Digital UNIX

Programmer’s Guide

Order Number: AA-PS30D-TE

March 1996
Product Version: Digital UNIX Version 4.0 or higher

This manual describes the program development environment of the
Digital UNIX operating system, emphasizing the C programming
language.

Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

O Digital Equipment Corporation 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,

POLY CENTER, Q-bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc. UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

U T [T o PN XiX
New and Changed FEaIUrES cooiiiiiiiiiiiee e XiX
OFQaniZaLION ...eevueie ettt e e et et e e e e e e e e e eeee XiX
Related DOCUMENTS iiiiiiecii e e e e e e e e e eaens XXi
Reader’ S COMMENES ...ciiiii e e e e e e e e e eaens XXii
(0010177 01110 1S XXiii

1 Overview

1.1 Application Development Phasescccoovviiiiiiiiiiiiieiciiiiie e 1-1
1.2 Specification and Design CoNSIderations ccevevreeeiieiiiiinneenennns 1-2
121 SEANAAAS ..o 1-2
122 Internationalization ccoeiiiieiiiiiiii e 1-3
1.2.3 Window-Oriented AppliCationscccooveeviiiiiiiinieeeeieiinnnn, 1-3
1.3 Magjor Software Development TOOIS coovvviiiiiiiiiiii e 14
1.3.1 Languages That Run in the Digital UNIX Environment 14
132 Linking Object FIles cooviiiiiiiiiiie e, 14
133 DeEDUGOEIS i 1-5
1.4 Source File CONtrol ueiiiiiieiiie e 1-5
15 Program Installation TOOISccovvviiiiiiiiiiiiiii e 1-5

1.6 Overview of Interprocess Communication Facilities 16

2.1
2.2

2.3

24

2.5

2.6
2.7

2.8

The Compiler System

Compiler System Components (Driver Programs)
Data Typesin the Digital UNIX Environmentcccceeees
221 DaaTypeSIZES coiiiiiiieeeiie e
2.2.2 Foating-Point Range and Processing ccccoeevvvvnveeennnn.
223 Structure Alignment ...,
224 Bit-Fidd Alignment ooiiiiiii e,
225 The _adign Storage Class Modifier —.........cccooevevviiienennnn.
Using the C PreproCeSSOr cvvvveieeiiiieeeeiie e ee e e
231 Predefined MacroSoviveeiiiiiiiiiie e
2.3.2 Including Common Filescccooieiiiiiiiiiiiee e,
2.3.3 Setting Up Multilanguage Include Files ...,
2.34 Implementation-Specific Preprocessor Directives (#pragma)
Compiling SoUrce Programs —ocoeviiieviiiii e
241 Compilation Flags —c.ooeeviiiiiieieeeeeee e
2.4.2 Default Compilation Behavior —..........ccceveeviiiiieiiiiineen,
2.4.3 Compiling Multilanguage Programs cccceeevvvieeenns
Linking Object FIleScocvviiiii e
251 Linking Using Compiler Commandscccccceevveeeens
25.2 Linking Using theld Commandcoeeiiiiiinnenns
253 Specifying Librariescccooiiiiiiiiiiiii i
RUNNING Programs cooviiieiiie e e e e
Object File TOOIS oovviiei e
2.7.1 Dumping Selected Parts of Files (odump)
2.7.2 Listing Symbol Table Information (nM) ccevvnenn.
2.7.3 Determining aFilesType (file) ..coovvvviiiiiiiiiiii,
274 Determining aFile's Segment Sizes (SIz€) ...coovevvvveenns
2.75 Disassembling an Object File (diS)coovvveviieiiiineenens

ANSI Name Space Pollution Cleanup in the Standard C Library

iv Contents

3 Pragma Preprocessor Directives
3.1 The#pragmaenvironment DIireCtivecccoeeveiiieiiiiiiieiiiin e, 31
3.2 The#pragmainline DIreCtiveccooiiiiiiiiiieiiiie e 3-3
3.3 The#pragmaintrinsic and #pragma function Directives 34
34 The#pragmalinkage DIreCtiveooveviiiiieiiii e 3-6
3.5 The #pragma member_alignment Directivecccoeeveiiiiiieeeennnnn. 39
3.6 The#pragmamessage DIireCtiVeccooeviviiiieiiiiiieecie e, 3-10
3.7 The#pragmapack DIreCtiVecooevvviiiiiiiiiieec e 311
3.8 The#pragmapointer_size DIreCtiveccoooveviiiiiiiiiiiieeiiie e, 311
3.9 The#pragmause linkage DIireCtiveccccoeeveiiiiiiiiiiieeiiee e, 3-12
3.10 The#pragmaweak DIreCtivecccoiiiiiiiiiiiiii e, 3-13
4 Shared Libraries
4.1 Shared Library OVEIVIEW ...ocooviiiciiiie e 4-1
4.2 Resolving SymbolSoooiiiiii 4-3
421 Search Path of the Linkerccoooiiiiiiiiiii e 44
4.2.2 Search Path of the Loaderccoooveiiiiiiiiiiiiii e 44
423 Name ReSOIUION ..ooouvviiiieiiiiiiiie e 4-5
4.2.4 Options to Determine Handling of Unresolved Externa
SYMDBOIS 4-6
4.3 Linking with Shared Librariesccooooeiiiiiiiiii e, 4-7
4.4 Turning Off Shared Librariescccooviiiiiiiiiiii e, 4-7
45 Creating Shared Librariesoooiiiiiiiiiiiiiiii e, 4-8
451 Creating Shared Libraries from Object Filescceeees 4-8
452 Creating Shared Libraries from Archive Libraries 4-8
4.6 Working with Private Shared Librariescccoooeeviiiiiiiiiiiiiiinnenns 4-9
47 UsSiNg QUICKSIAT .oovieiiii e 4-10
4.7.1 Verifying That an Object Is Quickstartingccceeeeeeenn. 4-12

Contents v

4.7.2 Tracking Down Quickstart Problems Manually —...................

4.7.3 Tracking Down Quickstart Problems with the fixso Utility ...
4.8 Debugging Programs Linked with Shared Libraries
49 Loading aShared Library at Run Time coooiiiiiiiiiiieeeeee,
410 Protecting Shared Library Files ...,
411 Shared Library VErsionNiNgccooeevueiiieeiiiiiiiieee e eeeeennnnn

4111 Binary Incompatible Modificationsccovvviiiiiiieeninnns
4.11.2 Shared Library VEISIONS ooovviiiiieiiiiiiiiiie e
4.11.3 Maor and Minor Versions ldentifiers —ccccccceeiiiieeennns
4114 Full and Partial Versions of Shared Libraries
4115 Linking with Multiple Versions of Shared Libraries
4.11.6 Version Checking at Load Timecoovviiiiieiiiiiiiiiinneeeeenns
4117 Multiple Version Checking at Load Time c..cceveieeeen.

412 Symbol Binding ..ooueiiii e
413 Shared Library RESINCLONS ...ccoovviiiiiiieeeiee e

5 Debugging Programs with dbx

5.1 General Debugging Considerations ccevveveiiiieieiiiieeeiieeeeeaennnn
511 Why Use aSource-Level Debugger?coovvevieeieiiiereiinees
512 What Are Activation Levels? ...
513 Isolating Program Execution Failurescccccciiiiiiieennns
5.1.4 Diagnosing Incorrect Output Results cccooveiiiiiiiieiiinens
515 Avoiding Pitfalls ...

5.2 RUNNING DX oo
5.21 Compiling a Program for Debuggingcccoovveviiiiieieininens
5.22 Creating adbx Initidlization Fileccc.oooiiiiiiiiiiiis
5.2.3 Invoking and Terminating dbXccccoiiiiiiiiiiiiiie e

5.3 Using dbx Commandsooeeeiiieiiiiiieiiie e
531 Qualifying Variable Namesccoooeeiimiiiiiiiiiiiiiieeeeees
532 dbx Expressions and Their Precedenceccccccveiiineennnns
5.3.3 dbx Data Types and ConstantS cceeeveeeniereeinneereinnnenens

vi Contents

4-14

4-16
4-16
4-17
4-18

4-18
4-19
4-21
4-22
4-23
4-25
4-26

4-31
4-32

5-3

5-3
5-3

55

5-7
5-7
59

59
59

54

55

5.6

57

58

Working with the dox Monitor —..........coovieiiiiiii e 5-11
54.1 Repeating dox Commands ccooieiiiiiiiiii e 511
5.4.2 Editing the dbx Command Linecccooviiiiiiieiiiiiiiiiiiines 5-12
54.3 Entering Multiple Commandscccoevviiiiieiiiiiiiiieeeeenns 5-14
54.4 Completing Symbol Names ..o 5-14
Controlling dbX ... 5-15
551 Setting and Removing Variablescccooovviiiiiiiiiiiiiiines 5-15
552 Predefined dbx Variables ... 5-16
5.5.3 Defining and Removing Aliases oooveviiiiiiiiieiiiieeeeee 521
554 Monitoring Debugging Session StatuS —ooeeeeveviiiiiiieeeeens 5-22
5.5.5 Deleting and Disabling BreakpointS —ccccoveviviieeeinnnens 5-23
5.5.6 Displaying the Names of Loaded Object Files 524
5.5.7 Invoking a Subshell from Withindbx —.............cccooiiiiiiis 5-24
Examining SOUrce Programs ooveeenieieiiiieeeei e e e e 524
5.6.1 Specifying the Locations of Source Filescccccoeieeeieens 5-24
5.6.2 Moving Up or Down in the Activation Stack —...................... 5-25

5.6.2.1 Using the where and tstack Commands 525

5.6.2.2 Using the up and down and func Commands 526
5.6.3 Changing the Current Source Filecccooviiiiiiiiiiiineeieens 5-27
56.4 Listing SOUrce CoOEoooiiiviiiiiieeeeeieii e 5-28
5.6.5 Searching for Text in Source Filesccccooviiiiiiiiiiiiiiienenns 5-29
5.6.6 Editing Source Files from Within dbX —ccoovviiiiiiieenenns 5-29
5.6.7 identifying Variables That Share the Same Name 5-30
5.6.8 Examining Variable and Procedure Typescccccceeveeeeenns 5-30
Controlling the Program ... 5-30
5.7.1 Running and Rerunning the Program ccciiiiiiiineens 5-31
5.7.2 Executing the Program Step by Step ..ovoeviiiiiii 5-32
5.7.3 Using thereturn Command ooooiiiiiiiiiiiiiieeee 5-33
5.74 Going to a Specific Placeinthe Codec.ooceiiiiiiiinnes 5-33
5.75 Resuming Execution After aBreakpointocceiiee 5-34
5.7.6 Changing the Vaues of Program Variables 5-35
5.7.7 Patching Executable Disk Filesccccoiiiiiiiiiiiiiiiiiineees 5-35
5.7.8 Running a Specific Procedureccooviiiiiiieiiiiiieeeeeee 5-36
5.7.9 Setting Environment Variablescccoooiiiiiiiiii 5-37
Setting BreakpointS coeveieiiiii e 5-38

Contents vii

59

5.10
511
512
513

6

6.1
6.2
6.3

6.4

X e T R O V7= oY1=V P

5.8.2 Setting Breakpointsoooviiiiieiiiiieee e
5.8.3 Tracing Variables During Executioncccoooeeviiieveiinnnns
5.84 Writing Conditional Code in dbx ccooiiiiiiiiii
5.85 Catching and Ignoring SIgnals cooveeiiiiiiii e
Examining Program State ccoeiiiiiiiiieie e
5.9.1 Printing the Values of Variables and Expressions
5.9.2 Displaying Activation-Level Information with the dump
ComMMaNd ...
5.9.3 Displaying the Contents of Memory —ccccovvviiiieieinnens
5.94 Recording and Playing Back Portions of adbx Session
5.94.1 Recording and Playing Back Inputc.......c...
5.9.4.2 Recording and Playing Back Output
Debugging a RuUNNiNg ProCeSS uvvvviiiieiiiiie e
Debugging Multithreaded Applicationsccooiveiiiiiiiiiiiieeeene.
Debugging Multiple Asynchronous Processes cccoevvvveiieenennn.
SaMPle Program ...

Checking C Programs with lint

Overview of the lint Program —........ccooiiiiiii e
Program Flow Checkingcoouuiiiiiiieiee e
Data Type Checking ooeeeeeieiii e
6.3.1 Binary Operators and Implied Assignments ceeeeees
6.3.2 Structuresand UNiONS coovviiiiiiiieiiiiiii e
6.3.3 Function Definition and USES ocoovviiiiiiiiiciiiiiii e
6.3.4 ENUMEIEIOIS ciiiiiiiiii e
6.35 TYPECESIS .ooeiiiiiiii e
Variable and Function Checking coooviiiiiiiiiii e,
6.4.1 Inconsistent Function Return ccoooiiiiiiiiiii e
6.4.2 Function Values That AreNot Used cooeiiiiiiiiiienennnnnn.
6.4.3 Disabling Function-Related Checkingccccooeiiiiiiiiennnnnn.

viii Contents

6-1
6-3

6-5

6-5

67
67

6.5
6.6
6.7
6.8

6.9

6.10

6.11
6.12

7.1

7.2

Using Variables Before They Are Initidlized ocooviiiiiiiiieneennnne. 6-10
Migration CheCKing ooeeeieiiie e 6-10
Increasing Table SIize oiiiiiii e 6-11
Portability Checking ooiiiiiiiii e 6-11
6.8.1 CharaCter USES ccoivviiiiiieiiiiiii e 6-11
6.82 Bit FIeldUSES ..o 6-12
6.8.3 Extena Name SiZzeccooiiiiiiiiiiieiiii e 6-12
6.8.4 Multiple Uses and Side EffectS ccovvvviiiiiiiiiiiiiiiiieeeeees 6-13
Coding Errors and Coding Style Differencesoccovvvviiiiieeiennns 6-13
6.9.1 Assignments of Long Variablesto Integer Variables 6-13
6.9.2 Operator PreCedencecooooeviiieiiiiiieieiie e 6-14
6.9.3 Conflicting Declarations ocoeviieriiiiieiei e 6-14

Creating alint Libraryo.cooiiiiiiiie e 6-14
6.10.1 Creatingthelnput File ... 6-15
6.10.2 Creating thelint Library File ... 6-16
6.10.3 Checking a Program with a New Libraryccc.ocoeeeenee. 6-16

Understanding lint Error MeSSageS ..oevvvvveevnieeiie e 6-16

Using Warning Class Options to Suppress lint Messages —.............. 622

6.12.1 Generating Function Prototypes for Compile-Time Detection
Of Syntax ErrOrs ooooeeiieiie e 626

Debugging Programs with Third Degree

Running Third Degree on an Application ccooeveiiiieiiiiieneennnnn. -2
7.1.1 Using Third Degree with Shared Librariescccc... 7-3
7.1.2 Using Third Degree with Threaded Applications -4
Step-by-Step EXamMPle ..o -4
7.21 Customizing Third Degreecooveeeeiiiiiiiiieeeieeeeiieeee -4
7.2.2 Modifying the Makefile ... 75
7.2.3 Examining the Third DegreeLog File ..., 75

7.23.1 Copy of the .third File ... 75

Contents ix

7.3

7.4

7.5

7.6
7.7

8.1
8.2

8.3
84
8.5

7.2.3.2 List of Runtime Memory Access Errors 75

7.233 Memory LEaKS ..ooooviieiiii e -7
7234 Heap HiStory oo 7-8
7.2.35 Memory Layoutccooiiiiiiiiiiiiie e 7-9
Interpreting Third Degree Error Messages oovevvvveveieiieeeiinieeeeennnn. 7-9
7.3.1 Fixing Errors and Retrying an Applicationcccceeeee 7-11
7.3.2 Detecting Uninitialized Values ccoovviiiiiiiiiiiieieee 7-11
7.3.3 Locating Source FIleS ccoiiiiiiiiieeiiee e 7-12
Examining an Application’sHeap Usageccooveviiiiieiiiiieeennnnnn. 7-12
741 Detecting Memory LEaKS ...o..oiiiiiiieiiiiieceei e 7-13
74.2 Reading Heap and Leak RepPOrts ccoveveeeiieiiiinieiiiineees 7-14
7.4.3 Searching for LEaKS ...oooviiieiiiieeei e 7-15
744 Interpreting the Heap History ..o 7-15
Using Third Degree on Programs with Insufficient Symbolic
INFOrMELION e 7-18
Validating Third Degree Error REPOMS coeviveviiiiieiiiieeeeieeeeeeen. 7-18
Undetected EITOrSooovveiiecieee e 7-19

Profiling Programs to Improve Performance

Profiling MethodS —ooeiii e 8-1
Profiling TOOIS OVEIVIEW ..o 83
821 PC-SampPling ...uiieiiiiiiii e 84
8.2.2 gPrOf e 84
8.23 uprofile and Kprofile ... 85
8.24 AIOM TOOIKIT ..o 85
8.25 pixie AIOM 00l ..o 85
8.2.6 hiprof Atom tool ... 8-6
8.2.7 Third DEgree ..oiieii i 8-6
Profiling Sample Program ..o 8-6
Using prof to Produce Program Counter Sampling Data — 87
Using gprof to Display Call Graph Informationcccccvvnnnneee. 8-10

x Contents

8.6
8.7

8.8
8.9
8.10
8.11

8.12

8.13

8.14

9

9.1
9.2

Using pixie for Basic Block Counting —ccoooveviiieieiiiieiiiieeeeeen,
Selecting Profiling Information to Display —oevveeiviiiiiiiiieeceees

8.7.1 Limiting Profiling Display to Specific Procedures
8.7.2 Including Shared Libraries in the Profiling Information

8.7.3 Using pixie to Display Profiling Information for Each Source

LiNE

8.7.4 Limiting Profiling Display by Linecooiiiiiiiii.
Using pixie to Average prof Results ccooovviiiiiiiieeeeen,
Analyzing TeSt COVEIagE wevunieiiii i e e e e
Merging Data FileS ooiiiiiiie e
Using Feedback FIleS ooooiiiiii e
8.11.1 Generating and Using Feedback Information
8.11.2 Using aFeedback File for Input to cordcccoeeeeennnee.
Using Environment Variables to Control PC-Sample Profiling
8.121 PROFDIR Environment Variableccccoooeviiiiiiiinnnen.
8.12.2 PROFFLAGS Environment Variablecccccvviinneen.
Using monitor Routines to Control Profiling —ccccccceeiiieiiennne
Profiling Multithreaded Applicationscoivieiiiiiiiiiiieeeeeens

Using and Developing Atom Tools

Using Prepackaged Atom ToOIS oooveiiiiiiiiee e,
Developing Atom TOOIS ..oeeeiiieii e

9.21 The ATOM Command Lin€ ..oeeeieiieieie e
9.2.2 Atom Instrumentation ROULINE ovvivinieiii e,
9.2.3 Atom Instrumentation INterfacesvevvviiiiieiiiiieenen,

9.23.1 Navigating Within aProgramcccccovveeevinnnnnnn.
9.23.2 Building ODJeCtS viiiiiiiii e

9.2.3.3 Obtaining Information About an Application’s

COMPONENES oeeiii et
9.23.4 Resolving Procedure Names and Call Targets
9.23.5 Adding Calls to Analysis Routines to a Program ...

.. 813
. 814
. 814
.. 815

.. 815
.. 818
.. 819
. 820
. 820
. 821
. 821
. 822
. 822
.. 823
. 824
. 825
. 829

Contents xi

9.24 Atom Description File ..o 9-14

9.25 Writing Analysis Procedures ooooeiiiiiiiiiieiiieeeeee 9-15
9.25.1 INPU/OULPUL .oeeeiiie e 9-15
9.25.2 Fork and Exec System Calls ocoviiiiiiiiiiiie, 9-15

9.2.6 Determining the Instrumented PC from an Analysis Routine . 9-16

9.27 Sample TOOIS ..o 922
9.27.1 Procedure TraCing oceeveeeeieiiieeeiie e 9-22
9.27.2 Profile Tool oo 9-25
9.2.7.3 DataCache Simulation Tool ccovviiiiiiiiiiiiien. 9-28

10 Optimizing Techniques

10.1 Guidelines for Building an Application Program cccceeeeeen. 10-2
10.1.1 Compilation CONSIderationScoeeveeeieereiiiieeeiieeeeeennnn. 10-2
10.1.2 Linking and Loading Considerations cccceeveeenveeeennnnn. 10-6

10.2.2.1 Using the Postlink Optimizer —ccooeveiiiiveiineees 10-7
10.1.3 Preprocessing and Postprocessing Considerations —.............. 10-8
10.1.4 Library Routine SElectioncccoeiiiviiiiieiiiiiieeeieeeeeen, 10-9

10.2 Application Coding GUIdEINES oeviviieiii e, 10-10
10.21 DataType ConsiderationS cceeeiieviiiiieieiiiieeeiiineeeenen. 10-10
10.2.2 Cache Usage and Data Alignment Considerations 10-11
10.2.3 General Coding Considerations cocvevveveiiieeeninneeeennn. 10-12

11 Handling Exception Conditions

111 Exception Handling OVErVIEW ooeiiviiiiieeeeeeee e 11-1
1111 C Compiler SYNtaX ...coeveieeiiiieeee e 11-2
11.1.2 libexc Library ROUINES cccouniiiiiiiieeii e 11-2
11.1.3 Header Files That Support Exception Handling —................. 11-3

11.2 Raising an Exception from aUser Program —ccoiiiiviiineenennn. 114

11.3 Writing a Structured Exception Handler ... 11-5

114 Writing a Termination Handler —.........ccooooiiiiiiiiii e, 11-13

Xii Contents

12 Developing Thread-safe Libraries

121 Overview of Thread SUPPOrt covveiiiiiiiieee e, 12-1
12.2 Run-Time Library Changes for POSIX Conformance 12-2
12.3 Characteristics of Thread-Safe and Reentrant Routines —................. 12-3
12.3.1 Examples of Nonthread-safe Coding Practices 12-3
124 Writing Thread-safe Code cocvviiiiiiiiieiie e, 12-5
12.4.1 Using Thread Independent Services (TIS) oooevevvvvieenenen. 12-6
12.4.2 Using Thread-Specific Datacccooeevvviiieiiiiiieceiiiieeeenn, 12-6
12.4.3 Using Mutex Locks to Share Data Between Threads 12-7
125 Building Multithreaded Applicationsccccccoviiiiviiiii e, 12-9
125.1 Compiling Multithreaded C Applicationsccccceeeeee. 12-9
125.2 Linking Multithreaded C Applicationsc.cccceevvveeeenn. 12-9

12.5.3 Building Multithreaded Applicationsin Other Languages ... 12-9

A Using 32-Bit Pointers on Digital UNIX Systems

A.1 Pointer DEfiNITIONS ..ooovviiiieecei e A-1
A.2 UsSiNg 32-Bit POINEIS ..oovvniciiiii e A-1
A.3 Syntactic ConSIAErationScoecveviiieiiiiiiie e A-3
A4 REQUITEIMENS .ouuiiiiiiiiiiiiie e e e e e e e e e e e e aees A-3
A.5 Interaction with Other Languagesccoviviieeiiiieiiiii e, A-3
A.6 Conversion of Pointers and Other ISSUES ovvveviviiiiiiiieeeeeeiiinnn, A4

A.B.1 POINter CONVEISION .oouvuiiieeiiiiiiiii e e eeeiii e e e e eeees A4

A.6.2 SystemHeader FIleSocovviiiiiiiiiiee e, A4
A7 RESICHONS i A-5

Contents xiii

B Differences in the System V Habitat

B.1 Source Code Compatibilitycccooveriiiiiiiiii e, B-1
B.2 Summary of System Calls and Library Routinescccceeeee. B-3

C Dynamically Configurable Kernel Subsystems

C.1 Overview of Dynamicaly Configurable Subsystems Cc=2
C.2 Oveview of Attribute TaDIES cooviiiiiii e cH4
C.2.1 Definition Attribute Table ... C-5
C.22 Example Definition Attribute Table cooeiieiiiiiiiiees Cc-8
C.2.3 Communication Attribute Tablecccceeiiiiiiiiiiiiiieees C-10
C.24 Example Communication Attribute Tableccc.cceevvs C-12
C.3 Creating a Configuration ROULINE cccvviiieiiiiiieiiiiie e, C-12
C.3.1 Peforming Initial Configurationccccoevieviiiiiiiiiiinens C-13
C.3.2 Responding to Query REJUESES vevvvveeiiiiieeceieeeeeiieees C-15
C.3.3 Responding to Reconfigure ReQUESES cevvveiveiiiiececiiees C-17
C.34 Peforming Subsystem-Defined Operations ... C-=20
C.3.5 Unconfiguring the Subsystem ccooiiiiiiiiiee e c-21
C.3.6 Returning from the Configuration Routinec.c...... c-21

C.4 Allowing for Operating System Revisions in Loadable Subsystems . C-22

C.5 Building and Loading Loadable Subsystemsccccoevevviiieennnnn. Cc-23
C.6 Building a Static Configurable Subsystem Into the Kernel —.............. C-25
C.7 Testing Your SUDSYSIEM .cooieiiiiie e Cc-=27

D Optimizing Techniques (MIPS-Based C Compiler)

D.1 Global Optimizercooviiiiiiic e D-1
D.2 Optimizer Effects on Debuggingccevvveveiiiieeiiiiieeeeie e, D-1
D.3 Loop Optimization by the Optimizercccooeviiiiiiiii e, D-1
D.4 Register Allocation by the Optimizer —........cccooevviiiiiiiii e, D-2

Xxiv Contents

D.5 Optimizing Separate Compilation Unitsccoooveiiiiiiiiiieiiineeeeen, D-2
D.6 Optimization OPtiONS ieiiiiieeiii e D-2
D.7 Full Optimization (-O3) ccoiiiiiiiiieeeeee e D-3
D.8 Optimizing Large ProCedUIresccooviiiiiiiieeiiiiiiiie e D4
D.9 Optimizing Frequently Used Modules cccovviiiiiiieiiiiiiie, D4
D.10 Building aucode Object Libraryccoeiviieiiiiiiiiiiieeeeeeiiie D6
D.11 Using ucode Object Librariescccooooiiiiiiiiiiimiiiiieeceeeie D-6
Index

Examples

5-1: Sample Program Used in dbx Examplescccoiiiiiiiiiiiiiiiiineeeeees 557
8-1: Profiling Sample Program ... 8-6
8-2: Profiler Listing for PC Sampling oooeviiiiiiiee e 89
8-3: Sample gprof OULPUL cooiiiiiiiee e 8-11
8-4: Prof Output by Source Line with -heavy Flag ccooiiiiiiinn 8-16
8-5: Prof Output by Source Linewith -linesFlagcoooevvviiiiiiinieeiinns 8-17
8-6: Using monstartup() and monitor() oveeeieerieemiiiinieeeeeeeiee e 8-26
8-7: Allocating Profiling Buffers Within aProgram —cccciiiiieeieens 8-27
8-8: Using monitor_signal() to Profile Non-Terminating Programs — 8-28
10-1: Pointers and OptimiZation ovieeiiiiiiiiieeeeeee e 10-15
11-1: Handling a SIGSEGV Signa as a Structured Exception —................. 11-8
11-2: Handling an |IEEE Floating-Point SIGFPE as a Structured Exception . 11-9
11-3: Multiple Structured Exception Handlers —..........cccccoiiiiiiiiiiiiiinnnee, 11-11
11-4: Abnormal Termination of a Try Block by an Exception 11-15
12-1: Threads Programming Example ... 12-6
C-1: Example Attribute Tableooorie e C-8

Contents xv

Figures

2-1: Compiling @aProgramocoiiiiiiii i 2-3
2-2: Default Structure ALIGNMENt ... 26
2-3: Default Bit-Field Alignment coooiiiiii e, 2—7
2-4: Padding to the Next Pack Boundaryccccoeeviiiiiiviiiiieciiiieeeeinn, 2-8
4-1: Useof Archive and Shared Librariescccccceoviieiiiiiiiiiiineeeiieinnnn, 4-3
4-2: Linking with Multiple Versions of Shared Librariescccceuveen. 4-24
4-3: Invalid Multiple Version Dependencies Among Shared Objects:

EXamMpPle L oo 4-27
4-4: Invalid Multiple Version Dependencies Among Shared Objects:

EXaMPIE 2 o 4-28
4-5: Invalid Multiple Version Dependencies Among Shared Objects:

EXaMPIE 3 o 4-29
4-6: Valid Uses of Multiple Versions of Shared Libraries. Examplel 4-30
4-7: Valid Uses of Multiple Versions of Shared Libraries. Example2 4-31
B-1: System Call RESOIULION cooviiiiiiii e B2
C-1: System Attribute Vaue Initidizationccccooevviiiiiiiiieiieeeeenn, C3
Tables
1-1: Programming Phases and Digital UNIX ..o, 1-1
2-1: Compiler System FUNCLIONS covviieiiie e 22
2-2: File Suffixes and Associated FIleSuiiiiiiiiiiiiiiieee e 24
2-3: Predefined MaCroS oiiiiiiiiiiie et 2-10
2-4: Comparison of Compiler Flagsocovviiiiiiiiiie e 2-13
3-1: INtriNSIC FUNCHIONS ..evviiieiiciiii et 34
4-1: Linker Flags that Control Shared Library Versioning —............cccoee. 4-20
5-1: Keywords Used in Command Syntax Descriptions cccceeeeeeennn. 5-2
5-2; dbx Command FIagSoovveiiiiii e 58

xvi Contents

5-3: The dbx Number-Sign Expression Operator —oceeeeiveveeineeeennnnn. 59
5-4: Expression Operator PreCedence oooovivieiiieiiiiieeiee e 5-10
5-5: BUIlE-IN DAATYPES ooeeiiieeiiiiiie et e e e 5-10
5-6: INPUL CONSLANES ...eeeieiieeeei e e 511
5-7: Command-Line Editing Commands in emacsmodeccceees 5-13
5-8: Predefined dbx Variablescooiiiiiiiiiiii 5-17
5-9: Modes for Displaying Memory Addresses ccevvveeeiiiiiiiinneeneenns 547
6-1: 1INt Warning ClasseS coovveiiiiiiieeeiiiiii e 624
8-1: Profiling TOOIS .o 8-3
9-1: Supported Prepackaged Atom TOOIS oviiiiiiiiiiii e 92
9-2: Example Prepackaged Atom TOOIS oovviiiiiiiiiiii e 92
9-3: Atom Object Query ROULINES ...ooeeniiiiiii e 9-10
9-4: Atom Procedure Query ROULINES ...oooiviiiiiiiiieee e 9-11
9-5: Atom Basic Block Query ROULINES ooviviiieiiieeeii e 9-12
9-6: Atom Instruction Query ROULINES ooevniiiiiiiee e 9-12
11-1: Header Files That Support Exception Handlingcccoevviieee. 11-3
B-1: System Call SUMMAY ... B4
B-2: Library FUNCLION SUMMAENY .ooooiiiiiieeeeeee e B-5
C-1: AUNDULE DAA TYPES ..ot e e Co6
C-2: Codes that Determine the Requests Allowed for an Attribute C—7
C-3: Attribute StatUS COUBS covvviiiii e c11
D-1: Compiler Optimization OPtioNS ccoivviiiiiiieeeieeiii e D-3

Contents xvii

About This Manual

This manual describes the programming environment of the Digital UNIXO
operating system, with an emphasis on the C programming language. The
availability of other programming languages on any system is determined by
the choices made at the time the system was configured or modified.

Audience

This manual addresses all programmers who use the Digital UNIX operating
system to create or maintain programs in any supported language.

New and Changed Features

The following major changes and additions have been made to this manual
for the Version 4.0 release of Digital UNIX:

Chapter 2 — Removed information on pragmas from this chapter, creating
anew Chapter 3 on pragmas.

Chapter 7 — Created a new chapter documenting Third Degree, an Atom
tool.

Chapter 8 — Modified to include information on Atom tools used in
profiling.

Chapter 9 — Created a new chapter on using and developing Atom tools.

Chapter 10 — Merged the contents of Chapter 4 from System Tuning and
Performance Management into this chapter. Also, information on the
uopt global optimizer (used with the —ol dc version of the C compiler)
has been moved to Appendix D.

Chapter 12 — Modified to include information on TIS (Thread
Independent Services) and the changesto | i bc functions to make them
thread-safe.

Organization
This manual contains twelve chapters and four appendixes.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12
Appendix A
Appendix B

Appendix C

Appendix D

xx About This Manual

Describes the phases of program development and which Digital
UNIX programming tools to use during those phases.

Describes the tools that make up the compiler system and how to
use them. These tools include compiler commands, preprocessors,
compilation options, multilanguage programs, and the archiver.

Describes the implementation-specific pragmas that are supported
on the C compiler using the —newc and —ol dc flags.

Describes the use, creation, and maintenance of shared libraries
and discusses how symbols are resolved.

Describes how to use the dbx debugger. Includes information
about the dbx commands, working with the monitor, setting
breakpoints, and debuggging machine code.

Describes how to use the | i nt command to produce clean code.

Describes how to use the Third Degree Atom tool to perform
memory access checks and leak detection on an application
program.

Describes how to use the pr of and gpr of tools to profile your
code, enabling you to find which portions of code are consuming
the most execution time.

Discusses how to use prepackaged Atom tools to instrument an
application program for various purposes, such as to obtain
profiling data or to perform cache-use analysis. It also describes
how you can design and create custom Atom tools.

Describes how to optimize your code using the optimizer and the
post-link optimizer.

Describes how to use the features of the DEC C compiler for
Digital UNIX to write a structured exception handler or a
termination handler.

Describes how to develop multithreaded programs.

Describes how to use 32-bit pointers on 64-bit Digital UNIX
systems.

Describes how to achieve source code compatibility for C
language programs in the System V habitat.

Describes how to write dynamically configurable kernel
subsystems.

Describes the global optimizer (uopt) used by the DEC OSF/1 C
compiler (—ol dc).

Related Documents

In addition to this manual, the following manuals contain information
pertaining to program development:

Programming: General

Calling Standard for Alpha Systems
Assembly Language Programmer’s Guide
Programming Support Tools

Network Programmer’s Guide

Digital Portable Mathematics Library
Writing Software for the International Market
Kernel Debugging

Ladebug Debugger Manual

Programming: Compatibility, Migration, and Standards
ULTRIX to Digital UNIX Migration Guide
VAX System V to Digital UNIX Migration Guide
System V Compatibility User’s Guide

POS X Conformance Document

XPG3 Questionnaire

Programming: Realtime

Guide to Realtime Programming
Programming: Streams

Programmer’s Guide: STREAMS
Programming: Multithreaded Applications
Guide to DECthreads

General User Information

Release Notes

Documentation Overview

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list

About This Manual xxi

describes this convention:

Audience Icon Color Code
General users G Blue

System and network administrators S Red
Programmers P Purple
Device driver writers D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader’'s Comments

Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

You can send your comments in the following ways:

Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y 32
Internet electronic mail: r eaders_conment @k3. dec. com

A Reader’s Comment form is located on line in the following location:
/usr/ doc/readers_conment . t xt

Mail:

Digital Equipment Corporation

UEG Publications Manager

ZK03-3/Y32

110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

xxii About This Manual

* The section numbers and page numbers of the information on which you
are commenting.

* Theversion of Digital UNIX that you are using.
* |If known, the type of processor that is running the Digital UNIX

software,

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions

%
$

#

(dbx)
% cat
file

cat (1)

Return

Ctrl/x

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.
In examples, this symbol represents the dbx debugger’s prompt.
Boldface type in interactive examples indicates typed user input.

Italic (slanted) type indicates variable values, placeholders, and
function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat (1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

In an example, a key name enclosed in a box indicates that you
press that key.

This symbol indicates that you hold down the first named key

while pressing the key or mouse button that follows the dash. In
examples, this key combination is enclosed in a box (for example,
Ctrl/C).

About This Manual xxiii

Overview 1

This chapter describes phases in developing an application and which Digital
UNIX tools to use during those phases. Topics in this chapter include the

following:

» Specifications and design considerations

» Magjor software development tools

e Source file control

» Program installation tools
* Interprocess communications

1.1 Application Development Phases

There are five major phases in application development. Table 1-1 describes
these phases and the tools and features available for use in each phase.

Table 1-1: Programming Phases and Digital UNIX

Phase

Requirements and specifications

Design

Implementation

Testing
Maintaining

Tools/Features

Standards
Internationalization
Security

Routines

Coding Considerations

Libraries

Common Files
vi,ex,ed,lint,grep,cxref,sed,tine,
dbx, t hi rd, | d, make, compilers, threads

di ff, Shell scripts, pi xi e, pr of

setld,tar,sccs,rcs

In many instances, the Digital UNIX system offers more than one tool to do
ajob. The choices of tools and programming languages to use are left to

you.

1.2 Specification and Design Considerations

When you design an application, some of your decisions depend on the
nature of the application. Digital UNIX provides features and tools to help
you create applications that can be portable, internationalized, window-
oriented, or whatever is appropriate for the needs of the users of those
applications.

One of the primary design considerations concerns adhering to UNIX
environment standards and portability. If you want your application to run
both on Digital UNIX systems and on other UNIX operating systems,
consider limiting your design to features that adhere to X/Open Portability
guidelines and POSIX standards.

Y ou might also need to design your application so that it can be used in a
variety of countries. The Digital UNIX operating system contains
internationalization tools and functions to help you write software to be used
by people working in different natural languages.

Another consideration is the terminal environment in which your application
will be used. If end users have workstations or window terminals, you might
want to design your application to use window displays.

1.2.1 Standards

Adherence to programming standards enhances the ability to port programs
and applications between hardware platforms or even operating systems.
Writing programs according to portability standards makes it easy for users
to move between systems without major retraining. As part of program
portability, some standards include internationalization concepts.

The following are the primary standards in the UNIX programming

environment:
« ANS

+ |ISO
 POSIX

* X/Open

In addition to the standards in the preceding list, the OSF Application
Environment Specification (AES) specifies application-level interfaces that an
application must provide to support portable applications and the semantics
or protocols associated with these interfaces. For more information, see the
Application Environment Specification (AES) Operating System Programming
Interfaces Volume, ISBN 0-13-043522-8, published by Prentice-Hall, Inc.

Various ANS| standards apply to specific programming tools such as
languages, networks and communication protocols, character coding, and

1-2 Overview

1.2.2

1.2.3

database systems. Information on conformance and extensions to a particular
ANSI standard appears in the documentation set for the particular language,
network system, or database system. For information about compiling C
programs to adhere to ANSI standards, see Chapter 2.

The Digital UNIX system allows you to write programs that conform to
POSIX and X/Open standards. Information on the POSIX standard is
contained in POS X — Part 1. System Application Program Interface (API)
[C Language] for IEEE Std. 1003.1¢c-1994. The Digital UNIX header files
contain POSIX- and X/Open-conformant information.

Internationalization

An internationalized application provides a run-time interface that allows
users to work in their own language with culturally appropriate
representations of data. The Digital UNIX operating system provides
interfaces and utilities for you to develop internationalized applications that
conform to Issue 4 of X/Open CAE specifications.

Considerations for developing internationalized applications include:

» Language

* Cultural data

» Character sets

» Localization

To meet these considerations, your applications must hot make any
assumptions about language, local customs, or coded character sets. Data

specific to a culture is held separate from the application’s logic. Y ou use
run-time facilities to bind your application to the appropriate language

message text.

For details about the Digital UNIX internationalization package, see the
manual Writing Software for the International Market.

Window-Oriented Applications

For information on devel oping window-oriented applications, see the
following manuals:

OSF/Matif Programmer’s Guide

DECwindows Motif Guide to Application Programming
DECwindows Extensions to Motif

DECwindows Companion to the OSF/Matif Syle Guide
Developing Applications for the Display PostScript System
Common Desktop Environment: Programmer’s Guide

Overview 1-3

Common Desktop Environment: Programmer’s Overview

Common Desktop Environment: Application Builder User’s Guide
Common Desktop Environment: Internationalization Programmer’s Guide
Common Desktop Environment: Style Guide and Certification Checklist

Common Desktop Environment: Help System Author’s and Programmer’s
Guide

1.3 Major Software Development Tools

13.1

1.3.2

The Digital UNIX system is compatible with a number of higher-level
languages, and it includes tools for linking and debugging programs.

Languages That Run in the Digital UNIX Environment

The chief language that the Digital UNIX operating system supportsis C.
The Digital UNIX operating system includes a C language compiler. Other
languages, such as Pascal and Fortran, are available separately. For a
complete list of layered products, contact your Digital representitive. The
Digital UNIX system also includes an assembler for working with assembly
language. For more information on the assembler, see the as (1) reference
page and the Assembly Language Programmer’s Guide.

Linking Object Files

In most instances, you can use the compiler driver command (cc) to link
separate program object files into a single executable program.

As part of the compilation process, most compilers call the linker (I d) to
combine one or more object files into a single program object file. In
addition, the linker resolves external references, searches libraries, and
performs all other processing required to create object files that are ready for
execution. The resulting object module can either be executed or serve as
input for a separate | d run. (You can invoke the linker separately from the
compiler by issuing the | d command.)

Digital UNIX allows you to create applications composed of source program
modules written in different languages. In these instances, you compile each
program module separately and then link the compiled modules together in a

separate step.

Digital UNIX provides the ability to create shared libraries by using the | d
command. In addition, you also can create archive (static) libraries by using
the ar command. For more information, see Chapter 4. See Chapter 2 and
Chapter 4, as well as the documentation sets for the individual languages, for
detailed information on compiling and linking programs. For more
information on the | d command, see the | d(1) reference page.

1-4 Overview

1.3.3 Debuggers

The following tools are the primary debugging tools on the Digital UNIX
operating system:

» The dbx debugger (see Chapter 5 or dbx (1) for details)
» The Third Degree tool (see Chapter 7 or t hi r d(5) for details)
* Thelint utility (see Chapter 6 or | i nt (1) for details)

The | adebug debugger is also supported on the Digital UNIX operation
system. In addition to supporting the features provided by the dbx
debugger, it also supports features for debugging multithreaded programs.
For information on the | adebug debugger, which supports C, C++, and
Fortran, see the manual Ladebug Debugger Manual and the | adebug(1)
reference page.

The dbx debugger is the most comprehensive tool for debugging in a
nonwindow environment.

1.4 Source File Control

An integral part of creating a software application is managing the
development and maintenance processes. The Digital UNIX operating
system provides the Source Code Control System (SCCS) utility and the
RCS code management system to help you store application modules in a
directory, track changes made to those module files, and monitor user access
to the files.

SCCS and RCS on the Digital UNIX operating system provides support
similar to SCCS and RCS utilities on other UNIX systems. In addition,
Digital UNIX has an sccs preprocessor, which provides an interface to the
more traditional SCCS commands.

SCCS and RCS maintain a record of changes made to files stored using the
utility. The record can include information on why the changes were made,
who made them, and when they were made. Y ou can use either SCCS or
RCS to recover previous versions of files as well as to maintain different
versions simultaneously. SCCS is useful for application project management
because it does not allow two people to modify the same file simultaneously.

For more information , seethe sccs(1) and r cs(1) reference pages and the
manual Programming Support Tools.

1.5 Program Installation Tools

Once you have created your program or application, you might want to
package it as a kit for the set | d installation utility so that it can be
distributed easily to other users. The Digital UNIX operating system has

Overview 1-5

several utilities that you can use to install, remove, combine, validate, and
configure programs and applications.

Software for Digital UNIX systems consists of a hierarchical group of files
and directories. If your application or program consists of more than one file
or directory, you need to determine how the files and directories are grouped
within the hierarchy. The set | d installation process preserves the integrity
of each product’s hierarchy when it is transferred from the devel opment
system to a production system (that is, when the product is installed). The
kitting process includes grouping the component files for the product into
subsets, allowing the system administrator to install some or al of them as
needed.

Using the set | d utility and its related tools provides the following benefits:
* Installation security

Theset | d utility verifies each subset immediately after it is transferred
from one system to another to make sure that the transfer was successful.
Each subset is recoverable, so you can reinstall one that has been
damaged or deleted.

* FHexibility
System administrators can choose which optional subsets to install.
Administrators can also delete subsets and then reinstall them later, as
needed. You might use this feature to provide multiple language support

for your application or to allow users to select among optional features of
your application.

e Uniformity
Theset | d utility is an integral part of the Digital UNIX installation
implementation.

Using set | d, you can load your application on any of the following

distribution media for installation on other systems:

* CD-ROM distribution media

* An arbitrary, mountable file system on any supported data disk; for
example, a third-party SCSI disk cartridge

For more information on using the set | d command and creating and
managing software product kits, see the manual Programming Support Tools.

1.6 Overview of Interprocess Communication Facilities

Interprocess communication (IPC) is the exchange of information between
two or more processes. In single-process programming, modules within a
single process communicate with each other using global variables and
function calls, with data passing between the functions and the callers. When

1-6 Overview

programming using separate processes having images in separate address
spaces, you need to use additional communication mechanisms.

Digital UNIX provides the following facilities for interprocess
communication:

.« SystemV IPC

System V IPC includes the following IPC facilities: messages, shared
memory, and semaphores.

* Pipes
For information about pipes, see the Guide to Realtime Programming.
e Signals
For information about signals, see the Guide to Realtime Programming.
» Sockets
For information about sockets, see the Network Programmer’s Guide.
+ STREAMS

For information about STREAMS, see the Programmer’s Guide:
STREAMS.

e Threads

For information about programming using threads, see the Guide to
DECthreads and Chapter 12.

» X/Open Transport Interface (XTI)
For information about XTI, see the Network Programmer’s Guide.

Overview 1-7

The Compiler System 2

This chapter contains information on the following topics:

» Datatypesin the Digital UNIX environment

* Using the C preprocessor

* Linking object files

* Running programs

» Object file tools

* ANSI name space pollution cleanup in the standard C library

The compiler system is responsible for converting source code into an
executable program. This can involve severa steps:

* Preprocessing — The compiler system performs such operations as
expanding macro definitions or including header files in the source code.
The output of this operation is an intermediate file with the . i file suffix.

e Compiling — The compiler system converts a source file or preprocessed
file to an object file with the . o file suffix.

» Linking — The compiler system produces a binary image.

These steps can be performed by separate preprocessing, compiling, and
linking commands, or they can be performed in a single operation, with the
compiler system calling each tool at the appropriate time during the
compilation.

Other tools in the compiler system help debug the program after it has been
compiled and linked, examine the object files that are produced, create
libraries of routines, or analyze the run-time performance of the program.

Table 2-1 summarizes the tools in the compiler system and points to the
chapter or section where they are described in this and other documents.

Table 2-1: Compiler System Functions

Task

Compile, link, and

load programs, build

shared libraries

Debug programs

Profile programs

Optimize programs

Examine object files

Produce necessary
libraries

Tools

Compiler drivers, link
editor, dynamic loader

Symbolic debugger (dbx
and | adebug) and Third
Degree

Profiler, call graph profiler

Optimizer, post-link
optimizer
nmfile,size,dis,
odunp, and st dunp
tools

Archiver (ar), linker (I d)
command

Where Documented

This chapter, Chapter 4, cc(1),
c89(1), as(1), I d(1),

| oader (5), Assembly Language
Programmer’s Guide, DEC C
Language Reference Manual

Chapter 5, Chapter 6, dbx (1),
t hi rd(5), | adebug(2),
Ladebug Debugger Manual

Chapter 8, pr of (1), gpr of (1),
pi xi e(5), at om(1),

hi pr of (5), at ont ool s(5)
This chapter, Chapter 10, cc(1),
third(1)

This chapter, nm(1), fi | e(1),
si ze(), di s(1), odunp(l),
st dunp(1), Programming
Support Tools

This chapter, Chapter 4, ar (1),
[d(2)

2.1 Compiler System Components (Driver Programs)

Figure 2-1 shows the relationship between the major components of the
compiler system and their primary inputs and outputs.

2—-2 The Compiler System

Figure 2-1: Compiling a Program

c i .a

' .S0

v v v
preprocessor compiler linker
A .0 a.out

ZK-1079U-R

Compiler system commands, sometimes called driver programs, invoke the
components of the compiler system. Each language has its own set of
compiler commands and flags. In addition, your system might include
layered products such as C++, or other languages such as Fortran or Pascal.
The languages supported by any one system are determined by the choices
made at the time the system is installed or modified. Thus, the configuration
of your particular system may not support languages other than C and
assembly.

The cc command invokes the C compiler. The —newc and —ol dc flags
invoke different compiler implementations (where the implementation
invoked by —newc is upwardly compatible with that invoked by —ol dc).
The —newc compiler offers improved optimization, additional features, and
greater compatibility with Digital compilers provided on other platforms.
The —newc compiler implementation is the default.

The —newc compiler was accessible in previous versions of the Digital
UNIX operating system by means of the—mi gr at e flag. The—newc
compiler has been made more compatible with the —ol dc compiler.

Note

This manual uses the phrase ‘‘the C compiler’’ to refer to both
versions of the DEC C compiler, —newc and —ol dc. Features
supported by only one of the compilers are so marked.

The Compiler System 2—3

Each compiler implementation supports a dlightly different set of compiler
flags. See Table 2-4 for a comparison.

In the Digital UNIX programming environment, a single compiler command
can perform multiple actions, including the following:

» Determine whether to call the appropriate preprocessor, compiler (or
assembler), or linker based on the file name suffix of each file. Table 2-2
lists the supported file suffixes, which identify the contents of the input
files.

» Compile and link a source file to create an executable program. If
multiple source files are specified, the files can be passed to other
compilers before linking.

* Unlike the compilers, the assembler (as) can assemble only a single file,
which is assumed to contain assembler code (any file suffix is ignored).
The as command does not automatically link the assembled object file.
Thus, if you directly invoke the assembler, you need to link the object in
a separate step.

* Prevent linking and the creation of the executable program, thereby
retaining the . o object file for a subsequent link operation.

» Pass the mgjor flags associated with the link command (I d) to the linker.
For example, you can include the —L flag as part of the cc command to
specify the directory path to search for alibrary. Each language requires
different libraries at link time; the driver program for a language passes
the appropriate libraries to the linker. For more information on linking
with libraries, see Chapter 4 and Section 2.5.3.

» Create an executable program file with a default name of a. out or with
a name that you specify.

Table 2-2: File Suffixes and Associated Files

Suffix File

.a Archive library
C source code

i The driver assumes that the source code was processed by the C
preprocessor and that the source code is that of the processing driver,
for example, %cc - ¢ source. i . Thefile source. i, isassumed
to contain C source code.

.0 Object file
.S Assembly source code
. S0 Shared object (shared library)

2-4 The Compiler System

Table 2-2: (continued)

Suffix File
.u ucode object file (supported only under —ol dc)
.b ucode object library (supported only under —ol dc)

2.2 Data Types in the Digital UNIX Environment

221

2.2.2

The following sections describe how data is represented on the Digital UNIX
system.

Data Type Sizes

The Digital UNIX system is little endian; that is, the address of a multibyte
integer is the address of its least significant byte; the more significant bytes
are at higher addresses. The C compiler supports only little endian byte
ordering. The following table gives the sizes of supported data types.

Data type Size in bits
char 8

short 16

int 32

long 64

long long 64

float 32 (IEEE Single)
double 64 (IEEE Double)
pointer 64

Floating-Point Range and Processing

The C compiler supports |EEE single-precision (32-bit f | oat) and double-
precision (64-bit doubl e) floating-point data, as defined by the IEEE
Sandard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

Floating-point numbers have the following ranges:
o float: 1.17549435e-38f to 3.40282347e+38f
* double: 2.2250738585072014e-308 to 1.79769313486231570e+308

The Compiler System 2-5

Digital UNIX provides the basic floating-point number formats, operations
(add, subtract, multiply, divide, square root, remainder, and compare), and
conversions defined in the standard. Y ou can obtain full IEEE-compliant
trapping behavior (including nonnumbers [NaNs]) by specifying a
compilation flag, or by specifying a fast mode when |EEE-style traps are not
required. You can also select, at compile time, the rounding mode applied to
the results of IEEE operations. See cc(1) for information on the flags that
support 1EEE floating-point processing.

A user program can control the delivery of floating-point traps to a thread by
calingi eee_set _fp_control (), or dynamically set the IEEE rounding
mode by callingwrite_rnd(). Seei eee(3) for additional information on
how to handle |EEE floating-point exceptions.

2.2.3 Structure Alignment

The C compiler aigns structure members on natural boundaries by default.
That is, the components of a structure are laid out in memory in the order in
which they are declared. The first component has the same address as the
entire structure. Each additional component follows its predecessor on the
next natural boundary for the component type.

For example, the following structure is aligned as shown in Figure 2-2:

struct {char c1;
short s1;
float f;
char c2;

}

Figure 2-2: Default Structure Alignment

31 16 15 87 0
short s1 char cl1
63 float f 32
char c2
64
71
ZK-1082U-R

The first component of the structure, c1, starts at offset 0 and occupies the
first byte. The second component, s1, isashort ; it must start on aword
boundary. Therefore, padding is added between c1 and s1. No padding is

2-6 The Compiler System

224

needed to make f and c2 fall on their natura boundaries. However, because
size is rounded up to a multiple alignment, three bytes of padding are added
after c2.

The following mechanisms can be used to override the default alignment of
structure members:

* The#pragma menber _al i gnnent and #pr agna
nonenber _al i gnnment directives (—newc only)

» The#pragma pack directive (—newc or —ol dc)
» The-Zpnflag

See Section 3.5 and Section 3.7 for information on these directives.

Bit-Field Alignment

In general, the alignment of a bit field is determined by the bit size and bit
offset of the previous field. For example, the following structure is aligned
as shown in Figure 2-3:
struct a {

char fO: 1;

short f1: 12;

char f2: 3;
} struct_a;

Figure 2-3: Default Bit-Field Alignment

31 15 12 0

short f1
X .4

char f2 char f0

ZK-1080U-R

Thefirst bit field, f 0, starts on hit offset 0 and occupies 1 bit. The second,
f 1, starts at offset 1 and occupies 12 bits. The third, f 2, starts at offset 13
and occupies 3 bits. The size of the structure is two bytes.

Certain conditions can cause padding to occur prior to the alignment of the
bit field:

» Bit fields of size 0 cause padding to the next pack boundary. (The pack
boundary is determined by the #pr agma pack directive (—newc or
—ol dc) or the —Zpncompiler flag.) For bit fields of size 0, the bit field's

The Compiler System 2—7

base type isignored. For example, consider the following structure:

struct b {
char f0: 1
int 0
char f1: 2
} struct_b;

If the source file is compiled with the —Zp1 flag or if a

#pragma pack 1 directive is encountered in the compilation, f O would
start at offset 0 and occupy 1 bit, the unnamed bit field would start at
offset 8 and occupy O bits, and f 1 would start at offset 8 and occupy 2
bits.

Similarly, if the —Zp2 flag or the #pr agnma pack 2 directive were used,
the unnamed bit field would start at offset 16. With —Zp4 or
#pragma pack 4, it would start at offset 32.

» |f the bit field does not fit in the current unit, padding occurs to either the
next pack boundary or the next unit boundary, whichever is closest. (The
unit boundary is determined by the bit field's base type, for example, the
unit boundary associated with the declaration ‘“‘char foo: 1’ isa
byte.) The current unit is determined by the current offset, the bit field's
base size, and the kind of packing specified, as shown in the following
example:
struct c {

char f0: 7;

short f1: 11;
} struct_c;

Assuming that you specify either the —Zp1 flag or the

Figure 2-4: Padding to the Next Pack Boundary

31 20 19 8 7 0

short f1 char fO

ZK-1081U-R

2.2.5 The _align Storage Class Modifier

Data alignment is implied by datatype. For example, the C compiler aligns
ani nt (32 bits) on a 4-byte boundary and al ong (64 bits) on an 8-byte
boundary. The _al i gn storage-class modifier, supported only by the C
compiler using the —st d and —newc flags (the default), aligns objects of any
of the C data types on the specified storage boundary. It can be used in a data

2-8 The Compiler System

declaration or definition.

The _al i gn modifier has the following format:

_align (keyword)
_align(n)

Where keywor d is a predefined alignment constant and n is an integer
power of 2. The predefined constant or power of 2 tells the compiler the
number of bytes to pad in order to align the data.

For example, to align an integer on the next quadword boundary, use any of
the following declarations:

int _align(QUADNORD) data;

int _align(quadword) data;

int _align(3) data;
Inthisexample, i nt _align (3) specifiesan aignment of 2x2x2 bytes,
which is 8 bytes, or a quadword of memory.

The following table shows the predefined alignment constants, their
equivalent power of 2, and equivalent number of bytes.

Constant Power Number
of 2 of Bytes
BYTE or byte 0 1
WORD or word 1 2
LONGWORD or longword 2 4
QUADWORD or quadword 3 8

2.3 Using the C Preprocessor

The C preprocessor performs macro expansion, includes header files, and
executes preprocessor directives prior to compiling the source file. The
following sections describe the Digital UNIX -specific operations performed
by the C preprocessor. For more information on the C preprocessor, see the
cc (1) and cpp(2) reference pages and the DEC C Language Reference
Manual.

2.3.1 Predefined Macros
When the compiler is invoked, it defines C preprocessor macros that identify

the language of the input files and the environments on which the code may
run. You can reference these macrosin #i f def statements to isolate code

The Compiler System 2-9

that applies to a particular language or environment. The preprocessor
macros are listed in Table 2-3.

The type of source file and the type of standards you apply determine the
macros that are defined. The C compiler supports several levels of
standardization:

» The-st d flag enforcesthe ANSI C standard, but alows some common
programming practices disallowed by the standard, and passes the macro
__STDC__=0 to the preprocessor.

» The-st dO flag enforcesthe K & R programming style, with certain
ANSI extensions in areas where the K & R behavior is undefined or
ambiguous. In general, —st dO compiles most pre-ANSI C programs and
produces expected results. It causesthe __STDC__ macro to be
undefined.

 The-st d1 flag strictly enforces the ANSI C standard and all its
prohibitions (such as those that apply to handling avoi d, the definition
of an | val ue in expressions, the mixing of integrals and pointers, and
the modification of an r val ue). It passesthe macro __STDC__ =1 to
the preprocessor.

Table 2-3: Predefined Macros

Macro Source File Type -std Flag
__DECC (—newc only) .C —std0, —std, —std1
LANGUAGE C .c —stdO
__LANGUAGE_C__ .C —std0, —std, —std1
unix .C, .S —std0

_unix__ .C, .S —std0, —std, —std1
osf .C, .S —std0, —std, —std1
__alpha .C, .S —stdO, —std, —std1
SYSTYPE_BSD .C, .S —std0
_SYSTYPE_BSD .C, .S —std0, —std, —std1
LANGUAGE_ASSEMBLY S —std0, —std, —std1
__LANGUAGE_ASSEMBLY__ s —std0, —std, —std1

2-10 The Compiler System

2.3.2

2.3.3

Including Common Files

When writing programs, you often use header files that are common among a
program’s modules. These files define constants, the parameters for system
cals, and so on.

C header files, sometimes known as include files, have a. h suffix.
Typically, the reference page for a library routine or system call indicates the
required header files. Header files can be used in programs written in
different languages.

Note

If you intend to debug your program using dbx or | adebug, do
not place executable code in a header file. The debugger
interprets a header file as one line of source code; none of the
source lines in the file appears during the debugging session. For
more information on the dbx debugger, see Chapter 5. For
details on | adebug, see the Ladebug Debugger Manual.

Y ou can include header files in a program source file in one of two ways:
#include " filename"

Enter this line in column 1 of a source file to indicate that the C macro
preprocessor should first search for the include file i | enane in the
directory in which it found the file that contains the directive, then in the
search path indicated by the —I flag, and finally in/ usr /i ncl ude.

#include <filename >

Enter this linein column 1 of a source file to indicate that the C macro
preprocessor should search for the include file f i | ename only in the
search path indicated by the —I flag andin/ usr /i ncl ude, but not in
the current directory.

You can also use the -1 di r compiler flag to specify additional pathnames
(directories) to be searched by the C preprocessor for #i ncl ude files. The
C preprocessor searches first in the directory where the source file resides,
followed by the specified pathname, di r, then the default directory,
/usr/include. If dir isomitted, the default directory,

/usr/incl ude, isnot searched.

Setting Up Multilanguage Include Files

C, Fortran, and assembly code can reside in the same include files, then
conditionally included in programs as required. To set up a shareable include
file, you must create a. h file and enter the respective code, as shown in the

The Compiler System 2—-11

following example:
#ifdef __LANGUAGE_C _

(C code)

#endi f
#i fdef __ LANGUAGE ASSEMBLY _

(assenbl y code)

#endi f

When the compiler includes this file in a C source file, the

_ _LANGUACGE_C__ macro is defined, and the C code is compiled. When
the compiler includes this file in an assembly language source file, the

_ _LANGUAGE_ASSEMBLY_ _ macro is defined, and the assembly language
code is compiled.

2.3.4 Implementation-Specific Preprocessor Directives (#pragma)

The #pr agnma directive is a standard method of implementing features that
vary from one compiler to the next. The C compiler supports the following
implementation-specific pragmas:

* #pragnma envi ronment
e #pragna function

e #pragnainline

e #pragnaintrinsic

e #pragna linkage

e #pragnma nmenber

e #pragnma nessage

e #pragna pack

e #pragna poi nter_size
e #pragna use_|inkage
e #pragna weak

The pragmas are described in detail in Chapter 3.
2.4 Compiling Source Programs

The cc command provides more than one compilation environment: The
—newc and —ol dc flags invoke different compiler implementations (where

2-12 The Compiler System

241

the implementation invoked by —newc is upwardly compatible with that
invoked by —ol dc). The —newc compiler offers improved optimization,
additional features, and greater compatibility with Digital compilers provided
on other platforms. The —newc compiler implementation is the default.

The —newc compiler has been accessible in previous versions of the Digital
UNIX operating system by means of the—m gr at e flag. The—newc
compiler has been made more compatible with the —ol dc compiler.

All compilation environments produce object files that comply with the
common object file format (COFF), and their objects files can be freely
intermixed. The C compiler invoked by the —ol dc flag employs ucode-
based optimizations; the C compiler invoked by the —newc flag employs
other optimizations.

The following sections describe the flags that are available in all compilation
environments, the default compiler behavior, and how to compile
multilanguage programs.

Compilation Flags

Compiler flags select a variety of program development functions, including
debugging, optimizing, and profiling facilities, and the names assigned to
output files.

Table 2-4 compares the flags that are available with the three compilation
environments. An asterisk (*) indicates that the flag is accepted, but ignored,
by the compiler. Seethe cc (1) reference page for more information on these

flags.

Table 2-4: Comparison of Compiler Flags

Flag -newc -oldc -migrate
—ansi_dlias yes no yes
—{no_Jansi_args yes no yes
—assume [no]accuracy _sensitive yes yes yes
—assume [no]aligned_object yes no yes
—assume [no]trusted_short_alignment yes no yes
-B yes yes yes
— yes yes yes
—-C yes yes yes
—call_shared yes yes yes
—check yes no yes

The Compiler System 2—-13

Table 2-4:
Flag |

—compress
—cord
—{no_]
cp

-D p
—double
—edit
—ex

act i
- _version
—fast
—feedback
—float
—float_const

(continued)

—no_If
p_reo
o rder
_fptm{CIdlnIm}
{n]su]sui|u}
u

—f

ramepointer

_g

-G

_g
en_feedback

—ifo
—inline

-m i
achine_code

-MD

2-14
The
C
ompiler Syst
em

-newc

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes*
yes
yes
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
yes
yes

-oldc

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
yes*
no
yes
yes
yes
yes
yes
no
yes

-migrate

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes*
yes
yes
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
yes
yes

Table 2-4: (continued)

Flag

—{no_]misalign
—no_archive
—no_inline

—nomember_alignment

—non_shared
—noobject

-0

-0

—oldcomment
—Olimit

m

P

—{no_lpg
—portable
—preempt_module
—preempt_symbol
—proto[is|
—pthread

_Q
—readonly_strings
—resumption_safe
-S

—scope_safe
—show

—signed
—source_listing
—speculate
—std[n]

—t

—taso

—threads

—tune

-newc

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes*
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

-oldc

yes
yes
yes
no

yes
no

yes
yes
yes
yes
yes
yes
yes
no

no

no

yes
yes
yes
yes
yes
yes
yes
no

yes
no

no

yes
yes
yes
yes
yes

-migrate

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes*
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

The Compiler System 2-15

Table 2-4: (continued)

Flag -newc -oldc -migrate
—traditional yes yes yes
—trapuv yes yes yes
U yes yes yes
—unroll yes no yes
—unsigned yes yes yes
-V yes yes yes
-V yes yes yes
—varargs yes yes yes
—vaxc yes no yes
-verbose yes yes yes
-volatile yes yes yes
-w yes yes? yes
-W yes yes yes
—warnprotos yes yes yes
—writable_strings yes yes yes
—xtaso yes yes yes
—xtaso_short yes yes yes
-Zp yes yes yes
Table note:

a. The—wO0 flag is not accepted by the —ol dc flag.

2.4.2 Default Compilation Behavior

Some flags have default values that are used if the flag is not specified on the
command line. For example, the default name for an output file is

fil enane. o for object files, where f i | enane is the base name of the
source file. The default name for an executable program object isa. out .
The following example uses the defaults in compiling two source files named

2-16 The Compiler System

progl. c and pr og2. c:
% cc progl.c prog2.c

This command runs the C compiler, creating object modules pr ogl. o and
pr og2. o and the executable program a. out .

Whether you are new to Digital UNIX, porting applications from other
systems, or concerned with compatibility issues, knowing the default
behavior of the compiler is useful. When you enter the cc compiler
command with no other flags, the following flags are in effect:

—newc
The default compiler flag; invoked when the compiler flag is not
specified.

—assune al i gned_obj ect s

Allows the compiler to make such an assumption, and thereby generate
more efficient code for pointer dereferences of aligned pointer types.

—cal | _shared
Produces a dynamic executable file that uses shareable objects at run
time.

—doubl e
Promotes expressions of type f | oat to doubl e.

—fprmn
Performs normal rounding (unbiased round to nearest) of floating-point
numbers.

_go
Does not produce symbol information for symbolic debugging.
=l /usr/include

Specifies that #i ncl ude files whose names do not begin with / are
always sought first in the directory / usr /i ncl ude.

—i nli ne manual
Inlines only those function calls explicitly requested for inlining by a
#pragna i nl i ne directive.

—menber _al i gnnent
Directs the compiler to naturally align data structure members (with the
exception of bit-field members).

-no_f p_reorder
Directs the compiler to use only certain scalar rules for calculations.

—-no_m salign
Generates alignment faults for arbitrarily aligned addresses.

-1

The Compiler System 2-17

243

Enables global optimizations.

—ol dcoment

Allows traditional token concatenation.
_po

Disables profiling.

—no_pg
Turns off gpr of profiling.

—pr eenpt _synbol

Allows symbol preemption on a symbol-by-symbol basis.
—si gned

Causes all char declarationsto be si gned char .

—st dO
Enforces the K& R standard with some ANSI extensions.

—tune generic
Selects instruction tuning that is appropriate for all implementations of
the Alpha architecture.

—unroll O
Directs the optimizer to use its own default loop unrolling amount.

—writeable_strings

Makes string literals writable.
The following list includes miscellaneous aspects of the default cc compiler
behavior:

» Theoutput fileis named a. out unless another name is specified by
using the —o flag.

» Source files are linked automatically if compilation (or assembly) is
successful.

» Floating-point computations are fast floating point, not full 1EEE.

» Pointers are 64 bits. For information on using 32-bit pointers, see
Appendix A.

* Temporary files are placed in the / t np directory.

Compiling Multilanguage Programs

When the source language of the main program differs from that of a
subprogram, compile each program separately with the appropriate driver and
link the object files in a separate step. Y ou can create objects suitable for
linking by specifying the —c flag, which stops a driver immediately after the

2-18 The Compiler System

object file has been created. For example:
%cc -c main.c

This command produces the object file mai n. o0, not the executable file
a.out.

Most language driver programs pass information to cc, which, after
processing, passes information to | d. When one of the modules to be
compiled is a C program, you can usually use the driver command of the
other language to compile and link both modules.

2.5 Linking Object Files

251

The cc driver command can link object files to produce an executable
program. In some cases, you may want to use the | d linker directly.
Depending on the nature of the application, you must decide whether to
compile and link separately or to compile and link with one compiler
command. Factors to consider include:

* Whether al source files are in the same language
* Whether any files are in source form

Linking Using Compiler Commands

Y ou can use a compiler command instead of the linker command to link
separate objects into one executable program. Each compiler (except the
assembler) recognizesthe . o suffix as the name of afile that contains object
code suitable for linking and immediately invokes the linker.

Because the compiler driver programs pass the libraries associated with that
language to the linker, using the compiler command is usually recommended.
For example, the cc driver uses the C library (I i bc. so) by default. For
information about the default libraries used by each compiler command, see
the appropriate command in the reference pages, such as cc(1).

You can also use the - | flag to specify additional libraries to be searched for
unresolved references. The following example shows how to use the cc
driver to pass the names of two libraries to the linker with the —I flag:

%cc -o all main.o nobre.o rest.o -Im-1|exc
The —I mflag specifies the math library; the —| exc flag specifies the
exception library.

