Digital UNIX

Security

Order Number: AA-QOR2D-TE

March 1996
Product Version: Digital UNIX Version 4.0 or higher

This manual describes how to operate the Digital UNIX system in a
secure manner. It includes traditional UNIX security procedures and
operation with the optional enhanced security subsets installed. The
Security Integration Architecture (SIA) and access control lists (ACLS)
are also documented in this manual. This manual has information for
users, system administrators, and programmers.

Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

O Digital Equipment Corporation March 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,

POLY CENTER, Q-bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

Adobe, PostScript, and Display PostScript are registered trademarks of Adobe Systems, Inc.
UNIX is aregistered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

U T [T o PN XXi
New and Changed FEaIUrES cooiiiiiiiiiiiee e XXi
OFQaniZaLION ...eevueie ettt e e et et e e e e e e e e e eeee XXii
Related DOCUMENTALiON ...vuiiiiii e e e e e eeaans XXiV
Reader’ S COMMENES ...iiiiii e e e e e e e e e eaens XXV
(00 10177= 01110 1S XXVi

Part 1. User’s Guide to Security

1 Introduction for Users

1.1 Enhanced Security FEAIUIES cooieiiiiiiiiiiieeeeeeei e 1-1
1.1.1 Login Control Enhancements coooveevieiiiiinnieeieiiiiien, 1-1
1.1.2 Password ENhanCementscccccveoiiieeiieniiiinneeeeeeniineen 1-2
1.1.3 AUdit SUDSYSIEM oo 1-2

1.2 How to Determine if Enhanced Security Is Installed and Running ... 13
1.3 User AcCOUNtabIlity ..oovvveiiieiiiiiiii e 1-3
1.4 User ReSpONSIDIITIES ..ovviniiiiiiiiiiiie e 14

21

2.2

2.3
24
2.5
2.6

31

3.2
3.3

Getting Started

LOgOiNg [N oo 2-1
211 Authentication Profileooviiiiiiiiiii e 2-2
2.1.2 Other Login RESIHCLONS ...ocvvuieiiiiiieeieii e 22
Setting Your PassWordcoovuiieriiiiiicieie e 2-3
221 Choosing Your Own Password —cccooevviiiieeiiiiiienciieees 2-4
2.2.2 Choosing a System-Generated Password —cccoecevvvnnnnnns 2-4
2.2.3 Understanding Password Aging ccevveveviiiiiieciiiieeeeiieeeees 2-5
Using the su Command coovviieiiiii e 2-6
Password SECUMtY TIPS covvvveieiiii e 2-6
Login and Logout Security TIPS ..ooevvviiciiiiieee e 2—7
Problem SOIVING ..o 2-8
2.6.1 PaSSWOrAS ...cccovviiiiieiiiiiiii et 2-8
2.6.2 Background JObS ..., 2-9
2.6.3 StCKY DIFECIONES covviiiiiieeeee e 2-9
2.6.4 SUID/SGID Clearning ccoeeveviieeiiieieeiie e 2-10
265 IfYouCannot LogIn ..ooiiiiiiiiiiiiii e 2-10

Connecting to Other Systems

The TCP/IP CommandS oveeiiiiiiiiiie et 31
3.1.1 Therlogin, rcp, and rsh Commands cccceevevvviieveninnens 31
3.1.2 Thehostsequiv File ..o 32
313 The.rhostSFile ..o 32
314 Theftp Commandcooccveiiiieiiiiiieeeee e 34
315 ThetftpCommandccoeviiiiiiiiiieiee e 34
3.1.6 Remote Connection Security TIPS ..ocovvveveviiiiiieiiiieeeeiiieeees 34
LAT COMMAENGS .oeiieiiiiie et 35
The UUCP ULIIILY oo 35
3.31 Theuucp Commandccoovevieiiiiiiereiiie e ee e e e 3-6
3.32 Thetipand cu Commandscccoeeveviiieriiiiiieiiiiee e, 3-6

iv Contents

3.3.3 Theuux Commandooeieiiiie e 37

34 Thedogin, dls, and dcp Commands ccciveviiiieiiiiiieeeie e 38

4 DECwindows Environment

4.1 External Accessto Your Display ..oc.eovevieiiiieiiiiieei e 41
4.2 Controlling Network Accessto Your Workstation ... 4-2
421 System Access Control List ..o.oeeiiiiiiiiiiiiiieeecieei e 4-2
4.2.2 Workstation Access Control Listccoevveiiiieiiiiiiiiiiiieeeeens 4-2
4.2.3 Storing the Workstation Access Control List ccoeeeeeeeens 4-3
424 Using the X Authority File Utility ..., 44
4.3 Protecting Keyboard Input ... 44
4.4 Blocking Keyboard and Mouse Informationcccooeveviivivininens 4-5
45 Pausing Your Workstation —oooeviiiiiiiiiiii e 4-5
46 Workstation Physical SECUMLY ooeeveiieiiiiieieen e 4-6

5 Using ACLs

5.1 Traditional Discretionary Access Control coceiveveiiieiiiiiieeeeinnnn. 5-1
52 AnOverview Of ACLS oo 51
53 States of the ACL SySteM ..ooviiiiieiiii e 5-2
54 Setting @aN ACL oo 5-2
55 DefAUIt ACLS oottt 5-3
56 ViIiewing @an ACL oo 53
5.7 ACCESSDECISION PrOCESS ...oovvviiieiiiiiiie e 53
58 ACL SHUCIUIE oeeeeiiii e e 54
59 ACL INti@ization ...oooeviiiiiiiiiiiiiiiae e 55
5.10 Protecting Objects With ACLS ...ccovviiiii e 58

510.1 ACLsandthelsCommandcccooiiiiiiiiiiiiiiiiiieeeeeenns 58

Contents v

5.10.2 Using the setacl Commandccoeeiiiiiiiiieiiieeeiee

5.10.3 Usingthe getacl Commandccooiiiiiiiiiiieiiiiiieiees
511 Maintaining ACLS 0N Your ObJECtS coevviiieiiiieeieiie e
512 ACLsand the emacs EItOr ccoovvviiiiiiiiiiiiiieeccee e

Part 2: Administrator’s Guide to Security

6

6.1
6.2
6.3

6.4

6.5

Introduction for Administrators

Frequently Asked Questions About Trusted Systems cceeeenee.
Defining a Trusted SYyStemM ..o e
Enhanced Security FEaIUrES iiiiiiiiiiii e

6.3.1 AUt FEAIUIES cciiiiiiiii e
6.3.2 Identification and Authentication (I and A) Features
6.3.3 Access Control ListS (ACLS) ovevvviieieiiiieeeeiee e
6.3.4 Integrity FEAIUrES ooiieiiiiii e

Windows-Based Administration Utilitiesccccooevviiiiiiiiinnenennn.
6.4.1 Installing and Configuring Enhanced Security

Administrating the Trusted Operating System —cooovveiiiiiiiineeeennn.
6.5.1 Traditional Administrative RoleS cccooveiiiiiiiiiiiieiiie,

6.5.1.1 Responsihilities of the Information Systems Security
OffiCEI e

6.5.1.2 Responsibilities of the System Administrator —...........

6.5.1.3 Responsibilities of the Operator —cccevevveinnneees

6.5.2 Protected SUbSyStemMSs ...

6.5.2.1 Protected Password Database cocvevvivviiiiiinninnns
6.5.2.2 System Defaults Database ccooeeveivevveiiiiiiiineees
6.5.2.3 Termina Control Databasecocvevvieiiiiiiieieiennns
6.5.2.4 File Control Databasecooeevieiiiiiiiiiiieeeeeeas
6.5.25 Device Assignment Databasecccooeveeiiiiiiiinnnens

vi Contents

69
6-10
6-10

6-11

6-12
6-12
6-13
6-13
6-14

7.1

7.2
7.3
7.4

7.5

7.6
7.7

7.8

Setting Up the Trusted System

INStAlAtion NOIES ...coieiiii e 7-1
711 Full InStallation ...cooeeeiiiiceee e 7-1
7.1.2 Update Installationcooiiieiiiiiiiiii e 7-1
SegmENt SharNG ..ovveieeeee e 72
Installation Time Setup for SECUrity cooovviiiieiiiiieie e, 72
The secsatup ComMMEANd ...coovviiiiiiiieec e 72
741 Setup QUESIONS ovveiiiiii e e e 7-3
7.4.2 Example SeCSetup SESSION .oovvieiiiiiieieiiii e 7-3
Configuring Enhanced Security FEatUres ccooovvvvivveviiiiieiiiinnens 7-6
751 Configuring Auditooiiiii 7-6
752 Configuring ACLS .oeiiiiii e 7-6
7.5.3 Configuring Extended Authentication with NIS 7-6
7.5.4 Password and Authentication Features Configuration —........... -7
7541 AQING oo -7
754.2 Minimum Change TiMecccoiiieiiiiiieriiie e, -7
7.5.4.3 Changing ControlS coovoiiiiiiiiiciie e -7
7544 Maximum Login AttemptSccoooeviiiiiiiiiiii e 7-8
7545 Time Between Login Attemptsccooeevveiiiiiiiinnens 7-8
7546 Termina Break-Inooooiiiiiiiiii e 7-8
7547 TimeBetween Loginscoccvvviiiiiiiiiiieee e, 7-8
75.4.8 Per-Termina Login Recordsccoovevvviiveviiinneenns 7-8
7.5.49 Automatic Extended Profile Creation cc..uee.. 7-9
75410 VouChiNg ..ocoovviiiiiii e 7-9
75411 ENCIYPLON oo 7-9
System AdMINIStrator TaskS ...vuevivviiieiiii e e 7-9
[SSO TASKS ooieeeeeiiiiieeeeee e 7-9
7.7.1 Check System Defaults ccooveiiiiiiiii e, 7-10
7.7.2 Modifying aUser ACCOUNE eevviieeiiiiie e 7-10
7.7.3 Assigning Terminal DeVICEScoccevveviiiiieiiiiiieece e, 7-10
774 Setting Up Auditing ..o 7-10
Backing the System Up ..o 7-11

Contents vii

8.2

9.1

9.2
9.3

Creating and Modifying Secure Devices

Defining Security CharaCteristiCs ooovveiiiiiiieiii e, 8-1
8.1.1 Maodifying, Adding, and Removing Devices with the

AXdeVIiCES Program ooevveiiiiiiii e 8-2
8.1.2 Setting Default Values with the dxdevices Program — 8-2
Updating Security Databasesccocevvviiiiiiiiiiecii e 8-2

Creating and Maintaining Accounts

Using dxaccounts to Perform System Administration Functions —...... 9-1
9.1.1 Creating UsSer ACCOUNES ...cocvvueiiiiieeeiiieeeee e e e e e eaiaeeens 9-1
9.1.2 REifiNg ACCOUNLS ...iiiiiiieiiiiis e e e e e e 9-1
9.1.3 Creating GrOUPS covuuieveiiiieieiiiee e e e e e e e e e e e eaaaeeees 9-2
9.1.4 Modifying the Account Templateccccevveiveiiiiiieviiinenns 9-2
9.1.5 Modifying User ACCOUNES oevvvvieiiiiiieeciieiee e 9-2
9.1.6 Maodifying the Account Templatecccccevveveeiiiiiieriiiinenns 9-2
Authentication SUDSYStEM cooiiiiii 9-2
Using NIS to Centralize Account Managementc..ccceeveeennnnnn. 9-3
9.3.1 Overview of Enhanced Security and NIS User Account
DaabasES ..vvveiieiiiiii e 9-3
9.3.1.1 BASE Loca User Account Databasecccccceene... 9-3
9.3.1.2 NISDistributed BASE User Account Database 9-3
9.3.1.3 Enhanced Security Local Password Database 9-5
9.3.1.4 NISand Enhanced Security Database Interaction 9-5
9.3.2 Implementation NOtES ccvviieiiiiiieiei e 97
9.3.3 Setting Up aNIS Master Server ooovvveieiiiiieeciceeeeeeees 97
9.3.3.1 Manua Procedure for Small Databases 97
9.3.3.2 Automated Procedure for Large Databases 9-8
9.34 SettingUpaNISSlave Serverooooevviiiiiiiiieeceeeceee 9-8
9.35 SettingUpaNISClientccooeviiiiiiiiiiieeece e 99
9.3.6 Moving Local Accountsto NIS ..o, 9-10
9.3.7 Backing OUt NIS ..o 9-10

viii Contents

10

10.1

10.2

10.3

10.4

10.5

10.6

10.7
10.8

Administering the Audit Subsystem

Overview of Auditing ooiiiiii i 10-1
10.1.1 FilesUsed for Auditing —coovveviiiiiieie e 10-1
10.1.2 Auditing TOOIS ooeviiciiie e 10-2
Setting Up the Audit Subsystem ocooviiiiii e, 10-3
10.21 Set Up QUESLIONS oovviicieiiieciie e 10-3
10.2.2 Using the audit_setup SCript ooevveviieiiieeeeee e, 104
Selecting Audit EVENES .ooveniiii e 10-7
10.3.1 EVENEALIBSES coeeiiiiiieeeeieii e 10-8
10.3.2 Object Selection and Deselection ccovveveiiiieviiiiieeeennn, 10-8
10.3.3 Targeting an Active ProCeSSES ..ovvvviiiiiiii e, 10-10
Audit LOg FIlES oo 10-11
1041 Theauditlog Fileocooviiiiii e, 10-11
10.4.1.1 Audit Log Overflow ...ocoovviiiiiiiic e, 10-12
104.1.2 Remote Audit LOgSooevvviiieiiiiiieieiiiee e, 10-13
10.4.2 ConSOle MESSAOES ..vvvivvvriieiiiiieeeeiee e e e e e e e e e eaaans 10-13
10.4.3 Creating Your Own Log ENtriesccceevvvveiinieviiiiieeeennn. 10-13
Configuring the Audit Subsystem Using auditd cccooeeee. 10-13
10.5.1 Displaying Information About the Audit Subsystem 10-14
10.5.2 Designating the Location of the Audit Log File 10-14
10.5.3 Designating a Fallback Location for Audit Data 10-14
10.5.4 Designating a Destination for Audit Log Status Reports ... 10-15
10.5.5 Protecting Against Audit Log Overflow —cccccoeevviien. 10-15
Starting AUdit ..o 10-16
10.6.1 Turning Off Auditcooviiii e 10-16
10.6.2 StartingaNew Audit LOg oovvveiiiieii e, 10-16
Auditing Across a NEtWOrK —oieviiiieii e 10-16
Processing Audit Log Data oooeveiiiiiiiiiii e 10-18
10.8.1 Using audit_tool Interactivelyccoooevviiiiiiiiiiiieiiineeeenen, 10-19

Contents ix

10.8.2 Selecting Audit ReCOrds oooveeiiiieiiiii e 10-19

10.8.3 Generating a Report for Each Audit ID cooiieeeennn.n. 10-19
10.8.4 Selecting Audit Records Within aTime Range — 10-20
10.8.5 Selecting Audit Records for Specific Events — 10-20
10.8.6 Performing Continuous Audit Reporting oooevviieeeennnne. 10-21
10.8.7 Selecting Audit Records for Process IDS ...oooevviieveeiineeeeen. 10-21
10.8.8 Filtering Out Specific Audit Recordsccccoevvveeiieenennn. 10-21
10.8.9 Processing ULTRIX Audit Data cccooeeveeiieiieeiieeeeeeee, 10-22

10.9 Site-Defined Audit EVENS .ooovviiiiiiiiee e 10-22
10.9.1 System Administrator’ s Responsibilitiesc........... 10-22
10.9.2 Trusted Application Responsibility —ccooeveiiiiiiiiininnennn. 10-23
10.9.3 Managing Your Own Audit Datacccceeveveiiiieieiiiieeeenn, 10-24
10.9.4 Changing the Site Event Mask ccooeviiiieiiiiiieiiieeeeen, 10-24
10.10 Suggested Audit EVENES coooiiiiiiiiiiiiiiieiei 10-24
10.10.1 Dependencies Among Audit Events cccccceeiiieiiiiiinnnn. 10-25
10.10.2 Auditable EVENES ..ooeoviiiiiiiiiiiiiiii e 10-26
10.11 AUt REPOMS .. 10-28
10.11.1 Generating Audit Reports with the dxaudit Program 10-28
10.11.1.1 Selection Files ooiieiieiieeieeee 10-28

10.11.1.2 Desdection Files ccoooieiiiiiiiiiis 10-29

10.11.1.3 REPOIS .ovveviiiiiiiiiaeae e e e e e e e e e e e e e e e e e e eeeeeeesenenneees 10-29

10.11.2 Generating Audit Reports with the audit_tool Program 10-29
10.11.2.1 Audit Reports for System Calls ccoveveiiieeennnnnn. 10-30

10.11.2.2 Audit Reports for Trusted Events cc.oeeeeeeeee. 10-31

10.11.2.3 Audit Reports for ProcessIDS c.cvveviiieeiinnnnnn. 10-32

10.11.2.4 Abbreviated Audit REPOrtsccceeveeviiiieeiennnnnn. 10-33

10.12 Audit Data RECOVEIY ..oooiiieiiiiiiiieiieeeeeeeee e 10-35
10.13 Implementation NOES ...ocvviiiiiii e 10-35
10.14 Traditional UNIX Logging TOOIS ...covvvviiiiiiiiiiii e 10-36
10.15 Using Audit to Trace System Calls oooveiiiiiiii e, 10-37
10.15.1 Installing AUdit oeeeiee e 10-38
10.15.2 Enabling AUtoooiiiiiii e 10-38

x Contents

11

111
11.2
11.3

114
115

12

121
12.2
12.3

13

131
13.2
13.3
13.4
13.5
13.6

10.15.3 Tracing @aProCeSS ..ovovveiiiiiiii e
10.15.4 Readingthe TraceDatacccooiveveiiiiiriiiiieeeeieeeeenn,

10.15.5 Modifying the Kernel to Get More Data for a System Call

10.15.6 System Calls Not Always Auditedcccoeeeeiiieenen.

Administering ACLs

Digital UNIX ACLS OVEIVIEW oooeieeiiiiieeeee e
Administration TasksS ...
INStAliNG ACLS oo

1131 Enabling ACLS i
11.3.2 Disabling ACLS ooiiiiiiiiiiiiiiiiiiiiie e
11.3.3 Verifying Kernel Changes covevieiiiiiiiieeeieceei e
11.34 Determining If ACLsAreEnabledccoooeiiiiiiiiiis

RECOVEIY e
Standalone System SUPPOIt ...ooeeeeeeii e

Ensuring Authentication Database Integrity

Composition of the Authentication Databaseccccoeeeevueeeenn.
Running the authck Program ...
Adding Applications to the File Control Database

Security Integration Architecture

SIA OVEIVIBIV e
Supported Security Configurations cooeevviviiiiinieeeeeriieen
MaLriX.CoNf FIlES oo
Installing a Layered Security Product —cooiieiiiiiiiiiiineeeeens
Installing Multiple Layered Security Products —cccoeeieeeeens
Removing Layered Security Products —...........ccoovveeeiiiiiiiiieennnns

.o 111
e 112
e 112

.. 113
.o 114
.. 115
.. 115
.. 115

.. 116

.o 121
.o 121
e 122

.o 131
e 132
e 132
.. 135
.. 135
.. 135

Contents xi

14 Trusted System Troubleshooting

4.1 LOCK FIlES oo 14-1
142 InVaElid MaPS ooceii e 14-2
14.3 Required Filesand File Contents cooovvviieiiiii i, 14-2
14.3.1 The /tcbffilesfauth/r/root File ..o, 14-3
14.3.2 The/etclauth/system/ttys.db Filec.ocooiiiiiiiiiieeee, 144
14.3.3 The/etc/auth/system/default Filecooeieiiiiiiiiin, 144
14.3.4 The/etclauth/system/devassign File c.ccooviiiiiiiineenen, 144
1435 Theletc/passwd Fileoooiiiiiiiii e, 144
14.3.6 Theletc/group File ..o, 14-5
14.3.7 The/etclauth/system/pw_id map Fileccccooeiiiiniinnnnn, 14-5
14.3.8 The/etclauth/system/gr_id map Fileccooiiiiiiiininnnnnn, 14-5
14.3.9 The/shin/rc[023] FIES .oovviiviiiieiiee e, 14-5
14.3.10 The/deviconsole Filecccoooiiiiiiiiiiniiiiiiii e, 145
14.3.11 The/dev/pts* and /devitty* Filesccceviiiiiiiiiennnnnn. 14-5
14.3.12 The/shin/sulogin Filecoooviiiiiiii e, 14-5
14313 The/shin/sh File ..o 14-5
14.3.14 The/vmunixX File ... 146
14.4 Problems Logging In or Changing Passwordscccccccvvvveeennn. 14-6

Part 3: Programmer’s Guide to Security

15 Introduction for Programmers

151 Librariesand Header FileSccoooiiiiiiiiiiiiiee e 151
15.2 Standard Trusted System Directoriesccooeevvviiveveiiiiieeiineeeennn, 15-2
15.3 System Calls and Library Routines with Enhanced Security —.......... 15-3

1531 SystemM CallS oo 15-3

15.3.2 Library ROULINES oiiiiiiiieiii e 154
154 Defining the Trusted Computing Base cccoeevviiieviiiieeciiieeeeennn, 154
155 Protecting TCB FIlES .oovviiiiiieieee e, 155

Xii Contents

16

16.1
16.2
16.3
16.4
16.5
16.6
16.7

16.8

17

171
17.2

17.3
174
175
17.6
17.7

Trusted Programming Techniques
Writing SUID and SGID Programs cccvevveviiiiieieeeeeeeeeeee, 16-1
Handling ErrOrS iiii i 16-2
Protecting Permanent and Temporary Filesccceeiieiiineenennn, 16-2
Specifying a Secure Search Path ..., 16-3
Responding to SIgnalS cveeieieiee e 164
Using Open File Descriptors with Child Processes cocveee. 16-5
Security Concerns in a DECwindows Environment 16-5
16.7.1 Protect Keyboard InpUt ccoviiiiiiiiiiiie e, 16-5
16.7.2 Block Keyboard and Mouse Events —cocceveieveiinneennn. 166
16.7.3 Protect Device-Related EVENtS coovvvivieiiieiiiiiiieeeeeeeiiinn, 166
Protecting Shell SCripts ..ovvvveiiie e, 167

Authentication Database

Accessing the Databases ccovvvveiiiii i 17-1
Database COMPONENES ovveiiiiciie e e 17-2
1721 Databhase FOrmM ..o 172
17.2.2 Reading and Writing aDatabaseccccoeevvviiiiiiiiinneennnn. 17-3
17.2.21 Buffer Managementcccooeeviiiiiiiiiniee e, 174
17.2.2.2 Reading an Entry by Nameor IDccccoeeeeennn. 17-5
17.2.2.3 Reading Entries Sequentiallycccooeeviiiiiiennnnnn. 17-5
17.2.2.4 Using System Defaults ..o, 17-5
17225 Writing an ENtry ..o, 17-6
Device Assignment Database covvvevviiiiiiiiieeieeeii e 177
File Control Datalasecooooevveiiiiiiieiiiiiii e 17-8
System Default Databhase ccooevvviiiiiiiii e, 17-8
Protected Password Database coooeevveeviiiiiiieiceiiiin e 179
Terminal Control Database cooevvviiiieiiiiiiii e 179

Contents xiii

18 Identification and Authentication

18.1 New libsecurity Library ROULINES coovviiiieiiii e,
18.1.1 Changed Application Programming Interfaces
18.1.2 What to Do With Existing Programscccceeevviveeennnnnn.
18.1.3 What to Do For New Programscccoeevevveieviiinienennnnnn.

18.2 The AUdit ID .o

18.3 Identity Support Librariescccoovveiiiiiiiiiiiieee e,

184 USINg DAEMONS ..ovuiiiiiiiiceeie e e

185 Using the Protected Password Database cccooevvvviiieviineenennn,

18.6 Example: Password Expiration Program —..........cccooeveviiiieviineeeennn,

18.7 Password Handling ovieviiiiiiie e

19 Audit Record Generation

19.1 Categories of Auditable Eventsccoooeveiiiiiiiii e,
19.2 Generation of Audit RECOIAS coovviiiiiiiiiiiiiiii e
19.3 Disabling Auditing .ooeveiei s
19.4 Modifying Process Audit Attributes ccoeveiiiiiiieiiie e,
195 Audit Recordsand TOKENS uvuiiiiiiiiiiiiiiie e

1951 Public TOKENS oooviiiiiiiiiiiii e

1952 Private TOKENS .oovviiiiiiiiiiiiiiii e

19.6 Application-Specific Audit Recordsccooveviiiiiiiiiii e,

20 Using the SIA Interface

20.1 OVEIVIBW oottt e ettt e e e e e e e et eeaeeees
20.2 SIA LGYENNG covrieiiii e
20.3 System Initialization oiiiiii
20,4 LiDrariES .oeoiiiiiiei e

Xxiv Contents

181
181
183
183
183
184
184
185
187
188

191
191
192
192
193
194
195

19-6

205 Header FIlES oo 20-5

20.6 SIAENTITY SIUCIUIE ..ooiiiiiiieeeieeee et 206
20.7 Parameter COllECHION coooviiiiiieeeiiiiii e e 20-6
20.8 MantainNiNg StAE ccooiiiiiiiie e 207
20.9 RetUN VEAUES ..oooiiiiiiiieeieei e 20-8
20.20 AUIT LOGS ooiieeiiiieeeeeeee et e 20-8
20.11 Integrating Security MEChaniSMS ccoovviiiiiiiieeeiiiiiee e 209
20.12 SESSION PrOCESSING ...oeeiiieiiiiiieeeiieiiia e e et eeeei e e e e e e e eeees 20-10
20.12.1 Session INitialization ccoevviiiieeiiiiii e 20-15
20.12.2 Session AUthentiCation oviieeiiiiiiiine e 20-15
20.12.3 Session Establishment cooovviiiiiiiiiiiiieee e 20-16
20.12.4 SessSion LaunCh ...ccooeiiiiiiecieiei e 20-16
20.125 SesSonN RElE8SE coovviiiiiiiee 20-16
20.12.6 Specific SESSION ProCESSING .oevvvvvnneeeiieeiiiie e 20-16
20.12.6.1 Thelogin ProCeSScceviiiiiiiiiiiiiiiieeeeeeeiiinnnn 20-16

20.12.6.2 Thershd ProCESScccovvrriiiiieiiiiiiiiieie e 20-17

20.12.6.3 Therlogind ProCesscooeveveiieviiiiieieiii e 20-17

20.13 Changing Secure INfOrmation ouivieeiiiiiiiii e 20-17
20.13.1 Changing aUser'sPasswordcccccvviiinieeiienniinneenn. 20-17
20.13.2 Changing aUser’s Finger Informationccccccceeeenee. 2017
20.13.3 Changing aUser'sShell ... 20-18
20.14 Accessing Security INfOrmation coooeeiiiiiiiiiieeiiie e 20-18
20.14.1 Accessing /etc/passwd Information cooeeeiiiiiiiiineennn. 20-19
20.14.2 Accessing /etc/group Information ccooeiiiiiiiiiiinennn. 2019
20.15 Session Parameter Collection ovviiiieeiiiiiiiie e 20-19
20.16 Packaging Products for the SIA ..o 20-20
20.17 Security Mechanism-Dependent Interfacecccccvviiiieiinnnnns 20-20
20.18 SINgIe USEr MOOE oiiiiiiiiii et 2021

Contents xv

21

211
212
21.3
214

215
21.6

21.7
21.8

A

B

B.1
B.2

Programming With ACLs
INroduCtioN 10 ACLS eeeiiiiie et 21-1
Library ROULINES ..o 21-2
Discretionary ACCESS TEMIS ...iviviiieiiii e e e e 21-3
ACL Data Representations cocevvieviiiiieiiiiii e e eeaiaeeens 21-3
21.4.1 Working Storage Representation ccceeveeviiiiieiiiiinenns 214
21.4.2 DataPackage Representationccccovevviiiieeiiiiieeiiiiieees 214
21.4.3 External Representalion cc.cooveviiiiiiiiiiii e 21-6
DEfAUIt ACLS oo 21-6
ACL RUIES e 21-7
21.6.1 ODbject Creationc.viiiiiiieieeiie e 217
21.6.2 ACL RePlCationccovvviiieiiiiie e 217
21.6.3 ACL VaAIdity .ooevveeiiiiiiiiiiiiiieeee e 21-7
ACL Creation EXample cooviiiiiiiiieciie e 21-8
Imported and Exported Data cccooevviiiiiiiiiie e 21-10
21.8.1 Digital UNIX System to Same Digital UNIX System 21-10
21.8.2 Digital UNIX System to Another Digital UNIX System 21-10
21.8.3 Digital UNIX Systemto Othercooveviiiiiiiiiieeenen, 21-10
21.8.4 Other to Digital UNIX Systemccocevviviiiiiiieeciiceeeeien, 21-10
File Summary
Auditable Events and Aliases

Default Auditable Events File ..o, B-1
Sample Event Aliases File ooooviiiii e, B-3

xvi Contents

C Interoperating with and Migrating from ULTRIX
Systems

C. 1 Migration ISSUBS ...oiiiiiieeieie e e e e e eeees
C.11 Differenceinthe audgen System Call c..oceeiieeennnn.
C.1.2 Differencesin the audcntl Routineoovviivieiiviiinnnnnn.
C.1.3 Changesto the authaudit Routinesccccoeeviiiieeeennnn.
C.1.4 Differencein the Authentication Interfaces
C.15 Differencesin Password Encryptionccccooeviiiiieennnnn.
C.16 Trusted Path Unavailable on Digital UNIX
C.1.7 Secure Attention Key (SAK) Unavailable on Digital UNIX

C.2 Moving ULTRIX Authentication Files to Digital UNIX
C.21 Converting Shared Authentication Files
C.22 Converting Local Authentication Filesccccoeeeeeeen.
C.2.3 After Converting the Authentication Files

C.3 Audit Data Compatibilitycooveiiiiiiiiiii e

D Coding Examples

D.1 Source Code for Siareauth.C coooeeiiiiiiiiieeieeee e

D.2 Source Code for Sia-suauth.C cooevvviiiiiiieie e

E Symbol Preemption for SIA Routines

E.1 Overview of the Symbol Preemption Problem

E.2 TheDigital UNIX SOIULION ...

E.3 Replacing the Single-User Environment ccccccoeiiiieeiinnnnnnnn.

Glossary

C-1

C-1
C2
C-2
C-2
C2
C3

C3

C3

C3
CH4
CH4

C5

D-1
D-2

E-1
E-1
E-2

Contents xvii

Examples

7-1: USING SECSEIUD covvvneeiii i eeeei e ettt e e e e et e e e e e et e e e e e e eaan s 7-3
10-1: Using the audit_setup SCript coovviiiiiiii e, 104
10-2: Sample Active Auditing SESSION oeviviiieieei e 10-10
10-3: Sample /etc/seclauditd 1oC Filecooeveviiiiiiie e, 10-15
10-4: Layered Product Audit Recordcooiiiiiiiiiiiii e, 10-23
10-5: Audit Report for System Calls oooveviiiiiie e, 10-31
10-6: Audit Report for Trusted EVENES cocvvviiiiiiiiiece e, 10-32
10-7: Audit Report for Process IDS ...ovvviveviiiiicee e, 10-33
10-8: Abbreviated Audit REPOIiiiiiiiei e, 10-33
10-9: Abbreviated Audit Report with User Names cceveveeviiieenennn. 10-34
11-1: Enabling ACLS oo 11-3
11-2: Disabling ACLS ooiuieiii et 114
13-1: Default /etc/sialbsd_matrix.conf File cooeveiiiiiiiiiiee e, 13-3
13-2: Default /etc/siad OSFC2_matrix.conf Filecccoooveviiiiiiiiineeeenn, 13-3
13-3: Default /etc/sialdce_matrix.conf File ccooeveiiiiiiiiiice e, 134
13-4: Deleting a Layered Security Product cccooevviiiiiiiiiieeeeeeee, 13-6
18-1: Password EXpiration Programcceevveeiiiinieeiiin e, 18-7
19-1: PUBIIC TOKENS oot 194
19-2: Privale TOKENS ..ot 19-5
20-1: The SIAENTITY SHUCIUIE ..vvueiieieieiiiiie et 20-6
20-2: Typica Ivarfadm/sidlog Fileoooiiiiiiie e, 20-9
20-3: Session Processing Code ..ovvveviiiiiiei e 20-12
D-1: Reauthentication Programcoeveviiiiiiiiiii e D-1
D-2: Superuser Authentication Program —cccooeviveeiiiiieeeeiin e, D-2
E-1. Preempting Symbolsin Single-User Mode ocooviiiiviiiiieviieeeeeee, E-2

xviii Contents

Figures

9-1: NISand Enhanced SeCUrity coovevviiiieveiiiieecee e,
13-1: Security Integration Architectureccccoeeveviiiiienns
20-1 SIA Layering cooeveieeiieeeeee e
20-2: SIA Session ProCessing coccvvvevvveiieviiiie e

Tables

5-1: Example ACL ENtreS ..ooeveviiiiiii e
6-1: Potential System ThreatScocvvveviiiiieviiiiieece e,
6-2: Traditiona Administrative ROleSevvviiiiiiiiiiniene,
6-3: Protected SUDSYSEEMS ovvviiiicie e
9-1: NISpasswd File Overrides ccoovevviiiieviiiiieeciee e,
10-1: FilesUsed for Auditing ccovviveiiiiiieicie e,
10-2: Traditional UNIX Log Filesin /varfadm
10-3: System Calls Not Always Audited oocevviieiinnnnnnn.
15-1: Standard Trusted System Directoriescccoeeevevnnnnn..
15-2: Security-Relevant System Calls oooovviiiiiiiiiecie,
15-3: Security-Relevant Library Routinesccccoeeeevvennnn.
18-1: Changed Programming Interfacesccccoevvevininnenns
18-2: Changed Data StruCtureS ccoevvvvveiiiiiiieeeiie e

20-1: Security Sensitive Operating System Commands

20-2: SIA Mechanism-Independent Routines cc.........
20-3: SIA Mechanism-Dependent Routines —coccevvveeeen.
21-1: ACL Library ROULINES ...cccvviiieiiiiiecce e,
21-2: Discretionary ACCESS TEIMS ...ovvvvnieeiiiiieeeeiee e,
21-3: ACL Entry External Representationccccceeveeeeenn.
A-1: Trusted Computing Baseccooeevviiiiiiiiiiiiee e,

Contents xix

A-2: Files Not in Trusted Computing Base

xx Contents

About This Manual

This manual describes how to use, administer, and write programs for the
Digital UNIXDO operating system with the optional enhanced security subsets
installed. It also provides information about traditional UNIX security.

Audience

Part 1 is directed toward general users. It is not intended for users of secure
programs, because such programs typically hide the secure interface after the
login has been completed.

Part 2 is directed toward experienced system administrators and is not
appropriate for novice administrators. System administrators should be
familiar with security concepts and procedures.

Part 3 is intended for programmers who are modifying or creating security-
relevant programs (trusted programs) and anyone who modifies or adds to the
trusted computing base. Y ou should be familiar with programming in C on
UNIX systems.

New and Changed Features

This release of Digital UNIX adds access control lists (ACLs) to improve the
security capabilities of the operating system. Chapters in the User,
Administration, and Programming sections are added to document this new
feature. Several reference pages that document the ACL commands and
routines are also available on line. Usethe man —k acl command to get a
listing of the ACL-specific reference pages.

Object selection and deselection features are added to the audit subsystem.
See Section 10.3.2 for more information.

Several authentication programming interfaces are added and changed in this
release. The new APIs alow the authentication data structures to be
extended. See Section 18.1 for more information.

Organization

The manual is divided into three parts as follows:
Part 1. User's Guide to Security

This part describes the enhanced security features of the Digital UNIX
system that relate to the general user. It also includes general information
about connecting to other systems and using a windows environment.

Part 2: Administrator’s Guide to Security

This part explains concepts that are fundamental to administering a trusted
Digital UNIX operating system and describes tools and procedures for
administrative tasks. It is both task-oriented and conceptual .

Part 3: Programmer’s Guide to Security

This part describes the Digital UNIX security features to those who must
modify or add security-relevant programs (trusted programs). It presents
guidelines and practices for writing these programs and describes specific
Digital UNIX interfaces. This part also describes the use of the Digital
UNIX security facilities: system calls, libraries, and databases.

This manual has 21 chapters, 5 appendixes, a glossary, and an index:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

xxii About This Manual

Introduces the enhanced security features of the Digital
UNIX system from a user’s point of view and defines the
areas in which trusted Digital UNIX expands the
traditional UNIX system for security.

Describes how to log in to the system and change
passwords. It also discusses some common problems
associated with passwords and logging in and how to
avoid them.

Discusses the security risks and security procedures for
logging into remote systems. Protecting files from remote
copies is also discussed.

Discusses the DECwindows Motif features that enhance
the security of aworkstation. This chapter does not
explain how to use DECwindows.

Describes the ACL (access control lists) features of system
and how users can most effectively use them.

Defines atrusted system and security concepts fundamental
to system security. It also summarizes the trusted
administrative roles, protected subsystems, and security
databases.

Describes how to set up the security databases and
parameters for system operation and how to customize the

Chapter 8
Chapter 9

Chapter 10

Chapter 11
Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

system for your own site.
Describes how to create and modify secure terminals.

Describes how to use the Account Manager (or the
DECwindows dxaccount s) programs to create and
maintain accounts. It also describes the authentication
subsystem and centralized account management.

Describes the audit subsystem and how it is configured and
maintained. Summarizes audit record formats and presents
guidelines for effective and high-performance audit
administration. This chapter also summarizes the formats
of the records written to the audit trail by the audit
subsystem.

Describes the installation and administration of the ACLs
(access control lists) feature.

Describes the operations that check for system and
database integrity.

Describes the Security Integration Architecture (SIA) and
the associated mat ri x. conf files. The installation and
deletion of layered security products is also discussed.

Lists problems that can occur during system operation and
suggests resolutions.

Describes the approach to examples used throughout this
part and provides information about the trusted computing
base.

Provides specific techniques for designing trusted
programs, such as whether the program is to be a directly
executed command or a daemon.

Describes the structure of the authentication database and
the techniques for querying it.

Presents the various user and group identities of the Digital
UNIX operating system and how you should use them,
particularly the audit 1D that is not a part of traditional
UNIX systems. It also describes the contents of the
protected password database.

Presents guidelines for when trusted programs should
make entries in the audit logs and the mechanisms for
doing so.

Documents the Security Integration Architecture (SIA)
programming interfaces.

About This Manual xxiii

Chapter 21 This chapter provides the programmer with the information
needed to use ACLs (access control lists) in applications
that run on Digital UNIX.

Appendix A Lists the files provided in the system’s trusted computing
base (TCB).

Appendix B Contains the default auditable events
(/ et c/ sec/ audi t _event s) and the default audit-
event aliases (/ et c/ sec/ event _al i ases) files.

Appendix C Explains the issues encountered when moving applications
and accounts from ULTRIX systems to Digital UNIX
systems.

Appendix D Provides the programmer with extended coding examples

for trusted Digital UNIX systems.

Appendix E Explains the naming convention used to keep Digital
UNIX compliant with ANSI C.

Related Documentation

The following documents provide additional information about security
issues in the Digital UNIX system:

Command and Shell User’s Guide

Common Desktop Environment documentation
Installation Guide

System Administration

Programmer’s Guide

Reference Pages

The following are documents available from O’ Reilly and Associates, Inc.
that will help you understand security concepts and procedures.

Computer Security Basics
Practical UNIX Security

The following are reference documents available from the United States
Department of Defense that you may find useful:

Trusted Computer System Evaluation Criteria (TCSEC or Orange Book)
Password Management Guideline (Green Book)

A Guide to Understanding Audit in Trusted Systems

The following document may be of interest to users outside the U.S.

xxiv About This Manual

Information Technology Security Evaluation Criteria (ITSEC).

