has no effect on the Form except that the
child is not mapped.

Unmanaging a child unmaps it. If no other child is attached to
it, or if all children attached to it and all children recursively
attached to them are also all unmanaged, all of those children
are treated as if they did not exist in determining the size of the
Form.

When using Xt Set Val ues to change the Xni\x resource of a child,
you must simultaneously set its left attachment to either
XMATTACH SELF or XmATTACH NONE. Otherwise, the request is
not granted. If Xm\r esi zabl e is False, the request is granted
only if the child’s size can remain the same.

A left (or right) attachment of XTATTACH WDCET, where
XN ef t Wdget (or Xni\ri ght Wdget) is NULL, acts like an
attachment of XnATTACH FCORM

10-29

OSF/Maotif Programmer’s Guide

- If an attachment is made to a widget that is not a child of the
Form, but an ancestor of the widget is a child of the Form, the
attachment is made to the ancestor.

All these considerations are true of top and bottom attachments as
well, with top acting like left, bottom acting like right, y acting like
X, and height acting like width.

10-30

Chapter 11. Internationalization

Internationalization is a method of application development that
allows the application to be run in many different languages
without rewriting the code or recompiling. This chapter describes
how to design applications to utilize Motif's internationalization
capability. It is not a general discussion of internationalization.

11.1 Issues in Internationalized Applications

There are several important issues to keep in mind when consider-
ing the design of an application so that it takes advantage of Motif's
internationalization capabilities.

11.1.1 Internationalization and Localization

An internationalized application contains no code that is dependent
on the user's language, the characters needed to represent that
language, or any formats (such as date and currency) that the user
expects to see and interact with. Motif accomplishes this by
separating language and custom dependent information from the
application and saving it outside the application.

The next figure shows the kinds of information that should be exter-
nal to an application to simplify internationalization.

11-1

OSF/Maotif Programmer’s Guide

11-2

Figure 11-1. Information External to the Application

Any String To
Be Displayed:

® Henu Items
® Help Text
®* Prompts
® Lahels
Bitmaps
Data . .
Presentation Appsl ication Date
Format ource Format
Code
Collation $
Order
Humeric
Format

By keeping the language and culture dependent information apart
from the application source code, the application does not need to be
rewritten or recompiled to be marketed in a different countries.
Instead, the only requirement is for the external information to be
| ocal i zed to accommodate local language and custom.

Localizing the application includes the process of translating cer-
tain parts of the external information into the appropriate language
and storing the translated information in files that are then
accessed by the application. In addition, the application may be
told the format to use to display time, date, and the other language
or culture dependent formats shown in the previous figure.

Every language consists of a set of characters that, either individu-
ally or in combination, represents meaningful words or concepts in
the language. The set of characters is called a character set. The
set of binary values needed to represent all the characters in a
language is called a coded character set or, more simply, a code
set. Several attempts were started long ago to standardize

Internationalization

character sets and continue to this day. The most commonly used
code set for English is the American National Standard Code for
Information Interchange, more familiarly known as ASCII. It origi-
nally used a 7-bit encoding scheme plus an eighth bit for error con-
trol. Using 7 bits for character representation allows 128 unique
binary values. Later versions use the eighth bit as a code bit allow-
ing 255 characters. Both are fine for English and some other alpha-
betic languages, but neither is suitable for ideographic languages
such as Chinese, Japanese, and Korean. ldeographic languages
represent a concept or an idea as a single character, consequently
there are thousands of characters in the language and two or more
bytes are needed to represent the characters.

Other standard code sets have been developed to accommodate
other languages. The 1S0O8859 standard is perhaps the most com-
monly used of these. Different versions of the 1SO8859 standard
exist for various areas of the world. The following table shows a
typical language and character set relationship for various areas.

TABLE 11-1. Areas and Typical Character Sets

Area or Language Character Set

English ASCII, 1S08859-1
Western Europe 1SO8859-1
Eastern Europe 1SO8859-2
Northern Europe 1SO8859-3
Russia (Cyrillic) 1SO8859-5
Hebrew 1SO8859-6

Greek 1SO8859-7, 8, 9
Japan Shift JIS

Japan UJIs

See the specifications for the American National Standards Insti-
tute (ANSI) C and the X/Open Portability Guide, Issue 3 (XPG3) for

11-3

OSF/Maotif Programmer’s Guide

more information on standards involved in internationalization.

11.1.2 Obtaining Input

Special considerations must be made for the user of an application
to input characters in the local written language. Virtually all
applications require some action on the part of the user, often ask-
ing for input in one form or another. For example, an application
can ask the user to input information in text form, such as name,
home address, and so on. The user must then enter this informa-
tion by typing it on the keyboard in the normal manner. This is
done with relative ease in an English-based application but can
become more complex when other language text is desired.

Motif uses Xlib functions to provide the basic support for obtaining
input in a Text widget.

11.1.2.1 The Problems

11-4

Many languages are expressed by means of an alphabet made up of
characters or letters. The letters are arranged in groups to form
meaningful words. A keyboard suitable for the language normally
contains all the letters of the alphabet, plus the standard numerals
and punctuation marks. The problem arises when the keyboard
does not have all the alphabet characters. This can happen when a
German user is using an English-based keyboard and needs a Ger-
man character such as "B."

A far more involved example is the case of defining a keyboard to
use for the ideographic languages. There are literally thousands of
characters needed to represent an ideogragphic language.

Internationalization

Obviously, no reasonable keyboard can be constructed with a single
key for each character.

11.1.2.2 The Solution

Motif solves these input problems by using an i nput net hod, which
is a layer of mapping between the keyboard keys (or combinations
of keys) that the user types and the text data that is passed to the
application. For example, the Swedish user with an English key-
board who needs the letter "@" must enter a combination of keys-
trokes (this varies among vendors but could be Extendchar O / as
an example) rather than just one keystroke. This is very similar to
the act of using the Shift key to access upper case letters.

An ideographic language’s input method is often based on the
language’s phonetics but there are also input methods based on a
common graphics property of certain characters. The latter method
involves defining a key to map to a common graphic symbol that is
the basis for multiple characters. The phonetic method is more
commonly used. It requires a phonetic (alphabet-based) writing
system. The number of phonetic signs or characters is few enough
that a unique key is assigned to each phoneme. Characters are
entered by pressing the appropriate phonetic keys. In several popu-
lar input methods, the user types a phonetic representation of a
spoken word and the input method determines which characters are
pronounced that way. If only one character meets this criterion, it
is displayed. If more than one character meets the criterion, a list
of all characters found is displayed and the user chooses the desired
one. It is then passed to the application. See the section "Interna-
tionalization and Text Input® for more information on input
methods.

11-5

OSF/Maotif Programmer’s Guide

11.1.3 Displaying Output

Displaying the output produced by an application intended for
international use also requires some consideration. To display text,
it must have the appropriate content, encoding and fonts. For
example, many languages, especially ideographic ones, require
more than one font. Bitmaps and pixmaps must be localized as
well. An icon that is an appropriate or meaningful symbol in one
country may be totally inappropriate or meaningless in another.

11.1.4 Locales and Localization

11-6

A locale is the language environment determined by the application
at run time. XPG3 defines locale as a means of specifying three
characteristics of a language environment that may be needed for
localization: language, territory, and code set. Motif supports only
one locale per application; that is, an application can set the locale
only once, at start-up time.

Motif uses the locale to help find:

- Resourece files.

- UID files.

- Bitmap files.

- Fonts used to display text and labels.
- Text input method.

The ANSI C method of setting the locale in an application is to use
the function set | ocal e. How set| ocal e obtains a language when
the language is not explicitly referenced in the call to setl ocal e is
system dependent. For example, on POSIX systems, the

Internationalization

environment variable LANGis used. The locale name is also used to
establish a path to the localized files of information. How this is
actually accomplished is explained in the section "Localizing Appli-
cations".

11.2 Compound Strings, Fonts, and Text
Display

A compound string is a means of encoding text so that it can be
displayed in many different languages or fonts without changing
anything in the program. Motif uses compound strings to display all
text except that in the Text and TextField widgets. This section
explains the structure of a compound string, the interaction with it
and a font list, and then focuses on those aspects that are important
to the internationalization process. This section describes the struc-
ture of a compound string and the interaction between a compound
string and a font list that determines how the compound string is
displayed.

11.2.1 Compound String Components

A compound string is a byte stream in ASN.1 encoding, consisting of
tag-length-value segments. Semantically, a compound string has
components that contain the text to be displayed, a tag (called a
font list element tag) that will be matched with an element of a font
list, and an indicator denoting the direction in which it is to be
displayed.

A compound string component can be one of four types:

11-7

OSF/Maotif Programmer’s Guide

- A font list element tag.

— The font list element tag Xn=CNTLI ST_DEFAULT _TAG indicates
that the text is encoded in the codeset of the current locale.

— Other font list element tags are used later to match text with
particular entries in a font list.

- A direction identifier.

- The text of the string. For internationalized applications, the
text falls into two broad categories: either the text requires local-
ized treatment or it does not.

- Separator.

The following section describes each of the compound string com-
ponents:

Font list element tag The font list element tag is a string
value that correlates the text component
of a compound string to a font or a font set
in a font list.

Direction The relationship between the order in
which characters are entered on the key-
board and the order in which the charac-
ters are displayed on the screen. For
example, the display order is left to right
in English, French, German, and Italian
and right to left in Hebrew and Arabic.

Text The text to be displayed.

Separator A separator is a special form of a com-
pound string component that has no
value. It is used to separate other seg-
ments.

11-8

Internationalization

Motif uses the specified font list element tag identified in the text
component to display the compound string. A specified font list ele-
ment tag is used until a new font list element tag is encountered.
Motif provides a special font list element tag,
XmFONTLI ST_DEFAULT _TAG that matches a font that is correct for
the current codeset. It identifies the default entry in a font list. See
the section "Compound Strings and Font Lists" for more informa-
tion.

The direction segment of a compound string specifies the direction
in which the text is displayed. Direction can be left-to-right or
right-to-left.

11.2.1.1 Compound Strings and Resources

Compound strings are used to display all text except that in the
Text and TextField widgets. The compound string is set into the
appropriate widget resource so that it can be displayed. For exam-
ple, the label for the PushButton widget is inherited from the Label
widget, and the resource is XnN abel String, which is type
XnBtring. This means that the resource expects a value that is a
compound string. A compound string can be created programmati-
cally or defined in a resource file.

11.2.1.1.1 Setting a Compound String Programmatically

An application can set this resource programmatically by creating
the compound string using one of the compound string convenience
functions. There are several such functions:

XnstringCGeate This function creates a com-
pound string with text and a

11-9

OSF/Maotif Programmer’s Guide

font list element tag, both of
which are arguments in the
function call.

XnstringCreat eLocal i zed This function creates a com-
pound string in the encoding
of the current locale and
automatically sets the font
list entry tag to
XnFONTLI ST_DEFAULT_TAG

The following code segment shows one way to set XN abel Stri ng
for a PushButton programmatically:

W dget but t on;

Args args[10] ;

i nt n;

XnBtring button_| abel;

button_| abel = XnBtringCQ eatelocalized (I ocvar, XnFONTLI ST_DEFAULT _TAG ;
/* locvar is a variable assumed to contain |ocal e-encoded text. *

/* Oeate an argunent list for the button */

n =0;

XtSet Arg (args[n], XmN abel String, button_label); n++;

/* Oeate and manage the button */

button = XnmCr eat ePushButton (toplevel, "button", args, n);
Xt ManageChi I d (button);

XnstringFree (button_| abel);

11-10

Internationalization

11.2.1.1.2 Setting a Compound String in a Defaults File

In an internationalized program, the label string for the button
label should be obtained from an external source. For example, the
button label can come from a resource file instead of the program.
For this example, assume that the PushButton is a child of a Form
widget called f or mL.

*fornl. button. | abel String: Push Here

Here, Motif's string-to-compound-string converter produces a com-
pound string from the resource file text. This converter always uses
XnFONTLI ST_DEFAULT_TAG

11.2.1.2 Compound Strings in UIL

Three basic mechanisms exist for specifying strings in UIL files:

- As string literals, which may be stored in UID files as either
NULL-terminated strings or compound strings

= As compound strings
- As wide-character strings

Both string literals and compound strings consist of text, a charac-
ter set, and a writing direction. For string literals and for com-
pound strings with no explicit direction, UIL infers the writing
direction from the character set. The UIL concatenation operator
(&) concatenates both string literals and compound strings.

Whether UIL stores string literal in UID files as NULL-terminated
strings or as compound strings, it stores information about each
string’s character set and writing direction along with the text. In

11-11

OSF/Maotif Programmer’s Guide

11-12

general UIL stores string literals or string expressions as compound
strings in UID files under the following conditions:

- When a string expression consists of two or more literals with
different character sets or writing directions

= When the literal or expression is used as a value that has a com-
pound string data type (such as the value of a resource whose
data type is compound string)

UIL recognizes a number of keywords specifying character sets.
UIL associates parsing rules, including parsing direction and
whether characters have 8 or 16 bits, for each character set it recog-
nizes. It is also possible to define a character set using the UIL
CHARACTER_SET function.

The syntax of a string literal is one of the following:

"[character_string]
[#char_set]"[character_string]"

For each syntax, the character set of the string is determined as fol-
lows:

- For a string declared as ' string , the character set is the
codeset component of the LANGenvironment variable if it is set in
the UIL compilation environment, or the value of
XFALLBACK CHARSET if LANG is not set or has no codeset. By
default the value of XnFFALLBACK CHARSET is 1S08859-1, but ven-
dors may supply different values.

- For a string declared as #char_set" stri ng", the character set
is char_set.

- For a string declared as " st ri ng", the character set depends on
whether or not the module has a CHARACTER _SET clause and on
whether or not the UIL compiler's use_set | ocal e_fl ag is set:

— If the module has a CHARACTER SET clause, the character set
is the one specified in that clause.

Internationalization

— If the module has no CHARACTER SET clause but the ui | com-
mand was invoked with the —s option or the U | function was
invoked with the use_set| ocal e_fl ag set, UIL calls set | o-
cal e and parses the string in the current locale. The charac-
ter set of the resulting string is Xm=CONTLI ST_DEFAULT _TAG

— If the module has no CHARACTER SET clause and the ui| com-
mand was invoked without the —s option or the U | function
was invoked without the use_set | ocal e_fl ag, the character
set is the codeset component of the LANG environment vari-
able if it is set in the UIL compilation environment, or the
value of XnFALLBACK CHARSET if LANG is not set or has no
codeset.

UIL always stores a string specified using the COVPOUND_STRI NG
function as a compound string. This function takes as arguments a
string expression and optional specifications of a character set,
direction, and whether or not to append a separator to the string. If
no character set or direction is specified, UIL derives it from the
string expression, as described above.

Note that certain predefined escape sequences, beginning with a
backslash, may appear in string literals, with these exceptions:

= A string in single quotes can span multiple lines, with each new-
line escaped by a backslash. A string in double quotes cannot
span multiple lines.

- Escape sequences are processed literally inside a string that is
parsed in the current locale (a localized string).

For more information on UIL string and compound string syntax,
see the U L(5X) reference page.

11-13

OSF/Maotif Programmer’s Guide
11.2.2 Fonts, Font Lists, and Font Sets

Motif uses font sets and font lists to display text. A font defines set
of glyphs that represent the characters in a given language. A font
set is a group of fonts that are needed to display text for a given
locale. A font list is a list of fonts, font sets, or a combination of the
two, that may be used. Motif has convenience functions to create a
font list.

11.2.2.1 Font List Structure

Motif requires a font list for text display. A font list is a list of font
structures, font sets, or both, each of which has a tag to identify it.
A font set ensures that all characters in the current languaage can
be displayed. With font structures, the responsibility for ensuring
that all characters can be displayed rests with the programmer.

Each entry in a font list is in the form of a {tag, element} pair,
where element can be either a single font or a font set. The applica-
tion can create a font list entry from either a single font or a font
set. For example, the following code segment creates a font list
entry for a font set:

char fontl[] = "-adobe-couri er-nedi umr-normnal - - 10- 100- 75- 75- M 60" ;
font list entry = XnfFontListEntryLoad (display, fontl,
XnFONT_I S FONT, "font_tag");

XnFont Li st Ent ryLoad loads a font or creates and loads a font set.
There are four arguments to the function:

di spl ay The display on which the font list is to be used

11-14

Internationalization

font _nane A string that represents either a font name or a
base font name list, depending on the t ype argu-

ment

type A value that specifies whether f ont _nane refers to
a font name or a base font name list

tag A string that represents the tag for this font list
entry

If type is XnFONT_I S FONTSET, Xnfont Li st EntryLoad creates a
font set in the current locale from the value in font _nanme. The
character set(s) of the fonts specified in the font set are dependent
on the locale. If type is XnFONT_I S_FONT, XnfFont Li st Ent ryLoad
opens the font found in font _nanme. In either case, the font or font
set is placed into a font list entry.

Now, the following code creates a font |list, using the
font _I|ist_entry just created:

XmFont Li st font i st;
XnmFont Li stEntry font _list_entry;

font _|ist = XnfontLi st AppendEntry (NULL, font_list_entry);
XnfFont Li stEntryFree (font_list_entry);

The code example above creates a new font list and appends the
entry font_Iist_entrytoit.

Once a font list has been created, Xont Li st Ent r yAppend adds a
new entry to it. The following example uses Xnmfont Li st En-
tryCr eat e to create a new font list entry for an existing font list:

XFont Set font 2;

char *font _tag;
XnFont Li stEntry font_list_entry2;

11-15

OSF/Maotif Programmer’s Guide

font list entry2 = XnfontListEntryCreate (font_tag, XnFONT_ IS FONT_SET,
(Xt Pointer)font2);

font 2 specifies an XFont Set returned by XOreateFont Set. The
arguments to Xmont Li st EntryQreat e are font _tag,
XnFONT_I S_FONT_SET, and f ont 2, which are the tag, type, and font,
respectively. The tag and the font set are the {tag, element} pair of
the font list entry.

Now, to add this entry to the font list, use XnFont Li st AppendEnt ry
again, only this time its first parameter specifies the existing font
list:

font _|ist = XnfFontLi st AppendEntry(font list, font list entry2);
Xmont Li st EntryFree(font _|ist_entry?2);

11.2.2.2 Font Lists and Resources

The syntax for specifying a font list in a resource file depends on
whether the list contains fonts, font sets, or both.

- To obtain a font, specify a font and an optional font list element
tag. If the tag is present, it should be preceded by an equal sign
(=). If the tag is not present, do not use the equal sign. Entries
specifying more than one font are separated by commas.

- To obtain a font set, specify a base font list and an optional font
list element tag. The tag should be preceded by a colon (:)
instead of an equal sign. If the tag is not present, the colon must
still be present as this is what distinguishes a font from a font
set in the resource declaration. Fonts specified in the base font

11-16

Internationalization

list are separated by semicolons (;). Entries specifying more
than one font set are separated by commas.

If the font list element tag is not present in either case, Motif uses
the default Xm-ONTLI ST_DEFAULT _TAG Here are some examples:

- Specifying a font:
— Using the default font list element tag:
*fontList: fixed

*fontList:\
- adobe- couri er - medi umr - nor mal - - 10- 100- 75- 75- M 60- i s08859- 1

— Specifying a font list element tag:
*fontList: fixed=ROVAN 8x13bol d=BAOLD

— Specifying two fonts, one with the default font list element
tag and one with an explicit tag:

*fontList: fixed, 8x13bol d=BALD

- Specifying a font set:
— List the fonts explicitly without specifying a font list element
tag:

*fontList: -JIS Fixed-Mdi unmt R Nornmal - - 26- 180- 100- 100- G 240; \
-JI S Fi xed- Medi um R Nor nal - - 26- 180- 100- 100- G- 120; \
- &B- Fi xed- Medi um R Nor nal - - 26- 180- 100- 100- G- 240; \
- Adobe- Couri er - Bol d- R Nor mal - - 25- 180- 100- 100- M 150:

— Let Xlib select the fonts without specifying a font list element
tag:

fontList: --*-*-R Nornmal--*-180-100-100- *-*:

11-17

OSF/Maotif Programmer’s Guide

— List the fonts explicitly and specify a font list element tag as
MY_TAG:

*fontList: -JIS Fixed-Mdi umR Nornal --26- 180- 100- 100- G 240; \
-JI S Fi xed- Medi um R Nor nal - - 26- 180- 100- 100- G 120; \
- &B- Fi xed- Medi um R- Nor mal - - 26- 180- 100- 100- G 240; \
- Adobe- Couri er - Bol d- R Nor mal - - 25- 180- 100- 100- M 150: MY_TAG

— Let Xlib select the fonts and specify a font list element tag as
MY_TAG:

fontList: --*-*-R Normal--*-180-100-100-*-*: MY_TAG

— List the fonts explicitly and specify a font list element tag for
bold fonts but use the default font list element tag for
medium fonts:

*fontList: -JIS F xed-Mdi um R Nor nal - - 26- 180- 100- 100- G 240; \
-JI S Fi xed- Medi um R Nor nal - - 26- 180- 100- 100- G 120; \
- &B- Fi xed- Medi um R Nor nmal - - 26- 180- 100- 100- G- 240; \
- Adobe- Couri er - Bol d- R- Nor nal - - 25- 180- 100- 100- M 150: , \
-JI S Fi xed- Medi um R Nor nal - - 26- 180- 100- 100- G- 240; \
-JI S Fi xed- Medi um R Nor nal - - 26- 180- 100- 100- G- 120; \
- B- Fi xed- Medi um R Nor mal - - 26- 180- 100- 100- G- 240; \
- Adobe- Couri er - Bol d- R Nor mal - - 25- 180- 100- 100- M 150: BALD

— Let Xlib select the fonts and specify a font list element tag for
bold fonts and use the default font list element tag for the
others:

fontList: --*-*-R Nornal --*-180-100-100-*-*:,\
-*-*.Bol d- R Nor nal - - *- 180- 100- 100- *-*: BOLD

11-18

Internationalization

11.2.2.3 Font List Resource Defaults

A font list resource exists for a number of different widgets. Motif
uses a hierarchy system to determine the font list it should use.
There are several font list resources for Vendor Shel | , XnBul | et i n-
Boar d, and XmMenuShel | . These resources can be set, either pro-
grammatically or in resource files. Vendor Shel | and XmivenuShel |
have some common font list resources but one of them, Xmi\def aul t -
Font Li st , exists only for compatibility with earlier Motif releases.
The widgets that have a font list resource (or resources) are listed in
the following table. Note that in some cases the resource is not
named Xnm\f ont Li st .

TABLE 11-2. Widgets With A Font List Resource

Widget Resource Name
VendorShell XmNdefaultFontList
VendorShell XmNbuttonFontList
VendorShell XmNlabelFontList
VendorShell XmNtextFontList
XmMenuShell XmNbuttonFontList
XmMenuShell XmNdefaultFontList
XmMenuShell XmNlabelFontList
XmLabel XmNfontList
XmLabelGadget XmNfontList
XmList XmNfontList
XmScale XmNfontList
XmText XmNfontList
XmTextField XmNfontList
XmBulletinBoard XmNbuttonFontList
XmBulletinBoard XmNlabelFontList
XmBulletinBoard XmNtextFontList

11-19

OSF/Maotif Programmer’s Guide

The three resources Xmi\butt onFont Li st, XnN abel Font Li st, and
Xm\t ext Font Li st are used to specify a font list for descendants of a
type associated with the resource. For example, Xm\butt on-
Font Li st specifies the font list used for button descendants of Ven-
dor Shel I, XnBul | eti nBoard, and XnmMenuShell. If a button’s
Xm\font Li st is NULL at initialization, the font list for the button is
set by searching the parent hierarchy of the button widget or gadget
for an ancestor that is a subclass of Vendor Shel |, XnBul | eti n-
Boar d, or XnivenuShel | . If such an ancestor is found, the button’s
font list is set to the value of Xm\but t onFont Li st in the ancestor
widget. If no such ancestor is found, the result is implementation
dependent.

11.2.2.4 Font Lists in UIL

11-20

UIL has three functions for use in creating font lists: FONT, FONTSET,
and FONT _TABLE. FONT and FONTSET create font list entries.
FONT_TABLE creates a font list from these font list entries.

The FONT function creates a font list entry containing a font
specification. The argument is a string representing an XLFD font
name. The FONTSET function creates a font list entry containing a
font set specification. The argument is a comma-separated list of
XLFD font names representing a base name font list.

Both FONT and FONTSET have optional CHARACTER SET parameters
that specify the font list element tag for the font list entry. In both
cases, if no CHARACTER SET parameter is specified, UIL determines
the font list element tag as follows:

Internationalization

- If the module contains no CHARACTER SET declaration and if the
ui I command was invoked with the —s option or the U | func-
tion was invoked with the use_set | ocal e_fl ag set, the font list
element tag is XnFONTLI ST_DEFAULT _TAG

- Otherwise, the font list element tag is the codeset component of
the LANG environment variable if it is set in the UIL compilation
environment, or the value of XmFALLBACK CHARSET if LANGis not
set or has no codeset.

The FONT_TABLE function creates a font list from a comma-
separated list of font list entries, created by FONT or FONTSET. The
resulting font list can be used as the value of a font list resource. If
a single font list entry is supplied as the value for such a resource,
UIL converts the entry to a font list.

11.2.3 Compound Strings and Font Lists

When Motif displays a compound string, it associates each segment
with a font or font set by means of the font list element tag for that
segment. The application must have loaded the desired font or font
set, created a font list that contains that font or font set and its
associated font list element tag, and created the compound string
segment with the same tag.

Motif follows a set search procedure when when it binds a com-
pound string to a font list entry:

1. Motif searches the font list for an exact match with the font
list element tag specified in the compound string. If it finds a
match, the compound string is bound to that font list entry.

2. If the above does not provide a binding between the compound
string and the font list, Motif binds the compound string to the
first element in the font list, regardless of its font list element

11-21

OSF/Maotif Programmer’s Guide

11-22

tag.

For backward compatibility, if an exact match is not found,
Xn=CNTLI ST_DEFAULT _TAGin either a compound string or a font list
matches the tag that would result from creating a compound string
or font list entry with a tag of Xn8TRI NG_DEFAULT _CHARSET.

The next figure shows the relationships between a compound string,
a font set, and a font list when the font list element tag is set to
something other than XnFONTLI ST_DEFAULT _TAG

Figure 11-2. Compound String Relationships With Explicit Tag

Compound String Components

Font List
Element Tag Text
tagh "Push Here"
i
Font List
font & taga
font B tagh -
Font_Set & tagc
font © tagd

The next example shows how to use a tag we'll call t agb.

XFont St ruct *font 1;

Xnont Li stEntry font_list_entry;

XmFont Li st font i st;

XnBtring |abel text;

char *tagb; /* Font list elenent tag */

char *fontx; /* Initialize to XLFD or font alias */
char *button_| abel ; /* Contains button | abel text */

font1l = XLoadQueryFont (Xt D splay(toplevel), fontx);

Internationalization

font list entry = XnfFontListEntryGreate (tagb, XnFONT_| S FONT,
(XtPointer)fontl);

font _|ist = XnfontListAppendEntry (NULL, font |ist _entry);

XnFont Li st EntryFree (font _|ist_entry);

| abel _text = XnBtringQreate (button_| abel, tagb);

XLoadQuer yFont loads the font and then Xnfont Li st EntryCreat e
creates a font list entry. The application must create an entry and
then append it to an existing font list or create a new font list. In
either case, use Xnfont Li st AppendEnt ry. Since there is no font list
in place, the code example above has NULL for the font list argu-
ment. XnfFont Li st AppendEntry creates a new font list called
font _Iist with a single entry, font_I|ist_entry. To add
another entry to font | i st, follow the same procedure but supply
a non-NULL font list argument.

The following figure shows the relationships between a compound
string, a font set, and a font list when the font list element tag is set
to XnONTLI ST_DEFAULT_TAG In this case the value field is locale
text.

11-23

OSF/Maotif Programmer’s Guide

Figure 11-3. Compound String
XMFONTLIST_DEFAULT_TAG

11.2.4 Text and TextField Widgets and Font Lists

11-24

Relationships

Compound String Components

Font List
Element Tag Text
HmMFONTLIST DEFAULT_T&G | "Push Here"
]
[
Font List
font & taga
font b tagh
Font_Set & XnFONTLIST DEFAULT TAC+
font o tagc
Font_Seta

fontla
font2a

font3a

With

The previous figure shows how a compound string is related to a
font list and a font set when the font list element tag is
the default tag points to
Font _Set A, which in turn identifies the fonts needed to display the

XNFONTLI ST _DEFAULT TAG Here,

characters in the language.

The Text and TextField widgets display text information. To do so,
they must be able to select the correct font in which to display the
information. The Text and TextField widgets follow a set search

pattern to find the correct font.

Internationalization

1. Search the font list for an entry that is a font set and has a
font list element tag of Xn=CNTLI ST_DEFAULT_TAG If a match
is found, use that font list entry. No further searching occurs.

2. Search the font list for an entry that specifies a font set. Use
the first one found.

3. If no font set is found, use the first font in the font list.

A font set is desired because that insures that there are glyphs for
every character in the locale.

11.3 Localizing Applications

An internationalized application can be tailored to operate in many
areas of the world, each with its own requirements for the language
and customs to be used. This section explains some methods for
localizing an application.

11.3.1 Techniques for Localization

Although there are different methods to localize an application,
there are some common considerations:

- The application should not explicitly code any language-
dependent information in the application. This includes strings,
fonts and language-dependent pixmaps.

- The application should isolate text, fonts, and pixmaps, and
translate them into the languages needed. Usually this informa-
tion is stored in separate directories by language.

11-25

OSF/Maotif Programmer’s Guide

This section describes how the user, the application developer, and
the implementation combine to establish the language environment
of the application. It then discusses two general approaches to
localizing applications. Succeeding sections focus on four aspects of
localizing information in Motif programs:

- Resource files

- UID files

- Message catalogs
- X bitmap files

Many aspects of localization depend on the particular operating sys-
tem, Motif implementation, and user environment in which the
application runs. The following must all cooperate for correct locali-
zation to occur:

- The operating system’s locale mechanism, if any

The Motif implementation

The application itself

The user’s system administrator

The user’s language environment

11.3.1.1 Establishing the Language Environment

11-26

The term language environment refers to the set of localized data
that the application needs in order to run correctly in the user
specified locale. A language environment supplies the rules associ-
ated with a specific language. In addition, the language environ-
ment consists of any externally stored data, such as localized
strings or text used by the application. For example, the menu

Internationalization

items displayed by an application might be stored in separate files
for each language supported by the application. This type of data
can be stored in resource files, UID files, or, on XPG3-compliant sys-
tems, message catalogs.

A single language environment is established when an application
executes. The actual language environment in which an application
operates is specified by the application user, often either by setting
an environment variable (LANG on POSIX-based systems) or by set-
ting the xnl Language resource. The application then sets the
language environment based on the user’s specification. The appli-
cation can do this either by using setl ocal e in a language pro-
cedure established by Xt Set LanguagePr oc, or by using a method
that does not call setl ocale. In either case, Xt caches a per-
display language string that is used by Xt Resol vePat hnane to find
resource, bitmap, and UIL files.

An application that supplies a language procedure may either pro-
vide its own or use an Xt default procedure. In either case, the
application establishes the language procedure by calling Xt Set -
LanguagePr oc before calling Xt Appl niti ali ze. When a language
procedure is installed, Xt calls it in the process of constructing the
initial resource database. Xt uses the value returned by the
language procedure as its per-display language string.

The default language procedure performs the following tasks:
- Sets the locale. On ANSI C-based systems, this is done by using
this code:

setl ocal e(LC ALL, [anguage);

where [anguage is the value of xnl Language or the empty
string (") if xnl Language is not set. When xnl Language is not
set, the locale is generally derived from an environment variable
(LANGon POSIX-based systems).

11-27

OSF/Maotif Programmer’s Guide

11-28

- Calls XSupport sLocal e to verify that the locale just set is sup-
ported. If not, a warning message is issued and the locale is set
to "C."

- Calls XSet Local eMbdi fi er s specifying the empty string.

- Returns the value of the current locale. On ANSI C-based sys-
tems, this is the result of calling:

setlocal e(LC ALL, NULL);

The application can use the default language procedure by making
the call to Xt Set LanguagePr oc in this manner:

Xt Set LanguageProc(NULL, NULL, NULL);

toplevel = XtAppinitialize(...);

By default Xt does not install any language procedure. If the appli-
cation does not call Xt Set LanguagePr oc, Xt uses as its per-display
language string the value of the xnl Language resource if it is set. If
xnl Language is not set, Xt derives the language string from the
environment. On POSIX-based systems, this is the value of the
LANGenvironment variable.

It is important to note that the per-display language string that
results from this process is implementation dependent and that Xt
provides no public means of examining the language string once it
is established. The following vary by operating system and by Motif
implementation:

- The mechanism, if any, used to set the locale
= On ANSI C-based systems, the value returned by set| ocal e

- The possible values of any environment variables used to estab-
lish the language environment

Internationalization

- Whether or not xnl Language is used and, if so, its possible
values

Furthermore, by supplying its own language procedure, an applica-
tion may use any procedure it wants for setting the language string.

11.3.1.2 Using Locales

The locale provides local information to an application based on the
user’s language, territory, and codeset. Both language and territory
are needed because some languages are spoken in more than one
country and more than one language may be spoken in some coun-
tries (Belgium, Canada, and Switzerland are examples).

Information in resource, UID, and image files can be localized and
stored in separate directories by language. The Xt function
Xt Resol vePat hnane uses the run-time locale to determine the
proper directory to use.

On XPG3-compliant systems, an application can use message cata-
logs to localize text and messages. A message catalog file exists for
each language, and each is usually stored in a separate directory by
language.

The locale method of localizing compound strings and font lists con-
sists of the following steps:

1. Establish a language procedure before calling Xt Appl ni ti al -
i ze. The language procedure calls set | ocal e.

2. Localize the compound strings and font lists using resource
files, message catalogs, or UID files. Normally, do not specify
any font list element tags other than
XnFONTLI ST_DEFAULT_TAG

11-29

OSF/Maotif Programmer’s Guide

11-30

Use font sets in resource or UID file font lists.

4. Use XnBtringQOreat eLocal i zed to create compound strings in
the program. This function only has one argument, a text
string, and automatically sets the font list element tag to
XmFONTLI ST_DEFAULT_TAG

The run-time locale determines which fonts are used to display text.
This is accomplished in the following manner:

- Motif calls Xt Resol vePat hnane to load resource or UID files that
specify the names of fonts for font sets. Xt Resol vePat hnane
uses a file search path that may vary depending on the display’s
language string.

« XO eat eFont Set uses the locale to determine the fonts to be
used from the base font name and the locale charset.

In this method the application usually does not specify font list ele-
ment tags other than XnFONTLI ST_DEFAULT_TAG It is possible to
supply explicit font list element tags with locale-dependent text.
For example, text might be displayed using large and small fonts or
bold and italic fonts. The application can do this with special tags
in both the compound string and the font list associated with it. In
the font list, match the tag with a font set specification that sup-
plies the desired attribute (point size, for example). When the
application creates the font set, the charset comes from the locale.
For example, a resource file might specify a font list in the following
manner to obtain fonts with a different point size:

fontList: --*-*-R Normal --*-120- 100- 100- *-*: , \
-*-%_*_R Nor mal - - *- 180- 100- 100- *-*: Bl G \
-*-%_*_R Nor mal - - *- 80- 100- 100- *- *: SNALL

In this case the application should also map the tags to
Xn=CNTLI ST_DEFAULT _TAG in the Motif registry of font list element
tags. See the section "Compound Strings and Compound Text" for

Internationalization

more information.

11.3.1.3 Localization without Locales

In this method, the locale is not set in the program, and a language
procedure is not needed. Instead, the user specifies the language
environment using either xnl Language or an environment variable
such as LANG As when the application uses locales, resource, UID,
and image files are localized and stored in separate directories by
language. Xt Resol vePat hname uses the display’s language string
in the same way to determine the proper locations of these files.

Message catalogs are not used in this method. Also, in this case
Text and TextField cannot accommodate 16-bit data.

The non-locale method of localizing compound strings and font lists
consists of these steps:

1. Localize compound strings using UIL files. Note that resource
files cannot be used for compound strings because the string-
to-compound-string converter always uses
XnFONTLI ST_DEFAULT _TAG Localized font lists can appear in
resource files.

2. Specify explicit font list element tags other than
XFONTLI ST_DEFAULT _TAG in both compound strings and font
lists.

3. Use font names with explicit charset components in resource
or UIL files. Do not use font sets.

4. To create compound strings in the program, use
Xgt ri ngCreat e with the font list element tag set to some-
thing other than XmFONTLI ST_DEFAULT TAG

11-31

OSF/Maotif Programmer’s Guide

11.3.2 Resources and Localization

The resources used in an application that are subject to internation-
alization are stored in files external to the application. These
resources include

- All labels, particularly those that identify controls. Such labels
are defined as type XnString, meaning they are compound
strings.

- Text strings, that is strings of text that are not compound
strings.

« Font lists.

11.3.2.1 Initial Resource Database

11-32

The information in the external resource files is used when Xt
builds the initial resource database. The XtD splaylnitalize
function loads the resource database by merging in resources from
these sources, in order of precedence (that is, each component takes
precedence over the following components):

- The application command line
= Per-host user environment resource file on the local host
= Screen-specific resources for the default screen of the display

= Resource property on the server or user preference resource file
on the local host

- Application-specific user resource file on the local host

- Application-specific class resource file on the local host

Internationalization

Localization applies to two components of the initial resource data-
base: the application-specific user and class resources. Localized
resources that are controlled by the programmer are in the applica-
tion class resource file, and localized resources that are controlled
by the user are in the user resource file. Note that the user
resources take precedence over the application class resources.

11.3.2.2 Resource File Locations

Xt D splaylnitialize calls Xt Resol vePat hnane to load both the
user and the class resources.

To load the user’s application resource file, Xt D spl ayl nitialize
uses the value of the XUSERFI LESEARCHPATH environment variable
as the search path. If that variable is not set or if the search path
fails to find the file, and if the environment variable XAPPLRESDI R is
defined, XtD splaylnitialize next tries an implementation-
dependent search path with a number of entries that include XAP-
PLRESDI R and the user’'s home directory. If XAPPLRESDI R is not set
or if that search path fails, Xt Di spl ayl nitialize tries another
implementation-dependent search path with a number of entries
that include the user’'s home directory.

To load the application-specific class resource file, Xt D spl ayl ni -
tialize uses the value of the XFI LESEARCHPATH environment vari-
able as the search path. If that variable is not set or if the search
path fails to find the file, XtD splaylnitialize tries an
implementation-dependent search path.

The search paths for both files may contain any substitutions recog-
nized by Xt ResolvePathnane. That routine substitutes the
display’s language string for %L. In an implementation-dependent
manner, it substitutes the language, territory, and codeset

11-33

OSF/Maotif Programmer’s Guide

components of the language string for %l, %t, and %c, respectively.
This mechanism allows Xt to load different resource files for
different languages, as specified by the display’s language string.

The display’s language string is determined by the application’s
language procedure, if present, or else by the value of the
xnl Language resource or by the environment. The language string
associated with any particular language and the search paths used
to find the resource files depend on the system vendor, the Motif
vendor, the application, and the user's system administrator.
Determining the actual directories in which localized resource files
reside requires coordination among all these sources.

In general, an application developer prepares a set of localized
application class resource files, one for each language the applica-
tion supports. The developer may also need to supply a language
procedure appropriate for one or more of the systems on which the
application will run. The application vendor must arrange for the
resource files to be installed in the correct directories, depending on
the operating system and the Motif implementation on which the
application will run.

11.3.2.3 An Example

Following is an example of an application class defaults file for a
simple program that creates a MainWindow with a Text widget.
The font list specification includes a single font set with a default
tag. This resource file would be appropriate for an application that

uses locales.
fontList: --*-*-R Nor mal - - *-180- 100- 100- *- *:
*Text 1. val ue: Her ist etwas Text fur das Text Wdget.\n

CGCem schter 8-und 16-bit Text.

11-34

*ver si on_box. nessageStri ng:
*ver si on_box. okLabel Stri ng:
*ver si on_box. di al ogTitl e:
*pgmver _btn. | abel String:
*events_btn. | abel String:
*hel p_bt n_nenu. | abel Stri ng:
*hel p_bt n_cascade. | abel Stri ng:
*hel p_box. messageStri ng:
*hel p_box. okLabel Stri ng:
*hel p_box. di al ogTi tl e:
*stop_btn. I abel String:

11.3.3 UIL and Localization

Internationalization

Dies ist i18n Deno Version
Schl i essen

1 18n Deno Version

1 18n Deno Version

Akt i onen

Hlfe

Hlfe

Leider ist keine HIfe hier.
Schl i essen

i18n Deno HIfe

Enden

The general models for localizing applications using UIL are the
same as those for applications that do not use UIL. An application
developer creates separate UIL files, each containing string and

resource values for a particular language.

UIL files can also be

used in conjuction with localized resource and pixmap files. As with
localization of resource files, there are two basic approaches to local-
izing UIL files: one that uses locales and one that does not.

11.3.3.1 Preparing Localized UID Files

When using locales with UIL, an application developer should take

the following steps:

= Do not use a CHARACTER _SET declaration for the module.

11-35

OSF/Maotif Programmer’s Guide

= When creating compound strings in a UIL file, use double quotes
and no character set specification for the text.

= When creating font lists in a UIL file, use font sets, not fonts.
Do not specify character sets for the font sets.

- Before compiling a UIL file using the ui| command, set up any
environment variables (such as LANG or other mechanisms the
system vendor recommends to establish the locale that is
appropriate for the UIL file to be compiled. Invoke the uil com-
mand with the —s option. This enables the UIL compiler to set
the locale and parse double quoted strings without explicit char-
acter sets in the locale’s encoding. It also ensures that localized
compound strings and font list entries are created with font list
element tags of Xn=CNTLI ST_DEFAULT_TAG

- Before using the U | function to compile a UIL file, set the locale
that is appropriate for the UIL file to be compiled. In the
U | _command_t ype structure that is the first argument to the
U | function, set the use_setl ocal e_fl ag member to 1. This
has the same effect as invoking the ui | command with the —s
option.

When localizing UIL files without using locales, an application
developer should take the following steps:

= When using single quotes for the text of compound strings, sup-
ply a CHARACTER_SET declaration for the module.

- When using double quotes for the text of compound strings, sup-
ply an explicit character set for each segment.

- When creating font lists in a UIL file, use fonts, not font sets.
Specify an explicit character set for each font.

= When compiling a UIL file using the uil command, do not
invoke the command with the —s option. The UIL compiler does
not set the locale, and it parses each string using rules derived
from the explicitly specified character set for that string.

11-36

Internationalization

= When compiling a UIL file using the Ul function, set the
use_setl ocal e_fl ag member of the U | _comrand_t ype struc-
ture to 0. This has the same effect as invoking the ui I command
without the —s option.

The UIL compiler processes a single source file for each invocation
of the uil command or the Ul function. However, UIL has an
I NCLUDE FI LE directive that is similar to the C preprocessor’s
#i ncl ude directive. If the file argument for this directive is not an
absolute pathname, the compiler searches for the file in a series of
directories. These include the directory of the main UIL source file
and any directories specified via the —I option to the uil command
or the i ncl ude_di r member of the U | _comrand_t ype structure for
the U | function.

One strategy for maintaining localized UIL source files is to place
only language-independent information in the main UIL source file
and to put all language-dependent information in included files that
are in separate directories for each language. Then a developer can
compile the UIL files for different languages without editing any
UIL files. When using locales, set up the environment for the
intended locale. Whether using locales or not, then invoke the UIL
compiler with the proper include directory for the intended
language.

In general, a developer can mix localized UIL files with localized
resource files. For example, the developer might specify compound
strings in UIL files and font lists in resource files. Note one excep-
tion: it is not practical to use resource files to localize compound
strings without using locales. This is because no resource file syn-
tax exists for supplying an explicit font list element tag for a com-
pound string.

For resource values that the user may override, the developer must
use resource files or fallback resources or must in some way ensure
that the user’s resource settings can override the developer’s set-
tings from the UIL file.

11-37

OSF/Maotif Programmer’s Guide

11.3.3.2 MRM and Localized UID Files

11-38

Once the developer has generated localized UID files, the vendor
and the user’s system administrator must arrange for these files to
be installed in the appropriate directories for the system where the
program is to run. As with resource files, these directories depend
on configurations established by the operating system vendor, the
Motif vendor, and the system administrator.

M nmCpenH erar chyPer D spl ay takes as an argument a list of
names of UID files. It calls Xt Resol vePat hnane to find each file the
list. If a file name is an absolute pathname, that pathname is the
search path for Xt Resol vePat hnane. Otherwise, M mpenH er ar -
chyPer D spl ay constructs a search path in the following way:

- |If the environment variable U DPATH is set, the value of that
variable is the search path

- If U DPATH s not set but XAPPLRESDI Ris set, M npenH er ar chy-
Per D spl ay uses a default search path with entries that include
$XAPPLRESDI R, the user’s home directory, and vendor-dependent
system directories

- If neither U DPATH nor XAPPLRESDI R is set, M npenH er ar chy-
Per D spl ay uses a default search path with entries that include
the user’s home directory and vendor-dependent system direc-
tories

These paths may include the substitution field %U. In each call to
Xt Resol vePat hnane, M mQpenH er ar chyPer O spl ay substitutes the
current file name from the list of UID files for %U. The paths may
also include other substitution fields accepted by Xt Resol vePat h-
nane. In particular, Xt Resol vePat hnane substitutes the display’s
language string for %L, and it substitutes the components of the
display’s language string (in a vendor-dependent way) for %l, %t,
and %c. If necessary M npenH erar chyPer D spl ay searches the

Internationalization

path twice, first with %S mapped to . ui d and then with %S mapped
to NULL. The substitution field %T is always mapped to ui d.

The usual mechanism for employing localized UID files is to use a
search path that contains one of the substitutions derived from the
display’s language string. As with resource files, the vendor and
system administrator must ensure that the directories where the
localized UID files reside match the display’'s language string (or
the appropriate component of the language string).

11.3.4 Message Catalogs and Localization

On an XPG3-compliant system, an application can use message
catalogs to localize text. The format of message catalogs is imple-
mentation dependent, and the application must take steps to coordi-
nate the locations of the message catalogs with the locations of
resource, UID, and image files. Use of message catalogs requires
these steps:

- Using an implementation-dependent method, prepare a separate
message catalog containing text to be localized for each
language.

- Arrange to have the message catalogs installed in the appropri-
ate directories on the systems on which the application will run.

- Arrange for the user’s environment to be set up correctly so that
the application can read the message catalog appropriate to the
language.

- In the program, use the cat open function to open a message
catalog and the cat cl ose function to close it.

- Use the cat gets function to read text from an open message
catalog.

11-39

OSF/Maotif Programmer’s Guide

11-40

- If necessary, convert the text to the target format (such as a
compound string) and, for resources, supply the text in the
appropriate widget creation argument list or call to Xt Set -
Val ues.

The cat open function takes as an argument the name of the mes-
sage catalog file. If this is an absolute pathname, cat open opens
that file. Otherwise, catopen uses the value of the NLSPATH
environment variable as a search path. This path can contain a
number of substitution fields. The file name passed to cat open is
substituted for %N. The value of the LANG environment variable is
substituted for %L, and its language, territory, and codeset com-
ponents are substituted for %l, %t, and %c, respectively.

Note that these values may not be the same as the display’s
language string or its components. An application and software
vendor that use message catalogs must coordinate the locations of
message catalogs with those of localized resource, UID, and image
files, which usually depend on the display’s language string. One
possible strategy is to call cat open with an absolute pathname con-
structed by calling Xt Resol vePat hnane with the value of NLSPATH
as the search path argument. Xt Resol vePat hnane substitutes the
display’s language string and its components for %L, %I, %t, and %c
in $3NLSPATH. In this way the application can use a single mechan-
ism, the display’s language string, to distinguish file locations by
language. The software vendor must still arrange for the user’s sys-
tem administrator to install the message catalogs in the correct
locations and to ensure that NLSPATH is appropriately set in the
user’s environment.

Internationalization
11.3.5 Images, Pixmaps, and Localization

A pixmap is a screen image that is stored in memory so that it can
be recalled and displayed when needed. Motif has a number of pix-
map resources that allow the application to supply pixmaps for
backgrounds, borders, shadows, label and button faces, drag icons,
and other uses. As with text, some pixmaps may be specific to par-
ticular language environments; these pixmaps need to be localized.

Motif maintains caches of pixmaps and images. The function
Xt Pi xmapByDept h searches these caches for a requested pixmap.
If the requested pixmap is not in the pixmap cache and a
corresponding image is not in the image cache, XnGet Pi xmapBy-
Dept h searches for an X bitmap file whose name matches the
requested image name. XnGet Pi xnapByDept h calls Xt Resol vePat h-
nane to search for the file. If the requested image name is an abso-
lute pathname, that pathname is the search path for Xt Resol -
vePat hnarme. Otherwise, XmGet Pi xmapByDept h constructs a search
path in the following way:

- If the environment variable XBM_LANGPATH is set, the value of that
variable is the search path

- If XBMLANGPATH is not set but XAPPLRESDI R is set, XimGet Pi xmap-
ByDept h uses a default search path with entries that include
$XAPPLRESDI R, the user’'s home directory, and vendor-dependent
system directories

= If neither XBMLANGPATH nor XAPPLRESDI R is set, XnGet Pi xnapBy-
Dept h uses a default search path with entries that include the
user’s home directory and vendor-dependent system directories

These paths may include the substitution field %B. In each call to
Xt Resol vePat hnane, XnGet Pi xmapByDepth substitutes the
requested image name for %B. The paths may also include other
substitution fields accepted by Xt Resol vePat hnare. In particular,

11-41

OSF/Maotif Programmer’s Guide

Xt Resol vePat hnanme substitutes the display’s language string for
%L, and it substitutes the components of the display’s language
string (in a vendor-dependent way) for %l, %t, and %c. The substi-
tution field %T is always mapped to bi t naps, and %S is always
mapped to NULL.

As with resource and UID files, the usual mechanism for employing
localized X bitmap files is to use a search path that contains one of
the substitutions derived from the display’'s language string. As
with resource and UID files, the vendor and system administrator
must ensure that the directories where the localized X bitmap files
reside match the display’s language string (or the appropriate com-
ponent of the language string).

See chapter 12 for more information on images and pixmaps.

11.3.6 Comparing Approaches to Localization

11-42

The locale approach allows an application to use existing interna-
tionalization routines. On the other hand, the application is limited
in portability to systems that support the same internationalization
standards (XPG3, POSIX, or ANSI). This approach is also only
applicable to applications using a single language.

The non-locale approach only addresses the aspect of isolating infor-
mation from the application and insuring that it uses the proper
localized version of this information. The disadvantage is that
there is more work for the programmer and there may be non-
standard functionality. The advantages are that there is
guaranteed portability across all platforms that support Motif, and
that it allows handling of multiple character sets for specialized
applications that require this functionality.

Internationalization

11.4 Advanced Topics in Internationalization

This section covers some advanced topics dealing with internation-
alization.

11.4.1 Internationalization and Text Input

An application subject to internationalization presents some unique
problems when it deals with text input. The application must be
able to correctly interpret and process text input in any language.
This section explains how an application accomplishes this.

11.4.1.1 Input Method

Although there are many different keyboards in use, sometimes cer-
tain characters in an alphabetic language are not directly available
on any keyboard. In this case, the user must type a combination of
keys to input the desired character. The number of characters in an
ideographic language far exceeds the capability of any keyboard and
makes it impossible to have a keyboard with all of the language’s
symbols. In this case, input is usually accomplished based on the
language’s phonetics. These cases illustrate the concept of an input
method. An input method is simply the mechanism that is used to
map between the keys typed by a user and the resulting characters
that are input to the application. A common feature of many input
methods is that the application user may type combinations of keys
to create a single character. Creating characters from keystrokes is
called pre-edi ting.

11-43

OSF/Maotif Programmer’s Guide

11-44

Input methods may require several areas to display the actual keys-
trokes.

- The Status Area is an output-only window that identifies the
style of input (phonetic, numeric, stroke and radial, etc.) and the
current status of an input method interaction.

- The Pre-Edit Area displays the intermediate text for languages
that are composed before the application acts on the data. There
are several possible locations for the pre-edit area. These are:

— Qver-the-spot displays the data in an input method window
that is placed over the point of insertion.

— O f-the-spot displays the pre-edit window inside the appli-
cation window (usually at the bottom) but not at the point of
insertion.

— Root - wi ndow uses a pre-edit window that is a child of the
root window.

A VendorShell resource, Xmi\preedit Type determines which
style is used for a Text or TextField input method. The syntax,
possible values, and default value of this resource are implemen-
tation dependent.

- The Auxiliary Area is used for popup menus and customizing
dialogs that some input methods use.

Input methods are supplied by vendors and are implementation
dependent. The VendorShell resource XmN nput Method is an
implementation-dependent string that specifies the input method
portion of the locale modifiers. If a value is supplied for this
resource, Motif uses it to set the locale modifiers before opening an
input method for Text or TextField.

The following figure shows one possible program window with a
Text widget using over-the-spot interaction for Japanese text input.
The status area indicates that phonetic input is in use and insert

Internationalization

mode is enabled. The pre-edit area shows that the letter "H" has
been entered. Since there is no Hiragana phonetic equivalent, the
"H" appears in the pre-edit window.

Figure 11-4. Text Widget Pre-Edit and Status Areas Using over-the-spot

Fre-Edit

Area

Status
Area

The following figure shows the same window after a "u" has been
entered following the "H" shown in the previous figure.

11-45

OSF/Maotif Programmer’s Guide

Figure 11-5. Text Widget Pre-Edit Area After Next Character Entry

Fre-Edit

Area

Status
Area

Here the pre-edit area is displaying the phonetic equivalent of the
English letters "hu" in Hiragana.

11.4.1.2 Input Context

An input context is the mechanism used to provide the state
information needed to manage the information flow between the
application and the input method. It is a combination of an input
method, a locale specifying the encoding of character strings to be
returned, an application window, and internal state information.
The following figure shows the relationships involved. The input
method is determined by the locale specified by the application user.

11-46

Internationalization

Figure 11-6. Input Method and Input Contexts

Application Application
Hindow Hindow

11.4.1.3 Input and the Motif Text widget

The Motif Text and TextField widgets, when editable, provide a
transparent connection to the locale-specific input method for text
input. The application programmer specifies an appropriate font
set in the Text or TextField Xm\fontLi st resource and creates
either widget as a descendant of Vendor Shel | . VendorShell pro-
vides geometry management of the status and pre-edit areas. It
also supplies a visual separator between the status area window
and the application’s top level window.

Setting the Vendor Shel | resource Xmi\preedit Type dictates the
location of the input method window. With an off-the-spot input
method, the pre-edit and status area windows appear at the bottom

11-47

OSF/Maotif Programmer’s Guide

of the application window.

11.4.1.4 Text Input Using a DrawingArea

An application that needs special text processing may use a
DrawingArea for text input and output. For internationalized text
input with any widget other than Text or TextField, the application
must use the Xlib input method facilities. These allow the applica-
tion to open an input method and input context and to obtain input
from the input method. When using these facilities, an application
may also need to handle input method geometry management, focus
management, event filtering, and other issues. For more informa-
tion, see Xlib—C Language X Interface.

11.4.1.5 Geometry Management of Pre-edit and Status Areas

11-48

When using an off-the-spot input method with the Text or TextField
widget, the pre-edit and status areas are below the client’'s main
window but inside the VendorShell. VendorShell accomplishes the
necessary geometry management. If the application uses either
Xt Get Val ues or Xt Set Val ues to get or set the height (Xm\hei ght) of
Vendor Shel |, the height includes the height of the input method
area.

The following figure shows a Text widget using an off-the-spot input
method. The distance "h" is the additional height that the input
manager needs to display the status and pre-edit areas. Note that
in off-the-spot, the pre-edit area is at the bottom of the interaction.

Internationalization

Figure 11-7. Text Widget Pre-Edit and Status Areas Using off-the-spot

Pre—-Edit Status
Area Area

11.4.2 Compound Strings and Compound Text

Compound text is the standard format for exchanging textual data
between X window system applications. This is necessary when the
user moves text displayed in one codeset to another window with
text in a different codeset. For example, the following figure shows
two windows, one titled "UJIS" and the other titled "Shift JIS."

11-49

OSF/Maotif Programmer’s Guide

11-50

Figure 11-8. Reason for Compound Text

UJIs

Shift JIS

Both windows represent a Motif Text widget, one with some
Japanese UJIS characters displayed, and the other with some Shift
JIS characters. If the user wants to cut text from one window and
paste it in the other window, compound text is used to pass data
between the two. The Motif Text widget does this automatically.

If one of the widgets in the previous figure is a Label widget instead
of a Text widget, a different situation exists. This is because the
Label widget has its text data in compound string format, while the
text widget data is a simple character string. In order to pass text
data between a Text or TextField widget and any other widget, the
application needs to convert the compound string to compound text.

Internationalization

Motif has two functions, XnCvt Xn&tri ngToCT and XnCvt CTToXm
String, for converting between compound strings and compound
text.

XmCvt Xn$t ri ngToCT converts a compound string to compound text.
The converter uses the font list tag associated with a given com-
pound string segment to select a compound text format for that seg-
ment. A registry defines a mapping between font list tags and com-
pound text encoding formats. The converter uses the following algo-
rithm for each compound string segment:

1. If the compound string segment tag is mapped to
X=ONTLI ST_DEFAULT_TAGin the registry, the converter passes
the text of the compound string segment to XnbText Li st To-
Text Property with an encoding style of XConpoundText Styl e
and uses the resulting compound text for that segment.

