Digital UNIX

Programming Support Tools

Order Number: AA-PS32D-TE

March 1996
Product Version: Digital UNIX Version 4.0 or higher

This manual describes commands and utilities for assisting in program
development.

Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

O Digital Equipment Corporation 1993, 1994, 1995, 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,

POLY CENTER, Q-bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

NFS is aregistered trademark of Sun Microsystems, Inc. Open Software Foundation, OSF,
OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. UNIX is
aregistered trademark in the United States and other countries licensed exclusively through
X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

U T [T o PN Xiii
New and Changed FEaIUrES cooiiiiiiiiiiiee e Xiii
OFQaniZaLION ...eevueie ettt e e et et e e e e e e e e e eeee Xiii
Related DOCUMENTS iiiiiiecii e e e e e e e e e eaens Xiv
Reader’ S COMMENES ...ciiiii e e e e e e e e e eaens Xiv
(0010177 01110 1S XV

1 Finding Information with Regular Expressions and the
grep Command

1.1 Forming Regular EXPreSSIONS ..vuvvvvvieiniiiiiieeieeeieeee e eene e et e eanees 1-1
1.1.1 Basic Regular EXPreSSIONS ccvuveeinieeiiieriieeiieeieesinneeenens 1-2
1.1.2 Extended Regular EXPreSSiONS ccouvvvviieiiieeiiieeinenineennns 1-3
1.1.3 Matching Multiple Occurrences of a Regular Expression 15
1.1.4 Matching Only Selected Characters cccooevviviviiieiinnnennnn. 1-7
1.15 Specifying Multiple Regular EXpressions cccoeevevneeennn. 1-8
116 Specia Collating Considerations in Regular Expressions ... 1-8

1.2 Usingthegrep Commandcccoveiiiiiiiiiiiiiiciii e ee e 1-9

2 Matching Patterns and Processing Information with
awk

21 Versionsof the awk UtiIlity ooiiiiiiii e 2-1

2.2 Running the awk Programccoiiiiiiiiii e 22
2.3 Printing in @WK oo 25
24 Using Variablesin awk ... 26

241 SimpleVariables ... 26

242 FedVariables ..o 2-7

243 Array VariableS ... 2-8

244 Built-lnawk Variablesccooooiiiiii 2-9
25 More About Using Regular Expressions as Patterns — 2-10
2.6 Using Relational Expressions and Combined Expressions as Patterns . 2-11
2.7 UsSing Pattern RANGES oieeiiieeiii e 2-12
2.8 ACHONSIN BWK oo 2-13
2.9 Using Operatorsin an ACHION ocuuiiiiiiiieiei e 2-13
210 Using Functions Within an ACtionccooviiiiiiiiiiii e, 2-15
211 Using Control Structuresin awk —........cooooeeiiieiiiieeriieeeee e, 2-18
212 Performing Actions Before or After Processing the Input —.............. 2-20
213 Concatenating StNGS ..veeeeeneieeiee e e e e e e e e e e eeeeens 2-20
214 Redirection and PIPESoouiiiiiiiiiei e 2-20

3 Editing Files with the sed Editor

3.1 Overview of the sed EditOr —oooeeiiiiii e 31
3.2 Runningthe sed EAItOr ooiiiiiiei e 31
3.3 Selecting Linesfor EAItiNg ovveeiiiiii e 3-3
34 Summary of sed COMMANAS ooeiiiiiiiiiieee e 35
35 String ReEPlacemMent ccooiiiiiiii e 311

iv Contents

4 Creating Input Language Analyzers and Parsers
4.1 How the Lexical Analyzer WOrkScccovvviiiiiiiiieiiie e 4-1
4.2 Writing aLexical Analyzer Program with lex —ccooooiiiiiiiiininns 4-2
4.3 Thelex Specification Fileooeiiiiiii 4-3
4.3.1 Defining Substitution Strings ccovveveeiiiiiieee e, 44
432 RUIES o 44
4321 Regular EXPressionscccccevveveeiiiiiieeeiiiieeeiiineeeennnn 4-5
4322 Maching RUIESc.ocovviiiiiie e, 47
4.3.2.2.1 Using Wildcard Charactersto Match a String . 4-7
4.3.2.2.2 Finding Strings Within Strings —c....... 4-8
4323 ACHONS oo 4-9
43231 NUll ACiON oo 4-9

4.3.2.3.2 Using the Same Action for Multiple

EXPreSSionS ..ovvevviciiiiieee e 4-9
4.3.2.3.3 Printing aMatched String —ccovvevvveviiiinnnnnn. 4-9
4.3.2.3.4 Finding the Length of a Matched String 4-10
43235 GetingMorelnputcooeeveiiiieiiiiieeeenin, 4-10
4.3.2.3.6 Returning Charactersto the Input 4-11
4.3.3 Using or Overriding Standard Input/Output Routines —........... 4-11
4.3.4 End-of-File Processing ccooeveviiiiiiiiiiece e, 4-13
435 Passing Code to the Generated Program ccccoeevvvieennnn. 4-13
4.3.6 Start CoNditiONS ...ccevvviiiiiiiiiiiie e 4-14
44 Generatingalexical Analyzercccooeiiiiiiiiiii 4-15
45 UsingleX WIth YaCC ...ociiviiiiiii e 4-15
4.6 Creating aParser With YaCCcooviiiiiiiiii e 4-17
4.6.1 Themain and yyerror FUNCIONS ccocevvviieiiiiineeiieeeeeeee, 4-18
4.6.2 TheyyleX FUNCION ...ccocooviiiiiiie e, 4-19
47 TheGrammar FIle ..o 4-20
471 DECIArAioNS ...cooeiieiiiiiie et 4-20
4.7.1.1 Defining Globa Variablescccoooevviiiiiiinienennnn. 4-21
4.7.1.2 Start SymbolS ..o 4-22
4.7.1.3 Token NUMDEIS ...oiiiiiiiiiii e 4-22

Contents v

A4.7.2 Grammar RUIES ..o e

4721 NUll SIHNG oo
4722 End-of-Input Markercoooiiiiiiiii e,
4723 AClionsinyacC ParserScocoevveveviiieieiiieeeeiieeeeeeen,

4.7.3 PrOQraMS ooouiieiiiiieeiei e e
474 Guidelines for Using Grammar Filescccoeiiiiiineenennn.

4741 Using COMMENES oiiiiiiieeeiie e
4.74.2 Using Literal Stringsooovvieiiimiiii e
4.7.4.3 Guidelines for Formatting the Grammar File
4.7.4.4 Using Recursion in a Grammar File
4.74.5 Errorsinthe Grammar Filecccoooiiiiiiiiiiiiiiiiennns

475 Error Handling by the Parser —ooooiiiiiiii e,
4751 Providing for Error Correcting —cooeveveieeveiineenennn.

4752 Clearing the Look-Ahead Tokencccooeviiiieneennn.

4.8 Parser OperatiOn ..oc..iiiiiiiii i
481 Theshift ACtON ..o
482 ThereduCe ACtION ccooiiiiiiiiiiii e
483 Ambiguous Rules and Parser Conflicts ccoeveveiiiennennn.

49 Turning on Debug Mode oooeiiiiiiiii e
410 Creating a Simple Calculator Program —ccooveviiiiiiiiiiiieeeeeneees

4101 Parser SOUrce CoOe ..oiiieiiieeiii e
4102 Lexical Analyzer Source Codeocovveviiiiiiiiiiii e,

5 Using m4 Macros in Your Programs

5.1 USING MBEIOS oeeiiiiiii et e e e e e
5.2 DefiNing MBCIOS ...oiiiiiiiieii e

5.21 Using the Quote CharaCtersccooeveeiiiiiiiiiieiiieeeeiieeee
522 MaCro ArgumentS coouiiiiiiii e

5.3 UsSing Other M4 MaCIOS .ecvuniiiiieee et
53.1 Changing the Comment Charactersooeeevvviiiiinieennnnns

vi Contents

4-29

4-30
4-30
4-31
4-33
4-34

4-35
4-38

5-1
52

5-3
55

6.1
6.2
6.3
6.4
6.5

6.6

5.3.2 Changing the Quote Charactersccoovvveiiieiiiiiieieiiinees 59

5.3.3 Removing a Macro Definition ocooiiiiiiiiiiiiie 59
5.34 Checking for aDefined Macrocccovviiiiiiiiiiiiiiiiiiiees 59
535 Using Integer Arithmetic oooiiiiii 59
53.6 Manipulating Filescooiiiiiiiii e 5-10
537 Redirecting OUIPUL oovnniiiiiiiei e 511
5.3.8 Using System Programsin a Programcccceevveveinnenes 511
5.3.9 Using Unique File Namescooiiiiiiiiiiiiiii e 511
5.3.10 Using Conditional EXpressions cccooveeeiieeviinieeeinnnenns 5-12
5311 Manipulating StHiNgS ...oveeeeiieiei e 5-12
5312 PriNtING coeeeeeiiiiiiiiiiieaa e e e e e e 5-13

Revision Control: Managing Source Files with RCS or
SCCS

Overview of Revision Control ccouuiiiiiiiiiiiiieeeeei e 6-1
Version Control CONCEPES .oovvniiiiiiieii e eeee e, 6-3
Managing Multiple Versions of Filescccoooeviiiiiiiiiiieeen, 66
Creating aVersion Control Libraryccccooevviiiiiiiiiiieiiiieeceieeee 6-8
USINg RCS o 6-8
6.5.1 Placing New Filesinan RCS Libraryccccooeviiiiiiiiiennns 6-10
6.5.2 Recording File-Indentification Information with RCS 6-11
6.5.3 Getting Files from an RCS Library —ccoveiviiiiiiiiiiieeens 6-12
6.5.4 Checking Edited Files Back into an RCS Library 6-13
6.5.5 Working with Multiple Versions of Filescc..ocoevieen 6-13
6.5.6 Displaying Differencesin RCSFilescccveiviiiiiiiiiiinnnnns 6-15
6.5.7 Reporting Revision Histories of RCS Filescccveee. 6-15
6.5.8 Configuration Control CoNCEPLS cvvvvnveviiiiiieiiiiieeeiiieeens 6-17
USING SCCS e e e 6-18
6.6.1 Placing New Filesinan SCCSLibrarycccooovevviiiievennnnn.. 6-20
6.6.2 Recording File-ldentification Information with SCCS 6-21
6.6.3 Getting Filesfrom an SCCS Libraryocovviiieiiiiiienennnnn. 6-22

6.6.3.1 Getting Files for Purposes Other Than Editing 6-23

6.6.3.2 Getting Filesfor Editingccoooevviiiiiiiiiiiiiiees 6-23

6.6.3.3 Managing Multiple Files and New Releases 6-24

Contents vii

6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9

Checking Edited Files Back into an SCCS Library
Working with Multiple Versions of Files
Displaying Differencesin SCCS Files

Reporting Revision Histories of SCCS Files
Performing Administrative Functions
Using SCCS Options
6.6.10 Summary of Individual SCCS Commands

6.7 Functional Comparison of RCS and SCCS Commands

7 Building Programs with the make Utility

7.1 Operation of the make Utility
7.2 Description Files

721
722
7.2.3
724
7.25
7.2.6
727
7.2.8
7.2.9

7.2.12

7.2.13 How make Uses Environment Variables

7.2.14 Internal Rules

7.214.1 Single Suffix Rules
7.2.14.2 Overriding Built-In make Macros

viii Contents

Format of a Description File Entry
Using Commands in a Description File

Preventing the make Utility from Echoing Commands
Preventing the make Utility from Stopping on Errors

Defining Default Conditions
Preventing make from Deleting Files
Simple Description File
Making the Description File Simpler
Defining Macros
7.210 Using Macrosin a Description File

Macro Substitution —coovieiiieeens
7.2.10.2 Conditiona Macros

7.211 Calling the make Utility from a Description File
Internal Macros

7.2.10.1

72121
7.212.2
7.212.3
72124
7.2125

Internal Target File Name Macro
Internal Label Name Macro —
Internal Younger Files Macro
Interna First Out-of-Date File Macro ...

Internal Current File Name Prefix Macro

624
6-25
626
6-27
627
6-30
6-31

6-33

7-1
7-3

74
74
7-6
7-6
7-7
7-7
7-7
7-8
7-8
7-9

7-9
7-12

7-12
7-13

7-13
7-14
7-15
7-15
7-15

7-15
7-16
7-18
7-19

7.215 Including Other FIleScooviiiiiiiiee e 720

7.2.16 Testing Description Files ... 7-20
7.217 Description File ..o 7-21
Glossary
Index
Examples
4-1: Parser Source Code for a Calculator —...........coovviiiiiiiiiiiiiiiieeeeeenne, 4-35
4-2: Lexica Anayzer Source Code for aCalculator —ccooevvviiviveninees 4-38
7-1: A Simple Description File ... -7
7-2: Default RUIES FIlE oo 7-18
7-3: The makefile for the make Utility oooiiiiiii 7-21
Figures
2-1: Sequence of awk Processing cccccccoviiiiiiiiiiiiiiiic 2-5
3-1: Sequence Of Sed PrOCESSING ..evvvuieeeiieiiiiiieeeee e e e e e e e e 34
4-1: Simple Finite State Model ... 4-2
4-2: Producing an Input Parser with lex and yacC cccccvviiiieeeennnnnnn. 4-16
6-1: Contents of aVersion Control Filecccooeiiiiiiiii e 64
6-2: A Typical RCSLIDrary ...oooooviiiiiiiiiiiiie e 6-5
6-3: A Typical SCCSLIDrary ...oooovuiiiiiiiiiiiiii e 66
6-4: A Version Control Files Tree of Deltas ccevviiiiiiiiiiiiiiiiieeneens 67
Tables
1-1: Rulesfor Basic Regular EXpressions ccocevveviiiierieiineeeiineeeeenn, 12
1-2: Rulesfor Extended Regular EXPressions ccccceevveveeiieeeeinneenennn. 14

Contents ix

1-3:
1-4:
2-1:
2-2:
2-3
2-4:
2-5:
2-6:
2-T
31
3-2:
33
3-4:
35
4-1:
4-2:
4-3:
5-1:
6-1:
6-2:
6-3:
6-4:
6-5:
6-6:
6-7:
6-8:
6-9:

Behavior of the grep Command ...
Flags for the grep Command c..oviiiiiiiiiiii e,
Flags for the awk Command ooiiiiiiiiii e,
Built-In Variablesin awk —ccooiiiiiii e
Operators for aWk ACHIONS oovviiiieeiieeiie e
Built-In awk Mathematical FUNCLIONS covviiiiiiiiiiiii e,
Built-In awk String FUNCLIONS coovvviiiicie e
Built-In Miscellaneous awk FUNCLIONS coovviiiiiiiiiiii e,
Control SErUCtUreS iN @WK ...
Flags for the sed Command oovviiiiiiiiiiii e
Special Regular Expressions Recognized by sed ccooveiiiiiinennnnnn.
Text Editing and Movement Commands —ccoooeviiiiieiiiiiiiiiiines
Buffer Manipulation Commands coveveeiineeiiiiieeeeie e
Flow-of-Control Commands —ouuiiiiiiiiiii e
Regular Expression Operatorsfor 1eX —oooeeiiiiiiiiiieiii e,
Options for the lex Command cooviiiiiiiiee e
Processing-Condition Definition Keywordsin yacC —............cccevvvvnenn.
BUIIt-IN M4 MACTOS .
Features of RCS and SCCS oiiiiiiiiiiicieiee e
Summary of RCS Command FUNCLIONS cooeevviiiiiiiiieeieeeiie
RCS ID KEYWOITS ...ttt
Summary of sccs Command FUNCLIONS ovevieeiiiiiii e
SCCS ID KEYWOITS ..eeviiiiieeeieeiiii e
SCCS admin Command OPLioNS ccovvviiiiiieeeiiiiie e
Flags for the admin Command ooooiiiiiiiiii e
SCCS Command OPLtIONS ...ccovieiiiiiieeeiieii e
Individual SCCS COMMAENAS ccovviriiiiieeeieeeii e

6-10: Functional Comparison: RCS and SCCS Commands

x Contents

1-10

7-1: Internal MAKE MACIOS ..onieieie ettt eaaaen 7-13

Contents xi

About This Manual

This manual describes several commands and utilities in the Digital UNIX
system, including facilities for text manipulation, macro and program
generation, and source file management.

Audience

The commands and utilities described in this manual are intended primarily
for programmers, but some of them, particularly those described in Chapter
1, Chapter 2, Chapter 3, and Chapter 6, can be very useful for writers and
other types of users as well. The manual assumes that you are a moderately
experienced user of UNIX systems.

New and Changed Features

This manual has been revised to document all of the Programming Support
Tools changes that are part of the current release.

One important change is the removal of the chapter on set| d. The
information on set | d has been moved into the Guide to Preparing Product
Kits manual.

Organization

This manual comprises eight chapters, a glossary, and an index. A brief
description of the contents follows:

Chapter 1 Introduces the concept of regular expressions and describes the rules
for forming them, and describes gr ep, a command that uses regular
expressions for searching text files.

Chapter 2 Describes the awk command and its text-processing language.

Chapter 3 Describes the sed stream editor, a noninteractive tool for rapidly
performing complex and repetitive editing tasks.

Chapter 4 Describesthe | ex and yacc programs for generating lexical
analyzers and parsers for processing input to a program.

Chapter 5 Describes the md macro preprocessor and explains how to create
macros that can be used in programs or in other files such as
documentation source.

Chapter 6 Describes how to manage libraries of source files by using the Source
Code Control System (SCCS) or the Revision Control System (RCS).

Chapter 7 Describes how to use the make utility to build and maintain complex
programs and applications.

Related Documents

This manual is an adjunct to the Digital UNIX Programmer’s Guide; neither
manual requires that you have the other in order to use its contents.

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code
General users G Blue

System and network administrators S Red
Programmers P Purple
Device driver writers D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader's Comments

Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

Y ou can send your comments in the following ways:

xiv About This Manual

e Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y 32
* Internet electronic mail: r eaders_conment @k3. dec. com

A Reader’s Comment form is located on your system in the following
location:

/usr/ doc/ readers_conment . t xt
e Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y 32

110 Spit Brook Road

Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.
Please include the following information along with your comments:

» Thefull title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

» The section numbers and page numbers of the information on which you
are commenting.

e Theversion of Digital UNIX that you are using.
» |f known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions
The following typographical conventions are used in this manual:

% A percent sign represents the C shell system prompt. A dollar

$ sign represents the system prompt for the Bourne and Korn shells.
A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates typed user input.
file Italic (slanted) type indicates variable values, placeholders, and

function argument names.

About This Manual xv

cat (1)

Return

Citrl/x

xvi About This Manual

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat (1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

In an example, a key name enclosed in a box indicates that you
press that key.

This symbol indicates that you hold down the first named key

while pressing the key or mouse button that follows the slash. In
examples, this key combination is enclosed in a box (for example,
Ctrl/C).

Finding Information with Regular
Expressions and the grep Command 1

This chapter describes regular expressions and how to use them. Regular
expressions are most commonly used in the context of pattern matching with
the gr ep command, but they are also used with virtually all text-processing
or filtering utilities and commands. A more thorough discussion of the gr ep
command follows the exposition of regular expressions.

1.1 Forming Regular Expressions

A regular expression specifies a set of strings to be matched. It contains
ordinary text characters and operator characters. Ordinary characters match
the corresponding charactersin the strings being compared. Operator
characters specify repetitions, choices, and other features. Regular
expressions fall into two groups:

* Basic regular expressions
» Extended regular expressions

Section 1.1.1 and Section 1.1.2 describe the two types of regular expressions.
In addition to the constructs described in these two sections, there are three
specia expression types related to character classes, collating sequences, and
equivalence classes. See Section 1.1.6 for more information on these classes.
The order of precedence of the regular expression operators discussed in
these three sections is as follows:

1. Collation-related bracket symbols: [==],[. .],and[: :]
2. Escaped operator characters: \ char

3. Bracket expressions: [expr]
4

. Subexpressions and back-reference expressions: \ (expr\), \ nin
basic regular expressions; (expr) only in extended regular expressions

5. Duplication: * N\ {i\},\{/i,\},\{/i,j\} inbasicregular
expressions; *, ?,+,{i},{i,},{/,j} inextended regular expressions

6. Concatenation
7. Anchoring: *, $
8. Alternation in extended regular expressions. |

1.1.1 Basic Regular Expressions

Basic regular expressions are built by concatenating simpler basic regular
expressions. The letters of the aphabet are ordinary characters. An ordinary
character is an expression that always matches itself and nothing else.
(Usually, digits are also ordinary characters, but a digit preceded by a
backslash forms a ** back-reference expression’”; see Table 1-1.) For
example, the expression r abbi t matches the string r abbi t , and the
expression a57D matches the string a57D.

Ordinary characters and operator characters together make up the set of
simple basic regular expressions. Y ou can concatenate any number or
combination of simple expressions to create a compound expression that will
match any sequence of characters that corresponds to the concatenated simple
expressions. Table 1-1 describes the rules for creating basic regular
expressions.

The sections following Section 1.1.2 provide further explanation of some of
the expressions listed in Table 1-1 and Table 1-2.

Table 1-1: Rules for Basic Regular Expressions

Expression Name Description

letters, numbers, Ordinary character ~Matches itself.
most punctuation

Period (dot) Matches any single character except the
newline character.

* Asterisk Matches any number of occurrences of the
preceding simple expression, including
none.

\{i,j\} Interval expression Matches a more restricted number of

instances of the preceding simple
expression; for example, ab\ { 3\ } ¢
matches only abbbc, whileab\ {2, 3\ } ¢
matches abbc or abbbc, but not abc or

abbbbc.
\ (expr\) Subexpression (hold Matches expr, causing basic regular
delimiters) expression operators to treat it as a unit; for

example, a\ (bc\)\ {2, 3\} d matches
abcbcd or abcbcbced but not abed or
abcbcbcbed. Additiondly, the
subexpression is saved into a numbered
holding space (up to nine per expression)
for reuse later in the expression to specify
another match on the same subexpression.

1-2 Finding Information with Regular Expressions and the grep Command

Table 1-1: (continued)

Expression Name Description
\'n Back-reference Repeats the contents of the nt h
expression subexpression in the regular expression.
[char s] Bracket expression Matches a single instance of any one of the

characters within the brackets. Ranges of
characters can be abbreviated by using a
hyphen. For example, [0-9a—z] matches
any single digit or lowercase letter. Within
brackets, all characters are ordinary
characters except the hyphen (when used in
a range abbreviation) and the circumflex
(when used as the first character inside the
brackets).

n Circumflex When used at the beginning of a regular
expression (or a subexpression), matches
the beginning of aline (**anchors’ the
expression to the beginning of the line).
When used as the first character inside
brackets, excludes the bracketed characters
from being matched. Otherwise, has no
special properties.

$ Dollar sign When used at the end of a regular
expression, matches the end of aline
(“*anchors’’ the expression to the end of the
ling). Otherwise, has no special properties.

\ char Backslash Except within a bracket expression, escapes
the next character to permit matching on
explicit instances of characters that are
normally basic regular expression operators.

expr expr ... Concatenation Matches any string that matches all of the
concatenated expressions in sequence.

1.1.2 Extended Regular Expressions

In general, extended regular expressions are like the basic regular expressions
described in Section 1.1.1. However, extended regular expressions comprise
alarger set that is used by certain programs, such as awk, that can perform
more powerful file-manipulation and filtering operations than programs such
as gr ep (when used without its —E flag) or sed. It is better, then, to
consider extended regular expressions separately from basic regular
expressions despite the fact that the two types of expressions share many
constructs. Table 1-2 lists the rules for forming extended regular

Finding Information with Regular Expressions and the grep Command 1-3

expressions; note that constructs that are shared between basic and extended
regular expressions are listed both here and in Table 1-1.

Table 1-2: Rules for Extended Regular Expressions

Expression

letters, numbers,
most punctuation

{i.J}

(expr)

Name

Ordinary character
Period (dot)

Asterisk

Question mark
Plus sign

Interval expression

Subexpression

Description

Matches itself.

Matches any single character except the
newline character.

Matches any number of occurrences of the
preceding simple expression, including
none.

Matches zero or one occurrence of the
preceding simple expression.

Matches one or more occurrences of the
preceding simple expression.

Matches a more restricted number of
instances of the preceding simple
expression; for example, ab{ 3} ¢ matches
only abbbc, while ab{ 2, 3} ¢ matches
abbc or abbbc, but not abc or abbbbc.
Note that basic regular expression interval
expressions are delimited by escaped
braces. To match aliteral expression that
has the form of an interval expression using
an extended regular expression, escape the
left brace. For example, \ { 2, 3} matches
the explicit string { 2, 3} .

Matches expr , causing extended regular
expression operators to treat it as a unit; for
example, a(bc) ?d matches ad or abcd
but not abcbcd, abcbcbced, or other
similar strings. Note that basic regular
expression subexpresions are delimited by
escaped parentheses. To match aliteral
parenthesized expression using an extended
regular expression, escape the left
parenthesis. For example, \ (abc)
matches the explicit string (abc) .

1-4 Finding Information with Regular Expressions and the grep Command

Table 1-2: (continued)

Expression Name Description

[char s] Bracket expression Matches a single instance of any one of the
characters within the brackets. Ranges of
characters can be abbreviated by using a
hyphen. For example, [0-9a—z] matches
any single digit or lowercase letter. Within
brackets, all characters are ordinary
characters except the hyphen (when used in
a range abbreviation) and the circumflex
(when used as the first character inside the
brackets).

n Circumflex When used at the beginning of an
expression (or a subexpression), matches
the beginning of aline (**anchors’ the
expression to the beginning of the line).
When used as the first character inside
brackets, excludes the bracketed characters
from being matched. Otherwise, has no
special properties.

$ Dollar sign When used at the end of an expression,
matches the end of aline (‘‘anchors’’ the
expression to the end of the line).
Otherwise, has no special properties.

\ char Backslash Except within a bracket expression, escapes
the next character to permit matching on
explicit instances of characters that are
normally extended regular expression

operators.
expr expr ... Concatenation Matches any string that matches all of the
concatenated expressions in sequence.
expr| expr ... Vertical bar Separates multiple extended regular
(alternation) expressions; matches any of the bar-

separated expressions.

1.1.3 Matching Multiple Occurrences of a Regular Expression

An asterisk (*) acts on the simple regular expression immediately preceding
it, causing that expression to match any number of occurrences of a matching
pattern, even none. When an asterisk follows a period, the combination
indicates a match on any sequence of characters, even none. A period and an
asterisk always match as much text as possible; for example:

Finding Information with Regular Expressions and the grep Command 1-5

%echo "ABCD' | sed 's/*.* [|E’
ED

The sed stream editor command in this example indicates that sed isto
match the expression between the first and second slashes and replace the
matching pattern with the string between the second and third slashes. This
regular expression will match any string that starts at the beginning of the
line, contains any sequence of characters, and ends in a space. Nominally,
the string “*A " satisfies this expression; but the longest matching pattern is
“ABC’", sosed replaces''ABC’" with*'E" toyield ED as the output.
See Chapter 3 for a discussion of the sed stream editor.

An asterisk matches any number of instances of the preceding regular
expression (both basic and extended). To limit the number of instances that a
particular extended regular expression will match, use a plus sign (+) or a
guestion mark (?). The plus sign requires at least one instance of its
matching pattern. The question mark refuses to accept more than one
instance. The following chart illustrates the matching characteristics of the
asterisk, plus sign, and question mark:

Regular Expression Matching Strings
ab?c ac abc
ab*c ac abc abbc, abbbc, ...
ab+c abc abbc, abbbc, ...

Y ou can also specify more restrictive numbers of instances of the desired
regular expression with an interval expression. The following list illustrates
the various forms of interval expressions in basic regular expressions;

o expr\{i\}
Matches exactly i instances of anything expr matches. For example,

ab\ { 3\ } ¢ matches abbbc but does not match either abbc or
abbbbc.

e \{i,\}

Matches at least i instances. For example, ab\ { 3, \ } ¢ matches
abbbc, abbbbc, and so on, but not ac, abc, or abbc.

« \{i,j\}
Matches any number of instances from/ to j , inclusive. For example,

ab\ {2, 4\ } ¢ matches abbc, abbbc, or abbbbc but not abc or
abbbbbc. You can use 0 (zero) for j .

For extended regular expressions, omit the backslashes, making the previous
examplesab{ 3} ¢, ab{ 3, } c, and ab{ 2, 4} c.

1-6 Finding Information with Regular Expressions and the grep Command

1.14

Using the subexpression delimiters, you can save up to nine basic regular
expression subexpression patterns on aline. Counting from left to right on
the line, the first pattern saved is placed in the first holding space, the second
pattern is placed in the second holding space, and so on.

The back-reference character sequence\ n (where n is adigit from 1 to 9)
matches the nth saved pattern. Consider the following basic regular
expression:

\(A)\(B)a2\1

This expression matches the string ABCBA. You can nest patterns to be
saved in holding spaces. Whether the enclosed patterns are nested or in a
series, n refersto the nth occurrence, counting from the left, of the
subexpression delimiters. You can aso use \ n back-reference expressionsin
replacement strings as well as address patterns for editors such as ed and
sed. Extended regular expressions do not support back-referencing.

Matching Only Selected Characters

A period in an expression matches any character except the newline
character. To restrict the characters to be matched, place the desired
charactersinside brackets ([]). Each string of bracketed charactersis a
single-character expression that matches any one of the bracketed characters.
Except for the circumflex (*), regular expression operators within brackets
are interpreted literally, without special meaning. The circumflex excludes
the bracketed charactersif it is the first character in the brackets; otherwise, it
has no specia meaning.

When you specify arange of characterswith a hyphen (for example,

[a—z]), the charactersthat fall within the range are determined by the
current collating sequence defined by the current setting of the LC_CTYPE
environment variable. (See the discussion on using internationalization
features in the Command and Shell User’s Guide for more information on
collating sequences.) The hyphen has no special meaning if it is the first or
last character in a bracketed string or in arange expression in a bracketed
string, or if it immediately follows a circumflex that is the first character in a
bracketed string. To include aright bracket in a bracket expression, place it
first or after the initial circumflex.

You can use the gr ep command’s—i flag to perform a case insensitive
match. (The—y flag is an exact synonym for —i .) To create an expression
that is not case sensitive for other utilities, or to form an expression that is
only partially case insensitive, use a bracket expression consisting of just the
uppercase and lowercase versions of the character you want. For example:

Finding Information with Regular Expressions and the grep Command 1-7

% grep '[Jj]ones’ group-list

1.1.5 Specifying Multiple Regular Expressions

Some utilities, such as gr ep (with its —E flag) and awk, permit you to
specify multiple alternative extended regular expressions simultaneously by
separating the individual expressions with a vertical bar. For example:

% awk ' /[Bb]lack| [Wa hite/ {print NR":", $0}’ .Xdefaults

55: sm pointer_foreground: black
56: sm poi nter_background: white

1.1.6 Special Collating Considerations in Regular Expressions

Bracket expressions can include three special types of expressions called
classes:

* Character class
Specifies a general type of character, such as uppercase letters.
» Collating-symbol class

In internationalized usages, specifies multicharacter strings that sort as
single characters.

* Equivalence class

In internationalized usages, specifies collections of characters that have
the same primary sort value.

Note that when not used within a bracket expression, al of the constructs
described in this section are interpreted literally as the explicit sequences of
characters that make them up.

A character class name enclosed in bracket-colon delimiters, [: and:],
matches any of the set of charactersin the named class. Members of each of
the sets are determined by the current setting of the LC_CTYPE environment
variable. The supported classesareal num al pha, cntrl,digit,

gr aph, | ower, print, punct, space, upper, and xdi gi t. For
example, [[: | ower:]] matches any lowercase letter in the current locale.

Some collating sequences include multicharacter strings that must be sorted
as if they were single characters. For example, in Hungarian, the strings cs,
dz, and others are each collating symbols. (The Hungarian primary sort
orderisa, a, b, c, cs, d, dz, e,...). These specia strings are called
collating symbols, and they are indicated by being enclosed within bracket-
period delimiters, [. and .]. The bracket-period delimiters in the regular
expression syntax distinguish multicharacter collating elements from a list of
the individual characters that make up the element. When using Hungarian
collation rules, for example, [[. ¢s.]] istreated as an expression

1-8 Finding Information with Regular Expressions and the grep Command

matching the sequence cs, while [cs] istreated as an expression matching
c ors. Inaddition,[a-[.cs.]] matchesa, a, b, c, andcs.

A collating sequence can define equivalence classes for characters. An
equivalence classis a set of collating elements that all sort to the same
primary location. They are enclosed within bracket-equal delimiters, [= and
=] . An equivalence class generally is designed to deal with primary-
secondary sorting; that is, for languages like French that define groups of
characters as sorting to the same primary location, and then have a tie-
breaking, secondary sort. For example, if e, &, and &’ belong to the same
equivalence class, then [[=e=] fg],[[=e=]fg],and[[=e=] fg] are
each equivalent to [eeef g] . For more information on collating sequences
and their use, see the discussion on using internationalization features in the
Command and Shell User’s Guide.