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code
General users G Blue

System and network administrators S Red
Programmers P Purple
Device driver writers D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader's Comments

Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

Y ou can send your comments in the following ways:
e Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y 32
* Internet electronic mail: r eaders_conment @k3. dec. com

A Reader’s Comment form is located on your system in the following
location:

/usr/ doc/ readers_conment . t xt
* Mail:

Digital Equipment Corporation

UEG Publications Manager

ZK03-3/Y 32

110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.

About This Manual xxv

The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

» Thefull title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

* The section numbers and page numbers of the information on which you
are commenting.

* Theversion of Digital UNIX that you are using.
» |If known, the type of processor that is running the Digital UNIX

software,

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions

This document uses the following typographic conventions:

cat (1)

Return

xxvi About This Manual

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.
Boldface type in interactive examples indicates typed user input.

Italic (danted) type indicates variable values, placeholders, and
function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat (1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

In an example, a key name enclosed in a box indicates that you
press that key.

Citrl/x

Alt x

Menu - Option -
Submenu Option

This symbol indicates that you hold down the first named key

while pressing the key or mouse button that follows the dlash. In

examples, this key combination is enclosed in a box (for example,
Ctrl/C).

Multiple key or mouse button names separated by spaces indicate
that you press and release each in sequence. In examples, each
key in the sequence is enclosed in abox (for example, Alt Q).

The right arrow indicates an abbreviated instruction for choosing
amenu option or submenu option. The following example means
pulldown the Modify menu, move the pointer to pull down the
Image submenu, and choose the Clear option:

Choose Modify - Image— Clear

About This Manual xxvii

Part 1: User’s Guide to Security

Introduction for Users 1

The Digital UNIX operating system is delivered with an enhanced security
optional subset. When this subset is installed and configured, the system is
referred to as atrusted system. The Digital UNIX enhanced security features
result in a trusted system designed to meet the C2 class of trust, as defined
by the Trusted Computer System Evaluation Criteria (TCSEC, also called the
Orange Book). The system also meets the F-C2 functional class as defined

in the Information Technology Security Evaluation Criteria (1TSEC).

Although many of the requirements for maintaining the security of the trusted
Digital UNIX system are the responsibility of your site's administrative staff,
you have a responsibility, as a user of the system, to help enforce the
discretionary controls provided by the system. This chapter explains system
capabilities and user responsibilities.

1.1 Enhanced Security Features

111

The Digital UNIX system without the enhanced security subset installed
provides traditional UNIX security, as described in the Digital UNIX
manuals. Traditional UNIX security at the user level consists of basic login
identification, authentication (password checking) and file permissions
(discretionary access controls (DAC)). The following sections describe how
enhanced security extends traditional security.

Login Control Enhancements

Enhanced security provides the following features for login control:

» Recording of the last terminal used for a successful login

» Recording of the time of the last successful login

» Recording of the time of the last unsuccessful login attempt

» Recording of the number of consecutive unsuccessful login attempts

» Recording of the terminal used for the last unsuccessful login attempt
» Automatic account lockout after a specified number of consecutive bad

access attempts

* A per-termina setting for the delay between consecutive login attempts,
and the maximum amount of time each attempt is allowed before being
declared afailed attempt

* A per-termina setting for the maximum consecutive failed login attempts
before locking any new accesses from that terminal

1.1.2 Password Enhancements
Enhanced security provides the following features for password control:
» Configurable maximum password length, up to 80 characters
» Configurable password lifetimes
* Variable minimum password length

» System-generated passwords that take the form of a pronounceable
password made up of meaningless syllables, an unpronounceable
password made up of random characters from the character set, or an
unpronounceable password made up of random letters from the alphabet
(al letters are from ASCII)

» Per-user password generation flags, which include the ability to require a
user to have a system-generated password

* Record of who (besides the user) last changed the user’s password
» Password usage history

1.1.3 Audit Subsystem

One of the most useful features of atrusted Digital UNIX system is that the
administrator can use the audit subsystem to hold users accountable for their
actions. The audit subsytem records every relevant security event that
happens on the system (for example, each file open, file creation, login, and
print job submitted).

Each action is also stamped with an immutable audit ID (AUID) of the user
who logged on, which allows all actions to be traced directly to a user. Users,
by request to the system administrator, can use the audit trail to help recreate
past events that affect the security of their accounts and data.

The audit feature is discussed in detail in Chapter 10.

1-2 Introduction for Users

1.2 How to Determine if Enhanced Security Is Installed
and Running

If you are not sure if the optional, enhanced-security features are installed on
your system, you can check as follows;
$ Is —I [usr/.smdb./ OSFC2SEC4??. | k

—rwWr—r— 1 root system 0 Nov 8 11:02 \
/usr/.smdb. / OSFC2SEC400. | k

The presence of the lock file (OSFC2SECA400. | k) indicates that the
enhanced security subset is installed (but not necessarily running) on your
system. If the subset is not installed, you will receive a‘‘not found'’
message.

To determine if the installed enhanced security is running on your system,
enter the following command:

$ /usr/sbin/rcngr get SECURI TY BASE
ENHANCED

If the string **“ENHANCED"’ is returned, enhanced security is running. If the
string *‘BASE’’ is returned, enhanced security is not running.

1.3 User Accountability

A trusted system holds all users accountable for the actions that they perform
on the system. When you log in, the system associates an audit ID (AUID)
with your processes; the AUID remains stamped on processes regardless of
the program being run. Even if you change your real or effective user 1D (for
example, by using su to become root or another user), the system still knows
which authenticated user caused a specific action based on the identity
recorded in the indelible AUID. Once stamped, the AUID cannot be
changed.

The system maintains an extensive authentication profile describing the
characteristics and capabilities of each user — for example, the particular login
restrictions on the user.

It is extremely difficult for an unauthorized user to break into atrusted
system because of the extra security features added to the login procedure. In
addition, in atrusted system you can more easily detect a penetration or
attempted penetration into your account. Note, however, that these additional
assurances are useless if you do not protect your password.

Introduction for Users 1-3

1.4 User Responsibilities

As a user of atrusted system, you must help protect the information that is
stored and processed on the system. Specifically, you must do the following:

» Guard your password to protect against unaccountable access to your
account.

» Apply strict discretionary access controls (file and directory permissions)
to protect your data from disclosure or destruction.

* Report all suspect activity to the ISSO, so that past events can be
analyzed through the audit trail.

A trusted Digital UNIX system provides tools and mechanisms that help the
system maintain the level of trust for which the system was designed. These
are described in subsequent chapters.

1-4 Introduction for Users

Getting Started 2

This chapter explains how to log in to the system and use password facilities.
Identification and Authentication (I and A) is the security term for al system
procedures affecting logging in, changing passwords, and logging out. These
procedures have been modified extensively in the trusted Digital UNIX
system, but these changes do not dramatically affect the way in which users
perform their work on the system.

Y ou should become familiar with the security functions and features of
trusted Digital UNIX so you can learn to recognize any attempted (or
successful) unauthorized use of your individual account or to the system in
general.

2.1 Logging In

The login procedure on a system running under trusted Digital UNIX is
similar to the procedure for nontrusted Digital UNIX systems. This section
describes the general process. Seethel ogi n(1) reference page for details.

On atrusted Digital UNIX system, you are occasionally required to change
your password by using the passwd program (see Section 2.2.3 for a
description of the circumstances). If you try to log in when your password
needs to be changed, the | ogi n program calls the passwd program as part
of the login procedure. You can also call passwd directly while you are
logged in, as you can on a nontrusted Digital UNIX system. Section 2.2 and
the passwd(1) reference page describe the process.

The following example is atypical login on atrusted system:

login: juanita
Password: <nonechoed password>

The system then displays the date and time of the last successful and
unsuccessful login:

211

2.1.2

Last successful login for juanita: dateandtime on tty03
Last unsuccessful login for juanita: dateandtime on tty03

Always check the successful and unsuccessful login information against your
activity on the system. Any discrepancy means that someone has attempted
to log in to your account (or did log in to your account). Report this activity
immediately to your information system security officer (1SSO).

If your password is about to expire, the system displays a warning:

Your password will expire on date and time

The I1SSO sets the warning interval on your system.

Authentication Profile

After a successful login, the system assigns the following attributes to your
login shell:

* Loginuser ID (AUID)

» Effective and real user IDs (EUID, RUID)
» Effective and real group IDs (EGID, RGID)
* Supplementary groups

Asyou log in, the system stamps your login process with an AUID. The
AUID identifies you in the system auditing records so that you can be held
accountable for your actions, as described in Section 1.1.3. The audit masks
are used to calculate user-specific audit record collection, as set in your
authentication profile. The other process identities serve the same purpose as
in nontrusted Digital UNIX systems.

Other Login Restrictions

An authorized user list can be created for a particular terminal. If such alist
exists, your user name must appear in the list or you cannot log in at that
terminal. In this case, the system displays the following message:

Not aut horized for term nal access--see System Admi ni strator

After a specified number of failed login attempts, the terminal can be locked.
This security precaution protects the system against break-in attempts by
limiting the number of times someone can try to log in from a given
terminal.

A terminal can aso be explicitly locked. If the terminal is locked, the system
displays the following message:

2-2 Getting Started

Terminal is disabled -- see Account Admi nistrator

Y our account can be disabled after a specified number of failed login
attempts. Like disabling aterminal, this security precaution protects the
system by limiting the number of times someone can try to guess your
password. Your account is also disabled automatically if your password
exceeds its lifetime.

Y our account can be explicitly locked. If your account is disabled, the
system displays the following message:

Account is disabled -- see Account Adm nistrator

If any of these messages appear when you try to log in, report the occurrence
to your administrative staff. If the terminal or your account has been disabled,
the ISSO has to enable it again before you can log in.

2.2 Setting Your Password

A trusted Digital UNIX system differs from a nontrusted system in the way
in which it generates and controls passwords. A number of options can be
selected to determine how passwords are created, issued, changed, and
revoked. These options control the following items and are discussed in
detail in later sections:

* Whether you can change your password under any circumstances.
* Whether you have previously used a specific password.
* Whether you can choose your own password. (Section 2.2.1.)

* What type of password the system generates for you if you cannot choose
your own. (Section 2.2.1.)

* When you are alowed to change your password and when you must
change your password. (Section 2.2.3.)

In the trusted system as in the untrusted system, the passwd command
changes passwords. The prompts this command displays and your interaction
with it, however, are different in the trusted system.

If you are not allowed to change your password and you try to run passwd,
the system displays the following message:

Password request deni ed.
Reason: you do not have any password changi ng opti ons.

In this case, you must contact your 1SSO and arrange to have your password
changed.

Getting Started 2—3

221

222

Choosing Your Own Password

If you are allowed to change your password, your account can be set up to
allow you to select your password or to have the system generate one. These
options determine the dialog the system starts when you invoke passwd.
First, the system prompts you for your current password:

ad password:

Typein your old password. If you type it correctly, the system displays
password change times:

Last successful password change for user: date and time
Last unsuccessful password change for user: dateandtime

Always check these dates and times. Although you might not remember
exactly when you last changed your password, you should at least be able to
decide if the times are reasonable.

The 1SSO can alow you to choose one or more of the following password
types for your account:

» System-generated random pronounceable syllables

» System-generated random characters, including punctuation marks and
digits

» System-generated random letters

* Your own choice

The following example shows the prompt when all possible options are
alowed:

Do you want (choose one letter only):
pronounceabl e passwords generated for you (g) ?
a string of characters generated (c) ?
a string of letters generated (l) ?
to pick your password (p) ?

Ent er choi ce here:

If you enter p, the system prompts for the new password twice to avoid
mistypings.

Choosing a System-Generated Password

The following example shows the dialog for a system-generated
pronounceable password:

2-4 Getting Started

2.2.3

Gener ati ng random pronounceabl e password for user.

The password, along with the hyphenated version, is shown.
Hit <RETURN> or <ENTER> until you like the choice.

Wien you have chosen the password you want, type it in.
Note: Type "quit" to abort at any tine.

Password: sagl enot Hyphenati on: sag-| e- not
Ent er password:

The hyphenated version is shown to help you pronounce the password so you
can remember it more easily. Y ou do not enter the hyphens. If you do not
like the first password, press Return to see another one. When the system
generates one that you want, enter it.

If you decide not to change your password, you can enter qui t or use your
interrupt character (typically Ctrl/C). The system displays the following

message:

Password cannot be changed.
Reason: user stopped program

The system also updates your last unsuccessful password change time.

The dialogue when you select one of the other system-generated password
typesis similar.

Understanding Password Aging

The system enforces a minimum change time, expiration time, and lifetime
for each password. Passwords cannot be changed until the minimum change
time has passed. This prevents you from changing your password and then
immediately changing it back so that you do not have to learn a new
password. If you try to change your password too soon, the system responds
with the following message:

Password cannot be changed.
Reason: mnimumtinme between changes has not el apsed.

A password is valid until its expiration time is reached. Once a password has
expired, you must change that password before the system allows you to log
in again. You will usually see a message at login time if your password is
about to expire. Y ou should change it when you see the message. If you are
logged out when your password expires, you can change it as part of the
login process when you next log in.

If the lifetime passes, the account is disabled. If you try to log into a
disabled account, the system displays an appropriate message. In this case,
you must ask your 1SSO to unlock your account, and you must change your
password when you next log in.

Getting Started 2-5

2.3 Using the su Command

The su command allows you to work on the system temporarily under the
user ID of another person. The su command starts a new shell process with
the effective and real user and group I1Ds of the other user. In the trusted
Digital UNIX system, the AUID is not changed through an su transition.
This means that all actions are accountable to the user who originally logged
in to the system, regardless of the number of su transitions, even through
root.

See the su(1) reference page for details.

2.4 Password Security Tips

The identification and authentication procedure described in the preceding
sections is one of the most important security tools the system uses to guard
against unauthorized access. Knowing a password and having physical
access to aterminal are all that an unauthorized user needs to gain accessto a
system.

Once such a user has logged on, he or she can steal data and corrupt the
system in subtle ways. The amount of damage a penetrator can do increases
as the account accessed has greater power on the system.

Remember, a penetrator’ s actions can be traced only to your account, and you
will be held accountable. It is your responsibility to ensure that your account
is not compromised.

Protect your password by following these guidelines:
» Never share your password.

When you tell someone your password and let them log in to your
account, the system loses its ability to hold individual users accountable
for their own actions.

* Do not write down your password.

Many system penetrations occur simply because a user wrote his or her
password on aterminal. If a password must be recorded, keep it under
lock and key.

» Never use an old password again.
This increases the probability that someone can guess the password.
* Never type a password while someone is watching.
It is possible to steal a password simply by watching someone type it.

2-6 Getting Started

Be especially careful if you are using a workstation in a public area.

* If you are allowed to choose your own password, choose your password
wisealy:
— Select passwords that are hard to guess.

— Never use an ordinary word or a proper name, your spouse’s, child’s,
or pet’s name, your birthday, your address, or a machine name, even
if these words are specified backward, permuted in some other way,
or have a number added to the front or back.

— Always choose a password that contains some numbers or special
characters. Always select different passwords for different machines,
but never use the name of the machine, even permuted.

Your ISSO can set defaults for your site that perform automatic checks
on passwords you specify.

Although these procedures add a small amount of effort to your login, they
help to avoid system compromise.

2.5 Login and Logout Security Tips

In addition to following the password security tips, follow these login and
logout guidelines:

» Check the system login and logout messages.

When you log in, carefully check the reported last login and logout times
to make sure they match what you remember as the last time you logged
in and out. Make specia note of login attempts during the time that you
normally do not log in to the system. Report any discrepancies
immediately to your |SSO so he or she can analyze the audit trail for the
attempted penetration.

* Never leave your terminal unattended.

Remember, someone who can run a program under your identity can
cause great damage. It is much easier for a malicious user to take
advantage of an unattended terminal than to coerce you into running a
trojan horse program.

Getting Started 2—7

* Analyze unsuccessful login attempts.

Note any login attempts where you thought you entered the correct
password but the system reported it as incorrect, especialy if you then
log in successfully. If the time reported for the last unsuccessful login is
not close to the current time, you might have typed your password into a
login spoofing program, and someone may now know your password.
Either change it immediately (if you are allowed to do so), or arrange
with the ISSO to have it changed.

2.6 Problem Solving

The trusted Digital UNIX’s mechanisms may be somewhat unfamiliar if you
are accustomed to a nontrusted Digital UNIX system. If you are a new user,
the extra complexity added to satisfy security requirements may create
additional confusion.

The following sections provide a guide to common situations that cause users
problems. Each description of a potential problem and its suggested solution
should give you greater understanding of the security features that are
exhibiting unexpected behavior.

2.6.1 Passwords

The trusted Digital UNIX system enforces two modes of password
expiration:

» A password expires if its expiration time is reached. If your password
expires, you must change it or arrange to have it changed (if the ISSO has
not given you password change authorization) before logging into the
system again. The system will not allow you to log in until your
password is successfully changed.

* Your password dies if its lifetime is exceeded. In this case, your account
is locked; only the ISSO can unlock your account. You must change
your password before using the system again after the ISSO unlocks it.

Recall that the system warns you at login time that your password is about to
expire. In this case, you should use the passwd command to change it
before you log out. If your password expires while you are logged out, the

I ogi n command calls passwd during the login process. See the |l ogi n(1)
and passwd(1) reference pages and Chapter 2.

The system also warns you if your password was changed by another user
since you last logged in successfully. This message is to be expected if you
cannot change your own password and the ISSO has changed it for you. If
this message appears when you do not expect it, see your |SSO.

2-8 Getting Started

2.6.2

2.6.3

Background Jobs

If you are accessing the system from a character-mode terminal, the get t y
command opens the st di n, st dout , and st der r file pointers to reference
the terminal character device file. Programs that manage to survive the user’s
logout can still access the terminal because its file descriptors are retained.
This is an open opportunity for login spoofing programs, because a
background program can read the terminal file descriptor and it will be given
some of the characters that are also requested by theget ty and | ogi n
programs for the new user session.

The Digital UNIX system invalidates all terminal file descriptors after logout.
If aprogram tries to access the login terminal after logout, the access fails.
One impact of this feature occurs when you areusing wri t e to
communicate with another user, and that user logs out or the terminal is
disconnected. The next message that you try to send causeswr i t e to exit
with an error message, because it no longer has access to the other terminal.

Background jobs can be left running after you have logged out. If these jobs
attempt to write to aterminal using thewr i t e() system call after logout,
they receive a hangup signal, and the write fails. The behavior of the
program depends on how it handles that error condition.

Sticky Directories

One of the UNIX permission bits is called the ‘“sticky bit.”” In older UNIX
systems, the sticky bit was set on executable files so that the system retained
the program text in the swap area even after there were no active references
to the program. This behavior was useful for some earlier computer
architectures. On these early systems, the sticky bit for directories had no
meaning.

Nontrusted Digital UNIX systems, trusted Digital UNIX systems, and some
other recent UNIX variants use the sticky bit on directories to control a
possible security hole.

Many commands use standard directoriessuch as/tnp and/ var / t np to
store temporary files. These directories are readable and writable by everyone
so that al users can create and remove their own files in the temporary
directories. Because the directories are writable, however, users can also
remove other users’ temporary files, regardless of the protection on the file
itself.

Setting the sticky bit changes the semantics for writable directories. When the
sticky bit is set, only the superuser or the owner of a process with the
appropriate privilege can remove a file. Other users cannot remove files from
such directories.

Getting Started 2-9

26.4

2.6.5

If you cannot remove afile from a directory to which you have discretionary
write access, check the file's owner and the directory’s sticky bit. The sticky
bitisonif | s reportsat in the execute bit for othersin along listing. For
example:

$Is —ld /sticky
drwxrwxrwt 11 bin bin 1904 Jan 24 21:56 /sticky

The administrator typically places the sticky bit on all public directories
because these directories can be written by any user. These include the
following directories:

e /tnp
e Jvar/tnmp
e /[var/preserve

Most systems combine the sticky directory approach with a policy of
specifying restrictive umask values (for example, 077) for user accounts. In
this case, temporary files are created as private files, which prevents users
from altering or replacing files in shared directories. The user can determine
only the file's name and attributes.

The trusted Digital UNIX system default umask is 077. If unauthorized
users try to access such afile, they will only be able to link the file from the
temporary directory into a private directory, but will not be able to read the
file even if a private copy can be saved.

Many systems create temporary directories as private file systems that do not
alow links to user directory hierarchies.

SUID/SGID Clearing

Trusted Digital UNIX clears the following permission bits whenever it writes
afile

e Set user ID on execution (SUID)
e Set group ID on execution (SGID)

Be sure to restore these attributes when replacing a program.

If You Cannot Log In

There are a number of reasons why a login attempt can fail on a trusted
Digital UNIX system. Thel ogi n program usually prints an informative

message.
Mistyping the information required to log in is the most common reason for

not being able to log in. When you do this, the system displays the
following message and prompts you to enter your user name and your

2-10 Getting Started

password:

Logi n incorrect

Try to log in again. The system limits the number of times you can enter an
incorrect user name and password combination (see Section 2.1.2). If you
exceed this limit, the system disables your account. |f you forget your
password, see your 1SSO.

Most of the other reasons that you might not be able to log in are described
in Section 2.1.2. The following list summarizes the reasons and explains
what you should do:

The terminal is disabled. See your ISSO, who must unlock the terminal
before anyone can log in from it. If the terminal you normally log in from
has been disabled, someone might have tried to break into the system
from that terminal.

Your name is not on the list of authorized users for the terminal. See
your [SSO.

Your account is disabled. See your I|SSO to have your account unlocked.
Y our account might be disabled because you (or someone attempting to
break in) have made too many unsuccessful login attempts. The account
might also be disabled by the 1SSO.

Y our password has expired. See your 1SSO to have your account
unlocked. Y ou can change your password during the next log in.

In general, you should see your ISSO immediately if your account has been
disabled or if anything unexpected happens when you try to log in.

Getting Started 2-11

Connecting to Other Systems 3

By connecting systems to each other, users have greater access to
information; however, such connections also increase the security risks for
each system. Responsible network security alows users some freedom,
while protecting valuable files from unauthorized users.

Although the system administrator is responsible for most network security
issues, individual users must be alert to security risks that affect their
accounts and files.

The following networking protocols enable Digital UNIX users to
communicate with other users on remote systems:

» Internet protocols (TCP/IP)

* Loca AreaTransport (LAT)

» The UUCP utility

» DECnet

Each protocol has its own scheme for handling communication between
systems on a network. This chapter describes the security risks in using

commands that connect to other systems using each of these protocols, and
offers suggestions for minimizing those risks.

3.1 The TCP/IP Commands

3.1.1

The TCP/IP protocols are the most commonly used networking protocols
running under Digital UNIX software. With TCP/IP, much of the network
access to the computer is in the hands of users. The TCP/IP remote
commands are described in the following sections.

The rlogin, rcp, and rsh Commands
The following commands enable you to communicate with remote systems:

rlogin Letsyoulogintoaremote system. This command connects
your terminal on the local host system to another login session
either on a remote system or on the local host system. For more
information, see ther | ogi n(1) reference page.

3.1.2

3.1.3

rcp Lets you copy files to and from remote systems. For more
information, see the r cp(1) reference page.

rsh Lets you connect to a specified host and execute a command on
the remote host. This command is a conduit to the remote
command, passing it your input for processing and returning to
you its output and any error messages that it generated. For
more information, see the r sh(1) reference page.

A security risk inusing ther | ogi n, r cp, and r sh commands liesin the
network files/ et ¢/ host s. equi v and . r host s, which these commands
check before connecting to a remote system.

The hosts.equiv File

The/ et ¢/ host s. equi v file contains alist of host systems that are
equivalent to your local host system. Users on equivalent hosts can log in to
their accounts on the local host without typing a password. The user name
on the remote and local host must be identical.

Equivalent hosts can be remote hosts or the local host. If the local host is
listed inthe/ et ¢/ host s. equi v file, userslogged in to the local host can
remotely log in to their own accounts on the local host, without typing a
password.

For security reasons, the/ et ¢/ host s. equi v file does not allow a
superuser logged in on aremote system to log in to the local host without
typing a password.

Becausethe/ et ¢/ host s. equi v file is a remote system’s access key to
your system, security-conscious system administrators leave this file empty or
carefully restrict accessto systems.

If the/ et c/ host s. equi v fileis empty, the only way a user on a remote
host can log in to your account on the local host without typing a password is
if the user’s name s listed in your . r host s file.

For more information, see the host s. equi v(4) reference page.

The .rhosts File

The most common use of the $HOVE/ . r host s file is to simplify remote
logins between multiple accounts owned by the same user. If you have
active accounts on more than one system, you may need to copy files from
one account to the other or remotely log in to one account from the other.
The. r host s fileisideally suited to this type of use.

The $HOVE/ . r host s fileisalist of equivalent hosts that users can create
in their home directories. Thisfile is the user counterpart of the
/ et c/ host s. equi v file, athough it has a narrower focus than its

3-2 Connecting to Other Systems

systemwide counterpart. The/ et ¢/ host s. equi v file can affect the
accounts of many users on asystem. The. r host s file affects only the
individual user’s account.

Your . r host s file also enables users with your user name on equivalent
hosts to log in to your account on the local host, without typing a password.
Users must have a. r host s file in their home directory.

Note

Equivalent hosts can be remote hosts or the local host. If the
local host islisted in your . r host s file, users with your user
name, logged in to the local host, can remotely log in to your
account on the local host, without typing a password. Including
the local host in your . r host s file enables you to remotely log
in to your account and start a new session on the local host.

If you list another user’s name next to the host namein your . r host s file,
that user can log in to your account on the local host; the remote user does
not need an account on the local host or a. r host s filein his or her home
directory on the remote host. For example, the following entry in Peter’'s

. rhost s file alows Paul to log in from r ook as Peter without typing a
password:

r ook paul

Your . r host s file can expand the access that the / et ¢/ host s. equi v
file grants to your account, but it cannot restrict that access. When a user
executesther | ogi n, rcp, or r sh command, that user’s. r host s fileis
appended to the/ et ¢/ host s. equi v file for permission checking. The
entries in the combined files are checked in sequence, one entry at a time.
When the system finds an entry that grants access to the user, it stops
looking. Theentriesin the/ et ¢/ host s. equi v file are checked before
the entriesin the . r host s file are checked. However, when the user is
root, only the. r host s file is checked.

If your security administrator excludes a host from the

/ et c/ host s. equi v file, then all users on that host are excluded. If you
include that host in your . r host s file, then users on that host are
considered trusted and can log in to your account without entering a
password. The converseis not true. If your system administrator includes a
host inthe/ et ¢/ host s. equi v file, you cannot exclude users on that host
from accessing your account. If you put a remote host and a user in the

/ et c/ host s. equi v file, that user on the remote host has access to all
nonroot accounts on your host.

Connecting to Other Systems 3-3

3.1.4 The ftp Command

3.1.5

3.16

Thef t p command enables you to transfer files to and from a remote host,
using the Internet standard File Transfer Protocol. In autologin mode, f t p
checksthe . netr c filein your home directory for an entry describing an
account on the remote host. If no entry exists, f t p uses your login name on
the local host as your user name on the remote host, and prompts for a
password and, optionally, an account for login. Because your f t p login to a
remote system is in essence a remote login to that system, you have the same
accessto files asif you, rather than f t p, had actually logged in. For more
information, see the f t p(1) reference page.

A security risk inusing f t p is the practice of creating the anonynous
account, a generic account that the f t p command recognizes. The
anonynous account usually has a commonly known password or no
password, and it allows users to log in and transfer files to or from your
system from a remote system with no audit trail. System administrators
concerned with network security often avoid creating such anonymous
accounts or carefully restrict which files can be copied or written.

Y ou should know and follow the security policy on using f t p for file
transfers to remote systems. Talk to your system administrator about the
security controls at your system.

The tftp Command

Thet f t p command provides an interface to the Internet standard Trivial
File Transfer Protocol. Liketheft p command, this command enables you
to transfer files to and from aremote network site. However, thet ft p
command does not request a password when you attempt to transfer files.
Therefore, any user who can log in to a system on the network can access
remote files with read and write permission for ot her . Becausethetftp
protocol does not validate user login information, setting proper permissions
on your files is the only real protection from unauthorized access.

Thet ft p command is shipped on the system but is turned off by default.
To protect your system, avoid using t f t p, if possible, or limit the
directoriesthat t f t p can access.

Remote Connection Security Tips

Follow these guidelines to protect your files against attack through the
rlogin,rcp, andrsh commands:

* Check your file permissions. Y our home directory should deny all access
to other, and write access to group. The permissions on the command
and configuration files, such as. profil e, .l ogin,.| ogout,
.cshrc, and. f orwar d, should deny all accessto group and other.

3—4 Connecting to Other Systems

For example, use the chnmod command to change the protections on
those files from your home directory, as follows:

$ chrmod 750 $HOMVE
$ chnod 600 .profile .login .logout .cshrc .forward

If you do along listing of your home directory, your file protections
should look like these:

$Is -al
drwxr-x--- 9 fields 512 Jun 13 11:46 .
SPWe - - - - 1 fields 419 Jun 2 08:28 .login

Use the chimod command to set the permissions on your . r host s file
to 600.

The Command and Shell User’s Guide discusses protecting your files and
directories.

* Includeinthe. r host s file only the current remote hosts from which
you would like to issue remote commands. It iswiseto list only hosts on
which you have accounts. If you are unsure about which hosts to include
in this file, check with your system administrator.

* You should be the owner of your . r host s file, and it must not be a
symbolic link to another file.

3.2 LAT Commands

Y our system administrator can increase the security of the LAT (Local Area
Transport) protocol service by configuring LAT groups of hosts that can
communicate only with each other or through specified terminals. A host can
be set up to listen for connections from certain groups of terminal servers,
while ignoring connections to all other LAT servers. For more information
on using the LAT protocol, see the | at cp(8) reference page.

3.3 The UUCP Utility

The UUCP utility is a group of programs that enable you to connect to
remote systems using a modem and telephone lines. The UUCP utility,
which is available on most UNIX systems, enables you to transfer files
between remote systems and the Digital UNIX operating system. In addition,
your system can use UUCP to send and receive mail across telephone lines.

Several UUCP commands can present security concerns:
e uucp

Connecting to Other Systems 3-5

3.3.1

3.3.2

¢ uuXx

The uucp Command
The uucp command is the main interface to the UUCP utility.

The UUCP utility enables users on remote systems to access those files and
directories for which the system administrator has granted permission. The
uucp command allows any user to execute any command and copy any file
that is readable or writable by a UUCP login user. Individual sites should be
aware of this potentia security risk and apply any necessary protections.

Y our system administrator exercises certain security measures when installing
and setting up the UUCP utility. However, it is important for you to take the
following actions to protect against unauthorized use of this powerful utility
through the uucp command:

* Create adirectory in your account for UUCP. Use only this directory for
all UUCP transactions.

* Usethe chnmod command to set the sticky bit on the UUCP directory.
When the sticky bit is set on a directory, only r oot or the owner of a
file can remove files from the directory. While you are operating under
UUCP, you will not be able to remove those files while the sticky bit is
set, and you may have a disk space problem. If this happens, remove the
sticky bit from your directory and remove the excess files. The following
example sets the sticky bit on the docunent s directory:

$ chnod 1777 docunents

e Until you set up a separate UUCP directory, always copy files to or from
the/ usr/ spool / uucppubl i c directory.

For more information on setting the sticky bit, see the chnmod(2) reference
page. For more information on the UUCP utility, see the uucp(1) reference

page.

The tip and cu Commands

Theti p and cu commands enable you to call another system, log in, and
execute commands while you are still logged in to your original system. The
ti p and cu commands are two different interfaces to the same program.
The cu program allows you to be logged in on both systems at the same
time, executing commands on either one without dropping the
communications link. Thet i p command connects you to a remote system
and allows you to work on the remote system as if logged in directly. You

3-6 Connecting to Other Systems

3.3.3

need only tell ti p or cu what telephone number to call.

The following example shows a session using the cu command:

$ cu 4783939

connect ed

| ogi n:

A security concern about using thet i p and cu commands is that everything
you type is read by the command and passed to the remote system. This can
be dangerous if the remote system is not a trusted system. A trojan horse
version of cu, for example, could store your login name and password on a
remote system. Follow these general security guidelines for using commands
that start remote sessions:

* Be sure that the program you are using is the authentic program. Do not
use aterminal that seems already to be running t i p or cu; reinvoke the
command using the full path.

* Do not use an automatic login procedure, such as sending your remote
password from afile on the local computer.

» If you are capturing the session transcript into alocal file, begin the
capture only after completing remote login. Capture only the data you
need; avoid capturing the dialogue you used to obtain the data.

» Avoid leaving your terminal or using your terminal for other things while
aremote session isin progress. |If your connection with the remote
system is broken, immediately reestablish contact. Using the ps —e
command, check to seeif your first session left any processes suspended
and kill those processes with theki | | —9 command.

For more information, seethet i p(1) and cu() reference pages.

The uux Command

The uux command runs a specified command on a specified system while
enabling you to continue working on the local system. The command gathers
various files from the designated systems, if necessary. It then runs a
specified command on a designated system. Users can direct the output from
the command to a specified file on the designated system. For security
reasons, many installations permit uux to run only ther mai | command.

Connecting to Other Systems 3-7

See the uux (1) reference page for more information.

3.4 Thedlogin, dls, and dcp Commands

If DECnet isinstalled on your system, you can use the following DECnet
commands to communicate with remote systems running the DECnet

protocol:
e dlogin
e dls
 dcp

Y our system administrator can increase DECnet security on your system by
not creating a generic guest account for remote DECnet connections.
Without this default user account, remote users must specify a valid user
name and password either on the command line or interactively. For
example, to copy afile from one system to a remote UNIX system without a
default user account, you would have to type the following command:

$ dcp localfile remnode/remuser::/rempath/file
Password for rem node/remuser:: ?:

If you are connecting to a remote system that has no default user account,
you should not include the password information in the command. If you do
not specify a password, you will be prompted for one. This provides more
security because some shells (for example, the C shell) can maintain a history
file. If you keep a history file and enter your password in clear text on a
command line, the password is stored in the history file.

3-8 Connecting to Other Systems

DECwindows Environment 4

This chapter discusses DECwindows environment features that improve the
security of aworkstation.

4.1 External Access to Your Display

When you log in to a workstation and create a session, your workstation
determines which hosts are authorized to accessits display. Every user who
can log in to an authorized host has the following kinds of access to your
workstation:

Read

Users can read the contents of one or more windows on your workstation.
When you press a key on your keyboard a character representing the key
appears on your workstation screen. Thus, you can see what you type on
your screen. Any user on a host that is authorized to access your display
could divert your keystrokes to another workstation display. An
unscrupulous user could capture and display keystrokes (including your
password) on another system.

Write

Users on authorized hosts can send simulated keystrokes to your
workstation display. Your workstation software treats the keystrokes the
same whether you type them from your keyboard or an application
program sends them. Users on authorized hosts can send commands to
your workstation — and every command is executed under your user
login and password. For example, any user on an authorized host could
delete all the files in your home directory tree.

Copy

Users on authorized hosts can capture a snapshot of any one of your
windows or your entire workstation screen, without your knowledge.
This snapshot is a static picture of the contents of your display. In
general, if you can see it on your display, any user on an authorized host
can see the same thing.

4.2 Controlling Network Access to Your Workstation

Controlling access to your workstation display is the key to creating a secure
workstation environment. Y our workstation keeps an access control list
(ACL), which names the hosts on a network that can accessits display. This
list is a combination of a system list that your security administrator creates
and a persona workstation list that you create.

Remember that hosts that are authorized to access your workstation display
can read it, write it, and copy it at any time. Restricting access is the only
way to prevent users from taking a snapshot of the contents of your
workstation display.

There are three ways to designate which hosts can access your workstation
display:

e The system ACL

* The workstation ACL

e The X authority file utility

4.2.1 System Access Control List

Y our security administrator can authorize a host to access a workstation’s
display by adding the host name to a systemwide authorization file called

[etc/ X*. hosts. The asterisk (*) refers to the number of the workstation
display that the hosts listed in the file can access. The standard display
number is O (zero). Hosts that are not listed in this file cannot access your
workstation display. When shipped with your system, the/ et ¢/ X*. host s
file is empty, which means that only your workstation (the local host) can
access its display.

4.2.2 Workstation Access Control List

Y our workstation ACL can allow hosts access to your workstation display
even though the system ACL does not. You can thus explicitly authorize
other users or yourself, when you are logged in from another host, to display
DECwindows applications and programs on your workstation.

Allowing remote systems to access your account on a workstation is a
security concern. Check with your security administrator before authorizing
additional hosts to use your workstation display.

Take the following steps to authorize other users to use your workstation
display:

4—2 DECwindows Environment

4.2.3

1. Select the Session Manager window.

2. Select the Security... option from the Options menu. The Security
Options box is displayed on the screen. Type the host name you want to
authorize.

3. Click on the Add button. The host name is added to the Authorized hosts
box.

4. Click onthe OK or Apply button.

To remove a host name for the current session:
1. Click on the name you want to remove.

2. Click on the Remove button.

3. Click on the OK or Apply button.

Users logged in to the host you remove will no longer have access to your
workstation for this session. However, the system ACL is checked each time
you start asession. Thus, removing a host is temporary if the host is listed
inthe/ et c/ X*. host s file.

Storing the Workstation Access Control List

The changes you make to your workstation ACL remain in effect only for the
current session unless you save them. Y ou can save the changes you make
during a session from the Customize menu in the Session Manager window.
When you save the changes you make during a session, the hosts listed in the
Customize Security box are stored in afile called . Xdef aul t s, in your
home directory. Each time you start a new session, the workstation checks
the/ et ¢/ X*. host s system file aswell asthe . Xdef aul t s fileto
determine its ACL.

Any user who can edit the . Xdef aul t s file could modify the ACL for
your workstation display. If that happens, the new list of authorized hosts
would become effective the next time you start a session.

Therefore, check your file permissions. Y our home directory should deny
read, write, and execute access to other, and write access to group. The
permissions on the . Xdef aul t s file should deny all access to group and
other. Use the chnod command to change the permissions:

$ chnod 750 $HOVE
$ chnod 600 . Xdefaults

DECwindows Environment 4-3

4.2.4 Using the X Authority File Utility

The xaut h program allows you to run client applications on other
workstations that do not share their home directory. You use the xaut h
program to edit and display the authorization information used in connecting
to the X server. You usualy use this program to extract authorization
records from one machine and merge them in on another (asis the case when
using remote logins or granting access to other users). Note that this
program does not contact the X server.

Using X authority file utility is the recommended method of securing your
workstation. For more information, see the xaut h(1X) reference page and
the X Window System Environment manual.

4.3 Protecting Keyboard Input

DECwindows includes a secure keyboard mode that directs everything you
type on the workstation keyboard to a single, secure window. All keyboard
input is directed to the secure window, even if you have selected another
window for input focus. In secure keyboard mode, keyboard input is read
only by the application that created the window.

Secure keyboard mode is useful for protecting sensitive information, like
your password, because it prevents users from running applications that

might capture your keystrokes. Setting secure keyboard mode in a window
prevents users on hosts that are authorized to access your workstation display
from reading any keyboard input from that window. For example, if you have
aroot account on your workstation, always set secure keyboard mode before
using su and typing your root password. You can set secure keyboard mode
by selecting the Secure Keyboard item from the Commands menu in a
DECterm window.

If hosts are authorized to access your workstation display, users on those
hosts can till copy the contents of your display at any time. When you use
the su or passwd command and type your password, the password does not
appear on the screen. Therefore, a static copy of your display will not reveal
your password. A static copy could, however, revea the contents of a
sensitive file displayed on your screen. If you are working on sensitive files,
do not authorize any host to access your display.