2. If the compound string segment tag is mapped to an MIT
registered charset in the registry, the converter creates the
compound text for that segment using the charset (from the
registry) and the text of the compound string segment as
defined in the X Consortium Standard Compound Text Encod-
ing.

3. If the compound string segment tag is mapped to a charset in
the registry that is neither XnFONTLI ST_DEFAULT_TAG nor an
MIT registered charset, the converter creates the compound
text for that segment using the charset (from the registry) and
the text of the compound string segment as an "extended seg-
ment" with a variable number of octets per character.

4. If the compound string segment tag is not mapped in the regis-
try, the result is implementation dependent.

An application can use XnRegi st er Segent Encodi ng to map a font
list element tag to a compound text encoding format. For example,
the application may be using a font list element tag of "BOLD" to
identify a compound text segment consisting of localized text to be

11-51

OSF/Maotif Programmer’s Guide

11-52

displayed in a bold font. To ensure that the segment is treated as
localized text when converted to compound text, the tag "BOLD"
should be mapped to Xn=CNTLI ST_DEFAULT _TAGas follows:

char *ol d_encodi ng = XnRegi st er Segnent Encodi ng(" BOLD',
XnFONTLI ST_DEFAULT_TAG) ;
Xt Free(ol d_encodi ng) ;

XmCvt CTToXnSt ri ng converts compound text to a compound string.
This function is implementation dependent.

See chapter 16 for more information on transferring data between
applications. The compound text format is described in the X Con-
sortium Standard Compound Text Encoding.

Chapter 12. Color and Pixmaps

Motif uses colors and pixmaps for several general purposes:
= To fill window backgrounds and borders
- To draw text and graphics in window foregrounds
- To generate shadows with a three-dimensional appearance
- To highlight the widget that has keyboard focus
- To indicate that a button is armed or selected
Motif uses other pixmaps for specific purposes:

= As the application’s icon for use by the window manager

For drag icons and drop site animation

As a CascadeButton symbol indicating that a menu is attached
to the CascadeButton

As a MessageBox symbol indicating the type of message
displayed

As the face of a button when the button is insensitive

All of these colors and pixmaps are represented as resources. The
user or application can set the resource values via resource files,
and the application can set them using Xt Set Val ues.

Motif also uses a number of pixmaps that are not represented as
resources. The user and application cannot change these. Among
these fixed pixmaps are the following:

- The pixmaps used to stipple insensitive widgets
= The pixmaps used to draw arrows in ScrollBars

- The pixmaps used to create the default source cursor icons in
Text, TextField, List, and Label subclasses

12-1

OSF/Maotif Programmer’s Guide

12.1 Default Colors

12-2

The following resources determine the colors or pixmaps generally

used in Motif;

Borders

Backgrounds

Foregrounds

Shadows

Focus highlights

Core resources Xm\bor der Col or and XmiN\bor -
der Pi xmap.

Core resources Xm\background and Xm\back-
groundPi xmap.

Primitive and Manager resource XN ore-
ground; Label and LabelGadget resources
XmN abel Pi xmap and XN abel | nsensi -
tivePi xmap.

Primitive and Manager resources Xm\bot -
t onhadowCol or , Xm\bot t onBhadowPi xmap,
Xm\t opShadowCol or, and X\t opShadowPi x-
nap.

Primitive and Manager resources
Xm\hi ghl i ght Col or and Xmi\hi ghl i ght Pi x-
nap.

Arming and selection PushButton and PushButtonGadget resources

XmNar nCol or and XniNar nPi xmap; ToggleBut-
ton and ToggleButtonGadget resources
XmiNar mCol or Xmi\sel ect Pi xmap, and
Xm\sel ect | nsensi ti vePi xnap; ScrollBar
resource Xm\t r oughCol or.

The following sections describe these groups of resources and their

defaults.

Color and Pixmaps

12.1.1 Borders

The border color or border pixmap is used to fill the border of a
widget if Xm\bor der W dt h is greater than 0. Note that the border is
outside the widget; that is, it is not within the area determined by
the widget's Xni\hei ght and XmiNwi dt h. If the user or application
supplies a value for Xm\bor der Pi xmap, that pixmap is used to fill
the border; otherwise, Xim\bor der Col or is used.

If the application resource reverseVi deo is False or unspecified,
the default for XniN\bor der Col or is the black pixel of the widget's
screen. If reverseVi deo is True, the default for XnNoor der Col or is
the white pixel of the widget's screen.

12.1.2 Backgrounds

The background color or background pixmap is used to fill a widget
before anything else is displayed in it. If the user or application
supplies a value for Xmi\backgr oundPi xrmap, that pixmap is used to
fill the background; otherwise, the XniNbackgr ound color is used. A
gadget inherits the background color and background pixmap of its
parent.

The default for Xm\backgr ound is implementation dependent.

12.1.3 Foregrounds

12-3

OSF/Maotif Programmer’s Guide

The foreground color is used to display text and most graphics in a
widget. Most widgets use the Xm\F or egr ound color for this purpose.
Label, LabelGadget, and their subclasses, including buttons, have
pixmap resources that are used for the face of the label or button
when XN abel Type is set to XiPl XMAP. In this case the XN abel -
Pi xmap is used for the face when the widget is sensitive, and the
XmN abel | nsensi ti vePi xmap is used when the widget is insensi-
tive. A gadget inherits the foreground color of its parent.

The default for Xni\f or egr ound is a color that contrasts with the
background color, based on the XmScreen resource X\ ore-
groundThr eshol d. The value of this resource is an integer between
0 and 100, inclusive, that specifies a level of perceived brightness
for a color. If the perceived brightness of the background color is
equal to or below this level, Motif treats the background as "dark"
when computing the default foreground color. If the perceived
brightness of the background color is above this level, Motif treats
the background as "light" when computing the default foreground
color. When the background is "dark", the default foreground is
white; when the background is "light", the default foreground is
black.

12.1.4 Shadows

12-4

The top shadow color or top shadow pixmap is used to draw the top
and left sides of the three-dimensional shadow at the edge of some
widgets. If the user or application supplies a value for Xnm\t opSha-
dowPi xmap, that pixmap is used for the top and left sides; otherwise,
Xm\t opShadowCol or is used.

The bottom shadow color or bottom shadow pixmap is used to draw
the bottom and right sides of the three-dimensional shadow. If the
user or application supplies a value for Xni\bot t onBhadowPi xnap,

Color and Pixmaps

that pixmap is used for the bottom and right sides; otherwise,
Xm\bot t onBhadowCol or is used.

A gadget inherits the top and bottom shadow colors and pixmaps of
its parent.

In computing the defaults for Xm\t opShadowCol or and Xmi\bot -
t onBhadowCol or, Motif uses the XmScreen resources
Xm\dar kThr eshol d and XnN i ght Threshol d. The value of each
resource is an integer between 0 and 100, inclusive, that specifies a
level of perceived brightness for a color. If the perceived brightness
of the background color is equal to or below the Xmi\dar kThr eshol d,
Motif treats the background as "dark" when computing the default
shadow colors. If the perceived brightness of the background color
is above the XN i ght Thr eshol d, Motif treats the background as
"light" when computing the default shadow colors. Otherwise, Motif
treats the background as "medium" when computing the defaults.

Motif computes the defaults in the following way, depending on the
perceived brightness of the background:

Dark background
The top and bottom shadow colors are interpolated
toward white from the background, with the top sha-
dow color shifted more toward white than the bottom
shadow color.

Light background
The top and bottom shadow colors are interpolated
toward black from the background, with the bottom
shadow color shifted more toward black than the top
shadow color.

Medium background
The top shadow color is interpolated toward white
from the background, and the bottom shadow color is
interpolated toward black from the background.

12-5

OSF/Maotif Programmer’s Guide

12.1.5 Focus Highlights

The highlight color or highlight pixmap is used to draw the
highlighting rectangle around widgets that have keyboard focus. If
the user or application supplies a value for Xm\hi ghl i ght Pi xmap,
that pixmap is used for the highlight; otherwise,
Xmi\hi ghl i ght Col or is used. The highlight color is also used to
draw the location cursor around List items that have keyboard
focus. A gadget inherits the highlight color and highlight pixmap of
its parent.

The default highlight color is the same as the default foreground
color.

12.1.6 Arming and Selection

12-6

In PushButtons and PushButtonGadgets outside menus, the
XmNar mCol or color is used as the button background when the
XmiNFi | | OnArmresource is True and the user arms the button. In
PushButtons and PushButtonGadgets outside menus, the
XmNar nPi xmap is used as the button face (the label area) when the
XmN abel Type is XnPl XMAP and the user arms the button.

In ToggleButtons and ToggleButtonGadgets outside menus, the
Xm\sel ect Col or is used to fill the toggle indicator when the XmN n-
di catorO and Xmi\Nfi | | nSel ect resources are both True and the
user sets the toggle. For sensitive ToggleButtons and ToggleBut-
tonGadgets outside menus, the Xmi\sel ect Pi xmap is used as the
button face (the label area) when the XN abel Type is XPl XVAP
and the toggle is set. For insensitive ToggleButtons under these
conditions, the Xm\sel ect | nsensi ti vePi xnmap is used as the button

Color and Pixmaps

face.

In ScrollBars, the Xm\t roughCol or is used to fill the part of the
slider area that is not taken up by the slider.

Motif computes a single default, known as the select color, for
XmNar mCol or, XnN\sel ect Col or, and XnNt r oughCol or. Motif uses
the XmScreen resources XmiNdar kThreshol d and XnN i ght Thr es-
hol d to determine whether the background is "dark", "light", or
"medium” in the same way as for shadow colors. Motif then com-
putes the default in the following way:

Dark background
The select color is interpolated toward white from the
background.

Light background
The select color is interpolated toward black from the
background.

Medium background
The select color is interpolated toward black from the
background.

12.2 Application-Defined Color Generation

Motif generates default colors whenever the application creates a
widget for which one or more of the color resources has no specified
value. Motif does not regenerate default colors when an application
changes the value of Xn\backgr ound via Xt Set Val ues.

An application can use XnmChangeCol or to recalculate default colors
for a widget based on a new background and set the appropriate
color resources in the widget. For primitives and managers,

12-7

OSF/Maotif Programmer’s Guide

12-8

XmChangeCol or sets XniNbackgr ound, Xm\f or egr ound, Xm\t opSha-
dowCol or, and Xnmi\bot t onBhadowCol or. For widgets and gadgets
with select colors, XntChangeCol or also sets the appropriate
resources for those colors.

An application can use XnGet Col or s to produce default colors for a
given background color without setting any resources. XnGet Col or s
takes as arguments a screen pointer, a colormap, and a background
pixel representing a color allocated in the colormap. XmGet Col ors
also has return arguments that are pointers to pixel values for the
foreground, top shadow, bottom shadow, and select colors. The
function generates default colors for the given background. For
each of the return arguments that is not NULL, XnGet Col or s allo-
cates a color in the colormap and returns the pixel value at the
address specified by the argument.

By default XmChangeCol or and XnGet Col ors calculate colors as
described in the discussion of default colors above. An application
can use XnBet Col or Cal cul ati on to change the procedure that
these routines use and that Motif uses to calculate default colors
when the application creates a widget. Xt Set Col or Cal cul ation
takes as its only argument a procedure of type XnCol or Proc. It sets
Motif's color-calculation procedure to the new XmCol or Proc and
returns the color-calculation procedure used previously.
Xntet Col or Cal cul ati on does not change the procedure used by
XnmChangeCol or, XmGet Col or s, and Motif to calculate default colors
for a monochrome screen.

Motif calls the XnCol or Pr oc when it needs to compute default colors
or when the application calls XnChangeCol or or Xt Col ors. The
XnmCol or Proc takes five arguments, all pointers to XCol or struc-
tures. The red, green, bl ue, and pi xel members of the first struc-
ture are filled in with the background color. The procedure calcu-
lates red, green, and bl ue values for the foreground, select, top
shadow, and bottom shadow colors and fills in the other four XCol or
structures with these values.

Color and Pixmaps

The procedure should not allocate color cells for any of these colors.
Motif caches the returned XCol or structures and allocates a color
when it needs a pixel value. Usually Motif allocates a color when it
computes the default value for a resource, when the application
calls XmChangeCol or, or when the application calls Xmet Col or s
with a non-NULL value for one of the return pixel values. When
allocating colors as a result of widget creation or a call to
XmChangeCol or, Motif uses the colormap of the widget. When allo-
cating colors as a result of a call to XmGet Col ors, Motif uses the
colormap passed as an argument to the function.

XmGet Col or Cal cul ati on returns the color-calculation procedure
being used at the time of the call to that routine. Calling
XnBet Col or Cal cul ati on with an argument of NULL restores the
Motif default color-calculation procedure.

12.3 Colormaps

The colormap used by a widget is the value of the Core resource
Xmi\col or map. An application that does not supply its own colormap
does not need to set this resource. The default for a top-level shell
is the default colormap of the screen. For other widgets, the default
is copied from the parent.

An application that uses its own colormap should not use Xt Appl ni -
tialize to create the top-level shell, because the shell would then
use the screen’s default colormap. Instead, the application should
open the display, create the colormap, and then call Xt AppCr eat e-
Shel | with the colormap as the Xmi\col or map argument.

If an application uses different colormaps for some windows in its
hierarchy, it must tell the window manager about those colormaps
by setting a WM_COLORMAP_WINDOWS property on the top-

12-9

OSF/Maotif Programmer’s Guide

12.4

12-10

level window. See chapter 16 for more information.

For more information about colormaps, see Xlib—C Language X
Interface.

Using Pixmaps

Motif uses pixmaps supplied by the application or the user for
widget borders, backgrounds, labels, shadows, focus highlights, and
button arming or selection indicators. Motif also uses other pix-
maps that the application or user can supply for more specific pur-
poses: as application icon, drag icons, CascadeButton menu indica-
tors, MessageBox symbols, and labels for insensitive buttons.

Motif provides facilities for an application to install and cache
images and pixmaps. Motif also has string-to-pixmap resource con-
verters that retrieve pixmaps from the cache or install them from
files in X bitmap format. Because of these converters both applica-
tions and users can specify pixmaps as resource values from
resource files or the command line.

An application can use Xt Pi xmapByDept h to retrieve or create a
pixmap with a specified name, screen, foreground, background, and
depth. XmGet Pi xmapByDept h finds or creates a pixmap in the fol-
lowing way:

- It searches the pixmap cache for a pixmap matching the
specified name, screen, foreground, background, and depth. If it
finds a matching pixmap, it returns the pixmap.

- If it does not find a matching pixmap in the cache, it searches
the image cache for an image matching the specified name. If it
finds a matching image, it creates and caches a pixmap of the
specified depth on the specified screen, transfers the image to the

Color and Pixmaps

pixmap, and returns the pixmap.

- If it does not find a matching image in the cache, it uses
Xt Resol vePat hnanme to search for a file of the specified name.
The search path comes from the environment variable XBMLANG
PATH or, if XBMLANGPATH is not set, from a default search path. If
it finds such a file, it assumes that the file is in X bitmap format,
reads the file, and creates and caches an image in XYBi t map for-
mat. It then creates and caches a pixmap of the specified depth
on the specified screen, transfers the image to the pixmap, and
returns the pixmap.

- If it does not find a matching X bitmap file, it returns
XmUNSPEC FI ED_PI XVAP.

Motif preinstalls a number of images in the image cache. The
names and characteristics of these images are documented in the
Xm nstal | | mage(3X) reference page. Motif offers two ways for an
application to provide its own image as the source for a pixmap to
be created by XnGet Pi xnapByDept h:

- The application can create its own image, usually via
XCOr eat el mage or XCGet I mage. The image can be of any depth.
The application can then call Xm nstal |l | mage to install the
image in the image cache by name.

- The application or user can create a file in X bitmap format and
install the file under an appropriate name in a directory that is
in the search path used by XmGet Pi xmapByDept h. For a descrip-
tion of the X bitmap format, see Xlib—C Language X Interface.

Both of these mechanisms have advantages and disadvantages. An
application using Xm nstall |l nage can create an image of any
depth. However, if it intends to use the image name in a resource
specification, it must be sure to call Xm nst al | | mage before creating
any widgets that use the image.

12-11

OSF/Maotif Programmer’s Guide

12-12

An application using an X bitmap file is limited to creating an
image of depth 1. However, the image is always available for use
by a resource converter, and the application can use the search path
mechanism of Xt Resol vePat hnane for such purposes as supplying
different images for different locales.

Xm nst al | | mage does not make a copy of the image when it caches
it. The application must not destroy the image until it removes the
image from the cache, using Xrbni nst al | | mage. An application can
use XnDest r oyPi xnap to free a pixmap cached by XnGet Pi xmapBy-
Dept h. XmDestroyPi xmap does not actually destroy the pixmap
until all references to it are freed.

Chapter 13. Input, Focus, and Key-
board Navigation

The X server communicates with clients by means of various classes
of events. Among these are events denoting input from the key-
board and mouse (and, in some X extensions, input from other dev-
ices). Each event is associated with a window, and the X server
sends the event to any client that has expressed interest in events
of that type on that window.

In the simplest case, when a keyboard or pointer event occurs, the X
server sends the event to the client that has expressed interest in
events of that type on the window that contains the pointer. If no
such client exists, the server searches up the window’s hierarchy
until it finds a client that has expressed interest in events of that
type on an ancestor window. In many cases, however, event pro-
cessing is more complex:

- A client can grab a pointer button or key, the pointer or key-
board, or the entire server. The grabbing client then receives
the relevant events for the duration of the grab.

= A client can set the i nput focus to some window. Keyboard
events that would normally be reported to this window or one of
its inferiors are reported as usual, but other events are reported
with respect to the focus window. Window managers typically
use this technique to implement a "click-to-type" interaction
style, in which the user clicks the pointer on some window, and
that window retains the keyboard focus regardless of the posi-
tion of the pointer. Other clients, often in cooperation with the
window manager, can set the focus to a particular window
within the application hierarchy.

To insulate applications from the complexities of X event handling,
Xt and Motif have developed higher-level facilities based on widg-
ets:

- Motif supplies a VendorShell resource, XniNkeyboar dFocusPol -
i cy, to allow a user or application to control the model of key-
board focus in the VendorShell and its descendants. Keyboard

13-1

OSF/Maotif Programmer’s Guide

13-2

focus can be with the widget the contains the pointer or with the
widget in which the user presses BSel ect .

In the click-to-type model, the user can also use keys to navigate
from widget to widget. Motif provides a model of tab groups,
which are widgets or sets of widgets to which the user moves via
KNext Fi el d and KPrevFi el d. Within a tab group, the user
traverses between widgets using KUp, KDown, KLeft, and KR ght .
Motif supplies resources to control whether or not a widget con-
stitutes a tab group and whether or not the user can traverse to
it via the keyboard. Motif also has a general routine, XnPr o-
cessTraversal , for use by the application in moving keyboard
focus to a widget or tab group. The Motif menu system has a
specialized traversal mechanism.

Xt provides the basic event-dispatching loop used by most appli-
cations. Xt takes events out of the application's queue and
dispatches them to the appropriate widget, usually the widget
that has input focus. Xt usually invokes an acti on associated
with the particular event via a table of t ransl at i ons from event
specifications to action routines. The action, in turn, often
invokes a callback list. An application primarily responds to
events by means of its callback routines. At a lower level, it can
also provide its own event handl er, a routine invoked by the Xt
dispatching loop when the widget receives events of the specified

type.

Motif and Xt provide mmenoni cs and accel er at or s, which are
shortcuts for taking actions associated with a widget when the
widget does not have input focus. A mmenoni ¢ is a keysym for a
key that activates a visible button in a menu. An accel er at or
is a description for an event that invokes an action routine via a
translation.

Input, Focus, and Keyboard Navigation

13.1 Focus Models

Motif provides two models for determining which widget within an
application receives keyboard events. The focus model is deter-
mined for all descendants of a VendorShell by the value of the Ven-
dorShell resource XniNkeyboar dFocusPol i cy:

= When the value is XnEXPLI A T, the widget under the pointer
does not necessarily receive keyboard events. The user must
take an action other than moving the pointer to transfer key-
board focus to a widget. The user can usually transfer focus to a
widget by pressing BSel ect on that widget or by using a key-
board navigation action to traverse to the widget.

When the value is XnEXPLI A T, a widget must be traversabl e
to receive keyboard events. In general, a widget is traversable
when its Xni\sensitive, XmNancest or Sensi ti ve, and
X\t r aver sal On resources are True and when the widget and its
ancestors are managed, realized, mapped, and viewable. See the
section "Controlling Keyboard Navigation" for more information.

= When the value is XnPQ NTER, the widget under the pointer
receives keyboard events, unless that widget is insensitive. Key-
board navigation operations are not available. However, the
user can still use the keyboard to traverse a menu system.
KMenuBar moves focus to the MenuBar, and KMenu posts a pop-
up menu if available. When the user posts a menu via KMenu or
via BSel ect Rel ease, KActi vat e, or KSel ect in a CascadeBut-
ton, keyboard navigation operations are available in the menu
until the menu is unposted. When the user exits the menu sys-
tem, keyboard focus returns to the widget under the pointer.

MWM provides two parallel focus models for determining which
top-level window receives keyboard events. The focus model is
determined by the value of the nwmresource keyboar dFocusPol i cy:

13-3

OSF/Maotif Programmer’s Guide

= When the value is "explicit", the window under the pointer does
not necessarily receive keyboard events. The user must take an
action other than moving the pointer to transfer keyboard focus
to a window. The user can usually transfer focus to a window by
pressing BSel ect on that window or by using KNext Fam | yW n-
dow, KPrevFam | yWndow, KNext Wndow, or KPrevWndow to
traverse to the window.

- When the value is "pointer", the widget under the pointer
receives keyboard events. Keyboard window navigation opera-
tions are not available.

When the focus policy is "explicit”, four boolean mwm resources can
be set to True to allow a window to receive keyboard focus automat-
ically at specified times:

autoKeyFocus when the window with focus is iconified or
unmapped (gives focus to the window that last
had it)

deiconifyKeyFocus when the window is iconified

raiseKeyFocus when the window is raised to the top of the
stack

startupKeyFocus when the window is mapped

13.2 Controlling Keyboard Navigation

13-4

In order to receive keyboard focus when the shell's Xm\keyboar d-
FocusPol i cy is XnEXPLI A T, a widget or gadget must meet the fol-
lowing conditions:

- The widget and its ancestors must not be in the process of being
destroyed.

Input, Focus, and Keyboard Navigation

- The widget and its ancestors must be sensitive. A widget is
sensitive when its Xni\sensiti ve and Xm\ancest or Sensi ti ve
resources are both True.

- The XnNtraver sal On resource for the widget and its ancestors
must be True.

- The widget must be viewable. This means that the widget and
its ancestors must be managed, realized, and (except for gadg-
ets) mapped. Furthermore, in general, some part of the widget's
rectangular area must be unobscured by the widget's ancestors.

In a ScrolledWindow with an Xmi\scrol | ingPolicy of XmAU
TQVATI C, a widget that is obscured because it is not within the
clip window may be traversable if some part of the widget is
within the work area and if an XnN\ r aver seCbscur edCal | back
routine can make the widget unobscured by scrolling the win-
dow.

Most managers cannot receive focus even if they meet all these con-
ditions. In general only primitives and gadgets are eligible to
receive focus. A DrawingArea can receive focus if it meets the con-
ditions above and if, in addition, it has no child whose Xn\ r aver -
sal On resource is True.

XnmGet FocusWdget takes a widget argument that identifies a
widget hierarchy, up to the nearest shell ancestor. It returns the
widget in that hierarchy that has keyboard focus or that last had
focus when the user navigated away from that hierarchy.

An application can use X sTraversabl e and XnGetVisibility to
determine whether a widget is eligible to receive focus. Xm s-
Traversabl e returns True if the widget argument meets all the
conditions described in this section. Otherwise, it returns False.
This routine generally returns False if the widget argument is a
composite, even if it has traversable children.

13-5

OSF/Maotif Programmer’s Guide

XnGet Vi si bility returns a value indicating the visibility of the
widget argument:

« XM SIBI LI TY FULLY CBSCURED—The widget is completely
obscured by its ancestors or is not visible for some other reason
(such as being unmapped or unrealized)

= XnM SI Bl LI TY_PARTI ALLY_CBSCURED—Some part of the widget's
rectangular area is obscured by its ancestors

« XM S Bl LI TY_UNCBSCURED—None of the widget's rectangular
area is obscured by its ancestors

Note that a fully obscured widget may be traversable if it is inside
the work area of an automatic ScrolledWindow with an Xm\t r aver -
se(bscur edCal | back list. See the section "Traversing to Obscured
Widgets" for more information.

13.2.1 Sensitivity

13-6

Unless a widget is sensitive, Xt does not dispatch keyboard or
pointer events to the widget. An insensitive widget therefore can-
not receive keyboard focus.

A widget can be sensitive only when all its ancestors are sensitive.
Two boolean resources determine sensitivity: XnNsensitive and
Xm\ancest or Sensitive. Xni\sensitive indicates whether the
widget itself is sensitive, and XniNancest or Sensiti ve indicates
whether all ancestors are sensitive.

An application uses the function Xt | sSensi ti ve to find out whether
a widget is sensitive. This function returns True when Xm\sensi -
tive and XnMNancestorSensitive are both True; otherwise, it
returns False.

Input, Focus, and Keyboard Navigation

The function Xt Set Sensi ti ve changes the sensitivity of a widget.
With an argument of False, this function sets Xmi\sensitive to
False and sets each child’'s XnmiNancest or Sensi ti ve to False. With
an argument of True, this function sets Xm\sensi ti ve to True and,
if the widget's Xm\ancest or Sensitive is also True, it sets each
child’s XmNancest or Sensitive to True. The function then recur-
sively descends the widget tree. For each descendant whose
Xm\sensi ti ve and Xm\ancest or Sensi tive are both True, it sets
XmNancest or Sensi ti ve to True for that widget's children. Other-
wise, it sets XniNancest or Sensitive to False for the descendant
widget’s children.

In this way Xt Set Sensi ti ve ensures that each widget's XnNances-
torSensitive is True only when the parent’s Xni\sensi ti ve and
XmNancest or Sensi ti ve are both True. In other words, the widget
is sensitive only when it and all its ancestors are sensitive. To
maintain this relation an application should always use Xt Set Sen-
sitive to change a widget's sensitivity instead of calling Xt Set -
Val ues on the widget’s resources.

Note that Xt Set Sensi ti ve does not modify any resources for pop-up
children. If the parent widget is insensitive when a pop-up child is
created, the child’s XmNancest or Sensi ti ve will be False. Xt Set -
Sensi ti ve on the parent widget will not change this value, and the
child will remain insensitive. To avoid this problem, an application
that creates a DialogShell or a MenuShell should either ensure that
the parent is sensitive when the child is created or specify a value of
True for the child’'s XniNancest or Sensi ti ve. One way to do this is
in a resource file:

*XnmMenuShel | . ancest or Sensi ti ve: True
*XnD al ogShel | . ancest or Sensi tive: True

When a widget or gadget is insensitive, Motif indicates the insensi-
tivity to the user by stippling or graying the widget.

13-7

OSF/Maotif Programmer’s Guide

13.2.2 XmNtraversalOn

Xm\t r aver sal On determines whether or not a widget is eligible to
receive keyboard focus when Xm\keyboar dFocusPol i cy is XnEXPLI -
A T. When X\t r aver sal On is False and Xni\keyboar dFocusPol i cy
is XnEXPLI A T, it is not possible for the user to give keyboard focus
to the widget, even if the widget is sensitive and viewable.
Xm\t raver sal On has no effect when XniNkeyboar dFocusPol i cy is
XnPA NTER

The default value for Xn\t r aver sal On is True for most Motif widg-
ets. Following are the exceptions:

- Separator and SeparatorGadget, where XmNtraversal On is
forced to False

« ScrollBar, where Xm\t r aver sal On defaults to True when it is the
child of a ScrolledWindow whose XniNscrol | i ngPol i cy is XmAU-
TOVATI Cand to False otherwise

- Label and LabelGadget, where Xni\traversal On is forced to
False inside menus and defaults to False otherwise

« RowColumn, where Xni\t r aver sal On defaults to True in a Wor-
kArea and is not applicable otherwise

13.2.3 Tab Groups

13-8

A tab group is a collection of traversable widgets or a single widget
that contains a collection of traversable elements. When the shell’s
Xm\keyboar dFocusPol i cy is XnEXPLI O T, the user traverses to a
tab group using KNext Fi el d and KPr evFi el d. Within a tab group,
when the focus is on a non-tab-group widget or an element, the user

Input, Focus, and Keyboard Navigation

traverses to another non-tab-group widget or another element using
KUp, KDown, KLef t , and KR ght .

A tab group is always represented by a widget or gadget. When the
group is a collection of widgets, the tab group is typically the
manager that is the parent of the widgets. When the group is a sin-
gle widget like List or Text, the tab group is that widget itself.

The arrow keys do not traverse to tab groups or to non-tab-group
widgets or elements outside the current tab group. To traverse to
another tab group using the keyboard, the user must press KNext -
Fi el d or KPrevFi el d.

To be eligible for traversal, a tab group must meet all the conditions
discussed in the section "Controlling Keyboard Navigation" above,
except that a manager that is a tab group and meets the other con-
ditions is eligible for traversal as long as it contains a descendant
that can receive focus. If the tab group does not meet these condi-
tions, the KNext Fi el d and KPr evFi el d actions ignore the tab group.

Within a tab group, non-tab-group widgets must also meet all the
conditions discussed in the section "Controlling Keyboard Naviga-
tion" to be eligible for traversal. If they do not meet these condi-
tions, the arrow key actions ignore the widgets.

Whether or not a widget is a tab group is determined by the value of
the Xm\havi gat i onType resource. The two primary values for this
resource are XnTAB_GROUP, which indicates that the widget is a tab
group, and XnNONE, which indicates that it is not.

When the user traverses to the next or previous tab group, the
direction of the traversal is usually determined by the relative loca-
tions of the current and target groups. In a left-to-right language
environment, traversal to each subsequent tab group proceeds from
left to right and top to bottom. At the bottom right, traversal wraps
to the tab group at the top left. Traversal to previous tab groups
proceeds in the opposite direction.

13-9

OSF/Maotif Programmer’s Guide

13-10

The application can control the order of traversal by specifying an
Xm\havi gat i onType of XnEXCLUSI VE_TAB GROUP for a widget in the
hierarchy. When any widget in a hierarchy has an Xmi\navi gat i on-
Type of XnEXCLUSI VE TAB GROUP, KNext Fi el d and KPrevFi el d do
not move to any widgets in that hierarchy that have been desig-
nated tab groups by means of an Xm\havigationType of
XnTAB_GROUP. But KNext Fi el d and KPr evFi el d do move to widgets
whose Xm\havi gati onType is XnBTlI CKY_TAB GROP, even if some
widgets are exclusive tab groups. Thus, an application that uses
XnEXCLUSI VE_TAB_GROUP to control traversal must be sure that all
tab groups have an Xm\havi gat i onType of either
XnEXCLUSI VE_TAB _GROUP or XnSTI CKY_TAB_GROUP.

When any widget in a hierarchy has an Xm\havi gati onType of
XnEXCLUSI VE_TAB_GROUP, traversal to subsequent tab groups does
not depend on the relative locations of the groups. Instead, it
proceeds to widgets in the order in which their Xm\nhavi gat i onType
resources were specified as XnEXCLUSI VE_TAB GROUP or
XnSTlI CKY_TAB_GROUP, either by creating the widgets with that
value or by calling Xt Set Val ues. That is, traversal proceeds to the
widget whose Xni\havi gati onType was next specified to be
XnEXCLUSI VE_ TAB GROUP or XnBTI CKY_TAB GROUP. Traversal to
previous tab groups proceeds in the opposite direction.

Within a tab group whose XnNhavi gati onType is
XnmEXCLUSI VE_TAB_GROUP, the arrow keys do not behave the same
way as they would if the Xm\havigationType were either
XnTAB_ GROUP or XnBSTI CKY_TAB GROP. With XnTAB_GROP or
XnBTlI CKY_TAB_GROUP, the direction of traversal via the arrow keys
depends on the relative locations of the tab group’s children.
KR ght moves to the next traversable child to the right of the child
with the focus; KDown moves to the next traversable child below the
child with the focus; and so on.

With XnEXCLUSI VE TAB GROUP, traversal via the arrow Kkeys
depends on the order of the tab group’s list of children, not on the

Input, Focus, and Keyboard Navigation

relative locations of the children. KR ght has the same effect as
KDown: both move to the next traversable child in the tab group’s list
of children. KLeft has the same effect as KUp: both move to the pre-
vious traversable child in the tab group’s list of children.

There are three principal differences between
XnEXCLUSI VE_TAB_GROUP and XnSTI CKY_TAB_GROUP:

- XnEXCLUSI VE_TAB GROUP has the effect of disabling traversal to
tab groups that have an Xm\havi gati onType of XnTAB GROUP.
XBTI CKY_TAB GRCAUP does not; it simply ensures that traversal
to that tab group is possible even when some widget in the
hierarchy has an Xm\havi gat i onType of
XnEXCLUSI VE_TAB_GROLP.

- XnEXCLUSI VE_ TAB GROUP changes the order of traversal of tab
groups within the widget hierarchy. XnSTlI CKY_TAB GROUP does
not.

- XnEXCLUSI VE_TAB_GROUP changes the order of traversal of widg-
ets inside the tab group. XnSTlI CKY_TAB_GROUP does not.

The function XmAddTabG oup has the same effect as calling Xt Set -
Val ues with an Xm\navi gati onType of XnEXCLUSI VE TAB GROUP.
The function XnRenoveTabG oup has the same effect as calling
Xt Set Val ues with an Xm\navi gati onType of XmNONE. XmAddTab-
Q@ oup and XnRenoveTabQ@ oup are obsolete and exist for compatibil-
ity with earlier releases of OSF/Motif.

All Motif managers except RowColumn have a default Xni\navi ga-
tionType of X"TAB GROUP. In RowColumn, Xm\navi gat i onType is
not applicable for MenuBars, PulldownMenus, and PopupMenus.
For a WorkArea the default is XnTAB_GROUP, and for an Option-
Menu the default is XNONE.

All Motif primitives except List, ScrollBar, Text, and TextField have
a default Xm\nhavi gat i onType of X'NONE. The default for List, Text,
and TextField is XnTAB GROUP, and the default for ScrollBar is

13-11

OSF/Maotif Programmer’s Guide

X8TI CKY_TAB GROUP. These are all controls that have their own
internal navigation.

Motif sets the navigation type of widgets in some situations. In par-
ticular:

- The child of a shell always behaves as a tab group, no matter
what the value of its Xni\navi gat i onType.

- Panes and sashes inside PanedWindows have a default Xn\nhavi -
gati onType of XnTAB GROUP. If the Xm\havi gati onType of a
pane is XMNONE when the pane is created, Motif sets the value of
that resource to XnTAB_GROUP.

- SelectionBox and its subclasses set the Xm\nhavi gati onType of
their automatically created List and Text children to
Xn8TI CKY_TAB_GROUP.

The function XnGet TabQG oup returns the tab group that contains a
widget. If the widget itself is a tab group or a shell, it returns that
widget. If neither the widget nor any ancestor up to the nearest
shell is a tab group, it returns the nearest ancestor that is a shell.
Otherwise, it returns the nearest ancestor that is a tab group.

13.2.3.1 Controlling Tab Group Traversal Order

13-12

By default, KNext Fi el d and KPr evFi el d traverse to successive tab
groups in order of layout, from left to right and top to bottom,
within a parent tab group, before proceeding in layout order to the
next tab group that is a sibling of the parent. Traversal order
changes when any widget in a shell hierarchy has an Xni\nhavi ga-
ti onType of XnEXCLUS| VE_TAB_GROUP. In this case KNext Fi el d and
KPr evFi el d traverse only to widgets in the hierarchy whose Xm\ha-
vi gati onType is either XnEXCLUSI VE_TAB GROP or

Input, Focus, and Keyboard Navigation

XnSTlI CKY_TAB_GROUP. The traversal order is the order in which the
widgets’” Xmi\nhavi gati onType was specified to be either
XnEXCLUSI VE_TAB_GROUP or XnSTI CKY_TAB_GROUP.

This mechanism gives an application the means to control tab group
traversal order. An application must do the following:

- Ensure that at least one widget in the shell hierarchy has an
Xm\havi gat i onType of XnEXCLUSI VE_TAB GROUP

- Ensure that all widgets that the application wants to be tab
groups have an Xm\havi gat i onType of either
XmEXCLUS| VE_TAB_GROUP or XnSTI CKY_TAB_GROP

- Specify values for the tab groups’ Xni\havi gat i onType, via either
creation argument lists or Xt Set Val ues, in the order in which
the tab groups are to be traversed

Note that when a tab group has an Xmri\navi gationType of
XnEXCLUSI VE_TAB_GROUP, traversal to non-tab-group widgets inside
that tab group proceeds in the order in which the children appear in
their parents’ Xni\chi | dr en lists. If the application wants to specify
the order of tab group traversal but still wants traversal of non-
tab-group widgets to proceed according to layout, it should select
one widget in the hierarchy to have an Xmi\havi gati onType of
XmMEXCLUSIVE_TAB_GROUP. This tab group should contain no
non-tab-group widgets. For example, it could be the MainWindow if
the MainWindow contains only tab groups, or it could be a primitive
tab group, such as List or Text. The application should then specify
an Xm\havi gati onType of XnSTI CKY_TAB _GROUP for all other tab
groups in the hierarchy.

13-13

OSF/Maotif Programmer’s Guide

13.2.4 Initial Focus

13-14

A tab group may contain any combination of tab group and non-
tab-group widgets. A tab group that contains other widgets cannot
receive focus itself. When the user traverses to a composite tab
group, Motif gives focus to some widget within the tab group.

Motif uses the Manager resource XN ni ti al Focus in determining
which widget receives focus. The value of XN niti al Focus is a
widget that meets the following conditions:

- The widget must be either a tab group or a non-tab-group widget
that can receive keyboard focus. In general a widget can receive
keyboard focus when it is a primitive, a gadget, or a manager
(such as a DrawingArea with no traversable children) that acts
as a primitive.

- The widget must not be a descendant of a tab group that is itself
a descendant of the manager. That is, the widget cannot be con-
tained within a tab group that is nested inside the manager.

- The widget and its ancestors must have a value of True for their
Xm\t r aver sal On resources.

If the widget does not meet these conditions, XmN ni ti al Focus is
treated as if the value were NULL.

Motif uses XN ni ti al Focus to determine which widget receives
focus in these situations:

= When the manager is the child of a shell and the shell hierarchy
receives focus for the first time

- When focus is inside the shell hierarchy, the manager is a com-
posite tab group, and the user traverses to the manager via the
keyboard

Input, Focus, and Keyboard Navigation

Motif then determines focus as follows:

- If XN ni ti al Focus is a traversable non-tab-group widget, that
widget receives focus.

- If XN ni ti al Focus is a traversable tab group, that tab group
receives focus. If that tab group is a composite with descendant
tab groups or traversable non-tab-group widgets, these pro-
cedures are used recursively to assign focus to a descendant of
that tab group.

- If XN nitial Focus is NULL, the first traversable non-tab-
group widget that is not contained within a nested tab group
receives focus.

- If XN ni ti al Focus is NULL and no traversable non-tab-group
widget exists, the first traversable tab group that is not con-
tained within a nested tab group receives focus. If that tab
group is a composite with descendant tab groups or traversable
non-tab-group widgets, these procedures are used recursively to
assign focus to a descendant of that tab group.

If a shell hierarchy regains focus after losing it, focus returns to the
widget that had the focus at the time it left the hierarchy.

The use of XmN ni ti al Focus is undefined if the manager is a Menu-
Bar, PulldownMenu, PopupMenu, or OptionMenu.

13.2.5 Traversing to Obscured Widgets

In general, a widget is not eligible to receive focus unless some part
of its rectangular area is unobscured by its ancestors. However, it
may be possible to traverse to a widget that is a descendant of a
ScrolledWindow whose XmiNscr ol | i ngPol i cy is XmAUTOVATI C, even
if that widget is not within the ScrolledWindow’s clip window.

13-15

OSF/Maotif Programmer’s Guide

13-16

Traversal to such a widget is possible under the following condi-
tions:

- Some part of the widget's rectangular area is within the bounds
of the ScrolledWindow’s work window.

- The ScrolledWindow’s clip window is completely unobscured by
its ancestors. If the ScrolledWindow is a descendant of another
ScrolledWindow, it must be unobscured by the ancestor’s work
window but may be outside the ancestor’s clip window.

- The ScrolledWindow has a procedure on its Xmi\t raver seCh-
scuredCal | back list that can bring some part of the widget's
rectangular area into the clip window.

- The widget meets the other conditions for receiving focus
described in the section "Controlling Keyboard Focus" above.

Whenever the user attempts to traverse to such a widget and the
widget is partially or fully obscured by the clip window, Motif calls
the ScrolledWindow’'s Xm\ r aver seCbscur edCal | back procedures.
If the ScrolledWindow has one or more ancestor ScrolledWindows,
Motif calls the Xmi\t r aver seCbscur edCal | back list for each Scrol-
ledWindow whose clip window obscures the traversal target, from
the lowest level of the hierarchy to the highest. The XnN raver -
se(scur edCal | back procedure can try to bring the widget into the
clip window if necessary, usually by calling Xntcrol | Vi si bl e. If
the target widget is traversable after the Xmi\t raver seCbscur ed-
Cal | back procedures are invoked, that widget receives focus.

A procedure can determine the visibility of a widget by calling
XnGetVisibility.

Input, Focus, and Keyboard Navigation

13.2.6 XmProcessTraversal

The principal routine for traversing to a widget is XmPro-
cessTraver sal . Motif uses this routine to effect traversal when the
user presses an arrow key, KNext Fi el d, or KPrevFi el d. An applica-
tion can use XnProcessTraversal to implement its own traversal
actions.

XnPr ocessTr aver sal takes two arguments, a widget and a constant
specifying a traversal action. The routine uses the widget argument
to identify the hierarchy that contains the widget and that has its
root at the nearest shell. If that shell does not currently have the
focus, any changes to the element with focus within that shell will
not occur until the next time the shell receives focus.

The traversal action argument identifies one of three kinds of action
to take. The following descriptions of these actions refer to travers-
able non-tab-group widgets and traversable tab groups. A travers-
able non-tab-group widget is a widget that is not a tab group and
that meets all the conditions for receiving focus discussed in the sec-
tion "Controlling Keyboard Navigation" above. A traversable tab
group is a tab group widget that meets the same conditions, except
that a manager that is a tab group and meets the other conditions
is also traversable as long as it contains a descendant that can
receive focus.

The routine begins the traversal action from the widget in the
hierarchy that currently has keyboard focus or that last had focus
when the user traversed away from the shell hierarchy.

- Traversal to a non-tab-group widget. This kind of traversal is
possible only when the widget that currently has focus is not a
tab group. Also, these actions do not move focus from one tab
group to another. The actions first determine the containing tab
group. This is the tab group containing the widget that

13-17

OSF/Maotif Programmer’s Guide

13-18

currently has focus. The actions traverse only to a non-tab-
group widget within the containing tab group.

— XnTRAVERSE R GHT—If the Xni\havi gati onType of the con-

taining tab group is not XmEXCLUSI VE TAB GROUP, focus
moves to the next traversable non-tab-group widget to the
right of the widget that currently has focus. At the right side
of the tab group this action wraps to the non-tab-group
widget at the left side and next toward the bottom. At the
lower right corner of the tab group this action wraps to the
non-tab-group widget at the upper left.

If the Xm\havi gati onType of the containing tab group is
XEXCLUSI VE_TAB_GROUP, focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the
order in which the widgets appear in their parents’ Xmi\chi | -
dr en lists. After the last widget in the tab group, this action
wraps to the first non-tab-group widget.

XNMTRAVERSE _LEFT—If the XnNhavi gat i onType of the contain-
ing tab group is not XnEXCLUSI VE_TAB_GROUP, focus moves to
the next traversable non-tab-group widget to the left of the
widget that currently has focus. At the left side of the tab
group this action wraps to the non-tab-group widget at the
right side and next toward the top. At the upper left corner
of the tab group this action wraps to the non-tab-group
widget at the lower right.

If the Xm\havi gati onType of the containing tab group is
XnEXCLUSI VE_ TAB GROUP, focus moves to the previous
traversable non-tab-group widget in the tab group, proceed-
ing in the reverse order in which the widgets appear in their
parents’ Xmi\chi | dren lists. After the first widget in the tab
group, this action wraps to the last non-tab-group widget.

XnMTRAVERSE DOM—If the Xmi\havi gat i onType of the contain-
ing tab group is not XnEXCLUSI VE_TAB GROUP, focus moves to

Input, Focus, and Keyboard Navigation

the next traversable non-tab-group widget below the widget
that currently has focus. At the bottom of the tab group this
action wraps to the non-tab-group widget at the top and next
toward the right. At the lower right corner of the tab group
this action wraps to the non-tab-group widget at the upper
left.

If the Xm\havi gati onType of the containing tab group is
XEXCLUSI VE_TAB_GRAUP, focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the
order in which the widgets appear in their parents’ Xm\chi | -
dr en lists. After the last widget in the tab group, this action
wraps to the first non-tab-group widget.

XMTRAVERSE_UP—If the Xm\havi gat i onType of the containing
tab group is not XnEXCLUSI VE_TAB GROUP, focus moves to the
next traversable non-tab-group widget above the widget that
currently has focus. At the top of the tab group this action
wraps to the non-tab-group widget at the bottom and next
toward the left. At the upper left corner of the tab group this
action wraps to the non-tab-group widget at the lower right.

If the Xm\havi gati onType of the containing tab group is
XnEXCLUSI VE_ TAB GROUP, focus moves to the previous
traversable non-tab-group widget in the tab group, proceed-
ing in the reverse order in which the widgets appear in their
parents’ Xmi\chi | dren lists. After the first widget in the tab
group, this action wraps to the last non-tab-group widget.

XMTRAVERSE NEXT—Focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the
order in which the widgets appear in their parents’ Xni\chi | -
dren lists. After the last widget in the tab group, this action
wraps to the first non-tab-group widget.

XnMTRAVERSE PREV—Focus moves to the previous traversable
non-tab-group widget in the tab group, proceeding in the

13-19

OSF/Maotif Programmer’s Guide

13-20

reverse order in which the widgets appear in their parents’
Xmi\chi | dren lists. After the first widget in the tab group,
this action wraps to the last non-tab-group widget.

— XMIRAVERSE HOMVE—If the XimM\navi gat i onType of the contain-
ing tab group is not XnEXCLUSI VE_TAB_GROUP, focus moves to
the first traversable non-tab-group widget at the top left
corner of the tab group.

If the Xm\havi gati onType of the containing tab group is
XEXCLUSI VE_TAB_GROUP, focus moves to the first traversable
non-tab-group widget in the tab group, according to the order
in which the widgets appear in their parents’ Xmi\chi | dren
lists.

- Traversal to a tab group. These actions first determine the
current widget hierarchy and the containing tab group. The
current widget hierarchy is the widget hierarchy whose root is
the nearest shell ancestor of the widget that currently has focus.
The containing tab group is is the tab group containing the
widget that currently has focus.

— XnTRAVERSE NEXT_TAB GROUP—If no tab group in the current
widget hierarchy has an Xmi\havi gationType of
XEXCLUSI VE_TAB_GROUP, focus goes to the next traversable
tab group that is to the right of the widget with current focus
and is within the containing tab group. At the right side of
the containing tab group this action wraps to the tab group at
the left side and next toward the bottom. At the lower right
corner of the containing tab group this action recursively
moves up one level in the hierarchy. Focus then goes to the
next traversable tab group that is to the right of the original
containing tab group and is within the tab group that con-
tains that one. At the lower right corner of the topmost tab
group in the hierarchy, this action wraps to the first travers-
able tab group at the upper left corner of the topmost tab

group.

Input, Focus, and Keyboard Navigation

If any tab group in the current widget hierarchy has an
Xm\havi gat i onType of XnEXCLUSI VE_TAB_GROUP, focus goes
to the next traversable tab group in the hierarchy, in the
order in which the Xni\navi gati onType resources of the tab
groups were set to XnEXCLUSIVE TAB GROP or
XnSTI CKY_TAB_GROUP. After the last tab group in the hierar-
chy, this action wraps to the first tab group.

— XnTRAVERSE PREV_TAB GROUP—If no tab group in the current
widget hierarchy has an Xmi\havi gationType of
XEXCLUSI VE_TAB_GROUP, focus goes to the next traversable
tab group that is to the left of the widget with current focus
and is within the containing tab group. At the left side of the
containing tab group this action wraps to the tab group at the
right side and next toward the top. At the upper left corner
of the containing tab group this action recursively moves up
one level in the hierarchy. Focus then goes to the next
traversable tab group that is to the left of the original con-
taining tab group and is within the tab group that contains
that one. At the upper left corner of the topmost tab group in
the hierarchy, this action wraps to the first traversable tab
group at the lower right corner of the topmost tab group.

If any tab group in the current widget hierarchy has an
Xm\havi gat i onType of XnEXCLUSI VE_TAB_GROUP, focus goes
to the previous traversable tab group in the hierarchy, in the
reverse order in which the Xmi\navi gat i onType resources of
the tab groups were set to XnEXCLUSI VE TAB GROUP or
XnBTlI CKY_TAB _GROUP. After the first tab group in the hierar-
chy, this action wraps to the last tab group.

- Traversal to any widget. In this case the widget argument is the
widget to which XPr ocessTr aver sal tries to give focus.

— XnTRAVERSE CURRENT—Focus goes to the widget argument if
that widget is a traversable non-tab-group widget or tab

group.

13-21

OSF/Maotif Programmer’s Guide

Note that XmProcessTraversal cannot be called recursively. In
particular, an application cannot call this routine from an
Xm\fF ocusCal | back or XimN osi ngFocusCal | back procedure.

13.2.7 Focus Callbacks

13-22

BulletinBoard, Text, and TextField have Xm\f ocusMovedCal | back
callback lists. Motif invokes the procedures on these lists when
these widgets receive keyboard focus. A callback procedure may
change the widget's state to reflect the new focus, but it should not
try to change the focus and in particular must not call XnPro-
cessTraversal .

Text and TextField also have XmN osi ngFocusCal | back callback
lists. The Text and TextField traversal actions invoke these pro-
cedures before traversing to another widget. The third argument to
each procedure is a pointer to an XnWext Veri fyCal | backSt ruct
structure whose reason member is XnCR_LCSl NG_FOCUS. If a call-
back procedure sets the doi t member of this structure to False, the
traversal action does not carry out the traversal. In this way the
application can prevent a user from traversing out of the widget by
means of these actions.

Motif also invokes the XmN osi ngFocusCal | back procedures when
the widget loses focus by some other means. For example, the user
might click BSel ect in another traversable widget, or when the
shell’s Xm\keyboar dFocusPol i cy is XnPA NTER the user might move
the pointer into another widget. In such cases setting the doit
member of the callback structure has no effect.

Input, Focus, and Keyboard Navigation

13.3 Translations and Actions

In Xt, the primary means of associating an input event with a
widget-specific procedure is the combination of translations and
actions. Each widget (but not gadget) instance contains a table of
translations that maps event descriptions to procedure names.
Each widget instance also has a table of actions that maps these
procedure names to actual procedures. When a widget receives an
input event, the Xt event-dispatching facility looks up the event in
the translation table, looks up the associated procedure in the
action table, and invokes the action procedure itself. This procedure
usually takes some action to change the widget state and often
invokes callback procedures.

13.3.1 Translation Table Format

An application or user specifies a translation table as a string
whose format is defined in X Toolkit Intrinsics—C Language Inter-
face. In general, the table consists of individual translations
separated by "\n". Each translation consists of an event description
sequence, a colon, and one or more associated procedure names.
Each procedure name also has a list of parameters within
parentheses to be passed to the procedure when it is invoked as a
result of that translation.

An event description in general consists of an optional list of
modifiers, an event type within angle brackets (< and >), an
optional repeat count within parentheses, and an optional event
detail. Modifiers apply only to key, button, motion, enter, and leave
events. If an exclamation point (!) precedes the modifiers, then the

13-23

OSF/Maotif Programmer’s Guide

13-24

modifiers in the list and no others must be asserted for the action to
be invoked. Otherwise, the modifiers in the list must be asserted,
but others may be as well. A tilde (~) before any modifier means
that that modifier must not be asserted. If the modifier list is
empty, any modifiers may be asserted.

The detail field varies depending on the event type. The most com-
mon use is to identify the keysym for a KeyPress or KeyRel ease
event.

Event descriptions in a sequence are separated by commas. Mouse
motion is discarded if it occurs between events in a sequence that
does not include explicit motion events. This allows the following
sort of translation to invoke an action even if the mouse moves
between button press and release:

<Bt n1Down>, <Bt n1Up> : action()

Following are some important considerations in using translations:

= More specific events should always precede less specific events in
the table:

Crl <Key>space : action_1()
<Key>space :action_2()

- Translations with event sequences that are noninitial subse-
guences of other translations are not invoked when the events
occur as part of the longer sequence. For example, up_acti on()
below would not be invoked on a button release that followed a
button press:

<Bt n1Down>, <Bt n1lUp> : click_action()
<Bt n1Up> : up_action()

Input, Focus, and Keyboard Navigation

- Event descriptions that use a repeat count expand into longer
sequences. For example, the following descriptions are more or
less equivalent:

<Bt n1Up>(2) : double_click()
<Bt n1Up>, <Bt n1Down>, <Bt n1Up> : doubl e _cl i ck()

This result, combined with the implicit insertion of motion
events between any two other events, means that motion trans-
lations cannot exist in a table with multiclick translations.

See X Toolkit Intrinsics—C Language Interface for more information
on the format of translation tables.

13.3.2 Using Translations

One translation table frequently needs to be merged with another.
For example, a user may want to add one or more translations to a
widget's default translations. A translation table may begin with
one of three directives that specifies how the table is to be merged
with an existing table:

#replace

#augment

#override

The new translation table should completely replace
any existing table. This is the default if no directive
is specified.

The new translation table should be added to any
existing table. If the two tables contain duplicate
event descriptions, the translations in the existing
table are used.

The new translation table should be added to any
existing table. If the two tables contain duplicate
event descriptions, the translations in the new table

13-25

OSF/Maotif Programmer’s Guide

13-26

are used.

A widget's translation table is the value of the Core Xni\t ransl a-
tions resource. The initial value is determined in the following
way:

- If a non-NULL value is specified for XnN ransl ati ons in the
widget creation argument list, the widget class translations are
merged with that value, in order, and the resulting table is used.

- Otherwise, the following tables are merged, in order, and the
resulting table is used:

— The widget class translations

— The value of the baseTransl ati ons resource from the
resource database

— The value of the X\t r ansl at i ons resource from the resource
database or, if no value was specified, the default value for
the widget's XnNt r ansl ati ons

To take advantage of this initialization ordering, an application
should usually provide any translations of its own by specifying a
value for baseTransl ati ons rather than Xnm\transl ati ons in an
application class defaults file or a fallback resource list. This essen-
tially reserves Xmi\t ransl ati ons to the user. The application can
change the widget class translations by specifying baseTr ansl a-
tions, and the user can change the application’'s translations by
specifying Xm\t r ansl at i ons.

As the value of a widget's Xm\transl ati ons, a translation table
must be in a parsed format rather than a string. The string-to-
translation-table converter parses a resource string into a transla-
tion table. An application can also use Xt Par seTr ansl ati onTabl e
to compile a translation table string into the parsed format. The
application can then merge the parsed table with a widget's
Xm\t r ansl at i ons in three ways:

Input, Focus, and Keyboard Navigation

- Xt Augnent Tr ansl at i ons merges the parsed table in "#augment"
mode

- XtQverrideTransl ati ons merges the parsed table in "#over-
ride" mode

- Xt Set Val ues of XnNtransl ati ons replaces the existing value
with the parsed table

Some Motif widgets merge additional translations in theiriniti al -
i ze and set _val ues methods. This process may make it impossible
for an application or user to override some translations via resource
files. For example, for some widgets it may not be possible to
change traversal translations in this way.

13.3.3 Actions

Each widget instance has a table that maps action procedure
names, as they appear in translation tables, to actual action pro-
cedures. When an action is invoked via a translation, Xt looks up
the action procedure name in this table and calls the associated pro-
cedure.

Each widget class may have its own action table. In addition, an
application can use Xt AppAddActi ons to add entries to an action
table associated with the application context. Only one such table
exists per application context. If a call to Xt AppAddActi ons con-
tains an action name that is already in the table, the action name
becomes associated with the action procedure supplied in the call to
Xt AppAddAct i ons, overriding the existing action.

Xt creates a widget's action table when the widget is realized. It
uses actions from the following action tables, those listed first hav-
ing highest precedence:

13-27

OSF/Maotif Programmer’s Guide

13-28

- The action tables for the widget's class and its superclasses, in
subclass-to-superclass order

- The action tables for the parent’s class and its superclasses, in
subclass-to-superclass order, and so on up the widget hierarchy

- The application context action table (created by calls to Xt AppAd-
dAct i ons)

This ordering means that an application cannot use Xt AppAddAc-
tions to provide a new action procedure for an action name that is
already registered by a widget class. To do that, the application
must supply a translation that maps the event to an action name
that is not registered by the class. The application must then call
Xt AppAddAct i ons to supply a procedure for the action name.