1.2 Using the grep Command

The name of the gr ep command is an acronym for *‘global regular
expression printer.”” The egr ep and f gr ep commands, allied to gr ep, are
obsolescent and should be replaced with gr ep —E and gr ep —F,
respectively. The differencesin the way gr ep behaves when used with these
flags are summarized in Table 1-3.

Table 1-3: Behavior of the grep Command

grep Version Description

grep ‘‘Basic gr ep’’ patterns (for gr ep with neither the —E nor
the —F flag) are interpreted as basic regular expressions.

grep —E (egrep) ‘‘Extended grep’’ patterns are interpreted as extended
regular expressions.

grep —F (fgrep) ‘‘Fixedgrep’’ patterns are fixed strings; all regular
expression operators are interpreted literaly.

All forms of the gr ep command alow you to specify more than one
expression as a multiline list. Surround the list with apostrophes, and
separate the expressions with newline characters, as in this example using the
Bourne shell:

Finding Information with Regular Expressions and the grep Command 1-9

$ strings hpcalc | grep -F "math. h
> fatal . h

In the C shell, you must enter a backslash before each newline character:

% strings hpcalc | grep -F ’'math. h\
fatal . h’

You can also use the —e flag to specify multiple expressions on one line.
For example:

% grep -e "ab*c’ -e 'de*f’ nmyfile

By default, the gr ep command finds each line containing a match for the
expression or expressions you specify. Table 1-4 describes command-line
flags that allow you to specify other results from your searches.

Table 1-4: Flags for the grep Command

Flag Description

-b Precedes each output line with its disk block number.
This flag is of use primarily to programmers who are
trying to identify specific blocks on a disk by searching
for the information contained in them.

-C Counts matching lines and prints only the count.

-e pattern_list Specifies matching on pat t ern_I i st; multiple
patterns must be separated with newlines. Useful if
pattern_Iist beginswith a minussign (-).

-f pattern_file Uses the contents of pat t ern_fi Il e to supply the
expressions to be matched. Specify one expression per
linein pattern_file.

-h Suppresses reporting of file names when multiple files
are processed.

- Performs a case-insensitive search.

-1 Lists only the names of files containing matching lines.
Each file name is listed only once, even if the file
contains multiple matches. If standard input is specified
among the files to be processed with this flag, gr ep
returns the parenthesized phrase (st andar d i nput)
for the file name on relevant matches.

-n Precedes each matching line with its line number.

-p paragraph_sep Uses par agr aph_sep as a paragraph separator, and
displays the entire paragraph containing each matched
line. Does not display the paragraph separator lines.
The default paragraph separator is a blank line.

1-10 Finding Information with Regular Expressions and the grep Command

Table 1-4:

Flag
- qa

-W expr

- X
-y

Table Note:

(continued)

Description

Operatesin *‘quiet’”” mode, printing nothing except error
messages.

Suppresses error messages arising from nonexistent or
unreadable files. Other error messages are still
displayed.

Outputs only lines that do not match the specified
EXPressions.

Matches only if expr isfound as a separate word in the
text. A word is any string of aphanumeric characters
(letters, numbers, and underscores) delimited by

nonal phanumeric characters (punctuation or white space)
or by the beginning or end of the line. For example,
wor d1 is aword; A+B is not a word.

Outputs only lines matched in their entirety.
Exact synonym for —i .

a. To suppress al output for cases in which only success or failure status is
desired, as in a shell script, close standard output and standard error or
redirect them both to / dev/ nul | .

See the gr ep(1) reference page for more information about gr ep and

regular expressions.

Finding Information with Regular Expressions and the grep Command 1-11

Matching Patterns and Processing

Information with awk 2

This chapter describes the awk command, a tool with the ability to match
lines of text in afile and a set of commands that you can use to manipulate
the matched lines. In addition to matching text with the full set of extended
regular expressions described in Chapter 1, awk treats each line, or record,
as a set of elements, or fields, that can be manipulated individualy or in
combination. Thus, awk can perform more complex operations, such as:

Writing selected fields of arecord

Reordering or replacing the contents of a record; for example, to change
syntax in a program source file or change system calls when porting from
one system to another

Processing input to find numeric counts, sums, or subtotals
Verifying that a given field contains only numeric information
Checking to see that delimiters are balanced in a programming file
Processing data contained in fields within records

Changing data from one program into a form that can be used by a
different program

2.1 Versions of the awk Utility

The Digital UNIX operating system provides several versions of the awk
utility:

The awk command invokes a version that is extended from the original
design of Aho, Weinberg, and Kernighan to offer many additional
features. This version is XPG4 compliant. Some or all of the extended
features might or might not be present in other systems’ versions of awk;
thus, programs using these features might present portability problems.

The gawk command invokes an extended version that is similar to awk.
This version is provided by the Free Software Foundation.

For information about unique features of gawk, see the gawk (1) reference
page.

2.2 Running the awk Program
The awk command has the following syntax:
awk [-FERE] [—vvar=val] {—f prog_file| prog text} [filel][file2...]]

Table 2-1 describes the flags for the awk command.

Table 2-1: Flags for the awk Command

Flag Description

—-FERE Specifies an extended regular expression to be used as a field
separator. By default, awk uses white space (any number of
adjacent tabs or spaces) to separate fields in arecord. To
specify an aternate separator containing white space or a
shell metacharacter, enclose the entire flag in apostrophes.
For example:

%awk '-FTab’ '-f nyprog’ report
The —F flag must precede any other command-line argument.

—-v var=val Assigns the value val to avariable named var ; such
assignments are available to the BEG N block of a program.

—f prog file Specifies the name of a file containing an awk program.
This flag requires a file name as an argument. The awk
command accepts multiple —f flags, concatenating all the
program files and treating them as a single program.

Y ou can specify the awk program to be executed either with the —f
prog fil e flag or as aprogram on the command line. Enclose a
command-line program with apostrophes (* *) or quotation marks (
needed to control file name expansion and variable substitution.

Usually, you create an awk program file before running awk. The program
fileis a series of statements that look like the following:

pattern { action }

) as

In this structure, a pat t er n is one or more expressions that define the text
to be matched. Patterns can consist of the following:

» BEG Nor END

» Boolean combinations of regular expressions using the operators !
(NOT), | | (Logical OR), and && (AND), with parentheses for grouping
expressions

2-2 Matching Patterns and Processing Information with awk

» Boolean combinations of relational operations on strings, numbers, fields,
and variables

» Ranges of records, specified in this way:
patternl, pattern2

* Inawk conditional expressions (see Table 2-3 for an explanation of the
conditional operator)

An acti on is one or more steps to be executed, designated with awk
commands, operands, and operators. Actions can consist of the following:

e Assignment statements

e Statements to format and print data

» Tests to alter the flow of control

« Control structures, such asi f - el se, whi |l e, and f or statements

» Redirection of output to one or more output streams besides standard
output

e Piping of output and input

The braces ({ }) are delimiters separating the action from the search pattern.
Actions can be specified on a single line, or on multiple lines to give a visual
structure to the program. If you place an action consisting of several
commands on one line, separate the commands with semicolons (;). For
example, either of the two following programs will find every record
containing either **Gunther’’ or ‘‘gunther’’. For each matching record, it will
print two lines, first the number of the record on which the match was made
and then the first two fields of the matched record:

Program 1.
/[&lunther/ { print "Record:", NR; print $1, $2 }

Program 2

/[Gglunt her/ {
print "Record:", NR
print $1, $2

}

Output from these programs might look like the following:

Record: 382
Schul I er @unt her
Record: 397
schwar z gunt her

Bath the pattern and the action are optional elements of a program line. If
you omit the pattern, awk performs the action on every record in the file; if
you omit the action, awk copies the record to standard output. A null
program passes its input unmodified to the output.

Matching Patterns and Processing Information with awk 2—3

Once you create the program file, enter the awk command on the command
line as follows:

$ awk -f progfile infile > outfile

This command uses the program in pr ogf i | e to processi nfil e, and
writes the output toout fi | e. Theinput file is not changed.

With a short program, you can accomplish the same job by entering the
program on the command line before the name of the input file. For
example:

$ awk '/[Cglunther/ { print $1, $2 }’' infile

When you use awk in this way, enclose the program in single or double
guotation marks as required to control shell file name expansion and variable
substitution.

When you start awk, it reads the program, checking for syntax. It then reads
the first record of the input file, testing the record against each of the patterns
in the program file in order of their appearance. When awk finds a pattern
that matches the record, it performs the associated action. Then awk
continues to search for matches in the program file. When it has compared
the first input record against all patterns in the program file and performed al
the actions required for that record, awk reads the next input record and
repeats the program with that record. Processing continues in this manner
until the end of the input file is reached. Figure 2-1 is aflowchart of this
sequence. Compare the operation of awk with the very similar operation of
the sed editor, shown in Figure 3-1.

2-4 Matching Patterns and Processing Information with awk

Figure 2-1: Sequence of awk Processing

(Start ’

Pattern
match?

Apply
actions

ZK-0471U-R

2.3 Printing in awk

You can use either the pri nt command or the pri nt f command to
produce output in awk. The pri nt command prints its arguments as
aready described; that is, arguments separated by commas are printed
separated by the current output field separator, and arguments not separated
by commas are concatenated as they are printed.

Thepri ntf command has a syntax identical to that of the pri nt f
statement in the C programming language:

printf("format' , valuel| , value2,...])

This command prints the arguments val uel, val ue2, and so on, formatted
as defined by the f or mat string. Refer to the awk (1) and pri nt f (3)
reference pages for information on constructing format specifiers.

Matching Patterns and Processing Information with awk 2—-5

2.4 Using Variables in awk

241

The awk program uses variables to manipulate information. Variables are of
the following three types:

e Simple variables
* Field variables
* Array variables

The awk language supports the set of built-in variables described in Section
2.4.4. You can aso create and modify variables of al three types. For
example, the following assignment statement creates a variable named var
whose value is the sum of the third and fourth field variables in the current
record:

var = $3 + $4

You can use variables as part of a pattern, and you can manipulate them in
actions. For example, the following program assigns a value to a variable
namedt st and then usest st as part of a pattern for further actions:

{ tst = $1}
tst == $3 { print }

Section 2.4.1, Section 2.4.2, and Section 2.4.3 discuss the three types of
variables and how to use them. Some of the examples in these sections
illustrate the use of other awk features; beginning with Section 2.5, the
remaining sections in the chapter provide more detailed information about
these features.

Simple Variables

Y ou can create any number of simple (scalar) variables, assigning values to
them as required. If you refer to a variable before explicitly assigning a
value to it, awk creates the variable and assigns it a value of O (zero).
Variables can have numeric (floating-point) values or string values depending
on their use in the action expression. For example, in the expressionx = 1,
X isanumeric variable. Similarly, inthe expressonx = "sm th", xisa
string variable. However, awk converts freely between strings and numbers
when needed. Therefore, in the expressionx = "3"+" 4", awk assigns a
value of 7 (numeric) to x, even though the arguments are literal strings. |If
you use a variable containing a nonnumeric value in a numeric expression,
awk assignsit a numeric value of 0. For example:

2-6 Matching Patterns and Processing Information with awk

24.2

y =0

z = "ABC'
X = y+z
print x, z

This sequence prints ‘00"’ because y is assigned a value of 0 and z assumes
avalue of 0 when used numerically.

You can force a variable to be treated as a string by concatenating the null
string (" ") to the variable; for example, x = 2 "". (See Section 2.13 for
information on concatenating strings.) Y ou can force a variable to be treated
numerically by adding zero to it. Forcing variables to be treated as particular
types can be useful. For example, if x is*'0100"" and y is‘‘1"’", ank
normally treats both variables as numerics and considers that x is greater
than y. Forcing both variables to be treated as strings causes x to be less
than y because ‘0"’ precedes ‘1’ in standard character collating sequences.

Field Variables

Fields in the current record, also called field variables, share the properties
of simple variables. They can be used in arithmetic or string operations and
can be assigned numeric or string values. You can modify $0 explicitly in
awk. The following action replaces the first field with the record number
and then prints the resulting record:

{ $1 = NR print }

The next example adds the second and third fields and stores the result in the
first field:

{ $1 = $2 + $3; print $0 }

(Printing $0 isidentical to printing with no arguments.)

Y ou can use numeric expressions for field references; the following example
prints the first, second, and sixth fields:

1
n 5
{ print $i, $(i+1), $(i+n) }

As described in Section 2.4.1, awk converts between string and numeric
values. How you use a field determines whether awk treats it as a string or
numeric value. If it cannot tell how a given field is used, awk treatsit asa
string.

The awk program splits input records into fields as needed. Y ou can split
any literal string or string variable into an array by using the spl i t
function. For example:

Matching Patterns and Processing Information with awk 2—7

X
y

split(s, arrayl)
split("Thu Dec 18 11:19:40 EST 1992", array2)

The first line in this example splits the variable s into elements of an array
named arr ayl, creatingarrayl[1] toarrayl[n] wherenisthe
number of fields in the string. The second line splits a literal string in the
same manner into array2. Thespl it function can split strings by using
an alternative field separator; see Section 2.10 for more information on using
this function. See Section 2.4.3 for information on using arrays.

2.4.3 Array Variables

Like field variables, array variables share the properties of simple variables.
They can be used in arithmetic or string operations and can be assigned
numeric or string values. You do not need to declare or initialize array
elements; awk creates them and initializes them to zero upon first reference.
Subscripts are indicated by being enclosed in brackets. Y ou can use any
value that is not null, including a string value, for a subscript. An example
of a numeric subscript follows:

x[NR] = $0

This expression creates the NRh element of the array x and assigns the
contents of the current input record to it. The following example illustrates
using string subscripts:

[apple/ { x["apple"]++ }

/orange/ { x["orange"]++ }

END { print x["apple"], x["orange"] }

For each input record containing appl e, this program increments the
app! et h element of array x (and similarly for or ange), thereby producing
and printing a count of the records containing each of these words. (Note
that this is not a count of the number of occurrences, because a word can
appear more than once in arecord.)

Problems can occur when you useani f or whi | e statement to locate an
array element. (See Section 2.11 for information on using these and other
control structures.) If the array subscript does not exist, the statement adds
the subscript as a new B-tree node with anull value. For example:

{ if (exists[$2] == 1) }

To avoid this type of problem, use code similar to the following, in which /
is printed after ani f statement within af or loop:

2-8 Matching Patterns and Processing Information with awk

244

for (i in exists) {

if (exists[i]

I="") print i

Also use this type of coding when whi | e is used with arelational operator.

Built-In awk Variables
The awk programs recognize the set of built-in variables listed in Table 2-2.

Table 2-2:

Variable

$0
$n

ARCC

ARGV

CONVFMI!
ENVI RON

FI LENAME

FNR

Built-In Variables in awk

Description

The contents of the current record.

The contents of field n of the input record. In awk you can
modify the entire record ($0).

A count of the arguments given to awk. Thisvariableis
modifiable. Does not include the command name, flags
preceded by minus signs, the script file name (if any), or
variable assignments.

An array containing the arguments given to awk. The
elements of this array are modifiable. Does not include the
command name, flags preceded by minus signs, the script file
name (if any), or variable assignments.

The conversion format for numbers (by default, % 6g).

A modifiable array containing the current set of environment
variables; accessible by ENVI RON| var] , where var isthe
name of the environmental variable. Changing an element in
this array does not affect the environment passed to
commands that awk spawns by redirection, piping, or the
systenm() function.

The name of the current input file. If no input file was
named, FI LENAME contains a single minus sign. Inside a
BEQ N action, FI LENAME is undefined. Inside an END
action, FI LENANME reflects the last file read.

The number of the current record within the current file.
Differs from NR if multiple files are being processed and the
current file is not the first file read.

Matching Patterns and Processing Information with awk 2—9

Table 2-2: (continued)

Variable Description

FS The character or expression used for a field separator. By
default, any amount of white space.

In awk only, field separators can be multibyte regular
expressions and can be multiply defined. For example, the
following statement defines either a comma followed by any
amount of white space or at |east one white-space character

as the field separator:
FS=",[Tab]*|[Tab]+"
NF The number of fields in the current record.
NR The number of the current record, counted sequentially from

the beginning of the first file read. Differs from FNR if
multiple files are being processed and the current file is not
the first file read.

OFMT The format specification for numbers on output (by default,
% 69).

OFSs The output field separator; or string inserted between fields
when the data is written. By default, a space character.

ORS The character used for the output record separator (the

character between records when the data is written). By
default, a newline character.

RLENGTH The length of the string matched by mat ch() ; set to —1 if
no match.

RS The character used for a record separator.

RSTART The index (position within the string) of the first character
matched by mat ch() ; set to 0 if no match.

SUBSEP The separator for multiple subscripts in array elements (by

default \034, the ASCII FS character).

See the awk (1) reference page for more information about these variables.

2.5 More About Using Regular Expressions as Patterns

The simplest regular expression is a literal string of characters. Expressions
in awk must be enclosed in slashes. To include a slash as part of an
expression, escape the slash with a backslash. For example,
/\/usr\/share/ isanexpression that matchesthe string / usr/ shar e.

Following is an example of aawk program that prints all records containing
the string t he.

2-10 Matching Patterns and Processing Information with awk

/ the/

Because this expression does not specify blanks or other qualifiers, the
program displays records containing ‘‘the’’ as a separate word and records
containing the string as part of words such as ‘‘northern’’. Regular
expressions are case sensitive. To find either *‘The'” or ‘‘the’’, use a
bracketed expression as follows:

/[Tt] hel

The awk language supports the full set of extended regular expressions
described in Chapter 1. Additionally, in awk the circumflex () and dollar
sign ($) can apply to a specific field or variable as well as to the entire line.
The following example will match afield consisting of the word *‘cat’’ or the
word ‘‘cats’’ but will not match any word containing these strings (such as
‘*concatenate’’):

{ for (i=1;i<=NF;i++) if ($i ~ /["cats?$/) print }

2.6 Using Relational Expressions and Combined
Expressions as Patterns

Relational expressions lets you restrict a match to a specific field of arecord

or to make other tests, either numeric or string-related. One example earlier

in this chapter (in Section 2.4) illustrates the use of relational expressionsin

patterns. The awk program defines the following relational operators for use
in building patterns:

== Equivaent

= Not equivalent

< Less than

> Greater than

<= Lessthan or equal

>= Greater than or equa

~ Matches regular expression

I ~ Does not match regular expression

Use the == (equivalent) and ! = (not equivalent) operators to test literal
strings and numeric values. For example:

str == "literal string"
num!= 23
$NF == 1991

The last line in this example uses the $n syntax combined with the built-in
variable NF to test the value of the last field of arecord. To test against
regular expressions, use the ~ (matches regular expression) and ! ~ (does not
match regular expression) operators as follows:

Matching Patterns and Processing Information with awk 2—-11

str ~ /[LlI]iteral/

You can test relational expressions against built-up expressions. For
example, the following pattern finds all records whose second field ($2) is at
least 100 greater than the first field ($1):

$2 > $1 + 100

The following pattern finds records that contain an even number of fields:
NF %2 == 0

Use the operators listed in Section 2.9 to build expressions.

Y ou can use magnitude-comparison operators to test strings. For example,
the following pattern finds records that begin with ‘*s”’ or any character that
appears after it to the end of the character set:

$0 >= "s"

Y ou can combine two or more patterns by using the following Boolean
operators:

&& AND

[] Logica OR

! NOT

For example, to prevent nonal phanumeric matches in the preceding example,
you can combine two expressions as follows:

($0 >= "s" && $0 < "{")

(The left brace is the character immediately following the letter **z’" in the
ASCII code)

2.7 Using Pattern Ranges

Y ou can use a pattern range to select a group of records to operate on. A
pattern range consists of two patterns separated by a comma; the first pattern
specifies the start of the range, and the second pattern specifies the end of the
range. The awk program performs the associated action on al recordsin the
range, including the records that match the two patterns. For example:

NR==100, NR==200 { print }

This program prints 101 records from the input file, beginning with record
100 and ending with record 200.

Using a pattern range does not disable other patterns from matching records
within the range. However, because the input file is processed record by
record, with each record being subject to al the actions appropriate to it
before the next record is considered, the actions taken can appear to be out of
sequence. For example:

2-12 Matching Patterns and Processing Information with awk

2,4 { print }
/share/ { print "Found share" }

Apply this program to the following input file:

This is a test file
Li ne two

Try to share things
Li ne four

Last line of file

When this file is processed by awk, the output is as follows:

Li ne two

Try to share things
Found share

Li ne four

The second action is applied to record 3 before record 4 is examined to see if
it matches the first pattern.

2.8 Actions in awk

An action can be a single command, such as pri nt, or it can be a series of
commands. An action can include tests to select records or parts of records;
if desired, you can create a program that has no explicit patterns, relying
instead on relational comparisons within its actions. Such a program can
bear a strong resemblance to a C program; for example:

if ($1 == 0) {

print;

printf("9%.2f\n", $2+$3)
} else {

printf("9%.2f\n", $1+$2)

Note

The semicolon after the pri nt command, which would be
required in a C program, is not required by awk, but it does not
cause an error.

2.9 Using Operators in an Action

Use the operators shown in Table 2-3 to build expressions within the action
statement.

Matching Patterns and Processing Information with awk 2—13

Table 2-3: Operators for awk Actions

Operator Description Example
Addition 2+3=5
Unary plus; +4=4
placeholder
- Subtraction 7-3=4
- Unary minus —4 is negative 4
* Multiplication 2*4=8
/ Division 6/3=2
% Modulo (remaindering) 7%3 =1
++ Increment See the description following this table.
-- Decrement See the description following this table.
+= Increment by value X+=y is equivalent to X = x+y
-= Decrement by value X-=y is equivalent to X = x-y
= Multiply by value X=y is equivalent to X = x*y
/= Divide by value x/=y is equivalent to x = x/y
% Modulo by value x%=y is equivalent to x = x%y
2.0 Conditional See the description following this table.

The following example prints the sum of al the first fields and the sum of all
the second fields in the input file:

{ sl += $1; s2 += $2 }
END { print s1,s2}

The position of the increment and decrement operators affects their
interpretation. The expression i ++ evaluates the current contents of i and
then incrementsi . The expression ++i causes awk to increment i before

evaluation. For example:

$ echo "3 3" | awk '{

> print "$1 =", $1 "; $1++ =", $1++ "; new $1 =", $1
> print "$2 =", $2 "; ++$2 =", ++$2 "; new $2 =", $2
>}

$1 = 3; $1++ = 3; new $1 = 4

$2 = 3; ++$2 = 4; new $2 = 4

The conditional operator is used in the following form:

2-14 Matching Patterns and Processing Information with awk

2.10

expr?expr1: expr2

This structure returns the value of expr 1 if expr is nonzero; otherwise, it
returns the value of expr 2. For example, x=(3- 1) ?4: 5 returns 4, while
x=(3-3) ?4: 5 returns 5.

Using Functions Within an Action

The awk language includes the built-in functions listed in Table 2-4, Table
2-5, and Table 2-6; Additionally, awk lets you create additional functions as
described after the tables.

Table 2-4: Built-In awk Mathematical Functions

Function Description

atan2(x/ y) Returns the arctangent of the value specified by
xly.

cos(expr) Returns the cosine of the value (in radians) specified
by expr.

exp(arg) Returns the natural antilogarithm (base €) of ar g.
For example, exp(0. 693147) returns 2. See
| og(arg) .

int(arg) Returns the integer part of ar g.

| og(arg) Returns the natural logarithm (base €) of arg. For
example, | og(2) returns 0.693147. See
exp(arg).

rand Returns a pseudorandom number (0 < n < 1).

sin(arg) Returns the sine of ar g.

sqgrt(arg) Returns the square root of ar g.

srand(seed) Uses seed as the seed for a pseudorandom number

seguence for subsequent callsto r and. If no seed
is specified, the time of day isused. The return
value is the previous seed.

Matching Patterns and Processing Information with awk 2—15

Table 2-5: Built-In awk String Functions

Function Description

gsub(expr, s1, s2) Replaces every sequence of charactersin string s2
that matches the expression expr with the string
specified by s1. If s2isnot supplied, the current
input record is used. Expression expr is
reevaluated for each match. This function returns a
value representing the number of replacements. See
asosub(expr, s1,s2).

i ndex(s1, s2) Returns the character position in string s1 where
string s2 occurs. If s2isnotin s1, thisfunction
returns a zero.

[ength Returns the length in characters of the current
record.

I engt h(arg) Returns the length in characters of the string

specified by arg. Seel engt h.

mat ch(s, expr) Returns the character position in string s where a
match is found for the expression expr ; sets the
variable RSTART to the character position at which
the match begins and RLENGTH to a value
representing the length of the matched string. If no
match is found, this function returns a zero.

split(s, array, sep) Splits string s into consecutive el ements of
array[1] ...[n] and returns the number of
elements. The optional sep argument specifies a
field separator other than the one currently in force
(the contents of the FS variable).

sprintf(f,el, e2, ...) Returns(but doesnot print) a string containing the
arguments el and so on, formatted in the same
manner as by the pri nt f command.

stritinme(f, tine) Formats t i e into a string as specified by f. The
t i e value should be specified in the form returned
by systine(). Seethestrftinme(3) reference
page for alist of the available format conversions.

sub(expr, s1, s2) Replaces the first sequence of charactersin string s2
that matches the expression expr with the string
specified by s1. If s2isnot supplied, the current
input record is used. This function returns a value
representing the number of replacements (0 or 1).
See dsogsub(expr, s1, s2).

2-16 Matching Patterns and Processing Information with awk

Table 2-5: (continued)

Function Description

substr(s, mn) Returns the substring of s that begins at character
position mand is n characterslong. The first
character in s is at position 1. If nis omitted or if
the string is not long enough to supply n characters,
the rest of the string is returned.

t ol ower (' s) Trandates all uppercase lettersin string s to
lowercase. If thereis no argument, the function
operates on the current record.

t oupper (' s) Trandates all lowercase letters in string s to
uppercase. If thereis no argument, the function
operates on the current record.

Table 2-6: Built-In Miscellaneous awk Functions

Function Description

cl ose(arg) Closes the file or pipe named by ar g.

del ete(arrayl[sub]) Deletes the element of ar r ay indicated by sub.
systenm(" conmand") Executes the system command specified and returns

its exit status. The entire command must be
enclosed in quotation marks to prevent awk from
attempting to interpret it as one or more variable
names.

systime() Returns the current time of day as the number of
seconds since midnight, January 1, 1970.

The awk language also lets you create functions by using the following
syntax:

function name (parameter-list) {
Statements
}

The word f unc can be used in place of f unct i on. For functions that you
create, the left parenthesis both in the function’s definition and in its use
must immediately follow the function name, with no intervening space. The
names in the function declaration’s parameter list are the formal parameters
for use within the function. When you call a function, awk replaces these

Matching Patterns and Processing Information with awk 2—-17

formal parameters with the values you supply in the calling statement.
Functions can be recursive.

Y ou can define local variables for a given function by declaring them as extra
formal parameters; upon function entry, all local variables are initialized as
empty strings or the number 0. To avoid visual confusion between real
parameters and local variables, you can separate the local variables with extra
spaces in the function declaration. For example:

function foo(in, out, I ocal 1, local 2) {
locall = "foo"
local 2 = "bar"

}

2.11 Using Control Structures in awk

The awk language provides the control structures listed in Table 2-7. Except
where noted, these structures work exactly as they do in the C language. To
perform several statements in a single control structure’s action, enclose the
statements in braces. If only a single statement is to be performed, the braces
are optional. Each of the first two i f structuresin the following example
includes a single statement to be executed; these structures are equivalent:

if (x ==vy) print
it (x ==y) {
print

}
it (x ==y) {
print $3
printf("Sum= %\ n", x+z)
}
}

Table 2-7: Control Structures in awk

Structure Description

if-else The condition in parenthesesin ani f - el se structureis
evaluated. If true, the statements following thei f are
performed. If false, the statements following the optional
el se keyword are performed.

whil e The statements following the whi | e statement are performed
until the tested condition is true. The following example
prints al the fields in the input records, one field per line:

2-18 Matching Patterns and Processing Information with awk

Table 2-7:

Structure

for

br eak

Comments

conti nue

getline

next

exit

(continued)

Description
t

i =1

whil e(i <=NF) print $i++
}

Thefor (expr1; expr2;, expr3) statenents
structure is equivalent to the following whi | e construct:

{
expr1
whi l e(expr2) {
statenents
expr3
}
}

The previous whi | e example could aso be written as
follows:

for(i=1;i<=NF;++i) print $i
}

The br eak statement causes an immediate exit from an
enclosing whi | e or f or loop.

Include comments in an awk program file to explain program
logic. Comments begin with the number sign (#) and end
with the end of the line. For example:

{

print X,y # This is a coment

}

The cont i nue statement causes the next iteration of an
enclosing loop to begin.

The get | i ne statement causes awk to discard the current
input record, read the next input record, and continue
scanning patterns from the present location.

By using getl i ne var, you can assigntheget | i ne
input to a variable; without var, the input is assigned to the
current record.

The next statement causes awk to discard the current input
record, read the next input record, and begin scanning
patterns from the start of the program file.

Theexi t statement causes the program to stop as if the end
of the input occurred.

Matching Patterns and Processing Information with awk 2—-19

2.12 Performing Actions Before or After Processing the
Input

The awk program recognizes two special pattern keywords that define the
beginning (BEG N) and the end (END) of the input file. BEG N matches the
beginning of the input before reading the first record. Therefore, awk
performs any actions associated with this pattern once, before processing the
input file. BEA N must be the first pattern in the program file. For example,
to change the field separator to a colon (:) for al records in the file, include
the following line as the first line of the program file:

BEGN{ FS = ":" }

This example action works the same as using the —F: flag on the command
line.

Similarly, END matches the end of the input file after processing the last
record. Therefore, awk performs any actions associated with this pattern
once, after processing the input file. END must be the last pattern in the
program file. For example, to print the total number of recordsin the input
file, include the following line as the last line in the program file:

END { print NR}

2.13 Concatenating Strings

Y ou concatenate strings by placing their variable names together in an
expression. For example, the command pri nt $1 $2 prints a string
consisting of the first two fields from the current record, with no space
between them. You can use variables, numeric operators, and functions
when concatenating strings. (See Section 2.4.1 and Section 2.9 for
information on variables and numeric operators.) The function

l engt h($1 $2 $3) returnsthe length in characters of the first three
fields. (See Section 2.10 for alist of the functionsin awk.) If the strings
you want to concatenate are field variables (see Section 2.4.2), you are not
required to separate the names with white space; the expression $1$2 is
identical to $1 $2.

2.14 Redirection and Pipes

Unless otherwise specified, pri nt and pri nt f statements write their
output to the standard output file. Y ou can redirect the output of any printing
statement by using standard redirection operators. For example:

2-20 Matching Patterns and Processing Information with awk

print $0, $3, ant >> “reportfile"

This example appends its output to afile named r eport fi | e instead of
writing to the standard output. (If reportfi |l e does not exist before the
first instance of redirection, it is created.) The output file name in this
example is enclosed in quotation marks. The quotation marks are required to
distinguish the file name from a variable name. Y ou can mix writing to
named files with writing to the standard output.

Y ou can also pipe printed output through other commands. The following
example pipes awk’s output through the t r command to convert all
uppercase letters to lowercase letters:

print | "tr '"[A-Z]' '[a-z]""

As with redirection, the command to which you pipe the output must be
enclosed in quotation marks. In awk you can redirect the input to get | i ne
using standard redirection operators, and you can supply the input to

getl i ne fromapipe. For example:

expr | getline

Here, expr isinterpreted as a system command.

Only alimited number of files can be open for output. The awk program
uses your default open file descriptor limit. For efficiency, however, you can
usethecl ose(arg) statement to close files that you have opened for
output and no longer need.

Matching Patterns and Processing Information with awk 2—-21

Editing Files with the sed Editor 3

The sed stream editor is a program that works much like the interactive ed
program, but you do not need to know how to use the ed line editor to use
the material presented here. Unlike ed, sed edits files by using a prepared
list of commands, called a script, instead of interacting with the user. This
method of operation makes sed particularly well suited for tasks like the
following:

» Editing large files

» Performing complex editing operations many times without extensive
retyping and cursor positioning

» Performing global changes in one pass through the input

3.1 Overview of the sed Editor

The sed stream editor receivesits input from standard input or from a
named file, changes that input as directed by commands in a command file or
on the command line, and writes the resulting stream to standard output. If
you specify more than one input file, sed processes each file in sequence and
concatenates the results to standard output. 1f you do not provide a command
file and do not use any with the sed command flags, sed copies standard
input to standard output without change. The editor keeps only a few lines
of the file being edited in memory at one time and does not use temporary
files. Therefore, the size of the file to be edited is limited only by the
available disk space.

The command script for sed can be afile that you create before running the
editor, a series of commands you enter as a command flag, or both. The
editor cannot process more than 99 commands in a single invocation; for this
reason or to accomplish certain extremely complex editing tasks, you might
need to pipe the output from sed into another instance of sed.