Y ou should compile and link modules with a single command when you
want to optimize your program. Most compilers support increasing levels of
optimization with the use of certain flags. For example:

The Compiler System 2-19

25.2

253

* The—-Q0 flag requests no optimization (usually for debugging purposes).
» The-01 flag requests certain local (module-specific) optimizations.

» Cross-module optimizations can be requested with the —C3 flag to the C
compiler using the —ol dc flag, or with the —i f o flag to the C compiler
using the —newc flag. In this case, compiling multiple files in one
operation allows the compiler to perform the maximum possible
optimizations.

» Certain compilers may provide a combination of flags (such as—c and
—0) that compile multiple source files into a single object module. This
combination allows interprocedural optimizations to occur, yet retains the
object file.

Linking Using the Id Command

Normally, users do not need to run the linker directly, but use the cc
command to indirectly invoke the linker. Executables that need to be built
solely from assembler objects can be built with the | d command.

The linker (I d) combines one or more object files (in the order specified)
into one executable program file, performing relocation, external symbol
resolutions, and all other processing required to make object files ready for
execution. Unless you specify otherwise, the linker names the executable
program file a. out . You can execute the program file or use it as input for
another linker operation.

The as assembler does not automatically invoke the linker. To link a
program written in assembly language, do either of the following:

» Assemble and link with one of the other compiler commands. The. s
suffix of the assembly language source file automatically causes the
compiler command to invoke the assembler.

» Assemble with the as command and then link the resulting object file
with the | d command.

For information about the flags and libraries that affect the linking process,
see the | d(1) reference page.

Specifying Libraries

When you compile your program on the Digital UNIX system, it is
automatically linked with the C library, | i bc. so. If you call routines that
arenotinl i bc. so or one of the archive libraries associated with your
compiler command, you must explicitly link your program with the library.
Otherwise, your program will not be linked correctly.

2-20 The Compiler System

Y ou need to explicitly specify libraries in the following situations:

When compiling multilanguage programs

If you compile multilanguage programs, be sure to explicitly request any
required run-time libraries to handle unresolved references. Link the
libraries by specifying - | st ri ng, where st ri ng is an abbreviation of
the library name.

For example, if you write a main program in C and some proceduresin
another language, you must explicitly specify the library for that language
and the math library. When you use these flags, the linker replaces the - |
with | i b and appends the specified characters (for the language library
and for the math library) and the . a or . so suffix, depending upon
whether it is a static (non-shared archive library) or dynamic (call-shared
object or shared library) library. Then, it searches the following
directories for the resulting library name:

fusr/shlib
fusr/ccs/lib
lusr/libl/cnplrs/cc
fusr/lib
fusr/local/lib
[var/shlib

For alist of the libraries that each language uses, see the reference pages
for the appropriate language compiler driver.

When storing object filesin an archive library

Y ou must include the pathname of the library on the compiler or linker
command line. For example, the following command specifies that the
I'i bf ft. a archivelibrary inthe/ usr/j ones directory isto be linked
along with the math library:

%cc main.o nore.o rest.o /usr/jones/libfft.a -Im

The linker searches libraries in the order you specify. Therefore, if any
file in your archive library uses data or procedures from the math library,
you must specify the archive library before you specify the math library.

When storing ucode object libraries
To link from a ucode library, specify the —k| x compiler flag.

Note

Only the —ol dc flag to the C compiler can be used to
produce ucode files.

The Compiler System 2-21

The following example links a file from a ucode library:
% cc -klucode_lib -0 output main.u nore.u rest.u

Because the libraries are searched as they are encountered on the
command line, the order in which you specify them is important.
Although alibrary might be made from both assembly and high-level
language routines, the ucode object library contains code only for the
high-level language routines.

Unlike an extended COFF object library, the ucode library does not
contain code for the routines. Y ou must specify to the ucode linker both
the ucode object library and the extended COFF object library, in that
order, to ensure that all modules are linked with the proper library.

If the compiler driver is to perform both a ucode link step and afinal link
step, the object file created after the ucode link step is placed in the
position of the first ucode file specified or created on the command line in
the final link step.

2.6 Running Programs

To run an executable program in your current working directory, in most
cases you enter its file name. For example, to run the program a. out
located in your current directory, enter:

% a. out

If the executable program is not in a directory in your path, enter the
directory path before the file name, or enter:

% ./ a. out

When the program is invoked, the mai n function in a C program can accept
arguments from the command line if the mai n function is defined with one
or more of the following optional parameters.

int main(int argc, char *argV[], char *envp[]) [...]

The ar gc parameter is the number of arguments in the command line that
invoked the program. The ar gv parameter is an array of character strings
containing the arguments. The envp parameter is the environment array
containing process information, such as the user name and controlling
terminal. (The envp parameter has no bearing on passing command-line
arguments. Its primary use is during exec and get env function calls.)

Y ou can access only the parameters that you define. For example, the
following program defines the ar gc and ar gv parameters to echo the values

2-22 The Compiler System

of parameters passed to the program:

/*

* Fil enane: echo-args.c

* This program echoes command-|ine argunents.
*/

#i ncl ude <stdio. h>

int nain(int argc, char *argv[])
{

int i;

printf("program %\n", argv[O]); /* argv[0O] is program nane */

for (i=1;, i < argc; i++)
printf("argunent %l: %\n", i, argv[i]);
return(0);

The program is compiled with the following command to produce a program
file caled a. out :

$ cc echo-args.c

When the user invokes a. out and passes command-line arguments, the
program echoes those arguments on the terminal. For example:
$ a.out Long Day\'s "Journey into Night"

program a. out

argunment 1: Long

argunment 2: Day’s

argurment 3: Journey into N ght
The shell parses all arguments before passing them to a. out . For this
reason, a single quote must be preceded by a backslash, alphabetic arguments
are delimited by spaces or tabs, and arguments with embedded spaces or
tables are enclosed in quotation marks.

2.7 Object File Tools

After a source file has been compiled, you can examine the object file or
executable file with following tools:

» odunp — Displays the contents of an object file, including the symbol
table and header information.

* st dunp - Displays symbol table information from an object file.
* nm- Displays only symbol table information.

* fil e —Provides descriptive information on the general properties of the
specified file, for example, the programming language used.

The Compiler System 2—-23

2.7.1

2.7.2

* si ze — Displays the size of the text, data, and bss segments.
» di s — Disassembles object files into machine instructions.

The following sections describe these tools. In addition, see the st ri ngs(1)
reference page for information on using the st r i ngs command to find the
printable strings in an object file or other binary file.

Dumping Selected Parts of Files (odump)

The odunp tool displays header tables and other selected parts of an abject
or archive file. For example, odunp displays the following information about
the file echo- ar gs. o:

% odunp -at echo-args.o

*** ARCH VE SYMBOL TABLE***

***x ARCH VE HEADER* **
Menber Name Dat e Ui d Gd Mode Si ze

*** SYMBCOL TABLE | NFORVATI ON* * *
[1 ndex] Name Val ueScl ass Synt ype Ref
echo-args. o:
[0] mai n0x0000000000000000 0x01 0x06 Oxfffff
[1] printf 0x0000000000000000 0Ox06 0x06 Oxfffff
[2] _fpdata 0x0000000000000000 O0x06 Ox01 Oxfffff

For more information, see the odunp(1) reference page.

Listing Symbol Table Information (nm)

The nmtool displays symbol table information for object files. For example,
nmwould display the following information about the object file produced
for the executable file a. out :

% nm

nm WArning: - using a.out

Narre Val ue Type Size

. bss | 0000005368709568 | B | 0000000000000000
.data | 0000005368709120 | D | 0000000000000000
dita | 0000005368709296 | G| 0000000000000000
1it8 | 0000005368709296 | G| 0000000000000000
. rconst | 0000004831842144 | Q| 0000000000000000
.rdata | 0000005368709184 | R | 0000000000000000

2-24 The Compiler System

2.7.3

2.7.4

The Name column contains the symbol or external name; the Vaue column
shows the address of the symbol, or debugging information; the Type column
contains a letter showing the symbol type; and the Size column shows the
symbol’s size (accurate only when the source file is compiled with a
debugging flag, for example, —g). Some of the symbol type letters are:

* B — External zeroed data

e D — Externd initialized data

e G- Externa small initialized data
* Q — Read-only constants

* R - External read-only data

For more information, see nim(1).

Determining a File’'s Type (file)

Thefi | e command reads input files, tests each file to classify it by type,
and writes the file's type to standard output. Thef i | e command uses the
[et ¢/ magi c file to identify files that contain a magic number. (A magic
number is a numeric or string constant that indicates afile's type.)

The following example shows the output of thef i | e command on a

directory containing a C source file, object file, and executable file:

%file *.*
: directory

Ll directory

a.out: COFF format al pha dynamically |inked, demand paged executabl e

or object nodule not stripped - version 3.11-8

echo-args.c: C program text

echo-args. o: COFF format al pha executabl e or object nodul e not

stripped - version 3.12-6

For more information, seef i | e(1).

Determining a File’s Segment Sizes (size)

The si ze tool displays information about the text, data, and bss segments of
the specified object or archivefile or files in octal, hexadecimal, or decimal
format. For example, when it is called without any arguments, the si ze
command returns information on a. out . Y ou can aso specify the name of

The Compiler System 2-25

2.7.5

an object or executable file on the command line. For example:

% si ze

t ext data bss dec hex
8192 8192 0 16384 4000
% si ze echo-args. o

t ext data bss dec hex
176 96 0 272 110

For more information, see si ze(1).

Disassembling an Object File (dis)

The di s tool disassembles object file modules into machine language. For
example, the di s command produces the following output when it
disassembles the a. out program:

% dis a.out

start:
0x120001080: 23defffO | da sp, -16(sp)
0x120001084: b7fe0008 stq zero, 8(sp)
0x120001088: ¢0200000 br t0, 0x12000108c
0x12000108c: a21e0010 | dl a0, 16(sp)

0x120001090: 223e0018 | da al, 24(sp)

2.8 ANSI Name Space Pollution Cleanup in the Standard

C Library

The ANSI C standard states that users whose programs link against | i bc are
guaranteed a certain range of global identifiers that can be used in their
programs without danger of conflict with, or preemption of, any global
identifiersin | i bc.

The ANSI C standard also reserves arange of global identifiers| i bc can
useinitsinternal implementation. These are called reserved identifiers and
consist of the following, as defined in ANSI document number X 3.159-1989:

» Any external identifier beginning with an underscore

» Any external identifier beginning with an underscore followed by a
capital letter or an underscore

ANSI conformant programs are not permitted to define global identifiers that
either match the names of ANSI routines or fall into the reserved name space
specified earlier in this section. All other global identifier names are
available for use in user programs.

2—-26 The Compiler System

Historical | i bc implementations contain large numbers of non-ANSI,
nonreserved global identifiers that are both documented and supported.
These routines are often called from within | i bc by other | i bc routines,
both ANSI and otherwise. A user’s program that defines its own version of
one of these non-ANSI, nonreserved items would preempt the routine of the
same namein | i bc. This could alter the behavior of supported | i bc
routines, both ANSI and otherwise, even though the user’ s program may be
ANSI conformant. This potential conflict is known as ANSI name space
pollution.

The implementation of | i bc on Digital UNIX Version 4.0 includes a large
number of non-ANSI, nonreserved global identifiers that are both
documented and supported. To protect against preemption of these global
identifiers within | i bc and to avoid pollution of the user’s name space, the
vast mgjority of these identifiers have been renamed to the reserved name
space by prepending two underscores (__) to the identifier names. To
preserve external access to these items, weak identifiers have been added
using the original identifier names that correspond to their renamed reserved
counterparts. Weak identifiers work much like symboalic links between files.
When the weak identifier is referenced, the strong counterpart is used instead.

User programs linked statically against | i bc may have extra symbol table
entries for weak identifiers. Each of these identifiers will have the same
address as its reserved counterpart, which will also be included in the symbol
table. For example, if a statically linked program simply called thet zset ()
function from | i bc, the symbol table would contain two entries for this call,
as follows:

stdunp -b a.out | grep tzset

18. (file 9) (4831850384) tzset Proc Text synref 23 (weakext)
39. (file 9) (4831850384) _ tzset Proc Text synref 23

In this example, t zset isthe weak identifier and __t zset isits strong
counterpart. The __t zset identifier is the routine that will actually do the
work.

User programs linked as shared should not see such additions to the symbol
table because the weak/strong identifier pairs remain in the shared library.

Existing user programs that reference non-ANSI, nonreserved identifiers from
I i bc do not need to be recompiled because of these changes, with one
exception: user programs that depended on preemption of these identifiersin
I i bc will no longer be able to preempt them using the nonreserved names.
This kind of preemption is not ANSI compliant and is highly discouraged.
However, the ability to preempt these identifiers still exists by using the new
reserved names (those preceded by two underscores).

These changes apply to the dynamic and static versions of | i bc:

The Compiler System 2-27

e Jusr/shlib/libc.so
e fusr/lib/libc.a

When debugging programs linked against | i bc, referencesto weak symbols
resolve to their strong counterparts, as in the following example:

% dbx a. out

dbx version 3.11.4

Type 'help’ for help.

mai n: 4 tzset

(dbx) stop in tzset
[2] stop in __tzset
(dbx)

When the weak symbol t zset inl i bc isreferenced, the debugger
responds with the strong counterpart __t zset instead because the strong
counterpart actually does the work. The behavior of the dbx debugger is the
sameasif __tzset werereferenced directly.

2-28 The Compiler System

Pragma Preprocessor Directives 3

This chapter describes the implementati on-specific pragmas that are
supported on the C compiler:

* #pragma environment (Section 3.1)

* #pragmainline (Section 3.2)

 #pragmaintrinsic and#pragma function (Section 3.3)
* #pragma | i nkage (Section 3.4)

» #pragna menber _al i gnnent (Section 3.5)

* #pragha message (Section 3.6)

» #pragna pack (Section 3.7)

e #pragna poi nt er_si ze (Section 3.8)

» #pragma use_| i nkage (Section 3.9)

» #pragma weak (Section 3.10)

All of these pragmas can be used with the —newc or —mi gr at e flags. A
subset of these pragmas can be used with the —ol dc flag:

#pragma function
#pragma intrinsic
#pr agnma pack

#pragma poi nter_si ze
#pr agnma weak

3.1 The #pragma environment Directive

The C compiler (using the —newc flag) supports a
#pragma envi r onnment directive that allows you to set, save, and restore
the state of al context pragmas. The context pragmas are:

#pragma menber _al i gnment
#pragma nessage

#pr agma pack

#pragma poi nter_si ze

A context pragma can save and restore previous states, usually before and
after including a header file that might also use the same type of pragma.

The #pr agma envi r onent directive protects include files from
compilation contexts set by encompassing programs, and protects
encompassing programs from contexts set in header files that they include.

This pragma has the following syntax:

#pragma environment] command_line| header_defaults| restore| save]

command_I| i ne
Sets the states of al of the context pragmas set on the command line.
Y ou can use this pragma to protect header files from environment
pragmas that take effect before the header file is included.

header _defaults
Sets the states of al of the context pragmas to their default values. This
is equivalent to the situation in which a program with no command-line
options and no pragmas is compiled, except that this pragma sets the
pragma message state to #pr agna nost andar d, as is appropriate for
header files.

restore
Restores the current state of every context pragma.

save
Saves the current state of every context pragma.

Without requiring further changes to the source code, you can use
#pragna envi r onnent to protect header files from things like language
enhancements that might introduce additional compilation contexts.

A header file can selectively inherit the state of a pragma from the including
file and then use additional pragmas as needed to set the compilation to
nondefault states. For example:

#i fdef _ _pragma_environnent

#pr agnma __envi ronnent save 1

#pragma _ _environment header_defaults 2

#pragma nenber _al i gnment restore 3

#pragma nenber_al i gnment save 4
#endi f

/*contents of header file*/
#i fdef __pragma_environnent

#pragma __environment restore
#endi f

In this example:
1 Savesthe state of all context pragmas.
2 Sets the default compilation environment.

3-2 Pragma Preprocessor Directives

3 Pops the member alignment context from the
#pragma nmenber _al i gnnment stack that was pushed by
#pragma __envi ronnment save and restoring the member
alignment context to its pre-existing state.

4 Pushes the member alignment context back onto the stack so that the
#pragma __envi ronment rest or e can pop the entry.

Therefore, the header file is protected from all pragmas, except for the
member alignment context that the header file was meant to inherit.

3.2 The #pragma inline Directive

Function inlining (supported by the C compiler using the —newc flag) is the
inline expansion of function calls, replacing the function call with the
function code itself. Inline expansion of functions reduces execution time by
eliminating function-call overhead and allowing the compiler’s general
optimization methods to apply across the expanded code. Compared with the
use of function-like macros, function inlining has the following advantages.

» Arguments are evaluated only once.

» Overuse of parenthesesis not necessary to avoid problems with
precedence.

» Actua expansion can be controlled from the command line.

* The semantics are as if inline expansion had not occurred. Y ou cannot get
this behavior using macros.

The C compiler (using the —newc flag) enables the following preprocessor
directives to control function inlining:

#pragma inline (id, . . .)
#pragma noinline (id, . . .)

Where i d is afunction identifier.

If afunction isnamed in a#pragma i nl i ne directive, calls to that
function are expanded as inline code, if possible. If afunction is named in a
#pragma noi nl i ne directive, calsto that function are not expanded as
inline code. If afunction is named in both a#pragma i nli ne and a

#pr agma noi nl i ne directive, an error message is issued.

If afunction isto be expanded inline, you must place the function definition
in the same module as the function call. The definition can appear either
before or after the function call.

The cc command flags —O4 (for —ol dc¢), —O3 and —O4 (for —newc),
-inlinesize,-inlinespeed,or-inlineall causethecompiler
to attempt to expand calls to functions named in neither a

Pragma Preprocessor Directives 3—-3

#pragma i nl i ne nor a#pr agma noi nl i ne directive as inline code
whenever appropriate, as determined by the following function
characteristics:

 Size
* Number of times the function is called
» Conformance to the following restrictions:
— The function does not take a parameter’ s address.

— A field of astruct argument. An argument that is a pointer to a
struct isnot restricted.

— The function does not use the var ar gs or st dar g package to
access the function’s arguments because they require arguments to be
in adjacent memory locations, and inline expansion may violate that
requirement.

For optimization level —Q2, the C compiler (using the —newc flag) inlines
small static routines only.

The use of the #pr agma i nl i ne directive causes inline expansion
regardless of the size or number of times the specified functions are called.

3.3 The #pragma intrinsic and #pragma function
Directives

Certain functions can be declared to bei ntri nsi c. Intrinsic functions are
functions for which the C compiler generates optimized code in certain
situations, possibly avoiding a function call.

Table 3-1 shows the functions that can be declared to be intrinsic.

Table 3-1: Intrinsic Functions

abs f abs | abs
printf fprintf sprintf
strcpy nmencpy nmenmmove
nenset al | oca bcopy
bzero

To control whether a function is treated as an intrinsic, use one of the
following pragmas (where f unc_nane_I i st is acomma-separated list of
function names optionally enclosed in parentheses):

3-4 Pragma Preprocessor Directives

#pragma intrinsic [(] func_name_list[)]
#pragma function [(] func_name_list[)]
#pragma function ()

Thei ntri nsi c pragmaenablesintrinsic treatment of a function. When
thei nt ri nsi ¢ pragmais turned on, the compiler understands how the
functions work, thereby generating more efficient code. A declaration for the
function must be in effect at the time the pragma is processed.

Thef uncti on pragma disables the intrinsic treatment of a function. A
function pragma with an empty func_nane_| i st disablesintrinsic
processing for al functions.

Some standard library functions also have built-in counterparts in the
compiler. A built-in is a synonym name for the function and is equivalent to
declaring the function to be intrinsic. The following built-ins (and their
built-in names) are provided:

Function Synonym

abs ___builtin_abs

| abs __builtin_| abs

f abs __builtin_fabs

al | oca __builtin_alloca
st rcpy __builtin_strcpy

Several methods are available for using intrinsics and built-ins. The header
files containing the declarations of the functions contain thei nt ri nsi c
pragma for the functions shown in Table 3-1. To enable the pragma, you
must define the preprocessor macro | NTRI NSI CS. For al | oca, al that
is necessary isto include al | oca. h.

For example, to get the intrinsic version of abs, a program should include
stdlib. h and compilewith—D _| NTRI NSI CS, or define _| NTRI NSI CS
with a#def i ne directive before including st dl i b. h.

To enable built-in processing, use the —D switch. For example, to enable the
f abs built-in, the pr oc. ¢ program is compiled with one of the following:

% cc -Dfabs=__huiltin_fabs prog.c

Pragma Preprocessor Directives 3-5

% cc -Dabs=__builtin_abs prog.c

Optimization of the preceding functions varies according to the function and

how it is used:
e Thefollowing functions are inlined:
abs
f abs
| abs
al I oca

The function call overhead is removed.

e Incertaininstances, theprintf andf pri ntf functions are converted
tocall puts, putc, fputs, or f put c or their equivalents, depending
on the format string and the number and types of arguments.

e In certain instances, the spri nt f function isinlined or converted to a
cal to st rcpy.

 Thestrcpy functionisinlined if the source string (the second
argument) is a string literal.

3.4 The #pragma linkage Directive

The C compiler (using the —newc flag) supports a#pr agma | i nkage
directive that allows you to specify linkage types. A linkage type specifies
how a function uses a set of registers. It allows you to specify the registers
that a function uses. It also allows you to specify the characteristics of a
function (for example, the registers in which it passes parameters or returns
values) and the registers that it can modify. The #pr agna use_| i nkage
directive associates a previously defined linkage with a function (see Section
3.9).

The #pr agnma | i nkage directive affects both the call site and function
compilation (if the function is written in C). If the function is written in
assembler, you can use ‘‘linkage pragma’’ to describe how the assembler
uses registers.

The #pr agnma | i nkage directive has the following format:

#pragma linkage linkage-name = (characteristics)

I i nkage- nane
Identifies the linkage type being defined. It has the form of aC
identifier. Linkage types have their own name space, so their names

will not conflict with other identifiers or keywords in the compilation
unit.

3-6 Pragma Preprocessor Directives

characteristics
Specifies information about where parameters will be passed, where the
results of the function are to be received, and what registers are modified
by the function call.

You must specify aregi ster-1ist. Aregister-1istisa
comma-separated list of register names, either Rn or Fn. A

regi ster-1ist canalso contain parenthesized sublists. Use the
regi ster-1ist to describe arguments and function result types that
are structures, where each member of the structure is passed in asingle
register. For example:

paraneters (r0, (f0, f1))

The preceding example is a function with two parameters. The first
parameter is passed in RO. The second parameter is a structure type
with two floating-point members, which are passed in FO and F1.

Thefollowing list of char act eri sti ¢s can be specified as a
parenthesized list of comma-separated items. Note, these keywords can
be supplied in any order.

e paranmeters(register-1ist)

The par anet er s characteristic passes arguments to aroutine in
specific registers.

Each iteminthe regi st er-1i st describes one parameter that is
passed to the routine.

Y ou can pass structure arguments by value, with the restriction that
each member of the structure is passed in a separate parameter
location. Doing so, however, may produce code that is slower
because of the large number of registers used. The compiler does not
diagnose this condition.

Valid registers for the par anmet er s option include integer registers
RO through R25 and floating-point registers FO through F30.

Structure types require at least one register for each field. The
compiler verifies that the number of registers required for a structure
type is the same as the number provided in the pragma.

e result (register-1ist)

The compiler needs to know which registers will be used to return
the value from the function. Usether esul t characteristic to pass
this information.

If afunction does not return a value (that is, the function has a return
type of voi d) , do not specify r esul t as part of the linkage.

Valid registers for the r egi st er option include general-purpose
registers RO through R25 and floating-point registers FO through

Pragma Preprocessor Directives 3—7

F30.

e preserved(register-1ist)
nopreserve(regi ster-1ist)
notused (regi ster-11ist)
not needed ((I p))

The compiler needs to know which registers are used by the function
and which are not, and of those used, whether they are preserved
across the function call. To specify this information, use the

pr eser ved, nopr eserve, not used, and not needed options:

— A preserved register contains the same value after a call to
the function as it did before the call.

— A nopreserve register does not necessarily contain the same
value after a call to the function as it did before the call.

— A not used register is not used in any way by the called
function.

— Thenot needed characteristic indicates that certain items are
not needed by the routines using this linkage. Thel p keyword
specifies that the Linkage Pointer register (R27) does not need to
be set up when calling the specified functions. The linkage
pointer is required when the called function accesses global or
stati c data You must determine whether it is valid to specify
that the register is not needed.

Valid registers for the pr eser ved, nopr eser ve, and not used
options include general -purpose registers RO through R30, and
floating-point registers FO through F30.

The #pr agnma | i nkage directive does not support structures containing
nested substructures as parameters or function return types with specia
linkages. Functions that have a special linkage associated with them do not
support parameters or return types that have a union type.

The following characteristics specify a si npl e-regi ster-1i st
containing two elements (registers F3 and F4); and aregi ster-1i st
containing two elements (the register RO and a sublist containing the registers
FO and F1):

nopreserve(f3, f4)
paraneters(r0, (fO, f1))

3-8 Pragma Preprocessor Directives

The following example shows a linkage using such characteristics:

#pragma | i nkage ny_link=(nopreserve(f3,f4),
paraneters(r0, (f0,f1)),
not needed (I p))

The parenthesized notation in ar egi st er -/ i st describes arguments and
function return values of type st r uct , where each member of the st r uct
is passed in a single register. In the following example, sanpl e_I i nkage
specifies two parameters — the first is passed in registers RO, R1, and R2 and
the second is passed in F1:
struct sanple_struct_t {

int A B;

short C,

} sanple_struct;

#pragma | i nkage sanpl e_|linkage = (paraneters ((r0, r1, r2), f1))
void sub (struct sanple_struct_t pl, double p2) { }

mai n()
doubl e d;

sub (sanpl e_struct, d);

3.5 The #pragma member_alignment Directive

By default, the compiler aligns structure members on natural boundaries.

Use the #pr agma [no] menber _al i gnnent {speci fier}
preprocessor directive (supported by the C compiler using the —newc flag) to
determine the byte alignment of structure members.

This pragma has the following formats:

#pragma member_alignment[save| restore]
#pragma nomember_alignment

Use #pragma nmenber _al i gnnent to specify natural-boundary
aignment of structure members. When #pr agma nmenber _al i gnnent is
used, the compiler aligns structure members on the next boundary appropriate
to the type of the member, rather than on the next byte. For instance, ani nt
variable is aligned on the next longword boundary; ashort variableis
aligned on the next word boundary.

Where the #pr agna [no] nenber _al i gnent directives alow you to
choose between natural and byte alignment, the pr agna pack directive
alows you to specify structure member alignment on byte, word, longword,
or quadword boundaries. See Section 3.7 for more information on
#pragna pack.

Pragma Preprocessor Directives 3-9

With any combination of #pr agnma menber _al i gnnent
#pr agma nonmenber _al i gnnment , and #pr agma pack, each pragma
remains in effect until the next one is encountered.

The #pr agma menber _al i gnnent save and

#pragma nenber _al i gnment r est or e directives can be used to save
the current state of the member_alignment (including pack alignment) and to
restore the previous state, respectively. The ability to control the state is
necessary for writing header files that require nenber _al i gnrment or
nonenber _al i gnnent , or that require inclusion in a

menber _al i gnnent that is aready set.

3.6 The #pragma message Directive

The #pr agna nessage directive (supported by the C compiler using the
—newc flag) controls the issuance of individual diagnostic messages or
groups of diagnostic messages. The use of this pragma overrides any
command-line flags that may affect the issuance of messages.

The #pr agna nessage directive has the following formats:
#pragma message[enable| disable] (message-list)
#pragma message[save| restore]

enabl e | disable nessage-/ist

« enabl e — Enables issuance of the messages specified in the
message list.

e di sabl e — Disables issuance of the messages specified in the
message list.

e nessage-list
The nessage- | i st can be one of the following:

— A single message identifier. Usethe-ver bose flag onthecc
command to obtain the message identifier.

— The name of a message group:
e ALL — Messagesin the compiler
* CHECK — Messages about potentially poor coding practices
» PORTABLE — Messages about portability

— A single message identifier enclosed in parentheses.

— A message group name enclosed in parentheses.

— A comma-separated list of message identifiers or group names,
freely mixed, enclosed in parentheses.

Only messages of severity Warning or Information can be

3-10 Pragma Preprocessor Directives

disabled. If the message has severity of Error or Fatal, it is
issued regardless of any attempt to disable it.

The default is to issue al diagnostic messages for the selected
compiler mode except those in the CHECK group, which must be
explicitly enabled to display its messages.

save | restore

e save — Saves the current state of which messages are enabled and
disabled.

e restore — Restores the previous state of which messages are
enabled and disabled.

Thesave and r est or e flags are useful primarily within header
files.

3.7 The #pragma pack Directive

The C compiler uses the pack pragmato change the alignment restrictions
on all members of the structure. The pack pragma must come prior to the
entire structure definition because it acts on the whole structure. The syntax
of this pragma s as follows:

#pragma pack (n)
The nisanumber (such as 1, 2, or 4) that specifies that subsequent structure
members be aligned on n-byte boundaries. If you supply a value of 0 (zero)

for n, the alignment reverts to the default, which may have been set by the
—Zpn flag to the cc command.

3.8 The #pragma pointer_size Directive
This directive controls pointer size allocation for the following:
* References
» Pointer declarations
* Function declarations
e Array declarations

This pragma has the following syntax:
#pragma pointer_size{ long| short| 64| 32 } | { restore| save }

The keywords | ong and 64 set all pointer sizes as 64-bitsin all declarations
that follow this directive, until the compiler encounters another

Pragma Preprocessor Directives 3—-11

#pragma poi nt er _si ze directive.

The keywords shor t and 32 set all pointer sizes as 32-bits in declarations
that follow this directive, until the compiler encounters another
#pr agma poi nt er _si ze directive.

The save keyword saves the current pointer size and the r est or e keyword
restores the saved pointer size. Thesave andr est or e options are
particularly useful for specifying mixed pointer support and for protecting
header files that interface to older objects. Objects compiled with multiple
pointer size pragmas will not be compatible with old objects, and the
compiler cannot discern that incompatible objects are being mixed.

The use of short pointersis restricted to DEC C++ and the C compilers
resident on Digital UNIX. Programs should not attempt to pass short
pointers from C++ routines to routines written in any language other than the
C programming language. Also, DEC C++ may require explicit conversion
of short pointers to long pointers in applications that use short pointers. You
should first port those applications in which you are considering using short
pointers, and then analyze them to determine if short pointers would be
beneficial. A difference in the size of a pointer in a function declaration is
not sufficient to overload a function.

The C compiler (using the —newc flag) issues an error level diagnostic if it
encounters any of the following conditions:

» Two functions defined differ only with respect to pointer sizes.
» Two functions differ in return type only with respect to pointer size.

3.9 The #pragma use_linkage Directive

After defining a special linkage with the #pr agma | i nkage directive, as
described in Section 3.4, use the #pr agma use_| i nkage directive
(supported by the C compiler using the —newc flag) to associate the linkage
with a function.

This pragma has the following format:
#pragma use_linkage linkage-name (routinel, routine2, ...)
I'i nkage- nane

This is the name of a linkage previously defined by the
#pragna | i nkage directive.

routinel, routine2, ...
These are the names of functions that you want associated with the
specified linkage.

The #pr agnma use_| i nkage directive must appear in the source file
before any use or definition of the specified routines. Otherwise, the results

3-12 Pragma Preprocessor Directives

3.10

are unpredictable.

The following example defines a special linkage and associates it with a
routine that takes three integer parameters and returns a single integer result
in the same location where the first parameter was passed:

#pragma | i nkage exanpl e_l i nkage (paraneters(rl16, r17, r19), result(r16))
#pragma use_l i nkage exanpl e_| i nkage (sub)
int sub (int pl, int p2, short p3);

mai n()
{

int result;

result = sub (1, 2, 3);
}

In this example, ther esul t (r 16) option indicates that the function
result will be returned in R16 instead of the usual location (R0O). The
par anet er s option indicates that the three parameters passed to sub
should be passed in R16, R17, and R19.

The #pragma weak Directive

The C compiler uses the weak pragma to define a new weak external symbol
and associates this new symbol with an external symbol. The syntax for this
pragmais as follows:

#pragma weak (secondary-name, primary-name)

See Section 2.8 for information on strong and weak symbols.

Pragma Preprocessor Directives 3—-13

Shared Libraries 4

Shared libraries are the default system libraries. The default behavior of the
C compiler is to use shared libraries when performing compile and link
operations.

This chapter discusses the following topics:
* Overview of shared libraries

* Resolving symbols

» Linking with shared libraries

* Turning off shared libraries

* Creating shared libraries

» Working with private shared libraries

e Using quickstart

» Debugging programs linked with shared libraries
» Using shared libraries from programs

» Protecting shared library files

» Shared library versioning

e Shared library restrictions

4.1 Shared Library Overview

Shared libraries consist of executable code that can be located at any
available address in memory. Only one copy of a shared library’s
instructions is loaded, and the system shares that one copy among multiple
programs instead of loading a copy for each program using the library, asis
the case with archive (static) libraries.

Programs that use shared libraries enjoy the following significant advantages
over programs that use archive libraries:

» Programs linked with shared libraries do not need to be recompiled and
relinked when changes are made to those libraries.

» Unlike programs linked with archive libraries, programs linked with
shared libraries do not include library routines in the executable program

file. Programs linked with shared libraries include information to load
the shared library and gain access to its routines and data at load time.

This means that use of shared libraries occupies less space in memory
and on disk. When multiple programs are linked to a single shared
library, the amount of physical memory used by each process can be
significantly reduced.

From a user perspective, the use of shared libraries is transparent. In
addition, you can build your own shared libraries and make them available to
other users. Most object files and archive libraries can be made into shared
libraries. See Section 4.5 for more information on which files can be made
into shared libraries.

Shared libraries differ from archive libraries in the following ways:

* You build shared libraries by using the | d command with the appropriate
options. You create archive libraries by using the ar command. For
more information on the | d command, see the | d(1) reference page.

* When shared libraries are linked into an executable program, they can be
positioned at any available address. At run time, the loader
(/ sbi n/ | oader) assigns alocation in the process's private virtua
address space. In contrast, when archive libraries are linked into an
executable program, they have afixed location in the process's private
virtual address space.

» Shared librariesreside in the/ usr/ shl i b directory. Archive libraries
resdeinthe/ usr/|i b directory.

» Shared library naming convention specifies that a shared library name
begins with the prefix | i b and ends with the suffix . so. For example,
the library containing common C language functionsis| i bc. so.
Archive library names also begin with the prefix | i b, but end with the
suffix . a.

Figure 4-1 illustrates the difference between the use of archive and shared
libraries.

4-2 Shared Libraries

Figure 4-1: Use of Archive and Shared Libraries

Application using archive library:

processl process2

scanf.o scanf.o
from libc from libc

kernel

Application using shared library:

processl process2

information information
to load libc to load libc

libc

kernel

ZK-0474U-R

Resolving Symbols

Symbol resolution is the process of mapping an unresolved symbol imported
by a program or shared library to the pathname of the shared library that
exports that symbol. Symbols are resolved in much the same way for shared
and archive libraries, except that the fina resolution of symbols in shared
objects does not occur until a program is invoked.

The following sections describe:

» Search path of the linker (I d)

» Search path of the run-time loader (/ sbi n/ | oader)
* Name resolution

Shared Libraries 4-3

* Optionsto the | d command to determine behavior regarding unresolved
external symbols

4.2.1 Search Path of the Linker

4.2.2

When the linker (I d) searches for files that have been specified by using the

—| option on the command line, it searches each directory in the order shown
in the following list, looking first in each directory for a shared library (. so)
file.

1. /usr/shlib
fusr/ccs/lib
fusr/libl/crplrs/cc
fusr/lib
fusr/local/lib

6. /var/shlib

o w DN

If the linker does not find a shared library, it searches through the same
directories again, looking for an archive (. a) library. You can prevent the
search for archive libraries by using the —no_ar chi ve option to the |l d
command.

Search Path of the Loader

Unless otherwise directed, the run-time loader (/ sbi n/ | oader) follows
the same search path as the linker (I d). You can use one of the following
methods to direct the run-time loader to look in directories other than those
specified by the default search path:

» Specify adirectory path by using the —r pat h st ri ng option to thel d
command and setting st ri ng to the list of directories to be searched.

e Set the environment variable LD LI BRARY_ PATH to point to the
directory in which you keep your private shared libraries before executing
your programs. The run-time loader examines this variable when the
program is executed; if it is set, the loader searches the paths it defines
before searching the list of directories discussed in Section 4.2.1.

4—-4 Shared Libraries

4.2.3

You can set the LD_LI BRARY_PATH variable by using either of the
following methods:

— Set it as an environment variable at the shell prompt.

For the C shell, use the set env command followed by a colon-
separated path. For example:

% setenv LD LI BRARY_PATH . : $HOVE/ testdir

For the Bourne and Korn shells, set the variable and then export it.
For example:

$ LD LI BRARY_PATH=. : $HOVE/ t est di r
$ export LD LI BRARY_PATH

These examples set the path so that the loader looks first in the
current directory and then in your $HOVE/ t est di r directory.

— Add the definition of the variable to your login or shell startup files.
For example, you could add thisline to your . | ogi n or . cshrc
fileif you work in the C shell:

setenv LD LI BRARY_PATH .: $HOVE/ testdir:/usr/shlib

If the loader cannot find the library it needs in the paths defined by any of the
preceding steps, it looks through the directories specified in the default path
described in the previous section. In addition, you can usethe RLD ROOT
environment variable to alter the search path of the run-time loader. For
more information, see the | oader (5) reference page.

Name Resolution

The semantics of symbol name resolution are based on the order in which the
object file or shared object containing a given symbol appears on the link
command line. The linker (I d) normally takes the leftmost definition for any
symbol that must be resolved.

The sequence in which names are resolved proceeds as if the link command
line were stored in the executable program. When the program runs, all
symbols that are accessed during execution must be resolved. The loader
aborts execution of the program if an unresolved text symbol is accessed.

For information on how to determine the behavior of the system regarding
unresolved symbols, see Section 4.2.4. The following sequence is followed
to resolve references to any symbol from the main program or from alibrary:

1. If asymbol is defined in an object or in an archive library from which
you build the main executable program file, that symbol is used by the
main program file and all of the shared libraries that it uses.

2. If the symbol is not defined by the preceding step and is defined by one
or more of the shared objects linked with the executable program, then

Shared Libraries 4-5

4.2.4

the leftmost library on the link command line containing a definition is
used.

3. If thelibraries on the link command line were linked to be dependent on
other libraries, then the dependencies of libraries are searched in a
breadth-first fashion instead of being searched in a depth-first fashion.

For example, executable program A is linked against shared library B and
shared library D. Library B is linked against library C as shown in the
following diagram:
A
I\
B D

/
C

The search order is A-B-D-C. In a breadth-first search, the grandchildren
of anode are searched after al the children have been searched.

4. If the symbol is not resolved in any of the previous steps, the symbol
remains unresolved.

Note that because symbol resolution aways prefers the main object, shared
libraries can be set up to call back into a defined symbol in the main object.
Likewise, the main object can define a symbol that will override (preempt or
hook) a definition in a shared library.

Options to Determine Handling of Unresolved External
Symbols

The default behavior of the linker when building executable programs differs
from its default behavior when building shared libraries:

* When building executable programs, an unresolved symbol produces an
error by default. The link fails and the output file is not marked
executable.

* When building shared libraries, an unresolved symbol produces only a
warning message by default.

Y ou can control the behavior of the linker by using the following flags to the
| d command:

—expect _unresol ved pattern
This flag specifies that any unresolved symbols matching pat t er n are
neither displayed nor treated as warnings or errors. This flag can occur
multiple times on a link command line. The patterns use shell wildcards

4—6 Shared Libraries

(?,*,[,]) and must be quoted properly to prevent expansion by the
shell. Seesh(1), csh(1), and ksh(1) for more information.

—war ni ng_unr esol ved
This flag specifies that all unresolved symbols except those matching the
—expect _unr esol ved pattern produce warning messages. This
mode is the default for linking shared libraries.

—error_unresol ved
This flag causes the linker to print an error message and return a
nonzero error status when alink is completed with unresolved symbols
other than those matching the —expect _unr esol ved pattern. This
mode is the default for linking executable images.

4.3 Linking with Shared Libraries

When compiling and linking a program, using shared libraries is the same as
using static libraries. For example, the following command compiles
program hel | 0. ¢ and links it against the default system C shared library
l'ibc. so:

%cc -0 hello hello.c

You can pass certain | d command flags to the cc command to allow
flexibility in determining the search path for a shared library. For example,
you can use the —Ldi r flag with the cc command to change the search path
by adding di r before the default directories, as in the following example:

%cc -0 hello hello.c -L/usr/person -Imylib

To exclude the default directories from the search and limit the search to
specific directories and specific libraries, specify the —L flag first with no
arguments. Then, specify it again with the directory to search, followed by
the —I flag with the name of the library to search for. For example, to limit
the search path to / usr/ per son for use with the private library

['i bnyli b. so, enter the following command:

%cc -0 hello hello.c -L -L/usr/person -Inylib

Note that because the cc command aways implicitly links in the C library,
the preceding example requiresthat acopy of | i bc. so or | i bc. a bein
the/ usr/ per son directory.

4.4 Turning Off Shared Libraries

In application linking, the default behavior is to use shared libraries. To link
an application that does not use shared libraries, you must use the

Shared Libraries 4-7

—non_shar ed flag to the cc or I d commands when you link that
application.

For example,
% cc -non_shared -0 hello hello.c

Although shared libraries are the default for most programming applications,
some applications cannot use shared libraries:

» Applications that need to run in single-user mode cannot be linked with
shared libraries because the / usr/ shl i b directory must be mounted to
provide access to shared libraries.

» Applications whose sole purpose is single-user benchmarks should not be
linked with shared libraries.

4.5 Creating Shared Libraries

45.1

45.2

Y ou create shared libraries by using the | d command with the —shar ed
flag. You can create shared libraries from object files or from existing
archive libraries.

Creating Shared Libraries from Object Files

To create the shared library | i bbi g. so from the object files bi gnod1l. o
and bi gnod2. o, enter the following command:

% | d -shared -no_archive -o |ibbig.so bignpdl.o bignnd2.0 -Ic

The—no_ar chi ve flag tells the linker to resolve symbols using only
shared libraries. The —I ¢ flag tells the linker to look in the system C shared
library for unresolved symbols.

To make a shared library available on a system level by copying it into the
[usr/shli b directory, you must have root privileges. System shared
libraries should be located in the/ usr/ shl i b directory or in one of the
default directories so that the run-time loader (/ sbi n/ | oader) can locate
them without requiring every user to set the LD LI BRARY _PATH variable
to directories other than those in the default path.

Creating Shared Libraries from Archive Libraries

You can also create a shared library from an existing archive library by using
thel d command. The following example shows how to convert the static
library ol d. a into the shared library | i bol d. so:

4-8 Shared Libraries

%I|d -shared -no_archive -o libold.so -all old.a -none -lc

In this example, the —al | flag tells the linker to link al the objects from the
archivelibrary ol d. a. The—none flag tells the linker to turn off the —al |
flag. Note that the—no_ar chi ve flag applies to the resolution of the—I ¢
flag but not to ol d. a (because ol d. a is explicitly mentioned).

4.6 Working with Private Shared Libraries

In addition to system shared libraries, any user can create and use private
shared libraries. For example, you have three applications that share some
common code. These applications are named user , db, and adni n. You
decide to build a common shared library, | i bcomon. so, containing all
the symbols defined in the shared filesi o_uti | . ¢, defi nes. ¢, and
net wor k. ¢. To do this, take the following steps:

1. Compile each C file that will be part of the library:

%cc -c io_util.c
% cc -c defines.c
% cc -c network.c

2. Create the shared library | i bcormon. so by using the | d command:
% | d -shared -no_archive \
? -0 libconmon.so io util.o defines.o network.o -1lc
3. Compile each C file that will be part of the application:
%cc -c user.c
% cc -0 user user.o -L. -lcommon

Note that the second command in this step tells the linker to look in the
current directory and use the library | i bcomon. so.

Compile db. ¢ and admi n. ¢ in the same manner:

%cc -c db.c
%cc -o db db.o -L. -Ilconmon

% cc -c adnmin.c
%cc -o admn admn.o -L. -lconmon

4, Copy | i bcommon. so into adirectory pointed to by
LD LI BRARY_PATH, if it is not already in that directory.

5. Run each compiled program (user , db, and admni n).

Shared Libraries 4-9

4.7 Using Quickstart

One advantage of using shared libraries is the ability to change a library after
al executable images have been linked and to fix bugsin the library. This
ability is very useful during the development phase of an application.

During the production cycle, however, the shared libraries and applications
you develop are often fixed and will not change until the next release. If this
is the case, you can take advantage of quickstart, a method of using
predetermined addresses for al symbols in your program and libraries.

No special link options are required to prepare an application for
quickstarting; however, a certain set of conditions must be satisfied. If an
object cannot be quickstarted, it still runs, but startup time is slower.

When the linker creates a shared object (a shared library or a main executable
program that uses shared libraries), it assigns addresses to the text and data
portions of the object. These addresses are what might be called
“‘quickstarted addresses.’” The linker performs al dynamic relocations in
advance, as if the object will be loaded at its quickstarted address.

Any object depended upon is assumed to be at its quickstarted address.
References to that object from the original object have the address of the
depended-upon object set accordingly.

In order to use quickstart, an object must meet the following conditions:

» Theobject’s actual run-time memory location must match the quickstart
location. The run-time loader tries to use the quickstart location.
However, if another library is aready occupying that spot, the object will
not be able to use it.

» All objects depended upon must be quickstarted.

» All objects depended upon must be unchanged since they were linked. If
objects have changed, addresses of functions within the library might
have moved or new symbols might have been introduced that can affect
the loading. (Note that you might still be able to quickstart objects that
have been modified since linking by running the f i xso utility on the
changed objects. Seethef i xso(1) reference page for additional
information.)

The operating system detects these conditions by using checksums and
timestamps.

When you build libraries, they are given a quickstart address. Unless each
library used by an application chooses a unique quickstart address, the
quickstart constraints cannot be satisfied. Rather than worry about addresses
on an application basis, you should give each shared library you build a
unigue quickstart address to ensure that all of your objects can be loaded at
their quickstart addresses.

4-10 Shared Libraries

The linker maintains the so_| ocat i ons database to register each
quickstart address when you build alibrary. The linker avoids addresses
aready in the file when choosing a quickstart address for a new library.

By default, | d runs as though the - updat e_regi stry
./ so_Il ocat i ons flag has been selected, so theso_I| ocat i ons filein
the directory of the build is updated (or created) as necessary.

To ensure that your libraries do not collide with shared libraries on your
system, enter these commands:
% cd <directory_of build>

% cp /usr/shlib/so_| ocations .
% chnod +w so_| ocati ons

Y ou can now build your libraries. If your library builds occur in multiple
directories, use the —updat e_r egi stry flag to thel d command to
explicitly specify the location of acommon so_| ocat i ons file. For
example:

% |d -shared -update_registry /conmon/directory/so_|locations ...

If you install your shared libraries globally for all users of your system,
update the system-wide so_| ocat i ons file. Enter the following
commands as root, with shared I i br ary. so being the name of your
actual shared library:

cp shared_library.so lusr/shlib

nmv /usr/shlib/so_locations /usr/shlib/so_|locations.old
cp so_locations /usr/shlib

Of coursg, if several people are building shared libraries, the common

so_| ocat i ons file must be administered as any shared database would be.
Each shared library used by any given process must be given a unique
guickstart address in the file. The range of default starting addresses that the
linker assigns to main executabl e files does not conflict with the quickstarted
addresses it creates for shared objects. Because only one main executable file
is loaded into a process, an address conflict never occurs between a main file
and its shared objects.

If you are building only against existing shared libraries (and not building
your own libraries), you do not need to do anything special. Aslong asthe
libraries meet the previously described conditions, your program will be
guickstarted unless the libraries themselves are not quickstarted. Most shared
libraries shipped with the operating system are quickstarted.

If you are building shared libraries, you must first copy theso | ocat i ons
file as previously described. Next, you must build all shared librariesin
bottom-up dependency order, using theso_| ocat i ons file. You should
mention all libraries that are depended upon on the link line. After all
libraries are built, you can then build your applications.

Shared Libraries 4-11

4.7.1 Verifying That an Object Is Quickstarting

To test whether an application’s executable program is quickstarting, set the
_RLD_ARGS environment variableto —qui ckst art _onl y and run the
program. For example:

% setenv _RLD ARGS - quickstart_only

% f 0o

(non-qui ckstart out put)

21887:foo: /sbin/loader: Fatal Error: NON- QU CKSTART detected \
- QUI CKSTART nust be enforced

If the program runs successfully, it is quickstarting. If aload error message
is produced, the program is not quickstarting.

4.7.2 Tracking Down Quickstart Problems Manually

To determine why an executable program is not quickstarting, you can use
thef i xso utility as described in Section 4.7.3 or you can manually test for
the conditions described in the following list of requirements. Using f i xso
iseasier, but it is helpful to understand the process involved:

1. The executable program must be quickstartable.
Test the quickstart flag in the dynamic header. The value of the
quickstart flag is (0x00000001). For example:
% odunp -D foo | grep FLAGS

(non-quickstart output)
FLAGS: 0x00000000

(quickstart output)
FLAGS: 0x00000001

If the quickstart flag is not set, one or more of the following conditions
exists:

— The executable program was linked with unresolvable symbols.
Make sure that the | d flags - war ni ng_unr esol ved and
- expect _unr esol ved are not used when the executable program
islinked. Fix any ‘*unresolved symbol’’ errors that occur when the
executable program is linked.

— The executable program is not linked directly against al of the
libraries that it uses a runtime. Addtheflag—transitive_link
to the |l d flags used when the executable program is built.

4-12 Shared Libraries

2. The executable program’s dependencies must be quickstartable.
Get alist of an executable program’ s dependencies:
% odunp -DI foo

(quickstart output)
%| | BRARY LI ST SECTI ON***

Nare Ti me- St anp CheckSum Fl ags Version
f oo:

i bX11. so Sep 17 00:51:19 1993 0x78c81c78 NONE

libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.1

|'i bdnet _stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf. 1
Test the quickstart flag in the dynamic header of each of the
dependencies:

%cd /usr/shlib
% odunp -D libX11l.so libc.so |libdnet_stub.so | grep FLAGS

(quickstart output)

FLAGS: 0x00000001
FLAGS: 0x00000001
FLAGS: 0x00000001

If any of these dependencies cannot be quickstarted, the same measures
suggested in step 1 can be applied here, provided that the shared library
can be rebuilt by the user.

3. The timestamp and checksum information must match for all
dependencies.

The dependencieslist in step 2 shows the expected values of the
timestamp and checksum fields for each of f 00’s dependencies. Match
these values against the current values for each of the libraries:

%cd /usr/shlib
% odunp -D libX1l1l.s0 libc.so |ibdnet_stub.so | \
grep TI ME_STAMP

(quickstart output)

TI ME_STAVP: (0x2c994247) Fri Sep 17 00:51:19 1993
TI ME_STAMP: (0x2c99211e) Thu Sep 16 22:29:50 1993
TI ME_STAVP: (0x2c992773) Thu Sep 16 22:56:51 1993

% odunp -D libX11.s0o libc.so |ibdnet_stub.so | grep CHECKSUM

(quickstart output)

| CHECKSUM 0x78c81c78
| CHECKSUM 0xba22309c
| CHECKSUM 0x1d568a0c

If any of the tests in these examples shows a timestamp or checksum
mismatch, relinking the program should fix the problem.

Y ou can use the version field to verify that you have identified the correct

Shared Libraries 4-13

libraries to be loaded at run time. To test the dependency versions, use
the odunp command as in the following example:
% odunp -D libX11.so0 | grep | VERSI ON
% odunp -D libc.so | grep | VERSI ON
| VERSI ON: osf. 1

% odunp -D |ibdnet_stub.so | grep | VERSI ON
| VERSI ON: osf. 1

The lack of an | VERSI ON entry is equivalent to a blank entry in the
dependency information. It is also equivalent to the specia version
_null.

If any version mismatches are identified, you can normally find the
correct matching version of the shared library by appending the version
identifier from the dependency list or _nul | to the path/ usr/ shli b.

4. Each of the executable program’s dependencies must also contain
dependency lists with matching timestamp and checksum information.

Repesat step 3 for each of the shared libraries in the executable program’s
list of dependencies:
% odunp -D |ibX11. so
(quickstart output)
L| BRARY LI ST SECTI ON

Nare Ti me- St anp CheckSum Fl ags Version
i bX11. so:

l'i bdnet _stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf. 1

libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.1

% odunp -D libdnet_stub.so libc.so | grep TlI ME_STAW
TI ME_STAMP: (0x2¢992773) Thu Sep 16 22:56:51 1993
TI ME_STAMP: (0x2c99211e) Thu Sep 16 22:29:50 1993

% odunp -D libdnet_stub.so libc.so | grep CHECKSUM
| CHECKSUM 0x1d568a0c
| CHECKSUM 0xba22309c

If the timestamp or checksum information does not match, the shared
library must be rebuilt to correct the problem. Rebuilding a shared
library will change its timestamp and, sometimes, its checksum. Rebuild
dependencies in bottom-up order so that an executable program or shared
library is rebuilt after its dependencies have been rebuilt.

4.7.3 Tracking Down Quickstart Problems with the fixso Utility

Thefi xso utility can identify and repair quickstart problems caused by
timestamp and checksum discrepancies. It can repair programs as well as the
shared libraries they depend on, but it might not be able to repair certain
programs, depending on the degree of symbolic changes required.

4-14 Shared Libraries

Thef i xso utility cannot repair a program or shared library if any of the
following restrictions apply:

» The program or shared library depends on other shared libraries that are
not quickstartable. This restriction can be avoided by using f i xso to
repair shared libraries in bottom-up order.

* New name conflicts are introduced after a program or shared library is
created. Name conflicts result when the same global symbol name is
exported by two or more shared library dependencies or by the program
and one of its shared library dependencies.

* The program’s shared library dependencies are not all loaded at their
quickstart locations. A shared library cannot be loaded at its quickstart
locations if other shared libraries are loaded at that location and are
aready in use. Thisrule applies system-wide, not just to individual
processes. To avoid this restriction, use acommon so_| ocat i ons file
for registering unique addresses for shared libraries.

* The program or shared library depends on an incompatible version of
another shared library. This restriction can be avoided by instructing
f i xso where to find a compatible version of the offending shared
library.

Thef i xso utility can identify quickstart problems as shown in the
following example:

% fixso -n hello.so
fixso: Warning: found ’'/usr/shlib/libc.so (0x2d93b353) which does

not match tinestanp 0x2d6ae076 in liblist of hello.so, will fix
fixso: Warning: found ’'/usr/shlib/libc.so (0xc777ff16) which does

not match checksum 0x70e62eeb in liblist of hello.so, will fix

The —n flag suppresses the generation of an output file. Discrepancies are
reported, but f i xso does not attempt to repair the problems it finds. The
following example shows how f i xso can be used to repair quickstart
problems:

% fixso -o ./fixed/ main main

fixso: wWarning: found '/usr/shlib/libc.so (0x2d93b353) which does
not match tinestanp 0x2d7149c9 in liblist of main, will fix

% chrmod +x fixed/ main

The —o flag specifies an output file. If no output file is specified, f i xso
uses a. out . Notethat f i xso does not create the output file with execute
permission. The chnmod command alows the output file to be executed.
This change is necessary only for executable programs and can be bypassed
when using f i Xxso to repair shared libraries.

If a program or shared library does not require any modifications to repair
quickstart, f i xso indicates this as shown in the following example:

Shared Libraries 4-15

%fixso -n /bin/ls
no fixup needed for /bin/ls

4.8 Debugging Programs Linked with Shared Libraries

Debugging a program that uses shared libraries is essentially the same as
debugging a program that uses archive libraries.

The dbx debugger's| i st obj command displays the names of the
executable programs and al of the shared libraries that are known to the
debugger. Refer to Chapter 5 for more information about using dbx.

4.9 Loading a Shared Library at Run Time

In some situations, you might want to load a shared library from within a
program. This section includes two short C program examples and a
makefile to demonstrate how to load a shared library at run time.

The following example (pr . ¢) shows a C source file that prints out a simple
message:
printnsg()

{

printf("Hello world fromprintnsg!\n");

The next example (usedl. c) defines symbols and demonstrates how to use
the dl open function:;

#i ncl ude <stdio. h>
#i ncl ude <dl fcn. h>

/* Al errors fromdl* routines are returned as NULL */
#def i ne BAD(x) ((x) == NULL)

mai n(int argc, char *argv[])
{

voi d *handl e;

void (*fp)();

/
Using "./" prefix forces dlopen to look only in the current
current directory for pr.so. Oherwise, if pr.so were not
found in the current directory, dlopen would use rpath,
* LD_LI BRARY_PATH and default directories for |ocating pr.so.
*/
handl e = dl open("./pr.so", RTLD LAZY);
if (!BAD(handle)) {

fp = dl syn(handl e, "printnsg");

if (!BAX(fp)) {

/*

* Here is where the function
* we just |ooked up is called.
*/

(*ftp) O

* ok ok Ok

4-16 Shared Libraries

4.10

}

el se {
perror("dl syn');
fprintf(stderr, "%\n", dlerror());

el se {
perror ("dl open");
fprintf(stderr, "%\n", dlerror());

dl cl ose(handl e);

}

The following example shows the makefile that makes pr . o, pr . so,
so_| ocations, and usedl . o.

#this is the nakefile to test the exanples
all: runit

runit: usedl pr.so
./ usedl

usedl: usedl.c
$(CCO) -o usedl usedl.c

pr.so: pr.o
$(LD) -0 pr.so -shared pr.o -lc

Protecting Shared Library Files

Because of the sharing mechanism used for shared libraries, normal file
system protections do not protect libraries against unauthorized reading. For
example, when a shared library is used in a program, the text part of that
library can be read by other processes even when the following conditions
exist:

e Thelibrary’s permissions are set to 600.

» The other processes do not own the library or are not running with their
UID set to the owner of that library.

Only the text part of the library, not the data segment, is shared in this
manner.

To prevent unwanted sharing, link any shared libraries that need to be
protected by using the linker's —T and —D flags to put the data section in the
same 8-megabyte segment as the text section. For example, enter a
command similar to the following:

Shared Libraries 4-17

411

%ld -shared -o |ibfoo.so -T 30000000000 \
- D 30000400000 object _files

In addition, segment sharing can occur with any file that uses the mmap
system call without the PROT_WRI TE flag as long as the mapped address
falls in the same memory segment as other files using nmap.

Any program using nrap to examine files that might be highly protected can
ensure that no segment sharing takes place by introducing a writable page
into the segment before or during the nrap. The easiest way to provide
protection is to use the mmap system call on the file with PROT_WRI TE
enabled in the protection, and use the npr ot ect system call to make the
mapped memory read-only. Alternatively, to disable all segmentation and
avoid any unauthorized sharing, enter the following in the configuration file:

segnmentation 0

Shared Library Versioning

One of the advantages of using shared libraries is that a program linked with
a shared library does not need to be rebuilt when changes are made to that
library. When a changed shared library is installed, applications should work
as well with the newer library as they did with the older one.

Note

Because of the need for address fixing, it can take longer to load
an existing application that uses an older version of a shared
library when a new version of that shared library is installed.
You can avoid this kind of problem by relinking the application
with the new library.

4.11.1 Binary Incompatible Modifications

Infrequently, a shared library might be changed in away that makes it
incompatible with applications that were linked with it before the change.
This type of change is referred to as a binary incompatibility. A binary
incompatibility introduced in a new version of a shared library does not
necessarily cause applications that rely on the old version to break (that is,
violate the backward compatibility of the library). The system provides
shared library versioning to allow you to take steps to maintain a shared
library’ s backward compatibility when introducing a binary incompatibility in
the library.

4-18 Shared Libraries

Among the types of binarily incompatible changes that might occur in shared
libraries are the following:

¢ Removal of documented interfaces

For example, if themal | oc() functioninl i bc. so were replaced with
afunction called (_ _mal | oc), programs that depend on the older
function would fail due to the missing mal | oc symbol.

* Modification of documented interfaces

For example, if a second argument to the mal | oc() function in

I'i bc. so were added, the new mal | oc() would probably fail when
programs that depend on the older function pass in only one argument,
leaving undefined values in the second argument.

* Modification of global data definitions

For example, if the type of the er r no symbol inl i bc. so were
changed from an i nt to al ong, programs linked with the older library
might read and write 32-bit values to and from the newly expanded 64-bit
dataitem. This might yield invalid error codes and indeterminate
program behavior.

This is by no means an exhaustive list of the types of changes that result in
binary incompatibilities. Shared library developers should exercise common
sense to determine whether any changeis likely to cause failuresin
applications linked with the library prior to the change.

4.11.2 Shared Library Versions

Y ou can maintain the backward compatibility of a shared library affected by
binarily incompatible changes by providing multiple versions of the library.
Each shared library is marked by a version identifier. You install the new
version of the library in the library’s default location, and the older, binary
compatible version of the library in a subdirectory whose name matches that
library’s version identifier.

For example, if a binarily incompatible change was madeto | i bc. so, the
new library (/ usr/ shli b/ 1i bc. so) must be accompanied by an instance
of the library before the change (/ usr/ shl i b/ osf. 1/11i bc. so).

In this example, the older, binary compatible version of | i bc. so is
“‘osf.1'’. After the changeis applied, the new | i bc. so is built with a new
version identifier. Because a shared library’s version identifier is listed in the
shared library dependency record of a program that uses the library, the
loader can identify which version of a shared library is required by an
application (see Section 4.11.6).

In the example, a program built with the older | i bc. so, before the binary
incompatible change, requires version *‘osf.1’’ of the library. Because the

Shared Libraries 4-19

version of / usr/ shli b/ 1i bc. so does not match the one listed in the
program’s shared library dependency record, the loader will look for a
matching versionin/ usr/shli b/ osf. 1.

Applications built after the binarily incompatible change will use
/usr/shlib/libc.so andwill depend on the new version of the library.
The loader will load these applications by using / usr/ shli b/1ibc. so
until some further binary incompatibility is introduced.

Table 4-1 describes the linker flags used to effect version control of shared
libraries.

Table 4-1: Linker Flags that Control Shared Library Versioning

Flag Description

—set _version version-string
Establishes the version identifiers associated with a
shared library. The string ver si on-stri ngis
either a single version identifier or a colon-separated
list of version identifiers. No restrictions are placed
on the names of version identifiers; however, it is
highly recommended that UNIX directory naming
conventions be followed.

If ashared library is built with this flag, any
program built against it will record a dependency on
the specified version or, if alist of version identifiers
is specified, the rightmost version specified in the
list. If ashared library is built with alist of version
identifiers, the run-time loader will allow any
program to run that has a shared library dependency
on any of the listed versions.

This flag is only useful when building a shared
library (with —shar ed).

—exact _version Sets a flag in the dynamic object produced by the
| d command that causes the run-time loader to
ensure that the shared libraries the object uses at run
time match the shared libraries used at link time.

This flag is used when building a dynamic
executable file (with —cal | _shar ed) or a shared
library (with —shar ed). Its use requires more
rigorous testing of shared library dependencies. In
addition to testing shared libraries for matching
versions, timestamps and checksums must also
match the timestamps and checksums recorded in
shared library dependency records at link time.

4-20 Shared Libraries

Y ou can use the odunp command to examine a shared library’ s versions
string, as set by using the—set _ver si on " ver si on- st ri ngflag of the
| d command that created the library. For example:

% odunmp -D /i brary-nane

The value displayed for the | VERSI ON field is the version string specified
when the library was built. |f a shared library is built without the
—set _versi on flag, no | VERSI ON field will be displayed. These shared
libraries are handled as if they had been built with the version identifier

nul | .

When | d links a shared object, it records the version of each shared library
dependency. Only the rightmost version identifier in a colon-separated list is
recorded. To examine these dependencies for any shared executable file or
library, use the following command:

% odunp - DI shared- obj ect - nane

4.11.3 Major and Minor Versions Identifiers

Digital UNIX does not distinguish between major and minor versions of
shared libraries.

Major versions are used to distinguish incompatible versions of shared
libraries. Minor versions typically distinguish different but compatible
versions of alibrary. Minor versions are often used to provide revision-
specific identification or to restrict the use of backward-compatible shared
libraries.

Digital UNIX shared libraries use a colon-separated list of version identifiers
to provide the versioning features normally attained through minor versions.

The sequence of library revisions that follows illustrates how revision-
specific identification can be added to the version list of a shared library
without affecting shared library compatibility.

Shared Library Version

|'i bm nor. so 3.0
i bm nor. so 3.1:3.0
i bm nor. so 3.2:3.1:3.0

Each new release of | i bni nor . so adds a new identifier at the beginning
of the version list. The new identifier distinguishes the latest revision from
its predecessors. Any executable files linked against any revision of

I'i brmi nor. so will record ‘*3.0"" as the required version, so no distinction
is made between the compatible libraries. The additional version identifiers

Shared Libraries 4-21

are only informational.

The sequence of library revisions that follows illustrates how the use of
backward-compatible shared libraries can be restricted:

Shared Library Version

libmnor2.so 3.0
libmnor2.so 3.0.3.1
libmnor2.so 3.0:3.1:32

In this example, programs linked with old versions of | i brm nor 2. so can
be executed with newer versions of the library, but programs linked with
newer versions of | i bmi nor 2. so cannot be executed with any of the
previous versions.

4.11.4 Full and Partial Versions of Shared Libraries

Y ou can implement a binary compatible version of a shared library as a
complete, independent object or as a partial object that depends directly or
indirectly on a complete, independent object. A fully duplicated shared
library takes up more disk space than a partial one, but involves simpler
dependency processing and uses less swap space. The reduced disk space
reguirements are the only advantage of a partial version of a shared library.

A partia shared library includes the minimum subset of modules required to
provide backward compatibility for applications linked prior to a binary
incompatible change in a newer version of the library. It islinked against
one or more earlier versions of the same library that provide the full set of
library modules. By this method, you can chain together multiple versions of
shared libraries so that any instance of the shared library will indirectly
provide the full complement of symbols normally exported by the library.

For example, version ‘‘osf.1'" of | i bxyz. so includes modules x. 0, y. 0,
and z. 0. It was built and installed using the following commands:

% I|d -shared -0 |ibxyz.so -set_version osf.1 \
X.0 y.0z.0 -lc

% mv |ibxyz.so /usr/shlib/libxyz.so

If, at some future date, | i bxyz. so requires a binarily incompatible change
that affects only module z. o, a new version, called ‘‘osf.2'’, and a partia
version, still called ‘*osf.1'", can be built as follows:

4-22 Shared Libraries

%I|d -shared -0 |ibxyz.so -set_version osf.2 x.0 \
y.0 new_z.o -lc

% v |ibxyz.so /usr/shlib/libxyz.so

% |d -shared -0 |ibxyz.so -set_version osf.1 z.0 \
-lxyz -lc

% v |ibxyz.so /usr/shlib/osf.1/1ibxyz.so

4.11.5 Linking with Multiple Versions of Shared Libraries

In general, applications are linked with the newest versions of shared
libraries. Occasionally, you might need to link an application or shared
library with an older, binary compatible version of a shared library. In such
acase, usethel d command's —L flag to identify older versions of the shared
libraries used by the application.

The linker issues a warning when you link an application with more than one
version of the same shared library. In some cases, the multiple version
dependencies of an application or shared library will not be noticed until it is
loaded for execution.

By default, the | d command tests for multiple version dependencies only for
those libraries it isinstructed to link against. To identify all possible
multiple version dependencies, use thel d command’s
—transitive_link flag to include indirect shared library dependencies
in the link step.

When an application is linked with partial shared libraries, the linker must
carefully distinguish dependencies on multiple versions resulting from partial
shared library implementations. The linker reports multiple version warnings
when it cannot differentiate between acceptable and unacceptable multiple
version dependencies.

In some instances, multiple version dependencies might be reported at link
time for applications that do not use multiple versions of shared libraries at
run time. Consider the libraries and dependenciesillustrated in Figure 4-2
and described in the following table.

Shared Libraries 4-23

Figure 4-2: Linking with Multiple Versions of Shared Libraries

ibA.50 / \baso
N

/

a.out

libcommon.so

ZK-0882U-R

Library Version Dependency Dependent Version
i bA. so vl i bconmon.so vl
libB.so v2 i bconmon. so v2

i bcompn.so vi1v2 — —

Presumably | i bA. so has been linked against a previous version of

I i bcommon. so. At that time the rightmost version identifier of

i bcormon. so was‘'v1l’. | i bB. so has been linked against the

I i bconmon. so shown here. Becausel i bconmon. so includes both
““v1'" and ‘‘v2" in its version string, the dependencies of both | i bA. so
and | i bB. so are satisfied by the one instance of | i bcommon. so.