An action procedure is a function of type Xt Acti onProc. This func-
tion receives four arguments:

- The widget

- The event, or the last event of a sequence, that caused the pro-
cedure to be invoked

- A list of strings representing the parameters specified for this
action in the translation table

- An integer representing the number of parameters in the param-
eter list

An application can use the parameter list to perform a number of
related actions in a single action routine. For example, a widget
might have the following translations:

Cc <Key> osflLeft : nove-object(left) \n\
¢ <Key> osf R ght : nove-object(right) \n\
¢ <Key> osf Up . nmove-obj ect (up) \n\

c <Key> osfDown : nove-obj ect (down)

Input, Focus, and Keyboard Navigation

The routine implementing the nove- obj ect () action is passed one
of the strings "left", "right", "up"”, and "down" as the only item in the
parameter list, depending on which key event invoked the action.
The routine performs the action appropriate for this parameter.

13.3.4 Bindings for osf Keysyms

Motif maintains a client-side mechanism for mapping one set of
keysyms to another set. The purpose of this mapping is to allow
Motif widgets and applications to use a single set of keysyms in
translation tables but also make it possible for applications or users
to customize the keysyms used in the translations for the particular
keyboard used with the display.

The names of keysyms eligible for use in translations in this way
begin with the prefix "osf" and are referred to as "osf" keysyms.
Motif maintains a mapping between these "virtual” keysyms and
the "actual" keysyms that correspond to keys on a particular key-
board. When Xt receives a keyboard event, the function
Xnr ansl at eKey translates the keycode of the event to the
appropriate "osf" keysym if a mapping exists for that keysym. Xt
then dispatches the event to the appropriate action routine if a
translation exists for that "osf" keysym.

The mapping between "osf" and actual keysyms is determined at
application startup based on information obtained from one of the
following sources, listed in order of precedence:

- Adefaul tVirtual Bi ndi ngs application resource in the resource
database.

- A property on the root window, which can be set by nwm on
startup, or by the xnbi nd client, or on prior startup of a Motif
application.

13-29

OSF/Maotif Programmer’s Guide

13-30

- A.notifbind file in the user's home directory.

- A default binding based on the vendor string and optionally the
vendor release of the X server. Motif searches the file
xnbi nd. al i as in the user's home directory, or in the directory
specified by the environment variable XMBl NDDI R, or in the direc-
tory /usr/1i b/ X bi ndi ngs.

The file xnbi nd. al i as maps combinations of vendor strings and
vendor release numbers to pathnames. Each pathname represents
a file that contains keysym bindings for a particular vendor string
and optional vendor release number. If Motif fails to find a bind-
ings file for the current display, it uses a set of hard-coded fallback
bindings.

The format of the def aul t Vi rt ual Bi ndi ngs resource is similar to
that of a translations string. Each binding consists of an "osf"
keysym, a colon, a key event description (with optional modifiers)
for the actual keysym, and "\n". The format of a . noti f bi nd file or
a file containing vendor bindings is the same, except that each bind-
ing is on a separate line.

Following is an example of a specification for the def aul t Vi rt ual -
Bi ndi ngs resource in a resource file:

*def aul t Vi rtual Bi ndi ngs: \

osf BackSpace : <Key>BackSpace \n\
osfl nsert : <Key>l| nsert Char \n\
osfDel ete : <Key>Del et eChar

The example specification above appears as follows in a . noti f bi nd
or vendor bindings file:

osf BackSpace : <Key>BackSpace
osflnsert : <Key>l nsert Char

Input, Focus, and Keyboard Navigation

osfDel ete : <Key>Del et eChar

For more information, see the Virtual Bindings(3X) and
xnbi nd(1X) reference pages.

13.4 Mnemonics and Accelerators

Sometimes it is desirable for an event received by one widget to
activate an action in another. For example, the application may
establish a shortcut for activating a button in a menu: the user can
activate the menu item even when focus is not in the menu. Motif
has two facilities, mnemonics and accelerators, for allowing events
in one widget to invoke actions in another.

A mnemonic is a keysym that identifies a key the user can press to
activate a menu item when the menu is posted. A button in a
MenuBar, PulldownMenu, or PopupMenu can have a mnemonic.
When the button is in a PulldownMenu or PopupMenu that is the
most recently posted menu, the user activates the button by press-
ing the key associated with the mnemonic. When the button is in a
MenuBar, the MenuBar must have focus for the mnemonic to
activate the button. However, the user can activate the button from
within the hierarchy that contains the MenuBar, even if the Menu-
Bar does not have focus, by pressing the key while holding the MVA t
modifier.

An application or user supplies a mnemonic for a button by specify-
ing a value for the Label or LabelGadget resource XmiNnmenoni c.
When the button is displayed, Motif underlines the first character
in the label string that exactly matches the mnemonic in the char-
acter set specified by XmNmenonicCharSet. Although the
mnemonic must match a character in the label string exactly in

13-31

OSF/Maotif Programmer’s Guide

13-32

order to be underlined, the user can activate the mnemonic by
pressing either the shifted or the unshifted key.

An accelerator allows the user to activate a menu item when focus
is anywhere in the hierarchy containing the menu, even if the menu
is not posted. Accelerators are supported only for PushButtons and
ToggleButtons (or their gadget equivalents) in PulldownMenus and
PopupMenus.

An application or user supplies an accelerator for a button by speci-
fying a value for the Label or LabelGadget resource XmNaccel er a-
tor. The value is a string in the same format as an event descrip-
tion in a translation table, except that only KeyPress events are
allowed. Thus, an accelerator can have a modifier like MXrl or
MAl t . XmNaccel er at or Text is a compound string that describes the
accelerator event, such as "Ctrl+A". Motif displays the accelerator
text to the side of the button’s label string or pixmap.

The following example creates a button with a mnemonic and an
accelerator:

n=0;
Xt Set Arg(args[n], XmNmenonic, XStringToKeysynm("A'); n++;
Xt Set Arg(args[n], XnNaccelerator, "Crl<Key>A"'); n++;
Xt Set Arg(args[n], XnNaccel erat or Text,
XnBtri ngOreateLocal i zed("CQirl +A"); n++;
buttonl = XmOreat ePushButton(file pane, "Answer", args, nh);

Motif's button accelerators and mnemonics are supported only for
buttons in certain menus. Xt has a more general facility, also called
accelerators, for allowing events in one widget to invoke actions in
another.

Xt accelerators are mappings of event descriptions to actions, in the
same format as a translation table. An application or user supplies
accelerators for a widget as the value of the Core resource Xm\ac-
cel erators. The accelerators map events to actions of this widget,

Input, Focus, and Keyboard Navigation

called the source widget. The application must then install the
accelerators on a destination widget, using Xt I nstal | Accel era-
tors. This routine takes two arguments: the source widget, whose
XmNaccel erat or s resource contains the accelerator table; and the
destination widget, where the accelerators are to be installed.
When the user produces an event in the destination widget that
maps to an accelerator in the table, the event invokes the
corresponding action in the source widget.

Xt | nstal | Accel erat or s merges the accelerators with the destina-
tion widget’s existing translations (the value of X\t r ansl at i ons).
Accelerators can be merged in either "#augment" mode, the default,
or "#override" mode. An accelerator table may begin with an "#aug-
ment" directive or a "#override" directive. The "#replace" directive
is ignored.

As with translations, accelerators must be in an internal format
when they are the value of XmNaccel erators. A string-to-
accelerator-table converter parses an accelerator table string from a
resource file. An application can use Xt Par seAccel er at or Tabl e to
compile an acclerator table string explicitly.

Accelerators are often defined for a parent source widget and
installed on one or more child destination widgets. The Selection-
Box and FileSelectionBox widgets install accelerators, the value of
Xm\t ext Accel er at or s, on their text children. The default accelera-
tors bind KUp, KDown, KBegi nLi ne, KEndLi ne, and KRest or e events
in the Text widget to SelectionBox or FileSelectionBox actions that
select an item in the List and replace the Text widget value with
that List item.

13-33

OSF/Maotif Programmer’s Guide

13.5

13-34

Event Handlers

Many applications can implement their entire input processing by
adding procedures to widget callback lists and by adding mnemon-
ics and accelerators for menu buttons. Some applications change
translations, accelerators, or actions. More rarely, an application
needs finer control over event processing. Such an application can
register an event handler with the Xt event dispatcher.

An event handler is a procedure that the Xt event dispatcher calls
when the application receives events of one or more types. An event
handler procedure is of type Xt Event Handl er . It receives four argu-
ments: the widget for which the event arrived; any client data
registered with the event handler; a pointer to the event; and a
Boolean return argument telling the Xt dispatch facility whether or
not to call the remaining event handlers registered for this event.
This argument is initialized to True and should rarely be changed.

An application usually registers an event handler using the func-
tion Xt AddEvent Handl er. The arguments are the widget, an event
mask, an indication whether or not the hander should be called for
nonmaskable events, the procedure itself, and any client data to be
passed to the event handler when it is called. The order in which
event handlers are called is undefined when more than one handler
exists for a given widget and event type. However, if the applica-
tion registers the event handler using Xt | nsert Event Handl er, it
can specify that the procedure is to be called either before or after
all currently registered event handlers.

Motif requires an application to provide an event handler if it wants
to post a PopupMenu on a button press. The call to Xt Ad-
dEvent Handl er should specify But t onPr essMask as the event mask
and the popup RowColumn as the client data. The event handler
should use XmienuPosi tion to position the menu at the x and y

Input, Focus, and Keyboard Navigation

location of the button press event. It should then manage the
RowColumn. If the button press matches the event specified by the
RowColumn’s Xni\nenuPost resource, Motif posts the PopupMenu.
See chapter 6 for more information.

13-35

Chapter 14. Graphics and Text in a
DrawingArea

Most Motif widgets have specific functions. A PushButton activates
an action; a ScrollBar moves a scroll with respect to a viewport; a
RowColumn contains a menu, a RadioBox or CheckBox, or a collec-
tion of widgets laid out in rows and columns. In contrast,
DrawingArea does not have a specific function. It is useful for
implementing a canvas, a specialized text editor, or other custom-
ized portions of an application.

14.1 DrawingArea: A General-Purpose Widget

DrawingArea is a manager with little specific behavior of its own.
It provides basic geometry management for widget and gadget chil-
dren. It also has callback lists that provide the application with
low-level event handling. An application can use these features to
implement a canvas or a more specialized widget.

By default a DrawingArea attempts to adjust its size to contain all
its children just inside its margins. The DrawingArea resource
Xm\r esi zePol i cy determines how the DrawingArea responds to
geometry requests from its children. This resource has three possi-
ble values:

- XnRESI ZE ANY—The DrawingArea tries to accept requests that
would cause the DrawingArea to grow or shrink to enclose all its
children. This is the default.

- XMRESI ZE GRONM—If its parent approves, the DrawingArea
accepts requests from its children that would cause the
DrawingArea to grow. It may accept requests that would cause
it to shrink, but it does not reduce its size.

- XTRESI ZE NONE—The DrawingArea has a fixed size determined
by its Xm\hei ght and Xni\Nwi dt h resources. It rejects geometry

14-1

OSF/Maotif Programmer’s Guide

requests from its children that would cause the DrawingArea to
grow. It may accept requests that would cause it to shrink, but
it does not reduce its size.

The DrawingArea resources XniNmar gi nHei ght and XiiNmar gi nW dt h
also affect geometry management. When the value of XmiNrar -
gi nHei ght is greater than 0, the DrawingArea ensures that the top
edges of all children are inside the top margin. When the value of
XmNmar gi nWdt h is greater than 0, the DrawingArea ensures that
the left edges of all children are inside the left margin.

See chapter 10 for more information on DrawingArea’s geometry
management.

14.2 Event Handling and Callbacks

14-2

DrawingArea has callbacks, translations, and actions that inform
the application when the DrawingArea is resized or when it receives
an exposure event or one of many input events. DrawingArea has
the following callbacks:

Xm\exposeCal | back
DrawingArea invokes these callbacks whenever its
expose widget class procedure is called. The callback
reason is XmCR_EXPCSE.

XmN nput Cal | back
DrawingArea invokes these callbacks from the
Drawi ngAr eal nput () action. With the default trans-
lations, this action is called when the DrawingArea
receives a key press, key release, button press, or but-
ton release event. The callback reason is
XCR_| NPUT.

Graphics and Text in a DrawingArea

Xm\r esi zeCal | back
DrawingArea invokes these callbacks whenever its
resi ze widget class procedure is called. The callback
reason is XmnCR_RESI ZE.

Each callback procedure is passed a pointer to an
XnDr awi ngAr eaCal | backStruct, which includes the reason, the
event (NULL for Xm\r esi zeCal | back), and the DrawingArea’s win-
dow.

14.2.1 Handling Resize Events

A widget's r esi ze procedure is invoked when the widget is resized
by its parent or when the widget's width or height changes as a
result of Xt Set Val ues. DrawingArea also invokes its own resi ze
procedure when it has made a successful geometry request of its
parent to change its width or height.

For most widgets the resi ze procedure recomputes the widget's
layout to take account of the new size. DrawingArea’s r esi ze pro-
cedure does no layout of its own. It simply invokes the Xm\r esi ze-
Cal | back callbacks. It is the responsibility of these callback pro-
cedures to resize or reposition children or to recompute other con-
tents of the DrawingArea. The callback procedures essentially take
the place of the DrawingArea’s r esi ze procedure.

Note that a r esi ze procedure can be called when the widget is not
realized.

14-3

OSF/Maotif Programmer’s Guide

14.2.1.1 Moving and Resizing Children

14-4

An Xm\r esi zeCal | back procedure should reposition or resize chil-
dren by calling Xt MoveWdget, Xt ResizeWdget, or Xt Confi -
gureWdget . Use of these functions is usually restricted to widget
class methods, but for DrawingArea the Xm\resi zeCal | back pro-
cedures act as part of the widget class r esi ze procedure.

A callback procedure could also resize or reposition a child by invok-
ing Xt Set Val ues on one or more of the child’'s geometry resources
(Xm\x, XNy, Xmi\hei ght, Xni\wi dt h, and Xmi\bor der Wdt h). This
causes Xt Set Val ues to generate a geometry request on behalf of the
child. This request in turn might cause the DrawingArea to make a
geometry request of its own parent. In particular, when a child’s
request would cause the DrawingArea to change size and when the
Xm\resi zePolicy of the DrawingArea is XmRESI ZE GROWN or
XnRES| ZE_ANY, the DrawingArea is likely to make a geometry
request.

However, the Intrinsics forbid a widget's resi ze procedure from
making geometry requests. Therefore, an Xni\r esi zeCal | back pro-
cedure must take care not to reposition or resize a child in such a
way that the DrawingArea makes a geometry request. The easiest
way to avoid this problem is to use Xt MoveW dget , Xt Resi zeW dget ,
and Xt ConfigureWdget, which are guaranteed not to make
geometry requests.

An Xm\r esi zeCal | back procedure must take care not to call the
resi ze procedure for a child that is in the midst of making a
geometry request. This situation can arise when a child makes a
geometry request, perhaps as a result of Xt Set Val ues, that would
cause the DrawingArea to change size. If the DrawingArea’s
geomet ry_manager procedure issues a successful geometry request,
it invokes its own resize procedure, which in turn calls the
Xm\r esi zeCal | back procedures.

Graphics and Text in a DrawingArea

When this situation arises, the Xni\r esi zeCal | back procedure must
not call the requesting child’s resi ze procedure, whether it does
this directly, as a result of calling Xt Resi zeWdget or Xt Confi -
gureWdget, or as a result of a call to Xt Set Val ues that changes
the child’s width or height. If an application causes a DrawingArea
child to make a geometry request—for example, by calling Xt Set -
Val ues for one of the child’s geometry resources—it should store
information in an internal data structure that identifies that child
as making a geometry request. The Xm\r esi zeCal | back procedure
should check this information and take care not to call that child’s
resi ze procedure.

14.2.1.2 Resizing and Redisplay

A resi ze procedure often recomputes the layout of the widget but
does not actually perform the redisplay. In many cases the act of
resizing the widget generates one or more subsequent exposure
events, and these in turn cause Xt to invoke the widget's expose
procedure. In general the expose procedure is responsible for
redisplay.

However, resizing a widget does not always generate exposure
events, particularly when the widget is made smaller. This is not a
problem when the widget's contents consist solely of child widgets
or gadgets. The resi ze procedure can reposition or resize the chil-
dren, and these actions generate the appropriate exposure events
for both the children and the parent.

A resizing without an exposure event presents a problem when the
contents of the widget include graphics, text, or other decoration
outside child widgets. For example, if the widget displays a shadow
or other decoration around its inside edge, it must redisplay that
decoration when the widget becomes smaller. An application using

14-5

OSF/Maotif Programmer’s Guide

a DrawingArea in this way must arrange to redisplay the window
contents when the DrawingArea becomes smaller. Following are
two possible approaches:

- In an Xn\resizeCall back procedure, compare the
DrawingArea’s width and height with their previous values. If
either width or height has decreased, redisplay the appropriate
portions of the DrawingArea’s contents. In an internal data
structure, store the width and height as the previous width and
height for use by the next invocation of the Xmi\r esi zeCal | back
procedure.

- In an Xm\exposeCal | back procedure, when the procedure is first
invoked set the window's bit gravity to Forget G avity. This
causes the window’s contents to be lost and an exposure event to
be generated anytime the window is resized. If the application
does not set the bit gravity of the DrawingArea’'s window, the
default set by the toolkit is Nort hVést Gavity. This usually
causes the server not to generate an exposure event when the
window is made smaller.

DrawingArea itself does not draw shadows, and the default Xn\Nsha-
dowThi ckness is 0. It is not practical for an application to draw
OSF/Motif shadows itself in a DrawingArea, because the Motif
shadow-drawing interface is not public. An application that wants
shadows with a DrawingArea should place the DrawingArea inside
a Frame.

14.2.1.3 Example of a Resize Procedure

Following is an Xni\r esi zeCal | back procedure for a DrawingArea
that contains button children and lines connecting them. The pro-
cedure spreads or contracts the layout of children and lines in

14-6

Graphics and Text in a DrawingArea

proportion to the increase or decrease in size of the DrawingArea.
It uses an internal data structure to hold information about the end
points of the lines and the previous width and height of the

DrawingArea.

redisplays the lines.

void ReSi ze (

W dget W, /* widget id */
Xt Poi nt er client_data, /[* data fromapplication

Xt Poi nt er call data) /[* data fromw dget class
{

Qaphic * graph = (Gaphic *) client_data ;
D nensi on wi dth, height ;

Cardinal i,j ;

Arg args[5];

int n;

Wdget * children ;

Cardi nal numchildren ;

Position x,y ;

n=_0;

XtSet Arg (args[n], Xm\width, &aidth); n++
XtSet Arg (args[n], Xmi\height, &height); n++
Xt Get Val ues (w, args, n);

float xratio = (float) width / graph->ol d_wi dth,
yratio = (float) height / graph->ol d_height ;

/* reposition and resi ze the graphic units */
for (i=0; i < graph->numgraphics; i++) {
for (j=0; j < graph->graphics[i].numpoints; j++) {
graph->graphi cs[i].points[j].x *= xratio ;
graph->graphi cs[i].points[j].y *= yratio ;
}
}

/* reposition the pushbutton children */

It assumes that an XmNexposeCal | back procedure

*/
*/

14-7

OSF/Maotif Programmer’s Guide

n = 0;
Xt Set Arg (args[n], Xm\hunthildren, &umchildren); n++;
XtSet Arg (args[n], Xm\children, &children); n++;
Xt Get Val ues (w, args, n);
for (i=0; i < numchildren; i++) {
n = 0;
XtSetArg (args[n], Xm\x, &x); n++
XtSetArg (args[n], Xm\y, &); n++
Xt Get Val ues (children[i], args, n);
Xt MoveWdget (children[i], (Position) (x * xratio),
(Position) (y * yratio));
}

/* save width and height for next time */
graph->old width = width ;
graph->ol d_hei ght = hei ght ;

14.2.2 Handling Exposure Events

14-8

Xt calls a widget's expose procedure when the widget receives an
exposure event. The precise types of events that cause Xt to invoke
the expose procedure are determined by the widget class
conpr ess_exposur e field. For DrawingArea, the value of this field
is Xt ExposeNoConpr ess. This means that Xt invokes the expose
procedure when the widget receives an Expose event.

When the expose procedure is called, some part of the contents of
the widget's window have been lost, and the window needs to be
redisplayed. Xt redisplays the contents of widget children by calling
their expose procedures. DrawingArea’s expose procedure calls the
Xm\exposeCal | back procedures. These callbacks are responsible

Graphics and Text in a DrawingArea

for redisplaying any contents of the DrawingArea that are outside
the DrawingArea’s children. DrawingArea’s expose procedure then
redisplays the contents of gadget children by calling their expose
procedures.

The X server generates Expose events when parts of a window are
exposed for a variety of reasons, as when the window is raised or
resized. The server determines which portions of the window are
exposed and decomposes these into a series of rectangles. The
server generates a series of Expose events, one for each rectangle.

DrawingArea does not compress exposure events. The expose pro-
cedure, and therefore the XniNexposeCal | back list, is called for each
rectangle in an exposure series. A simple callback procedure may
redisplay the entire window on each exposure series. Such a pro-
cedure should examine the count member of the XExposeEvent
structure for the event. A nonzero count indicates that more events
are to follow in the exposure series. The callback procedure should
ignore these events and redisplay the entire window when the
count reaches 0.

A more complex procedure may redisplay only the exposed rectan-
gles. Such a procedure should extract the bounds of each rectangle
from the x, y, wi dt h, and hei ght members of each XExposeEvent
structure. The procedure can either redisplay each rectangle
immediately or accumulate all the rectangles in an exposure series
into a region, using Xt AddExposur eToRegi on, and then redisplay
the region.

An application that draws directly into the DrawingArea must be
sure to regenerate the window contents correctly when the
DrawingArea becomes smaller. Making the DrawingArea smaller
does not always generate Expose events. The application can either
perform the redisplay in a Xm\r esi zeCal | back procedure or, on the
first invocation of the XmiNexposeCal | back list, set the window’s bit
gravity to Forget G avity. This ensures that each resizing of the
DrawingArea generates an Expose event, so the application can

14-9

OSF/Maotif Programmer’s Guide

safely leave all redisplay to the XnNexposeCal | back procedure.
However, it also means that application must regenerate the entire
contents of the window every time the window is resized.

14.2.2.1 Example of an Expose Procedure

Following is an XnNexposeCal | back procedure for a DrawingArea
that contains button children and lines connecting them. The first
time the procedure is invoked, it sets the window’s bit gravity to
ForgetGavity so that resizing the window generates Expose
events. On the last of each series of exposure events, the procedure
redraws all lines. It uses an internal data structure to hold infor-
mation about the end points of the lines.

voi d Redi splay (

W dget w, /* widget id */

Xt Poi nt er client_data, [* data fromapplication */
Xt Poi nt er call data) [* data fromwi dget class */
{

XnDr awi ngAr eaCal | backStruct * dacs =

(XDr awi ngAr eaCal | backStruct *) call _data ;
Gaphic * graph = (Gaphic *) client_data ;
XExposeEvent * event = (XExposeEvent *) dacs->event;
XSet WndowAt tri but es xswa;

static Boolean first tine = True ;
if (first_tine) {
/* Change once the bit gravity of the Drawing Area; default

is NorthWst and we want Forget, so that resize
al ways gener ates exposure events */

14-10

Graphics and Text in a DrawingArea

first_time = Fal se ;
xswa. bit _gravity = ForgetQavity ;
XChangeW ndowAt tri but es(Xt D spl ay(w), XtWndow(w),
QB tGavity, &swa);
}

/* Redisplay only on | ast event of the series */
if (! event->count) {
for (i=0; i < graph->numgraphics; i++) {
i f (graph->graphics[i].type == PCLYLI NE)
XDr awLi nes(Xt O spl ay(w), XtWndow(w),
XDef aul t GO Screen(Xt Screen(w)),
gr aph->gr aphi cs[i]. poi nt s,
gr aph->gr aphi cs[i]. num poi nt s,
Coor dMbdeCri gi n) ;

14.2.3 Handling Input Events

As with any manager, DrawingArea may have three general kinds
of input events within its borders:

- Events that belong to a widget child
- Events that belong to a gadget child
- Events that belong to no child

Xt dispatches events to widget children when appropriate, and the
DrawingArea does not process these. DrawingArea inherits
Manager’s translations for dispatching events to gadget children.

14-11

OSF/Maotif Programmer’s Guide

14-12

Before calling any Manager action as a result of a button press or
release or a key press or release, DrawingArea calls its own
Drawi ngAr eal nput () action. DrawingArea also calls this action
whenever it receives a button press or release or a key press or
release that does not have an associated Manager action.

The Drawi ngAr eal nput () action simply returns if the input event is
not of type KeyPress, KeyRel ease, ButtonPress, ButtonRel ease,
or MotionNotify. If the event is of one of these types, and if the
event does not take place within a gadget child of the DrawingArea,
the action calls the XmiNi nput Cal | back callbacks.

With the default translations, the result is that the XniNi nput Cal | -
back procedures are invoked whenever the DrawingArea receives a
KeyPr ess, KeyRel ease, But t onPr ess, or Butt onRel ease event that
does not occur within a child.

The default translations do not invoke the Draw ngAreal nput ()
action, and therefore the XnN nput Cal | back procedures, when the
DrawingArea receives a Moti onNoti fy event. An application that
wants its XN nput Cal | back procedures invoked on pointer motion
events must install the appropriate translations. When installing a
translation for Bt nMot i on, the application must override the exist-
ing translations. The following translations cause a motion event to
be sent to any gadget child in which it takes place. If the event does
not take place within a child, the XmN nput Cal | back procedures are
invoked:

<Bt nMbt i on>; Dr awi ngAr eal nput () Manager Gadget But t onMot i on() \ n\
<Mot i on>: Dr awi ngAr eal nput ()

There is one problem with these translations: because DrawingArea
has translations for BSel ect click and double click, the Bt nMot i on
actions are not invoked when the user moves the pointer while
pressing BSel ect . In order to receive these events, the application
must replace the DrawingArea translations, omitting the

Graphics and Text in a DrawingArea

translations for BSel ect click and double click.

14.2.3.1 Example of an Input Procedure

Following is an XmN nput Cal | back procedure for a DrawingArea
that contains button children and lines connecting them. The pro-
cedure takes action on ButtonPress and MtionNotify events.
When the user presses a mouse button, the procedure retrieves the
text from a TextField elsewhere in the application. If the user has
entered text here, the input procedure creates a PushButton with
the text as the label and places it at the point of the click. If the
TextField contains no text and the user has pressed a button over a
line or PushButton while holding the Shift key, the procedure
deletes the line or PushButton.

If the TextField is empty and the user presses a button without
holding the Shift key, the procedure either starts or finishes draw-
ing a line. The application uses a rubber-banding effect for line
drawing. When it starts a line the procedure sets a flag indicating
it is drawing a line; when it finishes the line, the procedure clears
this flag. When the procedure receives a MotionNotify event and is
in the process of drawing a line, it erases the previous line (using
XOR) and draws a new line from the anchor point to the current
pointer position.

voi d Handl el nput (

W dget W, /* widget id */

Xt Poi nt er client_data, /[* data fromapplication */
Xt Poi nt er call _data) [* data fromw dget class */
{

XnDr awi ngAr eaCal | backStruct * dacs =

14-13

OSF/Maotif Programmer’s Guide

(XmDr awi ngAr eaCal | backStruct *) call _data ;
Gaphic * graph = (Gaphic *) client_data ;
Arg args[5];

i nt n,;
String nane ;
Wdget newpush ;

i f (dacs->event->type == ButtonPress) {
nane = XnText Fi el dGet String(graph->textf) ; /* textfield */
if (strenp ("", nanme) !=0) {
n = 0;
Xt Set Arg (args[n], XmN\x, dacs->event->xbutton.x); n++;
XtSet Arg (args[n], Xm\y, dacs->event->xbutton.y); n++
newpush = XmQOr eat ePushButton(w, name, args, n);
Xt AddCal | back (newpush, XmNactivateCal | back, PushCB, NULL);
Xt ManageChi | d (newpush) ;
} else
i f ((dacs->event->xbutton.state & ShiftMsk) &&
('graph->in_drag)) {
Del etelnit (graph, dacs->event->xbutton. X,
dacs- >event - >xbut t on. y) ;
} else {
if (!graph->in_drag) {
StartUnit(graph, dacs->event->xbutton. X,
dacs- >event - >xbut t on. y) ;
} else {
EndUni t (graph, dacs->event->xbutton. X,
dacs->event - >xbut ton. y) ;

}
}

Xt Free(nane) ;

} else /* need to get notion events here: app_default shoul d
nodi fy Drawi ngArea translation with both Mtion
and BtnMtion additions */

i f (dacs->event->type == MdtionNotify) {

14-14

Graphics and Text in a DrawingArea

/* this one just exits if in drag is False */
Draglni t (graph, dacs->event->xbutton. x,
dacs- >event - >xbut t on. y);

14.3 Using a DrawingArea in a ScrolledWin-
dow

The ScrolledWindow widget provides a viewport onto a virtual scroll
and allows the user to move the scroll with respect to the viewport
by manipulating ScrollBars. ScrolledWindow offers two scrolling
policies: automatic and application-defined. In automatic scrolling,
the application provides the scroll widget; ScrolledWindow creates a
fixed-size viewport and handles user interaction with the
ScrollBars. In application-defined scrolling, the application pro-
vides the scroll widget and, if necessary, the viewport, and it han-
dles all user interaction with the ScrollBars.

When using separate viewport and scroll widgets with either scrol-
ling policy, an application can use a default DrawingArea as the
scroll widget. When the Xni\resi zePol i cy is Xn"RESI ZE ANY, the
application can use Xt Set Val ues of Xmi\x and Xm\y to place children
within the DrawingArea. The DrawingArea adjusts its size as
necessary to enclose all the children. The application can also use
Xt Set Val ues of the DrawingArea’s Xni\Nwi dt h and Xmi\hei ght to
change the size of the scroll widget.

An application can also use a DrawingArea as the viewport widget
in application-defined scrolling. One approach is not to use a
separate scroll widget but to maintain a virtual scroll, keeping the
contents in internal data structures and displaying as much of the

14-15

OSF/Maotif Programmer’s Guide

contents as will fit into the viewport. The application can use a
default DrawingArea as the viewport widget.

Another approach to application-defined scrolling is to create one
widget as a viewport and another, a child of the viewport, as the
scroll. The application can expand the scroll widget as necessary to
contain all the data. In response to user manipulation of the
ScrollBars, the application can reposition the scroll widget with
respect to the viewport. The viewport acts as a clipping region for
its child, the scroll.

In this approach the application can use a DrawingArea as the
viewport, the scroll widget, or both. When using a DrawingArea as
the viewport, the application must position and resize the scroll
child using XtMveWdget, Xt ResizeWdget, or XtConfi-
gureWdget. Xt Set Val ues for the child’'s geometry resources does
not work, because the parent's geometry manager does not permit
the child to move or grow beyond the bounds of the parent.

When a DrawingArea is the viewport widget in a ScrolledWindow
with application-defined scrolling, the Xmi\resizeCal | back pro-
cedure must recompute the ScrollBars’ Xni\sliderSize and
Xm\pagel ncr enent and possibly other resources to reflect the new
relation between the viewport and the scroll. It may also need to
reposition and resize the scroll with respect to the viewport.

See chapter 9 for more information on ScrolledWindow, including
examples using DrawingAreas as scrolls in both automatic and
application-defined scrolling.

14.4 Using a DrawingArea for Graphics

14-16

Graphics and Text in a DrawingArea

DrawingArea is an appropriate widget to use as a canvas or as a
manager that requires graphics operations in addition to children.
An application can use Xlib graphics facilities to draw into a
DrawingArea. See Xlib—C Language X Interface for more informa-
tion on Xlib graphics operations.

An interactive graphics application can use the XnN nput Cal | back
procedure to respond to user input. For example, when the user
presses a mouse button, drags, and then releases the button, this
procedure might draw a line from the point of the button press to
the point of the button release. The XnN nput Cal | back procedures
are invoked on button press and release events and on key press
and release events. To receive pointer motion events, the applica-
tion can provide translations that invoke the Drawi ngAr eal nput ()
action.

An application that needs to produce graphics but does not require
children or interaction with the user in the canvas might use a
DrawnButton instead of a DrawingArea. DrawnButton has no
input callbacks, but it does provide exposure and resize callbacks.

Following is some of the drawing code from the earlier example of a
DrawingArea containing button children and lines connecting them.
This example implements the rubber-band effect in which a line
starts at an anchor point and follows the pointer as the user moves
it.

The example maintains an internal data structure with information
about the DrawingArea and its graphic objects. The application ini-
tially stores a GC for use in drawing and erasing the rubber-band
lines. This GC uses a foreground color that results from XORing
the DrawingArea’s foreground and background. The GC also uses
the GxXxor function.

The remainder of the example code updates the internal data struc-
tures and draws lines as appropriate when the user starts a line,
moves the pointer, and ends a line.

14-17

OSF/Maotif Programmer’s Guide

14-18

/* Initialize data structures */
void I nitDraw (

Q aphi ¢ * graph,
Appl i cationDat a * app_data)
{

XQXVal ues val

Arg args[5];

i nt n;

Cardinal i ;

}

/*

/* create the gc used for the rubber banding effect */
n=0;
Xt Set Arg (args[n], Xm\foreground, &val.foreground); n++;

Xt Set Arg (args[n], Xm\background, &val.background); n++;
Xt Get Val ues (graph->work _area, args, n);

val . foreground = val . foreground ”* val . background ;
val . function = GXxor ;
graph->drag_gc = Xt Get G gr aph->wor k_ar ea,
QCFor eground | GBackground | GCFuncti on,

graph->in_drag = Fal se ;
graph->numgraphics = 0 ;
for (i=0; i < MAX_GRAPH i++) {

gr aph->graphi cs[i].numpoints = 0 ;

}

Start a line */

void Startnit (

aQ

aphi c * graph,

Posi tion X,
Position y)

{

&val);

Graphics and Text in a DrawingArea

Wdget w = graph->work_area ;

graph->drag_poi nt.x = graph->anchor_point.x = X
graph->drag_poi nt.y = graph->anchor_point.y
graph->in_drag = True ;
XDrawLi ne(Xt D spl ay(w), Xt Wndow(w),
graph->drag_gc,
gr aph->anchor _poi nt. x, graph->anchor_point.y,
graph->drag_poi nt.x, graph->drag point.y);

1
<

}

/* Pointer noved: if drawing a line, erase the last |ine
* and draw a new line fromthe anchor to the pointer

* position */

void Dragbhnit (

Q aphi ¢ * graph,
Position X,
Posi ti on y)

{

Wdget w = graph->work_area ;
if (!graph->in_drag) return ;

XDr awLi ne(Xt Di spl ay(w), Xt Wndow(w),
graph- >drag_gc,
gr aph->anchor _poi nt. x, graph->anchor_point.y,
graph->drag_poi nt.x, graph->drag point.y);

gr aph->dr ag_poi nt . x
gr aph->drag_point.y

X
y

XDrawLi ne(Xt O spl ay(w), XtWndow(w),
graph->drag_gc,
gr aph- >anchor _poi nt. x, graph->anchor_point.y,
gr aph->drag_poi nt. x, graph->drag_point.y);

14-19

OSF/Maotif Programmer’s Guide

}

/* Wility routine */
stati c Bool ean Near Poi nt (

XPoi nt poi nt ,
Posi tion X,
Posi ti on y)

{

#define ERROR 5
if ((point.x >x - ERROR &&
(point.x < x + ERROR &&
(point.y >y - ERROR &&
(point.y <y + ERROR) return True ;
el se return Fal se ;

}

/* BEnd a line */
void Endnit (

Q aphi ¢ * graph,
Posi tion X,
Position y)

{

Wdget w = graph->work_area ;
Cardi nal numpoints ;

/* no natter what happens, we need to renove the current
* rubber band */
XDrawLi ne(Xt D spl ay(w), Xt Wndow(w),
graph->drag_gc,
gr aph- >anchor _poi nt. x, graph->anchor_point.y,
gr aph->drag_poi nt. x, graph->drag_point.y);

/* if the given point if the sane as the anchor, we're done with

this polyline, exit drag node and be ready for the next
graphic unit, i.e., increnent numgraphics */

14-20

Graphics and Text in a DrawingArea

i f (Near Poi nt (graph->anchor_point, x, y)) {

graph->in_drag = Fal se

/* now see if a newunit needs to be created */

i f (graph->graphi cs[graph->num graphi cs] . num poi nts) {
gr aph- >gr aphi cs[gr aph- >num gr aphi cs] . type = PCQLYLI NE ;
i f (graph->num graphi cs < MAX_GRAPH) graph->num graphi cs ++
el se BufferFul | Error()

}

el se {

/[* draw the real line and store it in the structure */
XDrawLi ne(Xt D spl ay(w), XtWndow(w),
XDef aul t GOCF Screen(Xt Screen(w)),
gr aph- >anchor _poi nt. x, graph->anchor_point.y,
X, Y);

[* first point inaunit is actually special */
num poi nts = graph->gr aphi cs[gr aph- >num gr aphi cs] . num poi nts ;
if (numpoints == 0) {
gr aph- >gr aphi cs|[gr aph- >num gr aphi cs] . poi nt s| num poi nts].x =
gr aph- >anchor_point. x ;
gr aph- >gr aphi cs[gr aph- >num gr aphi cs] . poi nt S[hum poi nts].y =
gr aph->anchor _point.y ;
gr aph- >gr aphi cs[gr aph- >num gr aphi cs] . num poi nts ++
num poi nts ++

}
gr aph- >gr aphi cs[gr aph- >num gr aphi cs] . poi nt s[num poi nts].x = x ;
gr aph- >gr aphi cs[gr aph- >num gr aphi cs] . poi nt s num poi nts].y =y ;

i f (graph->graphi cs[graph->num graphi cs] . num poi nts < MAX_Pd NT)
gr aph- >gr aphi cs[gr aph- >num gr aphi cs] . num poi nts ++ ;
el se BufferFul | Error()

/* now start the new unit */
gr aph->drag_poi nt.x = graph->anchor_point.x = x ;

14-21

OSF/Maotif Programmer’s Guide

graph->drag_poi nt.y = graph->anchor_point.y =vy ;
XDrawLi ne(Xt D spl ay(w), Xt Wndow(w),
graph->drag_gc,
gr aph- >anchor _poi nt. x, graph->anchor_point.y,
gr aph->drag_poi nt. x, graph->drag_point.y);

14.5 DrawingArea and Advanced Text Edit-

ing

Some applications may need text-editing capabilities beyond those
provided by the Motif Text widget. For example, the application
may want to display text using different fonts or colors within the
same editor. Such an application might use a DrawingArea to
implement a text editor based on compound strings.

14.5.1 Text Output

14-22

An application that uses compound strings can use Xn&tri ngDr aw
or Xngtri ngDrawl nage to display the compound string text in a
DrawingArea. These functions use different Xlib routines to display
compound string segments, depending on whether the segments are
associated with font sets or font structs in the font list. XnBtri ng-
Dr aw uses XmbDr awst ri ng to display segments associated with font
sets. It uses XDrawsString or XDrawstri ngl6 to display segments
associated with font structs. Xt ri ngDr awl mage uses XnbDr awl mt
ageString to display segments associated with font sets. It uses

Graphics and Text in a DrawingArea

XDrawl mageString or XDraw mageStringlé to display segments
associated with font structs.

An application that does not use compound strings may call the Xlib
text-drawing routines directly. In addition to those mentioned
above, these include XDr awText for text associated with a font and
XmbDr awText for text associated with a font set. Wide-character
versions exist for all the Xnb routines.

An application that draws text must determine where to place the
text, what the width and height of the text will be, and how to move
to the origin of the next text it will draw. For compound strings,
and application can wuse XnBtringExtent, XnStringHeight,
XnStri ngWdt h, and Xt ri ngBasel i ne to determine the extents of
the text.

An application that does not use compound strings may call Xlib
routines. To determine the extents of a font struct, the application
can examine the ascent, descent, max_bounds, and m n_bounds
members of the XFont Struct. To determine the width and extents
of text, the application can call XStri ngWdt h, XText Ext ent s, and
XText Ext ent s16.

To determine the extents of a font set, the application can call XEx-
tentsCtf Font Set. To determine the width and extents of text, the
application can call XnbText Escapenent, XnbText Extents, and
XnbText Per Char Ext ent s. Wide-character versions exist for all the
Xnb routines.

For more information about the Xlib text facilities, see Xlib—C
Language X Interface.

14-23

OSF/Maotif Programmer’s Guide

14.5.2 Text Input

14-24

To obtain text input in a DrawingArea, an application should use
the Xlib input method facilities. These facilities allow the applica-
tion to open an input method and an input context and to obtain
input from the input method. For more information, see chapter 11
and Xlib—C Language X Interface.

Chapter 15. Drag and Drop

Drag and drop allows the user to "pick up" objects on the screen,
"drag" them around the display, and "drop" them at a new location,
possibly in another application.

With drag and drop the user can:
= Move text or other information between windows.
- Cause application-specific actions to occur.
- Obtain Help information about drop sites.

This chapter first provides an overview of the drag and drop process
and concepts from both the user’'s and the application developer’s
perspectives, then explains the actions of both initiator and receiver
clients during the drag and at the drop, giving code samples.

15.1 User Overview of Drag and Drop

This section describes what the user does and sees during a drag
and drop transaction.

15.1.1 Overview of User Interaction

A drag and drop transaction consists of the following actions:

1. A user presses and holds BTr ansf er, usually mouse button 2,
over a source object starting a drag transaction. The applica-
tion owning that object is the initiator of the drag. The
current pointer is replaced by a drag icon—a picture
representing the item being dragged.

15-1

OSF/Maotif Programmer’s Guide

2. The user moves the pointer. From now until a drop occurs, the
drag icon replaces the mouse pointer.

3. The user drops the object, usually by releasing the mouse but-
ton.

The drag icon can be dropped anywhere on the screen. How-
ever, only certain widgets have registered themselves as drop
sites and are able to process the drop.

Locations on the screen that can accept drops are drop sites
and the application owning that drop site is the destination or
receiver.

The receiver application usually performs some action on the
information represented by the dragged icon. The initiator
application may also perform some action based on the results
of a drag transaction.

A drop can be between applications or within the same application.
An application can be both source and destination of a drop, source
only, destination only, or not participate in drag and drop at all.

The user can request help about a drop site, if available, by drag-
ging to the drop site, and pressing KHel p (usually F1).

The user can cancel the drag at any time by pressing KCancel , usu-
ally Escape.

15.1.2 Overview of Drag Over Effects

15-2

The drag icon consists of three parts:

- The source icon is a picture representing the type of the source
object, such as text.

Drag and Drop

- The state icon can be used to show whether or not the object
being dragged can be dropped at its current location on the
screen.

= The operation icon can be used to show what action should hap-
pen when the drop takes place.

In the following illustration, the running figure is the source icon,
the arrow in the upper left is the state icon, and the rectangles with
the corner folded over indicate a Copy is desired.

Figure 15-1. A Drag lcon

These parts can be combined (blended) and attached to each other
in different ways. The default blending and attachment are shown
in the previous illustration.

Parts of the drag icon may change shape or color as it is being
dragged through potential drop sites, providing visual feedback
about possible drop sites to the user. These changes are drag over
effects.

Applications can use the default drag icon effects, or provide more
sophisticated or custom drag icons. The application or user can cus-
tomize these drag over effects in resource files.

15-3

OSF/Maotif Programmer’s Guide

15.1.2.1 Drag States

During a drag, there are three states that describe the relationship
of a drag icon to what is under it at the time:

valid drop site if the drag icon is over a drop site on which it
can potentially be dropped (this is only a hint;
when the drop is actually attempted, further
processing may show that the drop cannot
actually be done)

invalid drop site the drag icon is over a drop site; but it can’t be
dropped there.

no drop site the drag icon is not over a registered drop site.

The default state icon for all three states is the same: an arrow in
the upper left corner of the drag icon. Because the icon is the same
for all three states, it appears not to change during the drag. The
application or the user can provide custom state icons or colors in a
resource file.

15.1.2.2 Drag Operations

15-4

The user specifies what action is to take place when the drop occurs
by pressing certain keys when the drag starts or while the drag is in
process:

Shift only Force a move from the initiator to the receiver
client (Move).

Ctrl only Force a copy from the initiator to the receiver
client (Copy).

Drag and Drop

Shift and Ctrl Force a link between the initiator and receiver
clients (Link).

The operation chosen by the user must be valid for both the drag
source and the drop site, or the drop site will be considered invalid.

If the user doesn't specify an operation, one is chosen by the toolkit.
It choses an operation that is valid for both the drag source and
drop site. Move is the first choice, Copy is the second, and Link is
the third. If the system can not find a valid operation, the drop site
is considered invalid.

The operation icon reflects the operation chosen by the user or by
the system. If the operation is changed by the user during the drag,
the operation icon changes also.

The operation icon may change as the drag icon moves to different
drop sites if the drop sites accept different operations.

15.1.3 Overview of Drag Under Effects

A widget registered as a drop site may change visually as a drag
icon passes over it. These visual cues are drag under effects. The
sensitive area of the widget is the part that responds to drag and
drop. By default it is the whole widget, but applications can specify
that only parts of the widget respond to drag and drop.

Various highlighting styles are possible:

= A border around the sensitive area of the drop site widget. This
is the default value.

- The sensitive area of the drop site widget looks pushed out.

- The sensitive area of the drop site widget looks pushed in.

15-5

OSF/Maotif Programmer’s Guide

A special pixmap is displayed within the sensitive area of the
drop site widget, overwriting what is normally there.

No drag under effects are used for the drop site widget.

Applications can use the default drag under visual effects, or create
more sophisticated or custom effects, such as special animation or
sound effects.

15.1.4 Overview of Drop Effects

Visual effects also take place during the drop:

The drag icon appears to sit over the drop site while the process-
ing for the drop is finishing, but the standard cursor is restored
and can be used normally.

The source icon appears to melt into the drop site if the drop is
successful.

The source icon appears to snap back to the source if the drop is
unsuccessful.

A dialog window containing information about a drop site should
appear if the user has requested help and the receiver client pro-
vides help, otherwise nothing happens.

The source icon appears to snap back to the source and the pre-
vious X cursor returns if Cancel is requested. All drag under
and drag over effects are removed.

These drop effects cannot be changed by the application or the user.

15-6

Drag and Drop

15.2 Technical Overview of Drag and Drop

This section explains some drag and drop concepts, and provides a
general view of the initiator and receiver duties during the drag and
at the drop.

The Motif 1.2 toolkit for drag and drop consists of:

- widgets and widget classes that provide resources containing
details about the source and destination of the drag

- functions that applications use to manage the widgets and
widget classes.

- protocols that specify how interactions between source and desti-
nation clients are to take place.

- functions that manage messages, call callbacks, decide on the
valid operations for a potential drop, and keep the drop site
status updated.

If the initiator and receiver are in the same client, they share the
same toolkit. If the initiator and receiver are different clients, each
client has a version of the toolkit.

An application can allow any widget to be a drag source or initiator
by specifying a translation for BTransfer Press in that widget.
The corresponding action creates a DragContext which starts the
drag and drop transaction. The toolkit on the initiator side in in
charge during the drag and manages all drag messages and call-
backs.

An application can register any widget as a drop site. The drop site
widget may change visually as a drag icon moves in and out of it,
providing drag under visual clues to the status of the drag. The
application controlling the current drop site is known as the
receiver. The toolkit on the receiver side is in charge of the drop

15-7

OSF/Maotif Programmer’s Guide

operation, and manages all drop messages and callbacks.

Each drag source and drop site specifies the types of data it is
prepared to handle and what operations it can perform on that
data.

The state of the drag indicates whether the drag icon is over a valid
drop site, and invalid drop site, or no drop site. For a drop site to be
valid, there must be at least one target type and one operation in
common between the drag source and drop site.

15.2.1 Complexity of Drag and Drop Programs

15-8

Applications can use drag and drop functionality on any of several
levels:

- Text, List, Label, and Button widgets are already defined as
drag sources. Text and TextField widgets are registered as drop
sites. So, at the simplest, an application can compile with the
Motif 1.2 libraries, and have those widgets participate in drag
and drop. For instance, text could be selected from one applica-
tion and moved into a text area in another application.

= On a slightly more advanced level, applications can let the
toolkit do most of the work, but provide some customization. For
instance, an application could register a pushbutton as a drop
site, but still use default visual effects. In this case, the applica-
tion would register a widget as a DropSite and provide code to
handle drop and transfer duties. The example programs
DNDl abel . c and DNDscr ol | . ¢ in Appendix B are at this level.

- A complex application can take much of the control of the drag
and drop itself. It can provide custom visuals for both drag icon
and drop site. It can manage overlapping drop sites. It can have

Drag and Drop

complex transfers of information. The example program
DNDdeno in Appendix B contains extensive customization.

15.2.1.1 A Simple Drag Receiver

This sample program displays a Label widget and registers it as a
drop site. It accepts compound text, and supports only the Copy
operation (that is, it does not support Move or Link).

When a valid drop is made on the Label widget, its HandleDrop
routine changes the Label widget's label to compound text passed
from the initiator.

The appropriate #include lines, the DropTransferCallback routine,
the HandleDrop routine, and a few lines in the main routine to
register the drop site are all that is needed to customize a Label
widget to accept a drop and change its label in response. The
details of this additional code are covered in later sections of this
chapter.

Figure 15-2. A Label Widget Receiver Before and After Drag

DNDlabel DNDlabel

15-9

OSF/Maotif Programmer’s Guide

15-10

/*

4i
4i

4
i
i
i
i

4i

4i

ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude

ncl ude

file: DND abel.c * [

<si gnal . h>
<stdi o. h>

<X11/ Xi b. h>
<Xml Xm h>

<Xm Bul | eti nB. h>
<Xnm At omMyr . h>
<Xmi Label . h>

<Xmi Dr agDr op. h>

<X11/ Xat om h>

#def i ne MAX_ARGS 10

/* global variables */

W
At

/*

dget
om

This routine transfers information fromthe initiator */
static void TransferProc(w closure, seltype, type, value

nyDC,
COVPOUND_TEXT;

W dget W,
Xt Poi nt er cl osure;
At om *sel type;
At om *type;
Xt Poi nt er val ue;
unsi gned | ong *| engt h;
i nt fornat;
{
i nt n;
Arg ar gs[MAX_ARGS] ;

fornat)

| engt h,

}

Drag and Drop

/* information fromthe drag initiator is passed in conpound
*text format. Convert it to conpound string and repl ace the
* Label |abel. */

if (*type = COMPOUND TEXT) {

n =0

Xt Set Arg(args[n], XmN abel String, XnCvt CTToXnString(val ue));
n++;

Xt Set Val ues(cl osure, args, n);

}

/* This routine is performed when a drop is made. |t decides what
information it wants and uses TransferProc to transfer the data
fromthe initiator */

static void Handl eDrop(w, client_data, call_data)

W dget W,
Xt Poi nt er client _data, call_data;
{
XnDr opPr ocCal | back Dr opDat a;
XnDr opTransferEntryRec transferEntries[2];
XnDropTransferEntry transferList;
Arg ar gs[MAX_ARGS] ;
i nt n;

DropData = (Xnir opProcCal | back) cal | _dat a;

/* set the transfer resources */
n=0;

/* if the action is not Drop or the operation is not Copy,

* cancel the drop */
if ((DropData->dropAction != XnDRCP) ||

15-11

OSF/Maotif Programmer’s Guide

(DropDat a- >operati on ! = XnDRCP_CCPY))
Xt Set Arg(args[n], Xm\transferStatus, XnTRANSFER FAI LURE); n++;
el se {
/* the drop can continue. Establish the transfer list and
* start the transfer */
transferEntries[0].target = COVWOUND _TEXT;
transferEntries[0].client_data = (Xt Pointer)w,
transferList = transferEntri es;
Xt Set Arg(args[n], XmN\dropTransfers, transferList); n++
Xt Set Arg(args[n], Xm\nunDropTransfers, 1); n++;
Xt Set Arg(args[n], Xm\transferProc, TransferProc); n++;
}
/* start the transfer or cancel */
XD opTr ansf er St art (Dr opDat a- >dragCont ext, args, n);

}

/* This programcreates a pushbutton with a label, which is
* registered as a drop site. The |abel changes when conpound
* text is dropped onit. */

void main (argc, argv)
unsi gned i nt argc;
char **argv;

{
Arg ar gs[MAX_ARGS] ;
i nt n;
W dget topLevel, BulletinB, Label;
Xt AppCont ext app_cont ext ;
At om inportList[1];

/* make the supporting wi dget structure for the Label w dget */
topLevel = XtApplnitialize(&pp_context, "XMrest", NULL, O,
&argc, argv, NULL, NULL, 0);

15-12

Drag and Drop

n=0;

Bul l etinB = XmOr eat eBul | eti nBoar d(t opLevel, "BulletinB',
args, nj;

Xt ManageChi | d(Bul | eti nB);

COMPAUND _TEXT = Xmi nt er nAt on{ Xt D spl ay(t opLevel),
" COVPOUND TEXT", Fal se);

/* create a Label widget */

n=0;

Label = XnCreatelLabel (BulletinB, "title", args, n);
Xt ManageChi | d(Label);

/* register the label as a drop site */

i nportList[0] = COVPAUND TEXT;

n = 0;

Xt Set Arg(args[n], XnN nportTargets, inportList); n++;
Xt Set Arg(args[n], Xm\num nportTargets, 1); n++;

Xt Set Arg(args[n], XnmN\dropSiteQperations, XDRCOP_CCOPY);
Xt Set Arg(args[n], XmN\dropProc, Handl eDrop); n++;

XnDr opSi t eRegi ster(Label, args, n);

Xt Real i zeW dget (t opLevel);
Xt AppMai nLoop(app_cont ext) ;

15.2.1.2 A Simple Drag Source

This program creates a ScrollBar widget which is to be used as a
drag source. The normal action for Button 2 Press has been over-
ridden to cause call the StartDrag routine, which causes the drag to

15-13

OSF/Maotif Programmer’s Guide

15-14

begin. The program allows only the Copy operation, and will reply
to requests for compound text.

When a drag is started on the ScrollBar, the default drag icons are
used.

When a transfer request is received by the DragConvertProc rou-
tine, it returns the value of the scrollbar slider converted into com-
pound text.

The code necessary to make a normal ScrollBar widget into a source
for drag and drop is the appropriate #include lines, the DragCon-
vertProc routine, the StartDrag routine, and translation and action
commands. The details of this additional code are covered in later
sections of this chapter.

Figure 15-3. A ScrollBar Widget as Drag Source

DMNDscroll

/* file: DNDscroll.c */

#i ncl ude <signal . h>
#i ncl ude <stdi o. h>

#i ncl ude <X11/ X i b. h>
#i ncl ude <Xn Xm h>
#i ncl ude <Xni Bul | eti nB. h>

Drag and Drop

#i ncl ude <Xni Scrol | Bar. h>
#i ncl ude <Xni At om\gr . h>

#i ncl ude <Xni Dr agDr op. h>

#i ncl ude <X11/ Xat om h>

#def i ne MAX_ARGS 10

/* global variables */

W dget scrol | bar;

Atom COMPOUND_TEXT;

/* this routine returns the value of the scrollbar slider,
* converted into conpound text. */

static Bool ean DragConvertProc(w, selection, target, typeR n,
valueRn, lengthRn, fornatRn,
max_|l engthRn, client_data,

request _id)
W dget W,
At om *sel ecti on;
At om *target;
At om *typeR n;
Xt Poi nt er *val ueR n;
unsi gned | ong *| engt hR n;
i nt *format R n;

unsi gned | ong

*max_| engt hR n;

Xt Poi nter client data;
Xt Request 1 d *request _id,;
{

W dget

XnBtring cstring;

static char tnpstring[100];

15-15

OSF/Maotif Programmer’s Guide

i nt *val ue;

i nt n;

Arg ar gs[MM ARGS] ;
char *ctext;
char *passt ext ;

/* this routine processes only conpound text */
if (*target != COWOUND _TEXT)
return(Fal se);

/* get the value of the scrollbar slider */
n=0;

Xt Set Arg(args[n], Xnm\val ue, &al ue); n++;
Xt Get Val ues(scrol | bar, args, n);

/* convert the slider value to conpound text */
sprintf(tnpstring, "%l", value);

cstring = XnBtringCreatelocal i zed(tnpstring);
ctext = XnOvt XnBtri ngToCT(cstring);

passtext = XtMlloc(strlen(ctext)+1);
nencpy(passtext, ctext, strlen(ctext)+1);

/* format the value for transfer. convert the value from
* conpound string to conpound text for the transfer */
*typeR n = COVPOUND_TEXT;

*val ueRtn = (Xt Pointer) passtext;

*lengthRin = strlen(passtext);

*fornmatRn = 8;

return(True);

}

/* This routine is performed by the initiator when a drag starts
* (in this case, when nouse button 2 was pressed). It starts
* the drag processing, and establishes a drag context */

15-16

Drag and Drop

static void StartDrag(w event)

Wdget w,

XEvent *event;

{
Arg ar gs| MAX_ARGS] ;
Car di nal n;
At om exportList[1];

/* establish the list of valid target types */
exportList[0] = COWQAUND TEXT;

n = 0;

Xt Set Arg(args[n], XnNexportTargets, exportList); n++;
Xt Set Arg(args[n], Xnm\hunExportTargets, 1); n++;

Xt Set Arg(args[n], XnNdragQperations, XnDRCP_QCPY);

Xt Set Arg(args[n], XmN\convertProc, DragConvertProc); n++;
XnDragStart (w, event, args, n);

/* translations and actions. Pressing nouse button 2 overrides
* the normal scrollbar action and calls StartDrag to start a
* drag transaction */

static char dragTranslations[] =
"#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] =
{ {"StartDrag", (XtActionProc)StartDrag} };

/* This routine creates a windoww th a scrollbar init. */
void nain (argc, argv)
unsi gned int argc;

char **argyv;

{

15-17

OSF/Maotif Programmer’s Guide

15-18

Arg ar gs[MAX_ARGS] ;

i nt n;

W dget topLevel, BulletinB;
Xt AppCont ext app_cont ext ;

At om inportlList[1];

Xt Transl ati ons parsed_xl ati ons;

/* create widget structure for scrollbar w dget */
topLevel = XtApplnitialize(&pp_context, "DNDscroll", NUL, O,
&argc, argv, NULL, NULL, 0);

COMPAUND_TEXT = Xmi nt er nAt on{ Xt D spl ay(t opLevel),
" COVPOUND TEXT", Fal se);

n=0;
Bul | eti nB = Xn(r eat eBul | et i nBoar d(t opLevel , "BBoard", args, n);
Xt ManageChi | d(Bul | eti nB);

/* override button two press to start a drag */
parsed_xl ati ons = Xt ParseTransl ati onTabl e(dragTransl ati ons);
Xt AppAddAct i ons(app_cont ext, dragActions, Xt Nunmber (dragActions));

/* create a scroll bar wi dget */

n=0;

Xt Set Arg(args[n], XnmN\translations, parsed xlations); n++;

Xt Set Arg(args[n], XmNorientation, XrmHOR ZONTAL); n++;

Xt Set Arg(args[n], Xn\wi dth, 150); n++;

scrol | bar = XmOreateScrol | Bar(Bul l etinB, "testscroll", args, n);
Xt ManageChi | d(scrol | bar);

Xt Real i zeW dget (t opLevel);
Xt AppMai nLoop(app_cont ext) ;

Drag and Drop

15.2.2 Drag Sources and Drop Sites

Text, List, Label, and Button widgets are automatically drag
sources. Applications need do nothing further to use them. An
application can allow any widget to be a drag source by establishing
a callback when BTransfer is pressed within that widget. The
application which owns the widget in which the drop was started is
the initiator.