3.2 Running the sed Editor
The syntax for the sed command is as follows:

sed [-n] [—e script] [—f script_file] [source_filel [source-file2...]]

Table 3-1 describes the flags for the sed command.

Table 3-1: Flags for the sed Command

Flag Description

—e script Add the editing commands specified by the string script to
the end of the script of editing commands. If you are using
just one —e flag and no —f flag, you can omit the —e flag
and include the single scr i pt on the command line as an
agrument to sed

—f script _file Usesscript fil e asthesourceof the edit script. The
script_fileisasetof editing commands to be applied to
script_file.

-n Suppresses all information normally written to standard
output.

The order of presentation of the —e and —f options is important. Usually,
you create a command file containing the desired editing commands before
running sed. The sed editor's command set is powerful and requires little
typing. Each command in the command file can be on a separate line, or you
can place multiple commands on one line by separating them with
semicolons (;). For example, either of the following two scripts will delete
al lines beginning with . ne, . RE, or . RS:

ript 1

/™ .neld
I"\.RES]/d

Sript 2:
/™ .nel/d;/™.RES]/d

Once you create the command file (cndf i | e in the following example),
enter the sed command as in this example:

$ sed -f cndfile infile > outfile

This command editsi nfi | e using the commands contained in cndfi | e,
and writes the output to out f i | e. Theinput file is not changed.

With a short editing script, you can accomplish the same job by entering the
editing commands as an argument to the —e flag on the command line:

3-2 Editing Files with the sed Editor

$ sed -e /M .ne/d;/"N.RES]/d infile > outfile

If you use the —e and —f flags together on a command line, sed applies all
the commands specified by both flags, in the order in which the flags appear.

For example:

$ echo "s/line/foo/" > sedx

$ echo "Test line" | sed -f sedx -e "s/line/bar/’
Test foo

$ echo "Test line" | sed -e "s/line/bar/’ -f sedx
Test bar

You can use the —e and —f flags more than once with a given sed
command. For example:

$ sed -f scriptl -e "s/foo/bar/’ -f script2 nsgs > nsgs2

When you start sed, the editor reads and compiles the command script,
checking for syntax and organizing the commands for efficiency. It then
reads the input file one line at atime into an area of memory called the
pattern space. The editor then tries to match the addresses specified by the
commands in the script, one after another, to the lines in the pattern space.
Whenever a command’ s address matches any line or lines in the pattern
space, sed applies that editing command to the matched text.

Commands are applied in sequence to the text, and the results of each
command are used as the input for subsequent commands. When no more
commands match a given line in the pattern space, sed writes that line to the
output, reads more input, and repeats the process. Figure 3-1 is aflowchart
of this sequence. Compare the operation of sed with the very similar
operation of the awk program, shown in Figure 2-1.

Some editing commands change the way the editing process operates by
causing the editor to bypass other script commands, by inhibiting the writing
of certain lines (by deleting them), or by ending the process prematurely.

3.3 Selecting Lines for Editing

The sed editor identifies lines to be edited by matching addresses. An
address can be either aline number or a context address:

e Line numbers

Thefirst line in the input stream is line 1, and each successive line
increments the line counter by one. The dollar sign ($) is a shorthand
way to specify the last line of the input stream.

If you edit more than one file in a single invocation of sed, the line
counter is cumulative across all the files edited; for example, if the first
file contains 100 lines, the first line of the second file is line 101.

Editing Files with the sed Editor 3—-3

e Context addresses

A context address is a regular expression enclosed in pattern delimiters
(usually slashes); for example, / *\ . R[ES] / matches any line beginning
with either . RE or . RS.

Figure 3-1: Sequence of sed Processing

(Start ’

Pattern
match?

Apply
editing
commands

ZK-0453U-R

Y ou can specify any character as a pattern delimiter for a given command by
preceding the first use of the character with a backslash. For example, the
following two patterns are interpreted identically:

[abc/
\ xabcx

In the second pattern, the letter X is used as the pattern delimiter. If you use
an aternative pattern delimiter in this way, you can match aliteral
occurrence of that character by preceding it with a backsash; the pattern

3—4 Editing Files with the sed Editor

\ x\ xyzx matches the string *‘xyz’’.

The sed editor recognizes the standard set of basic regular expressions
described in Chapter 1. In addition to these expressions, sed recognizes the
special expressions shown in Table 3-2.

Table 3-2: Special Regular Expressions Recognized by sed

Expression Name Rule

\n Embedded newline (a Matches an embedded newline
backslash followed by the character in aline formed by
letter n) joining multiple lines.

I Empty pattern delimiters Matches the text that matched
(slashes by default) the most recently specified

regular expression.

Some sed commands do not accept addresses. Commands that accept
addresses behave differently depending on the number of addresses, as

follows:

* If no address is specified, the command is applied to every line in the
input stream.

» |If one address is specified, the command is applied to each line that
matches the address.

» |If two addresses are specified, the command is applied to a group of lines
starting with a line that matches the first address and ending with the first
subsequent line that matches the second address. The editor then tries to
match the first address again to find another range.

Note

If two addresses are specified but sed cannot find a line
matching the ending address, sed operates on every line from
the first address to the end of the file.

3.4 Summary of sed Commands

Each sed command consists of a single letter with optional addresses. Some
commands require arguments and accept qualifiers that ater their behavior.
Do not include any space between the addresses and the letter. 1f you use
two addresses with a command, separate them with acomma. Ther and w
commands and the w flag for the s command require a single space between
the letter and the argument; otherwise, do not include any space between the

Editing Files with the sed Editor 3-5

letter and the argument.

Table 3-3, Table 3-4, and Table 3-5 describe the individual sed commands,
showing the syntax of each. In these tables, the following conventions apply:

* Theterm *‘range of lines’ can mean a single line, a group of lines, or all
lines, as specified by the number of addresses given to the command.

» Brackets[] enclose optional elements. Nested brackets indicate that
the nested element can be used only if the enclosing element is present.

» Italic (danted) type indicates a general name for an object that you
specify; for example, fi I e represents a command argument that must be
the name of afile.

The following example illustrates a correctly formed s command with all
optional elements:

1,/"$/slvizierllg

This example processes the header of a mail message (line 1 to the first
completely blank line), replacing the string vi zi er with nothing wherever
the string occurs on any line in the specified range.

Table 3-3: Text Editing and Movement Commands

Command Description

Append text

[addr 1] a\ Writes the specified text? to the output after the
text[\ line specified by addr 1. See also thei command.
text...]

Change lines

[addr 1] , addr 2]] c\ Deletes the addressed range of lines and writes the
text[\ specified text? to the output in its place.
text...]

Delete lines

[addr 1], addr2]]1d Deletes the specified range of lines.P

Delete the first line of the pattern space

[addr 1], addr2]]1 D Deletes all text in the pattern space up to and

including the first newline character. If only one
line is in the pattern space, this command reads
another line from the input into the pattern space.
After these operations, the command starts the
complete list of editing commands again from the
beginning.

3-6 Editing Files with the sed Editor

Table 3-3: (continued)

Command

Insert lines

[addr1]i\
text[\
text...]

Advance in the file
[addri[, addr2]]n

Join lines
[addri[, addr2] 1N

Print lines
[addr1[, addr2]]p

Description

Writes the specified text? to the output before
the line specified by addr 1. See dso the a
command.

Writes the indicated range from the pattern space (if
not deleted) to the output and then reads the next
line from the input into the pattern space.

Joins the indicated lines together as a single line
with embedded newline characters. If only one
address is given, the command joins the specified
line to the next line in the input stream.

Pattern matches for addressing or for string
replacement can extend across embedded newline
characters. Use\ n to indicate an embedded newline
character for matching.

Writes the specified range of lines to the output at
the point in the editing process where the p
command appears. This command can be used to
reorder sections of afile.

Print the first line in the pattern space

[addr 1], addr2]]1P

Read and append afile

[addr1]r file

Writes all text in the pattern space, up to and
including the first newline character, to the output at
the point in the editing process where the P
command appears.

Reads the named file® and writes the file's
contents to the output after addr 1.

Editing Files with the sed Editor 3—-7

Table 3-3: (continued)

Command

Substitute text

Description

[addr 1], addr 2]] s/ exprl stringl [fl ags]

Write a named file
[addr1[, addr2]]w file

Print line number
[addr 1] =

Table Notes:

Searches the indicated lines for a string of characters
matching the expression defined by expr, and
replaces that set of characterswith st ri ng. This
command’ s operation is modified by the g, p, and
w fileflagsd If either expr or string
includes a dash (/), you must escape the literal
slash with a backslash (s/ pat h/ path\/fil e/)
or use alternative delimiters such as the at sign (@
or question mark (?). For example,

s@at h@at h/ fi | e@replaces pat h with
path/file.

Writes the specified range of lines to the named file
at the point in the editing process where the w
command appears.®

Writes the line number of the indicated line to the
output.

a. If the text to be written consists of multiple lines, each line except the last
must have a backslash (\) before the terminal newline character. The
text is always written regardless of anything subsequent commands do to
the line that caused it to be written, including deletion of that line. Itis
neither scanned for address matches nor affected by subsequent editing
commands, and it has no effect on the editor’s line counter.

b. If no addresses are given, the d command deletes all lines in the pattern
space; unless constrained by a range controlling a group of commands in
braces, the command del etes the entire contents of the file.

c. Include exactly one space between the r command and the file name. If
fi | e cannot be accessed, sed behaves asiif it had read an empty file

3-8 Editing Files with the sed Editor

and gives no abnormal indication. A combined maximum of 10 files can
be named for reading or writing in any given editing process.

See Section 3.5 for descriptions of the s command’s optional flags.

Include exactly one space between the w command and the file name. If
fil e exists, it isoverwritten; if not, it is created. A combined
maximum of 10 files can be named for reading or writing in any given
editing process.

Table 3-4: Buffer Manipulation Commands

Command Description

Retrieve text from hold area

[addr 1], addr2]]g Copies the contents of the hold area to the pattern
and space indicated by addr 1 and addr 2, if present.
[addr 1], addr2]]1G The g command destroys the existing contents of the

pattern space; the G command appends the held text
to the contents of the pattern space, separating the
previous text from the appended text with a hewline

character.
Move text to the hold area
[addr1[, addr2]]h Copies the indicated range from the pattern space to
and the hold area. The h command destroys the existing
[addr 1], addr2]1H contents of the hold area; the H command appends

the text in the pattern space to the contents of the
hold area, separating the previous text from the
appended text with a newline character.

Exchange pattern space and hold area

[addr 1], addr 2]] x Exchanges the contents of the pattern space with
those of the hold area.

Editing Files with the sed Editor 3—-9

Table 3-5: Flow-of-Control Commands

Command

Range negation
[addr 1], addr2]]! cnd

Command grouping

[addr 1], addr 2]] {
nest ed commands

}

Label
: | abel

Branch
b/ abel

Conditional branch
t [abel

3-10 Editing Files with the sed Editor

Description

The exclamation point (!) instructs sed to apply
the command following it on the same line to the
parts of the input file that are not selected by addr 1
and addr 2 instead of applying it to the selected
range.

The left and right braces enclose a group of
commands to be applied as a set to the range
specified by addr 1 and addr 2. Thefirst
command in the set can be on the line following the
left brace as illustrated in this table, or it can be on
the same line with the brace. The right brace must
be on aline by itself. Groups can be nested within
other groups.

Marks a place in the stream of editing commands to
be used as a destination of a branch command. The
label is astring of up to 8 bytes. Each label in the
editing stream must be unique. For arelated
discussion, see the description of thet command in
the sed(1) reference page.

Branches to the point in the editing script indicated
by I abel and continues processing the current
input line with the commands following the label. If
I abel isnull, the b command bypasses the rest of
the editing script, reads a new input line, and starts
the editing script over from the beginning.

If any successful substitutions were made on the
current input line, branchesto / abel ; otherwise,
the command does not branch. In either case, the
command clears the flag that indicates a substitution
was made. Thisflag isalso cleared at the start of
each new input line. If | abel isnull and the
branch is taken, thet command bypasses the rest of
the editing script, reads a new input line, and starts
the editing script over from the beginning.

Table 3-5: (continued)

Command Description
Stop
[addr 1] q Stops editing in an orderly fashion by writing the

current line to the output, writing any appended or
read text to the output, and then exiting.

3.5 String Replacement

The s command performs string replacement on the indicated lines in the
input file. If the editor finds a string of charactersin the input file that
satisfies the pattern expression expr , it replaces that string with the set of
characters specified in st ri ng. The st ri ng argument is not a regular
expression, and it is not scanned or otherwise interpreted except as follows:

Any backslash characters (\) appearing in st r i ng must be escaped.
See Table 3-3 for an explanation of how to handle slash characters (/) in
string.

The following two special symbols can be used in st ri ng:

Ampersand (&)

This symbol in st ri ng is replaced by the exact string of characters
in the input lines that matched expr. For example, apply the
command s/ [Bb] oy/ &s/ to the following line:

The boy watched the gane.

This command tells sed to find either Boy or boy in the input line
and copy whichever pattern it finds to the output with an appended
‘s, Because the command finds boy, it transfers that string to the
output with the modification, and the result is as follows:

The boys wat ched t he gane.

Back-reference expression (\ n)

The number n isasingle digit. Thissymbol in st ri ng isreplaced
by the string in the input line that matches the nth subexpression in
expr. Subexpressions in basic regular expressions are delimited by
backd ash-parentheses sets, \ (and \) . For example, apply the
command s/ \ (stu\)\ (dy\)/\1r\ 2/ to thefollowing line:

Editing Files with the sed Editor 3—-11

The study chair.

This command tells sed to find st udy in the input line and copy
that pattern to the output with an *‘r’’ inserted in the middle. The
result is as follows:

The sturdy chair.

Y ou can modify the behavior of the s command with flags, as follows:

» Usudly, only the first matching string in each line of the rangeis
replaced. The g (global) flag causes sed to make the substitution for all
matching strings anywhere on any line in the range. Note that the
matching strings do not have to be identical; the expression expr is
evaluated again for each potential match.

» Thep (print) flag instructs sed to write the indicated lines explicitly
after making any substitutions; this writing action is in addition to sed’s
normal operation.

» Thew fil e (write) flag instructs sed to write the indicated lines to the
named file after making any substitutions. Include exactly one space
between the w flag and the file name.

Any or al of these flags can be used with a given s command; in
combinations, the w flag must be the last flag specified.

3-12 Editing Files with the sed Editor

Creating Input Language Analyzers and
Parsers 4

If a program needs to receive and process input, there must be a means of
analyzing the input before it is processed. You can analyze input with one or
more routines within the program, or with a separate program designed to
filter the input before passing it to the main program. The complexity of the
input interface depends on the complexity of the input; complicated input can
reguire significant code to parse it (break it into pieces that are meaningful to
the program). This chapter describes the following two tools that help
develop input interfaces:

* Thel ex tool uses a set of rules to generate a program, called a lexical
analyzer, which analyzes input and breaks it into categories, such as
numbers, letters, or operators.

» Theyacc tool uses aset of rules to generate a program, called a par ser,
which analyzes input using the categories identified by the lexical
analyzer and determines what to do with the input. Theyacc tool
generates |eft-associative, left-recursive (LALR) parsers. For further
information about LALR grammars, refer to a compiler book such as
Compilers: Principles, Techniques, and Tools, by Alfred Aho, Ravi Sethi,
and Jeffrey Ullman.!

To avoid confusion between the | ex and yacc programs and the programs
they generate, | ex and yacc arereferred to throughout this chapter as tools.

4.1 How the Lexical Analyzer Works

The lexical analyzer that | ex generatesis a deterministic finite-state
automaton. This design provides for alimited number of states that the
lexical analyzer can exist in, aong with the rules that determine what state
the lexical analyzer moves to upon reading and interpreting the next input
character.

The compiled lexical analyzer performs the following functions:
* Reads an input stream of characters.
» Copies the input stream to an output stream.

1 Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Techniques, and Tools, Reading,
MA, U.S.A.: Addison-Wesley Publishing Co., 1986.

* Breaksthe input stream into smaller strings that match the regular
expressionsin the | ex specification file.

» Executes an action for each regular expression that it recognizes. Actions
are C language program fragments in the | ex specification file. An
action fragment does not have to be complete within itself; it can call
subroutines or other actions.

Figure 4-1 illustrates a simple lexical analyzer that has three states: st art,
good, and bad. The program reads an input stream of characters. It begins
inthe st art condition. When it receives the first character, the program
compares the character with the rule. If the character is aphabetic (according
to the rule), the program changes to the good state; if it is not alphabetic, the
program changes to the bad state. The program stays in the good state

until it finds a character that does not match its conditions, and then it moves
to the bad state, which terminates the program.

Figure 4-1: Simple Finite State Model

input ==A-Z or a-z

input ==A-Z or a-z

characters
Other

characters exit

ZK-0454U-R

The automaton allows the generated lexical analyzer to look ahead more than
one or two charactersin an input stream. For example, suppose the | ex
specification file defines a rule that looks for the string **ab’’ and another rule
that looks for the string *‘abcdefg’’. If the lexical analyzer gets an input
string of *‘abcdefh’’, it reads enough charactersto attempt a match on
‘“*abcdefg’’. When the *‘h’’ disqualifies a match on ‘*abcdefg’’, the analyzer
returns to the rule that looks for “*ab’’. The first two characters of the input
match *‘ab’’, so the analyzer performs any action specified in that rule and
then begins trying to find another match using the remaining input, *‘ cdefh’’.

4.2 Writing a Lexical Analyzer Program with lex

The | ex tool helps write a C language lexical analyzer program that can
receive character stream input and translate that input into program actions.

4-2 Creating Input Language Analyzers and Parsers

To usel ex, you must write a specification file that contains the following
parts:

* Regular expressions — Character patterns that the generated lexical
analyzer will recognize

» Action statements — C language program fragments that define how the
generated lexical analyzer is to react to regular expressions that it
recognizes

The actual format and logic allowed in the specification file are discussed in
Section 4.3.

The | ex tool uses the information in the specification file to generate the
lexical analyzer. The tool names the created analyzer programyy. | ex. c.
Theyy. | ex. ¢ program contains a set of standard functions together with
the analysis code that is generated from the specification file. The analysis
codeis contained in the yyl ex function. Lexical analyzers created by | ex
recognize simple grammar structures and regular expressions. Y ou can
compile asimple | ex analyzer program with the following command:

%cc -1l yy.lex.c

The—I | option tells the compiler to use the | ex function library. This
command yields an executable lexical analyzer. |f your program uses
complex grammar rules, or if it uses no grammar rules, you should create a
parser (by combining the | ex and yacc tools) to ensure proper handling of
the input. (See Section 4.6.)

Theyy. | ex. ¢ output file can be moved to any other system having aC
compiler that supports the | ex library functions.

4.3 The lex Specification File
The format of the | ex specification file is as follows:

[{ definitions}]

%%

[{rules}]

[%%

{ user subroutines}]

Except for the first pair of percent signs (%849, which mark the beginning of
the rules, al parts of the specification file are optional. The minimum | ex
specification file contains no definitions, no rules, and no user subroutines.
Without a specified action for a pattern match, the lexical analyzer copies the
input pattern to the output without changing it. Therefore, this minimum
specification file produces a lexical analyzer that copies all input to the output
unchanged.

Creating Input Language Analyzers and Parsers 4-3

4.3.1 Defining Substitution Strings

Y ou can define string macros before the first pair of percent signsin thel ex
specification file. The | ex tool expands these macros when it generates the
lexical analyzer. Any linein this section that begins in column 1 and that
does not lie between %4 and %delimiters defines al ex substitution string.
Substitution string definitions have the following general format:

name translation

The name and t r ansl at i on elements are separated by aleast one blank
or tab, and nane begins with a letter. When | ex finds the string nane
enclosed in braces ({ }) in the rules part of the specification file, it changes
namne to the string defined in t r ans/ at i on and deletes the braces.

For example, to define the names D and E, place the following definitions
before the first %86delimiter in the specification file:

D [0-9]

E [DEde] [-+]{D} +

These definitions can be used in the rules section to make identification of
integers and real numbers more compact:

{D} + printf("integer");

{D}+"."{D*({E})?|

{Dp*". "{D+({E})?|

{D} +H{ E} printf("real");

Y ou can aso include the following items in the definitions section:

» Character set table (described in Section 4.3.3)

» List of start conditions (described in Section 4.3.6)

» Changes to size of arraysto accommodate larger source programs

4.3.2 Rules

The rules section of the specification file contains control decisions that
define the lexical analyzer that | ex generates. The rules arein the form of a
two-column table. The left column of the table contains regular expressions;
the right column of the table contains actions, one for each expression.
Actions are C language program fragments that can be as simple as a
semicolon (the null statement) or as complex as needed. The lexical analyzer
that | ex creates contains both the expressions and the actions; when it finds
a match for one of the expressions, it executes the corresponding action.

For example, to create alexical analyzer to look for the string ‘‘integer’’ and
print a message when the string is found, define the following rule:

4-4 Creating Input Language Analyzers and Parsers

i nt eger printf ("found keyword integer");

This example uses the C language library function pri nt f to print a
message string. The first blank or tab character in the rule indicates the end
of the regular expression. When you use only one statement in an action, put
the statement on the same line and to the right of the expression (i nt eger
in this example). When you use more than one statement, or if the statement
takes more than one line, enclose the action in braces, as in a C language
program. For example:
i nt eger

printf ("found keyword integer");

hi t s++;

}

A lexical analyzer that changes some words in a file from British spellings to
the American spellings would have a specification file that contains rules
such as the following:

col our printf("color");
mechani se printf("mechani ze");
petrol printf("gas");

This specification file is not complete, however, because it changes the word
“‘petroleum’’ to ‘‘gaseum’’.

4.3.2.1 Regular Expressions

With afew specialized additions, | ex recognizes the standard set of
extended regular expressions described in Chapter 1. Table 4-1 lists the
expression operators that are specia to | ex.

Creating Input Language Analyzers and Parsers 4-5

Table 4-1: Regular Expression Operators for lex

Operator

{ nane}

al b

<X>

\n

\t
\b
\\
\digits

\xdigits

Name

Braces

Quotation marks

Slash

Angle brackets

Newline character

Tab
Backspace
Backdash
Digits

xDigits

Description

When braces enclose a name, the name
represents a string defined earlier in the
specification file. For example, {di gi t} looks
for a defined string named di gi t and inserts
that string at the point in the expression where
{di gi t} occurs. Do not confuse this
construct with an interval expression; both are
recognized by | ex.

Encloses literal strings to interpret as text
characters. For example, " $" prevents| ex
from interpreting the dollar sign as an operator.
Y ou can use quotation marks for only part of a
string; for example, both " abc++" and

abc" ++" match the literal string ‘‘abc++'".

Enables a match on the first expression (a) only
if the second expression (b) follows it
immediately. For example, dog/ cat matches
‘“dog’’ if, and only if, “‘cat’’ immediately
follows ‘*dog’".

Encloses a start condition. Executes the
associated action only if the lexical analyzer is
in the indicated start condition <x>. If the
condition of being at the beginning of alineis
start condition ONE, then the circumflex (")
operator would be the same as the expression
<ONE>.

Do not use the actual newline character in an
expression. Do not confuse the \ n construct
with the \ n back-reference operator used in
basic regular expressions.

Matches a literal tab character (09 hexadecimal))
Matches a literal backspace (08 hexadecimal)
Matches a literal backslash.

The character whose encoding is represented by
the three digit octal number.

The character whose encoding is represented by
the hexadecimal integer.

4-6 Creating Input Language Analyzers and Parsers

Usually, white space (blanks or tabs) delimits the end of an expression and
the start of its associated action. However, you can enclose blanks or tab
charactersin quotation marks (" ") to include them in an expression. Use
guotation marks around al blanks in expressions that are not already within
sets of brackets ([]).

4.3.2.2 Matching Rules

When more than one expression in the rules section of a specification file can
match the current input, the lexical analyzer chooses which rule to apply
using the following criteria:

1. Thelongest matching string of characters
2. Among rules that match the same number of characters, the rule that

occurs first
For example, consider the following rules:
i nt eger printf("found int keyword");
[a-2z] + printf("found identifier");

If the rules are given in this order and ‘‘integers’’ is the input word, the
analyzer cals the input an identifier because [a- z] + matches al eight
characters of the word while i nt eger matches only seven. However, if the
input is *‘integer’’, both rules match. In this case, | ex selects the keyword
rule because it occurs first. A shorter input, such as ‘‘int’’, does not match
the expression i nt eger, so| ex selects the identifier rule.

4.3.2.2.1 Using Wildcard Characters to Match a String — Because the
lexical analyzer chooses the longest match first, you must be careful not to
use an expression that is too powerful for your intended purpose. For
example, a period followed by an asterisk and enclosed in apostrophes
(" . *’) might seem like a good way to recognize any string enclosed in
apostrophes. However, the analyzer reads far ahead, looking for a distant
apostrophe to complete the longest possible match. Consider the following
text:

"first’ quoted string here, 'second’ here
Given this input, the analyzer will match on the following string:
"first’ quoted string here, ’'second

Because the period operator does not match a newline character, errors of this
type are usually not far reaching. Expressionslike. * stop on the current
line. Do not try to defeat this action with expressions like the following:

Creating Input Language Analyzers and Parsers 4—7

[.\n]+

Given this expression, the lexical analyzer tries to read the entire input file,
and an interna buffer overflow occurs.

The following rule finds the smaller quoted strings *‘first’” and ** second’’
from the preceding text example:

’[A’\n]*’"

This rule stops after matching “*first’” because it looks for an apostrophe
followed by any number of characters except another apostrophe or a newline
character, then followed by a second apostrophe. The analyzer then begins
again to search for an appropriate expression, and it will find ‘*second’’ as it
should. This expression also matches an empty quoted string (* ').

4.3.2.2.2 Finding Strings Within Strings — Usualy, the lexica analyzer
program partitions the input stream. It does not search for all possible
matches of each expression. Each character is accounted for exactly once.
For example, to count occurrences of both *‘she’” and “*he’” in an input text,
consider the following rules:

she S++;
he h++;
\n ;

The last two rules ignore everything other than the two strings of interest.
However, because ‘*she’’ includes ‘*he’’, the analyzer does not recognize the
instances of ‘‘he’’ that are included within ‘‘she’’.

A specia action, REJECT, is provided to override this behavior. This
directive tells the analyzer to execute the rule that contains it and then, before
executing the next rule, restore the position of the input pointer to where it
was before the first rule was executed. For example, to count the instances
of ‘‘he’’ that are included within **she’’, use the following rules:

she {s++; REJECT;}
he {h++; REJECT;}
\n ;

After counting an occurrence of ‘‘she’’, the analyzer rejects the input stream
and then counts the included occurrence of ‘*he’’. In this example, ‘‘she’’
includes ‘*he’’ but the reverseis not true, and you can omit the REJECT
action on ‘*he’’. In other cases, such as when awildcard regular expression
is being matched, determining which input characters are in both classes can
be difficult.

In general, REJECT is useful whenever the purpose is not to partition the
input stream but rather to detect all examples of some items in the input
where the instances of these items can overlap or include each other.

4-8 Creating Input Language Analyzers and Parsers

4.3.2.3 Actions

When the lexical analyzer matches one of the expressions in the rules section
of the specification file, it executes the action that corresponds to the
expression. Without rules to match all strings in the input stream, the lexical
analyzer copies the input to standard output. Therefore, do not create arule
that only copies the input to the output. Use this default output to find
conditions not covered by the rules.

When you use al ex-generated analyzer to process input for a parser that
yacc produces, provide rules to match all input strings. Those rules must
generate output that yacc can interpret. For information on using | ex with
yacc, see Section 4.5.

4.3.2.3.1 Null Action — To ignore the input associated with an expression, use a
semicolon (;), the C language null statement, as an action. For example:

[\t\n]

This rule ignores the three spacing characters (blank, tab, and newline
character).

4.3.2.3.2 Using the Same Action for Multiple Expressions — To use the
same action for several different expressions, create a series of rules (one for
each expression except the last) whose actions consist of only a vertical bar
character (|). For the last expression, specify the action as you would
usually specify it. The vertical bar character indicates that the action for the
rule containing it is the same as the action for the next rule. For example, to
ignore blank, tab, and newline characters (shown in Section 4.3.2.3.1), you
could use the following set of rules:

n I

"\t |

o\ p :

The quotation marks around the special character sequences(\ n and\t) in

this example are not mandatory.

4.3.2.3.3 Printing a Matched String — To find out what text matched an
expression in the rules section of the specification file, include a C language
pri nt f function as one of the actions for that expression. When the lexical
analyzer finds a match in the input stream, the program puts that matched
string in an external character array, caled yyt ext . To print the matched
string, use arule like the following:

Creating Input Language Analyzers and Parsers 4-9

[a-z] + printf("9%", yytext);

Printing the output in this way is common. Y ou can define an expression
likethis pri nt f statement as a macro in the definitions section of the
specification file. If this action is defined as ECHO, then the rules section
entry looks like the following:

[a-z] + ECHO,

See Section 4.3.1 for information on defining macros.

4.3.2.3.4 Finding the Length of a Matched String — To find the number of

charactersthat the lexical analyzer matched for a particular expression, use
the externa variableyyl eng. For example, the following rule counts both
the number of words and the number of charactersin words in the input:

[a-zA-Z] + {words++; chars += yyleng;}

This action totals the number of charactersin the words matched and assigns
that value to the char s variable.

The following expression finds the last character in the string matched:
yytext[yyl eng- 1]

4.3.2.3.5 Getting More Input — The lexical analyzer can run out of input before

it completely matches an expression in arules file. In this case, include a
call to thel ex function yynor e in the action for that rule. Usualy, the
next string from the input stream overwrites the current entry in yyt ext .
The yynor e action appends the next string from the input stream to the end
of the current entry in yyt ext . For example, consider a language that
includes the following syntax:

e A dtring is any set of characters between quotation marks (" ").

» A backslash (\) escapes the next character to make that character part of
the string. For example, the combination of a backslash and a quotation
mark (\) indicates that the quotation mark is part of the string instead of
being the closing delimiter for the string.

The following rule processes these lexical characteristics:

L A
if (yytext[yyleng-1] == "\\")
yymore();
el se

}

When this lexical analyzer receives a string such as "abc\"def" (with the
guotation marks exactly as shown), it first matches the first five characters,
"abc\. The backslash causes a call to yynor e to add the next part of the

normal user processing

4-10 Creating Input Language Analyzers and Parsers

string, "def, to the end. The part of the action code labeled ** normal user
processing’’ must process the quotation mark that ends the string.

4.3.2.3.6 Returning Characters to the Input — In some cases the lexical

4.3.3

analyzer does not need all of the characters that are matched by the currently
successful regular expression; or it might need to return matched characters
to the input stream to be checked again for another match.

To return charactersto the input stream, use the yyl ess(n) cal, where n
is the number of characters of the current string that you want to keep.
Characters beyond the nt h character in the stream are returned to the input
stream. This function provides the same type of look-ahead that the slash
operator (/) uses, but yyl ess allows more control over the |ook-ahead.
Using yyl ess(0) isequivalent to using REJECT.

Usetheyyl ess function to process text more than once. For example, aC
language expression such as x=- a is ambiguous. It could meanx = -a, or
it could be an obsolete representation of x - = a, which is evaluated as
X = X — a. Totreat this ambiguous expressonasx = -a and print a
warning message, use a rule such as the following:
=-[a-zA Z] {

printf("CQperator (=-) anbiguous\n");

yyl ess(yyl eng-1);
... action for =-...
}

Using or Overriding Standard Input/Output Routines

The |l ex program provides a set of input/output (1/0) routines for the lexical
analyzer to use. Include calls to the following routines in the C code
fragments in your specification file:

e i nput — Returnsthe next input character

e output (¢) —Writesthe character ¢ on the output

e unput (¢) — Pushes the character ¢ back onto the input stream to be
read later by input

These routines are provided as macro definitions. Y ou can override them by
writing your own code for routines of the same names in the user subroutines
section. These routines define the relationship between external files and
internal characters. If you change them, change them all in the same way.
They should follow these rules:

» All routines must use the same character set.
» Theinput routine must return a value of 0 to indicate end-of-file.

Creating Input Language Analyzers and Parsers 4-11

If you write your own code, you must undefine these macrosin the
definitions section of the specification file before the code for your own

definitions:

A

#undef i nput
#undef unput
#undef out put

1%

Note

Changing the relationship of unput to i nput causes the look-
ahead functions not to work.

When you are using al ex-generated lexical analyzer as asimple
transformer/recognizer for piping from standard input to standard output, you
can avoid writing the *‘framework’’ by using the | ex library (1 i bl . a).
This library contains the mai n routine, which calls the yyl ex function for
you. The standard | ex library lets the lexical analyzer back up a maximum
of 100 characters.

If you need to be able to read an input file containing the NUL character (00
hexadecimal), you must create a different version of the i nput routine. The
standard version of i nput returns a value of 0 when reading a null, and the
analyzer interprets this value as indicating the end of the file.