When a. out islinked, only I i bA. so and | i bB. so are mentioned on the
link line. However, the linker examines the dependencies of | i bA. so and

I i bB. so, recognizes the possible multiple version dependency on

I i bcommon. so, and issues awarning. By linking a. out against

I i bcommon. so aswell, you can avoid this false warning.

4-24 Shared Libraries

4.11.6 Version Checking at Load Time

The loader performs version-matching between the list of versions supported
by a shared library and the versions recorded in shared library dependency
records. If ashared object islinked with the | d flag —exact _mat ch, the
loader also compares the timestamp and checksum of a shared library against
the timestamp and checksum values saved in the dependency record.

After mapping in a shared library that fails the version matching test, the
loader attempts to locate the correct version of the shared library by
continuing to search other directoriesin RPATH, LD_LI BRARY_PATH, or
the default search path.

If all of these directories are searched without finding a matching version, the
loader attempts to locate a matching version by appending the version string
recorded in the dependency to the directory path at which the first
nonmatching version of the library was located.

For example, a shared library | i bf 00. so isloaded in directory
/usr/1ocal/lib with version “‘osf.2”’, but a dependency on this library
requires version ‘‘osf.1'’. The loader attempts to locate the correct version of
the library using a constructed path like the following:

fusr/local/lib/osf.1/1ibfoo.so

If this constructed path fails to locate the correct library or if no version of
the library is located at any of the default or user-specified search directories,
the loader makes one last attempt to locate the library by appending the
required version string to the standard system shared library directory
(/usr/shlib). Thislast attempt will therefore use a constructed path like
the following:

[fusr/shlib/osf.1/1ibfoo.so

If the loader fails to find a matching version of a shared library, it aborts the
load and reports a detailed error message indicating the dependency and
shared library version that could not be located.

Y ou can disable version checking for programs that are not installed with the
set ui d function by setting the loader environment variable as shown in the
following C-shell example:

% setenv _RLD ARGS -ignore_all_versions

Y ou can aso disable version checking for specific shared libraries as shown
in the following example:

Shared Libraries 4-25

% setenv _RLD ARGS -ignore_version |ibDXmso

4.11.7 Multiple Version Checking at Load Time

Like the linker, the loader must distinguish between valid and invalid uses of
multiple versions of shared libraries:

» Valid uses of multiple versions occur when partial shared libraries that
depend on other versions of the same libraries are loaded. 1n some cases,
these partial shared libraries depend on different partial shared libraries,
and the result can be complicated dependency relationships that the loader
must interpret carefully to avoid reporting false errors.

* Invalid uses of multiple versions occur when two different shared objects
depend on different versions of another shared object. Partial shared
library chains are an exception to this rule. For version checking
purposes, the first partial shared library in a chain defines a set of
dependencies that overide similar dependenciesin other members of the
chain.

The following figures illustrate shared object dependencies that will result in
multiple dependency errors. Version identifiers are shown in parentheses.

4-26 Shared Libraries

In Figure 4-3, an application uses two layered products that are built with

incompatible versions of the base system.

Figure 4-3: Invalid Multiple Version Dependencies Among

Shared Objects: Example 1

appl_1

layrd1l.so

libc.so(osf.1)

layrd2.so

libc.so(osf.2)

ZK-0884U-R

Shared Libraries 4-27

In Figure 4-4, an application is linked with a layered product that was built
with an incompatible version of the base system.

Figure 4-4: Invalid Multiple Version Dependencies Among
Shared Objects: Example 2

appl_2

layrd1.so libc.so(osf.2)

libc.so(osf.1)

ZK-0885U-R

4-28 Shared Libraries

In Figure 4-5, an application is linked with an incomplete set of backward
compatible libraries that are implemented as partial shared libraries.

Figure 4-5: Invalid Multiple Version Dependencies Among
Shared Objects: Example 3

/

libc_r.so(osf.2)

N

appl_3

libc.so(osf.2)

N

libc.so(osf.1)

/

ZK-0886U-R

Shared Libraries 4-29

The following figures show valid uses of multiple versions of shared
libraries.

In Figure 4-6, an application uses a backward-compatibility library
implemented as a partial shared library.

Figure 4-6: Valid Uses of Multiple Versions of Shared Libraries:
Example 1

appl_4

|

libc.so(osf.1)

|

libc.so(osf.2)

|

libc.so(osf.3)

ZK-0887U-R

4-30 Shared Libraries

In Figure 4-7, an application uses two backward compatibile libraries, one of
which depends on the other.

Figure 4-7: Valid Uses of Multiple Versions of Shared Libraries:
Example 2

appl_5

i l

libc_r.so(osf.1)

libc.so(osf.1)

l l

libc_r.so(osf.2)

v

libc.so(osf.2)

v

ZK-0888U-R

4.12 Symbol Binding

The loader can resolve symbols using either deferred or immediate binding.
Immediate binding requires that all symbols be resolved when an executable
program or shared library is loaded. Deferred (‘‘lazy’’) binding allows text
symbols to be resolved at run time. A lazy text symbol is resolved the first
time that a referenceis made to it in a program.

By default, programs are loaded with deferred binding. Setting the
LD Bl ND_NOWenvironment variable to a non-null value selects immediate
binding for subsequent program invocations.

Immediate binding can be useful to identify unresolvable symbols. With
deferred binding in effect, unresolvable symbols might not be detected until a
particular code path is executed.

Immediate binding can also reduce symbol-resolution overhead. Run-time
symbol resolution is more expensive per symbol than load-time symbol
resolution.

Shared Libraries 4-31

4.13 Shared Library Restrictions

The use of shared libraries is subject to the following restrictions:
» Shared libraries should not have any undefined symbols.

Shared libraries should be explicitly linked with other shared libraries that
define the symbols they refer to.

In certain cases, such as a shared library that refersto symbols in an
executablefile, it is difficult to avoid references to undefined symbols.
See Section 4.2.4 for a discussion on how to handle unresolved external
symbols in a shared library.

» Certain files (such as assembler files, older object files, and C files) that
were optimized at level O3 might not work with shared libraries.

C modules compiled with the Digital UNIX C compiler at optimization
level Q2 or less will work with shared libraries. Executable programs
linked with shared libraries can be compiled at optimization level 3 or
less.

» Programs that are installed using the set ui d or set gi d subroutines do
not use the settings of the various environment variables that govern
library searches (such as LD LI BRARY_ _PATH, RLD ARGS,

_RLD LI ST, and _RLD ROOT); they use only system-installed libraries
(that is, thosein / usr/ shl i b). This restriction prevents potential
threats to the security of these programs, and it is enforced by the run-
time loader (/ sbi n/ | oader).

4-32 Shared Libraries

Debugging Programs with dbx 5

The dbx debugger is atool for source level debugging. The debugger can be
used with C, Fortran, Pascal, assembly language, and machine code. After
invoking dbx, you can issue dbx commands that control and trace
execution, display variable and expression values, and display and edit source
files. The dbx debugger is a command-line program.

The |l adebug debugger, an alternate debugger, provides both command-line
and graphical user interfaces. In addition to supporting some languages that
are not supported by dbx, the | adebug debugger also supports features for
debugging multithreaded programs. For more information about | adebug,
see the Ladebug Debugger Manual.

This chapter provides information on the following topics:
» Genera debugging considerations

» How to run the dbx debugger

* What you can specify in dbx commands

» How to control dbx and enter dbx commands using options provided by
the dbx monitor

» How to examine source code and machine code

» How to control the execution of the program you are debugging
* How to set breakpoints

» How to examine the state of a program

» How to debug a running process

* How to debug multithreaded processes and multiple asynchronous
processes

Examples in this chapter refer to a sample program called sam TheC
language source program (sam c) is listed in Example 5-1.

In addition to the conventions outlined in the preface of this manual, an
additional convention is used in the command descriptions in this chapter;
certain words in uppercase indicate variables for which specific rules apply.
These words are described in Table 5-1.

Table 5-1: Keywords Used in Command Syntax Descriptions

Keyword Value

ADDRESS Any expression specifying a machine address.
COMWVAND LI ST One or more commands, each separated by semicolons.
DR Directory name.

EXP Any expression including program variable names for the

command. Expressions can contain dbx variables, for example,
($!listwi ndow+ 2). If youwant to use the variable names
i n,to,orat inanexpression, you must surround them with
parentheses; otherwise, dbx assumes that these words are

debugger keywords.
FI LE File name.
| NT Integer value.
LI NE Source code line number.
NANE Name of adbx command.
PROCEDURE Procedure name or an activation level on the stack.
REGEXP Regular expression string. See ed(1).
SI GNAL System signal. See si gnal (2).
STRI NG Any ASCII string.
VAR Valid program variable or dbx predefined variable (see Table 5-9).

For machine-level debugging, VAR can also be an address. You
must qualify program variables with duplicate names as described
in Section 5.3.2.

The following example illustrates the use of the uppercase words in
commands:

(dbx) stop VAR in PROCEDURE if EXP

Enter stop,in,andi f asshown. Enter the values for VAR, PROCEDURE,
and EXP as defined in Table 5-1.

Note

Information on debugging multiple asynchronous processes,
including extensions to the syntax of certain dbx commands to
provide control of the asynchronous session, is contained in
Section 5.12.

5-2 Debugging Programs with dbx

5.1 General Debugging Considerations

5.1.1

5.1.2

The following sections introduce the debugger and some debugging concepts.
They also give suggestions about how to approach a debugging session,
including where to start, how to isolate errors, and how to avoid common
pitfalls. If you are an experienced programmer, you might not need to read
these sections.

Why Use a Source-Level Debugger?

The dbx debugger enables you to trace problems in a program object at the
source code level or at the machine code level. With dbx, you control a
program’ s execution, monitoring program control flow, variables, and
memory locations. You can also use dbx to trace the logic and flow of
control to become familiar with a program written by someone else.

What Are Activation Levels?

Activation levels define the currently active scopes (usually procedures) on
the stack. An activation stack is alist of calls that starts with the initial
program, usually mai n() . The most recently called procedure or block is
number 0. The next procedure called is number 1. The last activation level
is always the main procedure (the procedure that controls the whole
program). Activation levels can also consist of blocks that define local
variables within procedures. Y ou see activation levels in stack traces (see the
wher e and t st ack debugger commands) and when moving around the
activation stack (see the up, down, and f unc debugger commands). The
following example shows a stack trace produced by awher e command:

> 0 prnt(pline = Ox11ffffch8) ["sam c":52, 0x120000c04] 1
1 main(argc = 2, argv = Ox11ffffe08) ["sam c":45, 0x120000bac] 2

3 4 5 6 7 8

1 The most recently called procedureis pr nt . The activation level of
pr nt is0; this function is at the top of the stack.
The main program is mai n.

Activation level number. The angle bracket (>) indicates the activation
level that is currently under examination.

Procedure name.
Procedure’ s arguments.
Source file name.
Current line number.

N o o b~

Debugging Programs with dbx 5-3

5.1.3

5.1.4

8 Current program counter.

Isolating Program Execution Failures

Because the dbx debugger finds only run-time errors, you should fix
compiler errors before starting a debugging session. Run-time errors can
cause a program to fail during execution (resulting in the creation of a core
dump file) or to produce incorrect results. The approach for debugging a
program that fails during execution differs from the approach for debugging a
program that executes to completion but produces incorrect results. (See
Section 5.1.4 for information on how to debug programs that produce
incorrect results.)

If a program fails during execution, you can usualy save time by using the
following approach to start a debugging session instead of blindly debugging
line by line:

1. Invoke the program under dbx, specifying any appropriate flags and the
names of the executable file and the core dump file on the dbx command
line.

2. Get astack trace using the wher e command to locate the point of
failure.
Note

If you have not stripped symbol table information from the
object file, you can get a stack trace even if the program was
not compiled with the —g debug flag.

3. Set breakpoints to isolate the error using the st op or st opi commands.
4. Display the values of variables using the pri nt command to see where a
variable might have been assigned an incorrect value.

If you still cannot find the error, other dbx commands described in this
chapter might be useful.

Diagnosing Incorrect Output Results

If a program executes to completion but produces incorrect values or output,
take the following steps:

1. Set abreakpoint where you think the problem is happening — for
example, the code that generates the value or output.

2. Run the program.
3. Get astack trace using the wher e command.

5-4 Debugging Programs with dbx

4. Display the values for the variables that might be causing the problem

using the pri nt command.

5. Repeat this procedure until the problem is found.

5.1.5 Avoiding Pitfalls

The debugger cannot solve al problems. For example, if your program’s
logic is incorrect, the debugger can only help you find the problem, not solve
it. When information displayed by the debugger appears confusing or
incorrect, taking the following actions might correct the situation:

Separate lines of source code into logical units wherever possible (for
example, after i f conditions). The debugger might not recognize a
source statement written with several others on the same line.

If executable code appears to be missing, it might have been contained in
an included file. The debugger treats an included file as a single line of
code. If you want to debug this code, remove it from the included file
and compile it as part of the program.

Make sure you recompile the source code after changing it. If you do not
do this, the source code displayed by the debugger will not match the
executable code. The debugger warns you if the source file is more
recent than the executable file.

If you stop the debugger by pressing Ctrl/Z and then resume the same
debugging session, the debugger continues with the same object module
specified at the start of the session. This means that if you stop the
debugger to fix a problem in the code, recompile, and resume the session,
the debugger will not reflect the change. You must start a new session.

Similarly, dbx will not reflect changes you make if you edit and
recompile your program in one window on a workstation while running
the debugger in another window. You must stop and restart dbx each
time you want it to recognize changes you have made.

When entering a command to display an expression that has the same
name as a dbx keyword, you must enclose the expression within
parentheses. For example, in order to display the value of out put (a
keyword in the pl ayback and r ecor d commands, discussed in
Section 5.9.4), you must specify the following command:

(dbx) print (output)

If the debugger does not display any variables or executable code, make
sure you compiled the program with the —g flag.

Debugging Programs with dbx 5-5

5.2 Running dbx

5.2.1

Before invoking dbx, you need to compile the program for debugging. You
might also want to create adbx initiaization file that will execute commands
when the debugger is started.

Compiling a Program for Debugging

To use the debugger, specify the —g flag at compilation time. With this flag
set, the compiler inserts into the program symbol table information that the
debugger uses to locate variables. With the —g flag set, the compiler also
sets its optimization level to —Q0. When you use different levels of
optimizing, for example —Q2, the optimizer does not alter the flow of control
within a program, but it might move operations around so that the object
code and source code do not correspond. These changed sequences of code
can create confusion when you use the debugger.

Y ou can do limited debugging on code compiled without the —g flag. For
example, the following commands work properly without recompiling for
debugging:

* stopin PROCEDURE

* stepi

e cont

e conti

* (ADDRESS) / <COUNT><MODE>
e tracei

Although you can do limited debugging, it is usually more useful to
recompile the program with —g. Note that the debugger does not warn you if
an object file was compiled without the —g flag.

Complete symbol table information is available only for programs in which
all modules have been compiled with the —g flag. Other programs will have
symbol table information only for symbols that are either referenced by or
defined in modules compiled with the —g flag.

Note

Any routines in shared library applications in which breakpoints
are to be set must be compiled with the —g flag. If the—g flagis
not specified, the symbol table information that dbx needs to set
breakpoints is not generated and dbx will not be able to stop the
application.

5-6 Debugging Programs with dbx

5.2.2 Creating a dbx Initialization File

5.2.3

You can create a dbx initialization file that contains commands you normally
issue at the beginning of each dbx session. For example, the file could
contain the following commands:

set $page = 5

set $lines = 20

set $pronpt = "DBX> "

alias du dunp

The initialization file must have the name . dbxi ni t . Each time you
invoke the debugger, dbx executes the commandsin . dbxi nit. The

debugger looks first for . dbxi ni t in the current directory and then in your
home directory (the directory assigned to the $HOVE environment variable).

Invoking and Terminating dbx

You invoke dbx from the shell command line by entering dbx and the
optional parameters.

After invocation, dbx sets the current function to the first procedure of the
program.

The dbx command has the following syntax:
dbx [flags] [obffile [corefile]]

fl ags
Severa of the most important flags supported by the dbx command line
are shown in Table 5-2.

objfile
The name of the executable file of the program that you want to debug.
If obj fil eisnot specified, dbx usesa. out by default.

corefile
Name of a core dump file. If you specify cor efi | e, dbx lists the
point of program failure. The dump file holds an image of memory at
the time the program failed. Use dbx commands to get a stack trace
and look at the core file code. The debugger displays information from
the core file, not from memory as it usually does.

The maximum number of arguments accepted by dbx is 1000; however,
system limits on your machine might reduce this number.

Debugging Programs with dbx 5-7

Table 5-2: dbx Command Flags

Flag Function

-cfil enane Selects an initialization command file other than your
. dbxi ni t file.

-1 di rnane Tells dbx to look in the specified directory for source

files. To specify multiple directories, use a separate —I
for each. Unless you specify this flag when you invoke
dbx, the debugger looks for source files in the current
directory and in the object file's directory. You can
change directories with the use command (see Section
46.1).

—i Invokes dbx in interactive mode. With this flag set,
dbx does not treat source lines beginning with number
signs (#) as comments.

-k Maps memory addresses. This flag is useful for kernel
debugging. (For information on kernel debugging, see
kr ash(8) and the manua Kernel Debugging.)

-pid process-id Attachesdbx to acurrently running process.

—r Immediately executes the object file that you specify on
the command line. If program execution terminates with
an error, dbx displays the message that describes the
error. You can then either invoke the debugger or allow
the program to continue exiting. The dbx debugger
reads from / dev/ t t y when you specify the —r flag
and standard input is not aterminal. If the program
executes successfully, dbx prompts you for input.

The following example invokes dbx with no flags. Because an object file
name is not specified, dbx prompts for one. In this case, the user responds
with sam The default debugger prompt is (dbx) .

% dbx

enter object file nane (default is "a.out’): sam

dbx version 3.12
Type 'help’ for help.

main: 23 if (argc < 2) {
(dbx)

Use the qui t or g command to end a debugging session. The qui t
command accepts no arguments.

5-8 Debugging Programs with dbx

5.3 Using dbx Commands

53.1

5.3.2

Y ou can enter up to 10,240 characters on an input line. Long lines can be
continued with a backslash (\). If aline exceeds 10,240 characters, dbx
displays an error message. The maximum string length is also 10,240.

The following sections describe scoping and the use of qualified variable
names, dbx expressions and precedence, and dbx data types and constants.

Qualifying Variable Names

Variablesin dbx are qualified by file, procedure, block, or structure. When
using commands like pr i nt to display a variable's value, dbx indicates the
scope of the variable when the scope could be ambiguous (for example, you
have a variable by the same name in two or more procedures). If the scopeis
wrong, you can specify the full scope of the variable by separating scopes
with periods. For example:

sam nai n. i

1 2 3

1 Current file
2 Procedure name
3 Variable name

dbx Expressions and Their Precedence

The dbx debugger recognizes expression operators from C; these operators
can also be used for debugging any other supported language. (Note that
dbx uses brackets ([]) for array subscripts even in Fortran, whose natural
subscript delimiters are parentheses.) In addition to the standard C operators,
dbx uses the number sign (#) as shown in Table 5-3.

Table 5-3: The dbx Number-Sign Expression Operator

Syntax Description
("FILE" #EXP) Uses the line number specified by #EXP in the file
named by FI LE.

(PROCEDURE #EXP) Uses the relative line number specified by #EXP in the
procedure named by PROCEDURE.

(#EXP) Returns the address for the line specified by (#EXP) .

Debugging Programs with dbx 5-9

5.3.3

Operators follow the C language precedence. Table 5-4 shows the language
operators recognized by dbx in order of precedence from top to bottom and
from left to right, with the dbx-specific number-sign operator included
among the unary operators to show its place in the precedence hierarchy.

Table 5-4: Expression Operator Precedence

Unary: & +,—,* (pointer), #, si zeof ()& ~,/, (type), (type *)

Binary: <<, >> " == :,<:'>:'<’>,&,&&,|,||,+,_,*,/b,%
[] , —>

Table Notes:

a. Thesi zeof operator specifies the number of bytes retrieved to get an
element, not (nunber - of - bi t s+7) [/ 8.

b. For backward compatibility, dbx also acceptstwo slashes (//) asa
division operator.

dbx Data Types and Constants
Table 5-5 lists the built-in data types that dbx commands can use.

Table 5-5: Built-in Data Types

Data Type Description Data Type Description

$addr ess Pointer $real Double precision real
$bool ean Boolean $short 16-hit integer
$char Character $si gned Signed integer
$doubl e Double precision real $uchar Unsigned character
$f | oat Single precision red $unsi gned Unsigned integer

$i nt eger Signed integer $voi d Empty

Y ou can use the built-in data types for type coercion — for example, to
display the value of avariable in atype other than the type specified in the
variable' s declaration. The dbx debugger understands C language data
types, so that you can refer to data types without the $. The types of
constants that are acceptable as input to dbx are shown in Table 5-6.
Constants that are output from dbx are displayed by default as decimal
values.

5-10 Debugging Programs with dbx

Table 5-6: Input Constants

Constant Description
fal se 0

true Nonzero

nil 0
Oxnumber Hexadecimal
Ot nunber Decimal
Onumber Octal
nunber Decimal
number. [nunmber] [e| E] [+| -] EXP Float

Notes:

» Overflow on nonfloat uses the rightmost digits. Overflow on float uses
the leftmost digits of the mantissa and the highest or lowest exponent
possible.

* The$oct i n variable changes the default input expected to octal. The
$hexi n variable changes the default input expected to hexadecimal (see
Section 5.5.2).

* The$oct i nt s variable changes the default output to octal. The
$hexi nt s variable changes the default output to hexadecimal (see
Section 5.5.2).

5.4 Working with the dbx Monitor

5.4.1

The dbx debugger provides a command history, command-line editing, and
symbol name completion. The dbx debugger also alows multiple commands
on an input line. These features can reduce the amount of input required or
allow you to repeat previously executed commands.

Repeating dbx Commands

The debugger keeps a command history that allows you to repeat debugger
commands without retyping them. You can display these commands by
using the hi st ory command. The $I i nes variable controls the number
of history lines saved. The default is 20 commands. You can use the set
command to modify the $I i nes variable (see Section 5.5.1).

To repeat a command, use the Return key or one of the exclamation point (1)
commands.

Debugging Programs with dbx 5-11

5.4.2

The hi st or y command has the following forms:

hi story
Displays the commands in the history list.

Return key
Repeats the last command that you entered. Y ou can disable this feature
by setting the $r epeat node variable to O (see Section 5.5.1).

I'string
Repeats the most recent command that starts with the specified string.
i nt eger
Repeats the command associated with the specified integer.
I —i nt eger
Repeats the command that occurred the specified number of commands
(i nt eger) before the most recent command.

The following example displays the history list and then repeats execution of
the twelfth command in the list:

(dbx) history

10 print X
11 print y
12 print z
(dbx) '12
(112 = print z)
123
(dbx)

Editing the dbx Command Line

The dbx debugger provides support for command line editing. Y ou can edit
a command line to correct mistakes without reentering the entire command.
To enable command-line editing, set the EDI TOR, EDI TMODE, or

LI NEEDI T environment variable before you invoke dbx. For example, to
set LI NEEDI T from the C shell, you would enter the following command:

% setenv LI NEEDI T

From the Bourne or Korn shells, you would enter this command:
$ export LINEEDI T

The debugger offers the following modes of command line editing:

» If the environment variable LI NEEDI T is not set and either of the
environment variables EDI TMODE or EDI TOR contains a path ending in
Vi , the debugger uses a command line editing mode that resembles the
Korn shell’svi mode, in which the following editing keys are

5-12 Debugging Programs with dbx

recognized:

See ksh(1) for more information.

» |If the environment variable L1 NEEDI T is set to any value, even the null
string, or if LI NEEDI T is not set and either of the environment variables
EDI TMODE or EDI TOR contains a path ending in emacs, the debugger
uses a command line editing mode that resembles the Korn shell’s
ermacs mode. This mode behaves slightly differently depending on
whether it is enabled by LI NEEDI T or by EDI TOR or EDI TMODE.

Table 5-7 lists the emmacs-mode command line editing commands.

Table 5-7: Command-Line Editing Commands in emacs mode

Command Function

Ctrl/A Moves the cursor to the beginning of the command line.
Ctrl/B Moves the cursor back one character.

Ctrl/C Clears the line.

Ctrl/D Deletes the character at the cursor.

Ctrl/E Moves the cursor to the end of the line.

Ctrl/F Moves the cursor ahead one character.

Ctrl/H Deletes the character immediately preceding the cursor.

Ctrl/J Executes the line.

Ctrl/K (When enabled by EDI TOR or EDI TMODE) Deletes from the

cursor to the end of the line. If preceded by a numerical
parameter whose value is less than the current cursor position,
deletes from given position up to the cursor. If preceded by a
numerical parameter whose value is greater than the current
cursor position, deletes from cursor up to given position.

Ctrl/K char (When enabled by LI NEEDI T) Deletes characters until the
cursor rests on the next occurrence of char .

Ctrl/L Redisplays the current line.

Ctrl/M Executes the line.

Ctrl/N Moves to the next line in the history list.
Ctrl/P Moves to the previous line in the history list.

Debugging Programs with dbx 5-13

Table 5-7: (continued)

Command Function

Ctrl/R char Searches back in the current line for the specified character.
Ctrl/T Interchanges the two characters immediately preceding the cursor.
Ctrl/U Repeats the next character four times.

Ctrl/W Deletes the entire line.

Ctrl/Y Inserts immediately before the cursor any text cut with Ctrl/K.
Ctrl/z Tries to complete a file or symbol name.

Escape Tries to complete a file or symbol name.

Down Arrow Moves to the next line in the history list.

Up Arrow Moves to the previous line in the history list.

Left Arrow Moves the cursor back one character.

Right Arrow Moves the cursor ahead one character.

5.4.3 Entering Multiple Commands

Y ou can enter multiple commands on the command line by using a
semicolon (;) as aseparator. This feature is useful when you are using the
when command (see Section 5.8.4).

The following example has two commands on one command line; the first
command stops the program and the second command reruns it:

(dbx) stop at 40; rerun

[2] stop at "samc":40

[2] stopped at [mai n: 40 , 0x120000b40] i=strlen(linel.string);
(dbx)

5.4.4 Completing Symbol Names

The dbx debugger provides symbol name completion. When you enter a
partia symbol name and press Ctrl/Z, dbx attempts to complete the name.
If a unique completion is found, dbx redisplays the input with the unique
completion added; otherwise, all possible completions are shown, and you
can choose one.

To enable symbol name completion, you must enable command line editing
as described in Section 5.4.2. The following example displays all names
beginning with the letter *‘i’":

5-14 Debugging Programs with dbx

(dbx) i ctr/iz
ioctl.ioctl .ioctl isatty.isatty .isatty i int1
(dbx) i 2

1 The display might include data types and library symbols.

2 After listing al names beginning with the partial name, dbx prompts
again with the previously specified string, giving you an opportunity to
specify additional characters and repeat the search.

The following example shows symbol name completion. In this case, the
entry supplied is unambiguous:

(dbx) print file Ctr/z

(dbx) print file_header_ptr
Ox124ac

(dbx)

5.5 Controlling dbx

5.5.1

The dbx debugger provides commands for setting and removing dbx
variables, creating and removing aliases, invoking a subshell, checking and
deleting items from the status list, displaying alist of object files associated
with an application, and recording and playing back input.

Setting and Removing Variables

The set command defines adbx variable, sets an existing dbx variableto a
different value, or displays alist of existing dbx predefined variables. The
unset command removes adbx variable. Usethe pri nt command to
display the values of program and debugger variables. The dbx predefined
variables are listed in Table 5-8. Y ou cannot define a debugger variable with
the same name as a program variable.

Theset and unset commands have the following forms:

set
Displays alist of dbx predefined variables.

set VAR = EXP
Assigns a new value to a variable or defines a new variable.

unset VAR
Unsets the value of adbx variable.

The following example illustrates the set and unset commands:

Debugging Programs with dbx 5-15

(dbx) set 1

$li stwi ndow 10
$dat acache 1
$mai n " mai n"
$pagewi ndow 22
t est 5
$page 1
$maxstrlen 128
$cursrcline 24

nmore (nif no)? n
(dbx) set test = 12 2

(dbx) set

$li stw ndow 10
$dat acache 1
$mai n "mai n"
$pagewi ndow 22
t est 12
$page 1
$maxstrlen 128
$cursrcline 24
nmore (n if no)? n
(dbx) unset test 3
(dbx) set

$l i st wi ndow 10
$dat acache 1
$mai n "mai n"
$pagewi ndow 22
$page 1
$maxstrl en 128
$cursrcline 24
nmore (nif no)? n
(dbx)

1 Display alist of dbx predefined variables.
2 Assign anew value to avariable.
3 Remove avariable.

5.5.2 Predefined dbx Variables

The predefined dbx variables are shown in Table 5-8. Each variable is
labeled | for integer, B for boolean, or S for string. Variables that you can
examine but cannot modify are indicated by an R.

5-16 Debugging Programs with dbx

Table 5-8: Predefined dbx Variables

Type
S

SR

Name

$addr f

$assi gnverify

$asynch_interface

$break_during_step

$casesense

$cur event

$curline
$cur pc

$cursrcline
$dat acache

$defaul tin

Default

llox% Xn

Null string

Description

Specifies the format for addresses.
Can be set to anything you can
format with a C language pr i nt f
Statement.

Specifies whether new values are
displayed when assigning a value
to avariable.

Controls whether dbx is, or can
be, configured to control multiple
asynchronous processes.
Incremented by 1 when a process
is attached; decremented by 1
when a process terminates or is
detached. Can also be set by user.
If O or negative, asynchronous
debugging is disabled.

Controls whether breakpoints are
checked while processing

st ep/ st epi, next/nexti,
cal |, return, and so on.

Specifies whether source searching
and variables are case sensitive. A
nonzero value means case
sensitive; a 0 means not case
sensitive.

Shows the last event number as
reported by the st at us
command.

Shows the current line in the
source code.

Shows the current address. Used
withthewi and | i aliases.

Shows the last line listed plus 1.

Caches information from the data
space so that dbx only has to
check the data space once. If you
are debugging the operating
system, set this variable to 0;
otherwise, set it to a nonzero
value.

Shows the name of the file that
dbx uses to store information
when using ther ecor d i nput
command.

Debugging Programs with dbx 5-17

Table 5-8: (continued)

Type Name

SR $def aul t out

B $di spi x

B $hexchars

B $hexin

B $hexints

B $hexstrings

IR $hi st oryevent
I $lines

| $li stwi ndow

S $mai n

| $maxstrl en

B $octin
B $octints
B $page

5-18 Debugging Programs with dbx

Default

Null string

Not defined

Not defined

Not defined

Not defined

None
20

$pagewi ndow 2

mai n

128

Not defined

Not defined

Description

Shows the name of the file that
dbx uses to store information
when using ther ecor d out put
command.

When set to 1, specifies display of
only real instructions when
debugging in pi xi e mode.

A nonzero value indicates that
character values are shown in
hexadecimal.

A nonzero value indicates that
input constants are hexadecimal.

A nonzero value indicates that
output constants are shown in
hexadecimal; a nonzero value
overrides octal.

A nonzero value indicates that
strings are displayed in
hexadecimal; otherwise, strings are
shown as characters.

Shows the current history number.

Specifies the size of the dbx
history list.

Specifies the number of lines
shown by thel i st command.

Specifies the name of the
procedure where execution begins.
The debugger starts the program at
mai n() unless otherwise
specified.

Specifies the maximum number of
characters in strings that dbx
prints for pointers to strings.

Changes the default input
constants to octal when set to a
nonzero value. Hexadecimal
overrides octal.

Changes the default output
constants to octal when set to a
nonzero value. Hexadecimal
overrides octal.

Specifies whether to page long
information. A nonzero value
enables paging; a zero disables it.

Table 5-8: (continued)

Type Name

| $pagewi ndow

B $pi node

| $printdata

B $printtargets

B $printwhil estep

B $printw de
S $pr onpt
B $readtextfile

Default

Various

“dbx) "’

Description

Specifies the number of lines
displayed when viewing
information that is longer than one
screen. This variable should be set
to the number of lines on the
terminal. A value of O indicates a
minimum of 1 line. The default
value depends on the terminal

type; for a standard video display,
the default is 24.

Displays input when using the
pl ayback i nput command.

A nonzero value indicates that the
values of registers are displayed
when instructions are
disassembled; otherwise, register
values are not displayed.

If set to 1, specifies that displayed
disassembly listings are to include
the labels of targets for jump
instructions. |If set to O, disables
this label display.

For use with the st ep [n] and
stepi [n] instructions. A
nonzero value specifies that al n
lines or instructions should be
displayed. A zero value specifies
that only the last line or instruction
should be displayed.

Specifies wide (useful for
structures or arrays) or vertical
format for displaying variables. A
nonzero value indicates wide
format; zero indicates vertical
format.

Sets the prompt for dbx.

When set to avalue of 1, dbx tries
to read instructions from the object
file instead of from the process.
This variable should aways be set
to 0 when the process being
debugged copies in code during
the debugging process. However,
performance is better when
$readtextfil eissettol

Debugging Programs with dbx 5-19

Table 5-8: (continued)

Type Name

B $regstyle

B $r epeat node

B $ri node

S $si gvec

S $si gtranp

B $stop_al | _forks
B $stop_i n_main
B $st op_on_exec

5—-20 Debugging Programs with dbx

Default

1

0

X

‘‘si gaction

‘_sigtramp”

N/A

Description

Specifies the type of register
names to be used. A valueof 1
specifies hardware names. A zero
specifies software names as
defined by the filer egdef s. h.

Specifies whether dbx should
repeat the last command when the
Return key is pressed. A nonzero
value indicates that the command
is repeated; otherwise, it is not
repeated.

Records input when using the
record out put command.

Tells dbx the name of the code
called by the system to set signal
handlers.

Tells dbx the name of the code
called by the system to invoke user
signa handlers.

Specifies whether dbx should stop
every child process that is forked
(2), or ignore many of the forks
generated by various system and
library cals (0). If

$stop_al | _forks isnot s,
the value of $st op_on_f or k
determines dbx’s behavior with
forks. $stop_al | _f or ks traps
forks in libraries and system calls
that are usually ignored by

$st op_on_fork.

Not used. Thisvariableis
displayed by the set command,
but it presently has no effect on
dbx operation.

Specifies whether dbx should
detect callsto execl () and
execv(), and stop the newly
activated images at the first line of
executable code.

5.5.3

Table 5-8: (continued)

Type Name Default Description

B $stop_on_fork 1 Specifies whether dbx should
advance a hew image activated by
afork() orvfork() caltoits
main activation point and then stop
(2) or continue until stopped by a
breakpoint or event (0). The dbx
program tries to avoid stopping on
forks from system or library calls
unless $st op_al | _forks is
Set.

S $tagfile ‘‘tags’’ Contains a file name indicating the
file in which the t ag command
and the t agval ue macro are to
search for tags.

| $trapl oops 3 Specifies the number of
consecutive calls to a SI GTRAP
handler that will be made before
dbx assumes that the program has
fallen into a trap-handling loop.

Defining and Removing Aliases

The al i as command defines a new alias or displays alist of all current
aliases.
The al i as command allows you to rename any debugger command.

Enclose commands containing spaces within double or single quotation
marks. You can also define a macro as part of an aias.

The dbx debugger has a group of predefined aliases. Y ou can modify these
aliases or add new aliases. You can aso include aliasesin your . dbxi ni t
file for use in future debugging sessions. Theunal i as command removes
an alias from a command. You must specify the dliasto remove. The dlias
is removed only for the current debugging session.

Theal i as and unal i as commands have the following forms:

ali as
Displays alist of all aliases.
al i as NAVEL[(ARGL, . .., ARGN)] " NAME2"
Defines anew alias. NAMEL is the new name. NAMEZ2 is the command
to string to rename. ARGL, . . . , ARGN are the command arguments.
unal i as NAME

Removes an dias from a command, where NAME is the alias name.

Debugging Programs with dbx 5-21

The following example illustrates the al i as and unal i as commands:

(dbx) alias 1
h hi story

Si st epi

Si nexti

g goto

S step

More (n if no) ?n

(dbx) alias ok(x) "stop at x" 2
(dbx) ok(52) 3
[2] Stop at "samc":52 4

(dbx)

(dbx) wunalias h 5
(dbx) ali as

Si st epi

Si next i

g goto

s step

More (n if no)? n

(dbx)

1 Display aliases.

Define an alias for setting a breakpoint.

Set a breakpoint at line 52.

Debugger acknowledges breakpoint set at line 52.

Remove the h alias. (Notice that it disappears from the alias list.)

g A W N

5.5.4 Monitoring Debugging Session Status

Use the st at us command to check which, if any, of the following
commands are currently set:

e stop orstopi commands for breakpoints
e traceortracei commandsfor line-by-line variable tracing
* when command

 recordinput andrecord out put commands for saving
information in afile

5-22 Debugging Programs with dbx

5.5.5

The st at us command accepts no arguments. For example:
(dbx) status

[2] trace i in main

[3] stop in prnt

[4] record output /tnp/dbxt0018898 (0 I|ines)

(dbx)

The numbers in brackets (for example, [2]) indicate status item numbers.

Deleting and Disabling Breakpoints

To delete breakpoints and stop the recording of input and output, use the

del et e command. Deleting a breakpoint or stopping recording removes the
pertinent items from the status list produced by the st at us command. To
disable breakpoints without deleting them, use the di sabl e command. The
enabl e command reenables disabled events.

The del et e command has the following forms:

del ete EXPL[, ..., EXPN|
Deletes the specified status items.

del ete al |

del ete *

Deletes dl status items.

The following example illustrates the use of the del et e command:

(dbx) status

[2] record output /tmnp/dbxt 0018898 (0 |ines)
[3] trace i in main

[4] print pline at "samc":

[5] stop in prnt

(dbx) delete 4

(dbx) status

[2] record output /tnp/dbxt 0018898 (0 |ines)

[3] trace i in main
[5] stop in prnt
(dbx)

The di sabl e and enabl e commands have the following forms:

di sabl e EVENT1[, EVENT2, . . .]
enabl e EVENT1[, EVENT2, . . .]
Disables or enables the specified events.

di sabl e al |
enabl e al |
Disables or enables all events.

Debugging Programs with dbx 5-23

5.5.6

5.5.7

Displaying the Names of Loaded Object Files

Thel i st obj command displays the names of al the object files that have
been loaded by dbx, together with their sizes and the address at which they
were loaded. These objects include the main program and all of the shared
libraries that are used in an application. Thel i st obj command accepts no
arguments. For example:

(dbx) 1istobj

sam addr: 0x120000000 si ze: 0x2000
fusr/shlib/libc.so addr: 0x3ff80080000 si ze: 0xbc000
(dbx)

Invoking a Subshell from Within dbx

To invoke an interactive subshell at the dbx prompt, enter sh. To return to
dbx from a subshell, enter exi t or press Ctrl/D. To invoke a subshell that
performs a single command and returns to dbx, enter sh and the desired
shell command. For example:

(dbx) sh

% dat e

Tue Aug 9 17:25:15 EDT 1994
% exi t

(dbx) sh date
Tue Aug 9 17:29: 34 EDT 1994
(dbx)

5.6 Examining Source Programs

5.6.1

The following sections describe how to list and edit source code, change
directories, change source files, search for strings in source code, display
qualified symbol names, and display type declarations.

Specifying the Locations of Source Files

If you did not specify the —I flag when invoking dbx, (see Section 5.2.3),
the debugger looks for source files in the current directory or the object file's
directory. The use command has two functions:

» Change the directory or list of directories in which the debugger looks
e List the directory or directories currently in use

The command recognizes absolute and relative pathnames (for example, . /),
but it does not recognize the C-shell tilde (~).

5-24 Debugging Programs with dbx

5.6.2

The use command has the following forms:

use
Lists the current directories.
use DIR1 ... D RN
Replaces the current list of directories with a new set.
For example:
(dbx) use
. 1
(dbx) use /usr/local/lib
(dbx) use
lusr/local/lib 2
(dbx)

1 Current directory
2 New directory

Moving Up or Down in the Activation Stack

As described in Section 5.1.2, the debugger maintains a stack of activation
levels. To find the name or activation number for a specific procedure, get a
stack trace with thewher e or t st ack command. You can move through
the activation stack by using the up, down, and f unc commands.

5.6.2.1 Using the where and tstack Commands

The wher e command displays a stack trace showing the current activation
levels (active procedures) of the program being debugged. Thet st ack
command displays a stack trace for all threads. See Section 5.11 for more
information about debugging threads.

Thewher e and t st ack commands have the following form:

wher e [EXP]
t stack [EXP]
Displays a stack trace.

If EXP is specified, dbx displays only the top EXP levels of the stack;
otherwise, the entire stack is displayed.

If abreakpoint is set in pr nt in the sample program sam c, the program
runs and stops in the procedure pr nt () . If you enter wher e, the
debugger’s stack trace provides the information shown in the following
example:

Debugging Programs with dbx 5-25

(dbx) stop in prnt
[1] stop in prnt
(dbx) run

(dt;x) where 1
> 0 prnt(pline = Ox11ffffcb8) ["sam c":52, 0x120000c04]
| I

I (I
12 3 4 5 6

(dbx)

Activation level

Procedure name

Current value of the argument pl i ne
Source file name

Line number

Program counter

o O A W N P

5.6.2.2 Using the up and down and func Commands

The up and down commands move you directly up or down in the stack;
they are useful when tracking a call from one level to another. Thef unc
command can move you up or down incrementally or to a specific activation
level or procedure. The f unc command changes the current line, the current
file, and the current procedure, thus changing the scope of the variables you
can access. You can aso use the f unc command to examine source code
when a program is not executing.

The up, down, and f unc commands have the following forms:

up [EXP]
Moves up the specified number of activation levelsin the stack. The
default is one level.

down [EXP]
Moves down the specified number of activation levelsin the stack. The
default is one level.

func
Displays the current activation levels.

f unc PROCEDURE
Moves to the activation level specified by PROCEDURE.

func EXP
Moves to the activation level specified by the expression.

The following example illustrates these commands:

5-26 Debugging Programs with dbx

5.6.3

(dbx) where
> 0 prnt(pline = Ox11ffffcb8) ["samc":52, 0x120000c04]

1 main(argc = 2, argv = Ox11ffffe08) ["sam c":45, 0x120000bac]
(dbx) up
main: 45 prnt(&inel); 1
(dbx) where

0 prnt(pline = Ox11ffffcb8) ["samc":52, 0x120000c04]
> 1 main(argc = 2, argv = Ox11ffffe08) ["sam c":45, 0x120000bac]
(dbx) down
prnt: 52 fprintf(stdout,"%8d. (%3d) %", 2
(dbx) where
> 0 prnt(pline = Ox11ffffcb8) ["sam c":52, 0x120000c04]

1 main(argc = 2, argv = Ox11ffffe08) ["samc": 45, 0x120000bac]
(dbx) func 1
mai n 47 prnt (& inel) 3
(dbx)

1 Move up one level.

2 Move down one level.
3 Movedirectly to nai n.

Changing the Current Source File

Thefi | e command displays the current source file name or changes the
current source file.

Note

Before setting a breakpoint or trace on a line number, use the

f unc command to get the correct procedure. Thefil e
command cannot be specific enough for the debugger to access
the information necessary to set a breakpoint.

Thefi | e command has the following forms:

file
Displays the name of the file currently in use.

fileFILE
Changes the current file to the specified file.

For example:

(dbx) file

sam ¢ 1
(dbx) file data.c
(dbx) file

data.c 2
(dbx)

Debugging Programs with dbx 5-27

1 Current file
2 New file

5.6.4 Listing Source Code

Thel i st command displays lines of source code. The dbx variable
$l i st wi ndow defines the number of lines that dbx lists by default. The
I i st command uses the current file, procedure, and line unless otherwise
specified.
Thel i st command has the following forms:
list
Lists the number of lines specified by $I i st wi ndow, starting at the
current line.

list EXP
Lists the number of lines specified by EXP, starting at the current line.

i st EXP1, EXP2
List lines from EXP1 to EXP2.

list EXP: | NT
Starting at the specified line (EXP), lists the specified number of lines
(I NT), overriding $! i st wi ndow.

i st PROCEDURE
Lists the specified procedure for $I i st wi ndow lines.
The following example specifies a 2-line list starting at line 49:

(dbx) list 49:2
49 void prnt(pline)
50 LINETYPE *pli ne;

If you usethel i st command’s predefined alias w, the output is as follows:

(dbx) w
45 prnt (& inel);

47 '}

49 void prnt(pline)
> 50 LINETYPE *pline;

51 {
* B2 fprintf(stdout,"93d. (%3d) %", pline->linenunber,
53 pline->ength, pline->string);

54 fflush(stdout);

The right angle bracket in column 1 (>) indicates the current line, and the
asterisk in column 2 (*) indicates the location of the program counter (pc) at
this activation level.

5-28 Debugging Programs with dbx

5.6.5 Searching for Text in Source Files

The dlash (/) and question mark (?) commands search for regular
expressions in source code. The slash searches forward from the current line,
and the question mark searches backward. Both commands wrap around at
the end of the file if necessary, searching the entire file from the point of
invocation back to the same point. By default, dbx does not distinguish
uppercase letters from lowercase when searching. If you set the dbx variable
$casesense to any nonzero value, the search is case sensitive.

The/ and ? commands have the following form:

| [REGEXP]
Searches forward for the specified regular expression or, if no expression
is specified, for the regular expression associated with the last previous
search command.

?[REGEXP]
Searches backward in the same manner as the slash command’ s forward
search.

(dbx) /1ines
no match
(dbx) /1linel
16 LINETYPE I|inel;
(dbx) /
39 while(fgets(linel.string, sizeof(linel.string), fd) != NULL){
(dbx)

5.6.6 Editing Source Files from Within dbx

The edi t command enables you to change source files from within dbx.
To make the changes effective, you must quit from dbx, recompile the
program, and restart dbx.

The edi t command has the following forms:
edit
Invokes an editor on the current file.

edit FILE
Invokes an editor on the specified file.

The edi t command loads the editor indicated by the environment variable
EDI TORor, if EDI TOR is not set, the vi editor. To return to dbx, exit
normally from the editor.

Debugging Programs with dbx 5-29

5.6.7

5.6.8

identifying Variables That Share the Same Name

The whi ch and wher ei s commands display program variables. These
commands are useful for debugging programs that have multiple variables
with the same name occurring in different scopes. The commands follow the
rules described in Section 5.3.1.

The whi ch and wher ei s commands have the following forms:

whi ch VAR
Displays the default version of the specified variable.

wher ei s VAR
Displays all versions of the specified variable.

In the following example, the user checks to see where the default variable
named i isand then verifies that this is the only instance of i in the program
by observing that wher ei s shows only the one occurrence.

(dbx) which i

sam main. i

(dbx) whereis i
sam nai n. i

Examining Variable and Procedure Types

Thewhat i s command lists the type declaration for variables and procedures
in a program.

Thewhat i s command has the following form:

whati s VAR
Displays the type declaration for the specified variable or procedure.

For example:

(dbx) whatis main
int main(argc, argv)
int argc;

unsi gned char **argv;
(dbx) whatis i

int i;

(dbx)

5.7 Controlling the Program

The following sections describe the dbx commands used to run a program,
step through source code, return from a procedure call, start at a specified
line, continue after stopping at a breakpoint, assign values to program
variables, patch an executable disk file, execute a particular routine, set an
environment variable, and load shared libraries.

5-30 Debugging Programs with dbx

5.7.1 Running and Rerunning the Program

Ther un and r er un commands start program execution. Each command
accepts program arguments and passes those arguments to the program. If no
arguments are specified for ar un command, dbx runs the program with no
arguments. If no arguments are specified for ar er un command, dbx
defaults to the arguments used with the previousr un or r er un command.

Y ou can specify arguments in advance of issuing ar er un command by
using the ar gs command. Arguments set by the ar gs command are
ignored by a subsequent r un command.

You can also use these commands to redirect program input and output in a
manner similar to redirection in the C shell:

» The optional parameter <FI LE1 redirects input to the program from the
specified file.

» The optional parameter >FI LE2 redirects output from the program to the
specified file.

e The optiona parameter >&FI LE2 redirects both st der r and st dout
to the specified file.

Note

The redirected output differs from the output saved with the
record out put command (see Section 5.9.4.2), which saves
debugger output, not program output.

Therun, ar gs, and r er un commands have the following forms:

run [ARGL ... ARGN] [<FI LE1] [>FI LE2]
run [ARGL ... ARGN] [<FI LE1] [>&FI LE2]
Runs the program with the specified arguments and redirections.
args [ARGL ... ARG\ [<FILE1l] [>FI LE2]
args [ARGL ... ARG\ [<FI LE1] [>&FI LE2]

Sets the specified arguments and redirections for use by subsequent
commands; the specified values remain in effect until explicitly altered
by new values given with ar un or r er un command.

rerun [ARGL ... ARGN] [<FI LE1l] [>FI LE2]
rerun [ARGL ... ARG\ [<FI LE1] [>&FI LE2]
Reruns the program with the specified arguments and redirections.

Debugging Programs with dbx 5-31

5.7.2

For example:

(dbx) run samc 1
0. (19)#include <stdio. h>

1. (14) struct line {

2. (19) char string[256];

Program terni nated normal |y
(dbx) rerun 2
0. (19)#include <stdio. h>

1. (14) struct line {

2. (19) char string[256];

Programterninated normally
(dbx)

1 Theargument issam c.
2 Reruns the program with the previously specified arguments.

Executing the Program Step by Step

For debugging programs written in high-level languages, the st ep and

next commands execute a fixed number of source code lines as specified by
EXP. For debugging programs written in assembly language, the st epi and
nexti commands work the same as st ep and next except that they step
by machine instructions instead of by program lines. |If EXP is not specified,
dbx executes one source code line or machine instruction; otherwise, dbx
executes the source code lines or machine instructions as follows:

» The dbx debugger does not take comment lines into consideration in
interpreting EXP. The program executes EXP source code lines,
regardless of the number of comment lines interspersed among them.

» For st ep and st epi , dbx considers EXP to apply both to the current
procedure and to called procedures. Program execution stops after EXP
source lines in the current procedure and any called procedures.

* For next and next i, dbx considers EXP to apply only to the current
procedure. Program execution stops after executing EXP source linesin
the current procedure, regardless of the number of source lines executed
in any called procedures.

The st ep/ st epi and next / nexti commands have the following forms:
st ep [EXP]
st epi [EXP]
Executes the specified number of lines or instructions in both the current
procedure and any called procedures. The default is 1.

5-32 Debugging Programs with dbx

5.7.3

5.7.4

next [EXP]

nexti [EXP]
Executes the specified number of source code lines or machine
instructions in only the current procedure, regardless of the number of
lines executed in any called procedures. The default is 1.

For example:

(dbx) rerun
[7] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d. (%3d)
%", (dbx) step 2
0. (19) #include <stdio.h>
[prnt:55 ,0x120000c48] }
(dbx) step
[mai n: 40 , 0x120000b40] i=strlen(linel.string);
(dbx)

The $br eak_duri ng_st ep and $pri nt whi | est ep variables affect
stepping. See Table 5-8 for more information.

Using the return Command

Ther et urn command is used in a called procedure to execute the
remaining instructions in the procedure and return to the calling procedure.

Ther et ur n command has the following forms:

return
Executes the rest of the current procedure and stops ready to execute the
next sequential line in the calling procedure.

r et ur n PROCEDURE
Executes the rest of the current procedure and any calling procedures
intervening between the current procedure and the procedure named by
PROCEDURE. Stops ready to execute the next sequential line in the
named procedure.

For example:

(dbx) rerun
[7] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d. (%3d)
%", (dbx) return
0. (19) #include <stdio.h>
st opped at [mai n: 45 +0xc, 0x120000bb0] prnt (& inel);
(dbx)

Going to a Specific Place in the Code

The got o command shifts to the specified line and continues execution.
This command is useful in awhen statement — for example, to skip aline
known to cause problems. The got o command has the following form:

Debugging Programs with dbx 5-33

goto LI NE
Goes to the specified source line when you continue execution.

For example:

(dbx) when at 40 {goto 43}
[8] start ""samc"":43 at "samc": 40
(dbx)

5.7.5 Resuming Execution After a Breakpoint

For debugging programs written in high-level languages, the cont command
resumes program execution after a breakpoint. For debugging programs
written in assembly language, the cont i command works the same as
cont. Thecont and conti commands have the following forms:

cont
conti
Continues from the current source code line or machine address.

cont to LI NE
conti to ADDRESS
Continues until the specified source code line or machine address.

cont i n PROCEDURE
conti i n PROCEDURE
Continues until the specified procedure.

cont Sl GNAL

conti SI GNAL
Continues from the current line or machine instruction after receiving
the specified signal.

cont SIGNAL to LI NE

conti SI GNAL t o ADDRESS
Continues until the specified line or address after receiving the specified
signal.

cont S| GNAL i n PROCEDURE
conti SI GNAL i n PROCEDURE
Continues until the specified procedure and sends the specified signal.

The following example shows the cont command in a C program:

(dbx) stop in prnt
[9] stop in prnt
(dbx) rerun
[9] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d) %",
(dbx) cont
0. (19) #include <stdio.h>
[9] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(¥%3d) %",
(dbx)

5-34 Debugging Programs with dbx

5.7.6

5.7.7

The following example shows the cont i command in an assembly-language
program:

(dbx) conti

0. (19) #include <stdio.h>
[4] stopped at >*[prnt:52 ,0x120000c04] ldg r16,-32640(gp)
(dbx)

Changing the Values of Program Variables

The assi gn command changes the value of a program variable. The
assi gn command has the following form:

assi gn VAR = EXP

assi gn EXP1 = EXP2
Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

For example:

(dbx) print i
19 1

(dbx) assign i = 10

10 2
(dbx) assign *(int *)0x444 =1 3
1

(dbx)

1 Thevaueof i.
2 The new value of i.
3 Coercethe addressto be an integer and assign avalue of 1 toit.

Patching Executable Disk Files

The pat ch command patches an executable disk file to correct bad data or
instructions. Only text, initialized data, or read-only data areas can be
patched. The bss segment cannot be patched because it does not exist in
disk files. The pat ch command failsif it isissued against a program that is
executing.

The pat ch command has the following form:

pat ch VAR = EXP

pat ch EXP1 = EXP2
Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

Debugging Programs with dbx 5-35

5.7.8

The patch is applied to the default disk file; you can use qualified variable
names to specify a patch to afile other than the default. Applying a patch in
this way also patches the in-memory image of the file being patched.

For example:

(dbx) patch &min =0
(dbx) patch var = 20
(dbx) patch &ar = 20
(dbx) patch Oxnnnnn = Oxnnnnn

Running a Specific Procedure

Although it is possible for you to set the current line pointer to the beginning
of a procedure, place a breakpoint at the end of the procedure, and run the
procedure, it is usually easier to usethe cal | or pri nt command to
execute a procedure in your program. Thecal | or pri nt command
executes the procedure you name on the command line. You can pass
parameters to the procedure by specifying them as argumentsto thecal | or
pri nt command.

Thecal | or pri nt command does not ater the flow of your program.
When the procedure returns, the program remains stopped at the point where
you issued the cal | or pri nt command. Thepri nt command displays
values returned by called procedures; the cal | command does not.

Thecal | and pri nt commands have the following forms:

cal | PROCEDURE([par anet ers])

pri nt PROCEDURE([par aneters])
Executes the object code associated with the named procedure or
function. Specified parameters are passed to the procedure or function.

For example:

(dbx) stop in prnt 1
[11] stop in prnt

(dbx) call prnt (& inel)

[11] stopped at [prnt:52,0x120000c] fprlntf(stdout '93d. (98d) 9",
(dbx) status

[11] stop in prnt

[12] stop at "samc": 40

[2] record output exanple2 (126 |ines)

(dbx) delete 11,12 4
(dbx)

1 Thest op command sets a breakpoint in the prnt () function.

2 Thecal I command begins executing the object code associated with
prnt (). Thel i nel argument passes a string by referenceto prnt .

5-36 Debugging Programs with dbx

5.7.9

3 Thest at us command displays the currently active breakpoints.
4 Thedel et e command deletes the breakpoints at lines 52 and 40.

The pri nt command allows you to include a procedure as part of an
expression to be printed. For example:

(dbx) print sqgrt(2.)+sqrt(3.)

Setting Environment Variables

Use the set env command to set an environment variable. You can use this
command to set the value of an existing environment variable or create a new
environment variable. The environment variable is visible to both dbx and
the program you are running under dbx control, but it is not visible after you
exit the dbx environment; however, if you start a shell with the sh

command within dbx, that shell can see dbx environment variables. To
change an environment variable for a process, you must issue the set env
command before starting up the process within dbx with the r un command.

The set env command has the following form:

set env VAR " STRI NG'
Changes the value of an existing environment variable or create a new
one. To reset an environment variable, specify a null string.

For example:

(dbx) setenv TEXT "sam c" 1
(dbx) run 2
[4] stopped at [prnt 52, 0x120000e34] fprlntf(stdout "93d. (¥3d) %",
(dbx) setenv TEXT '

(dbx) run 4
Usage: sam fil enane

Programexited with code 1
1 Theset env command sets the environment variable TEXT to the value
sam c.

2 Ther un command executes the program from the beginning. The
program reads input from the file named in the the environment variable
TEXT. Program execution stops at the breakpoint at line 52.

3 Theset env command sets the environment variable TEXT to null.

The r un command executes the program. Because the TEXT
environment variable contains a null value, the program must get input.

Debugging Programs with dbx 5-37

5.8 Setting Breakpoints

A breakpoint stops program execution and lets you examine the program’s
state at that point. The following sections describe the dbx commands to set
a breakpoint at a specific line or in a procedure and to stop for signals.

5.8.1 Overview

When a program stops at a breakpoint, the debugger displays an
informational message. For example, if a breakpoint is set in the sample
program sam c at line 23 in the mai n() procedure, the following message

is displayed:

[4] stopped at [mai n: 40 , 0x120000b18] i=strlen(linel.string);
'1 L '5

1 Breakpoint status number.

2 Procedure name.

3 Line number.

4 Current program counter. Use this number to display the assembly

language instructions from this point. (See Section 5.7.5 for more
information.)

5 Sourceline.

Before setting a breakpoint in a program with multiple source files, be sure
that you are setting the breakpoint in the right file. To select the right
procedure, take the following steps:

1. Usethefil e command to select the source file.
2. Usethef unc command to specify a procedure name.

3. List the lines of the file or procedure using the | i st command (see
Section 5.6.4).

4. Useastop at command to set a breakpoint at the desired line.

5.8.2 Setting Breakpoints

For debugging programs written in high-level languages, the st op command
sets breakpoints to stop at a line, when a variable changes or a specified
condition is true, or in a procedure. For debugging programs written in
assembly language, the st opi command works the same as st op, except
that it traces by machine instructions instead of by program lines. You can
also instruct dbx to stop when it enters a new image invoked by an exec()
call by setting the $st op_on_exec predefined variable (see Table 5-8).

5-38 Debugging Programs with dbx

» Thestop at andstopi at commands set a breakpoint at a specific
source code line or address, as applicable. The dbx debugger stops only
at lines or addresses that have executable code. If you specify a
nonexecutable stopping point, dbx sets the breakpoint at the next
executable point. If you specify the VAR parameter, the debugger
displays the variable and stops only when VAR changes; if you specify
i f EXP, the debugger stops only when EXP is true.

* Thestopinandstopi i n commands set a breakpoint at the
beginning or, conditionally, for the duration of a procedure.

e Thestopif andstopi i f commands causedbx to stop program
execution under specified conditions. Because dbx must check the
condition after the execution of each line, this command slows program
execution markedly. Whenever possible, use st op/ st opi at or
st op/ stopi ininstead of st op/ stopi if.

+ Ifthe$st op_on_exec predefined variable is set to 1, an exec() cal

causes dbx to stop and read in the new image’s symbol table, then
advance to the image’'s main activation point and stop for user input.

Use the del et e command to remove breakpoints established by the st op
or st opi command.

The st op and st opi commands have the following forms:

st op VAR
stopi VAR
Stops when VAR changes.

st op VAR at LI NE
st opi VAR at ADDRESS
Stops when VAR changes at a specified source code line or address.

stop VARat LINEif EXP

stopi VARat ADDRESSi f EXP
Stops when VAR changes at a specified line or address only if the
expression is true.

stopif EXP
stopi if EXP

Stops if EXP is true.
stop VARIi f EXP

stopi VAR f EXP
Stops when VAR changes if EXP is true.

Debugging Programs with dbx 5-39

st op i n PROCEDURE
st opi i n PROCEDURE
Stops at the beginning of the procedure.

st op VAR i n PROCEDURE
Stops in the specified procedure when VAR changes.

st op VAR n PROCEDURE i f EXP
stopi VARI n PROCEDURE i f EXP
Stops when VAR changes in the specified procedure if EXP is true.

Note

Specifying both VAR and EXP causes stops anywhere in the
procedure, not just at the beginning. Using this featureis time
consuming because the debugger must check the condition before
and after each source line is executed. (When both arguments
are specified, EXP is always checked before VAR.)

The following example shows the use of st op in a C program:

(dbx) stop at 52

[3] stop at "samc":52

(dbx) rerun

[3] stopped at [prnt:52,0x120000f b0O] fprintf(stdout,"%3d. (¥%3d) %",
(dbx) stop in prnt

[15] stop in prnt

(dbx)

The following example shows the use of st opi in an assembly-language
program:

(dbx) stopi at 0x120000c04

[4] stop at 0x120000c04

(dbx) rerun

[7] stopped at >*[prnt:52 ,0x120000c04] I dq rl6, -32640(gp)

5.8.3 Tracing Variables During Execution

For debugging programs written in high-level languages, thet r ace
command lists the value of a variable while the program is executing and
determines the scope of the variable being traced. For debugging programs
written in assembly language, thet r acei command works the same as

t race, except that it traces by machine instructions instead of by program
lines.

5-40 Debugging Programs with dbx

Thetrace andtracei commands have the following forms:

trace LI NE
Lists the specified source line each time it is executed.

trace VAR

tracei VAR
Lists the specified variable after each source line or machine instruction
is executed.

trace [VAR] at LI NE
tracei [VAR] at ADDRESS
Lists the specified variable at the specified line or instruction.

trace [VAR i n PROCEDURE
tracei [VAR] i n PROCEDURE
Lists the specified variable in the specified procedure.

trace [VAR] at LINEif EXP

tracei [VAR] at ADDRESS i f EXP
Lists the variable at the specified source code line or machine address
when the expression is true and the value of the variable has changed.
(EXP is checked before VAR.)

trace [VAR] i n PROCEDURE i f EXP

tracei [VAR] i n PROCEDURE i f EXP
Lists the variable in the specified procedure when the expression is true
and the value of the variable has changed. (EXP is checked before
VAR)

For example:

(dbx) trace i

[5] trace i in main

(dbx) rerun samc

[4] [mai n: 25 , 0x400a50] if (argc < 2) {

(dbx) c

[5] i changed before [main: |ine 41]:
new val ue = 19;

[5] i changed before [main: |ine 41]:
old value = 19;
new val ue = 14;

[5] i changed before [main: |ine 41]:
ol d val ue = 14;
new val ue = 19;

[5] i changed before [main: |ine 41]:
old value = 19;
new val ue = 13;

[5] i changed before [main: |ine 41]:
old value = 13;
new val ue = 17;

[5] i changed before [main: |ine 41]:

old value = 17;

Debugging Programs with dbx 5-41

5.8.4

new val ue = 3;

[5] i changed before [main: |ine 41]:
old value = 3;
new val ue = 1;

[5] i changed before [main: |ine 41]:
old value = 1;
new val ue = 30;

Writing Conditional Code in dbx

Use the when command to control the conditions under which certain dbx
commands that you specify will be executed.

The when command has the following forms:

when VAR [if EXP] {COMVAND_ LI ST}
Executes the command list when EXP is true and VAR changes.

when [VAR] at LINE[if EXP] { COVWWAND LI ST}
Executes the command list when EXP is true, VAR changes, and the
debugger encounters LI NE.

when i n PROCEDURE { COMVAND_LI ST}
Executes the command list upon entering PROCEDURE.

when [VAR] i n PROCEDURE [i f EXP] { COWAND_LI ST}
Executes the specified commands on each line of PROCEDURE when
EXP is true and VAR changes. (EXP is checked before VAR.)

For example:

(dbx) when in prnt {print linel.length}
[6] print linel.length in prnt

(dbx) rerun

19 1
14

19

More (n if no)?

(dbx) delete 6

(dbx) when in prnt {stop}

[7] stop in prnt

(dbx) rerun

[7] stopped at [prnt:52,0x12000f b0] fprintf(stdout,"%3d.(%3d) %",
I

2

5-42 Debugging Programs with dbx

1 Vaueof|inel.length.
2 Stops in the procedure pr nt .

5.8.5 Catching and Ignoring Signals

The cat ch command either lists the signals that dbx catches or specifies a
signal for dbx to catch. If the process encounters a specified signal, dbx
stops the process.

Thei gnor e command either lists the signals that dbx does not catch or
specifies asignal for dbx to add to the ignore list.

The cat ch and i gnor e commands have the following forms:

catch
Displays alist of al signals that dbx catches.

cat ch SI GNAL
Adds a signal to the catch list.

i gnore
Displays alist of al signals that dbx does not catch.

i gnor e SI GNAL
Removes a signal from the catch list and adds it to the ignore list.

For example:

(dbx) catch 1
INT QU T ILL TRAP ABRT EMI FPE BUS SEGV SYS PI PE TERM URG \
STOP TTIN TTQU | O XCPU XFSZ VTALRM PROF W NCH | NFO USR1 USR2

(dbx) ignore 2
HUP KI LL ALRM TSTP CONT CHLD
(dbx) catch kill 3

(dbx) catch

INT QU T ILL TRAP ABRT EMI FPE KILL BUS SEGV SYS PI PE TERM URG \
STOP TTIN TTQU | O XCPU XFSZ VTALRM PROF W NCH | NFO USR1 USR2
(dbx) ignore

HUP ALRM TSTP CONT CHLD

(dbx)

The backslashes in this example represent line continuation. The actual
output from cat ch and i gnor e isasingle line.

1 Displays the catch list.
2 Displaystheignore list.
3 AddsKI LL to the catch list and removes KI LL from the ignore list.

Debugging Programs with dbx 5-43

5.9 Examining Program State

591

When dbx is stopped at a breakpoint, the program state can be examined to
determine what might have gone wrong. The debugger provides commands
for displaying stack traces, variable values, and register values. The
debugger also provides commands to display information about the activation
levels shown in the stack trace and to move up and down the activation
levels (see Section 5.6.2).

Printing the Values of Variables and Expressions
The pri nt command displays the values of one or more expressions.

The pri ntf command lists information in a specified format and supports
al formats of the pri nt f () function except strings (¥8). For alist of
formats, seepri ntf (3). You canusethepri ntf command to see a
variable' s value in a different number base.

The default command alias list (see Section 5.5.3) provides some useful
aliases for displaying the value of variables in different bases — octal (po),
decimal (pd), and hexadecimal (px). The default number base is decimal.

Y ou can specify either the real machine register names or the software names
from the include file r egdef . h. A prefix before the register number
specifies the type of register; the prefix can be either $f or $r, as shown in
the following listing of registers:

Register Name(s) Register Type

$f 00-%f 31 Floating point register (1 of 32)
$r 00-%$r 31 Machine register (1 of 32)

$f pcr Floating-point control register
$pc Program counter value

$ps Program status register®

Table Note:

a. The program status register is useful only for kernel debugging. For
user-level programs, its value is always 8.

You can also specify prefixed registersin the pri nt command to display a
register value or the program counter. The following commands display the
values of machine register 3 and the program counter:

5-44 Debugging Programs with dbx

(dbx) print $r3
(dbx) print $pc

The pri nt command has the following forms:

print EXP1, ..., EXPN
Displays the value of the specified expressions.
printf "STRING', EXPL, ..., EXPN

Displays the value of the specified expressions in the format specified by
the string.

Note

If the expression contains a name that is the same as a dbx
keyword, you must enclose the name within parentheses. For
example, to print out put , akeyword in the pl ayback and
r ecor d commands, specify the name as follows:

(dbx) print (output)

For example:
(dbx) print i
14

(dbx) po i
016 2
(dbx) px i
Oxe 3

(dbx) pd i
14

(dbx)

1 Decimal

2 Octal

3 Hexadecimal

4 Decima

The pri ntregs command displays a complete list of register values; it
accepts no arguments. Aswith the pri nt command, the default base for

display by pri ntregs isdecimal. To display values in hexadecimal with
the pri nt r egs command, set the dbx variable $hexi nt s.

For example:

Debugging Programs with dbx 5-45

5.9.2

(dbx) printregs

$vfp= 4831837712

$r1_t0=0
$r3_t2=18446744069416926720
$r5 t4=1

$f25= 0.0
$f 27= 2. 3873098155006918e- 314
$f 29= 9. 8813129168249309e- 324
$f31= 0.0

$r0_v0=0
$r2_t1=0
$r4_t3=18446744071613142936
$r6_t 5=0

$f26= 0.0

$f 28= 2. 6525639909000367e- 314
$f 30= 2. 3872988413145664e- 314
$pc= 4831840840

Displaying Activation-Level Information with the dump

Command

The dunp command displays information about activation levels, including
values for all variables that are local to a specified activation level. To see
what activation levels are currently active in the program, use the wher e

command to get a stack trace.