After you select the Secure Keyboard item, the window appearsin reverse
video, and the toggle button next to the Secure Keyboard item appears
highlighted to indicate that security mode has been set.

When you change a secure window to an icon, the secure keyboard mode is
turned off. If you want security to be on, you must turn it on again when
you change your icon back to a window.

4—4 DECwindows Environment

Y ou can create only one secure window at atime. If you try to create a
second secure window, you will hear a beep, reminding you that secure
keyboard mode has been set for another window. If you hear a beep when
you try to set secure keyboard mode, but have not set that mode in any other
window on your screen, some other application must have set the mode. If
this happens, check with your security administrator to find out which
application may have set this mode.

4.4 Blocking Keyboard and Mouse Information

By default, DECterm windows block keyboard and mouse information sent
from another computer. This means that users on another system cannot
send simulated keystrokes or mouse clicks to your workstation. This security
feature prevents unauthorized users from sending potentially destructive
commands to your workstation when it isidle.

The ability of a DECterm window to block information sent from another
host is set by aresource called al | owSendEvent s, which is set to FALSE
inthe . Xdef aul t s file. Each time you begin a session, DECwindows
uses the values in this file to control the appearance and other characteristics
of window displays on your workstation.

The following example shows aline in the . Xdef aul t s file that sets the
al | owSendEvent s resource FALSE, thus blocking users logged in to
other host systems from sending keyboard or mouse information to any
window that you create.

Dxt erntal | owSendEvents: false

Leavethe al | owSendEvent s value set to FALSE to prevent unauthorized
users from sending input into your DECterm window and executing
commands under your user name.

An application that opens its own window (hot a DECterm window) might
not block simulated keystrokes from your display. Therefore, if you are
running such an application, check your ACL and remove any hosts that are
authorized to access your display before working on sensitive files. If you
must authorize a host to access your display (for example, to run a remote
application), remember to set secure keyboard mode before using the
passwd or su commands and typing your password.

4.5 Pausing Your Workstation

In a DECwindows environment, you can pause your current session. This
locks your workstation without ending your session. Your screen is cleared,
and the system displays the Pause screen. Y ou can resume your session any
time without recreating your screen environment.

DECwindows Environment 4-5

To put your current session on hold, choose the Pause menu item from the
Session menu. Your screen is cleared and the Continue Session box is
displayed. To continue your session,: type your password then click on the
OK button or press Return.

Once your password is verified, your session resumes.

4.6 Workstation Physical Security

Workstations present security problems because they are typically found in
ordinary offices, rather than the more easily protected environment of the
computer room.

It is possible for someone who gains access to a workstation to get superuser
status on that system and consequently on other systems. One method is to
boot the system into single user mode.

If your office has a locking door, lock the door when you are away from your
system.

Y ou must also protect your removable media, such as tape cartridges and

floppy disks by locking up all floppy disks and tape cartridges when they are
not in use.

4—6 DECwindows Environment

Using ACLs 5

This chapter describes the access control list (ACL) features of the system
and explains how to use them effectively. It also describes the structure of
ACLs and the methods used to create and maintain them.

The Digital UNIX ACLs are based on the POSIX P1003.6 Draft 13 standard.
The ACL API (Application Programming Interface) may change as the
P1003.6 standard is finalized.

5.1 Traditional Discretionary Access Control

Discretionary access control (DAC) is a means of restricting access to objects
based on the access permissions attached to the objects. The controls are
discretionary in the sense that a subject with a certain access permission is
capable of passing that permission (perhaps indirectly) on to any other
subject. If you own afile, for example, you can allow other users to read it
or write to it by changing its access permissions.

The untrusted Digital UNIX file protection model, although simple and
effective, does not meet the DAC requirements for trusted systems. Many
environments require more granular control over file access than that
provided by the Digital UNIX discretionary protection.

See the Command and Shell User’s Guide for a complete description of
discretionary access control.

5.2 An Overview of ACLs

To provide access granularity down to a single user, Digital UNIX objects
can be configured with an optional attribute called the Access Control List
(ACL). An ACL can be associated with any file or directory on systems with
file systems that support property lists. An ACL allows users to specify
exactly how they want their files protected.

To allow maximum protection of files, an ACL extends the traditional
protection scheme in three ways:

* With separate access control specifications for each user and group. Each
entry in an ACL identifies an individual user or group and associates
permissions with the user or group identified.

* By limiting the permissions that can be granted to individually specified
users and groups.

* By alowing all user and group permissions to be automatically specified
upon object creation. If directory hierarchies are maintained on a per-
project basis, it can be useful to establish different access controls at the
directory level. You can define a default ACL for adirectory, and it is
inherited by files and subdirectories when they are created.

The following commands display and modify ACLSs:

set acl Changes the ACLs on files and directories.
get acl Lists the ACLs on files and directories.

These commands are used in examples later in this chapter. Refer to the
set acl (1) and get acl (1) reference pages for more detailed information.
The acl (4) reference page aso contains useful information about ACLS.

5.3 States of the ACL System

The system administrator can enable and disable the ACL subsystem on your
machine. When the ACL subsystem is enabled, the full functionality of
ACLsis available and ACL access checking is enforced (where appropriate).

If ACLs aredisabled, you can still set and retrieve ACLs on file system
objects and the library interfaces are still present. However, the following
five ACL features are only available when ACLSs are enabled:

* Inheritance

» Access checking

e Vadidation of ACLs being set
e Caching of ACL attributes
 ACL and chnod interactions

See your system administrator to determine if ACLs are enabled on your
system.

5.4 Setting an ACL

Setting an ACL is accomplished using the set acl command. The file must
reside on afile system that supports the property list.

5-2 Using ACLs

5.5 Default ACLs

Files only have a single ACL associated with them. A directory can have
three ACLs associated with it. The access ACL is used similarly to the ACL
on afile. But the default ACL, if it exists, determines the ACLSs created for
descendents of the directory.

The default directory ACL alows the owner or a privileged user to associate
an ACL with a directory that is to be inherited as an access ACL when a
subdirectory is created. The default directory ACL will aso be inherited as
the default directory ACL by the new directory.

The default access ACL allows the owner or a privileged user to associate an
ACL with adirectory that is to be inherited as an access ACL when an object
is created within the directory. If the object being created is a directory and a
default directory ACL exists on the parent directory, it is inherited as the
access ACL and not the default access ACL. The default access ACL is
inherited as the default access ACL for any subdirectory created

5.6 Viewing an ACL

An ACL isviewed by using the get acl command. If thereisno ACL
associated with the object, the standard UNIX permission hits are shown in
the ACL format.

5.7 Access Decision Process
Access decisions for objects are made as follows:
1. If the process has the superuser privilege, access to the object is granted.

2. If ACLs are not enabled, or they are enabled but there is not an ACL
associated with the object, the traditional UNIX permission checks are
used.

3. The ACL is checked as follows:

a. If the processis the owner of the object, the permissions in the
owning user: : entry are granted.

b. If the UID of the process matchesa UID listed inauser: entry or
resolves to a username listed in auser: entry, the permissionsin
the entry are granted.

c. If the GID of the process matches the GID of thefile, or if one of the
supplementary groups of the process matches the GID of the file, the
permissions of the gr oup: : entry are granted.

d. If the GID or supplementary groups of the process match any of the
group: entries, the union of the permissions of al matching entries
is granted.

Using ACLs 5-3

e. Thepermissionsin the ot her: entry are granted.

Note that the permissions on the object are the permissions allowed by the
first matching user or gr oup entry or the ot her entry.

5.8 ACL Structure

An access control list consists of a number of ACL entries, each of which
contains three fields, as follows:

* A keyword identifying the entry type
e A group or user ID or name
e A permission specification

In the external representation of an ACL, the fields are separated by colons
(:). Entries in the qualifier field are separated by commas (,). The following
example shows typical ACL entries:

user::rwx

user:juanita:r-w

user:samr-X

group: : rwx

other::---

The keywords and qualifiers are as follows:

user A user entry with aNULL qudlifier field defines the
permissions of the user who owns the file. This entry (called
an owning-user entry) corresponds to the user permission bits.
The qualifiers for auser entry can be user names or numeric
UIDs; such an entry defines the permissions of these users. An
ACL must contain an owning user entry and can contain any
number of qualified user entries.

group A group entry with aNULL qualifier field defines the
permissions of members of the group that owns the file. This
entry (called an owning-group entry) corresponds to the group
permission hits. The qualifiers for agr oup entry can be group
names or numeric GIDs; such an entry defines the permissions
of members of these groups. An ACL must contain an owning
group entry and can contain any number of qualified gr oup
entries.

ot her The ot her entry defines the permission of all users who are
not identified in auser or gr oup entry. This entry
corresponds to the other permission bits. An ACL has only
one ot her entry.

The characters in the permissions field are the same as the charactersthe | s
command displays for the traditional permission bits and are in the same

5-4 Using ACLs

order: r for read access, w for write access, and x for execute or search
access. When a hyphen (=) character is used in place of one of the other
characters, it indicates denial of that access.

Because the discretionary check against the ACL requires a match against
one of the ACL entries in order for access to succeed, an object with an ACL
having no entries that match the process's access request denies all accesses
unless the requesting process has the ability to override discretionary access
control checks.

Table 5-1 illustrates and explains typical ACL entries.

Table 5-1: Example ACL Entries

Entry Matching Criteria

group: acct:r-- Matches all usersin group acct and grants read
permission.

user:joe:rw Matches user j oe and grants read and write
permission.

user::rwx Matches owner of object, even if owner changes after
thefile is created, and grants read, write, and execute
permission.

group::r-- Matches owning group of object, even if owning group
changes after the file is created, and grants read
permission.

other::r-- Matches all users and all groups except the owning user

and group and any other users and groups listed in ACL
entries. Grants read permission.

5.9 ACL Initialization

When afile or directory is created, the owner and group are set in the same
manner as without ACLs. The owner is set to the owner of the process
creating the file. The group is set to the group of the parent directory if the
nmoun option gr pi d is set on the file system. If the directory is set

set gi d, then the directory’s gi d is always used. If the directory is not

set gi d and the nogr pi d option is set, then the egi d of the processis
used. In addition, the file or directory inherits ACLs from its parent
directory. A file only has one ACL associated with it, an accessACL. A
directory can have three, an access ACL, a default access ACL, and a default
directory ACL. The default ACLs determine what ACLSs are inherited by the
descendents of the directory, as follows:

Using ACLs 5-5

» If the parent directory does not have a default access ACL, the access
ACL on new filesin that directory is initialized from the traditional
permission bits.

» |If the parent directory does not have any default ACLS, the access ACL
on new subdirectoriesin that directory is initialized from the traditional
permission bits. No default ACLs is set.

» |If the parent directory has a default access ACL, the access ACL on new
filesin that directory is the same as the default access ACL of the parent.

» |If the parent directory has a default access ACL and does not have a
default directory ACL, the access ACL and default access ACL on new
subdirectories in that directory are both set to the default access ACL of
the parent. No default directory ACL is set.

» |If the parent directory does not have a default access ACL, but it does
have a default directory ACL, the access ACL and default directory ACL
on new subdirectories in that directory are set to the default directory
ACL of the parent. No Default Access ACL is set.

* If the parent directory has both a default access ACL and a default
directory ACL, the access ACL and default directory ACL on new
subdirectories in that directory is set to the default directory ACL of the
parent. The default access ACL on new subdirectoriesin that directory is
set to the default access ACL of the parent.

Some examples of ACL initialization follow:

* Assume that the directory f oo contains no default ACLSs, and the
following command is issued:

% setacl —-d —u user:jdoe:rw foo

Any file or directory that is created within the directory f oo now inherits
the following ACL as the access ACL.:

#

file: foo

owner: snith
group: system
#

user::rw

user:j doe: rw

group::r--
other::r--

» Assume that the directory f 0o contains no default ACLSs, and the

5-6 Using ACLs

following command is issued:
% setacl —-D —u user:jdoe:rwx foo

Any directory that is created within the directory f 00 now inherits the
following ACL as the access ACL, as well as its default directory ACL:

#

file: foo

owner: snith
group: system
#

user: :rwx
user:j doe: rwx
group::r--
other::r--

Assume that the directory f 0o contains no default ACLSs, and the
following commands are issued:

% setacl —-D —u user:jdoe:rw foo
% setacl —-d —u user:wlson:rwx foo

Any directory that is created within the directory f 00 now inherits the
following ACL as the access ACL as well as the default directory ACL:

#

file: foo

owner: smth
group: system
#

user::rw
user:j doe: rw
group::r--
other::r--

The following ACL would be inherited as the default access ACL :

#

file: foo

owner: smth
group: system
#

user::rw
user: wlson: rwx
group::r--
other::r--

Any file created in directory f oo now inherits the ACL as the access
ACL:

Using ACLs 5-7

5.10

#

file: foo

owner: smth
group: system
#

user::rw
user: wl son: rwx
group::r--
other::r--

At a minimum, each ACL contains three entries:
* Onefor the owning-user

* Onefor the owning-group

* Onefor the ot her entry

These entries correspond to the traditional permission bits for the file or
directory. If ACLs are enabled and you use the chnod command to change
the traditional permission bits of afile or a directory, chnod also makes the
appropriate changes to the ACLs for the owning user, the owning group, and
the other entry.

To change the group, use the chgr p command. If you do not own the file
or if you do not belong to the new group, you must become superuser to
change the group name or group ID. To change the owner, use the chown
command. To change the ownership of afile, you must be superuser.

Protecting Objects with ACLs

An ACL is created and initialized when an object is created. Y ou can change
the ACLs on objects that you own by using the set acl command for files
and directories. These commands take as an argument ACL entries that
modify the ACL on the object.

5.10.1 ACLs and the Is Command

In trusted Digital UNIX, asin traditional systems, thel s —I command
displays the access allowed for the owning-user, the owning-group, and
others. For the owning-user and for others, the permission displayed by | s
—I and the permissions displayed by the get acl command are identical.
The group permissions displayed by | s —I are the maximum permissions
allowed for the owning group and for any user or group identified in a
qualified user or gr oup ACL entry. A given user or member of a group
can have more restrictive permissions.

For example, assume that the following gr oup and user entriesare set in

5-8 Using ACLs

an ACL:

user::rwx
group::r-x
user:fred:r--
user: chen: rw
group: nosy: - - -
other::---

The owning group has read and execute permission, and the user chen has
read and write permission. Thel s —I command displays the following
permissions for a file with this ACL:

- [WKT - X- - -

5.10.2 Using the setacl Command

Theset acl command is used to modify, add, and remove entries from
existing ACLs.

Follow these rules for using set acl :

Specify the new attribute (that is, the ACL entries to be applied to the
existing ACL, preceded by the appropriate command option, if any),
followed by alist of objects to change.

Specify ACL entries between commas, if entered directly on the
command line, or on separate lines if listed in an ACL input file.

The examples that follow show the set acl command line with the options,
input arguments, and results of applying set acl in text format.

To set an ACL entry denying all access to the object pri vat e for user
john, enter the following:

% setacl -u wuser:john:—-—— private

To set ACL entries allowing read and write access to the object
pri vat e for members of the f i nance and mar ket i ng groups, enter
the following:

% setacl —u group: finance: rw—, group: narketing:rw— private

Suppose the current ACL on thef f f f file contains these entries:

user::r--
user:jean:r--
group::r--
other::---

Using ACLs 5-9

Y ou can update the ACL with the following command:

$ setacl -u\
group: proj 1:r ——, user:jean: rw—, group: finance:r —— ffff

The resulting entries are as follows:

user::r--
user:jean:rw
group::r--

group: proj1l:r--

group: finance:r--

other::---

The user : j ean permissions overwrite the existing permissions for the
matching user entry. Both input gr oup entries that do not match any
of the existing entries in the existing ACL are added to the ACL.

» Suppose an ACL is asfollows:
user::r--
group::r--
user:jean:rw
group: projl:r--
group: finance:r--
other::---

Use the following command to add a new permission:
$ setacl -u wuser:jean:rw— ffff

The resulting ACL entries are:
user::r--

group::r--

user:jean:rw

group:proj l:r--

group: finance:r--
other::---

You can set the ACL of afile only if you own the file or you are superuser.
Seethe set acl (1) reference page for more information.

5.10.3 Using the getacl Command

The get acl command lists the ACL on afile in a manner similar to the |l s
command. For al regular file name arguments, get acl lists the ACLs of
the files. The —d flag lists the default ACLs. The following is an example of

5-10 Using ACLs

5.11

get acl usage:
getacl share file

owner: mary

$
#
file: shared_file
#
group: marketing
#

user::rw
group::r
ot her

The first user and group entries refer to the owning user and owning group,
respectively.

Maintaining ACLs on Your Objects

The ACL programs are an extension to untrusted Digital UNIX systems and
are defined by POSIX and System V compatible UNIX programs. All users
should take extra precautions to ensure that ACL-protected objects remain
protected (or are reprotected) after manipulation by a UNIX program.

When a program manipulates an object by creating a new version, removing
the existing version, and then renaming the new version, the object’'s ACL is
lost or replaced with the access ACL of the directory where the new version
is created. When an object is renamed it retains the ACL (or lack of ACL)
with which it was created. When a program modifies an object in place (that
is, rewrites, appends, or updates the object without actually deleting it), the
ACL protection is retained. ACLs are preserved as long as the object is not
removed or the ACL is not explicitly deleted.

Until UNIX variants conform to a standard representation for ACLSs, and the
base utilities are converted to preserve ACLs from object to object, it is the
user’s responsibility to keep files protected. The permission bits on al newly
created objects can be set by using unask or default ACLs. As with
traditional UNIX discretionary file attributes, the burden of protecting filesis
on the user.

Note

Digital recommends that you use restrictive traditional
permissions, such asot her::--- andgroup: : ---, and then
grant access to individual users with user entries. Using this
approach, if an ACL islost, unintended access is not allowed.

Using ACLs 5-11

5.12 ACLs and the emacs Editor

After editing a file with the emacs editor, the new enacs copy of the file
does not have the origina ACL, but rather the default directory ACL.

The problem is that the emacs editor renames the old file prior to writing
out the new text. This causes the following to happen:

» The ACL is associated with the backup file

» Thedefault directory ACL is associated with the new text (existing file
name)

* Any hard link is associated with the backup file

Y ou can work around this situation in either of the two following ways.
» Copying the data to the backup file, and then writing to the original file.

» Getting the ACL (its best to get the whole property list) using
get propli st () fromthe origina file and applying it to the new file
using set proplist().

5-12 Using ACLs

Part 2: Administrator’s Guide to Security

Introduction for Administrators 6

The Digital UNIX operating system and its commands, utilities, and
subsystems have all been modified to produce the system’s trusted computing
base (TCB). The changes to the system result in a system that meets the C2
security requirements defined in the Orange Book.

This chapter defines a trusted system and the requirements that the system
was designed to satisfy. It introduces the terms and security concepts that are
fundamental to system security, and it summarizes the major features of the
system security policy enforced by the trusted system. This chapter also
summarizes the major characteristics of the system, including its primary
databases, subsystems, resource configuration files, and outlines the
administrative roles and functions necessary to maintain a trusted system.

6.1 Frequently Asked Questions About Trusted Systems

When considering the use of atrusted Digital UNIX system, some important
guestions are frequently asked:

* What is the performance impact of running a trusted system? Users are
often concerned that enhancing a system’s security features will hinder its
usability by slowing down processing.

* Will atrusted system unnecessarily restrict an ordinary user’s ability to
accomplish their work?

e Can any UNIX system, including Digital UNIX, be secure? Users are
sometimes skeptical that a system that has a reputation for being easy to
penetrate can be used as the basis for a trusted system.

Although the trusted system has extended the Digital UNIX operating system
to enforce additional security checks, the basic mechanisms of the system
remain the same. Compatibility at the binary program interface and at the
user interface have been design criteria for the trusted system. The trust
enhancements have been made to incur as small areduction in performance
and as little unexpected system behavior as possible.

Although users will see few differences, the additional security requirements
do add overhead for the trusted system administrative staff. Not only must
this staff be familiar with the tasks involved in administering a trusted
system, they must also be familiar with the trusted system mechanisms so

they can understand the implications of their actions.

A knowledgeable administrative staff contributes to the security of any site.
In fact, training both the administrative staff and the usersis one of the best
ways you can protect the system against penetration.

6.2 Defining a Trusted System

A trusted system is one that employs sufficient hardware and software
integrity measures to allow its use for simultaneously processing a range of
sensitive or confidential information. A trusted system can be trusted to
perform correctly in two important ways.

» The system’s operational features— in particular, its application interface
— operate correctly and satisfy the computing needs of the system’s users.

» The system’s security features enforce the site’s security policy and offer
adequate protection from threats.

A security policy is a statement of the rules and practices that regulate how
an organization manages, protects, and distributes sensitive information. The
system’s security mechanisms maintain full compatibility with existing
Digital UNIX security mechanisms while expanding the protection of user
and system information.

An organization carries out its security policy by running the system as
described in this manual and by adhering to the administrative and procedural
guidelines defined for the system.

Understanding the concept of a TCB is important to understanding a trusted
system. The TCB is the set of protection mechanisms that enforces the
system’s security policy. It includes all of the code that runs with hardware
privilege (that is, the kernel) and all code running in processes that cooperate
with the operating system to enforce the security policy. The system’s TCB
consists of the following parts:

* A modified Digital UNIX kernel. The kernel runs in the privileged
execution mode of the system’s CPU. The trusted system’s kernel is
isolated from the rest of the system because it runs in a separate
execution domain — the processor’ s protected supervisor state.

» Trusted commands and utilities. The system corrects, modifies, and adds
to the Digital UNIX software.

A TCB istypicaly defined in terms of subjects and objects. The TCB
oversees and monitors interactions between subjects (active entities such as
processes) and objects (passive entities such as files, devices, and inter-
process communication mechanisms). See Appendix A for the software part
of the system’s TCB.

6—2 Introduction for Administrators

The trusted system protects a Digital UNIX system and its users against a
variety of threats and system compromises. The most important of these
threats are summarized in Table 6-1.

Table 6-1: Potential System Threats

Threat Effect

Data disclosure The threat of disclosure occurs when a user gains
access to information for which that user does not
have a need-to-know. Need-to-know restrictions are
enforced by the system’s discretionary access control
features, which enable users, at their own discretion,
to alow their information to be accessed by other
users.

Loss of dataintegrity ~ The threat of integrity loss occurs when user or
system information is overwritten — either
intentionally or inadvertently. Loss of data integrity
can occur from hardware failures (for example, disk
track failures) or software failures. When aloss of
data integrity occurs, an opportunity is created for an
unauthorized user to change information that affects
the ability of the system to function properly.

Loss of TCB integrity The TCB enforces the system’s security policy.
Any loss of integrity of TCB programs and files,
including the executable copies of those programs in
memory, constitutes a compromise of the integrity
of the TCB itself and can lead to incorrect
enforcement of the security policy.

Denial of service To function usefully, the system must respond to
reguests for service. One way to compromise the
usefulness of a system isto cause it to fail in its
ability to process work. When denial of service
occurs, users lose the ability to access their
information. Depending upon the method of attack,
the threat of denia of service can accompany any of
the other previously mentioned threats.

Introduction for Administrators 6—3

6.3 Enhanced Security Features

The Digital UNIX operating system, with the optional enhanced security
subset installed and in use, is designed to meet or exceed the requirements of
the C2 evaluation class of Department of Defense 5200.28-STD as described
in the Orange Book.

6.3.1 Audit Features
Digital UNIX provides the following audit features:

The ability to send audit logs to a remote host
The following types of event auditing:
Site-defined support

System call support

Habitat support

Application support

Fine-grained preselection of system events, application events, and site-
definable events

Extensive postreduction of system events, application events, and site-
definable events

Link-time configurability of the audit subsystem
A per user audit characteristics profile (with enhanced | and A)
OSF/Motif based interfaces

The audit system is set up from the command line and maintained from the
command line or with OSF/Motif based interfaces.

6.3.2

Identification and Authentication (I and A) Features

Enhanced security provides the following | and A features:

Password control
— Configurable password length, up to 80 characters maximum.

— Configurable password lifetimes. This includes an optional minimum
interval between password changes.

— A dynamic minimum password length, based directly on the
Department of Defense Password Management Guideline (Green
Book) guidelines and the password lifetime or a minimum length set
by the system administrator.

6—4 Introduction for Administrators

— Per-user password generation flags, which include the ability to
require a user to have a generated password.

— Recording of who (besides the user) last changed the user’s password.

— Configurable password usage history (0-9 previously used
passwords).

* Login control

— Recording of last terminal and time of the last successful login, and of
the last unsuccessful login attempt.

— Automatic account lockout after a specified number of consecutive
bad access attempts. In cases of system database corruption, root can
still log into the the console (/ dev/ consol e).

— A per-terminal setting for delay between consecutive login attempts,
and the maximum amount of time each attempt is allowed before
being declared a failed attempt.

— A per-terminal setting for maximum consecutive failed login attempts
before locking any new accesses from that terminal.

* Ownership for pseudoaccounts. This allows away to differentiate
auditable users when two / et ¢/ passwd entries share a UID, such as
uucp and uucpa.

* A notion of whether the account is ‘‘retired’” or *‘locked.”” These are
fundamentally the same as far as granting access is concerned, but are
different administratively. Thereis aso a provision for the auto-
retirement of accounts by recording an expiration on the account itself.

o System default values for the various | and A fields. The time before the
password expiration warnings is only a default value, and cannot be
changed on a per profile basis.

6.3.3 Access Control Lists (ACLS)

Traditionally, UNIX systems control a user’s access to files and directories
(file system objects) using a method of discretionary access control (DAC)
normally referred to as the permission bits. By default, Digital UNIX
systems are run using this untrusted method of DAC for file system objects.

ACLs provide greater granularity of file system object protection than the
default DAC protection. The level of file system object protection provided
by ACLs s required by trusted systems, but ACLs can be enabled separately
from the other security options. This allows you to tailor your system to use
only the security options that you need, instead of having to setup a fully
trusted system.

Introduction for Administrators 6-5

6.3.4

Integrity Features

The enhanced security option provides the capability to validate the correct
operation of hardware, firmware, and software components of the TCB. The
firmware includes power-on diagnostics and more extensive diagnostics that
can optionaly be enabled. The firmware itself resides in EEPROM memory
and can be physically write-protected. It can be compared with, or reloaded
from, an off-line master copy. Digital’s service engineers can run additional
hardware diagnostics as well.

The firmware can require authorization to load any operating software other
than the default, or to execute privileged console monitor commands that
examine or modify memory.

Once the operating system has been loaded, you can run system diagnostics
that validate the correct operation of the hardware and software. In addition,
test suites are available to ensure the correct operation of the operating
system software.

Y ou can use the following tools to detect inconsistencies in the TCB
software and databases:

fverify Thefverify program reads subset inventory records from
standard input and verifies that the attributes for the files on the
system match the attributes listed in the corresponding records.
Missing files and inconsistencies in file size, checksum, user ID,
group ID, permissions, and file type are reported.

aut hck Theaut hck program checks both the overall structure and
internal field consistency of all components of the authentication
database. It reports al problemsit finds.

6.4 Windows-Based Administration Utilities

Note

The functions previously performed with the XI sso and
XSysAdmi n programs have been moved to other graphical user
interfaces (GUIs). The XI sso and XSysAdmi n programsin
this release are only interfaces to the other GUIs and support for
Xl sso and XSysAdmi n will be discontinued after this release.

The following three window-based utilities help you deal with the day-to-day
security administration on your local machine:

dxaccounts The Account Manager in the Common Desktop
Environment (CDE) or the dxaccount s program in the
DECwindows environment allows you to create and modify
all user accounts, and to modify the system defaults. You

6—6 Introduction for Administrators

6.4.1

can find the Account Manager under the Application
Manager - System_Admin -
System_Management_Ultilities— Daily_Admin - Account
Manager.

dxaudi t You use dxaudi t to configure the audit system mask and
reports, and use dxaccount s to set auser’s audit mask
and controls. Administrators have the flexibility to
configure the audit subsystem without the requirement of
installing additional C2 security features.

Y ou can find the Audit Manager GUI under the CDE
Application Manager - System_Admin -
System_Management_Ultilities— Daily_Admin - Audit
Manager. If you are using DECwindows environment, start
the Audit Manager from the command line with the

[usr/tcb/ bi n/ dxaudi t command.

dxdevi ces Youusethe dxdevi ces program to configure devices. In
both the CDE and DECwindows environment, the Devices
GUI is started from the command line with the
/usr/tcb/bi n/ dxdevi ces command.

For more details about starting the GUIs from the command line, see the
dxaccount s(8), dxaudi t (8), and dxdevi ces(8) reference pages.

Installing and Configuring Enhanced Security

Before security can be configured, the enhanced security subsets
(OSFC2SEC400 and OSFXC2SEC400) must be installed on your system.
See the Installation Guide for more information.

System administrators can select the optional C2 security features that are
required for their system. Y ou do not have to configure all the features. The
default security level consists of object reuse protection, traditional UNIX
passwords, and discretionary access control; by running the secset up
command, you can select the C2 security features appropriate for your
system. Thesecset up utility isfound in CDE under Application
Manager - System_Admin - System_Managent_Ultilities— Configuration -
Security. The secset up utitlity can also be run from the command line,
which is the way it must be run in the DECwindows environment.

The audit subsystem is configurable at kernel link time, regardless of the
security level of the system. The identification and authorization (I and A)
features are configured at boot time, so that the system administrator can
configure the security level of the system. ACLs are configured at install
time and are enabled and disabled using the secset up utility.

Introduction for Administrators 6—7

6.5 Administrating the Trusted Operating System

An administrator of atrusted Digital UNIX system is responsible for
overseeing many additional security functions such as the following:

e Setting up security databases
» Monitoring the security and integrity of the system

» Auditing security-related events and maintaining the system’s audit
functions

» Performing miscellaneous administrative tasks associated with protected
subsystems

6.5.1 Traditional Administrative Roles

An important difference between a nontrusted and a trusted Digital UNIX
system is in the area of system administration. An effective administrator
must understand the system’s security policy, how it is controlled by the
information entered into the system’s security databases, and how any
changes made in these databases affect user and administrator actions.

Administrators must be aware of the sensitivity of the information being
protected at a site — the degree to which users are aware of, willing, and able
to cooperate with the system’s security policy, and the threat of penetration
or misuse from insiders and outsiders. Only vigilance and proper use of the
system can keep the system secure.

Table 6-2 summarizes these major roles and their associated responsibilities
in the system. The sections that follow describe these responsibilities in
greater detail.

Table 6-2: Traditional Administrative Roles

Role Major Responsibilities
Information Systems Sets system defaults for users, maintains security-
Security Officer related authentication profile parameters, modifies

user accounts, administers the audit subsystem,
assigns devices, and ensures system integrity.

System administrator ~ Creates user accounts, creates and maintains file
systems, and recovers from system failures.

Operator Administers line printers, mounts and unmounts file
systems, and starts up and shuts down the system.

6—8 Introduction for Administrators

Role association, coupled with sophisticated auditing features, enables a site
to maintain accountability for administrative actions. This helps to prevent
security problems and makes other problems easier to identify and solve.

On atrusted Digital UNIX system, responsibility for all of these traditional
roles can be assumed by one person. An administrator with root privilege can
perform any of the duties usually assigned to the ISSO. The trusted Digital
UNIX system does not support sysadmni n and i Sso accounts.

6.5.1.1 Responsibilities of the Information Systems Security Officer

The information systems security officer (ISSO) is primarily responsible for
managing security-related mechanisms. The ISSO controls the way that
users log in and identify themselves to the system. The ISSO must cooperate
with the system administrator when performing security-related tasks; the
system’s checks and balances often require that each perform a separate part
of atotal task (for example, account creation). The following list describes
specific ISSO responsibilities:

» Performs device assignment. Assigns devices (terminals, printers, and
removable devices, such as floppy disk and magnetic tape). Specifies the
appropriate operational parameters for these devices. (See Chapter 8.)

» Assigns systemwide defaults. Establishes defaults for user login controls
and password parameters. (See Chapter 9.)

* Modifies user accounts. After accounts have been established by the
system administrator, sets up authentication profiles reflecting the level of
trust placed in those users. (See Chapter 9.)

* Audits system activity. Selects the security-relevant events that are to be
audited by the system. Enables and disables auditing, sets audit
parameters, produces reports, and regularly reviews audit data. (See
Chapter 10.)

» Ensures system integrity. Ensures the integrity of the system by
periodically running the aut hck program to check the integrity of the
security databases and files critical to the correct operation of the system.
(See the aut hck(8) reference page and Chapter 12.)

All of the ISSO functions, except integrity checking, can be performed using
the Account Manager (or DECwindows dxaccount s interface). To
perform 1SSO functions, you must have root privileges and be logged on as
root.

Introduction for Administrators 6—9

6.5.1.2 Responsibilities of the System Administrator

The system administrator is primarily responsible for account creation and
disabling, and for ensuring the internal integrity of the system software and
file systems. The system administrator also shares with the ISSO the
responsibility for day-to-day user account maintenance.

The following list describes specific system administrator responsibilities:

» Creates user accounts. All accounts created by the system administrator
have the default characteristics (for example, default command
authorizations) established by the 1SSO for the system. Once an account
has been created, the ISSO can modify that account, changing individual
users authentication profiles as appropriate. (See Chapter 9.)

* Creates groups. Creates new groups as part of user account creation.
These groups are used by the system’s discretionary access control
mechanism. (See Chapter 9.)

* Modifies ISSO accounts. As an additional system security feature, the
ISSOs are not authorized to modify their own authentication profiles (for
example, to increase authorizations and privileges). Instead, the system
administrator performs this function. (See Chapter 9.)

* Createsfile systems. Creates and maintains file systems by running
programs such as newf s and f sck. See the System Administration
manual and the newf s(8) and f sck(8) reference pages for details.

* Restores the system files and users' files in the event of accidental
deletion.

The system administrator creates user accounts and creates groups with the

Account Manager (or the DECwindows dxaccount s) interface.

To perform system administration functions, you must have root privileges
and be logged on as root.

6.5.1.3 Responsibilities of the Operator

The operator is primarily responsible for ensuring that day-to-day hardware
and software operations are performed in a trusted fashion.

The following list describes some specific operator responsibilities:

* Administers line printers. Enables and disables printers and performs
other printer maintenance operations.

» Starts and shuts down the system. Boots the system, changes system run
levels, and halts the system, when necessary.

* Mounts and unmounts file systems.
» Performs backups and file restorations.

6—10 Introduction for Administrators

6.5.2

To perform the operator functions, you must have root privileges and be
logged on as root.

Protected Subsystems

Protected subsystems are collections of programs and resources that are
grouped together by function and are important pieces of the TCB. They
may or may not need privileges to accomplish their function. The system
provides mechanisms for unified auditing and command authorization
enforcement within a protected subsystem. Administration of these includes
assigning subsystem-related authorizations, performing subsystem
administration tasks, and assuring proper installation and continued operation
of the subsystem.

The components of a protected subsystem are protected with the group ID of
the group allowed access rights to the programs and data in the subsystem.
The only way for a user to access the subsystem information is by running
programs in the subsystem.

The subsystem programs are set-group-1D (SGID) on execution to the
subsystem’s group. This method is also used in untrusted Digital UNIX
systems. All of the subsystems have been modified to meet security and
accountability reguirements.

The system provides common mechanisms for implementing all of the
protected subsystems, including the following:

» Ensuring that the subsystem databases are not corrupted
» Enforcing isolation between users
* Producing audit records

Table 6-3 summarizes the protected subsystems.

Introduction for Administrators 6-11

Table 6-3: Protected Subsystems

Database Location Contents
Protected /tcb/files/auth.db User authentication
password database

System / etc/aut h/ syst em def aul t Default values for
defaults database fields
Termina /etcl/auth/systemttys.db Security information
control about each terminal
File /etclauth/system files Protection attributes
control of each system file
Device [etcl/aut h/ system devassi gn Device-specific
assignment controls

6.5.2.1 Protected Password Database

The protected password database stores the authentication profile for each
user who has an account on the system. Each profile contains information
such as the following:

* User nameand ID

e Encrypted password

* User'saudit characteristics

e Password generation parameters

e Successful and unsuccessful login times and terminals
The protected password database is located in the file
/tcb/files/auth.db.

See the pr passwd(4) reference page for more information on the contents
of the extended profile database.

6.5.2.2 System Defaults Database

The system defaults database stores default values for database fields. These
defaults are used when the administrator does not set explicit values in the
protected password database, terminal control database, or device assignment
database.

The system defaults database contains information such as the following:

6—12 Introduction for Administrators

o Default password generation parameters
» Default number of unsuccessful login attempts allowed per user

» Default number of unsuccessful login attempts allowed per directly
connected terminal

» Default device assignment parameters

More information on the contents of the system defaults database located in
/ et c/ aut h/ syst eml def aul t can be found in the def aul t (4)
reference page.

6.5.2.3 Terminal Control Database

The terminal control database contains information that the administrator uses
to control login activity at each terminal attached to the system. The system
uses this database as an aid in controlling access to the system through
terminals. The administrator can set different policies for logins at different
terminals, depending upon the site’ s physical and administrative needs.

Each entry in the termina control database contains information such as the
following:

e« Termina device name

* User ID and time stamp of the last successful login attempt from this
terminal

* User ID and time stamp of the last unsuccessful login attempt from this
terminal

» Delay imposed between login attempts from this terminal

* Number of unsuccessful attempts that can be made before locking this
terminal

When the system is installed, the terminal control database contains an entry
for the system console. The ISSO modifies these initial values during system
setup. A corresponding entry, also initially installed, is required in the device
assignment database before logins are allowed.

For more information about the contents of the terminal control database
located in/ et ¢/ aut h/ systenf ttys. db, seethet t ys(4) reference
page. Procedures for adding terminals are described in Chapter 8.

6.5.2.4 File Control Database

The file control database contains information about the protection attributes
of system files (that is, files important to the TCB’s operation). This
database helps maintain the integrity of the TCB. It contains one entry for
each system file.

Introduction for Administrators 6—-13

Each entry in the file control database contains the following information:
* Full pathname of the file

* File owner and group

* File mode and type

When the system is installed, the file control database contains entries for all
security relevant system files. The ISSO does not need to modify this
database during system setup and rarely needs to update it during system
operation. Chapter 12 describes how to check the integrity of the database
and modify it if necessary.

For more information about the contents of the file control database |ocated
in/etc/auth/system files, seethefil es(4) reference page.

6.5.2.5 Device Assignment Database

The device assignment database contains information about devices that are
used to exchange data with users. Each login terminal must have an entry in
the device assignment database. The system uses this database as an aid in
restricting the security attributes of data that can be sent or received through
the system’s devices.

Each entry in the device assignment database contains information that
describes a device and that relates the device pathname to the appropriate
physical device. Thisis necessary because a number of distinct pathname
can refer to the same physical device. For example, two pathname can refer
to the same seria port — one with modem control enabled and the other with
modem control disabled.

Each entry in the device assignment database contains information such as
the following:

* Device pathname

» Other pathnames referencing the same physical device

» Devicetype

Entries referring to login terminals must have corresponding entries in the
terminal control database.

The device assignment database is located in
/ et c/ aut h/ syst eml devassi gn. Seethedevassi gn(4) reference
page for details

6—14 Introduction for Administrators

Setting Up the Trusted System 7

This chapter lists the tasks that must be completed after installation and
before the system is ready for general use, and refers to other chapters and to
reference pages that explain how to accomplish the tasks.

7.1 Installation Notes

Before the extended authentication mechanism can be set up, the Digital
UNIX installation or update must be completed and the optional enhanced
security subsets (OSFC2SECA400 and OSFXC2SEC400) must be installed. If
you plan to enable the password triviality checks, you aso need to ensure
that the OSFDCMTEX Txxx subset is installed.

The installation procedures for the optional security subsets are found in the
Installation Guide.