The lexical analyzersthat | ex generates process character 1/0 through the
i nput , out put, and unput routines. Therefore, to return valuesin

yyt ext , the analyzer uses the character representation that these routines
use. Internally, however, each character is represented with a small integer.
With the standard library, this integer is the value of the bit pattern that the
computer uses to represent the character.

Usuadly, the letter “*a’ is represented in the same form as the character
constant a. If you change this interpretation with different 1/O routines, you
must include a trandation table in the definitions section of the specification
file. The trangdation table begins and ends with lines that contain only the %a
keyword, and it contains lines of the following form:

{integer} {character string}

The following example shows table entries that associate the letter **A’" and
the digit ‘0"’ (zero) with their standard values:

4-12 Creating Input Language Analyzers and Parsers

4.3.4

4.3.5

ol
{65} {A}
{48} {0}
o

End-of-File Processing

When the lexical analyzer reaches the end of afile, it calls alibrary routine
named yywr ap. This routine returns a value of 1 to indicate to the lexical
analyzer that it should continue with normal wrap-up (operations associated
with the end of processing). However, if the analyzer receives input from
more than one source, you must change the yyw ap function. The new
function must get the new input and return a value of 0O to the lexical
analyzer. A return value of O indicates that the program should continue
processing.

Multiple files specified on the command line are treated as a single input file
for the purpose of end-of-file handling.

Y ou can also include code to print summary reports and tables in a special
version of yywr ap. Theyywr ap function is the only way to forceyyl ex
to recognize the end of the input.

Passing Code to the Generated Program

Y ou can define variables in either the definitions section or the rules section
of the specification file. When you process a specification file, | ex changes
statements in the file into alexical analyzer. Any line in the specification file
that | ex cannot interpret is passed unchanged to the lexical analyzer. The
following four types of entries can be passed to the lexical analyzer in this
manner:

* Lines beginning with a blank or tab that are not a part of al ex rule are
copied into the lexical analyzer. If this entry occurs before the first pair
of percent signs (%849 in the specification file, the entry is external to any
function in the code. If the entry occurs after the first 984 it must be a C
language program fragment that defines a variable. Y ou must define
these statements before the first | ex rule in the specification file.

» Lines beginning with a blank or tab that are program comments are
included as comments in the generated lexical analyzer. The comments
must be in the C language format for comments.

* Any lines that lie between lines containing only %4 and %are copied to
the lexical analyzer. The symbols % and %4 are not copied. Use this
format to enter preprocessor statements that must begin in column 1, or to
copy lines that do not look like program statements.

Creating Input Language Analyzers and Parsers 4-13

» Any lines occurring after the third %8%6delimiter are copied to the lexical
analyzer without format restrictions.

4.3.6 Start Conditions

Any rule can be associated with a start condition; the lexical analyzer
recognizes that rule only when the analyzer is in that start condition. You
can change the current start condition at any time.

Y ou define start conditions in the definitions section of the specification file
by using aline with the following format:

% Start namel[nameZ2 ...]

The namel and nameZ2 symbols represent conditions. Thereis no limit to
the number of conditions, and they can appear in any order. You can
abbreviate St ar t to either S or s. Start-condition names cannot be reserved
words in C, nor can they be declared as the names of variables, fields, and so
on.

When using a start condition in the rules section of the specification file,
enclose the name of the start condition in angle brackets (<>) at the
beginning of the rule. The following format defines a rule with a start
condition:

<namel[,name?2 ...] > expression

The lexical analyzer recognizes expr essi on only when the analyzer isin
the condition corresponding to one of the names. To put | ex in a particular
start condition, execute the following action statement (in the action part of a
rule):

BEGQ Nnane;

This statement changes the start condition to nane. To resume the normal
state, use the following action:

BEG N 0;

As shown in the preceding syntax diagram, a rule can be active in several
start conditions. For example:

<startl,start2,start3> [0-9]+ printf("integer");

This rule prints ‘‘integer’” only if it finds an integer while in one of the three

named start conditions. Any rule that does not begin with a start condition is
always active.

4-14 Creating Input Language Analyzers and Parsers

4.4 Generating a Lexical Analyzer

Generating a |l ex-based lexical analyzer program is a two-step process, as
follows:

1. Run |l ex to change the specification file into a C language program. The
resulting programisin afile named | ex. yy. c.

2. Process| ex. yy. c withthecc -11 command to compile the program
and link it with alibrary of | ex subroutines. The resulting executable
program is named a. out .

For example, if the | ex specification fileis called | ext est , enter the
following commands:

% | ex | extest
%cc lex.yy.c -11

Although the default | ex 1/O routines use the C language standard library,
the lexical analyzersthat | ex generates do not require them. You can
include different copies of thei nput , out put , and unput routinesto
avoid using those in the library. (See Section 4.3.3.)

Table 4-2 describes the options for the | ex command.

Table 4-2: Options for the lex Command

Option Description

-n Suppresses the statistics summary that is produced by default when
you set your own table sizes for the finite state machine. See the
| ex (1) reference page for information about specifying the state

machine.

-t Writes the generated lexical analyzer code to standard output instead
of tothel ex. yy. c file.

-V Provides a one-line summary of the general finite state machine
statistics.

Because | ex uses fixed names for intermediate and output files, you can
have only one | ex-generated program in a given directory unless you use the
—t option to specify an aternative file name.

4.5 Using lex with yacc

When used alone, the | ex tool creates a lexical analyzer that recognizes
simple one-word input or receives statistical input. You can also use | ex
with a parser generator, such asyacc. Theyacc tool generates a program,
caled a parser, that analyzes the construction of multiple-word input. This

Creating Input Language Analyzers and Parsers 4-15

parser program operates well with lexical analyzersthat | ex generates; these
lexical analyzers recognize only regular expressions and format them into
character packages called tokens.

A token is the smallest independent unit of meaning as defined by either the
parser or the lexical analyzer. A token can contain data, a language keyword,
an identifier, or other parts of alanguage syntax. A token can be any string
of characters; it can be part or all of aword or series of words. Theyacc
tool produces parsers that recognize many types of grammar with no regard
to context. These parsers need a preprocessor, such asal ex-generated
lexical analyzer, to recognize input tokens.

When al ex-generated lexical analyzer is used as the preprocessor for a
yacc-generated parser, the lexical analyzer partitions the input stream. The
parser assigns structure to the resulting pieces. Figure 4-2 shows how | ex
and yacc generate programs and how the programs work together. You can
also use other programs along with those generated by | ex or yacc.

Figure 4-2: Producing an Input Parser with lex and yacc

Source Program Generated Compiled
Files Generators Output Files

Compiler Program

lexical 8 ,—% |, 0 Input ----——-- ,
Rules

Grammar
Rules

Parsed Input for
Another Program

ZK-0455U-R

The parser program requires that its preprocessor (the lexical analysis
function) be named yyl ex. Thisisthe namel ex gives to the analysis code
in alexical analyzer it generates. If alexical analyzer is used by itself, the
default mai n programin thel ex library callsthe yyl ex routine, but if a
yacc-generated parser is loaded and its mai n program is used, the parser
calsyyl ex. Inthiscase each | ex rule should end with the following line,
where the appropriate token value is returned:

4-16 Creating Input Language Analyzers and Parsers

return(token);

To find the names for tokens that yacc uses, compile the lexical analyzer
(the | ex output file) as part of the parser (the yacc output file) by placing
the following line in the last section of the yacc grammar file:

#i nclude lex.yy.c

Alternatively, you can include the yacc output (they. t ab. h file) into your
| ex program specification file, and use the token namesthat y. t ab. h
defines. For example, if the grammar file is named good and the
specification file is named bet t er, the following command sequence creates
the final program:

% yacc good

% | ex better

%cc y.tab.c -1y -1I1I

To get anai n program that invokes the yacc parser, load the yacc library
(—l'y in the preceding example) before the | ex library. You can generate
| ex and yacc programs in either order.

4.6 Creating a Parser with yacc

To generate a parser with yacc, you must write a grammar file that
describes the input data stream and what the parser is to do with the data.
The grammar file includes rules describing the input structure, code to be
invoked when these rules are recognized, and a routine to do the basic input.

The yacc tool uses the information in the grammar file to generate

yypar se, aprogram that controls the input process. Thisis the parser that
callstheyyl ex input routine (the lexical analyzer) to pick up tokens from
the input stream. The parser organizes these tokens according to the structure
rules in the grammar file. The structure rules are called grammar rules.

When the parser recognizes a grammar rule, it executes the user code (action)
supplied for that rule. Actions return values and use the values returned by
other actions.

In addition to the specifications that yacc recognizes and uses, the grammar
file can also contain the following functions:

* mai n —A C language function that contains, as a minimum, acall to the
yypar se function, which yacc generates. A limited form of this
function isin theyacc library.

» yyerror —A C language function to handle errors that can occur during
parser operation. A limited form of this function isin the yacc library.

* yyl ex —A C language function to perform lexical analysis on the input
stream and pass tokens (with values, if required) to the parser.

The function must return an integer that represents the kind of token that

Creating Input Language Analyzers and Parsers 4-17

was read. The integer is called the token number. In addition, if avalue
is associated with the token, the lexical analyzer must assign that value to
the external variableyyl val . See Section 4.7.1.3 for more information

on token numbers.

To build alexical analyzer that works well with the parser that yacc
generates, use the | ex tool (see Section 4.3).

The yacc tool processes agrammar file to generate afile of C language
functions and data, named y. t ab. ¢c. When compiled using the cc
command, these functions form a combined function named yypar se. This
yypar se function callsyyl ex, the lexical analyzer, to get input tokens.

The analyzer continues providing input until the parser detects an error or the
analyzer returns an endmrar ker token to indicate the end of the operation.

If an error occurs and yypar se cannot recover, yypar se returns a value of
1 to the mai n function. If it finds the endmar ker token, yypar se returns
avalue of 0 to mai n.

Use the C programming language to write the action code and other
subroutines. The yacc program uses many of the C language syntax
conventions for the grammar file.

4.6.1 The main and yyerror Functions

Y ou must provide function routines named mai n and yyer r or inthe
grammar file. To easethe initia effort of using yacc, theyacc library
provides simple versions of the mai n and yyer r or routines. You can
include these routines by using the - | y option to the loader or the cc
command. The source code for the mai n library function is as follows:

mai n()

yyparse();

The source code for the yyer r or library function follows:
#i ncl ude <stdio. h>

voi d yyerror(s)
char *s;
{

}

The argument to yyer r or isastring containing an error message, usually
the string syntax error.

These are very limited programs. Y ou should provide more sophistication in
these routines, such as keeping track of the input line number and printing it
along with the message when a syntax error is detected. Y ou can use the

fprintf(stderr, " %\n" ,s);

4-18 Creating Input Language Analyzers and Parsers

4.6.2

value of the external integer variableyychar . This variable contains the
look-ahead token number at the time the error was detected.

The yylex Function

Theyyl ex program input routine that you supply must be able to do the
following:

* Read the input stream
» Recognize basic patterns in the input stream
» Passthe patternsto yypar se aong with tokens that identify them

A token is a symbol or name that tells yypar se which pattern is being sent
to it by the input routine. A symbol can be in one of the following two
classes:

* Terminal symbols — Values returned by yyl ex to represent the primitive
building blocks of the grammar, as bricks are the primitive elements of a
wall.

* Nonterminal symbols — The composite symbols that are used by the
yacc grammar to describe more complex orderings or aggregations of
the terminal symbols, as awall is an assembly of bricks.

For example, if the lexical analyzer recognizes any numbers, names, and
operators, these elements are taken to be terminal symbols. Nonterminal
symbols that the yacc grammar recognizes are elements like EXPR, TERM
and FACTOR. Suppose the input routine separates an input stream into the
tokens of WORD, NUMBER, and PUNCTUATI ON. Consider the input sentence
‘1 have 9 turkeys.”” The analyzer could pass the following strings and
tokens to the parser:

String Token

I WORD

have WORD

9 NUMBER

turkeys WORD
PUNCTUATI ON

The yypar se function must contain definitions for the tokens that the input
routine passesto it. Theyacc command’'s—d option causes the program to
generate alist of tokensin afilenamedy. t ab. h. Thislist is aset of
#def i ne statements that let yyl ex use the same tokens as the parser.

To avoid conflict with the parser, do not use names that begin with the letters
yy. You can usel ex to generate the input routine, or you can write it in the

Creating Input Language Analyzers and Parsers 4-19

C language. See Section 4.3 for information about using | ex.

4.7 The Grammar File

4.7.1

A yacc grammar file consists of the following three sections:
* Declarations

* Rules

e Programs

Two percent signs (%849 that appear together separate the sections of the
grammar file. To make the file easier to read, put the percent signs on aline
by themselves. A grammar file has the following format:

[declarations]
%%

rules

[%%
programs]

Except for the first pair of percent signs (%84, which mark the beginning of
the rules, and the rules themselves, al parts of the grammar file are optional.
The minimum yacc grammar file contains no definitions and no programs,
as follows:

%%
rul es

Except within names or reserved symbols, the yacc program ignores blanks,
tabs, and newline characters in the grammar file. You can use these
characters to make the grammar file easier to read. Do not use blanks, tabs,
or newline charactersin names or reserved symbols.

Declarations

The declarations section of the yacc grammar file contains the following
elements:

» Declarations for any variables or constants used in other parts of the
grammar file

e #i ncl ude statementsto call in other files as part of this file (used for
library header files)

» Statements that define processing conditions for the generated parser

Declarations for variables or constants conform to the syntax of the C
programming language, as follows:

type-specifier declarator,

4-20 Creating Input Language Analyzers and Parsers

In this syntax, t ype- speci fi er is adatatype keyword and

decl! ar at or is the name of the variable or constant. Names can be any
length and can consist of letters, dots, underscores, and digits. A name
cannot begin with a digit. Uppercase and lowercase letters are distinct. The
names used in the body of a grammar rule can represent tokens or
nonterminal symbols.

If you do not declare a name in the declarations section, you can use that
name only as a nonterminal symbol. Define each nonterminal symbol by
using it as the left side of at least one rule in the rules section. The

#i ncl ude statements are identical to C language syntax and perform the
same function.

Theyacc tool has a set of keywords, listed in Table 4-3, that define
processing conditions for the generated parser. Each of the keywords begins
with a percent sign (%9 and is followed by alist of tokens.

Table 4-3: Processing-Condition Definition Keywords in yacc

Keyword Description

% eft Identifies tokens that are left-associative with other tokens.
%monassoc Identifies tokens that are not associative with other tokens.
% i ght I dentifies tokens that are right-associative with other tokens.
Ustart Identifies a name for the start symbol.

% oken | dentifies the token names that yacc accepts. Declare al

token names in the declarations section.

All tokens listed on the same line have the same precedence level and
associativity; lines appear in the file in order of increasing precedence or
binding strength. For example:

% ef t UE S

% ef t Tk

This example describes the precedence and associativity of the four
arithmetic operators. The addition (+) and subtraction (—) operators are
left-associative and have lower precedence than the multiplication (*) and
division (/) operators, which are also |eft-associative.

4.7.1.1 Defining Global Variables

Y ou can define global variables to be used by some or all parser actions, as
well as by the lexical analyzer, by enclosing the declarations for those
variables in matched pairs of symbols consisting of a percent sign and a

Creating Input Language Analyzers and Parsers 4-21

brace (%4 and %). For example, to make the var variable available to al
parts of the complete program, place the following entry in the declarations
section of the grammar file:

% int var = 0; %

4.7.1.2 Start Symbols

The parser recognizes a special symbol called the start symbol. The start
symbol is the name assigned to the grammar rule that describes the most
general structure of the language to be parsed. Because it is the most genera
structure, it is the structure where the parser starts in its top-down analysis of
the input stream. Y ou declare the start symbol in the declarations section by
using the %t art keyword. If you do not declare a start symbol, the parser
uses the name of the first grammar rule in the file.

For example, in parsing a C language procedure, the following is the most
general structure for the parser to recognize:
mai n()
{

code_segnent}
The start symbol should point to the rule that describes this structure. All
remaining rules in the file describe ways to identify lower-level structures
within the procedure.

47.1.3 Token Numbers

Token numbers are nonnegative integers that represent the names of tokens.
Because the lexical analyzer passes the token number to the parser instead of
the actual token name, the programs must assign the same numbers to the
tokens.

Y ou can assign numbers to the tokens used in the yacc grammar file. If
you do not assignh numbers to the tokens, yacc assigns numbers using the
following rules:

» A litera character is assigned the numeric value of the character in the
ASCII character set.

e Other names are assigned token numbers starting at 257.

Note

Do not assign a token number of O (zero). This number is
assigned to the endnar ker token. You cannot redefine it.

To assign a number to atoken (including literals) in the declarations section
of the grammar file, put a nonzero positive integer immediately after the

4-22 Creating Input Language Analyzers and Parsers

4.7.2

token name in the % oken line. This integer is the token number of the
name or literal. Each number must be unique. Any lexical analyzer used
with yacc must return either O (zero) or a negative value for a token when
the end of the input is reached.

Grammar Rules

The rules section of the yacc grammar file contains one or more grammar
rules. Each rule describes a structure and gives it aname. A grammar rule
has the following format:

nonterminal-name . BODY ;

In this syntax, BADY is a sequence of zero or more names and literals. The
colon and the semicolon are required yacc punctuation.

If there are several grammar rules with the same nonterminal name, use the
vertical bar (|) to avoid rewriting the left side. In addition, use the
semicolon (;) only at the end of all rulesjoined by vertical bars. The two
following sets of grammar rules are equivalent:

Set 1
C D
F .

>
O mo

GO mm
T

4.7.2.1 Null String

To indicate a nonterminal symbol that matches the null string, use a
semicolon by itself in the body of the rule, as follows:

nul I str

4.7.2.2 End-of-Input Marker

When the lexical analyzer reaches the end of the input stream, it sends a
special token, called endnar ker , to the parser. This token signals the end
of the input and has a token value of 0. When the parser receives an
endmar ker token, it checksto see that it has assigned all of the input to
defined grammar rules and that the processed input forms a complete unit (as
defined in the yacc grammar file). If the input is a complete unit, the parser
stops. If the input is not a complete unit, the parser signals an error and
stops.

Creating Input Language Analyzers and Parsers 4—-23

The lexical analyzer must send the endmar ker token at the correct time,
such as the end of afile, or the end of arecord.

4.7.2.3 Actions in yacc Parsers

With each grammar rule, you can specify actions to be performed each time

the parser recognizes the rule in the input stream. Actions return values and

obtain the values returned by previous actions. The lexical analyzer can also
return values for tokens.

An action is a C language statement that does input and output, calls
subprograms, and aters external vectors and variables. Y ou specify an action
in the grammar file with one or more statements enclosed in braces ({ }).

For example, the following are grammar rules with actions:

A (B’

hello(1, "abc");

s

XXX YYY z2z2Z

printf("a nmessage\n");

flag = 25;

}
An action can receive values generated by other actions by using numbered
yacc parameter keywords ($1, $2, and so on). These keywords refer to the

values returned by the components of the right side of arule, reading from
left to right. For example:

A : B C D

When this code is executed, $1 has the value returned by the rule that
recognized B, $2 the value returned by the rule that recognized C, and $3 the
value returned by the rule that recognized D.

To return a value, the action sets the pseudovariable $$ to some value. For
example, the following action returns a value of 1:

{ $$ = 1.}

By default, the value of arule is the value of the first element in it ($1).
Therefore, you do not need to provide actions for rules that have the
following form:

A: B

To get control of the parsing process before a rule is completed, write an
action in the middle of arule. If this rule returns a value through the $n
parameters, actions that come after it can use that value. The action can use
values returned by actions that come before it. Therefore, the following rule
setsx to 1 and y to the value returned by C:

4-24 Creating Input Language Analyzers and Parsers

4.7.3

4.7.4

$$ =1
}
C
{
X = $2;
y = $3;

Internally, yacc creates a new nonterminal symbol name for the action that
occurs in the middle, and it creates a new rule matching this name to the null
string. Therefore, yacc treats the preceding program as if it were written in
the following form, where $ACT is an empty action:

$ACT /* null string */
{
$$ = 1;
)
A B S$ACT C
{
X = $2;
y = $3;
)
Programs

The programs section of the yacc grammar file contains C language
functions that can be used by the actions in the rules section. In addition, if
you write alexical analyzer (yyl ex, the input routine to the parser), include
it in the programs section.

Guidelines for Using Grammar Files

The following sections describe some general guidelines for using yacc
grammar files. They provide information on the following:

» Using comments

e Using literal strings

e Formatting grammar files
e Using recursion

e Correcting errors

Creating Input Language Analyzers and Parsers 4-25

4.7.4.1 Using Comments

Comments in the grammar file explain what the program is doing. Y ou can
put comments anywhere in the grammar file that you can put a name.
However, to make the file easier to read, put the comments on lines by
themselves at the beginning of functional blocks of rules. Commentsin a
yacc grammar file have exactly the same form as comments in a C language
program; that is, they begin with a slash and an asterisk (/ *) and end with
an asterisk and aslash (*/). For example:

/* This is a conment on a line by itself. */

4.7.4.2 Using Literal Strings

A literal string is one or more characters enclosed in apostrophes, or single
guotation marks (" '). Asin the C language, the backslash (\) is an escape
character within literals, and all the C language special-character sequences
are recognized, as follows:

\n Newline character

\r Return

\’ Apostrophe, or single quote
\\ Backslash

\t Tab

\b Backspace

\ f Form feed

\ nnn The value nnn in octal

Never use\ 0 or O (the null character) in grammar rules.

4.7.4.3 Guidelines for Formatting the Grammar File

The following guidelines will help make the yacc grammar file more
readable:

» Use uppercase letters for token names and |lowercase letters for
nonterminal symbol names.

» Put grammar rules and actions on separate lines to allow for changing
either one without changing the other.

« Put al rules with the same left side together. Enter the left side once and
use vertical bars (|) to begin the rest of the rules for that left side.

» For each set of rules with the same left side, enter the semicolon (;) once
on aline by itself following the last rule for that left side. Y ou can then
add new rules easily.

4-26 Creating Input Language Analyzers and Parsers

* Indent rule bodies by two tab stops and action bodies by three tab stops.

4.7.4.4 Using Recursion in a Grammar File

Recursion is the process of using a function to define itself. In language
definitions, these rules usually take the following form:

rul e : end case
| rule, end case

The simplest case of r ul e isthe end case, but r ul e can also be made up of
more than one occurrence of end case. The entry in the second line that
usesr ul e in the definition of r ul e is the instance of recursion. Given this
rule, the parser cycles through the input until the stream is reduced to the
final end case.

Theyacc tool supports left-recursive grammar, not right-recursive. When
you use recursion in arule, always put the call to the name of the rule as the
leftmost entry in the rule (asit is in the preceding example). If the call to the
name of the rule occurs later in the line, as in the following example, the
parser can run out of internal stack space and crash:

rul e : end case
| end case, rule

47.45 Errors in the Grammar File

4.7.5

Theyacc tool cannot produce a parser for all sets of grammar specifications.
If the grammar rules contradict themselves or require matching techniques
different from those that yacc has, yacc will not produce a parser. In most
cases, yacc provides messages to indicate the errors. To correct these
errors, redesign the rules in the grammar file or provide alexical analyzer to
recognize the patterns that yacc cannot handle.

Error Handling by the Parser

When the parser reads an input stream, that input stream can fail to match the
rules in the grammar file. If there is an error-handling routine in the grammar
file, the parser can alow for entering the data again, skipping over the bad
data, or for a cleanup and recovery action. When the parser finds an error,
for example, it might need to reclaim parse tree storage, delete or alter
symbol table entries, and set switches to avoid generating any further outpuit.

When an error occurs, the parser stops unless you provide error-handling
routines. To continue processing the input to find more errors, restart the
parser at a point in the input stream where the parser can try to recognize
more input. One way to restart the parser when an error occurs is to discard
some of the tokens following the error, and try to restart the parser at that
point in the input stream.

Creating Input Language Analyzers and Parsers 4-27

Theyacc tool has a special token name, er r or , to use for error handling.
Put this token in your grammar file at places where an input error might
occur so that you can provide a recovery routine. 1f an input error occursin
a position protected by the er r or token, the parser executes the action for
the er r or token rather than the normal action.

To prevent a single error from producing many error messages, the parser
remainsin an error state until it successfully processes three tokens following
an error. If another error occurs while the parser isin the error state, the
parser discards the input token and does not produce a message. Y ou can
also specify a point at which the parser should resume processing by
providing an argument to the er r or action. For example:

st at . error ’

This rule tells the parser that, when there is an error, it should skip over the
token and all following tokens until it finds the next semicolon. All tokens
after the error and before the next semicolon are discarded. When the parser
finds the semicolon, it reduces this rule and performs any cleanup action
associated with it.

4.7.5.1 Providing for Error Correcting

You can allow the person entering the input stream in an interactive
environment to correct any input errors by reentering a line in the data
stream. For example:

i nput : error '\n’
printf(" Reenter last line: ");
i nput
$$ = $4;

)

In the previous example the parser stays in the error state for three input
tokens following the error. If an error is encountered in the first three tokens,
the parser deletes the tokens and does not display a message. Use the
yyerrok; statement for recovery. When the parser encounters the
yyerrok; statement, it leaves the error state and begins normal processing.
Follwoing is the recovery example:

i nput : error "\n’
{
yyerr ok;
printf("Reenter last line: ");
i nput
{
$$ = 4

4-28 Creating Input Language Analyzers and Parsers

4.75.2 Clearing the Look-Ahead Token

The look-ahead token is the next token to be examined by the parser. When
an error occurs, the look-ahead token becomes the token at which the error
was detected. However, if the error recovery action includes code to find the
correct place to start processing again, that code must also change the look-
ahead token. To clear the look-ahead token, include theyycl eari n;
statement in the error recovery action.

4.8 Parser Operation

The yacc program turns the grammar file into a C language program that,
when compiled and executed, parses the input according to the grammar
rules.

The parser is afinite state machine with a stack. The parser can read and
remember the next input token (the look-ahead token). The current state is
always the state that is on the top of the stack. The states of the finite state
machine are represented by small integers. Initially, the machineisin state O
(zero), the stack contains only O (zero), and no look-ahead token has been
read.

The machine can perform one of the following four actions:

shift n The parser pushes the current state onto the stack, makes n the current
state, and clears the look-ahead token.

reduce r Ther argument isarule number. When the parser finds a token
seguence matching rule number r in the input stream, the parser
replaces that sequence with the rule number in the output stream.

accept The parser has looked at all input, matched it to the grammar
specification, and recognized the input as satisfying the highest level
structure (defined by the start symbol). This action appears only when
the look-ahead token is the end marker and indicates that the parser
has successfully done its job.

error The parser cannot continue processing the input stream and still
successfully match it with any rule defined in the grammar
specification. The input tokens it looked at, together with the look-
ahead token, cannot be followed by anything that would result in a
legal input. The parser reports an error and attempts to recover the
situation and resume parsing.

The parser performs the following actions during one process step:

Creating Input Language Analyzers and Parsers 4-29

48.1

4.8.2

1. Based on its current state, the parser decides whether it needs a look-
ahead token to decide the action to take. If it needs one and does not
have one, it calsyyl ex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser
decides on its next action and carriesit out. This can result in states
being pushed onto the stack or popped off the stack and in the look-ahead
token being processed or left alone.

The shift Action

Theshi ft action is the most common action the parser takes. Whenever
the parser does ashi f t , there is always a look-ahead token. Consider the
following parser action rule:

IF shift 34

When the parser is in the state that contains this rule and the look-ahead
token is | F, the parser performs the following steps:

1. Pushes the current state down on the stack
2. Makes state 34 the current state (puts it on the top of the stack)
3. Clears the look-ahead token

The reduce Action

Ther educe action prevents the stack from growing too large. The parser
uses reducing actions after it has matched the right side of a rule with the
input stream and is ready to replace the tokens in the input stream with the
left side of the rule. The parser might have to use the look-ahead token to
decide if the pattern is a complete match.

Reducing actions are associated with individual grammar rules. Because
grammar rules also have small integer numbers, you can easily confuse the
meanings of the numbersin theshi ft andr educe actions. For example,
the first of the two following actions refers to grammar rule 18; the second
refers to machine state 34:

reduce 18
IF shift 34

For example, consider reducing the following rule:

4-30 Creating Input Language Analyzers and Parsers

4.8.3

A XxXvyz;

The parser pops off the top three states from the stack. The number of states
popped equals the number of symbols on the right side of the rule. These
states are the ones put on the stack while recognizing x, y, and z. After
popping these states, the parser uncovers the state the parser was in before
beginning to process the rule (the state that needed to recognize rule A to
satisfy its rule). Using this uncovered state and the symbol on the left side of
the rule, the parser performs a got o action, which is similar toashi ft of
A. A new state is obtained and pushed onto the stack, and parsing continues.

The got o action is different from an ordinary shi ft of atoken. The look-
ahead token is cleared by ashi ft but is not affected by agot 0. When the
three states are popped in this example, the uncovered state contains an entry
such as the following:

A goto 20

This entry causes state 20 to be pushed onto the stack and become the current
state.

Ther educe action is aso important in the treatment of user-supplied
actions and values. When arule is reduced, the parser executes the code that
you included in the rule before adjusting the stack. In addition to the stack
holding the states, another stack running in parallel with it holds the values
returned from the lexical analyzer and the actions. When ashi ft takes
place, the external variable yyl val is copied onto the value stack. After
executing the code that you provide, the parser performs the reduction.
When the parser performs the got o action, it copies the external variable
yyl val onto the value stack. The yacc variables whose names begin with
adollar sign ($) refer to the value stack.

Ambiguous Rules and Parser Conflicts

A set of grammar rules is ambiguous if any possible input string can be
structured in two or more different ways. For example:

expr : expr '-’' expr
This rule forms an arithmetic expression by putting two other expressions

together with a minus sign between them, but this grammar rule does not
specify how to structure all complex inputs. For example:

expr - expr - expr

Using the preceding rule, a program could structure this input as either left-
associative or right-associative:

Creating Input Language Analyzers and Parsers 4-31

(expr - expr) - expr

or

expr - (expr - expr)

These two forms produce different results when evaulated.

When the parser tries to handle an ambiguous rule, it can become confused

over which of its four actions to perform when processing the input. The
following two types of conflicts develop:

Shi ft/reduce conflict A rule can be evaluated correctly using either a
shi ft action or ar educe action, with different
results.

Reduce/ r educe conflict A rule can be evaluated correctly using one of two
different r educe actions, producing two different
actions.

A shift/shift conflict is not possible.

These conflicts result when arule is not as complete as it could be. For
example, consider the following input and the preceding ambiguous rule:

a-b-c

After reading the first three parts of the input, the parser has the following:
a-»b

This input matches the right side of the grammar rule. The parser can reduce

the input by applying this rule. After applying the rule, the input becomes
the following:

expr

This is the left side of the rule. The parser then reads the final part of the
input, as follows:

- C

The parser now has the following:

expr - ¢

Reducing this input produces a left-associative interpretation.

However, the parser can also look ahead in the input stream. If, after
receiving the first three parts of the input, it continues reading the input
stream until it has the next two parts, it then has the following input:

a-b-c

Applying the rule to the rightmost three parts reducesb - c¢ to expr. The
parser then has the following:

4-32 Creating Input Language Analyzers and Parsers

a - expr

Reducing the expression once more produces a right-associative
interpretation.

Therefore, at the point where the parser has read the first three parts, it can
take one of two legal actions: ashi ft or areduce. If the parser has no
rule by which to decide between the actions, ashi ft / r educe conflict
results.

A similar situation occurs if the parser can choose between two valid
reduce actions. That situation is caled ar educe/ r educe conflict.

When shi ft/reduce orreduce/ r educe conflicts occur, yacc
produces a parser by selecting a valid step wherever it has a choice. If you
do not provide a rule to make the choice, yacc uses the following rules:

* Inashift/reduce conflict, shift.

* Inareduce/ reduce conflict, reduce by the grammar rule that can be
applied at the earliest point in the input stream.

Using actions within rules can cause conflicts if the action must be done
before the parser can be sure which rule is being recognized. In these cases,
using the preceding rules leads to an incorrect parser. For this reason, yacc
reports the number of shi ft/reduce and r educe/ r educe conflicts that
it has resolved by applying its rules.

4.9 Turning on Debug Mode

For normal operation, the external integer variable yydebug is set to 0.
However, if you set it to any nonzero value, the parser generates a running
description of the input tokens that it receives and the actions that it takes for
each token. You can set the yydebug variable in one of the following two

ways.
» Usetheyydebug function by including the following C language
statement in the declarations section of the yacc grammar file:

yydebug = 1;
» Use adebugger to execute the fina parser, and set the yydebug variable
on or off using debugger commands. For further details about using

debuggers, such as dbx, see the reference pages for the various
debuggers.