The dunp command has the following forms:

dump

Displays information about the current activation level.

dump

dunp PROCEDURE

Displays information about all activation levels.

Displays information about the specified procedure (activation level).

For example:
(dbx) where

> 0 prnt(pline = Ox11ffffcbh8)

["sam c":52, 0x120000c04]

1 main(argc = 2, argv = Ox11ffffe08) ["samc":45, 0x120000bac]

(dbx) dunp

prnt(pline = Ox11ffffch8) ["samc":52, 0x120000c04]

(dbx) dump .

> 0 prnt(pline = Ox11ffffcb8) ["sam c":52, 0x120000c04]

1 main(argc = 2, argv = Ox11ffffe08) ["samc":45, 0x120000bac]

linel = struct {

string = "#include <stdio.h>"

length = 19
l'i nenunber = 0

}

fd = 0x140000158

fname = Ox11ffffe9c = "samc"
i =19

curlinenunber =1

(dbx) dunmp nmin

5-46 Debugging Programs with dbx

main(argc = 2, argv = Ox11ffffe08) ["samc": 45, 0x120000bac]
linel = struct {

string = "#include <stdio.h>"

length = 19

I'i nenunber = 0

= 0x140000158

ame = Ox11ffffe9c = "samc"
i =19

curlinenunber =1

(dbx)

}
fd
fn

5.9.3 Displaying the Contents of Memory

You can display memory contents by specifying the address and the format
of the display. Use the following form, with no spaces between the three
parts of the command:

address/countmode

The addr ess portion of the command is the address of the first item to be
displayed, count isthe number of items to be shown, and node indicates
the format in which the items are to be displayed. For example:

prnt/ 20i

This example displays the contents of 20 machine instructions, beginning at
the address of the pr nt function.

The values for nobde are shown in Table 5-9.

Table 5-9: Modes for Displaying Memory Addresses

Mode Display Format

b Displays a byte in octal.

c Displays a byte as a character.

D Displays a long word (64 bits) in decimal.
d Displays a short word (16 bits) in decimal.
dd Displays a word (32 hits) in decimal.

f Displays a single-precision real number.

g Displays a double-precision real number.

[Displays machine instructions.

@] Displays along word in octal.

o] Displays a short word in octal.

00 Displays a word (32 hits) in octal.

Debugging Programs with dbx 5-47

Table 5-9: (continued)

Mode Display Format

S Displays a string of characters that ends in a null byte.
Displays along word in hexadecimal.

X Displays a short word in hexadecimal.

XX Displays a word (32 bits) in hexadecimal.

The following example shows the output when displaying memory addresses
as instructions:

(dbx) &prnt/20i
[prnt: 51, 0x120000bf0] |dah gp, 8193(r27)
[prnt:51, 0x120000bf4] I1da gp, -25616(gp)
[prnt:51, 0x120000bf8] Ilda sp, -64(sp)
[prnt:51, 0x120000bfc] stq r26, 8(sp)
[prnt:51, 0x120000c00] stq r16, 16(sp)
[prnt: 52, 0x120000c04] ldg r16, -32640(gp)

>*[prnt:52, 0x120000c08] addq r16, 0x38, r16
[prnt:52, 0x120000c0Oc] ldqg r17, -32552(gp)
[prnt:52, 0x120000c10] ldg r1, 16(sp)
[prnt: 52, 0x120000c14] Idl r18, 260(r1)
[prnt:52, 0x120000c18] Idl r19, 256(r1l)
[prnt:52, 0x120000clc] bis rl1, rl, r20
[prnt:52, 0x120000c20] Idg r27, -32624(gp)
[prnt:52, 0x120000c24] jsr r26, (r27), 0x4800030a0
[prnt: 52, 0x120000c28] |dah gp, 8193(r26)
[prnt:52, 0x120000c2c] Ilda gp, -25672(gp)
[prnt: 54, 0x120000c30] ldg r16, -32640(gp)
[prnt: 54, 0x120000c34] addg r16, 0x38, rl6
[prnt:54, 0x120000c38] Idg r27, -32544(gp)
[prnt: 54, 0x120000c3c] jsr r26, (r27), 0x480003100

5.9.4 Recording and Playing Back Portions of a dbx Session

The dbx debugger allows you to capture and replay portions of your input to
the program and also portions of its output. Recorded information is written
to afile so that you can reuse or reexamine it.

Recording input can be useful for creating command files containing
seguences that you want to repeat many times; you can even use recorded
input to control dbx for such purposes as regression testing. Recording
output is useful for capturing large volumes of information that are
inconvenient to deal with on the screen, so that you can analyze them later.
To look at recorded output later, you can read the saved file directly or you
can play it back with dbx.

5-48 Debugging Programs with dbx

5.9.4.1 Recording and Playing Back Input

Usetherecord i nput command to record debugger input. Use the
pl ayback i nput command to repeat a recorded sequence. Ther ecor d
i nput and pl ayback i nput commands have the following forms:

recordinput [FILE]
Begins recording dbx commands in the specified file or, if no fileis
specified, in afile placed in / t np and given a generated name.

pl ayback i nput [FI LE]

source [Fl LE]
Executes the commands from the specified file or, if no file is specified,
from the temporary file. The two forms are identical in function.

The name given to the temporary file, if used, is contained in the debugger
variable $def aul ti n. To display the temporary file name, use the pri nt
command:

(dbx) print $defaultin

Use atemporary file when you need to refer to the saved output only during
the current debugging session; specify afile name to save information for
reuse after you end the current debugging session. Use the st at us
command to see whether recording is active. Use the del et e command to
stop recording. Note that these commands will appear in the recording; if
you are creating a file for future use, you will probably want to edit the file to
remove commands of this type.

Use the pl ayback i nput command to replay the commands recorded with
therecord i nput command. By default, playback is silent; you do not
see the commands as they are played. If the dbx variable $pi node is set to
1, dbx displays commands as they are played back.

The following example records input and displays the resulting file:

(dbx) record input 1
[2] record input /tnp/dbxtX026963 (0 |ines)

(dbx) status

[2] record input /tnp/dbxtX026963 (1 |ines)

(dbx) stop in prnt

[3] stop in prnt

(dbx) when i = 19 {stop}

[4] stop ifchanged i = 19

(dbx) delete 2 2
(dbx) pl ayback i nput 3
[3] stop in prnt

[4] stop ifchanged i = 19

[5] stop in prnt

[6] stop ifchanged i = 19

/ t np/ dbxt X026963: 4: unknown event 2 4
(dbx)

Debugging Programs with dbx 5-49

Start recording.
Stop recording.

Play back the recorded input. As events 3 and 4 are played, they create
duplicates of themselves, numbered 5 and 6, respectively.

4 The debugger displays this error message because event 2, the command
to begin recording, was deleted when recording was stopped.

The temporary file resulting from the preceding dbx commands contains the
following text:

stat us

stop in prnt

when i = 19 {stop}
delete 2

5.9.4.2 Recording and Playing Back Output

Usether ecor d out put command to record dbx output during a
debugging session. To produce a complete record of activity by recording
input along with the output, set the dbx variable $r i node. You can use
the debugger’'s pl ayback out put command to look at the recorded
information, or you can use any text editor.

Ther ecord out put and pl ayback out put commands have the
following forms:

record out put [FI LE]
Begins recording dbx output in the specified file or, if no fileis
specified, in afile placed in / t np and given a generated name.

pl ayback out put [FI LE]
Displays recorded output from the specified file or, if no file is specified,
from the temporary file.

The name given to the temporary file, if used, is contained in the debugger
variable $def aul t out . To display the temporary file name, use the
pri nt command:

(dbx) print $defaul t out

The pl ayback out put command works the same as the cat command; a
display from ther ecor d out put command is identical to the contents of
the recording file.

Use a temporary file when you need to refer to the saved output only during
the current debugging session; specify afile name to save information for
reuse after you end the current debugging session. Use the st at us
command to see whether recording is active. Use the del et e command to
stop recording.

5-50 Debugging Programs with dbx

5.10

The following example shows a sample dbx interaction and the output
recorded for this interaction in a file named code:

(dbx) record output code

[3] record output code (O lines)

(dbx) stop at 25

[4] stop at "samc":25

(dbx) run samc

[4] stopped at [main:25 ,0x120000a48] if (argc < 2) {

(dbx) delete 3

(dbx) pl ayback out put code

[3] record output code (0O lines)

(dbx) [4] stop at "samc":25

(dbx) [4] stopped at [main:25 ,0x120000a48] if (argc < 2) {
(dbx)

Debugging a Running Process

The dbx debugger can be used to debug running processes that are started
outside the dbx environment. It supports the debugging of such processes,
both parent and child, by using the / pr oc file system. The debugger can
debug running processes only if the / pr oc file system is mounted. If

/ pr oc is not already mounted, the superuser can mount it with the
following command:

mount -t procfs /proc /proc

Y ou can add the following entry to the/ et ¢/ f st ab file to mount / pr oc
upon booting:

/ proc / proc procfs rwO0 O

The dbx debugger checksfirst to seeif / pr oc is mounted, but it will still
function if this is not the case.

To attach to a running process, use the dbx command at t ach, which has
the following form:

attach process-id
The process- i d argument is the process ID of the process you want
to attach to.

Y ou can also attach to a process for debugging by using the command line
flag—pi d process id.

To detach from a running process, use the dbx command det ach, which
has the following form:

detach [process-i d]
The optional process- i d argument is the process ID of the process
you want to detach from. If no argument is given, dbx detaches from
the current process.

Debugging Programs with dbx 5-51

5.11

To change from one process to another, use the dbx command swi t ch,
which has the following form:

switch process-id
The process- i d argument is the process ID of the process you want
to switch to. You must already have attached to a process before you
can switch to it. You can use the alias sw for the swi t ch command.

The at t ach command first checks to see whether / pr oc is mounted; dbx
gives awarning that tells you what to do if it is not mounted. If / proc is
mounted, dbx looks for the processID in/ proc. If the processID isin

/ pr oc, dbx attempts to open the process and issues ast op command. |f
the process is not there or if the permissions do not allow attaching to it, dbx
reports this failure.

When the st op command takes effect, dbx reports the current position,
issues a prompt, and waits for user commands. The program probably will
not be stopped directly in the user code but will more likely be in alibrary or
system call that was called by user code.

The det ach command deletes all current breakpoints, sets up a‘‘run on last
close’’ flag, and closes (*‘releases’’) the process. The program then
continues running if it has not been explicitly terminated inside dbx.

To see asummary of al the active processes under control of dbx, use the
p!l i st command, which has the following form:

pli st
Displays a list of active processes and their status. Indicates the current
process with a marker: - - >

Debugging Multithreaded Applications

The dbx debugger provides four basic commands to assist in the debugging
of applications that use threads.

Thetli st command displays a quick list of al threads and where they are
currently positioned in the program. This command accepts no arguments.

Thet set command sets the current thread. The debugger maintains one
thread as the *‘current’’ thread; this thread is the one that hits a breakpoint or
receives a signal that causes it to stop and relinquish control to dbx.

Usingthet | i st command, you can see al the threads, with their IDs, that
are currently in your program. Uset set to choose a different thread as the
current thread so that you can examine its state with the usual dbx
commands.

Note that the selected thread remains the current thread until you enter
another t set command. Note also that the cont i nue, st ep, or next

5-52 Debugging Programs with dbx

commands might be inappropriate for a given thread if it is blocked or
waiting to join with another thread.

Thet set command has the following form:

t set [EXP]
Choose a thread to be the current thread. The EXP argument is the
hexadecimal ID of the desired thread.

Thet st ack command lists the stacks of all the threads in your application.
It is similar to the wher e command and, like wher e, takes an optiona
numeric argument to limit the number of stack levels displayed:

t stack [EXP]
Display stack traces for al threads.

If EXP is specified, dbx displays only the top EXP levels of the stacks;
otherwise, the entire stacks are displayed.

If the DECthreads product is installed on your system, you can gain access to
the DECthreads pthread debugger by issuing acal | cnma_debug()
command within your dbx session. The pthread debugger can provide a
great deal of useful information about the threads in your program. For
information on using the pthread debugger, enter ahel p command at its
debug> prompt.

A sample threaded program, t wai t . ¢, is shown in Example 12-1. The
following example shows a dbx session using that program. Long linesin
this example have all been folded at 72 charactersto represent display on a
narrow terminal.

% dbx twait
dbx version 3.11.6
Type 'help’ for help

main: 50 pthread_t me = pthread_self(), tinmer_thread

(dbx) stop in do_tick

[2] stop in do_tick

(dbx) stop at 85

[3] stop at "twait.c":85

(dbx) stop at 35

[4] stop at "twait.c":35

(dbx) run

main thread starting up

exit lock initialized

exit | ock obtained

exit cv initialized

tinmer_thread 2 created

exit lock rel eased

2] thread 0x81062e80 st opped at [do_tick:21 ,0x12000730c] pthread_

me = pthread_sel f();

(dbx) tlist

thread 0x81c623a0 stopped at [msg_recei ve_trap: 74 +0x8, 0x3f f 808edf 04]
Source not avail abl e

thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pt hread_

1:
1
1
1
1
1:
[

Debugging Programs with dbx 5-53

t me = pthread_sel f()
(dbx) where
> 0 do_tick(argP = (nil)) ["twait.c":21, 0x12000730c]

1 cme__thread_base(0x0, 0x0, 0xO, OXO ox0) ["../../..1..1../srclusr/

ccs/lib/DECIhreads/C[AM()Vcna_thread c": 1441, 0x3ff80931410]

(dbx) tset 0x81c623a0

thread 0x81c623a0 stopped at [meg_receive_trap: 74 +0x8, 0x3f f 808edf 04]
Source not avail abl e

(dbx) where

> 0 nsg_receive_trap(0x3ff8087b8dc, Ox3ffc00a2480, Ox3ff8087b928, 0x181
57f0d0d, Ox3ff8087b68c) ["/usr/buil d/ osfl/ gol dos. bl d/ export/al pha/usr/in

cl ude/ mach/ syscal | _sw. h": 74, 0x3ff 808edf 00]

1 meg_receive(0x61746164782e, Ox3ffc009a420, 0x3ffc009a420, 0x3c20, O
xe0420) ["../../../1..1..]srclusr/ccs/lib/libmach/nsg.c":95, O0x3ff808e474
4]

2 cmea__vp_sl eep(0x280187f578, 0x3990, O0x7, 0x3ff01032848 0x0) ["

.. 1..1..Isrclusr/ccs/lib/DEC hreads/ COWON cna_vp. c": 1471, 0x3ff809375
ccl

3 cna__di spatch(0x7, O0x3ffc1032848, 0x0, O0x3ffcl100ee08, 0x3ff80917e3c

Aol ..]srclusr/ccs/lib/ DECt hr eads/ COMON crre_di spat ch. ¢": 967
, 0x3ff80920e48]

4 cma__| |nt _wai t (0x11ffff228, 0x140009850, Ox3ffc040cdb0, 0x5, 0x3ffcO

014c00) [.. 1..1..Isrclusr/ccs/lib/DECt hreads/ COMON cna_condi tion
12202, 0X3ff80917638]

5 cna thread_10|n(0x11ffff648 Ox11ffffof 0, Ox11ffff9e8, Ox60aaec4, O
x3ff80000f38) [" ..l ..1..Isrclusr/ccs/libl/DECt hreads/ COWON cna_t hr
ead. c": 825, 0x3ff80930a58]

6 pthread_10|n(0xl40003110 0x40002, Ox1iffffa68, 0X3ffCO4OCdb0 0x0)
["“../..1..1..1../srclusr/ccs/lib/DECthreads/ COMON cnma_pt hread. c": 2193,
0X3ff80928608]

7 main() ["twait.c":81, 0x12000788c]

(dbx) tlist

thread 0x81c623a0 stopped at [meg_receive_trap: 74 +0x8, 0x3f f 808edf 04]
Source not avail abl e

thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_

t me = pthread_sel f();

(dbx) tset 0x81c62e80

thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pt hread_

t me = pthread_sel f()

(dbx) cont

2: tiner thread starting up, argP=0x0

[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%l: wait for next tick\n", THRID(&m));

(dbx) cont

2: wait for next tick

2: TICK #1

[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%l: wait for next tick\n", THRI D(&nme));

(dbx) tstack

Thread 0x81c623a0

> 0 nsg_receive_trap(0x3ff8087b8dc, O0x3ffc00a2480, 0x3ff8087b928, 0x181
57f 0d0d, Ox3ff8087b68c) ["/usr/buil d/ osfl/gol dos. bl d/ export/al pha/usr/in
cl ude/ mach/ syscal | _sw. h": 74, 0x3ff 808edf 00]

1 msg_receive(0x61746164782e, Ox3ffc009a420, O0x3ffc009a420, 0x3c20, O
xe0420) ["../../../..1..Isrclusr/ccs/lib/libmach/nsg.c":95, 0x3ff808e474
4]

2 cma__vp_sl eep(0x280187f578, 0x3990, 0x7, Ox3ffcl032848, 0x0) ["..
.. l..1..Isrclusr/ccs/lib/DECt hreads/ COWON cna_vp. c": 1471, 0x3ff809375
cc]

3 cna__di spatch(0x7, Ox3ffc1032848, 0x0, Ox3ffcl00ee08, 0x3ff80917e3c

5-54 Debugging Programs with dbx

) [... l..Isrclusr/ccs/lib/DECt hreads/ COWON cre_di spatch. ¢": 967
, 0x3ff80920e48]

4 cma__| |nt _wai t (0x11ffff228, 0x140009850, O0x3ffc040cdb0, 0x5, 0x3ffcO

014000) [" Isrclusr/ccs/lib/DECt hreads/ COMON cna_condi tion
12202, 0x3ff80917e38]

5 che thread_10|n(0xllffff648 Ox11ffff9of 0, Ox11ffff9e8, Ox60aaec4, O
x3ff80000f38) [" .. 1..1..Isrclusr/ccs/libl/DEC hreads/ COWON cna_t hr
ead. c": 825, 0x3ff80930a58]

6 pthread_10|n(0x140003110 0x40002, Ox1iffffa68, 0x3ffc0400db0 0x0)

ool Isrclusr/ccs/lib/ DECt hr eads/ COWON cre_pt hread. ¢": 2193
0x3ff809286c8]

7 main() ["twait.c":81, 0x12000788c]

Thread 0x81c62e80
> 0 do_tick(argP = (nil)) ["twait.c":35, 0x120007430]

1 cma__thread_base(0x0, 0x0, 0xO, 0x0 0ox0) [" Aol 1. Isrclusr/

ccs/1ib/ DECt hr eads/ COWON crre_t hread. c": 1441, 0x3ff80931410]

More (n if no)?

(dbx) tstack 3

Thread 0x81c623a0

> 0 nsg_receive_trap(0x3ff8087b8dc, O0x3ffc00a2480, Ox3ff8087b928, 0x181
57f0d0d, Ox3ff8087b68c) ["/usr/buil d/ osfl/gol dos. bl d/ export/al pha/usr/in
cl ude/ mach/ syscal | _sw. h": 74, 0x3ff 808edf 00]

1 meg_receive(0x61746164782e, Ox3ffc009a420, 0x3ffc009a420, 0x3c20, O
xe0420) ["../../../1..1..]srclusr/ccs/lib/libmach/nsg.c":95, O0x3ff808e474
4]

2 cme__vp_sl eep(0x280187f578, 0x3990, O0x7, 0x3ff01032848 0x0) ["

.. 1..1..Isrclusr/ccs/lib/DEC hreads/ COWON cna_vp. c": 1471, 0x3ff809375
ccl

Thread 0x81c62e80

> 0 do_tick(argP = (nil)) ["twait.c": 35, 0x120007430]

1 cma__thread_base(0x0, 0x0, 0xO, 0x0 ox0) [" Aol 1. Isrclusr/
ccs/1ib/ DECt hr eads/ COWON crre_t hread. c": 1441, 0x3ff80931410]
(dbx) cont
2: wait for next tick
2: TICK #2
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("

%l: wait for next tickO0, THRI D(&me));
(dbx) assign ticks = 29
29

(dbx) cont

2: wait for next tick

2: TICK #29

[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] pr
%l: wait for next tick\n", THRI D(&nme));

(dbx) cont

2: wait for next tick

2: TICK #30

2: exiting after #31 ticks

1: joined with tiner_thread 2

[3] thread 0x81c623a0 stopped at [mai n: 85 , 0x1200078ec] if (errn

o!=0) printf("errno 7 = %\ n", errno)

(dbx) tlist

thread 0x81c623a0 stopped at [mai n: 85 , 0x1200078ec] if (errno
printf("errno 7 = %0, errno)

thread 0x81c62e80 stopped at [meg_rpc_trap: 75 +0x8, Ox3f f 808edf 10]
Source not avail abl e

(dbx) cont

ntf("

0)

Program term nated normal |y

Debugging Programs with dbx 5-55

5.12

(dbx) tlist
(dbx) quit

Debugging Multiple Asynchronous Processes

The dbx debugger can debug multiple simultaneous asynchronous processes.
While debugging asynchronous processes, dbx can display status and accept
commands asynchronously. When running asynchronously, the debugger
might exhibit confusing behavior because a running process can display
output on the screen while you are entering commands to examine a different
process that is stopped.

The debugger automatically enters asynchronous mode in either of the
following circumstances:

* You command it to attach to a new process while a previous process is
still attached.

» The process to which dbx is attached forks off a child process, and the
debugger automatically attaches to the child process without detaching
from the parent.

The debugger uses several predefined variables to define the behavior of
asynchronous debugging. (See also Table 5-8.) The variable

$asynch_i nt er f ace can be viewed as a counter that is incremented by 1
when a new process is attached and decremented by 1 when a process
terminates or is detached. The default value is 0.

When $asynch_i nt er f ace has a positive nonzero value, asynchronous
debugging is enabled; when the variable is 0 (zero) or negative, asynchronous
debugging is disabled. To prevent dbx from entering asynchronous mode, set
the $asynch_i nt er f ace variable to a negative value. (Note that
disabling asynchronous mode might make debugging more difficult if a
parent is waiting on a child that is stopped.)

When a process executesaf or k() or vfork() cal, dbx attachesto the
child process and automatically enters asynchronous mode (if permitted by
$asynch_i nt erface). The default behavior is to stop the child process
right after the fork. Y ou can change this default by setting the variable

$st op_on_fork to O; in this case, dbx will attach to the child process but
not stop it.

The dbx debugger attempts to apply a degree of intelligence to the handling
of forks by filtering out many of the fork calls made by various system and
library calls. If you want to stop the process on these forks also, you can set
the predefined variable $st op_al | _f or ks to 1. Thisvariable's default
vaueis 0. Stopping on al forks can be particularly useful when you are
debugging alibrary routine.

5-56 Debugging Programs with dbx

You can use the debugger’spl i st and swi t ch commands to monitor and
switch between processes.

5.13 Sample Program

Example 5-1 is the sample C program (sam c) that is referred to in
examples throughout this chapter.

Example 5-1: Sample Program Used in dbx Examples

#i ncl ude <stdio. h>
struct line {
char string[256];
int length;
int |inenunber;

b
typedef struct |ine LINETYPE;
void prnt();

mai n(argc, ar gv)
int argc;
char **argv;

LI NETYPE | i nel;

FILE *fd;

extern FILE *fopen();
extern char *fgets();
extern char *getenv();
char *fnane;

int i;

static curlinenunber=0;

if (argc < 2) {

if((fnanme = getenv("TEXT")) == NULL || *fnane =="' ") {
fprintf(stderr, "Usage: samfilenanme\n");
exit(1);
} else

fnane = argv[1];

fd = fopen(fnane,"r");

if (fd == NULL) {
fprintf(stderr, "cannot open %\n",fnane);
exit(1);

whil e(fgets(linel.string, sizeof(linel.string), fd) !'= NULL){
i=strlen(linel.string);
if (i==1 && linel.string[0] == "\n")
conti nue;

Debugging Programs with dbx 5-57

Example 5-1: (continued)

linel.length = 1i;
linel.linenunber = curlinenunber++;
prnt (& inel);

}

voi d prnt(pline)
LI NETYPE *pl i ne;

fprintf(stdout,"93d. (%3d) %",

pl i ne->li nenunber, pline->length, pline->string);
fflush(stdout);

5-58 Debugging Programs with dbx

Checking C Programs with lint 6

You can usethel i nt program to ensure that C programs do not contain
syntax errors and to verify that the programs do not contain data type errors.
This chapter describes most of the checking operations performed by | i nt ,
including the following:

* Program flow checking

» Datatype checking

» Variable and function checking

» Migration checking

» Portability checking

* Creating alint library

* Understanding lint error messages

Seel i nt (1) for acomplete list of | i nt options.

6.1 Overview of the lint Program

Thel i nt program checks a program more carefully than some C compilers
and displays messages that point out possible problems. Some of the
messages require corrections to the source code; others are only informational
messages and do not require corrections.

Thel i nt command has the following syntax:
lint [options] [file ...]

options
Options to control | i nt checking operations.

The cc driver flags, —st d, —st dO, and —st d1 are available as options to
I'i nt. These flags affect the parsing of the source as well as the selection of
thel i nt library to use. Selecting either the —st d or —st d1 flags turns on
ANSI parsing rulesin| i nt .

When you usethe —MA | i nt flag, —st d1 is used for the C preprocessing
phase and ANSI _C SOURCES is defined using the —D preprocessor flag.
The following table describes the action | i nt takes for each flag:

Lint Pre-processor Lint Lint Library

Option Switch Parsing

-MA —stdl and ANS| [lib-lansi.ln
—D ANSI _C SOURCE

—std —std ANS| [lib-lcstd.In

—stdl -stdl ANS| [lib-lcstd.In

—st do —st do EXTD [lib-lc.In

Table Note: EXTD is Extended C language, also known as K&R C.

file
The name of the C language source file for | i nt to check. The name
must have one of the following suffixes:

Suffix ~ Description

.C C sourcefile
i File produced by the C preprocessor (cpp)
.In [int library file

Notethat | i nt library files are the result of a previous invocation of
thel i nt program with either the - ¢ or - o option. They are analogous
to the . o files produced by the cc command when given a. ¢ file as
input. The ability to specify | i nt libraries asinput to the |l i nt
program facilitates intermodule interface checking in large applications.
Adding rules that specify the construction of | i nt libraries to their
makefiles can make building such applications more efficient. See
Section 6.10 for a discussion on how to create al i nt library.

You can also specify asinput al i nt library that resides in one of the
system’s default library search directories by using the - | x option. The
library name must have the following form:

llib-l/ibname.In

By default, thel i nt program appends the extended C (K&R C) | i nt
library (I I'i b-1c. 1 n)tothelist of files specified on the command line. If
the —st d or —st d1 flag is used, it appends the standard C lint library
(I'1ib-1cstd. | n)instead.

6—2 Checking C Programs with lint

The following additiona libraries are included with the system:

Library Description Specify As
crses Checks curses library call syntax —l crses

m Checks math library call syntax -I'm

port Checks for portability with other systems —p (not —I port)
ansi Enforces ANSI C standard rules —MA (not —I| ansi)

If you specify no flags on the command line, the | i nt program checks the
specified C source files and writes messages about any of the following
coding problems that it finds:

* Loops that are not entered and exited normally
» Datatypesthat are not used correctly

» Functions that are not used correctly

» Variablesthat are not used correctly

» Coding techniques that could cause problems if a program is moved to
another system

» Nonstandard coding practices and style differences that could cause
problems

Thel i nt program also checks for syntax errorsin statements in the source
programs. Syntax checking is always done and is not influenced by option
flags.

If i nt does not report any errors, the program has correct syntax and will
compile without errors. Passing that test, however, does not mean that the
program will operate correctly or that the logic design of the program is
accurate.

See Section 6.10 for information on how to create your own | i nt library.

6.2 Program Flow Checking

Thel i nt program checks for dead code, that is, parts of a program that are
never executed because they cannot be reached. It writes messages about
statements that do not have a label but immediately follow statements that
change the program flow, such as got o, br eak, cont i nue, and r et ur n.

Checking C Programs with lint 63

Thel i nt program also detects and writes messages for the following
conditions:

* A loop that cannot be exited at the bottom
* A loop that cannot be entered at the top

* Infinite loops such as:
whi | e(1)
for (57)

Some programs that include these types of loops may produce correct results.
These types of loops can cause problems, however.

Thel i nt program does not recognize functions that are called but can never
return to the calling program. For example, acall to exi t may result in
code that cannot be reached, but | i nt does not detect it.

Programs generated by yacc and | ex may have hundreds of br eak
statements that cannot be reached. Thel i nt program normally writes an
error message for each of these br eak statements. Use the - Oflag to the
cc command when compiling the program to eliminate the resulting object
code inefficiency, so that these extra statements are not important. Use the
—b flag with the | i nt program to prevent it from writing these messages
when checking yacc and | ex output code. (For information on yacc and
| ex, see Programming Support Tools.)

6.3 Data Type Checking

Thel i nt program enforces the type checking rules of the C language more
strictly than the compiler does. In addition to the checks that the compiler
makes, | i nt checks for potential datatype errorsin the following areas:

» Binary operators and implied assignments
» Structures and unions

» Function definition and uses

* Enumerators

» Type checking control

* Type casts

Details on each of these potential problem areas are provided in the sections
that follow.

6—4 Checking C Programs with lint

6.3.1

6.3.2

Binary Operators and Implied Assignments

The C language alows the following data types to be mixed in statements,
and the compiler does not indicate an error when they are mixed:

char
short

i nt

| ong
unsi gned
fl oat
doubl e

The C language converts data types within this group automatically to
provide the programmer with more flexibility in programming. This
flexibility, however, means that the programmer, not the language, must
ensure that the data type mixing produces the desired result.

Y ou can mix these data types when using them in the following ways (in the
examples, al pha istype char and numistypei nt):

» Operands on both sides of an assignment operator, for example:
al pha = num /* al pha converts to int */

* Operandsin a conditional expression, for example:
val ue=(al pha < nun) ? alpha : num
/* al pha converts to int */
» Operands on both sides of arelational operator, for example:
if(alpha '= num) /* alpha converts to int */
* Thetype of an argument in ar et ur n statement is converted to the type
of the value that the function returns, for example:
funct (x) /* returns an integer */

return(al pha);

}

The data types of pointers must agree exactly, except that you can mix arrays
of x’swith pointersto x’s.

Structures and Unions

Thel i nt program checks structure operations for the following
reguirements:

» The left operand of the structure pointer operator (- >) must be a pointer
to a structure.

Checking C Programs with lint 6-5

* The left operand of the structure member operator (.) must be a
structure.

* Theright operand of these operators must be a member of the same
structure.

Thel i nt program makes similar checks for referencesto unions.

6.3.3 Function Definition and Uses

Thel i nt program applies strict rules to function argument and return value
matching. Arguments and return values must agree in type, with the
following exceptions:

* You can match arguments of type f | oat with arguments of type
doubl e.

* You can match arguments within the following types:

char
short
i nt
unsi gned
* You can match pointers with the associated arrays.

6.3.4 Enumerators

Thel i nt program checks enumerated data type variables to ensure that they
meet the following requirements:

e Enumerator variables or members of an enumerated type are not mixed
with other types or other enumerator variables.

» The enumerated data type variables are only used in the following areas:
Assignment (=)
Initialization
Equivalence (==
Not equivalence (!=)
Function arguments
Return values

6.3.5 Type Casts

Type casts in the C language allow the program to treat data of one type as if
it were data of another type. Thel i nt program can check for type casts
and write a message if it finds one.

6—6 Checking C Programs with lint

The —wp and the —h options for the | i nt command line control the writing
of warning messages about casts. If neither of these flags are used, | i nt
produces warning messages about casts that may cause portability problems.

In migration checking mode, —Qc suppresses cast warning messages (see
Section 6.6).

6.4 Variable and Function Checking

6.4.1

Thel i nt program checks for variables and functions that are declared in a
program, but not used. Thel i nt program checks for the following errorsin
the use of variables and functions:

* Functions that return values inconsistently

¢ Functions that are defined, but not used

» Arguments to afunction call that are not used

* Functions that can return either with or without values
* Functions that return values that are never used

» Programs that use the value of a function when the function does not
return avalue

Details on each of these potential problem areas are provided in the sections
that follow.

Inconsistent Function Return

If afunction returns a value under one set of conditions but not under
another, you cannot predict the results of the program. Thel i nt program
checks functions for this type of behavior. For example, if both of the
following statements are in a function definition, a program calling the
function may or may not receive a return value:

return(expr);

return;

These statements cause the | i nt program to write the following message to
point out the potential problem:

function nane has return(e); and return

Thel i nt program also checks functions for returns that are caused by
reaching the end of the function code (an implied return). For example, in
the following part of a function, if a tests false, checkout calsfix it

Checking C Programs with lint 6—7

6.4.2

6.4.3

and then returns with no defined return value:
checkout (a)

{
if (a) return (3);
fixit ();
}
These statements cause the | i nt program to write the following message:

function checkout has return(e); and return

Iffix it,likeexit, neverreturns | i nt still writes the message even
though nothing is wrong.

Function Values That Are Not Used

Thel i nt program checks for cases in which a function returns a value and
the calling program may not use the value. If the value is never used, the
function definition may be inefficient and should be examined to determine
whether it should be modified or eliminated. If the value is sometimes used,
the function may be returning an error code that the calling program does not
check.

Disabling Function-Related Checking

To prevent | i nt from checking for problems with functions, specify one or
more of the following flagsto the | i nt command:

-x Do not check for variables that are declared in an ext er n statement but never
used.

-v Do not check for arguments to functions that are not used, except for those that are
also declared as register arguments.

-u Do not check for functions and external variables that are either used and not
defined, or defined and not used. Use this flag to eliminate useless messages when
you arerunning | i nt on a subset of files of alarger program. (When using | i nt
with some, but not al, files that operate together, many of the functions and
variables defined in those files may not be used. Also, many functions and
variables defined elsewhere may be used.)

Y ou can also place directives in the program to control checking:

« Toprevent|int from warning about unused function arguments, add the
following directive to the program before the function definition:

| * ARGSUSED* /

6—8 Checking C Programs with lint

To prevent | i nt from writing messages about variable numbers of
arguments in calls to a function, add the following directive before the
function definition:

| * VARARGS n* /

To check the first several arguments and leave the later arguments
unchecked, add a digit (n) to the end of the VARARGS directive to give
the number of arguments that should be checked, such as:

| * VARARGS2* /

When | i nt readsthis directive, it checks only the first two arguments.

To suppress complaints about unused functions and function arguments in
an entire file, place the following directive at the beginning of the file:

/ * LI NTLI BRARY*/
This is equivalent to using the —v and —x flags.

To permit a standard prototype checking library to be formed from header
files by making function prototype declarations appear as function
definitions, use the following directive:

[*LI NTSTDLI B[_fi |l enane]*/

The/* LI NTSTDLI B*/ directive implicitly activates the functions of
the/ * NOTUSED*/ and/ * LI NTLI BRARY*/ directives to reduce
warning noise levels. When afile isreferenced (fi | enane), only
prototypes in that file are expanded. Multiple

[*LI NTSTDLI B_fi | enane*/ statements are allowed. (See Section
6.10.1 for more details on the use of / * LI NTSTDLI B*/ directives.)

To suppress warnings about all used but undefined external symbols and
functions that are subsequently encountered in the file, use the following
directive:

/ * NOTDEFI NED* /

To suppress comments about unreachable code, use the following
directive:

| * NOTREACHED* /

When placed at appropriate points in a program (typically immediately
following ar et ur n, br eak, or cont i nue statement), the

/ * NOTREACHED* / directive stops comments about unreachable code.
Note that | i nt does not recognize the exi t function and other
functions that may not return.

To suppress warnings about all unused external symbols, functions, and
function parameters that are subsequently encountered in the file, use the
following directive:

/ * NOTUSED* /

Checking C Programs with lint 6-9

The/ * NOTUSED*/ directiveis similar to the/ * LI NTLI BRARY*/
directive, although / * NOTUSED*/ aso applies to external symbols.

6.5 Using Variables Before They Are Initialized

Thel i nt program checks for the use of alocal variable (aut o and

r egi st er storage classes) before a value has been assigned to it. Using a
variable with an aut o (automatic) or r egi st er storage class also includes
taking the address of the variable. Thisis necessary because the program can
use the variable (through its address) any time after it knows the address of
the variable. Therefore, if the program does not assign a value to the variable
before it finds the address of the variable, | i nt reports an error.

Because | i nt only checks the physical order of the variables and their usage
in the file, it may write messages about variables that are initialized properly
(in execution sequence).

Thel i nt program recognizes and writes messages about:

» Initialized automatic variables

* Variablesthat are used in the expression that first sets them
* Variablesthat are set and never used

Note

The operating system initializes st at i ¢ and ext er n variables
to zero. Therefore, | i Nt assumes that these variables are set to
zero at the start of the program and does not check to see if they
have been assigned a value when they are used. When
developing a program for a system that does not do this
initialization, ensure that the program sets st at i ¢ and ext er n
variables to an initial value.

6.6 Migration Checking

Usel i nt to check for al common programming techniques that might
cause problems when migrating programs from 32-bit operating systems to
the 64-bit Digital UNIX operating system. The —Q option provides support
for checking programs written for ULTRIX and DEC OSF/1 Version 1.0 that
you are migrating to 64-bit systems.

Because the —Q option disables checking for most other programming
problems, you should use this option only for migration checking.
Suboptions are available to suppress specific categories of checking. For
example, entering —Qa suppresses the checking of pointer alignment
problems. Y ou can enter more than one suboption with the —Q option, for

6—10 Checking C Programs with lint

6.7

example, —QacP to suppress checking for pointer alignment problems,
problematic type casts, and function prototype checks, respectively. For
more information about migration checking, seel i nt (1).

Increasing Table Size

Thel i nt command provides the —N option and related suboptions to allow
you to increase the size of various internal tables at run time if the default
values are not enough for your program. These tables include:

* Symbol table

* Dimension table
* Loca typetable
e Parsetree

These tables are dynamically allocated by the | i nt program. The —N option
may be used on large source files to improve performance.

6.8 Portability Checking

6.8.1

Usel i nt to help ensure that you can compile and run C programs using
different C language compilers and other systems.

The following sections indicate areas to check before compiling the program
on another system. Checking only these areas, however, does not guarantee
that the program will run on any system.

Note

Thel I'i b- port. | n library is brought in by using the —p flag,
not by using the —I port flag.

Character Uses

Some systems define charactersin a C language program as signed quantities
with arange from —128 to 127; other systems define characters as positive
values. Thel i nt program checks for character comparisons or assignments
that may not be portable to other systems. For example, the following
fragment may work on one system but fail on systems where characters

Checking C Programs with lint 6-11

6.8.2

6.8.3

always take on positive values:
char c;

if(l (¢ =getchar()) <0)...
This statement causesthe | i nt program to write the following message:
nonportabl e character conparison

To make the program work on systems that use positive values for characters,
declare ¢ as an integer because get char returns integer values.

Bit Field Uses

Bit fields may also produce problems when a program is transferred to
another system. Bit fields may be signed quantities on the new system.
Therefore, when constant values are assigned to a bit field, the field may be
too small to hold the value. To make this assignment work on all systems,
declare the bit field to be of type unsi gned before assigning values to it.

External Name Size

When changing from one type of system to another, be aware of differences
in the information retained about external names during the loading process:

* The number of characters allowed for external names can vary.

» Some programs that the compiler command calls and some of the
functions that your programs call can further limit the number of
significant charactersin identifiers. (In addition, the compiler adds a
leading underscore to al names and keeps uppercase and lowercase
characters separate.)

» On some systems, uppercase or lowercase may not be important or may
not be allowed.

When transferring from one system to another, you should always take the

following steps to avoid problems with loading a program:

1. Review the requirements of each system.

2. Runli nt with the- p flag.

The-p flag tells| i nt to change all external symbols to lowercase and limit

them to six characters while checking the input files. The messages produced
indicate the terms that may need to be changed.

6—12 Checking C Programs with lint

6.8.4

Multiple Uses and Side Effects

Be careful when using complicated expressions because of the following
considerations:

» The order in which complex expressions are evaluated differsin many C
compilers.

* Function calls that are arguments of other functions may not be treated
the same as ordinary arguments.

» Operators such as assignment, increment, and decrement may cause
problems when used on different systems.

The following situations illustrate the types of problems that can result from
these differences:

» |f any variable is changed by a side effect of one of the operators and is
also used elsewhere in the same expression, the result is undefined.

» The evauation of the variable year s in the following pri nt f
statement is confusing because on some machines year s is incremented
before the function call and on other machines it is incremented after the
function call:

printf("% %l\n", ++years, anort(interest, years));

* Thel i nt program checksfor simple scalar variables that may be
affected by evaluation order problems, such as in the following statement:
a[i]=b[i++];

This statement causesthe | i nt program to write the following message:
warni ng: i eval uation order undefined

6.9 Coding Errors and Coding Style Differences

6.9.1

Usel i nt to detect possible coding errors and to detect differences from the

coding style that | i nt expects. Although coding style is mainly a matter of
individua taste, examine each difference to ensure that the differenceis both

needed and accurate. The following sections indicate the types of coding and
style problems that | i nt can find.

Assignments of Long Variables to Integer Variables

If you assign variables of type | ong to variables of typei nt , the program
may not work properly. Thel ong variable is truncated to fit in the integer
space and data may be lost.

An error of this type occurs frequently when a program that uses more than
onet ypedef isconverted to run on a different system.

Checking C Programs with lint 6-13

6.9.2

6.9.3

6.10

To prevent | i nt from writing messages when it detects assignments of
| ong variablesto i nt variables, use the - a flag.

Operator Precedence

Thel i nt program detects possible or potential errorsin operator
precedence. Without parentheses to show order in complex sequences, these
errors can be hard to find. For example, the following statements are not
Clear:
i f(x&77==0). . . /* evaluated as: if(x & (077 == 0)) */
/* should be: if((x & 077) == 0) */

X<<2+40 /* evaluated as: x <<(2+40) */
/* should be: (x<<2) + 40 */
/* shift x left 42 positions */

Use parentheses to make the operation more clearly understood. If you do
not, | i nt writes a message.

Conflicting Declarations

Thel i nt program writes messages about variables that are declared in inner
blocks in ways that conflict with their use in outer blocks. This practiceis
allowed, but may cause problems in the program.

Use the - h flag with the | i nt program to prevent | i nt from checking for
conflicting declarations.

Creating a lint Library

For programming projects that define additional library routines, you can
create an additional | i nt library to check the syntax of the programs. Using
this library, thel i nt program can check the new functions in addition to the
standard C language functions. Perform the following steps to create a new
l'int library:

1. Create aninput file that defines the new functions.
2. Processthe input file to createthe | i nt library file.
3. Runl i nt using the new library.

The following sections describe these steps.

6—14 Checking C Programs with lint

6.10.1 Creating the Input File

The following example shows an inpuit file that defines three additional
functions for | i nt to check.

/ *L1 NTLI BRARY* /
#i ncl ude <dmns. h>

int dnsadd(rnsdes, recbuf, reclen)
int rnsedes;
char *recbuf;
unsi gned recl en;
{ return 0; }
int dnsclos(rnsdes)
int rnsdes;
{ return 0; }
int dnscrea(path, node, recfm reclen)
char *path;
i nt node;
int recfm
unsi gned recl en;
{ return 0; }

Theinput file is atext file that you create with an editor. It consists of:

» A directiveto tell the cpp program that the following information is to
be made into alibrary of | i nt definitions:

[* L1 NTLI BRARY*/

* A series of function definitions that define:
— Thetype of the function (i nt in the example)
— The name of the function
— The parameters that the function expects
— Thetypes of the parameters
— The value that the function returns

Alternatively, you can createal i nt library file from function prototypes.
For example, assume that the dns. h file includes the following prototypes:

int dnsadd(int,
char*,
unsi gned) ;
int dnscl ose(int);
int dnscrea(char*,
int,
int,
unsi gned) ;

Checking C Programs with lint 6-15

In this case, the input file contains the following:

[/ *LI NTSTDLI B*/
#i ncl ude <dmns. h>

In the case where a header file may include other headers, the LI NTSTDLI B
command can be restricted to specific files:

/*LI NTSTDLI B_dmns. h*/

In this case, only prototypes declared in dns. h will be expanded. Multiple
LI NTSTDLI B commands can be included.

In al cases, the name of the input file must have the prefix: |1i b-1. For
example, the name of the sample input file created in this section could be
I'1'i b-1dnms. When choosing the name of the file, ensure that it is not the
same as any of the existing filesin the/ usr/ ccs/ | i b directory.

6.10.2 Creating the lint Library File

The following command createsal i nt library file from the input file
described in the previous section:

% lint [options] -c Ilib_ldns.c

Thiscommand tells| i nt to createal i nt library file, I 1'i b-1dns. | n,
using thefilel I i b-1dms. c asinput. Tousel |'i b-1 dns. | n asasystem
I'int library (that is, alibrary specified in the - | x option of the | i nt
command), moveitto/usr/ccs/lib. Usethe—std or—st d1l flag to
use ANSI preprocessing rules to build the library.

6.10.3 Checking a Program with a New Library

6.11

To check aprogram using a new library, use thel i nt command with the
following format:

lint -lpgm filename.c

The variable pgmrepresents the identifier for the library, and the variable
fil enane. c represents the name of the file containing the C language
source code that is to be checked. If no other flags are specified, thel i nt
program checks the C language source code against the standard | i nt
library in addition to checking it against the indicated specia | i nt library.

Understanding lint Error Messages

Although most error messages produced by | i nt are self-explanatory,
certain messages may be mideading without additional explanation. Usually,
once you understand what a message means, correcting the error is
straightforward. The following is alist of the more ambiguous | i nt

6—16 Checking C Programs with lint

messages:
constant argument to NOT
A constant is used with the NOT operator (!).

This is a common coding pratice and the message does not usually
indicate a problem. The following program illustrates the type of code
that can generate this message:

% cat Xx.c

#i ncl ude <stdi o. h>
#defi ne SUCCESS 0

mai n()
int value = ! SUCCESS;

printf("value = %\ n", value);
return O;

%lint -u x.c

"x.c", line 7: warning: constant argunent to NOT
% ./ x

value = 1

%

The program runs as expected, even though | i nt complains.

Recommended Action: Suppressthese | i nt warning messages by
using the - wC option.

constant in conditional context

A constant is used where a conditional is expected. This problem
occurs often in source code, due to the way in which macros are
encoded. For example:
typedef struct _dummy_q {

int |ock;

struct _dummy_g *head, *tail;
} DUMWY_Q

#define QMIT 1
#define QNOMIT 0

#defi ne DEQUEUE(q, elt, wait) 1 \
for (;3) { \

si mpl e_l ock(&(q) - >l ock); \

if (queue_enpty(&(q)->head)) \

if (wait) { 1 \

assert(q); \

si mpl e_unl ock(&(q) - >l ock) ; \

conti nue; \

Checking C Programs with lint 6-17

} else
*(elt) = 0;
el se
dequeue_head(&(q) - >head) ;
si mpl e_unl ock(&(q) - >l ock) ;

—— - — — —

br eak;

}
int doit(DUMW_Q *q, int *elt)

{
DEQUEUE(q, elt, QNOWAIT);
}

1 Theflag QNI T or ONOWAI T is passed as the third argument
(wai t), andislater used inthei f statement. The code is correct,
but | i nt issues the warning because constants used in this way are
normally unnecessary and often generate wasteful or unnecessary
instructions.

Recommended Action: Suppressthese | i nt warning messages by
using the - wC option.

conversion fromlong may | ose accuracy

A signed long is copied to a smaller entity (for example, ani nt). This
message is not necessarily misleading, but if it occurs frequently, it may
or may not indicate a coding problem, as shown in the following
example.

I ong BuffLim= 512; 1

void foo (buffer, size)

char *buffer;

int size;

t .

regi ster int count;

register int limt = size < (int)BufLimt ? size : (int)BufLim 1

1 Thel i nt program reports the conversion error, even though the
appropriate (i nt) cast exists.

Recommended Action: Review code sections for which | i nt reports
this message, or suppress the message by using the - W option.

decl aration is mssing declarator

A line in the declaration section of the program contains just a
semicolon (;).

Although you would not deliberately write code like this, it is easy to
inadvertantly generate such code by using a macro, followed by a

6—18 Checking C Programs with lint

semicolon. If, due to conditionalization, the macro is defined as empty,
this message can result.

Recommended Action: Remove the trailing semicolon.

degener at e unsi gned conpari son

An unsigned comparison is being performed against a signed value
when the result is expected to be less than zero.

The following program illustrates this situation:

% cat x.c
#i ncl ude <stdio. h>
unsi gned |l ong offset = -1;
mai n()
if (offset < 0) { 1
puts ("code is &...");
return O;
} else {
puts ("unsigned conparison failed...");
return 1;
}
}

%cc -g -0 X X.C

%lint x.c

"x.c" line 7: warning: degenerate unsigned conparison
% . /X

unsi gned conparison failed...

%

1 Unsigned comparisons such as this will fail if the unsigned variable
contains a negative value. The resulting code may be correct,
depending upon whether the programmer intended a signed
comparison.

Recommended Action: You can fix the previous example in two ways:

e Adda(l ong) cast beforeof f set inthei f comparison.

* Change the declaration of of f set from unsi gned | ong to
| ong.

In certain cases, it might be necessary to cast the signed value to
unsigned.

Checking C Programs with lint 6-19

function prototype not in scope

This error is not strictly related to function prototypes, as the message
implies. Actually, this error occurs from invoking any function that has
not been previously declared or defined.

Recommended Action: Add the function prototype declaration.

nul |l effect

Thel i nt program detected a cast or statement that does nothing. The
following code segments illustrate various coding practices that cause
[i nt to generate this message:

scsi_slot = device->ctlr_hd->slot,unit_str; 1

#def i ne MCLUNREF(p) \
(MCLMAPPED(p) && --ntlrefcnt[ntocl (p)] == 0)

(void) MCLUNREF(M ; 2

1 Reason: unit_str does nothing.
2 Reason: (voi d) isunnecessary; MCLUNREF is a macro.

Recommended Action: Remove unnecessary casts or statements or
update macros.

possi bl e poi nter alignnment problem

A pointer is used in away that may cause an aignment problem. The
following code segment illustrates the type of code that produces this
message:
read(p, args, retval)

struct proc *p;

voi d *args;

long *retval;

{
register struct args {
| ong f des;
char *cbuf;
unsi gned | ong count;
} *uap = (struct args *) args; 1

struct uio auio;
struct iovec aiov;

1 Theline*uap = (struct args *) args causesthe error to
be reported. Because this construct is valid and occurs throughout
the kernel source, this message is filtered out.

6—20 Checking C Programs with lint

precision lost in field assignment

An attempt was made to assign a constant value to a bit field when the
field is too small to hold the value.

The following code segment illustrates this problem:

% cat x.c

struct bitfield {

unsigned int block len : 4;

} bt;
voi d
test()

bt. bl ock_len = Oxff;
}

%lint -u x.c

"x.c", line 8 warning: precision lost in field assignnent
%cc -c -0 X X.C

%

As you can see, this code compiles without error. However, because the
bit field may be too small to hold the constant, the results may not be
what the programmer intended and a run-time error may occur.

Recommended Action: Change the bit field size or assign a different
constant value.

unsi gned conparison with 0

An unsigned comparison is being performed against zero when the result
is expected to be equal to or greater than zero.

The following program illustrates this situation:

%cat z.c
#i ncl ude <stdio. h>
unsi gned offset = -1;
mai n()
if (offset > 0) { 1
put s("unsi gned conparison with 0 Failed");
return 1;
} else {
put s("unsigned conparison with 0 is Ck");
return O;
}
}

%cc -0z z.cC
%lint z.c

Checking C Programs with lint 6-21

"z.c", line 7: warning: unsigned conparison with 0?
% ./z

unsi gned conparison with 0 Failed

%

1 Unsigned comparisons such as this will fail if the unsigned variable
contains a negative value. The resulting code may not be correct,
depending on whether the programmer intended a signed
comparison.

Recommended Action: You can fix the previous example in two ways:

e Addan(int) cast before of f set inthei f comparison.
* Change the declaration of of f set from unsi gned toi nt.

6.12 Using Warning Class Options to Suppress lint
Messages

Several | i nt warning classes have been added to the | i nt program to
allow the suppression of messages associated with constants used in
conditionals, portability, and prototype checks. By using the warning class
option to the |l i nt command, you can suppress messages in any of the
warning classes.

The warning class option has the following format:
-wclass| class...]

All warning classes are active by default, but may be individualy deactivated
by including the appropriate option as part of the ¢/ ass argument. Table
6-1 lists the individual options.

Note

Severa | i nt messages are dependent on more than one warning
class. Therefore, you may need to specify several warning
classes for the message to be suppressed. Notesin Table 6-1
indicate which messages can only be suppressed by specifying
multiple warning classes.

For example, because | i nt messages related to constants in conditional
expressions do not necessarily indicate a coding problem (as described in
Section 6.11), you may decide to use the - wC option to suppress them.

6—22 Checking C Programs with lint

The - wC option suppresses the following messages:

e constant argunent to NOT

+ constant in conditional context

Because many of the messages associated with portability checks are related
to non-ANSI compilers and limit restrictions that do not exist in the C

compiler for Digital UNIX, you can use the - wp option to suppress them.
The - wp option suppresses the following messages:

» anbi guous assi gnnent for non-ansi conpilers
e illegal cast in a constant expression

* long in case or switch statenent nmay be truncated
in non-ansi conpilers

* nonportabl e character conparison
* possible pointer alignnment problem op %

* precision lost in assignment to (sign-extended?)
field

* precision lost in field assignnment

* too many characters in character constant

Although the use of function prototypes is a recommended coding practice
(as described in Section 6.12.1), many programs do not include them. You

can use the - wP option to suppress prototype checks. The - wP option
suppresses the following messages:

« function prototype not in scope

* msmatched type in function argunment

 mx of old and new style function declaration
* old style argunent declaration

» use of old-style function definition in presence
of prototype

Checking C Programs with lint 6—23

Table 6-1: lint Warning Classes

Warning Class Description of Class

a Non-ANSI features. Suppresses:
* Partialy elided initialization @
« Static function %s not defined or used 2

c Comparisons with unsigned values. Suppresses.
« Comparison of unsigned with negative constant
« Degenerate unsigned comparison
» Unsigned comparison with 0?

d Declaration consistency. Suppresses:
« External symbol type clash for %s
« lllegal member use: perhaps %s.%s P
* Incomplete type for %s has already been completed
» Redeclaration of %s
« Struct/union %s never defined P
* %s redefinition hides earlier one 2P

h Heuristic complaints. Suppresses.
« Constant argument to NOT d
« Constant in conditional context d
* Enumeration type clash, op %s
* lllegal member use: perhaps %s.%s ©
o Null effect f
* Possible pointer alignment problem, op %s ©
« Precedence confusion possible: parenthesize! 9
* Struct/union %s never defined ©
* %s redefinition hides earlier one ©

k K&R type code expected. Suppresses.
« Argument %s is unused in function %s "
« Function prototype not in scope N
« Partially elided initiaization N
« Static function %s is not defined or used "
* %s may be used before set P ¢
* %s redefinition hides earlier oneP ¢
* %s set but not used in function %s N

Assign long values to non-long variables. Suppresses:
» Conversion from long may lose accuracy
« Conversion to long may sign-extend incorrectly

n Null-effect code. Suppresses:
* Null effect
0 Unknown order of evaluation. Suppresses:

6—24 Checking C Programs with lint

Table 6-1: (continued)

Warning Class

Description of Class

« Precedence confusion possible: parenthesize! P
* %s evaluation order undefined

Various portability concerns. Suppresses.

» Ambiguous assignment for non-ansi compilers

* lllegal cast in a constant expression

e Long in case or switch statement may be truncated in
non-ansi compilers

« Nonportable character comparison

« Possible pointer alignment problem, op %s P

* Precision lost in assignment to (sign-extended?) field

* Precision lost in field assignment

» Too many characters in character constant

Return statement consistency. Suppresses:

« Function %s has return(e); and return;

 Function %s must return a value

« main() returns random value to invocation environment

Storage capacity checks. Suppresses:
« Array not large enough to store terminating null
« Constant value (0x%x) exceeds (0x%Xx)

Proper usage of variables and functions. Suppresses:
« Argument %s unused in function %s @

« Static function %s not defined or used 2

* 06s set but not used in function %s &

* %s unused in function %sn

Activate al warnings. Default optionin | i nt script.
Specifying another A class toggles the setting of all classes.

Constants occurring in conditionals. Suppresses:
« Constant argument to NOT P
« Constant in conditional context ?

External declarations are never used. Suppresses:
* Static %s %s unused

Obsolescent features. Suppresses:
* Storage class not the first type specifier

Prototype checks. Suppresses:

* Function prototype not in scope &

« Mismatched type in function argument

« Mix of old and new style function declaration

Checking C Programs with lint 6—25

Table 6-1: (continued)

Warning Class Description of Class

« Old style argument declaration 2
» Use of old-style function definition in presence of prototype

R Detection of unreachable code. Suppresses:
« Statement not reached

Table notes:

Y ou can also suppress this message by deactivating the k warning class.
You must also deactivate the h warning class to suppress this message.
You must also deactivate the d warning class to suppress this message.
You must also deactivate the C warning class to suppress this message.
You must also deactivate the p warning class to suppress this message.
You must also deactivate the n warning class to suppress this message.
You must also deactivate the o warning class to suppress this message.
Other flags may also suppress these messages.

S R A

6.12.1 Generating Function Prototypes for Compile-Time
Detection of Syntax Errors

In addition to correcting the various errors reported by the | i nt program,
Digital recommends adding function prototypes to your program for both
external and static functions. These declarations provide the compiler with
information it needs to check arguments and return values.

The cc compiler provides an option that automatically generates prototype
declarations. By specifying the - pr ot o[i s] option for a compilation, you
create an output file (with the same name as the input file but with a. H
extension) that contains the function prototypes. Thei option includes
identifiers in the prototype, and the s option generates prototypes for static
functions as well.

Y ou can copy the function prototypes from a . H file and place them in the
appropriate locations in the source and include files.

6—26 Checking C Programs with lint

Debugging Programs with Third
Degree 7

Third Degreeis an Atom tool. It performs memory access checks and
memory leak detection of C and C++ programs at run time. It accomplishes
this by using Atom to instrument executable objects. Instrumentation is the
process of inserting instructions into existing executable objects to perform
program analysis. See Chapter 9 or at on(1) for details on Atom.

Third Degree instruments the entire program, adding code to perform run-
time checks for al of its data references. The instrumented program locates
many occurrences of the worst types of bugsin C and C++ programs. array
overflows, memory smashing, and errorsin the use of the mal | oc and

f r ee functions. It aso helps you determine the allocation habits of your
application by listing the heap and finding memory leaks.

Except for being larger and running slower than the origina application and
having its uninitialized data filled with a special pattern, the instrumented
program runs like the original. The Atom instrumentation code logs all
specified errors and generates the requested reports.

Y ou can use Third Degree for the following types of applications:

» Applications that allocate memory by using the nal | oc, cal | oc,
real | oc,vall oc, al | oca, and sbr k functions and the C++ new
function. You can use Third Degree to instrument programs using other
memory allocators, such as the nmap function, but it will not check
accesses to the memory thus obtained.

Third Degree detects and forbids calls to the br k function. Furthermore,
if your program allocates memory by partitioning large blocks it obtained
by using the sbr k function, Third Degree may not be able to precisely
identify memory blocks in which errors occur.

» Applications using POSIX threads (pt hr ead) interfaces and applications
using a supported coroutine package. Most coroutine packages are
supported. If your application uses a custom threads or coroutine
package, you may not be able to use Third Degree. See Section 7.1.2 for
details.

7.1 Running Third Degree on an Application

Y ou invoke the Third Degree tool by using the at omcommand, as follows:
% atom app -tool third

In this example, app is the name of an application. When it is run, the
instrumented version of the application (app. t hi r d) behaves exactly like
the original application (app), with the following exceptions:

» Thecodeis larger and runs more slowly because of the additional
instrumentation code that is inserted.

» Each allocated heap memory object is larger because Third Degree pads it
to allow boundary checking. You can adjust the amount of padding by
specifying the obj ect _paddi ng optioninthe. t hi rd file. (See
Section 7.2.1 for a description of the . t hi r d customization file.)

» To detect errant use of uninitialized data, Third Degree initializes al
otherwise uninitialized data to a special pattern. This can cause the
instrumented program to behave differently, behave incorrectly, or crash
(particularly if this special pattern is used as a pointer). All of these
behaviors indicate a bug in the program.

You can disable Third Degree' sinitialization with the —uni ni t _heap
and —uni nit _stack optioninthe. t hi r d customization file.

The instrumented version of the application generates alog file (app. 31 0g)
containing information about allocated objects and potential leaks.

Note

Third Degree writes . 31 og messages in aformat similar to that
used by the C compiler. If you use enacs or asimilar editor
that automatically points, in sequence, to each compilation error,
you can use the same editor to follow Third Degree errors. In
emacs, compile with acommand such as cat app. 3l og, and
step through the Third Degree errors as if they were compilation
errors.

Y ou can control the name used for the output log file by specifying one of
the following flags to the —t ool ar gs flag on the at omcommand line that
invokes the Third Degree tool:
—pi ds
Appends the process identification number to the log file name.
—nopi ds
Does not append the process identification number to the log file name.
This is the default.

7-2 Debugging Programs with Third Degree

7.1.1

—di r nanef nane
Specifies the directory path in which Third Degree createsits log file.

Depending upon the flag supplied to Third Degree in the at omcommand’ s
—t ool ar gs flag, the log file's name will be as follows:

Flag Filename Use

—nopi ds app. 3l og Default

—pi ds app. 12345. 3l og Include pid
—di rname /tnp /t mp/ app. 3l og Set directory

—dirname /tnp —pids /tnp/app.12345. 31 0og Set directory and pid

Using Third Degree with Shared Libraries

Errorsin an application, such as passing too small a buffer to the st r cpy
function, are often caught in library routines. Third Degree supports the
instrumentation of shared libraries; it instruments programs linked with the
—non_shar ed or —cal | _shar ed flags.

The at omcommand provides the following flags to alow you to determine
which shared libraries are instrumented by Third Degree:

—al |
Instruments all statically loaded shared libraries in the shared executable.

—excobj obj nane
Excludes the named shared library from instrumentation. Y ou can use
the —excobj flag more than once to specify several shared libraries.

—i ncobj obj nane
Instruments the named shared library. You can use the —i ncobj flag
more than once to specify several shared libraries.

When Atom finishes instrumenting the application, the current directory
contains an instrumented version of each specified shared library. The
instrumented application uses these versions of the libraries. Define the
LD_LI BRARY_PATH environment variable to tell the instrumented
application where the instrumented shared libraries reside.

By default, Third Degree does not instrument any of the shared libraries used
by the application; this makes the instrumentation operation much faster and
causes the instrumented application to run faster as well. Third Degree
detects and reports errors in the instrumented portion normally, but
terminates stack traces at the first uninstrumented procedure. It does not
detect errorsin the uninstrumented libraries. If your partialy instrumented

Debugging Programs with Third Degree 7-3

application crashes or malfunctions and you have fixed all of the errors
reported by Third Degree, reinstrument the application with all of its shared
libraries and run the new instrumented version.

7.1.2

Using Third Degree with Threaded Applications

Third Degree supports applications that use threads. To instrument a
threaded application, add the —env t hr eads flag to the at omcommand
line that invokes the Third Degree tool.

7.2 Step-by-Step Example

Assume that you must debug the small application represented by the

following source code (ex. c):

/* g is uninitialized */

mal | oc(n * sizeof (long));

/* t[1] is uninitialized */

/* array bounds error*/
/* may be a |l eak */

/* already freed */

1 /* ex.c */

2 #include <assert. h>;
3

4 int Bug() {

5 int q;

6 return qg;

7}

8

9 |ong* Booboo(int n) {
10 long* t = (Ilong*)
11 t[0] = Bug();

12 t[0] = t[1]+1;

13 t[1] = -1;

14 t[n] = n;

15 if (n<10) free(t);
16 return t;

17 }

18

19 main() {

20 Il ong* t = Booboo(20);
21 t = Booboo(4);
22 free(t);

23 exit(0);

24 1}

7.2.1 Customizing Third Degree
An optional customization file named

.t hird isused to turn on and off

various capabilities of the Third Degree tool and to set the tool’s interna

parameters. Third Degree looks for a

.t hi rd filefirst in the local directory,

then in your home directory. The. t hi r d customization file is further
discussed throughout this chapter and its syntax is described in the t hi r d(5)

reference page.

7-4 Debugging Programs with Third Degree

7.2.2

7.2.3

If you do not specify a. t hi r d customization file, Third Degree uses its
default settings:

e List memory errors
» Detect leaks at program exit
* No heap history

Modifying the Makefile
Add the following entry to the application’s Makefile:
ex.third: ex
atomex -tool third -o ex.third
Build ex. t hi r d asfollows:

> nmake ex.third
atomex -tool third -o ex.third
>ex.third

Now run the instrumented application ex. t hi r d and check the log
ex. 3l og.

Examining the Third Degree Log File

The ex. 31 og file contains several sections, described in the following
sections.

7.2.3.1 Copy of the .third File

If you supplied a. t hi r d customization file, Third Degree copiesit to the
log file. The short customization file used in this example requests a
summary of the contents of heap-allocated memory blocks when the program
finishes:

LILLIEEErriiil begin .3cd (11101000 IITTTT111]

rrrrrrrrrrrrrr end L 3ed SALHITETETETTTTTTT

7.2.3.2 List of Runtime Memory Access Errors

The types of errors that Third Degree can detect at runtime include such
conditions as reading uninitialized memory, reading or writing unallocated
memory, freeing invalid memory, and certain serious errors likely to cause an
exception. For each error, an error entry is generated with the following
items:

Debugging Programs with Third Degree 7-5

* A banner line with the type of error and number — The error banner line
contains a three-letter abbreviation of each error (see Section 7.3 for alist
of the abbreviations). If the process that caused the error is not the root
process (for instance, because the application forks one or more child
processes), the process id of the process that caused the error also appears
in the banner line.

* An eror message line formatted to look like a compiler error message —
Third Degree lists the file name and line number nearest to the location
where the error occurred. Usually this is the precise location where the
error occurred, but if the error occursin alibrary routine, it may well
point to the place where the library call occurred.

* One or more stack traces— The last part of an error entry is a stack trace.
The first procedure listed in the stack trace is the procedure in which the
error occurred.

The following examples show entries from the log file:

» Thefollowing log entry indicates that alocal variable of procedure Bug
was read before being initialized. The line number confirms that q was
never given avalue.

-- rus -- 0 --
ex.c: 6: reading uninitialized local variable q of Bug

Bug ex.c, line 6

Booboo ex.c, line 11

mai n ex.c, line 20

__start crt0.s, line 370

» Thefollowing log entry indicates that an error occurred at line 12:
t[0] =t[1]+1

Because the array was not initialized, the program is using the
uninitialized value of t [1] in the addition. The memory block
containing array t is identified by the call stack that allocated it.

-- ruh -- 1 --
ex.c: 12: reading uninitialized heap at byte 8 of 160-byte bl ock
Booboo ex.c, line 12
mai n ex.c, line 20
__start crt0.s, line 370
This bl ock at address 0x38000000f 10 was al | ocated at:
mal | oc mal |l oc.c, line 585
Booboo ex.c, line 10
mai n ex.c, line 20
__start crt0.s, line 370

» Thefollowing log entry indicates that the program has written to the
memory location one position past the end of the array, potentially

7—-6 Debugging Programs with Third Degree

overwriting important data or even Third Degree internal data structures.
Keep in mind that certain errors reported later could be a consequence of
this error.

-- wh--2--
ex.c: 14: witing invalid heap 1 byte beyond 160-byte bl ock
Booboo ex.c, line 14
mai n ex.c, line 20
__start crt0.s, line 370
This bl ock at address 0x38000000f 10 was al | ocated at:
mal | oc mall oc.c, line 585
Booboo ex.c, line 10
mai n ex.c, line 20
__start crt0.s, line 370

The following log entry indicates that an error occurred while freeing
memory that was previously freed. For errorsinvolving calls to the
f r ee function, Third Degree usualy gives three call stacks:

— The call stack where the error occurred
— The call stack where the object was allocated.
— The call stack where the object was freed.

Upon examining the program, it is clear that the second call to Booboo
(line 20) frees the object (line 14), and that another attempt to free the
same object occurs at line 21.

-- fof -- 3 --
ex.c: 22: freeing already freed heap at byte 0 of 32-byte bl ock
free mall oc.c, line 833
mai n ex.c, line 22
__start crt0.s, line 370
This block at address 0x380000011a0 was all ocated at:
mal | oc mal |l oc.c, line 585
Booboo ex.c, line 10
mai n ex.c, line 21
__start crt0.s, line 370
This block was freed at:
free mal |l oc.c, line 833
Booboo ex.c, line 15
mai n ex.c, line 21
__start crt0.s, line 370

7.2.3.3 Memory Leaks

The following excerpt shows the report generated when leak detection on
program exit, the default, is selected. The report shows a list of memory

Debugging Programs with Third Degree 7-7

leaks sorted by importance and by call stack.