After the security subsets are installed, you will see a message like the
following:
Configuring "C2-Security " (OSFC2SECA400)

Configuring "C2-Security GU " (OSFXC2SEC400)

The message refers to the installation process, not the security configuration
and setup. The secset up script is used to configure or setup the extended
authentication mechanism, and the audit and ACL subsystems are kernal
options.

7.1.1 Full Installation

A full installation of Digital UNIX (either advanced or basic) brings up the
system with no user accounts. If you have DEC OSF/1 Version 1.2 or earlier
installed, you need to do a full installation. Run the secset up script
before adding accounts.

7.1.2 Update Installation

If you are updating your system from DEC OSF/1 Version 3.2 or higher, all
user accounts and databases are preserved, and running the secset up
program converts them to the enhanced security format.

If your system was running with the extended authentication mechanism, you
should run the convaut h utility immediately after the update installation.
This converts the extended authentication information from the file format to
the database format and improves log in performance.

7.2 Segment Sharing

Because of the page table sharing mechanism used for shared libraries, the
normal file system permissions are not adequate to protect against
unauthorized reading. For example, user j oe has the following shared
library:
SIW---- - 2 joe staff 100000 Sep 18 1992 /usr/shlib/foo.so

When this shared library is used in a program, the text part of f 00. so may
be visible to other running processes even though they are not running as
user j oe. Only the text part of the library, not the data segment, is shared in
this way.

To disable al segmentation and avoid any unauthorized sharing, answer
‘‘yes’’ when secset up asksif you wish to disable segment sharing. The
secset up script reports when segment sharing is already disabled.

7.3 Installation Time Setup for Security

Enhanced security is included on CDE'’s Installation Checklist and can be
configured at installation time. When you select Security, the secset up
utility is run to configure the extended authentication mechanism. The audit
and ACL subsystems are configured as kernel options. (Use the

audi t _set up utility to complete the setup of audit.)

If you areinstalling Digital UNIX from a console, you will find the audit and
ACL subsystems listed as kernel configuration options. They can be selected
and built into the kernel during the initial system configuration. (Use the
audi t _set up utility to complete the setup of audit.) Run the secset up
script to configure the extended authentication mechanism.

Theaudi t _set up(8) reference page and Section 10.2 describe how to set
up audit. The acl (4) reference page describes the ACL implementation and
Section 11.3 describes the Digital UNIX ACL setup.

7.4 The secsetup Command

The secset up command is an interactive program that allows you to
toggle the security level on your system between BASE and ENHANCED.
You can run the program while the system is in multiuser mode; however, to
change the security features, you must reboot your system.

7-2 Setting Up the Trusted System

7.4.1

71.4.2

If the you enter a question mark (?) at the prompt, secset up displays
information about the choices.

Depending on the security features chosen, when secset up is complete
you may need to reboot the system.

Before you can run secset up, you must load the enhanced security subsets
onto your system.

Setup Questions

Before running secset up, you need to be prepared to answer the following
guestions:

» Do you want to disable segment sharing?
* Do you want to run audi t _set up as part of secset up?
* Do you want to edit the configuration file as part of secset up?

Example secsetup Session

The following is an example session showing how security is be setup using
secset up. A question mark (?) is entered at points where help is available.

Example 7-1. Using secsetup

/usr/sbin/setld —-i | nore

OSFC2SEC400 installed C2-Security (System Admi ni stration)

OSFXC2SEC400 installed C2-Security QU (System Adm ni stration)

/usr/sbin/secsetup
Al'l questions asked by this script are for inmediate action.
Al'l changes nmade have i medi ate effect unless stated otherw se.
Pl ease note that changing the current security |evel |eaves
the system | ogin and password configuration in an inconsistent
state until the systemis rebooted. New y-started |login
processes will work as expected, but already-running |ogin
processes may fail in unexpected ways. Digital recomends
backing up the /etc/passwd file before changing the system
security level and rebooting immediately after the change has
been nmade.

Enter system security |evel (BASE ENHANCED ?)[ENHANCED] : ?

The default option is to switch the current security |evel.
BASE - Discretionary Security Protection:
Default Digital UNI X style of security features.

ENHANCED - Controll ed Access Protection:

Setting Up the Trusted System 7-3

Example 7-1: (continued)

A systemin this class enforces a nore finely grained
di scretionary access control than (BASE) systens.

Users are individually accountable for their actions
through | ogi n procedures, auditing of security-relevant
events and resource isolation.

The audit subsystem can be configured for either of the
system security | evels.

Enter system security |evel (BASE ENHANCED ?) [ENHANCED] : Return
ENHANCED security level will take full effect on the next system
reboot .

r oot

uucpa

nobody

nobodyV

wnn

utestl

utest2

Do you want to create |ocal extended profiles for NIS\
users(yes no ?)[no]: ?

Creating |l ocal extended profiles for NIS users will speed up

| ogins. However, it does not keep network-w de passwords for
machi nes runni ng ENHANCED security unless they use NFS to
share the /tcb/files and /var/tch/files areas. An alternative
is to use the "-s’ option to ypbind and share the extended
profiles with NIS as well as the traditional (BASE) account

i nformation.

Do you want to create |ocal extended profiles for NIS\
users(yes no ?)[no]: Return

Successful SIA initialization

Do you want to change the root password now(yes no ?)[yes]: ?

Changi ng the root password now will ensure that root |ogins
are still possible after rebooting the system
Do you want to change root password nowyes no ?)[yes]: Return
Last successful password change for root: UNKNO/WN

Last unsuccessful password change for root: NEVER

New passwor d:
Re-enter new password:

Do you wi sh to disable segment sharing(yes no ?)[no]: ?

7—-4 Setting Up the Trusted System

Example 7-1: (continued)

Because of page table the sharing mechani smused for shared
libraries, the normal file system perm ssions are not
adequate to protect agai nst unauthorized reading.

For exanpl e, suppose user joe has the follow ng

shared library:

SrW- - - - - 2 joe staff 100000 Sep 18 1992 /usr/shlib/foo.so

When the shared library is used in a program the
text part of foo.so may in fact be visible to other
runni ng processes even though they are not running as
user joe. Note that only the text part of the
library, not the data segment, is shared in this way.
To prevent this unwanted sharing, any libraries that
need to be protected can be linked with the -T and -D
options to put the data section in the sane 8-
megabyt e segment as the text section. The follow ng
link options should work for any such library:

%ld -shared -o |ibfoo.so -T 30000000000 \
- D 30000400000 object files...

In fact, this segnent sharing can occur with any file
that is mmap’ed wi thout the PROT_WRI TE option as |ong
as the mapped address falls in the same nenory
segnment as other mmap’ ed files. Any programthat
uses map() to examne files that may be highly
protected can ensure that no segnent sharing takes

pl ace by introducing a witable page into the

segnent before or during the mmap(). The easiest way
to acconplish this is to nmmap() the file with
PROT_WRI TE enabled in the protection, and then use
nprotect () to nake the mapped nenory read only.

Alternatively, to disable all segnentation and avoid
any unaut hori zed sharing, answer 'yes' to the question.

Do you wi sh to disable segment sharing(yes no ?)[no]: yes
Updating configuration file to prevent segnentation...
Configuration file '/etc/sysconfigtab’' updated.

Segnment sharing will be disabled when the systemis rebooted.

Do you wish to run the audit setup utility at this \

time(yes no ?)[no]: ?

The audit subsystem works with BASE or ENHANCED security,
recordi ng whatever infornation is available. There is no audit
re-configuration between security |evels.

Do you wish to run the audit setup utility at this \
tinme(yes no ?)[no]: Retun

Setting Up the Trusted System 7-5

Example 7-1: (continued)

Press return to continue: Return
shut down —r now

7.5 Configuring Enhanced Security Features

7.5.1

7.5.2

7.5.3

Y ou can configure the enhanced security features individually or you can
choose to enable all the enhanced security features.

Configuring Audit

Y ou can run the audit subsystem without installing the security subsets.
Configure the Audit Subsystem kernel option and then run the

audi t _set up script to configure audit. See the audi t _set up(8) and
doconf i g(8) reference pages and Section 10.2 for more information.

Configuring ACLs

You can run the ACL subsystem without installing the security subsets.
Configure the ACL subsystem kernel option and reboot your system. See the
doconf i g(8) reference page and Section 11.3 for more information.

Configuring Extended Authentication with NIS

Running the secset up command creates an extended authentication profile
database for each user on the system. [f the user accounts are local, the
passwords are expired and the users must enter a new password the next time
they log in.

If the machine has a password database served by NIS (Network |nformation
Service), secset up asksif you want to create an extended authentication
profile for each user in the NIS server password database. Subsequent
changes in NIS passwords are not propagated to the database. The extended
passwords now on the local machine are expired and the users must enter a
new password the next time they log in.

If you change the security level back to BASE security, the extended
authentication profile files are left in place. When you return to ENHANCED
security, as long as there is an extended authentication profile file and it
contains a password, the extended password is updated.

You can use the edaut h utility to view a specified database (or file if the
database does not exist).

7—6 Setting Up the Trusted System

7.5.4 Password and Authentication Features Configuration

Enhanced security provides an extended profile to the Digital UNIX
authentication mechanism. The following sections explain how you can
configure some of the extended profile features for your site's needs. You
can configure and remove some authentication and extended password
features on your system by customizing the def aul t database using the
edaut h program.

Removing or changing featuresin the def aul t database, removes them for
al users who are assigned the default settings. The features can be added
back or changed on a per user basis by editing the pr passwd database.

Seethe def aul t (4), pr passwd(4), t t ys(4), and edaut h(8) reference
pages for more information.

7.5.4.1 Aging

If you do not want password aging on your system, in the def aul t
database set u_exp and u_| i f e to O, and then (because of the way the
default methods of determining length restrictions on passwords work based
on the password lifetime) aso set u_m nl en and u_rmax| en to appropriate
values for the site.

An example entry could be as follows:
su_exp#0: u_li fe#0: u_m nl en#5: u_max| en#32:\

7.5.4.2 Minimum Change Time

Y ou can remove the minimum change time interval by setting the
u_m nchg field to 0 as follows:

:u_m nchg#0:\

7.5.4.3 Changing Controls

The password-changing controls can be configured to your site's needs. By
putting the following fields in the def aul t database, you allow users to
select how their passwords are chosen (adding an at sign (@) at the end
negates the action):

S u_pi ckpw: u_genpwd: u_genchars: u_genletters:u_restrict:\
su_policy:u_null pw u_pwdept h#0:\
(Of those, u_pwdept h is numeric and the rest are boolean.)

Setting Up the Trusted System 7—7

7.5.4.4 Maximum Login Attempts

If break-in evasion is not needed on a per-user basis, you can disable the
feature by setting u_maxt ri es to 0. The maximum number of consecutive
failed attempts comparison to the number of failuresis disabled. The

def aul t database entry would be as follows:

cu_maxtries#0:\

7.5.4.5 Time Between Login Attempts

If the default evasion time (86400 seconds) is not appropriate for your site,
change the u_unl ock field to the right value (number of seconds before a
success is recognized after the last failure, oncetheu_maxt ri es limit is
reached.) Setting theu_unl ock fieldto O (: u_unl ock#0:) setsthetime
between log in attempts to infinity (no automatic reenabling occurs). For

t _maxtries, Oisinfinite.

7.5.4.6 Terminal Break-In

If per-terminal break-in evasion is not needed at you site, or the evasion time
interval iswrong, modify t _maxt ri es (Oisinfinite) ort _unl ock. For
both u_unl ock andt _unl ock, O isinfinite (no automatic reenabling
occurs).

7.5.4.7 Time Between Logins

You can set system-wide maximum allowable time between log ins in the
u_nmax_l ogi n_i ntvl fidd of thedef aul t database.

The system default log in timeout for terminals can be changed in the
t _login_timeout field of thedef aul t database. It can also be set in
the * entry of thet t ys database. This field should be O (infinite) for X

displays.

7.5.4.8 Per-Terminal Login Records

If you do not want to record per-terminal log in successes and failures, set
thed _ski p_ttys_updat es (boolean) field in the def aul t database as
follows:

:d_skip_ttys_updates:\

This has the side-effect of disabling any further per-terminal break-in evasion.

7-8 Setting Up the Trusted System

7.5.4.9 Automatic Extended Profile Creation

Setting the d_aut o_ni gr at e_user s boolean field allows the creation of
extended profiles at log in time if they are missing, so that traditional
methods of adding user profiles can be used without change.

7.5.4.10 Vouching

You can set thed_accept _al t er nat e_vouchi ng field to allow
enhanced security and DCE to work together.

7.5.4.11 Encryption

If you want the user passwords to stay in the/ et c/ passwd file to support
programs that use cr ypt () to do password validation and want to use other
features of the extended profiles, put the following entry in the def aul t
database before running secset up:

su_newcrypt #3:\

This corresponds to the AUTH_CRYPT_C1CRYPT value from the
<pr ot . h> file.

7.6 System Administrator Tasks

On aDigital UNIX system the root account is used to perform both system

administration and ISSO tasks. The system administrator traditionally

performs the following tasks using the Account Manager (or DECwindows

dxaccount s) program:

» Creates groups.

» Creates accounts for users.

» Verifies that the file systems containing users home directory are
mounted. Y ou do not need to create the directories themselves.

See Chapter 9 and the dxaccount s(8) reference page for more information.

7.7 1SSO Tasks

On a Digital UNIX system the root account is used to perform both system
administration and ISSO tasks. The ISSO traditionally performs the tasks
described in the following sections using the Account Manager (or the
DECwindows dxaccount program).

Setting Up the Trusted System 7-9

7.7.1

1.7.2

7.7.3

7.7.4

Check System Defaults

The ISSO checks that the following general defaults and account defaults
conform to the site’s security policy:

» The user password policy (whether users can pick their own passwords,
what type of passwords the system generates, and so on)

* Thelog in controls for accounts, such as the maximum number of
unsuccessful attempts

Modifying a User Account

The ISSO modifies the accounts of any users who have fewer restrictions or
more restrictions than the defaults.

If users accounts are locked by default when they are created, you need to
unlock the accounts before users can log in. Depending on the procedures
established at your site, you may want to unlock all accounts now or unlock
them when the users are ready to log in for the first time.

See Chapter 9 for more information.

Assigning Terminal Devices

Use the dxdevi ces program to perform the following device-assignment
tasks:

» Sets the device defaults.

* Adds each device.

If terminal devices are locked by default, you need to unlock them before
users can log in.

See Chapter 8 and the dxdevi ces(8) reference page for more information.

Setting Up Auditing

The ISSO performs the following tasks to set up the audit system:

» Specifies whether auditing is enabled or disabled when the system boots.
» Specifies which events should be audited.

» Specifies alternate directories for audit records collected when the system
is in multiuser mode.

See Chapter 10 for more information.

7-10 Setting Up the Trusted System

7.8 Backing the System Up

Make a backup copy of the root file system as a precaution. All the files that
have been modified during system setup will be copied.

The backup can be made by using one of the following commands (dunp
only works on UFS file systems):

dunp —Quf /dev/rntOh /

or
vdunp —ONuf /dev/rntOh /

Substitute the appropriate tape device for your system.

Setting Up the Trusted System 7-11

Creating and Modifying Secure Devices 8

The I1SSO is traditionally responsible for assigning the devices that are
included in the system’s trusted computing base (TCB) and for defining the
security characteristics of those devices. On a Digital UNIX system root
accessis required to assign devices. The trusted Digital UNIX system
currently supports terminals as part of the TCB. This chapter describes how
to define those devices to a secure system.

8.1 Defining Security Characteristics

The I1SSO traditionally defines the security characteristics of al the terminals
that are part of the system using the dxdevi ces program. To do this, the
ISSO performs the following tasks:

» Creates and maintains device-specific information. The 1SSO can
override system defaults for an individual device, where appropriate, to
grant additional rights or to impose additional restrictions. The ISSO can
also lock aterminal to prevent use.

o Sets default control parameters for the devices that are included in the
system’ s secure configuration. The system defaults for terminals are as
follows:

— Maximum number of unsuccessful login attemptsis 10.

— Login timeout as shipped is unset, which implicitly defaults to O
which is treated as infinite.

— Delay between unsuccessful login attempts is 2 seconds.

The 1SSO is usually responsible for ensuring that all device assignments,
whether they are set explicitly or by default, conform to a sit€’s security
reguirements.

Before you create or modify a secure device, all of the typical device
installation procedures required during ordinary system hardware and
software installation must be completed. The special files for devices must
exist in the / dev directory and have the appropriate permissions. The
specid files for terminals must be owned by r oot , have the group set to
t ty, and have the mode set to 0620.

You can verify that the installation has been completed with thel s

8.1.1

8.1.2

command. The following example is typical:

#1s —lg /dev/tty*
CrW--------- 1 root tty 0, 2 Aug 15 09:29 /dev/tty00
CrW--------- 1 root tty 0, 3 Aug 15 09:29 /dev/ttyOl

Modifying, Adding, and Removing Devices with the
dxdevices Program

Using the Devices dialog box, select the Modify/Create dialog box then the
Select devices dialog box. To add or remove a device, first select or enter
the device, then click on File to make the required changes. To modify a
device, first select the device, then click on Modify to make the required
changes. See the online help for dxdevi ces for more information.

Setting Default Values with the dxdevices Program

Using the Devices dialog box, select the Defaults dialog box. Set the system
defaults for all of your terminals as required. A termina uses these defaults
unless specifically overridden by settings in the Modify Termina dialog box.
See the online help for dxdevi ces for more information.

8.2 Updating Security Databases

When you assign device defaults or device-specific parameters, the system
updates the following security databases:

* The system defaults database, / et ¢/ aut h/ syst enif def aul t
contains the default values (for example, default control parameters) for
al system devices.

» The device assignment database, / et ¢/ aut h/ syst em devassi gn,
contains device-specific values for system devices.

» Thetermina control database, / et ¢/ aut h/ systenfttys. db,
contains device-specific values for authentication (for example, the
number of failed login attempts).

Each device to be used in your secure configuration must have an entry in the
device assignment database. This database centralizes information about the
security characteristics of all system devices. It includes the device pathname
and type. By default awildcard entry exists for terminals (but not X
displays) inthe/ et ¢/ aut h/ systenfttys. db and

[et c/ aut h/ syst enif devassi gn databases.

The X display entries shipped on the system have
:t_login_timeout#0: entriesinthem, in case a site changes its system
default login timeout. If wildcard X display entries are needed, they can be

8-2 Creating and Modifying Secure Devices

created as follows:

echo \
“*\:*:t_devnane=*\:*:t_|ogin_tineout#0:t_xdisplay:chkent:” \

| /tcb/bin/edauth -s -dt
echo “*\:*:v_type=xdisplay:chkent:” | /tcb/bin/edauth -s -dv

Creating and Modifying Secure Devices 8-3

9.1

9.1.1

9.1.2

Creating and Maintaining Accounts 9

Accounts are created and maintained on a trusted system using the Account
Manager (dxaccount s) program. The traditional information systems
security officer (1SSO), system administrator, and operator roles may be filled
by the same person at a given site. An administrator logged in as root can
perform the functions of both the security officer (1SSO) and the system
administrator that are to set up, modify, and maintain accounts and
administer the security aspects of the system. This chapter describes how the
dxaccount s program are used to create and maintain accounts.

Using dxaccounts to Perform System Administration
Functions

The traditional role for the system administrator, as it relates to accounts, is
to create and retire all user accounts, to create groups, and to modify the
account template. On atrusted Digital UNIX system, the dxaccount s
program is used.

Creating User Accounts

Use the Create User Accounts dialog box to create one or more user
accounts. To create many accounts in a single session, fill in the information
for a new user, click on Apply to save the account, then fill in the
information for another user.

The new accounts are created without passwords. Use the passwd command
to set a temporary passwords for the users.

New accounts are created in alocked state. Users receive an "Account
Disabled" message and cannot log in. Use the XI sso Modify User Accounts
dialog box to unlock the accounts.

Retiring Accounts
Use the Retire User Account dialog box to permanently lock a user account.

9.13

9.14

9.1.5

9.16

Creating Groups
Use the Create New Group dialog box to add a new group.

Modifying the Account Template

An account template is used to establish the account parameters when a new
account is created. The ISSO sets default parameters for the system. These
defaults apply to all usersin the system, but the ISSO can override them for
an individual user. Similarly, the system administrator can override these
defaults for an individual 1SSO.

Modifying User Accounts

The I1SSO is responsible for modifying all (non-1SSO) accounts once they
have been created by the system administrator. Use the Accounts dialog box
to access the Modify User Accounts dialog box.

Modifying the Account Template

An account template is used to establish the account parameters when a new
account is created. The ISSO sets default parameters for the system. These
defaults apply to al usersin the system, but the ISSO can override them for
an individual user. Use the Accounts dialog box to access the Modify
Account Template box, which provides the screen to make the changes.

9.2 Authentication Subsystem

The authentication subsystem verifys that users who log in to the system
have the required password. It is the framework in which processes,
protected subsystems, and the kernel work together to ensure that only
authorized users and their processes gain access to the system.

The ISSO is responsible for ensuring that all user authorizations, whether
they are set explicitly or by default, conform to a site’s security reguirements.

The authentication subsystem uses and maintains the following security
databases. These databases contain parameters and statistics for the system,
for users, and for terminals. For a summary of the contents of these
databases, see Chapter 17 and the appropriate reference pages:

» Protected Password database (pr passwd(4))
o System Defaults database (def aul t (4))

e Terminal Control database (t t ys(4))

» File Control database (fi | es(4))

9-2 Creating and Maintaining Accounts

» Device Assignment database (devassi gn(4))

9.3 Using NIS to Centralize Account Management

Y ou can use the Network Information Service (NIS) to centralize the
management of the password, group, and extended profile information. A
NIS master server can serve an environment of NIS clients that includes
ULTRIX and Digital UNIX machines with and without extended profiles,
and non-Digital machines with ordinary UNIX passwords and groups. NISis
documented in the Network Administration manual.

9.3.1 Overview of Enhanced Security and NIS User Account
Databases

The following section review the account databases and their relationships.

9.3.1.1 BASE Local User Account Database

BASE (BSD) security is the traditional level of security that is available on
UNIX systems. The local BASE user account databases are held in/ et ¢ on
each system.

The/ et ¢/ passwd file in conjunction with the / et ¢/ gr oup file
comprises the BASE user account database and is used to alow or deny a
user access to the system and files on the system in addition to a variety of
other functions.

Each line of / et ¢/ passwd contains information about one user account.
This file contains the users name, UID, password, and several other pieces of
information. The passwd command is used to change a user’s local BASE
password.

The/ et ¢/ gr oup file contains group information. The gr oupadd,
gr oupdel , gr oupnod, and gr oups commands are used to manipulate
local BASE group information.

The adduser, addgr oup, user add, user del , user nod, and vi pw
commands are used by the system manager to add and change user account
information.

9.3.1.2 NIS-Distributed BASE User Account Database

NIS can be used to distribute all or part of the BASE user account database
to systems across the network. When you are running NIS over BASE
security you have two user account databases:

* Thelocal BASE user account databasein/ et ¢/ passwd and
[etc/ group.

Creating and Maintaining Accounts 9-3

* The NIS-distributed BASE user account database distributed by ndbm
maps generated from the / var / yp/ sr ¢/ passwd and
[var/ypl/ src/ group files on the NIS server.

The entries in the NIS-distributed BASE user account database have the same
fieldsasthe/ et c/ passwd file entries.

A user’s account information may be partially distributed. If the user’s entry
inthe/ et c/ passwd file has a prepended "+", both databases are read with
the information from the / et ¢/ passwd file (except for the UID and gid
fields) overlaying the information from the NIS distributed user account
database.

The/ et c/ passwd file on each system must contain a"+:" as the last entry
to allow users from the NIS distributed BASE user account database to log
in.

Table 9-1: NIS passwd File Overrides

Symbol Description

+: If auser is not found in the local file,
authenticate using the NISfile.

+username Locadl file field overrides NIS. Used for
partial distribution.

-username User is excluded from all matches by local

control.

+@netgr: List of users to authenticate using the local
file. See the net gr oup(4) reference page.

-@netgr: List of usersto refuse using the NIS file.
See the net gr oup(4) reference page.

+*: Sends all password requests to the NIS map.

The passwd command is used to change the password in the local BASE
user account database, while the yppasswd command is used to change the
password (and possibly other fields) in the NIS distributed BSD user account
database.

To change NIS-distributed BASE user account database entries, the system
manager does the following:

1. Editthe/var/yp/ src/ passwd file on the NIS master server.
2. Change directory to/ var/ yp.
3. Run nmake to build and push the updated NIS distributed database.

9-4 Creating and Maintaining Accounts

9.3.1.3 Enhanced Security Local Password Database

Installing the optional enhanced security subsets provides more security
features for user accounts. When you are running enhanced security, you
have TWO local user account databases.

The local BASE user account database (/ et ¢/ passwd) remains intact
except for the encrypted password, which is held in the enhanced security
local protected password database (/ t cb/ fi | es/ aut h. db or
/var/tcb/files/auth.db). Ifthe/ et c/ passwd file contains an
encrypted password it is ignored unless C1Crypt is being used. The other
fields (gecos, shell, and so forth) are used as they normally would be.

The enhanced local protected password database contains the username and
UID (to uniquely identify a user), the encrypted password, and a set of
keyword-identified values used by enhanced security (see pr passwd(4) for
a description of these values). Each user account in the local protected
password database is backed by the system template

(/ etc/ aut h/ system def aul t). If avalueis not defined for auser in
the protected password database, it is taken from the template. There should
be entries in BOTH databases (with username and UID both matching) for
each user.

A user runs the passwd command is to change his protected password.

The CDE Account Manager (or dxaccount s program) is used by the
system manager to add and change user account information (including
passwords).

9.3.1.4 NIS and Enhanced Security Database Interaction

NIS can be used to distribute part or all of the enhanced protected password
database as well as part or all of the BSD user account database.

When you are running NIS over enhanced security you have FOUR user
account databases:

* Thelocal BASE user account database in / et ¢/ passwor d and
/ et c/ group.

* The NIS-distributed BASE user account database.
» Thelocal enhanced security protected password database.

* The NIS-distributed enhanced security password database distributed by
ndbmmaps generated from the / var / yp/ sr c/ pr passwd file on the
master server.

Creating and Maintaining Accounts 9-5

Figure 9-1: NIS and Enhanced Security

NIS Server

Ivarlyplsrc/prpasswd

Ivarlyplsrc/passwd

Ivarlypl/src/group

I Network

NIS Client Running
Enhanced Security

letc/svc.conf

/tcb/files/auth.db

Ivarltcbffiles/auth.db
prpasswd

/etc/passwd

/etc/group

ZK-1087U-Al

Thesvc. conf file"auth=" entry indicates which order the enhanced
protected password databases should be searched in (local first or NIS ("yp")
first).

The"+" override feature still works the same as always for the BASE user
account database (/ et ¢/ passwd).

Note

When you have NIS running and you are first updating to
enhanced security, secset up creates extended passwords for
the +user nane entriesin the/ et ¢/ passwd file only if you
answer yes to the "Create entries for NIS users' question in
secset up.

There is no override feature for the protected password database. An entry in
the protected password database is contained completely in either the local

9-6 Creating and Maintaining Accounts

9.3.2

9.3.3

enhanced protected password database or in the NIS distributed enhanced
protected password database. Both databases are backed by the local
template.

Use the passwd command to change the password in the local or NIS
distributed enhanced protected password database. Use the yppasswd
command to change the fields in the NIS-distributed BASE user account
database that you’ ve always been able to change with yppasswd.

Implementation Notes

To change your password when you are running both enhanced and NIS you
should use passwd to change the password regardless of whether your
protected password database entry is local or distributed. Using the search
listinthe svc. conf filefor "auth=", the passwd command updates the
password in the first protected password database entry it finds for the
specified user, even if that entry is in the NIS-distributed protected password
database.

The procedure in Section 9.3.6 describes one method that can be used to
create an NIS distributed protected password database using the existing local
BASE user account database.

It is very important that each protected password database entry exists in only
one database either the local protected password database or the NIS-
distributed protected password database. The routines that check and
manipulate the protected password database information work on the first
copy found (as defined in svc. conf file). YP routines work on the NIS-
distributed protected password database only. This can cause some confusing
results if you have the same entry in both places. If this happens delete one
of the copies.

It is strongly recommended that you do not distribute the root account
information. This allows you to still log in to the client systems using the
root account if your NIS server is down.

Setting Up a NIS Master Server

If NISis running on the master server, you must stop NIS using the
/sbin/init.d/ nis stop command.

9.3.3.1 Manual Procedure for Small Databases

The following setup information is specific to an NIS master server that is
supporting clients using enhanced security:

1. Ensurethat Digital UNIX Version 4.0 or higher is installed.

Creating and Maintaining Accounts 9—7

Install the security subsets and setup security. See Chapter 7 for details.
Run the ni sset up program.

a When the ni sset up program first prompts for security (—s option
to ypbi nd), choosey to run ypbi nd —s, which specifies a secure
socket.

b. When the ni sset up program again prompts for security (—S option
to ypbi nd), choosey and specify a domain name and up to four
authorized slave servers.

Setup the account Maps using the CDE Account Manager
(dxaccount s) See Section 9.3.6 for an alternative method of setting up
accounts.

Edit the/ et c/ svc. conf filetoinclude ayp entry for aut h. The
entry should be as follows: aut h=I ocal , yp.

Start or restart NISusing the/ sbin/init.d/ nis start command.

9.3.3.2 Automated Procedure for Large Databases

If you have alarge existing NIS distributed BASE user accounts database
you can automate the creation of the NIS distributed protected password
database by doing the following:

9.34

1
2.
3.

Ensure that Digital UNIX Version 4.0 or higher is installed.
Install the security subsets and setup security. See Chapter 7 for details.
Run the ni sset up program.

a When the ni sset up program first prompts for security (—s option
to ypbi nd), choosey to run ypbi nd —s, which specifies a secure
socket.

b. When the ni sset up program again prompts for security (—S option
to ypbi nd), choose y and specify a domain name and up to four
authorized save servers.

Enter the following command:
convuser -M

Setting Up a NIS Slave Server

If NIS is running on the slave server, you must stop NIS using the
/sbin/init.d/ nis stopcommand. The following setup information
is specific to an NIS slave server that is supporting clients using enhanced
security:

9-8 Creating and Maintaining Accounts

9.3.5

Ensure that Digital UNIX Version 4.0 or higher is installed.
Install the security subsets and setup security. See Chapter 7 for details.
Run the ni sset up program.

a When the ni sset up program first prompts for security (—s option
to ypbi nd), choosey to run ypbi nd —s, which specifies a secure
socket.

b. When the ni sset up program again prompts for security (—S option
to ypbi nd), choose y and specify a domain name and up to four
authorized save servers.

Edit the/ et c/ svc. conf filetoinclude ayp entry for aut h. The
entry should be as follows: aut h=I ocal , yp.

Start or restart NISusing the/ sbin/init.d/ nis start command.

Setting Up a NIS Client

If NISis running on the master server, you must stop NIS using the
/sbin/init.d/ nis stop command. Thefollowing is the setup
information that is specific to an NIS client using enhanced password
security:

1
2.
3.

Ensure that Digital UNIX Version 4.0 or higher is installed.
Install the security subsets and setup security. See Chapter 7 for details.
Run the ni sset up program.

a. When the ni sset up program first prompts for security (—s option
to ypbi nd), choosey to run ypbi nd —s, which specifies a secure
socket.

b. When the ni sset up program again prompts for security (—S option
to ypbi nd), choose y and specify a domain name and up to four
authorized dave servers.

Install enhanced security and run the secset up program.

Edit the/ et c/ svc. conf filetoinclude a NIS (yp) entry for aut h.
The entry should be as follows: aut h=Il ocal , yp.

Start or restart NISusing the/ sbin/init.d/ nis start command.

Creating and Maintaining Accounts 9-9

9.3.6

9.3.7

Moving Local Accounts to NIS

To move existing local accounts to NIS, use the following command:
edauth -Lg | edauth -NsC

Backing Out NIS

If you need to remove the NIS support from your trusted client system first
disable NIS for authentication data, then enter the following command on the
client:

edauth -gN | edauth -sLC

The protected password database on the client machine is updated with any
accounts from the NIS database that are not present in the local database.

9-10 Creating and Maintaining Accounts

Administering the Audit Subsystem 10

This chapter describes the purpose of system auditing, how auditing is
performed, what activities should be audited, and how to read and respond to
audit reports. Responsibilities, managing events, tools, and generating reports
are also described.

10.1 Overview of Auditing

Auditing provides you with a powerful tool for monitoring activity on the
system. Through auditing, you can accomplish the following:

» Discourage users from attempting to violate security. A user who knows
that system activities are monitored and that security violations can be
tracked to the responsible individual might be dissuaded from attempting
to violate security.

» Detect attempts at violations or activities indicative of probing a system
for weak points. If an audit reveals failed attempts to violate system
security, you can take counter measures to lessen the likelihood of later
attempts succeeding.

* Assess damage and restore the system if a break-in should occur. Careful
analysis of an audit trail after a break-in can help you determine what
occurred during the security violation and what steps are needed to
return the system to its original state. It also allows you to take steps to
prevent similar break-insin the future.

It is important that you inform users of the purpose and, in general terms, the
nature of the auditing performed on the system. Represent auditing in a
positive light, as atool to help protect the users' files and their access to
system resources. This helps minimize any resentment; users who are openly
told that their system is regularly audited are less likely to feel as though
they are being spied upon. For those users who might be tempted to violate
security, knowledge that activities are monitored can be a powerful deterrent.

10.1.1 Files Used for Auditing
Table 10-1 describes the files used by the audit subsystem.

Table 10-1: Files Used for Auditing

File Name

/var/audit/auditlog. nnn
/etc/sec/event _aliases
/etc/sec/auditd_clients
/etc/sec/audit_events

/etc/sec/site_events
/etc/sec/auditd _cons
/etcl/sec/auditd | oc

10.1.2 Auditing Tools

Security-Relevant Information
Default log file for the audit subsystem
when audi t _set up is used.

A set of aliases to represent the set of
events which can be audited.

A list of the remote hosts that can send
remote audit data to the local audit log.

A list of the events which can be used as
input for audi t mask.

A file designated for site-defined events.
Default log file for console audit messages.

A list of aternate paths and hosts for audit
logs.

The tools for auditing on Digital UNIX systems can be divided into two

categories:

* The audit subsystem, which has powerful features unique to the trusted
Digital UNIX operating system. This is a better way to perform security-

relevant auditing.

» Traditional UNIX operating system logging features, such as the system
accounting files and the | ast command.

The Digital UNIX audit subsystem provides a choice of the events to be
logged, flexible data reduction of the audit log, and ease of maintenance.
The following commands are used with the audit subsystem:

audit _setup

Establishes the audit environment on your system.
Selects events for inclusion in the audit log or displays

alist of events currently being recorded in the audit

Provides the ability, from the command line, to

generate alog record containing a message of your

audi t mask

log.
audgen

choice.
auditd

Activates the auditing daemon and administers audit

data storage.

10-2 Administering the Audit Subsystem

audi t _t ool Selectively extracts information from the audit log and
presents it in a readable form.

audit _tool.ultrix
Selectively extracts information from an audit log
created on an ULTRIX system and presentsit in a
readable form.

Use of these commands is limited to those with superuser status. They are
discussed in greater detail later in this chapter.

The Digital UNIX audit subsystem records activities in any file at any
location chosen by the system administrator. The default log file is

/var/ audi t/ audi t| og. nnn, where nnn is the generation number of
the file, a number between 000 and 999.

The subsystem is capable of recording a wide range of events. You can
choose alist of eventsto log for all users and then add or remove events
from that list on a per-user basis to tailor the logging to individual users.
The audi t _t ool program enables you to filter the audit log file and
produce reports focusing on the information you need.

10.2 Setting Up the Audit Subsystem

The following sections explain how to setup a basic audit subsystem.

10.2.1 Set Up Questions

Before setting up the audit subsystem, you need to make the following
decisions about how it is to run on your system:

» Determine the location for your local audit data. (Section 10.4.1)

» Determine the action to be taken when the local audit log overflows.
(Section 10.4.1.1)

» Determineif there is a need to store local audit data remotely or to
receive remote audit data. (Section 10.7)

» Decideon alist of events and system calls to be logged. Y ou might have
more than one list if you are logging different events at different times.
(Section 10.10)

» If you are going to require per-user audit profile setup or the dxaudi t
program, ensure that you have the optional enhanced security subsets
(OSFC2SEC4xx for per-user audit profile and OSFXC2SEC4xx for

Administering the Audit Subsystem 10-3

dxaudi t) instaled. You can check as follows:

$ Is -1 /usr/.sndb./OSF*C2SECA??. | k
-rwr--r-- 1 root system 0 Nov 8 11:02 \
/usr/.smdb. / OSFC2SEC400. | k
-rwr--r-- 1 root system 0 Nov 8 11:08 \
/usr/.smdb. / OSFXC2SECA00. | k

The presence of the lock files (OSFC2SEC400. | k and
OSFXC2SEC400. | k) indicates that the enhanced security subset is
installed on your system.

» Decideif you are going to setup audit using the audi t _set up script or
manually setup audit using the audit utilities. Using the audi t _set up
script is the recommended method.

10.2.2 Using the audit_setup Script

Theaudi t _set up script configures your default audit subsystem. It sets
parameters for audi t d and the audi t mask, which are used by one of the
r ¢3 scripts to start audit whenever your system goes to multiuser (run level
3). For details, seeaudi t _set up(8).

If you usethe audi t _set up script, enter the following from the command
line:

/usr/sbin/audit_setup

Example 10-1 shows a sample audi t _set up session:

Example 10-1: Using the audit_setup Script

e R

Audi t Subsystem Setup Scri pt

e e

The following steps will be taken to set up audit:
1) establish startup flags for the audit daenon,
2) establish startup flags for the auditmask,

3) create the /dev/audit device (if needed),
4) configure a new kernel (if needed).

Do you wi sh to have security auditing enabled as part of
systeminitialization (answer 'n’ to disable) ([y]/n)? vy

Some of the options to "auditd control:
1) destination of audit data,
2) destination of auditd nessages,
3) action to take on an overflow condition,

10-4 Administering the Audit Subsystem

Example 10-1: (continued)
4) enabl e accepting audit data fromrenote auditd’'s
Destination of audit data (file|lhost:) [/var/audit/auditlog]? Return
Directory /var/audit/ does not exist; create it now (y/[n])? vy
Destination of auditd nmessages [/var/audit/auditd_cons]? Return
Action to take on an overflow condition nay be one of:
1) change audit data |l ocation according to '/etc/sec/auditd_loc
2) suspend auditing until space becones avail abl e
3) overwite the current auditlog
4) terminate auditing
5) halt the system
Action (1-5) [1]? Return

List in '/etc/sec/auditd_loc’ the alternate directories in
which to store audit data, and host nanes to which to send data

Do you wish to edit /etc/sec/auditd_loc now (y/[n])? Retun
Accept data fromrenote auditd’ s (y/[n])? vy

Don’t forget to place names of renote hosts from which data
may be accepted into '/etc/sec/auditd_clients’

Do you wish to edit /etc/sec/auditd_clients now (y/[n])? vy

?auditd_clients

a

al phal

al phal. sal es. dec. com

i,$n

1 al phal

2 al phal. sal es. dec. com

w

q
Further options are avail able for advanced users of the audit system
(pl ease refer to the auditd manpage). |f you wish to specify any
further options you may do so now (<Return> for none): Return

Startup flags for "auditd set to:
-l /var/audit/auditlog -c y -o changeloc -r -s

Is this correct ([y]/n)? vy

The audi t mask establishes which events get audited. This can be

speci fied by:
1) having the auditmask read a |ist of events froma file
_Or-

2) specifying a list of events on the comrand |ine

Administering the Audit Subsystem 10-5

Example 10-1: (continued)

Events can refer to syscalls, trusted events, site-defined events, or
al i as names.