Creating Input Language Analyzers and Parsers 4—-33

4.10 Creating a Simple Calculator Program

Y ou can use the programs for al ex-generated lexical analyzer and ayacc-
generated parser, shown in Example 4-1 and Example 4-2, to create a simple
desk calculator program that performs addition, subtraction, multiplication,
and division operations. The calculator program also lets you assign values
to variables (each designated by a single lowercase letter) and then use the
variablesin calculations. The files that contain the programs are as follows:

« calc.l —Thel ex specification file that defines the lexical anaysis
rules

e cal c.y —Theyacc grammar file that defines the parsing rules, and
callstheyyl ex function created by | ex to provide input

By convention, | ex and yacc programs use the letters. | and . y
respectively as file name suffixes. Example 4-1 and Example 4-2 contain the
program fragments exactly as they should be entered.

The following processing instructions assume that the files are in your current
directory; perform the steps in the order shown to create the calculator
program using | ex and yacc:

1. Processthe yacc grammar file by using the following command. The
—d option tells yacc to create afile that defines the tokens it usesin
addition to the C language source code.

% yacc -d calc.y
This command creates the following files:

e y.tab. c —The C language source file that yacc created for the
parser

e y.tab. h—A header file containing def i ne statements for the
tokens used by the parser

2. Processthe | ex specification file by using the following command:
% | ex calc.l

This command createsthe | ex. yy. c file, containing the C language
source file that | ex created for the lexical anayzer.

3. Compile and link the two C language source files by using the following
command:

%cc -0 calc y.tab.c lex.yy.c

4, Usethel s command to verify that the following files were created:
e y.tab.o-Theobjectfilefory.tab. c
| ex.yy.o—-Theobject filefor | ex. yy. c

4-34 Creating Input Language Analyzers and Parsers

» cal ¢ — The executable program file

Y ou can run the program by entering the cal ¢ command. You can then
enter numbers and operators in algebraic fashion. After you press Return, the
program displays the result of the operation. You can assign avalueto a
variable as follows:

me4
Y ou can use variables in calculations as follows:

m+5
9

4.10.1 Parser Source Code

Example 4-1 shows the contents of the cal c. y file. Thisfile has entriesin
all three of the sections of ayacc grammar file: declarations, rules, and
programs. The grammar defined by this file supports the usual algebraic
hierarchy of operator precedence.

Descriptions of the various elements of the file and their functions follow the
example.

Example 4-1: Parser Source Code for a Calculator

%

#i ncl ude <stdio. h> 1
int regs[26]; 2

int base;

%

Ystart |ist 3

% oken DIG T LETTER 4

Yeft '|’ 5
Yeft ' &
Weft '+ -’

Weft '* "] "R
%eft UMNUS /*supplies precedence for unary mnus */

L) /* beginning of rules section */
list: [*empty */
list stat’\n’

list error’\n’

yyerr ok;

— —— —

Creating Input Language Analyzers and Parsers 4-35

Example 4-1: (continued)
stat: expr

printf("%d\n", $1);

I
LETTER ' = expr

regs[$1] = $3;

expr: (7 expr ')’

$$ = $2;
f
expr '*’ expr
{

$$ = $1 * $3;
i
expr '/’ expr
{

$$ = $1 / $3;
i
expr % expr
{

$$ = $1 % $3;
f
expr '+ expr
{

$$ = $1 + $3;
i
expr -’ expr
{

$$ = $1 - $3;
i
expr & expr
{

$$ = $1 & $3;
f
expr |’ expr
{

$$ = $1 | $3;
i
-7 expr %rec UM NUS
{

$$ = -$2;

4-36 Creating Input Language Analyzers and Parsers

Example 4-1: (continued)

}

I
LETTER

$$ = regs[$1];

nunber : DI AT

$$ = $1;
base = ($1==0) ? 8:10;
|
nunber DIG T
$$ = base * $1 + $2;
J
o6 ;
mai n()

return(yyparse());

yyerror(s)
char *s;

fprintf(stderr," %\n",s);

%/yvvr ap()

return(l);

The declarations section contains entries that perform the following
functions:

1 Include standard I/O header file

Define global variables

Define the rule list as the place to start processing
Define the tokens used by the parser

Define the operators and their precedence

ga B~ W N

The rules section defines the rules that parse the input stream.

The programs section contains the following routines. Because these routines
are included in this file, you do not need to use the yacc library when
processing this file.

Creating Input Language Analyzers and Parsers 4—-37

* mai n() —Therequired main program that callsyypar se() to start
the program

* yyerror(s) — The error-handling routine, which prints a syntax error
message

* yyw ap() — Thewrap-up routine that returns a value of 1 when the
end of input occurs

4.10.2 Lexical Analyzer Source Code

Example 4-2 shows the contents of the cal c. | file. Thisfile contains

#i ncl ude statements for standard input and output and for they. t ab. h
file, which is generated by yacc beforeyourunl ex oncal c. 1. The
y. t ab. h file defines the tokens that the parser program uses. Also,

cal c. | definesthe rules to generate the tokens from the input stream.

Example 4-2: Lexical Analyzer Source Code for a Calculator
A

#i ncl ude <stdio. h>
#include "y.tab. h"

int c;

extern int yylval;

%

W

[a-2z] {
c = yytext[O0];
yylval = ¢ - 'a';
return(LETTER);

}
[0-9] {

c = yytext[O0];
yylval = ¢ - '0";
return(DIA T);

}
[~a-z0- 9\ b] {

c = yytext[O0];
return(c);

4-38 Creating Input Language Analyzers and Parsers

Using m4 Macros in Your Programs 5

This chapter describes the md macro preprocessor, a front-end filter that lets
you define macros by placing n¥ macro definitions at the beginning of your
source files. Y ou can use the m4 preprocessor with either program source
files or document source files.

5.1 Using Macros

Macros ease your programming or writing tasks by allowing you to substitute
asimple word or two for a great amount of material. Macro callsin a source
file have the following form:

name[(argl[,arg2...])]

For example, suppose you have a C program in which you want to print the
same message at several points. You could code a series of pri nt f
statements like the following:

printf("\nThese %l files are in %:\n\n",cnt,dir);

As your program evolves, you decide to change the wording; but you have to
edit each instance of the message. Defining a macro like the following will
save you a great deal of work:

define(filmsg, ‘printf("\nThese% files are in %:\n\n", $1, $2)")

Then, everywhere you want to output this message, you use the macro this
way:
filmsg(cnt,dir);

With this implementation, you need only edit the message in one place.

A macr o definition consists of a symbolic name (called a token) and the
character string that is to replaceit. A token is any string of alphanumeric
characters (letters, numbers, and underscores) beginning with a letter or an
underscore and delimited by nonalphanumeric characters (punctuation or
white space). For example, N12 and N are both tokens but A+B is not a
token. When you process your file through md, each occurrence of a
recognized macro is replaced by its definition. In addition to replacing
symbolic names with text, m can aso perform the following operations:

* Arithmetic calculation

* File manipulation

» Conditional macro expansion
» String and substring functions
» System command execution

The m4 program reads each token in the file and determines if the token is a
macro name. Macro names that are embedded in other tokens are not
recognized; for example, m4 does not interpret N12 as containing an
occurrence of the token N. If the token is a macro name, m4 replacesit with
its defining text and pushes the resulting string back onto the input to be
rescanned.

Macro expansion is thus recursive; macro definitions can include nested
occurrences of other macros to any depth of nesting. You can call macros
with arguments, in which case the arguments are collected and substituted
into the right places in the defining text before the defining text is rescanned.

The m4 preprocessor is a standard UNIX filter. It acceptsinput from
standard input or from alist of input files and writes its output to standard
output. The following lines illustrate correct n¥ usage:

%grep -v '#include' filel file2 | md > outfile
%m filel file2 | cc

The m4 program processes each argument in order. If there are no
arguments, or if an argument is a minus sign (—), n¥ reads standard input as
its input file.

5.2 Defining Macros

Y ou create a macro definition with the def i ne command, one of about 20
built-in macros provided by mit. For example:

defi ne(N, 100)

The open parenthesis must follow the word def i ne with no intervening
space.

Given this macro definition, the token N will be replaced by 100 wherever it
appears in the file being processed. The defining text can be any text, except
that if the text contains parentheses, the number of open (left) parentheses
must match the number of close (right) parentheses unless you protect an
unmatched parenthesis by quoting it. See Section 5.2.1 for an explanation of
guoting.

Built-in and user-defined macros work the same way except that some of the
built-in macros change the state of the process. Refer to Section 5.3 for alist
of the built-in macros.

5-2 Using m4 Macros in Your Programs

5.2.1

Y ou can define macros in terms of other macros. For example:

defi ne(N, 100)

define(MN)

This example defines both Mand N to be 100. If you later change the
definition of N and assign it a new value, Mretains the value of 100, not the
new value you give N. The value of Mdoes not track that of N because the
M4 preprocessor expands macro names into their defining text as soon as
possible. The overal result, as far as Mis concerned, is the same as using the
following input in the first place:

defi ne(M 100)

If you want the value of Mto track the value of N, you can reverse the order
of the definitions, as follows:

defi ne(M N)
defi ne(N, 100)

Now Mis defined to be the string N. When the value of Mis requested later,
the Mis replaced by N, which is then rescanned and replaced by whatever
value N has at that time.

Macro definitions made with the def i ne command do not delete characters
following the close parenthesis. For example:

Now is the time for all good persons.
defi ne(N, 100)
Testing N definition.

This example produces the following result:
Now is the time for all good persons.

Testing 100 definition.

The blank line results from the presence of a newline character at the end of
the line containing the def i ne macro. The built-in dnl macro deletes all
charactersthat follow it, up to and including the next newline character. Use
this macro to delete empty lines. For example:

Now is the time for all good persons.

defi ne(N, 100) dnl
Testing N definition.

This example produces the following result:

Now is the time for all good persons.
Testing 100 definition.

Using the Quote Characters

To delay the expansion of adef i ne macro’s arguments, enclose themin a
matched pair of quote characters. The default quote characters are left and
right single quotation marks (* and’), but you can use the built-in

Using m4 Macros in Your Programs 5-3

changequot e macro to specify different characters. (See Section 5.3.)
Any text surrounded by quote charactersis not expanded immediately, but
the quote characters are removed. The value of a quoted string is the string
with the quote characters removed. Consider the following example:

defi ne(N, 100)

define(M*‘N)

The quote characters around the N are removed as the argument is being
collected. The result of using quote charactersis to define Mas the string N,
not 100. This example makes the value of Mtrack that of N, and it is thus
another way to accomplish the effect of the following definitions, shown in
Section 5.2:

define(MN)

defi ne(N, 100)

The generd rule is that N always strips off one level of quote characters
whenever it evaluates something. This is true even outside macros. For
example, to make the word *‘ define’’ appear in the output, enter the word in
guote characters, as follows:

‘define’ =1
Because of the way m4 handles quoted strings, you must be careful about
nesting macros. For example:

def i ne(dog, cani ne)

defi ne(cat, ani mal chased by ‘dog’)

defi ne(mouse, ani mal chased by cat)

When the definition of cat is processed, dog is not replaced with cani ne
because it is quoted. But when nouse is processed, the definition of cat
(ani mal chased by dog) isused; thistime, dog is not quoted, and the
definition of nrouse becomesani nal chased by ani nal chased
by cani ne.

When you redefine an existing macro, you must quote the first argument (the
macro name), as follows:

defi ne(N, 100)

define(* N, 200)

Without the quote characters, the second def i ne macro sees N, recognizes
it, and substitutes its value, producing the following result:

defi ne(100, 200)

The nmd program ignores this statement because it can only define names, not
numbers.

5-4 Using m4 Macros in Your Programs

5.2.2 Macro Arguments

The simplest form of macro processing is replacing one string with another
(fixed) string as illustrated in the previous sections. However, macros can
also have arguments, so that you can use a given macro in different places
with different results. To indicate where an argument is to be used within the
replacement text for a macro (the second argument of its definition), use the
symbol $n to indicate the nth argument. For example, the symbol $1 refers
to the first argument of a macro. When the macro is used, n¥ replaces the
symbol with the value of the indicated argument. For example:

def i ne(bunp, $1=$1+1)

burp(x) ;
In this example, m4 will replace the bunp(x) statement with x=x+1.

A macro can have as many arguments as needed. However, you can access
only nine arguments by using the $n symbols ($1 through $9). To access
arguments past the ninth argument, use the shi f t macro, which drops the
first argument and reassigns the remaining arguments to the $n symbols
(second argument to $1, third to $2, and so on). Using the shi ft macro
more than once allows access to all arguments used with the macro.

The symbol $0 returns the name of the macro. Arguments that are not
supplied are replaced by null strings, so that you can define a macro that
concatenates its arguments as follows:

define(cat, $1$2$3$4$5$6$7$8%$9)

cat.(x, Y, Z)
This example replacesthe cat (x, y, z) statement with xyz. Arguments

$4 through $9 in this example are null because corresponding arguments
were not provided.

When scanning a macro, the md program discards leading unquoted blanks,
tabs, or newline charactersin arguments, but keeps al other white space. For
example:

defi ne(a, "$1 $2$3")

a(t;,
C,
d)

Using m4 Macros in Your Programs 5-5

This example expands the a macroto be"b cd". Inthedefi ne macro,
however, newline characters are meaningful. For example:

define(a, $1
$2%$3)

a(b, ¢, d)
This latter example expands the a macro as follows:

b

cd

Macro arguments are separated by commas. Use parentheses to enclose
arguments containing commas, so that the commas are not misinterpreted as
ending the arguments containing them. For example, the following statement
has only two arguments:

define(a, (b,c))

The first argument is a, and the second is (b, ¢) . To useasingle
parenthesis in an argument, enclose it in quote characters:
define(a,b')’c)

In this example, b) ¢ is the second argument.

5.3 Using Other m4 Macros

The m4 program provides a set of macros that are already defined (built-in
macros). Table 5-1 lists all of these macros and describes them briefly. The
following sections further explain many of the macros and how to use them.

Table 5-1: Built-In m4 Macros

Macro Description

changecom(/, r) Changes the left and right comment
characters to the characters represented by
| and r. The two characters must be
different.

changequote(/, r) Changes the left and right quote characters
to the characters represented by / and r.
The two characters must be different.

decr (n) Returns the value of n-1.

def i ne(nane, repl acenent) Defines a new macro, named nane, with a
value of repl acenent .

def n(nane) Returns the quoted definition of nare.

5-6 Using m4 Macros in Your Programs

Table 5-1: (continued)

Macro

di vert (n)
di vhum

dnl
dunpdef (“nane’[, “nane’...])

errprint(str)
eval (expr)

i fdef(‘nane’, argl, arg2)

ifelse(strli,str2, argl, arg?)

i nclude(file)
sinclude(file)

i ncr(n)

i ndex(str1,str?2)

| en(str)
dl en(str)

mdexi t (code)
mdwr ap(hane)

maket enp(st r XXXXXst r)

popdef (nane)

Description

Changes the output stream to the temporary
file number n.

Returns the number of the currently active
temporary file.

Deletes text up to a newline character.

Prints the names and current definitions of
the named macros.

Prints st r to the standard error file.

Evaluates expr as a 32-bit arithmetic
expression.

If macro name is defined, returns ar g1,
otherwise, returns ar g2.

Comparesthe stringsstr1 andstr 2. If
they match, i f el se returns the value of
ar g1; otherwise, it returns the value of
arg2.

Returns the contentsof fi [e. The
si ncl ude macro does not report an error
if it cannot access the file.

Returns the value of n+1.

Returns the character position in string
str1 wherestr2 starts, or =1 if strl
does not contain str 2.

Returns the number of charactersinstr.
The dl en macro operates on strings
containing 2-byte representations of
international characters.

Exits m4 with areturn code of code.

Runs macro nane before exiting, after
completing all other processing.

Creates a unique file name by replacing the
literal string XXXXX in the argument string
with the current process ID.

Replaces the current definition of name
with the previous definition, saved with the
pushdef macro.

Using m4 Macros in Your Programs 5-7

Table 5-1: (continued)

Macro

pushdef (nane, repl acenent)

shift(param|list)

substr(string, pos,|en)

syscnd(command)
sysval
traceof f (nmacro _Iist)
t raceon(nane)

translit(string, setl, set2)

undefine(“nane’)

undi vert(n,n[,n...1)

Description

Saves the current definition of nanme and
then defines nane to ber epl acenent in
the same way as def i ne.

Shifts the parameter list leftward one
position, destroying the original first
element of the list.

Returns the substring of st ri ng that
begins at character position pos and is
I en characters long.

Executes the specified system command
with no return value.

Gets the return code from the last use of the
syscnd macro.

Turns off trace for any macro in the list. If
macro_l i st isnull, turns off al tracing.

Turns on trace for the named macro. If
nane is null, turns trace on for al macros.

Replaces any characters from set 1 that
appear in st ri ng with the corresponding
characters from set 2.

Removes the definition of the named
macro.

Appends the contents of the indicated
temporary files to the current temporary
file

5.3.1 Changing the Comment Characters

To include comments in your ¥ programs, delimit the comment lines with
the comment characters. The default |eft comment character is the number
sign (#); the default right comment character is the newline character. |If
these characters are not convenient, use the built-in changecommacro. For

example:

5-8 Using m4 Macros in Your Programs

5.3.2

5.3.3

5.3.4

5.3.5

changecon({,})

This example makes the left and right braces the new comment characters.
To restore the original comment characters, use changecomas follows:

changecon(#,

Using changecomwith no arguments disables commenting.

Changing the Quote Characters

The default quote characters are the left and right single quotation marks ('
and’). If these characters are not convenient, change the quote characters
with the built-in changequot e macro. For example:

changequote([,])

This example makes the left and right brackets the new quote characters. To
restore the original quote characters, use changequot e without arguments,
as follows:

changequot e

Removing a Macro Definition

The undef i ne macro removes macro definitions. For example:
undefine(‘N)

This example removes the definition of N. Y ou must quote the name of the
macro to be undefined. You can use undef i ne to remove built-in macros,

but once you remove a built-in macro, you cannot recover that macro for
later use.

Checking for a Defined Macro

The built-in i f def macro determines if a macro is currently defined. The

i f def macro accepts three arguments. If the first argument is defined, the
value of i f def isthe second argument. If the first argument is not defined,
the value of i f def isthe third argument. If there is no third argument, the
valueof i f def isnull.

Using Integer Arithmetic

The m4 program provides the following built-in functions for doing
arithmetic on integers only:

i ncr Incrementsits numeric argument by 1
decr Decrementsits numeric argument by 1
eval Evaluates an arithmetic expression

Using m4 Macros in Your Programs 5-9

5.3.6

For example, you can create a variable N1 such that its value will always be
one greater than N, as follows:

defi ne(N, 100)
define(NL, ‘“incr(N)’)

The eval function can evaluate expressions containing the following
operators (listed in decreasing order of precedence):

e unary + (plus), unary — (minus)

e ** or N (exponentiation)

e * [, %(modulo)

° +’ —
° ==, | =, <, <=, >, >=
. 1 (NOT)

* &or&& (logica AND)
* | or|| (logical OR)

Use parentheses to group operations where needed. All operands of an
expression must be numeric. The numeric value of atrue relation such as
1>0is1, and falseis O (zero). The precisionin eval is 32 bits. For
example, to define Mas 2==N+1, use eval asfollows:

defi ne(N, 3)

define(M ‘eval (2==N+1)")

Use quote characters around the text that defines a macro, unless the text is
simple and contains no instances of macro names.

Manipulating Files

To merge a new file in the input, use the built-in i ncl ude macro as
follows:

include(nyfile)

This example inserts the contents of nmyfi | e in place of thei ncl ude
command. Astheincluded fileis read, md4 scans it for macros as if it were
part of the primary input.

With thei ncl ude macro, afatal error occurs if the named file cannot be
accessed. To avoid an error, use the alternative form, si ncl ude (silent
include). Thesi ncl ude macro continues without error if the named file
cannot be accessed.

5-10 Using m4 Macros in Your Programs

5.3.7 Redirecting Output

5.3.8

5.3.9

Y ou can redirect the output of m4 to temporary files during processing, and
the collected material can be output upon command. The n¥ program can
maintain up to nine temporary files, numbered 1 through 9. To redirect
output, use the di vert macro as in the following example:

di vert (4)

When this comand is encountered, m4 begins writing its output to the end of
temporary file 4. The m4 program discards the output if you redirect the
output to atemporary file other than 1 through 9; you can use this feature to
make mt omit a portion of the input file. Usedi vert (0) or di vert with
no argument to return the output to the standard output stream.

At the end of its processing, m writes all redirected output to the standard
output stream, reading from the temporary files in numeric order and then
destroying the temporary files.

To retrieve the information from all temporary files in numeric order at any
time before processing is completed, use the built-in undi vert macro with
no arguments. To retrieve selected temporary files in a specified order, use
undi vert with arguments. When using undi vert, n¥ discards the
temporary files that are recovered and does not search the recovered
information for macros.

The value of undi vert is not the diverted text.

The built-in di vhummacro returns the number of the currently active
temporary file. If you do not change the output file with the di vert macro,
md puts al output in temporary file O (zero).

Using System Programs in a Program

You can run any program in the operating system from a program by using
the built-in syscnd macro. If the system command returns information, that
information is the value of the syscnd macro; otherwise, the macro’s value
isnull. For example:

syscnd(dat e)

Using Unique File Names

Use the built-in maket enp macro to make a unique file name from a
program. If the literal string XXXXX is present in the macro’s argument, N
replaces the XXXXX with the process ID of the current process. For example:

Using m4 Macros in Your Programs 5-11

maket enp(myfi | e XXXXX)

If the current process ID is 23498, this example returns nyf i | €23498.
You can use this string to name a temporary file.

5.3.10 Using Conditional Expressions

The built-in i f el se macro performs conditional testing. The simplest form
is the following:

ifelse(a,b,c,d)

This example compares the two strings a and b. If they are identical,

i fel sereturnsstring c. If they are not identical, it returns string d. For
example, you can define a macro called conpar e to compare two strings
and return yes if they are the same or no if they are different, as follows:
defi ne(conpare, ‘ifelse($l,$2,yes, no)’)

The quote characters prevent the evaluation of i f el se from occurring too
early. If the fourth argument is missing, it is treated as empty.

Thei f el se macro can have any number of arguments, and it therefore
provides a limited form of multiple path decision capability. For example:

ifelse(a,b,c,d, e f,q)
This statement is logically the same as the following fragment:

if(a==0Db) x =c¢;
else if(d ==¢e) x =f;
else x =g;
return(x);

If the final argument is omitted, the result is null.

5.3.11 Manipulating Strings

The built-in | en macro returns the byte length of the string that makes up its
argument. For example, | en(abcdef) is6,andl en((a, b)) isb5.

The built-in dI en macro returns the length of the displayable charactersin a
string. In certain international usages, 2-byte codes are displayed as one
character. Thus, if the string contains any 2-byte international character
codes, the result of dl en will differ from the result of | en.

The built-in subst r macro returns the substring (beginning at the character
position specified by the second argument) from a specified string (first
argument). The third argument specifies the length in bytes of the returned
substring. For example:

5-12 Using m4 Macros in Your Programs

substr (Krazy Kat, 6, 5)

This example returns *‘Kat'’, which is the 3-character substring beginning at
character position 6 of the string ‘‘Krazy Kat'’'. Thefirst character in the
string is at position 0 (zero). If the third argument is omitted or if the string
is not long enough to satisfy the third argument, as in this example, the rest
of the string is returned.

The built-in i ndex macro returns the byte position, or index, in a string
(first argument) where a substring (second argument) begins. |If the substring
is not present, i ndex returns—1. Aswith subst r, the origin for stringsis
0 (zero). For example:

i ndex(Krazy Kat, Kat)
This example returns 6.

The built-int r ansl i t macro performs one-for-one character substitution,
or trangdliteration. The first argument is a string to be processed. The second
and third arguments are lists of characters. Each instance of a character from
the second argument that is found in the string is replaced by the
corresponding character from the third argument. For example:

translit(the quick brown fox junps over the |azy dog, aei ou, AEI QU)
This example returns the following:
thE qUl ck brOm fOx jUrps OvEr thE | Azy dQOg

If the third argument is shorter than the second argument, characters from the
second argument that are not in the third argument are deleted. If the third
argument is missing, all characters present in the second argument are
deleted.

Note

Thesubstr,index,andtranslit macrosdo not
differentiate between 1- and 2-byte displayable characters and
can return unexpected results in some international usages.

5.3.12 Printing

The built-in er r pri nt macro writes its arguments to the standard error file.
For example:

errprint (‘error’)
The built-in dunpdef macro dumps the current names and definitions of
items named as arguments. Names must be quoted. If you supply no

arguments, dunpdef prints al current names and definitions. The
dunpdef macro writes to the standard error file.

Using m4 Macros in Your Programs 5-13

Revision Control: Managing Source
Files with RCS or SCCS

This chapter describes how to keep your program or documentation source
files well organized by using a version control system. A version control
system automates the storage, retrieval, logging, identification, and merging
of document revisions. Version control is most useful for text that is revised
frequently, such as programs, documentation, graphics, papers, and so on.
The Digital UNIX operating system provides the following two version
control systems with dightly different features:

* Revision Control System (RCYS)
e Source Code Contral System (SCCS)

This chapter introduces basic version control concepts, describes how to use
the RCS and SCCS commands and utilities, and provides more advanced
information about using each system. Examples in this chapter describe a
hypothetical kit for a product called ** Orpheus Authoring Tools.”” The
example kit is considered to be one of several Orpheus products. Because
this particular kit is a document builder, the kit name is abbreviated as DCB
and the main project directory isdcb_t ool s.

6.1 Overview of Revision Control

Using the Revision Control System (RCS) or the Source Code Control
System (SCCYS) lets you keep your source files in a common library and
maintain control over them. Both systems provide easy-to-use, command-
line interfaces. Knowing the basic commands lets you check in the source
file to be modified into a version controal file that contains al of the
revisions of that source file. When you want to check out a version control
file for editing, the system retrieves the revision or revisions you specify
from the library and creates a working file for you to use.

Using more advanced interface commands lets you do the following:

* ldentify the current status of any file, including the name of the person
editing it.

* Reconstruct earlier versions of your files. For each version, the system

stores the changes made to produce that version, the name of the person
making the changes, and the reasons for the changes.

* Prevent the problems that can occur when two people change afile at the
same time without each other’s knowledge.

* Maintain multiple branch versions of your files. Branched versions can
be merged back into the original sequence if desired.

* Protect files from unauthorized modification.

* RCS also alows for release and configuration control. Revisions can be
assigned symbolic names and marked according to the *‘ state’’ of the file
(for example, released, stable, experimental, and so on).

Depending on your development environment and unique revision control
requirements, you can select either RCS or SCCS as your version control
system. Y our choice depends on the amount of security and versatility you
require. Table 6-1 summarizes some of the more widely used features of
each system.

Table 6-1: Features of RCS and SCCS

Feature Comments
Stores and retrieves multiple Both systems provide a simple way to store and
revisions of text. retrieve all changes made to afile. In addition,

RCS can retrieve revisions based on ranges of
revision numbers, symbolic names, dates,
authors, and states.

Maintains a complete history of Both systems log changes automatically.

changes. Besides the text of each revision, both systems
store the author, date and time of the checkin,
and a log message summarizing the changes.

Resolves access conflicts. Both systems prevent two people from
modifying a file without each other’'s
knowledge.

Maintains tree of revisions. Both systems can maintain separate lines of

development for each file.

Merges revised files with conflict Both systems provide a way to merge changes

resolution. to afile from two separate lines of development.
RCS also alerts the user if there are overlapping
changes to the file versions.

Allows for release and configuration RCS can assign symbolic hames to revisions so
control. (RCSonly) that configurations of modules can be described
simply and directly.

6—2 Revision Control: Managing Source Files with RCS or SCCS

Table 6-1: (continued)

Feature Comments

Automates identification of each Both systems use keywords to tag revisions of
revision. files with name, revision number, time, author,
and so on.

6.2 Version Control Concepts

RCS and SCCS store files in a reserved directory, caled a version control
library. The contents of each source file are stored as a single version
control file (called an RCSfilein RCS or an sfilein SCCS). A version
control file contains the original file (called a g-file in SCCS) together with
al the changes, or deltas, that have been applied to it. Each deltais
described by text telling who made the change and why. The change
information itself is stored in the form of marked lines of text. Every line
that is deleted or changed is marked as deleted but is not actually removed.
New lines can be either edited versions of old lines or completely new
material inserted at the appropriate places and marked. Y our version control
system can reconstruct any version of the file by applying all the deletions
and additions for versions up to the desired version and by ignoring all later
versions.

In RCS, RCSHiles are identified by the suffix , v added to their names; for
example, at t r, v would be the RCSile for the source filenamed at t r .

In SCCS, sfiles are identified by the prefix s. added to their names; for
example, s. at t r would be the s-file for the source file named at t r .
Figure 6-1 illustrates the contents of atypical version control file. RCS and
SCCS files contain the same kinds of information, but their organization is
different.

A version identification number is applied to a particular revision of the
version control file. In SCCS, this number is called anh SID. The
identification number for SCCS can contain up to four elements; RCS
provides for additional elements. The first two elements are the release
number and the level number within that release, and the third and fourth
represent the same items of information (called the branch and the sequence)
for a branched version of thefile. (See Section 6.3.) Release identification
numbers begin at 1. Leve identification numbers within a release begin at .1
and advance by .1, so that the first version of afileis 1.1, the second version
is 1.2, and so on. Figure 6-4 (in Section 6.3) illustrates the numbering
sequence for one file's deltas.

Revision Control: Managing Source Files with RCS or SCCS 6-3

Figure 6-1: Contents of a Version Control File

File identification
and checksum

Second edit comment

First edit comment
Creation comment

Original version I

First revision

Second revision

ZK-0456U-R

A version control library is a directory in which al the version control files
for a given project are stored. When you retrieve afile from the library, both
RCS and SCCS provide a locking mechanism that prevents two people from
accessing the file at the same time. File locking is discussed in detail in the
following sections.

Usually, but not always, the library is given the name RCS or SCCS,
depending on the system you use. Figure 6-2 and Figure 6-3 illustrate how a
project’s directory tree might appear with the RCS or SCCS library placed
below the project’s main directory.

Figure 6-2 shows three RCS-files. When afile is checked out of the library
for editing, RCS correlates al the deltas and delivers a copy of the specified
version, asillustrated here with the at t r file. RCS also edits the RCSHile
to insert the name of the person checking out the file. This information is
stored in the $Locker $ keyword. See Section 6.5.2 for more information
about using keywords in RCS.

RCS differs from SCCS in that file locking is enforced at checkin time. A
file can be checked out by more than one person, but only the first person to
check it out (the one holding the lock) can check it back in to the library.
Even if arevision is locked, it can still be checked out for reading,
compiling, and so on. Locking ensures that only one developer at a time can
check in the next update of the file. In other words, locking prevents a
checkin by anybody but the locker (the first person to check out the file).

6—4 Revision Control: Managing Source Files with RCS or SCCS

Figure 6-2: A Typical RCS Library

dcb_tools

- ~s

attr,v

docbld,v

dcb-ch-intro,v

ZK-0621U-R

If your RCSHile is private and you will be the only person making revisions
to it, you can turn off the strict locking feature of RCS. When afileis
checked back in, RCS removes the user’s name from the $Locker $
keyword. If strict locking is turned off, the owner of the file does not need to
have alock for checkin, but all others do. Use the following commands to
turn strict locking off and on:

%rcs -U filenane

and
%rcs -L fil enane

For more detailed information on file locking, refer to Section 6.5.3, Section
6.5.5, and the co(1) reference page.

Revision Control: Managing Source Files with RCS or SCCS 6-5

Figure 6-3: A Typical SCCS Library

dcb_tools

-~ Ss

...........................

s.attr

s.docbld

s.dcb—ch-intro

ZK-0457U-R

Figure 6-3 shows three s-files and one other file, named p. attr, in the
SCCS library. When afile is checked out of the library for editing, SCCS
correlates all the deltas and delivers a copy of the specified version, as
illustrated here with the at t r file. SCCS also creates alock file, called a
p-file. If another person tries to check out the same file for editing, SCCS
reports that the file is being edited and refuses to give access to the second
person. A p-file has the letter p added as a prefix to its name. When afileis
checked back in to the library, SCCS removes the p-file.

6.3 Managing Multiple Versions of Files

Usualy, file versions progress in a straight line, with only one current
version. In this casg, file identification numbers contain two elements and
progress by steps of .1, so that the first version number applied to afileis 1.1
and the eighth, for example, is 1.8.

Projects running in parallel to develop new versions of the same basic
program can use the same version control file. As the different versions are
put into the library, atree develops. For example, suppose two teams begin
development on separate versions of a file or module, starting from the most
recent revision.

As the two development streams continue, a complex tree of deltas can be
created, asillustrated in Figure 6-4.