Searching for new | eaks in heap after programexit
160 bytes in 1 object were found:

160 bytes in 1 leak (including 1 super |eak) created at:

mal | oc mal l oc.c, line 585
Booboo ex.c, line 10

mai n ex.c, line 20
__start crt0.s, line 370

Upon examining the source, it is clear that the first call of Booboo did not
free the memory object, nor was it freed anywhere else in the program.
Moreover, no pointer to this object exists anywhere in the program, so it
qualifies as a super leak. The distinction is often useful to find the real culprit
for large memory leaks.

Consider a large tree structure and assume that the pointer to the root has
been erased. Every object in the structure is a leak, but losing the pointer to
the root is the real cause of the leak. Because al objects but the root till
have pointers to them, albeit only from other leaks, only the root will be
identified as a super leak, and therefore the likely cause of the memory loss.

7.2.3.4 Heap History

When heap history is enabled, Third Degree collects information about
dynamically allocated memory. It collects this information for every object
that is freed by the application and for every object that still exists (including
memory leaks) at the end of the program’s execution. The following excerpt
shows a heap allocation history report:

Heap Allocation Hi story for parent process

Legend for object contents:
There is one character for each 32-bit word of contents.
There are 64 characters, representing 256 bytes of nenory

per line.
word never witten in any object.
"z' . zero in every object.

))

i a non-zero non-pointer value in at |east one object.
"pp’: a valid pointer or zero in every object.
"ss’: a valid pointer or zero in sone but not all objects.

192 bytes in 2 objects were allocated during program execution:

160 bytes allocated (5% witten) in 1 objects created at:

7-8 Debugging Programs with Third Degree

mal | oc mal | oc.c, |ine 585

Booboo ex.c, line 10
mai n ex.c, line 20
__start crt0.s, line 370
Content s:
O T

32 bytes allocated (25% witten) in 1 objects created at:

mal | oc mal l oc.c, line 585

Booboo ex.c, line 10

mai n ex.c, line 21

__start crt0.s, line 370
Cont ent s:

0: ..ii....

The sample program alocated two objects, for atotal of 192 bytes
(8*(20+4)). Because each object was allocated from a different call stack,
there are two entries in the history. Only one long (8 bytes) in each array
was set to avalid value, resulting in the written ratios of 8/160 = 5% and
8/32=25% shown. The character map, with one character for each 32-bit
word in the object, shows that the initialized value was the second long in
each of the arrays.

If the sample program was a real application, the fact that so little of the
dynamic memory was ever initialized is a warning that it was probably using
memory ineffectively.

7.2.3.5 Memory Layout

7.3

The memory layout section of the report summarizes the memory used by the
program by size and address range. The following excerpt shows a memory
layout section. The first two entries give the final (maximum) sizes of the
heap and stack at the end of the program. The last two entries give the text
and static data areas for the program and any shared libraries.

menory | ayout at program exit

heap 81920 bytes [0x38000000000- 0x38000014000]
st ack 2224 bytes [0x11ffff750-0x120000000]

ex data 23168 bytes [0x140000000-0x140005a80]

ex text 262144 bytes [0x120000000- 0x120040000]

Interpreting Third Degree Error Messages
Third Degree reports both fatal errors and memory access errors.

Debugging Programs with Third Degree 7-9

Fatal errorsinclude the following:

* Bad parameter

For example, mal | oc(- 10).

* Failed allocator

For example, mal | oc returned a zero, indicating that no memory is

available.

» Call to the br k function with a nonzero argument
Third Degree does not allow you to call br k with a nonzero argument.

A fatal error causes the instrumented application to crash after flushing the
log file. If the application crashes, first check the log file and then rerun it

under a debugger.

Memory errors include the following (as represented by a three-letter

abbreviation):

Name
ror
ris
rus
rih
ruh
wor
W S
wi h
for
fis
fih
f of
fon
nTn

Error

Reading out of range: neither in heap, stack, or static area
Reading invalid data in stack: probably an array bound error
Reading an uninitialized (but valid) location in stack
Reading invalid data in heap: probably an array bound error
Reading an uninitialized (but valid) location in heap
Writing out of range: neither in heap, stack, or static area
Writing invalid data in stack: probably an array bound error
Writing invalid data in heap: probably an array bound error
Freeing out of range: neither in heap or stack

Freeing an address in the stack

Freeing an invalid address in the heap: no valid object there
Freeing an already freed object

Freeing a null pointer (really just a warning)

mal | oc returned null

Y ou can suppress the reporting of specific memory errors by providing a
. t hi rd customization file containing the i gnor e option. This is often
useful when the errors occur within library functions for which you do not

have the source. Third Degree allows you to suppress specific memory errors

in individual procedures and files, and at particular line numbers. See
t hi r d(5) for more details.

7-10 Debugging Programs with Third Degree

7.3.1

7.3.2

Fixing Errors and Retrying an Application

If Third Degree reports many write errors from your instrumented program,
you should fix the first few errors and reinstrument the program. Not only
can write errors compound, but they can also corrupt Third Degree' sinterna
data structures.

Detecting Uninitialized Values

Third Degree' s technique for detecting the use of uninitialized values can
cause programs that have worked to fail when instrumented. For example, if
a program depends on the fact that the first call to the mal | oc function
returns a block initialized to zero, the instrumented version of the program
will fail because Third Degree initializes al blocks to a nonzero value.

When it detects a signal, perhaps caused by dereferencing or otherwise using
this uninitialized value, Third Degree displays a message of the following
form:

*** Fatal signal SIGSEGV detected.

*** This can be caused by the use of uninitialized data.
*** P| ease check all errors reported in app. 3l og.

Using uninitialized data is the most likely reason for an instrumented
program to crash. To determine the cause of the problem, first examine the
log file for reading-uninitialized-stack and reading-uninitialized heap errors.
Very often, one of the last errorsin the log file reports the cause of the
problem.

If you have trouble pinpointing the source of the error, you can confirm that
it isindeed due to reading uninitialized data by supplyinga. t hird
customization file containing the uni nit _heap no and

uni nit_stack no options. Using theuni nit_st ack no option
disables the initialization of newly allocated stack memory that Third Degree
normally performs on each procedure entry. Similarly, the

uni ni t _heap no option disables the initialization of heap memory
performed on each dynamic memory allocation. By using one or both
options, you can alter the behavior of the instrumented program and may
likely get it to complete successfully. This will help you determine which
type of error is causing the instrumented program to crash and, as a resullt,
help you focus on specific messages in the log file.

Debugging Programs with Third Degree 7-11

7.3.3

Notes

Do not usetheuni nit _heap no anduni nit _stack no
options under normal operation. They hamper Third Degree's
ability to detect a program’s use of uninitialized data.

If your program establishes signal handlers, there is a small chance that Third
Degree’ s changing of the default signal handler may interfere with it. Third
Degree defines signal handlers only for those signals that normally cause
program crashes (including SI G LL, SI GTRAP, SI GABRT, SI GEM,

S| GFPE, SI GBUS, SI GSEGV, SI GSYS, SI GXCPU, and SI GXFSZ). You
can disable Third Degree' s signal handling by supplyinga. third
customization file including the si gnal s no option.

Locating Source Files

Third Degree prefixes each error message with afile and line number in the
style used by compilers. For example:

--- fof -- 3 --
ex.c: 21: freeing already freed heap at byte 0 of 32-byte bl ock
free mal | oc. c
mai n ex.c, line 21
__start crt0.s

Third Degree tries to point as closely as possible to the source of the error,
and it usually gives the file and line number of a procedure near the top of
the call stack when the error occurred, as in this example. However, Third
Degree may not be able to find this source file, either becauseit isin a
library or because it is not in the current directory. In this case, Third Degree
moves down the call stack until it finds a source file to which it can point.
Usudly, this is the point of call of the library routine.

In order to tag these error messages, Third Degree must determine the
location of the program’s source files. If you are running Third Degreein the
directory containing the source files, Third Degree will locate the source files
there. If not, to add directories to Third Degree’s search path, supply a

. t hi r d customization file including ause option. This allows Third
Degree to find the source files contained in other directories. Specifying the
use option with no arguments clears the search path. The location of each
source file is the first directory on the search path in which it is found.

7.4 Examining an Application’s Heap Usage

In addition to run-time checks that ensure that only properly allocated
memory is accessed and freed, Third Degree provides two ways to
understand an application’s heap usage:

7-12 Debugging Programs with Third Degree

7.4.1

e |t can find and report memory leaks.
* |t canlist the contents of the heap.

By default, Third Degree checks for leaks when the program exits.

This section discusses how to use the information provided by Third Degree
to analyze an application’s heap usage.

Detecting Memory Leaks

A memory leak is an object in the heap to which no pointer exists. The
object can no longer be accessed and can no longer be used or freed. Itis
useless and will never go away.

Third Degree finds memory leaks by using a simple trace-and-sweep
algorithm. Starting from a set of roots (the currently active stack and static
area), Third Degree finds pointers to objects in the heap and marks these
objects as visited. It then recursively finds all potential pointers inside these
objects and, finaly, sweeps the heap and reports al unmarked objects. These
unmarked objects are leaks.

The trace-and-sweep algorithm finds all leaks, including circular structures.
This algorithm is conservative: in the absence of type information, any 64-bit
pattern that is properly aligned and pointing inside a valid object in the heap
is treated as a pointer. This assumption can infrequently lead to the
following problems:

» Third Degree considers pointers either to the beginning or interior of an
object as true pointers. Only objects with no pointers to any address they
contain are considered leaks.

» |If an instrumented application hides true pointers by storing them in the
address space of some other process or by encoding them, Third Degree
will report spurious leaks. When instrumenting such an application with
Third Degree, createa . t hi r d configuration file that specifies the
poi nt er _mask option. The poi nt er _rmask option lets you specify
amask that is applied as an AND operator against every potential pointer.
For example, if you use the top 3 bits of pointers as flags, specify a mask
of OxAfffffffffffffff. Seet hi r d(5) for additional informationon. t hird
configuration files.

» Third Degree can confuse any bit pattern (such as string, integer,
floating-point number, and packed struct) that looks like a heap pointer
with atrue pointer, thereby missing atrue leak.

» Third Degree does not naotice pointers that optimized code stores only in
registers, not in memory. Asaresult, it may produce false leak reports.

Debugging Programs with Third Degree 7-13

7.4.2 Reading Heap and Leak Reports

You can supply . t hi r d configuration file options that tell Third Degree to
generate heap and leak reports incrementally, listing only new heap objects or
leaks since the last report or listing all heap objects or leaks. You can
regquest these reports when the program terminates, or before or after every
nth call to a user-specified function (seet hi r d(5) for details).

Third Degree lists memory objects and leaks in the report by decreasing
importance, based on the number of bytes involved. It groups together
objects allocated with identical call stacks. For example, if the same call
seguence alocates a million one-byte objects, Third Degree reports them as a
one-megabyte group containing a million allocations.

To tell Third Degree when objects or leaks are the same and should be
grouped in the report (or when objects or leaks are different and should not
be thus grouped), specify a. t hi r d configuration file containing the

obj ect _stack_dept h orl eak_st ack_dept h option. (See

t hi r d(5) for further description of the . t hi r d configuration file.) These
options set the depth of the call stack that Third Degree uses to differentiate
leaks or objects. For example, if you specify a depth of 1 for objects, Third
Degree groups valid objects in the heap by the function and line number that
alocated them, no matter what function was the caler. Conversely, if you
specify a very large depth for leaks, Third Degree groups only leaks allocated
at points with identical call stacks from mai n upwards.

In most heap reports, the first few entries account for most of the storage, but
thereis avery long list of small entries. To limit the length of the report,
you can use the . t hi r d configuration file obj ect _mi n_per cent or

| eak_m n_percent option. (Seet hi r d(5) for further description of the
. t hi rd configuration file) These options define a percentage of the total
memory leaked or in use by an aobject as athreshold. When al smaller
remaining leaks or objects amount to less than this threshold, Third Degree
groups them together under a single final entry.

Notes

Because ther eal | oc function aways allocates a new object

(by involving callsto mal | oc, copy, and f r ee), its use can

make interpretation of a Third Degree report counterintuitive.

When an object is allocated, listed, or shrunk through a call to

ther eal | oc function, it can be listed twice under different
identities.

Leaks and objects are mutually exclusive: an object must be reachable
from the roots.

7-14 Debugging Programs with Third Degree

7.4.3

7.4.4

Searching for Leaks

It may not always be obvious when to search for memory leaks. By default,
Third Degree checks for leaks after program exit, but this may not always be
what you want.

Leak detection is best done as near as possible to the end of the program
while all used data structures are still in scope. Remember, though, that the
roots for leak detection are the contents of the stack and static areas. If your
program terminates by returning from mai n and the only pointer to one of
its data structures was kept on the stack, this pointer will not be seen as a
root during the leak search, leading to false reporting of leaked memory. For
example:

1 main (int argc, char* argv[]) {

2 char* bytes = (char*) malloc(100);

3 exit(0);

4}
When you instrument a program, providing a. t hi r d configuration file
specifyingtheal | | eaks before exit every 1 option line will
result in Third Degree not finding any leaks. When the program calls the
exi t function, al of mai n’svariables are till in scope.

However, consider the following example:

1 min (int argc, char* argv[]) {
2 char* bytes = (char*) nmall oc(100);
3 1}

When you instrument this program, providing the same (or no) . t hi rd
configuration file, Third Degree’ s leak check may report a storage leak
because mai n has returned by the time the check happens. Either of these
two behaviors may be correct, depending on whether byt es was atrue leak
or simply a data structure still in use when mai n returned.

Rather than reading the program carefully to understand when leak detection
should be performed, you can check for new leaks after a specified number of
memory allocations. The number of allocations depends on the
characteristics of the application being instrumented. Usea.third
configuration file specifying the following options:

no | eaks at_exit

new | eaks before proc_nane every 10000

Seet hi r d(5) for further description of the . t hi r d configuration file.

Interpreting the Heap History

When you instrument this program, providing a. t hi r d configuration file
specifying the heap_hi st ory yes option line allows Third Degree to
generate a heap history for the program. A heap history allows you to see

Debugging Programs with Third Degree 7-15

how the program used dynamic memory during its execution. You can use
this feature, for instance, to eliminate unused fields in data structures or to
pack active fields to use memory more efficiently. The heap history also
shows memory blocks that are allocated but never used by the application.

When heap history is enabled, Third Degree collects information about each
dynamically alocated object at the time it is freed by the application. When
program execution completes, Third Degree assembles this information for
every object that is till alive (including memory leaks). For each object,
Third Degree looks at the contents of the object and categorizes each word as
never written by the application, zero, a valid pointer, or some other value.

Third Degree next merges the information for each object with what it has
gathered for all other objects allocated at the same call stack in the program.
The result provides you with a cumulative picture of the use of all objects of
agiven type.

Third Degree provides a summary of all objects allocated during the life of
the program and the purposes for which their contents were used. The report
shows one entry per allocation point (for example, a call stack where an
alocator function such as mal | oc or new was called). Entries are sorted by
decreasing volume of allocation.

Each entry provides the following:

* Information about all objects that have been allocated at any point up to
this point of the program’s execution

» Tota number of bytes allocated at this point of the program’s execution

» Total number of objects that have been allocated up to this point of the
program’ s execution

» Percentage of bytes of the allocated objects that have been written

* Thecall stack and a cumulative map of the contents of all objects
alocated by that call stack

The contents part of each entry describes how the objects allocated at this
point were used. If all allocated objects are not the same size, Third Degree
considers only the minimum size common to all objects. For very large
alocations, it summarizes the contents of only the beginning of the objects,
by default, the first kilobyte. You can adjust the maximum size value by
specifying the hi st ory_si ze option in thet hi r d configuration file.

7-16 Debugging Programs with Third Degree

In the contents portion of an entry, Third Degree uses one of the following
characters to represent each 32-bit longword that it examines:

Character Description

Dot (.) Indicates a longword that was never written in any of the objects, a
definite sign of wasted memory. Further analysisis generally
required to seeiif it is simply a deficiency of atest that never used
thisfield; if it is a padding problem solved by swapping fields or
choosing better types; or if this field is obsolete.

z Indicates a field whose value was always 0 (zero) in every object.

pp Indicates a pointer: that is, a 64-bit quantity that was a valid pointer
into the stack, the static data area, or the heap; or was zero in every
object.

ss Indicates a sometime pointer. This longword looked like a pointer

in at least one of the objects, but not in al objects. It could be a
pointer that is not initialized in some instances, or a union.
However, it could also be the sign of a serious programming error.

[Indicates a longword that was written with some nonzero value in at
least one object and that never contained a pointer value in any
object.

Even if an entry is listed as alocating 100MB, it does hot mean that at any
point in time 100MB of heap storage were used by the allocated objects. It
is a cumulative figure; it indicates that this point has allocated 100MB over
the lifetime of the program. This 100MB may have been freed, may have
leaked, or may still be in the heap. The figure simply indicates that this
alocator has been quite active.

Ideally, the fraction of the bytes actually written should always be close to
100%. If it is much lower, some of what is allocated is never used. The
common reasons why a low percentage is given include the following:

* A large buffer was alocated, but only a small fraction was ever used.

» Parts of every object of a given type are never used. They may be
forgotten fields or padding between real fields resulting from alignment
rulesin C structures.

» Some objects have been alocated, but never used at all. Sometimes leak
detection will find these objects if their pointers are discarded. If they are
kept on afreelist, however, they will only be found in the heap history.

Debugging Programs with Third Degree 7-17

7.5 Using Third Degree on Programs with Insufficient
Symbolic Information

If the executable you instrumented contains too little symbolic information
for Third Degree to pinpoint some program locations, Third Degree prints
messages in which procedure names or file names or line numbers are
unknown. For example:

-- rus -- 0 --
reading uninitialized stack at byte 40 of 176 in frane of main
proc_at _0x1200286f 0 libc.so
pc = 0x12004a268 libc.so
mai n app
__start app

Third Degree tries to print the procedure name in the stack trace, but if the
procedure name is missing (because this is a static procedure), Third Degree
prints the program counter in the instrumented program. This information
enables you to find the location with a debugger. If the program counter is
unavailable, Third Degree prints the address of the unnamed procedure.

More frequently, the file name or line number is unavailable because the
program’s symbol table is incomplete. In this case, Third Degree prints the
name of the abject in which the procedure was found. This object may be
either the main application or a shared library.

If the lack of symbolic information is hampering your debugging, consider
recompiling the program with more symbolic information. For C and C++
programs, recompile with the —g flag and link without the —x flag.

7.6 Validating Third Degree Error Reports
The following spurious errors may occur in rare instances:

» Modifications to bit fields in optimized code are occasionally reported as
uses of uninitialized data. This situation usually occursin initializations
of arrays of items smaller than 32 bits or in initializations of packed
structures, as in the following example:

voi d Packed() {

char c[4];

struct { int a:6; int b:9; int c:4} x;

c[0] =c[1] =1, /* rus errors here ... */
X.a = x.c =x.e =3; [/* ... maybe here */

}

» Third Degreeinitializes newly allocated memory with a special value to
detect referencesto uninitialized variables (see Section 7.3.2). Programs
that explicitly store this special value into memory and subsequently read
it may cause spurious "reading uninitialized memory" errors.

7-18 Debugging Programs with Third Degree

Storing the specia uninitialized value into memory and subsequently
reading it (though the value is neither avalid pointer, a floating-point
number, a remarkable integer, nor ASCII characters).

If you think that you have found a false positive, you can verify it by using
the disassembler (di s) on the procedure in which the error was reported.
All errors reported by Third Degree are detected at oads and stores in the
application, and the line numbers shown in the error report match those
shown in the disassembly outpuit.

7.7 Undetected Errors
Third Degree can fail to detect real errors, such as the following:

Errorsin logical operations on quantities smaller than 32 bits can go
undetected, for example:
short Small () {

short x;

X &= 1;

return x;

}

This programming practice may be considered an error if the program
depends on the least significant bit of x. It may not be considered an
error if the program depends only on the most significant bits.

Third Degree cannot detect a chance access of the wrong object in the
heap. It can only detect memory accesses from objects. For example,
Third Degree cannot determine that a[| ast +100] is the same address
asb[0] . You can reduce the chances of this happening by altering the
amount of padding added to objects. To do this, supply at hi rd
customization file that includes the obj ect _paddi ng option.

Third Degree may not be able to detect if the application walks past the
end of an array by fewer than 8 bytes. Because Third Degree brackets
objects in the heap by "guard words," it will miss small array bounds
errors. In the stack, adjacent memory is likely to contain local variables,
and Third Degree may fail to detect larger bounds errors. For example,
issuing aspri nt f operation to alocal buffer that is much too small
may be detected, but if the array bounds are only exceeded by a few
words and enough local variables surround the array, the error can go
undetected.

Hiding pointers by encoding them or by keeping pointers only to the
inside of a heap object will degrade the effectiveness of Third Degree’s
leak detection.

Debugging Programs with Third Degree 7-19

Profiling Programs to Improve
Performance 8

Profiling is a method of identifying sections of code that consume large
portions of execution time. In atypical program, most execution time is spent
in relatively few sections of code. To improve performance, the greatest
gains result from improving coding efficiency in time-intensive sections.

This chapter discusses the following topics:

» Using the pr of program

e Using the gpr of program

e Using the pi xi e and hi pr of Atom tools
e Usingtheuprofil e and kprofil e tools
» Selecting profiling information to display

» Using feedback files

» Using profiling environment variables

e Using nmoni t or routines

» Profiling multithreaded applications

8.1 Profiling Methods
Profiling methods include:

* Program counter (PC) sampling, a technique that periodically interrupts
your program and logs the value of the PC. The pr of and gpr of tools
use PC sampling to produce a statistical sample showing which portions
of code consume the most time. The gpr of tool also produces call
graphs, which show the relationship of calling and called routines.

e Basic block counting, a technique that inserts profiling code at key points
in your program. It produces a count of the number of times each
instruction executes.

To select an appropriate profiling method for an application, you must take
into consideration the following factors:

» The statistics that you want to collect and examine (for example, CPU
usage, call counts, call cost, memory usage, and I/O operations)

* Thelevel a which you need to collect these statistics (for example, a a
procedure level or at an instruction level).

* Whether you must profile the shared libraries used by the application as
well as its executable.

» The method that you use to collect the profiling data. Certain collection
methods require that you compile and/or link the application’s sourcesin
a special way. Others allow you to run a utility that inserts
instrumentation code into an existing program. Still others retrieve
information from the CPU’ s performance counters while the
uninstrumented program is running.

» Thetool that you use to display the profiling data. Depending on the
information that you need, you can choose from three tools that display
previously collected profiling information. Each tool supports multiple
data collection methods.

The profiling data display tools, and their respective data collection methods,
include the following:

pr of
Prints a profile of statistics per procedure.

The pr of tool supports the following data collection methods:
* Compiling or linking with the —p flag

The —p flag supports the profiling of shared libraries, but requires
you to at least relink the program. It collects only CPU statistics
using PC sampling

* Using theupr of i | e tool
Theupr of i | e tool profiles user code. It does not support the

profiling of shared libraries. It does not require you to relink the
program and collects either CPU statistics or other information.

* Using thekprofi | e tool

The kpr of i | e tool profiles the running operating system kernel. It
does not require you to relink the program and collects either CPU
statistics or other information.

prof —pixie
Prints a profile showing the number of times each procedure, source
ling, or instruction is executed. The pr of —pi Xxi e tool supports the
following basic block counting profiling data collection method:

* Using the pi xi e Atom tool (that is, the at om—t ool pi xi e
command) to instrument the program’s basic blocks.

The pi xi e Atom tool supports the profiling of shared libraries and
does not require you to relink the program. It supports the pr of

8-2 Profiling Programs to Improve Performance

tool’ s instruction-level profiling and true cycle-count estimation.

gpr of

Produces call-graph profile data showing the effects of calling routines
on called routines as well as other information.

The gpr of tool supports the following data collection methods:
¢ Compiling with the —pg flag

The —pg flag does not allow the profiling of shared libraries. It
requires that you recompile the program’s sources and uses an
apportioned call cost method to determine a given procedure’s cost

to its calers.

e Using the hi pr of Atom tool (that is, the at om—t ool hi pr of
command) to instrument the program

The hi pr of Atom tool supports the profiling of shared libraries
and does not require you to recompile or relink. To determine a
given procedure’ s cost to its calers, it supports both the apportioned
call cost method and the measured call cost method.

Y ou can also use the noni t or routines to perform PC-sampling on a
specified address range in a program. For more information on using
nmoni t or routines, see Section 8.13 and noni t or (3).

8.2 Profiling Tools Overview

Table 8-1 provides a concise overview of the profiling tools available in the
Digital UNIX operating system.

Table 8-1: Profiling Tools

Tool
PC-sampling/ pr of

Call-arce/ gpr of
pi xstats

uprofilel/kprofile

Use

Link application with —p; analyze results with
pr of ; see pr of (1) and noni t or (3).

Compile and link with —pg; analyze results with
gpr of ; see gpr of (1) and noni t or (3).
Additional postprocessor for pixified program
output; see pi xst at s(1).

Run application under upr ofi | e or kprofil e;
requires pf mdriver to be installed; analyze results
with pr of ; seeupr of i | e(1), kprofil e(1), and
pf (7).

Profiling Programs to Improve Performance 8-3

Table 8-1: (continued)

Tool Use

Atom toolkit Programmable debug/performance analysis tool.
Example tools are contained in
[usr/1lib/cnplrs/atonl exanpl es; see
at on(1) and other Atom reference pages for
programming interface.

pi xi e Atom-based basic block profiler; analyze results with
pr of ; see pi xi e(5).

hi pr of Atom-based call-arc analyzer; analyze results with
gpr of ; see hi pr of (5).

third Atom-based memory error/leak detection tool, Third

Degree; generates text output. Seet hi r d(5).

All profiling tools work on call-shared and nonshared applications.

8.2.1 PC-Sampling

Statistical PC-sampling for the program is useful for diagnosing high CPU-
usage procedures in the program and it supports both threads and shared

libraries.

Interface summary:

%cc -p *.0 -0 program # Link with libprofl. a

% pr ogram # Run programto collect data

% pr of program # Process the nmon.out file
8.2.2 gprof

The gpr of tool provides procedure call information coupled with statistical
PC-sampling. Thisis useful for determining which routines are called most
frequently and from where. The gpr of tool also gives aflat profile for
CPU-usage on the routines. It supports threads and call-shared programs, but
does not support shared libraries.

Using the gpr of tool, you can retrieve information from | i bc. a and

I i bm a because these two libraries are compiled with the —pg flag. Other
Digital-supplied libraries are not compiled with —pg, so calling information
on these other system libraries is not available.

8—4 Profiling Programs to Improve Performance

8.2.3

8.2.4

8.2.5

Interface summary:

%cc -pg *.c -0 program # Conpile and link with -pg
% pr ogram # Run programto collect data
% gpr of program # Process the gnon.out file

uprofile and kprofile

Theuprofil e and kpr of i | e tools use the performance counters on the
Alpha chip. They do not collect information on shared libraries. By defaullt,
both tools collect cycles for the program. The performance data produced by
these tools is processed with the pr of command. See upr ofi |l e(1) and
kprof i | e(1) for more information.

Atom Toolkit

The Atom toolkit consists of a programmable instrumentation tool and

several packaged tools. Examples are included in the
lusr/1ib/cmplrs/aton exanpl es directory that demonstrate how to
develop instrumentation and analysis code. The instrumentation part of the
tool instructs Atom on where to insert calls to analysis routines in the
program. When the program is run, the analysis routines are entered and data
collection is performed as prescribed by the Atom tool specified on the at om
command.

Atom does not work on programs built with the —omflag.

Interface summary:
% at om -t ool tool nanme program
% pr ogram t ool

Postprocessing is tool-dependent. See Chapter 9 for details on Atom.

pixie Atom tool

The Atom-based pixie is a basic block profiler that supports shared libraries
and threaded applications.

Interface summary:

% atom -tool pixie [-env threads] program
% program pi xi e[. t hreads]

% prof -pixie program

Profiling Programs to Improve Performance 8-5

8.2.6 hiprof Atom tool

The hi pr of Atom tool collects call-arc information on a program. By
default, it operates like the gpr of support provided by the —pg flag, but has
flag-sel ectable options that are more powerful. The hi pr of Atom tool
supports shared libraries and threaded applications.

Interface summary:

% atom -tool hiprof [-env threads] program

% program hi prof[.threads]

% gpr of program program hi out

8.2.7 Third Degree

Third Degree is a memory-leak and memory-overwrite detection tool, also
based on Atom. Third Degree generates text output to a file called
program 3l og. Thelog contains the diagnostics that Third Degree
detected (for example, reads of uninitialized heap or stack, memory
overwrites, and memory leaks).

Interface summary:

% atom -tool third [-env threads] program

% programthird[.threads]

% cat program 3l og

8.3 Profiling Sample Program

The examples in the remainder of this chapter refer to the sample program,
pr of sanpl e. ¢, shown in Example 8-1.

Example 8-1: Profiling Sample Program

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>

#define LEN 100
void mult_by_ scal ar(double ary[], int len, double num;
voi d add_vector(double arya[], double aryb[], int len);

doubl e val ue;
void printit(double value);

nmai n()
doubl e aryl1[LEN];

doubl e ary2[LEN];
int i;

8-6 Profiling Programs to Improve Performance

Example 8-1: (continued)
for (i=0; i<LEN, i++) {
aryl[i] 0.0;
ary2[i] sqrt((double)i);

mult _by_scal ar(aryl, LEN, 3.14159);

mul t _by scal ar(ary2, LEN, 2.71828);

for (i=0; i<20; i++)
add_vector(aryl, ary2, LEN);

}
void mult_by_scal ar(double ary[], int |len, double num
{
int i;
for (i=0; i<len; i++)
{
ary[i] *= num
value = ary[i];
printit(value);
}
}
voi d add_vector(double arya[], double aryb[], int |en)
{
int i;
for (i=0; i<len; i++)
{
arya[i] += aryb[i];
value = aryali];
printit(value);
}
}

void printit(double val ue)

printf("Value = %\n", val ue);

8.4 Using prof to Produce Program Counter Sampling
Data

To use pr of to obtain PC sampling data on a program, follow these steps:

Profiling Programs to Improve Performance 8-7

1. Compile and link (or just link) using the —p option, as follows:

% cc -c profsanple.c
%cc -p -o profsanple profsanple.o -Im

Y ou must specify the —p profiling option during the link step to obtain
PC sampling information. If you have an existing application, you will
not need to recompile to profile the executable program; simply relink the
program using the —p option with the cc command.

If you are building an application for the first time, you can compile and
link in the same step. In the preceding example, the —I moption ensures
that I i bm {a, so} isused to resolve symbols that refer to math library
functions.

Y ou might also consider compiling with one of the optimization flags to
help improve the efficiency of your code, compiling with a debug flag to
provide more symbolic information for the profile report, or compiling
with both types of flags.

If you are profiling a multithreaded application, use the —t hr eads flag
with the cc command. For more information on profiling multithreaded
applications, see Section 8.14.

2. Execute the profiled program:
% pr of sanpl e

Y ou can run the program several times, altering the input data (if any) to
create multiple profile datafiles.

During execution, profiling data is saved in a profile data file. The
default name for the profile data file is non. out , unless you have set the
environment variable PROFDI R. For more information on using

PROFDI R, see Section 8.12.1

3. Run the profile formatting program pr of , which extracts information
from one or more profile data files and produces a tabular report:

% prof profsanpl e non. out

Example 8-2 shows output produced by the pr of command on the
pr of sanpl e. ¢ program.

8-8 Profiling Programs to Improve Performance

Example 8-2: Profiler Listing for PC Sampling

Profile listing generated Thu May 26 13:36:14 1994 with:
prof profsanple non. out

* -p[rocedures] using pc-sanpling; sorted in descending
order by total time spent in each procedure
* unexecuted procedures excl uded

Each sanpl e covers 4.00 byte(s) for 14% of 0.0068 seconds

% i me seconds cum % cumsec procedure (file)

42.9 0. 0029 42.9 0.00 printit (profsanple.c)
42.9 0. 0029 85.7 0.01 add_vector (profsanmple.c) 1
14. 3 0.0010 100.0 0.01 mult _by_scal ar (profsanple.c)

1 This sample line of output presents the following information:
— 42.9 percent of execution time was spent in add_vect or .

— 85.7 percent of total execution time was spent cumulatively in the
printit andadd_vect or routines.

— The name of the source filefor mul t _by scal ar is
prof sanpl e. c

Because the pr of program works by periodic sampling of the program
counter, you might see different output when you profile the same program
multiple times. A different profiling run than the preceding example of the
sample program produced the following output:

Profile listing generated Thu May 26 13:34:00 1994 with:
prof -procedures profsanpl e non.out

-pl[rocedures] using pc-sanmpling; sorted in descending
* order by total time spent in each procedure;
* unexecut ed procedures excl uded

Each sanpl e covers 4.00 byte(s) for 17% of 0.0059 seconds

% i nme seconds cum % cumsec procedure (file)
66.7 0. 0039 66. 7 0. 00 add_vector (profsanple.c)
33.3 0. 0020 100.0 0.01 printit (profsanple.c)

Profiling Programs to Improve Performance 8-9

8.5 Using gprof to Display Call Graph Information

To determine the manner in which routines call, or are called by, other
routines, use the gpr of profiling tool.

The gpr of tool postprocesses both hi pr of output and —pg output.
To use this tool, follow these steps:

1. Usethehi prof Atom tool to produce an instrumented version of the
program:
% at om -t ool hiprof profsanple

2. Execute the instrumented version of pr of sanpl e:
% pr of sanpl e. hi pr of

3. Examine the profiling data as follows:
% gpr of prof sanpl e profsanpl e. hi out

During execution, profiling data is saved in the datafile
pr of sanpl e. hi out, unless you have set the —di r name flag in the
HI PROF_ARGS environment variable or on the command line.

Alternatively, you can use the following procedure to collect profiling data
for the gpr of tool:

1. Compile and link using the —pg option, as follows:
% cc -pg -c profsanmple.c
% cc -pg -o profsanple profsanple.o -Im
Y ou must specify the —pg flag with the cc command during both the
compile and link steps to obtain call graph information.

2. Execute the program:
% pr of sanpl e

When this method is used, profiling data is saved during execution in the
datafile gnon. out , unless you have set the PROFDI R environment
variable. For more information on using this variable, see Section 8.12.1.

3. Run the formatting program gpr of , which extracts information from the
datafile:

% gpr of prof sanpl e gnon. out

8-10 Profiling Programs to Improve Performance

The output produced by the gpr of utility comprises three sections:
o Call graph profile

* Timing profile, similar to the profile produced by pr of

* Index

Y ou can control gpr of profiling by file by using the —no_pg flag to the cc
command. When you use this flag, you disable gpr of profiling for all
objects that follow the flag on the command line. You cannot use the
—no_pg flag with the —r and —shar ed flagsto the | d command.

Example 8-3 shows output for gpr of profiling of the sample program. The
—b flag was used with gpr of to suppress printing of the description of each
output field. The descriptions are valuable, but they are lengthy and were left
out due to space considerations. To see these descriptions, follow the steps to
produce gpr of output and write the output to a file or pipe the output
through the nor e utility.

In the call graph profile section, each routine in the program has its own
subsection that is contained within dashed lines and identified by the index
number in the first column. Note that for the purpose of this example output,
the three sections have been separated by rows of asterisks that do not appear
in the output produced by gpr of . Each row of asterisks includes the name
of the section. For more information on gpr of flags, see the gpr of (1)
reference page.

Example 8-3: Sample gprof Output

Rk I S b O R R R O call graph proflle REE R S b Sk R I

granul arity: each sanple hit covers 4 byte(s) for 10.00%
of 0.01 seconds

call ed/total parents
index %inme self descendents cal | ed+sel f nane i ndex
cal | ed/total chil dren

<spont aneous>

[1] 100.0 0.00 0.01 mai n [1]
0. 00 0. 00 20/ 20 add_vector [2]
0. 00 0. 00 2/ 2 mul t _by_scal ar [4]
0.00 0. 00 20/ 20 mai n [1] 1
[2] 75.5 0.00 0. 00 20 add_vector [2] 2
0. 00 0.00 2000/ 2200 printit [3] 3

Profiling Programs to Improve Performance 8-11

Example 8-3: (continued)

0. 00 0. 00 200/ 2200 mul t _by_scal ar [4]
0. 00 0. 00 2000/ 2200 add_vector [2]

[3] 50.0 0.00 0.00 2200 printit [3]
0.00 0.00 2/ 2 main [1]

[4] 4.5 0.00 0. 00 2 mul t _by_scal ar [4]
0. 00 0.00 200/ 2200 printit [3]

EE R R O I tlmng pI’OfI|e Sectlon kkkkhkhkkkkkhkhkhkkkk*k

granul arity: each sanple hit covers 4 byte(s) for 10.00%
of 0.01 seconds

% cunul ative sel f sel f t ot al
time seconds seconds calls ns/call ns/call nane
50.0 0. 00 0. 00 2200 0. 00 0. 00 printit [3]
30.0 0.01 0. 00 20 0.15 0. 37 add_vector [2]
20.0 0.01 0. 00 mai n [1]
0.0 0.01 0. 00 2 0. 00 0.22 mul t _by_scal ar[4]

khkkhkkkkhkkhkkhkhkkhkhkkhkhkkhkhkkdkk*x | ndex SeCt | on R S S O I R O O

I ndex by function name

[2] add_vector [4] mult_by_scal ar
[1] main [3] printit

1 Thisline describes the relationship of the mai n routine to the
add_vect or routine. Because mai n is listed above the add_vect or
routine in the final column of this section, mai n is identified as the
parent of add_vect or. The fraction 20/20 indicates that of the 20
times that add_vect or (the denominator of the fraction) was called, it
was called 20 times by mai n (the numerator of this fraction).

2 Thisline describes the add_vect or routine, which is the subject of this
portion of the call graph profile because it is the leftmost routine in the
rightmost column of this section. The index number [2] in the first
column corresponds to the index number [2] in the index section at the
end of the output. The 75.5% in the second column reports the total
amount of time in the sample that is accounted for by the add_vect or
routine and its descendent, in this casethe pri ntit routine. The 20 in
the cal | ed column indicates the total number of times that the
add_vect or routineis called.

3 Thisline describes the relationship of the pri nti t routine to the
add_vect or routine. Becausethe pri ntit routine is below the
add_vect or routine in this section, pri ntit isidentified as the child

8-12 Profiling Programs to Improve Performance

of add_vect or. The fraction 2000/2200 indicates that of the total of
2200 calsto pri nti t, 2000 of these calls came from add_vect or .

8.6 Using pixie for Basic Block Counting

A basic block is a set of instructions with one entry and one exit. The

pi xi e Atom tool provides execution counts for the basic blocks of a
program. With pr of , the execution counts can be viewed at the instruction
level.

To obtain data for basic block counting, follow these steps:

1. Compile and link. For example:

% cc -c profsanple.c
% cc -o profsanple profsanple.o -Im

2. Runthe pi xi e Atom tool. You do not have to specify a name for the
output because pi xi e produces an output file by default with the same
name as the original C source file, but with pi xi e appended after a
period. For example, the following command causes pi xi e to create two
files, pr of sanpl e. pi xi e and pr of sanpl e. Addr s:

% at om -t ool pixie profsanple

The pr of sanpl e. pi xi e fileis equivalent to pr of sanpl e but
contains additional code that counts the execution of each basic block. To
create an output file with a name other than pnane. pi xi e, use the —o
flag followed by the name you assign to the output file.

The pr of sanpl e. Addr s file contains the address of each of the basic
blocks. For more information, see pi xi e(5).

3. Executethe pr of sanpl e. pi xi e file:
% pr of sanpl e. pi xi e

This command generates the file pr of sanpl e. Count s, which
contains the basic block counts. Each time you execute the

pr of sanpl e. pi xi e file, you create a new pr of sanpl e. Count s
file.

4. Run the profile formatting program pr of , with the —pi xi e flag over the
pr of sanpl e executable file:

% prof -pixie profsanple
This command extracts information from pr of sanpl e. Addr s and
pr of sanpl e. Count s and displays information in an easily readable

format. Note that you do not need to specify the. Addr s and . Count s
file suffixes because pi xi e searches by default for files containing them.

Profiling Programs to Improve Performance 8-13

You can also run the pi xst at s program on the executable file
pr of sanpl e to generate a detailed report on opcode frequencies,
interlocks, a miniprofile, and more. For more information, see

pi xst at s(2).

Note

The pi xi e profiling tool provided in the current version of the
Digital UNIX operating system is the pi xi e Atom tool. If you
use the syntax provided in earlier versions of the operating
system to invoke pi xi e, a script transforms the call into a call
to the pi xi e Atom tool. The previous version of the pi xi e
tool can be found at

/usr/ opt/obsol et e/ usr/ bi n/ pi xi e.

8.7 Selecting Profiling Information to Display

8.7.1

Depending on the size of the application and the type of profiling you
reguest, pr of may generate a very large amount of output. However, you
are often only interested in profiling data about a particular portion of your
application.

Limiting Profiling Display to Specific Procedures

The pr of program provides the following flags to display information
selectively by procedure:

—only
—excl ude
-Only
—Excl ude
—totals

The —onl y option tells pr of to print only profiling information for a
particular procedure. You can specify the —onl y option multiple times on
the command line. For example, the following command displays profiling
information for proceduresnul t _by scal ar and add_vect or from the
sample program:

% prof -only mult_by_scalar -only add_vector profsanple
The—excl ude option tells pr of to print profiling information for all

procedures except the specified procedure. Y ou can use multiple —excl ude
flags on the command line.

8-14 Profiling Programs to Improve Performance

8.7.2

8.7.3

The following command displays profiling information for all procedures
except add_vect or:

% prof -exclude add_vector profsanple

Do not use the —onl y and —excl ude flags on the same command line.

Many of the pr of utility’s profiling flags print output as percentages, for
example, the percentage of total execution time attributed to a particular
procedure.

By default, the —onl y and —excl ude flags cause pr of to calculate
percentages based on all of the procedures in the application even if they
were omitted from the listing. Y ou can change this behavior with the
—Onl y and —Excl ude flags. These flags work the same as—onl y and
—excl ude, but cause pr of to calculate percentages based only on those
procedures that appear in the listing. For example, the following command

omitsthe add_vect or procedure from both the listing and from percentage

calculations:
% prof -Exclude add_vector profsanple

The -t ot al s flag, used with the —pr ocedur es and —i nvocat i ons
listings, prints cumulative statistics for the entire object file instead of for
each procedure in the object.

Including Shared Libraries in the Profiling Information

The-al | , —i ncobj , and —excobj flags allows you to display profiling
information for shared libraries used by the program:

 The-al | flag causesthe profiles for al shared libraries (if any)
described in the data file(s) to be displayed, in addition to the profile for
the executable.

 The-i ncobj flag causes the profile for the named shared library to be
printed, in addition to the profile for the executable.

 The-excobj flag causes the profile for the named executable or shared
library not to be printed.

Using pixie to Display Profiling Information for Each Source
Line

The—-heavy and —I i nes flags cause pr of to display the total humber of
machine cycles executed by each source line in your application. Both of

these flags require you to use basic block counting (the —pi xi e option);
they do not work in PC-sampling mode.

Profiling Programs to Improve Performance 8-15

The —heavy option prints an entry for every source line that was executed
by your application. Each entry shows the total number of machine cycles
executed by that line. Entries are sorted from the line with the most machine
cycles to the line with the least machine cycles. Because this option often
prints a huge number of entries, you might want to use one of the —qui t,
—onl y, or —excl ude flags to reduce output to a manageable size.

Example 8-4 shows output generated by the following command:

% pr of -pixie -heavy -only add_vector -only mult_by scalar \
-only nmain profsanple

For example, you can see in Example 8-4 that line 47 of pr of sanpl e. ¢ in
the procedure add_vect or () accounts for over 12 percent of the
application’s total execution time. The listing also shows the size in bytes of
each source line.

Example 8-4: Prof Output by Source Line with -heavy Flag

Profile listing generated Fri My 27 14:09:10 1994 with:
prof -pixie -heavy -only add_vector -only nult_by_scal ar
-only nain profsanple

* -h[eavy] using basic-block counts; *
* sorted in descendi ng order by the nunmber of cycles executed *
* in each *
* |ine; unexecuted |lines are excluded *

procedure (file) line bytes cycl es % cum %
add_vector (profsanple.c) 48 44 22000 23.26 23.26
add_vector (profsanple.c) 46 40 20000 21.15 44.41
add_vector (profsanple.c) 47 24 12000 12.69 57.10
mul t _by_scal ar (profsanple.c) 36 44 2200 2.33 59.43
mai n (profsanple. c) 20 60 1500 1.59 61.02
mul t _by_scal ar (profsanple. c) 34 28 1400 1.48 62.50
mul t _by_scal ar (profsanple.c) 35 24 1200 1.27 63.77
mai n (profsanple. c) 19 12 300 0.32 64.08
mai n (prof sanpl e. c) 25 48 240 0.25 64.34
add_vector (profsanple.c) 41 28 140 0.15 64.48
add_vector (profsanple.c) 44 12 60 0.06 64.55
add_vector (profsanple.c) 50 12 60 0.06 64.61
mul t _by_scal ar (profsanple.c) 29 28 14 0.01 64.63
mai n (profsanple. c) 23 32 8 0.01 64.63
mai n (prof sanpl e. c) 22 32 8 0.01 64.64
mul t _by scal ar (profsanple.c) 38 12 6 0.01 64.65
mul t _by_scal ar (profsanple.c) 32 12 6 0.01 64.66
mai n (prof sanpl e. c) 26 16 4 0.00 64.66

8-16 Profiling Programs to Improve Performance

Example 8-4: (continued)

mai n (profsanple. c) 13 16 4 0.00 64.66
mai n (profsanpl e.c) 18 8 2 0.00 64.67
mai n (profsanpl e. c) 24 8 2 0.00 64.67

The—I i nes option is similar to —heavy, but it sorts the output differently.
This option prints the lines for each procedure in the order that they occur in
the source file. Even lines that never executed are printed. The procedures
themselves are sorted from those procedures that execute the most machine
cycles to those that execute the least.

Example 8-5 shows the same information as Example 8-4, but in a different
format as generated by the following command:

% prof -pixie -lines -only add_vector -only mult_by_scalar \
-only main profsanple

Example 8-5: Prof Output by Source Line with -lines Flag

Profile listing generated Fri May 27 14:07:28 1994 with:
prof -pixie -lines -only add_vector -only nult_by_scal ar
-only main profsanple

* -|[ines] using basic-block counts; *
* grouped by procedure, sorted by cycles executed per procedure;*
* 772 means that |line nunber information is not avail abl e. *
procedure (file) line bytes cycl es % cum %
add_vector (profsanple.c) 41 28 140 0.15 0. 15
44 12 60 0.06 0.21
46 40 20000 21.15 21.36
47 24 12000 12.69 34.05
48 44 22000 23.26 57.32
50 12 60 0.06 57.38
mul t _by_scal ar (profsanple.c) 29 28 14 0.01 57.39
32 12 6 0.01 57.40
34 28 1400 1.48 ©58.88
35 24 1200 1.27 60.15
36 44 2200 2.33 62.48
38 12 6 0.01 62.48
mai n (profsanple. c) 13 16 4 0.00 62.49
18 8 2 0.00 62.49
19 12 300 0.32 62.81
20 60 1500 1.59 64.39
22 32 8 0.01 64.40
23 32 8 0.01 64.41

Profiling Programs to Improve Performance 8-17

8.7.4

Example 8-5: (continued)

24 8 2 0.00 64.41
25 48 240 0.25 64.66
26 16 4 0.00 64.67

Limiting Profiling Display by Line

The —qui t option reduces the amount of profiling output displayed. The
—qui t option affects the output from the —pr ocedur es, —heavy, and
-1 i nes profiling modes.

The—qui t option provides three versions:
e —quitn

The n refersto an integer. All lines after the n line are truncated.
e —quit n%

The n is an integer followed by a percent sign (%). All lines after the line
containing n%callsin the %al | s column of the display are truncated.

e —quit ncunto

The ncuntarefers to an integer n followed by the characters cum (for
cumulative) and a percent sign (%). All lines after the line containing
ncunocalls in the cunPbocolumn of the display are truncated.

If you specify several modes on the same command line, the —qui t option
affects the output from each mode. For example, the —qui t option in the
following command reduces the output from both the —pr ocedur es and
—heavy modes:

% prof -pixie -procedures -heavy -quit 20 profsanple

This command prints only the 20 most time-consuming procedures and the
20 most time-consuming source lines. The—qui t n option has no affect on
the—I i nes profiling mode.

The —qui t n%option restricts the output to those entries that account for at
least n%of the total. Depending on the profiling mode, the total can refer to
the total amount of time, the total number of machine cycles, or the total
number of invocation counts. For example, the following command prints
only those source lines that account for at least 2 percent of the application’s
total number of machine cycles:

% prof -pixie -lines -quit 2% prof sanpl e
The —qui t ncunfooption truncates the output after n%of the total has been

accounted for. The definition of total depends on the profiling mode, as
described in the preceding paragraph. For example, the following command

8-18 Profiling Programs to Improve Performance

prints the most heavily used source line and stops after 30 percent of the
application’s total number of machine cycles have been accounted for:

% prof -pixie -heavy -quit 30cunto sanpl e

8.8 Using pixie to Average prof Results

A single run of a program may not produce the desired results. You can
repeatedly run the version of the program created by pi xi e, varying the
input with each run, and then use the resulting . Count s files to produce a
consolidated report. For example:

1

Compile and link. Do not use the —p option when linking to produce an
executable file for pi xi e:

% cc -c profsanple.c
% cc -o profsanple profsanple.o -Im

Run the profiling utility pi xi e, as follows:
% atom -tool pixie -toolargs=-pids profsanple

This command produces the pr of sanpl e. Addr s fileto be used in
step 4, as well as the modified program pr of sanpl e. pi xi e.

Delete any existing . Count s files, set the Pl XI E_ARGS environment
variableto " - pi ds", and run the executable program produced by
pi xi e. For example:

% pr of sanpl e. pi xi e

The —pi ds option specified with the at om-t ool pi xi e command in
step 2 appends the process ID of the process running the executable
program to the name of the pr of sanpl e. Count s file, for example,
pr of sanpl e. Count s. 1753.

Run the profiled program as many times as desired. Each time the
program is run, apr of sanpl e. Count s. <pi d>fileis created.

Run pr of to create the report as follows:

% prof -pixie profsanple profsanpl e. Addrs profsanpl e. Counts. *

If you had run pr of sanpl e. pi xi e threetimes, the pr of utility
would have averaged the basic block data in the three files generated by
the executable (pr of sanpl e. Count s. <pi d1>,

pr of sanpl e. Count s. <pi d2>, and

pr of sanpl e. Count s. <pi d3>) to produce the profile report.

Profiling Programs to Improve Performance 8-19

8.9 Analyzing Test Coverage

8.10

When you are writing a test suite for an application, you might want to know
how effectively your suite tests the application. The pr of utility provides
two flags that can help you determine this. The—zer o option prints the
names of procedures that were never executed by your application. The

—t est cover age option lists al of the source lines that were never
executed by your application. Both of these flags require basic block
counting.

Typically, you would perform the following steps to make use of these flags.
1. Run the pi xi e Atom tool on your application.

2. Run the results of step 1 through your test suite saving any . Count s
files.

3. Profile your application with the—zer o or —t est cover age flags and
specify al of the. Count s files produced when you ran the test suite.

Merging Data Files

If the application you are profiling is fairly complicated, you may want to run
it several times with different inputs to get an accurate picture of its profile.

If you are using PC sampling, each run of your application produces a new
non. out file, or a program pi d file if you have set the PROFDI R
environment variable. If you are using basic block counting, each run
produces anew . Count s file.

Y ou have two ways of displaying profiling information that is based on an
average of al of these output files.

Thefirst way is to specify the names of each profiling data file explicitly on
the command line. For example, the following command prints profiling
information from two profile data files:

% prof -procedures profsanple 1510. profsanpl e 1522. prof sanpl e

Keeping track of many different profiling data files, however, can be difficult.
Therefore, pr of provides the —ner ge option to combine several data files
into a single merged file. When pr of operatesin —pi xi e mode, the

—nmer ge flag combinesthe . Count s files. When pr of operatesin PC-
sampling mode, this switch combines the mon. out or other profile data
files.

The following example combines two profile data files into a single data file

8-20 Profiling Programs to Improve Performance

namedt ot al . out :
% prof -merge total.out profsanple 1773. profsanple \
1777. prof sanpl e

At alater time, you can then display profiling data using the combined file,
just as you would use a norma non. out file. For example:

% prof -procedures profsanple total.out

The merge processis similar for —pi xi e mode. You must specify the
executable file's name, the . Addr s file, and each . Count s file:

% prof -pixie -nmerge total.Counts a.out a.out.Addrs \
a.out. Counts. 1866 a.out.Counts. 1868

8.11 Using Feedback Files

Feedback files are useful in identifying portions of a large executable
program in which significant percentages of the execution occur. Without
feedback, the compiler must make assumptions about call frequency based on
nesting levels. These assumptions are almost never as good as actual data
from a sample run. The following sections describes how to use feedback
files by using the cc command and the at om- t ool pi xi e and pr of
commands.

8.11.1 Generating and Using Feedback Information

Follow these steps to generate feedback information that can be used to
optimize subsequent compilations:

1. Compile the source code:
%cc -2 -0 profsanple profsanple.c -Im

2. Run the pi xi e Atom tool on the executable file:
% at om -tool pixie -toolargs=-o0 profsanple. pixi e profsanple

This step creates an output executable file named pr of sanpl e. pi xi e
and a pr of input file named pr of sanpl e. Addr s.

3. Execute the program you just created:
% pr of sanpl e. pi xi e

This step creates a file named pr of sanpl e. Count s, which contains
execution statistics.

Profiling Programs to Improve Performance 8-21

4. Usepr of to create a feedback file from the execution statistics:
% prof -pixie -feedback profsanple.feedback profsanple

5. You can use a feedback file as input to a compilation at —O2 or —O3
optimization levels when you use the —f eedback option with the cc
command, as shown in the following example:

% cc -3 -feedback profsanple.feedback -0 \
prof sanpl e profsanple.c -Im

The feedback file provides the compiler with actual execution information
that can be used to improve certain optimizations, such as inlining
function calls. Use a feedback file generated from a—O2 compilation for
any subsequent compilations with —O2 or —O3 flags.

8.11.2 Using a Feedback File for Input to cord

8.12

Y ou can also use a feedback file as input to the cor d utility. Thecord
utility orders the proceduresin an executable program to improve execution
time. The following example shows how to use the —cor d option as part of
a compilation command with a feedback file as input:

% cc -2 -cord -feedback profsanple.feedback \
-0 profsanple profsanple.c -Im

Use a feedback file generated with the same optimization level as the level
you use in subsequent compilations.

You can also use cor d with the r uncor d utility. For more information, see
runcord(l).

Using Environment Variables to Control PC-Sample
Profiling
By default, the —p and —pg flags to the cc command provide the following:

* A single profile covering the whole text segment and all threads. To
profile specific portions of the program, use the noni t or utilities, as
described in Section 8.13 and noni t or (3).

» A singledatafile called non. out (for —p) or grnon. out (for —pQ)
placed in the current directory.

The —p flag supports the profiling of shared libraries. The —pg flag and
upr of i | e tool support the profiling of only the part of a program that isin
the executable. When using these tools to generate profiling information for
library routines, link your object file with the —non_shar ed flag to the cc
command.

8-22 Profiling Programs to Improve Performance

Y ou can use one of the following environment variables to control profiling

behavior:
« PROFD R
» PROFFLAGS

By using these variables, you can disable aspects of default profiling
behavior, including:

» Changing the name and path of profiling data files
» Controlling when profiling begins
» Controlling profiling of multithreaded applications

You can use the PROFFLAGS and PROFDI R environment variables together.

Note that these environment variables have no effect on the pr of and

gpr of post-processors; they affect the profiling behavior of a program
during its execution. These environment variables have no effect when you
use the pi xi e Atom tool.

8.12.1 PROFDIR Environment Variable

By default, profiling data is collected in a data file named [g] non. out .
When you do multiple profiling runs, each run overwrites the existing

[9] non. out file. Use the PROFDI R environment variable when you want
to collect PC sampling data in files with unique names. Set this environment
variable as follows:

e C Shdl:
set env PROFDI R pat h
* Bourne Shell:

PROFDI R= pat h; export PROFDI R

The results are saved in the file pat h/ pi d. pr ognanme, which resolves as
follows:

pat h
The directory path, specified with PROFDI R, identifying an existing
directory.

pi d
The process ID of the executing program.

prognane
The program name.

Profiling Programs to Improve Performance 8-23

When you set PROFDI R to a null string, no profiling occurs.

8.12.2 PROFFLAGS Environment Variable

By default, the profiling library | i bprof 1. a (orli bprof1_r. a, for
multithreaded programs) allocates one buffer per process to record your
profiling data, as well as placing the data output file in your current directory.

To disable this default behavior, set the PROFFLAGS environment variable

as follows:
 C Shdl:

set env PROFFLAGS " - di sabl e_defaul t"
* Bourne Shell:

PROFFLAGS = "-di sabl e_defaul t"; export PROFFLAGS

When you have set PROFFLAGS to —di sabl e_def aul t, the default
profiling support is disabled, alowing you to use the noni t or calsto
profile specific sections of your program for both nonthreaded and
multithreaded programs. See noni t or (3) and Section 8.13 for more
information on using the noni t or , nonst ar t up, and noncont r ol
routines.

For multithreaded programs, you can allocate one buffer per thread by setting
the PROFFLAGS environment variable as follows:

e C Shdl:
set env PROFFLAGS " -t hr eads™
* Bourne Shdll:

PROFFLAGS = "-t hreads"; export PROFFLAGS

When you have set PROFFLAGS to —t hr eads, a separate file is produced
for each thread and is named pi d. si d. pr ognane, which is resolved as
follows:
pi d
The process identification of the program.
sid
The sequence number of the thread, which depends on the order in
which the threads were created.

prognane
The name of the program being profiled.

You can use the —t hr eads and —di sabl e_def aul t flags together to
control profiling of your program when you use the noni t or routines.

8-24 Profiling Programs to Improve Performance

8.13

Y ou can aso set the PROFFLAGS environment variable to include or exclude
profiling information:

set env PROFFLAGS "-al | "
Causes the profiles for all shared libraries (if any) described in the data
file(s) to be displayed, in addition to the profile for the executable.

set env PROFFLAGS "-i ncobj /i b_nange"
Causes the profile for the named shared library to be printed, in addition
to the profile for the executable.

set env PROFFLAGS " - excobj /i b_nane"
Causes the profile for the named executable or shared library not to be
printed.

Using monitor Routines to Control Profiling

The default profiling behavior on Digital UNIX systems is to profile the
entire text segment of your program and place the profiling datain non. out
for pr of profiling or in gnon. out for gpr of profiling. For large
programs, you might not need to profile the entire text segment. The

noni t or routines provide the ability to profile portions of your program
specified by the lower and upper address boundaries of a function address
range.

The noni t or routines are:
nmoni tor ()
Use this routine to gain control of explicit profiling by turning profiling

on and off for a specific text range. This routine is not supported for
gpr of profiling.

nmonstartup()
Similar to noni t or, except it specifies address range only and is
supported for gpr of profiling.

nmoncontrol ()
Use this routine with noni t or and nonst ar t up to turn PC sampling
on or off during program execution for a specific process or thread.

nmoni tor _signal ()

Use this routine to profile nonterminating programs, such as daemons.
You can use noni t or and nonst art up to profile an address range in
each shared library as well as in the static executable.

For more information on these functions, see noni t or (3).

By default, profiling begins as soon your program starts to execute. Y ou can
set the PROFFLAGS environment variable to —di sabl e_defaul t to

Profiling Programs to Improve Performance 8-25

prevent profiling from beginning when your program executes. Then, you
can use the moni t or routines to begin profiling after the first call to
noni t or or nonst art up.

Y ou can disable the default naming of the profiling data file by using the
PROFDI R environment variable. For more information on using this
environment variable, see Section 8.12.1.

Example 8-6 demonstrates how to use the monst ar t up and noni t or
routines within a program to begin and end profiling.

Example 8-6: Using monstartup() and monitor()

Profile the domath() routine using nonstartup.
This exanple allocates a buffer for the entire program
Conpil e command: cc -p foo.c -0 foo -Im
Before running the executable, enter the follow ng
fromthe command line to disable default profiling support:
set env PROFFLAGS -di sabl e_defaul t

/

* % 3k X F F

#i ncl ude <stdio. h>
#i ncl ude <sys/syslimts. h>

char dir[PATH _MAX];

extern void __start();
extern unsigned |ong _etext;

mai n()

int i;
int a=1;

/* Start profiling between __start (beginning of text
* and _etext (end of text). The profiling library
* routines will allocate the buffer.

*/
nonstartup(__start, & etext);

for(i=0;i<10;i++)
domat h() ;

/* Stop profiling and wite the profiling output file. */

noni tor(0);

domat h()

int i;

8-26 Profiling Programs to Improve Performance

Example 8-6: (continued)
doubl e d1, d2;

d2 = 3.1415;
for (i=0; i<1000000; i++)
dl = sqrt(d2)*sqrt(d2);
}

The external name _et ext liesjust above al the program text. See end(3)
for more information.

When you set the PROFFLAGS environment variable to
—di sabl e_def aul t, you disable default profiling buffer support. You
can allocate buffers within your program, as shown in Example 8-7.

Example 8-7: Allocating Profiling Buffers Within a Program

Profile the domath routine using nonitor().
Conpil e command: cc -p foo.c -0 foo -Im
Before running the executable, enter the follow ng
fromthe command |line to disable default profiling support:
set env PROFFLAGS -di sabl e_defaul t

/

* % X X X X

#i ncl ude <sys/types. h>
#i ncl ude <sys/syslimts. h>

extern char *calloc();

voi d domat h(voi d);
voi d next proc(void);

#define I NST_SI ZE 4 /* Instruction size on Al pha */
char dir[PATH_MAX] ;
mai n()

int i;

char *buffer;
size_t bufsize;

/* Allocate one counter for each instruction to
* be sanpled. Each counter is an unsigned short.
*/

bufsize = (((char *)nextproc - (char *)donath)/|NST_SI ZE)
* sizeof (unsi gned short);

/* Use calloc() to ensure that the buffer is clean
* before sanpling begins.
*/

Profiling Programs to Improve Performance 8-27

Example 8-7: (continued)
buf fer = call oc(bufsize, 1);

/[* Start sanpling. */
noni t or (domat h, next proc, buf f er, buf si ze, 0) ;
for(i=0;i<10;i++)
domat h() ;

[* Stop sanpling and wite out profiling buffer. */
noni tor(0);

voi d domat h(voi d)

r
int i;
doubl e d1, d2;

d2 = 3.1415;
for (i=0; i<1000000; i ++)
dl = sqrt(d2)*sqrt(d2);
}

voi d next proc(void)

{}

You use the noni t or _si gnal () routine to profile programs that do not
terminate. Declare this routine as a signal handler in your program and build
the program for pr of or gpr of profiling. While the program is executing,
send a signal from the shell by using the ki I | command.

When the signal is received, noni t or _si gnal isinvoked and writes
profiling data to the datafile. If the program receives another signal, the data
fileis overwritten.

Example 8-8 illustrates how to use the moni t or _si gnal routine.

Example 8-8: Using monitor_signal() to Profile Non-Terminating
Programs

/* Fromthe shell, start up the programin background.

* Send a signal to the process, for exanmple: kill -30 <pid>
* Process the [g]non.out file normally using gprof or prof
*/

#i ncl ude <signal . h>
extern int nonitor_signal ();
nmai n()
o
int i;
doubl e d1, d2;

8-28 Profiling Programs to Improve Performance

8.14

Example 8-8: (continued)

/*

* Declare nmonitor_signal () as signal handler for SIGUSRL

*/

si gnal (SI GUSR1, noni t or _si gnal) ;

d2 = 3.1415;
/*

* Loop infinitely (absurd exanple of non-term nating process)
*/
for (57)
dl = sqgrt(d2)*sqrt(d2);

Profiling Multithreaded Applications

Profiling multithreaded applications is essentially the same as profiling non-
threaded applications. However, to profile multithreaded applications, you
must compile your program with the —pt hr ead or —t hr eads flag to the
cc command. Specifying one of these flags and either the —p or —pg flag
enables the thread profiling library, | i bprof 1 _r. a.

The default case for profiling multithreaded applications is to provide one
sampling buffer for all threads. In this case, you get sampling across the
entire process and you get one output file comprising sampling data from all
threads. Depending on whether you use the —p or —pg flag, your output file
will be named non. out or gnon. out , respectively.

To get a separate buffer and a separate output file for each thread in your
program, use the environment variable PROFFLAGS. Set PROFFLAGS to
—t hr eads, as shown in the following example:

set env PROFFLAGS "-t hr eads"

The profiling data file will be named according to the following convention:
pi d. si d. prognamne
In the preceding example, pi d is the processid of the program, si d

corresponds to the order in which the thread was created, pr ognane is your
program name.

If the application controls profiling by using the noni t or routines, si d
corresponds to the order in which profiling was started for the thread.

If you usethernoni tor () ornonstartup() calsinathreaded
program, you must first set PROFFLAGS to " - di sabl e_defaul t -
t hr eads", giving you complete control of profiling the application.

If the application uses noni t or () and allocates separate buffers for each
thread profiled, you must first set PROFFLAGS to " di sabl e_defaul t -
t hr eads" because this setting affects the file naming conventions that are
used. Without the —t hr eads flag, the buffer and address range used as a

Profiling Programs to Improve Performance 8-29

result of thefirst noni t or or nonst art up call would be applied to every
thread that subsequently requests profiling. In this case, a single data file that
covers al threads being profiled would be created.

Each thread in a process must call the noni t or () or nonst artup()
routines to initiate profiling for itself.

8-30 Profiling Programs to Improve Performance

Using and Developing Atom Tools 9

Program analysis tools are extremely important for computer architects and
software engineers. Computer architects use them to test and measure new
architectural designs, and software engineers use them to identify critical
pieces of code in programs or to examine how well a branch prediction or
instruction scheduling algorithm is performing. Program analysis tools are
needed for problems ranging from basic block counting to instruction and
data cache simulation. Although the tools that accomplish these tasks may
appear quite different, each can be implemented simply and efficiently
through code instrumentation.

Atom provides a flexible code instrumentation interface that is capable of
building a wide variety of tools. Atom separates the common part in all
problems from the problem-specific part by providing machinery for
instrumentation and object-code manipulation, and allowing the tool designer
to specify what points in the program are to be instrumented. Atom is
independent of any compiler and language as it operates on object modules
that make up the complete program.

Atom, as provided in the Digital UNIX operating system, provides the
following:

* A set of prepackaged tools that may be used to instrument applications
for profiling or debugging purposes. Use the following command to
apply one of these tools to a given application:

atom application_program —tool toolname —env environment

» A command interface and a collection of instrumentation routines that
may be used to create custom Atom tools. Use the following command
to create a custom-designed Atom tool:

atom application_program instrumentation_file analysis_file

The at om(1) reference page describes both forms of the at omcommand.
This chapter contains the following sections:

» Section 9.1 describes the prepackaged Atom tools and how to use them.
» Section 9.2 discusses how you can develop specialized Atom tools.

9.1 Using Prepackaged Atom Tools
The Digital UNIX operating system provides and supports the Atom tools

listed in Table 9-1.

Table 9-1: Supported Prepackaged Atom Tools

Tool
Third Degree (t hi r d)

hi pr of

pi xi e

Description

Performs memory access checks and detects memory
leaks in an application. The Third Degree Atom tool
is described in Chapter 7 and in the t hi r d(5)
reference page.

Produces aflat profile of an application that shows
the execution time spent in a given procedure and a
hierarchical profile that shows the execution time
spent in a given procedure and all its descendants.
The hi pr of Atom tool is described in Chapter 8
and hi pr of (5).

Partitions an application into basic blocks and counts
the number of times each basic block is executed.
The pi xi e Atom tool is described in Chapter 8 and
pi xi e(5).

The Digital UNIX operating system provides the unsupported Atom tools
listed in Table 9-2 as examples for programmers devel oping custom-designed
Atom tools. These tools are distributed in source form to illustrate Atom’s
programming interfaces. Some of the tools are further described in Section

9.2.

Table 9-2: Example Prepackaged Atom Tools

Tool
br anch

cache

dtb

dyni nst

Description

Instruments all conditional branches to determine how many
are predicted correctly.

Determines cache miss rate if application runsin 8K direct-
mapped cache.

Determines the number of dtb (data trandation buffer) misses
if the application uses 8KB pages and a fully associative
trangdation buffer.