A drag icon, which is a pictorial representation of the data being
dragged, replaces the normal cursor while the drag is in effect. The
icon may change as it moves around the screen. The actual data is
not being dragged, only a representation of it. The data is
transferred to a new location only when the drop is made, through
the drop transfer protocol.

Any widget can be registered as a drop site. Text and TextField
widgets are automatically registered as drop sites. If an application
wants to use these as drop sites, it need not register them
separately.

The "drop site" is simply the place where the drag is terminated.
The DropSite registry contains information about widgets that have
been registered as drop sites. Although the drag icon can be
dropped anywhere on the screen, only widgets that have been
registered as drop sites can accept information from the initiator.
The receiver is the application controlling the current drop site.

The "sensitive area" is the part of the widget that responds to drag
and drop. By default, the sensitive area is the whole widget. How-
ever, the application can specify that only part of the widget is sen-
sitive.

Widgets that are drop sites can be stacked on each other, with one
widget partially or completely within the boundary of another. The
sensitive areas of lower drop sites are clipped if they are covered by

15-19

OSF/Maotif Programmer’s Guide

a higher widget.

The stacking order of the widgets with drop sites can be changed by
the application.

15.2.3 Protocols

The protocol describes how the initiator and receiver clients interact
through the toolkit with each other.

15.2.3.1 Drag Protocols

15-20

There are two types of drag protocol:
preregister Does not require messaging.
dynamic Does require messaging.

Applications can support either, both, or neither. If possible, clients
should support both to allow the most flexibility for users. The
Motif 1.2 toolkit automatically supports both unless a user or client
sets resources to force the use of one or the other.

The user can specify which drag protocol to use when the client is
the initiator or receiver. The application can specify drag protocol
in an app-defaults file. If neither the application or the user specify
a protocol, the preregister drag protocol is used.

The toolkit uses the requested protocols and the protocols allowed
by the initiator and receiver clients to arrive at the protocol actually
being used. Therefore, the protocol can change as the drag icon
moves from window to window, depending on which protocols they

Drag and Drop

both support. If the initiator and receiver cannot agree on a proto-
col, no drag over or drag under visuals effects are shown.

Even if there are no drag over or drag under visual effects, a drop
can still occur using the drop protocol, unless a client has specified
that that that window does not participate in drag and drop.

15.2.3.2 Drop Protocol

The drop protocol is based on the Xt Selection transfer protocol.
The transfer between either client and the toolkit can be incremen-
tal or non-incremental, regardless of how the other client is
transferring. Each client has a procedure to process transfers:
XmN\convert Proc for the initiator, and Xni\transferProc for the
receiver. Incremental transfer is indicated by a resource value.

The receiver creates a list of information and target types desired
from the initiator, along with a Xm\t ransferProc to handle any
processing needed during the transfer. It then calls XnDr op-
TransferStart to start the transfer process. Even if there is no
transfer, the receiver should call this routine, so that the status can
be updated correctly for the initiator.

For each item in the transfer list, the initiator's Xni\Nconvert Proc is
called. This procedure reads and processes the request and returns
the information.

When the transfer has finished, the toolkit on the receiver side
updates the Xn\t r ansf er St at us DropTransfer resource to indicate
if the transfer was successful. The receiver’'s Xm\ r ansf er Pr oc rou-
tine can also update this resource.

15-21

OSF/Maotif Programmer’s Guide

15.2.4 Drag and Drop Widget Classes

Motif 1.2 provides a number of Xt objects and widgets to encapsu-
late the underlying protocol, however, these are not mapped onto

the screen.
XnDi spl ay

Xscr een

XnDr agl con

XnDr agCont ext

XnmDropSite

15-22

An object that contains display-specific
information, such as the initiator and
receiver protocol styles.

An object that describes screen-specific
information, such as font and default drag
over icons.

A widget that describes the pixmap, mask,
and attachment of an icon. The source icon,
state icon, operation icon, and the resulting
blended drag icon are all Drag Icons.

A widget that describes the resources
specified by each drag initiator, such as
target type, custom icons, custom colors,
blending model, permitted operations, and
callback routines for various situations
encountered during the drag and drop
transaction.

A drop site database maintains a registry
of the resources unique to each drop site,
such as animation for drag-under effects,
valid target types and operations, and call-
back routines for situations encountered
during a drag and drop transaction. It is
not an Xt object, although it acts like one
with respect to resource fetching.

XnDr opTr ansf er

Drag and Drop

A widget that describes the information
desired from the initiator client and the
procedure used to process the results.

15.2.5 Drag and Drop Functions

Motif 1.2 provides functions to support drag and drop processing:

XnmOr eat eDr agl con

XnDr agCancel

XnDragSt art

Creates any of the parts of a
drag icon (status icon, operation
icon, or source icon) from a cur-
sor or pixmap. This allows cus-
tom icons for all or part of the
drag icon, rather than the
default icons.

Cancels a drag that is in pro-
gress. This function is called
when the user presses KCancel .

This function is called in the
routine that is performed when
the user starts a drag.
Resources describing the initia-
tor are established. This func-
tion creates a DragContext
object, which is referenced by
other functions whenever infor-
mation about the drag initiator
is needed.

XnDr opSi t eConf i gur eSt acki ngQr der Sets the order of overlapping

drop sites. The default order is
the first-registered drop site is

15-23

OSF/Maotif Programmer’s Guide

15-24

XnDr opSi t eEndUpdat e

XnDr opSi t eQuer ySt acki ngQr der

XnDr opSi t eRegi st er

XnDropSiteRetri eve

XnDropSiteSt art Updat e

XnDr opSi t elpdat e

on the bottom and the last-

declared drop site is on top.

Causes the XnhropSitelUpdate
requests made after XnDropSi -
t eSt art Updat e to take place.

Provides information about the
stacking order of overlapping
drop sites. The order can be
changed with Xnir opSi t eConf i -
gur eSt acki ngQr der .

Registers a drop site. Resources
describing the drop site are
defined.

Retrieves the values of drop site
resources.

Signals the toolkit to wait until
XnDr opSi t eEndUpdat e is called
to process drop site changes
requested by XnDropSitelp-
date. This provides a more
efficient way to update several
drop sites than changing them
one at a time.

Updates drop site resources for a
single drop site. If a series of
XnDr opSi t eUpdat e requests are
surrounded by XnDr opSi teSt ar -
t Updat e and XnDr opSi t eEndUp-
dat e, then the changes will be
made all at once after the end
update request.

XnDr opSi t eUnr egi st er

XnDx opTr ansf er Add

XnDr opTransfer Start

XGet Dr agCont ext

XnGet XnDi spl ay

XmGet Xncr een

XnmTar get sAreConpati bl e

15.2.6 Targets

Drag and Drop

Removes a drop site. After a
drop site has been unregistered,
it is unavailable as a destination
for a drag.

Add additional transfer requests
once a transfer has started.

Specifies what information
should be requested from the
drag initiator, and starts the
process to get the information.

Returns the DragContext ID
associated with a particular
time stamp.

Returns the ID for the specified
display.

Returns the ID for a specified
screen. Some resources, such as
the drag icons, are screen-
specific.

Checks if there are any match-
ing targets between the initiator
and destination to help deter-
mine the correct drag state.

Each drag source and drop site specifies what kinds of data types it

can process, called targets.

XA _STR NG

These targets are atoms, such as

15-25

OSF/Maotif Programmer’s Guide

The DragContext resources, XniNexpor t Tar get s and Xni\nunExport -
Tar get s provide a list and number of the data types provided by the
drag source. These are export targets.

The DropSite resources, XN npor t Tar get s and Xni\nur nport Tar -
get s provide a list and number of the data types accepted by the
drop site. These are known as import targets.

Any number of targets may be listed for each source and site. A
drop site is considered valid for a particular drag if at least one of
its targets matches any of the source’s targets and if the source and
drop site operations are compatible.

An application can define anything it wants as a target. Be aware,
however, that other applications might not recognize that target.

15.2.7 Operations

15-26

There are three ways that the initiator and receiver can interact
with each other:

- Data can be moved from the initiator to the receiver (Move).
- Data can be copied from the initiator to the receiver (Copy).
- Data can be linked from the receiver to the initiator (Link).

When a drag is started, the initiator provides a list of valid opera-
tions in the DragContext XniNdragQper ati ons resource. When a
drop site is registered, the receiver provides a list of operations it
supports in the DropSite XimiNdr opSi t eQper at i ons resource. These
lists are the values XnDRCP_MOVE, XnDRCP_CCPY, or XnDRCP_LI NK,
connected by the bitwise OR operator (]). For instance,
XnDRCP_MOVE | XnDRCP_QCPY means that Move and Copy are valid
operations, but Link is not. The value XnDRCP_NOCP indicates that

Drag and Drop

there are no operations possible for a drop at the current site.

Callback structures for both the DragContext and DropSite have
oper ati on and oper at i ons fields. The oper at i ons field lists all
valid operations if a drop were to occur at this point. The oper a-
tion field shows the operations that would happen if a drop
occurred at this point. As the drag icon moves over different poten-
tial drop sites, the values in its callback structures change in
response to what operations the drop sites allow. If there are no
common operations between a drag source and a drop site, the
oper at i on and oper at i ons fields are set to XnDRCP_NOCP, and the
dropSi t eSt at us field is set to XnDRCP_SI TE | NVALI D.

The user can specify an operation using key combinations discussed
earlier in this chapter. The use can also change the operation at
any time until the drop starts.

The initiator and the receiver need to be able to handle all the
operations their application supports. If the operation is Move, the
receiver first gets a copy of the data, then tells the initiator that it
can delete the data. If the operation is Copy, both applications have
the data, making two copies of it. If the operation is Link, there is
only one copy of the data, and the receiver establishes a link to that

copy.

15.2.7.1 Drop Site Status

The drag and drop callbacks for both receiver and initiator contain
a dropSiteStatus field. This field is initialized and maintained
by the receiver through the toolkit, although the receiver's drag and
drop procedures can update it if they wish. This field is used by the
toolkit to determine what drag over and drag under visual effects to
use.

15-27

OSF/Maotif Programmer’s Guide

The field indicates the the relation of drag source to the drop site
over which the drag icon is located.

XnDRCP_SI TE VALI D A drop can take place. There is
at least one matching target and
operation between the drag
source and the drop site.

XnDRCP_SI TE_| NVALI D A drop cannot take place.
Either there were no matching
targets, no matching operations,
or the receiver’'s Xni\dr agPr oc or
XmiNdr opProc discovered some
other problem that would make
a drop impossible.

XmNO DRCP_SI TE The drag icon is not over a drop
site.

If the toolkit on the receiver’'s side has set either operation or
oper ations field to XnDRCOP_NOCP, it also sets the dropSiteS-
t at us field to XnDRCP_SI TE_| NVALI D.

15.2.8 Overview of Programmer Responsibilities

This section provides an overview of the actions of the initiator
client, and the receiver client while a drag and drop transaction is
in progress. The actions are covered in more detail later in the
chapter.

Before a drag starts:

- The user or client can indicate with the protocol resources the
type of protocol and visual effects to be used for the initiator and
receiver if possible.

15-28

Drag and Drop

- The initiator client creates any special icons it wants to use for
drag over effects using XnQr eat eDr agl con.

The initiator establishes translation or event handlers to react to
BTransfer Press.

- The receiver client registers widgets as potential drop sites using
XnDr opSi t eRegi st er, providing information about:

— the shape of the area of the widget sensitive to drag and drop,
if it is not the whole widget.

— valid targets
— optional drag under visual effects.

— an optional XnNdragProc to receive messages during the
drag.

— an XimNdr opPr oc to be performed at the drop.

The receiver can check and change the stacking order of overlap-
ping drop sites with XnDropSi teQueryStacki ngOrder and
XnDx opSi t eConf i gur eSt acki ngQr der .

The receiver can update drop site information using XnDr opSi -
t eUpdat e, XnDr opSi t eSt art Updat e, and XnDr opSi t eEndUpdat e.

The receiver can unregister a drop site with XnDr opSi t eUnr e-
gi ster.

When the drag starts (typically a BTr ansf er Press event):

- The toolkit on the initiator’s side is in charge during the drag,
until a drop is made. The initiator client:

— Receives an indication that the user has started a drag.
— Creates a DragContext using XnDr agSt ar t , specifying:

— valid targets

15-29

OSF/Maotif Programmer’s Guide

15-30

— optional callbacks to be performed during the drag.

— a XnN\convert Proc to process transfer requests from the
receiver.

— optional custom drag-over visuals.

— optional drop callbacks to be performed when a drop
occurs.

- The receiver client does nothing.
During a drag:
- The user can cancel the drag or change operation.

= The receiver is not involved unless the pointer is within one of

its registered drop sites.

The toolkit on the receiver's side initializes the dropSiteS-
t atus, operation, and operations fields in the callback
structure

The receiver's XniNdr agPr oc routine (if one was registered) is
notified of drag source actions within the drop site: drop site
enter, drop site leave, drag icon motion, or change of operation.
This XmNdr agPr oc routine is called only if the drag protocol is
dynamic. It handles any special processing and drag under visu-
als.

If the protocol is preregister, drag under visuals are handled by
the toolkit on the initiator side.

By default, the initiator need do nothing during a drag.

If the initiator client has registered the appropriate callback rou-
tines, it is notified after the receiver's XniNdr agPr oc when the
drag is entering or leaving a top level window, entering or leav-
ing a drop site, is in motion, or the user has changed the desired
operation. The values of dropSiteStat us, operation, and
oper at i ons in the drag callbacks are initialized by either the

Drag and Drop

toolkit on the receiver side or XnNdr agPr oc, or by the toolkit on
the initiator side if the pointer is not over a registered drop site.

The initiator can activate custom drag over effects or other spe-
cial processing.

The initiator can cancel the drag in progress by using
XDr agCancel .

- Either client can check the compatibility of export and import
targets with Xnirar get sAr eConpat i bl e.

Either client can obtain information about the drop site that the
drag icon is over (if any) with XnDropSi teRetri eve.

When the drop occurs:

- The toolkit on the receiver side is in charge during the drop and
transfer.

The receiver’'s XmiNdr opPr oc routine makes any final checks that
a drop really is possible, and updates the dropSiteSt at us,
oper ations, and operation fields in the XnNdr opProc call-
back structure for the initiator to read in its XniN\dropSt art Cal | -
back callback structure.

If the drop was the result of the user requesting help, the
receiver’s XnmiNdr opPr oc displays information in a dialog box, and
waits for a response from the user, before either continuing or
cancelling the drop.

If the drop is valid, the receiver requests transfer information
from the initiator.

Only the receiver can cancel a drop.

- The initiator’'s XnNdr opSt ar t Cal | back callback routine is called
after the receiver’'s XniNdr opPr oc has finished. The values of the
dropSi t eSt at us, operation, and operati ons fields in the
callback structure were set by the toolkit on the receiver side or

15-31

OSF/Maotif Programmer’s Guide

XmiNdr opPr oc.

Transferring data between initiator and receiver:

- The receiver's Xmi\dr opPr oc establishes a list of data and target

formats it wants to receive, and calls the XnDr opTr ansfer Start
function. The list can be updated with XnDr opTr ansf er Add dur-
ing the transfer.

The receiver registers a XnNtransferProc to process each
transfer from the initiator.

The receiver can cancel the drop while the transfer is in pro-
gress.

If there is no information to be transferred, or if the drop is can-
celled, the receiver must still call XnDropTransferStart. The
initiator is unable to proceed until it is notified that a transfer
has ended. Only the receiver can cancel a drop

The initiator's XmN\convert Proc routine is executed in response
to a request from the XnDr opTransfer Start function called by
the receiver. It returns the information formatted according to
the requested target to the receiver’'s Xm\t r ansf er Pr oc.

After the drop has finished:
- The initiator's XmiNdr opFi ni shCal | back is called when the

transfer is complete. The initiator's XniNdr agDr opFi ni shCal | -
back is called after the whole drag and drop transaction has
finished.

15.3 Drag and Drop Protocols

15-32

Drag and Drop

The protocols refer to how the initiator and receiver client use the
toolkit to communicate with each other. There are two drag proto-
col styles that are available. The drop protocol is based on the Xt
Selection protocol.

15.3.1 Drag Protocols

The toolkit on the initiator side is in charge during the drag. The
protocol in effect determines how it will find the information about
drop sites that it needs to manage visuals, and how extensively the
initiator and receiver clients are involved during the drag.

There are two kinds of drag protocol styles:

preregister which stores drop site information in a database
when the drop site is registered. The receiver is not
involved in the drag until a drop occurs. All drag over
and drag under visual effects are managed by the
toolkit on the initiator side.

dynamic which uses messages from the toolkit to the receiver
to find out drop site information. The toolkit on the
receiver side can reply to the messages, or the appli-
cation can take action based on these messages. The
receiver manages the drag under effects.

The code for the initiator is the same regardless of the protocol. The
code for the receiver applications is the same except that in the
dynamic mode, the receiver’'s XniNdr agPr oc is called.

The drag protocol in use can change during the course of a drag.
When the drag icon enters or leaves a top level window, the source
and potential drop receiver negotiate a mutually acceptable drag
protocol, as described in a later section.

15-33

OSF/Maotif Programmer’s Guide

15.3.1.1 The Preregister Drag Protocol

When a receiver supports the preregister protocol, the toolkit on the
receiver side stores drop site information in a database. The toolkit
on the initiator side manages all drag under effects based on the
information in the drop site database. By setting some drop site
resources appropriately, the receiver can have the toolkit use
different highlighting or pixmaps, but the receiver does not partici-
pate directly in the drag under effects.

With the preregister protocol:

- The toolkit uses pixmap source icons if provided by the client. If
none are provided, it uses bitmap source icons if provided by the
client. If none are provided, it uses Screen icons. The Screen
icons can be either the default icons, or ones provided by the
client or user.

- The server is grabbed by the drag icon.

= The only customization a receiver can perform is providing cus-
tom values for the DropSite visual resources.

- The drag icon can be any size supported by the system on which
the application is running.

15.3.1.2 The Dynamic Drag Protocol

15-34

With the dynamic drag protocol, the initiator and receiver commun-
icate with messages through the toolkit.

As the drag icon moves within the receiver’'s window, messages are
sent from the toolkit on the initiator side to the toolkit on the

Drag and Drop

receiver side. Based on these messages, the receiver determines
whether the drag icon is entering, within, or leaving a drop site.
Although the toolkit on the receiver side initializes state and opera-
tion information, the receiver can check and update this informa-
tion further if it registers a XniN\dr agPr oc for the drop site. The ini-
tiator receives the updated message in one of its drag-related call-
backs (described later in this chapter), and can take action accord-

ingly.
The dynamic drag protocol allows the receiver to provide more

sophisticated visual effects using the XmiNdr agPr oc than the toolkit
can provide alone.

With the dynamic drag procotol:

- The receiver can provide custom drag processing and drag under
visual effects.

- The drag icon must fit in the largest cursor size supported by the
system running the application. If it is too large, it will be trun-
cated to fit.

15.3.2 Choosing the Protocol and Visual Style

The user can specify which drag protocol to use or the application
can specify the drag protocol in resource file.

The preregister drag protocol can be used with a minimum of addi-
tional coding in an application, since the toolkit manages the drag
over visual effects using the default drag icons specified in the
Screens object. Or the application can override the default Screen
icons with custom icons, but still allow the toolkit to manage the
effects.

15-35

OSF/Maotif Programmer’s Guide

The dynamic drag protocol requires more work for the application
program, but allows receiver application to provides visual effects
beyond the capabilities of the toolkit.

The drag protocol in use has an effect on the system performance as
described later in this section.

15.3.2.1 Specifying Drag Protocols

15-36

Two Display resources specify which protocol the toolkit should try
to use when a client is an initiator or receiver. These resources can
be set by the client in resource file, or by the user.

- XmN\dragl nitiatorProtocol Style
- XmN\dr agRecei ver Prot ocol Styl e

They can take the following values (the letter in brackets following
the value is used in the matrix that follows)

XnmDRAG NONE [N] does not participate in drag
and drop. There are no drag
under effects. The drag over
effects depend on the value of
XmiNdr agl ni ti at or Pr ot ocol -
Style.

XnDRAG DRCP_ON\LY [X] doesn't support either the
preregister mode or the
dynamic mode, but does data
transfer after the drop
occurs. There are no drag
over or drag under visual
effects.

XDRAG PREREGQ STER [P]

XDRAG_PREFER _PREREG STER [PP]

XDRAG_PREFER RECEI VER[R]

XnDRAG_PREFER_DYNAM C [PD]

X"DRAG_DYNAM C [D]

For example:

Drag and Drop

supports the preregister
mode only. The visual effects
are managed by the toolkit.

supports both protocols, but
prefers the preregister proto-
col. This is the default for
receivers. The visual effects
are determined by the proto-
col actually used.

used by initiators only. Uses
the protocol that the receiver
specifies. This is the default
for initiators. The visual
effects are determined by the
protocol actually used.

supports both protocols, but
prefers the dynamic mode.
The visual effects are deter-
mined by the protocol actu-
ally used.

supports the dynamic proto-
col only. The drag over and
drag under visual effects are
managed by the clients.

nycl i ent*dragl ni tiator Protocol Styl e: DRAG PREFER DYNAM C

nycl i ent *dr agRecei ver Pr ot ocol Styl e:

DRAG PREFER DYNAM C

If the initiator and receiver have specified the same protocol, that
protocol is used. If they specify different protocols, the protocol that

15-37

OSF/Maotif Programmer’s Guide

is used is shown in the table below.

Initiator Receiver Protocol

Protocol p PP PD D X N
P P P P X X N
PP P P P D X N
R P P D D X N
PD P D D D X N
D X D D D X N
X X X X X X N
N N N N N N N

The XnGet XnD spl ay function returns the Display object ID associ-
ated with a specific display. Xt Get Val ues can be used to check the
protocol style resources.

If an XmN\dr agPr oc is specified for a drop site, it will be performed
only if the protocol is dynamic. In this case, the XnNdr agRecei ver -
Protocol Styl e resource should be set to
DRAG_PREFER_DYNAMIC in the app-defaults file, rather than
using the default value.

15.3.2.2 Protocols and Visuals

15-38

When the resulting protocol is preregister, a preregister visual style
is used. The server is grabbed. The drag-over visual may be a pix-
map with an arbitrary size whose depth and colormap are the same
as the widget associated with the drag source. The pixmap is
specified in the DragContext Xm\sour cePi xrmapl con resource, addi-
tionally blended as described below.

Drag and Drop

When the resulting protocol is dynamic, a dynamic visual style is
always used. The drag-over visual is implemented using the X cur-
sor, which must be a bitmap, and often has limited size (use XQuer -
yBest Si ze to find out the largest size available per-screen). The
cursor is specified using XnNsourceCQursorlcon, additionally
blended as described below.

Users will specify one of the preregister values for Xni\dr agl ni ti a-
t or Prot ocol Styl e because they want good performance when net-
work loading or context switching are problems, or because they
want better drag-over visuals rather than more sophisticated drag-
under visuals. For visual consistency, a preregister visual style is
used whenever possible.

Users will specify one of the dynamic values for Xni\dr agl ni ti a-
torProtocol Styl e because there are clients which use use the
dynamic effects, and for visual consistency, they want to use a
dynamic visual style whenever possible.

Consequently, when the resulting protocol is XnDRAG NONE or
XnDRAG DRCP_QON\LY, the visual style depends upon the value of
XmiNdr agl ni ti ator Prot ocol Styl e. When it is XnDRAG DYNAM C or
XnDRAG PREFER DYNAM C, the dynamic visual style is used; other-
wise, the preregister visual style is used.

15.3.3 Drop Protocol

When a drop is made, the receiver checks what action should hap-
pen:

- If the user requested help, the receiver should display a dialog
box explaining the consequences of a drop on the site, and deter-
mine if the user wants to continue or cancel the drop.

15-39

OSF/Maotif Programmer’s Guide

15-40

- If the user requests cancel from the help dialog box, or if the user
presses KCancel , or if the receiver determines that the drop can-
not continue, the receiver sets the number of transfers to zero
and the status to failed to cancel the drop.

- If the drop can continue normally, the receiver starts a transfer.

The drop protocol is a superset of the Xt incremental and non-
incremental protocol, with two main differences:

- The receiver and initiator need only one Xm\ r ansf er Proc and
XmNconver t Proc (the Xt Selection process requires separate pro-
cedures for incremental and non-incremental transfer). They
each specify whether the transfer is incremental or not from
their side of the transfer with DropTransfer and DragContext
resources. If the initiator and receiver use the same incremental
or non-incremental protocol, the toolkit deals with each in the
reqguested protocol.

- The initiator and receiver are both notified of the completion of
the entire transfer, regardless of how many sub-transfers were
involved

The drop protocol is handled by a DropTransfer widget created by
XmDr opTr ansfer Start in the receiver client. The receiver creates a
list of information and target types desired from the initiator, along
with a Xm\t ransf er Proc to handle any processing needed during
the transfer. The toolkit processes the requests one at a time, until
it has finished with the list.

The receiver must call XnDr opTransfer Start, even if the number of
transfer requests is zero. Otherwise, the initiator will keep waiting
for a transfer request.

For each transfer request, the initiator’'s Xm\convert Proc is called.
This procedure reads and processes the request and returns the
information.

Drag and Drop

15.4 Drop Receiver Responsibilities for Drag-
ging

The drop receiver responsibilities are covered first in this chapter,
because in the dynamic protocol, motion messages go first to the
receiver client. The receiver evaluates the state of the drag and
sends an updated message to the initiator, which then manages its
drag over visuals based on the results.

The drag receiver has some responsibilities before a drag even
starts:

- It registers widgets as drop sites, providing information about
valid operations, target types accepted, and drag under effects
(animation style). The application can use the default values for
this information, or provide its own values.

- It registers a Xni\dr opPr oc that is called when a drop occurs and
which starts the transfer of information from the initiator. This
XmiNdr opPr oc also processes any Help information the applica-
tion provides about a drop site.

- It optionally registers a XmiNdr agPr oc for use with the dynamic
protocol that is called for events while a drag is within the
widget's boundaries.

If the drag protocol in effect is preregister, the drop site information
is put in the database as the drop sites are registered and the
receiver client does nothing until a drop is made. All visual effects
are handled by the toolkit.

If the drag protocol is dynamic, messaging begins when the pointer
enters the window containing the drop site. The receiver is given
the opportunity to provide additional processing in its XimiNdr agPr oc.
The XmiNdr agPr oc:

15-41

OSF/Maotif Programmer’s Guide

- Receives messages when the drag icon enters or leaves the drop
site, the operation changes, the drag icon is in motion, or the
drag is cancelled.

- Provides information back to the toolkit about the state of the
drag (valid drop site, invalid drop site, no drop site) and the
operation to be performed when a drop is made.

- Manages any custom drag under visual effects.

15.4.1 Establishing a Drop Site

15-42

Text and TextField widgets register themselves as drop sites. An
application must register any other widgets it wants to use for drop
sites. A widget may be registered as only one drop site.

XnDr opSi t eRegi st er registers a widget as a drop site, establishes
callbacks to be used when a drag is made through the drop site or a
drop is made in the drop site, and provides target and operation
information. If the protocol is preregister, the information is stored
in a database, which is read by the toolkit during the drag. If the
drag protocol is dynamic, messaging is used to check for possible
drop sites within a widget.

The application must register a Xm\dr opPr oc routine to establish a
list of transfer requests and start the transfer. The other resources
can be left at their default values if those values are acceptable to
the application.

The optional XmN\dr agPr oc routine is executed only is the drag pro-
tocol is dynamic. It is called in response to events during the drag,
and allows the receiver to provide additional drag under effects or
additional drag processing.

Drag and Drop

The Xmdr opSi t eQper ati ons resource lists all operations that the
drop site will support, combined by the bitwise OR operations (]).
For instance the default value ...

XnDRCP_CCPY | XnDRCP_MOVE

means that Copy and Move are valid operations, but Link is not.
During a drag, the toolkit on the receiver side compares this list
with the DragContext's XmiNdragQperations list and the user-
selected operation to arrive at the operation that will be performed
if a drop occurs on this site, along with a list of all operations possi-
ble between the initiator and the current drop site.

If an application wishes to use only one operation, such as Copy,
then it should set the XmNdropSiteCperations field to just that
operation to ensure the correct operation and drag icon are chosen
by the toolkit during the drag and drop transaction.

Drop sites that represent "copying devices", such as printers, or
"transformation devices", such as compilers, should perform a Copy
rather than a Move if both are possible.

The XmiN\dr opSi t eActi vi ty indicates if the drop site is available for
use:

XDRCP_SI TE_ACTI VE The drop site is available for use. This
is the default value.

XnDRCP_SI TE | NACTI VE The drop site is not available for use. If
the drag icon is moved over the drop
site, both the icon and drop site act as if
the icon were not over a drop site.

The XnDropSi t eUnr egi st er function removes a widget from the
DropSite registry. Once a widget is unregistered, it displays no drag
under visual effects and cannot accept a drop.

15-43

OSF/Maotif Programmer’s Guide

15-44

The difference in an unregistered drop site and an inactive drop
site, is that the inactive drop site is still registered, it still uses
memory, but does not engage in any drag and drop transactions.
One use for inactive drop sites is to provide the correct clipping on
overlapping drop sites. An unregistered drop site is no longer
involved in the drag and drop system. It is the same as a widget
that was never registered.

This code from the main routine in DND abel . ¢ in Appendix B gen-
erates a simple drop site on a Label widget. The only target type it
recognizes is compound text. The only operation it will accept is
Copy. The other resources, including drag under effects, are left at
their default values.

Figure 15-4. A Label Widget

DNDlabel

Label = XnQreatelabel (BulletinB, "title", args, n);
Xt ManageChi | d(Label) ;

/* register the label as a drop site */

i nportList[0] = COWPOUND TEXT;

n =0;

Xt Set Arg(args[n], XnN nportTargets, inportList); n++;
Xt Set Arg(args[n], Xm\num nportTargets, 1); n++;

Xt Set Arg(args[n], Xm\dropSiteQperations, XnDRCP_CCPY);

Drag and Drop

Xt Set Arg(args[n], Xm\dropProc, Handl eDrop); n++;
Xnr opSi t eRegi st er (Label , args, n);

Xt Real i zeWdget (topLevel);
Xt AppMai nLoop(app_cont ext) ;

15.4.1.1 Changing a Drop Site

The XnDropSiteUpdate function is used to change drop site
resources for a single drop site. For multiple requests, XnDr opSi -
t eSt art Updat e signals that a series of XnDr opSi t eUpdat e requests
will follow, and XniropSiteEndUpdate ends the series and
processes the requests at one time.

XnDx opSi t eUpdat e can also be used to change the resource values
of the widgets that register themselves as drop sites (Text and Text-
Field). For instance, an application can change Text's XimiNdr opPr oc
to call a procedure in the application.

15.4.1.2 Specially-Shaped Drop Sites

The shape of a simple drop site can be specified as the union of a set
of specified rectangles clipped by the associated widget.

If only part of the widget is to be sensitive to a drop, it is defined by
a list of rectangles in the XniNdropRect angl es resource. If the
resource is NULL, the drop site is the smallest enclosing widget and
the shape of the drop site is the shape of the widget.

15-45

OSF/Maotif Programmer’s Guide

15-46

The rectangles comprising the drop site need not be contiguous. All
the non-contiguous segments of the drop site act as one; they are all
highlighted the same way at the same time. A drop on one segment
is the same as a drop on any of the other segments. This might look
to the user as if there were several drop sites on a single widget, but
the application handles nested drop sites differently from drop sites
made of non-contiguous segments. Nested drop sites, whether
simulated or real, may have different drag under effects, targets,
operations, or callback procedures.

This example establishes a sensitive area shaped like a plus-sign on
a DrawnButton widget named button 2. Even if the drag icon is
within the button 2 widget, no drag under effects are shown until
the drag icon is within the sensitive area. The area is visible only
when a drag icon enters it and highlighting occurs. The sensitive
area is the only part of the widget that accepts a drop. This code is

Drag and Drop

not in one of the three example programs included in Appendix B.

Figure 15-5. Special Shaped Drop Site

XRectangl e plus[] = {
{30, 0, 30, 30},
{0, 30, 90, 30},
{30, 60, 30, 30},
b

n =0;
Xt Set Arg(argsfnl. Xob nport lan e Y mhdrt List) LNt
Xt Set Ar g(ar.gs] -2
Xt Set Arg(args[n],
Xt Set Arg(args[n],

sutton0

Button? Buitis:;

Ejg 15-47

OSF/Maotif Programmer’s Guide

Xt Set Arg(args[n], Xm\nunDropRectangles, 3); n++
Xnir opSi t eRegi ster (Button2, args, n);

15.4.1.3 Nested Drop Sites

15-48

A widget can be registered as only one drop site. However, widgets
which are registered as drop sites can be nested within each other,
providing nested drop sites.

The XmNdr opSi t eType indicates the complexity of the drop site:

XnDRCP_SI TE_SI MPLE The drop site contains no other drop
sites.
XDRCP_SI TE_ QOVPCEl TE The drop site contains other drop

sites. This value is generally associ-
ated with a Manager.

A composite drop site must be registered before any of its children
are registered. If a composite drop site is inactive, so are all of its
children.

The composite and children drop sites do not need to have the same
operations or targets.

A manager which contains a number of widgets with their associ-
ated drop sites need not be a composite drop site unless it is possi-
ble to drop in the background of the manager.

It is possible for an application to simulate nested drop sites on a
single widget, for example a DrawingArea. The process is described
as part of the discussion of the duties of the optional XrmiNdr agPr oc
routine later in this chapter.

Drag and Drop

15.4.1.4 Overlapping Drop Sites

Drop sites may overlap. Their stacking order is assumed to
correspond to the order in which they are registered with the first-
registered one on top. The stacking order is checked by calling
XnDr opSi t eQuer ySt acki ngQr der . The stacking order is changed by
calling XnDr opSi t eConf i gur eSt acki ngQr der .

When a drop site is overlapped by another drop site, the drag under
effects of the drop site underneath are clipped as appropriate by the
obscuring drop site.

A widget or gadget which is not a drop site may overlap and par-
tially obscure a drop site. To ensure that the drop-site’s drag under
visuals are appropriately clipped by the obscuring widget, such
sibling widgets should be registered as inactive drop sites. Parent
widgets, whether drop sites or not, will clip their children’s drop site
visuals. If a parent has some active and some inactive drop site chil-
dren, it should be registered as an active drop site.

15.4.1.5 Drag Under Visual Effects

Drag under visual effects are displayed only when the pointer is
within the sensitive area of the drop site widget. Various drag
under styles can be chosen in the Xni\Nani nati onStyl e DropSite
resource:

XmDRAG UNDER H GHLI GHT A solid border around the
sensitive are of the drop
site is used to show the
drop site is valid. This is
the default value.

15-49

OSF/Maotif Programmer’s Guide

15-50

XnDRAG_UNDER_SHADOW QUT

XTDRAG_UNDER_SHADOW | N

XnDRAG_UNDER Pl XVAP

XnDRAG UNDER NONE

The sensitive area of the
drop site looks pushed
out when it is valid.

The sensitive are of the
drop site look pushed in
when it is valid.

A custom pixmap is used
to indicate the drop site
is valid. The pixmap is
specified in Xnm\Nani ma-
ti onPi xmap.

No indication is given
that the drop site is valid.

The following illustration shows the default drag under animation

around the Label widget drop site.

Figure 15-6. Default Drag Under Animation

DNDlabel

If the value of XniNani mati onStyl e is XnDRAG UNDER Pl XNVAP, the

XmNani mat i onPi xnmap,

Xm\ani nmat i onMask, and

Drag and Drop

XmNani mat i onPi xmapDept h resources are used to provide more
information about the pixmap. If the depth does not match the
depth of the window controlling the drop site widget, no animation
occurs. Except for XnDRAG UNDER Pl XVAP, the colors used for the
visual effects are based on the colors of the widget associated with
the drop site.

The dynamic protocol provides the most control over the drop site
animation. It is the only way to get visual effects that don't remain
the same for the duration of the drag icon’s stay in the drop site, for
instance a background that flashes.

15.4.2 XmNdragProc

The procedure registered in the DropSite’s XniNdr agPr oc resource is
called only when the dynamic protocol is in effect. This procedure is
optional. Applications that need to provide special drag under
effects or other special processing during a drag can do so with this
procedure.

The XmiNdr agPr oc is called in response to messages from the toolkit,
before the initiator’s equivalent drag callback. Fields in the callback
structure provide information to the receiver about the drag.

The reason field in the callback structure indicates why the pro-
cedure was called.

XmCR _DRCP_SI TE ENTER MESSAGE The drag icon hot
spot has entered
the drop site.

XmCR_DRCP_SI TE_LEAVE MESSAGE The drag icon hot
spot has left the
drop site.

15-51

OSF/Maotif Programmer’s Guide

15-52

XmCR _DRAG MOTI ON_ MESSACE The drag icon hot
spot has moved.

XmCR_CPERATI ON_CHANGED MESSACGE The operation has
changed.

The oper at i ons field lists all the operations that are valid for drop
site with the current drag source. The oper at i ons field is initial-
ized by the toolkit as follows:

- If the user has selected an operation, the value of oper ati ons
is initialized to that operation if it is in the DragContext’s
XmiNdr agQper at i ons list, else

- The operations field is initialized to the list in the
DragContext’'s XniNdr agQper at i ons list.

The oper at i on field indicates the type of action a successful drop
will perform. The oper ati on field is initialized by the toolkit as
follows:

- operation is initialized to XDRCP_MOVE if Move is a valid
operation (in both the operations field and the DropSite's
XmiNdr opSi t eQper ati ons list), otherwise it is initialized to
XDRCP_CCPY if Copy is a valid operation, otherwise it is initial-
ized to XnDRCP_LI NK if Link is a valid operation, otherwise it is
initialized to XmDRCP_NOCP.

The dropSiteSt atus field provides an indication of whether a
transfer between the initiator and this drop site could occur. The
value that the toolkit selects for the dropSi t eSt at us field depends
on the reason the Xnm\dr agPr oc was entered.

- If the reason is motion or drop site leave, and the drop site is the
same as in the last call to XnNdr agPr oc, the dropSi t eSt at us is
the same as at the end of the previous call.

- Otherwise, if there is at least one target in common and at least
one operation in common, the value is Iinitialized to

Drag and Drop

XTDRCP_SI TE VALID. If not, the value is initialized to
XDRCP_SI TE_| NVALI D.

- If the operati on field is XnDRCP_NOCP, the dropSit eSt at us
field is initialized to XnDRCP_SI TE | NVALI D.

The XmNdr agPr oc can update oper at i on, oper at i ons, or dr opSi -
t eSt at us further during its execution. The final values for these
fields are available to the initiator in its drag callback structures. If
the receiver's XniNdr agPr oc is called more than once while the drag
icon is within the drop site (for instance because of motion events),
the values used by the toolkit when it initializes the drag callback
oper at i ons, operation, and dropSi t eSt at us fields are ones at
the end of the previous call to Xnm\dr agPr oc.

The ani nat e field tells the toolkit who should provide the drag
under visual effects. It is initially set to True, but the XmiNdr agPr oc
can set it to False.

TRUE The toolkit provides the drag under visuals as if the
protocol were preregister.

FALSE The receiver provides the drag under visuals. The
application can provide special visual effects, such as
a blinking background, that are not possible with the
toolkit.

The DragProcCal | back routine in the DNDDeno.c program in
Appendix B is an example of a DragProc routine. It can process
every drag message, changes the operations, operation, and
dropSi t eSt at us as necessary, and sets the ani nat e field to TRUE,
allowing the toolkit to manage the drag under effects. The Drag-
ProcCal | back routine is shown in the next section of this chapter.

15-53

OSF/Maotif Programmer’s Guide

15.4.2.1 Simulating Nested Drop Sites

15-54

A widget can be registered as only a single drop site. However, if
the application needs one or more drop sites entirely enclosed
within another drop site, there are two ways to accomplish this:

To

1.

Widgets that contain other widgets that are drop sites should be
registered as composite drop sites as described earlier in this
chapter.

This method allows the toolkit to manage drop site messages
and drag under effects for each nested drop site.

An application can simulate a multiple drop sites on a single
widget in the XmN\dr agPr oc and XimiNdr opPr oc routines. Since the
XmiNdr agPr oc routine is executed only in the dynamic drag proto-
col mode, this method would not work if the drag procotol chosen
is preregister.

This method requires that the application manage all drag
under effects, since the toolkit is not aware of the simulated
nesting.

simulate nested drop sites on a single widget:

Register the widget as a single active drop site. Set XiNdr op-
SiteQperations to all the operations possible for any of the
nested drop sites. Set XN nport Targets to all the targets
possible for any of the nested drop sites. Register a XniN\dr ag-
Proc to provide any special drag under effects for the simu-
lated drop sites.

The operations, operation, and dropSiteSt at us fields
are initialized by the toolkit only when this outer drop site is
entered or left. The simulated drop sites must be managed by
the application.

Drag and Drop

2. When either XmN\dr agPr oc or XnmiNdr opPr oc is called, check the
x and y fields in the callback structure to determine which of
the nested drop sites contains the pointer.

3. If the pointer is within a simulated nested drop site, update
the callback fields as follows:

= When the pointer enters the simulated nested drop site,
save the value of the oper at i ons and oper at i on fields.

- Remove any operations from the oper at i ons field which
do not apply to the simulated drop site.

- Set operation to the valid operation preferred by the
simulated drop site, or to XnDROP_NOCP if the oper at i ons
list does not contain the preferred operation.

- The dropSi t eSt at us field must reflect the status of the
simulated drop site, so that the initiator can manage drag
over effects correctly.

Set the dropSiteStatus to XnDRCOP_SI TE VALID if the
operation is allowed in the simulated drop site and if
there is at least one target in common between the simu-
lated drop site and the initiator. (Use the XnTarget -
sAreConpat i bl e routine to check the targets.)

Set the dropSit eSt at us to XnDRCP_SI TE | NVALI D if the
oper ation is not allowed in the simulated drop site, if
there are no targets in common, or if the operation is
XnDRCP_NCCP.

- Display appropriate drag under visual effects.

= When the pointer leaves the simulated drop site, restore
the original values of operations and operation that
apply to the outer drop site.

4. If the pointer is not within a simulated drop site, but drops are
allowed in the outer drop site, update the fields as described

15-55

OSF/Maotif Programmer’s Guide

15-56

above.

5. If the pointer is not within a simulated drop site, and drops
are not allowed in the outer drop site, set the dropSiteS-
t at us field to XnDRCP_SI TE_| NVALI D.

If the preregister protocol is in effect, the simulated drop sites can-
not be managed during the move, since Xm\dr agProc is not per-
formed; but they can be managed at the drop with XmiNdr opPr oc.

In the following example, only the top level window, DNDDeno, is
registered as a drop site. The user can create rectangles within the
window that then act like drop sites themselves. The user can drag
and drop colors from one of the six buttons in the lower part of the
window onto the rectangles to change the color of the rectangle.
However, these rectangles are not registered drop sites, they are
simulated.

The user can also drag these rectangles to new locations.

Drag and Drop

Figure 15-7. Simulated Drop Sites

The Regi sterDropSi te routine registers the DrawingArea widget
as a drop site. The list of operations and targets may not be valid
for each simulated drop site, but are valid for other simulated drop

15-57

OSF/Maotif Programmer’s Guide

sites.

Regi sterDropSite(w
Wdget w,

{

}

D splay *display = Xt D splay(w;
At om targets[3];

Arg args[5];

i nt n = 0;

/* Only accept nmoves or copies */

Xt Set Arg(args[n], XnNdragQperations, XnDRCP_CCPY | XnDRCP_MOVE);
n++;
/* set all possible targets for any of the nested drop sites */
targets[0] = Xm nternAton{display, " _M_RECTANGE', False);
target s[1] Xm nt er nAt on{di spl ay, "BACKGROUND', Fal se);

target s[2] Xm nt er nAt on{di spl ay, "PIXVAP', Fal se);

Xt Set Arg(args[n], XnN nportTargets, targets); n++;

Xt Set Arg(args[n], Xmi\num nportTargets, 3); n++;

/* register a dragProc - necessary for simulating nested drop
* sites

*/

Xt Set Arg(args[n], XmNdragProc, DragProcCall back); n++;

/* register a dropProc */
Xt Set Arg(args[n], XmN\dropProc, DropProcCall back); n++;
XnDropSi t eRegi ster(w, args, n);

The XmNdr agPr oc routine, Dr agPr ocCal | back, is called whenever a
drag icon enters the registered drop site (the top level window). The

15-58

Drag and Drop

Rect Fi nd routine from DNDDr aw. ¢ in Appendix B determines if the
pointer is in a simulated drop site. The CheckTar get s routine deter-
mines if the object being dragged is one of the six colors (bgFound)
or one of the created rectangles (r ect Found). (The value pi xFound
to represent a pixmap being dragged is coded in this routine, but
not in the rest of the program.)

The only drag under visual is displayed when a color is dragged to a
rectangle. The outline of the rectangle is highlighted.

The entire DragPr ocCal | back routine is too long to be listed in its
entirety here. The section dealing with the drop site enter message
is used as an example.

static void DragProcCal | back(w, client, call)

Wdget w,
Xt Pointer client;
Xt Poi nter call;
{
XnDr agProcCal | backStruct *cb = (XnDragProcCal | backStruct *) call;
D spl ay *display = XtD splay(w;
Bool ean rect Found, bgFound, pi xFound;
static unsigned char initial_operations;
static unsigned char initial_operation;
Rect Ptr rect;

CheckTar get s(cb->dragCont ext, display, &rectFound, &bgFound,
&pi xFound) ;

swi t ch(cb->reason) {
case XmCR DRCP_SI TE_ ENTER MESSACE
/* save the value of the operations and operation

* fields */

15-59

OSF/Maotif Programmer’s Guide

initial _operations = cb->operations;
initial operation = cb->operation;

rect = RectFind(cb->x, cb->y);

/* Remove any operations for the operations field
* which do not apply to the sinulated drop site.

*/
if (rect) {
if (bgFound || pixFound) {
cb->operati ons = XnDRCP_CCPY,
Rect H ghl i ght (w, rect);
}
else if (rectFound) {
ch->operati ons = ch->operations &
(XDRCP_CCPY | XnDRCP_MOVE) ;
Rect Unhi ghl i ght (w) ;
}
}
el se {
cb->operations = initial_operations &
(XDRCP_QOCPY | XnDRCP_MOVE) ;
Rect Unhi ghl i ght (W) ;
}

/* Set operation to the valid operation preferred by the
* sinulated drop site or to XDROP_NOCP if the

* operations list does not contain the preferred

* operation.

*/

if (rect) {

if (bgFound || pixFound) {

15-60

Drag and Drop

i f (cb->operations & XnDRCP_CCPY)
cb->operati on = XnDRCP_QCPY;
el se
cb->operati on = XnDRCP_NOCP,

}

else if (rectFound) {

i f (cb->operations & XnDRCP_MOVE)
cb->operati on = XnDRCP_MOVE;

else if (cb->operations & XnDRCOP_CCPY)
cb->operati on = XnDRCP_QCPY,

el se
cb->operati on = XnDRCP_NOCP,

}
}
el se {
if (rectFound) {
i f (cb->operations & XnDRCP_MOVE)
cb->operati on = XnDRCP_MOVE;
else if (cb->operations & XnDRCP_CCPY)
cb->operati on = XnDRCP_QCPY;
el se
cb->operati on = XnDRCP_NOCP,
}
el se
cb->operation = initial _operation;
}

15-61

OSF/Maotif Programmer’s Guide

* Set dropSiteStatus to XnDRCP_SITE INVALID i f the
* operation field is XnDROP_NOCP, or if there are no
* common targets between the source and the nested
* drop site. Qherw se, set dropSiteStatus to
* XnDRCP_SI TE VALI D.
*/
i f (ch->operation == XnDRCP_NOCP | |
(rect & (!rectFound & !bgFound && ! pi xFound)) ||
('rect &% !rectFound))
cb->dropSiteStatus = Xm NVALI D DRCP_SI TE;
el se
cb->dropSiteStatus = XnmVALI D DRCP_SI TE;

/*
* Display appropriate drag under visuals. ly
* highlight the rectangle if we are changi ng
* rectangle attributes.
*/
if (rect & bgFound || pixFound &%
cb->dropSiteStatus == XnVALI D DRCP_SI TE)
Rect H ghl i ght (w, rect);
br eak;

case XmCR DRCP_SI TE _LEAVE MESSACE

15-62

Drag and Drop

15.5 Drag Initiator Responsibilities for Drag-
ging

The application within whose window the user initiated the drag is
considered the drag initiator.

The drag initiator:

- Recognizes the start of a drag (BTransfer Press) within a
widget controlled by the application.

- Establishes a DragContext for the widget, providing information
about operations, targets, and drag over visuals, using the
XnDragSt art function.

- Optionally provides special drag over effects.

These steps are covered in the following sections.

15.5.1 Recognizing a Drag Has Started

The initiator client must be able to recognize the BTransfer Press
event within a widget it allows to be a drag source. It may have to
override an already-assigned translation for the widget.

This example from the main routine ofDNDscrol | . ¢ in Appendix B
overrides the existing mouse button 2 translation for the ScrollBar
widget, and maps it to the StartDrag routine which will start the
drag transaction.

static char dragTranslations[] =

"#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] =

15-63

OSF/Maotif Programmer’s Guide

{ {"StartDrag", (XtActionProc)StartDrag}, };
Xt Transl ati ons parsed_xl ati ons;

/* override button two press to start a drag */
parsed_xl| ati ons = Xt ParseTransl ati onTabl e(dragTransl ati ons);
Xt AppAddAct i ons(app_cont ext, dragActions, Xt Nunber(dragActions));

/* create a scroll bar wi dget */

n=0;
Xt Set Arg(args[n], Xm\translations, parsed xlations); n++;
scrol Il bar = XnCreateScrol | Bar(Bul l etinB, "testscroll", args, n);

Xt ManageChi | d(scrol | bar);

Translation may be more complicated in some editable widgets, in
which BTransfer dick is used for primary transfer, and
BTransfer Moti on is used for drag and drop.

15.5.2 Starting a Drag With XmDragStart

15-64

Not every widget in an application can be a drag source. Text,
Label, Button, and List widgets are automatically defined as drag
sources. Other widgets must have a translation for BTransfer
assigned to them, establish DragContext resources for the widget,
and call the XnDragStart routine to become drag sources. If the
user tries to drag objects from a widget that isn't recognized as a
drag source by either the toolkit or the source application, nothing
happens.

Drag and Drop

The XnDragSt art function initiates a drag and creates a DragCon-
text widget. At a minimum, the Xmi\convertProc DragContext
resource, must be specified. Other resources are optional, for
instance those specifying drag-over visual effects.

The XmiNdr agQper ati ons resource lists all the operations that the
initiator will support for this drag source, combined by the bitwise
OR operation (]). During a drag, the toolkit compares this list with
the receiver's XmNdropSi teCperati ons list and the user-selected
operation to arrive at the operation that will be performed if a drop
occurs on this site.

If an application wishes to use only one operation, it should set the
XmiNdr agQper at i ons resource to just that operation to ensure that
the correct operation and drag icon are chosen by the toolkit during
the drag and drop transaction.

This example from DNDscrol | . ¢ in Appendix B establishes a target
type of compound text and an operation of Copy, then establishes a
DragContext for this transaction with XnDragStart. This drag
source does not have any custom drag icons or any drag callbacks.

static void StartDrag(w, event)

Wdget w

XEvent *event;

{
Arg ar gs[MAX_ARGS] ;
Car di nal n;
At om exportList[1];

/* establish the list of valid target types */
exportList[0] = COVWAUND TEXT;

n=0;

Xt Set Arg(args[n], XnNexportTargets, exportList); n++;
Xt Set Arg(args[n], Xnm\hunExportTargets, 1); n++;

15-65

OSF/Maotif Programmer’s Guide

Xt Set Arg(args[n], XnNdragQperations, XnDRCP_CCPY);
Xt Set Arg(args[n], XnmN\convertProc, DragConvertProc); n++;
XnDragStart (w, event, args, n);

}

If drag or drop callbacks are desired, they are added to the
DragContext's callback resources. For example, a callback pro-
cedure named EnterCallBack that is performed when the pointer
enters an active drop site could be added as follows:

W dget dc;

dc = XnDragStart(w, event, args, n);
Xt AddCal | back(dc, XniNdropSiteEnterCall back, EnterCallBack, NULL);

15.5.3 Overriding Existing Drag Sources

Xt Get Val ues is used to check the values of widgets resources esta-
blished as drag sources earlier in the application, and Xt Set Val ues
is used to update these values. The widget ID used is the DragCon-
text, not the source widget ID, so that the change applies only to the
widget during the drag.

If the widget is a pre-defined drag source (Text, Label, Button, or
List), overriding the default behavior becomes more complex. The
widget calls XnDr agSt art when the drag starts, and the application
cannot call XnDragSt art again for the widget. It must update the
existing DragContext. First it must find the DragContext for the
widget, then establish the new behavior. One possible means to
accomplish this is as follows:

15-66

Drag and Drop

= Override the existing Btn2Down translation with a new transla-
tion that calls the widget's action and also an action supplied by
the application. For the Text widget, this new translation might
look as follows:

<Bt n2Down> : process-bdrag() ny-drag-start()

- Register the new action, using Xt AppAddActi ons.

- In the new action procedure, call XnGet Dr agCont ext to get the
DragContext, and then call Xt Set Val ues to change resource
values. The timestamp argument to XmGet Dr agCont ext can be
the timestamp from the event passed to the action routine.

For instance, Text allows the Copy and Move operations. If an
application can support only Copy, it must update the
DragContext’'s XmiNdr agQper at i ons resource.

15.5.4 Drag-over Visual Effects

When the user moves the mouse, a drag icon representing the object
being dragged moves around the screen instead of the usual pointer.
As the icon is dragged over portions of the screen, the icon may
change to show the status of a possible drop. These drag-over
visual effects help the user know how to proceed with the drag.

There are four ways to provide drag-over visual effects:

- Use the default drag-over visuals, specified in the Screen object.
The toolkit manages all the drag over effects.

- Put custom icons and pixmaps in the Screen’s visual resources to
be used as default icons for all drag and drop transactions run-
ning on that Screen. The toolkit manages all the drag over

15-67

OSF/Maotif Programmer’s Guide

15-68

effects using these new icons. These resources can be modified
by the application or user in a resource file.

-« Put custom icons and pixmaps in the DragContext visual
resources for source, state, or operation icons. The application
must monitor the state of the drag using the drag callbacks and
update the DragContext icon values as necessary. The default
icons specified in the Screen object are used only if the value for
the equivalent DragContext visual resource is NULL.

- Manage the drag-over effects entirely in the application by draw-
ing directly to the screen. The toolkit is not used, nor are the
Screen and DragContext visual resources.

If the application provides custom icons and they are unsuitable for
some reason, the toolkit defaults to the Screen drag over visuals.

The drag icon consists of a source icon, combined optionally with a
state icon and an operation icon.

Each drag icon has a hot spot. Since a drag icon could be quite
large, the hot spot provides a single pixel that is used in providing
drag over and drag under effects. For instance, if the drag icon
moves into the area of a valid drop site, neither the drag icon or the
drop site will provide visual clues until the hot spot has moved into
the area. By default, the hot spot is the upper left corner of the
state icon.

In the following illustration, the running figure is the source icon,
the state icon is the arrow in the corner, and the operation icon
shows a Copy will happen if a drop is made. The default blending
and attachment values are used (these terms are described in a

Drag and Drop

later section).

Figure 15-8. A Drag Icon

15.5.4.1 Source Icon

The source icon is a picture representing the object being dragged.
It can be either a pixmap or cursor. The client can specify a custom
pixmap in the DragContext resource XmNsour cePi xmapl con or a
custom cursor in the XmNsour ceQursorlcon resource. If these
resources are NULL or not usable (too large, not a bitmap, or
created on a different screen, for example), the default cursor is
given in the Screen resource XnNdef aul t Sour ceCur sor | con is used.