6—6 Revision Control: Managing Source Files with RCS or SCCS

Figure 6-4: A Version Control File’s Tree of Deltas

15 1214

1213 1221 \

1212

1311 |~

HEE
HEEE

12 1211

11

ZK-0458U-R

To get or edit afile from one of the branches, you must specify its branch
number. Figure 6-4 shows atree for a version control file that consists of a
main trunk (contains revisions numbers 1.1, 1.2, 1.3, and so on) and
branches. For the delta numbers shown, the first two elements reflect the
version number from which it is branched, and the second two elements
reflect the new element’ s version number.

As an example, suppose the two devel opment teams are working with
revison number 1.2 of afile. Both RCS and SCCS will allocate a number
of 1.3 to the first team to accessthe file. For the second team, the version
control system will create a delta numbered 1.2.1.1. Because thisis the first
delta along this 1.2 branch, the last two elements of this version number are
shown as 1.1.

As the two versions are developed, they can themselves be branched from;
for example, a programmer might branch a new file from revision number
1.2.1.3 after revision number 1.2.1.4 has been created.

For more information and specific examples on branching in RCS and SCCS,
see Section 6.5.5 and Section 6.6.5.

Revision Control: Managing Source Files with RCS or SCCS 6-7

6.4 Creating a Version Control Library

Once you have selected the version control system you want to use for your
development project, you should create a directory in which you will place
the RCS or SCCS files. Depending on the size and complexity of your
development project, you might want to involve your system administrator,
who can help you determine ownership and protection settings for the
directory and source files.

When setting up your directory, you might want to assign ownership of the
directory to ther cs or sccs user ID and set its permissions to prevent users
other than r cs or sccs from writing to it. This method provides good
security in that only RCS or SCCS can directly manipulate the files in the
library.

If you are going to use the sccs command, the library’s directory should be
named SCCS, as illustrated in Figure 6-3. If the library directory is not
named SCCS, you must use the —d option with the sccs command to access
filesin the library. (See Table 6-8.) For RCS, the directory should be
named RCS; otherwise, you must specify a complete path (absolute or
relative) to the RCSHile.

6.5 Using RCS

The RCS system provides a set of UNIX commands that assist in the task of
version control for your text files. It is designed for both production and
development environments where flexibility and file access control are high
priorities. In production environments, access controls can detect update
conflicts and prevent overlapping changes. In fast-changing devel opment
environments, where such strong controls may not be appropriate, users can
easily modify the controls to suit individual project needs.

The RCS system comprises a set of independent commands. Table 6-2 lists
the RCS commands provided with Digital UNIX. The sections following the
table provide more information on some of these commands. Refer to the
appropriate reference page for additional information on the available
command options.

6—8 Revision Control: Managing Source Files with RCS or SCCS

Table 6-2: Summary of RCS Command Functions

Command
Ci

co

i dent

rcs

rcscl ean

rcsdiff

Option

-uor-|

Description

Checksin revisions. Stores the contents of a
working file in the corresponding RCS-file as a new
revision.

Using one of these options prevents a working file
from being deleted at checkin time.

Assigns a revision number to the file being checked
in.

Searches the checked-in file for identification
markers, and assigns them to new revisions.

Checks out revisions. Retrieves revisions according
to revision number, date, author, and state attributes.
Always expands the identification markers
(keywords).

L ocks the revision during file checkout to prevent
overlapping modifications if several people work on
the same file.

Extracts the identification markers from afile and
prints them. The identification markers (keywords)
are always expanded by co.

Changes RCSHile attributes. Changes (as an
administrative operation) access lists, modifies file
locking attributes, sets state attributes and symbolic
revision numbers, changes the description, and
deletes revisions. A revision can only be deleted if
it is not the fork of a side branch.

Sets the strict file locking mode. This means that
the owner of an RCS-ile must lock the file at
checkin. This default is determined by the system
administrator.

Sets the nonstrict file locking mode. This means
that the owner of the file does not need to lock the
file at checkin. This default is determined by the
system administrator.

Cleans your working directory. Removes working
files that were checked out but never changed.

Compares two revisions and prints out their
differences, using the di f f command. One of the
revisions compared can be checked out. This
command is useful for finding out about changes.

Revision Control: Managing Source Files with RCS or SCCS 6-9

Table 6-2: (continued)

Command Option
rcsfreeze
rcsnerge

-p
rcsst at
rcstinme
rlog

-h

Description

Freezes a configuration. Assigns the same symbolic
revision number to a given revision in al RCSHiles.
This command is useful for accurately recording a
configuration.

Merges two revisions, r ev1 and r ev2, with respect
to a common ancestor. A three-way file comparison
determines the parts of lines that are the same in all
three revisions, the same in two revisions, or
different in all three. Overlapping changes are
flagged and reported to the user.

Prints the result of the merged files to the standard
output; otherwise, the resulting merged file
overwrites the working file.

Prints RCSHile status. Prints information about
RCSHiles, for example, the current version of the
file selected with the - r option.

Prints checkin time. Prints the time a particular
revision of a given RCS-file was checked in to the
system. Therevision is selected by number and
name, checkin date and time, author, or state.

Reads log messages. Prints the log messages and
other information in an RCSile, for example:
RCSfile name, working file name, head (the number
of the latest revision on the trunk), default branch,
access list, locks, symbolic names, number of
revisions and descriptive text.

Prints only the RCS-file name, working file name,
head, default branch, access list, locks, symbolic
names, and suffix.

Prints the same information as does - h, plus the
descriptive text.

6.5.1 Placing New Files in an RCS Library

You can use the ci command to place new filesin alibrary. The following
example assumes that you are in the library’s parent directory and want to
add theat t r fileto the library:

6—10 Revision Control: Managing Source Files with RCS or SCCS

6.5.2

%ci attr

RCS/ attr,v <---- attr

initial revision: 1.1

enter description, termnate with D or ’
>> Orpheus Authoring Tools attr command
>>AD

done

Theci command createsthe RCSfileattr, v and storesattr initas
revision 1.1. The command prompts you for a description, which should be
a synopsis of the contents of the file. All later checkin commands will
prompt you for alog entry, which should summarize the changes you made.

You can enter a series of filesin a single operation. For example:
%ci attr docbld dcb.ch-intro

Recording File-Indentification Information with RCS

The RCS system provides a syntax for including keywords or ID markers
in source files to provide file-identification information. An ID marker
consists of a keyword enclosed within dollar signs ($). When you retrieve a
file from the RCS library, RCS expands the keyword by replacing it with the
appropriate information, such as the file name or revision number.

RCS lets you use keyword markers anywhere in your file as literal strings or
comments to identify arevision. For example, if you place the marker
$Header $ into your text file, RCS (with the co command) will replace this
keyword with the following information:

$Header: filenane revision_nunber date tine author state$

Table 6-3 lists the RCS keywords and their corresponding values.

Table 6-3: RCS ID Keywords

Keyword Description

$Aut hor $ The login name of the user who checked in the revision.

$Dat e$ The date and time the revision was checked in.

$Header $ A standard header containing the full pathname of the RCSHile,
the revision number, the date, the author, the state, and the locker
(if locked).

$1 d$ Same as $Header $ except that the RCSHile name is without a
path.

$Locker $ The login name of the user who locked the revision (empty if
unlocked).

Revision Control: Managing Source Files with RCS or SCCS 6-11

6.5.3

Table 6-3: (continued)

Keyword Description

Log The log message supplied during checkin, preceded by a header
containing the RCS-file name, the revision number, the author,
and the date. Existing log messages are not replaced; instead, the
new log message is inserted after $Log: . . . $.

SRCSfi | e$ The name of the RCS-file without path.
$Revi sion$ Therevision number assigned to the revision.

$Sour ce$ The full pathname of the RCSHile.
$St at e$ The state assigned to the revision with the - s option of r cs or
Ci.

Thei dent command finds and extracts keywords from any file, even object
files and dumps. It searches the files you specify for all occurrences of the
pattern $keywor d: . . . $. For example, suppose the C program

nyfil e. c contains the following information:

char resid [] = "$Header: Header infornmation$"

The command i dent will print the following:
nyfile.c : $Header: Header information$

For more detailed information on using keywords in RCS, refer to the co(1)
reference page.

Getting Files from an RCS Library

To retrieve afile revision from an RCS-ile, check it out of the RCS library
by using the co command. The co command retrieves a revision from the
RCS-ile and stores it in a corresponding working file.

Revisions of an RCS-file can be checked out locked or unlocked. Locking a
revision prevents overlapping updates. When you check out afile for reasons
other than editing (reading or processing, for example), the revision need not
be locked. (A revision checked out for editing and later checkin must
normally be locked.) For example:

% cd /usr/projects/dch_tools
%co -u attr

RCS/attr,v ----> attr
revision 1.6 (unlocked)
done

This command creates a copy of the most recent version of the RCS-Hile
(with keyword information included) and placesit in your current directory

6—12 Revision Control: Managing Source Files with RCS or SCCS

6.5.4

6.5.5

(/usr/ projects/dcb_t ool s inthisexample). The—u option prevents
RCS from locking the file. To get a copy of any earlier version, use the —r
option. For example, to retrieve version 1.5 of afile that is now at version
1.8, you would use a command like the following:

% cd /usr/projects/dcb_tools

%co -rl1.5 attr

RCS/attr,v ----> attr

revision 1.5
done

You can also retrieve a series of files with asingle co command. For
example:

% co attr unstanp

RCS/attr,v ----> attr

revision 1.5
done

RCS/ unst anp, v ----> unstanp
revision 1.2
done

Checking Edited Files Back into an RCS Library

To replace one or more edited files, use the ci command. This command
places the contents of each working file in the corresponding RCS-ile.
Usually, RCS checks whether the revision to be deposited in the library is
different from the preceding one, and aerts the user.

Also, because the ci command deletes your working files during checkin,
you may want to use either the —| option or the —u option to preserve your
working files by performing an implicit checkout operation. This is desirable
if you want to save the current revisions and continue editing.

Working with Multiple Versions of Files

Section 6.3 provides an overview of branching concepts in a version control
system. The following discussion provides specific examples that illustrate
how RCS handles branching of multiple files.

RCS arrangesfile revisions in atree of deltas. Each filein arevision tree
contains the following kinds of information: a revision number, a checkin
time and date, the author’ s identification, alog entry, a state, and the actual
text. All of these file attributes are determined at the time the revision is
checked in to the library. The *‘state’’ attribute indicates the status of the
revision, which is set to *‘experimental’’ during checkin, but which can be
later changed to ‘‘stable’’ or *‘released.”

Revision Control: Managing Source Files with RCS or SCCS 6-13

The ci command creates a revision tree with a root revision that is usually
numbered 1.1. Unless you specify arevision number explicitly, ci assigns
new revision numbers by incrementing the level number of the previous
revision (1.2, 1.3, 1.4, and so on). To begin a new release, use the following
command:

%ci -r2.1 unstanp

or
% ci -r2 unstanp

This action assigns the number 2.1 to the new revision. Checking in the file
to the library without the - r option automatically assigns the numbers 2.2,
2.3, and so on, to the later revisions of the file.

Suppose two development teams begin development on separate rel eases of
the unst anp command, beginning from revision number 1.2. At this point,
both teams can check out the latest revision by using the co command with
the- 1 option as follows:

% co -1 unstanp

After editing the file, the first team can check in the file by using the ci
command, and will be aerted by RCS that the new revision number is 1.3.
For example:

% ci unstanp

RCS/ unstanp,v <---- unstanp

new revision 1.3; previous revision 1.2
enter | og message:

(termnate with a “D or single '.")
>> Changed defaul ts check.

>>"D

done

However, if the second team tries to check in the file with the same action,
RCS will issue the following message:

RCS/ unst amp, v <----- unst anp

ci error: no lock set by user-name

At this point, the second team can create a branch by using the ci command
as follows:

%ci -rl.3.1 unstanp

This action results in a branch with revision number 1.3.1.1. To continue
development along this branch, the second team should use the current
branch revision number on all subsegquent checkouts of the file. For example:

6—14 Revision Control: Managing Source Files with RCS or SCCS

6.5.6

6.5.7

%co -rl1.3.1.1 unstanp

Creating new branches in RCS is accomplished through the use of the ci
command; to continue development along a particular branch, use the - r
option with the co command.

The preceding discussion describes how RCS handles revisions of individual
files; the system also lets you work with groups (or sets) of files that you
specify. See Section 6.5.8 for more information on working with file
configurations in RCS.

Displaying Differences in RCS Files

Y ou can examine an RCS-file for differences between versions with the
rcsdi ff command.

Ther csdi f f command runsdi f f to compare two revisions of each RCS-
file given. For example, to find the differences between the latest version of
theat t r file (1.8, being edited to become 1.9) and the immediately
preceding version (1.7), you would use the following command:

%rcesdiff -rl1.7 attr

RCS file: RCS/attr,v

retrieving revision 1.7

diff -r1.7 attr

31d30

< # and is version linked to the docbld comuand

To check the differences between versions 1.3 and 1.4 of theat t r file, you
would use the following command:

%rcesdiff -r1.3 -rl1.4 attr

RCS file: RCS/attr,v
retrieving revision 1.3
retrieving revision 1.4
diff -r1.3 -rl.4

5a6

< uts=-04

> uts=-05

Reporting Revision Histories of RCS Files

Use the r | og command to examine the revision history of afile. For
example, the r | og command provides you with the following detailed
information:

Revision Control: Managing Source Files with RCS or SCCS 6-15

% rlog unstanp

RCS file: RCS/ unstanp,v; Working file: unst anmp
head: 1.2

br anch:

| ocks: ;. strict

access list:

synbol i ¢ nanes

comment | eader: "# "

total revisions: 2; sel ected revisions: 2
descri ption:

unstanp source file

revision 1.2

date: 92/06/09 15:51:16; author:gunther; state:Exp
added/ del

Fi xed copyright notice

revision 1.1
date: 92/06/09 15:49:16; author:gunther; state: Exp
Initial revision

i nes

Note the type and amount of information that is available to you using the
r1 og command. RCS prints the following information for each RCSHile:

* RCSHile name

* Working file name

* Head (the number of the latest revision on the trunk)
» Default branch

* Accesslist

* Lockson thefile

» Symbolic names (if any)

» Suffix

» Total number of revisions

» Number of revisions selected for printing
» Descriptive text

This information is followed by entries for the selected revisions in reverse
chronological order for each branch. If entered without specifying options,
r1 og prints complete information for the file you select. Seether| og(1)
reference page for more information on using options to restrict the output of

ther | og command.

6—16 Revision Control: Managing Source Files with RCS or SCCS

6.5.8 Configuration Control Concepts

A configuration in RCS refersto a group or set of file revisions, in which
each revision comes from a different file revision group. File revisions can
be selected (checked out) according to certain criteria. Y ou can check out
sets of files from an RCS library based on the following selection criteria:

Default selection

Y ou can choose the latest revision of al files by default. For example,
the following command retrieves the latest revision on the default branch
of each RCSHile in the library:

%co *,Vv

Release-based selection

Y ou can also specify arelease or branch number to select the latest
revision in that release or branch. For example, the following command
retrieves the latest revision with release number 2 from each RCSHile:

%co -r2 *,v

State and author-based selection

You can select files according to state attributes. For example, suppose
you want to retrieve the latest revision with release number 2 whose state
attribute is *‘Released.”” This can be accomplished by issuing the
following command:

% co -r2 -sRel eased *,v

You can also select arevision by author, by using the - w option.
Date-based selection

You can also select revisions by date. Suppose a release of an entire
system was completed and current as of June 15, at 2:00 p.m. The
following command checks out all files of that release, with the - d
option specifying the cutoff date as June 15:

% co -d "June 15,2: 00 pnt *,v

Name-based selection (using symbolic names)

Y ou can assign symbolic names to revisions and branches. In large
systems and development efforts, a single release number or date may not
be sufficient to collect all the appropriate revisions from all groups.

For example, suppose you need to combine release 2 of one subsystem
with release 10 of another. Most likely, the creation dates of these
revisions will be different, so passing a single revision number or date to
the co command will not be appropriate in this case. Using symbalic

Revision Control: Managing Source Files with RCS or SCCS 6-17

revision names can help solve this problem; each RCSHile can contain a
set of symbolic names that are mapped to the numeric revision numbers.

For instance, suppose you set the symbolic name IFT2 to release number
2in thefileattr, v andto revision number 10.2 in unst anp, v. In
this case, asingle co command retrieves the latest revision of release 2
fromattr, v and revision 10.2 from unst anp, v as follows:

%co -rlFT2 attr,v unstamp,v

You can usether csfreeze command to assign a symbolic revision
name to a set of RCS-files that form a configuration. To assign a unique
symbolic revision name to the most recent revision of each RCS-file of
the main trunk, use ther csf r eeze command each time a new version
is checked in. For more information on assigning symbolic names to
RCSHiles, refer to the r csf r eeze(1) reference page.

For large software development efforts, the ability to retrieve all revisions
with one command makes configuration management an organized and
efficient task.

6.6 Using SCCS

The SCCS system is composed of severa independent commands, each of
which can be used independently. The sccs command is a unified interface
that simplifies the usage of the most common SCCS commands and provides
several additional functions by combining the operations of multiple
commands. It does not support al of the functions of the individual
commands.

Each form of the sccs command includes the keyword sccs and the name
of one function, such as edi t , followed by options and the names of the file
or files to be manipulated. Table 6-4 lists the sccs commands. The
sections following the table provide more information on some of these
commands. In these discussions, command options are omitted except where
required. Commands that are also individual low level commands are
indicated in the table. The complete list of individual commands is
summarized in Table 6-9; for detailed information on their use, along with
descriptions of their options, refer to their individual reference pages.

Table 6-4: Summary of sccs Command Functions

Command Low

Name Level Description
adni n Yes Creates an s-file or changes some characteristic of an existing
sile.

6—18 Revision Control: Managing Source Files with RCS or SCCS

Table 6-4: (continued)

Command Low

Name Level Description

check No Reports on files being edited and the names of the users
editing them. Differsfrom i nf o in that check returnsa
meaningful exit status and displays no report if no files are
being edited.

cl ean No Removes from your directory al files that can be regenerated
from the named sile.

Create No Creates an s-file without removing the g-file.

del edi t No Performsadel t a operation followed by an edi t operation
on the same file.

del get No Performsadel t a operation followed by aget operation on
the samefile.

delta Yes Checks an edited g-file back into the library, recording the
changes made and their history. Removes the p-file.

diffs No Compares a g-file that is checked out for editing with an
earlier version reconstructed from the s-file.

edit No Checks out an s-file for editing; regenerates the g-file and
placesit in your directory. Creates a p-file.

fix No Removes the most recent delta and presents the g-file for
reediting. Same as entering r ndel followed by edi t .

get Yes Regenerates a g-file, usually but not always for a purpose

other than editing. (Thesccs edi t command, which
duplicates the function of sccs get —e, isthe usual way to
regenerate a g-file for editing.)

hel p Yes Given acommand name or an SCCS message number,
displays information about that item. (The individual
command's form issccshel p.) Each SCCS message has
an identification code; for example, the ‘‘'no ID keywords'”’
message’'s codeiscn¥. Thesccs hel p cni command
displays a description of this error. Thesccshel p del ta
command returns a syntax diagram for the del t a command.

info No Reports on files being edited and the names of the users
editing them.
print No Displays the revision histories of the named file or files, then

displays the SCCS file, with ID information added to the
beginning of each line.

prs Yes Displays the revision histories of the named file or files.
prt No Sameasprs.

Revision Control: Managing Source Files with RCS or SCCS 6-19

6.6.1

Table 6-4: (continued)

Command Low

Name Level Description
r mrdel Yes Removes the most recent delta from the specified branch of a
named sfile.

scecsdi ff Yes Compares two versions of the s-file. Requires explicit
specification of the s-file name.

tell No Reports on files being edited. Differs fromi nf o in that only
file names are reported.
unedi t No Aborts editing of a g-file. Deletes the p-file, releasing the s-

file so that other users can check it out. If the g-fileis
present in your working directory, sccs unedi t removes it
and performs aget command on the s-filg; if no g-fileis
present, no get command is executed. (Equivalent to the
unget command.)

what Yes Searchesafile for an SCCS ID pattern and displays the text
that follows it.

Placing New Files in an SCCS Library

You can usethe sccs cr eat e command to place new filesin alibrary.
The following example assumes that you are in the library’s parent directory
and want to add the at t r file to the library:

% sccs create attr

attr:

1.1
141 lines

Do not include the prefix s. in the file name you specify; SCCS applies it
automatically.

You can enter a series of filesin a single operation. For example:
% sccs create attr docbld dcb.ch-intro

After creating the s-filein the library, the sccs cr eat e command adds a
comma as a prefix to the name of the original file; for example, at t r
becomes, att r. This action preserves the original g-file with its keywords
(if any) unexpanded. Then SCCS fetches a copy of the file by using a get
command,; this fetched version is ready for distribution.

You can also insert files in the library with the sccs adm n —i command,
using the following syntax:

sccs admin —i[path/] input-file [path/] s-filename

6—20 Revision Control: Managing Source Files with RCS or SCCS

6.6.2

For example:
% sccs admin -iunstanp unstanp

The name pat h/ i nput - fi | e specifiesthe input file. Regardless of the
name of this file, the s-file will be named s. s-fi | enane. Do not include
any white space between the —i option and pat h/ i nput - fi | e. Do not
include the prefix s. ins-fil ename; SCCS applies it automatically.
Using the adm n —i command avoids the renaming of the origina g-file and
the fetching of a version with expanded keywords. See Section 6.6.8 for
more information on using the adm n command.

You can use the admni n —i option to enter several files with a short shell
script; the following command-line example is implemented in csh:
% foreach x (attr dochld dch.ch-intro)

? sccs admin -i$x $x
? end

Recording File-ldentification Information with SCCS

The SCCS system provides a syntax for including ID keywords in source
files to provide file-identification information. An ID keyword consists of a
single letter enclosed within percent signs (%9. When you retrieve afile for
any purpose other than editing, SCCS expands each ID keyword by replacing
it with the appropriate information, such as the SID or the file name. Table
6-5 lists the SCCS ID keywords.

Table 6-5: SCCS ID Keywords

Keyword Description

9B% The branch number of aretrieved g-file

%% The current line number in the file, intended to identify messages
output by a program

%% The retrieval date of a g-file retrieved by aget command in the
form yyl nmi dd

%EY The creation date of a delta, in the form yy/ nmi dd

%% The file name of the s-file

% The creation date of a delta, in the form nmi dd/ yy

%1% The retrieval date of a g-file retrieved by aget command, in the
form nmi ddl yy

% % The highest SID applied to the file retrieved

% % The level number of aretrieved g-file

%o The current module (file) name; for example, pr og. ¢

Revision Control: Managing Source Files with RCS or SCCS 6-21

6.6.3

Table 6-5: (continued)

Keyword Description

%% The full pathname of the s-file

%P0 The value of the g flag in the s-file

9% The release number of aretrieved g-file

%5% The sequence number of aretrieved g-file

%% The retrieval time of a g-file retrieved by aget command, in the
form hh: nm ss

%% The creation time of a delta, in the form hh: nm ss

W A shorthand for %Z%8W6 Tab 9% %

%r% A placeholder for the value of thet flag (set by the admi n
command); not meaningful to SCCS itself

%% A placeholder that expands to the string @ #) for the what

command to find

SCCS handles ID keywords anywhere in afile. The purpose of the SCCS
what command is to find and display expanded ID keywords in afile. The
what command searches for lines containing the string @ #) , which is
generated by the %&Z%keyword or the %4\¢6shorthand keyword, and displays
those lines. For example:

% what /usr/bin/attr

fusr/bin/attr:
attr 1.8 of 4/15/92

The line displayed in this example is part of a shell script and was coded as
follows:

SCCSI D %@Z%4W6 9% % of %%

If your file does not contain ID keywords, SCCS reports that fact when you
put the file in the library and when you retrieveit. You can set thefile'si
flag to specify that this condition will be afatal error. (See Section 6.6.8 for
a description of file flags.) The purpose of thei flag isto prevent adel t a
command from merging a g-file with expanded keywords (or with no
keywords) with the s-ile.

Getting Files from an SCCS Library

There are two reasons to get files from an SCCS library: for any use except
editing, such as distribution, or for editing.

6—22 Revision Control: Managing Source Files with RCS or SCCS

You can edit afile as part of the straight-line progress of its version history,
or you can create a branching tree. Section 6.6.5 describes how to create a
tree wherein multiple parallel versions are stored together in the same sfile.

6.6.3.1 Getting Files for Purposes Other Than Editing

For any use except editing, you get SCCS files with the sccs get
command. For example:

% cd /usr/projects/dcb_tools

% sccs get attr

1.8
126 |ines

This command creates a copy of the most recent version of the s-file with
SCCS keywords expanded (see Table 6-5) and placesit in your current
directory (/ usr/ proj ect s/ dcb_t ool s in thisexample). To get a copy
of any earlier version, use the —r S/ D option. For example, to retrieve
version 1.5 of afile that is now at version 1.8, you would use a command
like the following:

% cd /usr/projects/dcb_tools

% sccs get -rl.5 attr

1.5
128 lines

See Section 6.6.5 for information on managing more complex trees of SCCS
files.

You can use the —p option to retrieve afile and write it to standard output
instead of implicitly creating a g-file with the same name as the s-file. See
the get (1) reference page for more information.

6.6.3.2 Getting Files for Editing

To edit afile, check it out of the library with the sccs edi t command. For
example:

% sccs edit attr

1.8

new delta 1.9
126 lines

This command creates a copy of the most recent version of the s-file with
SCCS keywords unexpanded (see Table 6-5) and placesit in your directory
for editing. The command also creates a p-file identifying the person who
checked out the file for editing.

Revision Control: Managing Source Files with RCS or SCCS 6-23

Y ou can check on the status of files with the sccs i nf o command. For
example:

% sccs info
unstanp: is being edited: 1.4 1.5 gunther 92/09/07 10:42:19

You can also use the get —e command to retrieve afile for editing.

6.6.3.3 Managing Multiple Files and New Releases

6.6.4

You can retrieve a series of files with asingle get or edi t command. For
example:

% sccs get attr unstanp

SCCS/s. attr:
1.8
126 lines

SCCS/ s. unst anp:
1.2
55 |ines

If you specify the name SCCS instead of one or more file names, SCCS
retrieves every sfile in the library.

To create a new release of afile, you fetch it using the —r option to specify
the new release number inthe sccs edi t command. For example, the
following command initiates Release 2 of the docbl d file:

% sccs edit -r2 SCCS
SCCS/ s. docbhl d:

1.50

new delta 2.1

1042 Ilines

SCCS/ s. dcb_def aul ts:
1.50

new delta 2.1

63 |ines

SCCS/ s. dcb_di ag. sed:

1.50
new delta 2.1
188 | i nes

Checking Edited Files Back into an SCCS Library

To replace afile in the library you have edited, usethe sccs del t a
command. SCCS prompts you for a comment. For example:

6—24 Revision Control: Managing Source Files with RCS or SCCS

6.6.5

% sccs delta attr

Coments? (D to end)

Changed defaults check. Now |ooks only for "flc="
Ctrl/D

1.9

4 inserted

4 del et ed

124 unchanged

If you specify the name SCCS instead of one or more file names, SCCS
performsadel t a on every sfilein the library. Coupled with asimilar

edi t command, this function is useful for sets of files that must be kept in
version synchronization even when not all of them are edited. SCCS asks for
comments only once and applies the same comment to each file.

Thesccs del get andsccs del edi t commands perfform adel t a
followed by aget or an edi t operation respectively.

Working with Multiple Versions of Files

Section 6.3 provides an overview of branching concepts in a version control
system. The following section provides specific examples that illustrate how
SCCS handles branching of multiple versions of files.

Suppose two development teams begin development on separate versions of
the unst anp file, beginning from SID 1.2. To enable branching, run the
sccs adm n —f b command as follows:

% sccs adnmin -fb unstanp

The first team uses an edi t command to create version 1.3 as follows:

% sccs edit unstanp
1.2

new delta 1.3

55 lines

The second team uses an edi t —b command to create a branch as follows:

% sccs edit -b unstanp
1.2

new delta 1.2.1.1

55 |lines

Revision Control: Managing Source Files with RCS or SCCS 6-25

6.6.6

Consider now atree for the unst anp file with a main trunk and branches
numbered 1.2.1, 1.2.2, and 1.3.1. To get the latest version from branch 1.2.2
for distribution, you would use the following command:

% sccs get -rl.2.2 unstanp

1.2.2.1
55 lines

As an SCCS tree becomes more complex, ensuring that you have the latest
deltafor editing can become cumbersome because you must know the delta
you want to retrieve. Y ou can use the—t option to thesccs get and
sccs edi t commands to specify the absolute latest delta regardless of its
SID.

Y ou can merge a branched SCCS file back into the main trunk by using the
sccs edit —i command and by specifying the version or versions you
want to merge. For example, the following command creates version 1.5 of
the unst anp command, including al the deltas in the range from 1.2.1.1 to
1.2.1.3. The deltas are correlated so that the result is the accumulation of all
specified changes.
% sccs edit -i1.2.1.1-1.2.1.3 unstanp
I ncl uded:
1.2.1.1

.2.1.2
.2.1.3
4
ew delta 1.5

1
1
1
n
55 lines

Displaying Differences in SCCS Files

Y ou can examine an SCCS file for differences between versions with either
thesccs di f fs command or the sccsdi f f command, depending on
what forms of the file are available.

Thesccs di f f s command compares the g-file with the specified version of
the sfile. For example, to find the differences between the latest version of
theat t r file (1.8, being edited to become 1.9) and the immediately
preceding version (1.7) you would use the following command:

% sccs diffs -rl1.7 attr

< # and is version-linked to the docbld command

To check the differences between versions 1.3 and 1.4 of theat t r file, you
would use the following command:

6—26 Revision Control: Managing Source Files with RCS or SCCS

6.6.7

6.6.8

% sccs scesdiff -r1.3 -rl1.4 SCCS/s.attr
< uts=-04

> uts=-05

As this example shows, you can enter a pathname for the s-file itself.
Because of this design, you can use this command from any directory instead
of having to change to the directory containing the SCCS library.

Reporting Revision Histories of SCCS Files

Usethesccs prs command to examine the revision history of afile. For
example:

% sccs prs unstanp
SCCS/ s. unst anp:

D 1.2 92/09/20 11:23:36 gunther 2 1 00000/ 00006/ 00055 1
MRs: 2

COVMENTS:

Fi xed copyright notice

D 1.1 92/09/19 09:39: 11 gunther 1 0 00061/ 00000/ 00000
MRs:

COVMENTS:

date and tine created 92/09/19 09:39: 11 by gunther

The D, MRs, and COMMVENTS keywords indicated by callouts in this display
are part of the complete set of SCCS keywords. Usethesccs hel p
command to display alist of the keywords and their meanings.

1 The D keyword marks delta information. The two numbers after
gunt her (the programmer’s user name) indicate the new and old
revision levels. The slash-separated numbers indicate the numbers of
lines added, deleted, and |eft unchanged.

2 The keyword MRs lists major revisions; the major revision is the first
element of afile’'s SID.

Usethesccs get —mcommand to retrieve a copy of the file with SID
numbers added as a prefix to each line. A file retrieved in this way shows
you what delta produced every line in the retrieved version. Keep in mind
that a given delta can be overlaid by later deltas; you might need to use the
—r option to find particular changes.

Performing Administrative Functions

The sccs adm n command performs several administrative functions.
Each function is specified by an option to the admi n command, as described
in Table 6-6.

Revision Control: Managing Source Files with RCS or SCCS 6-27

Note

Y our system administrator can set permissions so that only the
administrator can use the adm n command.

Table 6-6: SCCS admin Command Options

Option

—auser s-file

—-dflag s-file
—euser s-file

—fflag s-file
-hs-file

—iinput-file s-file

-mVR-1ist s-file

-ns-file
—-rSID s-file
—tfile s-file

Description

Adds the specified user to the list of users allowed to
make changes to the named s-file. The user name
can be agroup ID; al usersin that group are added.

Turns off (deletes) the named flag in the sfile.

Removes the specified user from the list of users
allowed to make changes to the named s-file. The
user name can be a group ID; all usersin that group
are removed.

Turns on the named flag in the sfile.

Checks the structure of the named s-file and
compares a newly computed checksum with the
checksum that is stored in the sfile. This option
helps you detect both accidental damage and damage
caused by modifying SCCS files directly with non-
SCCS commands.

Creates SCCS/ s. s-file,usinginput-fileas
theinitial contents. Differsfrom sccs creat e in

that adm n —i does not rename the g-file or fetch a
copy of the sfile; the g-file is left untouched in your
directory.

Specifies alist of Modification Request (MR)
numbers to be inserted into the SCCS file as the
reason for creating the initial delta.

Creates an empty s-ile.

Specifies the initial SID when creating an s-ile.

Adds the contents of fi | e to the sfile, flagging it
as added text. If fil e is omitted, any such added
text is deleted. Useful for including documentation
to ensure its distribution with the sfile.