The file "/etc/sec/audit_events’ contains a list of all auditable
systemcalls and trusted (application) events. You may either
modify this file or use it as a tenplate.

The file '/etc/sec/event_aliases’ contains a set of aliases by which

logically related groupings of events nay be constructed. You nay
modi fy this set of aliases to suit your site’s requirenents.

Pl ease enter the filename containing the event list or enter * to
indicate that the individual events will be specified on the conmand
line, or enter <Return> for no events: /etc/sec/audit_events

Do you wish to edit /etc/sec/audit_events now (y/[n])? Retun

The audi tmask al so sets various style flags such as:

1) 'exec_argp’ - audit argument vector to exec systemcalls
2) 'exec_envp’ - audit environment vector to exec systemcalls
3) 'login_unanme’ - audit recorded usernane in failed |ogin events

Enabl e exec_argp ([y]/n)? Retun
Enabl e exec_envp (y/[n])? Return
Enabl e [ogi n_unane ([y]/n)? Return
Startup flags for ’auditmask’ set to:
-s exec_argp -s login_unanme < /etc/sec/audit_events

Is this correct ([y]/n)? Return

Configuration file name (/sys/conf/ALPHAL)? Return

Checki ng booted kernel ’'/vmunix' and config file '/sys/conf/ALPHAL

/vmuni x on ALPHAl is already configured for security auditing.
Would you like to start audit now ([y]/n)? Return

"/usr/sbin/auditd started.
" [usr/sbin/auditmsk’ set.

*xxx% AUDI T SETUP COVPLETE *****

10-6 Administering the Audit Subsystem

10.3 Selecting Audit Events
Y ou can specify the auditing of events as follows:

* With the audi t nask command, you assign values to the system audit
mask, which determines the events that are stored in the audit log for all
users.

» With the user audit mask, you can specify logging events for individual
USers.

The system audit mask and the user audit mask for the particular user
determine the events logged for that user. The way the two masks are
combined is controlled by the user’s audit control flag. The user audit mask
and the user audit control flag are part of the user’s account and are stored in
the protected password database (/ var/ t cb/ fil es/ aut h. db). If the
aut hcap files are not used, an OR operation is performed on the default
system and the default user auditmasks (the user mask is empty).

The user audit mask and audit control flag enable you to designate events to
be logged for the user in addition to those that are logged for al users, or to
selectively exclude the user from the auditing of certain events.

The syntax of the audi t mask command is as follows:
/usri/sbin/auditmask [options] [event_specification]

The event_specification lets you designate the event to be logged and whether
only successful occurrences of the event, only failed occurrences, or both are
to be recorded. An event_specification has the following form:

event[:success:failure]

In place of event, enter the name of the event you want audited. In most
cases an audit event corresponds to a system call, trusted event, site-defined
event or event alias.

In place of success enter one of the following:

1 Tolog the event when it succeeds.

0 To suppress logging the event when it succeeds.
In place of fai I ur e, enter one of the following:

1 Tolog the event when it fails.

0 To suppress logging the event when it fails.

If you do not specify either success or failure logging, then both are logged,;
that is, | ogi n has the same effect as| ogi n: 1: 1.

Y ou can specify multiple events by listing individual event specifications
separated by spaces. For example, to specify failed login attempts, successful

Administering the Audit Subsystem 10-7

and failed file opens, and successful file closes, you would enter the
following:

/usr/sbin/auditmask | ogin:0:1 open close:1:0

Once an event has been designated for logging, logging of the event
continues until you explicitly turn it off by specifying the following:

<event>.0:0

Use the —n option to disable all logging.

See Section 10.10 for more information on audit events. For a complete
description of selecting audit events, see the audi t nask(8) reference page.

10.3.1 Event Aliases

Y ou can create an event alias to group events to be audited. Y ou define the
event adliasesinthe/ et c/ sec/ event _al i ases file. Theformat isa
series of alias entries, as follows:

alias: event[:x:y] [event[:x:y] ...]

Each event is either a system call, trusted event, site event, or another alias,
and the :x:y is the same success/fail notation used in audi t nask and
audi t _t ool . Continuation lines are allowed.

See Appendix B for asample/ et c/ sec/ event _al i ases file.

10.3.2 Object Selection and Deselection

Auditing is capable of generating enormous amounts of data. To obtain
usable audit logs, mechanisms to specify when audit data is generated are
very important. Another pre-selection mechanism offered by Digital UNIX
auditing is the file system object selection/deselection mode which works in
conjunction with the event selection mode.

Some events, such as nount and r eboot , are operations which affect
system state; other events, such as open and st at , are operations which
affect specific files. While all r eboot attempts might be security relevant,
not all file open events are (based on the site security model) relevant. The
file system object selection and deselection modes provide a further level of
granularity for events which operate on files.

The object selection and deselection modes are divided as follows:

Selection The file selection mode allows administrators to specify a
set of files against which data access operations can
generate audit data, while those same operations on other
files can not generate audit data.

10-8 Administering the Audit Subsystem

The data access operations are:

open st at

cl ose | st at

i nk dup

| seek revoke

access readl i nk
fstat dup2

read getdirentries

Using object selection it is possible, for example, to audit
the opensof the/ et ¢/ passwd and/ . r host s files
while not auditing open events of / t np/ xxxx files.

Deselection The file desel ection mode allows administrators to specify
a set of files against which data access operations can not
generate audit data, while other files are normally audited.
The set of operations is the same as that listed for file
selection. File open’s for write or truncate access,
however, do not get deselected.

The result is that it is now possible, for example, to not
audit accessesto/ usr/ shlib/1i bc. so, but still audit
the opening of the/ et ¢/ passwd file.

Note that processes with an audcnt | flag of AUDIT_USR do not have their
auditing reduced through the selection/desel ection mechanism.

Although the system object selection and object deselection states are
mutually exclusive, it is possible for any one object to be subject to both
models simultaneously on different systems (across NFS). The propl i std
daemon needs to be running to transfer attributes across NFS.

The following are examples of how to enable the selection of afile for audit:

audi t mask —s obj _sel
audi tmask —q /etc/ passwd

sel ection: off desel ection: off -- /[etc/passwd

audi t mask —x /etc/ passwd

selection: off => on -- Jetc/passwd # auditnmask —q

/ etc/ passwd sel ection: on desel ection: off -- /etc/passwd

The following example shows how to deselect alist of files:

audi t mask —s obj _sel

cat desel _file
/etc/notd

/etc/fstab

/ et c/ passwd

audi tmask —Q desel file

sel ection: off desel ection: off -- /[etc/notd
sel ection: off desel ection: off -- J[etc/fstab
sel ection: off desel ection: off -- /etc/passwd
audi tmask —X desel _file: 0

selection: on => off -- [etc/nptd

Administering the Audit Subsystem 10-9

selection: on => off -- J/etc/fstab
selection: on => off -- [etc/passwd

10.3.3 Targeting an Active Processes

You can audit a process in real time by using the —p option to audi t nask.
Example 10-2 shows how you might investigate a process started by a user
logged in as guest .

Example 10-2: Sample Active Auditing Session

ps -uguest -0 user, pid,uid, comm 1
USER PI D U D COMVAND

guest 23561 1123 csh

guest 23563 1123 ed

audi tmask -p 23563 open exec -c or 2
audi tmask -p 23563 3
! Audited systemcalls:

execv succeed fail
exec_wi t h_| oader succeed fail

open succeed fail
execve succeed fail

I Audited trusted events:

' Audcnt!l flag: or

auditd -d 5s -w 4
Audit data and nsgs:
-1) audit data destination
-c) audit consol e nessages

/var/audit/auditl og. 001
/var/audit/auditd_cons

-d) audit data dunp frequency 5s

Net wor k:
-s) network audit server status (toggle) = off
-t) connection tineout val ue (sec) =4

Overfl ow control:
-f) % free space before overflow condition = 10
-0) action to take on overflow = overwite current auditlog

audit_tool /var/audit/auditlog.001 -Bfw 5
USERNAMVE PI D RES/ (ERR) EVENT

j doe 23563 0x4 open (/etc/notd 0x0)

j doe 23563 0x4 open (/etc/passwd 0x0)

j doe 23563 0x4 open (/etc/ftpusers 0x0)

j doe 23563 0x4 open (/etc/hosts 0x0)

j doe 23583 0xO0 execve (/usr/bin/sh sh -c ps)
j doe 23583 0x5 open (/usr/shlib/libc.so 0x0)

10-10 Administering the Audit Subsystem

Example 10-2: (continued)

j doe * 23592 0x0 execve (/sbin/ps ps gax)

j doe 23599 0xO execve (/usr/bin/sh sh -c w)

j doe 23599 0x5 open (/usr/shlib/libc.so 0x0)

j doe * 24253 0x0 execve (/usr/ucb/w w)

j doe 23563 0x4 open (savethis 0x602 0640)

j doe 23563 0x4 open (savethis 0x1)

j doe 23563 0x4 open (/tnp/edtnmpAA 0x602 100640)
j doe 23563 0x4 open (savethis 0x601 0640)

j doe 23563 0x5 open (/tnp/edtnmpAA 0x0)

~C 6

--interrupt: exit (y/[n])? vy
#

1 Find out what process the user guest isrunning and also get the process
ID and audit ID.

2 For PID 23563, set the auditmask to open and exec, and perform an
OR operation with the system mask. Note that exec is an alias for
execv, exec_wi th_| oader, and execve.

3 Get the auditmask for the 23563 process.

Dump to the audit log every 5 seconds and also show the audi t d
configuration.

5 Display a continuous abbreviated audit report. Note that the audit log
argument comes from the previous audi t d —w command.

6 Exittheaudi t _t ool program with a Ctrl/C (auditing continues).

See the audi t mask(8) reference page for more information.

10.4 Audit Log Files

The audit subsystem uses severa log files to collect audit data.

10.4.1 The auditlog File

All of the security-relevant audit datais collected in the audi t | og. nnn
file. Because of possible system configuration differences, the default location
is different depending on how the audit subsystem is setup. If it is setup
using the audi t _set up script, the default location is at

/var/ audi t/ audi t| og. nnn; if audit is setup using the audi t d, the
default locationisat / var/ adm audi t | og. nnn. In either case, the
administrator can choose another location and file name.

The audit daemon increments the number, nnn, by one each time a new audit
log is created. Some of the circumstances that cause the creation of a new
audit log are as follows:

Administering the Audit Subsystem 10-11

* A new logisrequested (audi t d —x) either by the system administrator
or from cr ont ab.

e Auditing is started.
* An overflow condition occurs.

10.4.1.1 Audit Log Overflow

When the file system for the current audit log fills to the specified level, a
warning message is displayed at / dev/ consol e or the specified audit
console, and audi t d takes its overflow action. Y ou can specify the action
to be taken when the audit log overflows by using either the audi t _set up
script or the audi t d —o command. The actions you can take are as
follows:

» Change to the next directory or host as specified in the
[etc/sec/auditd_I oc file

» Suspend auditing.

» Overwrite the current audit log file. This causes the loss of previously
logged audit data.

e Terminate the audit daemon.
* Halt the system.

The—-o changel oc option to audi t d allows the administrator to specify
alist of directories or hosts to which audi t d can store data. The audi t d
program on the host machine determines the path. If audi t d reachesthe
“‘virtual limit,”” which is established with the —f option, it continues to
output data into the next directory or host as specified in the

/ et c/ sec/ audi t d_I| oc file. (The directories specified in

/ et c/ sec/ audi t d_| oc should be on different disk partitions.) If

audi t d cycles through al the directorieslisted in the

/et c/ sec/audi td_| oc file, it will continue to output data into the last
specified directory until the physical limit of the directory is reached.

When audi t d fails because it has filled the last directory or cannot
overwrite the log file, as specified by audi td —o over f | ow, the system
shuts down with the following console message:

% auditd: overflow condition -> shutdown

See the audi t d(8) reference page for more information.

10-12 Administering the Audit Subsystem

10.4.1.2 Remote Audit Logs

Audit data can be sent to another system or can be received from other
systems. The—| flag to audi t d specifies a remote host to receive the audit
data. If the remote site stops receiving, the local daemon stores its data
locally as specified with the —o and —r flagsto audi t d.

The —s flag to audi t d allows the audit daemon to accept audit data from
other audit daemons whose host names are specified in the file
/etc/sec/auditd_clients. The/etc/sec/auditd_clients
file is site-specific and lists one host name per line.

See the audi t d(8) reference page for more information.

10.4.2 Console Messages

Console messages generated by audi t d are directed to alog file named
audi t d_cons. The default locationis/ var/ audi t/ audi t d_cons.
Y ou can choose a different location using the audi t _set up script.

10.4.3 Creating Your Own Log Entries

10.5

By using the audgen command, you can include a message of your
choosing in the audit log. The command builds an audit record consisting of
user-supplied text and the audit ID, UID, PID, IP address, and timestamp.
For example, if you wanted to annotate the log file, you might want to create
an entry like the following:

/usr/sbin/audgen "Begin recording file opens by J. Doe."

Y ou must enclose the audit log text in quotation marks or each word in the
text will appear on a separate line when the text is later retrieved by the audit
tool.

To log the event, AUDGEN8 must be one of the events designated for
auditing with the audi t mask. To extract records logged with the audgen
command, include audgen in the list of eventsto be retrieved by the

audi t _t ool command.

See the audgen(8) reference page.

Configuring the Audit Subsystem Using auditd

Although using the audi t _set up script is the recommended way to
configure your audit subsystem, you may want to do some tasks manually
using the audit subsystem daemon, audi t d.

Administering the Audit Subsystem 10-13

10.5.1 Displaying Information About the Audit Subsystem

The audi t d command provides several ways to obtain information about
the audit subsystem:

* Todisplay abrief help menu, use the —h option.
* Tolearn the location of the current audit log file, use the —q option.

» Tolearn the current options specified for the audit daemon, use the —w
option.

10.5.2 Designating the Location of the Audit Log File

To designate the local pathname to which audit data is written, use the —I
option to audi t d followed by the pathname you want for the audit log.

The file name should be of the form audi t | og[. nnn], where nnn can be
a number from 000 to 999, inclusive. The audit daemon appends the number
automatically, incrementing the number by one each time a new audit log is
generated. If you specify the number, the range is from the specified number
to 999. For example, to create a new series of unique log files with the base
name speci al _| og, enter the following:

auditd -l /var/audit/special _|og

By specifying a remote host as the argument to the —| option, you can send
the audit data generated locally to a remote host running the audit daemon.
For example, to send the your audit data to a remote host named peanut s,
enter the following:

auditd -l peanuts:

The remote daemon sets the path to the audit log on the remote system.

10.5.3 Designating a Fallback Location for Audit Data

Theaudi td -r command reads alist of local directories or host names
into which audi t d switches its audit log file when an overflow condition is
reached. When sending data to a remote host, the directories are determined
by the remote host’s audi t d. It is prudent to designate a fallback
destination that isin a different file system than the one for the current audit
log.

The list of fallback locations is maintained in the / et ¢/ sec/ audi td_I oc
file. Theaudi t d_| oc fileis site-specific and lists one host name (in host:
format) or one directory path per line. Example 10-3 is an example of what
an/etc/sec/audi td_| oc file might look like.

10-14 Administering the Audit Subsystem

Example 10-3: Sample /etc/sec/auditd_loc File

host 1:
host 2:
/var/al ternate/auditdatal
/var/ al t er nat e/ audi t dat a2
/var/ al t ernat e/ audi t dat a3

The —r option is used when the overflow action (—o option) is set to
changel oc. The following example shows how to tell audi t d the
location of your fallback directories:

auditd —o changel oc —r

10.5.4 Designating a Destination for Audit Log Status Reports

To provide you with up-to-date information on the status of the audit log, the
audit subsystem sends messages about such things as log overflow conditions
and the rollover of the current log file to anew file. Usetheauditd —c
command followed by a pathname to specify a device or local file as the
destination of those messages. For example, to direct the status reports for
your audit logsto afilenamed / usr/ st aff/r0/j doe/ |l og_st at us,
enter the following:

auditd —c /usr/staff/r0/jdoel/l og_status

10.5.5 Protecting Against Audit Log Overflow

The audit subsystem enables you to protect against the possibility of lost
audit information due to the log file filling all the available space of a disk
partition. Theaudi td —o command followed by an action string lets you
specify an action to be taken by the system in the event of an overflow
condition. Y ou can choose the following actions:

changel oc Change to the next directory or host listed in the
/ etc/sec/auditd_| oc file.

hal t Shut down the system.
kill Terminate audi t d (stops auditing).
suspend Suspend auditing until space is made available.

overwite Overwrite the current log file.

For example, on an overflow situation, to cause the audit logs to be sent to
the next directory or host listed in the/ et ¢/ sec/ audi t d_|I oc file, enter

Administering the Audit Subsystem 10-15

10.6

the following:
auditd —o changel oc

Starting Audit

Thefirst invocation of / usr/ sbi n/ audi t d spawns the daemon;
subseguent invocations detect that an audit daemon is aready running and
communicate with it, passing the specified option parameters. The first
invocation of the daemon also turns on auditing for the system (audcnt |).

Y ou can start the audit daemon using just the audi t d command with no
options and can then configure the audit subsystem using the audi t d
command for each individual option as described in the following sections.
Y ou can also configure and start the audit subsystem from a single command
that includes the configuration options. The following is an example of a
combined configure and start audit command line:

auditd —o changel oc —c ~jdoe/l og_status \
—r /etc/sec/auditd_|l oc - peanuts:/var/audit/special_|og

10.6.1 Turning Off Audit

The audi t d —k command stops the audit daemon, thus disabling the audit
subsystem. For example, to immediately stop auditing, enter the following:

auditd —k
Avoid using this option during normal system operation.

10.6.2 Starting a New Audit Log

10.7

To start (or roll over) a new auditlog with the number of the current auditlog
incremented by 1, use the —x option to audi t d. When you use this option,
the old audit log is automatically compressed by the conpr ess command.
Y ou can do this while the audit subsystem is active.

The name of an audit log file is aways appended with a generation number,
which ranges from 000 to 999. If the current audit log isaudi t | og. 275,
the —x option creates a new file, audi t | 0g. 276, and begins writing audit
data to it.

Auditing Across a Network

If you have computers linked in a TCP/IP network, you can run the audit
daemon on multiple systems and feed the information logged to a single
system (the audit hub) for storage and analysis, as follows:

10-16 Administering the Audit Subsystem

On the host that is to be the central collecting point for audit information
(the audit hub), create the file/ et c/ sec/ audi td_cl i ents. Each
line in this file must have the name of a remote host that will be feeding
audit data to the local audit daesmon.

On the audit hub, enter the following command to enable the audit hub to
receive audit data from audit daemons on remote hosts specified in the
/etc/sec/auditd_clients file

[usr/sbin/auditd —s

On each remote host, direct the audit data to the system that is the audit
hub with the following command:

lusr/sbin/auditd - audit_hub_nane:

From the audit hub you can designate options for an audit daemon
serving a remote host by using the audi t d command as usual to specify
the options. On this hub, you will have a dedicated audi t d for each
remote connection. Include the —p option to designate the ID of the
remote audit daemon to receive the options. To learn the ID of an audit
daemon serving a remote connection, enter the following commands:

/usr/sbin/auditd —w
MASTER AUDI T DAEMON SERVER:

Audit data and nsgs:
-1) audit data destination
-c) audit consol e nessages

/var/audi t/auditl og. 039
/var/ audi t/audi td_cons

Net wor k:
-s) network audit server status (toggle) = on
-t) connection timeout value (sec) =4

Overflow control:
-f) % free space before overflow condition = 10
-0) action to take on overflow = overwite current auditlog

AUDI T DAEMON #1 SERVI NG vi jy.research. dec. com

Audit data and nsgs:
-1) audit data destination =\
/var/audit/auditlog:vijy.research.dec.com 040

-c) audit consol e nessages = /var/audit/auditd_cons
Net wor k:
-t) connection timeout value (sec) =4

Overflow control :
-f) % free space before overflow condition = 10
-0) action to take on overflow = overwite current auditlog

/usr/sbin/fauditd —p 1 —-| /var/audit/vijy —dq

Administering the Audit Subsystem 10-17

10.8

/var/audit/vijy.041

When feeding audit data from remote hosts to an audit hub, direct the audit
data from each remote host into its own, dedicated audit log file on the hub
system. Thisis necessary to prevent corruption of audit data, and is done by
default.

When you use the audit tool to retrieve data from these logs of audit data
from remote systems, the first and last audit log entries may be fragments
rather than complete entries. This can happen if the communications channel
is not cleanly terminated or if the audi t d remotely receiving the datais
forced to switch log files. This is because remote audit information is fed in
a continuous stream to the audit hub, rather than as discrete audit entries.

The audit tool notifies you when it encounters a fragmented entry. This does
not affect the retrieval of other records from the audit log.

Processing Audit Log Data

Theaudi t _t ool command enables you to process and filter data stored in
the audit log and to display the audit information in a format you can read.
The command handles both compressed and uncompressed files.

Theaudi t _t ool command has the following syntax:
/usr/sbin/audit_tool [options] filename

Use fi | ename to designate the audit log from which audit information is to
be extracted.

Within a single option type, audit records are returned for each use of the
option. For example, assuming the name of the audit log is

audi t | og. 100, you can retrieve the records of al open, cl ose, and
r enane events using the —e option as follows:

/usr/sbin/audit_tool —e open —e close —e renane /var/adm auditl og. 100

When you mix different options, only audit records that match the specified
attributes are returned. For example, to get reports on only open events that
are also associated with user name smi t h, you can use the following
command:

/usr/sbin/audit_tool —e open -U smth /var/adnifauditl og.100

Theaudi t _t ool command can be highly selective in the audit records it
extracts. For example, the following command extracts only records of
open, cl ose, or r enane events that are associated with user name smith

10-18 Administering the Audit Subsystem

or brown.

/usr/sbhin/audit_tool —e open —e close —e renane -U snmith \
-U brown auditl og. 100

When specified without an argument, the audi t _t ool command displays a
brief help message.

The following sections describe some often-used features of audi t _t ool .
For a complete description, see the audi t _t ool (8) reference page.

10.8.1 Using audit_tool Interactively

Torunaudi t _t ool interactively, use the —i option, which displays each
option, along with its current or default setting. Enter your choice, or press
Return to accept the current setting or default.

When in interactive mode, the default is to retrieve all audit records.

10.8.2 Selecting Audit Records
Y ou can select records that are associated with user identity in four ways:
e Select records by user name.

Use the —U option to specify one or more user names. Records with user
names that match your input are then returned. Note that a user name is
associated with alog record only if the event | ogi n is audited (see
Section 10.10.1). The default is al user names.

e Select records by effective UID.

Use the —u option to specify one or more UIDs. Log entries for
processes with effective UIDs that match your input are then returned.
The default is al UIDs.

e Select records by real UID (RUID).

Use the —r option to specify one or more RUIDs. Log entries for
processes with RUIDs that match your input are then returned. The
default is al RUIDs.

e Select records by audit ID (AUID).

Use the —a option to specify one or more audit IDs. Log entries for
processes with audit | Ds that match your input are then returned.

10.8.3 Generating a Report for Each Audit ID

Use the —R option to audi t _t ool to generate an ASCII report for each
audit 1D associated with the events being logged. All events with a common
audit 1D are placed in areport with the namer eport . n, where n, isthe

Administering the Audit Subsystem 10-19

actual audit ID. You can specify a file name prefix by using an argument to
the —R option, such as—R f oo_.

10.8.4 Selecting Audit Records Within a Time Range

Usethe—t optionto audit _t ool followed by atime specification to
designate a start time. Then only those records with a timestamp equal to or
greater than that start time are selected. Use the —T option followed by a
time specification to designate an end time. Then only records with
timestamps equal to or less than that end time are selected. Use—t and —-T
together to limit the audit records retrieved to only those that occurred within
agiven period.

The format for start and end times is yymmdd[hh[mm[ss]]]. You can specify
only one start time and one end time. The default is to select for al records.

10.8.5 Selecting Audit Records for Specific Events

Use the —e option to audi t _t ool to retrieve audit records that match a list
of designated events and their success and failure status.

The event specification has the following syntax:
event| : success: failure]
In place of event , enter the name of the event or an event alias for which

you want to retrieve information. The default list of all auditable eventsisin
the/ et c/ sec/ audit _event s file (see Appendix B).

The event selection for record retrieval is the same as event selection of the
audi t mask command. In place of success enter the following:

1 To retrieve successful instances of the event.
0 To retrieve failed instances of the event.

In place of fai I ure, enter the following:

1 To retrieve successful instances of the event.
0 To retrieve failed instances of the event.

If you do not specify success and failure extraction, both are included in the
audit report.

For example, the following command retrieves audit information only for

10-20 Administering the Audit Subsystem

failed attempts to change file ownership:
audit_tool —e chown:0:1 filenane

10.8.6 Performing Continuous Audit Reporting

Use the —f option (in conjunction with the —d option to audi t d) to have
the audi t _t ool program read the audit log continuously, generating a
report as it goes. Thelog is read even after the end of the file is reached.
This alows you to extract audit data asit is being written to the audit log,
which gives you the current audit information as it is generated.

10.8.7 Selecting Audit Records for Process IDs

To retrieve records associated with specific process IDs (PIDs), use the —p
option and enter the PIDs you are interested in. The default is to select for
all process IDs. If the specified PID is negative, the absolute value of the
PID is selected as well as any of the PID’s descendants.

10.8.8 Filtering Out Specific Audit Records

Y ou can create a deselection file to filter out audit records that you do not
want to see. In this way, you minimize the number of records to review.

Create the file at any location and with your choice of afile name. Edit this
file to add aline for each event to be filtered out. The lines have the
following syntax:

hostname audit ID RUID event pathname flag

An asterisk (*) in afield is awildcard, which always gives a match. A string
ending with a plus sign (+) matches any string that starts with the designated
string. The f I ag specifiesread (r) or write (w) mode for open events.

For example, to filter out all open operations for read access on objects
whose pathname starts with / usr /| i b/, specify the following line in the
file:

* * * open fusr/lib/+r

The lines that you specify in the deselection file take precedence over other
selection options. Y ou can create multiple deselection files, but you can

specify only one deselection file each time you use the audi t _t ool
command. To filter audit data using a deselection file, include it on the

Administering the Audit Subsystem 10-21

audi t _t ool command line with the —d option as follows:
audit _tool ... —d filterfile4

10.8.9 Processing ULTRIX Audit Data

Theaudi t _t ool . ul trix program displays audit reports on a Digital
UNIX system from audit data collected on ULTRIX systems. With the
exception of the —g and —G options (equivalent to the —v and —V options for
audit_tool),audit_tool .ultrixisthesameasaudit_tool. See
theaudi t _t ool (8) reference page and Section 10.8 for more information.

10.9 Site-Defined Audit Events

The Digital UNIX audit subsytem allows sites to define their own audit
events (referred to as site-defined events). This is useful for applications that
want to generate records specific to their requirements.

Trusted application software can generate data for the specified events and
subevents. The data can be included in the audit logs with the system’ s audit
data or stored in application-specific logs.

10.9.1 System Administrator’'s Responsibilities

The system administrator must createan / et ¢/ sec/ si t e_event s file,
which contains the event names and event numbers for the system’s site
events. The range for the site event numbers is between MIN_SITE EVENT
(defined in the <sys/ audi t . h> file) and INT_MAX (defined in the
<machi ne/ machl i m ts. h>file).

Thesi t e_event s file contains one entry for each site-event. Each site-
event entry may contain any number of subevents. Both preselection (see

audi t mask(8)) and postreduction (see audi t _t ool (8)) capabilities are
supported for site events. Postreduction capabilities are also supported for
subevents.

The syntax for the/ et ¢/ sec/ sit e_event s entriesis as follows:

event_name event_number [, subevent_name subevent_number ...] ;

The following is an example of a/ et c/ sec/ site_event s file

essence 2048,
ess_read O,
ess_ wite 1;

rdb 2049,
rdb_open O,
rdb_cl ose 1,
rdb_read 2,
rdb_wite 3;

10-22 Administering the Audit Subsystem

deci nspect 2050;

In the first entry, essence isthe event, 2048 is the event number,
ess_r ead isthe first subevent, O is the first subevent number, ess_write
is the second subevent, and 1 is the second subevent number.

10.9.2 Trusted Application Responsibility

The trusted application generates audit data using the audgenl routine.
This routine gives the programmer control over what data appears in the
audit log.

The following code fragment generates audit datafrom ar db_cl ose ina
trusted application:

int event_num subevent _num

/* translate event nanme(s) into event nunbers) */
if (aud_sitevent_num ("rdb", "rdb_cl ose", &event_num
&subevent _num))
printf ("aud_sitevent_numfailed\n");

/* generate audit data */
else if (audgenl (event_num T_SUBEVENT, subevent_num T_CHARP,
"Trusted RDB V1.0", 0) == -1)

perror ("audgenl");

It is recommended, although not required, that you includea T_CHARP and
"event name" argument pair to audgenl () . This makes analyzing the audit
datawith audi t _t ool easier on a system that does not have the
site_events file

Example 10-4 is the audit record generated from the example code:

Example 10-4: Layered Product Audit Record

audit _id: 0 rui d/ eui d: 0/0 (username: root)
pi d: 2394 ppi d: 2265 cttydev: (6,0)
event: rdb

subevent : rdb_cl ose

char param Trusted RDB V1.0
ip address: 16.153.127.241 (al phal. sal es. dec. com
ti mest anp: Tue Mar 29 15:48:13.65 1994 EST

See Chapter 19, aud_si t event (3), and audgenl (3) for more
information.

Administering the Audit Subsystem 10-23

10.9.3 Managing Your Own Audit Data

If you want to create your own audit log, use the audgen() system call in
place of audgenl (). If the si ze argument given to audgen() is
nonzero, the audit datais not passed into the system audit data stream, but is
copied out to the user buf f specified in audgen() . The trusted
application can then send the datain user buf f to aunique log file. You
can read your audit log using the audi t _t ool utility. See the

audi t _t ool (8) reference page for more information.

When audgen() is called, the system provides the following audit data:
« AUID, RUID, EUID

e PID, PPID
* Device
* Timestamp

e User name
* |P address

The application provides the balance of the audit data as specified in the
arguments to audgen() . Seethe audgen(2) reference page for more
information.

10.9.4 Changing the Site Event Mask

The site event mask is the kernel representation of the contents of the
/etc/sec/site_events, just asthe system syscall audit mask is the
kernel representation of whatever file is passed into the audi t mask
command. Unlike the system call audit mask, which is of known fixed size,
the size of the site event mask is determined by the customer. The size of
the site event mask can be changed using the sysconf i g command. The
details, such as the # events per byte, default, minimum and maximum size
are found in the System Tuning and Performance Management.

10.10 Suggested Audit Events

When deciding which system events to audit, you need to keep in mind that
auditing uses system resources. Logging a large number of events to allow
for in-depth auditing has a cost in terms of system performance.

The safest practiceisto log al events at all times. But unless your system
requires very thorough security protection, this is unnecessary. Typically, you
can achieve an adeguate level of protection by regularly logging a limited
number of events and by performing deeper logging at more widely spaced
intervals. This provides a reasonable level of auditing capability and
minimizes the impact on system performance.

10-24 Administering the Audit Subsystem

Note

If you vary the depth of logging, avoid signaling to the user
community the times when the deep audits occur; otherwise,
would-be violators, hoping to avoid detection, will avoid those
times for their illicit activity.

Y ou should audit the | ogout () event. This makesthe audi t _t ool
program run faster during postreduction.

10.10.1 Dependencies Among Audit Events

Some information in the audit log represents information based on previous
audited events. For example, the LOGIN event associates a login name with
an RUID. Subsequent occurrences of that RUID (for a given process) can
then be associated with alogin name. Thisis called state-dependent
information. The following three audit records illustrate state-dependent
information. The first record shows a successful open() of / et ¢/ passwd,
returning a value of 3;

audi t _i d: 1621 ruid/euid: 0/0 (username: root)
pi d: 23213 ppi d: 23203 cttydev: (6,1)
procnane: state_data_test

event: open

char param /etc/passwd

fl ags: 2 . rdw

vnode id: 2323 vnhode dev: (8,1024) [regular file]
obj ect node: 0644

result: 3 (0x3)

ip address: 16.153.127.241 (al phal. sal es. dec. com
ti mest anp: Wed Nov 10 17:49:59.93 1993

The following record shows the result of anft runcat e() system call for
the/ et ¢/ passwd file with state-dependent information. The state-
dependent data currently associates the file name / et ¢/ passwd with
descriptor 3 for this process:

audit _id: 1621 ruid/euid: 0/0 (username: root)
pi d: 23213 ppi d: 23203 cttydev: (6,1)
pr ocnane: state_data_test

event: ftruncate

vnode id: 2323 vnode dev: (8,1024) [regular file]

obj ect node: 0644

descriptor: /etc/passwd (3)

resul t: 0

ip address: 16.153.127.241 (al phal. sal es. dec. com
ti mest anp: Wed Nov 10 17:49:59.96 1993

Administering the Audit Subsystem 10-25

If state-dependent datais not being maintained, you would see only that the
ftruncat e() system call was against descriptor 3 (vnode id = 2323, dev =

8,1024):

audit _id: 1621 ruid/euid: 0/0 (username: root)
pi d: 23213 ppi d: 23203 cttydev: (6,1)
event: ftruncate

vnode id: 2323 vnode dev: (8,1024) [regular file]

obj ect node: 0644

descriptor: 3

resul t: 0

ip address: 16.153.127.241 (al phal. sal es. dec. com
ti mest anp: Wed Nov 10 17:49:59.96 1993

Other examples of state-dependent information include the mapping of file
descriptors to pathnames, current directory, and process name.

If you are auditing events that use file descriptors (for example, cl ose or

i oct |) and you want to see the associated pathname in the audit record, it
is necessary to have been auditing the event that associated the pathname
with the file descriptor (for example, open, socket , or bi nd), aswell as
other events that manipulate the file descriptors (dup, dup2, or fcnt |).

To see the current directory, it is necessary to audit the chdi r and chr oot
events.

To see the process name, it is necessary to audit the exec event (execve,
execv, or exec_w t h_| oader).

Theexi t () system cal informsaudi t _t ool that it no longer needs the
state-dependent information for the exiting process. This allows
audi t _t ool to run faster.

If you are not interested in state-dependent data, you do not need to audit
exi t (), but you should then use the —F option to the audi t _t ool
program.

Seethe audi t _t ool (8) reference page for more information.

10.10.2 Auditable Events
There are three categories of auditable events on a Digital UNIX system:
e System calls
* Trusted events
» Site-defined events
The eventslisted inthe/ et ¢/ sec/ audi t _event s file are the system

calls that can be audited. See Appendix B for the default list of the system
cals.

10-26 Administering the Audit Subsystem

A trusted event is an event that is associated with a security protection
mechanism,; it does not always correspond directly to a system call. The
AUDGENS and LOG N trusted events correspond to the use of the audgen
and | ogi n commands. A list of the other trusted events that relate to
auditing and authentication activity follows:

audi t _daenon_exit
Indicates that the audit daemon exited abnormally. This occurs only
when there is insufficient memory available during initialization of the
audit daemon. The exit is recorded in the new audit log, and a
message is displayed on the designated audit console.

audi t _| og_change
Indicates that the audit daemon closed the current audit log and began
writing a new log (for example, in response to theaudi t d —x
command). The changein logsis recorded in the current audit log,
and a message is displayed on the designated audit console.

audit _| og_create
Indicates that a new audit log was created in response to the removal of
the current log file. The new file has the generation number of the lost
log file incremented by 1. The creation of the new log is recorded at
the beginning of the new audit log, and a message is displayed on the
designated audit console.

audit_| og _overwite
Indicates that the audit daemon began overwriting the current audit log
as you specified with the—o overwr i t e optionto audi td. The
overwrite is recorded at the beginning of the newly overwritten audit
log, and a message is displayed on the designated audit console.

audi t _reboot
Indicates that the audit daemon initiated a system reboot (as a result of
an overflow of the log) as you specified with the—o hal t option to
audi t d. Thereboot is recorded at the end of the current audit log,
and a message is displayed on the designated audit console before the
reboot occurs.

audi t _setup
Indicates that the —o changel oc option to the audi t d command
was used to change the specified overflow action. The change in the
audit setup is recorded in the current audit log.

audit_start
Indicates that the audit daemon has been started.

audit_stop
Indicates that the audit daemon was killed normally (typically, with the
—k option to audi t d). The shutdown is recorded at the end of the
current audit log, and a message is displayed on the designated audit

Administering the Audit Subsystem 10-27

console when the shutdown occurs.

audi t _suspend
Indicates that the audit daemon suspended auditing (as a result of an
overflow of the log) as you specified with the—o suspend option to
audi t d. The suspension is recorded in the current audit log, and a
message is displayed on the designated audit console.

audit_xmt_fail
Indicates that the audit daemon was sending audit records across a
network and the transmission failed. The failure is recorded in the next
local log specified as the next path in the / et ¢/ sec/ audi t d_| oc
(with audi t d —r) or the default local path (/ var/adm) .

aut h_event

An event associated with user-authentication and the management of
user accounts occurred. Trusted aut h_event s include passwd,
su, rsh,and ! ogi n. The event is recorded in the current audit log.

For a description of the information contained in a report for | ogi n
and other aut h_event s, see Section 10.11.2.2.

You may aso define site-specific events for auditing. See Section 10.9 for
more information on site-defined audit events.

10.11 Audit Reports

The trusted Digital UNIX operating system offers two programs to generate
audit reports. dxaudi t and audi t _t ool . dxaudit isawindows-based
program that allows you to create selection files as well as the final report.
Theaudi t _t ool program operates from the command line.

10.11.1 Generating Audit Reports with the dxaudit Program

The dxaudi t program provides a graphical interface for the creation of
audit reports.

The functions performed with the XI sso program have been moved to other
GUIs. The XI sso program in this release is only an interface to the other
GUIs and support for XI sso will be discontinued after this release.

10.11.1.1 Selection Files

The Modify Selection Files window found under the Reports menu item
allows you to create and modify selection files. A selection file is used to
select specific events for your audit reports. Only audit records that contain
events and identification items that you specify are displayed. You can aso
specify atime range. Using selection files can speed up the review of your
audit reports. See the online help for selection files for more information.

10-28 Administering the Audit Subsystem

10.11.1.2 Deselection Files

The Modify Deselection Files window found under the Reports menu item
allows you to create and modify deselection files. A deselection file is used
to filter unwanted events from your audit reports. All audit records that
contain events and identification items that you specify are suppressed. Any
events listed in the deselection file take precedence over eventsin a selection
file. Using deselection files can speed up the review of your audit reports.
See the online help for deselection files for more information.

10.11.1.3 Reports

The Generating Reports window found under the Reports menu item allows
you to generate audit reports. Y ou can select the audit log to be reviewed as
well as the selection and deselection files to be used as afilter. You can
tailor the output format to your needs using this window. See the online help
for reports for more information.

10.11.2 Generating Audit Reports with the audit_tool Program

The long format for an audit record returned by audi t _t ool is made up of
information found in every audit record and of some information specific to
the particular record.

The following information is common to every audit record:
 AUID, RUID, and EUID

» User name (if available)

* PID, parent PID

» Device where event occurred (major #, minor #)
 Event

* Result or error from event

» Host name on which event occurred

* Timestamp
The following is an example audit record.
1 audit_id: 1621 2 ruid/euid: 0/0 3 usernane: jdoe
4 pid: 5742 5 ppid: 1 6 cttydev: (39,0)
7 event: | ogin

| ogin name: jdoe

hone dir: /usr/users/jdoe

shel | : / bi n/ csh

devnane: tty02

8 char param Logi n succeeded
char param ZK33C5
directory: /usr/users/jdoe

Administering the Audit Subsystem 10-29

9 result: 0
10 i p address: 16.153.127.240 (al phal)
11 tinestanp: Wed Jul 28 19:17:52.63 1993 EDT

The entries in every audit record are as follows:
1 Theaudit ID (AUID).
2 Therea user ID (RUID) and the effective user ID (EUID).