The pixmap icon is used with the preregister visual style. The
colormap is based on the source widget. The cursor icon is used for
the dynamic visual style.

The following illustration shows the default source icons for general

15-69

OSF/Maotif Programmer’s Guide

purpose, List, Label, and Text widgets.

Figure 15-9. Source Icons

15.5.4.2 State Icon

15-70

The state icon is a cursor that indicates if the drag is over a valid
drop site, invalid drop site, or no drop site. The default state icons
are in the Screen resources XmiNdef aul t Val i dQur sor | con, XnmiNde-
faul tlnval i dQursorl con, and XniNdef aul t NoneCQur sor | con.

A custom state icon can be specified in the DragContext resource
Xm\st at eCur sor | con. If this resource is NULL, not a bitmap, or
not defined on the same screen as Xntcreen, the default Screen
icons are used. If one is specified here, it must be changed
appropriately as the state of the drag changes, using the drag call-
backs discussed later in this section.

The default state icon for all three states is an arrow, usually shown
at the upper left corner of the operation icon.

Three DragContext resources can be used to change the color of the
drag icon based on the state of the drag:

Drag and Drop

Xm\val i dQur sor For egr ound, XmN nval i dQur sor For egr ound,
Xm\honeQur sor For egr ound. This allows visual feedback about the
drag to the user, without changing the icon shape. For example, the
following lines in a resource file would make the drag icon green
when it was over a valid drop site, red when it was over an invalid
drop site, and yellow when it was not over any drop site:

*. val i dQursor | con: green
*_ i nvalidQursorlcon: red
*. noneQur sor | con: yel | ow

15.5.4.3 Operation Icon

The operation icon is a cursor that indicates what operation is to
happen when the drop is made. The default operation icons are in
the Screen resources XmiNdef aul t MoveQursorlcon, XmiNde-
f aul t CopyCQur sor | con, and Xm\def aul t Li nkQur sor | con.

A custom operation icon can be specified in the DragContext
resource XniNoper at i onQur sor | con. If this resource is NULL, not a
bitmap, or not defined on the same screen as Screen, the default
Screen icons are used. If a custom icon is specified, it should be
changed as the operation changes, using the drag callbacks covered
later in this chapter.

The following illustration shows the default Copy, Link, and Move
operation icons.

15-71

OSF/Maotif Programmer’s Guide

Figure 15-10. Operation Icons

DD =B

If the operation in effect is XnDRCP_NOCP, meaning that no operation
is possible, then the operation icon is left blank, as shown in the fol-
lowing illustration. This condition also sets the dropSi t eSt at us

to XnDRCP_SI TE | NVALI D.
Figure 15-11. Copy and Noop Drag Icons

15.5.4.4 Drag Icon Blending and Attachment

The client can specify which of the three icons to mix together to
form the drag icon with the Xm\bl endMbdel DragContext resource:

15-72

Drag and Drop

XnBLEND AL L Use the source icon, state icon,
and operation icon. The hot spot
comes from the state icon. This
is the default value. The order
listed is also the order of the
blend.

XnBLEND _STATE_SOURCE Use only the source icon and
state icon. The hot spot comes
from the state icon.

XmBLEND JUST SOURCE Use only the source icon. The
hot spot comes from the source
icon.

XBLEND NONE Don’t display any drag icon. The
client handles all drag-over
effects.

The XnmiNattachnent Draglcon resource specifies where the state
and operation icons will be placed on the source icon. The default
placement is both the state and operation icons at the attachment
point of the source icon, with the operation icon on top. The default
value is XmATTACH NORTH WEST.

XmNof f set X and XmN\of f set Y are used to place the icon relative to
the attachment point.

If the attachment point is XmATTACH HOT, the state and operation
icons are attached to the source icon at a point the same x and y dis-
tance from the upper left corner of the source icon as the pointer is
from the upper left corner of the widget containing the source. This
attachment style is particularly useful when the application makes
a custom source icon that exactly reflects the source widget at the
time the drag starts.

In the following illustration, the custom source icon is an outline of
the scrollbar. When the drag was started, the pointer was on the

15-73

OSF/Maotif Programmer’s Guide

15-74

slider. The operation and state icons are placed at the same loca-
tion on the source icon.

Figure 15-12. An Attach_Hot Icon

DNDscrall | || I

When the state or operation icon is blended with a source icon, a
specified point of the icon’s Xni\pi xnap is aligned with the upper left
corner of the source icon. The resulting Xn\Npi xmap is large enough
to include both, and the resulting XmNmask has 1 bits wherever
either the source icon or source mask did.

If a dynamic cursor style is being used, and the resulting blended
cursor is too large for the screen, the blending is done with the
Screen XmiNdef aul t Sour ceQur sor | con instead of the DragContext’s
Xm\sour ceCur sor | con. If it is still too large, it is clipped relative to
the hot spot (that is, if the hot spot is at an edge, the other edge is
clipped; if the hot spot is in the center, opposite edges are clipped

equally).

Drag and Drop

15.5.4.5 Visual Style Notes

If XmNsour cePi xmapl con is used, the colormap used for rendering is
that of the DragContext’'s reference widget.

If the DragContext Xm\bl endMbdel is XnBLEND NONE, and the
dynamic cursor style is in use, the application must use XChangeAc-
tivePointerGab to change the cursor. If XrBLEND NONE is
specified, and the preregister cursor style is in use, the application
can render the cursor directly onto the screen, saving and restoring
the image underneath.

The cursor style can change as the pointer moves from window to
window. An application can tell which style is in use by looking at
the dragPr ot ocol St yl e field in the Xni\t opLevel Ent er Cal | back
structure, or looking at Xmi\dr agl ni ti at or Prot ocol Styl e Display
resource in the case of XmMDRAG NONE or XnDRAG DRCP_QON\LY.

The resolution and best cursor size can vary from screen to screen.
This is why the default cursor icons are Screen resources. An appli-
cation that wants its source cursor or pixmap to be screen depen-
dent can look for changes in the screen field in the Xm\ o-
pLevel Enter Cal | back struct, and update the various icon
DragContext resources appropriately.

15.5.4.6 Creating a Drag Icon

Any of the three parts of a drag icon can be customized: the source
icon, the state icon, and the operation icon.

Use the Xnr eat eDr agl con function to create any of these parts.
The XmiNat t achment resource is not used for the source icon. The

15-75

OSF/Maotif Programmer’s Guide

15-76

other resources specify pixmap, size, and hot spot details. The
DragContext Xni\bl endMbdel resource indicates which hot spot is
used for the entire drag icon.

This example from DNDDeno. ¢ in Appendix B creates a source icon
from a bitmap. The source icon is the palette and the state icon is
the paintbrush. (Actually, the state icon is not shown when the
drag starts, because the blend style is XnBLEND JUST_SCOURCE. It is
shown here as if the blend style were XnBLEND ALL.)

Figure 15-13. Custom Source Icon

The Col or Rect function is called when a drag starts from one of the
color rectangles in the lower portion of the window. Among its
other duties, it establishes the drag icon from source bits from the
DNDDx aw. ¢ file in Appendix B.

/* |If the server will handle a large icon, create one */
i f (appl nfo->maxQursorWdth >= | CON WDTH &&
appl nf o- >maxQur sor Hei ght >= | CON_ HEl GHT) {

source hits = SORCE I CON BITS;

Drag and Drop

sour ce_rmask = SOURCE | CON_NASK;
state bits = STATE | QON BI TS;
state _mask = STATE | GON_NMASK;
width = | CON WDTH

hei ght = | CON_HEl GHT;

}
el se {
/* If the server will handle a snmall icon, create one */
source_bits = SMALL SOURCE | OON BI TS;
source_rmask = SMALL SOURCE | GON_MASK;
state bits = SVALL_STATE | CON BI TS,
state _mask = SMALL STATE | GON MASK;
width = SVALL | GON WDTH
hei ght = SVALL | QON HEl GHT;
}

/* Oeate the drag cursor icons */
sourcel con = Get Dragl conFronBits(w, source bits, source nask,
wi dth, height, background, foreground);

statelcon = GetDragl conFronBits(w, state bits, state_nask,
wi dth, height, background, foreground);

/* Setup the arglist for the drag context that is created at
* drag start */
n = 0;

Xt Set Arg(args[n], XnmN\sourceCQursorlcon, sourcelcon); n++;
Xt Set Arg(args[n], Xni\stateCursorlcon, statelcon); n++;

15-77

OSF/Maotif Programmer’s Guide

/* start the drag. This creates a drag context. */
nyDC = XnDragStart(w, event, args, n);

}
The Get Dragl conFronBi t s function turns the bits into a bitmap.

static Wdget GetDraglconFronBits(w, bits, nask, width, height,
backgr ound, f oreground)

Wdget w,

char *bits;

char *mask;

D nensi on wi dt h;

D mensi on hei ght ;

Pi xel background,;

Pi xel foreground,;

{
Pi xmap i con, iconhask;
D spl ay *di splay = XtD splay(w;
i con = X eat eBi t mapFr onDat a(di spl ay, Defaul t Root W ndow(di spl ay),
bits, wdth, height);
i conMask = XO eat eBi t napFr onDat a(di spl ay,
Def aul t Root W ndow(di spl ay) ,
mask, width, height);
return(GetDragl con(w, icon, iconMask, wi dth, height,
background, foreground));
}

15-78

Drag and Drop

The Get Dr agl con function uses the bitmap created by the Get Dr ag-
| conFronBi t s function to create a drag icon.

static Wdget GetDraglcon(w, icon, iconMask, w dth, height,
background, foreground)

Wdget w,

Pi xmap i con;

Pi xmap i conMask;

D mensi on wi dt h;

D rensi on hei ght ;

Pi xel background,;

Pi xel foreground,;

{
Wdget dragl con;
Arg args[10] ;
i nt n =0;
Xt Set Arg(args[n], Xmi\hotX, | GON X HOT); n++;
Xt Set Arg(args[n], Xnmi\hotY, | GON Y HOT); n++;
Xt Set Arg(args[n], XmNwidth, width); n++
Xt Set Arg(args[n], Xmi\height, height); n++;
Xt Set Arg(args[n], XnNmaxWdt h, appl nf o->maxQur sor Wdt h); n++;
Xt Set Arg(args[n], XmNhwaxHei ght, appl nfo->maxCursor Hei ght); n++;
Xt Set Arg(args[n], Xm\background, background); n++;
Xt Set Arg(args[n], Xnm\foreground, foreground); n++;
Xt Set Arg(args[n], Xmi\pi xmap, icon); n++;
Xt Set Arg(args[n], XnmNmask, iconMask); n++;
dragl con = XmOreat eDragl con(w, "dragl con", args, n);
ret urn(dragl con);
}

15-79

OSF/Maotif Programmer’s Guide

15.5.5 Drag Callbacks

15-80

Callbacks notify the initiator of how the drag is proceeding. The
receiver's XmNdr agPr oc (if any) is first notified of the action and
given a chance to update the oper ati on, oper ati ons, and dr op-
Si t eSt at us fields in its callback structure. The new values are
available to the initiator’s drag callback in the appropriate callback
structure.

These drag callbacks are all optional. They provide the means by
which the initiator can monitor the progress of the drag and
manage its visual effects accordingly. Otherwise the toolkit on the
initiator side handles the drag over effects.

XmiNdr aghot i onCal | back Called when the drag icon is in
motion.

XmNoper at i onChangedCal | back Called when the user requests a
different operation be performed
on the drop than was previously

in effect.

XmiNdr opSi t eEnt er Cal | back Called when the drag icon enters
a drop site.

Xm\dr opSi t eLeaveCal | back Called when the drag icon leaves
a drop site.

Xm\t opLevel Ent er Cal | back Called when the drag icon enters

a top-level window or root win-
dow (when changing screens).

Xm\t opLevel LeaveCal | back Called when the drag icon leaves
a top-level window or root win-
dow (when changing screens).

Callback structures for these routines contain information about the

drag. The structures for XmNdr aghbt | onCal | back,

Drag and Drop

XmNoper at i onChangedCal | back, and XniNdr opSi t eEnt er Cal | back
contain the oper ati ons, operation, and dropSi t eSt at us fields
(among others), which are initialized by the toolkit before the call-
back is called.

The oper at i ons field lists all operations possible for a drop on the
current site, whether the site is registered as a DropSite or not.
The field is initialized as follows:

- If the receiver’'s XmiNdr agProc was called, the value of oper a-
tions is the list of operations common to the value of the
XmNdr agPr oc’s oper at i ons field at the end of XmiNdr agPr oc and
the DropSite’s XmN\dr opSi t eQper at i ons list.

- Otherwise, if the user selected an operation, then oper ati ons
is set to that operation if it is in the XnNdr agQper ati ons list. If
itisn'tin the list, oper at i ons is set to XnDRCP_NOCP.

- Otherwise, operations is Iinitialized to the list in the
DragContext’'s XmiNdr agQper at i ons resource.

The oper at i on field shows the operation that will occur if a drop
happens at the current cursor location. It is initialized as follows:

- If the receiver’'s XnNdr agPr oc was called, oper ati on is initial-
ized to the value of oper at i on at the end of the XniNdr agPr oc.

- Otherwise, if the pointer is in or entering an active drop site,
operation is set to XnDRCP_MOVE if Move is in both oper a-
ti ons and the DropSite’s XnmiNdr opSi t eQper at i ons lists; other-
wise to XnDRCP_QCPY if Copy is in both lists; otherwise to
XnDRCP_LI NKif Link is in both lists; otherwise to XnmDRCP_NCOCP.

- Otherwise, oper ati on is set to XnDRCP_MOVE if Move is a valid
operation (in the oper at i ons field) ; otherwise to XnbDRCP_CCPY
if Copy is a valid operation; otherwise to XnDRCP_LI NK if Link is
a valid operation; otherwise to XnDRCP_NCOCP.

15-81

OSF/Maotif Programmer’s Guide

15-82

The dropSi t eSt at us field in the callback structure indicates if the
drag icon is over a valid drop site, an invalid drop site, or no drop
site. The callback procedure can use this information to display the
appropriate drag over visuals. The dropSi t eSt at us field is ini-
tialized by the toolkit in the following manner:

- If the pointer is over an active drop site:

— If the receiver’s XmN\dr agPr oc was called, dropSi t eSt at us is
initialized to the value of dropSi t eSt at us at the end of the
XmiNdr agPr oc procedure.

— Otherwise, dropSi teSt at us is initialized to
XnDRCP_SI TE_VALI D if there is at least one target and one
operation in common between the initiator and receiver.
Otherwise, it is initialized to XnDRCP_SI TE | NVALI D.

- If the pointer is not over an active drop site, dropSi t eSt at us is
initialized to XMNO DRCP_SI TE.

- If the oper at i on field is XnDRCP_NOCP, dr opSi t eSt at us is ini-
tialized to XnDRCP_SI TE_| NVALI D.

If the application has not stored the DragContext ID in a global
location, these callbacks can find the DragContext ID by passing the
Xt Dr agCont ext function the t i neSt anp field from the callback
structure.

This example shows a callback that is called when a new drop site
is entered. It checks the validity of the drop site, and uses one of
three custom source icons, depending on the status.

static void EnterCB(w, client_data, call_data)

W dget W,
Xt Poi nt er client data, call_data;
{

XDr agCont ext dc;

}

Drag and Drop

XnDr opSi t eEnt er Cal | back Ent er Dat a;
Car di nal n;
Arg ar gs[MAX_ARGS] ;

dc = (XnDragCont ext)w,
EnterData = (XnDropS teEnterCal | back)cal | _dat a;

n=0;

if (EnterData->dropSiteStatus == XnVALID DRCP_SITE) {
Xt Set Arg(args[n], Xm\sourceCursorlcon, GetValidlcon(w);
n++;
Xt Set Val ues(dc, args, n);
}
if (EnterData->dropSiteStatus == Xmi NVALID DRCP_SITE) {
Xt Set Arg(args[n], Xm\sourceCursorlcon, Getlnvalidlcon(w);
n++;
Xt Set Val ues(dc, args, n);
}
if (EnterData->dropSiteStatus == XnNO DRCP_SI TE) {
Xt Set Arg(args[n], Xm\sourceCursorlcon, GetNeutrallcon(w);
n++;

Xt Set Val ues(dc, args, n);
}

If a drag callback is desired, it is added to the DragContext's call-
back resources. For instance, the following example adds a callback
named Ent er CB that is performed when the pointer enters an active
drop site:

W dget dc;

dc = XnDragStart(w, event, args, n);
Xt AddCal | back(dc, XmiNdropSiteEnterCall back, EnterCB, NULL);

15-83

OSF/Maotif Programmer’s Guide

15.5.6 Getting Data about the Current Drop Site

The initiator can find information about the current drop site with
the XnDropSiteRet ri eve function. It must pass in the DragCon-
text, so that the toolkit knows what drop site the request is for. The
initiator can find the value of any drop site resource except the call-
back routines

The following example gets the number and list of import targets
for a drop site. The example shows a drop site enter callback, but it
could be in any of the initiator’s drag callbacks.

Xnx opSi t eEnt er Cal | back Dr agDat a;

n=0;

Xt Set Arg(args[n], XN nportTargets, & nportTargets); n++;

Xt Set Arg(args[n], Xm\num nport Targets, &wum nportTargets); n++;
Xnir opSi t eRet ri eve(DragDat a- >DragCont ext, args, n);

15.5.7 Cancelling the Drag

15-84

The drag in progress can be cancelled in either of two ways. Both
ways are treated the same by the toolkit.

= The user can press KCancel .

- The initiator can call the XnDr agCancel function if it decides the
drag should not continue for some reason

Drag and Drop

The initiator is notified of the cancel by the XnNdr opSt art Cal | back
with a dropActi on field value of XmDROP_CANCEL.

The receiver is notified by a XmCR_DRCP_S| TE_LEAVE message. This
message is processed by the Xmi\dr agProc in the dynamic protocol
mode. This allows any drag under effects to be undone.

15.6 Drop Receiver Responsibilities for Drop-
ping

When the user releases the drag to start a drop, the toolkit sends a
message to the receiver. The receiver's XmiNdropProc routine
processes it by checking that the proposed targets and actions are
valid, and updates the status and operations fields accordingly.
This information is sent back to the initiator’s XnNdr opStart Cal | -
back routine.

The application receiving a drop must:

- Have registered a XmiN\dr opPr oc routine to be processed when a
drop is made on the site. This is done as part of registering a
widget as a drop site.

- Make a list of transfer requests. If the drop is cancelled, the
number of transfer requests is set to zero.

- Register a DropTransfer Xn\ r ansf er Proc to process transfers
from the initiator if the number of transfers is not zero.

- Call XnDropTransferStart at least once, to either cancel the
drop or start the transfer process.

The receiving application may also:

15-85

OSF/Maotif Programmer’s Guide

- Provide drop site Help information.

- Cancel a drop.

15.6.1 The XmNdropProc

15-86

When a drop occurs (except for a Cancel), a message is sent from the
toolkit on the initiator side to the receiver, and the receiver's
Xmi\dr opPr oc is called. Fields in its callback structure provide infor-
mation about the drop to the receiver.

The oper ati ons, operati on, and dropSi t eSt at us fields are ini-
tialized by the toolkit in a similar manner to that described for the
receiver’s XmN\dr agPr oc earlier in this chapter.

The XmiNdr opPr oc routine can update the oper at i ons, oper at i on,
and dropSi t eSt at us field further. The final values are available
to the initiator in its drop callback structures.

The dropAct i on field indicates if a normal drop is requested, or if
the user requested help. For information about processing a help
request, refer to "Providing Help" later in this chapter.

If the receiver takes too long before ending the XmiNdr opPr oc, the
toolkit will time out the drag. Therefore, if the receiver needs to do
any processing before the transfer other than verifying that a
transfer can take place, it should start a new process and end the
XmiNdr opPr oc.

Either the XnNdr opPr oc or one of its subprocedures must start a
transfer by calling XnDropTransfer Start. The initiator is waiting
for a transfer request to finish its part in the drop. If a drop is not
possible, the drop is cancelled as described below. If a drop is possi-
ble, the Xni\dr opPr oc provides the appropriate details to start the
transfer.

Drag and Drop

The XmiNdr opPr oc creates a list of DropTransfer entries, containing
target and client-specific information for each transfer desired.
There is a separate entry for each data-target type combination.
For instance, if the data is desired in both TEXT and
COMPOUND_TEXT forms, there would be two entries on the list.
This list and the number of items in the list are used by XrnDr op-
Transfer Start to start the transfer.

The receiver establishes the values of the DropTransfer resources
before calling XnDr opTransferStart. The DropTransfer resources
are:

XmN\dr opTr ansfers The list of drag transfer entries.

XN ncr errent al Whether to use the incremental
transfer mechanism.

Xm\nunDx opTr ansf er s The number of transfer entries in the
list. This number is decremented each
time a transfer is made.

Xm\t r ansf er Proc The procedure to process transferred
information. This procedure is an
Xt Sel ecti onCal | backProc procedure.
For details on what that means, refer to
X Toolkit documentation.

XN\t r ansf er St at us Whether the transfer failed or not. The
default value is XmMTRANSFER_SUCCESS.

This example from DND abel . ¢ in Appendix B creates a transfer
request list of one transfer entry, asking that the initiator send its
data in compound text format. Copy is the only action it accepts;
the rest result in a cancelled drop. The DropTransferCallback rou-
tine receives and processes the data from the initiator.

static void Handl eDrop(w, client_data, call_data)
W dget W,

15-87

OSF/Maotif Programmer’s Guide

Xt Poi nt er client _data, call_data,

{
XnDr opPr ocCal | back Dr opDat a;
XnDropTransferEntryRec transferEntries[2];
XD opTransferEntry transferlList;
Arg ar gs[MAX_ARGS] ;
i nt n;

DropData = (Xnir opProcCal | back) cal | _dat a;

/* set the transfer resources */
n = 0;

/* if the action is Help, or the operation is not Copy,
*cancel the drop */
i f ((DropData->dropAction != XnDRCP) ||
(Dr opDat a- >oper ati on ! = XnDRCP_CCPY))
Xt Set Arg(args[n], XnmN\transferStatus, XnTRANSFER FAI LURE); n++;
el se {
/* the drop can continue. Establish the transfer list and
* start the transfer */
transferEntries[0].target = COMPOUND TEXT;
transferEntries[0].client_data = (Xt Pointer)w,
transferList = transferEntries;
Xt Set Arg(args[n], XmN\dropTransfers, transferList); n++
Xt Set Arg(args[n], Xm\nhunDropTransfers, 1); n++;
Xt Set Arg(args[n], XmN\transferProc, DropTransferCallback); n++;
}

[* start the transfer or cancel */
XnDr opTr ansf er St art (Dr opDat a- >dr agCont ext, args, n);

}

If the program could accept transfers in more than one target type,
for instance text and compound text, then a separate transfer entry

15-88

Drag and Drop

is needed for each request:

transferEntries[0].target
transferEntries[1].target

COMPOND_TEXT;
TEXT:

Xt Set Arg(args[n], Xm\nunDropTransfers, 2); n++;

15.6.2 XmDropTransfer

The toolkit on the receiver side is in charge of the transfer pro-
cedure. Information about the transfer is stored in a DropTransfer
widget, which is created by the XnDr opTr ansf er St art routine.

Before calling XnDr opTransfer Start, the receiver stores a list of
DropTransfer transfer entries in the XmN\dr opTr ansf ers resource.
Each entry contains target and client-specific information for each
transfer desired. It also registers a procedure to receive transfers
from the initiator in the XmNtransferProc resource. These
resources, along with the other DropTransfer resources, are used by
the XnDr opTransfer Start function.

The toolkit processes the items on the list, one at a time, decrement-
ing Xm\hunDr opTransfers each time. When the Xni\nunDr op-
Transf ers value is zero, the drop is finished. The toolkit on the
receiver side sends a message to the initiator, whose XniNdr opFi n-
i shCal | back is called.

If XmN ncrenental is True, the Xt Selection incremental transfer
protocol is used between the toolkit and the receiver, regardless of
what the initiator sent. Refer to the Xt documentation for details of
how to use incremental transfer. If the value is False, the transfer

15-89

OSF/Maotif Programmer’s Guide

between the toolkit and the receiver is made in one pass, regardless
of how the initiator sent it.

The Xmi\t r ansf er Proc routine receives each transfer from the ini-
tiator. If more than one target type is acceptable to the receiver,
this procedure needs to check which target type was used in this
transfer, and process the transferred data accordingly.

The Xm\t r ansf er Proc routine can examine and update the Drop-
Transfer resources during the transfer with Xt Get Val ues and
Xt Set Val ues.

The XnDr opTr ansf er Add routine is used to add to the transfer list
after the transfer has begun. For example, this routine is used
when a Move operation is performed, to add a new transfer entry
record telling the initiator to delete the data. It can be used in
other situations where the entire transfer list is not known when
XmDr opTransfer Start is called.

If there are problems with the drop, it can be cancelled as described
later in the chapter.

This example from DNDI abel . ¢ in Appendix B receives compound
string data from the initiator, and uses it to replace the label of the

Label widget.
static void TransferProc(w, closure, seltype, type, value, |ength,
format)
W dget W,
Xt Poi nt er cl osure;
At om *sel type;
At om *type;
Xt Poi nt er val ue;
unsi gned | ong *| engt h;
i nt format;
{
i nt n;

15-90

Drag and Drop

Arg ar gs[MAX_ARGS] ;

/* information fromthe drag initiator is passed in conpound
* text format. Convert it to conpound string and repl ace the
* Label |abel. */

if (*type = COMPOUND_TEXT) {

n =0;

Xt Set Arg(args[n], XmN abel String, XnCvt CTToXnString(val ue));
n++;

Xt Set Val ues(cl osure, args, n);

}

}

If the program is able to handle more than one target type, this rou-
tine needs to check for them all. For instance:

if (*type = COMPOND TEXT) {
/* code to change the | abel to the conpound text passed */
}

else if (*type = TEXT) {
/* code to change the label to the text passed */

}

15.6.2.1 Processing Each Operation

The XmiNt ransfer Proc routine must be able to process the data
from the initiator correctly for each operation listed in the DropSite
XmiNdr opSi t eQper at i ons resource .

- If the operation is Copy, the val ue field contains a pointer to the
data from the initiator. It is used to assign the value to some

15-91

OSF/Maotif Programmer’s Guide

element in the receiver’s program. The example above shows a
Copy in effect. When the transfer is finished, both the initiator
and receiver have the data in each of their applications.

If the operation is Move, data is first copied to the receiver, then
deleted from the initiator. It is important that the initiator not
delete the data before the receiver has it. Therefore, a Move is a
two-step process:

— The first transfer is processed by the initiator like a Copy. It
returns a pointer to the data in the val ue field.

— When the XN ransfer Proc has the data, it uses XD op-
Tr ansf er Add to make a new transfer entry for that data, set-
ting the t arget to DELETE. The initiator will not delete the
data until the receiver has issued this second transfer
request.

At the end of the transfer, the receiver has the only copy of the
data.

If the operation is Link, the pointer is used to link an element in
the receiver to the data. At the end of the operation, there is
only one copy of the data, belonging to the initiator, but both
applications have access to it.

15.6.3 Cancelling a Drop

15-92

A drop can be cancelled only by the receiver, from the XniNdr opPr oc
or any subroutine it calls, such as X\t ransferProc. To cancel a
drop:

- Set the Xm\nhunDr opTransfers DropTransfer resource to zero.

This tells the toolkit that there are no more transfers to make
and the drop is complete.

Drag and Drop

- Set the Xm\transferStatus to XnTRANSFER FAI LURE. This
information is passed to the initiator in the XmNdr opFi ni shed-
Cal | back structure.

- Call the XnDr opTr ansf er Start function if the decision to cancel
the drop was discovered in the XmNdr opPr oc routine. Otherwise,
exit the subroutine.

The transfer will be cancelled at the next transfer request. The
drop is over, and the initiator's XniNdropFi ni shCal | back and
XmiNdr agDr opFi ni shCal | back routines are called.

This example is from a program’s XmiN\dr opPr oc routine.

Xt Set Arg(args[n], Xm\transferStatus, XnTRANSFER FAI LURE); n++;
Xt Set Arg(args[n], Xm\nunDropTransfers, 0); n++;
Xnx opTr ansf er St art (Dr opDat a- >dr agCont ext, args, n);

15.6.4 Providing Help

It might not always be obvious to the user what the result of drop-
ping a particular source on a drop site might be. The user can
request more information about the drop site by pressing KHel p
while the drag icon is over the drop site.

The receiver’'s XnmNdr opPr oc is called, with a value of XnDROP_HELP
in the dropActi on field of its callback structure. If the receiver
supports help, it should post a dialog box, providing information
about the type of drop this site expects, and what it will do when a
successful drop occurs.

The receiver should then exit the XmiNdr opPr oc routine, not waiting
for a response from the user. When the XmNdr opPr oc has finished,
the initiator's XniNdr opSt art Cal | back is called with a dr opActi on

15-93

OSF/Maotif Programmer’s Guide

15-94

of XnDRCP_HELP if the initiator has registered that callback. The
initiator is not expected to do anything at this point, but it could
provide special processing such as changing the drag icon.

Typically, the help dialog box allows the user the opportunity to
continue the drop or to cancel the drop. If more than one operation
is possible, the dialog box should explain the consequences of each
operation and let the user select one. The dialog procedure may
change the operation based on the users selection.

- If the user indicates that the drop should be cancelled, the
receiver’s help procedure should cancel the drop by requesting no
transfers, as described in the previous section.

- If the user indicates that the drop should continue, the help pro-
cedure should call XnDr opTr ansf er Start to begin the transfer of
information from the initiator.

In either case, the help procedure must call XnDr opTr anfer Start
before it ends to either start the transfers or notify the initiator that
no transfers will be requested.

The receiver may want to issue help information if a drop is con-
sidered invalid, even if the user hasn't requested it. If so, the
receiver’'s XimN\dr opPr oc sets the dr opAct i on field to XnDRCP_HELP,
and displays the help dialog box as if help had been requested.

The following example taken from DNDDeno. ¢ in Appendix B shows
how the help dialog box shown in the illustration was created.

Drag and Drop

Figure 15-14. Help Dialog Box

DMNDDemo

Drop Help

This drop action will change the color
of the rectangle that the paint palette

icon is dropped on. To accept this drop
press the o.k. button, otherwise press

cancel

Cancel

The XnDr opProc DropProcCal | back routine checks if the drop is
normal or if there is a request for help.

15-95

OSF/Maotif Programmer’s Guide

15-96

static void DropProcCal | back(w, client, call)
Wdget w,

Xt Poi nter client;

Xt Pointer call;

{

XD opProcCal | backStruct *cb = (XnDropProcCal | backStruct *)cal | ;

i f (appl nfo->highlightRect !'= NUL)
Rect Unhi ghl i ght (W) ;

i f (cb->dropAction ! = XnDRCP_HELP)
Handl eDrop(w, call);

el se
Handl eHel p(w, cal l);

}

The Handl eHel p routine displays the help dialog box. The text
presented in the dialog box depends on the drop site and the opera-
tion. Callback routines are registered to be performed when either
of the dialog pushbuttons is pressed.

static void Handl eHel p(w, call)
Wdget w,

Xt Pointer call;

{

XD opPr ocCal | backStruct *cb = (XnDr opProcCal | backStruct *)cal | ;
static XnDropProcCal | backStruct client;

Bool ean rect Found, bgFound, pi xFound;
Xnstring hel pStr;

Rect Ptr rect;

Arg args[5] ;

Xnstri ng tenpStr, buttonArray[2];

Drag and Drop

i nt n =0;

/* the drop is valid until it is determned invalid */
cb->dropSiteStatus = XnVALI D DRCP_SI TE;

/* if we haven't created a hel p dial og, create one now */
if (helpD al og == NULL) {

Xt Set Arg(args[n], Xm\dial ogStyl e,
XnDl ALOG FULL_APPLI CATI ON_MODAL) ; n++;

Xt Set Arg(args[n], Xm\title, "Drop Hel p"); n++;

hel pbO al og = Xnr eat eMessageD al og(t opLevel , "Hel p",
args, nj;

n =0;

buttonArray[0] = XnBtri ngQ eat eSi npl e(" Mve");

buttonArray[1] = XnBtri ngO eat eSi npl e(" Copy");

Xt Set Arg(args[n], Xm\buttons, buttonArray); n++;

Xt Set Arg(args[n], Xm\buttonCount, 2); n++;

Xt Set Arg(args[n], Xm\outtonSet, 0); n++;

Xt Set Arg(args[n], Xm\sinpl eCal | back, ChangeQperation); n++;

tenpStr = XnBtringQeateSinpl e("Qoerations:");

Xt Set Arg(args[n], Xm\optionLabel, tenpStr); n++;

hel pMenu = XmOr eat eSi npl e(pt i onMenu(hel pDi al og, "hel pMenu”,
args, nj;

XnstringFree(tenpStr);

XnstringFree(buttonArray[0]);

XnstringFree(buttonArray[1]);

Xt AddCal | back(hel pb al og, XmNokCal | back,

(Xt Cal | backProc) Handl eCX, (XtPointer) &client);
Xt AddCal | back(hel pD al og, Xmi\cancel Cal | back,

(Xt Cal | backProc) Cancel Drop, (XtPointer) &client);

Xt UnnanageChi | d(XnessageBoxGet Chi | d(hel pDi al og,

15-97

OSF/Maotif Programmer’s Guide

XDl ALOG HELP BUTTQN)) ;
Xt Real i zeW dget (hel pD al og) ;

}

/* pass the necessary cal |l back i nformation al ong */
client.dragContext = cb->dragCont ext;

client.x = cb->x;

client.y = ch->y;

client.dropSiteStatus = cb->dropSteStat us;
client.operation = cb->operation;

client.operations = ch->operati ons;

/* find the valid targets */
CheckTar get s(cb->dragCont ext, Xt D splay(w), & ectFound,
&gFound, &pi xFound);

/* determne the appropriate hel p nessage */
if (rectFound) {

i f (cb->operations == XnDROP_MOVE | XnDRCP_QCPY) {
Xt ManageChi | d(hel pMenu) ;
hel pStr = XnBtri ngO eat eLt oR(HELP_NB(A,
XFONTLI ST_DEFAULT_TAG ;
Xt ManageChi | d(XmviessageBoxGet Chi | d(hel pDi al og,
XnDl ALOG K BUTTON)) ;
}
else if (cb->operation == XnDRCP_MOVE) {
Xt UnnanageChi | d(hel pMenu) ;
hel pStr = XnBtri ngOr eat eLt oR(HELP_MB®,
XnFONTLI ST_DEFAULT _TAG ;
Xt ManageChi | d(XmvessageBoxGet Chi | d(hel pD al og,
XnDl ALOG (K BUTTON)) ;

15-98

Drag and Drop

else if (cb->operation == XnDRCP_CCPY) {
Xt UnnmanageChi | d(hel pMenu) ;
hel pStr = XnBtri ngO eat eLt oR(HELP_MVBG3,
XnFONTLI ST_DEFAULT_TAG) ;
Xt ManageChi | d(XmMessageBoxGet Chi | d(hel pD al og,
XnDl ALOG K BUTTON)) ;

}
el se if (bgFound || pixFound &% cb->operati on == XnDRCOP_CCPY)

Xt UhnanageChi | d(hel pMenu) ;
rect = RectFind(cb->Xx, cb->y);
if (rect) {
hel pStr = XnBtri ngO eat eLt oR(HELP_NVBGL,
XnFONTLI ST_DEFAULT_TAG) ;
Xt ManageChi | d(XmMessageBoxGet Chi | d(hel pD al og,
XnDl ALOG K BUTTON)) ;

}
el se {
hel pStr = XnBtri ngOr eat eLt oR(HELP_MBGb,
XnFONTLI ST_DEFAULT_TAG) ;
Xt UnnanageChi | d(XmvessageBoxGet Chi | d(hel pDi al og,
XnDl ALOG (K BUTTON)) ;
}
}
el se {
Xt UhnanageChi | d(hel pMenu) ;
hel pStr = XnBtri ngOr eat eLt oR(HELP_MBGb,
XnFONTLI ST DEFAULT _TAG ;
Xt UhnanageChi | d(XnMessageBoxGet Chi | d(hel pDi al og,
XnDl ALOG CK_BUTTON)) ;
}

15-99

OSF/Maotif Programmer’s Guide

/* set the help message into the dialog */
Xt Set Arg(args[0], XnNmessageString, hel pStr);
Xt Set Val ues(hel pDi al og, args, 1);

/[* Free the XnBtring */
XngtringFree(hel pStr);

/* map the hel p dialog */
Xt ManageChi | d(hel pDi al og) ;

}

The Handl eCX callback routine is performed when the user selects
the OK button. It allows the drop to continue normally by calling
the Handl eDr op routine.

static void Handl exK(w, client, call)
Wdget w,

Xt Pointer client;

Xt Pointer call;

{

XD opPr ocCal | backStruct *cb = (XnDr opProcCal | backStruct *)client;

cb- >operati on = appl nf o- >operati on;
Handl eDrop(w, (Xt Pointer) cbh);

The Cancel Dr op callback routine is performed when the user selects
the Cancel button. It cancels the drop by calling XnDr opTr ansf er -
Start with indicators that the drop failed.

15-100

Drag and Drop

static void Cancel Drop(w, client, call)
Wdget w,

Xt Poi nter client;

Xt Pointer call;

{

XDr opProcCal | backStruct *cb = (XnDropProcCal | backStruct *)client;
Arg args| 2];

/* O help, we need to cancel the drop transfer */
Xt Set Arg(args[0], XnmN\transferStatus, XnTRANSFER FAI LURE);
Xt Set Arg(args[1], Xm\hunDropTransfers, 0);

/* we need to start the drop transfer to cancel the transfer */
XnDr opTransfer Start (ch->dragContext, args, 2);

15.7 Drag Initiator Responsibilities for Drop-
pIng

The drag initiator:

- Registers a Xm\convert Proc procedure to format data and send
the formatted data to the receiver.

15-101

OSF/Maotif Programmer’s Guide

- Optionally registers a XnNdr opSt art Cal | back to be performed
at the drop.

- Optionally registers a XmiNdr opFi ni shCal | back to be performed
after the drop and transfer have finished.

- Optionally registers a XmiNdr agDr opFi ni shCal | back to be per-
formed after the entire drag and drop transaction has finished.

15.7.1 XmNdropStartCallback

The receiver’'s XmiNdr opPr oc routine receives the drop message first
if the drop occurred over a widget which was registered as a Drop-
Site. It verifies that a drop is possible, and updates fields in its call-
back structure, which become available to the initiator in its
XmiNdr opSt art Cal | back callback structure. The initiator can per-
form any actions necessary prior to the transfer of information, for
instance, providing a new drag icon.

The toolkit initializes the oper ati on, operati ons, and dropSi -
t eSt at us fields in a manner similar to that described for the
initiator's drag callbacks earlier in this chapter with one difference:
the initialization for the drag callbacks uses the values at the end of
the receiver’'s XmN\dr agPr oc, while the initialization for the drop call-
backs uses the values at the end of the receiver’s XmiN\dr opPr oc.

The dropActi on field indicates the action that the receiver has
taken. XnDRCP shows that a normal drop is in progress.
XnDRCP_CANCEL shows that the receiver has cancelled the drop. If
the action is XnDRCP_HELP, the initiator is not expected to do any-
thing, although this callback provides the opportunity to do so if
desired, for instance, changing the drag icon to reflect the Help
request.

15-102

Drag and Drop

This procedure will not know the resolution of the help dialog.
However, if the user chooses to continue, the initiator’'s Xni\convert -
Pr oc routine is called as part of the transfer process, and if the user
chooses to cancel, the receiver’'s XmiNdr opFi ni shCal | back is called
with a dropAct i on of XnDRCOP_CANCEL.

15.7.2 Dealing with Requests for Transfer

The drag initiator must register a callback to process transfers in
the Xm\convert Proc DragContext resource. This routine is called
when the receiver client invokes XnDr opTransferStart. Prior to
calling XnDr opTr ansf er Start, the receiver makes a list of the tar-
get formats it wants.

The initiator’'s Xm\convert Proc callback routine processes transfer
requests from the receiver. The routine should be able to return
information about each object being dragged in each possible target
format for that item.

If the DropTransfer XN ncrenent al resource is True, information
is transferred between the initiator and the toolkit using the Xt
Selection incremental protocol. If the value is False, the informa-
tion is transferred between the initiator and the toolkit in one pass.
The initiator and receiver need not be using the same incremental
or non-incremental protocol.

This XmN\convert Proc routine is called for each target type desired
by the receiver, a single target type for each request. The Xmi\con-
vert Proc routine should be able to perform any of the operations
listed in the DragContext XmiNdr agQper at i ons resource on data in
any of the target types listed in the XnNexport Tar get s resource.

- If the operation is Copy or Link, the Xn\Nconvert Proc returns a
pointer to the data. The receiver will use this pointer to copy

15-103

OSF/Maotif Programmer’s Guide

this data into its own storage, or establish a link using this
pointer.

- If the operation is Move, the first transfer request has a normal
target type. The XmiNconvert Proc should return a pointer to
the data, as it would for a Copy.

A second transfer request for the data has a target type of
DELETE. The receiver does not issue this request until it has
received the data and handled it appropriately (such as storing it
in a file). Only then should the initiator delete the data.

In the following example from DNDscrol | . ¢ in Appendix B, the rou-
tine returns the value of the scrollbar slider in only one target type,
compound text. This information is passed to the receiver's
Xm\t r ansf er Proc routine. This routine is called once for each item
in the receiver's XnN\dr opTr ansf er s list. Copy was the only opera-
tion allowed by the application, so this routine need not process any
delete requests from the receiver.

static Bool ean DragConvertProc(w, selection, target, typeRn,
valueRtn, lengthRn, fornatRn,
max_|l engthRn, client_data,

request _id)
W dget W,
At om *sel ection;
At om *target;
At om *typeR n;
Xt Poi nt er *val ueR n;
unsi gned | ong *| engt hR n;
i nt *format R n;
unsi gned | ong *max_| engt hR n;
Xt Poi nt er client_data;
Xt Request 1 d *request _id,;
{

15-104

Drag and Drop

Xnstring cstring;
static char tnpstring[100];

i nt *val ue;

i nt n;

Arg ar gs[MAX_ARGS] ;
char *ctext;
char *passt ext;

/* this routine processes only conpound text */
if (*target !'= OCOVPAOUND TEXT)
return(Fal se);

/* get the value of the scrollbar slider */
n =0;

Xt Set Arg(args[n], Xni\val ue, &val ue); n++;
Xt Get Val ues(scrol | bar, args, n);

/* convert the slider value to conpound text */
sprintf(tnpstring, "%l", value);

cstring = XnBtringCeatelocal i zed(tnpstring);
ctext = XnQvt XnBtri ngToCT(cstring);

passtext = Xt Malloc(strlen(ctext)+1);
nmencpy(passtext, ctext, strlen(ctext)+1);

/* format the value for transfer. convert the value from
* conpound string to conpound text for the transfer */
*typeR n = COMPOUND_TEXT;

*valueRin = (Xt Poi nter) passtext;

*lengthRin = strlen(passtext);

*fornmatRtn = 8;

return(True);

15-105

OSF/Maotif Programmer’s Guide

If the DNDscrol | . ¢ program in Appendix B processed more than
one target, such as text and compound text, then this routine would
have to handle both types. For example:

if (*target = COMPOND TEXT) {
/* processing to convert the slider to compound string fornat */

}
else if (*target = TEXT) {
/* processing to convert the slider to text fornat */

}

el se
return(Fal se);

15.7.3 XmNdropFinishCallback

The XmNdr opFi ni shCal | back is called when the receiver’s
Xm\t r ansf er Proc routine has finished processing all the transfers
desired by the receiver.

The conpl eti onSt at us field indicates whether the entire drop
was successful or not.

The oper ati ons, oper ati on, dropSi t eSt at us, and dr opActi on
fields are initialized as described for the XniNdropSt art Cal | back
procedure covered earlier in this chapter.

In Motif 1.2, this routine is performed once per drag.

15-106

Drag and Drop

15.7.4 XmNdragDropFinishCallback

The Xmdr agDr opFi ni shCal | back routine is performed when the
complete drag and drop transaction has finished. In Motif 1.2, this
routine is called immediately after the initiator’'s XniNdr opFi ni sh-
Cal | back has finished. The initiator frees any remaining structures
it has allocated during the drag.

For example, this sample code destroys any cursor icons that were
created during the drag.

static void DnDFi ni shCal | back(w, client_data, call_data)

W dget W,
Xt Poi nt er client _data, call_data;
{
XDr agCont ext dc;
W dget source_icon, state_icon, op_icon;
Arg ar gs[MAX_ARGS] ;
i nt n;

dc = (XnDragCont ext)w,
source_icon = state_icon = op_i con = NULL;

n = 0;

Xt Set Arg(args[n], XnmN\sourceCQursorlcon, &source_icon); n++;
Xt Set Arg(args[n], Xni\stateCQursorlcon, &tate icon); n++;
Xt Set Arg(args[n], XnmNoperationQursorlcon, &p_icon); n++;
Xt Get Val ues(dc, args, n);

if (source_icon !'= NUL)
Xt Dest r oyW dget (sour ce_i con);
if (state_icon !'= NULL)
Xt Dest royWdget (state_i con);

15-107

OSF/Maotif Programmer’s Guide

if (op_icon !'= NUL)
Xt Dest r oyW dget (op_i con);

15-108

Chapter 16. Interclient Communica-
tion

A Motif application can communicate with another application in a
variety of circumstances:

= When negotiating with a window manager such as MWM

- When the user makes or transfers a primary, secondary, or clip-
board selection

- When the user drags data from one application and drops it in
another

= When the application deals with a resource that is shared with
other clients on the display, such as input focus, the pointer,
grabs, and colormaps

The X Consortium Standard Inter-Client Communication Conven-
tions Manual (ICCCM) defines standards by which X clients should
communicate with each other. The Motif toolkit and MWM comply
with ICCCM. Applications may define private protocols for com-
municating with other applications that share those protocols. If
they do so, they should also conform to ICCCM standards.

16.1 Window Managers, ICCCM, and Shells

ICCCM defines protocols for communication between clients and
window managers. Most of the communication takes place via pro-
perties on an application’s top-level windows. The window manager
can also generate events that are available to the application.

In Motif and Xt, shells handle most communication between an
application and a window manager. An application seldom has to
deal directly with properties or events. The application can usually
specify properties by setting resources of a shell. Shells also select
for and handle most events from the window manager.

16-1

OSF/Maotif Programmer’s Guide

This section discusses the relations between some shell resources,
properties, and events concerned with communication between an
application and any window manager. The following section
discusses resources, properties, and events that apply to MWM in
particular.

16.1.1 Application Startup

16-2

When a top-level window is mapped, the window manager may
search the resource database for information about the window.
The resource name and class come from the WM_CLASS property
for the window. This property contains two consecutive strings that
identify the instance and class names.

Xt sets the WM_CLASS property when a shell that is a subclass of
WvBhel | is realized. The instance name is the name of the shell.
For an ApplicationShell, this is generally the name of the applica-
tion passed to Xt D spl ayl nitialize. The class name is the appli-
cation class from the highest-level widget in the hierarchy. For an
ApplicationShell, this is generally the application class passed to
XtD splaylnitialize. If the root widget is not an Application-
Shell, the class name is the widget's class hame.

Most window managers display a name for a top-level window,
often in a title bar. The window name comes from the WM_NAME
property. This property is a string whose encoding is identified by
the type of the property.

A Motif application specifies a window name via the WMShell
resources Xm\title and XnNitl eEncodi ng. If the shell is a
TopLevelShell subclass and the XNl conNarre resource is not NULL,
the value of that resource is the default for Xmi\ti tle. Otherwise,
the default title is the name of the shell. For a dialog, an

Interclient Communication

application can supply a title as the value of the BulletinBoard
resource Xm\di al ogTi tl e.

Xm\tit] eEncodi ng is an atom representing the encoding of the
name. The default title encoding depends on whether or not a
language procedure has been set. If no language procedure has
been set, the default is STRING. If a language procedure has been
set, the title is assumed to be in the encoding of the locale and is
passed to XnbText Li st ToText Property with an encoding style of
XStdl CCText Styl e. The returned property is used as the
WM_NAME property. If the title is fully convertible to type
STRING, the encoding is STRING; otherwise, the encoding is
COMPOUND_TEXT.

16.1.2 Window Configuration

A window manager can assign any position and size to a window.
The user and application can supply preferred positions and sizes,
but the window manager is free to use or ignore these as it wishes.

The user generally specifies position and size via the —geonetry
option when invoking the command that starts the application. In
Motif, the value specified for —geonetry becomes the value of the
Shell Xm\geonetry resource. An application should never set this
resource itself; it should reserve it for the user. An application
specifies size and position by supplying values for the Core
resources Xim\x, Xm\y, Xmi\hei ght , XniNai dt h, and XmmiNbor der W dt h.
When an x, y, width, or height value is specified for both
XmN\georet ry and one of the specific geometry resources, the value
from Xm\georret ry takes precedence.

The MWM posi ti onl sFrane resource determines whether MWM
interprets x and y values as referring to the upper left corner of the

16-3

OSF/Maotif Programmer’s Guide

client window itself or the upper left corner of the frame that MWM
puts around the client window. By default x and y values refer to
the frame.

When a top-level window is mapped, MWM uses the following order
of precedence in determining size and position:

If the user specifies position and size via the —geonet ry option,
MWM uses those values.

If the MWM interactivePl acenent resource is True, MWM
waits for the user to select a position using a button press for the
upper left corner of the window. If the user drags the pointer
down and to the right with the mouse button pressed, the user
can then determine the size of the window by releasing the
mouse button. If the user does not determine a size in this way,
MWM uses the window’s Xm\wi dt h and Xmi\hei ght .

If the MWM usePPosi ti on resource is True, or if usePPosi ti on
is nonzero and the window’'s Xni\x or Xmi\y is nonzero, MWM
uses the window’s Ximi\x and Xm\y to position the window. MWM
uses the window's Xm\wi dt h and Xni\hei ght for the window’s
size. If the MWM posi ti onOnScr een resource is True and if the
window would be completely off the screen, MWM alters the win-
dow position so that at least part of the window is on the screen.

If the MWM cl i ent Aut oPl ace resource is True, MWM positions
the window with its top left corner offset horizontally and verti-
cally from the last client mapped. MWM uses the window's
XmiNwi dt h and Xm\hei ght for the window’s size.

MWM positions the window in the upper left corner of the
screen. MWM uses the window's Xmi\wi dt h and Xni\hei ght for
the window's size.

Before a window is mapped, the application communicates addi-
tional position and size information to the window manager via the
WM_NORMAL_HINTS property on the window. This property is of

16-4

Interclient Communication

type WM_SIZE_HINTS and contains a number of fields derived
from WMShell resources:

XmiNm nHei ght , XnmiNm nW dt h

Specifies the minimum height and width that the
application wishes the widget's window to have. If an
initial value is supplied for one of these resources but
not for the other, the value of the unspecified resource
is set to 1 when the widget is realized. If no value is
specified for either resource, MWM uses the values
from Xm\baseHei ght and Xm\baseW dt h if specified.
Otherwise, MWM uses a minimum height and width
of at least 1.

XmNmax Hei ght , XmiNmaxW dt h

Specifies the maximum height and width that the
application wishes the widget's window to have. If an
initial value is supplied for one of these resources but
not for the other, the value of the unspecified resource
is set to 32767 when the widget is realized. If the
MWM resource maxi mundientSize is specified,
MWM uses that value to determine the maximum
window size. Otherwise, MWM uses the maximum
height and width from the WM_NORMAL_HINTS
property, except that the window size may not exceed
the height and width specified by the MWM maxi mum
Maxi munsi ze resource.

Xm\baseHei ght , Xm\baseW dt h
Specifies the base for a progression of preferred
heights and widths for the window manager to use in
sizing the widget. The preferred heights are
Xm\baseHei ght plus integral multiples of
Xm\hei ght | nc, with a minimum of XmiNm nHei ght and
a maximum of Xni\naxHei ght. The preferred widths
are Xm\baseWdth plus integral multiples of

16-5

OSF/Maotif Programmer’s Guide

Xm\Wi dt hl nc, with a minimum of XniNm nWdt h and a
maximum of XmNmaxW dt h. If an initial value is sup-
plied for one of these resources but not for the other,
the value of the unspecified resource is set to 0 when
the widget is realized. If no value is specified for
either resource, MWM uses the values from
Xmi\mi nHei ght and XnNm nW dt h if specified. Other-
wise, MWM uses a base height and width of at least
1.

Xm\hei ght | nc, XniNwi dt hl nc

Specifies the increment for a progression of preferred
heights and widths for the window manager to use in
sizing the widget. The preferred heights are
Xm\baseHei ght plus integral multiples of
Xm\hei ght | nc, with a minimum of XmiNm nHei ght and
a maximum of Xm\haxHei ght. The preferred widths
are Xm\baseWdth plus integral multiples of
XmNwi dt hl nc, with a minimum of XmiNm nW dt h and a
maximum of XmNmaxW dt h. If an initial value is sup-
plied for one of these resources but not for the other,
the value of the unspecified resource is set to 1 when
the widget is realized. If no value is specified for
either resource, MWM uses an increment of 1.

Xmi\mi nAspect X, XmiNm nAspect Y
Specifies the numerator and denominator of the
minimum aspect ratio (X/Y) that the application
wishes the widget's window to have. If no value is
specified for either resource, MWM imposes no
minimum aspect ratio.

XmiNmaxAspect X, XmNmaxAspect Y
Specifies the numerator and denominator of the max-
imum aspect ratio (X/Y) that the application wishes
the widget's window to have. If no value is specified

16-6

Interclient Communication

for either resource, MWM imposes no maximum
aspect ratio.

XmiNwi nGravity
Specifies the window gravity for use by the window
manager in positioning the widget. If no initial value
is specified, the value is set when the widget is real-
ized. If XnNgeonetry is not NULL, XnNwi nG avity is
set to the window gravity returned by XWWeonetry.
Otherwise, Xm\wi nGravi ty is set to Nort hWst G av-

ity.
After a window is mapped, an application can request changes to
window size or position by calling Xt Set Val ues for one or more of

the Core geometry resources. A user can generally employ window
manager facilities to move or resize a top-level window.

Calling Xt Set Val ues for a geometry resource generates a geometry
request that may propagate up the widget hierarchy to the shell.
This may cause the shell to make its own geometry request, and
this invokes the shell's root _geonetry_manager procedure. This
procedure uses XConfi gur eW ndow to ask the window manager to
change the window'’s size or position.

If a window manager responds to a configuration request by deny-
ing it or by moving the window without resizing it, the window
manager sends a synthetic Confi gureNotify event. If the window
is resized, the window receives a real Confi gureNoti fy event.

These events may be handled by either the
root _geonetry nmanager procedure or a Shell event handler. If the
VendorShell resource XnNuseAsyncGeonetry is True, the
root _geonetry_nmanager procedure does not wait for the window
manager to respond to the configuration request, but instead
returns Xt Geonet ryYes. If the WMShell resource Xni\Nwai t For Whis
True and if the window manager grants the configuration request
within the XmNwnTi neout interval, the root geonetry_ nanager

16-7

OSF/Maotif Programmer’s Guide

procedure updates the widget's geometry resources and returns
Xt GeonetryYes. Otherwise, the root_geonetry manager pro-
cedure returns Xt GeonetryNo and relies on the event handler to
reconfigure the widget when it receives a subsequent Conf i gur eNo-
tify event.

The shell's Confi gureNotify event handler is invoked when the
user reconfigures a top-level window or when the application
reconfigures a window and this reconfiguration is not handled by
the root _geonetry _manager procedure. The event handler updates
the shell’s core geometry fields with the values allowed by the win-
dow manager. If the size of the shell changes, the event handler
calls the shell's resize procedure. This procedure calls
Xt Resi zeW dget to change the height, width, and border width of
the child to be the same as those of the shell.

16.1.3 Icons

16-8

An application uses several properties to communicate with the
window manager about icons associated with top-level windows. A
Motif application can use resources of several Shell subclasses to
specify values for these properties.

When a window is first mapped, it can appear in either its normal
state or iconic state. An application uses a field in the WM_HINTS
property to tell the window manager which initial state it prefers.
A Motif application specifies the initial state by setting the
WMShell resource XN niti al St at e or the TopLevelShell resource
XmN coni c. XN coni ¢ takes precedence over XnN nitial State.
After a window is realized, an application can use Xt Set Val ues for
XmN coni ¢ to either iconify or deiconify the window.

Interclient Communication

An application can supply a name, a bitmap, or a window for the
window manager to use as an icon. When a top-level window is in
iconic state, the window manager usually displays the icon window
if one is supplied, or else the icon pixmap if one is supplied, or else
the icon name. MWM uses the i conDecor ati on resource in deter-
mining what aspects of an icon to display.

The icon name comes from the WM_ICON_NAME property. Like
WM_NAME, this property is a string whose encoding is identified
by the type of the property.

A Motif application specifies a icon name via the TopLevelShell
resources XN conNanme and XmN conNaneEncodi ng. The default
icon name is the name of the shell. XnN conNarmeEncodi ng is an
atom representing the encoding of the name. The default encoding
depends on whether or not a language procedure has been set. If no
language procedure has been set, the default is STRING. If a
language procedure has been set, the icon name is assumed to be in
the encoding of the locale and is passed to XnbText Li st ToText Pr o-
perty with an encoding style of XSt dl CCText Styl e. The returned
property is used as the WM_ICON_NAME property. If the icon
name is fully convertible to type STRING, the encoding is STRING;
otherwise, the encoding is COMPOUND_TEXT.