6—28 Revision Control: Managing Source Files with RCS or SCCS

Table 6-6: (continued)

Option

Description

—-y"conmment" s-file Inserts the comment text in the initial deltain a

-z s-file

manner identical to the workings of thedel t a
command. The default comment, if the —y option is
not used, is a line giving the date and time of the
file's creation and the name of the user who created
it.

Recomputes the s-file's checksum in case the file has
been corrupted.

Caution

Using theval and adm n -z commands to repair damaged s
filesis risky and should be left to your system administrator or
to a designated SCCS librarian.

The flags for the adm n —f and admi n —d options are described in Table

6-7.

Table 6-7: Flags for the admin Command

Flag
b

cSID
dSI D

fSID

j

|siO,sSiD.]

Description

Allows branches to be made using the —b flag to the edi t
command.

Specifies SI D as the highest delta that aget —e command can
use.

Specifies the default SID to be used on aget or edi t
command.

Specifies SI D as the lowest delta that aget —e command can
use.

Causes the “‘no Id keywords’ error message to be a fata error
rather than a warning.

Permits editing of the s-file by more than one person
concurrently.

Locks the specified S/ Ds from being retrieved for editing. You
can lock all deltas with the —f | a flag, and you can unlock
specific deltas with the —d flag.

Revision Control: Managing Source Files with RCS or SCCS 6-29

6.6.9

Table 6-7: (continued)

Flag Description

mane Substitutes nane for all occurrences of the %vWokeyword when
keywords are expanded by aget command. The default name is
the s-file's name without the s prefix.

n Causes the del t a command to create a null deltain any releases
that are skipped when a deltais made in anew release. For
example, if you make delta 5.1 after delta 2.7, releases 3 and 4
will be null. The resulting null deltas can serve as points from
which to build branch deltas. Without this flag, skipped releases
do not appear in the sfile.

q“text"” Substitutes t ext for al occurrences of the %§0keyword when
keywords are expanded by aget command.
ttype Substitutes t ype for al occurrences of the %r%keyword when

keywords are expanded by aget command.

V[progranm Makes delta prompt for Modification Request (MR) numbers as
the reason for creating a delta. The name pr ogr amspecifies the
name of an MR number validity-checking program. (See the
del t a(1) reference page.)

For example, the following command uses the contents of an existing text
file to create an s-file beginning at SID 2.1 and identified with a comment.
The sfile'si flagisset. The command places the resulting s-file in the
SCCS library under the user’s working directory.

% sccs admin -iunstamp -fi -r2 -y"Initial release" unstamp

This example does not destroy the original file.

Using SCCS Options

The sccs command supports the options listed in Table 6-8. These options
must include the SCCS function command keyword as shown in the
examplesin the table. Do not include any space between the options and
their arguments.

6—30 Revision Control: Managing Source Files with RCS or SCCS

Table 6-8: SCCS Command Options

Option Description

—ddi r nane Specifies a directory to use as the SCCS library’s parent. Allows
access to SCCS libraries without requiring that your working
directory be the parent. For example:

% pwd
[usr/ users/ gunt her
% sccs -d/usr/src/dcb_tools get attr

1.8
126 lines
—ppat h Adds pat h to the final element of the pathname for the file you

specify. By default, SCCS adds SCCS so that the path specified
in the —d example resolves to

/usr/src/dcb _tools/SCCS/s.attr. If your SCCS
library is not named SCCS, use the —d option to modify this
component of the path.

—r Runs with the real user’s UID instead of changing to the sccs
UID. For security purposes, SCCS normally sets the ownership
of filesin an SCCS library so that they belong to the sccs UID.
This option is useful if you are using SCCS to manage alibrary
for yourself only; you can create the SCCS directory with normal
permissions, and the —r option will cause SCCS to manipulate
files therein using your own UID.

6.6.10 Summary of Individual SCCS Commands

Table 6-9 provides a brief description of the individual SCCS commands.
Some of these commands are not supported by the sccs command. Refer to
the appropriate command’ s reference page for more detailed information.

Table 6-9: Individual SCCS Commands

Supported
Command by sccs Description
Command
adni n Yes Creates an s-file or changes some characteristic of an
existing sile.
cdc No Changes the comments associated with a delta.

Revision Control: Managing Source Files with RCS or SCCS 6-31

Table 6-9: (continued)

Supported
Command by sccs Description
Command
conb No Combines two or more consecutive deltas of an s-

fileinto a single delta. Combining deltas can reduce
storage requirements.

delta Yes Checks an edited g-file back into the library,
recording the changes made and their history.
Removes the p-file.

get Yes Gets a specified version of an s-file. Use this
command to get a copy of afile to edit or compile.
For editing, use the get —e command, which
checks out an s-file for editing, regenerates the g-file
and placesit in your directory, and creates a p-file.

prs Yes Displays the revision histories of the named s-ile or
siles.

r mrdel Yes Removes the most recent delta from the specified
branch of a named s-ile.

scecsdi ff Yes Compares two versions of the s-file. Requires
explicit specification of the s-file name.

sccshel p No Provides an explanation of a diagnostic message or
of an SCCS command name.

unget No Removes the effect of a previous use of the get —e

command by deleting the p-file and replacing the g-
file with a copy having its ID keywords expanded.
(Equivalent to the sccs unedi t command.)

val No Computes a checksum on an s-ile to see if the result
matches the checksum stored in the file. Use this
command with the sccs admi n —z command to
detect and repair corrupted files.

what Yes Searches afile for an SCCS ID pattern and displays
the text that follows it. Use this command to find
identifying information describing the source
versions (kept under SCCS control) used to
construct a program.

6—32 Revision Control: Managing Source Files with RCS or SCCS

Caution

Using theval and admi n -z commands to repair damaged s-
files is risky and should be left to your system administrator or
to a designated SCCS librarian.

6.7 Functional Comparison of RCS and SCCS
Commands

Table 6-10 provides a brief comparison of the operations of RCS and SCCS
and the commands that are used to achieve similar functions. Refer to the
reference pages for detailed information on using the individual commands.

Table 6-10: Functional Comparison: RCS and SCCS Commands

RCS Command

Create a new file ci file
from your original.

SCCS Commands

sccs create file
sccs admn -isfile gfile
admin -ipath/sfile gfile

Tasks

Get acopy of afile co -u file

with expanded
keywords.

Get a copy of afile

with unexpanded
keywords.

Check out afile.

Check in an edited

file.

Show revision
histories
of afile.

Examine
differences
between file
revisions.

Merge file
revisions.

Find identifying
information.

co -l file
ci file
rlog file

rcsdiff -rrev
file

rcsmerge -rrevs
file

i dent

sccs get file
get file

sccs get -k file
get -k file

sccs edit file
get -e file

sccs delta file
delta file

sccs prs file
prs file

sccs diffs -rrev file
sccsdi ff -rrev-rrev file

sccs edit -irevs file

sccs what
what

Revision Control: Managing Source Files with RCS or SCCS 6-33

Table 6-10: (continued)

Tasks RCS Command SCCS Commands

Perform rcs adm n
administrative
tasks.

Clean up your rcscl ean sccs cl ean
directory.

(Remove

unchanged files.)

6—34 Revision Control: Managing Source Files with RCS or SCCS

Building Programs with the make
Utility 7

The make utility builds up-to-date versions of programs. It is most useful
for large programming projects in which multiple source files are combined
to form a single program or for building a set of programs that are part of a
single product or application.

The make command accepts options to control or modify how the building
process is performed. The make utility does not address the problem of
maintaining more than one version of the same source file.

By using the nake utility to maintain programs, you can do the following:
» Combine the instructions for creating a large program in a single file

» Define macros to use within the make description file

* Use shell commands

» Create or update libraries

* Include files from other programs

The Digital UNIX system provides several versions of the make command;
this chapter describes the default version, make(1). The other versions, both
of which offer features not provided by nake(1), are make(1u) and
make(1p). In addition to its extended feature set, the make(1p) version is
POSIX compliant.

The make(1) and make(1u) versions are included in the base operating
system subsets. The nake(1p) version isincluded in the ** Software
Development Environment (Software Development)’’ subset.

Refer to the respective reference pages for further information.

7.1 Operation of the make Utility

The make utility works by comparing the creation date of a program to be
built, called the target or target file, with the dates of the files that make it
up, called dependency files or dependents. If any of a given target’s
dependents are newer than the target, nake considers that the target is out of
date. In this case, make rebuilds the target by performing the necessary
compiling, linking, or other steps. Each dependent can also be a target; for
example, an executable program is made from object modules, which are in

turn made from source files. Dependents that are newer than the target are
called younger files.

The make utility uses the following sources of information:

* A description file that you create

* File names

» Time stamps of the files from the file system

* A set of rulesthat tell make how to build files

The make utility depends on files' time stamps. For make to work properly

on adistributed system, the date and time on all systems in the network must
be synchronized.

The make utility creates a target file using the following step-by-step
procedure:

1. Finds the name of the target file in the description file

2. Finds aline that describes the dependents of the target, called a
dependency line

3. Ensuresthat all the target’s dependency files exist and are up to date

4. Determines if the target is current with respect to its dependents

5. Creates the target by one of the following methods if the target or one of
the dependents is out of date:

» Executes commands from the description file
» Usesinternal rules to create the file (if they apply)
» Uses default rules from the description file

If al files described on the dependency line are up to date when make isrun,
make indicates that the target is up to date and then stops. If any dependents
are newer than their targets, make recreates only those targets that are out of
date. Any missing files are deemed to be out of date.

If agiven target has no dependents, it is aways out of date, and make
rebuilds it every time you run make. The make process works from the top
down in determining what targets need to be rebuilt and from the bottom up
in the actual rebuilding stage.

When the make utility runs commands to create a target, it replaces macros
with their values, echoes each command line to the standard output, and then
runs the command. (See Section 7.2.9 for information about macros.) The
make utility runs commands that it can execute directly, such asr mor cc,
without invoking a new shell. The utility invokes each command line that
includes shell functions, such as pipes or redirection, in a new shell.

7—-2 Building Programs with the make Utility

You start the make utility in the directory that contains the description file.
The syntax of the make command is as follows:

make [—f makefile] [options] [targets] [macro definitions]

The nmake utility examines the command line entries to determine what to
do. Firdt, it assigns values for the macro definitions on the command line
(entries containing equal signs), if there are any, and for the macro definitions
in the description file. If there is a definition on the command line for a
macro name that is also defined in the description file, make uses the
command line definition and ignores the definition in the description file.

Next, make looks at the options. Refer to the make(1) reference page for a
complete list of the options that make supports.

The nake utility interprets the remaining command line entries as the names
of targets. It processes the targets in left-to-right order. If there are no
targets on the command line, make processes the first target named in the
description file and then stops.

7.2 Description Files

The description file tells make how to build the target by defining what
dependencies are involved and what their relationships are to the other files
in the procedure. The description file contains the following information:

» Definitions of macros in the description file

» One or more target names

» Dependency file names that make up the target files

e Commands that create the target files from the dependents

* Any of the pseudotargets . DEFAULT, . | GNORE, . PRECI QUS,
. SI LENT, or . SUFFI XES

These identifiers are called pseudotargets because they are not real
targets. They are built-in names that make interprets in special ways.
For example, the . SI LENT pseudotarget instructs make not to echo
command lines as it runs them. Do not use any of these names for a real
target. Refer to the make(1) reference page for additional information on
pseudotargets.

The make utility determines what files to create to get an up-to-date copy of
the target by checking the dates of the dependency files. |f any dependency
file was changed more recently than the target, nake creates al the files that
are affected by the change, including the target. In most cases, the
description file is easy to write and does not change often.

Building Programs with the make Utility 7—3

7.2.1

71.2.2

The make utility normally looks for a description file named either

makef il e or Makefil e. If you name the description file makefi | e or
Makef i | e and are working in the directory containing that description file,
you enter the make command without any options or arguments to bring the
first target and its dependency files up to date, regardless of the number of
files that were changed since the last time make created the target file. You
can override the default file name by using the —f option to the make utility
to specify the name of the desired description file, as in the following
example:

% make -f nmy_makefile

This option lets you keep several description files in the same directory.

Format of a Description File Entry
The general format of a description file entry is as follows:

targetl| target2...] :[:] [dependent...] [; commands] [# comment...]

The items inside brackets are optional. Targets and dependents are file
names (strings of letters, numbers, periods, and slashes). The nake
command recognizes wildcard characters, such as asterisks (*) and question
marks (?). Eachline in the description file that contains atarget name is
called a dependency line. The dependency line is followed by one or more
command lines that specify the process steps to create the target.

Because make uses the dollar sign ($) to designate a macro, you must not
use this character in file names of targets and dependencies. Similarly, do
not use the dollar sign in commands in the description file unless you are
referring to a defined make macro. (Macros are described in Section 7.2.9,
Section 7.2.10, and Section 7.2.12.)

To place comments in the description file, use a number sign (#) to begin the
comment text. The make utility ignores the number sign and all characters
on the same line after the number sign. The make utility also ignores blank
lines.

You can enter lines that are longer than the line width of the input device by
putting a backslash (\) at the end of the line that is to be continued. Do not
extend comment lines in this way; begin each new comment line with its
own number sign.

Using Commands in a Description File

A command is any string of characters, except a number sign or a newline
character. Commands can appear after a semicolon (;) on a dependency line
or on lines immediately following a dependency line. Each command line
after the dependency line must begin with a single tab character.

7—4 Building Programs with the make Utility

When you define command sequences for the targets in the description file,
either specify one command sequence for each target or specify separate
command sequences for specia sets of dependencies.

To use one command sequence for every use of the target, use a single colon
(:) following the target name on the dependency line. For example, the
following lines define atarget, t est , with a set of dependency files and a set
of commands to create the target:

test: dependency listl...
command list...

test: dependency list2...

As shown here, atarget name can appear in several placesin the description
file with different dependency lists, but there can be only one command list
associated with the target name. The make utility finds all the dependency
lines for a given target and concatenates all their dependency lists into a
single list. When any of the dependents have been changed, make can run
the commands in the one command list to create the target.

To specify more than one set of commands to create a particular target file,
enter more than one dependency definition. Each dependency line must have
the target name followed by two colons (: :), a dependency list, and a
command list that nake usesif any of the files in the dependency list
changes. For example, the following lines define two separate processes to
create the target file t est :

test:: dependency listl...
conmand listl...

test:: dependency list2...
command |ist2...

If any of thefilesin dependency | i st 1 changes, make runs command
I'istl;if any of thefilesin dependency | i st 2 changes, make runs
command | i st 2. To avoid conflicts, a given dependency file cannot appear
in both dependency | i st 1 and dependency | i st 2.

Note

Because make runs the commands on each command line
independently of preceding or subsequent command lines, be
careful when using certain commands (for example, cd). In the
following example, the cd command has no effect on the cc
command that follows it:

Building Programs with the make Utility 7-5

test: test.o
cd /u/tonl new est
cc main.o subs.o -0 test

To make the cd command affect the cc command, place both
commands on the same line, separated by a semicolon. For
example:

test: test.o
cd /u/tonfnewtest; cc nmain.o subs.o -0 test

Y ou can simulate a multiline shell script by using backslashes on
continued lines:
test: test.o

cd /u/tom newtest; \
cc main.o subs.o -0 test

This example works exactly the same as the one immediately
beforeit. Each line continued with a backslash (the cd linein
this example) must have a semicolon before the backslash.

7.2.3 Preventing the make Utility from Echoing Commands

To prevent make from echoing the commands that it is executing to standard
output, use any one of the following procedures:

71.2.4

Use the - s flag on the command line when you enter the make
command.

Put the pseudotarget name . SI LENT: on aline by itself in the
description file. See Section 7.2 for an explanation of pseudotargets.

Put an at sign (@) in the first character position (after the tab) of each
command line in the description file that make should not echo.

Preventing the make Utility from Stopping on Errors

The make utility usually stops if any command returns a nonzero status code
to indicate an error.

To prevent make from stopping on errors, use any of the following
procedures:

Usethe-i flag on the command line when you enter the make
command.

Put the pseudotarget name . | GNORE: on a line by itself in the
description file. See Section 7.2 for an explanation of pseudotargets.

7—6 Building Programs with the make Utility

7.2.5

7.2.6

71.2.7

* Put ahyphen (-) in the first character position (after the tab) of each
command line in the description file where make should not stop on
errors.

Defining Default Conditions

When make creates a target but cannot find either explicit command lines or
internal rules to create the file, it looks at the description file for default
conditions. To define the commands that nake performsin this case, use
the. DEFAULT: pseudotarget name in the description file, entering the
default command sequence as for any other target.

Usethe. DEFAULT: pseudotarget for an error recovery routine or for a
general procedure to create al files in the program that are not defined by an
internal rule of the make utility.

Preventing make from Deleting Files

To prevent completion of a build using potentially corrupted target files,
make usually removes target files if an error is returned during the build. To
prevent make from removing files when an error is detected, use the

. PRECI OUS: pseudotarget in the description file. After the pseudotarget
name, list the target names to be saved. If you specify the - u option on the
command line, make does not remove any RCS files it checked out. See the
make(1) reference page for more information on how nmake interacts with
RCS.

Simple Description File

In Example 7-1, a program named pr og is made by compiling and loading
three C languagefiles: x. c,y.c,andz. c. Thefilesx. c andy. c share
some declarationsin afile named def s. The z. c file does not share those
declarations.

Example 7-1: A Simple Description File

Make prog from 3 object files

prog: X.0Yy.0 z.0

Use the cc programto make prog
CC X.0Y.0 z.0 -0 prog

Make x.o0 from2 other files

X. 0: X.c defs

Use the cc programto make x.o0
cCC -C X.C

Make y.o from2 other files
y.o: y.c defs

Building Programs with the make Utility 7—7

Example 7-1: (continued)

Use the cc programto make y.o
cc -cy.c

Make z.0 fromz.c

z.0: z.c

Use the cc programto make z.o0
cc -c z.c

If thisfileis called makefi | e, you can enter the make command with no
options or arguments to make an up-to-date copy of pr og after making
changes to any of the four source filesx. ¢, y. ¢, z. c, or def s.

7.2.8 Making the Description File Simpler

To make the description file ssimpler, use the internal rules of the make
utility. Using file system naming conventions, make knows that there are
three . ¢ files corresponding to the needed . o files. It aso knows how to
generate an object from a source file (that is, issueacc - ¢ command). By
taking advantage of these internal rules, the description file becomes the
following:
Make prog from3 object files
prog: X.0Yy.0 z.0
Use the cc programto nmake prog

CC X.0Y.0 zZ.0 -0 prog

Use the file defs and the appropriate .c file
when nmaking x.o0 and y.o
X.0 Yy.O0: defs

Section 7.2.14 describes the internal rules used by make.

7.2.9 Defining Macros

A macro is aname to use in place of one or more other names. Itisa
shorthand way of using the longer string of characters. Y ou can define
macros in the description file or on the command line. To define amacroin
the description file, do the following:

1. Start anew line with the name of the macro.

2. Follow the name with an equal sign (=).

3. Totheright of the equal sign, enter the string of characters that the macro
name represents. The string can contain blanks.

The macro definition can contain blanks before and after the equal sign

without affecting the result. The macro definition cannot contain a colon (:)
or atab before the equal sign. The make utility ignores leading and trailing
blanks in the defining string. The following examples are macro definitions:

7-8 Building Programs with the make Utility

Macro ABC has a value of "Is -la"
ABC =1s -la

Macro LIBES has a null val ue
LI BES =

Macro DI RECT includes the definition of nacro ROOT
The expanded val ue of DI RECT is "/usr/hone/fred"
ROOT [usr/ hone

DI RECT = $(ROOT)/fred

The DI RECT macro in this example use another definition as part of its own
definition. See Section 7.2.10 for instructions on using macros.

To define a macro on a command line, follow the same syntax as for defining
macros in the description file, but include all of your macro definitions on the
same line. When you define a macro with blanks from the command line,
enclose the definition in quotation marks (" nane = definition").
Without the quotation marks, the shell interprets the blanks as parameter
separators and not as part of the macro.

7.2.10 Using Macros in a Description File

After you define a macro in a description file, refer to the macro’s value in
the description file by putting a dollar sign ($) before the name of the macro.
If the macro name is longer than one character, put parentheses or braces
around it, asillustrated by the following examples:

$(CFLAGS)

${ xy}

$Z

$(2)

The effect of the last two examplesis identical.

7.2.10.1 Macro Substitution

Y ou can substitute a different value for part or al of a macro’s defined value.
The three forms of macro substitution are as follows:

» Thefirst form replaces every occurrence of st ri ngl in the defined
value of MACROwith st ri ng2:

$(MACRO: string1=string2)

Building Programs with the make Utility 7-9

For example:

Define macro MACL
MACL = XXX yyy zzz

éval uate MACL
proj ect:
@echo $(MACL: yyy=abc)

When you run nake with this description file, make substitutes abc for
the occurrence of yyy, and displays the following line:
Xxx abc zzz

» The second form applies a substitution to each word in the defined value.
The | ocat i on parameter specifies what portion of the word is to be
replaced with st ri ng:

$(MACRO!location/ string)

The | ocat i on parameter is restricted to the following values:
— Circumflex (*) - The st ri ng value is added as a prefix to each
defined word. For example:

Define macro MACL
MACL = abc def ghi

E.val uate MACL
proj ect:
@echo $(MACL/ " xyz)
When you run make with this description file, nake adds xyz to the
beginning of each defined word and displays the following line:

xyzabc xyzdef xyzghi

— Agterisk (*) —The st ri ng value replaces all of each defined word.
For example:

Define macro MACL
MAC1 = abc def ghi

Eval uate MACL
pr oj ect:
@echo $(MACL/ */ xyz)

When you run make with this description file, make substitutes xyz
for each defined word and displays the following line:

7-10 Building Programs with the make Utility

XYZ XyZ Xyz

With the asterisk, you can use an ampersand (&) inthe st ri ng
value. The ampersand represents the defined word that is being
substituted for, and it causes that word to be interpolated in the result.
For example:

Define macro MACL
MAC1 = abc def ghi

Eval uate MAC1
pr oj ect:

@echo $(MACL/ */ x&z)
When you run make with this description file, make substitutes x &z
for each defined word, interpolating the defined word for the
ampersand, and displays the following line:

xabcz xdefz xghiz

Dollar sign ($) - The st ri ng value is appended to each defined
word. For example:

Define macro MACL
MACL = abc def ghi

E.val uat e MACL
pr oj ect:
@echo $(MACL/ $/ xyz)

When you run make with this description file, make appends xyz to
the end of each defined word and displays the following line:

abcxyz def xyz ghi xyz

The third form makes one of two possible substitutions depending on
whether MACRO:is defined:

$(MACRO? string1: string2)

If MACROis defined, st ri ngl is substituted for the entire defined value.
If MACROis not defined, st ri ng2 isused. For example:

Define macro MACL
MACL = abc def ghi

Eval uate MACL and MAC2. MAC2 is not defined.
proj ect:

@ echo $(MACL?uvw. xyz)
@echo $(MAC2?123: 456)

Building Programs with the make Utility 7-11

When you run make with this description file, make substitutes uvw for
the value of MACL and 456 for the undefined MAC2, and displays the
following lines:

uvw
456

The first two forms of substitution produce a null string if MACROis
undefined.

7.2.10.2 Conditional Macros

The value of a macro can be assigned based on a preexisting condition. This
type of macro is a conditional macro. Y ou cannot define conditional macros
on the command line; al conditional macro definitions must be in the
description file. The syntax of the conditional macro is as follows:

target.= MACRO=string

The macro is assigned the value of the string if the specified target is the
current target of the make command. Otherwise, the macro’s value is null.
The following description file uses a conditional substitution for MACL:

Define the conditional macro MACL
target2: =MACL = XXX YYYy XXXYYyy

#l i.st targets and command |ines
#

target 1:; @cho $(MACL)

target 2:; @cho $(MVAC1)

When you run make with this description file, you get the following results:
% nmeke targetl

% make target2
XXX YYY XXXYYYy

7.2.11 Calling the make Utility from a Description File

You can nest calls to the make utility within anake description file by
including the $(MAKE) macro in one of the command lines in the file. If
this macro is present, nake executes another copy of nake, evenif the- n
option is set. See Section 7.2.16 for a description of the - n option.

7-12 Building Programs with the make Utility

7.2.12

Internal Macros

The make utility has built-in macro definitions for use in the description file.
These macros help specify variables in the description file. The make utility
replaces the macros with the values indicated in Table 7-1.

Table 7-1: Internal make Macros

Macro Value

$@ The name of the current target file

$$@ The target names on the dependency line

$? The names of the dependency files that have changed more recently
than the target

$< The name of the out-of-date file that caused a target file to be created

$* The name of the current dependency file without the suffix

Each of these macros resolves to a single file name at the time make is
actually using it. You can modify the interpretation of any of these macros
by using a D suffix to indicate that you want only the directory portion of the
name. For example, if the current target is/ u/ t oml bi n/ f r ed, the

$(@) macro returns only the / u/ t on1 bi n portion of the name.
Similarly, an F suffix returns only the file name portion. For example, the
$(@) macroreturnsf r ed if given the same target. All internal macros
except the $? macro can take the D or F suffix.

Before using any internal macros on a distributed file system, you must
ensure that the system clocks show the same date and time for all nodes that
contain files for make to process.

The make utility replaces these symbols only when it runs commands from
the description file to create the target file. The following sections explain
these macros in more detail.

7.2.12.1 Internal Target File Name Macro

The make utility substitutes the full name of the current target for every
occurrence of the $@macro in the command sequence for building the target.
The replacement is made before running the command. For example:

Building Programs with the make Utility 7-13

/fu/tom bin/test: test.o
cc test.o -0 $@

This example produces an executable file named / u/ t onf bi n/ t est .

7.2.12.2 Internal Label Name Macro

If the $$@macro is used on the right side of the colon on a dependency line
in adescription file, make replaces this symbol with the label name that is
on the left side of the colon in the dependency line. This name could be a
target name or the name of another macro. For example:

cat: $$@c
The make utility interprets this line as follows:
cat: cat.c

Use this macro to build a group of files, each of which has only one source
file. For example, to maintain a directory of system commands, use a
description file like the following:

Define macro CMDS as a series of command nanes
CMDS = cat dd echo date cc cnp commar |d chown

Each conmmand depends on a .c file
$(CVDS): $$@c

Create the new command set by conpiling the out of
date files ($?) to the current target file name ($@
cc -0%$? -0 $@

The make utility changes the $$(@) macro to the file part of $@when it
runs. For example, you could use this symbol when maintaining the

usr /i ncl ude directory while using a description file in another directory.
That description file would look like the following example:

Define directory nane macro | NCDI R
INCDIR = /usr/include

Define a group of files in the directory
with the nmacro name | NCLUDES
I NCLUDES = \
$(INCDIR)/stdio.h \
$(INCDIR)/ pwd. h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

Each file in the list depends on a file
of the sane nane in the current directory
$(| NCLUDES) : $$(@)

Copy the younger files fromthe current

directory to /usr/include
cp $? 3@

7-14 Building Programs with the make Utility

Set the target files to read only status
chnod 0444 $@

This description file creates afilein the/ usr /i ncl ude directory when the
corresponding file in the current directory has been changed.

7.2.12.3 Internal Younger Files Macro

If the $? macro is in the command sequence in the description file, make
replaces the symbol with alist of dependency files that have been changed
since the target file was last changed.

7.2.12.4 Internal First Out-of-Date File Macro

If the $< macro is in the command sequence in the description file, make
replaces the symbol with the name of the file that started the file creation.
The file name is the name of the specific dependency file that was out of date
with the target file and therefore caused nake to create the target file again.
The difference between this symbol and the $? symbol, which returns a
complete list of younger files.

The make utility replaces this symbol only when it runs commands from its
internal rules or from the . DEFAULT: list. The symbol has no effect in an
explicitly stated command line.

7.2.12.5 Internal Current File Name Prefix Macro

If the $* macro is in the command sequence in the description file, make
replaces the symbol with the file name part (without the suffix) of the
dependency file that make is currently using to generate the target file. For
example, if make is building the target t est . ¢, the $* symbol represents
the file namet est .

The make utility replaces this symbol only when it runs commands from its
internal rules or from the . DEFAULT: list. The symbol has no effect in an
explicitly stated command line.

7.2.13 How make Uses Environment Variables

Each time make runs, it reads the current environment variables and adds
them to its defined macros. In addition, it creates a new macro called
MAKEFLAGS. This macro is a collection of all the options that were entered
on the command line. Command line options and assignments in the
description file can also change the value of the MAKEFLAGS macro. When
make starts another process, it exports MAKEFLAGS to that process. See
Section 7.2.16 for a discussion of how the MAKEFLAGS macro affects
recursive make processes.

Building Programs with the make Utility 7-15

The make utility assigns macro definitions in the following order with later
steps overriding earlier ones where there are conflicts:

1. Readsthe MAKEFLAGS environment variable to set options specified by
the variable. If MAKEFLAGS is not present or is null, make setsits
internal MAKEFLAGS macro to the null string. Otherwise, make assumes
that each letter in MAKEFLAGS is an input option. The make utility uses
these options (except for —f , —p, and —r) to determine its operating
conditions.

2. Reads and sets the input flags from the command line. Any options
specified explicitly on the command line are added to the settings from
the MAKEFLAGS environment variable.

3. Reads macro definitions from the command line. These definitions
override any definitions for the same names in the description file.

4. Reads the internal macro definitions.

5. Reads the environment, including the MAKEFLAGS macro. The make
utility treats all environment variables as macro definitions and passes
them to shells it invokes to execute commands.

7.2.14 Internal Rules

The make utility has a set of internal rules that it uses to determine how to
build atarget. You can override these rules by invoking make with the - r
option; in this case, you must supply any rules that are required to build the
targets in your description file. The internal rules contain alist of file name
suffixes defined using the pseudotarget . SUFFI XES: , along with the rules
that tell make how to create a file with one suffix from a file with another
suffix. To see the complete list of conversions supported by nmake’sinterna
rules, run the following command:

% make -p | nore

If you do not change the list by default, nake understands the following

suffixes:

Suffix File Type

.0 Object file

.C C source file

. e ef | sourcefile

. r Ratfor source file

.f or .F FORTRAN source file
.S Assembler source file

7-16 Building Programs with the make Utility

Suffix File Type

Y yacc C source grammar

Lyr yacc Ratfor source grammar
.ye yacc efl source grammar
A | ex source grammar

. out Executable file

.p Pascal source file

. sh Bourne shell script

.csh C shell script

.h C header file

Y ou can add suffixes to this list by including a. SUFFI XES: linein the
description file with one or more space-separated suffixes. For example, the
following line adds the suffixes. f 77 and . ksh to the existing list. For
example:

. SUFFI XES: .f77 .ksh

To erase make’s default list of suffixes, include a. SUFFI XES: line with
no names on it. You can replace the default list with a completely new list
by using first an empty list and then your new list:

. SUFFI XES:

.SUFFI XES: .0 .c .p .sh .ksh .csh

Because make looks at the suffixes list in left-to-right order, the order of the
entries is important. The preceding example ensures that make will ook
first for an object file, then a C source file, and so on.

The make utility uses the first entry in the list that satisfies the following two
reguirements:

* The entry matches input and output suffix requirements.
* Theentry has arule assigned to it.

If you add suffixes to the list that make recognizes, you must provide rules
that describe how to build a target from its dependents. A rule looks like a
dependency line and the corresponding series of commands. The make
utility creates the name of the rule from the two suffixes of the files that the
rule defines. For example, the name of the rule to transform a. r fileto a
.o fileis. r.o. Example 7-2 illustrates a portion of the standard default
rulesfile.

Building Programs with the make Utility 7-17

Example 7-2: Default Rules File

Create a .o file froma .c
file with the cc program
.C.0

$(CC $(CFLAGS) -c $<

Create a .o file fromeither a
.e, a.r , or a.f
file with the efl conpiler
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

Create a .o file from

a .s file with the assenbl er
.S.0:

$(AS) -0 $@ $<

.y.o:
Use yacc to create an internediate file

$(YACC) $(YFLAGS) $<
Use cc conpiler

$(CO $(CFLAGS) -c y.tab.c
Erase the internediate file

rmy.tab.c
Move to target file

m y.tab.o $@

.y.c:
Use yacc to create an internediate file

$(YACO) $(YFLAGS) 3$<
Move to target file

m y.tab.c $@

7.2.14.1 Single Suffix Rules

The make utility also has a set of single suffix rules to create targets with no
suffixes, such as command files. The make utility has rules to change the
following source files with a suffix to object files without a suffix:

7-18 Building Programs with the make Utility

Suffix Source File Type

.C From a C language source file
. sh From a shell file

For example, to maintain a program like cat if al of the needed files arein
the current directory, enter the following command:

% make cat

7.2.14.2 Overriding Built-In make Macros

The make utility uses macro definitions in its internal rules. To change these
macro definitions, enter new definitions for those macros on the command
line or in the description file. For commands and language processors, the
make utility uses the following macro names:

Command or Function K:A(;rg]rrcr)]and grogltwgpl(\j/lgﬁggns
Archive program (ar) AR ARFLAGS
Archive table of contents creation RANLIB
Assembler AS ASFLAGS

C Compiler CcC CFLAGS

C libraries LOADLIBS
RCS checkout CO COFLAGS
The copy command (cp) CP CPFLAGS

ef | compiler EC EFLAGS
Linker command (I d) LD LDFLAGS
Thel ex command LEX LFLAGS

Thel i nt command LINT LINTFLAGS
The make command MAKE

Recursive make calling flags MAKEFLAGS
The mv command MV MVFLAGS
The pc command PC PFLAGS
Thef 77 compiler RC FFLAGS
Ratfor compiler flags RFLAGS

The r mcommand RM RMFLAGS
For locating files related to dependency VPATH

Building Programs with the make Utility 7-19

Command or Eunction Command Command Options

Macro or Other Macros
Theyacc command YACC YFLAGS
Theyacc -e command YACCE YFLAGS
Theyacc -r command YACCR YFLAGS

For example, the following command runs make, substituting the newcc
program in place of the previously defined C language compiler:

% make CC=newcc

Similarly, the following command tells make to optimize the final object
code produced by the C language compiler.