3 Theuser's name. In the expanded (not the brief) report format,
parentheses may be used around the user name. If the user nameis not in
parentheses, the user name is the name used at login time. If the user
name is in parentheses, the name is the one associated with the RUID.

The process ID (PID).

5 The parent process ID (PPID). If asecurity violation occurs for an event
that is the offspring of another event, the PPID allows you to trace back
through a list of processes to the originating event, so you can learn the
RUID and UID (and user) associated with the original event.

6 The device on which the event occurred. The record reports the major and
minor numbers.

7 The event that was logged, such as| ogi n or chnod. This record
reports information such as the login name and the home directory.

8 The parameter for the event; for example, if the event is the chnod
system call, char par amis the file name that was the argument for the
system call.

9 If the event failed, the reason for failure. ‘*Permission denied’’ is among
the types of errorslogged. For example, if a user attempted to access a
file for which the user does not have permission, the audit report would
contain the message ‘*error: Permission denied’’.

10 The host name on which event occurred.
11 The timestamp for the event occurrence.

10.11.2.1 Audit Reports for System Calls

To extract records of execve and open system calls (the —e option) from
the/ var/ audi t/ audi t | og. 000 filein long format, enter the following
command:

/usr/sbin/audit_tool —-e execve —e open —w /var/audit/auditl og. 000

Example 10-5 shows a sample audit report for the open and execve
system calls.

10-30 Administering the Audit Subsystem

Example 10-5: Audit Report for System Calls

audit _id: 1621 ruid/euid: 1621/1621 (username: jdoe)
pi d: 1304 ppi d: 1249 cttydev: (6,2)
event : execve

char param /sbin/cat
char param cat /etc/notd

vnode id: 8707 vnode dev: (8,1024) [regular file]
obj ect nmode: 0755
resul t: 0

ip address: 16.153.127.241 (al phal)
ti nest anp: Mon Aug 30 14:33:31.46 1993

audit _id: 1621 ruid/euid: 1621/1621 (username: jdoe)
pi d: 1304 ppid: 1249 cttydev: (6, 2)
pr ocnhane: / sbi n/ cat

event: open

char param /etc/notd

fl ags: 0 : read

vnode id: 2284 vnode dev: (8,1024) [regular file]
obj ect node: 0644

result: 3 (0x3)

i p address: 16.153.127.241 (al phal. sal es. dec. com
ti nestanp: Mon Aug 30 14:33:31.46 1993

8 records out put
8 records processed

10.11.2.2 Audit Reports for Trusted Events

To extract records of the aut h_event and | ogi n trusted events from the
file/ var/ audi t / audi t | og. 000 and present them in long format, enter
the following command:

/usr/sbin/audit_tool —e auth_event —e login \
/var/ audit/auditl og. 000

Example 10-6 shows a sample audit report for the aut h_event and | ogi n
trusted events.

Administering the Audit Subsystem 10-31

Example 10-6: Audit Report for Trusted Events

audit_id: 1592 ruid/euid: 0/0 user nane: jdoe
pid: 597 ppid: 1 dev: (5, 2)
event: | ogin

I ogin nane: |jdoe

hore dir: [users/jdoe

shel | : / bi n/ csh

devnane: /dev/tty04

char param Logi n succeeded

directory: [users/jdoe

resul t: 0

i p_addr: 191.5.6.67 (al phal. sal es. dec.com

ti mest anp: Wed Jan 5 15:44:08.47 1994

audit _id: 1592 rui d/ euid: 1592/0 user nane: jdoe
pi d: 24247 ppi d: 597 dev: (5, 2)
event: aut h_event

I ogin nanme: jdoe

renot e/ secondary identification data --
I ogin name: root

char param su

directory: [users/jdoe
resul t: 0
i p_addr: 191.5.6.67 (al phal. sal es. dec.com

ti mest anp: Wed Jan 5 15:44:25.24 1994

A remote system name is present if the login was done remotely. The
remote system name is the LAT server name if thelineisaLAT line. The
remote system name is the host name if theloginisby r |l ogi n. Thereis
awayseitheranerror: fieldoraresult: fied. It correspondsto the
exit code that | ogi n exits with. The result is zero only when | ogi n was
successful.

If | ogi n fails, the reason for the failure is given.

10.11.2.3 Audit Reports for Process IDs

To extract records of events with a process ID of 1304 from the file
/var/ audi t/audi t| og. 000 and present them in long format, enter the
following command:

/usr/sbhin/audit_tool —p 1304 /var/audit/auditl og. 000

Example 10-7 shows a sample audit report for the process ID of 1304.

10-32 Administering the Audit Subsystem

Example 10-7: Audit Report for Process IDs

audit _id:

pi d:

event :

char param
char param
vnode id:
obj ect node
resul t:

i p address:
ti nest anp:

audit _id:
pi d:

pr ocnane:
event:

char param
fl ags:
vnode i d:
obj ect node:
result:

i p address:
ti nestanp:

1621 ruid/euid: 1621/1621 (username: jdoe)
1304 ppid: 1249 cttydev: (6, 2)
execve

/ sbi n/ cat

cat /etc/notd

8707 vnode dev: (8,1024) [regular file]
0755

0

16. 153. 127. 241 (al phal. sal es. dec. con)
Mon Aug 30 14:33:31.46 1993

1621 ruid/euid: 1621/1621 (username: jdoe)
1304 ppid: 1249 cttydev: (6, 2)
/ sbi n/ cat

open

/etc/notd

0 : read

2284 vnode dev: (8,1024) [regular file]
0644

3 (0x3)

16. 153. 127. 241 (al phal. sal es. dec. com

Mon Aug 30 14:33:31.46 1993

10.11.2.4 Abbreviated Audit Reports

To extract audit records about the execve and | ogi n commands from the
/var/audit/auditl og. 000 file and present the report in abbreviated
format (the —B option), enter the following command:

/usr/sbin/audit_tool -B —e execve —e login /var/audit/auditlog. 000

Example 10-8 shows a sample abbreviated audit report for the execve and
| ogi n commands.

Example 10-8: Abbreviated Audit Report

AUl D: RUI D: EUI D

1234:1234: 1234
1234:1234: 1234
1234:1234: 1234
1234:1234: 1234

1234:1234: 1234
1234:1234: 1234
1234:1234: 1234
1234:1234: 1234

PID RES/(ERR) EVENT

2056 0xO0 execve (/usr/sbin/rlogind rlogind)

2057 0x0 execve (/usr/bin/login login -p -h
al phal. sal es. dec. com guest)

2057 0x0 login (guest)

2057 0xO0 execve (/bin/sh -sh)

2058 0x0 execve (/usr/bin/stty stty dec)

2059 0x0 execve (/usr/bin/tset tset -1 -Q

2060 0x0 execve (/usr/bin/hostnane hostnane)

2061 0x0 execve (/usr/bin/ps ps gax)

2062 0x0 execve (/usr/bin/ls Is -1)

2063 0x0 execve (/usr/bin/who who)

2066 0x0 execve (/usr/bin/csh csh)

2067 0x0 execve (/usr/bin/ls |Is -a)

Administering the Audit Subsystem 10-33

Example 10-8: (continued)

1234:1234: 1234 2068 0x0 execve (/usr/bin/cat cat .cshrc)
1234: 1234: 1234 2069 0x0 execve (/usr/bin/fromfrom
1234:1234: 0 2072 0x0 execve (/usr/bin/mail nmai
guest @l phal)
1234:1234: 0 2072 0x0 execve (/usr/lib/sendnmail -sendmai
guest @l phal)
1234:1234: 0 2077 0x0 execve (/usr/sbin/mailq
/usr/sbin/mailq)
1234:1234: 1234 2078 0x0 execve (/usr/bin/rwho rwho)
1234:1234: 0 2079 0x0 execve (/usr/bin/ps ps gax)
1234:1234: 1234 2082 0x0 execve (/usr/bin/dbx dbx -k /vmunix)
1234: 1234: 1234 2095 0x0 execve (/usr/sbin/netstat

[usr/sbhin/netstat)
1234: 1234: 1234 2096 (err 13) execve (/usr/sbin/auditd)
1234:1234: 1234 2097 (err 13) execve (/usr/sbin/auditnmask)

The column headings of the report indicate the following:

AUID:RUID:EUID
The audit ID, real UID, and effective UID associated with the
event.

PID The process ID number.

RES The result number. Refer to the reference page for the specific
system call for information about the result number.

ERR The error code. For alist of error codes and their meanings, see
the reference pages for er r no(2).

EVENT The event and some arguments appear in the last column.

To extract records about the execve and | ogi n commands from the file
/var/audit/auditl og. 000 and present the report in abbreviated
format, but with the user name displayed (the —w option) instead of the ID
number, enter the following command:

/usr/sbin/audit_tool —wB —e execve —e login /var/audit/auditlog. 000

Example 10-9 shows a sample abbreviated audit report for the execve and
| ogi n commands as shown in Example 10-8, with user names displayed
instead of 1D numbers.

Example 10-9: Abbreviated Audit Report with User Names

USERNAME PID RES/ (ERR) EVENT

r oot 2056 0x0 execve (/usr/sbin/rlogind rlogind)
root 2057 0x0 execve (/usr/bin/login login -p -h
al phal. sal es. dec. com guest)
j doe 2057 0x0 login (guest)
j doe 2057 0xO0 execve (/bin/sh -sh)
j doe 2058 0x0 execve (/usr/bin/stty stty dec)
j doe 2059 0x0 execve (/usr/bin/tset tset -1 -Q
j doe 2060 0x0 execve (/usr/bin/hostnane hostnane)

10-34 Administering the Audit Subsystem

Example 10-9: (continued)

j doe * 2061 0x0 execve (/usr/bin/ps ps gax)
j doe 2062 0x0 execve (/usr/bin/ls |Is -1)
j doe 2063 0x0 execve (/usr/bin/who who)
j doe 2066 0x0 execve (/usr/bin/csh csh)
j doe 2067 0x0 execve (/usr/bin/ls |Is -a)
j doe 2068 0x0 execve (/usr/bin/cat cat .cshrc)
j doe 2069 0x0 execve (/usr/bin/fromfrom
j doe * 2072 0OxO execve (/usr/bin/mil mail guest@l phal)
j doe * 2072 0x0 execve (/usr/lib/sendnmail -sendmai
guest @l phal)
j doe * 2077 0x0 execve (/usr/sbin/mailq /usr/sbin/milq)
j doe 2078 0x0 execve (/usr/bin/rwho rwho)
j doe * 2079 0x0 execve (/usr/bin/ps ps gax)
j doe 2082 0x0 execve (/usr/bin/dbx dbx -k /vmuniXx)
j doe 2095 0x0 execve (/usr/sbin/netstat
[usr/sbin/netstat)
j doe 2096 (err 13) execve (/usr/sbin/auditd)
j doe 2097 (err 13) execve (/usr/sbin/auditnask)

The column headings are the same as in Example 10-8 except for
USERNAME, which is the name associated with RUIDs using the get pw*
routines. If the login user name is not available, the RUID is provided. Also,
the asterisk (*) in front of the PID column indicates that RUID and EUID are
different from each other.

10.12 Audit Data Recovery

In the event your system encounters a panic situation, the cr ashdc utility
extracts any audit data left in the system at the time of the panic. The audit
datais placed in audi t - dat a. n in the crash directory, where n is the
crash number. If no audit data was present, the audi t - dat a. nfileis not
created.

The audi t - dat a. n file can be processed with audi t _t ool . Itis
possible for some audit records to appear in both the audi t | og file and the
audi t - dat a. nfile. Itisaso possible that the first audit record in

audi t - dat a. n may not be a complete record (audi t _t ool marks this
as a corrupted record). In this case, the audit record has already been written
to the audi t | og file (or to the remote host).

10.13 Implementation Notes

The following is information about the Digital UNIX auditing that you
should be aware of:

» Some records show ‘*NOTE: uid changed.”’ This typically occursin
SETUID events, but may be seen anywhere when one thread changes the
UID for al threads in a process (task).

Administering the Audit Subsystem 10-35

» Audit records contain vnode information and the file type of the object of
the operation. So, for example, if achnmod command is specified for a
symbolic link, the actual object referenced by the link is described.

* By design, some system calls can fail and not generate an audit record for
the failure if the failure is not security-relevant. See Table 10-3 for alist
of the calls.

* Only TIOCSTI operations are audited for thei oct | system call.
e Only F_ DUPFD and F_CNVT are audited for thef cnt | system call.

10.14 Traditional UNIX Logging Tools

Although you are urged to use the Digital UNIX audit subsystem for
security-relevant auditing, the traditional UNIX operating system logging
tools do provide some auditing capabilities for the following categories of
events:

* Local login and logouts

» File Transfer Protocol (FTP) logins

» External logins and logouts for TCP/IP (r | ogi n andt el net)

» External logins and logouts for DECnet (dl ogi n and set host)

» Failed logins

» Failed attempts to become superuser (the su command)

* Reboots and crashes

* rsh andr cp file transfer requests

» DECnet file transfer requests

Auditing for each of these event categories involves a data file, that stores the
pertinent information, and a method for viewing the stored data. In some
cases this method is a specific command, such as| ast or | ast comm In
other cases the contents of the file are viewed directly, for example, with the

nmor e command. The accounting information about events on the system is
stored in a number of different files.

Table 10-2 lists those files storing security-relevant information. The
presence of specific log files on your system depends on which logging and

10-36 Administering the Audit Subsystem

accounting features you have enabled.

Table 10-2: Traditional UNIX Log Files in /var/adm

File Name Security-Relevant Information

wt nmp Records al logins, logouts, and
shutdowns. Y ou must use the
| ast command to view this log.

sysl og. dat ed/ date/ daenon. | og Messages generated by system

daemons.

sysl og. dat ed/ date/ kern. | og Messages generated by the kernel
(for example, for system crashes).

sysl og. dat ed/ date/ | pr. | og Messages generated by the line
printer spooling system.

sysl og. dat ed/ date/ mai | . | og Messages generated by the mail
system.

sysl og. dat ed/ date/ user. | og Messages generated by user
processes.

sysl og. dat ed/ date/ aut h. | og Failed logins and system
shutdowns.

sysl og. dat ed/ date/ sysl og. | og Requests for DECnet file transfers.

Because these files are your record of what has happened on the system, you
should protect their contents. The files and directories should be owned by
the root account and they should not be writeable by gr oup or ot her .

For a complete discussion of the accounting software on your system, see the
System Administration manual.

10.15 Using Audit to Trace System Calls

The audit mechanism can be used to troubleshoot system problems by
collecting system call trace data.

Some differences exist between audit system call tracing and conventional
system call tracing packages such ast r uss andt race. One differenceis
that audit system call tracing provides only the security-relevant arguments
for each system call. See Section 10.15.5 to learn how to modify the kernel
to get more data for a system call. Conventional trace packages attempt to
capture all system call arguments.

Another difference is that audit system call tracing provides information
unavailable from conventional tracing packages. Such information includes

Administering the Audit Subsystem 10-37

the following:

e InodelD
e Thread ID
* File mode

» File descriptor to pathname trangation

Also, audit works without requiring control of the target process.

10.15.1 Installing Audit

Audit must be configured into the kernel. Y ou can either build a kernel with
the DEC_AUDIT option, or runthe/ usr/ sbi n/ audi t _set up script.

Theaudi t _set up script does the following:
» Establish startup flags for the audit daemon
» Establish startup flags for the auditmask

» Create/ dev/ audit (if needed)

» Configure anew kernel (if needed)

Startup flags are stored in/ et ¢/ r c. confi g. Itisrecommended that you
select all the defaults, with the following exceptions:

* When asked to create/ var/ audi t , select y.

* When asked to choose the action to take on an overflow, choose the
option to overwrite the current auditlog.

Note

When prompted for event list, enter Return to have no events
audited by defaullt.

If anew kernel must be configured, audit is enabled when the new kernel is
booted. If the kerndl already supports audit, the audi t _set up script will
optionally enable audit.

Seethe audi t _set up(8) reference page for further information.

10.15.2 Enabling Audit
There are two steps are required to enable audit:
1. Start the audit daemon (audi t d)

2. Using the audi t mask command, specify the events for audit. (For
purposes of tracing, this may be best left to default to the null set of
events at this point.)

10-38 Administering the Audit Subsystem

Audit can be enabled using any one of the following approaches:
e audit_set up enablesaudit if the kernel supports it

* Thei nit script enables audit according to the RC. CONFI Gflags (which
previousy had been set by audi t _set up) as follows:

/sbin/init.d/audit start

* Manualy starting audi t d. For example, to collect datain the file
.| FI LE. nnn(-1), return the location of datafile (—q), and overwrite
log on overflow condition (—o 0) enter the following commands:

auditd —gql FILE -I -0 overwite

To stop the collection of audit data, either clear the auditmask (for the system
or any process whose auditmask you set), or turn off audi t d:

auditd —k

See the audi t d(8) reference page for further information.

10.15.3 Tracing a Process

You can use the audi t mask utility to adjust the audit characteristics of the
system, of a single process, or all processes associated with a user's AUID.

Whether or not an event generates an audit record is a function of the system
auditmask, the process auditmask, and the processaudcnt | flag. Each
auditmask is a bitmap for al the events. The processaudcnt | flag
specifies one of the following:

or Audit if the event isin either the system or the process mask
and Audit if the event isin both the system and the process mask
off Do not audit this process

usr Audit if the event isin the process mask

The default audcnt | flag setting is or .

Specifying which events are audited is done by naming a set of system calls,
alias names, or both. Aliases are defined in (and may be added to)

[etc/sec/ event _aliases. An optional extension can be used to
distinguish between successful and failed occurrences of any event as
follows:

open: 1: 0 specifies successful occurrences of open()
open: 0:1 specifies failed occurrences of open()

The following examples demonstrate use of the audi t mask utility (these
examples modify the process auditmask; unless specified, the process
audcnt | flag remains at its default setting of or).

Administering the Audit Subsystem 10-39

In the following example, audit records are created for everything done by
the newly executed command program with its associated arguments:

audi tmask —E command args
In the following example, audit records are created for failed open system

calls and successful i pc events (defined in/ et ¢/ sec/ event _al i ases)
for the newly exec’d conmand program:

audi tmask open: 0:1 ipc:1:0 —e conmand args

In the following example, for PID 999, audit all (—f) events except
getti neof day:

audi tmask —p 999 —f gettinmeofday:0:0

In the following example, for PID 999, audit no (—n) events:
audi tmask —p 999 -n

In the following example, for PID 999, audit open and exec events:
audi tmask —p 999 open exec

In the following example, for PID 999, add exi t to the set of events being
audited:

audi tmask -p 999 exit

In the following example, get the set of events being audited for PID 999:
audi t mask —p 999

In the following example, set the audcnt | flag of PID 999 to usr :
audi tmask —p 999 —c usr

In the following example, for all processes owned by the user with AUID
1123, audit al i pc events (the AUID is the same as the user’ s initial RUID):

audi tmask —a 1123 ipc

In the following example, get abbreviated help for audi t mask:
audi t mask —h

See the audi t mask(8) reference page for further information.
10.15.4 Reading the Trace Data

Use the following procedure to read the trace data collected by the audit
mechanism:

10-40 Administering the Audit Subsystem

1. Useaudi t d to flush any buffered audit data as follows:

#

auditd —dq

The —q option gets the name of the datafile

2. Examine the data file with the audi t _t ool utility as follows:

audi tmask —-E date
Sun Nov 26 19:17:52 EST 1995

audit_too

1123:

1123:
1123:
1123:
1123:
1123:
1123:
1123:
1123:

1123:

1123:
1123:
1123:
1123:

» RUI D: EUI D PI D
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691
0:0 6691

‘auditd —dgq' -B

RES/ (ERR) EVENT

0x14 audcntl (0x7 0x0 0x14 0x0)
0x0 execve (/shin/date date)
0x2000 get pagesi ze ()

0x2000 get pagesi ze ()

0x0 getrlimt ()

0x3f f c0004000 mmap (-1 0x7 0x3ffc0004000
0x12 0x2000)

0x0 getrlimt ()

0x3f f c0006000 mmap (-1 0x7 0x3ffc0006000
0x12 0x4000)

0x0 getuid ()
0Ox1 getgid ()
Oxa68 read (3)

0x120000000 nmmap (3 0x5 0x120000000
0x102 0x4000)
0x140000000 nmap (3 0x7 0x140000000
0x2 0x2000)
0x4 open (/shlib/libc.so 0x0)
Oxa68 read (/shlib/libc.so)
0x3f f 80080000 mmap (/shlib/libc.so 0x5
0x3f f 80080000 0x2 0x10e000)
0x3f f c0080000 mmap (/shlib/libc.so 0x7
0x3f f c0080000 0x2 0x10000)
0x3f f c0090000 mmap (-1 O0x7 O0x3ffc0090000
0x12 0x9bf0)

0x0 close (4)

0x0 stat (/shlib/libc.so)

0x0 set _programattributes ()

0x0 cl ose (3)

0x2000 get pagesi ze ()

0x0 obreak (0x14000eal0)

0x0 gettineofday ()

0x3 open (
/etc/zonei nfo/l ocalti ne 0x0)

0x32e read (
[etc/ zoneinfo/local tine)

0x0 close (3)

0Ox1d wite (1)

0x0 close (0)

0x0 close (1)

Administering the Audit Subsystem 10-41

1123:0: 0 6691 0x0 close (2)
1123:0: 0 6691 0x0 exit ()

audit_tool ‘auditd -dq' —-e exec

audit _id: 1123 ruid/euid: 0/0
pi d: 6691 ppi d: 6688 cttydev: (6,7)
event: execve

char param /sbin/date
char param date

i node id: 7390 i node dev: (8,16384) [regular file]
obj ect node: 0755
resul t: 0

i p address: 16.140.128. 241 (al phal.research. dec. con
ti mest anp: Sun Nov 26 19:17:52.77 1995 EST

Additional options are available to help select data of interest:

audit _t ool
Audit reduction tool usage: [options] logfile

Sel ection options:

-a audit_id -e event[.subevent][:succeed:fail]
-E error# or error_string -h hostname or ip address

-p [-]pid -P ppid

-r real _uid -s string_paraneter

-t start_time -T end_tine - yymdd[hh[n{ ss]]]
-uuid - U usernane

-v inode_id -V inode’s devi ce-nmj or#, m nor#
-x devi ce-mgj or #, m nor # -y procnane

-/ search-string

Control options:
-b Qut put in binary format
-B Qut put in abbreviated fornmat
-d file Use specified deselection rules file
(-D to print ruleset)

-f Keep reading auditlog (like tail -f)

-F Fast npbde; no state data naintai ned

- Interactive sel ection node

-0 Override switching logfile due to change_auditl og

-O format Qutput in specified format
{cpu, usec, ti me, user nane, userid, pid, ppid,tid, res, event}

-Q Suppr ess progress messages

-R [nane] Generate reports by audit_id

-S Sort audit records by time (for SMP only)

-w Map ruid, group #s to names using passwd, group thls
-Z Di splay statistics for selected events

Seethe audi t _t ool (8) reference page for further information.

10-42 Administering the Audit Subsystem

10.15.5 Modifying the Kernel to Get More Data for a System Call
The audit subsystem normally collects the following data:
» System call name

* Reault
e Error
* Timestamp

e |D information
» Various arguments passed to the system call

Only the arguments that are of interest from a security perspective are
recorded. If additional arguments are required, you can use dbx to change
which arguments get recorded for any system call. For example, f | ock is
system call #131, and takes as arguments a file descriptor and an option #.
To audit these arguments enter the following dbx commands:

(dbx) a sysent[131].aud_parani0]="c’

99

(dbx) a sysent[131].aud_parani{l]="a’

97

The ‘¢’ encoding indicates a file descriptor is recorded. The **a’ encoding
indicates an the integer argument is recorded. The set of encodingsis
described in the <sys/ audi t . h> file.

10.15.6 System Calls Not Always Audited

Not every instance of each system call generates audit data. The conditions
under which a particular system call does not generate an audit record are
described in Table 10-3.

Table 10-3: System Calls Not Always Audited

System Call When Audit Record Is Not Generated
cl ose EBADF failures
dup?2 Failures from get f ()
execv, execve, Failures triggered by failed namei [ookups,
exec_w t h_| oader failure to terminate thread,
abort from handler callout
fentl (%) Failures from get f ()
ioctl (*) Failures from get f ()

Administering the Audit Subsystem 10-43

Table 10-3: (continued)

System Call When Audit Record Is Not Generated

priocntlset () Failed input tests. Calls other than those which modify
another process

proplist_system() Failure on copyi n of system call arguments

reboot () Successful r eboot ()

security() get | ui d option

swapct | () Any call other than successful SC_ADD option

uadm n() Any call other than afailed A_ REBOOT or A_SHUTDOWN

All instances of any system call not in Table 10-3 generate audit data.

The system calls marked with an asterisk (*) typically generate audit data
only for security-relevant options. When executing processes from

audi t mask with the —e or —E flag, however, all options generate audit
data.

When tracing a currently running process, use the audi t mask —c usr
option to trace al options for these system calls.

10-44 Administering the Audit Subsystem

111

Administering ACLs 11

This chapter describes the installation and administration of the ACLs on a
Digital UNIX system.

The Digital UNIX ACLs are based on the POSIX P1003.6 Draft 13 standard.
The ACL library routines may change as the P1003.6 standard is finalized.

Digital UNIX ACLs Overview

The ACL subsystem is shipped as part of the base system, but is a kernel
build-time option. Note that building the ACL subsystem is not the default
choice. Base system components do not require ACLs for current operations
and no files are shipped with ACLs on them.

If layered products need ACL support, then ACLs must be enabled. If thisis
not done, then access granted to an object may not be the correct access.

ACLs are currently supported on UFS, AdvFS, and NFS-mounted file
systems. ACLs on DFS, CDFS and Internet |PC sockets are not currently
supported.

Where the ACL is stored depends on the type of object it is associated with.
ACLsfor file system objects are stored in the property list associated with
the object on the local Digital UNIX file system.

Because Digital UNIX ACLs are stored on afile system’s property list,
Digital UNIX supports only file systems that provide property lists. The
currently supported files systems are as follows:

* Network file system (NFS)

« UNIX file system (UFS)

» Advanced file system (AdvFS)

See the pr opl i st (4) reference page for more information about property
lists.

See Section 21.8 for information on importing and exporting data between
file systems.

11.2

11.3

Administration Tasks

The primary tasks of the administrator relative to the trusted system’s access
control list mechanisms are:

» Creating new file control database entries for new applications that use
ACLs when they are added to the system. See Section 6.5.2.4 for more
information about this database.

» Assuperuser, modifying ACLs on behalf of users who are not authorized
to access the associated files.

» Assigning ACLs when an imported file contains an ACL that cannot be
converted to one that is recognized on the system.

» Creating and maintaining an ACL inheritance strategy for al files on your
system needing ACL protection.

To administer the ACLs on your Digital UNIX system, you need to be

familiar with the commands documented on the following reference pages.

get acl (1) Displays discretionary access control information.

set acl (1) Changes the access control list on afile or directory.

acl (49 Provides information about the ACL implementation

Installing ACLs

The optional Digital UNIX ACLs are shipped as part of the base system and
can be loaded and used independently of other enhanced security features.
The enhanced security subsets (OSFC2SECxxx and OSFXC2SECxxx) do not
need to be installed on your system.

Before you configure ACLS, you need to answer the following questions:
» Which objects on your system need to be protected with ACLS?

* What level of access are you going to permit on your ACL-protected
objects?

You must set an ACL for each object that you want to protect. See the
set acl (1) and get acl (1) reference pages for instructions on setting and
retrieving ACLs. Directories aso have two default ACLs that can be set.
These default ACLs define what ACLs are inherited by new files and
subdirectories created under them. See Section 5.9 for a description of the
ACL inheritance rules.

11-2 Administering ACLs

11.3.1 Enabling ACLs

The Digital UNIX ACL subsystem is enabled by editing the configuration
file, rebuilding the kernel, and rebooting the system. Use the following
procedure to enable ACLSs.

1. Changedirectory to/ usr/ sys.

2. Use the following command to edit the machine’'s configuration file to
add aline that has the string ‘*options DEC_ACL'":

doconfig —c MACH NE

3. Exiting the doconf i g edit session automatically starts a kernel build.

4. Copy the new kernel to / vimuni x using the following command:
cp /usr/sys/ MACH NE vruni x [/ vnmuni x

5. Reboot your machine in the normal fashion.

Example 11-1 illustrates how to enable ACLs.

Example 11-1: Enabling ACLs

cd /usr/sys
doconfig -c MACH NE

% KERNEL CONFlI GURATI ON AND BUI LD PROCEDURE *
Savi ng /usr/sys/conf/MACH NE as /usr/sys/conf/MACH NE. bck
Do you want to edit the configuration file? (y/n) [n]: vy

Using ed to edit the configuration file. Press return when ready,
or type 'quit’ to skip the editing session:

2397

a

opti ons DEC ACL

w

2413

q

*** PERFORM NG KERNEL BUI LD ***
Working....Tue Cct 3 08:29:47 EDT 1995
Working....Tue Cct 3 08:31:50 EDT 1995

The new kernel is /usr/sys/MACH NE/ vruni X

cp /usr/sys/ MACH NE/ viruni x /vmmuni x
reboot

Administering ACLs 11-3

11.3.2 Disabling ACLs

The Digital UNIX ACL subsystem is disabled by editing the configuration
file, rebuilding the kernel, and rebooting the system. Use the following
procedure to disable ACLs.

1. Changedirectory to/ usr/ sys.

2. Use the following command to edit the machine’'s configuration file to
remove the **options DEC_ACL"’ string:

doconfig —c MACH NE
3. Exiting the doconf i g edit session automatically starts a kernel build.
4. Copy the new kernel to / vimuni x using the following command:

cp /usr/sys/ MACH NE vruni x [/ vnmuni x

5. Reboot your machine in the normal fashion.

Example 11-2 illustrates how to disable ACLs.

Example 11-2: Disabling ACLs

doconfig -c MACH NE

*** KERNEL CONFI GURATI ON AND BUI LD PROCEDURE ***

Savi ng /usr/sys/conf/MACH NE as /usr/sys/conf/ MACH NE. bck
Do you want to edit the configuration file? (y/n) [n]: vy

Using ed to edit the configuration file. Press return when ready,
or type 'quit’ to skip the editing session:

2395

/ DEC_ACL

opti ons DEC _ACL

d

w

!

Are you satisfied with the changes made during the editing
session? (y/n) [y]l: vy

*** PERFORM NG Kernel Build ***
Working....Tue Cct 3 08:41:10 EDT 1995
Working....Tue Cct 3 08:43:13 EDT 1995

The new kernel is /usr/sys/MACH NE/ vruni x

cp /usr/sys/ MACH NE/ viruni X /vmmuni x
reboot

11-4 Administering ACLs

11.3.3 Verifying Kernel Changes

To determine the status of ACLs in akernel you are going to boot, enter the
following command:

nm —Bn /vnunix | grep sp_insert_ir

If the string **sp_insert_ir'’ is present, the ACLs are loaded in the kernel; if
the string “*sp_insert_ir’ is not present, the ACLs are not |oaded.

11.3.4 Determining If ACLs Are Enabled

114

Use the dbx command to determine if ACLs are currently running in the
system as follows (make sure that / vimuni X is the kernel that was booted):

dbx /vmuni x —k

dbx version 3.11.8
Type ' help’ for help.

war ni ng: cannot get register (nunber = 70)

stopped at [thread_bl ock: 2016 , Oxfffffc00002b2da0] \
Source not avail abl e

warni ng: Files conpiled -g3: paraneter val ues probably w ong
(dbx) print paclpolicy
0

The output of the pri nt pacl pol i cy isinterpreted as follows:
0 ACLsareactive.

1 ACLsarenot active.

Note that pacl pol i cy isaglobal variable in the kernel.

Recovery

Thef sck and f sdb commands are used to recover property lists and ACLS,
respectively, in the event of a system crash. If ACLs are enabled when

f sck isrun on afile system, f sck verifies al property lists on the file
system unless instructed otherwise. If a property list is found that is not
correct, f sck attempts to correct it. In most cases, restoring the property list
aso restores the ACL. The ACLs are validated by kernel read for access
decisions.

The f sdb command examines the ACL in either the internal or external
format. A privileged user can change the ACL using f sdb.

Administering ACLs 11-5

11.5 Standalone System Support

Because the standalone system (SAS) is strictly intended for installing a
system and repairing the root file system, the ACL code is not present. This
is accomplished by not shipping ACLs with the system and f sck and f sdb
having ability to extract and manipulate ACLs from the property list obtained
from the raw partition.

11-6 Administering ACLs

Ensuring Authentication Database

12.1

12.2

Integrity 12

The information systems security officer (ISSO) is responsible for ensuring
the integrity of the system. To do this, the ISSO runsthe aut hck program,
which checks the internal consistency of the files that make up the
authentication database. (This function cannot be performed with the GUIs.)

This chapter describes the aut hck program, suggests reasons for running it,
and explains what to do if it finds discrepancies.

Composition of the Authentication Database
The authentication database, consists of the following subsidiary databases:

» Protected password database (/ t cb/ fi | es/ aut h. db,
[var/tcb/files/auth.db,and
[tcb/fil es/auth/ <a-z>/ username)

» System defaults database (/ et ¢/ aut h/ syst em def aul t)

* Terminal control database (/ et ¢/ aut h/ system ttys. db)

» File control database (/ et ¢/ aut h/ systeni fil es)

» Device assignment database (/ et ¢/ aut h/ syst em devassi gn)
For detailed information about the format and contents of the databases, see

the def aul t (4), devassi gn(4), fil es(4), prpasswd(4), and
t t ys(4) reference pages.

Running the authck Program

The aut hck program checks the overal structure and the internal
consistency of the authentication database. The aut hck program checks for
the correctness of entries within each database and also checks related fields
in other databases. For example, it checks the protected password database
entry for a user against the/ et ¢/ passwd file.

Y ou can specify the following arguments on the aut hck command line:

—p Checks the protected password database and the / et ¢/ passwd file to
ensure that they are complete and that they agree with each other. It
also checks the protected password database for reasonable values.

—t Checks the fields in the terminal control database for reasonable values.

—f Checks the file control database for syntax and value specification
errors. Without this flag, entries with unknown authorizations, user
names, and so on, are ignored. Typically these errors are
typographical, such as ‘‘rooot’” instead of ‘‘root,”’ and the program
attempts to guess the right value.

—a Performsthe functionsof —f, —p, and —t .
—v Provides program activity status during operation.

The aut hck program produces a report listing any discrepancies between
the databases. Compare the output of the program with the actual database
entries and rectify any differences immediately. Problems typically occur
because someone has manually updated one of the databases without making
the corresponding change to the related databases.

12.3 Adding Applications to the File Control Database

When you add applications to the system by a means other than the set | d
program, you should also add file control database entries for the
application’s control and database files and programs. It is best to consult
with the application supplier to get afile and program list, and suggested
protection attributes for all files.

If you add the application’s files to the file control database, you gain the
benefit of periodic integrity checking of that application’s resources.

Seethef veri f y(8) reference page for more information on checking file
integrity.

12-2 Ensuring Authentication Database Integrity

13.1

Security Integration Architecture 13

This chapter describes the Security Integration Architecture (SIA) for Digita
UNIX. The chapter discusses the following topics:

* Overview of the SIA

e Supported security configurations

« SlA’smatri x. conf file

» Installation and deletion of layered security products

SIA Overview

All security mechanisms that run on the Digital UNIX operating system run
under the Security Integration Architecture (SIA) layer. The SIA allows you
to layer various local and distributed security authentication mechanisms onto
Digital UNIX with no modification to the security-sensitive Digital UNIX
commands, such asl| ogi n, su, and passwd. The SIA isolates the
security-sensitive commands from the specific security mechanisms, thus
eliminating the need to modify them for each new security mechanism.

Any time a security mechanism is installed or deleted, the SIA is involved.
Y ou do not need to be concerned about the SIA layer if you do not install
security products. Each time that a security-sensitive command is invoked,
the SIA layer serves as an interface to code that depends upon security
mechanisms.

Figure 13-1: Security Integration Architecture

Security—sensitive Commands and Utilities

(login, passwd, su, chfn, chsh, ftpd, xdm,
lock, dxsession, telnetd, rtools, dtools)

SIA Setup SIA Layer
]] > (sia_*interface for commands)
letc/sia/matrix.conf (siad_*callouts to security mechanism dependent code)
~A
Other
BSD security security
mechanisms
v

DCE security

ZK-0685U-R

13.2 Supported Security Configurations

The Digital UNIX operating system currently provides standard Berkeley
security (BASE), which is limited to / et ¢/ passwd local security with NIS
extensions, and the optiona enhanced security (ENHANCED), which
includes enhanced password features and audit capability.

13.3 matrix.conf Files

The security configuration file that selects the appropriate installed security
mechanism isthe mat ri x. conf file. The system is provided with a
default base (BSD) security mat ri x. conf file

(/etc/sialbsd matrix. conf) and after the enhanced security subset
isinstalled, an enhanced security mat ri x. conf file

/etc/sial OSFC2_matri x. conf). Each layered security product

13-2 Security Integration Architecture

providesitsown mat ri x. conf file. The SIA layer looks for the
mat ri x. conf filethat islinked to the appropriate configuration file.

Note

Do not edit themat ri x. conf file. The system administrator
should only relink mat ri x. conf files.