An application uses fields in the WM_HINTS property to supply an
icon bitmap and an optional mask for displaying the bitmap in a
nonrectangular shape. A Motif application specifies an icon bitmap
as the value of the WMShell resource XmN conPi xmap, and it
specifies the mask as the value of the WMShell resource XmN con-
Mask.

An application uses a field in the WM_HINTS property to supply an
icon window. A Motif application specifies an icon window as the
value of the WMShell resource XmN conW ndow. The icon window
must be an InputOutput child of the root window. It must also use
the root visual and the default colormap of the screen. The applica-
tion must not map, unmap, or configure this window. It must,

16-9

OSF/Maotif Programmer’s Guide

however, select for Expose events on the window and redisplay the
contents when it receives these events.

The window manager may specify preferred maximum and
minimum sizes and size increments for icon bitmaps and windows.
To do this it puts a WM_ICON_SIZE property on the root window.
MWM uses the iconlmageMaxi num and i conl nmageM ni mum
resources, with increments of 1, in setting this property. Before an
application specifies an icon bitmap or window, it should use the
Xlib routine XCet | conS zes to check these constraints and then
supply a bitmap or window that is of one of the preferred sizes.

An application can use two fields of the WM_HINTS property to
supply preferred x and y root coordinates for the icon location. A
Motif application specifies these coordinates as the values of the
WMShell resources XmNi conX and XniNi conY. The window manager
may ignore these values. MWM uses the usel conBox, i conPl ace-
ment , and i conPl acenent Mar gi n resources in determining where to
place icons.

16.1.4 Window Groups

16-10

An application can use a field of the WM_HINTS property to supply
the window ID of a window to serve as the "leader" for a group of
windows. The window manager may treat all windows in this
group as a whole for certain purposes, such as showing a single icon
when the entire group is iconified.

A Motif application specifies a window group leader as the value of
the WMShell resource Xm\Nwi ndow@ oup. For VendorShell and its
subclasses, if the shell has a parent, Motif sets the Xni\wi ndowQ@ oup
to the parent’s window at the time that the shell and its parent are
both realized. Otherwise, the default value is

Interclient Communication

Xt Unspeci fi edW ndowQ@ oup, which means that no window group is
set.

16.1.5 Menus and Dialogs

A window manager may treat dialogs differently from other top-
level windows, and it must not interfere with menus at all.

An application tells a window manager not to decorate or otherwise
interfere with a window by setting the overri de_redirect attri-
bute of the window to True. A Motif application does this by setting
the Shel | resource XmNoverri deRedirect resource to True, or by
using an Overri deShel |, which has a default value of True for this
resource. XmvenuShel | is a subclass of Overri deShel | , and Menu-
Shells are the only widgets that should have a value of True for
XmNover ri deRedi rect . An application normally does not supply a
value other than the default for this resource.

An application tells a window manager to treat a window as tran-
sient or secondary by setting the window's WM_TRANSIENT_FOR
property. This property contains the window ID of another top-level
window, usually the window from which the transient window was
popped up. A Motif application generally specifies this property by
creating a DialogShell, a subclass of TransientShell, which has an
Xm\t r ansi ent For resource. The value is a widget, and the default
is set to the shell’'s parent at the time that both the shell and its
parent are realized. The window of the Xn\ r ansi ent For widget is
used for the WM_TRANSIENT_FOR property. For a shell that is
not a subclass of TransientShell, an application can set the
WMShell X\t r ansi ent resource to True. The XmiNai ndow@ oup is
then used for the WM_TRANSIENT_FOR property. An application
normally does not supply a value other than the default for
X\t r ansi ent or X\t r ansi ent For .

16-11

OSF/Maotif Programmer’s Guide

MWM treats transient windows differently from other top-level win-
dows. By default it keeps transient windows stacked on top of their
primary windows and does not allow transient windows to be
iconified separately from their primary windows. The MWM tran-
sient Decoration and transient Functions resources determine
which decorations and functions apply to transient windows. An
application can further specify these decorations and functions by
using the VendorShell XnmNnwrDecor ati ons and XmNmwnfunct i ons
resources, explained in a later section.

16.1.6 Input Focus

16-12

ICCCM recognizes four models for the relationship between clients
and window managers in setting input focus:

No input
The client does not expect keyboard input and does
not want the window manager to set focus to any of
its windows.

Passive input
The client expects keyboard input and wants the win-
dow manager to set focus to its top-level window. It
does not set focus itself.

Locally active input
The client expects keyboard input and wants the win-
dow manager to set focus to its top-level window. It
may also set focus to one of its subwindows when one
of its windows already has the focus. It does not set
focus itself when the current focus is in a window that
the client does not own.

Interclient Communication

Globally active input
The client expects keyboard input but does not want
the window manager to set focus to any of its win-
dows. Instead, it sets focus itself, even when the
current focus is in a window that the client does not
own.

An application tells the window which model it prefers by using two
properties:

- If the i nput field of the WM_HINTS property is True, the appli-
cation wants the window manager to set focus to its top-level
window. If this field is False, the application does not want the
window manager to set focus.

- If the WM_PROTOCOLS property contains a
WM_TAKE_FOCUS atom, the application sometimes sets focus
itself. If the WM_PROTOCOLS property does not contain a
WM_TAKE_FOCUS atom, the application does not set focus
itself.

These combinations are summarized in the following table:

Input Model Input field WM_TAKE_FOCUS
No input False Absent
Passive True Absent
Locally active True Present
Globally active False Present

A window manager generally does not set input focus to a window
when the WM_HINTS input field is False. A window with a
WM_TAKE_FOCUS protocol may receive a ClientMessage when
the window manager wants the window to accept keyboard focus.
The window may respond by setting the input focus or by ignoring
the message.

16-13

OSF/Maotif Programmer’s Guide

A Motif application can set the i nput field of the WM_HINTS pro-
perty by specifying a value for the WMShell resource XmN nput .
The application can install the WM_TAKE_FOCUS atom on the
WM_PROTOCOLS property by calling XmAddWWProtocols or
XmAddWWPr ot ocol Cal | back, explained in a later section.

A Motif application normally should avoid setting input focus itself.
The application can control the location of focus within its subwin-
dows by using the VendorShell resource Xmi\keyboar dFocusPol i cy,
the Gadget, Primitive, and Manager resource Xm\ r aver sal On, and
the XPr ocessTr aver sal routine. If the application wants a widget
to receive no input at all it can use Xt Set Sensitive to make the
widget insensitive. If the application needs to set focus directly, it
should usually use Xt Set Keyboar dFocus and avoid using XSet | n-
put Focus. For more information see chapter 13.

A number of MWM resources influence keyboard focus. When key-
boar dFocusPol i cy is "explicit" (the default), the user must press
BSel ect on a window or its decoration to give it focus. When key-
boar dFocusPol i cy is "pointer", the window that contains the
pointer has the focus. With an explicit policy, other resources deter-
mine whether a window has focus when it is first mapped (st ar -
t upKeyFocus), deiconified (dei coni f yKeyFocus), or raised
(rai seKeyFocus). When aut oKeyFocus is True and the window
with focus is iconified or withdrawn, focus passes to the window
that last had focus. When enf or ceKeyFocus is True, MWM sets
focus to globally active windows.

16.1.7 Colormaps

An application can create and set colormaps for its windows, but
only the window manager should install colormaps. Each window
manager has a colormap focus policy that determines which top-

16-14

Interclient Communication

level window has the colormap focus at a given time. When a win-
dow has colormap focus, the window manager installs one or more
colormaps associated with that window.

If all windows in an application use the same colormap, the applica-
tion need take no special action to tell the window manager to use
that colormap. The window manager keeps track of the colormap
attribute for each top-level window and installs that colormap when
the window has colormap focus.

If an application uses different colormaps for some windows in its
hierarchy, it must tell the window manager about those colormaps
by setting a WM_COLORMAP_WINDOWS property on the top-
level window. This property is a list of windows whose colormaps
the window manager should install when the top-level window has
colormap focus. The list should be in order of priority, with the win-
dows whose colormaps the application would most like to have
installed listed first. The application can use XSet WCol or mapW n-
dows to set this property.

On many servers only one hardware colormap can be installed at a
time. This may cause colors in windows that use different color-
maps to be displayed incorrectly when their own colormaps are not
installed. To reduce contention for colormaps, applications should
use the facilities for standard colormaps described in Xlib—C
Language X Interface.

The MWM col or mapFocusPol i cy resource determines the color-
map focus policy. When the value is "keyboard", the window with
keyboard focus has the colormap focus. When the value if "pointer",
the window under the pointer has the colormap focus, regardless of
whether that window also has keyboard focus. When the value is
"explicit", the colormap focus changes only when the user invokes
the f . f ocus_col or function.

When a window with colormap focus has a
WM_COLORMAP_WINDOWS property, the user can install the

16-15

OSF/Maotif Programmer’s Guide

next and previous colormaps on the list by invoking the
f.next _crmap and f. prev_cmap functions.

16.1.8 Application Shutdown and Restart

16-16

An application may run under a session manager with facilities for
saving and restoring the state of the application. An application
communicates with a session manager by placing WM_COMMAND
and WM_CLIENT_MACHINE properties on its top-level windows.
WM_COMMAND contain a string that would restart the client in
its current state.

A Motif application should have only one non-NULL
WM_COMMAND property for each logical application (i.e., for each
ApplicationShell hierarchy). Xt sets the WM_COMMAND property
for an ApplicationShell when the shell is realized, using the com-
mand that started the application. Note that if an application is
using an unrealized ApplicationShell with multiple TopLevelShell
popup children, Xt will not place a WM_COMMAND property on
any window, and the application must put this property on some
(possibly unmapped) window in the application.

WM_CLIENT_MACHINE contains a string that represents the
name of the host on which the application is running. Xt sets the
WM_CLIENT_MACHINE for a WMShell or subclass when the shell
is realized.

A session manager can inform an application when a top-level win-
dow is about to be deleted or when the application should try to
save its state. An application expresses interest in these
notifications by adding a WM_DELETE_WINDOW atom or a
WM_SAVE_YOURSELF atom to the WM_PROTOCOLS property.

Interclient Communication

If a WM_DELETE_WINDOW protocol exists, the session manager
sends a ClientMessage when it wants to delete a top-level window.
The application may ask for user confirmation and may decide to
comply or not comply with the request. If it decides to comply, the
application can either unmap or destroy the window.

If a WM_SAVE_YOURSELF protocol exists, the session manager
sends a ClientMessage when it wants the application to save its
current state in such a way that it could be restored. The applica-
tion should do whatever is necessary to save its internal state and
then update the non-NULL WM_COMMAND property with a com-
mand that will restart the application in its current state. Finally,
the application updates the WM_COMMAND property on the win-
dow that has the WM_SAVE_YOURSELF protocol if it has not
already done so. This informs the session manager that the appli-
cation has finished saving its state.

Motif installs a WM_DELETE_WINDOW protocol for VendorShell
and its subclasses. It also installs a procedure to be called after any
application-supplied @ WM_DELETE_WINDOW handlers are
invoked. This procedure destroys the widget, unmaps the window,
or does nothing, depending on the value of the VendorShell resource
Xm\del et eResponse. If the procedure destroys an ApplicationShell,
it then exits the application.

An application can add its own WM_DELETE_WINDOW and
WM_SAVE_YOURSELF protocols by using XnmAddWWPr ot ocol s or
XmAddWWPr ot ocol Cal | back, explained in a later section.

When the user invokes the f.kill command, MWM sends a
ClientMessage if an application has a WM_DELETE_WINDOW
protocol and a separate ClientMessage if an application has a
WM_SAVE_YOURSELF protocol. If the application has no
WM_DELETE_WINDOW protocol, the f.kill command Kkills the
client. In this case, if a WM_SAVE_YOURSELF protocol exists,
MWM sends the ClientMessage and then waits for the time
specified by the qui t Ti meout resource before Killing the client.

16-17

OSF/Maotif Programmer’s Guide

16.2 MWM Properties and Resources

In addition to the properties and protocols described in ICCCM,
Motif uses properties and protocols of its own. A Motif application
usually specifies these properties via VendorShell and Bulletin-
Board resources.

16.2.1 Decorations

16-18

An application expresses preferences for MWM window decorations
by supplying a value for the decorations field of the
_MOTIF_WM_HINTS property on the window. A Motif application
does this by supplying a value for the VendorShell resource
XmNmwDecor at i ons. The value is the bitwise inclusive OR of one
or more flag bit constants, each of which indicates a preference for
or against a particular decoration. If a value has been supplied for
this resource, MWM displays only those decorations specified by
both XmNmwnDecorations and the MWM clientDecoration
resource (for primary windows) or specified by both XniNnwnDecor a-
ti ons and the MWM transi ent Decor at i on resource (for transient
windows). If no value has been supplied for XniNnwnDecor ati ons,
MWM displays the decorations specified by the cl i ent Decor ati on
or transi ent Decor at i on resource.

Interclient Communication

16.2.2 Functions

An application expresses preferences for MWM window functions by
supplying a value for the functions field of the
_MOTIF_WM_HINTS property on the window. A Motif application
does this by supplying a value for the VendorShell resource
XmNmwFunct i ons. The value is the bitwise inclusive OR of one or
more flag bit constants, each of which indicates a preference for or
against a particular function. If a value has been supplied for this
resource, MWM displays only those functions specified by both
XmNmwFunct i ons and the MWM cl i ent Functi ons resource (for
primary windows) or specified by both XnNmwrFunctions and the
MWM transi ent Functi ons resource (for transient windows). If no
value has been supplied for XmNmwnFunct i ons, MWM displays the
functions specified by the client Functions or transi ent Func-
tions resource.

BulletinBoard may change the initial value of XnNmwwnfuncti ons if
its parent is a subclass of VendorShell. The BulletinBoard resource
Xm\hoResi ze determines whether the decorations of the Vendor-
Shell parent include resize controls.

16.2.3 Input Mode

An application can inform MWM that it should impose constraints
on which windows can obtain input. It does so by setting the
i nput _node field of the _MOTIF_WM_HINTS property on a win-
dow. A Motif application does this by supplying a value for the Ven-
dorShell resource XniNnwm nput Mode. For a BulletinBoard whose
parent is a DialogShell, the application can set XmiNmwt nput Mbde
indirectly by specifying a value for the BulletinBoard resource

16-19

OSF/Maotif Programmer’s Guide

Xmi\di al ogSt yl e.
The possible modes are as follows:
- Modeless—Input goes to any window.

- Primary application modal—Input does not go to ancestors of
this window or their descendants.

= Full application modal—Input goes to this window or its descen-
dants and to other applications but not to other windows in this
application.

- System modal—Input goes only to this window or its descen-
dants.

16.2.4 Window Menu

An application can supply items for MWM to add to the end of the
window menu for a window by specifying a value for the
_MOTIF_WM_MENU property. A Motif application does this by
supplying a value for the VendorShell resource XmiNmwrivenu. The
window menu itself is the value of the MWM w ndowMenu resource.

16.2.5 MWM Messages

16-20

An application can specify a message for MWM to send the applica-
tion when the user invokes the f. send_nsg function. The applica-
tion places a _MOTIF_WM_MESSAGES atom on the
WM_PROTOCOLS property for the window. The application also
places an atom on the MOTIF_ WM_MESSAGES property. When

Interclient Communication

the f.send_nsg function is invoked with this atom as the argu-
ment, MWM sends the application a ClientMessage. The applica-
tion can use XmAddWWPr ot ocol s to place a
_MOTIF_WM_MESSAGES atom on the WM_PROTOCOLS pro-
perty, and it can use XmAddPr ot ocol Cal | back to place an atom on
the _MOTIF_WM_MESSAGES property and associate it with a rou-
tine to be called when MWM sends the ClientMessage.

16.2.6 MWM Information

MWM maintains a _MOTIF_WM_INFO property on the root win-
dow of each screen it manages. This property is available for appli-
cations to inspect but not to change. The Xm shbt i f VWM nf o routine
examines this property when determining whether or not MWM is
running.

16.3 Atom and Protocol Management

Motif has two routines that can reduce overhead for applications
that use atoms. Xm nt er nAt omreturns an existing atom or (if the
third argument is False) creates and returns an atom that matches
the given string. XnGet At onNane returns the string that matches
the given atom. These functions parallel Xl nt er nAt omand XGet A-
t onNamre, but they cache the atoms and names on the client side and
avoid unnecessary trips to the server.

Motif has a number of routines to help an application install proto-
col atoms and handle ClientMessages sent when the protocols are
invoked. These routines maintain an internal registry of properties,

16-21

OSF/Maotif Programmer’s Guide

16-22

protocol atoms associated with the properties, and callback routines
associated with the protocol atoms. The application can use these
routines with shells that are subclasses of VendorShell.

XmAddPr ot ocol s associates one or more protocol atoms with a pro-
perty for a given shell. If the shell is realized, it adds those proto-
cols to the property for the shell’'s window. If the shell is not real-
ized, it arranges for the protocols to be added to the property and for
a ClientMessage event handler to be added at the time the shell is
realized. XmAddWWPr ot ocol s is a specialized version that adds pro-
tocols for the WM_PROTOCOLS property.

XmAddPr ot ocol Cal | back adds a callback routine to a callback list
associated with a protocol. It calls XmAddPr ot ocol s if the protocol
has not yet been registered. When the protocol manager’s
ClientMessage event handler receives a ClientMessage for the pro-
tocol, it invokes the procedures on the associated callback list. The
first argument to each callback procedure is the shell associated
with the protocol. The second argument is the client data, if any,
specified in the call to XmAddPr ot ocol Cal | back. The third argu-
ment is a pointer to an XmAnyCal | backSt ruct structure whose r ea-
son member is XnCR PROTOOCLS and whose event member is a
pointer to the ClientMessage event. In the ClientMessage event,
the message_t ype member is the property that contains the proto-
col, the format member is 32, and the data.|[0] member is the
protocol atom. XmAddWWPr ot ocol Cal | back is a specialized version
of XmAddPr ot ocol Cal | back that adds a callback for a protocol on
the WM_PROTOCOLS property.

An application can also use XnBet Pr ot ocol Hooks to specify a rou-
tine to be called before or after a callback list is invoked for a proto-
col. XnBet WWPr ot ocol Hooks is a specialized version that adds pre-
and posthooks for a protocol on the WM_PROTOCOLS property.

Once an application has registered a protocol and optional callback
routines, it can make the protocol active or inactive. A protocol is
active if it has been added to the associated property for the

Interclient Communication

window. A protocol is inactive if it has been removed from the asso-
ciated property. XmActi vat eProt ocol makes a registered protocol
active, and XnDeacti vat eProt ocol makes a protocol inactive.
XmAct i vat eWWPr ot ocol and XnDeact i vat eWWPr ot ocol are special-
ized versions that activate or inactivate a protocol on the
WM_PROTOCOLS property.

XnmRenovePr ot ocol Cal | back removes a callback routine from the
callback list associated with the protocol. XmRenovePr ot ocol s
removes one or more protocols and all callbacks associated with
those protocols from the internal registry. If the shell is realized, it
removes those protocols from the associated property. XnRenoveW#
Prot ocol Cal | back and XnRenmoveWWPr ot ocol s are specialized ver-
sions that remove callbacks or protocols for the WM_PROTOCOLS
property.

16.4 Selections

Selections are the standard ICCCM mechanism for transferring
data from one application to another on the same display. Each
selection is represented by an atom. The display contains only one
selection of each type. It is owned by a client or by no one and, if
owned, is attached to a window of the owning client. Any client
may assert or remove ownership of a selection.

The data represented by the selection is internal to the client that
owns the selection. If another client wants to obtain the data in the
selection, it asks the owner to convert the selection to some target
type. Each target type is represented by an atom. The owner may
or may not be able to convert the selection to the requested type or
to some other type. If it can convert the selection, the owner places
the converted data into a property on the requesting client's

16-23

OSF/Maotif Programmer’s Guide

window, using the actual target as the type of the property. The
owner sends the requestor a SelectionNotify event when the conver-
sion (whether successful or not) is complete. For a successful
transfer, this event includes the property on the requestor’s window
that contains the converted selection. When the requestor receives
a SelectionNotify event for a successful conversion, it retrieves the
contents of the specified property from its window and then deletes
the property.

16.4.1 Selection Types

ICCCM defines three selections that all clients should support,
although clients may support other selections as well:

PRIMARY The principal selection.

SECONDARY A means of exchanging data without disturbing the
primary selection.

CLIPBOARD The selection often used to "cut" or "copy" data from
one client and "paste" it into another. A client
transfers data to the clipboard by asserting owner-
ship of this selection. A client transfers data from the
clipboard by requesting conversion of the selection.

A separate client may also represent the clipboard.
This client can notice when it loses the selection
(because another client wants to transfer data to the
clipboard), then request a conversion of the selection
and finally reassert ownership.

The Motif Text and TextField widgets support all three of these
selections. The List widget supports only copying of selected items
to the clipboard. Motif also makes use of other selections, notably

16-24

Interclient Communication

for the destination widget and for drag and drop. For more informa-
tion on drag and drop selections, see chapter 15.

16.4.2 Targets

ICCCM lists a number of suggested target atoms that clients may
support. Clients are free to request and perform conversion to these
and to other targets as well. Clients that follow ICCCM must sup-
port only three targets:

TARGETS

MULTIPLE

When a selection owner is asked to convert the selec-
tion to this type, it returns a list of the target types to
which it can convert the selection. By first requesting
a conversion to TARGETS, a client can determine
whether a conversion request of a particular type is
likely to succeed or fail.

This target signifies a request for a series of conver-
sions. The requestor places in its specified window
property a list of pairs of atoms. Each pair names a
target and a property. The selection owner processes
each pair in order, converting the selection to the
specified target and placing the results in the
specified property. It sends the requestor a Selection-
Notify event when all conversions are complete.

TIMESTAMP The owner returns the timestamp it used to obtain

ownership of the selection.

Some targets have side-effects for the owner. Among these targets
are the following:

DELETE

The owner deletes the selection and, if successful,
returns a zero-length property of type NULL.

16-25

OSF/Maotif Programmer’s Guide

INSERT_SELECTION

The requestor places in its specified window property
a pair of atoms that names a selection and a target.
The owner requests conversion of the specified selec-
tion to the specified target and places the result at the
location of the selection named in the
INSERT_SELECTION request. The owner then
returns a zero-length property of type NULL. The
Motif Text widget uses this target with the destina-
tion selection when it asks the owner of the destina-
tion selection to insert the secondary selection at the
destination.

INSERT_PROPERTY

The requestor places in its specified window property
some data to be inserted at the location of the selec-
tion named in the request. The owner then returns a
zero-length property of type NULL.

16.4.3 Text Conversion

16-26

Conversion of textual selections raises problems because the
requesting client and the selection owner may be in different
locales. A requestor may specify a target type of TEXT, but the
owner may then convert the selection into any encoding that is con-
venient. The type of the returned property indicates what this
encoding is; the type will never be TEXT. The requestor may or
may not be able to convert the value into a useful form.

Converted text is generally of one of three types:

The text includes only characters in 1SO8859-1 plus
TAB and NEWLINE.

Interclient Communication

COMPOUND_TEXT
The text is in compound text format as specified by
the X Consortium Standard Compound Text Encod-

ing.

I ocal e encodi ng
The text is in the encoding of the selection owner’s
locale. The encoding is represented by the atom used
as the type of the returned property.

A selection owner can use XnbTextLi st ToTextProperty or
XwcText Li st ToText Property to convert text in its own locale to a
text property. The type of the property is determined by the compo-
sition of the text and by the encoding style passed to XnbText Li st -
ToText Property. Encoding styles exist for converting text to
STRING, COMPOUND _TEXT, and the encoding of the locale.
Another encoding style specifies conversion to STRING if all the
characters in the text can be so converted, or otherwise to
COMPOUND_TEXT.

A Motif application that has text in compound strings can use
XmCvt Xt ri ngToCT to convert a compound string to compound
text. The application can then place the compound text in the
reguestor’s property using type COMPOUND_TEXT.

STRING, COMPOUND_TEXT, and the locale encoding can also be
selection targets. To obtain a text selection in its own locale, an
application can request conversion to one of these targets and can
then call XnbText PropertyToTextLi st or XwcText PropertyTo-
Text Li st to convert the returned property to text in the current
locale. An application can also request conversion to TEXT, but
there is no guarantee that it can convert the returned property to
text in the current locale.

One possible strategy is first to request conversion to TARGETS. If
one of the returned targets is the encoding of the current locale (as
determined by a call to XnbTextLi st ToText Property with an

16-27

OSF/Maotif Programmer’s Guide

encoding style of XText Styl e), the application can request conver-
sion to that target. Otherwise, if one of the returned targets is
COMPOUND_TEXT, the application can request conversion to that
target. If neither the locale encoding nor COMPOUND_TEXT is
one of the returned targets, the application can request conversion
to STRING or TEXT if the selection owner supports one of those tar-
gets.

A Motif application that has text in compound strings can request
conversion of a selection to COMPOUND_TEXT and can then use
XmCvt CTToXBt ri ng to convert the returned property to a compound
string.

16.4.4 Incremental Transfers

16-28

When a selection contains a large quantity of data, the selection
owner may place converted data into the returned property incre-
mentally. It signals the requestor that it intends to do this by set-
ting the type of the returned property to INCR and placing into the
property an integer that represents the minimum number of bytes
of data to be transferred. The owner and requestor must then
cooperate in transferring the data.

The requestor starts the interaction by deleting the returned pro-
perty. The owner then appends the first chunk of data to the same
property, giving the property the type of the converted data. The
requestor receives a PropertyNotify event for the new value of the
property, retrieves the data in the property, and deletes the pro-
perty. The owner receives a PropertyNotify event for the deletion of
the property and then appends the next chunk of data to the pro-
perty. This interaction continues until all that data has been
transferred. The owner then writes zero-length data to the pro-
perty, and the requestor deletes the property to terminate the

Interclient Communication

interaction.

16.4.5 The Xt Selection Interface

Xlib provides routines to set the owner of a selection (XSet Sel ec-
ti onOaner, get the owner of a selection (XGet Sel ecti onOaner), and
convert a selection (XConvert Sel ection). Applications that use
only the Xlib interface must do additional work to support selec-
tions, such as providing a handler for SelectionRequest events to
convert selections that the application owns.

Xt provides a richer interface for handling selections. This interface
consists of two parallel sets of routines, one for transferring data
atomically and the other for transferring data incrementally. In an
atomic data transfer, the owner converts all data for one selection
request before responding to another request to convert the same
selection. In an incremental data transfer, the owner may need to
start a second conversion before finishing the first conversion for a
given selection. The selection owner and the requestor need not use
the same (atomic or incremental) interface. This distinction is
independent of whether the actual transfer uses the ICCCM incre-
mental (INCR) protocol. For an atomic transfer of a large amount
of data, Xt automatically uses the ICCCM incremental protocol
when necessary.

An application asserts ownership of a selection by calling Xt Oan-
Sel ect i on for atomic transfers or Xt OamnSel ecti onl ncrenent al for
incremental transfers. In this call the application can supply a pro-
cedure to convert the selection and procedures to be called when the
requestor has retrieved the data and when the application loses
ownership of the selection. For an incremental transfer, the conver-
sion routine can be called multiple times for the same request and
can be called to begin a new conversion before it has transferred all

16-29

OSF/Maotif Programmer’s Guide

16-30

data for the first request. The conversion routine can obtain the
SelectionRequest event by calling Xt Get Sel ect i onRequest . When
calling Xt OmSel ecti onl ncrenent al the application can also pro-
vide a routine to be called to cancel a conversion in progress. With
either atomic or incremental transfer, an application relinquishes
ownership of the selection by calling Xt D sownSel ecti on.

An application requests conversion of a selection by calling Xt Get -
Sel ecti onVal ue or Xt Get Sel ecti onVal ues for atomic transfers or
Xt Get Sel ecti onVal uel ncrenental or Xt Get Sel ecti onVal uesl n-
crenental for incremental transfers. The difference between the
"Value" and "Values" form of each routine is that the "Values" form
allows multiple conversions while guaranteeing that the selection
owner does not change during the call. When invoking one of these
routines, the requestor supplies a routine to be called to deliver the
data from the returned property.

Xt provides a timeout for the period in which a requestor and a
selection owner must respond to each other. The initial value comes
from the sel ecti onTi meout application resource. An application
can use Xt AppSet Sel ecti onTi neout to set a new value, and it can
use Xt AppCet Sel ecti onTi meout to retrieve the value.

The Motif drag and drop interface uses the Xt selection mechanism.
A drag source supplies a single procedure to convert the selection,
and a drop site supplies a procedure to receive the transferred data.
The drag source and the receiver can determine independently
whether or not to use atomic or incremental transfer. The drag
source does this by specifying a value for the DragContext resource
XN ncr ement al , and the receiver does this by specifying a value
for the DropTransfer resource XmN ncrenental . When the drag
source uses atomic transfer, it ignores the arguments to the conver-
sion routine that pertain to incremental transfers.

Interclient Communication

16.5 The Motif Clipboard

Motif provides a set of routines for dealing with the CLIPBOARD
selection. The Motif clipboard interface allows an application to
assert ownership of the selection and request conversion of the
selection. The interface stores the data in the selection and other
information about the selection on the server. The owner can place
the selection value in these server data structures either at the time
it asserts ownership or at the time a client requests conversion.

By copying the selection value at the time it asserts ownership, an
application can simplify conversion and make the data available for
retrieval even if the owner is killed. By copying the selection value
when a client requests it, an application can avoid converting data
that no client may request. However, in this case the application
may need to make a copy of the data to be transferred. With either
copying mechanism, the data is stored in the Motif clipboard’s
server data structures the first time a client requests the data.

16.5.1 Copying Data to the Clipboard

To assert ownership and copy data to the clipboard, an application
takes these steps:

- It calls XnQ i pboar dSt ar t Copy to begin the interaction

= It makes one or more calls to X i pboar dCopy to place data on
the clipboard

- It terminates the interaction by calling XnQd i pboar dEndCopy or
XmQd i pboar dCancel Copy

16-31

OSF/Maotif Programmer’s Guide

16-32

An application begins an interaction to copy data to the clipboard by
calling XnQ i pboar dSt art Copy. The application passes a display
pointer and timestamp; the ID of a window in the application; a
compound string that could be used to label the data; and, if the
application intends to delay copying the data until it is requested, a
widget ID and a function to be called to convert the data. XnQ i p-
boar dSt ar t Copy returns in one of the arguments a data ID that the
application must later pass to Xnd i pboar dEndCopy or XmQd i p-
boar dCancel Copy. The application must also pass the same win-
dow ID to subsequent clipboard calls in this sequence that it uses in
the call to X i pboar dSt ar t Copy.

After calling XnQ i pboar dSt ar t Copy, the application makes one or
more calls to XmQ i pboar dCopy to place data on the clipboard. Each
call associates the data with a single target (called a format in the
clipboard interface). The application can associate the same data or
different data with more than one target, but it must do so by mak-
ing separate calls to XnQ i pboar dCopy.

If the application passes a NULL data buffer to XnmQ i pboar dCopy,
it asserts that it intends to transfer the actual data for that target
when a client requests it. Otherwise, XnQ i pboar dCopy transfers
data to be stored on the clipboard by XnQ i pboar dEndCopy. If the
application makes more than one call to X i pboar dCopy for the
same target, the data is appended to the previously transferred
data for that target.

Xmd i pboar dCopy returns in one of its arguments a data ID that
identifies the data and target specified in this call. An application
that provides actual data at the time a client requests it uses this
ID in its conversion routine to identify the data and target to be
converted. Such an application must store a mapping of the data
ID to the data and target after XnQ i pboar dCopy returns.

The application terminates the interaction by calling XnQ i pboar -
dEndCopy or X i pboar dCancel Copy. XnQ i pboar dEndCopy stores
in the server data structures the data transferred by the calls to

Interclient Communication

XnQ i pboar dCopy during this interaction sequence. It also asserts
ownership of the CLIPBOARD selection. If the application calls
X i pboar dCancel Copy instead of Xnd i pboar dEndCopy, the
interaction is terminated without storing any of the transferred
data or asserting ownership of the selection.

If a client later requests data that the owner has declared it would
provide at the time of the request, the clipboard interface invokes
the conversion routine that the owner registered in the call to
X i pboar dSt art Copy. This routine receives as arguments the
widget ID passed to Xl i pboar dSt art Copy; the data ID for this
data and target returned by XnQd i pboar dCopy; a private ID the
application may have supplied in the call to Xnd i pboar dCopy; and
a reason for invoking the routine.

The conversion routine is responsible for converting the data to the
requested target. In order to do this it must consult the mapping it
established between the data ID or the private ID and the data and
target when it called Xnd i pboar dCopy. Once the conversion rou-
tine has determined the proper target, it copies the data to the clip-
board. To do this it calls XnQ i pboar dCopyByNarme, using the data
ID passed to the conversion routine. The application can call
X i pboar dCopyByNane more than once if necessary to convert all
the data for this target.

Once an application has copied data to the clipboard in this way, it
no longer asserts that it will convert the same data to the same tar-
get in the future. It can remove the data ID from its mapping of
data IDs to data and targets, and it can free any data it has associ-
ated with this ID if it is not needed for any other purpose.

The clipboard interface calls the conversion routine when a data
item intended for later conversion has been removed from the clip-
board and is no longer needed. For example, another application
may have copied new data to the clipboard. In this case the conver-
sion routine can remove the data ID from its mapping of data IDs to
data and targets, and it can free any data it has associated with

16-33

OSF/Maotif Programmer’s Guide

this ID if it is not needed for any other purpose. If the conversion
routine is being called because an item has been removed from the
clipboard, the reason argument to the conversion routine is
XnmCR_CLI PBOARD DATA DELETE. If the conversion routine is being
called because a client has requested data conversion, the reason
argument is XmCR_CLI PBOARD DATA REQUEST.

An application can use XnQ i pboar dW't hdr awFor mat to rescind its
assertion that it will convert data to a particular target on request.

X i pboar dUndoCopy removes the last item placed on the clip-
board by an application using the same di sp/ ay and w ndowargu-
ments. This function also restores to the clipboard the item that
was on the clipboard before the cancelled copy was done. If the
application calls Xnd i pboar dUndoCopy a second time, the function
restores to the clipboard the item that was removed by the first call
to Xnd i pboar dundoCopy.

16.5.2 Retrieving Data from the Clipboard

16-34

To retrieve data from the clipboard, an application takes these
steps:

- Itcalls XnQ i pboardSt art Ret ri eve to begin the interaction

= It makes one or more calls to X i pboar dRet ri eve to retrieve
data from the clipboard

- It terminates the interaction by calling XnQ i pboar dEndRe-
trieve

An application begins an interaction to retrieve data from the clip-
board by calling XnQipboardStartRetrieve. The application
passes a display pointer, a timestamp, and the ID of a window in
the application. The application must pass the same window ID to

Interclient Communication

subsequent clipboard calls in this sequence that it uses in the call to
X i pboardStart Retrieve. XmQdipboardStartRetrieve locks
the clipboard.

After calling XnQ i pboardStart Retri eve, the application makes
one or more calls to Xnd i pboar dRet ri eve to retrieve data from the
clipboard, converted to a given target. The application passes
Xmd i pboar dRet ri eve a buffer to receive the data. If this buffer is
not large enough to contain all the data for the given target,
X i pboar dRetri eve returns XnQ i pboardTruncate. The appli-
cation can make repeated calls to Xn i pboar dRet ri eve to retrieve
the remainder of the data. The function Xnd i pboardl n-
qui r eLengt h returns the length of the data on the clipboard for the
given target. This allows the application to allocate a buffer of the
correct size.

X i pboar dEndRet ri eve unlocks the clipboard and ends the
interaction.

16.5.3 Utility Routines

The Motif clipboard interface has routines to lock and unlock the
clipboard, to make inquiries about its contents, and to register new
targets.

X i pboar dLock prevents another application from gaining access
to the Motif clipboard. XnQ i pboar dunl ock allows other applica-
tions to gain access. The clipboard interface automatically locks the
clipboard during calls to XnQ i pboardStart Retri eve and XnQd i p-
boar dEndRet ri eve. At other times an application can use XmQd i p-
boar dLock and XnQ i pboar duUnl ock to lock the clipboard explicitly.

The clipboard interface includes four routines for making inquiries
about the clipboard contents:

16-35

OSF/Maotif Programmer’s Guide

16-36

Xrd i pboar dl nqui reCount returns the number of targets for
which data exists on the clipboard.

- Xmd i pboar dl nqui r eFor mat returns the name of the target for a
given index of targets on the clipboard. An application could
retrieve the names of all the targets associated with data on the
clipboard by first calling XnQ i pboar dl nqui r eCount to find out
how many such targets exist and then calling XnQd i pboar dI n-
qui reFormat with indices from 1 to the number of targets,
inclusive. Note that the first index for XnQ i pboar dl nqui r eFor -
mat is 1, not O.

- Xmd i pboar dI nqui r eLengt h returns the number of bytes of data
associated with a given target on the clipboard.

-« Xmd i pboar dl nqui rePendi ngl tens returns a list of pairs of
data ID and private ID for a given target if that target exists on
the clipboard and if the owner has asserted that it will supply
the actual data on request (but has not yet done so).

An application that makes more than one call to an inquiry function
at a time should use XnQ i pboar dLock and XmQ i pboar dunl ock to
lock the clipboard for the duration of the interaction.

Xmd i pboar dRegi st er For nat registers a new target with the clip-
board interface. The application supplies the length of the data in
bits along with the name of the target so that the correct byte order
will be maintained when transferring data across platforms. All
targets defined in ICCCM are preregistered; the application does
not have to call X i pboar dRegi st er For nat for these.

Appendix A. The Widget Meta-
Language Facility

The widget meta-language facility (WML) is used to generate the
components of the user interface language (UIL) compiler that can
change depending on the widget set. Using WML you can add sup-
port in UIL for new widgets to the OSF/Motif widget set or for a
totally new widget set.

UIL is made up of:
- Static syntax

= Dynamic syntax
- Data types

The static syntax elements are the basic syntax and keywords of
UIL. The static elements do not change as you modify the widget
set. The static syntax elements of UIL are defined in the file U | . y.

The dynamic syntax elements are the parts of UIL that change with
the widget set. The dynamic syntax elements describe the widget
and gadget classes supported by UIL including their resources and
hierarchy. The dynamic elements of UIL are defined in WML files.
The dynamic elements of the OSF/Motif widget set are defined in
the file ot i f. wm .

The data type elements describe the allowable data types for each
widget and gadget resource. Although the data types do not
change, the resources that they are assigned to change with the
widget set. The data types are provided in UIL for better error
checking. The allowable data types for each resource are defined in
the same file as the dynamic syntax elements.

The WML facility combines the static syntax, dynamic syntax, and
data type elements to produce new source code for UIL. This allows
you to modify the dynamic elements of your version of UIL; giving
you the ability to add resources, widgets, gadgets, or even new
widget sets.

OSF/Maotif Programmer’s Guide

Al

Once you have modified your WML file, run the WML facility with
that file as input and compile the new UIL compiler. A number of
useful reports are also created by the WML facility to help you
analyze, debug, and document your changes.

Alternately, you can override the dynamic syntax elements of UIL,
usually defined in the file noti f . wrl , by compiling a WML file into
a WMD file, which the UIL compiler can read at run time. This pro-
vides a run time method of adding widgets to the existing widget
set, or changing the widget set that the UIL compiler can parse.
This means that you do not need to rebuild the UIL compiler to link
in new widget definitions.

Using WML

Every time Motif is built, UIL is built from the noti f. wm file using
the WML facility. You can create your own WML file in the direc-
tory t ool s/ wm to use in place of noti f.wr . By convention, WML
files have a suffix of .wn . Section 23.2 describes how to modify
WML files. After you have created your new WML file, building a
new UIL is a four step process:

1. Build WML.

2. Run WML with your WML file.
3. Install the UIL source files.

4. Build UIL.

All four steps are done as needed each time Motif is built. You
should follow your standard Motif build instructions to rebuild UIL.
In most cases you will simply move to the top of your build tree and
enter make. By default, UIL is built using the noti f.wn file from

The Widget Meta-Language Facility

the t ool s/wnl directory. You can specify a different WML file in
the tool s/wm directory with the command line make variable
TABLE as follows:

make TABLE=anyfile. wr

Where anyfile. wr is the name of a WML file in the tools/wml
directory of your Motif build tree.

Each time Motif is built, a default WMD file is also created named
nmotif.wnd. By convention WMD files use the suffix . wd. WMD
files provide a method for including new widget definitions into the
UIL compiler without rebuilding the compiler. Rebuilding this file,
or building a new WMD file is a two step process, that closely paral-
lels the first two steps of creating a new UIL compiler:

1. Build WML.
2. Run WML with your WML file.

To rebuild the noti f. wrd based on a particular WML file, use the
following make command line:

nmake TABLE=anyfile. wnl motif.wmd

To create a new WMD file based on a particular WML file, use the
following make command line:

nmake TABLE=anyfile. w1 WMDTABLE=anyfi | e. wid anyfile. wd

Where anyfile. wrd is the name of the WMD file you want to
create. In both of the preceding make commands, the make vari-
able TABLE defines which WML file you want to use to create the
WMD file. You can later supply these WMD files for use by UIL
using the command line option -wnd or through the
Ul _command type data structure elements database, and
dat abase fl ag.

OSF/Maotif Programmer’s Guide

You should refer to the OSF/Motif Release Notes for more informa-
tion about building Motif.

The following sections describe how to do each of the four steps
involved in rebuilding UIL independently.

A.1.1 Building WML

WML is built by default when you build Motif. You should only
need to build WML if you want to use it without building Motif.
You need to build WML both to build a new UIL compiler or to
build new WMD files. The WML source is located in the subdirec-
tory t ool s/ wm . Before WML is built, the directory should contain
the files:

Imakefile wml.h wmlparse.y
Makefile wmldbcreate.c wmlresolve.c
README wmllex.| wmlsynbld.c
Uily wmlouth.c wmluiltok.l
uvilDBDef.h wmloutkey.c wmlutils.c
motif.wml wmloutmm.c

wml.c wmloutpl.c

The files | makefil e and Makefil e are used to build and run the
WML facility. The README file contains this technical bulletin. The
files U l.y and notif.wr are the data files for the static syntax,
dynamic syntax and data type elements of UIL. The files with the
wrl prefix are the source files for the WML facility.

The Widget Meta-Language Facility

To build WML, change to the directory t ool s/ wnm , build the make
file for your machine, and build WML using the following com-
mands:

cd tool s/ wn
make Makefile
nmake depend
make wn t ool s

The make file is built from the Imake facility using the make
Makefi | e and nmake depend commands. The nmake Makefil e com-
mand produces a machine dependent Makefil e for your machine.
The nake depend command adds include file dependencies to the
new make file.

After you have built the WML facility the tool s/wm directory
should contain the following additional files:

lex.yy.c wmloutkey.o wmlresolve.o
libwml.a wmloutmm.o wmisynbld.o
wml wmloutpl.o wmluiltok
wml.o wmlparse.c wmlutils.o
wmllex.c wmlparse.h

wmlouth.o wmlparse.o

A.1.2 Running WML

You need to run WML separately only if you do not want to install
and build the new version of UIL. Running WML automatically
builds the WML source files if necessary.

OSF/Maotif Programmer’s Guide

The make notif.wrd command from the t ool s/ wn directory runs
the WML facility. You can specify the WML file to use with the
make variable TABLE.

make notif.wr TABLE=anyfil e. wrl

Where anyfile. wnl is a WML file in the t ool s/wni directory. If
you do not set the TABLE make variable, the noti f.wr file is used

by default.

Running WML produces the following files:

UIL source filesmake copy copies these files to the client s/ uil

wml.report

directory to be used in building UIL. The UIL
source files are Ul Const.h, Ul DBDef.h,
U | KeyTab. h, U | LexPars. c, U | LexPars. h,
U | Synr Ta. h, UlSymArTy.h, U SynCSet. h,
Ulsyntxl.h, U | SynEnum h, U | Synten. h,
U | SymNam h, U | SynRArg. h, U | SynReas. h,
U | TokNane. h,and U | Urrd as. h.

This report describes the widget set supported by
the newly created UIL sources. You can use it to
help validate your WML source file. It is organized
S0 you can easily compare it to reference documen-
tation as follows:

- Class names are ordered alphabetically by
name.

- Resources are ordered by ancestor(top down).

- Resources are listed alphabetically, with data-
type and default.

- Reasons are ordered by ancestor then alphabeti-
cally.

The Widget Meta-Language Facility

- Controls are ordered alphabetically.

- Automatically created children are ordered
alphabetically.

wml-uil.mm This file contains Appendix B of the OSF/Motif
Programmer’s Reference. You can process this file
using t bl , trof f and the mmmacro package to pro-
duce three tables for each supported widget class.
The first table lists the controls and reasons sup-
ported by the class. The second table lists the
resources for the class, their types and default
values. The third table lists the automatically
created children of the class.

motif.wmd This is the default WMD file.

These files overwrite any existing WML output files in the
t ool s/ wr directory. If you do not want to lose the existing files,
save them somewhere else.

A.1.3 Installing UIL

You need to install the UIL source files separately only if you do not
want to build the new version of UIL. Installing the UIL source
files automatically builds the WML source files and runs WML if
necessary.

The make command from the t ool s/ wm directory installs the UIL
source files in the clients/uil directory. The make all and nmake
copy commands are synonyms for the make command. This
overwrites the existing source files in the cl i ent s/ ui | directory. If
you do not want to lose your existing source files, save them some-
where else.

OSF/Maotif Programmer’s Guide

You can specify the WML file on the nake command line using the
make variable TABLE.

nake TABLE=anyfile. wnl

Where anyfile. wr is the name of a WML file. If you do not
specify TABLE, not i f. wm is used by default.

A.1.4 Building UIL

You only need to build UIL separately if you do not want the new
UIL to reflect the current WML tables. To build UIL separately,
move to the cl i ent s/ ui | directory and enter nake.

cd clients/uil
nmake

You should refer to the OSF/Motif Release Notes for more informa-
tion about building UIL.

Appendix B. Drag and Drop Exam-
ple Program

Figure B-1. Drag and Drop Demonstration

DMNDDemo

The DNDDeno program is a complex drag and drop application. It
uses many of the features covered in chapter 15. The application

B-1

OSF/Maotif Programmer’s Guide

B-2

uses both drag source and drop sites.

The window consists of an array of 6 colors in the lower section,
with an empty drawing area in the upper section. The user can
create a black box within the drawing area by pressing and holding
the mouse button 1 while moving the mouse until the desired size
rectangle is outlined, then releasing the button. There can be as
many rectangles as desired and they can overlap each other. A rec-
tangle can be raised to the top by clicking mouse button 1 on it.

The user can change the color of a particular rectangle by moving
the pointer to one of the six color choices, pressing button 2, and
moving the pointer to the rectangle. A palette in that color becomes
the drag icon. The state icon does not appear while the drag icon is
in the lower section, shows as a slashed circle in the background of
the upper section, and as a paintbrush in the rectangles. When the
mouse button is released to make a drop, the rectangle changes to
the color chosen. If the rectangle is overlapped by another, the
whole rectangle is changed, but only the unobscured part is shown
in the new color.

The rectangles can be moved around the drawing area by pressing
button 2 when the pointer is over the rectangle, holding it, and mov-
ing the mouse until the new location is reached. If the rectangle is
small enough, it is used to create a pixmap for the source drag icon,
otherwise a similarly-shaped smaller pixmap is used for the source
icon.

The program demonstrates the following drag and drop features:
- Drag Source
— Establishes translations.
— Establishes custom drag source targets.

— Starts a drag and creates a drag context.

Drag and Drop Example Program

— Creates custom drag icons.

— Transfers information to the receiver (about color or location)
- Drop Site

— Establishes simulated drop sites.

— Establishes custom drop site targets.

— Follows the progress of the drag with a XnDr agPr oc routine.

— Requests transfer of information from the source (about color
or location).

The demonstration program actually consists of three files:

- DNDDenp. h contains header information, global constants, and
forward declarations of procedures.

- DNDDeno. ¢ creates the windows and manages the drag and drop
functions.

- DN\DDr aw. ¢ does not have any drag and drop specific code in it. It
manages creating, coloring, and destroying the rectangles and
bitmaps within the window.

B.1 DNDDemo.h

/*
* file: DNDDeno. h

*

* Header file for the program DNDDeno.
*/

#i ncl ude <stdi o. h>

B-3

OSF/Maotif Programmer’s Guide

4
i
i
i
i
i
i
i
i
i
i
i
i

ncl ude <X11/ Xat om h>

ncl ude <X11/Intrinsic. h>
ncl ude <Xm Xm h>

ncl ude <X At onMyr . h>
ncl ude <X Mai nW h>

ncl ude <Xm Dr awi ngA h>
ncl ude <Xm Separ at oG h>
ncl ude <Xm Form h>

ncl ude <Xnm RowCol urm. h>
ncl ude <Xn PushB. h>

ncl ude <Xm MessageB. h>
ncl ude <Xm Dr agDr op. h>
ncl ude <Xnl Screen. h>

/* The following is used to | ayout the col or |abels */
#def i ne BOX_ W DITH 85
#def i ne BOX _HEl GHT 25
#defi ne BOX_X CFFSET 95
#defi ne BOX_Y_CFFSET 35
#defi ne BOX_ X MARA N 10
#define BOX_Y_MARGA N 10

/* The following are used in setting up the drag icons */
#defi ne | CON_W DTH 32

#define | CON_HEl GHT 32

#define SVALL | CCN W DTH 16

#define SMALL | CCN HEIGHT 16

#define | GON_X HOT 0

#define | GON Y _HOT 0

/* Some scales or text entry field could be added to change
* this value */

#define RECT_WDIH 20

#defi ne RECT_HEl GHT 50

B-4

Drag and Drop Example Program

/* The follow ng defines could be setup as application resources */

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i

/*

ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne

RECT_START_COLCR "bl ack"

H G| GHT_TH CKNESS 3

H GLI GHT_COLR "Bl ack" /* this is equivalent to
gray60 in the RS rgb.txt */

DRAW AREA BG COLCR "whi te"

DRAW AREA FG OOLCR "whi t e"

LABEL1 OCOLCR "#f f 5026" /* a soft shade of red */

LABEL2 COLCR "orange"

LABEL3 COLCR "yel | ow'

LABEL4 OOLCR "viol et"

LABEL5 CO.CR " #00C3f f "

LABEL6_OOLCR "green”

/* a blue green color */

VALI D OURSCR FG OCLCR "bl ack"
| N\VALI D_CURSCR FG COLCR " rvar oon”
NONE_OURSCR FG OCLCR " rar oon”

* This struct is used to contain infornation about each rectangle
* to use in the dislay routines

*/

typedef struct _RectStruct {

Position x;

Position vy;

D mensi on wi dt h;

D nensi on hei ght;

Pi xel col or;

Pi xmap pi xmap; /* currently not in use */
} RectStruct, *RectPtr;

/* This struct is used to hold gl obal application information */
typedef struct _Appl nfoRec {
CC rect & [* graphic context used to draw the

B-5

OSF/Maotif Programmer’s Guide

B-6

rectangl es */

Pi xel current Col or; /* color that is currently in the GC */

RectPtr *rectDpyTable; /* the rectangle display table */

int rectsA locd; /* keeps track of how much the above
tabl e has been alloc’d */

i nt nunRect s; /* nunber of rects that are visible */

RectPtr highlightRect; /* the current highlighted rectangl e */

RectPtr cl ear Rect; /* the rectangl e that is bei ng noved */

Bool ean doMove; /* indicates that a nove is being
perfornmed */

Bool ean creati ngRect; /* indicates that a rect create is being

performed */

unsi gned char operation;/* indicates the drop hel p operation */

unsi gned int maxQursorWdth; /* the maxi mum al | owabl e cursor
width */

unsi gned int nmaxQursorHei ght; /* the maxi numal | owabl e cursor
hei ght */

Position rectX

Position rectY;

Posi tion rect X2;

Posi tion rect Y2;

} Appl nfoRec, *Appl nf o;

/*
* This struct is used to pass information
* fromthe dropProc to the transferProc
*/
typedef struct DropTransferRec {

Wdget wi dget;

Position x;

Position vy;
} DropTransferRec, *DropTransfer;

/*
* This struct is used to pass information

Drag and Drop Example Program

* fromthe rectangl e dragStart proc to it’'s associ ated
* cal | back procs.
*/
typedef struct _DragConvertRec {
Wdget wi dget;
RectPtr rect;
} DragConvert Rec, *DragConvertPtr;

#ifdef _NO PROTO

extern void InitializeApplnfo();
extern void StartRect();

extern void Ext endRect () ;

extern void EndRect () ;

extern RectPtr RectQeate();
extern RectPtr RectFi nd();
extern void Rect Set Col or () ;

extern Pixel Rect Get Col or () ;
extern Pixnmap GetBi t mapFronRRect ();
extern void Rect H de() ;

extern void Rect Free();

extern void Redr anRect angl es() ;

extern void Rect Drawsti ppl ed() ;
extern void Rect H ghli ght ();
extern void Rect Unhi ghl i ght () ;

extern void Rect Set Pi xmap() ;

extern void Rect Regi ster();

extern void InitializeRectDpyTabl e();
extern void O eat eLayout () ;

extern void O eat eRect X)) ;

extern Pixel Get Col or ();

extern void Col or Rect () ;

#el se

B-7

OSF/Maotif Programmer’s Guide

B-8

extern voi d
extern void
extern void
extern void
extern RectPtr

extern RectPtr
extern void
extern Pixel
extern Pi xmap

extern voi d
extern void
extern void
extern void
extern void
extern void
extern voi d
extern voi d
extern void
extern void
extern void
extern Pixel
extern voi d

InitializeApplnfo(void);
StartRect (Wdget, XEvent *, String *, Cardinal *);
Ext endRect (Wdget, XEvent *, String *, Cardinal *);
EndRect (Wdget, XEBvent *, String *, Cardinal *);
Rect Oreat e(Posi tion, Position, D nension,

D nensi on, Pixel, Pixnap);
Rect Fi nd(Posi tion, Position);
Rect Set Col or (Rect Ptr, Display *, Wndow, Pixel);
Rect Get Col or (Rect Ptr);
Get Bi t mapFr omRect (Wdget, RectPtr, Pixel, Pixel,

D rmension *, D nmension *);

Rect H de(D splay *, Wndow, RectPtr);
Rect Free(RectPtr);
Redr awRect angl es(Wdget) ;
Rect Drawsti ppl ed(Di splay *, Wndow, RectPtr);
Rect H ghl i ght (Wdget, RectPtr);
Rect Unhi ghl i ght (W dget) ;
Rect Set Pi xmap(RectPtr, DO splay *, Wndow, Pixmap);
Rect Regi ster(RectPtr, Position, Position);
InitializeRectDpyTabl e(void);
QO eat eLayout (voi d) ;
O eat eRect Q(voi d) ;
Get Col or (char *);
Col or Rect (Wdget, XEvent *, String *, Cardinal *);

#endif /* _NO_PROTO */

/* The follow ng character arrays hold the bits for the source and
* state icons for both 32x32 and 16x16 drag icons. The source is
* a color palette icon and the state is a paint brush icon.

*/

extern char SOURCE |CON BI TS];
extern char SCOURCE | CON MASK[] ;
extern char STATE ICON BITY];

B.2

extern char
extern char
extern char
extern char
extern char
extern char
extern char

Drag and Drop Example Program

STATE | OCON MASK[] ;

I NVALI D | OON BI T[] ;

SMALL_SOURCE | OON BI TH[] ;
SMALL_SOURCE | OON MASK[] ;
SMALL_STATE | OON BI T[] ;
SMALL_STATE | OON MASK] ;
SVALL_| NVALI D | GON BI T[] ;

/* The folowi ng character arrays are for use with the drop help

* di al ogs.

For internationalization, nessage catal ogs shoul d

* repl ace these static decl arati ons.

*/

extern char
extern char
extern char
extern char
extern char

HELP MBGL[] ;
HELP MBR[];
HELP MBQX3[];
HELP_ MBS]
HELP_MBGH[] ;

/* A obals variables */

extern Appl nfo appl nf o;

extern Wdget t opLevel

ext ern Wdget dr awi ngAr ea;

extern Wdget hel pD al og;

extern Wdget hel pLabel , hel pMenu;

extern Xt AppCont ext appCont ext ;

DNDDemo.c

/*

B-9

OSF/Maotif Programmer’s Guide

* file: DNDDemo.c
* A deno program showi ng the basic Drag And Drop operati ons.
*/

#i ncl ude " DNDDeno. h"

/*

* The folowing character arrays are for use with the drop hel p
* dialogs. For internationalization, nessage catal ogs shoul d
* repl ace these static decl arati ons.