Provides fundamental dynamic counts of instructions, loads,
stores, blocks, and procedures.

9-2 Using and Developing Atom Tools

Table 9-2: (continued)

Tool Description

inline Identifies potential candidates for inlining.

i prof Prints the number of times each procedure is called as well as
the number of instructions executed (dynamic count) by each
procedure.

mal | oc Records each call to the mal | oc function and prints a
summary of the application’s allocated memory.

pr of Prints the number of instructions executed (dynamic count)
by each procedure.

ptrace Prints the name of each procedure asit is called.

trace Generates an address trace, logs the effective address of every

load and store operation, and logs the address of the start of
every basic block asit is executed.

9.2 Developing Atom Tools
An Atom tool consists of the following:

An instrumentation file — Modifies the application to which it is applied
by adding calls at well-defined locations to tool-specific analysis
procedures.

An analysis file — Defines the procedures and data structures required to
implement the tool’s functionality.

Atom views an application as a hierarchy of components:

1

2.

3.

4.

5.

The program, including the executable and all shared libraries.

A collection of objects. An object can be either the main executable or
any shared library. An object has its own set of attributes (such as its
name) and consists of a collection of procedures.

A collection of procedures, each of which consists of a collection of basic
blocks.

A collection of basic blocks, each of which consists of a collection of
instructions.

A collection of instructions.

Atom tools insert instrumentation points in an application program at
procedure, basic block, or instruction boundaries. For example, basic block
counting tools instrument the beginning of each basic block, data cache

Using and Developing Atom Tools 9-3

9.2.1

simulators instrument each load and store instruction, and branch prediction
analyzers instrument each conditional branch instruction.

At any instrumentation point, Atom allows atool to insert a procedure call to
an analysis routine. The tool can specify that the procedure call be made
before or after an object, procedure, basic block, or instruction.

The ATOM Command Line

The command line used to apply Atom tools to an application is described
completely in the at on(1) reference page. This section describes the
command line and its most commonly used arguments and flags.

The at omcommand line has two forms:
atom application_program —tool toolname[—env environment] [flags...]

This form of the at omcommand is used to build an instrumented
version of an application program using a prepackaged Atom tool.

This form requires the —t ool flag and accepts the —env flag. It does
not allow either the j nst runment ati on _fil e or the
anal ysi s_fil e parameter.

The—t ool flag identifies the prepackaged Atom tool to be used. By
default, Atom searches for prepackaged tools in the
fusr/lib/cnplrs/atomtools and
{fusr/lib/cnplrs/atom exanpl es directories. You can add
directories to the search path by supplying a colon-separated list of
additional directories to the ATOMIOOLPATH environment variable.

The —env flag identifies any specia environment (for instance,

t hr eads) in which the tool is to operate. The set of environments
supported by a given tool is defined by the tool’s creator and listed in
the tool’ s documentation. Atom displays an error if you specify an
environment that is undefined for the tool. The prepackaged tools allow
you to omit the —env flag to obtain a general-purpose environment.

atom application_program instrumentation_file[analysis_file] [flags...]

This form of the at omcommand is used to apply atool that
instruments an application program. This form requires the
i nstrumentation_fil e parameter and accepts the
anal ysi s_fil e parameter.

Thei nstrunent ati on_fil e parameter specifies the name of aC
source file or an object module that contains the Atom tool’s
instrumentation procedures. By convention, most instrumentation files
have the suffix . i nst. c or.i nst. o.

9-4 Using and Developing Atom Tools

The anal ysi s_fi | e parameter specifies the name of a C source file
or an object module that contains the Atom tool’ s analysis procedures.
Note that you do not need to specify an analysisfile if the
instrumentation file does not call anaysis procedures. By convention,
most analysis files have the suffix . anal . ¢ or . anal . o.

Y ou can have multiple instrumentation and analysis source files. The
following example creates composite instrumentation and analysis objects
from several source files:

%cc -c filel.c file2.c

%cc -c file7.c file8

%ld -r -otool.inst.o filel.o file2.0

%Ild -r -otool.anal.o file7.0 file8.0

% atomhello tool.inst.o tool.anal.o -0 hello.tool

Note

You can also write analysis proceduresin C++. You must assign
atypeof ““extern "C'" to each procedureto allow it to be
called from the application. You must also compile and link the
analysis files before issuing the at omcommand. For example:

% cxx -c tool.a.C
%ld -r -o tool.anal.o tool.a.o -lcxx -1exc
% atomhello tool.inst.c tool.anal.o -0 hello.tool

With the exception of the —t ool and —env flags, both forms of the at om
command accept any of the remaining flags described in the at on(1)
reference page. The following are some flags that deserve special
mentioning:

-Al
Causes Atom to optimize calls to analysis routines by reducing the
number of registers that need to be saved and restored. For some tools,
specifying this flag increases the performance of the instrumented
application by a factor of 2 (at the expense of some increasein
application size). The default behavior is for Atom not to apply these
optimizations.

—debug
Allows you to debug instrumentation routines by causing Atom to
transfer control to the symbolic debugger at the start of the
instrumentation routine. In the following example, the pt r ace sample
tool is run under the dbx debugger. The instrumentation is stopped at

Using and Developing Atom Tools 9-5

line 12, and the procedure name is printed.

% atom hell o ptrace.inst.c ptrace.anal.c -o hello.ptrace -debug

dbx version 3.11.8

Type 'help’ for help

St opped in I nstrunentAl

(dbx) stop at 12

[4] stop at "/udir/test/scribe/atomuser/tools/ptrace.inst.c":12

(dbx) c

[3] [InstrunentAll:12 ,0x12004dea8] if (name == NULL) name = "UNKNOMW';
(dbx) p name

0x2a391 = "__start"

Causes Atom to build the analysis procedures with debugging symbol
table information, allowing you to run instrumented applications under a
symbolic debugger. Atom assumes that the application itself runs
correctly, allowing debugger commands to be used only on analysis
procedures. For example:

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -g

% dbx hel | 0. ptrace
dbx version 3.11.8
Type 'help’ for help
(dbx) stop in ProcTrace
[2] stop in ProcTrace
(dbx) r
[2] stopped at [ProcTrace:5 ,0x120005574] fprintf (stderr,"%\n", nane);
(dbx) n
__start
[ProcTrace: 6 ,0x120005598] }

—t ool ar gs

Passes arguments to the Atom tool’ s instrumentation routine. Atom
passes the arguments in the same way that they are passed to C
programs, using the ar gc and ar gv arguments to the mai n program.
For example:
#i ncl ude <stdio. h>
unsigned InstrumentAll (int argc, char **argv) {

int i;

for (i =0; i <argc; i++) {

printf(stderr,"argv[%]: %\n",argv[i]);

}

The following example shows how Atom passes the —t ool ar gs
arguments:

% atom hell o args.inst.c -tool args="8192 4"

argv[0]: hello

argv[1]: 8192

argv[2]: 4

9-6 Using and Developing Atom Tools

9.2.2 Atom Instrumentation Routine

Atom invokes a tool’ s instrumentation routine on a given application
program when that program is specified as the app/ i cat i on_program
parameter to the at omcommand, and either of the following is true:

* Thetool is a prepackaged tool specified as an argument to the —t ool
flag of an at omcommand. By default, Atom looks for prepackaged
toolsinthe/ usr/1i b/ cnpl rs/atonftools and
{fusr/lib/cnplrs/atom exanpl es directories.

» Thefile containing the instrumentation routine is specified as the
i nstrunentation_fil e parameter of an at omcommand.

The instrumentation routine contains the code that traverses the objects,
procedures, basic blocks, and instructions to locate instrumentation points;
adds calls to analysis procedures; and builds the instrumented version of an
application.

As described in theat om i nst rument at i on_r out i nes(5) reference
page, an instrumentation routine can employ one of the following interfaces
based on the needs of the tool:

Instrument (int iargc, char **jargv, Obj *obyj)

Atom callsthe | nst runment routine for each object in the application
program. Asaresult, an | nst r unent routine does not need to use the
object navigation routines (such as Get Fi r st Obj). Because Atom
automatically writes each object before passing the next to the

I nst runent routine, the | nst r ument routine should never call the
Bui | dObj , WiteQj, or Rel easeObj routine. When using the

I nst runment interface, you can definean | nst runent | ni t routine
to perform tasks required before Atom calls | nst r unent for the first
object (such as defining analysis routine prototypes, adding program
level instrumentation calls, and performing global initializations). You
can aso define an | nst runment Fi ni routine to perform tasks required
after Atom calls| nst runent for the last object (such as global
cleanup).

InstrumentAll (int iargc, char **iargv)

Atom callsthe | nst runent Al | routine once for the entire application
program, thus allowing atool’s instrumentation code itself to determine
how to traverse the application’s objects. With this method, there are no
I nstrunmentlnit orlnstrunmentFini routines. An

I nstrument Al | routine must call the Atom object navigation
routines and use the Bui | dObj , Wit eQbj , or Rel easeCbj routine
to manage the application’s objects.

Using and Developing Atom Tools 9-7

Regardless of the instrumentation routine interface, Atom passes the
arguments specified in the - t ool ar gs flag to the routine. In the case of
thel nst runent interface, Atom also passes a pointer to the current object.

9.2.3 Atom Instrumentation Interfaces

Atom provides a comprehensive interface for instrumenting applications.
The interface supports the following types of activities:

Navigating among a program’s objects, procedures, basic blocks, and
instructions. See Section 9.2.3.1.

Building, releasing, and writing objects. See Section 9.2.3.2.

Obtaining information about the different components of an application.
See Section 9.2.3.3.

Resolving procedure names and call targets. See Section 9.2.3.4.

Adding calls to analysis routines at desired locations in the program. See
Section 9.2.3.5.

9.2.3.1 Navigating Within a Program

The Atom application navigation routines, described in the

at om appl i cati on_navi gat i on(5) reference page, allow an Atom
tool’ s instrumentation routine to find locations in an application at which to
add calls to analysis procedures.

The Get Fi r st bj , Get Last Obj , Get Next Obj , and Get Pr evQbj
routines navigate among the objects of a program. For nonshared
programs, there is only one object. For call-shared programs, the first
object corresponds to the main program. The remaining objects are each
of its dynamically linked shared libraries.

The Get Fi r st Qbj Proc and Get Last Obj Pr oc routines return a
pointer to the first or last procedure, respectively, in the specified object.
The Get Next Pr oc and Get Pr evPr oc routines navigate among the
procedures of an object.

The Get Fi r st Bl ock, Get Last Bl ock, Get Next Bl ock, and
Get Pr evBlI ock routines navigate among the basic blocks of a
procedure.

The Get Fi rst 1l nst, Get Last | nst, Get Next | nst, and
Get Pr evl nst routines navigate among the instructions of a basic
block.

The Get | nst BranchTar get routine returns a pointer to the
instruction that is the target of a specified branch instruction.

9-8 Using and Developing Atom Tools

* The Get ProcObj routine returns a pointer to the object that contains
the specified procedure. Similarly, the Get Bl ockPr oc routine returns a
pointer to the procedure that contains the specified basic block, and the
Get | nst Bl ock routine returns a pointer to the basic block that
contains the specified instruction.

9.2.3.2 Building Objects

The Atom object management routines, described in the
at om obj ect _nanagenent (5) reference page, allow an Atom tool’s
I nstrunment Al | routine to build, write, and release objects.

The Bui | dObj routine builds the internal data structures Atom requires to
manipulate the object. An| nstrument Al | routine must call the

Bui | dQbj routine before traversing the proceduresin the object and adding
analysis routine calls to the object. The W it eObj routine writes the
instrumented version the specified object, deallocating the internal data
structures the Bui | dCbj routine previously created. The Rel easebj
routine deallocates the internal data structures for the given object, but does
not write out the instrumented version the object.

Thel sCbj Bui | t routine returns a nonzero value if the specified object has
been built with the Bui | dObj routine but not yet written with the
Wit eQbj routine or unbuilt with the Rel easeCbj routine.

9.2.3.3 Obtaining Information About an Application’s Components

The Atom application query routines, described in the

at om appl i cati on_quer y(5) reference page, allow an instrumentation
routine to obtain static information about a program and its objects,
procedures, basic blocks, and instructions.

The Get Anal Nane routine returns the name of the analysis file, as passed
to the at omcommand. This routine is useful for tools that have a single
instrumentation file and multiple analysis files. For example, multiple cache
simulators might share a single instrumentation file but each have a different
analysis file.

The Get Pr ogl nf o routine returns the number of objects in a program.

Table 9-3 lists the routines that provide information about a program’s
objects.

Using and Developing Atom Tools 9-9

Table 9-3: Atom Object Query Routines

Routine Description

Get bj Info Returns information about an object’s text, data, and
bss segments; the number of procedures, basic
blocks, or instructions it contains; its object ID; or a
Boolean hint as to whether the given object should
be excluded from instrumentation.

Get Qbj I nst Array Returns an array consisting of the 32-bit instructions
included in the object.

Get Qbj I nst Count Returns the number of instructions in the array
included in the array returned by the
Get bj | nst Arr ay routine.

Get Obj Name Returns the original filename of the specified object.
Get Gbj Qut Nane Returns the name of the instrumented object.

The following instrumentation routine, which prints statistics about the
program’s objects, demonstrates the use of Atom object query routines:

1 #include <stdio. h>
2 #i ncl ude <cnplrs/atominst. h>
3 unsigned InstrunmentAll (int argc, char **argv)
4
5 Obj *o; Proc *p;
6 const unsigned int *textSection;
7 long textStart;
8 for (o = GetFirstj(); o != NULL; o = GetNextbj(0)) {
9 Bui | dObj (0);
10 text Section = Get QbjInstArray(o);
11 textStart = Get Obj I nfo(o, Obj Text St art Addr ess);
12 printf("Qoject %\n", GetObjlnfo(o, bjID));
13 printf(" Obj ect nanme: %\n", GetObj Nane(o0));
14 printf(" Text segnent start: Ox%x\n", textStart);
15 printf(" Text size: % d\n", GetObjlnfo(o, Obj TextSize));
16 printf(" Second instruction: Ox%\n", textSection[1]);
17 Rel easeOhj (0);
18 }
19 return(0);
20 }

Because the instrumention routine adds no procedures to the executable, there
is no need for an analysis procedure. The following example demonstrates
the process of compiling and instrumenting a program with this tool. A
sample run of the instrumented program prints the object identifier, the
compile-time starting address of the text segment, the size of the text
segment, and the binary for the second instruction. The disassembler

9-10 Using and Developing Atom Tools

provides a convenient method for finding the corresponding instructions.
%cc hello.c -0 hello

%atomhello info.inst.c -0 hello.info
ohject O

oj ect Nane: hello

Start Address: 0x120000000

Text Size: 8192

Second instruction: 0x239f001d
oject 1

oj ect Nanme: /usr/shlib/libc.so

Start Address: 0x3ff80080000

Text Size: 901120

Second instruction: 0x239f09cb
%dis hello | head -3

0x120000f e0: a77d8010 Idg t12, -32752(gp)
0x120000f e4: 239f001d I da at, 29(zero)
0x120000f e8: 279c0000 I dah at, O(at)

% dis /ust/shlib/libc.so | head -3
0x3ff800bd9b0: a77d8010 |dg t12,-32752(gp)
0x3f f 800bd9b4: 239f 09chb | da at, 2507(zer0)
0x3f f 800bd9b8: 279c0000 I dah at, O(at)

Table 9-4 lists the routines that provide information about an object’s
procedures:

Table 9-4: Atom Procedure Query Routines

Routine Description

Get Proclnfo Returns information pertaining to the procedure’s
stack frame, register-saving, register-usage, and
prologue characteristics as defined in the Calling
Sandard for Alpha Systems and the Assembly
Language Programmer’s Guide. Such values are
important to tools, like Third Degree, that monitor
the stack for access to uninitialized variables. It can
also return such information about the procedure as
the number of basic blocks or instructions it
contains, its procedure ID, its lowest or highest
source line number, or an indication if its address
has been taken.

ProcFi | eNane Returns the name of the source file that contains the
procedure.

Pr ocNarme Returns the procedure’ s name.

ProcPC Returns the compile-time program counter (PC) of

the first instruction in the procedure.

Using and Developing Atom Tools 9-11

Table 9-5 lists the routines
blocks:

that provide information about a procedure’ s basic

Table 9-5: Atom Basic Block Query Routines

Routine
Bl ockPC

Cet Bl ockl nfo

| sBranchTar get

Table 9-6 lists the routines
instructions:

Description

Returns the compile-time program counter (PC) of
the first instruction in the basic block.

Returns the number of instructions in the basic block
or the block ID. The block ID is unique to this
basic block within its containing object.

Indicates if the block is the target of a branch
instruction.

that provide information about a basic block’s

Table 9-6: Atom Instruction Query Routines

Routine
Get | nst Bi nary

CGet I nstC ass

Cetlnstinfo

Get | nst RegEnum

Cet | nst RegUsage

| nst PC

| nst Li neNo

9-12 Using and Developing Atom Tools

Description

Returns a 32-bit binary representation of the
assembly language instruction.

Returns the instruction class (for instance, floating-
point load or integer store) as defined by the Alpha
Architecture Reference Manual. An Atom tool uses
this information to determine instruction scheduling
and dual issue rules.

Parses the entire 32-bit instruction and obtains all or
a portion of that instruction.

Returns the register type (floating-point or integer)
from an instruction field as returned by the
Get I nst | nf o routine.

Returns a bit mask with one bit set for each possible
source register and one bit set for each possible
destination register.

Returns the compile-time program counter (PC) of
the instruction.

Returns the instruction’s source line number.

Table 9-6: (continued)

Routine Description

I sl nst Type Indicates whether the instruction is of the specified
type (load instruction, store instruction, conditional
branch, or unconditional branch).

9.2.3.4 Resolving Procedure Names and Call Targets

Resolving procedure names and subroutine targets is trivial for nonshared
programs because all procedures are contained in the same object. However,
the target of a subroutine branch in a call-shared program could be in any
object.

The Atom application procedure name and call target resolution routines,

described in the at om appl i cati on_r esol ver s(5) reference page,
allow an Atom tool’s instrumentation routine to find a procedure by name
and to find atarget procedure for a cal site:

 TheResol veTar get Pr oc routine attempts to resolve the target of a
procedure call.

 TheResol veNanmedPr oc routine returns the procedure identified by
the specified name string.

 The ReResol vePr oc routine completes a procedure resolution if the
procedure initially resided in an unbuilt object.

9.2.3.5 Adding Calls to Analysis Routines to a Program

The Atom application instrumentation routines, described in the
atom appl i cation_i nstrunent ati on(5) reference page, add
arbitrary procedure calls at various points in the application:

e You must use the AddCal | Pr ot o routine to specify the prototype of
each analysis procedure to be added to the program. |n other words, an
AddCal | Pr ot o call must define the procedural interface for each
analysis procedure used in callsto AddCal | Pr ogr am AddCal | (bj ,
AddCal | Proc, AddCal | Bl ock, and AddCal | | nst. Atom provides
facilities for passing integers and floating-point numbers, arrays, branch
condition values, effective addresses, cycle counters, as well as procedure
arguments and return values.

e Usethe AddCal | Pr ogr amroutine in an instrumentation routine to add
acall to an analysis procedure before a program starts execution or after
it completes execution. Typically, such an analysis procedure does

Using and Developing Atom Tools 9-13

9.24

something that applies to the whole program, such as opening an output
file or parsing command line options.

Use the AddCal | Obj routine in an instrumentation routine to add a call
to an analysis procedure before an object starts execution or after it
completes execution. Typically such an analysis procedure does
something that applies to the single object, such as initializing some data
for its procedures.

Use the AddCal | Pr oc routine in an instrumentation routine to add a
call to an analysis procedure before a procedure starts execution or after it
completes execution.

Use the AddCal | Bl ock routine in an instrumentation routine to add a
call to an analysis procedure before a basic block starts execution or after
it completes execution.

Usethe AddCal | | nst routine in an instrumentation routine to add a
call to an analysis procedure before a given instruction executes or after it
executes.

Use the Repl acePr ocedur e routine to replace a procedure in the
instrumented program. For example, the Third Degree Atom tool
replaces memory allocation functions such asmal | oc and f r ee with its
own versions to alow it to check for invalid memory accesses and
memory leaks.

Atom Description File

An Atom tool’s description file, as described in the

atom descri ption_fil e(5) reference page, identifies and describes the
tool’s instrumentation and analysis files. It can also specify the flags to be
used by the cc, | d, and at omcommands when it is compiled, linked, and
invoked. Each Atom tool must supply at least one description file.

There are two types of Atom description file:

A description file providing an environment for generalized use of the
tool. A tool can provide only one genera-purpose environment. The
name of this type of description file has the format:

tool.desc

A description file providing an environment for use of the tool in specific
contexts, such as in a multithreaded application or in kernel mode. A
tool can provide several specia-purpose environments, each of which has
its own description file. The name of this type of description file has the
format:

tool. environment.desc

9-14 Using and Developing Atom Tools

9.2.5

9.25.1

The names supplied for the t oo/ and envi r onment portions of these
description file names correspond to values the user specifies to the —t ool
and —env flags of an at omcommand when invoking the tool.

An Atom description file is a text file containing a series of tags and values.
Seeat om descri ption_fil e(5) for acomplete description of the file's
syntax.

Writing Analysis Procedures

An instrumented application calls analysis procedures to perform the specific
functions defined by an Atom tool. An analysis procedure can use any
system call or library function, even if the same call or function is
instrumented within the application. The routines used by the analysis
routine and the instrumented application are physically distinct.

Input/Output

An analysis procedure that uses the standard 1/0 library should take care to
explicitly close file descriptors before the instrumented application exits.
The standard 1/0O library buffers read and write requests to optimize disk
accesses. It flushes an output buffer to disk either when it is full or when a
procedure callsthe f f | ush function. If the instrumented application exits
before an analysis procedure properly closes its output file descriptors, the
procedure’ s output may not be completely written.

Some Atom tool analysis procedures may print results to st dout or

st der r. Because the file descriptors for these 1/0O streams are closed when
an instrumented application calls the exi t function, an analysis routine that
is called from an instrumentation point set by a call to the Pr ogr amAf t er
routine can no longer send output to either. Analysis procedures written in
C++ must also take care when using the cout and cer r functions. Because
these streams are buffered by the class library, an analysis routine must call
cout.flush() orcerr.flush() beforethe instrumented application
exits.

9.2.5.2 Fork and Exec System Calls

If aprocess calsaf or k function but does not call an exec function, the
process is cloned and the child inherits an exact copy of the parent’s state. In
many cases, this is exactly the behavior than an Atom tool expects. For
example, an instruction-address tracing tool sees referencesfor both the
parent and the child, interleaved in the order in which the references
occurred.

In the case of an instruction-profiling tool (for example, thet r ace tool
referenced in Table 9-2), the file is opened at a Pr ogr anBef or e
instrumentation point and, as a result, the output file descriptor is shared

Using and Developing Atom Tools 9-15

9.2.6

between the parent and the child processes. If the results are printed at a

Pr ogr amAf t er instrumentation point, the output file contains the parent’s
data, followed by the child’s data (assuming that the parent process finishes
first).

For tools that count events, the data structures that hold the counts should be
returned to zero in the child process after the f or k call because the events
occurred in the parent, not the child. This type of Atom tool can support
correct handling of f or k calls by instrumenting the f or k library procedure
and calling an analysis procedure with the return value of the f or k routine
as an argument. If the analysis procedure is passed a return value of O (zero)
in the argument, it knows that it was called from a child process. It can then
reset the counts variable or other data structures so that they tally statistics
for only the child process.

Determining the Instrumented PC from an Analysis Routine

The Atom Xlate routines, described in XI at e(5), allow you to determine the
instrumented PC for selected instructions. Y ou can use these functions to
build atable that translates an instruction’s PC in the instrumented
application to its PC in the uninstrumented application.

To enable analysis code to determine the instrumented PC of an instruction at
runtime, an Atom tool’ s instrumentation routine must select the instruction
and place it into an address trandation buffer (XLATE).

An Atom tool’ s instrumentation routine creates and fills the address
translation buffer by calling the Cr eat eXl at e and AddXI at eAddr ess
routines, respectively. An address trandation buffer can only hold
instructions from a single object.

The AddXI at eAddr ess routine adds the specified instruction to an
existing address translation buffer.

An Atom tool’ s instrumentation passes an address trandation buffer to an
analysis routine by passing it as a parameter of type XLATE *, as indicated
in the analysis routine’ s prototype definition in an AddCal | Pr ot o call.

Another way to determine an instrumented PC is to specify a formal
parameter type of REGV in an analysis routine's prototype and pass the
REG | PC vaue.

An Atom tool’ s analysis routine uses the following interfaces to access an
address trandation buffer passed to it:

» The Xl at eNumroutine returns the number of addresses in the specified
address trangdlation buffer.

 TheXl at el nst Text St art routine returns the starting address of the
text segment for the instrumented object corresponding to the specified
address trangdlation buffer.

9-16 Using and Developing Atom Tools

* TheXl at el nst Text Si ze routine returns the size of the text segment.

* TheXl at eLoadShi ft routine returns the difference between the
runtime addresses in the object corresponding to the specified address
trandlation buffer and the compile-time addresses.

* The Xl at eAddr routine returns the instrumented runtime address for the
instruction in the specified position of the specified address translation
buffer. Note that the runtime address for an instruction in a shared library
is not necessarily the same as its compile-time address.

The following example demonstrates the use of the Xlate routines by the
instrumentation and analysis files of atool that uses the Xlate routines. This
tool prints the target address of every jump instruction. To use it, issue the

following instruction:

% at om prognane xlate.inst.c xlate.anal.c -all

The following source listing (x| at e. i nst . ¢) contains the instrumentation

for the x| at e tool:

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <al pha/inst. h>

#i ncl ude <cnplrs/atominst. h>

static void addr ess_add(unsi gned | ong);
static unsigned address_nun{voi d);
static unsigned long * address_paddrs(void);
static void address_free(voi d);
void Instrumentlnit(int iargc, char **iargv)
{
/* Create anal ysis prototypes. */
AddCal | Prot o(" Regi st er Numbj s(int)");
AddCal | Prot o(" Regi sterXl ate(int, XLATE *, long[0])");
AddCal | Prot o("JnpLog(l ong, REGY)");
/* Pass the nunber of objects to the analysis routines. */
AddCal | Progr an(ProgranBefore, "RegisterNunlbjs",
Get Pr ogl nf o(Pr ogNunber Obj ects)) ;
}

Instrunent(int iargc, char **iargv, Qb *obj)

{

Proc * p;

Bl ock * b;

Inst * i;

Xl ate * pxlt;

uni on al pha_instruction bi n;
ProcRes pres,;

unsi gned | ong pc;

char proto[128];
/*

* Create an XLATE structure for this Cbj. W use this to translate
* instrumented junp target addresses to pure junp target addresses.

Using and Developing Atom Tools 9-17

*
/
pxlt = CreateXl ate(obj, XLATE_NOCSI ZE);

for (p = GetFirstojProc(obj); p; p
for (b = GetFirstBlock(p); b; b

Get Next Proc(p)) {
Get Next Bl ock(b)) {

/*

* |f the first instruction in this basic block has had its

* address taken, it’s a potential junp target. Add the

* instruction to the XLATE and keep track of the pure address
* too.

*

/
i = CGetFirstlnst(b);

if (Getlnstinfo(i, |nstAddrTaken)) {
AddXl at eAddress(pxlt, i);
address_add(I nst PC(i));

}
for (; i; 1 = GetNextlnst(i)) {
bin.word = Getlnstinfo(i, InstBinary);
i f (bin.comon. opcode == op_jsr &&
bin.j _format.function == jsr_jnp)
{
/*
* This is a junp instruction. Instrument it.
*/
AddCal | Inst (i, InstBefore, "JnmpLog", InstPC(i),
GetlnstInfo(i, InstRB));
}
}
}
}
/*

* Re-prototype the RegisterX ate() anal ysis routine now that we
* know the size of the pure address array.
*/

sprintf(proto, "RegisterX ate(int, XLATE *, long[%l])", address_num());

AddcCal | Prot o(proto);

/*
* Pass the XLATE and the pure address array to this object.
*/

AddCal | Obj (obj, ObjBefore, "RegisterX ate", GetObjlnfo(obj, ObjlD),

pxlt, address_paddrs());

/*
* Deal | ocate the pure address array.
*/
address_free();
}
/*
** Maintains a dynamc array of pure addresses.
*/
static unsigned long * pAddrs;
static unsigned maxAddrs = O;
static unsi gned nAddrs = 0;
/*

** Add an address to the array.

9-18 Using and Developing Atom Tools

*/
static void address_add(

unsi gned | ong addr)
{
/*
* |f there’s not enough room expand the array.
*/
if (nAddrs >= maxAddrs) {
maxAddrs = (nAddrs + 100) * 2;
pAddrs = real |l oc(pAddrs, maxAddrs * sizeof (*pAddrs));
if (!pAddrs) {
fprintf(stderr, "Qut of menory\n");
exit(1l);
}
}
/*
* Add the address to the array.
*/
pAddr s[nAddr s++] = addr;
}

/*

** Return the nunber of elnents in the address array.
*/

static unsi gned address_nun{voi d)

return(nAddrs);

}
/*
** Return the array of addresses.
*/
static unsigned | ong *address_paddrs(void)
{
return(pAddrs);
}
/*
** Deal | ocate the address array.
*/
static void address_free(void)
{
free(pAddrs);
pAddrs = O;
maxAddrs = O;
nAddrs = 0;
}

Using and Developing Atom Tools 9-19

The following source listing (x| at e. anal . ¢) contains the analysis routine
for the x| at e tool:
#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>
#i ncl ude <cnplrs/atom anal . h>

/*
* Each object in the application gets one of the follow ng data
* structures. The XLATE contains the instrumented addresses for
* all possible junp targets in the object. The array contains
* the matchi ng pure addresses.
*/
typedef struct {

XLATE * pXt;

unsi gned | ong * pAddr sPur e;
} oj Xlt_t;
/*

* An array with one QbjXlt_t structure for each object in the
* application.

*/
static Qo XIt_t * pAl I Xl ts;
static unsi gned nQoj ;
static int transl at e_addr (unsi gned | ong, unsigned long *);
static int transl ate_addr_obj (Obj XIt _t *, unsigned | ong,
unsi gned |l ong *);
/*

** Called at ProgranmBefore. Registers the nunber of objects in
** this application.

*/
voi d Regi st er Numbj s(
unsi gned nobj)
{
/*
* Allocate an array with one el ement for each object. The
* elements are initialized as each object is |oaded.
*/
nGoj = nobj;
pAll XIts = calloc(nobj, sizeof (pAlXts));
if (IpAIXts) {
fprintf(stderr, "CQut of Menory\n");
exit(1);
}
}
/*

** Called at ObjBefore for each object. Registers an XLATE with
** jnstrunented addresses for all possible junp targets. Also
** passes an array of pure addresses for all possible junp targets.

*/
voi d Regi sterXl at e(
unsi gned i obj,
XLATE * pxl t,
unsi gned | ong * paddrs_pure)
{
/*
* Initialize this object’s element in the pAll XIts array.
*/

9-20 Using and Developing Atom Tools

pAl I XIts[iobj].pXIt = pxlt;
pAl | XI ts[iobj].pAddrsPure = paddrs_pure;
}

/*
** Called at InstBefore for each junp instruction. Prints the pure
** target address of the junp.

*/
voi d JnpLog(
unsi gned | ong pc,
REGV targ)
{
unsi gned | ong addr ;
printf("0x%x junmps to - ", pc);
if (translate_addr(targ, &addr))
printf("0x% x\n", addr);
el se
printf("unknown\n");
}
/*

** Attenpt to translate the given instrunented address to its pure
** equivalent. Set '*paddr_pure’ to the pure address and return 1
** on success. Return 0 on failure.

* %

** W1l always succede for junp target addresses.

*/
static int translate_addr(
unsi gned | ong addr _i nst,
unsi gned | ong * paddr _pure)
{
unsi gned | ong start;
unsi gned | ong si ze;
unsi gned i;
/*
* Find out which object contains this instrunmented address.
*/
for (i =0; i <nQj; i++) {
start = XlatelnstTextStart(pA I Xlts[i].pXt);
size = Xl atelnstTextSi ze(pA I XIts[i].pXt);
if (addr_inst >= size && addr_inst < start + size) {
/*
* Found the object, translate the address using that
* object’s data.
*/
return(transl ate_addr_obj (&Al I XIts[i], addr_inst,
paddr _pure));
}
}
/*
* No object contains this address.
*/
return(0);
}
/*

** Attenpt to translate the given instrunented address to its

Using and Developing Atom Tools 9-21

* %
* %

* %

*/

pure equival ent using the given object’s translation data.
Set '*paddr_pure’ to the pure address and return 1 on success.
Return O on failure.

static int translate_addr_obj(

Ghj XIt_t * pQoj X t,
unsi gned | ong addr _i nst,
unsi gned | ong * paddr _pure)
unsi gned num

unsi gned i;

/*

* See if the instrumented address matches any el enent in the XLATE.
*/
num = Xl at eNum(pQbj Xl t->pXit);
for (i =0; i <num i++) {
if (XlateAddr (pQbj XIt->pXlt, i) == addr_inst) {
/*

* Matches this XLATE el enent, return the matching pure

* address.
*/
*paddr _pure = pObj Xl t->pAddrsPure[i];
return(l);
}
}
/*

* No match found, nmust not be a possible junp target.
*/
return(0);

9.2.7 Sample Tools
This section describes the basic tool building interface by using three simple

examples. procedure tracing, instruction profiling, and data cache simulation.

9.2.7.1 Procedure Tracing

The pt r ace tool prints the names of proceduresin the order in which they
are executed. The implementation adds a call to each procedurein the
application. By convention, the instrumentation for the pt r ace tool is
placed in thefile pt race. i nst. c.

=
CQwoo~NOOM~AWNE

11
12

#i ncl ude <stdio. h>
#include <cnplrs/atominst.h> 1

unsigned InstrunmentAll (int argc, char **argv) 2
{
Obj *o; Proc *p;
AddCal | Proto("ProTrace(char *)"); 3
for (0o = GetFirstj(); o != NULL; o = GetNextObj(0)) { 4
if (BuildQbj (o) returnl; 5
for (p = GetFirstjProc(o); p != NULL; p = GetNextProc(p)) {
const char *name = ProcName(p); 7
if (name == NULL) nane = "UNKNOMW'; 8

9-22 Using and Developing Atom Tools

6

13 AddCal | Proc(p, ProcBefore, "ProcTrace", nane); 9

14 }

15 Witehj(0); 10
16 }

17 return(0);

18 }

1 Includes the definitions for Atom instrumentation routines and data
structures.

2 Definesthel nstrument Al | procedure. This instrumentation routine
defines the interface to each analysis procedure and inserts calls to those
procedures at the correct locations in the applications it instruments.

3 Callsthe AddCal | Pr ot o routine to define the Pr ocTr ace anaysis
procedure. ProcTr ace takes a single argument of type char *.

4 Callsthe Get Fi rst Cbj and Get Next Cbj routines to cycle through
each object in the application. If the program was linked nonshared,
thereis only a single object. If the program was linked call-shared, it
contains multiple objects — one for the main executable and one for each
dynamically-linked shared library. The main program is always the first
object.

5 Builds the first object. Objects must be built before they can be used. In
very rare circumstances, the object cannot be built. The
I nst rument Al | routine reports this condition to Atom by returning a
nonzero value.

6 Callsthe Get Fi r st Cbj Proc and Get Next Pr oc routines to step
through each procedure in the application program.

7 For each procedure, calls the Pr ocNamne procedure to find the procedure
name. Depending on the amount of symbol table information that is
available in the application, some procedure names, such as those defined
asstati c, may not be available. (Compiling applications with the —g1
flag provides this level of symbol information.) In these cases, Atom
returns NULL.

Converts the NULL procedure name string to ‘* UNKNOWN' .

Callsthe AddCal | Pr oc routine to add a call to the procedure pointed
to by p. The Pr ocBef or e argument indicates that the analysis
procedure is to be added before al other instructions in the procedure.
The name of the analysis procedure to be called at this instrumentation
point is ProcTr ace. Thefina argument is to be passed to the analysis
procedure. In this case, it is the procedure named obtained on Line 11.

10 Writes the instrumented object file to disk.

The instrumentation file added calls to the Pr ocTr ace analysis procedure.
This procedure is defined in the analysis file pt r ace. anal . ¢ asshown in

Using and Developing Atom Tools 9-23

the following example:
1 #include <stdio.h>

voi d ProcTrace(char *nane)

fprintf(stderr, "%\n", name);

O WN

The Pr ocTr ace analysis procedure prints, to st der r , the character string
passed to it as an argument. Note that an analysis procedure cannot return a
value.

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the following
application:

#i ncl ude <stdio. h>
mai n()

printf("Hello world!'\n");

The following example builds a honshared executable, appliesthe pt r ace
tool, and runs the instrumented executable. This simple program calls almost
30 procedures.

% cc -non_shared hello.c -0 hello
% atom hell o ptrace.inst.c ptrace.anal.c -o hello.ptrace

% hel | 0. ptrace
__start
mai n
printf
_doprnt
__get mbcur max
strchr
strlen
nmencpy

The following example repeats this process with the application linked call-
shared. The major differenceis that the LD_LI BRARY_PATH environment
variable must be set to the current directory because Atom creates an
instrumented version of thel i bc. so shared library in the local directory.

%cc hello.c -0 hello
% atom hell o ptrace.inst.c ptrace.anal.c -o hello.ptrace
% setenv LD_LI BRARY_PATH ‘ pwd'

% hel | 0. ptrace
__start

9-24 Using and Developing Atom Tools

_call _add_gp_range
__exc_add_gp_range
mal | oc
cartesian_all oc
cartesi an_gr owheap?2
__get pagesi ze
__sbrk

The call-shared version of the application calls aimost twice the number of
procedures that the nonshared version calls.

Note that only callsin the original application program are instrumented.
Because the call to the Pr oc Tr ace analysis procedure did not occur in the
original application, it does not appear in atrace of the instrumented
application procedures. Likewise, the standard library calls that print the
names of each procedure are also not included. If the application and the
analysis program both call the pri nt f function, Atom would link into the
instrumented application two copies of the function. Only the copy in the
application program would be instrumented. Atom also correctly instruments
procedures that have multiple entry points.

9.2.7.2 Profile Tool

The pr of example tool counts the number of instructions a program
executes. It is useful for finding critical sections of code. Each time the
application is executed, pr of creates afile called pr of . out that contains a
profile of the number of instructions that are executed in each procedure.

The most efficient place to compute instruction counts is inside each basic
block. Each time a basic block is executed, a fixed number of instructions
are executed. The following example shows how the pr of tool’s
instrumentation procedure (pr of . i nst . c) performs these tasks:

#i ncl ude <stdio. h>
#i ncl ude <cnplrs/atominst. h>

1
2
3
4 unsigned InstrunmentAll (int argc, char **argv)

5 {

6 Obj *o; Proc *p; Block *b; Inst *i;

7 int n=0;

8 AddCal | Proto("OpenFile(int)"); 1

9 AddCal | Proto("Count (int,int)");

10 AddCal | Proto("Print(int,char *)");

11 AddCal | Proto("d oseFile()");

12 for (0o = GetFirstOj(); o != NULL; o = GetNextObj(0)) { 2

13 if (BuildObj (o)) return (1); 3

14 for (p = GetFirstQbjProc(o); p != NULL; p = GetNextProc(p)) { 4
15 const char *name = ProcNane(p); 5

16 if (name == NULL) nanme = " UNKNOMW';

Using and Developing Atom Tools 9-25

9

for (b = GetFirstBlock(p); b !'= NULL; b = GetNextBlock(b)) { 6
AddCal | Bl ock(b, Bl ockBefore, "Count",n, 7
Get Bl ockl nf o(b, Bl ockNurber I nsts));

}
AddCal | Progran(ProgramAfter,“Print",n, nane); 8
n++;, 9

}
WiteCbj(o); 10
AddCal | Progran(ProgranBefore, "OpenFile", n); 11

AddCal | Progran(ProgramAfter,"C oseFile"); 12
return (0);

Defines the interface to the analysis procedures.
L oops through each object in the program.
Builds an object.

L oops through each procedure in the object.
Determines the procedure name.

L oops through each basic block in the procedure.

Adds a call to the Count analysis procedure before any of the
instructions in this basic block are executed. The argument types of the
Count are defined in the prototype on Line 9. The first argument is a
procedure index of typei nt ; the second argument, also ani nt , isthe
number of instructions in the basic block. The Count analysis procedure
adds the number of instructions in the basic block to a per-procedure data
structure.

Adds acall to the Pri nt analysis procedure to the end of the program.
The Pri nt analysis procedure prints a line summarizing this procedure’s
instruction use.

Increments the procedure index.

10 Writes the object file.
11 Adds acall to the OpenFi | e analysis procedure to the beginning of the

program, passing it ani nt representing the number of proceduresin the
application. The QpenFi | e procedure allocates the per-procedure data
structure that tallies instructions and opens the output file.

12 Adds acall to the O oseFi | e analysis procedure to the end of the

program.

The analysis procedures used by the pr of tool are defined in the
prof . anal . ¢ file as shown in the following example:

9-26 Using and Developing Atom Tools

©CoO~NOUAWNE

#i ncl ude <stdio. h>
#i ncl ude <assert. h>

I ong *instrPerProc;
FILE *file;

voi d OpenFile(int n)
{
instrPerProc = (long *) calloc(sizeof(long),n); 1
assert (instrPerProc != NULL);
file = fopen("prof.out","w');
assert(file !'= NULL);
fprintf(file,"9%80s %5s %0s\n", "Procedure", "I nstructions", "Percentage");

void Count(int n, int instructions)

{

instrTotal += instructions;
instrPerProc[n] += instructions;

void Print(int n, char *nane)

{
if (instrPerProc[n] >0) { 2
fprintf(file,"9%80s %5/ d 99.3f\n", name, instrPerProc[n],
((float) instrPerProc[n] / instrTotal)*100.0);

}
void CloseFile() 3

fprintf(file,"\n%80s %45ld 9. 3f\n", "Total", instrTotal, 100.0);
fclose(file);

}

1 Allocates the counts data structure. The cal | oc function zero-fills the
counts data.

Filters procedures that are never called.

Closes the output file. Tools must explicitly close files that are opened in
the analysis procedures.

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the "Hello"
application:

#i ncl ude <stdio. h>
mai n()

printf("Hello worldl\n");
}

The following example builds a call-shared executable, applies the pr of
tool, and runs the instrumented executable. In contrast to the pt r ace tool
described in Section 9.2.7.1, the pr of tool sends its output to a file instead

Using and Developing Atom Tools 9-27

of st dout .

%cc hello.c -0 hello

% atom hell o prof.inst.c prof.anal.c -o hello. prof
% setenv LD LI BRARY_PATH * pwd

% hel | o. pr of

Hel | o worl d!

% nor e prof.out

Procedure I nstructions Percentage

__start 159 4,941

mai n 14 0.435

_call _add_gp_r ;'inge 41 1.274
_call _renove_gp_range 35 1.088
Tot al 3218 100. 000

% unsetenv LD _LI BRARY_PATH

9.2.7.3 Data Cache Simulation Tool

OCoO~NOUTAWNE

Instruction and data address tracing has been used for many years as a
technique for capturing and analyzing cache behavior. Unfortunately, current
machine speeds make this increasingly difficult. For example, the Alvinn
SPEC92 benchmark executes 961,082,150 loads, 260,196,942 stores, and
73,687,356 basic blocks, for atotal of 2,603,010,614 Alpha instructions.
Storing the address of each basic block and the effective address of all the
loads and stores would take in excess of 10GB and slow down the
application by afactor of over 100.

The cache tool uses on-the-fly simulation to determine the cache miss rates
of an application running in an 8KB direct mapped cache. The following
example shows its instrumentation routine:

#i ncl ude <stdi o. h>
#i nclude <cnplrs/atominst. h>

unsigned InstrunentAll (int argc, char **argv)
Obj *o; Proc *p; Block *b; Inst *i;
AddCal | Prot o(" Ref erence(VALUE) ") ;

AddCal | Proto("Print()");
for (0 = GetFirstj(); o !'= NULL; o = GetNextj(0)) {

if (BuildObj(o0)) return (1);
for (p=GetFirstProc(); p != NULL; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b !'= NULL; b = GetNextBlock(b)) {
for (i = GetFirstinst(b); i != NULL; i = GetNextlnst(i)) { 1
if (IslnstType(i,|nstTypeLoad) || I|slnstType(i,|nstTypeStore)) {
AddCal | I nst (i, I nstBefore, "Reference", Ef f AddrVal ue); 2
}
}

9-28 Using and Developing Atom Tools

}

}
Witeoj(0);

}
AddCal | Progran(ProgramAfter,"Print");
return (0);

OCO~NOUTDhWNE

1 Examines each instruction in the current basic block.
2 If theinstruction is aload or a store, adds a call to the Ref er ence
analysis procedure, passing the effective address of the data reference.

The analysis procedures used by the cache tool are defined in the
cache. anal . c file as shown in the following example:

#i ncl ude <stdi o. h>

#i ncl ude <assert. h>
#defi ne CACHE_SI ZE 8192
#define BLOCK_SHI FT 5

ong tags[CACHE_SI ZE >> BLOCK_SHI FT] ;
ong references, msses;

voi d Reference(l ong address) {

int index = (address & (CACHE_SI ZE-1)) >> BLOCK_SHI FT;
|l ong tag = address >> BLOCK_SHI FT;

if tags[index] !=tag) {
m sses++;
tags[index] = tag;

ref erences++;

}
void Print() {

}

FILE *file = fopen("cache.out","w");

assert(file !'= NULL);

fprintf(file,"References: %d\n", references);

fprintf(file,"Cache Msses: %d\n", msses);

fprintf(file,"Cache Mss Rate: %\n", (100.0 * misses) / references);
fclose(file);

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the "Hello"
application:

#i ncl ude <stdio. h>

mai n()

printf("Hello worldl\n");

Using and Developing Atom Tools 9-29

The following example applies the cache tool to instrument both the
nonshared and call-shared versions of the application:

%cc hello.c -0 hello

% atom hel l o cache.inst.c cache.anal.c -0 hello.cache -all
% setenv LD LI BRARY_PATH ‘ pwd*

% hel | 0. cache

Hel | o worl d!

% nor e cache. out

Ref erences: 1091

Cache M sses: 225

Cache M ss Rate: 20.623281

% cc -non_shared hello.c -0 hello

% atom hell o cache.inst.c cache.anal.c -0 hello.cache -all
% hel | 0. cache
Hel | o worl d!

% nor e cache. out
Ref erences: 382
Cache M sses: 93
Cache M ss Rate: 24.345550

9-30 Using and Developing Atom Tools

Optimizing Techniques 10

Optimizing an application program can involve modifying the build process,
modifying the source code, or both.

In many instances, optimizing an application program can result in major
improvements in run-time performance. Two preconditions should be met,
however, before you begin measuring the run-time performance of an
application program and analyzing how to improve the performance:

» Check the software on your system to ensure that you are using the latest
versions of the compiler and the operating system to build your
application program. Newer versions of a compiler often perform more
advanced optimizations and newer versions of the operating system often
operate more efficiently.

» Test your application program to ensure that it runs without errors.
Whether you are porting an application from a 32-bit system to Digital
UNIX or developing a new application, never attempt to optimize an
application until it has been thoroughly debugged and tested. (If you are
porting an application written in C, use the | i nt command with the —Q
flag or compile your program using the C compiler’s—check flag (in
combination with the —m gr at e or —newc flags) to identify possible
portability problems that you may need to resolve.)

After you verify that these conditions have been met, you can begin the

optimization process.

The process of optimizing an application can be divided into two separate,

but complementary, activities:

» Tuning your application’s build process so that you use, for example, an
optimal set of preprocessing and compilation optimizations

* Analyzing your application’s source code to ensure that it uses efficient
algorithms and that it does not use programming language constructs that
can degrade performance

The following sections provide details that relate to these two aspects of the
optimization process.

10.1 Guidelines for Building an Application Program

Opportunities for improving an application’s run-time performance exist in
al phases of the build process. The following sections identify some of the
major opportunities that exist in the areas of compiling, linking and loading,
preprocessing and postprocessing, and library selection.

See Appendix D for additional optimization information that pertains only to
the —ol dc version of the C compiler. Appendix D contains information on
uopt , the global optimizer (which is not used by the —mmi gr at e or —-newc
versions of the C compiler).

10.1.1 Compilation Considerations

Compile your application with the highest optimization level possible, that is,
the level that produces the best performance and the correct results. In
general, applications that conform to language-usage standards should
tolerate the highest optimization levels, and applications that do not conform
to such standards may have to be built a lower optimization levels. For
details, see cc (1) or Chapter 2.

If your application will tolerate it, compile al of the source files together in a
single compilation. Compiling multiple source files increases the amount of
code that the compiler can examine for possible optimizations. This can
have the following effects:

* More procedure inlining

* More complete data flow analysis

» A reduction in the number of external referencesto be resolved during
linking

To take advantage of these optimizations, use the following compilation

flags:

» For the—newc and —mi gr at e versions of the C compiler, use—i f o
and one of the following optimization-level flags:

— When compiling with the —newc flag, use -3 or —O4.

— When compiling with the —mi gr at e flag, use —-O4 (preferred) or
-06.

(To determine whether the highest level of optimization benefits your

particular program, compare the results of two separate compilations of

the program, with one compilation at the highest level of optimization

and the other compilation at the next lower level of optimization.)

» For the —ol dc version of the C compiler, use —C3.

10-2 Optimizing Techniques

See cc(1) or Chapter 2 for information on when to use which version of the
C compiler.

Note that some routines may not tolerate a high level of optimization; such
routines will have to be compiled separately.

Other compilation considerations that can have a significant impact on run-
time performance include the following:

For C applications with numerous floating-point operations, consider
using the —f p_r eor der flag if a small differencein the result is
acceptable.

If your C application uses alot of char, short, ori nt dataitems
within loops, you may be able to use the C compiler’s highest-level
optimization flag to improve performance. (The highest-level
optimization flag (—O4 with —newc and —Cb with —ni gr at e)
implements byte vectorization, among other optimizations, for Alpha
systems.)

For C applications that are thoroughly debugged and that do not generate
any exceptions, consider using the —specul at e flag. When a program
compiled with this flag is executed, values associated with a variety of
execution paths are precomputed so that they are immediately available if
they are needed. This "work ahead" operation uses idle machine cycles,
so it has no negative effect on performance. Performance is usually
improved whenever a precomputed value is used.

The —specul at e flag can be specified in two forms:

—specul ate al |
—specul ate by_routine

Both options result in exceptions being dismissed: the

—specul at e al | flag dismisses exceptions generated in all
compilation units of the program and the —specul at e by_r outi ne
flag dismisses only the exceptions in the compilation unit to which it
applies. If speculative execution results in a significant number of
dismissed exceptions, performance will be degraded. The

—specul at e al | option is more aggressive and may result in greater
performance improvements than the other option, especially for programs
doing floating-point computations. The—specul at e al | flag cannot
be used if any routine in the program does exception handling; however,
the —specul at e by_r out i ne option can be used when exception
handling occurs outside the compilation unit on which it is used. Neither
—specul at e option should be used if debugging is being done.

To print a count of the number of dismissed exceptions when the program

Optimizing Techniques 10-3

does a normal termination, specify the following environment variable:
% setenv _SPECULATE _ARGS -stats

The statistics feature is not currently available with the
—specul ate al | flag.

Use of the—specul at e al | and—specul at e by _routi ne flags
disables all messages about alignment fixups. To generate alignment
messages for both speculative and nonspeculative alignment fixups,
specify the following environment variable:

% set env _SPECULATE_ARGS -al i gnnsg

Both options can be specified as follows:
% setenv _SPECULATE_ARGS -stats -alignnsg

* You can use the following compilation flags together or individually with
the —newc, —ni gr at e, and —ol dc versions of the C compiler to
improve run-time performance:

Flag Description

—ansi _alias Specifies whether source code observes ANSI C aliasing
rules. ANSI C aliasing rules allow for more aggressive
optimizations.

—ansi _args Specifies whether source code observes ANSI C rules

about arguments. If ANSI C rules are observed, specia
argument-cleaning code does not have to be generated.

—f ast Turns on the optimizations for the following flags for
increased performance.

For —newc, —mmi gr at e, and —ol dc versions of the C
compiler:

—D_I NTRI NSI CS

—D_I NLI NE_I NTRI NSI CS
—D_FASTMATH

—f | oat

—f p_reorder

-3 (-4 for—mi gr at e)

For only —newc or —mi gr at e versions of the C
compiler:

—ansi _alias

—ansi _args

—assune trusted_short _ali gnment
—-ifo

—readonly_strings

10-4 Optimizing Techniques

Flag
—f eedback

—f p_reorder
-G
—inline

—-ifo

-adimt

—-om
—pr eenpt _nodul e

—specul at e

—t une

—unrol |

Description

Specifies the name of a previously created feedback file.
Information in the file can be used by the compiler
when performing optimizations.

Specifies whether certain code transformations that
affect floating-point operations are allowed.

Specifies the maximum byte size of data itemsin the
small data sections (sbss or sdata).

Specifies whether to perform inline expansion of
functions.

Provides improved optimization (interfile optimization)
and code generation across file boundaries that would
not be possible if the files were compiled separately.

Specifies the level of optimization that is to be achieved
by the compilation.

Specifies the maximum size, in basic blocks, of a
routine that will be optimized by the global optimizer
(uopt). (Thisflag can be used only with the —ol dc
flag.)

Performs a variety of code optimizations for programs
compiled with the —non_shar ed flag.

Supports symbol preemption on a module-by-module
basis.

Enables work (for example, load or computation
operations) to be done in running programs on
execution paths before the paths are taken.

Selects processor-specific instruction tuning for specific
implementations of the Alpha architecture.
Controls loop unrolling done by the optimizer at levels

—@2 and above. (This flag can be used only with the
—newc or —mi gr at e flags)

Note that using the preceding flags may cause a reduction in accuracy and
adherence to standards. See cc(1) for details on these flags.

» For C applications, the compilation flag in effect for handling floating-
point exceptions can have a significant impact on execution time:

— Default exception handling (no special compilation flag)

With the default exception handling mode, overflow, divide-by-zero,
and invalid-operation exceptions aways signa the SI GFPE exception
handler. Also, any use of an |IEEE infinity, an IEEE NaN (not-a-

Optimizing Techniques 10-5

number), or an |EEE denormalized number will signal the SI GFPE
exception handler. By default, underflows silently produce a zero
result, athough the compilers support a separate flag that allows
underflows to signal the SI GFPE handler.

The default exception handling mode is suitable for any portable
program that does not depend on the specia characteristics of
particular floating-point formats. The default mode provides the best
exception handling performance.

— Portable |EEE exception handling (—i eee)

With the portable |EEE exception handling mode, floating-point
exceptions do not signal unless a special call is made to enable the
fault. This mode correctly produces and handles |EEE infinity, IEEE
NaNs, and IEEE denormalized numbers. This mode also provides
support for most of the nonportable aspects of |EEE floating point: al
status flags and trap enables are supported, except for the inexact
exception. (Seei eee(3) for information on the inexact exception
feature (—i eee_wi t h_i nexact). Using this feature can slow
down floating-point calculations by a factor of 100 or more, and few,
if any, programs have a need for its use.)

The portable IEEE exception handling mode is suitable for any
program that depends on the portable aspects of the |EEE floating-
point standard. This mode is usually 10-20% slower than the default
mode, depending on the amount of floating-point computation in the
program. In some situations, this mode can increase execution time
by more than a factor of two.

10.1.2 Linking and Loading Considerations

If your application does not use many large libraries, consider linking it
nonshared. This alows the linker to optimize callsinto the library, thus
decreasing your application’s startup time and improving run-time
performance (if calls are made frequently). Nonshared applications, however,
can use more system resources than call-shared applications. If you are
running a large number of applications simultaneously and the applications
have a set of librariesin common (for example, | i bX11 or | i bc), you may
increase total system performance by linking them as call-shared. See
Chapter 4 for details.

For applications that use shared libraries, ensure that those libraries can be
quickstarted. Quickstarting is a Digital UNIX capability that can grestly
reduce an application’s load time. For many applications, load time is a
significant percentage of the total time that it takes to start and run the
application. If an object cannot be quickstarted, it still runs, but startup time
is slower. See Section 4.7 for details.

10-6 Optimizing Techniques

10.1.2.1 Using the Postlink Optimizer

Y ou perform postlink optimizations by using the —omflag on the cc
command line. This flag must be used with the —non_shar ed flag and
must be specified when performing the final link, for example:

% cc -om -non_shared prog.c

The postlink optimizer performs the following code optimizations:

* Removal of nop (no operation) instructions, that is, those instructions
that have no effect on machine state.

« Removal of . | i t a data, that is, that portion of the data section of an
executable image that holds address literals for 64-bit addressing. Using
available switches, you can remove unused . | i t a entries after
optimization and then compressthe . | i t a section.

» Reallocation of common symbols according to a size you determine.

When you use the —omflag, you get the full range of postlink optimizations.
To specify a specific postlink optimization, use the —\\L compiler flag,
followed by —om opt i on , where opt i on can be one of the following:

conpress _lita
This option removes unused . | i t a entries after optimization, then
compressesthe. | i t a section.

dead_code
This option removes dead code (unreachable options) generated after
optimizations have been applied. The . | i t a section is not compressed
by this option.

i reorg_feedback, file
This option directs the compiler to use the pixie-produced information in
file.Counts andfile.Addrs to reorganize the instructions to
reduce cache thrashing.

no_i nst _sched
This option turns off instruction scheduling.

no_align_|labels
This option turns off alignment of labels. Normally, the —omflag will
align the targets of all branches on quadword boundaries to improve
loop performance.

Gcommon, num
This option sets the size threshold of ‘‘common’’ symbols. Every
““‘common’’ symbol whose size is less than or equal to numwill be
allocated close together.

Optimizing Techniques 10-7

For more information, see the cc(1) reference page.

10.1.3 Preprocessing and Postprocessing Considerations

Preprocessing options and postprocessing (run-time) options that can affect
performance include the following:

* Usethe Kuck & Associates Preprocessor (KAP) tool to gain extra
optimizations. The preprocessor uses final source code as input and
produces an optimized version of the source code as outpui.

KAP is especialy useful for applications with the following
characteristics on both symmetric multiprocessing systems (SMP) and
uniprocessor systems:

— Programs with alarge number of loops or loops with large loop
bounds

— Programs that act on large data sets

— Programs with significant reuse of data

— Programs with alarge number of procedure calls

— Programs with a large number of floating-point operations

To take advantage of the parallel processing capabilities of SMP systems,
the KAP preprocessors support automatic and directed decomposition for
C programs. KAP's automatic decomposition feature analyzes an
existing program to locate loops that are candidates for parallel execution.
Then, it decomposes the loops and inserts al necessary synchronization
points. If more control is desired, the programmer can manually insert
directives to control the paralelization of individual loops. On Digital
UNIX systems, KAP uses DECthreads to implement parallel processing.

For C programs, KAP is invoked with the kapc (which invokes separate
KAP processing) or kcc command (which invokes combined KAP
processing and DEC C compilation). For information on how to use
KAP on a C program, see the KAP for C for Digital UNIX User Guide.

KAP is available for Digital UNIX systems as a separately orderable
layered product.

» Usethecord utility (—cor d option) to improve the instruction cache
behavior for C applications. This utility uses data from an actual run of
your application to improve your application’s use of the instruction
cache. To usethe cor d utility, you must first create a feedback file with
the pi xi e and gpr of tools. Seepi xi e(5), pr of (1), cor d(1), and
runcor d(1) for details. Also, Chapter 8 describes how to use these
tools. (If you have produced a feedback file and you are are going to
compile your program with the —non_shar ed flag, it is better to use
the feedback file with the —omflag than with the —cor d flag. See

10-8 Optimizing Techniques

Section 10.1.2.1 for details on the omutility.)

To improve compiler optimizations, try recompiling your C programs
with a feedback file. The C compilers can make use of data from an
actual run of the program to fine tune their optimizations. For the
—newc and —mi gr at e versions of the C compiler, the feedback
information is most useful at the highest two levels of optimization (—O3
or —A4 for —newc and —O4 or —Cb for —mi gr at e). (The—ol dc
version of the C compiler does not support the use of feedback filesin its
processing.) If you are compiling a program with a feedback file and
with the—non_shar ed flag, it is better to use the

—prof _use_om f eedback flag than the —pr of _use_f eedback
or —f eedback flags. (See Section 10.1.2.1 for details on the om
utility.)

See Section 8.11 for information on how to create and use feedback files.

10.1.4 Library Routine Selection
Library routine options that can affect performance include the following:

Use the Digital Extended Math Library (DXML) for applications that
perform numerically intensive operations. DXML is a collection of
mathematical routines that are optimized for Alpha systems — both SMP
systems and uniprocessor systems. The routines in DXML are organized
in the following four libraries:

— BLAS-alibrary of basic linear algebra subroutines

— LAPACK —alinear algebra package of linear system and eigensystem
problem solvers

— Sparse Linear System Solvers — A library of direct and iterative
sparse solvers

— Signal Processing — A basic set of signal-processing functions,
including one-, two-, and three-dimensional fast Fourier transforms
(FFTs), group FFTs, sine/cosine transforms, convolution functions,
correlation functions, and digital filters.

By using DXML, applications that involve numerically intensive
operations may run significantly faster on Digital UNIX systems,
especially when used with KAP. DXML routines can be caled explicitly
from your program or, in certain cases, from KAP (that is, when KAP
recognizes opportunities to use the DXML routines). You access DXML
by specifying the —I dxm flag on the compilation command line.

For details on DXML, see the Digital Extended Mathematical Library for
Digital UNIX Systems Reference Manual.

The DXML routines are written in Fortran. For information on calling

Optimizing Techniques 10-9

Fortran routines from a C program, see the Digital UNIX user manual for
the version of Fortran that you are using (DEC Fortran or DEC Fortran
90). (Information about calling DXML routines from C programs is also
provided in the TechAdvantage C/C++ Getting Started Guide.)

» |If your application does not require extended-precision accuracy, you can
use math library routines that are faster but slightly less accurate.
Specifying the -D_FASTMATH flag on the compilation command causes
the compiler to use faster floating-point routines at the expense of three
bits of floating-point accuracy. See cc(1) for details.

» Consider compiling your C programs with the —D_| NTRI NSI CS and
—D_I NLI NE_I NTRI NSI CS flags; this causes the compiler to inline
calls to certain standard C library routines.

10.2 Application Coding Guidelines

If you are willing to modify your application, use the profiler tools to
determine where your application spends most of itstime. Many applications
spend most of their time in afew routines. Concentrate your efforts on
improving the speed of those heavily used routines.

Digital provides several profiling tools that work for programs written in C
and other languages. See Chapter 8, at on(1), gpr of (1), hi pr of (5),
pi xi e(5), and pr of (1) for more details.

After you identify the heavily used portions of your application, consider the
agorithms used by that code. |sit possible to replace a slow algorithm with
a more efficient one? Replacing a slow algorithm with a faster one often
produces a larger performance gain than tweaking an existing algorithm.

When you are satisfied with the efficiency of your algorithms, consider
making code changes to help the compiler optimize the object code that it
generates for your application. High Performance Computing by Kevin
Dowd (O’ Reilly & Associates, Inc., ISBN 1-56592-032-5) is a good source
of general information on how to write source code that maximizes
optimization opportunities for compilers.

The following sections identify performance opportunities involving data
types, cache usage and data alignment, and general coding issues.

10.2.1 Data Type Considerations
Data type considerations that can affect performance include the following:

» The smallest unit of efficient access on Alpha systems is 32 bits.
Accessing an 8- or 16-bit scalar can result in a sequence of machine
instructions to access the data. A 32- or 64-bit data item can be accessed
with a single, efficient machine instruction.

10-10 Optimizing Techniques

If performanceis a critical concern, avoid using integer and logical data
types that are less than 32 bits, especially for scalars that are used
frequently. In C programs, consider replacing char and shor t
declarationswith i nt and | ong declarations.

» Division of integer quantities is ower than division of floating-point
guantities. If possible, consider replacing such integer operations with
equivalent floating-point operations.

Integer division operations are not native to the Alpha processor and must
be emulated in software, so they can be slow. Other non-native
operations include transcendental operations (for example, sine and
cosine) and sguare root.

10.2.2 Cache Usage and Data Alignment Considerations
Cache usage patterns can have a critical impact on performance:

» If your application has a few heavily used data structures, attempt to
alocate these data structures on cache line boundaries in the secondary
cache. Doing so can improve your application’s cache usage. See
Appendix A of the Alpha Architecture Reference Manual for additional
information.

» Look for potential data cache collisions between heavily used data
structures. Such collisions occur when the distance between two data
structures allocated in memory is equal to the size of the primary
(internal) data cache. If your data structures are small, you can avoid this
by allocating them contiguously in memory. You can use the
upr of i | e tool to determine the number of cache collisions and their
locations. See Appendix A of the Alpha Architecture Reference Manual
for additional information on data cache collisions.

Data alignment can also affect performance. By default, the C compiler
aligns each data item on its natural boundary; that is, it positions each data
item so that its starting address is an even multiple of the size of the data
type used to declareit. Data not aligned on natural boundariesis called
misaligned data. Misaligned data can slow performance because it forces
the software to make necessary adjustments at run time.

In C programs, misalignment can occur when you type cast a pointer variable
from one data type to a larger data type; for example, type casting achar
pointer (1-byte alignment) to an i nt pointer (4-byte alignment) and then
dereferencing the new pointer may cause unaligned access. Alsoin C,
creating packed structures using the #pr agna pack directive can cause
unaligned access. (See Chapter 3 for details on the #pr agna pack
directive)

Optimizing Techniques 10-11

To correct alignment problems in C programs, you can use the —al i gn flag
or you can make necessary modifications to the source code. If instances of
misalignment are required by your program for some reason, use the

__unal i gned data-type qualifier in any pointer definitions that involve the
misaligned data. When data is accessed through the use of a pointer declared
__unal i gned, the compiler generates the additional code necessary to
copy or store the data without generating alignment errors. (Alignment errors
have a much more costly impact on performance than the additional code that
is generated.)

Warning messages identifying misaligned data are not issued during the
compilation of C programs by any version of the C compiler (—newc,
—mi gr at e, or —ol dc).

During execution of any program, the kernel issues warning messages
(**unaligned access’) for most instances of misaligned data. The messages
include the program counter (pc) value for the address of the instruction that
caused the misalignment. Y ou can use the machine code debugging
capabilities of the dbx or | adebug debugger to determine the source code
locations associated with pc values.

For additional information on data alignment, see Appendix A in the Alpha
Architecture Reference Manual. See cc (1) for details on aignment-control
flags that you can specify on compilation command lines.

10.2.3 General Coding Considerations

Genera coding considerations specific to C applications include the
following:

* Useli bc functions (for example: strcpy, strlen, strcnp,
bcopy, bzer o, nenset , mencpy) instead of writing similar routines
or your own loops. These functions are hand-coded for efficiency.

» Usetheunsi gned datatype for variables wherever possible because:

— Thevariableis always greater than or equal to zero, which enables the
compiler to perform optimizations that would not otherwise be
possible.

— The compiler generates fewer instructions for all unsigned divide
operations.
Consider the following example:

int long i;
unsi gned long j;

return i/2 + jl2;

In the example, i / 2 is an expensive expression; however,j/ 2 is

10-12 Optimizing Techniques

inexpensive.
The compiler generates three instructions for the signed i / 2 operations:

addq $I, I, $28
cnmovge $l, S, $28
sra $28, |, $2

The compiler generates only one instruction for the unsigned j / 2
operation:
srl $3, 1, $4

Also, consider using the —unsi gned flag to treat all char declarations
asunsi gned char .

If your application uses large amounts of data for a short period of time,
consider alocating the data dynamically with the mal | oc function
instead of declaring it statically. When you have finished using the
memory, freeit so it can be used for other data structures later in your
program. Using this technique to reduce the total memory usage of your
application can substantially increase the performance of applications
running in an environment in which physical memory is a scarce
resource.

If an application uses the mal | oc function extensively, you may be able
to improve the application’s performance (processing speed, memory
utilization, or both) by using mal | oc’s control variables to tune memory
allocation. See mal | oc(3) for details.

If your application uses local arrays whose sizes are unknown at compile
time, you can gain a performance advantage by allocating them with the
al | oca function, which uses very few instructions and is very efficient.
Storage allocated by the al | oca function is automatically reclaimed
when an exit is made from the routine in which the allocation is made.

The al | oca function allocates space on the stack, not the heap, so you
must make sure that the object being allocated does not exhaust all of the
free stack space. If the object does not fit in the stack, acor e dump is
issued.

Programs that issue callsto the al | oca function should include the

al | oca. h header file. If the header file is not included, the program
will execute properly, but it will run much slower.

Minimize type casting, especially type conversion from integer to floating
point and from a small data type to alarger data type.

To avoid cache misses, make sure that multidimensional arrays are
traversed in natural storage order, that is, in row major order with the
rightmost subscript varying fastest and striding by 1. Avoid column
major order (which is used by Fortran).