Example 13-1 shows the default BSD mat ri x. conf
(/etc/sialbsd_matrix. conf) file:

Example 13-1: Default /etc/sia/bsd_matrix.conf File

#

sia matrix configuration file (BSD only)
#

siad_init=(BSD, |ibc. so)

si ad_chk_i nvoker=(BSD, | i bc. so)
siad_ses_init=(BSD, |ibc. so)

si ad_ses_aut hent =(BSD, | i bc. so)
si ad_ses_estab=(BSD, | i bc. so)

si ad_ses_| aunch=(BSD, | i bc. so)

si ad_ses_suaut hent =(BSD, | i bc. so)
si ad_ses_reaut hent =(BSD, | i bc. so)
si ad_chg_finger=(BSD, |ibc. so)

si ad_chg_password=(BSD, | i bc. so)
siad_chg_shel | =(BSD, | i bc. s0)

si ad_get pwent =(BSD, | i bc. so0)

si ad_get pwui d=(BSD, | i bc. so)

si ad_get pwnanm=(BSD, | i bc. so)

si ad_set pwent =(BSD, | i bc. so)

si ad_endpwent =(BSD, | i bc. so)
siad_getgrent=(BSD, | i bc. so)

si ad_getgrgi d=(BSD, | i bc. so)

si ad_get grnan=(BSD, | i bc. so)
siad_setgrent=(BSD, | i bc. so)

si ad_endgrent =(BSD, | i bc. so)

si ad_ses_rel ease=(BSD, | i bc. so)
si ad_chk_user=(BSD, | i bc. so)

Example 13-2 shows the default enhanced security mat ri x. conf
(/etc/sial OSFC2_matri x. conf) file

Example 13-2: Default /etc/sia/lOSFC2_matrix.conf File

siad_init=(BSD, |ibc. so)

si ad_chk_i nvoker =(OSFC2, | i bsecurity. so)
siad_ses_init=(0OSFC2, | i bsecurity. so)

si ad_ses_aut hent =(OSFC2, | i bsecurity. so)
si ad_ses_estab=(CSFC2, | i bsecurity. so)

si ad_ses_|l aunch=(COSFC2, | i bsecurity. so)

si ad_ses_suaut hent =(OSFC2, | i bsecurity. so)
si ad_ses_reaut hent =(OSFC2, | i bsecurity. so)

Security Integration Architecture 13-3

Example 13-2: (continued)

Si
si
Si
Si
si
Si
Si
si
Si
Si
si
Si
Si
si
Si

ad_chg_finger=(0OSFC2,|ibsecurity. so)
ad_chg_passwor d=(OSFC2, | i bsecurity. so)
ad_chg_shel | =(GSFC2, | i bsecurity. so)
ad_get pwent =(BSD, | i bc. so)

ad_get pwui d=(BSD, | i bc. so)

ad_get pwnam=(BSD, | i bc. so)

ad_set pwent =(BSD, | i bc. s0)

ad_endpwent =(BSD, | i bc. so)
ad_getgrent=(BSD, | i bc. so)

ad_getgrgi d=(BSD, | i bc. so)

ad_get grnanm=(BSD, | i bc. so)
ad_setgrent=(BSD, |i bc. so)

ad_endgrent =(BSD, | i bc. so)

ad_ses_rel ease=(OSFC2, | i bsecurity. so)
ad_chk_user=(OSFC2, | i bsecurity. so)

Example 13-3 shows the default DCE mat r i x. conf
(/etc/sialdce_matri x. conf) file

Example 13-3: Default /etc/sia/dce_matrix.conf File

#

Si
si
Si
Si
si
Si
Si
si
Si
Si
si
Si
Si
si
Si
Si
si
Si
Si
si
Si
Si
Si

sia matrix configuration file

ad_i ni t=(DCE, /usr/shlib/libdcesiad.so), (BSD, |ibc. so)
ad_chk_i nvoker =(DCE, / usr/shlib/li bdcesi ad. so), (BSD, | i bc. so)
ad_ses_init=(DCE, /usr/shlib/libdcesiad.so), (BSD, |ibc.so)
ad_ses_aut hent =(DCE, / usr/shli b/l i bdcesi ad. so), (BSD, | i bc. so)
ad_ses_estab=(DCE, /usr/shlib/libdcesiad. so), (BSD, |i bc. so)
ad_ses_l aunch=(DCE, / usr/shlib/li bdcesi ad. so), (BSD, | i bc. so)
ad_ses_suaut hent =(DCE, / usr/shli b/ 1i bdcesi ad. so), (BSD, | i bc. so)
ad_ses_reaut hent =(DCE, / usr/shlib/libdcesi ad. so), (BSD, | i bc. so)
ad_chg_finger=(DCE, /usr/shlib/libdcesiad.so), (BSD,I|ibc. so)
ad_chg_passwor d=(DCE, / usr/ shl i b/libdcesi ad. so), (BSD, | i bc. so)
ad_chg_shel | =(DCE, /usr/shlib/1ibdcesi ad. so), (BSD, | i bc. so)
ad_get pwent =(DCE, / usr/ shli b/l i bdcesi ad. so), (BSD, | i bc. so)
ad_get pwui d=(DCE, / usr/ shli b/l ibdcesi ad. so), (BSD, | i bc. so)
ad_get pwnam=(DCE, / usr/ shl i b/l i bdcesi ad. so), (BSD, | i bc. so)
ad_set pwent =(DCE, / usr/ shli b/l i bdcesi ad. so), (BSD, | i bc. so)
ad_endpwent =(DCE, / usr/ shl i b/l i bdcesi ad. so), (BSD, | i bc. so)
ad_getgrent =(DCE, /usr/shlib/libdcesi ad. so), (BSD, | i bc. so)
ad_get grgi d=(DCE, /usr/shlib/libdcesi ad. so), (BSD, |i bc. so)
ad_get grnam=(DCE, / usr/ shli b/l i bdcesi ad. so), (BSD, | i bc. so)
ad_setgrent =(DCE, /usr/shlib/libdcesiad.so), (BSD, |ibc. so)
ad_endgrent =(DCE, / usr/shlib/libdcesi ad. so), (BSD, | i bc. so)
ad_ses_rel ease=(DCE, /usr/shlib/libdcesiad. so), (BSD, |ibc. so)
ad_chk_user =(DCE, /usr/shlib/libdcesi ad. so), (BSD, | i bc. so)

Seethe mat ri x. conf (4) reference page for more information.

13-4 Security Integration Architecture

13.4

13.5

13.6

Installing a Layered Security Product

Detailed instructions for installing layered security products are provided by
the layered product. In general, you install alayered security product as

follows:

1. Install the layered security product as described in the product’s
installation procedure.

2. Changedirectory to/ et c/ si a.

3. Linkthe/etc/sia/ matrix.conf filetothenew matri x. conf
file provided by the layered product using thel n —sf
new matri x. conf matrix. conf command.

4. Reboot your system.

Installing Multiple Layered Security Products

The Digital UNIX operating system supports the installation of multiple
security products.

Detailed instructions for installing multiple layered security products is
provided by the layered products. In general, you install multiple layered
security products as follows:

1

Bring the system down to single-user mode using the
[usr/ sbi n/ shut down now command.

Install the first layered security product as described in the product’s
installation procedure.

Install the subsequent layered security product, as described in the
product’ s installation procedure.

Change directory to / et ¢/ si a.

Link the/ et c/ si a/ mat ri x. conf filetothenew mat ri x. conf
file provided by the layered product using the | n —sf

new nmatri x.conf matrix. conf command. The product’s
installation procedure will provide details about the new mat ri x. conf
files provided.

Reboot your system.

Removing Layered Security Products

To remove a layered security product from your system, perform the
following steps:

1

Verify that the installed layered security product has not changed the
BSD security mechanism or associated files. This information is usually

Security Integration Architecture 13-5

described in the documentation that came with the product.

Note

If the BSD security mechanism cannot be restored (for
example, the/ et ¢/ passwd file has been deleted), then the
operating system must be reinstalled and reconfigured.

2. Bring the system down to single-user mode using the
/ usr/ sbi n/ shut down now command.

3. Remove thelink to the layered security product’'smat ri x. conf file
using therm /et c/ si a/ matri x. conf command (the file that is
linked is not removed).

4. Link the/etc/sial/ matrix.conf fileto the appropriate
matri x. conf file. For example, | n —s
[etc/sialbsd matrix.conf /etc/sia/mtrix.conf.

5. Reboot your system.

Example 13-4 shows how to delete a layered security product and return to
BASE security.

Example 13-4: Deleting a Layered Security Product

[usr/ sbi n/ shut down now

/sbin/rm/etc/sia/mtrix. conf

/sbin/Iln —s /etc/sial/bsd_matrix.conf /etc/sialmatrix.conf
[usr/ sbin/reboot

13-6 Security Integration Architecture

141

Trusted System Troubleshooting 14

This chapter describes problems that can occur on your system and gives
guidance on how to avoid or correct from them. It provides you with insight
on what is involved in the system startup, so you can examine critical files
and programs required for correct system operation. Once the system isin
single-user made, there is no substitute for careful backup procedures. This
is the only precaution that will avert serious data loss in your system.

The problems discussed in the following sections will prevent the system
from booting.

Lock Files

The system security databases are critical to correct system operation. These
databases use a lock file to synchronize rewrites to security-relevant
databases. Before a process rewrites a database entry, it automatically creates
the lock file. If the lock file already exists, the program assumes that another
process is currently using the database and waits for the lock file to be
removed. If thelock file persists and is not modified within a reasonable
time period (currently 50 seconds), the program waiting for the lock file
removes it and creates a new one, assuming that there has been a system
crash or software error.

The system names lock files by appending a : t extension to the normal file
name. For example, the system default database is stored in

[et c/ aut h/ syst eni def aul t ; its associated lock file is
[etc/auth/systenidefault:t.

The system’s startup scripts include lines that remove all lock files at system
startup. The following files have associated lock files that can prevent correct
operation of the system:

» /dev/consol e

o /etc/auth/system default

» /etc/auth/systenf devassign

e Jetc/auth/systemttys

e /tcb/files/auth/<a-z>/username

14.2

14.3

Invalid Maps

The system maintains two binary databases of mappings, one between user
names and IDs and the other between group names and IDs. These are stored
inthe/ et c/ aut h/ syst emdirectory, in the filespw_i d_map and

gr _i d_map.

Mapping hames to IDs is a basic authentication and integrity mechanism of
the system. If the underlying files on which the maps are based,

/et c/ passwd and/ et ¢/ gr oup, are modified by trusted programs such
as passwd, the programs automatically rebuild the binary databases.
However, if the maps become inconsistent or their contents become
corrupted, the system may not be able to map between names and IDs.

To prevent against corrupt mapping databases, the system removes the maps
at startup. Because they are rebuilt every time the modification time of the
underlying file is later than that of the database, the binary databases can be
removed at any time. If the behavior of a program suggests that it cannot
map a name to an ID, try removing the

[etc/auth/systenl pw id _map or

[etc/auth/systeni gr_id_map file and running the failed program
again. This procedure might avoid a system reboot.

Required Files and File Contents
The following files are required to run the system:
o /tcb/files/auth.dbor/tcb/files/auth/r/root
e /etc/auth/systemttys. db

e /etc/auth/system default

e /etc/auth/system devassign
 /etc/passwd

e /etc/group

e /etc/auth/system pw id_map

e /etc/auth/system gr_id _map

e /shin/rc[023]s

» /dev/consol e

e /dev/tty*

e /[dev/pty*

e /[dev/ptnr

e /dev/pts/*

14-2 Trusted System Troubleshooting

e /[sbin/sh
e /vmuni X

14.3.1 The /tcb/files/auth/r/root File

When the system begins operation, it consults the security databases for
various parameters. If any of the databases are corrupt, the system will not
boot successfully. If possible, the startup programs report that there is a
problem in the databases and to start a single-user shell at the system console
to allow you to repair the system. In some cases, however, the system will
not boot and you must repair the system from standal one procedures
described in the manual System Administration.

If the protected password database entry for root is inconsistent, the system
enters single-user mode, but assumes default characteristics for al security
parameters of the shell it starts.

When the system isin single-user mode, you can create an authentication
profile for root by entering the following command:
edauth root

The following example shows a typical authentication profile for root:
root: u_nanme=root:u_i d#0:\

: u_pwd=encrypted_password: \

:u_m nchg#0: u_pi ckpw. u_nul I pw: u_restrict @\

cu_maxtri es#100: u_| ock@ chkent :
For a complete explanation of all the fields, see pr passwd(4). The
following fields are required for the system to be able to boot:

e name
Must contain root.
e U hame
Must also be root.
e u_uid
Must have a value of 0.
e u pwd

The encrypted version of the password. At authentication, the system
checks the entered password against the encrypted version of the
password. You can leave this field blank if you are creating the database
entry.

» chkent
As with all databases, the entry must end with the single word chkent.

The other fields in this entry are informational or are used to guard against
unwanted account locking. The system overrides all conditions that can

Trusted System Troubleshooting 14-3

cause the root account to lock when changing to single-user mode.

14.3.2 The /etc/auth/system/ttys.db File

The terminal control database must have a valid entry for the system console.
There must not be a: t lock file associated with this database. The entry for
the system console must begin with the word consol e followed by a
colon. It must end with the single word chkent . The only required field
is t _devnane, which must be set to avalue of consol e. For example:

consol e: t _devnanme=consol e: chkent:

14.3.3 The /etc/auth/system/default File

The system default database must have an initial field def aul t and must
end with chkent. There must not bea : t lock file associated with this
database.

The following example is typical:

defaul t:\
:d_nane=defaul t:\

:d_boot _authenticate@\

:d_audit _enable@\

:d_pw_expi re_war ni ng#3456000: \

u_pwd=*:\

s u_m nchg#0: u_nmaxl en#20: u_exp#15724800: u_l i f e#31449600: \

cu_pi ckpw: u_genpwd: u_restrict @u_nul | pw@\

:u_genchars:u_genletters: u_maxtries#5: u_| ock@\

:t_logdel ay#1:t _maxtries#5:t_| ock@t _| ogi n_ti meout #60: \

: chkent:

14.3.4 The /etc/auth/system/devassign File

If the entry for the console is inconsistent, no application can be started. The
field must start with the word consol e and end with the word chkent .
The v_type field must be set to terminal.

The following exampleis typical:

consol e: v_devs=/dev/ consol e: v_type=term nal :\
: chkent:

14.3.5 The /etc/passwd File

The/ et ¢/ passwd file is the password database. This file must be present
and its format must be correct (no encrypted passwords are updated in this
file).

14-4 Trusted System Troubleshooting

14.3.6 The /etc/group File

The/ et ¢/ gr oup file is the group database. This file must be present and
its format must be correct.

14.3.7 The /etc/auth/system/pw_id_map File

The/ et c/aut h/ system pw_i d_map file is the user nameto 1D
mapping database. This file must be consistent. The system rebuilds this file
if it is not present.

14.3.8 The /etc/auth/system/gr_id_map File

The/ et c/ aut h/ systeni gr_i d_map file is the group name to ID
mapping database. This file must be consistent. The system rebuilds this file
if it is not present.

14.3.9 The /sbin/rc[023] Files

The/ sbin/rc[023] filesareused by i ni t to change between run levels.
Save copies of these files after installation.

14.3.10 The /dev/console File

The/ dev/ consol e file designates the character device associated with the
system console. This file must be present for the system to boot.

14.3.11 The /dev/pts/* and /dev/tty* Files

The/ dev/ pts/* and/ dev/tty* files are pseudo terminal devices used
for interprocess communication.

14.3.12 The /sbin/sulogin File

The/ sbi n/ sul ogi n executable file allows restricting access in single user
mode to those users with the root password.

14.3.13 The /sbin/sh File

The/ shi n/ sh executable file must be present for the system to start a shell
to transition to single-user mode.

Trusted System Troubleshooting 14-5

14.3.14 The /vmunix File

The/ viruni x file is the executable image of the operating system. The
boot loading software |oads the operating system into memory and transfers
control to it at boot time.

14.4 Problems Logging In or Changing Passwords

If users experience problems logging in to the system or changing their
passwords, examine the file attributes for the files in the security subset using
thefveri fy command. For example, to verify the file attributes for the
files in the OSFC2SEC400 subset, enter the following commands:

cd /
lusr/lbin/fverify < /usr/.sndb./OSFC2SEC400. i nv

The file attributes of the local user profile files are examined using the | s
—| and aut hck —pf commands.

If auser complains of login troubles involving the inability to update the
protected profile or to obtain alock and you a running centralized account
management, see Section 9.3.

14-6 Trusted System Troubleshooting

Part 3: Programmer’s Guide to Security

15.1

Introduction for Programmers 15

This chapter describes the implication of running trusted applications on a
trusted Digital UNIX system. Libraries, header files, the standard trusted
system directories and the trusted computing base (TCB) are discussed. This
chapter and the ones that follow use partial and complete C programs to
illustrate basic ideas. Although some of these can be used without
modification, they are not a collection of routines from which you can
assemble trusted programs.

Libraries and Header Files

Y our system documentation contains reference pages for all new security
system calls (section 2) and routines (section 3).

Theli bsecurity.a,libsecurity.so, |ibaud. a, andthe
I i baud. so libraries hold al new enhanced security interface binaries. Use
the —I compilation option to link these into your program, for example:

$cc ... —Isecurity -ldb -Im-laud ...

Y our programs need to include severa header files that hold definitions
(constants, macros, structures, library interfaces, and so forth) necessary to
use the Digital UNIX security interfaces. Following traditional UNIX
practice, all Digital UNIX system call and library reference pages denote the
header files that you need to use their routines. You are likely to use the
following individual header files, in the order listed:

<sys/ secdef i nes. h> Defines compilation constants that determine the
security configuration of your system. You
aways need to include this file first.

<sys/security. h> Holds genera definitions. You amost always
need to include this file.

<sys/acl . h> For access control lists. You need thisif you
manipul ate access control lists.
<prot. h> Defines the authentication databases and Digital

UNIX protected subsystems. You need these if
your program accesses any of the authentication
databases.

15.2

<sys/audit.h>

<pr ot cnd. h>

<si a. h>
<si ad. h>

Defines the audit subsystem constants for security
audit interfaces. You need this if you generate or
process audit records.

Provides a few miscellaneous definitions for
trusted commands that are delivered with Digital
UNIX. You seldom need these.

SIA constants, structures, and macro definitions

SIA constants, structures, and macro definitions
internally used by the interfaces and security
mechanisms

Standard Trusted System Directories

Digital UNIX defines several directories to hold its security information.
Y ou can review the reference pages for a description of these files and
directories, primarily section 4.

Y ou may need to create new files and directories in the standard trusted

system directories.

Generally, you should create new directories for the files

you place in these trees. Do not simply insert new files in existing
directories unless that directory was explicitly created for such files. Table
15-1 lists the directories you might use:

Table 15-1: Standard Trusted System Directories

Directory

/tcb/bin
/usr/tcb/bin

/tcb/lib

/tcb/files

/var/tcb

Contents

Contains directly executed trusted commands and
daemons.

Contains programs that are run by other trusted
programs but are never invoked from the command
line.

Contains control files, databases, and scripts used by
the trusted computing base (TCB). You can define a
subdirectory of this directory for your protected
subsystem, if necessary.

Alternative to the / t cb directory.

15-2 Introduction for Programmers

15.3 System Calls and Library Routines with Enhanced
Security

The tables in the following sections list many of the Digital UNIX system
calls and library routines that have security implications for programmers.

Note that some system calls and library routines not covered in these sections
might also have implicit security concerns.

The misuse of asystem call or library routine that does not seem to have any
security concerns could threaten the security of a computer system. For
example, all system calls bypass file access permissions when called by a
privileged process. Ultimately, programmers are responsible for the security
implications of their programs.

15.3.1 System Calls

Table 15-2 lists the system calls that have security relevance for
programmers.

Table 15-2: Security-Relevant System Calls

Category System Calls

File control creat, open, fcntl, read, nknodf,
wite

Process control fork, sigpause, execve, sigsetmnask,
set pgrpt, sigvec, sigblock

File attributes access, chroott, chnodt, stat,

chownt, umask

Userand group ID getegi d, getuid, getgid, setgroupst
geteui d, setreuidt

Auditing audcnt| f, audgent
Generd syscal |
Table note:

T These system calls can be called only by a privileged process or they
may behave differently when called by a nonprivileged process. See the
associated reference pages for more information.

Introduction for Programmers 15-3

15.3.2 Library Routines

Library routines are system services that programs can call. Many library
routines use system calls. Table 15-3 lists Digital UNIX library routines that
have security implications.

Table 15-3: Security-Relevant Library Routines

Category Library Routines
File control fopen, popen
Password handling get pass, putpwent, getpwnam

set pwent, getpwent, endpwent,
get pwii d, passl en, pw_napping,
randomword, time_l ock

Process control si gnal

Group processing Getgrent, setgrent, getgrnam
endgrent, getgrgid

Identifying the user cuserid, getpwiid, getlogin

Password encryption crypt, encrypt

User and group ID setuid, setgid, setegid, setrgid,
seteuid, setruid

Authorization get esdvent, getesdfent, getesfient,

get espwent, getestcent

15.4 Defining the Trusted Computing Base

Y ou must protect the trusted computing base (TCB) from unintended
modification. To do this, you first define which of your programs and data
files are a part of the TCB. The following list describes the components of
the TCB:

» Trusted programs

Any program that could subvert a security rule must be considered a
trusted program. This includes programs that make direct security
decisions, and those that do not but could subvert security if they
contained errors or malicious code.

Consider a program trusted if the program file has its user ID set to root
(SUID).

* Indirect programs
A program is trusted if another trusted program invokes it or otherwise

15-4 Introduction for Programmers

15.5

interacts with it and depends upon its actions for security decisions. A
program is also trusted if it modifies a data file or other object upon
which another trusted program depends.

Program files

Executable files that contain a trusted program are considered a part of
the TCB.

Object code and libraries

All object (binary) code modules and their files, whether statically or
dynamically linked, that are included in atrusted program are part of the
TCB. Thisincludes the standard C library routines and interfaces, which
are frequently used by trusted programs.

Datafiles

The TCB includes any file that contains data used by a trusted program to
make a security decision, for example, the ttys database.

Shell Scripts

A shell script is adatafile that a shell program interprets, performing the
shell commands in the file. A shell script is considered part of the TCB
if it performs a function on behalf of a trusted program or if it is needed
for correct operation of the system. You can determine if a shell script is
security relevant if removing or replacing the script would cause the
system to perform improperly (for example, removing some of ther c
startup scripts) or provide an opportunity for a security breach (installing
adifferent cr on startup file). Shell script files should be protected as
carefully as object code program files. Note that a shell script must be
readable to be executed.

Antecedent directories

Consider all parent directories of TCB files a part of the TCB and protect
them accordingly. If malicious users can remove and redefine links in
these directories, then they can create new, phony files that might cause a
trusted program to make an incorrect security decision.

Protecting TCB Files

Each of the following mechanisms presents a way to protect the files and
directories of the TCB:

Discretionary access control (DAC)

Discretionary access control (the owner, group, mode bits, and ACLS) is
the most important protection for TCB files. It must prevent untrusted
users

Introduction for Programmers 15-5

and groups from modifying these files, although they might be allowed to
read the files. It is common to create pseudo users and pseudo groups for
this purpose.

* Read-only file systems

You can place al files that only need to be read on a separate file system
and mount that file system as read-only. This ensures that no program,
no matter how privileged, can alter those files (at least short of
remounting the file system). You can, of course, remount the file system
as read/write if you need to ater the files. Thisis somewhat drastic but
offers good protection against corruption of security data. You can also
physically set a read-only locking tab on many kinds of removable media.

» Sticky hit
Digital UNIX includes the sticky hit on directories. The sticky bit
restricts the removal of directory entries (links) to those owned by the
requesting user or the owner of the directory. Without this protection,
programs only need write access to the directory. Use the sticky bit

where appropriate, for example when a program needs to store files
owned by different usersin a single directory.

15-6 Introduction for Programmers

Trusted Programming Techniques 16

16.1

This chapter presents specific techniques for designing trusted programs.

Writing SUID and SGID Programs

SUID (set user ID) and SGID (set group ID) programs change the effective
UID or GID of aprocessto the UID or GID of the program. They area
solution to the problem of providing controlled access to system-level files
and directories, because they give a process the access rights of the files
owner.

The potential for security abuse is higher for programs in which the user 1D
isset tor oot orthe group ID is set to any group that provides write access
to system-level files. Do not write a program that sets the user ID to r oot
unless there is no other way to accomplish the task.

The chown system call automatically removes any SUID or SGID bits on a
file, unless the RUID of the executing processis set to zero. This prevents
the accidental creation of SUID or SGID programs owned by the r oot
account. For more information, see chown(2).

The following list provides suggestions for creating more secure SUID and
SGID programs:

» Verify al user-provided pathnames with the access system call.
o Trap al relevant signals to prevent core dumps.

» Test for dl error conditions, such as system call return values and buffer
overflow.

When possible, create SGID programs rather than SUID programs. One
reason is that file access is generally more restrictive for a group than for a
user. If your SGID program is compromised, the restrictive file access
reduces the range of actions available to the attacker.

Another reason is that it is easier to access files owned by the user executing
the SGID program. When a user executes an SUID program, the original
effective UID is no longer available for use for file access. However, when a
user executes an SGID program, the user’s primary GID is still available as
part of the group access list. Therefore, the SGID process still has group
access to the files that the user could access.

16.2

16.3

Handling Errors

Most system calls and library routines return an integer return code, which

indicates the success or failure of the call. Always check the return code to
make sure that a routine succeeded. If the call fails, test the global variable
er r no to find out why it failed.

The err no variable is set when an error occursin a system call. You can
use this value to obtain a more detailed description of the error condition.
This information can help the program decide how to respond, or produce a
more helpful diagnostic message. This error code corresponds to an error
name in <er r no. h>. For more information, see er r no(2).

The following er r no values indicate a possible security breach:

EPERM Indicates an attempt by someone other than the owner to modify
afilein away reserved to the file owner or superuser. It can
also mean that a user attempted to do something that is reserved
for a superuser.

EACCES Indicates an attempt to access a file for which the user does not
have permission.

EROFS Indicates an attempt to access a file on a mounted file system
when that permission has been revoked.

If your program makes a privileged system call but the resulting executable
program does not have superuser privilege, it will fail when it tries to execute
the privileged system call. If the security administrator has set up the audit
system to log failed attempts to execute privileged system calls, the failure
will be audited.

If your program detects a possible security breach, do not have it display a
diagnostic message that could help an attacker defeat the program. For
instance, do not display a message that indicates the program is about to exit
because the attacker’s real user ID (UID) did not match a UID in an access
file, or even worse, provide the name of the access file. Restrict this
information by using the audgen() routine for SUID root programs and
using sysl og for other programs. In addition, you could program a small
delay before issuing a message to prevent programmed attempts to penetrate
your program by systematically trying various inputs.

Protecting Permanent and Temporary Files

If your program uses any permanent files (for example, a database), make
sure these files have restrictive permissions and that your program provides
controlled access. These precautions also apply to shared memory segments,
semaphores, and interprocess communication mechanisms; set restrictive
permissions on al of these objects.

16-2 Trusted Programming Techniques

16.4

Programs sometimes create temporary files to store data while the program is
running. Follow these precautions when you use temporary files:

» Be sure your program deletes temporary files before it exits.

* Avoid storing sensitive information in temporary files, unless the
information has been encrypted.

* Give only the owner of the temporary file read and write permission. Set
the file creation mask to 077 by using the umask () system call at the
beginning of the program.

» Create temporary files in private directories that are writable only by the
owner or in/ t np. The/ t np, directory has the sticky bit set (mode
1777), so that filesin it can be deleted only by the file owner, the owner
of the directory, or the superuser.

A common practice is to create a temporary file, then unlink the file while it
is gtill open. This limits access to any processes that had the file open before
the unlink; when the processes exit, the inode is released.

Note that this use of unl i nk on an NFS-mounted file system takes a
dlightly different action. The client kernel renames the file and the unlink is
sent to NFS only when the process exits. You cannot guarantee that the file
will be inaccessible to someone else, but you can be reasonably sure that the
file will be inaccessible when the process exits. In any case, always
explicitly ensure that no temporary files remain after the process exits.

Specifying a Secure Search Path

If you use the popen, syst em or exec* p routines, which execute

/ bi n/ sh or/ sbi n/ sh, be careful when specifying a pathname or defining
the shell PATH variable. The PATH variable is a security-sensitive variable
because it specifies the search path for executing commands and scripts on
your system. For more information, see envi r on(7), popen(3), and

syst em(3).

The following list describes how to create a secure search path:

» Specify absolute pathnames for the PATH variable.

* Do not include public or temporary directories, other users’ directories, or
the current working directory in your search path. Including these
directories increases the possibility of inadvertently executing the wrong
program or of being trapped by a malicious program.

* Besurethat system directories appear before user directories in the list.
This prevents you from mistakenly executing a program that might have
the same name as a system program.

Trusted Programming Techniques 16-3

* Analyze your path-list syntax, especially your use of nulls, decimal
points, and colons. A null entry or decimal point entry in a path list
specifies the current working directory and a colon is used to separate
entries in the path list. For this reason, the first entry following an equal
sign should never begin with a colon.

» If apath list ends with a colon, certain shells and exec* p routines
search the current working directory last. To avoid having various shells
interpret this trailing colon in different ways, use the decimal point rather
than a null entry to reference the current working directory.

Y ou might want to use the execve system call rather than any of the
exec* p routines because execve requires that you specify the pathname.
For more information, see execve(2).

16.5 Responding to Signals

The Digital UNIX operating system generates signals in response to certain
events. The event could be initiated by a user at aterminal (such as quit,
interrupt, or stop), by a program error (such as a bus error), or by another
program (such as kill).

By default, most signals terminate the receiving process; however, some
signals only stop the receiving process. Many signals, such as SIGQUIT or
SIGTRAP, write the core image to afile for debugging purposes. A core
image file might contain sensitive information, such as passwords.

To protect sensitive information in core image files and protect programs
from being interrupted by input from the keyboard, write programs that
capture signals such as SIGQUIT, SIGTRAP, or SIGTSTP.

Use the si gnal routine to cause your process to change its response to a
signal. This routine enables a process to ignore a signal or call a subroutine
when the signal is delivered. (The SIGKILL and SIGSTOP signals cannot be
caught, ignored, or blocked. They are always passed to the receiving
process.) For more information, see si gnal (3) and si gvec(2).

Also, be aware that child processes inherit the signal mask that the parent
process sets before calling f or k. The execve system call resets all caught
signals to the default action; ignored signals remain ignored. Therefore, be
sure that processes handle signals appropriately before you call f or k or
execve. For moreinformation, see the f or k(2) and execve(2) reference

pages.

16-4 Trusted Programming Techniques

16.6 Using Open File Descriptors with Child Processes

A child process can inherit al the open file descriptors of its parent process
and therefore can have the same type of accessto files. This relationship
creates a security concern.

For example, suppose you write a set user ID (SUID) program that does the
following:

» Allows users to write data to a sensitive, privileged file
» Creates a child process that runs in a nonprivileged state

Because the parent SUID process opens afile for writing, the child (or any
user running the child process) can write to that sensitive file.

To protect sensitive, privileged files from users of a child process, close all
file descriptors that are not needed by the child process before the child is
created. An efficient way to close file descriptors before creating a child
processisto usethef cnt| system call. You can use this call to set the
cl ose- on- exec flag on the file after you open it. File descriptors that
have this flag set are automatically closed when the process starts a new
program with the exec system call.

For more information, see the f cnt | (2) reference page.

16.7 Security Concerns in a DECwindows Environment

The following sections discuss several ways to increase security in a
DECwindows programming environment:

» Protect keyboard input
» Block keyboard and mouse events
» Protect device-related events

16.7.1 Protect Keyboard Input

Users logged into hosts listed in the access control list can call the

XG abKeyboar d function to take control of the keyboard. When aclient
has called this function, the X server directs all keyboard events only to that
client. Using this call, an attacker could grab the input stream from a
window and direct it to another window. The attacker could return simulated
keystrokes to the window to fool the user running the window. Thus, the user
might not realize that anything was wrong.

The ability of an attacker to capture a user’s keystrokes threatens the
confidentiality of the data stored on the workstation.

Trusted Programming Techniques 16-5

DECterm windows provide a secure keyboard mode that directs everything a
user types at the workstation keyboard to a single, secure window. Users can
set this mode by selecting the Secure Keyboard item from the Commands
menu in a DECterm window.

Include a secure keyboard mode in programs that deal with sensitive data.
This precaution is especially important if your program prompts a user for a
password.

Some guidelines for implementing secure keyboard mode follow:
* Usethe XGr abKeyboar d cal to the Xl i b library.

* Useavisua cueto let the user know that secure keyboard mode has been
set, for example, reverse video on the screen.

» Usethe XUngr abKeyboar d function to release the keyboard grab
when the user reduces the window to an icon. Releasing the keyboard
frees the user to direct keystrokes to another window.

16.7.2 Block Keyboard and Mouse Events

Hosts listed in the access control list can send events to any window if they
know its ID. The XSendEvent call enables the calling application to send
keyboard or mouse events to the specified window. An attacker could use
this call to send potentially destructive datato awindow. For example, this
data could executetherm -rf * command or use atext editor to change
the contents of a sensitive file. If the terminal was idle, a user might not
notice these commands being executed.

The ability of an attacker to send potentially destructive data to a workstation
window threatens the integrity of the data stored on the workstation.

DECterm windows block keyboard and mouse events sent from another
client if the al | owSendEvent s resourceis set to Fal se in the
. Xdef aul t s file.

Y ou can write programs that block events sent from other clients. The
XSendEvent call sends an event to the specified window and sets the
send_event flag in the event structure to Tr ue. Test this flag for each
keyboard and mouse event that your program accepts. If the flag is set to
Fal se, the event wasinitiated by the keyboard and is safe to accept.

16.7.3 Protect Device-Related Events

Device-related events, such as keyboard and mouse events, propagate upward
from the source window to ancestor windows until one of the following
conditions is met:

16-6 Trusted Programming Techniques

* A client selects the event for a window by setting its event mask

* A client rejects the event by including that event in the do- not -
pr opagat e mask

You can use the XRepar ent W ndow function to change the parent of a
window. This call changes a window’s parent to another window on the same
screen. All you need to know to change a window’s parent is the window
ID. With the window ID of the child, you can discover the window ID of its
parent.

The misuse of the XRepar ent W ndow call can threaten security in a
windowing system. The new parent window can select any event that the
child window does not select.

Take these precautions to protect against this type of abuse:

* Have the child window select the device events that it needs. This
precaution prevents the new parent from intercepting events that
propagated upward from the child. Parent windows that centralize event
handling for child windows are at greater security risk. An attacker can
change the parent and intercept the events intended for the children.
Therefore, it is safer for each child window to handle its own device
events. Events that the child explicitly selects never propagate.

* Have the child window specify that device events will not propagate
further in the window hierarchy. This precaution prevents any device
event from propagating to the parent window, regardless of whether the
child regquested the event.

* Have the child window ask to be notified when its parent window is
changed by setting the St ruct ur eNot i fy or
Substruct ureNot i fy bitin the child window’'s event mask. For
information on setting these event masks, see the X Window System: The
Complete Reference to Xlib, X Protocol, ICCCM, XLFD.

16.8 Protecting Shell Scripts

When you write a shell script that handles sensitive data, set and export the
PATH variable before writing the body of the script. Do not make shell
scripts SUID or SGID.

Trusted Programming Techniques 16—7

171

Authentication Database 17

The authentication database is a set of databases that store all Digital UNIX
security information. The following databases comprise the authentication
database:

» Device assignment
» File control

» System default

* Protected password
e Terminal control

This chapter introduces each database and discusses its logical organization.

The trusted programs you create often need to use the information in these
databases. Except for a few specialized cases, system administrators
maintain these databases using the Digital UNIX administrative interfaces.
Therefore your programs usually only read them. This chapter describes the
databases only to the extent that they are used by your programs — other
documentation describes their administrative management.

Accessing the Databases

Digital UNIX includes a set of library routines to access each database. The
following reference pages describe the form and use of these databases; you
should read them in conjunction with this chapter.

Subject Reference Page
Device Assignment get esdvent (3)
File Control get esfi ent (3)
System Default get esdf ent (3)
Protected Password get espwent (3)
Termina Control get est cent (3)

The library routines defined on these reference pages hide the actua file
format of the databases. Trusted programs do not need to know the format —
they simply use these library routines.

17.2 Database Components

A database consists of an ordered set of named entries. Programs primarily
use the name of the entry to request a specific entry, although a program can
aso sequentially search through the entries.

Each entry contains an ordered set of fields. Each field has a name, used to
access the field and avalue. Each database has a set of fields that are
alowed to be present in one of its entries. Individua fields are optional and
can be omitted from an entry.

In general, library routines read or write the entry as awhole. Each such
library defines a C structure to hold all possible fields for a given entry of the
database. This structure is always accompanied by a mask that designates
which fields are to be read or written.

Fields can hold many kinds of values (integer, string, and so forth).

However, you only have to deal with the types in the C structure defined for
reading and writing entries in each database. The actual format of the files of
the database is neither visible nor needed.

Digital UNIX programs understand what to do when a field is undefined.
Similarly, your programs should take some appropriate action. A particular
case is when some undefined fields are fetched from the system defaults
database, as described in the following section. Structures for each database
include system default fields and flags for that database. Thus, it is easy to
retrieve the system default values associated with a particular field because
the system default values are referenced from the same structure that stores
values for the individual entry.

17.2.1 Database Form

All databases have the same logical form and similar access libraries. For
example, the terminal control database consists of an entry for each
controlled terminal. The following t t ys file sample entry and the
associated table illustrate the database file format.

tty0l:t_devname=ttyOl:t_ui d#44:t_| ogti me#772479074:\
it _login_tineout#20:t_failures#3:t_| ock@\

: chkent:

Description Identifier Entry Value

Name t devname tty01 Termina 1

User of last login t_uid 44 UID of 44

Time of last login t_logtime 772479074 Fri Jun 24
13:31:13 EDT
1994

Login timeout t login_timeout#20 20 seconds

17-2 Authentication Database

Attempts since last login t_failures#3 3trys
Account status t lock @ Unlocked
Check entry chkent End of entry

The following C structure is used for fetching an entry (see the include file

<prot. h>):

struct es_term {
struct estc_field *ufld; /* fields for this entry */
struct estc_flag *ufl g; /* flags for this entry */
struct estc_field *sfld; /* systemdefault fields */
struct estc_flag *sflg; /* systemdefault flags */

s

Theest c_fi el d holds the data of the entry and est ¢c_f | ag holds the
flags that designate which fieldsinest c_fi el d are present or are set. The
following istheest c_f i el d structure:

struct estc_field ({

char *fd_devnane; /* term nal name */

uid_t fd_uid; /* uid of last successful login */
time_t fd_slogin; /* time of |ast successful |ogin*/
ushort fd_nl ogi ns; /* consecutive failed attenpts */
char fd_l ock; /* termnal |ock status */

ushort fd_login_timeout; /* login tinmeout value */

}s

struct estc_flag {
unsi gned short

f g_devname 01, /* name present? */

fg_uid 01, /* uid present? */

fg_slogin 01, /* time present? */

fg_nl ogi ns 11, /* failed attenpts present? */
fg_l ock 01, /* lock status present? */
fg login_ tineout :1 /* login timeout present? */

}s

The get est cent (3) reference page defines the library routines that you can
use to access the terminal control database. The access routines return or set
the fields for a specific entry (uf I d and uf | g) and for the system defaults
(sfldand sfl g). For each database whose fields have system defaults,
the system defaults are returned in addition to the fields for that entry.

17.2.2 Reading and Writing a Database

Each database is protected by a protected subsystem pseudogroup, to which
your program must have discretionary access. Y our program can be installed
in two ways:

Authentication Database 17-3

» SGID to the appropriate group as a standard program of the subsystem
e SUID 0 as a standard program of the subsystem

The creation of database files is controlled by entries in the file control
database. All database file attributes are stored there. The procedure for
creating database entries is to create a new file that stores the database
contents and then rename that file to replace the old one once the database
has been rewritten. The library routines automatically enforce one database
writer at atime. However, the database is locked only for the duration of the
time the database is being rewritten. Thereis no way to lock an entry against
access across aretrieval and write operation.

17.2.2.1 Buffer Management

Y ou must understand how the system allocates and returns buffers for
database entries to properly code programs that retrieve, replace, and add
database entries. All database routines are patterned after the get pwent ()
routines in that they return pointers to static storage that is reused on each
call. You must save the buffer contents if you are going to retrieve another
entry and need to refer again to the previous entry, or if you need to rewrite
an existing entry or add a new entry. A common programming mistake is to
read a database entry, change one or more field and flag values, and submit
the same buffer to the routine that modifies the database.

Database entries come in two types; those that are self-contained and those
that contain pointers to variable-length fields. The get esdvent (3)
reference page describes the copyesdvent () routine that allocates a
structure to hold a device assignment database entry and copy the contents of
a buffer returned from get esdvent () or get esdvnan() intoit. You
can save an entry for a self-contained database by ssimple structure
assignment, as follows:

struct es_passwd *pr; /* returned val ue */
struct es_passwd *pwcopy; /* buffer for saved val ues */

/* Retrieve john's protected password database entry */
pr = getesnanm("john");
/* store values of john's entry to a |l ocal buffer */

pwcopy = copyespwent (pr);
if (!pwcopy) abort();

/* Change the password mini num change tine to two weeks */

l.

pwecopy->ufl g->fg_m n ;
14 * 24 * 60 * 60;

pwcopy->ufl d->fd_mn

/* Rewrite john's protected password database entry */

17-4 Authentication Database

if (!putespwnan("john", pwcopy))
errnmsg("Could not wite protected password entry\n");
free(pwcopy);

17.2.2.2 Reading an Entry by Name or ID

Y ou can read database entries by specifying their name or, in some databases,
some other identifying value. For example, you can fetch entries from the
protected password database by the entry name (the user’s name) or the user
ID. The following code reads the entry associated with the name tt y44
from the terminal control database:

struct es_term *entry,;

i]I‘”((entry = getestcnam("tty44")) == NULL)
errnmsg ("Entry not found");

Note that get est cnam() allocates the data structure for the returned entry.
Hence, ent ry isonly apointer to aes_t er mstructure that is reused the
next time any of theprtc() orestc() routinesis called.