% make " CFLAGS=- O'

To look at the internal rules that make uses, enter the following command
from the Bourne shell:

$ make -fp -< /dev/null 2>/dev/null

The output appears on the standard output.

7.2.15 Including Other Files

You can include files in addition to the current description file by using the
word i ncl ude as the first word on any line in the description file. Follow
the word with a blank or a tab and then the set of file names for make to
include in the operation. For example:

i ncl ude fu/tom tenp /u/tom sanple

7.2.16 Testing Description Files

To test a description file, run make with the - n command option. This
option instructs make to echo command lines without executing them. Even
commands preceded by at signs (@) are echoed so that you can see the entire
process as make would execute it. When the - n option isin effect, the

$(MAKE) macro, unlike al other commands, is actually executed.

If the description file includes an instance of the $(MAKE) macro, make
cals the new copy of make with the MAKEFLAGS macro’s value set to the
list of options, including - n, that you entered on the command line. The
new copy of make observes that the - n option is set, and it bypasses

7—-20 Building Programs with the make Utility

command execution in the same way as the copy that called it. You can test
a set of description files that use recursive calls to nake by entering a single
make command.

7.2.17 Description File

Example 7-3 shows the description file that maintains the make utility. The
source code for make is contained in a number of C language source files
and ayacc grammar file. For more information on yacc, see Chapter 4.

Example 7-3: The makefile for the make Utility
Description file for the Make program

Macro def: send to be printed
P=1lpr

Macro def: source file names used
FILES = Makefile version.c defs nain.c

donane.c nmisc.c files.c
dosy.c gramy lex.c gcos.c

Macro def: object file nanes used
OBJECTS = version.o nain.o donane.o \
msc.o files.o dosys.o gramo

Macro def: lint program and flags
LINT =lint -p

Macro def: C conpiler flags
CFLAGS = -0

make depends on the files specified
in the OBJECTS macro definition
make: $(OBJECTS)
Build make with the cc program

cc $(CFLAGS) $(OBJIECTS) -0 nmke
Show the file sizes

si ze nake

The object files depend on a file
naned defs
$(OBIECTS): defs

The file gram o depends on lex.c
uses internal rules to build gramo
gramo: lex.c

Clean up the internediate files

cl ean:
rm*.o gramc

Building Programs with the make Utility 7-21

Example 7-3: (continued)

Copy the newy created program
to /usr/bin and del etes the program
fromthe current directory
install:
cp make /usr/bin/mke ; rm nake

Enpty file '’print’’ depends on the
files included in the macro FILES
print: $(FI LES)
Print the recently changed files

I pr $?
Change the date on the enpty file,
print, to show the date of the |ast
printing

touch print

Check the date of the old

file against the date

of the newy created file

test:
make -dp | grep -v TIME >1zap
/usr/bin/make -dp | grep -v TIME >2zap
diff 1zap 2zap
rmlzap 2zap

The program Ilint, depends on the

files that are listed

lint: dosys.c donane.c files.c main.c msc.c \
version.c gramc

Run lint on the files listed

LINT is an internal nacro
$(LINT) dosys. donane.c files.c main.c \
msc.c version.c gramc
rmgramc

Archive the files that build nmake

arch:
ar uv /sys/source/s2/ make.a $(FILES)

7-22 Building Programs with the make Utility

Glossary

This glossary defines terms used in this manual.

attribute-value pair
In a software kit's key file, aline specifying the name and value for a
single attribute of the kit. Controls how the kit is built by the ki t s
command and how it isinstaled by the set | d utility.

check in
In the Revision Control System (RCS), to store afile or revision in the
RCS library.

check out
In the Revision Control System (RCS), to retrieve afile or revision
from the RCS library.

collating symbol
In aregular expression, a name that defines a particular subset of the
available characters, such as lowercase characters, in a collating
sequence that uses multicharacter strings to represent single characters.

delta
In aRevision Control System (RCS) or Source Code Control System
(SCCYS) file, the set of changes that constitute a specific version of the
file.

dependency expression
In asubset’s subset control program (SCP), a Backus-Naur form
(postfix) logical expression consisting of subset identifiers and relational
operators to describe the current subset’s relationship to the named
subsets. See also subset dependency.

dependency file
See dependent.

dependency line
In the make utility, aline in the description file that describes the
dependents on which a given target depends.

dependent
Also called a dependency file. In the make utility, an entity on which
afile to be built (the target) depends. A sourcefile is a dependent of an
object module.

field
In awk, one element of an input record; fields are separated by a field
separator, which can be specified and is by default any amount of white
space. The beginning and end of the record are also field separators.
See record.

field variable
In awk, avariable that is afield of the input record; field variables can
be manipulated as any other variable.

g-file
In the Source Code Control System (SCCS), the file whose contents are
used to create the s-file or to apply a deltato it.

ID keyword
In the Source Code Control System (SCCS), a symbol composed of a
single letter enclosed by percent signs (%9. In the Revision Control
System (RCS), a symbol composed of a keyword name enclosed by
dollar signs ($). In expanded form, a keyword provides identification
information about the file, such as its date, version number, or name.

layered product
Inset | d and product kit development, an optional software product
designed to be installed as an added feature of the Digital UNIX system.

lexical analyzer
A program or program fragment for analyzing input and assigning
elements of it to categoriesto assist in parsing the input. See par ser.
The | ex program assists in the creation of lexical analyzers.

locking
In software installation by the set | d utility, the act of inserting a new
subset’s name in the lock file of an existing subset so that an attempt to
remove the latter subset will flag the user with a dependency warning.
In aversion control system, the creation and use of information flagging
aversion control file as being checked out for editing.

locking mechanism
In aversion control system, a way to prevent overlapping and
concurrent changes to afile. SCCS uses p-files to indicate which files
are currently out for editing; RCS creates locks by editing the RCS file
to insert lock information.

Glossary-2

macro definition
For the m} macro processor or the make utility, a statement creating a
macro name and defining the text and argument substitutions for which
the macro stands.

operator
In regular expressions, a character that is interpreted to mean something
other than its literal meaning. For example, a pair of brackets ([])
form an operator that enables a single-character match on any one of the
characters enclosed by the brackets.

p-file
In the Source Code Control System (SCCS), alock file whose presence
indicates that the s-file of the same name is currently being edited.

parser
A program or program fragment for interpreting input and determining
how to act upon it. Theyacc program assists in the creation of
parsers.

pattern space
In the sed editor, the range of lines currently being edited; the pattern
space is selected by an address or pair of addresses.

RCS file
In the Revision Control System (RCS), afile stored in the RCS library,
containing the text of the origina file and the list of deltas that have
been applied to it.

RCS library
In the Revision Control System (RCS), the directory in which RCSHiles
are stored.

record
In awk, the information between two consecutive occurrences of the
record separator, which can be specified and is by default a newline
character. For most purposes, a record can be thought of as aline from
the input file. The beginning and end of the file are also record
Separators.

sfile
In the Source Code Control System (SCCS), afile stored in the SCCS
library, containing the text of the original file and the list of deltas that
have been applied to it.

Glossary-3

SCCS library
In the Source Code Control System (SCCS), the directory in which
SCCS sHiles and p-files are stored.

script
In the sed editor, alist of editing commands to be applied to the input
file.

SID
In the Source Code Control System (SCCS), the numeric identification
applied to a particular delta.

source hierarchy
For building software kits, the directory tree and files that are to be
compiled by the ki t s command into subsets for akit.

subset
The smallest installable component of a software kit for the set | d
utility. Contains files of any type, usually interrelated in some way.

subset dependency
The condition in which a given subset requires the presence, or lack
thereof, of other subsets in order to function properly. Evaluated by a
subset’s SCP under control of the set | d utility. See also dependency
expression.

target
Also called atarget file. Inthe make utility, an entity to be built from
its dependents. An executable program is a target that is built from one
or more object modules.

target hierarchy
For building software kits, the directory tree into which a software kit is
placed by the ki t s command.

token
For the m4 macro processor, a recognizable entity that can be a macro
name. A token consists of alphanumeric characters delimited by
nonalphanumeric characters and cannot contain other tokens.

For | ex-generated lexical analyzers and yacc-generated parsers, the
smallest independent unit of meaning as defined by either the parser or
the lexical analyzer. A token can contain data, a language keyword, an
identifier, or other parts of a language syntax.

version control file
In aversion control system, afile that consists of original text and a set
of revisions (deltas) that have been made to it. In the Revision Control
System (RCS), thisfileis called an RCSHile; in the Source Code
Control System (SCCYS), an sHile.

Glossary—4

version control library
A directory that contains files that are organized and maintained under a
version control system such as the Revision Control System (RCS) or
the Source Code Control System (SCCS).

version control system
A software tool that aids in the organization and maintenance of file
revisions and configurations. In particular, it automates the storing,
logging, retrieval, and identification of revisions to source programs,
documentation, and data files.

younger file
For the make utility, a dependency file that has changed more recently
than its target.

Glossary-5

A

action
in awk, 2-13, 2-3
lexical analyzer, 4-2, 4-3, 44, 49
multiple actions for one expression, 4-9
null action, 4-9
in yacc
ambiguous, 4-31
resolving, 4-33
conflicts, 4-31
resolving, 4-33
reduce, 4-30
shift, 4-30
yacc parsers, 4-17, 4-24
address, sed editor, 3-3
admin command, 6-20, 6-27
&
See ampersand
amper sand
in make, 7-11
insed, 3-11
<>
See angle brackets
angle brackets
inlex, 4-6t
in make, 7-15

Index

archiving source files
See RCS
See SCCS
arithmetic, in m4, 5-9
array, in awk, 2-8
*
See asterisk
asterisk
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t
in regular expressions, 1-5
in make, 7-10, 74
in $* macro, 7-15
@
See at sign
at sign
in make, 7-6
in $$@ macro, 7-14
in $@ macro, 7-13
awk utility, 2-1 to 2-21
action
before or after processing the file, 2-20,
2-13,2-3
omitting, 2-3
action operator, 2—14t
backslash, 2-10
BEGIN statement, 2—20
beginning of afield in an expression, 2-11

awk utility (cont.)

command-line syntax, 2-2
comments in programs, 2—18t
concatenating strings, 2—20
control structure, 2-18t, 2-18
end of afield in an expression, 2-11
END statement, 2-20
field separator, 2-2t
field variable, 2—7
fieldsin, 2-1
flag, 2-2t
function
mathematical, 2-15t
miscellaneous, 2—-17t
string, 2-16t
functions, 2-15
pattern
omitting, 2-3
regular expressions, 2-10
to specify ranges of records, 2-12
patterns, 2—2
pipe, 2-20
print command, 2-5
printf command, 2-5
program, 2-2

entering on the command line, 2—4e

syntax, 2-2
program structure, 2-3
ranges of records, 2-12
records in, 2-1
redirection, 2-20
regular expressions as patterns, 2-10
relational expression, 2-11
semicolons in a program, 2-13n, 2-3
separating patterns from actions, 2-3
sequence of operations, 2-12, 24

Index—2

awk utility (cont.)
slash, 2-10
split function, 2—7
string manipulation, 2-12, 2-20, 2-7
variable
array, 2-8, 2-6
built-in, 2-9t
creating, 26
field, 2-7
internal, 2-9t
RLENGTH, 2-16t
RSTART, 2-16t
simple, 2-6
string, 26
treatment of, 2—6, 2—7
value if uninitialized, 26

See backslash
backslash
in awk, 2-10
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t
in regular expressions, 1-2
in sed, 3-11, 3-8
basic regular expression, 1-2
BEGIN statement
in awk, 2-20
inlex, 4-14
blank charactersin macros, in m4, 5-5
blank lines (spurious) in m4 output, 5-3
braces
in awk, 2-3
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t

braces (cont.)
inlex, 4-13, 44
in make, 7-9
in yacc, 4-21
{}
See braces
[
See brackets
brackets
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t
building programs
See lex program
See make utility
See yacc program
built-in macro
See macro

C

caret
See circumflex
changecom macro, in m4, 5-8
changequote command, in m4, 54
changequote macro, in m4, 5-9
character class
in regular expressions, 1-7, 1-8
¢i command, 6-10, 6-13
N
See circumflex
circumflex
in awk, 2-11
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t
in make, 7-10
collating sequence
in regular expressions, 1-7, 1-8

collating symbol
in regular expressions, 1-8

See colon
colon, in yacc, 4-23
comment characters, in m4, 5-8
conditional action
in m4, 5-12
in make, 7-12
context address
insed, 34
control structure
in awk, 2-18t, 2-18
in sed, 3-10t
controlling revisions of source files
See RCS
See SCCS
create command, 6-20
creating a new release
RCS, 6-13
SCCS, 6-24

D

declaration, in yacc, 4-20
define command, in m4, 52
defining macr os

See m4 macro preprocessor

See make utility
deledit command, 6-25
delget command, 6-25
delta, 6-3
delta command, 6-24
dependency file

defined, 7-1
dependent

See dependency file

Index-3

description file, in make, 7-21e
command, 7-12, 7-9
commands in, 74
echoing commands in, 7-2, 7-3, 7-6
stopping on errors, 7-6
testing, 7-20

diffs command, 6-26

divert macro, in m4, 5-11

divnum macro, in m4, 5-11

dlen macro, in m4, 5-12

dnl command, in m4, 5-3

$
See dallar sign

dollar sign
in awk, 2-11
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t
inm4, 5-5
in make, 7-11, 74
in sed, 3-3

dumpdef macro, in m4, 5-13

E

echoing commands in make, 7-2, 7-3, 76
edit command, 6-23
merging branches with, in SCCS, 6-26
— option, 6-24

editing of files, simultaneous, management of

by RCS, 64
by SCCS, 6-6
egrep
See grep
embedded newline character
in sed, 3-5t
end of file
inlex, 4-13

Index—4

end of file (cont.)
in sed, 3-3
endmarker token, 4-18, 4-23
value of, 4-22n
environment variable, in make, 7-15
error token, in yacc, 4-28
escape character
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t
in lex, 4-6t, 4-7
insed, 3-11
eval macro, in m4, 5-9
extended regular expression, 1-3

F

fogrep
See grep
field
in awk, 2-1, 2—7
file
creating
in RCS, 6-10
in SCCS, 6-20
editing, SCCS, 6-23
getting multiple, in SCCS, 6-24
getting status of, in SCCS, 6-24
getting, SCCS, 6-22
names in RCS, 6-11
names in SCCS, 6-20
versions of, in RCS or SCCS, 6-3 to 64
file name
SCCS, 6-21
finite-state automaton, 4-2f, 4-1, 4-29
stack usage, 4-29
flag
in sed, 3-12

flagsin SCCSfiles, 6-22
list of, 6-29t
functions in awk, 2-15

G

g-file, defined, 6-3
gawk
See awk
get command, 6-23
—p option, 6-23
getting files from an RCSlibrary, 6-12
specifying version, 6-13
getting files from an SCCSlibrary, 6-22
for editing, 6-23
specifying version, 6-23
writing to standard output, 6-23
getting multiple SCCSfiles, 6-24
getting status of SCCSfiles, 6-24
grammar file, in yacc, 4-20
contents of, 4-20
declarations section, 4-20
error, 4-27
guidelines, 4-26
programs section, 4-25
rules section, 4-23
grep utility, 1-9 to 1-11

H

help command, in SCCS, 6-27

ID keywordsin SCCS, 6-21
See also percent sign
See also SCCS

ifdef macro, in m4, 5-9
ifelse macro, in m4, 5-12
include macro, in m4, 5-10
index macro, in m4, 5-13
info command, 6-24
input/output routines, in lex, 4-11
null character in, 4-12
overriding, 4-11
trandation table for, 4-12
internal macro
See macro

K

keyword, processing, in yacc, 4-21
associativity, 4-21
precedence, 4-21

L

LC_TYPE environment variable
See collating sequence

len macro, in m4, 5-12

lex library, 4-12, 4-3

lex program, 4-1 to 4-17
See also lexica analyzer
calculator example, 4-34
escape character, 4-6t, 4-7
finding substrings, 4-8
matching wildcards, 4-7
guote characters, 4-6t, 4—7
REJECT action

alternative to, 4-11, 4-8

returning input to the input stream, 4-8
using, 4-15
using with yacc, 4-15
yyless function action, 4-11

Index-5

lex utility lexical analyzer (cont.)

macro, 44 specification file
expansion, 44 definitions section, 44
substitution string, 44 using y.tab.h in, 4-17
lexical analyzer, 4-1 to 4-17 elements of, 4-3
See also lex program format of, 4-3
action, 4-2, 4-3, 44, 4-9 incomplete, 4-5e
multiple for one expression, 4-9 lines lex cannot interpret, 4-13
null, 4-9 matching input, 4—7
with yacc parsers, 4-9 rules section, 44
action if no rule specified, 4-3 start condition, 4-14
BEGIN statement, 4-14 setting, 4-14
default action, 4-3 tranglation table, 4-12
end of file, 4-13 yyleng variable, 4-10
endmarker token, 4-18 yylval variable, 4-18
file name, 4-15, 4-3 yymore function, 4-10
generating, 4-15 yytext variable, 4-9
getting more input, 4-10 yywrap function, 4-13
input look-ahead, 4-2 library, RCS
input/output routines, 4-11 See RCS
null character in, 4-12 library, SCCS
overriding, 4-11 See SCCS
trandation table for, 4-12 line number
length of a matched string, 4-10 insed, 3-3
lex library, 4-12, 4-3 literal string, in yacc, 4-26
passing code to generated program, 4-13 look-ahead
printf function, 4-9 lexical analyzer, 4-2
printing a matched string, 4-9 look-ahead token, in yacc
regular expressions in, 4-6t, 4-3, 44, 4-5, clearing, 4-29
4-7 number, 4-19
return statement, 4-16
returning input to the input stream, 4-11 M
extent of, 4-12

m4 macr o preprocessor, 5-1 to 5-13
arithmetic, 5-9
blank characters in macros, 5-5
changecom macro, 5-8

rule, 44
conflictsin, 4-7
matching input, 4—7

Index—6

m4 macr o preprocessor (cont.)
changequote macro, 5-9
conditional action, 5-12
defining macros, 5-2
in terms of other macros, 5-3
to track other macros, 5-3
divert macro, 5-11
divnum macro, 5-11
dlen macro, 5-12
dnl macro, 5-3
dumpdef, 5-13
eval macro, 5-9
ifdef macro, 5-9
ifelse macro, 5-12
including afile, 5-10
index macro, 5-13
len macro, 5-12
macro
built-in, 5-6t
internal, 5-6t
macro argument, 5-5, 5-6
macro syntax, 5-1
maketemp macro, 5-11
print macro, 5-13
printing, 5-13
quote characters, 5-3
quoting in nested macros, 54
recursion, 5-2
redefining macros, 54
redirection, 5-11
spurious blank lines in output, 5-3
string manipulation, 5-12
substr macro, 5-12
temporary file, 5-11
trandlit macro, 5-13
undefine macro, 5-9

m4 macr o preprocessor (cont.)
undivert macro, 5-11
using system programs, 5-11
macro
See also m4 macro preprocessor
See also make utility
arguments, in m4, 5-5, 5-6
built-in
in m4, 5-6t
in make, 7-13
checking for definition of, in m4, 5-9
defined, for m4, 5-1
defining
in make, 7-8, 7-9
defining, in m4, 5-2
in terms of another macro, 5-3
to track another macro, 5-3
definition, in make, 7-3
expansion, in m4
delaying, 54
recursive nature of, 5-2
internal
in m4, 5-6t
in make, 7-13t, 7-13
file name prefix, 7-15
out-of-date file list, 7-15
target file name, 7-13
first out-of-date file, 7-15
on dependency line, 7-14
inlex, 44
expansion of, 44
nested, in m4
quoting in, 54
precedence of definitions in make, 7-3
redefining, in m4, 54
removing, in m4, 5-9

Index—7

macr o (cont.)
substitution, in make, 7-9
main function, in yacc, 4-16, 4-17, 4-18
$(MAKE) macro, 7-12
testing description files with, 7-20
make utility, 7-1 to 7-22
command execution by, 7-2
command syntax, 7-3
conditional action, 7-12
creating files, 7-2
defining macros, 7-12, 7-8
dependency list, 7-5
description file, 7-21e, 7-3, 74, 7-9
example, 7-21, 7-7
environment variable, 7-15
including other files, 7-20
internal macro, 7-13
file name prefix, 7-15
first out-of-date file, 7-15
out-of-date file list, 7-15
target file name, 7-13
on dependency line, 7-14
macro definition, 7-3
macro substitution, 7-9
nested call, 7-12
on distributed system, 7-2
operation of, 7-1
out-of-date file, 7-15, 7-2
recursion, 7-12
rules
defining, 7-17
internal, 7-16, 7—7
simplifying, 7-8
single suffix, 7-18
rules file example, 7-18e
shell invocation by, 7-2

Index—8

make utility (cont.)
suffixes
adding, 7-17, 7-16
replacing, 7-17
target file creation process, 7-2
target files with no dependents, 7-2
testing description files, 7-20
updating files, 7-2
MAKEFLAGS macro, 7-15
maketemp macro, in m4, 5-11
mer ging branches of an SCCSfile, 6-26
multiple matches in the sed editor, 3-11

N

\n
See embedded newline character
noninteractive editing
See sed editor
nonterminal symbol, 4-19, 4-21, 4-23
internal, 4-25
null character
grammar rule, 4-26
inlex, 4-12
null string, in yacc, 4-23

O

operator
action, in awk, 2—-14t
Boolean, in awk, 2-12, 2—2
regular expression, defined for, 1-1
relational, in awk, 2-11

P

p-file, 6-6
0
See parentheses
par entheses
in awk, 22
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t
in m4, 5-10, 5-6
in make, 7-9
parser, 4-17 to 4-38
See also yacc program
action, 4-24
ambiguous action, 4-31
resolving, 4-33
conflicting actions, 4-31
resolving, 4-33

controlling during a rul€e’s action, 4-24

endmarker token, 4-18, 4-23
error handling, 4-27
to allow correction, 4-28
including the yylex function, 4-25
main function, 4-16, 4-18
reduce action, 4-30
shift action, 4-30
using with alexical analyzer, 4-16
yychar variable, 4-19
yyerror function, 4-17, 4-18
yylex function, 4-17
yylval variable, 4-18
pattern
See also regular expression
in awk, 2-10, 2-2, 2-3
ranges of records, 2-12
insed, 3-11, 34

pattern space, 3-3
percent sign
inlex, 4-13, 44
SCCS, 6-21
in yacc, 4-20, 4-21
period
in basic regular expressions, 1-2t
in extended regular expressions, 1-4t

See period
pipes, in awk, 2-20
placing filesin an RCSlibrary, 6-10
placing filesin an SCCSlibrary, 6-20
+
See plus sign
plussign
in extended regular expressions, 1-4t
in regular expressions, 1-6
print command
in awk, 2-5
print macro, in m4, 5-13
printf command
in awk, 2-5
processing text files
See awk
See m4 macro preprocessor
See sed editor
prs command, 6-27

Q

s
See question mark

question mark
in extended regular expressions, 1-4t
in regular expressions, 1-6
in make, 74

Index—9

question mark (cont.) recursion

in make (cont.) in m4, 5-2
in $? macro, 7-15 in make, 7-12
quote characters, in m4, 5-9 in yacc, 4-27
quoting strings redefining macros, in m4, 54
inlex, 4-6t, 4—7 redirection
inm4, 5-3 in awk, 2-20
in m4, 5-11
R reduce action, in yacc, 4-30
regular expression, 1-1 to 1-9

RCS, 6-1to 6-34
c¢i command, 6-10, 6-13
creating a new release, 6-13
file names, 6-11
file storage, 6-3
getting files from the library, 6-12
specifying version, 6-13
ID keywords, 6-11t
library, 6-3
creating, 6-8
getting files from, 6-12

in awk, 2-10
basic

escape character in, 1-2t

rules, 1-2t

saving and reusing patterns, 1-7
character classes, 1-7, 1-8
collating considerations, 1-7, 1-8
collating sequences, 1-8
concatenating multiple, 1-2
equivalence classes in, 1-9

specifying version, 6-13 extended
name of. 6-4 escape character in, 1-4t
placing files in, 6-10 rules, 1-4t
security, 6-8 internationalized usage, 1-7, 1-8

length of attempted match, 1-5

in lex, 4-6t, 4-3, 44, 4-5, 47
matching selected characters, 1-7, 1-8
precedence of operatorsin, 1-1
restricting matches, 1-7, 1-8

placing files in the library, 6-10

preventing simultaneous editing of files, 64
resdiff command, 6-15

versions of files, 6-3 to 64

rcs command
functions, 6-9t restricting matches in, 1-6
RCSHile 6—’3 rules, for sed editor, 3-5t
illustrated, 6-3f specifying multiple, 1-8
resdiff command, 6-15 REJECT action, in lex, 4-8
record | aternative to, 4-11
inawk, 2-1 relational expression

in awk, 2-11

Index—-10

release, creating new SCCS (cont.)

RCS, 6-13 get command (cont.)
SCCS, 6-24 —p option, 6-23
removing a macro, in m4, 5-9 getting files from the library, 6-22
repeating matches in the sed editor, 3-11 for editing, 6-23
return statement, in lex, 4-16 specifying version, 6-23
Revision Control System writing to standard output, 6-23
See RCS getting multiple files, 6-24
RLENGTH variable, in awk, 2-16t getting status of files, 6-24
RSTART variable, in awk, 2-16t help command, 6-27
rule ID keywords, 6-21t, 6-21
inlex, 44 locating, 6-22
conflicts in, 4-7 requiring, 6-22
matching input, 4—7 info command, 6-24
in make, 7-2 library, 6-3
internal, 7-7 creating, 6-8
in yacc, 4-23 getting files from, 6-22
for editing, 6-23
S specifying version, 6-23

writing to standard output, 6-23
name of, 64, 6-8
placing filesin, 6-20
security, 6-31t, 6-8
specifying path to, 6-8
p-file, 66
placing files in the library, 6-20
preventing simultaneous editing of files, 6-6

sfile, 6-3

SCCS, 6-1t0 6-34
admin command, 6-20, 6-27
commands, 6-31t
create command, 6-20
creating a new release, 6-24
deledit command, 6-25
delget command, 6-25
delta command, 6-24
diffs command, 6-26
edit command, 6-23

merging branches with, 6-26

prs command, 6-27

sfile, 6-3

scesdiff command, 6-26

versions of files, 6-3 to 64
sccs command, 6-18

—r option, 6-24
file names, 6-20, 6-21 ~d option, 6-8
file storage, 6-3 functions, 6-18t
g-file, 6-3 options, list of, 6-31t

get command, 6-23

Index-11

scesdiff command, 6-26 sed editor (cont.)

script substituting text
See sed editor, command script modifying command behavior, 3-12
sear ching for text with grep, 1-9 using flags, 3-12
security for RCSlibraries, 6-8 using an ampersand, 3-11
security for SCCSlibraries, 6-31t, 6-8 using backslashes, 3-11, 3-8
sed editor, 3-1 to 3-12 using semicolons, 3-2
address, 3-3 using slashes, 34
limitations on using, 3-5 using the hold area, 3-9t
combining flags, 3-3 writing a file, 3-12
command ;
buffer manipulation, 3-9t See semicolon
editing, 36t semicolon
flow-of-control, 310t in awk, 2-13n, 2-3
command script, 3-1 to 3-3 inlex, 44
command syntax, 3-5 insed, 3-2
multiple, using together, 3-3 in yacc, 4-23
on the command line, 3-3e shift action, in yacc, 4-30
command-line syntax, 3-1 shift command, in m4, 5-5
context address, 3-4 SID, 6-3
control structure, 3—10t simultaneous editing of files, management of
escape character, 3-11 by RCS, 64
flag, 3-2t by SCCS, 6-6
hold area, 3-9t sincldue macro, in m4, 5-10
input and output, 3-1 /
input file, treatment of, 3-2 See dash
limitations of, 3—1 slash
line number, 3-3 in awk, 2-10
order of operations, 3-3 in sed, 3-6t, 34
pattern space, 3-3 Source Code Control System
patternsin, 3-11, 3-4 See SCCS
printing lines specification file, in lex, 4-3
after substituting text, 3-12 Definitions section, 44
repeating matches, 3-11 definitions section
selecting lines for editing, 3-3 using y.tab.h in, 4-17
string manipulation, 3-11 to 3-12 format of, 4-3

Index—-12

specification file, in lex (cont.)
incomplete, 4-5e
lines lex cannot interpret, 4-13
matching input, 4—7
rules section, 44
split function, in awk, 2—7
start condition, in lex, 4-14
setting, 4-14
start symbol, in yacc, 4-22
stopping on errorsin make, 7-6
stream editor
See sed editor
string manipulation
in awk, 2-12, 2-20, 27
inlex, 44

in m4, 5-123En R "string manipulation"
"sed" "Book Title" "3-11" "in sed to

in sed"

string variable, in awk, 2-6
substr macro, in m4, 5-12
substring, 4-8
symboal, in yacc, 4-19, 4-21

start, 4-22
syntax

See individual utility entries
syscmd macro, in m4, 5-11

T

target file
creation process in make, 7-2
defined, 7-1
without dependents, 7-2
temporary file, in m4, 5-11
terminal symbol, 4-19
time stamp
used by make utility, 7-2

token
inm4
defined, 5-1
interpretation of, 5-2
in yacc
defined, 4-16
finding names of, 4-17
list of, 4-19
token number, in yacc, 4-22
trandation table, in lex, 4-12
trandit macro, in m4, 5-13

U

undefine macro, in m4, 5-9
undivert macro, in m4, 5-11

Vv

variable

in awk
array, 2-8, 2-6
built-in, 2-9t
creating, 26
field, 2-7
internal, 2-9t
numeric, 2-6
simple, 26
treatment of, 26, 2—7
value if uninitialized, 2—6

global, in yacc, 4-21

See vertical bar
vertical bar
in extended regular expressions, 1-4t
inlex, 49
in yacc, 4-23

Index—-13

W

what command, 6-22

Y

y.tab.c file, 4-18
y.tab.h file, 4-34, 4-38
using in lex specification file, 4-17
yacc program, 4-15 to 4-38
See also parser
calculator example, 4-34
debug mode, 4-33
declaration, 4-20
finding token names, 4-17
global variable, 4-21
grammar file, 4-20
declarations section, 4-20
error, 4-27
guidelines, 4-26
programs section, 4-25
rules section, 4-23
library routines, 4-18
look-ahead token, clearing, 4-29
null character, 4-26
null string, 4-23
parameter keywords, 4-24
default values, 4-24
processing keywords
associativity, 4-21, 4-21
precedence, 4-21
recursion, 4-27
start symbol, 4-22
token number, 4-22
using with lex, 4-15
younger file
defined, 7-2

Index—-14

yy.lex.c file, 4-15, 4-3
yychar variable, 4-19
yyerror function, 4-17, 4-18
yyleng variable, 4-10
yyless function, in lex, 4-11
yylex function, 4-17, 4-3
caled by yyparse, 4-17
including in a parser, 4-25
requirements, 4-19
yylval variable, 4-18, 4-31
yymore function, 4-10
yypar se function, 4-17, 4-18
yytext variable, 4-9

yywrap function
inlex, 4-13

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor
Internal2 _— SSB Order Processing — NQO/V 19

or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

aFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Programming Support Tools
AA-PS32D-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

e This postage-paid form

* Internet electronic mail: r eaders_coment @k3. dec. com

* Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y 32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manua says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Usability (ability to access information quickly)

Please list errorsyou have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the softwar e described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

_______ Do Not Cut or Tear — Fold Here and Tape ____ _ el __.

™
Hﬂﬂﬂnau NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
UEG PUBLICATIONS MANAGER
ZKO3-3/Y32

110 SPIT BROOK RD

NASHUA NH 03062-9987

Do Not Cut or Tear — Fold Here

Cut on
Dotted
Line