Optimizing Techniques 10-13

» |If your application fits in a 32-bit address space and allocates large
amounts of dynamic memory by allocating structures that contain many
pointers, you may be able to save significant amounts of memory by
using the —xt aso flag. The —xt aso flag is supported by all versions of
the C compiler (—newc, —mi gr at e, and —ol dc versions). To usethe
flag, you must modify your source code with a C-language pragma that
controls pointer size alocations. See cc(1) and Chapter 2 for details.

* Do not useindirect callsin C programs (that is, calls that use routines or
pointers to functions as arguments). Indirect calls introduce the
possibility of changes to global variables. This effect reduces the amount
of optimization that can be safely performed by the optimizer.

» Usefunctions to return values instead of reference parameters.

* Usedo whil e instead of whi | e or f or whenever possible. With do
whi | e, the optimizer does not have to duplicate the loop condition in
order to move code from within the loop to outside the loop.

» Uselocal variables and avoid global variables. Declare any variable
outside of afunction asst ati ¢, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

» Usevalue parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as pointers.

* Write straightforward code. For example, do not use ++ and - -
operators within an expression. When you use these operators for their
values instead of their side-effects, you often get bad code. For example,
the following coding is not recommended:

while (n--)
{

,
The following coding is recommended:
while (n 1= 0)

n--;

}.
» Avoid taking and passing addresses (that is, & values). Using & values
can create aliases, make the optimizer store variables from registers to

their home storage locations, and significantly reduce optimization
opportunities.

10-14 Optimizing Techniques

» Avoid creating functions that take a variable number of arguments. A
function with a variable number of arguments causes the optimizer to
unnecessarily save all parameter registers on entry.

* Declarefunctions as st at i ¢ unless the function is referenced by another
source module. Use of st at i ¢ functions allows the optimizer to use
more efficient calling sequences.

Y ou should also avoid aiases where possible by introducing local variables
to store dereferenced results. (A dereferenced result is the value obtained
from a specified address.) Dereferenced values are affected by indirect
operations and calls, whereas local variables are not; local variables can be
kept in registers. Example 10-1 shows how the proper placement of pointers
and the elimination of aliasing enable the compiler to produce better code.

Example 10-1: Pointers and Optimization

Source Code:

int len = 10;
char a[10];

voi d
zero()

char *p;
for (p=a; p!=a+len;) *p++ = 0;

}

Consider the use of pointersin Example 10-1. Because the statement

* p++=0 might modify | en, the compiler must load it from memory and add
it to the address of a on each pass through the loop, instead of computing a
+ | en in aregister once outside the loop.

Two different methods can be used to increase the efficiency of the code used
in Example 10-1:

» Use subscripts instead of pointers. As shown in the following example,
the use of subscripting in the azer o procedure eliminates aliasing; the
compiler keeps the value of | en in aregister, saving two instructions,
and still uses a pointer to access a efficiently, even though a pointer is
not specified in the source code:

Source Code:

char a[10];
int |len;
voi d
azero()

int i;
for (i =0; i !=len; i++) ali] = 0;

}

Optimizing Techniques 10-15

» Uselocal variables. As shown in the following example, specifying | en
as alocal variable or formal argument ensures that aliasing cannot take
place and permits the compiler to place | en in aregister:

Source Code:

char a[10];
voi d
| pzero(l en)
int |len;
{
char *p;
for (p=a pl!=a+len;) *p++t = 0;

10-16 Optimizing Techniques

111

Handling Exception Conditions 11

An exception is a specia condition that occurs during the currently executing
thread and requires the execution of code that acknowledges the condition
and performs some appropriate actions. This code is known as an exception
handler.

A termination handler consists of code that executes when the flow of control
leaves a specific body of code. Termination handlers are useful for cleaning
up the context established by the exiting body of code, performing such tasks
as freeing memory buffers or releasing locks.

This chapter contains the following discussions:
* Overview of exception handling

» Raising an exception from a user program

» Writing a structured exception handler

» Writing a termination handler

Exception Handling Overview

On Digital UNIX systems, hardware traps exceptions, as described in the
Alpha Architecture Reference Manual, and delivers them to the operating
system kernel. The kernel converts certain hardware exceptions, such as bad
memory accesses and arithmetic traps, to signals. A process can enable the
delivery of any signal and establish a signal handler to deal with the
consequences of the signal processwide.

The Calling Sandard for Alpha Systems defines special structures and
mechanisms that enable the processing of exceptional events on Digital
UNIX systems in a more precise and organized way. Among the activities
that the standard defines are the following:

* The manner in which exception handlers are established

* Theway in which exceptions are raised

* How the exception system searches for and invokes a handler
* How ahandler returns to the exception system

* The manner in which the exception system traverses the stack and
maintains procedure context

The run-time exception dispatcher that supports the structured exception
handling capabilities of the Digital UNIX C compiler is an example of the
type of frame-based exception handler described in the standard. (See
Section 11.3 for a discussion of structured exception handling.)

The following sections briefly describe the Digital UNIX components that
support the exception handling mechanism defined in the Calling Standard
for Alpha Systems.

11.1.1 C Compiler Syntax

Syntax provided by the Digital UNIX C compiler allows you to protect
regions of code against user- or system-defined exception conditions. This
mechanism, known as structured exception handling, allows you to define
exception handlers and termination handlers and to indicate the regions of
code that they protect.

The c_excpt . h header file defines the symbols and functions that user
exception processing code can use to obtain the current exception code and
other information describing the exception.

11.1.2 libexc Library Routines

Routines in the exception support library,

lusr/ccs/libl/cnplrs/ccl/libexc. a, provide the following

capabilities:

» The ability to raise user-defined exceptions or convert UNIX signals to
exceptions. These routines include:

exc_rai se_status_exception
exc_rai se_signal _exception
exc_rai se_exception
exc_exception_di spat cher
exc_di spatch_exception

These exception management routines also provide the mechanism to
dispatch exceptions to the appropriate handlers. In the case of C-language
structured exception handling, described in Section 11.3, the C-specific
handler invokes a routine containing user-supplied code to determine
what action to take. The user-supplied code can either handle the
exception or return for some other procedure activation to handle it.

» The ability to perform virtual and actual unwinding of levels of procedure
activations from the stack and continuing execution in a handler or other
user code. These routines include:

unwi nd
exc_virtual _unw nd
Rt | Vi rtual Unwi nd

11-2 Handling Exception Conditions

exc_resune
exc_l ongj np
exc_conti nue
exc_unwi nd
Rt | Unwi ndRf p

Some of the unwind routines also support invoking handlers as they
unwind so that the language or user can clean up items at particular
procedure activations.

» The ability to access procedure-specific information and map any address
within aroutine to the corresponding procedure information. This
information includes enough data to cause an unwind or determine
whether a routine handles an exception. These routines include:

exc_add_pc_range_tabl e
exc_renove_pc_range_tabl e

exc_l ookup_function_tabl e_address
exc_|l ookup_function_entry
find_rpd

exc_add_gp_range
exc_renove_gp_range

exc_| ookup_gp

The C-language structured exception handler calls routines in the last two
categoriesto allow user code to fix up an exception and resume execution,
and to locate and dispatch to a user-defined exception handler. Section 11.3
describes this process. For detailed information on any routine provided in
fusr/ccs/libl/cnplrs/cc/libexc. a, seetheroutine s reference

page.

11.1.3 Header Files That Support Exception Handling

Various header files define the structures that support the exception handling
system and the manipulation of procedure context. Table 11-1 describes
these files.

Table 11-1: Header Files That Support Exception Handling

File Description

excpt.h Defines the exception code structure and defines a number of
Digital UNIX exception codes; also defines the system
exception and context records and associated flags and
symbolic constants, the run-time procedure type, and
prototypes for the functions provided in | i bexc. a. See
excpt (4) for additional details.

Handling Exception Conditions 11-3

Table 11-1: (continued)

File Description

c_excpt.h Defines symbols used by C-language structured exception

handlers and termination handlers; also defines the exception
information structure and functions that return the exception
code, other exception information, and information
concerning the state in which a termination handler is called.
See c_excpt (4) for additional details.

machi ne/ f pu. h Defines prototypes for thei eee_set fp _control and

i eee_get fp_control routines, which enable the
delivery of IEEE floating-point exceptions and retrieve
information that records their occurrence; also defines
structures and constants that support these routines. See
i eee(3) for additional details.

pdsc. h Defines structures, such as the run-time procedure descriptor

and code range descriptor, that provide run-time contexts for
the procedure types and flow control mechanisms described
in the Calling Standard for Alpha Systems. See pdsc(4) for
additional details.

11.2 Raising an Exception from a User Program
A user program typically raises an exception in either of two ways:

A program can explicitly initiate an application-specific exception by
calling the exc_r ai se_excepti on or

exc_rai se_status_excepti on function. These functions alow
the calling procedure to specify information that describes the exception.

A program can install a special signal handler,

exc_rai se_si gnal _excepti on, that converts a POSIX signal to
an exception. Theexc_rai se_si gnal _except i on function
invokes the exception dispatcher to search the run-time stack for any
exception handlers that have been established in the current or previous
stack frames. In this case, the code reported to the handler has
EXC_SIGNAL inits facility field and the signal value in its code field.
(See excpt (4) and the excpt . h header file for a dissection of the code
data structure.)

11-4 Handling Exception Conditions

11.3

Note

The exact exception code for arithmetic and software-
generated exceptions, defined in the si gnal . h header file,
is passed to a signal handler in the code argument. The
special signal handler exc_rai se_si gnal _exception
moves this code to

Excepti onRecor d. Excepti onl nf o[O] before
invoking the exception dispatcher.

Examplesin Section 11.3 illustrate how to explicitly raise an exception and
convert asignal to an exception.

Writing a Structured Exception Handler

The structured exception handling capabilities provided by the Digital UNIX
C compiler allow you to deal with the possibility that a certain exception
condition may occur in a certain code sequence. The syntax establishing a
structured exception handler is as follows:

try{
try-body

}
except(exception-filter) {
exception-handler

}

The t ry- body is astatement or block of statements that the exception
handler protects. If an exception occurs while the try body is executing, the
C-specific run-time handler evaluates the excepti on-fil ter to
determine whether to transfer control to the associated except i on-
hand| er, continue searching for a handler in outer-level try body, or
continue normal execution from the point at which the exception occurred.

The exception-filter isanexpression associated with the exception
handler that guards a given try body. It can be a simple expression or can
invoke a function that evaluates the exception. An exception filter must
evaluate to one of the following integral values in order for the exception
dispatcher to complete its servicing of the exception:

. <0

The exception dispatcher dismisses the exception and resumes the thread
of execution that was originally disrupted by the exception. If the

Handling Exception Conditions 11-5

exception is noncontinuable, the dispatcher raises a
STATUS NONCONTINUABLE_EXCEPTION exception.

« 0

The exception dispatcher continues to search for a handler, first in any
try...except blocksin which the current handler might be nested
andtheninthetry. .. except blocks defined in the procedure frame
preceding the current frame on the run-time stack. If afilter chooses not
to handle an exception, it typically returns this value.

° >O

The exception dispatcher transfers control to the exception handler, and
execution continues in the frame on the run-time stack in which the
handler is found. This process, known as *‘handling the exception,”’
unwinds all procedure frames below the current frame and causes any
termination handlers established within those frames to execute.

Two intrinsic functions are allowed within the exception filter to access
information about the exception being filtered:

long exception_code();
Exception_info_ptr exception_info();

The except i on_code function returns the exception code. The
excepti on_i nf o function returns a pointer to an

EXCEPTI ON_PO NTERS structure. Using this pointer, you can access the
machine state (for instance, the system exception and context records) at the
time of the exception. See excpt (4) and c_excpt (4) for additional
details.

You can use the except i on_code function within an exception filter or
exception handler. However, you can use the except i on_i nf o function
only within an exception filter. If you need to use the information returned
by the except i on_i nf o function within the exception handler, you
should invoke the function within the filter and store the information locally.
If you need to refer to exception structures outside of the filter, you must
copy them as well because their storage is valid only during the execution of
the filter.

When an exception occurs, the exception dispatcher virtually unwinds the
run-time stack until it reaches a frame for which a handler has been
established. The dispatcher initially searches for an exception handler in the
stack frame that was current when the exception occurred.

If the handler is not in this stack frame, the dispatcher virtually unwinds the
stack (in its own context), leaving the current stack frame and any
intervening stack frames intact until it reaches a frame that has established an

11-6 Handling Exception Conditions

exception handler. It then executes the exception filter associated with that
handler.

During this phase of exception dispatching, the dispatcher has only virtually
unwound the run-time stack; all call frames that may have existed on the
stack at the time of the exception are still there. If it cannot find an

exception handler or if all handlers reraise the exception, the exception
dispatcher invokes the system last-chance handler. (See

exc_set | ast _chance_handl er (3) for instructions on how to set up a
last-chance handler.)

By treating the exception filter as if it were a Pascal-style nested procedure,
exception handling code evaluates the filter expression within the scope of
the procedure that includesthet ry. . . except block. This alows the filter
expression to access the local variables of the procedure containing the filter,
even though the stack has not actually been unwound to the stack frame of
the procedure that contains the filter.

Prior to executing an exception handler (for instance, if an exception filter
returns EXCEPTION_EXECUTE_HANDLER), the exception dispatcher
performs areal unwind of the run-time stack, executing any termination
handlers established fort ry. . . fi nal | y blocks that terminated as a result
of the transfer of control to the exception handler. Only then does the
dispatcher call the exception handler.

The except i on- hand! er is acompound statement that deals with the
exception condition. It executes within the scope of the procedure that
includesthetry. .. except construct and can accessits local variables. A
handler can respond to an exception in several different ways, depending on
the nature of the exception. For instance, it can log an error or correct the
circumstances that led to the exception being raised.

Either an exception filter or exception handler can take steps to modify or
augment the exception information it has obtained and ask the C-language
exception dispatcher to deliver the new information to exception code
established in some outer try body or prior call frame. This activity is more
straightforward from within the exception filter, which operates with the
frames of the latest executing procedures — and the exception context — il
intact on the run-time stack. The filter smply completes its processing by
returning a O to the dispatcher to request the dispatcher to continue its search
for the next handler.

For an exception handler to trigger a previously established handler, it must
raise another exception, from its own context, that the previously-established
handler is equipped to handle.

Example 11-1 shows a simple exception handler established to handle a
segmentation violation signal (SIGSEGV) that has been converted to an
exception by the exc_r ai se_si gnal _excepti on signa handler.

Handling Exception Conditions 11-7

Example 11-1: Handling a SIGSEGV Signal as a Structured

Exception

#i ncl ude <signal . h>

#i ncl ude <excpt. h>

#i ncl ude <machi ne/f pu. h>
#i ncl ude <errno. h>

main ()

Exception_info_ptr except_info;

PCONTEXT cont ext _record;
system exrec_type *exception_record;
| ong code;

sigset _t newrask, ol dmask;
struct sigaction act, ol dact;

char *x=0;

/*

/*

*/

*/

Set up things so that SIGSEGV signals are delivered. Set
exc_rai se_signal _exception as the SI GSEGV si gnal handl er
in sigaction.

act.sa_handl er = exc_raise_signal _exception;

si genpt yset (&act . sa_mask) ;

act.sa_flags = 0;

if (sigaction(SlIGSEGY, &act, &oldact) < 0)
perror("sigaction:");

If a segnentation violation occurs within the following try
bl ock, the run-tinme exception dispatcher calls the exception
filter associated with the except statenent to determ ne
whet her to call the exception handler to handl e the SI GSEGY
signal exception.

try {
*x=55;
}

The exception filter tests the exception code agai nst
SIGSEGV. If it tests true, the filter returns 1 to the

di spatcher, which then executes the handler; if it tests
false, the filter returns -1 to the dispatcher, which
continues its search for a handler in the previous run-tine
stack frames. Eventually the |ast-chance handl er executes.
Note: Normally the printf in the filter would be repl aced
with a call to a routine that | ogged the unexpected signal.

except (exception_code() == EXC_VALUE(EXC SI GNAL, SIGSEGV) ? 1 :
(printf("unexpected signal exception code 0x% x\ n",
exception_code()), 0))

printf("segnentation violation reported: handler\n");
exit(0);

}
printf("okay\n");

11-8 Handling Exception Conditions

Example 11-1: (continued)
exit(1);

The following is a sample run of this program:

% cc segfault_ex.c -lexc

% a. out

segnentation violation reported in handler

Example 11-2 is similar to Example 11-1 insofar as it also demonstrates a
way of handling a signal exception, in this case, a SIGFPE. This example
further shows how an I1EEE floating-point exception, floating divide-by-zero,
must be enabled by acall toi eee_set _f p_contr ol (), and how the
handler obtains more detailed information on the exception by reading the
system exception record.

Example 11-2: Handling an IEEE Floating-Point SIGFPE as a
Structured Exception

#i ncl ude <signal . h>

#i ncl ude <excpt. h>

#i ncl ude <machi ne/f pu. h>
#i ncl ude <errno. h>

main ()

Exception_info_ptr except_info;

PCONTEXT cont ext _record;

system exrec_type exception_record;

| ong code;

sigset _t newnrask, ol dmask;

struct sigaction act, ol dact;

unsi gned | ong fl oat _traps=lI EEE_TRAP_ENABLE DZE, trap_nask;

int f psi gst at e;

doubl e t enper ature=75. 2, divisor=0.0, quot, return_val;
/*

Set up things so that | EEE DZO traps are reported and that
SI GFPE signals are delivered. Set exc_raise_signal_exception
as the SIGFPE signal handler.

*/
act.sa_handl er = exc_rai se_signal _exception;
si genptyset (&act . sa_mask) ;
act.sa_flags = 0;
if (sigaction(SlIGFPE, &act, &oldact) < 0)
perror("sigaction:");
if (ieee_set_fp_control (float_traps) < 0)
printf("set_fp_control problent);
exit(1);
}
/*

Handling Exception Conditions 11-9

Example 11-2: (continued)

If a floating divide-by-zero FPE occurs within the foll ow ng
try block, the run-time exception dispatcher calls the
exception filter associated with the except statenent to
det erm ne whet her the SI GFPE signal exception is to be
handl ed by the exception handl er.
*/
try {
printf("quot = |EEE % 2f / % 2f\n",tenperature, divisor);
quot = tenperature / divisor;
}
/*
The exception filter saves the exception code and tests it
against SIGFPE. If it tests true, the filter obtains the
exception information, copies the exception record structure,
and returns 1 to the dispatcher which then executes the hand-
ler. If the filter’'s test of the code is false, the filter
returns -1 to the handl er, which continues its search for a
handl er in previous run-tinme frames. Eventually the |ast-chance
handl er executes. Note: Nornally the filter printf is replaced
with a call to a routine that | ogged the unexpected signal.
*/
except ((code=exception_code()) == EXC_VALUE(EXC_SI GNAL, SI GFPE) ?
(except _info = exception_info(),
exception_record = *(except _i nfo->Excepti onRecord), 1)
(printf("unexpected signal exception code O0x% x\n",
exception_code()), 0))
/*
The exception handler follows and prints out the signal code,
whi ch has the follow ng format:

0x 8 offe 0003
I I I
hex S| GFPE EXC OSF facility EXC_SI GNAL
*/
{ printf("Arithnetic error\n");
printf("exception_code() returns 0x% x\n", code);
printf("EXC_VALUE macro in excpt.h generates 0x% x\n",
EXC_VALUE(EXC_SI GNAL, SIGFPE));
printf("Signal code in the exception record is Ox% x\n",
exception_record. Excepti onCode) ;
/*
To find out what type of SIGFPE this is, ook at the first
opti onal paraneter in the exception record. Verify that it is
FPE_FLTDI V_FAULT) .
*/
printf("No. of paraneters is %\n",
exception_record. Nunber Par anet ers) ;
printf("SIG-PE type is Ox% x\n",
exception_record. Exceptionlnformation[0]);
/*
Set return value to | EEE_PLUS I NFI NI TY and return.
*/
if (exception_record. Exceptionlnformation[0] ==
FPE_FLTDI V_FAULT)

11-10 Handling Exception Conditions

Example 11-2: (continued)

*((unsigned long *) & eturn_val =l EEE_PLUS_ | NFI NI TY;
printf("Returning Ox% to caller\n", return_val);

return(0);
/*
If this is a different kind of SIGFPE, return gracel essly.
*/
el se
return(-1);
}
/*
We get here only if no exception occurred in the try bl ock.
*/
printf("okay");
exit(1);
}

The following is a sample run of this program:

% cc -ieee_with_no_inexact sigfpe_ex.c -lexc

% a. out

quot = |EEE 75.20 / 0.00

Arithmetic error

exception_code() returns 0x80ffe0003

The EXC_VALUE macro in excpt.h generates 0x80ffe0003
The signal code in the exception record is 0x80ffe0003
No. of paraneters is 1

S| GFPE type is 0x10
Returning OxINF to caller

A procedure (or group of interrelated procedures) can contain any number of
try...except constructs, and can nest these constructs. If an exception
occurs withinthetry. .. except block, the system invokes the exception
handler associated with that block.

Example 11-3 demonstrates the behavior of multipletry. . . except
blocks by defining two private exception codes and raising either of these
two exceptions within the innermost try block.

Example 11-3: Multiple Structured Exception Handlers

#i ncl ude <excpt. h>

#i ncl ude <strings. h>

#i ncl ude <stdio. h>

#def i ne EXC_NOTW DCET EXC_VALUE(EXC_C_USER, 1)

#def i ne EXC_NOTDECW DGET EXC_VALUE(EXC_C_USER, 2)

void getw dget bynanme();

/*
mai n() sets up an exception handler to field the EXC_NOTW DGET
exception and then calls getw dget bynanme().

Handling Exception Conditions 11-11

Example 11-3: (continued)
*/
mai n(argc, argv)

int argc;

char *argv[];

{
char *wi dget[20];
Il ong code;
try {
if (argc > 1)
strcpy(w dget, argv[1]);
el se

printf("Enter wi dget name: ");
get s(wi dget);
}

get wi dget byname(wi dget) ;
}
except ((code=excepti on_code()) == EXC_NOTW DCET)

printf("Exception Ox% x: % is not a w dget\n",
code, widget);
exit(0);

get wi dget bynane() sets up an exception handler to field the
EXC_NOTDECW DCET exception. Depending upon the data it is
passed, its try body calls exc_raise_status_exception() to
generate either of the user-defined exceptions.

*/

voi d

get wi dget bynane(char* w dget nane[20])

Il ong code;
try {
if (strcnmp(w dgetnanme, "foo") == 0)
exc_rai se_st at us_excepti on(EXC_NOTDECW DCET) ;
if (strcnp(w dgetname, "bar") == 0)
exc_rai se_status_excepti on(EXC_NOTW DGET) ;
/* }
The exception filter tests the exception code agai nst
EXC_NOTDECW DGET. If it tests true, the filter returns
1 to the dispatcher; if it tests false, the filter returns
-1 to the dispatcher, which continues its search for a
handl er in the previous run-time stack franes. Wen the
gener at ed exception is EXC_NOTW DCGET, the dispatcher finds
its handler in main()’'s frane.
*/
except ((code=excepti on_code()) == EXC_NOTDECW DCET)
{

printf("Exception Ox% x: % is not a DEC supplied w dget\n"
code, widget);

11-12 Handling Exception Conditions

114

Example 11-3: (continued)
exit(0);

printf("w dget nane okay\n");

The following is a sample run of this program:

% cc rai se_ex.c -lexc

% a. out

Enter wi dget name: foo

Excepti on 0x20ffe009: foo is not a DEC supplied w dget
% a. out

Enter wi dget nanme: bar

Excepti on 0x10ffe009: bar is not a wi dget

Writing a Termination Handler

The cc compiler allows you to ensure that a specified block of termination
code is executed whenever control is passed from a guarded body of code.
The termination code is executed regardless of how the flow of control leaves
the guarded code. For example, atermination handler can guarantee that
clean-up tasks are performed even if an exception or some other error occurs
while the guarded body of code is executing.

The syntax for atermination handler is as follows:

try{
try-body

}
finally{

termination-handler

}

The t r y- body is the code, expressed as a compound statement, that the
termination handler protects. The try body can be a block of statements or a
set of nested blocks. It can include the following statement, which causes an
immediate exit from the block and execution of its termination handler:

leave;

Handling Exception Conditions 11-13

The t er mi nat i on- handl! er is acompound statement that executes when
the flow of control leaves the guarded try body, regardiess of whether the try
body terminated normally or abnormally. The guarded body is considered to
have terminated normally when the last statement in the block is executed
(that is, when the body’s closing **}’’ is reached). Use of the | eave
statement also causes a normal termination. The guarded body terminates
abnormally when the flow of control leavesit by any other means, for
example, due to an exception or due to a control statement such asr et ur n,
got o, break, or cont i nue.

A termination handler can cal the following intrinsic function to determine
whether the guarded body terminated normally or abnormally:

int abnormal_termination();

Theabnor nmal _t erm nati on function returns O if the try body
completed sequentially; otherwise, it returns 1.

The termination handler itself may terminate either sequentially or by a
transfer of control out of the handler. If it terminates sequentially (by
reaching the closing ‘*}’’), subsequent control flow depends on how the try
body terminated:

* If the try body terminated normally, execution continues with the
statement following the completetry. .. final | y block.

* If the try body terminated abnormally with an explicit jump out of the
body, the jump is completed. However, if the jJump exits the body of one
or more containingtry. .. finally statements, their termination
handlers are invoked before contral is finally transferred to the target of
the jump.

* If the try body terminated abnormally due to an unwind, a jump to an
exception handler, or an exc_| ongj np call, control is returned to the C
run-time exception handler, which will continue invoking termination
handlers as required before jumping to the target of the unwind.

Like exception filters, termination handlers are treated as Pascal-style nested
procedures and are executed without the removal of frames from the run-time
stack. A termination handler can thus access the local variables of the
procedure in which it is declared.

Note that there is a performance cost in the servicing of abnormal
terminations, inasmuch as abnormal terminations (and exceptions) are
considered to be outside the normal flow of control for most programs. Keep
in mind that explicit jumps out of atry body are considered abnormal
termination. Normal termination is the ssmple case and costs less at run time.

In some instances, you can avoid this cost by replacing ajump out of atry
body with al eave statement (which transfers control to the end of the

11-14 Handling Exception Conditions

innermost try body) and testing a status variable after completion of the
entiretry. .. finally block.

A termination handler itself may terminate nonsequentially (for instance, to
abort an unwind) by means of a transfer of control (for instance, agot o,

br eak, conti nue, return, exc_| ongj np, or the occurrence of an
exception). If this transfer of control exitsanother t ry. . . fi nal | y block,
its termination handler will execute.

Example 11-4 illustrates the order in which termination handlers and
exception handlers execute when an exception causes the termination of the
innermost try body.

Example 11-4: Abnormal Termination of a Try Block by an
Exception

#i ncl ude <signal . h>
#i ncl ude <excpt. h>
#i ncl ude <errno. h>

#define EXC_FOO EXC VALUE(EXC C USER, 1)

si gned
foo_except_filter()

printf("2. The exception causes the exception filter
to be evaluated.\n");
return(l);

main ()

try {

try {
printf("1. The main body executes.\n");

exc_rai se_status_exception(EXC_FOO) ;

}
finally {
printf("3. The termination handl er executes
because control will |eave the
try...finally block to \n");

}

except (foo_except _filter()) {
printf("4. execute the exception handler.\n");

Handling Exception Conditions 11-15

The following is a sample run of this program:
% cc segfault_ex.c -lexc
% a. out

1. The nain body executes.

2. The exception causes the exception filter to be eval uated.

3. The term nation handl er executes because control will |eave the
try...finally block to

4. execute the exception handl er.

11-16 Handling Exception Conditions

12.1

Developing Thread-safe Libraries 12

To support the development of multithreaded applications, the Digital UNIX
operating system provides DECthreads, Digital’s Multithreading Run-Time
Library. The DECthreads interface is Digital UNIX’s implementation of
|IEEE Standard 1003.1c-1995 threads (also referred to as POSIX 1003.1c
threads).

In addition to an actual threading interface, the operating system also
provides Thread-Independent Services (TIS). The TIS routines are an aid to
creating thread-safe libraries (see Section 12.4.1).

This chapter addresses the following topics:

* Overview of multithread support in Digital UNIX (Section 12.1)

* Run-time library changes for POSIX conformance (Section 12.2)

» Characteristics of thread-safe and thread-reentrant routines (Section 12.3)
* How to write thread-safe code (Section 12.4)

* How to build multithreaded applications (Section 12.5)

Overview of Thread Support

A thread is a single, sequentia flow of control within a program. Multiple
threads execute concurrently and share most resources of the owning process,
including the address space. By default, a processinitially has one thread.

The purposes for which multiple threads are useful include:

* Improving the performance of applications running on multiprocessor
systems

* Implementing certain programming models (for example, the client/server
model)

» Encapsulating and isolating the handling of slow devices

You can also use multiple threads as an alternative approach to managing
certain events. For example, you can use one thread per file descriptor in a
process that otherwise might use the sel ect () or pol | () system callsto
efficiently manage concurrent 1/0 operations on multiple file descriptors.

12.2

The components of the multithreaded devel opment environment for the
Digital UNIX system include the following:

o Compiler support — Compile using the —pt hr ead flag on the cc or c89
command.

» Threads package— Thel i bpt hr ead. so library provides interfaces for
threads control, buffers an application from lower-level threads
implementation, and is selected at application link time.

» Thread-safe support libraries — These librariesinclude | i bm { a, so},
libsys5 r.a,and!ibmach. {a, so}.

* Thel adebug debugger

* Theprof and gpr of profilers — Compile with the —p and —pt hr ead
flags for pr of and with the —pg and —pt hr ead flags for gpr of to use
thel i bprof 1_r. a profiling library.

* Theat omutility (pi xi e, t hi rd, and hi pr of tools)

For information on profiling multithreaded applications, see Section 8.14.

Run-Time Library Changes for POSIX Conformance

For releases of the DEC OSF/1 operating system (that is, for releases prior to
Digital UNIX Version 4.0), alarge number of separate reentrant routines
(*_r routines) were provided to solve the problem of static datain the C
run-time library (the first two problems listed in Section 12.3.1). The Digital
UNIX operating system fixes the problem of static data in the non-reentrant
versions of the routines by replacing the static data with thread-specific data.
Except for a few routines specified by POSIX 1003.1c, al of the alternate
routines are no longer required and are retained only for binary compatibility.

The following functions are the only alternate thread-safe routines that are
specified by POSIX 1003.1c and need to be used when writing thread-safe
code:

alctime_r* ctime_r* getgrgid_r*
getgrnamr* get pwnamr* getpwuid_r*
gnmine_r* localtine r* rand r*
readdir_r* strtok_r

Starting with Digital UNIX Version 4.0, the interfaces flagged with an
asterisk (*) in the preceding list have new definitions that conform to POSIX
1003.1c. The old versions of these routines can be obtained by defining the
preprocessor symbol _POSI X_C_SOURCE with the value 199309L (which
denotes POSIX 1003.1b conformance). The new versions of the routines are

12-2 Developing Thread-safe Libraries

12.3

the default when compiling code under Digital UNIX Version 4.0 or later,
but you must be certain to include the header files specified on the manpages
for the various routines.

For more information on programming with threads, see the Guide to
DECthreads and cc (1), noni t or (3), pr of (1), and gpr of (1).

Characteristics of Thread-Safe and Reentrant
Routines

Routines within a library can be thread safe or not. A thread-saferoutine is
one that can be called concurrently from multiple threads without undesirable
interactions between threads. A routine can be thread safe for either of the
following reasons:

e |tisinherently reentrant.

» |t uses thread-specific data or lock on mutexes. (A mutex is a
synchronization object that is used to allow multiple threads to serialize
their access to shared data.)

Reentrant routines do not share any state across concurrent invocations from
multiple threads. A reentrant routine is the ideal thread-safe routine, but not
al routines can be made to be reentrant.

Prior to Digital UNIX Version 4.0, many of the C run-time library (I i bc)
routines were not thread safe, and alternate versions of these routines were
provided in | i bc_r. Starting with Digital UNIX Version 4.0, all of the
alternate versions formerly found in | i bc_r weremergedinto |l i bc. If a
thread-safe routine and its corresponding nonthread-safe routine had the same
name, the nonthread-safe version was replaced. The thread-safe versions are
modified to use Thread Independent Services (TIS) (see Section 12.4.1); this
enables them to work in both single- and multithreaded environments —
without extensive overhead in the single-threaded case.

12.3.1 Examples of Nonthread-safe Coding Practices

Some common practices that can prevent code from being thread safe can be
found by examining why some of the | i bc functions were not thread safe
prior to Digital UNIX Version 4.0:

Developing Thread-safe Libraries 12—3

* Returning a pointer to a single, statically allocated buffer

The ct i me(3) interface provides an example of this problem:
char *ctine(const time_t *tiner);

This function takes no arguments and returns a pointer to a statically
allocated buffer containing a string that is the ASCII representation of the
time specified in the single parameter to the function. Because a single,
statically allocated buffer is used for this purpose, any other thread that
calls this function will overwrite the string returned to the previously
calling thread.

Tomakethect i ne() function thread safe, the POSIX 1003.1c standard
has defined an alternate version, ct i ne_r (), which accepts an
additional argument. The argument is a user-supplied buffer that is
allocated by the caller. Thecti ne_r () function writes the following
string into the buffer:

char *ctine_r(const time_t *tiner, char *buf);

The users of this function must ensure that the buffer they supply as an
argument to this function is not used by another thread.

* Maintaining internal state

Ther and() function provides an example of this problem:

voi d srand(unsi gned int seed);
int rand(void);

This function is a simple pseudo-random number generator. For any
given starting ‘‘seed’’ value that is set with the srand() function, it
generates an identical sequence of pseudo-random numbers. To do this, it
maintains a state value that is updated on each call. If another thread is
calling this function, the sequence of numbers returned within any one
thread for a given starting seed is nondeterministic. This may be
undesirable.

To avoid this problem, a second interface, rand_r (), is specified in
POSIX 1003.1c. This function accepts an additional argument that is a
pointer to a user-supplied integer used by rand_r () to hold the state of
the random number generator:

int rand_r(unsigned int *seed);

The users of this function must ensure that the seed argument is not used
by another thread. Using thread-specific data or keys is one way of doing
this (see Section 12.4.2).

» Operating on read/write data items shared between threads

The problem of sharing read/write data can be solved by using mutexes.
In this case, the routine is not considered reentrant, but it is still thread
safe. Like thread-specific data, mutex locking is transparent to the user of

12-4 Developing Thread-safe Libraries

the routine except for the creation of a potential for blocking (where the
potential may not have existed previously).

Mutexes are used in severa | i bc routines, most notably the st di o
routines, for example, pri nt f (). Mutex locking in the st di o routines
is done by stream to prevent concurrent operations on a stream from
colliding, as in the case of two processes trying to fill a stream buffer at
the same time. Mutex locking is a'so done on certain internal data tables
in the C run-time library during operations such as f open() and

fcl ose(). Becausethe dternate versions of these routines do not
require an application program interface (APl) change, they have the
same name as the original versions.

See Section 12.4.3 for an example of how to use mutexes.

12.4 Writing Thread-safe Code

When writing code that can be used by both single-threaded and
multithreaded applications, it is necessary to code in a thread-safe manner.
The following coding practices must be observed:

Static read/write data should be either eliminated, converted to thread-
specific data, or protected by mutexes. In the C language, it is good
practice to declare static read-only data with the const type modifier to
reduce the potential for misuse of the data.

Global read/write data should be eliminated or protected by mutex locks.

Per-process system resources such as file descriptors should be used with
care because they are accessible by all threads.

References to the global ‘“errno’’ cell should be replaced with calls to
geterrno() andseterrno(). Thisreplacement is not necessary if
the source file includes <er r no. h> and one of the following conditions
is true:

— Thefile is compiled with the - pt hr ead flag (cc or c89 command).
— The<pt hr ead. h> fileis included at the top of the source file.

— The REENTRANT preprocessor symbol is explicitly set before
including the <er r no. h> file.

Dependencies on any other nonthread-safe libraries or object files should
not exist in the code.

Developing Thread-safe Libraries 12-5

12.4.1 Using Thread Independent Services (TIS)

TIS is a package of routines provided by the C run-time library that can be
used to write efficient code for both single-threaded and multithreaded
applications. TIS routines can be used for handling mutexes, handling
thread-specific data, and a variety of other purposes.

When used by a single-threaded application, these routines use simplified
semantics to perform thread-safe operations for the single-threaded case.
When DECthreads is present, the bodies of the routines are replaced with
more complicated algorithms to optimize their behavior for the multithreaded
case.

TISis used within | i bc itself to alow asingle version of the C run-time
library to service both single-threaded and multithreaded applications. See
the Guide to DECthreads and t i s(3) for information on how to use this
facility.

12.4.2 Using Thread-Specific Data

Example 12-1 shows how to use thread-specific data in a function that can be
used by both single-threaded and multithreaded applications. For clarity,
most error checking has been |eft out of the example.

Example 12-1: Threads Programming Example
#i ncl ude <stdlib. h>

#i nclude <string. h>

#i nclude <tis.h>

static pthread_key_t key;

void __init_dirnane()

tis_key create(&key, free);

}
void __fini_dirnane()
{
tis_key_del et e(key);
}

char *di rname(char *path)

char *dir, *Ilastslash;
/*
* Assume key was set and get thread-specific variable.
*
/
dir = tis_getspecific(key);
if(ldir) {/* First tinme this thread got here. */
dir = mall oc(PATH_MAX) ;

12-6 Developing Thread-safe Libraries

Example 12-1: (continued)
tis_setspecific(key, dir);

}

/*
* Copy dirnanme conponent of path into buffer and return.
*/
| astslash = strrchr(path, "/");
i f(lastslash) {
nmencpy(dir, path, |astslash-path);
dir[lastslash-dir+1] = '\0";
} else
strcpy(dir, path);
return dir;

}

The following TIS routines are used in the preceding example:

tis_key create
Generates a unigue data key.

tis_key delete
Deletes a data key.

tis _getspecific
Obtains the data associated with the specified key.

tis_setspecific
Sets the data value associated with the specified key.

The __init_and___fini_ routines are used in the example to initialize
and destroy the thread-specific data key. This operation is done only once,
and these routines provide a convenient way of ensuring that this is the case,
even if the library is loaded with dl open() . Seel d(1) for an explanation
of howtousethe init_and___fini _ routines.

Thread-specific data keys are a limited resource. A library that needs to create
alarge number of data keys should instead be written to create just one and
to store all of the separate data items as a structure or an array of pointers
pointed to by a single key.

12.4.3 Using Mutex Locks to Share Data Between Threads

In some cases, using thread-specific datais not the correct way to convert
static data into thread-safe code, for example, when a data object is meant to
be shareable between threads (asin st di o streamswithin | i bc).
Manipulating per-process resources is another case in which thread-specific
data is inadequate. The following example shows how to manipulate per-

Developing Thread-safe Libraries 12—7

process resources in a thread-safe fashion:

#i ncl ude <pt hread. h>
#i nclude <tis.h>

/*
* NOTE: The putenv() function would have to set and clear the
* sanme nutex |lock before it accessed the environnent.
*/

extern char **environ;
static pthread_nutex_t environ_nutex = PTHREAD MUTEX_ | NI Tl ALI ZER;

char *getenv(const char *nane)

char **s, *val ue
int |en;

tis_nmutex_| ock(&environ_nutex);
len = strl en(nane);
for(s=environ; val ue=*s; s++)
if(strncmp(nane, value, len) == 0 &&
value[len] =="=") {
tis_nutex_unl ock(&environ_nutex);
return & val ue[l en+1])

tis_nutex_unl ock(&environ_nutex);
return (char *) OL;

}

In the preceding example, note how the lock is set once

(tis_mut ex_| ock) before accessing the environment and is unlocked
exactly once (t i s_rnut ex_unl ock) before returning. In the multithreaded
case, any other thread attempting to access the environment while the first
thread holds the lock is blocked until the first thread performs the unlock
operation. In the single-threaded case, no contention occurs unless an error
exists in the coding of the locking and unlocking sequences.

If it is necessary for the lock state to remain valid acrossaf or k() system
call in multithreaded applications, it may be useful to create and register

pt hread_at f or k() handler functions to lock the lock prior to any
fork() cal, and to unlock it in both the child and parent after the f or k()
call. This guaranteesthat afork operation is not done by one thread while
another thread holds the lock. If the lock was held by another thread, it
would end up permanently locked in the child because the fork operation
produces a child with only one thread. In the case of an independent library,
the call to pt hread_at f or k() canbedoneinan_ _i ni t _ routinein
the library. Unlike most pt hr ead routines, the pt hr ead_at f or k routine
isavailablein | i bc and may be used by both single-threaded and
multithreaded applications.

12-8 Developing Thread-safe Libraries

12.5 Building Multithreaded Applications

The compilation and linking of multithreaded applications differs from that of
single threaded applications in a few minor but important ways.

12.5.1 Compiling Multithreaded C Applications

Many system i ncl ude files behave differently when they are being
included into the compilation of a multithreaded application. Whether the
single-threaded or thread-safei ncl ude file behavior appliesis determined
by whether the REENTRANT preprocessor symbol is defined. When the

—pt hr ead flag is supplied to the cc or c89 command, the REENTRANT
symbol is defined automatically; it is also defined if the pt hr eads. h
system i ncl ude fileisincluded. Thisi ncl ude file must be the first file
included in any application that uses the pthreads library, | i bpt hr ead. so.

The —pt hr ead flag has no other effect on the compilation of C programs.
The reentrancy of the actual code generated by the C compiler is determined
only by proper use of reentrant coding practices by the programmer, by use
of only thread-safe support libraries, and by use of only thread-safe support
libraries — not by any special options.

12.5.2 Linking Multithreaded C Applications

To link a multithreaded C application, use the cc or c89 command with the
—pt hr ead flag. When linking, the —pt hr ead flag has the effect of
modifying the library search path in the following ways:

» The pthreads library is included into the link.
» The exceptions and mach C libraries are included into the link.

e For each library mentioned in a—I flag, an attempt is made to locate and
presearch a library whose name is derived by appending an r to the
given name.

The —pt hr ead flag does not modify the behavior of the linker in any other
way. The reentrancy of the linked code is determined by use of proper
programming practices in the orginal code, and by compiling and linking
with the proper i ncl ude files and libraries, respectively.

12.5.3 Building Multithreaded Applications in Other Languages

Not all compilers necessarily generate reentrant code; the definition of the
language itself can make this difficult. It is also necessary for any run-time
libraries linked with the application to be thread safe. For details on such
matters, you should consult the manual for the compiler you are using.

Developing Thread-safe Libraries 12-9

Using 32-Bit Pointers on Digital UNIX

Al

A.2

Systems A

The Digital UNIX C compiler supports the use of 32-bit pointers on the 64-
bit Digital UNIX operating system. All system interfaces use 64-bit pointers.
The 32-bit pointer data type is provided to help devel opers reduce the amount
of memory used by dynamically allocated pointers and to assist with the
porting of applications that contain assumptions about the sizes of pointers.
The use of 32-bit pointers in applications requires source code modifications
and the use of compiler options.

Pointer Definitions
The following list defines pointers described in this appendix:

e Short pointer: A 32-bit pointer. When a short pointer is declared, 32 bits
are alocated.

* Long pointer: A 64-bit pointer. When along pointer is declared, 64 bits
are allocated. This is the default pointer type on Digital UNIX systems.

» Simple pointer: A pointer to a nonpointer data type, for example,
int *numval ;.

e Compound pointer: A pointer to a pointer or a pointer to an indefinite
array, for example, char *argv[] or char **Font Li st .

Using 32-Bit Pointers

Two cc flags and a set of pragmas control the usage of 32-bit pointers. The
—xt aso compiler flag causes the compiler to respond to the #pr agna

poi nt er _si ze directives. The—xt aso_short compiler flag causes the
compiler to alocate 32-bit pointers by default and is recognized only when
used with the —xt aso flag.

The cc flags for controlling pointer size are the following:
+ —xtaso

Enables the use of short pointers. All pointer types default to long
pointers, but short pointers can be declared through the use of the
poi nt er _si ze pragmas.

e —xtaso_short

Enables the use of short pointers. All pointer types default to short
pointers. Long pointers can be declared through the use of the

poi nt er _si ze pragmas. Because all system routines continue to use
64-bit pointers, most applications require source changes when used in
this way.

Within a C program, the size of pointer types can be controlled by the use of
pragmas. These pragmas are only recognized by the compiler if the —xt aso
or —xt aso_short flags have been specified with the cc command; they
are silently ignored if neither of the flags are specified. Pointer sizes specified
by the following pragmas override the default pointer size.

The #pr agma poi nt er _si ze speci fi er directive provides control
over pointer size allocation. This pragma has the following syntax:

#pragma pointer_size specifier

The speci fi er argument must be one of the following keywords:

| ong All pointer sizes following this pragma are long pointers (64 bits in length)
until an overriding poi nt er _si ze pragma s encountered.
short All pointer sizes following this pragma are short pointers (32 hitsin

length) until an overriding poi nt er _si ze pragmais encountered.

save Save the current pointer size such that a corresponding #pr agna
poi nt er _si ze r est or e will set the pointer size to the current value.
The model for pointer size preservation is a last-in, first-out stack such that
asave isanalogousto apush, and ar est or e is analogous to a pop.

restore Theopposite of save. Restore the uppermost saved pointer size and
delete it from the save/ r est or e stack. For example:
#pragma poi nter_size (long)
/* pointer sizes in here are 64-bits */
#pragma poi nter_size (save)
#pragma poi nter_size (short)
/* pointer sizes in here are 32-bits */
#pragma poi nter_size (restore)
/* pointer sizes in here are again 64-bits */

The —xt aso flag causes the compiler to respond to the #pr agma
poi nt er _si ze directives. The—xt aso_short compiler flag causes the
compiler to alocate 32-bit pointers by default.

A-2 Using 32-Bit Pointers on Digital UNIX Systems

A.3

A4

A5

The following example demonstrates the use of both short and long pointers:
#include <stdio.h> /* nodified with #pragma pointer_size */
main ()

{

int *a_ptr;

printf ("A pointer is %d bytes\n", sizeof (a_ptr));

When compiled either with default settings or with the —xt aso flag, the
sample program prints the following:

A pointer is 8 bytes

When compiled with the —xt aso_short flag, this sample program prints
the following:

A pointer is 4 bytes

Syntactic Considerations

The size of pointers within macros is governed by the context in which the
macro is expanded. There is no way to specify pointer size as part of a
macro.

The size of pointersused in at ypedef that includes pointers as part of its
definition is determined when the t ypedef is declared, not when it is used.
Thus, if ashort pointer is declared as part of at ypedef definition, al
variables that are declared using that t ypedef will use a short pointer, even
if those variables are compiled in a context where long pointers are being
declared.

The aignment and padding rules for short pointers in structures are the same
as for long pointers; the only difference is in the sizes of the pointers.

Requirements

To use short pointers, the virtual address space in which the application runs
must be constrained such that all valid pointer values are representable in 31
bits. The —t aso linker flag enforces this constraint. Applications that use the
—Xxt aso compiler flag must be linked with the —t aso option.

Interaction with Other Languages

Only the C compiler supports the use of short pointers. Short pointers should
not be passed from C routines to routines written in other language.

Using 32-Bit Pointers on Digital UNIX Systems A-3

A.6 Conversion of Pointers and Other Issues

A.6.1

A.6.2

Because Digital UNIX is a 64-bit system, all applications must use 64-bit
pointers wherever pointer data is exchanged with the operating system or any
system-supplied libraries. Because normal applications use the standard
system data types, no conversion of pointers is needed. In an application that
uses short pointers, explicit conversion of the short pointers to long pointers
can be required.

Pointer Conversion

Conversion of pointers can be either explicit or implicit. An explicit
conversion occurs when the value of a short pointer is assigned to along
pointer, or vice versa. An implicit conversion occurs when a short pointer is
passed as an argument to a function that expects long pointers, or vice versa.
Implicit conversions only work correctly on simple pointers; complex
pointers (pointers to pointers) require explicit conversions.

In general, the conversion of complex pointers requires source code changes.
Alignment and segmentation faults result if complex pointers are not
correctly converted.

For example, the argument vector, ar gv, is a compound long pointer, and
must be declared as such. Many X11 library functions return compound long
pointers; the return values for these functions must be declared correctly or
erroneous behavior will result.

The poi nt er _si ze short pragma has no effect on the size of the second
argument to mai n() , traditionally called ar gv. This pragma always has a
size of 8 bytes even if the pragma has been used to set other pointer sizesto
4 bytes.

System Header Files

All Digital UNIX system routines operate on 64-bit pointers, so al system
routine declarations must be made in the context of a#pr agma
poi nt er _si ze | ong declaration.

You can avoid extensive modification of existing applications by modifying
all of the system header files on your Digital UNIX system by doing the
following:

» Add the following lines to beginning of the header files:

#pragma poi nter_size (save)
#pragma poi nter_size (long)

A—4 Using 32-Bit Pointers on Digital UNIX Systems

A.7

* Add the following line to the end of the header files:
#pragma poi nter_size (restore)

The following example scripts modify the system header files to declare
correctly all system routines that use long pointers. Before using these
scripts, be sure to back up your system disk.

To use these scripts, create the following files in one directory and change
their permissions to execut e. Thenrunthe xt aso_header _edi t script
with no arguments; it is automated and will modify all header files. Y ou must
be superuser on the system on which you want to perform the modifications.

xt aso_header _edit:

#1/bin/ csh

find /fusr/include ! -type | -name "*.h" \
-exec short_pointer-sed.csh {} \;

find /sys/include ! -type | -nane "*.h" \

-exec short_pointer-sed.csh {} \;

short _poi nter-sed. csh:

#!/ bi n/ csh

echo $1

sed -f short_ptr.sed $1 >/tnp/short_ptr.tnp
mv /tnp/short _ptr.tnp $1

short _ptr. sed:

1i \

#pragma poi nter_size save

li \

#pragma poi nter_size |ong

$a \

#pragma poi nter_size restore

Restrictions

Because most applications on Digital UNIX systems use addresses that are
not representable in 32 bits, the use of a short pointer in these applications
would cause these applications to fail. Thus, no library that might be called
by normal applications can contain short pointers. Vendors of software
libraries generally should not use short pointers.

Because the use of short pointers, in general, requires understanding and
knowledge of the application they are applied to, they are not recommended
as a porting aid. Applications for which you are considering the use of short
pointers should be ported to Digital UNIX first and then analyzed to see if
short pointers would be of benefit.

Using 32-Bit Pointers on Digital UNIX Systems A-5

The —t aso linker option that is required to link programs that make use of
short pointers imposes additional restrictions on the run-time environment
and how libraries may be used. See cc(1) for more information on the

—t aso option.

A—6 Using 32-Bit Pointers on Digital UNIX Systems

B.1

Differences in the System V Habitat B

This appendix describes how to achieve source code compatibility for C
language programs in the System V habitat. In addition, it provides a
summary of system calls and library functions that differ from the default
operating system.

Source Code Compatibility

To achieve source code compatibility for the C language programs, alter your
shell’s PATH environment variable and then compile and link your
applications.

When you modify the PATH environment variable, access to the System V
habitat works on two levels:

» Thefirst level results from the modified PATH environment variable
causing the System V versions of severa user commands to execute
instead of the default system versions.

» The second level results from executing the SystemV cc or | d
commands.

Executing the System V versions of the cc and | d commands causes source
code references to system calls and subroutines to be resolved against the
libraries in the System V habitat. If a subroutine or system call is not found
in the System V habitat, the referenceis resolved against the standard default
libraries and other libraries that you can specify with the commands. Also,
the include file search path is atered so that the System V versions of the
system header files (for example, / usr /i ncl ude files) are used instead of
the standard versions.

The library functions that invoke system calls use the system call table to
locate the system primitives in the kernel. The base operating system
contains several system call tables, including one for System V. The system
calls that exhibit System V behavior have entries in the System V partition of
the system call table.

When you link your program and your PATH is set for the System V habitat,
| i bsysb5 is searched to resolve referencesto system calls. As Figure B-1
illustrates, the unl i nk() system call invoked by | i bsys5 points to an
entry in the System V partition of the system call table. This mapsto a

different area of the kernel than the mapping for the default system
unl i nk() system call.

Figure B-1: System Call Resolution

libc.a
unlink()
system call
table
User Process
Base System default system
partition
unlink() kernel
default
system calls
libsys5.a
User Process unlink() SVID
System V partition
Habitat
"l unlinkQ

ZK-0814U-R

Thecc and | d commands that reside in the System V habitat are shell
scripts that, when specified, add several options to the default system cc and
| d commands before the commands are executed.

The cc command automatically inserts the - | pat h option on the command
line to specify the use of the SVID versions of system header files. For
example, the/ usr /i ncl ude file is used instead of the default version.
System header files that do not have SVID differences are obtained from the
default location.

Thecc and | d commands automatically include the following options:
* The- Lpat h option provides the path of the System V libraries.

* The-|sys5 optionindicatesthat thel i bsys5. a library should be
searched before the standard C library to resolve system call and
subroutine references.

* The-D__SVID__ option selectively turns on SVID specific behavior
from the default system.

B-2 Differences in the System V Habitat

B.2

By default, cc dynamically links programs using shared libraries when they
exist. The System V habitat provides| i bsys5. so in addition to
I i bsysb5. a to support this feature.

The System V version of the cc and | d commands pass all user-specified
command line options to the default system versions of thecc and | d
commands. This allows you to create library hierarchies. For example, if
your PATH environment variable is set to the System V habitat and your
program includes references to math library functionsand | i bl oc. a
functions located in the/ | ocal / | i b directory, you can compile the
program as follows:

% cc —non_shared —L/local/lib src.c -Im-lloc

The System V cc command takes the preceding command line and adds the
necessary options to search the System V habitat libraries, which are
searched prior to the default libraries. It aso includes any existing System V
header files instead of the standard header files for / usr /i ncl ude. Hence,
if your environment is set to SVID 2, the preceding command line is
processed as follows:

/bin/fcc -D_SVID _ -1$SVI D2PATH usr/incl ude -L$SVI D2PATH usr/1ib \
—non_shared —L/local/lib src.c -Im-lloc —Isys5

Using this command line, libraries are searched in the following order:
1. /Jusr/lib/libma

2. /local/lib/libloc.a

3. SVID2PATH usr/lib/1ibsys5.a

4. /fusr/lib/libc.a

The libraries that are searched and the order that they are searched in depends
on the function you are performing. For more information, see cc(1) and
[d(2).

Summary of System Calls and Library Routines

Table B-1 describes the behavior of the system calls in the System V habitat.
For a complete explanation of these system calls, refer to the reference pages
for each system call. Table B-2 describes the behavior of the library
functions in the System V habitat.

See the reference pages for complete descriptions of the system calls and
library routines.

Differences in the System V Habitat B—3

Table B-1: System Call Summary

System Call

I ongj np(2) and
setj np(2)
nmknod(2)

nmount (2sv) and
urmount (2sv)

open(2)

pi pe(2)

si gacti on(2) and
si gnal (2

si gpause(2)

si gset (2)

unl i nk(2)

System V Behavior

Saves and restores the stack only.

Provides the ability to create a directory, regular file, or
special file.

Takes different arguments than the default system version
and requires that the <sys/ t ypes. h> header fileis
included.

Note

To access the reference page for the System V
version of mount , make sure that the 2sv
section specifier is included on the man
command line.

Specifies that the O_NOCTTY flag is not set by default as
it isin the base system. Thus, if the proper conditions
exist, an open call to aterminal device will alow the
device to become the controlling terminal for the process.

Supports a pipe operation on STREAM S-based file
descriptors.

Specifies that the kernel pass additional information to the
signal handler. This includes passing the reason that the
signal was delivered (into the si gi nf o structure) and the
context of the calling process when the signal was
delivered into the ucont ext structure.

Unblocks the specified signal from the calling process's
signal mask and suspends the calling process until a signal
isreceived. The SIGKILL and SIGSTOP signals cannot
be reset.

Specifies that if the disposition for SIGCHLD is set to
SIG_IGN, the calling process's children cannot turn into
zombies when they terminate. If the parent subsequently
waits for its children, it blocks until all of its children
terminate. This operation then returns a value of -1 and
setser r no to [ECHILD].

Does not allow users (including superusers) to unlink
nonempty directories and sets er r no to ENOTEMPTY.
It allows superusers to unlink a directory if it is empty.

B-4 Differences in the System V Habitat

Table B-2: Library Function Summary

Library Functions System V Behavior

get cwd(3) Gets the name of the current directory.
char *getcwd(char * buffer, int size);

nkfi f o(3) Supports creation of STREAMS-based FIFO and uses
/ dev/ st r eans/ pi pe.

nkt emp(3) Uses the get pi d function to obtain the pi d part of the
unique name.

ttyname(3) Returns a pointer to a string with the pathname that begins
with / dev/ pt s/ when the terminal is a pseudoterminal
device.

Differences in the System V Habitat B—5

Dynamically Configurable Kernel
Subsystems C

Before the Digital UNIX system supported dynamically configurable
subsystems, system administrators managed kernel subsystems by editing
their system’s configuration file. Each addition or removal of a subsystem or
each change in a subsystem parameter required rebuilding the kernel, an often
difficult and time-consuming process. System administrators responsible for
a number of systems had to make changes to each system’s configuration file
and rebuild each kernel.

Dynamically configurable subsystems allow system administrators to modify
system parameters, and load and unload subsystems without editing files and
rebuilding the kernel. System administrators use the sysconf i g command
to configure the subsystems of their kernel. Using this command, system
administrators can load and configure, unload and unconfigure, reconfigure
(modify), and query subsystems on their local system and on remote systems.

When you create a new kernel subsystem or modify an existing kernel
subsystem, you can write the subsystem so that it is dynamically
configurable. This appendix explains how to make a subsystem dynamically
configurable by providing the following information:

» A conceptual description of a dynamically configurable subsystem

» A conceptua description of the attribute table, including example
attribute tables

* An explanation of creating a configuration routine, including an example
configuration routine

» A description of checking the operating system version humber to ensure
that the subsystem is compatible with it

» Instructions for building a loadable subsystem into the kernel for testing
purposes

* Instructions for building a static subsystem that allows run-time attribute
modification into the kernel for testing purposes

» Information about debugging a dynamically configurable subsystem
Device driver writers should note device-driver specific issues when writing

loadable device drivers. For information about writing loadable device
drivers, see Writing Device Drivers: Tutorial.

C.1 Overview of Dynamically Configurable Subsystems

Many Digital UNIX kernel subsystems are static, meaning that they are
linked with the kernel at build time. After the kernel is built, these
subsystems cannot be loaded or unloaded. An example of a static subsystem
is the vm (virtual memory) subsystem. This subsystem must be present in
the kernel for the system to operate correctly.

Some kernel subsystems are or can be loadable. A loadable subsystem is one
that can be added to or removed from the kernel without rebuilding the
kernel. An example of a subsystem that is loadable is the pr est o
subsystem, which is loaded only when the Prestoserve software is in use.

Both static and |oadable subsystems can be dynamically configurable.

» For a tatic subsystem, dynamically configurable means that selected
subsystem attributes can be modified without rebuilding the kernel. This
type of subsystem can also answer queries about the values of its
attributes and be unconfigured if it is not in use (however, it cannot be
unloaded).

» For aloadable subsystem, dynamically configurable means that the
subsystem is configured into the kernel at load time, can be modified
without rebuilding the kernel, and is unconfigured before it is unloaded.
This type of subsystem can also answer queries about its attributes.

Like traditional kernel subsystems, dynamically configurable subsystems
have parameters, called attributes. Examples of subsystem attributes are
timeout values, table sizes and locations in memory, and subsystem names.
Y ou define the attributes for the subsystem in an attribute table. (Attribute
tables are described in Section C.2.)

Before initially configuring a loadable subsystem, system administrators can
store values for attributes in the sysconf i gt ab database. This database is
stored inthe/ et ¢/ sysconfi gt ab file and is loaded into kernel memory
at boot time. The values stored in this database become the initial value for
the subsystem’s attributes, whether your subsystem has supplied an initial
value for the attribute. Figure C-1 demonstrates how initia attribute values
come from the sysconf i gt ab database.

C-2 Dynamically Configurable Kernel Subsystems

Figure C-1: System Attribute Value Initialization

Kernel Memory Space

Subsystem Code Kernel
name="Ten Item Tol" name= "Ten ltem Tb1" <— Name attribute receives value
from sysconfigtab database
size= 10 size= 10 -= size attribute receives value
| from sysconfigtab database
*table=NULL <t table attribute value is assigned
in subsystem code
ZK-0973U-R

Notice in Figure C-1 that the si ze attribute receivesitsinitial value from
the sysconf i gt ab database even though the subsystem initializes the
si ze attribute to zero.

Using an attribute table declared in the subsystem code, you control which of
the subsystem’s attribute values can be set at initial configuration. (For
information about how you control the attributes that can be set in the
sysconfi gt ab database, see Section C.2.)

In addition to being able to store attribute values for initial configuration,
system administrators can query and reconfigure attribute values at any time
when the subsystem is configured into the kernel. During a query request,
attribute values are returned to the system administrator. During a
reconfiguration request, attribute values are modified. How the return or
modification occurs depends upon how attributes are declared in the
subsystem code:

* |If the subsystem’s attribute table supplies the kernel with the address of
an attribute, the kernel can modify or return the value of that attribute.
Supplying an address to the kernel and letting the kernel handle the
attribute value is the most efficient way to maintain an attribute value.

Dynamically Configurable Kernel Subsystems C-3

» If the kernel has no access to the attribute value, the subsystem must
modify or return the attribute value. Although it is most efficient to let the
kernel maintain attribute values, some cases require the subsystem to
maintain the value. For example, the kernel cannot cal culate the value of
an attribute, so the subsystem must maintain values that need to be
calculated.

Again, you control which of the subsystem’s attribute values can be queried
or reconfigured, as described in Section C.2.

In addition to an attribute table, each dynamically configurable subsystem
contains a configuration routine. This routine performs tasks such as
calculating the values of attributes that are maintained in the subsystem. This
routine also performs subsystem-specific tasks, which might include, for
example, determining how large a table needs to be or storing memory
locations in local variables that can be used by the subsystem. (Section C.3
describes how you create the configuration routine.) The kernel calls the
subsystem configuration routine each time the subsystem is configured,
gueried, reconfigured, or unconfigured.

Any subsystem that can be configured into the kernel can also be
unconfigured from the kernel. When a system administrator unconfigures a
subsystem from the kernel, the kernel memory occupied by that subsystem is
freed if the subsystem is loadable. The kernel calls the subsystem
configuration routine during an unconfigure request to alow the subsystem to
perform any subsystem specific unconfiguration tasks. An example of a
subsystem specific unconfiguration task is freeing memory allocated by the
subsystem code.

C.2 Overview of Attribute Tables

The key to creating a good dynamically configurable subsystem is declaring a
good attribute table. The attribute table defines the subsystem’ s attributes,
which are similar to system parameters. (Examples of attributes are timeout
values, table sizes and locations in memory, and so on.) The attribute table
exists in two forms, the definition attribute table and the communication
attribute table:

» The definition attribute table is included in your subsystem code. It
defines the subsystem attributes. Each attribute definition is one element
of the attribute table structure. The definitions include the name of the
attribute, its data type, and a list of the requests that system
administrators are allowed to make for that attribute. The definition of
each attribute also includes its minimum and maximum values, and
optionally its storage location. The kernel uses the attribute definition as
it responds to configuration, reconfiguration, query, and unconfiguration
requests from the system administrator.

C-4 Dynamically Configurable Kernel Subsystems

c.z2l1

e The communication attribute table is used for communication between the
kernel and your subsystem code. Each element of this attribute table
structure carries information about one attribute. The information
includes the following:

— The name and data type of the attribute

— Therequest that has been made for an operation on that attribute
— The status of the request

— The value of the attribute.

This attribute table passes from the kernel to your subsystem each time
the system administrator makes a configuration, reconfiguration, query, or
unconfiguration request.

The reason for having two types of attribute tables is to save kernel memory.
Some of the information in the definition attribute table and the
communication attribute table (such as the name and datatypes of the
attributes) is the same. However, much of the information differs. For
example, the definition attribute table need not store the status of a request
because no requests have been made at attribute definition time. Likewise,
the communication attribute table does not need to contain a list of the
supported requests for each attribute. To save kernel memory, each attribute
table contains only the needed information.

Note

Attribute names defined in a subsystem attribute table must not
begin with the string net hod. This string is reserved for
naming attributes used in loadable device driver methods. For
more information about device driver methods, see Writing
Device Drivers: Tutorial.

The sections that follow explain both types of attribute tables by showing and
explaining their declaration in/ sys/ i ncl ude/ sys/ sysconfi g. h.

Definition Attribute Table

The definition attribute table has the datatype cf g_subsys_attr t,
which is a structure of attributes declared as follows in the
/ sys/incl udel/ sys/ sysconfi g. h file:

typedef struct cfg_attr {

char nanme[CFG ATTR_NAME_SZ]; 1
ui nt type; 2

ui nt operation; 3

what ever address; 4

ui nt mn; 5

ui nt max;

Dynamically Configurable Kernel Subsystems C-5

ui nt binl ength; 6
}cfg_subsys_attr_t;

1 The name of the attribute is stored in nane field. You choose this name,
which can be any string of aphabetic characters, with a length of between
two characters and the value stored in the CFG_ATTR_NANME_SZ
constant. The CFG_ATTR_NAME_SZ constant is defined in the
/ sys/incl udel/ sys/sysconfi g. h file.

2 You specify the attribute data type in this field, which can be one of the
data types listed in Table C-1.

Table C-1: Attribute Data Types

Data Type Name Description

CFG _ATTR _STRTYPE Null terminated array of characters (char *)
CFG _ATTR I NTTYPE 32-bit signed number (i nt)

CFG_ATTR Ul NTTYPE 32-bit unsigned number (unsi gned)
CFG_ATTR_LONGTYPE 64-bit signed number (I ong)

CFG_ATTR _ULONGTYPE 64-bit unsigned number

CFG_ATTR_BI NTYPE Array of bytes

3 Theoperati on field specifies the requests that can be performed on the
attribute. Y ou specify one or more of the request codes listed in Table
C-2in this field.

The CFG_OP_UNCONFIGURE request code has no meaning for
individual attributes because you cannot allow the unconfiguration of a
single attribute.

C-6 Dynamically Configurable Kernel Subsystems

Therefore, you cannot specify CFG_OP_UNCONFIGURE in the
oper ati on field.

Table C-2: Codes that Determine the Requests Allowed for an

Attribute
Request Code Meaning
CFG_OP_CONFI GURE The value of the attribute can be set when the
subsystem is initially configured.
CFG_OP_QUERY The value of the attribute can be displayed at any

time while the subsystem is configured.

CFG_OP_RECONFI GURE The value of the attribute can be modified at any
time while the subsystem is configured.

4 The addr ess field determines whether the kernel has access to the value
of the attribute.

If you specify an address in this field, the kernel can read and modify the
value of the attribute. When the kernel receives a query request from the
sysconfi g command, it reads the value in the location you specify in
this field and returns that value. For a configure or reconfigure request,
the kernel checks that the data type of the new value is appropriate for the
attribute and that the value falls within the minimum and maximum
values for the attribute. If the value meets these requirements, the kernel
stores the new value for the attribute. (Y ou specify minimum and
maximum values in the next two fields in the attribute definition.)

In some cases, you want or need to respond to query, configure, or
reconfigure reguests for an attribute in the subsystem code. In this case,
specify aNULL in this field. For more information about how you
control attribute values, see Section C.3.

5 Them n and max fields define the minimum and maximum allowed
values for the attribute. Y ou choose these values for the attribute.

The kernel interprets the contents of these two fields differently,
depending on the data type of the attribute. If the attribute is one of the
integer data types, these fields contain minimum and maximum integer
values. For attributes with the CFG_ATTR_STRTYPE data type, these
fields contain the minimum and maximum lengths of the string. For
attributes with the CFG_ATTR_BI NTYPE data type, these fields contain
the minimum and maximum numbers of bytes you can modify.

6 If you want the kernel to be able to read and modify the contents of a
binary attribute, you use the bi nl engt h field to specify the current size
of the binary data. If the kernel modifies the length of the binary data

Dynamically Configurable Kernel Subsystems C-7

stored in the attribute, it also modifies the contents of this field.

Thisfield is not used if the attribute is an integer or string or if you
intend to respond to query and reconfigure request for a binary attribute
in the configuration routine.

C.2.2 Example Definition Attribute Table

Example C-1 provides an example definition attribute table to help you
understand its contents and use. The example attribute table is for a fictional
kernel subsystem named t abl e_ngr. The configuration routine for the
fictional subsystem is shown and explained in Section C.3.