*/

char HELP_MBGL[] =

"This drop action will change the col or\n\

of the rectangle that the paint palette\n\

icon is dropped on. To accept this drop\n\

press the o.k. button, otherw se press\n\

cancel ";

char HELP MBRX[] =

"This drop action will nove the rectangl e\ n\
to the new position. To accept this drop\n\
press the o.k. button, otherw se press\n\
cancel ";

char HELP MBQX[] =

"This drop action will copy the rectangl e\ n\
to the new position. To accept this drop\n\
press the o.k. button, otherw se press\n\
cancel ";

char HELP MB&A[] =

"This drop action can either copy or\n\
nove the rectangl e to the new position.\n\

B-10

Drag and Drop Example Program

Sel ect the operation that you desire.\n\
In the future, use Grl with Btn2 to\n\
perform copy operations. The defaul t\n\
operation is nove. To accept this drop\n\
press the o.k. button, otherw se press\n\
cancel ";

char HELP_MBGH[] =

"This drop action is at an Invalid drop\n\
position. Please cancel this drop \n\

by pressing the cancel button.";

/* A obals variables */

W dget t opLevel ;

W dget dr awi ngAr ea;

W dget hel pb al og = NULL;
W dget hel pLabel , hel pMenu;
W dget nyDC

Xt AppCont ext appCont ext ;

/* This function creates the Drag Icon. */

static Wdget

#i fdef _NO PROTO

Get Dragl con(w, icon, iconMask, w dth, height,
f or egr ound)

Wdget w,

Pi xmap i con;

Pi xmap i conMask;

D nmensi on wi dt h;

D mensi on hei ght;

Pi xel background;

Pi xel foreground;

#el se

backgr ound,

B-11

OSF/Maotif Programmer’s Guide

B-12

Get Dragl con(Wdget w, Pixmap icon, Pixmap iconMask, D mension width,
D mensi on hei ght, Pixel background, Pixel foreground)
#endi f /* _NO PROTO */

{
Wdget dragl con;
Arg args[10];
i nt n=0;
Xt Set Arg(args[n], Xmi\hotX, | GON X HOT); n++;
Xt Set Arg(args[n], Xm\hotY, | CON_Y HOI); n++;
Xt Set Arg(args[n], XmNwidth, width); n++;
Xt Set Arg(args[n], Xnmi\height, height); n++
Xt Set Arg(args[n], XmNmaxWdt h, appl nfo->maxQursorWdt h); n++;
Xt Set Arg(args[n], XmNmaxHei ght, appl nf o- >maxQur sor Hei ght); n++;
Xt Set Arg(args[n], Xm\background, background); n++;
Xt Set Arg(args[n], XnNforeground, foreground); n++;
Xt Set Arg(args[n], Xmi\pi xnap, icon); n++;
Xt Set Arg(args[n], XnNmask, iconMask); n++;
dragl con = XmQOreat eDragl con(w, "dragl con", args, n);
ret urn(dragl con);
}

/* This function creates the bitmaps for the icon and the mask

* and then calls GetDraglcon() to create the drag icon.

*/

static Wdget

#i fdef _NO PROTO

Get Dragl conFronBits(w, bits, mask, w dth, height, background,
f or egr ound)

Wdget w,

char *bits;

Drag and Drop Example Program

char *mask;

D nensi on wi dt h;

D mensi on hei ght ;

Pi xel background;

Pi xel foreground,;

#el se

Get Dragl conFronBi t s(Wdget w, char *bits, char *mask,
D nmensi on wi dth, D nension height,
Pi xel background, Pixel foreground)

#endi f /* _NO PROTO */

{
Pi xmap i con, iconhask;
D spl ay *di splay = XtD splay(w;
i con = X eat eBi t mapFr onDat a(di spl ay,
Def aul t Root Wndow(di spl ay), bits, width, height);
i conMask = XO eat eBi t napFr onDat a(di spl ay,
Def aul t Root W ndow(di spl ay), nask, width, height);
return(GetDraglcon(w, icon, iconMask, wi dth, height,
background, foreground));
}

/* This function creates the rectangl e bitmaps for the icon and
* the nmask based on the maxi mum server allowabl e cursor size

* and then calls GetDraglcon() to create the drag icon.

*/

static Wdget

#i fdef _NO PROTO

Get Dr agl conFronRRect (w, rect, background)

Wdget w,

B-13

OSF/Maotif Programmer’s Guide

B-14

RectPtr rect;

Pi xel background;

#el se

Get Dr agl conFronRRect (Wdget w, RectPtr rect, Pixel background)
#endi f /* _NO PROTO */

{
Pi xmap i con, icon_mask;
Pi xel foreground = RectGet Col or (rect);
D nension width, height;
/* Oeate a depth 1 pixmap (bitmap) for use with the drag
icon */
icon = icon_mask = GetBi t mapFronRect (w, rect, background,
foreground, &w dth, &height);
/* use bitmap for both the bitmap and nask */
return(GetDragl con(w, icon, icon_nmask, width, height,
background, foreground));
}

/* This is a selection conversion function that is used in
* converting drag/drop export background col or targets.
* The return types follow | COC st andar ds.
*/
/* ARGSUSED */
Bool ean
#i fdef _NO PROTO
Col or Convert (w, selection, target, type, value, length, format)
Wdget w ;
At om *sel ection ;
Atom *target ;
Atom *type ;

Drag and Drop Example Program

Xt Poi nter *val ue ;

unsi gned long *l ength ;

int *format ;

#el se

Col or Convert (Wdget w, Atom *sel ection, Atom*target, Atom*type,
Xt Poi nter *value, unsigned long *length, int *format)

#endif /* _NO PROTO */

{
D spl ay *di splay = XtD splay(w;
At om BACKGEROUND = Xmi nt er nAt on(di spl ay, "BACKGROUND',
Fal se);
At om Pl XEL = Xm nternAt on{di splay, "Pl XEL", False);
At om TARCGETS = Xmi nt er nAt onf di spl ay, "TARCGETS', False);
At om MWLTI PLE = Xm nt er nAt on{di spl ay, "MLTIPLE', Fal se);
At om TI MESTAWP = Xmi nt er nAt on{(di spl ay, " Tl MESTAMP',
Fal se);
i nt MAX_TARGS = 5;
W dget wi dget ;
Xt Poi nt er client;
Arg args[1];

/* get the widget that initiated the drag */
Xt Set Arg(args[0], Xm\clientData, &client);
Xt Get Val ues(w, args, 1);

w dget = (Wdget) client;

/* Make sure we are doing a notif drag by checking if the
* widget that is passed in is a drag context. Make sure the
* widget in the client data is not NULL.
*/
if (!XmsDragContext(w) || w dget == NUL)
return Fal se;

if (*target == BACKEROUND) {

B-15

OSF/Maotif Programmer’s Guide

/* Get widget’s background */
Pi xel *background;

background = (Pixel *) Xt Mlloc(sizeof (Pixel));
Xt Set Arg(args[0], Xm\background, background);
Xt Get Val ues(wi dget, args, 1);

/* value, type, length, and format nust be set */
*val ue = (Xt Poi nter) background;

*type = PI XEL;

*l ength = sizeof (Pixel);

*format = 32;

}
else if (*target == TARCETS) {

/* This target is required by 1CCC */

Atom*targs = (Atom *) Xt Mal | oc((unsi gned)
(MAX_TARGS * sizeof (Atom));

int target _count = 0;

*value = (Xt Pointer) targs;

*targs++ = BACKGROUND,

target _count ++;

*targs++ = TARCETS,

target _count ++;

*targs++ = MLTIPLE

target _count++; /* supported in the Intrinsics */
*targs++ = TI MESTAWP,

target _count++; /* supported in the Intrinsics */
*type = XA ATQM

*length = (target_count * sizeof (Aton)) >> 2;
*format = 32;

B-16

Drag and Drop Example Program

el se
return Fal se;

return True;

/* This call back procedure resets the drag icon cursor to show
* when the drag isinavalidregion. It cause the

* state icon to becone visible when a drop is at a valid

* position for drag over effects.

*/

static void

#i fdef _NO PROTO

Dr aghoti onCal | back(w, client, call)

Wdget w,

Xt Poi nter client;

Xt Pointer call;

#el se

Draghot i onCal | back(Wdget w, Xt Pointer client, XtPointer call)
#endi f /* _NO PROTO */

{
XnDr aghbt i onCal | back cb = (XnDragMti onCal | back) call;
Arg args[2] ;
W dget statel con, invalidlcon;

if (cb->dropSiteStatus == XmVALI D DRCP_SITE) {
statelcon = (Wdget) client;
Xt Set Arg(args[0], Xm\bl endhbdel , XnBLEND STATE SQURCE);

Xt Set Arg(args[1], Xm\stateCursorlcon, statelcon);
Xt Set Val ues(w, args, 2);

B-17

OSF/Maotif Programmer’s Guide

}
else if (ch->dropSiteStatus == Xm NVALID DRCP_SI TE) {

Xt Set Arg(args[0], XmNdefaul tlnvalidCQursorlcon,
& nval i dl con);
Xt Get Val ues(XrGet Xncreen(Xt Screen(w)), args, 1);
Xt Set Arg(args[0], Xm\bl endhbdel , XnBLEND STATE SQURCE) ;
Xt Set Arg(args[1], Xm\stateCQursorlcon, invalidlcon);
Xt Set Val ues(w, args, 2);

}

el se {
Xt Set Arg(args[0], Xm\bl endMbdel , XnBLEND JUST SQURCE);
Xt Set Val ues(w, args, 1);

}

/* This call back procedure resets the drag icon cursor to show
* when the drag isin avalidregion. It cause the

* state icon to becone visible when a drop is at a valid

* position for drag over effects.

*/

/* ARGSUSED */

static void

#i fdef _NO PROTO

DropSi t eLeaveCal | back(w, client, call)

Wdget w,

Xt Poi nter client;

Xt Pointer call;

#el se

DropSi t eLeaveCal | back(Wdget w, XtPointer client, XtPointer call)
#endi f /* _NO PROTO */

{

B-18

Drag and Drop Example Program

Arg args[1];

Xt Set Arg(args[0], Xmi\bl endivbdel , XnBLEND JUST SCURCE);
Xt Set Val ues(w, args, 1);

/* This callback procedure renmoves the icons when the drop is
* conpl ete */

/* ARGSUSED */

static void

#i fdef _NO PROTO

Col or DragDr opFi ni sh@B(w, client, call)

Wdget w,

Xt Pointer client;

Xt Poi nter call;

#el se

Col or Dr agDr opFi ni shCB(Wdget w, XtPointer client, XtPointer call)

#endif /* _NO PROTO */
{

Wdget sourcel con;
Wdget statelcon = (Wdget) client;
Arg args[1];

Xt Set Arg(args[0], XnmN\sourceCQursorlcon, &sourcelcon);
Xt Get Val ues(w, args, 1);

Xt Dest r oyW dget (sour cel con) ;
Xt Dest royW dget (st at el con) ;

B-19

OSF/Maotif Programmer’s Guide

/* This action procedure sets up the drag data and begi ns the drag

* operation */

/* ARGSUSED */

voi d

#i fdef _NO PROTO

Col or Rect (w, event, parans, num parans)

Wdget w,

XEvent *event;

String *parans;

Cardi nal *num par ans;

#el se

Col or Rect (Wdget w, XEvent *event, String *parans,
Cardi nal *num par ans)

#endi f /* _NO PROTO */

{

static Xt Cal |l backRec dragDropFi ni shCB[] = {
{ ol or Dr agDr opFi ni shCB, NULL},
{NULL, NULL}

h

static Xt Call backRec draghbtionCB[] = {
{DraghbtionCal | back, NUL},
{NULL, NULL}

h

static Xt Call backRec dropSitelLeaveCB] = {
{DropSi teLeaveCal | back, NULL},

{NULL, NULL}
b
At om targets[1];
W dget sour cel con, statelcon;
Pi xel background, foreground;
char *source_hits, *source_nask;

B-20

Drag and Drop Example Program

char *state bits, *state_mask;
D nension width, height;

Arg args[16] ;

i nt n = 0;

n = 0;

Xt Set Arg(args[n], Xm\background, &background); n++;
Xt Set Arg(args[n], Xnm\foreground, &foreground); n++;
Xt Get Val ues(w, args, n);

/* 1If the server will handle a large icon, create one */
i f (applnfo->maxCursorWdth >= | CON WDTH &&
appl nf o- >maxQur sor Hei ght >= | CON_HEI GHT) {

source_hits = SOURCE | CON BI TS
sour ce_nmask = SOURCE | CON_NASK;
state_bits = STATE | QON BI TS;
state mask = STATE | CON_NASK;
width = | GON WDTH

hei ght = | CON_HEl GHT;

}
el se {
[* 1f the server will handle a snall icon, create one */
source_bits = SMALL SCURCE | CON BI TS,
source_mask = SMALL SCURCE | CON_NASK;
state bits = SVALL_STATE | GON BI TS,
state_mask = SVALL_STATE | GON_MASK;
width = SMALL | CON WDTH
hei ght = SVALL | CON _HEl GHT;
}

/* Oeate the drag cursor icons */

B-21

OSF/Maotif Programmer’s Guide

sourcel con = Get Dragl conFronBits(w, source bits, source mask,
wi dt h, height, background, foreground);

statelcon = GetDragl conFronBits(w, state bits, state_ nask,
wi dt h, height, background, foreground);

/* Setup the arglist for the drag context that is created at
* drag start */

n=0;

/* initially only show the source icon */

Xt Set Arg(args[n], Xm\bl endivbdel, XnBLEND JUST_SCURCE); n++;

/* set cursor colors for the drag states */
Xt Set Arg(args[n], Xm\val i dQursor For egr ound,

Get Col or (VALI D OURSCR FG OOLCR)) ; n++;
Xt Set Arg(args[n], XnmN nval i dQur sor For egr ound,

Get Col or (I NVALI D OURSCR FG OOLCR)) ; n++;
Xt Set Arg(args[n], Xm\honeCursor For egr ound,

Get Col or (NONE_OURSCR FG OOLCR)); n++;

/* set args for the drag cursor icons */

Xt Set Arg(args[n], XmNcursorBackground, background); n++;
Xt Set Arg(args[n], XmNcursorForeground, foreground); n++;
Xt Set Arg(args[n], XnmN\sourceCQursorlcon, sourcelcon); n++;
Xt Set Arg(args[n], Xmi\stateQursorlcon, statelcon); n++;

/*

* set up the available export targets. These are targets that
* we Wi sh to provide data on

*/

targets[0] = XminternAton{Xt D splay(w), "BACKGROUND', False);
Xt Set Arg(args[n], XnNexportTargets, targets); n++;

Xt Set Arg(args[n], Xm\nunExportTargets, 1); n++;

/*

B-22

Drag and Drop Example Program

* identify the conversion procedure and

* the client data passed to the procedure

*/

XtSet Arg(args[n], Xm\clientData, w; n++;

Xt Set Arg(args[n], XmN\convertProc, ColorConvert); n++;

[* identify the necessary call backs */

dr agDr opFi ni shCB[0] . cl osure = (Xt Pointer) statelcon;

Xt Set Arg(args[n], XnmNdragDropFi ni shCal | back, dragDropFi ni shCB);
n++;
draghbti onCB[0] . cl osure = (Xt Poi nter) statelcon;

Xt Set Arg(args[n], XnmNdraghMbtionCal |l back, draghbtionCB); n++;

Xt Set Arg(args[n], XnN\dropSitelLeaveCal | back, dragMtionCB); n++;

/* set the drag operations that are supported */
Xt Set Arg(args[n], XnNdragQperations, XnDRCP_QCPY); n++;

/* start the drag. This creates a drag context. */
nyDC = XnDragStart(w, event, args, n);

/*

* This is a selection conversion function that is used in

* converting requests for rectangle targets. The return types
* foll ow | QOC st andar ds.

*/

/* ARGSUSED */

Bool ean

#i fdef _NO PROTO

Rect Convert(w, selection, target, type, value, length, fornat)
Wdget w ;

At om *sel ection ;

Atom *target ;

B-23

OSF/Maotif Programmer’s Guide

B-24

Atom *type ;

Xt Poi nter *val ue ;

unsi gned | ong *length ;

int *fornmat ;

#el se

Rect Convert (Wdget w, Atom *sel ection, Atom*target, Atom *type,
Xt Poi nter *val ue, unsigned long *length, int *fornat)

#endi f /* _NO PROTO */

{

D splay *display = XtD splay(w;

At om MY_RECT = Xmi nternAton(display, " MW _RECTANGE', False);
At om RECT | NFO = Xm nt er nAt on{ di spl ay, "RECT INFO', False);
At om DELETE = Xm nt er nAt on{di spl ay, "DELETE', Fal se);

At om TARGETS = Xni nt er nAt on{ di spl ay, "TARCGETS', False);

At om MWLTI PLE = Xml nt er nAt on{di spl ay, "MALTIPLE', False);

At om TI MESTAWP = Xmi nt er nAt on(di spl ay, "TI MESTAW", Fal se);

At om *targs;
i nt MAX_TARGS = 6;
i nt target _count;

DragConvertPtr conv;
W dget wi dget ;

Arg args[1];
RectPtr rect, ol dRect;

/* get the widget that initiated the drag */
Xt Set Arg(args[0], Xmi\clientData, &conv);

Xt Get Val ues(w, args, 1);

w dget = (Wdget) conv->wi dget;

/* Make sure we are doing a notif drag by checking if the

* widget that is passed in is a drag context. Make sure the
* widget inthe client data is not NULL.

*/

if (!XmsDragContext(w) || w dget == NUL)

Drag and Drop Example Program

return Fal se;
if (*target == MWY_RECT) {

/* Oreate a new rectangl e using information fromthe ol d
retangl e */
ol dRect = conv->rect;

/* W\ create create a newrectangle and wait for a del ete
* target on the old rectangl e instead of just noving the
* old rectangl e because the rectangl e noverrent m ght be an
* interclient nove.
*/
rect = Rect Oreate(ol dRect->%, ol dRect->y, ol dRect->wi dth,
ol dRect - >hei ght, ol dRect - >col or, ol dRect - >pi xnap) ;
/* value, type, length, and format nust be assi gned val ues */
*value = (Xt Pointer) rect;
*type = RECT_I NFQ
*l ength = sizeof (Pi xel);
*format = 32;

}
else if (*target == DELETE) {

/* delete the old rectangle */
Rect H de(Xt Di spl ay(wi dget), XtWndow(w dget), conv->rect);
Rect Free(conv->rect);

conv->rect = NULL;

/*

* DELETE target return paranmeters MJST be assi gned as
* follows to | OCC conpliant.

*/

*val ue = NULL;

*type = XminternAton(X D splay(w), "NJLL", False);

B-25

OSF/Maotif Programmer’s Guide

B-26

}

el se

}

el se

retu

*length = 0;
*format = 8;
if (*target == TARCETS) {

/* This target is required by 1C0CC */
targs = (Atom*) Xt Mal | oc((unsi gned)

(MAX_TARGS * sizeof (Atom));
target _count = O;

*val ue = (Xt Pointer) targs;

*targs++ = MW_RECT;

target _count ++;

*targs++ = DELETE;

target _count ++;

*targs++ = TARGETS

target _count ++;

*targs++ = MLTI PLE

target _count++;, /* supported in the Intrinsics */
*targs++ = Tl MESTAVP,

target _count++; /* supported in the Intrinsics */
*type = XA ATOM

*length = (target_count * sizeof (Atom)) >> 2;
*format = 32;

return Fal se;

rn True,;

Drag and Drop Example Program

/* This call back procedure renmoves the old cursor icon */
/* ARGSUSED */

static void

fdef _NO PROTO

Rect Dr agDr opFi ni shCB(w, client, call)

Wdget w,

Xt Poi nter client;

Xt Pointer call;

#el se

Rect Dr agDr opFi ni shCB(Wdget w, XtPointer client, XtPointer call)
#endi f /* _NO PROTO */

{
DragConvertPtr conv = (DragConvertPtr) client;
W dget sour ceCur sor | con;
Arg args[1];
Xt Set Arg(args[0], XnmiN\sourceCQursorlcon, &sourceCursorlcon);
Xt Get Val ues(w, args, 1);
Xt Free((char *) conv);
Xt Dest r oyW dget (sour ceQur sor | con);
}

/* This call back procedure redraws the rectangles once the drop
* is conpleted */

/* ARGSUSED */

static void

#i fdef _NO PROTO

Rect DropF ni shGB(w, client, call)

Wdget w,

Xt Poi nter client;

B-27

OSF/Maotif Programmer’s Guide

B-28

Xt Pointer call;

#el se

Rect DropFi ni shCB(Wdget w, XtPointer client, XtPointer call)
#endi f /* _NO PROTO */

{
DragConvert Ptr conv = (DragConvertPtr) client;
appl nf o->cl ear Rect = NULL;
appl nf o- >doMbve = True;
Redr awRect angl es(conv->wi dget) ;
}

/* This call back procedure handl e the drawi ng of the target
* rectangl e depending of the dropSiteStatus for drag over
* effects.

*/

/* ARGSUSED */

static void

fdef _NO PROTO
Rect Draghbti onCB(w, client, call)

Wdget w,

Xt Pointer client;

Xt Pointer call;

#el se
Rect Draghbti onCB(Wdget w, XtPointer client, XtPointer call)

#endif /* _NO PROTO */

{
XnDr aghbt i onCal | back cb = (XnDraghMtionCal | back) call;
DragConvert Ptr conv = (DragConvertPtr) client;
D spl ay *di spl ay;
W ndow w ndow,

Drag and Drop Example Program

Rect Ptr rect,
if (cb->dropSiteStatus == XnVALID DRCP_SITE) {

/* re-stipple the rectangl e when the pointer is inside the
* drop site */
if (applnfo->clearRect == NULL & appl nf o- >doMove) {

di spl ay = Xt D spl ay(conv->wi dget);
wi ndow = Xt W ndow(conv->wi dget) ;
rect = conv->rect;

Rect H de(di spl ay, wi ndow, rect);
Rect Drawst i ppl ed(di spl ay, wi ndow, rect);

}
}
el se {
/* re-fill the rectangl e when the pointer is outside the
* drop site */
if (applnfo->clearRect = NULL && appl nf o- >doMdve) {
appl nf o->cl ear Rect = NULL;
Redr awRect angl es(conv- >wi dget) ;
}
}

/* This call back procedure handl e the drawi ng of the target
* rectangl e When the operation changes.
*/

B-29

OSF/Maotif Programmer’s Guide

/* ARGSUSED */

static void

#i fdef _NO PROTO

Rect Qper ati onChangedCB(w, client, call)

Wdget w,

Xt Poi nter client;

Xt Pointer call;

#el se

Rect Qper at i onChangedCB(Wdget w, XtPointer client, XtPointer call)
#endi f /* _NO PROTO */

{
XnDr aghbt i onCal | back cb = (XnDraghbti onCal | back) call;
DragConvertPtr conv = (DragConvertPtr) client;
D spl ay *di spl ay;
W ndow Wi ndow,
Rect Ptr rect;

/* re-stipple the rectangl e when the pointer is inside the drop
* site */
if (applnfo->cl earRect == NULL &% appl nf o- >doMove) {

di spl ay = Xt D spl ay(conv->wi dget);
wi ndow = Xt Wndow(conv- >wi dget) ;
rect = conv->rect;

Rect H de(di spl ay, wi ndow, rect);
Rect Drawst i ppl ed(di spl ay, wi ndow, rect);

}

/* re-fill the rectangl e when the operation changes to copy */
if (applnfo->clearRect != NULL & !appl nf o- >doMove) {

appl nf o->cl ear Rect = NULL;

Redr awRect angl es(conv->w dget) ;

B-30

Drag and Drop Example Program

/* This action procedure sets up the drag data and begi ns the drag

* operation */

/* ARGSUSED */

static void

fdef _NO PROTO

Start Move(w, event, parans, num parans)

Wdget w,

XEvent *event;

String *parans;

Cardi nal *num par ans;

#el se

Start Move(Wdget w, XEvent *event, String *parans,
Cardi nal *num par ans)

#endi f /* _NO PROTO */

{

Rect Ptr rect;

Posi tion X = event->xbutton. x;

Posi tion y = event->xbutton.y;

static Xt Call backRec dragDropFi ni shCB[] = {
{Rect Dr agDr opFi ni shCB, NULL},
{NULL, NOULL}

b

static Xt Call backRec dropFini shCB[] = {
{Rect Dr opFi ni shCB, NUL},

{NULL, NULL}
}s

static Xt Call backRec draghbti onCB[] = {

B-31

OSF/Maotif Programmer’s Guide

B-32

{Rect DragMt i onCB, NUL},
{NULL, NULL}
h

static Xt Cal |l backRec operationChangedCB[] = {
{Rect per at i onChangedCB, NJUL},

{NULL, NULL}
h
At om targets[1];
D spl ay *display = XtD splay(w;
W dget sour ceCur sor | con;
DragConvertPtr conv;
Pi xel backgr ound, f oreground;
Arg args| 16] ;
i nt n = 0;

/* find a rectangle at the given x,y position */
rect = RectFind(x, y);

/* start nmove only if it begins on a rectangle */
if (rect) {

Xt Set Arg(args[0], Xm\background, &background);
Xt Get Val ues(w, args, 1);

foreground = Rect Get Col or (rect);
sour ceQur sor | con = Get Dragl conFronRect (w, rect, background);

/*

* Set up information to pass to the convert

* function and cal | back procs.

*/

conv = (DragConvertPtr) Xt Mall oc(sizeof (DragConvert Rec));
conv->w dget = w,

Drag and Drop Example Program

conv->rect = rect;

/* O a nmove operation, draw the current
* rectangle as a stippled outline.
*/
if (!(event->xbutton.state & Control Mask)) {
Rect H de(di spl ay, XtWndow(w), rect);
Rect Drawst i ppl ed(di spl ay, XtWndow(w), rect);
}
el se
appl nf o- >doMbve = Fal se;

/[* Setup arglist for the drag context that is created at

* drag start */
n =0;
/[* initially only show the source icon */
Xt Set Arg(args[n], Xmi\bl endModel , XnBLEND JUST _SOURCE); n++;
/* set args for the drag cursor icons */
Xt Set Arg(args[n], Xm\cursorBackground, background); n++;
Xt Set Arg(args[n], XmN\cursorForeground, foreground); n++;
Xt Set Arg(args[n], Xm\sourceCQursorlcon, sourceCursorlcon);
n++;
/*

* set up the avail abl e export targets. These are targets
* that we wish to provide data on

*

/
targets[0] = XmnternAton(display, " _M_RECTANGQE', False);
Xt Set Arg(args[n], XmNexportTargets, targets); n++;
Xt Set Arg(args[n], Xm\nunExportTargets, 1); n++;

/*

* jdentify the conversion procedure and
* the client data passed to the procedure

B-33

OSF/Maotif Programmer’s Guide

B-34

*

/

Xt Set Arg(args[n], Xm\clientData, conv); n++;

Xt Set Arg(args[n], Xm\convertProc, RectConvert); n++;

/* identify the necessary callbacks and the client data to
* be passed */
dragDr opFi ni shCB[0] . closure = (Xt Pointer) conv;
Xt Set Arg(args[n], XmN\dragDropFi ni shCal | back,
dragDr opFi ni shCB); n++;

dropFi ni shCB[0] . cl osure = (Xt Poi nter) conv;
Xt Set Arg(args[n], XmiNdropF ni shCal | back, dropFi ni shCB); n++;
draghbtionCB[0] . cl osure = (Xt Poi nter) conv,
Xt Set Arg(args[n], Xm\draghotionCal | back, draghbtionCB); n++;
oper ati onChangedCB[0] . cl osure = (Xt Poi nter) conv;
Xt Set Arg(args[n], XmNoperati onChangedCal | back,

oper ati onChangedCB) ; n++;

/* set the drag operations that are supported */
Xt Set Arg(args[n], XmNdragQperati ons,
XnDRCP_QCPY | XnDRCP_MOVE) ; n++;

/* start the drag. This creates a drag context. */
nyDC = XnDragStart(w, event, args, n);

/* This procedure searches through the export targets and
* returns flags to indicate which targets were found

*/

/* ARGSUSED */
static void
#i fdef _NO PROTO

Drag and Drop Example Program

CheckTarget s(w, display, rectFound, bgFound, pixFound)
Wdget w,

D spl ay *di spl ay;

Bool ean *rect Found;

Bool ean *bgFound;

Bool ean *pi xFound,;

#el se

CheckTarget s(Wdget w, D splay *display, Bool ean *rect Found,
Bool ean *bgFound, Bool ean *pi xFound)

#endi f /* _NO PROTO */

{
At om MY_RECT = Xmi nternAton(display, " MW _RECTANGE',
Fal se);
At om BACKGROUND = Xmi nt er nAt on(di spl ay, "BACKGROUND',
Fal se);
At om Pl XVAP = Xm nt er nAt on(di spl ay, "PlIXVAP', Fal se);
At om *export Tar get s;
Car di nal nunExport Tar get s;
Arg args[2];
i nt n;

[* Get list of transfer targets */

n = 0;

Xt Set Arg(args[0], XnmNexport Targets, &exportTargets);

Xt Set Arg(args[1], Xm\huniExport Targets, &nunExport Targets);
Xt Get Val ues(w, args, 2);

/[* initialize targets found flags */
*rect Found = *bgFound = *pi xFound = Fal se;

/* search through the export targets */
for (n = 0; n < nunExportTargets; n++) {

if (exportTargets[n] == M_RECT)

B-35

OSF/Maotif Programmer’s Guide

B-36

*rect Found = True;

el se if (exportTargets[n] == BACKEROUND)
*bgFound = True;

else if (exportTargets[n] == Pl XVAP)
*pi xFound = True;

/* This procedure handl es drop site messages and perforns the
* appropriate drag under effects.
*/

/* ARGSUSED */

static void

#i fdef _NO PROTO

DragProcCal | back(w, client, call)

Wdget w,

Xt Poi nter client;

Xt Pointer call;

#el se

DragProcCal | back(Wdget w, XtPointer client, XtPointer call)

#endi f /* _NO PROTO */

{
XnDr agPr ocCal | backSt r uct *cb = (XmDragProcCal | backStruct *)
cal | ;
D spl ay *display = XtD splay(w;
Bool ean rect Found, bgFound, pi xFound;
static unsi gned char initial_operations;
static unsi gned char initial _operation;

Rect Ptr rect;

CheckTar get s(cb->dragCont ext, display, &rectFound, &bgFound,

Drag and Drop Example Program

&pi xFound) ;
swi t ch(ch->reason) {
case XnCR DRCP_SI TE_ENTER MESSAGE
/* save the value of the operations and operation
* fields */
initial operations = cb->operations;
initial operation = cb->operation;

rect = RectFind(cb->x, cb->y);

/* Renmove any operations for the operations field
* which do not apply to the sinmulated drop site.

*/
if (rect) {
i f (bgFound || pixFound) {
cb->operati ons = XnDRCP_CCPY;
Rect H ghl i ght (w, rect);
}
else if (rectFound) {
cb->operati ons = cb->operations &
(XnDRCP_QOCPY | XnDRCP_MOVE) ;
Rect Unhi ghl i ght (w) ;
}
}
el se {
cb->operations = initial _operations &
(XnDRCP_CCPY | XnDRCP_MOVE) ;
Rect Unhi ghl i ght (W) ;
}

B-37

OSF/Maotif Programmer’s Guide

/* Set operation to the valid operation preferred by
* the simulated drop site or to XnDRCP_NOCP if the
* operations |list does not * contain the preferred
* operation.

*/
if (rect) {
if (bgFound || pixFound) {
i f (ch->operations & XnDRCP_QCCPY)
cb->operati on = XnDRCP_QCPY,
el se
cb->operati on = XnDRCP_NOCP,
}
else if (rectFound) {
i f (cb->operations & XnmDRCP_MOVE)
cb->operati on = XnDRCP_MOVE;
else if (cb->operations & XnDRCP_CCPY)
cb->operati on = XnDRCP_QCPY;
el se
cb->operati on = XnDRCP_NOCP,
}
}
el se {

if (rectFound) {

i f (cb->operations & XnDRCP_MOVE)
cb->operati on = XnDRCP_MOVE;

else if (cb->operations & XnDRCP_CCPY)
cb->operati on = XnDRCP_QCPY,

B-38

Drag and Drop Example Program

el se
cb->operati on = XnDRCP_NOCP,

}

el se
cb->operation = initial _operation;

* Set dropSiteStatus to XnDRCP_SITE INVALID i f the
* operation field is XnDROP_NOOP, or if there are no
* common targets between the source and the nested
* drop site. Cherwise, set * dropSiteStatus to
* XnDRCP_SI TE VALI D
*/
if (cb->operation == XnDRCP_NOCP | |
(rect & (!rectFound &% !bgFound &&% ! pi xFound)) ||
('rect &% !rectFound))
cb->dropSiteStatus = Xm NVALI D DRCP_SI TE,
el se
cb->dropSiteStatus = XnVALI D DRCP_SI TE;

/*
* Display appropriate drag under visuals. ly
* highlight the rectangle if we are changing rectangl e
* attributes.
*/
if (rect & bgFound || pixFound &%
cb->dropSiteStatus == XnmVALI D DRCP_SI TE)
Rect H ghl i ght (w, rect);
br eak;

case XnCR DRCP_S| TE_LEAVE MESSAGE:

B-39

OSF/Maotif Programmer’s Guide

/* Only unhighlight the rectangle if previously
* highlighted */
i f (applnfo->highlightRect !'= NULL)
Rect Unhi ghl i ght (W) ;
br eak;

case XnCR DRCP_SI TE_MOTI ON_MESSACE
rect = RectFind(cb->x, cb->y);
/*
* Renove any operations for the operations field

* whi ch do not
* apply to the sinulated drop site.

*/
if (rect) {
if (bgFound || pixFound) {
cb->operati ons = XnDRCP_CCPY;
Rect H ghl i ght (w, rect);
}
else if (rectFound) {
cb->operati ons = cb->operations &
(XnDRCP_CCPY | XnDRCP_MOVE) ;
Rect Unhi ghl i ght (w) ;
}
}
el se {
cb->operations = initial_operations &
(XnDRCP_CCPY | XnDRCP_MOVE) ;
Rect Unhi ghl i ght (w);
}
/*

B-40

Drag and Drop Example Program

* Set operation to the valid operation preferred by
* the simulated drop site or to XnDRCP_NOCP if the
* operations |list does not * contain the preferred
* operation.

*/
if (rect) {
if (bgFound || pixFound) {
i f (ch->operations & XnDRCP_QCCPY)
cb->operati on = XnDRCP_QCPY,
el se
cb->operati on = XnDRCP_NOCP,
}
else if (rectFound) {
i f (cb->operations & XnmDRCP_MOVE)
cb->operati on = XnDRCP_MOVE;
else if (cb->operations & XnDRCP_CCPY)
cb->operati on = XnDRCP_QCPY;
el se
cb->operati on = XnDRCP_NOCP,
}
}
el se {

if (rectFound) {
i f (cb->operations & XnmDRCP_MOVE)
cb->operati on = XnDRCP_MOVE;
else if (cb->operations & XnDRCP_CCPY)
cb->operati on = XnDRCP_QCPY;
el se
cb->operati on = XnDRCP_NOCP,

B-41

OSF/Maotif Programmer’s Guide

}

el se
ch->operation = initial _operation;

* Set dropSiteStatus to XnDRCP_SITE INVALID i f the
* operation field is XnDROP_NOCP, or if there are no
* common targets between the source and the nested
* drop site. Qherw se, set dropSiteStatus to
* XnDRCP_SI TE VALI D.
*/
i f (ch->operation == XnDRCP_NOCP | |
(rect &% (!rectFound & !bgFound && ! pi xFound)) ||
('rect &% !rectFound))
cb->dropSiteStatus = Xm NVALI D DRCP_SI TE;
el se
cb->dropSiteStatus = XnmVALI D DRCP_SI TE;

/*
* Display appropriate drag under visuals. ly
* highlight the rectangle if we are changing rectangl e
* attributes.
*/
if (rect & bgFound || pixFound &%
cb->dropSiteStatus == XnVALI D DRCP_SI TE)
RectH ghl i ght (w, rect);
br eak;

case XmCR_CPERATI ON_CHANGED:
if (rectFound) {

if (cb->operation == XnDRCP_MOVE)

B-42

Drag and Drop Example Program

appl nf o- >doMove = True;
el se
appl nf o- >doMove = Fal se;
}
br eak;
defaul t:

/* other messages we consider invalid */
cb->dropSiteStatus = Xm NVALI D DRCP_SI TE;
br eak;

}

/* allow anination to be perforned */
cb->ani mate = True;

/* This procedure handles the data that is being transfer */

/* ARGSUSED */

static void

#i fdef _NO PROTO

TransferProcCal | back(w, closure, seltype, type, value, |ength,
format)

Wdget w,

Xt Poi nter closure ;

At om *sel type ;

Atom *type ;

Xt Poi nter val ue ;

unsi gned | ong *length ;

int *format ;

#el se

B-43

OSF/Maotif Programmer’s Guide

B-44

Transf er ProcCal | back(Wdget w, XtPointer closure, Atom *seltype,
Atom *type, XtPointer value, unsigned long *length, int *fornat)
#endi f /* _NO PROTO */

{
Dr opTr ansf er transferRec = (DropTransfer) closure;
W dget wi d = transferRec->w dget;
D spl ay *di splay = XtD splay(wi d);

At om RECT | NFO = Xm nt er nAt on{ di spl ay, "RECT INFO', Fal se);
At om Pl XEL = Xm nt er nAt on{di spl ay, "PIXEL", False);
At om NULL_ATQM = Xm nt er nAt on(di spl ay, "NJULL", False);

Arg args[10];
Rect Ptr rect;

i nt n;

/*

* The delete target returns a NULL_ATOM type and val ue equal
* to NLL so it isn't a failure. Qherw se, check for NUL
* value or targets that we don't support and set transfer
* failure.
*/
if (*type '= NULL_ATCM && (!val ue ||

(*type '= RECT_INFO && *type != Pl XEL &&

*type ! = XA DRAWABLE))) {

* On failures set both transferStatus to

* XMTRANSFER _FAI LURE and nuniDr opTransfers to O.

*/

Xt Set Arg(args[n], Xm\transferStatus, XnTRANSFER FAI LURE);
n++;
Xt Set Arg(args[n], Xm\nunDropTransfers, 0); n++;

Xt Set Val ues(w, args, n);

/* Free the value if there is one, or we woul d have a

Drag and Drop Example Program

* menory | eak */
if (value)
Xt Free(val ue);

return;

}

/* Handl e pi xel type (i.e. change in background) */
if (*type == PI XEL) {
rect = RectFi nd(transferRec->x, transferRec->y);
Rect Set Col or (rect, display, XtWndow wd),
*((Pi xel *)val ue));
}
/* Handl e drawabl e type (i.e. change in pi xmap) */
else if (*type == XA DRAWABLE) {
rect = RectFi nd(transferRec->x, transferRec->y);
Rect Set Pi xmap(rect, display, XtWndow(w d),
*((Pixmap *)val ue));
}
/* Handl e rect_info type (i.e. newrectangle) */
else if (*type == RECT_INFO {
rect = (RectPtr) val ue;
Rect Regi ster(rect, transferRec->x, transferRec->y);
val ue = NULL;
/* No need to free, it is being stored in RecTable */

}

/* Free the value if there is one, or we woul d have a nenory
* |eak */
if (value)

Xt Free(val ue);

B-45

OSF/Maotif Programmer’s Guide

/* This procedure frees the data used the data transfer proc that
* was passed fromthe drop procedure.
*/
/* ARGSUSED */
static void
#i fdef _NO PROTO
DropDestroyCB(w, clientData, call Data)
W dget W,
Xt Poi nt er client Dat a;
Xt Poi nt er cal | Dat a;
#el se
DropDestroyCB(Wdget w, Xt Pointer clientData, XtPointer callData)
#endi f /* NO_PROTO */
{
Xt Free((char *)clientData);

}

/* This procedure initiates the drop transfer. */
/* ARGSUSED */
static void
fdef _NO PROTO
Handl eDrop(w, cal l)
Wdget w,
Xt Pointer call;
#el se
Handl eDr op(Wdget w, XtPointer call)
#endi f /* _NO PROTO */
{
static Xt Cal |l backRec dropDestroyCH[] = {
{DropDestroyCB, NULL},
{NULL, NULL}
h

XD opProcCal | backStruct *cb = (XnDr opProcCal | backStruct *)cal | ;

B-46

Drag and Drop Example Program

D spl ay *display = XtD splay(w;

Arg args[10] ;

i nt n;

Bool ean rect Found, bgFound, pi xFound;
Dr opTr ansf er t ransf er Rec;

XnDr opTr ansf er Ent r yRec transferEntries[2];

XnDr opTr ansf er Ent r yRec *transferList = NULL;

Car di nal nunTransfers = 0;

Bool ean transferValid = Fal se;

Rect Ptr rect;

/* Cancel the drop on invalid drop operations */
if (!(cb->operations & Xn"DRCP_MOVE || cb->operations
& XnDRCP_QOCPY)) {

n = 0;

cb->operati on = XnDRCP_NOCP,

cb->dropSiteStatus = Xm NVALI D DRCP_SI TE;

Xt Set Arg(args[n], Xm\transferStatus, XnTRANSFER FAI LURE);
n++;

Xt Set Arg(args[n], Xm\nunDropTransfers, 0); n++;
}

el se {

/* Find out which nested dropsite contains the pointer */
rect = RectFind(cb->x, cbh->y);

CheckTar get s(cb->dragCont ext, displ ay, &rectFound, &bgFound,
&pi xFound) ;

/* rect 'NULL indicates we are within a nested dropsite */
if (rect) {

/* MY RECT is a possible target, support it first */
i f (rectFound)

B-47

OSF/Maotif Programmer’s Guide

transferValid = True;
el se if (bgFound || pixFound) {
/* support only copy with the BACKGROUND and PI XVAP
* targets */
if (cb->operation != XnDRCP_CCPY)
cb->operati on = XnDRCP_QCPY;
transferValid = True;

}
}
el se {
i f (rectFound)
transferValid = True;
}

if (transfervalid) {

/* initialize data to send to drop transfer callback */
transferRec = (DropTransfer)

Xt Mal | oc(si zeof (DropTransferRec));
transfer Rec->wi dget = w,
transferRec->x = cb->x;
transferRec->y = cb->y;

/* order of support is MY_RECT, then BACKGROUND, then
* Pl XMAP */
i f (rectFound)
transferEntries[0].target = Xm nternAton(displ ay,
" _MY_RECTANGLE', Fal se);
el se if (bgFound)
transferEntries[0].target = XmnternAton(displ ay,
"BACKGROUND', Fal se);
el se i f (pixFound)
transferEntries[0].target = Xm nternAton(displ ay,
"Pl XVAP', Fal se);

B-48

Drag and Drop Example Program

transferEntries[0].client_data =
(Xt Poi nter) transferRec;

/* Set up nove targets */
if (cb->operation == XnDRCP_MOVE) {

transferEntries[1].client _data =
(Xt Pointer) transferRec;
transferEntries[1].target = Xm nternAton(displ ay,
"DELETE', False);
nunTransfers = 2;

}
el se if (cb->operation == XnDRCP_CCPY)
nunTransfers = 1;

transferList = transferEntri es;

/* Setup transfer list */

n=0;

cb->dropSiteStatus = XnVALI D DRCP_SI TE;

XtSet Arg(args[n], XnNdropTransfers, transferList); n++;
Xt Set Arg(args[n], XnNnunDropTransfers, nuniransfers);
n++;
/* Setup destroy callback to free transferRec */
dropDestroyCB[0] . cl osure = (Xt Pointer) transferRec;
Xt Set Arg(args[n], XnNdestroyCal | back, dropDestroyCB);
n++;
/* Setup transfer proc to accept the drop transfer data */
Xt Set Arg(args[n], Xm\transferProc, TransferProcCall back);
n++;

B-49

OSF/Maotif Programmer’s Guide

B-50

el se {

n =0;

cb->operati on = XnDRCP_NOCP,

cb->dropSiteStatus = Xm NVALI D DRCP_SI TE;

Xt Set Arg(args[n], XnNransferStatus,
XNMTRANSFER FAI LURE) ; n++;

Xt Set Arg(args[n], Xm\nunDropTransfers, 0); n++;

}

XD opTransf er Start (cb->dragCont ext, args, n);

/* This procedure is used with the drop hel p dial og to continue
* with the drop */

/* ARGSUSED */

static void

#i fdef _NO PROTO

Handl eCK(w, client, call)

Wdget w,

Xt Poi nter client;

Xt Pointer call;

#el se

Handl eCK(Wdget w, XtPointer client, XtPointer call)
#endi f /* _NO PROTO */

{

XnDr opProcCal | backStruct *cb = (XnDropProcCal | backStruct *)client;

cb->operati on = appl nf o- >operati on;

Drag and Drop Example Program

Handl eDrop(w, (Xt Pointer) cb);

/* This procedure is used with the drop help dialog to cancel the
* drop */

/* ARGSUSED */

static void

#i fdef _NO PROTO

Cancel Drop(w, client, call)

Wdget w,

Xt Pointer client;

Xt Pointer call;

#el se

Cancel Drop(Wdget w, XtPointer client, XtPointer call)

#endi f /* _NO PROTO */

{
XD opProcCal | backStruct *cb = (XnDropProcCal | backStruct *)client;
Arg args[2] ;
/* O help, we need to cancel the drop transfer */
Xt Set Arg(args[0], XmNtransferStatus, XnMTRANSFER FAI LURE);
Xt Set Arg(args[1], Xm\hunDropTransfers, 0);
/* we need to start the drop transfer to cancel the transfer */
XnDr opTransfer Start (ch->dragContext, args, 2);
}

#i fdef _NO PROTO
Xt Cal | backProc ChangeCper ati on(wi dget, client _data, call _data)
Wdget wi dget;

B-51

OSF/Maotif Programmer’s Guide

B-52

caddr_t client_data;

XmAnyCal | backStruct *cal | _dat a;

#el se

Xt Cal | backProc ChangeCper ati on(Wdget widget, caddr t client_data,
XmAnyCal | backStruct *cal | _dat a)

#endi f
{
if (client_data == 0)
appl nf o- >operati on = XnDRCP_MOVE;
el se
appl nf o- >oper ati on = XnDRCP_CCPY;

/* This procedure manages the hel p dial og and determ nes whi ch
* nessage is displayed in the dial og depending on the position
* and the type of drop.

*/

/* ARGSUSED */

static void

#i fdef _NO PROTO
Handl eHel p(w, call)

Wdget w,

Xt Pointer call;

#el se
Handl eHel p(Wdget w, XtPointer call)

#endi f /* _NO PROTO */

{

XnDx opProcCal | backStruct *cb = (XnDropProcCal | backStruct *)cal | ;
static XnDropProcCal | backStruct client;

Bool ean rect Found, bgFound, pi xFound;
Xnstri ng hel pStr;

Drag and Drop Example Program

Rect Ptr rect;

Arg args[3] ;

Xnstring tenpStr, buttonArray[2];
i nt n = 0;

/* the drop is valid until it is determned invalid */

cb->dropSiteStatus = XnmVALI D DRCP_SI TE;

/* if we haven't created a help dialog, create one now */
if (helpDalog == NULL) {

Xt Set Arg(args[n], Xmi\di al ogStyl e,
XDl ALOG FULL_APPLI CATI CN MCDAL) ; n++;

XtSet Arg(args[n], Xm\title, "Drop Hel p"); n++;

hel pO al og = Xn(r eat eMessageD al og(t opLevel , "Hel p",
args, nj;

n = 0;

buttonArray[0] = XnBtri ngQ eat eSi npl e(" Move");

buttonArray[1] = XnBtri ngQ eat eSi npl e(" Copy");

Xt Set Arg(args[n], Xm\outtons, buttonArray); n++;

Xt Set Arg(args[n], Xm\buttonCount, 2); n++;

Xt Set Arg(args[n], Xm\buttonSet, 0); n++;

Xt Set Arg(args[n], Xm\sinpl eCal | back, ChangeQperation); n++;

tenpStr = XnBtringQeateSi npl e("Qperations:");

Xt Set Arg(args[n], XmNoptionLabel, tenpStr); n++;

hel pMenu = XnQOr eat eSi npl eGpt i onMenu(hel pDi al og, "hel pMenu”,
args, nj;

Xnstri ngFree(tenpStr);

Xt ri ngFree(buttonArray[0]);

Xnstri ngFree(buttonArray[1]);

Xt AddCal | back(hel pD al og, Xm\okCal | back,

(Xt Cal | backProc) Handl eCX, (XtPointer) &client);
Xt AddCal | back(hel pD al og, Xmi\cancel Cal | back,

B-53

OSF/Maotif Programmer’s Guide

(Xt Cal | backProc) Cancel Drop, (Xt Pointer) &client);

Xt UhnmanageChi | d(XnMessageBoxGet Chi | d(hel pDi al og,
XnDl ALOG HELP_BUTTON)) ;

Xt Real i zeW dget (hel pDO al og) ;
}

/* pass the necessary call back information al ong */
client.dragContext = cb->dragContext;

client.x = cbh->x;

client.y = cb->y;

client.dropSiteStatus = cb->dropSteStat us;
client.operation = ch->operati on;

client.operations = cb->operati ons;

/[* find the valid targets */
CheckTar get s(cb->dragCont ext, Xt D splay(w), & ectFound,
&gFound, &pi xFound);

/* determne the appropriate hel p nessage */
if (rectFound) {

i f (cb->operations == XnDRCP_MOVE | XnDRCP_QCPY) ({
Xt ManageChi | d(hel pMenu) ;
hel pStr = XnBtri ngO eat eLt oR(HELP_NVB(A,
XnFONTLI ST_DEFAULT_TAG ;
Xt ManageChi | d(XmMessageBoxGet Chi | d(hel pD al og,
XnDl ALOG (K BUTTON)) ;
}
else if (cb->operation == XnDRCP_MOVE) {
Xt UnmanageChi | d(hel pMenu) ;
hel pStr = XnBtri ngO eat eLt oR(HELP_MBR2,
XnFONTLI ST_DEFAULT_TAG) ;

B-54

Drag and Drop Example Program

Xt ManageChi | d(XmvessageBoxGet Chi | d(hel pD al og,
XDl ALOG K BUTTQN)) ;
}
else if (cb->operation == XnDRCOP_CCPY) {
Xt UnmanageChi | d(hel pMenu) ;
hel pStr = XnBtri ngOr eat eLt oR(HELP_MBG3,
XnFONTLI ST DEFAULT TAG ;
Xt ManageChi | d(XmvessageBoxGet Chi | d(hel pDi al og,
XnDl ALGG K _BUTTON)) ;

}
else if (bgFound || pixFound && cb->operation == XnDRCP_CCPY)

Xt UhnanageChi | d(hel pMenu) ;
rect = RectFi nd(cb->x, cb->y);
if (rect) {
hel pStr = XnBtri ngQr eat eLt oR(HELP_MBGL,
XnFONTLI ST_DEFAULT TAG ;
Xt ManageChi | d(XmvessageBoxGet Chi | d(hel pD al og,
XnDl ALOG K BUTTON)) ;

}
el se {
hel pStr = XnBtri ngO eat eLt oR(HELP_NMBGS,
XnFONTLI ST_DEFAULT TAG ;
Xt UnmanageChi | d(XmvessageBoxGet Chi | d(hel pDi al og,
XnDl ALGG OK_BUTTON)) ;
}
}
el se {

Xt UhnanageChi | d(hel pMenu) ;
hel pStr = XnBtri ngCr eat eLt oR(HELP_MBGS,

XnFONTLI ST_DEFAULT_TAG) ;
Xt UnnanageChi | d(XnessageBoxGet Chi | d(hel pDi al og,

B-55

OSF/Maotif Programmer’s Guide

XDl ALOG OK_BUTTCN)) ;
}

/* set the help nmessage into the dialog */
Xt Set Arg(args[0], XnNressageString, hel pStr);
Xt Set Val ues(hel pDi al og, args, 1);

/* Free the XnBtring */
Xt ri ngFree(hel pStr);

/* map the hel p dialog */
Xt ManageChi | d(hel pDi al og) ;

/* The procedure either begins the drop of initiates the help
* di al og dependi ng on the dropAction.
*/

/* ARGSUSED */

static void

fdef _NO PROTO

DropProcCal | back(w, client, call)

Wdget w,

Xt Pointer client;

Xt Pointer call;

#el se

DropProcCal | back(Wdget w, XtPointer client, XtPointer call)

#endif /* _NO PROTO */

{

XnDx opProcCal | backStruct *cb = (XnDropProcCal | backStruct *)cal | ;

i f (appl nfo->highlightRect !'= NULL)
Rect Unhi ghl i ght (W) ;

B-56

Drag and Drop Example Program

i f (cb->dropAction ! = XnDRCP_HELP)
Handl eDrop(w, call);

el se
Handl eHel p(w, call);

/* This procedure registers the drop targets and the drop site */
static void

#i f def _NO PROTO

Regi sterDropSite(w

Wdget w,

#el se

Regi st er DropSi t e(Wdget w)

#endi f /* _NO PROTO */

{

D splay *display = Xt D splay(w;
At om targets[3];

Arg args[5];

i nt n = 0;

/* Only accept nmoves or copies */

Xt Set Arg(args[n], XnNdragQperations, XnDRCP_CCPY | XnDRCP_MOVE);
n++;
/* set all possible targets for any of the nested drop sites */
targets[0] = Xmi nternAton{display, " _M_RECTANGE', False);
targets[1] = Xm nternAton{display, "BACKGROMND', False);
targets[2] = Xm nternAton{display, "PlXVAP', False);

Xt Set Arg(args[n], XnN nportTargets, targets); n++;

Xt Set Arg(args[n], Xnm\num nportTargets, 3); n++;

/* register a dragProc - necessary for simulating nested drop

B-57

OSF/Maotif Programmer’s Guide

B-58

* sites */
Xt Set Arg(args[n], XmNdragProc, DragProcCall back); n++;

/* register a dropProc */
Xt Set Arg(args[n], XmN\dropProc, DropProcCall back); n++;
XnDropSi t eRegi ster(w, args, n);

static void

#i fdef _NO PROTO

Set I nval i dl con(w)

Wdget w,

#el se

Set I nval i dl con(Wdget w)
#endif /* _NO PROTO */

{
W dget i nval i dl con;
char *invalid bits;
D nension width, height;
Arg args[1];

i f (appl nfo->maxQursorWdth >= | CON WDTH &&
appl nf o- >maxQur sor Hei ght >= | CON_HEl GHT) {
invalid_bits = INVALID | GCON BI TS;
width = | CON WDTH
hei ght = | CON_HE GHT;
} else {
[* 1f the server will handle a snall icon, create one */
invalid_bits = SVALL_I NVALID | QON BI TS;
width = SMALL_| GON W DTH
hei ght = SVALL | CON HEl GHT;

Drag and Drop Example Program

invalidlcon = GetDragl conFronBits(w, invalid bits, invalid bits,
wi dt h, height, GetCol or (DRAWAREA FG COL.OR),
Get Col or (DRAW AREA BG OOLCR)) ;

Xt Set Arg(args[0], XmNdefaul tlnvalidQursorlcon, invalidlcon);
Xt Set Val ues(XimGet XnBcreen(Xt Screen(w)), args, 1);

/* This procedure initializes the toolkit and other application
* information */

static void

#i fdef _NO PROTO

InitializeApplication(argc, argv)

int *argc;

String *argv;

#el se

InitializeApplication(int *argc, String *argv)

#endif /* _NO PROTO */

{

static Xt ActionsRec new actions[] = {
{"StartRect", StartRect},

{"ExtendRect", ExtendRect},
{"EndRect", EndRect},
{"Start Move", StartMve},
{"Col orRect", ColorRect},
I
Ar args[5];

Car di nal n=20;

/* Ininialize struct that hold global information */
InitializeApplnfo();

B-59

OSF/Maotif Programmer’s Guide

B-60

/* Initialize Toolkit and create shell */

Xt Set Arg(args[n], XnmN\width, 295); n++;

Xt Set Arg(args[n], Xmi\height, 270); n++;

topLevel = Xt Applnitialize(&ppContext, "DNDDeno", NUL, O,
argc, argv, NULL, args, n);

/* Set drag protocol styles */
n=0;
Xt Set Arg(args[n], XmiN\dragl nitiatorProtocol Styl e,
XnDRAG PREFER RECEI VER); n++;
Xt Set Arg(args[n], XnNdragRecei verProtocol Styl e, XnrDRAG DYNAM O ;
n++;
Xt Set Val ues(XimGet XnDi spl ay(Xt Di spl ay(topLevel)), args, n);

/* Initialize tables for holding rectangl e information */
InitializeRectDpyTabl e();

/* Add new actions for use with translation tables */
Xt AppAddAct i ons(appCont ext, new actions, 5);

/* Get the display server’'s best cursor size */
XQuer yBest Qur sor (Xt D spl ay(topLevel),
Root W ndowCr Scr een(Xt Screen(t opLevel)), 64, 64,
&appl nf o- >naxCur sor Wdt h, &appl nf o- >maxQur sor Hei ght) ;

/* This the programstart procedure */
voi d

#i fdef _NO PROTO

nmain (argc, argv)

int argc;

String *argv;

#el se

Drag and Drop Example Program

main (int argc, String *argv)
#endi f /* _NO PROTO */
{

/* Initialize toolkit and application global values */
InitializeApplication(&rgc, argv);

/* Oreate main window, drawi ng area, and color |abels */
QO eat eLayout () ;

/* Register the drawing area as a drop site */
Regi st er DropSi t e(dr awi ngAr ea) ;

Set | nval i dl con(drawi ngAr ea) ;

/* Realize and map wi dget hiearchy */
Xt Real i zeW dget (t opLevel);

/* Oeate GC for drawi ng rectangles */
O eateRect XX);

/* Begin event | oop processing */
Xt AppMai nLoop(appCont ext) ;

B.3 DNDDraw.c

/*
* file: DNDDraw. c

B-61

OSF/Maotif Programmer’s Guide

*

* File containing all the draw ng routines needed to run
* DNDDeno progr am

*

*/

#i ncl ude " DNDDeno. h"

/* The followi ng character arrays hold the bits for
* the source and state icons for both 32x32 and 16x16 drag i cons.
* The source is a color palette icon and the state is a paint
* brush icon.
*/
char SORCE ICON BITY] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0Ox00, 0x00, O0OxaO,
Oxaa, 0x02, 0x00, 0x50, 0x55, 0x07, 0x00, 0x28, 0x00, 0xOc,
0x00, 0x94, 0x42, 0x19, 0x00, Oxca, Oxeb, 0x33, 0x00, 0x85,
Oxc6, 0x33, 0x80, 0x42, Oxe7, 0x33, 0x40, 0x81, 0xc3, 0x31l
Oxa0, 0x00, 0x00, 0x38, 0x50, 0x00, 0x00, Ox1lc, 0x28, 0x00,
0x00, Ox0e, 0x90, 0x02, 0x00, 0x07, Oxc8, 0x05, 0x80, 0xO03,
0x90, 0x07, 0xcO0, 0x01, 0x48, 0x05, OxeO, 0x00, 0x90, 0xO03,
0x70, 0x00, 0x08, 0x00, 0x30, 0x00, 0x10, 0Ox14, 0x30, 0xO00,
0x08, O0x2a, 0x30, 0x00, 0x10, 0x34, 0x30, 0x00, 0x28, Ox2a,
0x60, 0x00, 0x50, O0x9c, Oxe2, 0x00, OxaO, 0x40, Oxc4, 0x01
0x40, 0x01, 0x84, 0x01, 0x80, 0x42, 0x84, 0x03, 0x00, 0x85,
0x03, 0x03, 0x00, 0x0a, 0x00, 0x03, 0x00, Oxf4, Oxff, 0xO03,
0x00, Oxf8, Oxff, Ox01, Ox00, 0x00, 0x00, 0xO00};

char SQURCE | GON MASK[] = {
0x00, 0x00, 0x00, 0x00, 0x00, OxfO, Oxff, Ox07, Ox00, Oxf8,
Oxff, OxOf, 0Ox00, Oxfc, Oxff, Ox1f, Ox00, Oxfe, Oxff, Ox3f,
0x00, Oxff, Oxff, Ox7f, Ox80, Oxff, Oxff, Ox7f, OxcO, Oxff,
Oxff, Ox7f, OxeO0, Oxff, Oxff, Ox7f, OxfO, Oxff, Oxff, Ox7f,
Oxf8, Oxff, Oxff, Ox7f, Oxfc, Oxff, Oxff, Ox7f, Oxfc, Oxff,

B-62

Drag and Drop Example Program

Oxff, Ox3f, Oxfc, Oxff, Oxff, Ox1f, Oxfc, Oxff, Oxff, OxOf,
Oxfc, Oxff, Oxff, Ox07, Oxfc, Oxff, Oxff, Ox03, Oxfc, Oxff,
Oxff, 0x01, Oxfc, Oxff, Oxff, Ox00, Oxfc, Oxff, Ox7f, 0xO00,
Oxfc, Oxff, Ox7f, Ox00, Oxfc, Oxff, Oxff, Ox00, Oxfc, Oxff,
Oxff, 0x01, Oxfc, Oxff, Oxff, Ox03, Oxf8, Oxff, Oxff, Ox03,
Oxf0, Oxff, Oxff, Ox07, OxeO, Oxff, Oxff, O0xO07, OxcO, Oxff,
Oxff, O0x07, 0x80, Oxff, Oxff, Ox07, Ox00, Oxff, Oxff, Ox07,
0x00, Oxfe, Oxff, Ox07, Ox00, Oxfc, Oxff, OxO03};

char STATE IGCON BITY] = {

0x00, 0x00, 0x00, 0x00, Oxle, 0x00, O0x00, 0Ox00, 0x78, 0xO00,
0x00, 0x00, 0xf8, 0x01, 0x00, 0x00, Oxf8, 0x01, 0x00, 0xO00,
Oxf8, 0x03, 0x00, 0x00, OxfO, 0x03, 0x00, 0x00, OxfO, 0xO07,
0x00, 0x00, 0xcO, 0x0d, 0x00, 0x00, 0x00, Ox1b, 0x00, 0xO00,
0x00, 0x3e, 0x00, 0x00, 0x00, Ox7e, 0x00, 0x00, 0x00, Oxfc,
0x00, 0x00, 0x00, Oxf8, 0x01, 0x00, 0x00, OxfO, 0x03, 0xO00,
0x00, 0xe0, 0x07, 0x00, 0x00, OxcO, OxOf, Ox00, 0x00, 0x80,
Ox1f, 0x00, 0x00, 0x00, Ox3f, 0x00, 0x00, O0x00, Ox7e, 0xO00,
0x00, 0x00, Oxfc, 0x00, 0x00, 0x00, Oxf8, 0x01, 0x00, 0xO00,
Oxf0, 0x01, 0x00, 0x00, Oxe0, 0x03, 0x00, 0x00, 0OxcO, 0xO07,
0x00, 0x00, 0x80, 0xOf, 0x00, 0x00, Ox00, Oxif, 0x00, 0xO00,
0x00, Oxle, 0x00, 0x00, 0x00, Ox3c, 0x00, Ox00, 0x00, 0x38,
0x00, 0x00, 0x00, 0x60, 0x00, 0x00, O0x00, OxcO};

char STATE | GON MASK[] = {
0x3f, 0x00, 0x00, 0x00, Oxff, 0Ox00, Ox00, Ox00, Oxff, 0xO03,
0x00, 0x00, Oxfc, 0x03, 0x00, 0x00, Oxfc, Ox07, 0x00, 0xO00,
Oxfc, 0x07, 0x00, 0x00, Oxfc, 0Ox07, 0Ox00, 0x00, Oxf8, 0x07,
0x00, 0x00, O0xf8, 0xOf, 0x00, 0x00, OxeO, Oxif, 0x00, 0xO0O0,
0x00, 0x3e, 0x00, 0x00, 0x00, Ox7e, 0x00, 0x00, 0x00, Oxfc,
0x00, 0x00, 0x00, Oxf8, 0x01, 0x00, O0x00, OxfO, 0x03, 0xO00,
0x00, 0xe0, 0x07, 0x00, 0x00, OxcO, OxOf, 0Ox00, 0x00, 0x80,
Ox1f, 0x00, 0x00, 0x00, Ox3f, 0x00, O0x00, O0x00, Oxfe, 0x01
0x00, 0x00, Oxfc, 0x03, 0x00, 0x00, Oxf8, 0x03, 0x00, 0xO00,
Oxf 0, 0x07, 0x00, O0x00, OxeO, OxOf, 0Ox00, 0x00, OxcO, Oxif,

B-63

OSF/Maotif Programmer’s Guide

0x00, 0x00, 0x80, Ox3f, 0x00, 0x00, 0x00, Ox7f, 0x00, 0x00,
0x00, O0x7e, 0x00, O0x00, 0x00, Ox7e, 0x00, 0x00, 0x00, Oxfe,
0x00, 0x00, 0Ox00, Oxfc, Ox00, 0x00, 0x00, OxfO};

char INVALID IGON BI TS] = {

0x00, 0xe0, 0xOf, 0x00, 0x00, Oxfc, Ox7f, Ox00, 0Ox00, Oxff,
Oxff, O0x01, 0Ox80, Oxff, Oxff, 0Ox03, OxcO, Oxif, OxfO0, 0Ox07,
Oxe0, 0x07, 0xcO, OxOf, Oxf0, 0x07, Ox00, Oxif, Oxf8, OxOf,
0x00, Ox3e, 0xf8, Ox1f, 0x00, 0Ox3c, Oxfc, Ox3f, 0x00, Ox7c,
0Ox3c, Ox7f, 0x00, 0x78, 0x3c, Oxfe, 0x00, 0x78, Oxle, Oxfc,
0x01, OxfO, Oxle, Oxf8, 0x03, OxfO, Oxle, O0xf0O, 0x07, OxfO,
Oxle, 0xe0, 0xOf, OxfO, Oxle, OxcO, Ox1f, OxfO, Oxle, 0x80,
Ox3f, O0xf0O, Oxle, 0x00, Ox7f, OxfO, Ox3c, O0x00, Oxfe, 0x78,
0x3c, 0x00, Oxfc, 0x79, 0Ox7c, 0x00, Oxf8, Ox7f, 0x78, 0xO00,
Oxf0, Ox3f, 0xf8, 0x00, Oxe0, Ox3f, OxfO, Ox01, 0OxcO, Oxif,
Oxe0, 0x07, OxcO, OxOf, OxcO, Oxif, Oxf0, 0x07, 0x80, Oxff,
Oxff, 0x03, 0x00, Oxff, Oxff, Ox01, Ox00, Oxfc, Ox7f, 0x00,
0x00, Oxe0, OxOf, Ox00, 0x00, 0x00, 0x00, 0x00};

char SVALL_SOURCE |OON BITY[] = {
0x80, O0x1f, 0x40, 0x60, 0x20, 0x91, 0x90, Oxaa, 0x08, 0x91
0x08, 0x40, 0x08, 0x20, 0x08, 0x10, 0x28, 0x10, 0x78, 0x10,
0x28, 0x20, 0x08, 0x41, 0x90, 0x43, 0x20, 0x21, 0x40, 0x10
0x80, OxOf};

char SMALL SOURCE | GON MASK[] = {
0x80, Ox1f, 0xcO0, Ox7f, Oxe0, Oxff, OxfO, Oxff, Oxf8, Oxff,
Oxf8, Ox7f, Oxf8, Ox3f, Oxf8, Ox1f, Oxf8, Oxif, Oxf8, Oxif,
Oxf8, O0x3f, Oxf8, Ox7f, O0xfO, Ox7f, Oxe0, Ox3f, OxcO, Oxif,
0x80, OxOf};

char SMALL _STATE ICN BITY] = {
0Ox0f , 0x00, Oxle, 0x00, Oxle, 0x00, Ox3c, 0x00, 0x50, 0xO00,
Oxe0, 0x00, 0xc0O, 0x01, 0x80, 0x03, 0x00, 0x07, 0x00, O0xOe,
0x00, Ox1c, 0x00, 0x18, 0x00, 0x20, 0x00, 0x40, 0x00, 0x80,

B-64

Drag and Drop Example Program

0x00, 0xO00};

char SMALL_STATE | GON MASK[] = {
Ox0f , 0x00, Oxle, 0x00, Oxle, 0x00,
Oxe0, 0x00, 0xcO, 0x01, 0x80, 0x03,
0x00, Ox1lc, 0x00, 0x18, 0x00, 0x20,
0x00, 0xO00};

char SMALL INVALID ICGON BITH] = {
Oxe0, 0x03, 0xf8, OxOf, Oxlc, Oxlc,
0x73, 0x60, 0xe3, 0x60, 0xc3, 0x61
0x06, O0x3e, 0x06, O0x3c, Oxlc, Oxlc,
0x00, 0xO00};

/* Qobals variables */
Appl nf o appl nf o;

/* This is a string to pixel conversion
Pi xel

#i fdef _NO PROTO

Get Col or (col orstr)

char *colorstr;

#el se

Get Col or (char *col orstr)

#endi f /* _NO PROTO */

{

XrnVval ue from to;

fromsize = strlen(colorstr) +1
if (fromsize < sizeof (String))

fromsize = sizeof (String);
fromaddr = colorstr;

0x3c, 0x00,
0x00, 0x07,
0x00, 0x40,

Oxle, 0x30,
0x83, 0x63,
Oxf 8, OxOf,

function.

*/

0x70,
0x00,
0x00,

0x3e,
0x03,
0xe0,

0x00,
0x0e,
0x80,

0x30,
0x67,
0x03,

B-65

OSF/Maotif Programmer’s Guide

to.addr = NULL;
Xt Convert (topLevel, XnRString, & rom XnRPixel, & 0);

if (to.addr !'= NULL)

return ((Pixel) *((Pixel *) to.addr));
el se

return ((XtArgVal) NULL);

/* This procedure is used to initialize the application information
* structure */

voi d

#i fdef _NO PROTO

InitializeApplnfo()

#el se /* _NO PROTO */

InitializeApplnfo(void)

#endi f /* _NO PROTO */

{

if ('applnfo) {

appl nfo = (Appl nfo) Xt Mll oc(sizeof (Appl nfoRec));
appl nf o->rect QC = NULL;

appl nf o->current Col or = O;

appl nf o- >rect DpyTabl e = NULL;
appl nf o->rectsAl | ocd = 0;

appl nf o- >nunRects = 0;

appl nf o- >hi ghl i ght Rect = NULL;
appl nf o- >cl ear Rect = NULL;

appl nf o- >doMove = True;

appl nf o- >creati ngRect = True;
appl nf o- >operati on = XnDRCP_MOVE;
appl nf o- >maxQur sor Wdt h = 64;

B-66

Drag and Drop Example Program

appl nf o- >naxQur sor Hei ght = 64;
appl nfo->rect X = 0;

appl nfo->rectY = 0;

appl nfo->rect X2 = 0;

appl nf o->rect Y2 = 0;

/* This procedure sets the color in the GC for draw ng the
* rectangles in a new col or.
*/

voi d

fdef _NO PROTO

Set Col or (di spl ay, color)

D spl ay *di spl ay;

Pi xel col or;

#el se

Set ol or (Di spl ay *display, Pixel color)

#endi f /* _NO PROTO */

{
/*
* if the G already has a foreground of this col or,
* it would be wasteful to reset the color
*/
if (color !'= applnfo->currentColor) {
XSet For egr ound(di spl ay, appl nf o->rect GC,
(unsi gned | ong) color);
appl nf o- >current Col or = col or;
}
}

B-67

OSF/Maotif Programmer’s Guide

B-68

/* This function draws the rectangle in the col or provided */
static int

#i fdef _NO PROTO

Rect Draw(di spl ay, wi ndow, rect)

D spl ay *di spl ay;

W ndow wi ndow;

RectPtr rect;

#el se

Rect Draw(D spl ay *di spl ay, Wndow wi ndow, RectPtr rect)
#endi f /* _NO PROTO */

{
Set Col or (di spl ay, rect->color);
XFi | | Rect angl e(di spl ay, wi ndow, applnfo->rectGC rect->x,
rect->y, rect->wdth, rect->height);
}

/* This procedure draws the rectangl e highlight in a specified
* color */

static void

#i fdef _NO PROTO

Rect DrawH ghl i ght (w, rect, color)

Wdget w,

RectPtr rect;

Pi xel col or;

#el se

Rect DrawH ghl i ght (Wdget w, RectPtr rect, Pixel color)

#endi f /* _NO PROTO */

{

D splay *display = Xt D splay(w;
W ndow wi ndow = Xt Wndow(w) ;
Pi xel current Col or = rect->col or;

Drag and Drop Example Program

XQVal ues val ues;

val ues. f oreground = col or;
XChangeQ(di spl ay, appl nf o->rect QC, QGCForeground, &val ues);

XDr awRect angl e(di spl ay, w ndow, appl nf o->rect GG,
rect->x + 1, rect->y + 1,
rect->width - H GLI GHT_TH CKNESS,
rect->height - H GLIGHT_TH CKNESS) ;

/* Return the QC to it’s previous state */
val ues. f oreground = appl nf o->current Col or = current Col or;
XChangeQQ(di spl ay, appl nf o->rect QC, GCFor eground, &val ues);

/* This procedure handl es redrawi ng the rectangles. It draws
* themaccording to the order in the rectangl e display table.
* The rectangles at the top of the table are drawn first.

*/

voi d

#i f def _NO PROTO
Redr awRect angl es(w)

Wdget w,

#el se
Redr awRect angl es(Wdget w)

#endi f /* _NO PROTO */

{
O splay *display = Xt Display(w;
RectPtr rect;
W ndow wi ndow = Xt Wndow(W) ;
int i;

B-69

OSF/Maotif Programmer’s Guide

B-70

for (i =0; i < applnfo->nunRects; i++) {

rect = appl nfo->rectDpyTabl e[i];
/* Only draw the rectangl es that haven't been cl eared */
if (rect != applnfo->clearRect) {
Rect Draw(di spl ay, wi ndow, rect);
}
/* Draw the rectangl e highlight of the highlight
* rectangle */
if (rect == applnfo->highlightRect) {
Rect DrawH ghl i ght (w, rect, GetCol or(H GLIGHT_CO.(R));
}

/* This procedure will clear the current rectangl e and redraw any
* rectangles that were partially cleared by the rectangl e that
* was del et ed.

*/

/* ARGSUSED */

voi d

#i fdef _NO PROTO
Rect H de(di spl ay, wi ndow, rect)

D spl ay *di spl ay;

W ndow wi ndow;

RectPtr rect;

#el se

Rect H de(D spl ay *di spl ay, Wndow wi ndow, RectPtr rect)

#endi f /* _NO PROTO */

{

Pi xel background, ol dCol or;

Drag and Drop Example Program

Arg args[1];

/* Get the background of the drawing area. */
Xt Set Arg(args[0], Xmi\background, &background);
Xt Get Val ues(drawi ngArea, args, 1);

/* Save the old color for restoration purposes. */
ol dCol or = rect->col or;

/* Qear the rectangle */
rect->col or = background,;
Rect Draw(di spl ay, w ndow, rect);
appl nf o- >cl ear Rect = rect;

/* redraw the rest of the rectangles */
Redr awRect angl es(dr awi ngAr ea) ;

/* restore the rectangl e color */
rect->col or = ol dCol or;

}

/* This procedure draws the stipple rectangle that is used in
* marking the old rectangl e position during a rectangl e nove
* operation.

*/

/* ARGSUSED */

voi d

#i fdef _NO PROTO

Rect Drawst i ppl ed(di spl ay, wi ndow, rect)

D spl ay *di spl ay;

W ndow wi ndow,

RectPtr rect;

#el se

Rect Drawsti ppl ed(Di spl ay *di spl ay, Wndow w ndow, RectPtr rect)

B-71

OSF/Maotif Programmer’s Guide

B-72

#endif /* _NO PROTO */

{

register int x = rect->x;

register int y = rect->y;

regi ster D mension width = rect->width;
regi ster D mensi on hei ght = rect->height;
X@CVal ues val ues;

XSegnent segnent s[4] ;

/* Set the rectangle color */
val ues. f oreground = appl nf o->current Col or = rect->col or;
XChangeQ(di spl ay, appl nf o->rect &C, GCForeground , &val ues);

/* Oreate the segnents for drawi ng the stippled rectangle */
segnent s[0] . x1 = segrments[2].x1 = x;

segnent s[0] .yl = segrments[0].y2 =v;

segnents[0].x2 = x + width - 1,

segnents[1].x1 = segments[1].x2 = x + wdth - 1;

segments[1] .yl = segnents[3].yl =vy;

segnents[3].y2 =y + height;
segnents[2] .yl = segnments[2].y2

y + height - 1;

segnent s[3] . x1 = segment s[3] . x2 = Xx;
segnents[2].x2 = x + wi dth;
segnents[1].y2 =y + height;

/* Set the line attributes and draw */

XSet Li neAttributes(display, applnfo->rect@GC 1, LinehC fDash,
CapButt, JoinMter);

XDr awSegrent s (di spl ay, w ndow, appl nfo->rect QC, segnents, 4);

/* restore the default line settings */

val ues. line width = H GLI GHT_TH CKNESS;

val ues. line_style = LineSolid;

XChangeQ(di spl ay, appl nfo->rect QC, GCLi neWdth | GlLineStyl e,

Drag and Drop Example Program

&val ues);

/* This procedure sets the highlight rectangle and

* redraws the rectangl es. The expose routine wll draw
* the highlight around the highlighted rectangle.

*/

/* ARGSUSED */

voi d

#i fdef _NO PROTO

Rect H ghl i ght (w, rect)

Wdget w,
RectPtr rect;
#el se

Rect H ghl i ght (Wdget w, RectPtr rect)
#endi f /* _NO PROTO */

{
i f (applnfo->highlightRect !'=rect) {
appl nf o- >hi ghl i ght Rect = rect;
Redr awRect angl es(w) ;
}
}

/* This procedure sets the highlight rectangle to NULL and
* redraws the rectangl es. The expose routine wll clear
* the highlight around the highlighted rectangle.

*/

[* ARGSUSED */

voi d

#i fdef _NO PROTO
Rect Unhi ghl i ght (w)

B-73

OSF/Maotif Programmer’s Guide

Wdget w,

#el se

Rect Unhi ghl i ght (Wdget w)
#endi f /* _NO PROTO */

{
i f (appl nfo->highlightRect) {
appl nf o- >hi ghl i ght Rect = NULL;
Redr awRect angl es(w) ;
}
}

/* This function creates and initialized a new rectangl e */
Rect Ptr

fdef _NO PROTO

Rect Oeate(x, y, wdth, height, color, pixmap)
Position x;

Position vy;

D nensi on wi dt h;

D mensi on hei ght ;

Pi xel col or;

Pi xmap pi xmap;

#el se

Rect O eate(Position x, Position y, D nension w dth,
D mensi on hei ght, Pixel color, Pixmap pixmap)
#endi f /* _NO PROTO */

{

RectPtr rect;

rect = (RectPtr) Xt Malloc(sizeof(RectStruct));

rect - >x
rect->y

X,
Y

B-74

Drag and Drop Example Program

rect->width = wdth;
rect - >hei ght = hei ght;
rect->col or = col or;
rect->pi xmap = pi Xxnap;

return(rect);

/* This procedure will nove the rectangle to the end of the
* rectangle display table (effectively raising it to top of
* the displayed rectangl es).

*/

static void

#i fdef _NO PROTO
Rect ToTop(rect)

RectPtr rect;

#el se
Rect ToTop(Rect Ptr rect)

#endi f /* _NO PROTO */

{

i nt i, j;

if (rect) {

/* Get the index to the target rectangle */
for (i =0; i < applnfo->nunRects; i++) {
i f (applnfo->rectDpyTabl e[i] == rect)
br eak;

}

[* Shift the other rectangl es downward */

B-75

OSF/Maotif Programmer’s Guide

for (j =1i; j < applnfo->nunRects - 1; j++)
appl nf o->rect DpyTabl e[j] = appl nfo->rect DpyTabl e[j + 1];

/* Place the target rectangle at the end */
appl nf o->rect DpyTabl e[j] = rect;

/* This procedure raises the rectangle to the top of the draw ng
* area */

/* ARGSUSED */

static void

#i fdef _NO PROTO

Rect Rai se(w, rect)

Wdget w,
RectPtr rect;
#el se

Rect Rai se(Wdget w, RectPtr rect)
#endi f /* _NO PROTO */
{

Rect ToTop(rect);
Redr awRect angl es(w) ;

/* This procedure noves the rectangle the the end of the display
* stack, decrements the nunber of rectangles, and then frees the
* rectangl e.

*/

voi d

B-76

Drag and Drop Example Program

#i fdef _NO PROTO

Rect Free(rect)

RectPtr rect;

#el se

Rect Free(Rect Ptr rect)
#endif /* _NO PROTO */

{
/* if the rectangle is registered */
if (rect) {
Rect ToTop(rect);
appl nf o- >nunRect s- - ;
Xt Free((char *)rect);
}
}

/* This procedure added the rectangle to the rectangl e display
* table (reallocing the table if necessary).

*/

voi d

#i fdef _NO PROTO

Rect Regi ster(rect, X, V)

RectPtr rect;

#el se

Rect Regi ster(RectPtr rect, Position x, Position y)

#endi f /* _NO PROTO */

{

appl nf o- >nunRect s++;

/* rectangl es can have their x and y val ues reset at

B-77

OSF/Maotif Programmer’s Guide

B-78

* registration tine */
rect->x = x;
rect->y =y;

/* realloc the table if it is too small */
i f (appl nfo->nunRects > appl nfo->rectsA locd) {

/* grow geonetrically */
appl nf o->rectsAl l ocd *= 2;
appl nf o->rect DpyTabl e = (RectPtr *)
Xt Real | oc((char *) appl nf o->rect DpyTabl e,

(unsigned) (sizeof (RectPtr) * applnfo->rectsAlocd));

}

/* Add to end of display table */
appl nf o- >r ect DpyTabl e[appl nf o- >nunRects - 1] = rect;

/* This function find the top nost rectangle at the given X,y
* position */

Rect Ptr

#i fdef _NO PROTO

Rect Fi nd(x, Y)

Position x;

Position vy;

#el se

Rect Fi nd(Position x, Position y)
#endi f /* _NO PROTO */

{

RectPtr rect;
i nt i;

Drag and Drop Example Program

/*

* Search fromthe end of the rectangl e display table
* to find the top nost rectangl e.
*/

for (i = applnfo->nunRects - 1; i >=0; i--) {

rect = appl nfo->rectDpyTabl e[i];

if (rect->x <= x & rect->x + rect->width >= x &
rect->y <=y & rect->y + rect->height >=vy) {
return(rect);

}

/* If arectangle is not found return NULL */
return(NULL) ;

/* This procedure sets the retangle’s color */

voi d

#i fdef _NO PROTO

Rect Set Col or (rect, display, w ndow, color)

RectPtr rect;

D spl ay *di spl ay;

W ndow wi ndow;

Pi xel col or;

#el se

Rect Set Col or (Rect Ptr rect, Display *display, Wndow w ndow,
Pi xel col or)

#endi f /* _NO PROTO */

{

rect->color = color;

B-79

OSF/Maotif Programmer’s Guide

Rect Draw(di spl ay, w ndow, rect);

/* This function gets the retangle’s color */
Pi xel

#i fdef _NO PROTO

Rect Get Col or (rect)

RectPtr rect;

#el se

Rect Get Col or (Rect Ptr rect)

#endi f /* _NO PROTO */

{

return(rect->col or);

}

/* This procedure sets the retangl e s pi xmap. The pi xmap portion
* of the rectangle is not currently being used.
*/

/* ARGSUSED */

voi d

#i fdef _NO PROTO

Rect Set Pi xmap(rect, display, w ndow pixnap)

RectPtr rect;

D spl ay *di spl ay;

W ndow wi ndow;

Pi xmap pi xmap;

#el se

Rect Set Pi xmap(Rect Ptr rect, Display *display, Wndow w ndow

Pi xmap pi xmap)
#endi f /* _NO PROTO */
{

B-80

Drag and Drop Example Program

rect->pi xmap = pixmap; /* not currently being | ooked at */
Rect Draw(di spl ay, w ndow, rect);

/* This function gets the retangl e’ s pixnap. The pi xnmap portion of
* the rectangle is not currently being used.
*/

/* ARGSUSED */

static Pi xnap

#i fdef _NO PROTO
Rect Get Pi xmap(rect)

RectPtr rect;

#el se
Rect Get Pi xmap(Rect Ptr rect)

#endif /* _NO PROTO */

{

return (rect->pi xmap);

}

/* This procedure gets the retangle’ s height and width. */

/* ARGSUSED */

static void

#i fdef _NO PROTO

Rect Get D rensi ons(rect, width, height)

RectPtr rect;

D mensi on *wi dt h;

D nensi on *hei ght;

#el se

Rect Get D mensi ons(Rect Ptr rect, Dinension *width,
D nensi on *hei ght)

#endi f /* _NO PROTO */

{

B-81

OSF/Maotif Programmer’s Guide

*width = rect->w dth;
*hei ght = rect->hei ght;

/* This function creates the rectangl e bitmaps for the icon. */

Pi xmap

#i fdef _NO PROTO

Get Bi t mapFromRect (w, rect, background, foreground, w dthR n,
hei ght Rt n)

Wdget w,

RectPtr rect;

Pi xel background;

Pi xel foreground;

D nensi on *w dt hR n;

D mensi on *hei ght Rt n;

#el se

Get Bi t mapFromRect (Wdget w, RectPtr rect, Pixel background,

Pi xel foreground, Dinension *w dthRn, D nension *hei ght R n)

#endi f /* _NO PROTO */

{

D nensi on wi dth, height, maxHei ght, maxWdt h;
QL fill &

Pi xmap i con_pi xnap;

D splay *display = Xt D splay(w;

XQ&Val ues val ues;

Rect Get D mensi ons(rect, &width, &height);
/* Get the maxi mumal | owabl e width and hei ght all owed by the
* cursor */

naxWdt h = appl nf o- >nmaxQur sor Wdt h;
maxHei ght = appl nf o- >naxQur sor Hei ght ;

B-82

Drag and Drop Example Program

/* if the dinensions aren’t within the all owabl e di nensi ons
* resize then proportionally

*/

if (maxWdth <width || maxHei ght < height) {

if (width > height) {
hei ght = (height * naxWdth) / wi dth;
w dt h = appl nf o- >maxQur sor W dt h;

} else {
width = (width * maxHeight) / height;
hei ght = appl nf o- >maxQur sor Hei ght ;

}

/* Oeate a depth 1 pixmap (bitmap) for use with the drag

* jcon */

i con_pi xmap = XO eat ePi xmap(di spl ay, XtWndow(w), width,
hei ght, 1);

/* create a GQC for dranwing into the bitmap */
fillGC = XO eate@(display, icon_pixmap, O,
(XQ&Cval ues *)NULL);

[* fill the bitmap with 0's as a starting point */
XFi | | Rectangl e(di spl ay, icon_pixmap, fillGC 0, 0, wdth,
hei ght) ;

/* Change GCto be able to create the rectangle with 1's on
* the bitmap */

val ues. foreground = 1;

XChangeQ(di splay, fillQGC QCForeground, &val ues);

/*
* This draw a filled rectangle. If only a outline is desired

B-83

OSF/Maotif Programmer’s Guide

B-84

* use the XDrawRectangl e() call. Note: the outline does not
* produce very effect icon melting.
*/
XFi | | Rectangl e(di spl ay, icon_pixmap, fillGC 0, 0, wdth,
hei ght) ;

/* Free the fill GC*/
XFreeQJ di splay, fill&Q);

*widthRn = width;
*hei ght R n = hei ght;

return(icon_pi xnap) ;

/***
khkhkkhkhkkhkhkhkkhkhkhhhhkhkhhhhdhkhhhhhhhhhdhdkhhdhhdhkhhhhdhdhhdhhdkhhhhdddxdxk,*k*x%x
Functions used in Draw ng Qutlines:
khkkkhkkhkkkkkhkkhkhhkhkhkhkhkhkkhkhkhkhkkhhkhkhkhkkhkhkhkkhkhkhkhkkhkkhk,khkkkkkhkhkkkk k,kkkkk,**x*%

***/

/*

* This procedure changes the GC to do rubberband
* drawing of a rectangle frane .
*/

static void

#i fdef _NO PROTO

Set Xor (W)

Wdget w,

#el se

Set Xor (W dget w)

#endi f /* _NO PROTO */

{

Drag and Drop Example Program

unsi gned | ong val ueMask = GCFunction | GCForeground |
QLi neWdt h;
X@CVal ues val ues;

val ues. function = GXxor;

val ues. f oreground = Get Col or (DRAW AREA BG COL.R);
values.line width = 1;

XChangeQ(Xt D spl ay(w), appl nfo->rect GC, val ueMask, &val ues);

/* This procedure returns the GCto it's initial state. */
static void

#i fdef _NO PROTO

Set Nor mE(wW)

Wdget w,

#el se

Set Nor GO W dget w)

#endi f /* _NO PROTO */

{

unsi gned | ong val ueMask = GCFunction | GCLi neWdth |

QCFor egr ound,;

X@CVal ues val ues;

val ues. function = GXcopy;

val ues. f oreground = appl nf o- >current Col or;

val ues. line_wi dth = H GLI GHT_TH CKNESS;

XChangeQ3(Xt D spl ay(w), appl nfo->rect &C, val ueMask, &val ues);
}

/* This procedure returns the values of the current rectangle

B-85

OSF/Maotif Programmer’s Guide

* outline */
static void
#i fdef _NO PROTO
Qut | i neGet D ensi ons(x, y, width, height)
Position *x;
Position *y;
D nensi on *wi dt h;
D mensi on *hei ght ;
#el se
Qut | i neGet D nensi ons(Position *x, Position *y, D nension *w dth,
D mensi on *hei ght)
#endif /* _NO PROTO */
{

i f (appl nfo->rectX < appl nfo->rect X2) {
*x = appl nfo->rect X
*wi dth = appl nfo->rect X2 - *x;
} else {
*x = appl nf o- >r ect X2;
*wi dth = applnfo->rect X - *x;

}

if (applnfo->rectY < applnfo->rectVY2) {
*y = appl nfo->rect;
*hei ght = applnfo->rectVY2 - *y;
} else {
*y = appl nf o->rect Y2;
*hei ght = applnfo->rectY - *y;

}

if (*width < 0)
*width = 1;

if (*height < 0)
*hei ght = 1,

B-86

Drag and Drop Example Program

static void

#i fdef _NO PROTO

Qut i neDraw(w)

Wdget w,

#el se

Qut i neDraw(Wdget w)
#endi f /* _NO PROTO */

{
Position X, Y;
D nensi on w dth, height;
Qutl i neGet D nensi ons(&x, &y, &w dth, &height);
XDr awRect angl e(Xt D spl ay(w), XtWndow(w), applnfo->rectCC
X, Yy, width, height);
}

/* This procedure sets initializes the drawing positions */
static void

#i fdef _NO PROTO

QutlineSetPosition(x, y)

Position x;

Position vy;

#el se

QutlineSetPosition(Position x, Position vy)

#endi f /* _NO PROTO */

{

appl nf o->rect X = appl nfo->rect X2 = x;

B-87

OSF/Maotif Programmer’s Guide

appl nfo->rectY = applnfo->rectY2 = vy;

/* This procedure resets outline end position */
static void

#i fdef _NO PROTO

Qutli neReset Posi tion(x, vy)

Position x;

Position vy;

#el se

Qutli neReset Posi tion(Position x, Position y)
#endi f /* _NO PROTO */

{

appl nf o- >r ect X2
appl nf o- >r ect Y2

non

/* This action procedure begins creating a rectangle at the x,y
* position of the button event if a rectangl e doesn’t already
* exist at that position. Qherwise is raises the rectangle
* to the top of the draw ng area.

*/

/* ARGSUSED */

voi d

#i fdef _NO PROTO

Start Rect (w, event, parans, num parans)

Wdget w,

XEvent *event,

String *parans;

Cardi nal *num par ans;

B-88

Drag and Drop Example Program

#el se

Start Rect (Wdget w, XEvent *event, String *parans,
Cardi nal *num par ans)

#endi f /* _NO PROTO */

{

D splay *display = Xt D splay(w;

RectPtr rect;

Position x = event->xbutton. x;

Position y = event->xbutton.y;

rect = RectFind(x, y);

/* if there isn't a rectangle at this position, begin creating

* one */

if ('rect) {
appl nf o- >creat i ngRect = True;
/* set gc for drawi ng rubberband outline for rectangles */
Set Xor GO(W) ;
/* set the initial outline positions */
QutlineSetPosition(x, y);
/* Draw the rectangle */
QutlineDraw(w;

}

el se
Rect Rai se(w, rect);

}

/* This action procedure extends the drawi ng of the outline
* for the rectangle to be created.
*/

B-89

OSF/Maotif Programmer’s Guide

/* ARGSUSED */

voi d

#i fdef _NO PROTO

Ext endRect (w, event, parans, num parans)

Wdget w,

XEvent *event;

String *parans;

Cardi nal *num par ans;

#el se

Ext endRect (Wdget w, XEvent *event, String *parans,
Cardi nal *num par ans)

#endif /* _NO PROTO */

{
i f (appl nfo->creatingRect) {
/* erase the old outline */
QutlineDraw(w;
/* set the new outline end positions */
Qut I'i neReset Posi ti on(event - >xbutton. x, event->xbutton.y);
/* redraw the outline */
QitlineDraw(w;
}
}

/* This action procedure creates a rectangl e dependi ng on the
* dinmensions set in the StartRect and ExtendRect action procs.
*/

[* ARGSUSED */

voi d

#i fdef _NO PROTO
EndRect (w, event, parans, num parans)

B-90

Drag and Drop Example Program

Wdget w,

XEvent *event;

String *parans;

Cardi nal *num par ans;

#el se

EndRect (Wdget w, XEvent *event, String *parans,
Car di nal *num par ans)

#endi f /* _NO PROTO */

{
Posi tion X, Y,
D nensi on wi dt h, height;
Rect Ptr rect;

i f (applnfo->creatingRect) {

/* erase the last outline */
Qutli neDraw(w) ;
/* return GCto original state */

Set Nor nfAO(W) ;

/* Get the outline dinmensions for creating the rectangle */
Qut I'i neGet D mensi ons(&, &, &w dth, &height);

/* don't want to create zero width or hei ght rectangles */
if (width == 0 || height == 0){

appl nf o- >creat i ngRect = Fal se;

return;

}

rect = RectQeate(x, y, width, height,
Get Col or (RECT_START_COLOR), XmUNSPEC FI ED Pl XNAP) ;

Rect Draw(Xt Di spl ay(w), XtWndoww), rect);

B-91

OSF/Maotif Programmer’s Guide

Rect Regi ster(rect, X, Y);
appl nf o- >creat i ngRect = Fal se;

/* The procedure assigns new translations the the given w dget */
static void

#i fdef _NO PROTO

Set upTransl ati ons(w dget, new transl ations)

Wdget wi dget;

char *new_ transl ations;

#el se

Set upTransl ati ons(Wdget wi dget, char *new transl ations)

#endif /* _NO PROTO */

{
Xt Transl ati ons new t abl e;
new tabl e = Xt ParseTransl ati onTabl e(new transl ati ons);
Xt OverrideTransl ati ons(w dget, new table);

}

/* This procedure handl es exposure events and nakes a call to
* RedrawRect angl es() to redraw the rectangl es

* The rectangles at the top of the table are drawn first.

*/

[* ARGSUSED */

static void

#i fdef _NO PROTO

Handl eExpose(w, closure, call_data)

B-92

Drag and Drop Example Program

Wdget w,
Xt Poi nter closure;
Xt Poi nter call _dat a;
#el se
Handl eExpose(Wdget w, Xt Pointer closure, Xt Pointer call_data)
#endi f /* _NO PROTO */
{
Redr awRect angl es(w) ;

}

/* This procedure sets up the drawi ng area */
static void

#i fdef _NO PROTO

QO eat eDr awi ngAr ea(par ent)

Wdget parent;

#el se

O eat eDrawi ngAr ea(Wdget parent)

#endi f /* _NO PROTO */

{

static char da translations[] =
"#repl ace <Btn2Down>: StartMve() \n\
<Bt n1Down>: StartRect () \n\
<Btn1Mbtion> ExtendRect () \n\
<Bt n1Up>: EndRect () \n\
c <Key>t: XtD splayTranslations()";

Arg args[10];
i nt n = 0;
Xt Transl ati ons new t abl e;

new tabl e = Xt ParseTransl ati onTabl e(da_transl ati ons);

/* create drawing area at the top of the form*/

B-93

OSF/Maotif Programmer’s Guide

n = 0;

Xt Set Arg(args[n], XnmN\translations, new table); n++;

Xt Set Arg(args[n], XnN\topAttachnent, XMmATTACH FORV); n++;

Xt Set Arg(args[n], XnN eft Attachnent, XmATTACH FCRV); n++;

Xt Set Arg(args[n], Xni\rightAttachnent, XnATTACH FCRMV); n++;

Xt Set Arg(args[n], XmNwi dth, 295); n++;

Xt Set Arg(args[n], Xmi\height, 180); n++;

Xt Set Arg(args[n], Xnm\resizePolicy, XMRESIZE NONE); n++;

Xt Set Arg(args[n], Xm\background, Get Col or (DRAWAREA BG COLOR));
n++;
Xt Set Arg(args[n], Xn\foreground, CetCol or(DRAWAREA FG COLOR));
n++;

drawi ngArea = Xn(r eat eDr awi ngAr ea(parent, "draw ngArea", args, h);
Xt ManageChi | d(drawi ngAr ea) ;

/* add expose call back to redisplay rectangles */
Xt AddCal | back(draw ngArea, Xm\exposeCal | back, Handl eExpose,
(Xt Pointer) NULL);

/* This procedure sets up the area for obtaining rectangl e colors */
static void

#i fdef _NO PROTO

O eat eCol or PushBut t ons(parent, separator)

Wdget parent;

Wdget separator;

#el se

O eat eCol or PushBut t ons(Wdget parent, Wdget separator)

#endi f /* _NO PROTO */

{

static char |abel translations[] = "<Btn2Down>; Col orRect()";
W dget bul | et i nBoar d;

B-94

Drag and Drop Example Program

W dget children[6];
Xnstring csString;

Arg args[10] ;

i nt n = 0;

/* Oreating an enpty conpound string so the labels wll have
* no text. */
csString = XnBtringCeateS nple("");

/* Oreating 6 color |abels */

n = 0;

Xt Set Arg(args[n], Xm\topAttachnent, XmATTACH WDCET); n++;

Xt Set Arg(args[n], Xm\topWdget, separator); n++;

Xt Set Arg(args[n], XmNtopOifset, 2); n++

Xt Set Arg(args[n], XnN eft Attachnent, XnATTACH FCRV); n++;

Xt Set Arg(args[n], Xni\rightAttachnent, XnATTACH FCRV); n++;

Xt Set Arg(args[n], XmNwidth, 295); n++;

bul I eti nBoard = XmQOreat eBul | eti nBoar d(parent, "bul eti nBoard",
args, n);

Xt ManageChi | d(bul | eti nBoard);

n = 0;

Xt Set Arg(args[n], Xm\x, BOX X MARA N); n++;

Xt Set Arg(args[n], Xm\y, BOX.Y MARA N); n++

Xt Set Arg(args[n], XmNwidth, BOX WDTH); n++;

Xt Set Arg(args[n], Xm\height, BOX HEl GHT); n++;

Xt Set Arg(args[n], XnN abel String, csString); n++;

Xt Set Arg(args[n], Xm\background, GetCol or (LABEL1 OCOLCR)); n++;

Xt Set Arg(args[n], Xm\borderWdth, 1); n++;

children[0] = XmOreatePushButton(bul | eti nBoard, "PushButtonl",
args, nj;

/* add translations for mani pul ating rectangl es */
SetupTransl ations(children[0], |abel translations);

B-95

OSF/Maotif Programmer’s Guide

B-96

n = 0;

Xt Set Arg(args[n], Xm\x, BOX X MMARA N + BOX X CGFFSET); n++;

Xt Set Arg(args[n], Xm\y, BOX.Y MARA N); n++;

Xt Set Arg(args[n], XnmNwi dth, BOX WDTH); n++;

Xt Set Arg(args[n], Xm\height, BOX HEl GHT); n++;

Xt Set Arg(args[n], XnN abel String, csString); n++;

Xt Set Arg(args[n], Xm\background, GetCol or (LABEL2 OCOLCR)); n++;

Xt Set Arg(args[n], Xm\borderWdth, 1); n++;

children[1] = Xn(reat ePushButton(bul | eti nBoard, "PushButtonl",
args, nj;

/* add translations for mani pul ati ng rectangles */
Set upTransl ations(children[1], |abel translations);

n=0;

XtSet Arg(args[n], Xm\x, BOX X MMARA N + (2 * BOX X CFFSET)); n++;

Xt Set Arg(args[n], Xm\y, BOX.Y VARG N); n++

Xt Set Arg(args[n], XmNwi dth, BOX WDTH); n++;

Xt Set Arg(args[n], Xm\height, BOX HEI GHT); n++;

Xt Set Arg(args[n], XN abel String, csString); n++

Xt Set Arg(args[n], Xm\background, GetCol or (LABEL3 OCOLCQR)); n++;

Xt Set Arg(args[n], Xm\borderWdth, 1); n++;

children[2] = Xnreat ePushButton(bul | eti nBoard, "PushButton3",
args, nj;

/* add translations for mani pul ating rectangles */
SetupTransl ations(children[2], |abel translations);

n = 0;

Xt Set Arg(args[n], Xm\x, BOX X MARA N); n++;

Xt Set Arg(args[n], Xm\y, BOX Y MMRA N + BOX Y CFFSET); n++;

Xt Set Arg(args[n], Xnm\wi dth, BOX WDTH); n++;

Xt Set Arg(args[n], Xmi\height, BOX HEl GHT); n++;

Xt Set Arg(args[n], XnN abel String, csString); n++;

Xt Set Arg(args[n], Xm\background, GetCol or (LABEL4 COLCR)); n++;

Drag and Drop Example Program

Xt Set Arg(args[n], Xm\borderWdth, 1); n++;
children[3] = XnOreat ePushButton(bul | eti nBoard, "PushButton4",
args, nj;

/* add translations for mani pul ati ng rectangl es */
Set upTransl ati ons(children[3], |abel translations);

n=0;

Xt Set Arg(args[n], Xnm\x, BOX X MARA N + BOX X CGFFSET); n++;

Xt Set Arg(args[n], Xm\y, BOX Y MARA N + BOX Y CFFSET); n++;

Xt Set Arg(args[n], XnmNwi dth, BOX WDTH); n++;

Xt Set Arg(args[n], Xm\hei ght, BOX HEI GHT); n++;

Xt Set Arg(args[n], Xm\topWdget, children[0]); n++;

Xt Set Arg(args[n], XN abel String, csString); n++

Xt Set Arg(args[n], Xm\background, GetCol or (LABEL5 COLCR)); n++;

Xt Set Arg(args[n], Xm\borderWdth, 1); n++;

children[4] = Xnreat ePushButton(bul | eti nBoard, "PushButton5",
args, nj;

/* add translations for mani pulating rectangles */
SetupTransl ations(children[4], |abel translations);

n = 0;

Xt Set Arg(args[n], Xm\x, BOX X MMRA N + (2 * BOX_X CFFSET)); n++;

Xt Set Arg(args[n], Xm\y, BOX Y MMRA N + BOX Y CFFSET); n++;

Xt Set Arg(args[n], Xnm\wi dth, BOX WDTH); n++;

Xt Set Arg(args[n], Xmi\height, BOX HEl GHT); n++;

Xt Set Arg(args[n], XnN abel String, csString); n++;

Xt Set Arg(args[n], Xm\background, GetCol or (LABEL6 COLCR)); n++;

Xt Set Arg(args[n], Xm\borderWdth, 1); n++;

children[5] = XmOreat ePushButton(bul | eti nBoard, "PushButton6",
args, nj;

/* add translations for mani pul ating rectangl es */
SetupTransl ati ons(children[5], |abel _translations);

B-97

OSF/Maotif Programmer’s Guide

B-98

/* Managing the children all at once hel ps performance */
Xt ManageChi | dren(chi l dren, 6);

/* Freeing conpound string. It is no |onger necessary. */
Xnstri ngFree(csString);

/* This procedure initializes the rectangl e display table */
voi d

#i fdef _NO PROTO

InitializeRect DpyTabl e()

#el se

InitializeRect DpyTabl e(voi d)

#endi f /* _NO PROTO */

{
/*
* Initialize display table. This is used to maintain the
* order in which the rectangl es are displ ayed
*/
appl nf o->rect DpyTabl e =
(RectPtr *) Xt Malloc((unsigned)sizeof (RectPtr));
/* Initialize rectangle counter. This is used in reallocing
* the tables */
appl nfo->rectsAl | ocd = 1;
}

/* This procedure creates the conponents to be displayed */
voi d

fdef _NO PROTO

O eat eLayout ()

Drag and Drop Example Program

#el se
QO eat eLayout (voi d)
#endi f /* _NO PROTO */

{
W dget mai nWndow, form separator;
Arg args[10];
i nt n=0;

/* Oreate main w ndow */
mai nWndow = XnOr eat eMai nW ndow(t opLevel , "mai nWndow', args, n);
Xt ManageChi | d(mai "W ndow) ;

/* Oeate formfor hold draw ng area, separator, and col or
* | abels */

n=0;

Xt Set Arg(args[n], XmNwi dth, 300); n++;

form = XnQCr eat eFor n{ nai nWndow, "forn¥, args, n);

Xt ManageChi | d(form);

/* Oreate area for draw ng rectangl es */
O eateDrawi ngArea(forn);

/* Oreate separator to separate drawing area fromcol or |abels */
n=20;

Xt Set Arg(args[n], Xn\topAttachnent, XmATTACH WDCET); n++;

Xt Set Arg(args[n], XnN\NtopWdget, draw ngArea); n++;

Xt Set Arg(args[n], XmNtopOifset, 5); n++;

Xt Set Arg(args[n], XnmN eftAttachnent, XnATTACH FCRV); n++;

Xt Set Arg(args[n], Xm\rightAttachnent, XnATTACH FCRV); n++;

Xt Set Arg(args[n], XmN\wi dth, 300); n++;

separator = Xm(Or eat eSepar at or Gadget (form "separator", args, n);
Xt ManageChi | d(separator) ;

/* Oeate color labels for changing colors of buttons */

B-99

OSF/Maotif Programmer’s Guide

O eat eCol or PushButt ons(form separator);

/* Make formthe work w ndow of the main w ndow */
n = 0;

Xt Set Arg(args[n], XmNwor kWndow, forn); n++;

Xt Set Val ues(mai nWndow, args, n);

/* This procedure initializes the GQC for draw ng rectangles */

voi d

#i fdef _NO PROTO
O eateRect QX))
#el se

QO eat eRect @ voi d)
#endi f /* _NO PROTO */

{
X@CVal ues val ues;
val ues.line_style = LineSolid;
val ues. line_w dth = H GHLI CHT_TH CKNESS;
val ues. f oreground = appl nf o->current Col or =
Get Col or (RECT_START COL.(R);
appl nf o->rect QC = XO eat eG(Xt O spl ay(t opLevel),
Xt W ndow(dr awi ngAr ea) ,
QLineStyle | GLineWdth | GCForeground,
&val ues);
}

B-100

OSF/Motif Programmer’s Guide

Index

A C

active drop site, 15-43 callbacks, 15-32, 15-80,
animation style, 15-49 15-103
attaching icons, 15-3 cancel drag, 15-6
auxiliary area, 11-44 cancelling a drag, 15-31

character set, 1SO, 11-3
character set, standard,
11-3
B character sets, 11-2
clipping drop sites, 15-48,
15-49
before a drag, 15-28 code set, 11-2
blending icons, 15-3 coded character set, 11-2
BTransfer, 15-29, 15-63, colormap, 15-38
15-64 components of a compound
string, 11-7
composite drop site
See Also simple drop
site
compound string, 11-7
compound string
components, 11-7

Index—2

compound string direction,
11-7

compound string font list
element tag, 11-7,
11-9

compound string, direction,
11-9

compound string, relation-
ship to font list,
11-21

compound string, separator,
11-8

compound string, setting
programmatically,
11-9

compound text, 11-49

copy operation, 15-4

D

depth, 15-38

direction, 11-7

drag and drop functions,
15-23

drag and drop overview,
15-28

drag and drop protocols,
15-32

Index

drag and drop transaction,
15-1

drag and drop widget
classes, 15-22

drag and drop, overview,
15-1, 15-7

drag and drop, user over-
view, 15-1

drag callbacks, 15-30,
15-31

drag icon, 15-2, 15-75

drag initiator, 15-1

drag operations, 15-4

drag over effects, 15-2,
15-30, 15-38

drag protocols, 15-20

drag receiver responsibili-
ties, 15-41

drag source, 15-1

drag source resources,
15-65

drag source targets. See
export targets

drag states, 15-4

drag under effects, 15-5,
15-29, 15-34, 15-42,
15-49

drag, cancelling, 15-31

drag, starting, 15-65

DragContext, 15-103

dragging, 15-41

Index—3

OSF/Maotif Programmer’s Guide

DragSource, 15-32

DragSource resources,
15-26

DrawingArea, 11-48

drop, 15-2

drop completed, 15-86

drop effects, 15-6

drop protocol, 15-39

drop receiver, 15-85

drop site, 15-2, 15-42

drop site activity, 15-43

drop site register, 15-42

drop site shape, 15-45

drop site stacking, 15-29

drop site targets. See import
targets

drop site type, 15-48

drop sites, 15-41

drop sites, overlapping,
15-49

drop transfer, 15-103

DropSite resources, 15-26

dropSiteStatus, 15-30

DropTransfer widget, 15-40

dynamic protocol, 15-20,
15-33, 15-34, 15-41

dynamic visual style, 15-39

Index—4

E

Environment, language,
11-26

Escape, 15-2

export targets, 15-26

F

font list, 11-14

font list and Text widget,
11-24

font list and TextField
widget, 11-24

font list element tag, 11-7,
11-9

font list structure, 11-14

font list, relationship to
compound string,
11-21

font list, setting by default,
11-20

font list, setting in resource
files, 11-16

font set, 11-14

fonts, 11-14

H

help, 15-31, 15-93
highlighting styles, 15-5

icon, 15-2

icon, drag, 15-2

icon, operation, 15-3

icon, source, 15-2

icon, state, 15-3, 154

icons, attaching, 15-3

icons, blending, 15-3

ideographic language,
input, 11-4

import targets, 15-26

inactive drop site, 15-43

incremental protocol, 15-40

initial resource database,
11-32

initiator, 15-63

initiator client, 15-29

input, mouse, —0xiv

Input context, 11-46

input method, 11-5, 11-43

Internationalization, 11-1

internationalization issues,
11-1

internationalized text

Index

input, 11-43

internationalized text input
with Text[Field],
11-47

invalid drop site, 15-4

iSO character sets, 11-3

K

KHelp, 15-2

L

Label widget, 15-64

Language environment,
11-26

link operation, 15-5

List widget, 15-64

locale, 11-6, 11-29

Index-5

OSF/Maotif Programmer’s Guide

M

messaging, 15-42
mouse, input, —0xiv
move operation, 15-4

N

no drop site, 15-4
non-incremental protocol,
15-40

O

off-the-spot, 11-44

operation icon, 15-3

operations, drag, 15-4

over-the-spot, 11-44

overlapping drop sites,
15-49

Index—6

P

pixmap, custom, 15-51
pixmap, localizing, 11-41
pre-edit area, 11-44
pre-edit area geometry
management, 11-48
pre-editing, 11-43
preregister protocol, 15-33,
15-34, 15-41
preregister visual style,
15-38
preregistered protocol,
15-20
protocol values, 15-36
protocol, choosing, 15-21,
15-35, 15-38
protocol, drag, 15-33
protocol, drop, 15-21
protocol, specifying, 15-36
protocols, 15-20

R

reason message, 15-51

receiver, 15-2

receiver responsibilities,
15-41

resource, drag source, 15-65

resources and localization,
11-32

root-window, 11-44

S

separator, 11-8

setlocale, 11-6

simple drop site
See Also composite
drop site

source icon, 15-2

stacking, drop site, 15-29

standard character sets,
11-3

starting a drag, 15-65

state icon, 15-3, 15-4

status area, 11-44

status area geometry
management, 11-48

Index

T

targets, 15-25, 15-29,
15-30

targets, export, 15-26

targets, import, 15-26

Text and internationalized
text input, 11-47

Text widget, 15-64

Text widget font list search,
11-24

text widgets, 15-42

TextField and internation-
alized text input,
11-47

TextField widget font list
search, 11-24

textfield widgets, 15-42

toolkit, 15-34

transfer protocol, 15-40

transferring data, 15-32

transferring drop informa-
tion, 15-89, 15-103

typographic conventions,
-0xii

Index—7

OSF/Maotif Programmer’s Guide

U

user action, 15-28

V

valid drop site, 15-4

virtual buttons, —0xiv

visual style, 15-35, 15-38,
15-39

W

widget classes, 15-22

X

XLoadQueryFont, 11-22

XmConvertProc, 15-32

XmCreateDraglcon, 15-23,
15-29

XmDisplay, 15-22

Index—8

XmDragCancel, 15-23,
15-31
XmDragContext, 15-22,
15-26, 15-65
XmDraglcon, 15-22
XmDragStart, 15-23,
15-30, 15-65
XmDropSite, 15-22
XmDropSiteConfigureStackingOrder,
15-23, 15-29
XmDropSiteEndUpdate,
15-24, 15-29, 15-45
XmDropSiteQueryStack-
ingOrder, 15-24,
15-29
XmDropSiteRegister,
15-24, 15-29, 15-42
XmDropSiteRetrieve, 15-24
XmDropSiteStartUpdate,
15-24, 15-29, 15-45
XmDropSiteUnregister,
15-25, 15-29, 15-43
XmDropSiteUpdate, 15-24,
15-29, 15-45
XmDropTransfer, 15-23
XmDropTransferAdd,
15-25, 15-32
XmDropTransferStart,
15-21, 15-25, 15-32,
15-40, 15-103
XmFontListAppendEntry,
11-22
XmFontListEntryCreate,

11-15, 11-22
XmFontListEntryLoad,
11-14
XmGetDragContext, 15-25
XmGetPixmapByDepth,
11-41
XmGetXmDisplay, 15-25,
15-38
XmGetXmScreen, 15-25
XmNanimationMask, 15-51
XmNanimationPixmap,
15-51
XmNanimationPixmap-
Depth, 15-51
XmNanimationStyle, 15-49
XmNbuttonFontList, 11-20
XmNconvertProc, 15-21,
15-30, 15-32, 15-40,
15-65, 15-103
XmNdefaultFontList, 11-20
XmNdragDropFinishCall-
back, 15-32
XmNdraglnitiatorProtocol-
Style, 15-36
XmNdragProc, 15-29,
15-30, 15-38, 15-41,
15-51
XmNdragReceiverProtocol-
Style, 15-36
XmNdropFinishCallback,
15-32

Index

XmNdropProc, 15-29,
15-31
XmNdropRectangles, 15-45
XmNdropSiteActivity,
15-43
XmNdropSiteType, 15-48
XmNdropStartCallback,
15-32
XmNexportTargets, 15-26,
15-65
XmNimportTargets, 15-26
XmNnumExportTargets,
15-26, 15-65
XmNnumImportTargets,
15-26
XmNsourcePixmaplcon,
15-38
XmNtextFontList, 11-20
XmNtransferProc, 15-21,
15-40
XmNtransferStatus, 15-21
XmScreen, 15-22
XmsStringCreate, 11-24
XmStringCreatelLocalized,
11-10, 11-24
XmStringCreateLtoR,
11-24
XmTargetsAreCompatible,
15-25, 15-31
XtGetValues, 15-38
XtResolvePathname, 11-29

Index—9

OSF/Maotif Programmer’s Guide

XtSetLanguageProcedure,
11-29
XtSetValues, 15-38

Index—10