Example C-1: Example Attribute Table

#i ncl ude <sys/sysconfig. h>
#i ncl ude <sys/errno. h>

/*

* Initialize attributes
*/
static char nane[] = "Default Table";
static int size = 0;
static |ong *tabl e = NULL;
/*
* Declare attributes in an attribute table
*/
cfg_subsys_attr_t table_ngr_attrbutes[] = {
/*
* "nane" is the name of the table
*/
{"name", 1 CFG_ATTR_STRTYPE, 2

CFG_OP_CONFI GURE | CFG OP_QUERY | CFG OP_RECONFI GURE, 3
(caddr_t) nane, 4 2, sizeof(nane), 5 0 6 },

/*
* "size" indicates how |large the table should be
*/

{"size", CFG_ATTR_| NTTYPE,

CFG OP_CONFI GURE | CFG OP_QUERY | CFG OP_RECONFI GURE,
NULL, 1, 10, 0},

/*

* "table" is a binary representation of the table
*/

{"table", CFG_ATTR_BI NTYPE,

CFG_OP_QUERY,
NULL, O, O, O},
/*
* "element" is a cell in the table array

C-8 Dynamically Configurable Kernel Subsystems

Example C-1: (continued)
*/
{"element", CFG_ATTR_LONGTYPE,
CFG_OP_QUERY | CFG_OP_RECONFI GURE,
NULL, 0, 99, O},
{"",0,0,0,0,0, 0} /* required | ast el ement */
s
Thefina entry in the table, {"", 0, 0, 0, 0, 0, 0}, is an empty attribute.
This attribute signals the end of the attribute table and is required in al
attribute tables.

The first line in the attribute table defines the name of the table. This
atribute tableisnamed t abl e_ngr _attri but es. Thefollowing list
explains the fields in the attribute nane:

1 The name of the attribute is stored in the nane field, which is initialized
to Def aul t Tabl e by the data declaration that precedes the attribute
table.

2 The attribute data type is CFG_ATTR_STRTYPE, which is a null
terminated array of characters.

3 Thisfield specifies the operations that can be performed on the attribute.
In this case, the attribute can be configured, queried, and reconfigured.

4 Thisfield determines whether the kernel has access to the value of the
attribute.

If you specify an address in this field, as shown in the example, the
kernel can read and modify the value of the attribute. When the kernel
receives a query request from the sysconf i g command, it reads the
value in the location you specify in this field and returns that value. For
a configure or reconfigure request, the kernel checks that the data type of
the new value is appropriate for the attribute and that the value fals
within the minimum and maximum values for the attribute. If the value
meets these requirements, the kernel stores the new value for the attribute.
(Y ou specify minimum and maximum values in the next two fields in the
attribute definition.)

5 These two fields define the minimum allowed value for the attribute (in
this case, two), and the maximum allowed value for the attribute (in this
casg, si zeof (nane)).

If you want the minimum and maximum values of the attribute to be set
according to the system minimum and maximum values, you can use one
of the constants defined in the/ usr /i ncl ude/limts. hfile

6 If you want the kernel to be able to read and modify the contents of a
binary attribute, use this field to specify the current size of the binary
data. If the kernel modifies the length of the binary data stored in the
attribute, it also modifies the contents of this field.

Dynamically Configurable Kernel Subsystems C-9

Thisfield is not used if the attribute is an integer or string or if you

intend to respond to query and reconfigure request for a binary attribute
in the configuration routine.

C.2.3 Communication Attribute Table

The communication attribute table, which is declared in the
/ sys/includel/ sys/sysconfi g. h file, hasthecfg_attr_t data
type. As the following example shows, this data type is a structure of

attributes:
typedef struct cfg_attr {
char nanme[CFG_ATTR_NAME _SZ]; 1
ui nt type; 2
ui nt status; 3
ui nt operation; 4
| ong i ndex; 5
union { 6
struct {
caddr _t val;
ul ong mn_| en;
ul ong max_| en;
voi d (*di sposal) ();
}str;
struct {
caddr _t val;
ul ong m n_si ze;
ul ong max_si ze;
voi d (*di sposal) ();
ul ong val _si ze;
} bi n;
struct {
caddr _t val;
ul ong mn_|en;
ul ong max_| en;
}num
}attr;
}cfg_attr_t;

1 The name field specifies the name of the attribute, following the same
attribute name rules as the name field in the definition attribute table.

2 Thet ype field specifies the data type of the attribute, as listed in Table
C-1.

3 Thest at us field contains a predefined status code. Table C-3 lists the
possible status values.

C-10 Dynamically Configurable Kernel Subsystems

Table C-3: Attribute Status Codes

Status Code

CFG ATTR EEXI STS
CFG_ATTR_El NDEX
CFG_ATTR ELARGE
CFG_ATTR_EMEM
CFG_ATTR_EOP
CFG_ATTR_ESMALL
CFG ATTR ESUBSYS

CFG_ATTR_ETYPE
CFG_ATTR_SUCCESS

Meaning

Attribute does not exist.

Invalid attribute index.

Attribute value or size is too large.

No memory available for the attribute.

Attribute does not support the requested operation.
Attribute value or size is too small.

The kernel is disallowed from configuring,
responding to queries on, or reconfiguring the
subsystem. The subsystem code must perform the
operation.

Invalid attribute type or mismatched attribute type.
Successful operation.

4 Theoperati on field contains one of the operation codes listed in Table

C-2

Thei ndex field is an index into a structured attribute.
The at t r union contains the value of the attribute and its maximum and

minimum values.

For attributes with the CFG_ATTR_STRTYPE data type, the val

variable contains string data. The minimum and maximum values are the
minimum and maximum lengths of the string. The di sposal routineis
a routine you write to free the kernel memory when your application is

finished with it.

For attributes with the CFG_ATTR_BI NTYPE data type, the val field
contains a binary value. The minimum and maximum values are the
minimum and maximum numbers of bytes you can modify. The

di sposal routine is a routine you write to free the kernel memory
when your application is finished with it. val _si ze variable contains
the current size of the binary data.

For numerical data types, the val variable contains an integer value and
the minimum and maximum values are also integer values.

Dynamically Configurable Kernel Subsystems C-11

C.2.4 Example Communication Attribute Table

This section describes an example communication attribute table to help you
understand its contents and use. The example attribute table is for a fictional
kernel subsystem named t abl e_ngr. The configuration routine for the
fictional subsystem is shown and explained in Section C.3.

t abl e_ngr _confi gure(

cfg op_t op, /*Operation code*/ 1

caddr _t i ndat a, /*Data passed to the subsystent/ 2
ul ong i ndat a_si ze, /*Si ze of indata*/

caddr _t out dat a, /*Data returned to kernel */ 3

ul ong out dat a_si ze) /*Count of return data itens*/

{

The following list explains the fieldsin thet abl e_ngr _confi gure
communication attribute table:

1 The op variable contains the operation code, which can be one of the
following:

CFG_OP_CONFI GURE
CFG_OP_QUERY
CFG_OP_RECONFI GURE
CFG_OP_UNCONFI GURE

2 Thei ndat a structure delivers data of i ndat a_si ze to the
configuration routine. If the operation code is CFG_OP_CONFI GURE or
CFG_OP_QUERY the datais alist of attribute names that are to be
configured or queried. For the CFG_OP_RECONFI GURE operation code,
the data consists of attribute names and values. No datais passed to the
configuration routine when the operation code is
CFG_OP_UNCONFI GURE.

3 Theout dat a structure and the out dat a_si ze variables are
placeholders for possible future expansion of the configurable subsystem
capabilities.

C.3 Creating a Configuration Routine

To make the subsystem configurable, you must define a configuration routine.
This routine works with the definition attribute table to configure,
reconfigure, answer queries on, and unconfigure the subsystem.

Depending upon the needs of the subsystem, the configuration routine might
be simple or complicated. Its purpose is to perform tasks that the kernel
cannot perform for you. Because you can inform the kernel of the location
of the attributes in the definition attribute table, it is possible for the kernel to
handle all configure, reconfigure, and query requests for an attribute.
However, the amount of processing done during these requests is then
limited. For example, the kernel cannot calculate the value of an attribute for

C-12 Dynamically Configurable Kernel Subsystems

you, so attributes whose value must be calculated must be handled by a
configuration routine.

The sections that follow describe an example configuration routine. The
example routine is for afictional t abl e_ngr subsystem that manages a
table of binary values in the kernel. The configuration routine performs these
tasks:

» Allocates kernel memory for the table at initial configuration

» Handles queries about attributes of the table

* Modifies the size of the table when requested by the system administrator
» Frees kernel memory when unconfigured

* Returns to the kernel

Source code for this subsystem is included on the system in the

[usr/ exanpl es/ cf gngr directory. The definition attribute table for this
subsystem is shown in Section C.2.2. The communication attribute table for
this subsystem is shown in Section C.2.4.

C.3.1 Performing Initial Configuration

At initial configuration, thet abl e_ngr subsystem creates a table that it
maintains. As shown in Example C-1, the system administrator can set the
name and size of the table at initial configuration. To set these values, the
system administrator stores the desired valuesin the sysconfi gt ab
database.

The default name of the table, defined in the subsystem code, is Def aul t
Tabl e. The default size of the table is zero elements.

The following example shows the code that is executed during the initial
configuration of thet abl e_ngr subsystem:

switch(op){ 1
case CFG_OP_CONFI GURE

attributes = (cfg_attr_t*)indata; 2

for (i=0; i<indata_size; i++){ 3
if (attributes[i].status == CFG_ATTR_ESUBSYS) { 4

if (!'strcnp("size", attributes[i].nanme)){ 5
/* Set the size of the table */
table = (long *) kalloc(attributes[i].attr.numval *sizeof(long)); 6

/*
* Make sure that menory is available
*/

if (table == NULL) { 7

Dynamically Configurable Kernel Subsystems C-13

attributes[i].status = CFG_ ATTR_EMEM

conti nue;
}
/*
* Success, so update the new table size and attribute status
*/
size = attributes[i].attr.numval; 8
attributes[i].status = CFG ATTR_SUCCESS;
conti nue;

br eak;

1 The configuration routine contains aswi t ch statement to allow the
subsystem to respond to the various possible operations. The subsystem
performs different tasks, depending on the value of the op variable.

2 This statement initializes the pointer at t ri but es. The configuration
routine can nhow manipulate the data it was passed in the i ndat a
structure.

3 Thef or loop examines the status of each attribute passed to the
configuration routine.

4 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must configure that attribute.

5 For theinitia configuration, the only attribute that needs to be
manipulated is the si ze attribute. The code within thei f statement is
executed only when the si ze attribute is the current attribute.

6 When the status field contains CFG_ATTR_ESUBSYS and the attribute
name field contains si ze, the local variablet abl e receives the address
of an area of kernel memory. The area of kernel memory must be large
enough to store a table of the size specified in
attributes[i].attr.num val. Thevaue specified in
attributes[i].attr.num val isaninteger that specifies the
number of longwords in the table. The kernel reads the integer value
from the sysconf i gt ab database and passes it to the configuration
routine in theat t r union.

7 Thekal | oc routine returns NULL if it is unable to allocate kernel
memory. If no memory has been alocated for the table, the configuration
routine returns CFG_ATTR_EMEM indicating that no memory was
available. When this situation occurs, the kernel displays an error
message. The subsystem is configured into the kernel, but the system
administrator must use the sysconf i g command to reset the size of the
table.

C-14 Dynamically Configurable Kernel Subsystems

8 If kernel memory is successfully allocated, the table size from the
sysconfi gt ab fileis stored in the static external variablesi ze. The
subsystem can now use that value for any operations that require the size
of the table.

C.3.2 Responding to Query Requests

During a query request, a user of thet abl e_ngr subsystem can request
that the following be displayed:

* The name of the table

* Thetablesize

* Thetableitself

* A single element of the table

As shown in Example C-1, the nane attribute declaration includes an
address ((caddr _t) nan®) that allows the kernel to access the name of
the table directly. Asaresult, no code is needed in the configuration routine
to respond to a query about the name of the table.

The following example shows the code that is executed as part of a query
request:
switch (op):

case CFG_OP_QUERY:
/*
* indata is a list of attributes to be queried, and
* indata_size is the count of attributes
*/
attributes = (cfg_attr_t *) indata; 1

for (i =0; i <indata_size; i++) { 2
if (attributes[i].status == CFG_ATTR ESUBSYS) { 3

/*

* W& need to handle the query for the follow ng
* attributes.

*/

if (!I'strcnp(attributes[i].nane, "size")) { 4

/*

* Fetch the size of the table.

*/

attributes[i].attr.numval = (long) size;
attributes[i].status = CFG_ATTR_SUCCESS;
conti nue;

Dynamically Configurable Kernel Subsystems C-15

if (!strcnp(attributes[i].nane, "table")) { 5

/*

* Fetch the address of the table, along with its size.
*/

attributes[i].attr.bin.val = (caddr_t) table;
attributes[i].attr.bin.val _size = size * sizeof (long);
attributes[i].status = CFG_ATTR_SUCCESS;

conti nue;

}

if (!strcnp(attributes[i].nane, "element")) { 6
/*
* Make sure that the index is in the right range.
*/
if (attributes[i].index <1 || attributes[i].index > size) {

attributes[i].status = CFG_ATTR_EI NDEX;

conti nue;
}
/*
* Fetch the el enent.
*/
attributes[i].attr.numval = table[attributes[i].index - 1];
attributes[i].status = CFG_ATTR_SUCCESS;
conti nue;

}

}

}
br eak;

1 This statement initializes the pointer at t r i but es. The configuration
routine can now manipulate the data that was passed to it in thei ndat a
structure.

2 Thef or loop examines the status of each attribute passed to the
configuration routine.

3 If the status field for the attribute contains the CFG_ATTR _ESUBSYS
status, the configuration routine must respond to the query request for that
attribute.

4 When the current attribute is si ze, this routine copies the value stored in
the si ze variableinto the val field of theat t r union
(attributes[i].attr.num val). Becausethesi ze variableis
an integer, the numportion of the union is used.

This routine then stores the status CFG_ATTR_SUCCESS in the status
fildattri butes[i]. status.

C-16 Dynamically Configurable Kernel Subsystems

5 When the current attribute ist abl e, this routine stores the address of the
tablein theval field of theat t r union. Because this attribute is
binary, the bi n portion of the union is used and the size of the tableis
stored intheval _si ze field. The size of the table is calculated by
multiplying the current table size, si ze, and the size of alongword.

The st at us field is set to CFG_ATTR_SUCCESS, indicating that the
operation was successful.

6 When the current attribute is el ement , this routine stores the value of
an element in the table into the val field of theat t r union. Each
element is alongword, so the numportion of the at t r union is used.

If the index specified on the sysconfi g command line is out of range,
the routine stores CFG_ATTR_EI NDEX into the status field. When this
situation occurs, the kernel displays an error message. The system
administrator must retry the operation with a different index.

When the index isin range, the st at us field is set to
CFG_ATTR_SUCCESS, indicating that the operation is successful.

C.3.3 Responding to Reconfigure Requests

A reconfiguration request modifies attributes of the t abl e_ngr subsystem.
The definition attribute table shown in Example C-1 allows the system
administrator to reconfigure the following t abl e_ngr attributes:

e The name of the table
* The size of the table
e The contents of one element of the table

As shown in Example C-1, the nane attribute declaration includes an
address ((caddr _t) nan®e) that allows the kernel to access the name of
the table directly. Thus, no code is needed in the configuration routine to
respond to a reconfiguration request about the name of the table.

The following example shows the code that is executed during a
reconfiguration request:

swi tch(op){

case CFG_OP_RECONFI GURE:
/*
* The indata paraneter is a list of attributes to be
* reconfigured, and indata_size is the count of attributes.
*/
attributes = (cfg_attr_t *) indata; 1

for (i =0; i <indata_size; i++) { 2

Dynamically Configurable Kernel Subsystems C-17

if (attributes[i].status == CFG ATTR ESUBSYS) { 3

/*

* We need to handl e the reconfigure for the follow ng
* attributes.

*/

if (!strcnp(attributes[i].nane, "size")) { 4

| ong *new_t abl e;
i nt new_si ze;
/*
* Change the size of the table.
*/

new size = (int) attributes[i].attr.numval; 5
new table = (long *) kalloc(new_ size * sizeof(long));

/*
* Make sure that we were able to allocate nenory.
*/
if (new_table == NULL) { 6
attributes[i].status = CFG_ATTR_EMEM
conti nue;

}

/*
* Update the new table with the contents of the old one,
* then free the nenory for the old table.
*/
if (size) { 7
bcopy(tabl e, new_table, sizeof(long) *
((size < new_size) ? size : new_size));
kfree(table);
}

/*

* Success, so update the new table address and si ze.
*/

table = new table; 8

size = new_si ze;

attributes[i].status = CFG_ATTR_SUCCESS;

conti nue;
}
if (!strcnp(attributes[i].nane, "elenent")) { 9
/*
* Make sure that the index is in the right range.
*/
if (attributes[i].index <1 || attributes[i].index > size) {10
attributes[i].status = CFG _ATTR_EI NDEX;
conti nue;
}

C-18 Dynamically Configurable Kernel Subsystems

/*
* Update the el enent.
*/

table[attributes[i].index - 1] = attributes[i].attr.numval; 11
attributes[i].status = CFG_ATTR_SUCCESS;
conti nue;
}
}
br eak;

1 This statement initializes the pointer at t r i but es. The configuration
routine can now manipulate the data that was passed to it in the i ndat a
structure.

2 Thef or loop examines the status of each attribute passed to the
configuration routine.

3 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must reconfigure that attribute.

4 When the current attribute is si ze, the reconfiguration changes the size
of the table. Because the subsystem must ensure that kernel memory is
available and that no data in the existing table is lost, two new variables
are declared. The new_t abl e and new_si ze variables store the
definition of the new table and new table size.

5 Thenew_ si ze variable receives the new size, which is passed in the
attributes[i].attr.num val field. Thisvaue comesfrom the
sysconfi g command line.

The new_t abl e variable receives an address that points to an area of
memory that contains the appropriate number of bytes for the new table
size. The new table size is calculated by multiplying the value of the
new_si ze variable and the number of bytesin alongword (si zeof

(1 ong))

6 Thekal | oc routine returns NULL if it was unable to allocate kernel
memory. If no memory has been alocated for the table, the configuration
routine returns CFG_ATTR_EMEM indicating that no memory was
available. When this situation occurs, the kernel displays an error
message. The system administrator must reissue the sysconfi g
command with an appropriate value.

7 Thisif statement determines whether atable exists. If one does, then
the subsystem copies data from the existing table into the new table. It
then frees the memory that is occupied by the existing table.

Dynamically Configurable Kernel Subsystems C-19

C34

8 Finaly, after the subsystem is sure that kernel memory has been allocated

and data in the existing table has been saved, it moves the address stored
innew t abl e intot abl e. It also moves the new table size from
new si ze into si ze.

The st at us field is set to CFG_ATTR_SUCCESS, indicating that the
operation is successful.

9 When the current attribute is el enent , the subsystem stores a new table

element into the table.

10 Beforeit stores the value, the routine checks to ensure that the index

specified is within avalid range. If the index is out of the range, the
routine stores CFG_ATTR_EIl NDEX in the status field. When this
situation occurs, the kernel displays an error message. The system
administrator must retry the operation with a different index.

11 When the index is in range, the subsystem stores the val field of the

attr union into an element of the table. Each element is alongword, so
the numportion of theat t r union is used.

The st at us field is set to CFG_ATTR_SUCCESS indicating that the
operation is successful.

Performing Subsystem-Defined Operations

Thet abl e_ngr subsystem defines an application-specific operation that
doubles the value of al fieldsin the table.

When a subsystem defines its own operation, the operation code must be in
the range of CFG_OP_SUBSYS_M N and CFG_OP_SUBSYS_MAX, as
defined in the <sys/ sysconfi g. h> file. When the kernel receives an
operation code in this range, it immediately transfers control to the subsystem
code. The kernel does no work for subsystem-defined operations.

When control transfers to the subsystem, it performs the operation, including
manipulating any data passed in the request.
The following example shows the code that is executed in response to a
reguest that has the CFG_OP_SUBSYS_M N value:

switch (op) {

" case CFG OP SUBSYS M N:

/*

* Doubl e each el enent of the table.

*/

for (i=0; ((table != NULL) && (i < size)); i++)
table[i] *= 2;

C-20 Dynamically Configurable Kernel Subsystems

br eak;

}.
The code doubles the value of each element in the table.

C.3.5 Unconfiguring the Subsystem

When thet abl e_ngr subsystem is unconfigured, it frees kernel memory.
The following example shows the code that is executed in response to an
unconfiguration regquest:

swi tch(op){

case CFG_OP_UNCONFI GURE:
/*
* Free up the table if we allocated one.
*/
if (size)
kfree(table, size*sizeof(long));
size = 0;
br eak;

}
ret urn ESUCCESS;
}

This portion of the configuration routine determines whether memory has
been alocated for atable. If it has, the routine frees the memory using
kf r ee function.

C.3.6 Returning from the Configuration Routine

The following example shows the r et ur n statement for the configuration
routine.

swi tch(op){

size = 0;
br eak;

}
ret urn ESUCCESS;

The subsystem configuration routine returns ESUCCESS on completing a
configuration, query, reconfigure, or unconfigure request. The way this
subsystem is designed, no configuration, query, reconfiguration, or
unconfiguration request, as awhole, fails. As shown in the examplesin

Dynamically Configurable Kernel Subsystems C-21

Section C.3.1 and Section C.3.3, operations on individual attributes might
fail.

In some cases, you might want the configuration, reconfiguration, or
unconfiguration of a subsystem to fail. For example, if one or more key
attributes failed to be configured, you might want the entire subsystem

configuration to fail. The following example shows a return that has an error
value:

swi tch(op){

if (table == NULL) {
attributes[i].status = CFG_ ATTR_EMEM
return ENOVEM /*Return message from errno. h*/

}

Thei f statement in the example tests whether memory has been allocated
for the table. If no memory has been allocated for the table, the subsystem
returns with an error status and the configuration of the subsystem fails. The
following messages, as defined in the

/ sys/includel/sys/sysconfig.hand/usr/include/errno.h
files, are displayed:

No nenory available for the attribute

Not enough core

The system administrator must then retry the subsystem configuration by
reissuing the sysconf i g command.

Any nonzero return status is considered an error status on return from the
subsystem. The following list describes what occurs for each type of request
if the subsystem returns an error status:

* Aneror on return from initial configuration causes the subsystem to not
be configured into the kernel.

* An error on return from a query request causes no data to be displayed.

* An error on return from an unconfiguration request causes the subsystem
to remain configured into the kernel.

C.4 Allowing for Operating System Revisions in
Loadable Subsystems

When you create a loadable subsystem, you should add code to the
subsystem to check the operating system version number. This code ensures
that the subsystem is not loaded into an operating system whose version is
incompatible with the subsystem.

C-22 Dynamically Configurable Kernel Subsystems

C.5

Operating system versions that are different in major ways from the last
version are called major releases of the operating system. Changes made to
the system at a major release can cause the subsystem to operate incorrectly,
so you should test and update the subsystem at each major operating system
release. Also, you might want to take advantage of new features added to the
operating system at a major release.

Operating system versions that are different in minor ways from the last
version are called minor releases of the operating system. In genera, the
subsystem should run unchanged on a new version of the operating system
that is a minor release. However, you should still test the subsystem on the
new version of the operating system. Y ou might want to consider taking
advantage of any new features provided by the new version.

To alow you to check the operating system version number, the Digital
UNIX system provides the global kernel variablesver si on_naj or and
ver si on_m nor . The following example shows the code you use to test
the operating system version:

extern int version_ngjor;
extern int version_mnor;

if (version_major != 3 && version_minor != 0)
return EVERSI ON,

The code in this example ensures that the subsystem is running on the
Version 3.0 release of the operating system.

Building and Loading Loadable Subsystems

After you have written a loadable subsystem, you must build it and configure
it into the kernel for testing purposes. This section describes how to build
and load a loadable subsystem. For information about how to build a static
subsystem that allows run-time attribute configuration, see Section C.6.

The following procedure for building dynamically |oadable subsystems
assumes that you are building a subsystem named t abl e_ngr, which is
contained in the filest abl e_ngr. c andt abl e_dat a. c. To build this
subsystem, follow these steps:

1. Move the subsystem source files into a directory in the/ usr/ sys area

nkdir /usr/sys/ mysubsys
cp table_ngr.c /usr/sys/nysubsys/table_ngr.c
cp table_data.c /usr/sys/ nysubsys/table_data.c

Y ou can replace the nysubsys directory name with the directory name
of your choice.

Dynamically Configurable Kernel Subsystems C-23

2. Editthe/ usr/sys/conf/fil es fileusing the text editor of your
choice and insert the following lines:

#

tabl e_nmgr subsystem

#

MODULE/ DYNAM C/ t abl e_ngr optional table_ngr Binary
nysubsys/table_ngr.c nodul e tabl e_ngr
nysubsys/tabl e_data.c nodul e tabl e_ngr

Theentry inthef i | es file describes the subsystem to the confi g
program. The first line of the entry contains the following information:

— The MODULE/ DYNAM C/ t abl e_ngr token indicates that the
subsystem is a dynamic kernel module (group of objects) named
tabl e_ngr.

— Theoptional keyword indicates that the subsystem is not required
into the kernel.

— Thet abl e_ngr identifier is the token that identifies the subsystem
onthesysconfi g and aut osysconfi g command lines. Use
caution when choosing this name to ensure that it is unique with
respect to other subsystem names. You can list more than one name
for the subsystem.

— TheBi nary keyword indicates that the subsystem has already been
compiled and object files can be linked into the target kernel.

Succeeding lines of thef i | es file entry give the pathname to the source
files that compose each module.

3. Generate the Makefile and related header files by issuing the following
command:

[usr/sys/conf/sourceconfig Bl NARY
4. Changetothe/ usr/ sys/ Bl NARY directory and build the module as
follows:
cd /usr/sys/ Bl NARY
make tabl e_ngr. nod

5. When the module builds without errors, move it into the / subsys
directory so that the system can load it:

cp table_ngr.nod /subsys/

6. Load the subsystem by using either the/ sbi n/ sysconfi g command
or the/ sbi n/init.d/ aut osysconfi g command.

The following shows the command line you would use to load and

C-24 Dynamically Configurable Kernel Subsystems

configure thet abl e_ngr subsystem:
[sbin/sysconfig -c table_ngr

If you want the subsystem to be configured into the kernel each time the
system reboots, issue the following command:

/sbin/init.d/autosysconfig add tabl e_ngr

The aut osysconfi g command adds thet abl e_ngr subsystem to
the list of subsystems that are automatically configured into the kernel.

C.6 Building a Static Configurable Subsystem Into the
Kernel

After you have written a static subsystem that allows run-time attribute
configuration, you must build it into the kernel for testing purposes. This
section describes how to build a static subsystem that supports the dynamic
configuration of attributes.

The following procedure for building dynamically loadable subsystems
assumes that you are building a subsystem named t abl e_ngr , which is
contained in thefilet abl e_mgr . c:

1. Move the subsystem source files into a directory in the/ usr/ sys area

nkdir /usr/sys/ nmysubsys
cp table_ngr.c /usr/sys/nysubsys/table_ngr.c
cp table_data.c /usr/sys/mysubsys/table_data.c

Y ou can replace the nysubsys directory name with the directory name
of your choice.

2. Editthe/ usr/sys/ conf/fil es fileusing the text editor of your
choice and insert the following lines:

#

tabl e_nmgr subsystem

#

MODULE/ STATI C/ t abl e_ngr optional table_ngr Binary
nysubsys/table_ngr.c nodul e tabl e_ngr
nysubsys/tabl e_data.c nodul e tabl e_ngr

Theentry inthef i | es file describes the subsystem to the confi g
program. The first line of the entry contains the following information:

— The MODULE/ STATI C/ t abl e_ngr token indicates that the
subsystem is a static kernel module (group of objects) named
tabl e_ngr.

— Theopti onal keyword indicates that the subsystem is not required
in the kernel.

Dynamically Configurable Kernel Subsystems C-25

— Thet abl e_ngr identifier is the token that identifies the subsystem
in the system configuration file. Use caution when choosing this
name to ensure that it is unigue with respect to other subsystem
names. You can list more than one name for the subsystem.

— TheBi nary keyword indicates that the subsystem has already been
compiled and object files can be linked into the target kernel.

Succeeding lines of thef i | es file entry give the pathname to the source
files that compose each module.

3. Rebuild the kernel by running the / usr/ sbi n/ doconfi g program:
[usr/sbin/doconfig

4. Enter the name of the configuration file at the following prompt:

*** KERNEL CONFI GURATI ON AND BUI LD PROCEDURE ***
Enter a nane for the kernel configuration file. [MYSYS]:
MYSYS. TEST

For purposes of testing the kernel subsystem, enter a new name for
the configuration file, such as MYSYS.TEST. Giving the

doconf i g program a new configuration file name allows the
existing configuration file to remain on the system. Y ou can then
use the existing configuration file to configure a system that omits
the subsystem you are testing.

5. Select option 15 from the Kernel Option Selection menu. Option 15
indicates that you are adding no new kernel options.

6. Indicate that you want to edit the configuration file in response to the
following prompt:
Do you want to edit the configuration file? (y/n) [n] yes
The doconf i g program then starts the editor. (To control which editor
isinvoked by doconf i g, define the EDI TOR environment variable.)
Add the identifier for your subsystem, in this caset abl e_ngr, to the
configuration file:

options TABLE_MGR

After you exit from the editor, the doconf i g program builds a new
configuration file and a new kernel.

7. Copy the new kernel into the root (/) directory:
cp /usr/sys/ MYSYS_TEST/ vruni x /vmuni x

C-26 Dynamically Configurable Kernel Subsystems

8. Shutdown and reboot the system:
shutdown -r now

Note

Y ou can specify that the module is required in the kernel by
replacing the opt i onal keyword with the st andar d
keyword. Using the st andar d keyword saves you from
editing the system configuration file. The following fi | es file
entry is for arequired kernel module, one that is built into the
kernel regardless of its inclusion in the system configuration file:

#

tabl e_ngr subsystem

#

MODULE/ STATI C/ t abl e_ngr standard Binary
nysubsys/table_ngr.c nodul e tabl e_ngr
nysubsys/tabl e_data. c nodul e tabl e_ngr

When you make an entry such as the preceeding one in the
fil es file, you add the subsystem to the kernel by issuing the
following doconf i g command, on a system named MYSYS:

[usr/sbin/doconfig -c MYSYS

Replace MYSYS with the name of the system configuration filein
the preceeding command.

This command builds a vimuni x kernel that is described by the
existing system configuration file, with the addition of the subsystem
being tested, in this case, thet abl e_ngr subsystem.

C.7 Testing Your Subsystem

You can use the sysconf i g command to test configuration,
reconfiguration, query, and unconfiguration requests on the configurable
subsystem. When you are testing the subsystem, issue the sysconfi g
command with the optional —v flag. This flag causesthe sysconfi g
command to display more information than it normally does. The command
displays, on the/ dev/ consol e screen, information from the cf gngr
configuration management server and the kernel loading software (which is
caled kl oadsr v). Information from the kernel loading software is
especially useful in determining the names of unresolved symbols that caused
the load of a subsystem to fail.

In most cases, you can use dbx, kdebug, and kdbx to debug kernel
subsystems just as you use them to test other kernel programs. If you are
using the kdebug debugger through the dbx —r enpt e command, the
subsystem’s . nod file must be in the same location on the system running

Dynamically Configurable Kernel Subsystems C-27

dbx and the remote test system. The source code for the subsystem should
be in that same location on the system running dbx. For more information
about the setup required to use the kdebug debugger, see the Kernel
Debugging manual.

If the subsystem is dynamically loadable and has not been loaded when you
start dbx, you must issue the dbx addobj command to allow the debugger
to determine the starting address of the subsystem. |f the debugger does not
have access to the starting address of the subsystem, you cannot use it to
examine the subsystem data and set breakpoints in the subsystem code. The
following procedure shows how to invoke the dbx debugger, configure the

t abl e_ngr . nod subsystem, and issue the addobj command:

1. Invoke the dbx debugger:

dbx -k /vmuni x
dbx version 3.11.4
Type 'hel p’° for help.

stopped at [thread_bl ock: 1542 , Oxfffffc00002f 5334]
(dbx)

2. Issuethe sysconfi g command to initially configure the subsystem:
sysconfig -c table_ngr

3. Issuethe addobj command as shown:

(dbx) addobj /subsys/table_ngr.nod
(dbx) p & able_mgr_configure
oxffffffff895aa000

Be sure to specify the full pathname to the subsystem on the addobj
command line. (If the subsystem is loaded before you begin the dbx
session, you do not need to issue the addobj command.)

If you want to set a breakpoint in the portion of the subsystem code that
initially configures the subsystem, you must issue the addobj command
following the load of the subsystem, but before the kernel cals the
configuration routine. To stop execution between the load of the subsystem
and the call to its configuration routine, set a breakpoint in the special
routing, subsys_preconfi gure. The following procedure shows how to
set this breakpoint:

1. Invoke the dbx debugger and set a breakpoint in the

C-28 Dynamically Configurable Kernel Subsystems

subsys_preconfi gur e routine, as follows:

dbx -renote /vnmunix
dbx version 3.11.4
Type 'hel p’° for help.

stopped at [thread_bl ock: 1542 , Oxfffffc00002f 5334]
(dbx) stop in subsys_preconfigure
(dbx) run

Issue the sysconf i g command to initially configure thet abl e_ngr
subsystem:

sysconfig -c table_ngr

Issue the addobj command and set a breakpoint in the configuration
routine:

[5] stopped at [subsys_preconfi gure: 1546

, Oxfffffc0000273c58] (dbx) addobj /subsys/table_ngr.nod

(dbx) stop in table_ngr_configure

[6] stop in table_mgr_configure

(dbx) conti nue

[6] stopped at [tabl e_ngr_configure: 47 ,0xffffffff895aa028]
(dbx)

When execution stops in the subsys_pr econf i gur e routine, you can
use the dbx stack trace command, t r ace, to ensure that the
configuration request is for the subsystem that you are testing. Then, set
the breakpoint in the subsystem configuration routine.

Dynamically Configurable Kernel Subsystems C-29

Optimizing Techniques (MIPS-Based C

D.1

D.2

D.3

Compiler) D

This appendix describes the optimization phases of the —ol dc version of the
C compiler and their benefits.

Global Optimizer

The global optimizer (uopt) is asingle program that improves the
performance of object programs by transforming existing code into more
efficient coding sequences. Although the same optimizer processes
optimizations for all languages, it does distinguish between the various
languages to take advantage of the different language semantics involved.

The primary benefits of optimization are faster running programs and smaller
object code size. However, the optimizer can also speed up development
time. For example, coding time can be reduced by leaving it up to the
optimizer to relate programming details to execution-time efficiency. This
allows you to focus on the more crucial global structure of your program.
Programs often yield optimizable code sequences regardliess of how well a
program is written.

Optimizer Effects on Debugging

Optimize your programs only after they are fully developed and debugged.
Although the optimizer does not alter the flow of control within a program, it
may move operations so that the object code does not correspond to the
source code. These changed sequences of code may create confusion when
using the debugger.

Loop Optimization by the Optimizer

Optimizations are most useful in code that contains loops. The optimizer
moves loop-invariant code sequences outside loops so that they are
performed only once instead of multiple times. Apart from loop-invariant
code, loops often contain loop-induction expressions that can be replaced
with simple increments. In programs composed of many |loops, global
optimization can often reduce the run time by half.

D.4

D.5

D.6

Register Allocation by the Optimizer

Register usage has a significant impact on program performance. For
example, fetching a value from aregister is significantly faster than fetching
avaue from storage. Thus, to perform its intended function, the optimizer
must make the best possible use of registers.

In alocating registers, the optimizer selects those data items that are most
suited for placement in registers, taking into account their frequency of use
and their location in the program structure. In addition, the optimizer assigns
values to registers so that their contents move minimally within loops and
during procedure invocations.

Optimizing Separate Compilation Units

The optimizer processes one procedure at atime. Large procedures offer
more opportunities for optimization because more interrelationships are
exposed in terms of constructs and regions.

The ul d and uner ge phases of the compiler permit global optimization
among separate units in the same compilation. Often, programs are divided
into separate files that are compiled separately and referred to as modules or
compilation units. Compiling them separately saves time during program
development because a change requires recompilation of only one module,
not the entire program.

Traditionally, program modularity restricted the optimization of code to a
single compilation unit at atime. For example, calls to procedures that
reside in other modules could not be fully optimized with the code that called
them. Theul d and unmer ge phases of the compiler system overcome this
deficiency. The ul d phase links multiple compilation units into a single
compilation unit. Then, uner ge orders the procedures for optimal
processing by the global optimizer (uopt).

Optimization Options

Table D-1 summarizes the functions of each of the —O options to thecc -
ol dc command.

D-2 Optimizing Techniques (MIPS-Based C Compiler)

D.7

Table D-1: Compiler Optimization Options

Option Result

-3 The ul d and urrer ge phases process the output from the compilation
phase of the compiler, which produces symbol table information and
the program text in an internal format called ucode.

The ul d phase combines all the ucode files and symbol tables, and
passes control to urrer ge. The urer ge phase reorders the ucode for
optimal processing by uopt . Upon completion, uner ge passes
control to uopt , which performs global optimizations on the program.

-2 The ul d and uner ge phases are bypassed and only the global
optimizer (uopt) phase executes. It performs optimization only
within the bounds of individual compilation units.

-0 Theul d, uner ge, and uopt phases are bypassed. However, the
code generator and the assembler perform basic optimizationsin a
more limited scope.

-Q0 Theul d, uner ge, and uopt phases are bypassed, and the assembler
bypasses certain optimizations that it normally performs.

Full Optimization (-O3)
The following examples assume that the program pr ogl consists of three
files; a.c,b.c,andc. c.

To perform procedure merging optimizations —C3 on all three files, enter the
following command:

%cc -oldc -G8 -0 progl a.c b.c c.c
If you normally use the —c option to compile the object file (. 0), follow
these steps:

1. Compile each file separately using the —j option by entering the
following commands:

%cc -oldc -j a.c
%cc -oldc -j b.c
%cc -oldc -j c.c

The—j option causes the compiler driver to produce a . u file. None of
the remaining compiler phases are executed.

The . u file contains the standard output of the first pass of the compiler
(which is referred to as the front end of the compiler). The file is written
in ucode, an internal language used by the compiler.

Optimizing Techniques (MIPS-Based C Compiler) D-3

2. Enter the following command to perform optimization and complete the
compilation process:

%cc -oldc -G8 -0 progl a.u b.u c.u

D.8 Optimizing Large Procedures

To ensure that all procedures are optimized regardless of size, specify the
—A i mt option at compilation time.

Because compilation time increases by the square of the procedure size, the
compiler system enforces a top limit on the size of a procedure that can be
optimized. This limit was set for the convenience of users who place a
higher priority on the compilation turnaround time than on optimizing an
entire procedure. The—A i m t option removes the top limit and alows
those users who do not mind a long compilation to fully optimize their
procedures.

D.9 Optimizing Frequently Used Modules

Y ou may want to optimize modules that are frequently called from other
programs to reduce the compilation and optimization time required for
programs calling these modules.

In the examples that follow, b. ¢ and c. ¢ represent two frequently used
modules to be optimized, retaining all information necessary to link them
with future programs; f ut ur e. ¢ represents one such program.

The following steps show how to optimize frequently called modules:

1. Compileb. ¢ and c. ¢ separately by entering the following commands:

%cc -oldc -j b.c
%cc -oldc -j c.c

The—j option causes the front end, or first pass, of the compiler to
produce two ucode files, b. u and c. u.

2. Use an editor to create a file containing the external symbolsin b. ¢ and
c. ¢ towhich f ut ur e. c will refer. The symbolic nhames must be
separated by at least one space. Consider the following skeletal contents
of b.candc. c:

b.c procl() c.c x()
{

} }
proc2() hel p()
{

D—4 Optimizing Techniques (MIPS-Based C Compiler)

)

proc3() struct
{
j } ddat a;
st ruct y()
{ {
} wor k; }

In this example, f ut ur e. ¢ callsor referencesonly pr ocl, proc2, X,
ddat a, and y in the two procedures (b. ¢ and c. ¢). Thus, afile
(named ext er n for this example) must be created containing the
following symbolic names:

procl proc2 x ddata y

The structure wor k and the procedures hel p and pr oc3 are used
internally only by b. ¢ and c. ¢, and thus are not included in ext er n.

If you omit an external symbolic name, an error message is generated
(see step 4).

Optimize the b. u and c¢. u modules using the ext er n file as follows:
%cc -oldc -3 -kp extern b.u c.u -0 keep.o

The —kp option designates that the —p linker option is to be passed to the
ucode |oader.

. Create a ucode file and an optimized object code file (t est _opt) for
future. c, asfollows:

%cc -oldc -j future.c
%cc -oldc -O3 future.u keep.o -0 test_opt

The following message may appear. It means that the codein f ut ure. c
is using a symbol from the codein b. ¢ or c. ¢ that was not specified in
the file ext er n.

proc3: multiply defined hidden external (should have been preserved)

If the preceding message appears, include pr oc3 in the file ext er n and
recompile as follows:

%cc -oldc -O3 -kp extern b.u c.u -0 keep.o
% cc -oldc -O3 future.u keep.o -0 test_opt

Optimizing Techniques (MIPS-Based C Compiler) D-5

D.10

D.11

Building a ucode Object Library

Building a ucode object library is similar to building a COFF object library.
First, compile the source files into ucode object files using the —j option:

%cc -oldc -j a.c
%cc -oldc -j b.c
%cc -oldc -j c.c

Then, enter the following commands to build a ucode library
(I'i bt est _opt . b) containing object filesfora. ¢, b. ¢, and c. c:

% ar -crs libtest _opt.b a.u b.u c.u

The names of ucode libraries should have the suffix . b.

Using ucode Object Libraries

Using ucode object libraries is similar to using COFF object files. To load
from a ucode library, specify the —k| x option to the compiler driver or the
ucode loader. To load from the ucode library file created in the previous
example, enter the following command:

%cc -oldc -3 filel.u file2.u -kltest_opt -0 output

Libraries are searched as they are encountered on the command line, so the
order in which they are specified on the command line is important. If a
library is made from both assembly and high-level language routines, the
ucode object library contains code only for the high-level language routines,
not all of the routines as the COFF object library does. In this case, to
ensure that all modules are loaded from the proper library, you must specify
both the ucode object library and the COFF object library to the ucode
loader.

If the compiler driver is to perform both a ucode load step and afinal 1oad
step, the object file created after the ucode load step is placed in the position
of the first ucode file specified or created on the command line in the final
load step.

D-6 Optimizing Techniques (MIPS-Based C Compiler)

Special Characters

/
See slash

See question mark

A

a.out
default executable file, 2-16, 24
disassembling, 2-26
displaying information about, 2-25
linking using |d, 2-20
passing command-line arguments to, 2-23
running, 2—-22
abnormal_termination function, 11-14
activation levels
changing in dbx, 5-26
displaying information about in dbx, 5-46
displaying values of local variables within,
5-46
identifying with stack trace, 5-25, 5-3
Addrsfiles, 8-13
AES, 1-2
alias command (dbx), 5-21
_align storage class modifier, 2-8
alignment, data
avoiding misalignment, 10-11 to 10-12

Index

alloca function, 10-13
allocation, data
coding suggestions, 10-13
Alphainstruction set
using non-native instructions, 10-11
ANS|
name space cleanup, 2-27
standards and application devel opment
considerations, 1-2
-ansi_alias flag (cc), 10-4t
-ansi_args flag (cc), 104t
application development
phases of, 1-1
Application Environment Specification
See AES
application programs
building guidelines, 10-2 to 10-10
coding guidelines, 10-10 to 10-16
compiling and linking in System V habitat,
B-1to B-3
optimizing, 10-1 to 10-16
optimizing large programs (cc -oldc), D4
porting, 1-2, 6-12
reducing memory usage with -xtaso, 10-14
archive files
determining section sizes, 2-25
dumping selected parts of, 2-24

array usage breakpoints (cont.)

alocation considerations, 10-11 setting in procedures, 5-39
optimizing in C, 10-13 built-in data types
as command, 24 use in dbx commands, 5-10
linking files compiled with, 2-20 built-in functions
assign command (dbx), 5-35 pragma counterparts, 3-5
-assume aligned_object flag (cc), 2-17 byte ordering, 2-5
-assume noaccur acy_sensitive flag (cc)
See -fp_reorder flag (cc) C
Atom tools, 9-1 ¢ flag (o)
developing, 9-3

compiling multilanguage programs, 2-18
—c flag (dbx), 5-8
C language, program checking

data type, 64

external names, 6-12

function definitions, 6-6

functions and variables, 67

initializing variables, 6-10

migration, 6-10

portability, 6-11

structure, union, 6-5

use of characters, 6-11

use of uninitialized variables, 6-10
C preprocessor

examples of, 9-2

prepackaged tools, 9-2
attribute

defined, C-2

example of defining, C-9

initial value assignment, C-2
attribute data types, C-6t
attribute request codes, C-7t
attribute table

contents of, C+4
automatic decomposition

usein KAP, 10-8

B implementation-specific directives, 2-12
backward compatibility including common files, 2-11
shared libraries, 4-18 multilanguage include files, 2-11
binary incompatibility predefined macros, 2-9
shared libraries, 4-18 C programs
32-bit applications optimization considerations, 10-1 to 10-16
reducing memory usage, 10-14 c_excpt.h header file, 11-3
bit fields, 6-12 cache collisions, data
breakpoints avoiding, 10-11
continuing from, 5-34 cache misses
setting, 5-38 avoiding, 10-13

setting conditional breakpoints, 5-39

Index—2

cache thrashing
preventing, 10-11
cache usage
coding suggestions, 10-11 to 10-12
improving with cord, 10-8
call command (dbx), 5-36
call graphs
gprof tool, 8-10
-call_shared flag (cc), 2-17
calls
See procedure calls
catch command (dbx), 543
cc command
compilation control flags, 2-13
debugging flag, 56
default behavior, 2-17
invoking the linker, 2-20
setting default alignment, 3-11
specifying additional libraries, 2-19
specifying function inlining, 3-3
specifying search path for libraries, 24
use by other compiler commands, 2—19
CFG_ATTR_BINTYPE data type, C-6t
CFG_ATTR_INTTYPE data type, C-6t
CFG_ATTR_LONGTYPE data type, C-6t
CFG_ATTR_STRTYPE data type, C—6t
CFG_ATTR_UINTTYPE data type, C-6t
CFG_ATTR_ULONGTYPE data type, C-6t
CFG_OP_CONFIGURE request code, C-7t
CFG_OP_QUERY request code, C-7t
CFG_OP_RECONFIGURE request code,
C-1t
cfg_subsys attr_t datatype, C-5
characters
use in a C program, 6-11

cma_debug() command (dbx), 5-53
coding errors
checking performed by lint, 6-13
coding suggestions
C-specific considerations, 10-12
cache usage patterns, 10-11 to 10-12
data alignment, 10-11 to 10-12
data types, 10-10
library routine selection, 10-9
sign considerations, 10-13
command-line editing (dbx), 5-12
common files
See header files
compilation units (cc -oldc)
optimizing, D-2
compiler commands
invoking the linker, 1-4
compiler flags
—g flag, 56
compiler flags (cc), 2-13
compiler optimizations
improving with feedback file, 10-9
recommended optimization levels, 10-2
use of -O flag (DEC C), 10-3
compiler system, 2—-1
ANSI name space cleanup, 2-26
C compiler environments, 2-12
C preprocessor, 2-9
driver programs, 2—2
linker, 2-19
object file tools, 2-23
running programs, 2-22
compiling applications
in System V habitat, B—1 to B—3
completion handling, 11-5

Index-3

compound pointer, A-1 data types (cont.)

conditional code floating-point range and processing, 2-5
writing in dbx, 542 for attributes, C—6t
cont command (dbx), 5-34 mixing, 6-5
conti command (dbx), 5-34 sizes, 2-5
cord utility, 10-8 data types, built-in
core dump file use in dbx commands, 5-10
specifying for dbx, 54, 5-7 dbx commands
.Counts files, 8-13 See also dbx debugger
Ctrl/z args, 5-31
symbol name completion in dox, 5-14 cma_debug(), 5-53
and ?, 5-29
D alias, 5-21
data alignment assign, 5-35
coding suggestions, 10-11 to 10-12 call, 5-36
data allocation catch, 543
coding suggestions, 10-13 cont, 5-34
data cache collisions conti, 5-34
avoiding, 10-11 delete, 5-23
data flow analysis disable, 5-23
compilation optimizations, 10-2 down, 5-26
data reuse dump, 5-46
handling efficiently, 10-8 edit, 5-29
data sets, large enable, 5-23
handling efficiently, 10-8 file, 527
data structures func, 5-26
alocation suggestions, 10-11 goto, 5-33
data types, 2-5 ignore, 543
alignment list, 5-28
bit field, 2-7, 2-8 listobj, 5-24
structure, 26 next, 5-32
array, 6-5 nexti, 5-32
array pointer, 6-5 patch, 5-35
casts, 6-6 playback input, 5-49

coding suggestions, 10-10
effect of -O flag (DEC C), 10-3

Index—4

playback output, 5-50
print, 544

dbx commands (cont.)

printregs, 5-45
quit, 5-8

record input, 548, 5-49

record output, 5-50

dbx debugger (cont.)
compile command flag (-g), 5-6
completing symbol name (Ctrl/Z), 5-14
debugging techniques, 54
EDITMODE option, 5-12

rerun, 5-31 EDITOR option, 5-12
return, 5-33 entering multiple commands, 5-14
run, 5-31 —g flags (cc), 5-6
set, 5-15 initialization file (dbxinit), 5-7
setenv, 5-37 invoking a shell from dbx, 524
sh, 5-24 invoking an editor, 5-29
source, 549 LINEEDIT option, 5-12, 5-14
status, 522 operator precedence, 5-9
step, 5-32 predefined variables, 5-16
stepi, 5-32 repeating commands, 5-11
stop, 5-38 .dbxinit file, 5-7
stopi, 5-38 debugger
tlist, 5-52 See dbx debugger
trace, 540 debugging, 1-5
tracei, 540 See also dbx debugger, ladebug debugger,
tset, 5-52 lint, Third Degree
tstack, 5-25, 5-53 before optimization (cc -oldc), D-1
unalias, 5-21 genera concepts, 5-3
unset, 5-15 kernel debugging (—k flag), 5-8
up, 5-26 programs using shared libraries, 4-16
use, 5-24 decomposition
whatis, 5-30 use in KAP, 10-8
when, 542 delete command (dbx), 5-23
where, 5-25 development tools, software (Digital UNIX),
whereis, 5-30 14
which, 5-30 -D_FASTMATH flag (cc), 10-10
dbx debugger, 1-5 Digital Extended Math Library
See also dbx commands how to access, 10-9
built-in data types, 5-10 -D_INLINE_INTRINSICS flag (cc), 10-10
command-line editing, 5-12 -D_INTRINSICS flag (cc), 10-10

command-line flags, 5-7

Index-5

directed decomposition
usein KAP, 10-8
directives
ifdef, 2-11
include, 2-11
pointer_size, 3-11
pragma environment, 3-1
pragma function, 34
pragmainline, 3-3
pragmaintrinsic, 3-4
pragma linkage, 3-6
pragma member_alignment, 3-9
pragma message, 3-10
pragma pack, 3-11
pragma use_linkage, 3-12
pragma weak, 3-13
directories
linker search order, 2-21
directories, source
specifying in dbx, 5-24
dis command, 2-26
disable command (dbx), 5-23
disk files, executable
patching in dbx, 5-35
distribution media
loading applications on, 1-6
-double flag (cc), 2-17
down command (dbx), 5-26
driver programs, 2-3
dump command (dbx), 5-46
DXML
how to access, 10-9
dynamically configurable subsystem
creating, C-1 to C-29
defined, C-2

Index—6

E

edit command (dbx), 529
editing

command-line editing in dbx, 5-12
EDITMODE variable

dbx command-line editing, 5-12
editor

invoking from dbx, 5-29
EDITOR variable

dbx command-line editing, 5-12
enable command (dbx), 5-23
enumer ated data type, 6-6
environment directive

pragma environment directive, 3-1
environment variables

EDITMODE, 5-12

EDITOR, 5-12

LINEEDIT, 5-12

PROFDIR, 8-23

PROFFLAGS, 8-24

profiling, 8-22

setting in dbx, 5-37
exception code, 11-6
exception filter, 11-5
exception handler, 11-6
exception handling

application development considerations, 11-1

floating-point operations
performance considerations, 10-5

header files, 11-3
exception_code function, 11-6
exception_info function, 11-6
exceptions

defined, 11-1

frame-based, 11-5

structured, 11-5

excpt.h header file, 11-3
executable disk files
patching in dbx, 5-35
executable image
creating, 2-20, 24
expressions
displaying values in dbx, 5-34, 5-44
operator precedence in dbx, 5-9
external names, 6-12
external references
reducing resolution during linking, 10-2

=

-fast flag (cc), 104t
feedback files, 8-21
how to create, 10-8
use to improve compiler optimizations, 10-9
-feedback flag (cc), 104t
file command, 2-25
file command (dbx), 5-27
file names
suffixes for programming language files, 2—4
file sharing
effects on performance, 10-6
files
See archive files; executable disk files;
header files; object files; source files
fixso utility, 4-14
flags, cc compiler, 2-13
floating-point operations
exception handling, 10-5
-fp_reorder flag (cc), 10-3
use of KAP, 10-8
floating-point operations (complicated)
use of DXML, 10-9

floating-point range and processing, 2-5
-fp_reorder flag (cc), 10-3, 10-4t
-fprm n flag (cc), 2-17
fpu.h header file, 11-3
frame-based exception handling, 11-5
func command (dbx), 5-26
function directive

pragma function directive, 3-4
functions

checking performed by lint, 6-7

G

—g flag (cc), 2-17
effect on debugging, 56
-G flag (cc), 104t
global optimizer (uopt), D-1
See also optimization
goto command (dbx), 5-33
gprof
profiling tool, 8-10
use to diagnose performance, 10-10

H

handling exceptions, 11-1
header files
c_excpt.h, 11-3
excpt.h, 11-3
fpu.h, 11-3
including, 2-11
modifying system, A—4
multilanguage, 2-11
pdsc.h, 11-3
standards conformance in, 1-3
hiprof (Atom tool), 8-6, 9-2

Index—7

-1 flag (dbx), 5-8
—i flag (dbx), 5-8
-l/usr/include flag (cc), 2-17
-ieee flag (cc), 10-6
|EEE floating-point
See floating-point range and processing
ifdef directive
for multilanguage include files, 2-11
-ifo flag (cc), 10-4t, 10-2
ignore command (dbx), 543
image activation in dbx, 5-39
include files
See header files
inline directive
pragma inline directive, 3-3
-inline manual flag (cc), 2-17
-inline flag (cc), 104t
inlining, procedure
compilation optimizations, 10-2
-D_INLINE_INTRINSICS flag (cc), 10-10
installation tools, 1-5
instruction set, Alpha
using non-native instructions, 10-11
integer division
substituting floating-point division, 10-11
integer multiplication
substituting floating-point multiplication,
10-11
internationalization
developing applications, 1-3
inter process communications
pipes, 1-6
signas, 1-6
sockets, 1-6
STREAMS, 1-6

Index—8

inter process communications (cont.)
System V IPC, 1-6
threads, 1-6
X/Open Transport Interface (XTI), 1-6
intrinsic directive
pragmaintrinsic directive, 34
IPC
See interprocess communications
1SO
standards and application devel opment
considerations, 1-2

J
-j flag (cc -oldc), D4, D-6

K

—k flag (cc -oldc), D—4, D6
—k flag (dbx), 5-8
KAP
usage recommendation, 10-8
kernel debugging
—k flag, 5-8
krash
kernel debugging utility, 5-8
Kuck & Associates Preprocessor
See KAP

L

languages

supported by Digital UNIX, 1-4
large data sets

handling efficiently, 10-8
Id linker

linking object files, 14

linking with shared libraries, 4-7

leave statement, 11-13
libc.so
default C library, 2-20
libexc
exception library, 11-1
libpthread.so, 12-2
libraries
shared, 4-1
specifying, 2-20
ucode, 2-21, D-6
library description files (lint), 6-14
library selection
effect on performance, 10-9
limiting sear ch paths, 4-7
limits.h file, C-9
LINEEDIT variable
dbx command-line editing, 5-12
dbx symbol name completion, 5-14
linkage directive
pragma linkage directive, 3-6
linker
Seeld linker
linking applications
by using compiler command, 2-19
by using |d command, 2—20
in System V habitat, B-1 to B-3
linking options
effects of file sharing, 10-6
linking programs
See linking applications
lint, 6-1
coding error checking, 6-13
command syntax, 6-1
creating a lint library, 6-14
data type checking, 64
error messages, 6-16

lint (cont.)
increasing table size, 6-11
migration checking, 6-10
options, 6-1
portability checking, 6-11
program flow checking, 6-3
variable and function checking, 67
warning classes, 6-22
list command (dbx), 5-28
listobj command (dbx), 5-24
load time

reducing shared library load time, 10-6

loadable subsystem
defined, C-2
loader
search path of, 44
long pointer, A-1
loops

effects of global optimization (cc -oldc), D-1

KAP optimizations, 10-8
lint analysis of, 64

M

macr 0s
predefined, 2-9
magic number, 2-25
malloc function
tuning options, 10-13
member_alignment directive

pragma member_alignment directive, 3-9

-member_alignment flag (cc), 2-17
memory
detecting leaks, 7-1, 9-2
displaying contents in dbx, 547
tuning memory usage, 10-13

Index—9

memory access N
detecting uninitialized or invalid, 7-1
message directive

name resolution

semantics, 4-5
name space

cleanup, 2-26
naming conventions

shared libraries, 4-2
-newc flag (cc), 2-17
next command (dbx), 5-32
nexti command (dbx), 5-32
nm command, 2-24

pragma message directive, 3-10
messages, |PC

See System V IPC
misaligned data

See unaligned data
misses, cache

avoiding, 10-13
mmap system call

shared libraries, 4-17
moncontrol routine, 8-25

-no_fp_reorder flag (cc), 2-17

-no_misalign flag (cc), 2-17

-no_pg flag (cc), 2-18

-noaccuracy_sensitive flag (cc)
See -fp_reorder flag (cc)

sample code, 8-26
monitor routines

for controlling profiling, 8-25
monitor_signal routine, 8-25

sample code, 8-28 ')
monitoring tools

gprof, 10-10 -O compiler flag

pixie, 10-10, 10-8 shared library problems, 4-32

prof, 10-10, 10-8 use to avoid lint messages, 64

-O1 flag (cc), 2-17
object file tools, 2-23

monstartup routine, 8-25
sample code, 8-26

multilanguage programs C?is, 2-26
compiling, 2-18 file, 2-25
include files for, 2-11 nm, 2-24
multiprocessing, symmetrical odump, 2-24
See SMP size, 2-25
multithreaded applications object files
developing, 12-1 determining section sizes, 2-25
profiling, 8-29 disassembling into machine code, 2—-26

dumping selected parts of, 2-24
odump (object file utility), 2-24
-0 flag (cc), 104t

Index—-10

-O* flags (cc -oldc), D-3
-O* flags (cc), 102, 10-3, 10-9
overview of optimization levels, 10-2
-oldcomment flag (cc), 2-18
-Olimit option (cc -oldc)
optimizing large programs, D—4
-Olimit flag (cc), 104t
-om
postlink optimizer, 107
-om flag (cc), 104t
operators
precedence in dbx expressions, 5-9
optimization, 2-19, D-1
compiler optimization options, 10-2
improving with feedback file, 10-9
post linking, 107
use of -O flag (DEC C), 10-3
optimization (cc -oldc)
benefits, D-1
compiler options for, D-2
debugging before, D-1
frequently used modules, D4
full optimization (-O3 option), D-3
large programs (-Olimit option), D—4
loop optimization, D—1
-O* flags, D-3
register alocation, D-2
separate compilation units, D-2
optimizer, global
See global optimizer (uopt)
output errors
using dbx to isolate, 54

P

-pO0 flag (cc), 2-18
pack directive
pragma pack directive, 3-11
parameter
See attribute
patch command (dbx), 5-35
PC sampling, 8-1, 8-7
pdsc.h header file, 11-3
performance
using the profiler (prof), 8-1
performance (cc -oldc)
improving, D-1
pipes, 1-6
pixie (Atom tool), 9-2
use to create feedback file, 10-8
use to diagnose performance, 10-10
using to profile, 8-13
pixstats, 8-14
playback input command (dbx), 5-49
playback output command (dbx), 5-50
pointer size
conversion, A-1
pointer_size directive
pragma pointer_size directive, 3-11
pointer_size pragma, A-2
pointers
32-hit, A-1
compound, A-1
conversion, A—4
long, A—1
reducing memory use for pointers (-xtaso),
10-14
short, A-1
simple, A-1

Index—-11

portability

bit fields, 6-12

external names, 6-12

standards, 1-2
POSIX

standards and application development

considerations, 1-2

pragma

environment, 3-1

function, 34

inline, 3-3

intrinsic, 3-4

linkage, 3-6

member_alignment, 3-9

message, 3-10

pack, 3-11

pointer_size, 3-11, A-2

use linkage, 3-12

weak, 3-13
pragma preprocessor directives, 3-1
predefined variables

in dbx, 5-16
-preempt_symbol flag (cc), 2-18
-preempt_module flag (cc), 104t
-preempt_symboal flag (cc), 10-4t
preprocessor, C

See C preprocessor
print command (dbx), 544
printregs command (dbx), 545
procedure calls

handling efficiently, 10-8
procedure inlining

compilation optimizations, 10-2

-D_INLINE_INTRINSICS flag (cc), 10-10
prof

See also profiling

Index—-12

prof (cont.)
use to create feedback file, 10-8
use to diagnose performance, 10-10
PROFDIR
profiling environment variable, 8-23
PROFFLAGS
environment variable, 8-24
profiler tools
when to use, 10-10
profiling, 8-1
averaging results, 8-19
basic block counting, 8-1, 8-13
environment variables, 8-22
limiting display by line, 8-18
limiting display information, 8-14
moncontrol routine, 8-25
monitor_signal routine, 8-25
monstartup routine, 8-25
multithreaded applications, 8-29
overview, 8-1
PC sampling, 8-7
using Atom tools, 9-2
using monitor routines, 8-25
program checking
C programs, 6-1
program counter sampling, 8-1
program installation tools, 1-5
programs
See application programs

Q

question mark (?)
search command in dbx, 5-29
quickstart
reducing shared library load time, 10-6
troubleshooting

quickstart (cont.)
troubleshooting (cont.)
fixso, 4-14
manually, 4-12
using, 4-10
quit command (dbx), 5-8

R

— flag (dbx), 5-8
RCS code management system, 1-5
record input command (dbx), 548, 549
record output command (dbx), 5-50
registers

displaying values in dbx, 545

use of by optimizer (cc -oldc), D-2
rerun command (dbx), 5-31
resolution of symbols

shared libraries, 4-3
return command (dbx), 5-33
routines

calling under dbx control, 5-36
run command (dbx), 5-31
run time

build options that affect run time, 10-2 to

10-10
coding guidelines for improving, 10-10 to
10-16

run-timeerrors

using dbx to isolate, 54

S

SCCS (Source Code Control System), 1-5
scope

See also activation levels

determining activation levels, 5-3

scope (cont.)
determining scope of variables, 5-40
specifying scope of dbx variables, 5-9
search commandsin dbx (/ and ?), 529
search order
linker libraries, 2-21
search path
limiting, 4—7
|loader, 44
shared libraries, 44
semantics
name resolution, 4-5
semaphores
See System V IPC
set command (dbx), 5-15
setenv command (dbx), 5-37
effect on debugger, 5-12, 5-14
setld utility, 1-6
sh command (dbx), 524
shared libraries
advantages, 4-1
applications that cannot use, 4-8
backwards compatibility, 4-18
binary incompatibility, 4-18
creating, 4-8
debugging programs using, 4-16
displaying in dbx, 5-24
linking with a C program, 4-7
major version, 4-21
minor version, 4-21
mmap system call, 4-17
multiple version dependencies, 4-23
naming convention, 4-2
overview, 4-2
partial version, 4-22
performance considerations, 10-6

Index-13

shared libraries (cont.)
search path, 44
symbol resolution, 4-3
turning off, 4-7
version identifier, 4-19
versioning, 4-18
shared library versioning
defined, 4-18
shared memory
See System V IPC
shared object, 4-10
short pointer, A1
signals, 1-6
stopping at in dbx, 5-43
-signed flag (cc), 2-18
signed variables
effect on performance, 10-13
simple pointer, A-1
size command, 2-25
dash (/)
search command in dbx, 5-29
SMP
decomposition support in KAP, 10-8
sockets, 1-6
softwar e development tools (Digital UNIX),
14
sour ce code
checking with lint, 6-1
listing in dbx, 5-28
searching in dbx, 5-29
sour ce code compatibility
in System V habitat, B-1 to B-3
Source Code Control System
SCCS, 1-5
sour ce command (dbx), 5-49

Index—-14

sour ce directories

specifying in dbx, 5-24
sour ce files

controlling access to, 1-5

specifying in dbx, 5-27
-speculate flag (cc), 10-3, 104t
stack trace

obtaining in dbx, 5-25

using to identify activation level, 5-25, 5-3
standards

programming considerations, 1-2
startup time

decreasing, 106
static subsystem

defined, C-2
status command (dbx), 522
-stdO flag (cc), 2-18
step command (dbx), 5-32
stepi command (dbx), 5-32
stop command (dbx), 5-38
$stop_on_exec variable (dbx), 5-38, 5-39
stopi command (dbx), 5-38
storage class modifier

_dlign, 2-8
STREAMS, 1-6
strings command, 2-24
strong symbols, 2-27
structure alignment, 2—6

pragma member_alignment directive, 3-9
structured exception handling, 11-5
structures

checking performed by lint, 6-5
suffixes, file name

for programming language files, 24
symbol names

completing using Ctrl/Z in dbx, 5-14

symbol table
ANSI name space cleanup, 2-27

listing, 2-24
symbols
binding, 4-31

name resolution semantics, 4-5

options for handling unresolved symbols,
4-6

resolution, 4-5

resolving in shared libraries, 4-3

search path, 44
symmetrical multiprocessing
See SMP

sysconfig command, C-1, C-27

sysconfigtab database, C-2

system libraries, 4-1

System V habitat, B-1
summary of system calls, B—4

System V IPC, 1-6

T

termination handler, 11-13
Third Degree (Atom tool), 7-1, 9-2
threads, 1-6
profiling multithreaded applications, 8-29
tlist command (dbx), 5-52
tools
major tools for software development, 14
trace command (dbx), 5-40
tracei command (dbx), 5-40
try body, 11-13, 11-5
try...except statement, 11-5
try..finally statement, 11-13
tset command (dbx), 5-52
tstack command (dbx), 5-25, 5-53

-tune generic flag (cc), 2-18

-tune flag (cc), 104t

type casts
checking performed by lint, 6-6
when to avoid, 10-13

type declarations
displaying in dbx, 5-30

U

ucode object libraries, 2-21
building, D—6
uld (ucode link compilation phase), D-3

umerge (procedure merge compilation phase),

D-3

unalias command (dbx), 521
unaligned data

avoiding, 10-11 to 10-12
unions

checking performed by lint, 6-5
unresolved symbols

options to Id command, 4-6

shared libraries, 4-3
-unroll flag (cc), 2-18, 104t
unset command (dbx), 5-15
unsigned variables

effect on performance, 10-13
uopt (global optimizer), D-1
up command (dbx), 5-26
use command (dbx), 5-24
use _linkage directive

pragma use_linkage directive, 3-12
lusr/shlib directory

shared libraries, 4-2

Index—-15

\%

variables
See also environment variables
assigning values to, 5-35
determining scope of, 5-40
displaying names in dbx, 5-30
displaying type declarations, 5-30
obtaining values within activation levels,
5-46
predefined variables in dbx, 5-16
tracing, 540
variables, signed or unsigned
effect on performance, 10-13
versioning
shared libraries, 4-18

W

war ning classes, 6-22
weak directive

pragma weak directive, 3-13
weak symbols, 2-27
whatis command (dbx), 5-30
when command (dbx), 542
where command (dbx), 5-25
whereis command (dbx), 5-30
which command (dbx), 5-30
-writeable strings flag (cc), 2-18

X

X/Open
standards and application development
considerations, 1-2
X/Open Transport Interface (XTI), 1-6
-xtaso flag (cc), 10-14, A-1

Index—-16

-xtaso_short flag (cc), A-1
XTI (X/Open Transport Interface), 1-6

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor
Internal2 _— SSB Order Processing — NQO/V 19

or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

aFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Programmer’s Guide
AA-PS30D-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

e This postage-paid form

* Internet electronic mail: r eaders_coment @k3. dec. com

* Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y 32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manua says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Usability (ability to access information quickly)

Please list errorsyou have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the softwar e described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

_______ Do Not Cut or Tear — Fold Here and Tape ____ _ el __.

™
Hﬂﬂﬂnau NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
UEG PUBLICATIONS MANAGER
ZKO3-3/Y32

110 SPIT BROOK RD

NASHUA NH 03062-9987

Do Not Cut or Tear — Fold Here

Cut on
Dotted
Line