17.2.2.3 Reading Entries Sequentially

Y ou can also read database entries sequentially as illustrated in the following
code:

struct es_term *entry;

séi brtcent(); /* rewind the dat abase*/
while ((entry = getestcent()) != NULL){ /* read next entry */
/* process the entry */

endprtcent (); /* close */

Note that get est cent () also alocates the data structure for the entry.
You can restart the search from the beginning using set prt cent ().

17.2.2.4 Using System Defaults

A system default is afield that is used when the corresponding field in an
entry is not defined. The system default database contains all system
defaults. The following databases contain information for which there are
system defaults:

* Protected password
* Terminal control
» Device assignment

Authentication Database 17-5

Note that only certain fields in these databases have defaults.

When your program reads an entry, the library routine returns both the fields
for that entry (uf | d and uf | g) and for the system default (sfl d and

sf 1 g). If the entry does not contain the field you need, use the system
default. System defaults are defined in normal operation, so if a system
default field is also undefined, your program should refuse the request and
issue an audit report to report the error, although in some cases you can use
some default value when neither is defined.

For example, if you need to determine the timeout value for the terminal
t t y14, your code might look like this:

struct es_term *entry; /* the entry for the termnal */
ushort tine_out; /* final timeout value */
[*--- fetch the entry by nanme ---*/

if ((entry = getestcnam ("ttyl4")) == NULL)
errmsg ("Entry not found");

[*--- if defined for the termnal, use it ---%*/

if (entry->uflg->fg_|login_tineout)
time_out = entry->ufld->fd_| ogin_tinmeout;

/*--- else if systemdefault is defined, use it ---*/

else if (entry->sflg->fg_|l ogin_tineout)
time_out = entry->sfld->fd_I ogin_tinmeout;

/[*--- otherwi se, assune a value of 0 ---*/

el se time_out = 0;

17.2.2.5 Writing an Entry

Y our program should seldom have to modify a database, and even more
rarely a system default. However, if this is necessary, place the new fields in
uf | d and set the corresponding flagsin uf | g, and then call the appropriate
library routine. For example, to set a new timeout value for the terminal

t t y14 to 20 your code might look like this:

struct es_term *entry, *ecopy;
/*--- fetch the entry by nane ---*/

if ((entry = getestcnam("ttyl1l4")) == NULL)
errnmsg ("Entry not found");

/*--- change the desired field(s) ---*/

17-6 Authentication Database

17.3

ecopy = copyestcent(entry); if (! ecopy) abort():

ecopy->ufl d->fd_| ogi n_ti neout 20; /* set tineout value */

ecopy->ufl g->fg_Il ogi n_ti neout 1, /* set flag to show the
field has been set */

/*--- update the database ---*/

if (!putestcnan("ttyl4", ecopy))
errnmsg ("Could not update database");
free(ecopy);

Note

You must call the appropriate copyes* () routine to save the
data for later use.

The copyes* () routines return pointersto amal | oc() storage area
that the caller must clear.

You can only set system defaults using the put esdf nan() interface for
the system default database. Y ou cannot, for example, set the sf | d and
sfl g fieldsin aes_t er mentry and then call put est cnan() to set
system defaults.

Device Assighnment Database

The device assignment database contains device attributes for devices on the
system. There are two kinds of devices:

e Terminds
o X displays

The name of a device entry is used in the device-related commands. This
name is independent of the names of the device files that represent the
device.

System administrators maintain the device assignment database; your
programs should not modify its contents.

The entries in this database have dynamic sizes (are not self-contained). For
this reason, you must use the copyesdvent () routine to make a working

copy of a structure that contains one of its entries. See the get esdvent (3)
reference page for details.

Thefile/ et c/ aut h/ syst eml devassi gn holds the entire device
assignment database.

Authentication Database 17-7

17.4 File Control Database

The file control database helps to assure that your security-sensitive files have
the correct protection attributes (owner, mode bits, and so forth). It contains
the absolute pathname and the correct attributes for each file (or directory).
These attributes include any combination of the following:

» Filetype (regular, block special, character special, directory, fifo, socket)
* Owner

* Group

* Permission mode hits

Y our programs should not read from or write to the file control database
other than to use its entries for newly created files through the

create file_securel y() interface. However, you should install all
new security-sensitive files and directories in the database. Include al of the
attributes that do not change. This ensures that these attributes are regularly
checked and corrected.

Thefile control database is atext file: /et ¢/ aut h/ systenifiles. Use
any text editor to add to or ater existing entries. Seethef i | es(4) reference
page for a definition of the format of this file. You can use the

create file_securel y() routine to create files with the attributes
specified in the file control database. This routine can only be used to create
anew file. You should create new versions of files in a different file (the
Digital UNIX convention isto append a : t to a pathname for the file's new
contents) and then rename (using the r enane() system call) the new file to
the existing file.

You can use the edaut h —df command to add or remove entries from this
database. See the edaut h(8) reference page for more information.

17.5 System Default Database

The system default database, / et ¢/ aut h/ syst em def aul t, contains
fields that are to be used when the corresponding fields are left undefined in
other databases. Specifically, this database contains default information for
the protected password, device assignment, command authorization, and
terminal control databases. (Note that all fields in each of the authentication
databases may be left undefined, but all fields do not have system default
values.)

The system default database also contains fields for miscellaneous system
parameters. Your programs should not need this miscellaneous information.

System administrators maintain this database and your programs should
never have to modify it. The access routines for other databases also return

17-8 Authentication Database

17.6

17.7

the system default values. See Section 17.7, for an example of how to access
and use the information in the system default database.

The entire system default database has only one entry.

Protected Password Database

The protected password database (/ t cb/ fi | es/ aut h. db and
[var/tcb/files/auth. db) holdsaset of user authentication profiles.
Each authentication profile is named with a user name (a name that a user
supplies during login). The authentication profile has many fields that govern
the user’s login session. Chapter 18 describes these fields in detail.

An authentication profile is associated with the account whose presenceis
indicated by alinein the traditional / et ¢/ passwd file. The encrypted
password has been moved from the / et ¢/ passwd file to the authentication
profile.

The system assigns the traditional meanings for the other fields in the

/ et ¢/ passwd database. Each entry in/ et ¢/ passwd corresponds to
exactly one authentication profile in the protected password database with the
same user ID and name (both must be present for an account to be considered
valid). The/ et ¢/ passwd entry contains a dummy encrypted password
field — the authentication profile holds the real one.

The traditional UNIX interfaces for querying / et ¢/ passwd fileis

get pwent (). Theinterfaces’ functions are unchanged and always fetch
their information from the / et c/ passwd file. Note however, that the
encrypted password that is returned is a dummy value (the routine is not
modified to retrieve the encrypted password from the authentication profile).

Y our programs should not modify this database. However, many trusted
programs need to read the information from the authentication profile.

Each authentication profile is held in a file whose name is the profile (user)
name. The/tch/fil es/ aut h directory contains a subdirectory for each
each letter of the alphabet, and each of those subdirectories holds the files for
accounts whose name begins with that letter. Each entry is rewritten
individually. Only a single entry need be locked for the duration of a
database update.

Terminal Control Database

The terminal control database, / et ¢/ aut h/ systenfttys. db, contains
fields used primarily during login that apply to the login terminal, as opposed
to the user who is logging in. This database consists of an entry for each
terminal upon which users may log in.

Authentication Database 17-9

Each entry in the database has a name of the terminal that matches a name in
the file used to specify login ports (/ et ¢/ i ni tt ab). The entriesin the
device assignment database correspond to each entry in the terminal control
database. Most trusted programs (for example, | ogi n) do not provide their
servicesif there is no corresponding entry in the device assignment database.

Each terminal control database entry contains the following fields:
* The name of the terminal.

* Theuser ID and time of the last unsuccessful login attempt. Because the
user ID is stored in the database, an unsuccessful login attempt that
specifies a user name that does not map to a user 1D, does not produce a
valid user ID in this database. If the user name maps to avalid ID, that
ID is placed in the appropriate field.

* Theuser ID and time of the last successful login.
* The number of unsuccessful login attempts since the last successful login.
* Whether the terminal is locked.

* The number of unsuccessful attempts that the system allows before
locking the terminal.

* Theenforced time delay after afailed login attempt (enforced by the
login program).

* The number of seconds after which the login, once started, times out if
there is no keyboard input. Upon timeout, the login program terminates
the login attempt.

System administrators maintain the entries in this database, athough the
Digital UNIX login programs modify many fields. Your programs do not
usually modify this database. Although it is unlikely, trusted programs may
need to read this database.

Thefile/ et c/ aut h/ system ttys. db holds the entire termina control
database.

17-10 Authentication Database

18.1

Identification and Authentication 18

This chapter discusses the following topics:

* New authentication routines

» The audit ID and some guidelines for using it

» The support libraries

e Using daemons

* The user authentication profile in the protected password database
» Some brief cautions for handling passwords

New libsecurity Library Routines

In order to allow adding new fields to the current for getting and setting
authentication information without violating binary compatibility, a new
series of interfaces has been added to enhanced security. Take for example
the user profile:
struct pr_passwd {

struct pr_field ufld;

struct pr_flag uflg;

struct pr_field sfld;

struct pr_flag sflg;

}s

Any new field in pr _fi el d changesthe offsetstouf | g, sfl d,andsfl g
(even if you add to the end). Because the offsets are known and compiled
into calling applications, this breaks binary compatibility.

Additions to (at least) pr _passwd are expected as new features are added.

18.1.1 Changed Application Programming Interfaces

Severa of the security routines are being replaced in the Digital UNIX
Version 4.0 release. Table 18-1 lists the affected interfaces and the
replacements.

Table 18-1: Changed Programming Interfaces

Obsolete Interface

get pr pwnan()
put pr pwnant()
get pr pwent ()
get pr pwui d()
getprtcent ()
get prtcnam()

put prt cnam()
get dvagnam()

get dvagent ()
copydvagent ()
put dvagnam()
get prdf ent ()
get pr df nam()
put pr df nam()
getprfient()
get prfinam()
put prfinam)

Replacement Interface

get espwnam()
put espwnam()
get espwent ()
get espwui d()
getestcent ()
get est cnam()
put est cnam()
get esdvnam()
get esdvent ()
copyesdvent ()
put esdvnam()
get esdf ent ()
get esdf nam()
put esdf nam()
getesfient()
get esfi nam)
put esfi nam)

read_pw fiel ds() [escap_parse fiel ds(espw parse, ...)
store_pw fields() [escap_print_fields(espw parse, ...)
read_tc_fields() [escap_parse_fields(estc_parse, ...)
store_tc_fields() [escap_print_fiel ds(estc_parse,)
time_|ock() tinme_|ock_es()

get _seed() get _seed_es()

auth _for terminal () auth for_termnal_es()

| ocked_out () | ocked_out _es()

The following new APIs are added in the Digital UNIX Version 4.0 release:

copyespwent ()
copyest cent ()
copyesfient()
copyesdfent ()
escap_parse_fields()
escap_print_fields()
escap_cnp_fields()
escap_copy_fiel ds()
escap_si ze_dat a()
get _numcrypts()

get _crypt_name()

Table 18-2 lists the data structures changed in the Digital UNIX Version 4.0
release.

18-2 Identification and Authentication

[Y Y —

Table 18-2: Changed Data Structures

Obsolete Structures Replacement Structures
pr_field espw field
pr_flag espw _fl ag
pr_passwd es_passwd

t field estc field

t _flag estc_flag

pr_term es_term

dev_field esdev_field
dev_fl ag esdev_fl ag
dev_asg esdev_asg

f _field esfi_field

f flag esfi _flag

pr_file es_file
systemdefault _fields es_default fields
system defaul t _fl ags es_default _flags
pr_defaul t es_defaul t

18.1.2 What to Do With Existing Programs

The obsolete routines with the old names and calling sequences are currently
supported. These obsolete routines were rewritten to be layered on top of the
new interfaces, so that the routines (put pr pwnamfor example) do not lose
new fields, but will instead refetch the affected record, and propagate changes
to the new-format interface, thereby preserving new fields.

Statically-compiled programs using the obsolete interfaces will lose or
destroy the new fields if they are allowed to write data.

18.1.3 What to Do For New Programs

Thenew | i bsecuri ty library with the new extended routines needs to be
compiled ahead of the application. New programs should use the new
get es*() and put es* () routines.

18.2 The Audit ID

Digital UNIX preserves dl traditional UNIX process user and group
identities. Additionally, it provides the per-process audit ID (AUID), which
is unique to Digital UNIX. The AUID is similar in principle to the real user
ID, except that it remains unchanged even in cases where the real user 1D
changes. The audit ID is associated with all audit records and establishes the
user identity even in those cases where the real and effective user 1Ds have

Identification and Authentication 18-3

18.3

18.4

been changed from their values at login.

The audit 1D can be set only once in aline of process descendants, regardiess
of any process privileges. The audit ID is set at login to the authenticated
user (the same as the real and effective user IDs) and is inherited from parent
to child when a process forks using the f or k() system call.

Programs that are created from startup scripts or that are created as a result of
respawn entriesinthei ni t t ab file are created with an unset audit ID.
Such programs are normally authentication programs (get t y/I ogi n
sequences, window managers, trusted path managers) that set the AUID
based on the user that authenticates through that interface.

Programs started through startup scripts typically receive requests for service
on behalf of users and spawn a process to service that request. Such
programs typically set the audit 1D in the child service process based on the
reguesting process s effective identity.

Theget | ui d() and set | ui d() system calls read and set the audit ID.
See their reference pages for details.

Identity Support Libraries

The Digital UNIX operating system provides severa library routines for
managing user and group identities. For example, the

set _aut h_paramet ers() routine, usualy called at the beginning of a
program’s mai n() routine, stores the initial user and group IDs that can
later be queried or tested by the other routines.

Several of the routines for querying the authentication database require the
program to have previously called set _aut h_par anet er s() before
changing any of the user or group IDs, or the command arguments (argc and
argv).

Seethei denti t y(3) reference page for more information.

Using Daemons

Whenever a daemon performs an operation at the request of a user program
(the client), it actsin one of two ways.

e |t can run under its own identities, authorizations, and privileges, making
its own decisions about what actions the regquesting program may or may
not perform. In this case, it does not need to change any of its own user
identities.

» |t can have the underlying operating system enforce operations as if the
daemon had the client’s security attributes (user IDs, authorizations, and
so forth).

18—4 Identification and Authentication

18.5

In the latter case, the daemon needs to establish a set of security attributes.
The preferred technique is to fork a process, set the identities and privileges,
and then either perform the actions directly or execute a program to perform
them.

Using the Protected Password Database

Although the protected password database is intended mainly for Digital
UNIX programs, your programs may need to use the fields described in the
following list. (These fields are also described in the get espwent (3) and
pr passwd(4) reference pages, the pr ot . h include file, and the
administrative part of this document.)

User name (u_nane) and ID (u_i d)
These correspond to the user name and ID in/ et ¢/ passwd.
Encrypted password (u_pwd)

This is the real encrypted password. The system supports a longer
password length than the traditional UNIX limit of 8 characters. The
system encrypts the password in 8 character segments. Each cycle of
encryption provides an 11-character value plus the initial 2-character salt
string. Thus, the length of the encrypted password is the number of
segments times 11 plus 2 ((11 * n) + 2).

For example, a plain text password of 1 to 8 characters encodes to 13
characters. A plain text password of 9 to 16 characters encodes to 24
characters and a plain text password of 17 to 24 characters encodes to 35
characters.

See the cr ypt (3) reference page for more information.
Retired status (u_r et i red)

Indicates whether the authentication profile is valid. If not valid, login
sessions are not alowed. Once retired, an account should never again be
reused.

Login session priority (u_priority)

The process priority assigned to programs of the user login session using
setpriority().

User audit mask (u_audi t mask) and control flags (u_audcnt |)
This mask and its control flags, in conjunction with the system audit
mask, designate the events audited during the login session. Thel ogi n
program assigns a mask to the user’s login shell. Audit masks and the

control flags are inherited acrossexec() and f or k() calls. See
Chapter 19 and the audi t mask(8) reference page for more information.

Identification and Authentication 18-5

» Password parameters
The following parameters describe the login password and its generation:
— Maximum password length in characters (u_max| en)
— Password expiration interval (u_exp)
— Minimum password lifetime (u_m nchg)
— Password lifetime (u_l i f e)
— Time and date of last successful password change (u_succhg)

— Time and date of last unsuccessful password change attempt
(u_unsucchg)

— User who last changed the password (u_pwchanger)
— Password generation parameters (u_genpwd)
* Login password requirements (u_nul | pw)

This is sometimes called the *‘null password option’’ and controls
attempts to set anull password. Most administrators do not allow this
option.

» Times during which a user may login (u_t od)

Thisfield is formated like the UUCP syst ens file. (Thesyst ens file
describes when a remote system can be contacted for file transfer.) It
determines the valid times for a user to login.

» Time and date of last login (u_sucl 0g)
Expressed as a canonical UNIX time (in seconds since 1970).
* Terminal used during last login (u_suctty)

The terminal name is a cross-reference to the device assignment and
terminal control databases.

» Number of unsuccessful login attempts since last login
(u_nurmunsucl og)

This value is used to compute whether the terminal is locked due to too
many unsuccessful attempts.

* Number of unsuccessful login attempts allowed before lock
(u_maxtries)

This value is the user-specific limit for the number of unsuccessful
attempts allowed until the account locks.

* Lock status (u_I ock)

Whether or not the administrator has locked the account. A locked
profile cannot be used for login or other services. Only an explicit
request from the system administrator should unlock an authentication

18-6 ldentification and Authentication

18.6

profile, and only programs that handle such requests should reset the
locked field.

A common programming error is to assume that the lock indicates all
lock conditions. This indicator only shows the status of the
administrative lock. An account may also be locked due to a password
lifetime expiration or exceeding the number of unsuccessful attempts
allowed for the account.

Y our program can assume that the user name and 1D in the protected
password database is maintained by the system to have a corresponding entry
inthe/ et c/ passwd file.

Example: Password Expiration Program

The program named nyexpi r e in Example 18-1 prints the user’s password
expiration time as defined in the protected password database. This program
is part of the authentication protected subsystem and runs in the set group 1D
(SGID) mode, setting the GID to aut h.

Example 18-1: Password Expiration Program

#i ncl ude <sys/types. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/security. h>
#i ncl ude <prot. h>

main (argc, argv)
int argc;
char *argv[];
{

struct es_passwd *acct;
time_t expire_time;
time_t expire_date;

/*--- Standard initialization ---%/

set _aut h_paraneters(argc, argv);
initprivs();

/*--- fetch account information using audit ID ---*/

if ((acct = getespwuid(getluid())) == NULL)
errmsg("Internal error");

Identification and Authentication 18-7

/*-- test if personal or systemdefault applies and print --*/

if (acct->uflg->fg_expire)
expire_tinme = acct->ufld->fd_expire;
else if (acct->sflg->fg_expire)
expire_time = acct->sfld->fd_expire;
el se {
audit _db_error(acct); /* audit (externally defined) */
errmsg("No user-specific or systemdefault \
expiration time.");

if (!acct->ufld->fg_schange) {
audi t _db_error(acct); /* audit (externally defined) */
errnsg("Account does not have successful change tinme");

}
expire_date = acct->ufld->fd_schange + expire_tine;

if (acct->uflg->fg_psw.chg_reqd &% \
acct ->ufl d->fd_psw_chg_reqd) \
expire_date = tine((time_t *) NULL);

audi t _action(acct->ufl d->fd_nane, expire_date);
exit(0);

Note

The protected password database files are accessible only to
processes in the aut h group. Programs that need to read the
protected password database files must set the group ID to aut h
(seethe set gi d(2) reference page). To write this information
you must set the UID to O or auser ID and have a group ID of
aut h.

18.7 Password Handling

Digital UNIX has been designed so that trusted programs can authenticate
their users without specifically asking for passwords. Digital UNIX
explicitly uses the audit ID for this purpose. Additional password handling is
usually not necessary and difficult to handle securely. Appendix D provides
an example of a program for password checking.

18-8 Identification and Authentication

19.1

19.2

Audit Record Generation 19

This chapter presents an overview of the audit concerns from a programmer’s
perspective. The following subjects are discussed:

* Auditable events

» Disabling auditing for the current process

* Modifying what gets audited for the current process
» Generation of application-specific audit records

* Tokens

Categories of Auditable Events
Auditable events are divided into the following categories:
e System calls
» Trusted events (user events such as| ogi n)
+ Site-defined events

A list of the default auditable events can be found in the Appendix B or by
looking at the/ et ¢/ sec/ audi t _event s file as delivered on your
system. You can usethe audi t _set up script to establish the auditable
events on your system. Seethe audi t _set up(8) reference page for more
information.

Generation of Audit Records

Whether an auditable event actually results in the generation of an audit
record depends on the following:

* Process audit control flag

e System audit mask

* Process audit mask

The process audit control flag has four exclusive states:

AUDIT_OR An audit record is generated if either the system
audit mask or the process audit mask indicates
such an event should be audited.

AUDIT_AND An audit record is generated if both the system
audit mask and the process audit mask indicate
such an event should be audited.

AUDIT_OFF No audit records are generated for the current
process.
AUDIT_USR An audit record gets generated if the process audit

mask indicates such an event should be audited.
The process audit control flag also has two non-exclusive states:

AUDIT_SYSCALL_OFF Turns off system call record generation for the
application. The system calls specified in the
system mask continue to be audited.

AUDIT_HABITAT_USR Allows turning on the habitat system callsin the
user mask for an application while system calls
are turned off for the system mask. See Appendix
B for the habitat events.

A default audit level can be established for most users, while being able to
single out specific users to audit more or less closely. A privileged processis
allowed to specify what gets audited for itself either absolutely, or relative to
the system audit mask.

Control over what events get audited is an important step in fine-tuning the
audit data to indicate only events of interest. Sometimes too much audit data
is generated by system calls. For example, the login process executes
thousands of system calls, but a single audit record for the login processis
easier to understand, less stressful on the system, and fewer entries in the
auditlog. Modification of a security-relevant database, such as the password
file, requires the auditing of information not easily picked up from the system
calls, such as which field of which entry is being modified.

19.3 Disabling Auditing

Usetheaudcnt | () system call to disable auditing for the current process
as follows:

audcntl (SET_PROC_ACNTL, (char *)0, 0, AUDIT_OFF, 0, 0);

19.4 Modifying Process Audit Attributes

Control over what is audited for a specific process is achieved by modifying
the process' audi t mask and audcnt | flags. Modify the process audit

19-2 Audit Record Generation

mask as follows:

/* ex. set the process’ auditmask to audit only LOG N
events and successful setgroups calls

*/

#i ncl ude <sys/audit.h>

#i ncl ude <sys/syscall.h>

char buf[AUDI T_MASK _LEN];

bzero (buf, sizeof(buf));
A PROCMASK_SET (buf, LOGAN, 1, 1);
A PROCMASK_SET (buf, SYS setgroups, 1, 0);
if (audcntl (SET_PROC_AMASK, buf, AUDI T_MASK LEN, \
0, 0, 0) ==-1)
perror ("audcntl");

The A_ PROCMASK _SET macro (found in <sys/ audi t . h>), takes the
following arguments:

buf The buffer in which the mask gets built

event name The <sys/ audi t . h> header file contains application event
names. The<sys/ *syscal | . h> header files contains system
call names.

succeed Indicates whether to audit successful occurrences of the event. A
1 means audit success.

fail Indicates whether to audit failed occurrences of the event. A 1
means audit failure,

See the audcnt | (2) reference page for more information.

19.5 Audit Records and Tokens

The audit subsystem is desighed to make it easy to add application-specific
auditing.

The audit subsystem has no fixed record type. Instead, the various possible
elements of an audit record are tuples consisting of defined audit tokens and
corresponding values. Each audit record is then built up from those
elements. This approach provides flexibility in the kind and amount of data
that can go into an audit record. It also avoids the problems associated with
aless flexible design that defines a number of fixed audit record types and
requires all software that uses the audit subsystem to work within those
record types.

Most tokens specify an audit value that is fixed in length and alow four
bytes for the value. Examples of fixed-length tokens are AUD_T_AUI D
(audit ID), AUD_TP_DEV (device humber), and AUD_TP_PI D (process ID
number).

Audit Record Generation 19-3

Some types of audit values are of variable length. These are accommodated
by tokens that are pointer types. AUD_T_CHARP (character parameter) and
AUD_T_HOVEDI R (home directory) are two of the pointer-type tokens.

Some pointer-type tokens use i ovec structures. Examples of these are
AUD_T_OPAQUE, and AUD_T_| NTARRAY which is used for datain integer
arrays. Opague data is displayed as an aphanumeric or in octal format. The
i ovec structureis defined in <sys/ ui 0. h>. For information about

i ovec seethe reference pages for r eadv(2) and wri t ev(2).

19.5.1 Public Tokens

The tokens available to programs using the audgen() and audgenl ()
routines are called public tokens, and are named AUD_T_nane in the
<sys/ audi t. h> file. Example 19-1 lists the public tokens:

Example 19-1: Public Tokens

[* start of ptr token types */

AUD T_CHARP character string
AUD_T_SOCK socket

AUD T LOG N | ogi n name

AUD_T_HOVEDI R hone directory
AUD_T_SHELL shel |

AUD_T_DEVNAME devi ce nane

AUD_T_SERVI CE service string (rfu)
AUD_T_HOSTNAME host name

AUD_T_|I NTP i nteger array (deprecated)

/* 1st element of int array is # of data elenments in array */

/* start of iovec style data */
AUD_TOKEN_| OVEC_M N

AUD_T_OPAQUE opaque data

AUD_T_| NTARRAY i nteger array

AUD T_d DSET group set
AUD_T_XDATA aud_xdata structure

AUD_TOKEN_PTR_MAX
/* end of iovec style data */
/* end of ptr token types */

AUD_T_AUI D audit id

AUD T_RU D real uid
AUD T _U D effective uid
AUD_T_PID pid

AUD_T_PPI D ppi d
AUD_T_GD gid
AUD_T_EVENT event #
AUD_T_SUBEVENT subevent #
AUD T_DEV dev mmj or, m nor #
AUD_T_ERRNO errno val ue
AUD_T_RESULT result val ue

19-4 Audit Record Generation

Example 19-1:

AUD_T_MODE
AUD_T_HOSTADDR
AUD_T_I NT
AUD_T_DESCRI P
AUD_T_HOSTI D

AUD_T_X_ATOM
AUD_T_X_CLI ENT
AUD_T_X_PROPERTY

AUD_T_X_RES CLASS

AUD_T_X_RES_TYPE
AUD_T_X_RES I D

(continued)

obj ect node
i p address

i nteger data
descriptor
hosti d

X atom
X client identifier

X property identifier
X resource cl ass

X resource type

X resource identifier

Only the public tokens can be added to records from user space using the
audgen call; the private tokens cannot.

Further, the public tokens are broken down into 3 categories:

pointer types
iovec style data
default

19.5.2 Private Tokens

Represent data strings or structures
Added as iovec-formated data

32 or 64-bit quantities (AUD_T_RESULT is 64-bit;
others are 32-hit)

Tokens with security implications that are not available to users are called
private tokens, and are named AUD_TP_nane.

Example 19-2 lists the private tokens:

Example 19-2: Private Tokens

AUD_TP_ACCRGHT
AUD_TP_MBGHDR
AUD_TP_EVENTP
AUD_TP_HABI TAT
AUD_TP_ADDRVEC
AUD_TP_I NTP

AUD_TP_AUI D
AUD_TP_RUI D
AUD_TP_UI D
AUD_TP_PI D
AUD_TP_PPI D
AUD_TP_HOSTADDR
AUD_TP_EVENT

AUD_TP_SUBEVENT
AUD_TP_NCPU
AUD_TP_DEV
AUD_TP_LENGTH

nsghdr’s access rights data (sendnsg,
neghdr’s nanme field (sendnsg, recvinsg)
event nanme (for alternate habitats)
habi tat nane

address vectors (exportfs)

integer array

recvnsg)

audit id

real uid
effective uid
pid

ppi d

host address (ip)
event #

subevent #

cpu #

device #

audit record length

Audit Record Generation 19-5

19.6

Example 19-2: (continued)

AUD TP_IPC_G D sysV structure gid val ue
AUD_TP_I PC_MODE sysV structure node bits
AUD_TP_I PC_U D sysV structure uid val ue

AUD_TP_TV_SEC ti nestanp (sec)
AUD_TP_TV_USEC ti mestanp (usec)
AUD_TP_SHORT short data
AUD TP_LONG | ong data

AUD_TP_VNODE_DEV devi ce on which inode resides
AUD_TP_VNODE_ID inode identifier

AUD_TP_VNODE_MODE obj ect node

AUD_TP_VERSI ON version #

AUD TP_SET_U DS flag indicating a uid change occurred

AUD_TP_CONT continuation flag
AUD TP_TID thread identifier (address)

Application-Specific Audit Records

The following are examples of code to generate an application-specific audit
record:

/* ex. generate an event of type ‘event’, with "some string",
and a result of 66

*/

#i ncl ude <sys/audit.h>

if (audgenl (‘event’, AUD T _CHARP, "sone string", \
AUD_T_RESULT, 66L, 0) == -1)
perror ("audgenl");

The event can be either atrusted event (see audi t . h) or an administratively
defined site-specific event.

/* ex. generate audit record for administratively defined event
event is "rdb", subevent is "commt"
note: this event nust be registered in /etc/sec/site_events
link with -1aud

*/

#i ncl ude <sys/audit.h>
int eventnum subeventnum

if (aud_sitevent_num ("rdb", "commit", &eventnum \
&subeventnum) == -1)
return(-1);

if (audgenl (eventnum AUD_T_SUBEVENT, subeventnum \
AUD_T_CHARP, "whatever", 0) == -1)
return(-1);

19-6 Audit Record Generation

See the audgenl (3) and aud_si t event (3) reference pages for more
information.

The examples in this section generate audit records only if the respective
event types are selected to be audited and the auditable event actually results
in the generation of an audit record (see Section 19.2).

Audit Record Generation 19-7

20.1

Using the SIA Interface 20

This chapter documents the Security Integration Architecture (SIA)
interfaces.

Overview

The Security Integration Architecture (SIA) allows the layering of local and
distributed security authentication mechanisms onto the Digital UNIX
operating system. The SIA configuration framework isolates security
sensitive commands from the specific security mechanisms. These
commands have been modified to call a set of mechanism-dependent
routines. By providing alibrary with a unique set of routines, developers can
change the behavior of security sensitive commands, without changing the
commands themselves. The SIA defines the security mechanism-dependent
interfaces (si ad_* () routines) required for SIA configurability. Figure
20-1 illustrates the relationship of the components that make up the SIA.

The security sensitive commands are listed in Table 20-1.
Table 20-1: Security Sensitive Operating System Commands

Command Description

chfn Changes finger information

chsh Changes login shell information
dnascd Spwans DECnet

ftpd Serves the Internet File Transfer Protocol
login Authenticates users

passwd Creates or changes user passwords

rshd Serves remote execution

su Substitutes a user ID

Figure 20-1: SIA Layering

- Application

Security sensmve command

Ind
SIA
Entity 1

Independent
Layer
Matrix.conf

-~

DCE

Enhanced Base

Configuration
File
Mechanism
dependent

Application ~ Layer

Library

ZK-1086U-Al

Table 20-2 and Table 20-3 list the SIA porting routines.

Table 20-2: SIA Mechanism-Independent Routines

SIA Routine
sia_init()
sia_chk_i nvoker ()
sia_collect_trm))
sia_chg _finger()
sia_chg_password()
sia_chg_shel | ()
sia_ses_init()
sia_ses_aut hent ()
sia_ses_reauthent ()
sia_ses_suaut hent ()
sia_ses_estab()
sia_ses_l aunch()
sia_ses_rel ease()
sia_make_entity_pwd()
sia_audit()
sia_chdir()
sia_tined_action()
si a_becone_user ()
sia_val i date_user ()
sia_get _groups()

20-2 Using the SIA Interface

Description

Initializes the SIA configuration

Checks the calling application for privileges
Collects parameters

Changes finger information

Changes the user’s password

Changes the login shell

Initializes SIA session processing
Authenticates an entity

Revalidates a user’ s password

Processes the su command

Establishes the context for a session

Logs session startup and any tty conditioning
Releases resources associated with session
Provides the password structure for SIAENTITY
Generates the audit records

Changes the current directory safely (NFS-safe)
Calls with atime limit and signal protection
su routine

Validate a user’s password

Gets groups

Table 20-3: SIA Mechanism-Dependent Routines

SIA Routine

Si

ad_init()

Description
Initializes processing once per reboot

si ad_chk_i nvoker ()
siad_ses_init()

si ad_ses_aut hent ()
si ad_ses_estab()

si ad_ses_I| aunch()

si ad_ses_suaut hent ()
si ad_ses_reaut hent ()
siad_ses_rel ease()
siad_chg finger()

si ad_chg_password()

Verifys the calling program privileges
Initializes the session

Authenticates the session

Checks resources and licensing

Logs the session startup

Processes the su command

Revalidates a user’s password

Releases session resources

Processes the chf n command

Invokes a function to change passwords

Si
Si

ad_chg_shel | ()
ad_get pwent ()

Processes the chsh command
Processes get pwent and get pwent _r

si ad_get pwui d() Processes get pwui d() and get pwui d_r ()
si ad_get pwnam() Processes get pwnamn() and get pwnamr ()

Si
Si
Si

ad_set pwent ()
ad_endpwent ()
ad_getgrent()

Initializes a series of get pwent calls
Releases resources after a series of get pwent calls
Processesget grent () andgetgrent _r ()

siad_getgrgid() Processesget grgi d() andgetgrgi d_r ()
si ad_get grnam() Processes get gr nam() and get grnam r ()
siad_setgrent() Initializes a series of get grent () cals

si ad_endgrent () Closes series of get grent () cals

Si

ad_chk_user ()

Determines if a mechanism can change the requested

information
Fillsin the array of a user’s supplementary groups

si ad_get _groups()

The SIA establishes alayer between the security sensitive commands and the
security mechanisms that deliver the security mechanism-dependent
functions. Each of the security-dependent SIA routines can be configured to
use up to four security mechanisms, called in varying orders.

The selection and order of the calls is established by a switch table file,
/etc/sial matrix. conf (see Chapter 13), similar to the way
/etc/svc. conf isusedto control | i bc get * functions. However, the
calling mechanism is distinctly different.

The SIA calling mechanism looks up the addresses of routines in the shared
libraries and calls them to access the specific security mechanism routine.
SIA provides alternative control and configuration for the get pw* and

get gr * functionsin Digital UNIX.

SIA layering establishes internationalized message catalog support and
thread-safe porting interfaces for new security mechanisms and new security
sensitive commands that need transparency. The thread safety is provided by
a set of locks pertaining to types of SIA interfaces. However, because SIA is

Using the SIA Interface 20-3

20.2

alayer between utilities and security mechanisms, it is the responsibility of
the layered security mechanisms to provide reentrancy in their
implementations.

The primary focus for SIA is to provide transparent interfaces for security
sensitive commands like | ogi n, su, and passwd that are sufficiently
flexible and extensible to suit future security requirements. Any layered
product on Digital UNIX that is either creating a new security mechanism or
planning to use a specific security mechanism, requires SIA integration.

The SIA components consist of only user-level modules. The components
resolve the configuration issues with respect to command and utility
utilization of multiple security mechanisms. The SIA components do not
resolve any kernel issues pertaining to the configuration and utilization of
multiple security mechanisms.

SIA Layering

The layering introduced by SIA in Digital UNIX consists of the following
two groups of interface routines:

sia_*() Thecommands and utilities porting interface
si ad_*() The security mechanism-dependent porting interface

Security mechanisms deliver a shared library containing the si ad_* ()
routines and provide a unique security mechanism name to satisfy the
configuration. The one word security mechanism name and the library name
are used as keysinthemat ri x. conf file to specify which mechanisms to
call and in what order.

The security-sensitive commands have been modified to use the mechanism-
independent si a_* () routines. The routines are used by the commands and
utilities to access security functions yet remain isolated from the specific
security technologies. Thesi a_* () routines call the associated
mechanism-dependent si ad_* () routine, depending on the selected
configuration specified in the mat r i x. conf file. See Chapter 13 for a
more detailed discussion of the file.

The mechanism-dependent si ad_* () interface routines are defined by SIA
as callouts to security mechanism-dependent functions provided by the
security mechanisms. Themat ri x. conf fileis used to determine which
security mechanisms are called and in what order they are called for each
SIA function.

The process of calling a particular module within a specified security
mechanism and passing the required state is done by the mechanism-
dependent layer. The calling process uses shared library functions to access
and lookup specific module addresses within specified shared libraries
provided by the security mechanisms.

20-4 Using the SIA Interface

20.3

20.4

20.5

The naming of the security mechanism-dependent modules, si ad_* ()
routines, is fixed to alleviate name conflicts and to ssimplify the calling
sequence. Digital UNIX usesthe dl open() and dl syn() shared library
interfaces to open the specified security-mechanism shared library and lookup
thesi ad_*() function addresses. If you need to preempt the si ad_* ()
routines, your names must be of the form _ _si ad_* in your library and the
library must be linked ahead of | i nc. See Appendix E for more information
on the naming and preempting requirements.

System Initialization

The SIA provides a callout to each security mechanism on each reboot of the
system. This callout is performed by the / usr/ sbi n/ si ai ni t program,
which calls each of the configured security mechanisms at their
siad_init() entry point. Thisalows the security mechanisms to
perform areboot initialization. A SIADFAIL response from the
siad_init() cal causesthe system to not reboot and a SIA
INITIALIZATION FAILURE message to be sent to the console.
Consequently, only problems that would cause a security risk or would not
alow root to log in should warrant a SIADFAIL response from the
siad_init() cal.

Libraries

SIA security mechanisms are configured as separate shared libraries with
entry points that are SIA defined names. Each mechanism is required to have
a unique mechanism identifier. The actual entry points in the shared library
provided by the security mechanism are the same for each mechanism,
siad_*() form entry points.

The default security configuration is the BASE security mechanism contained
inlibc. The default BASE security mechanism usesthe/ et ¢/ passwd
file, or a hashed database version, as the user database and the / et ¢/ gr oup
file as the group’ s database. The default BASE mechanism also uses the
network information service (NIS) if it is configured. In single-user mode or
during installation the BASE security mechanism is in effect.

Header Files

The SIA interfaces and structures are defined in the
fusr/includel/sia.hand/usr/include/siad.hfiles. The
si a*. h files are part of the program development subsets.

Using the SIA Interface 20-5

20.6 SIAENTITY Structure
The SIAENTITY structure contains session processing parameters and is
used to transfer session state between the session processing stages. Example
20-1 isthe SIAENTITY structure:
Example 20-1: The SIAENTITY Structure

typedef struct siaentity {

char *nane; /* collected nane */
char *password; /* entered or collected password */
char *acct nane; /* verified account nane */
char **argv; /* calling command argument |ist */
int argc; [* nunber of argunents */
uid_ t suid; /* starting ruid */
char *host nane; /* requesting host NULL=>| ocal */
char *tty; [* pat hname of |ocal tty */
int can_collect_input; /* 1 => yes, 0 => no input */
int error; /* error message val ue */
int aut hcount; /* Nunber of consecutive */

/* failed authent attenpts */
int authtype; /* Type of |ast authent */
struct passwd *pwd; /* pointer to passwd struct */
char *gssapi; /* for gss_api prototyping */
char *sia_pp; /* for passport prototyping */
int *mech[SI ASWVAX] ; /* pointers to nech-specific data */

/* allocated by mechani sns i ndexed */

/* by the mechind argunent */

} SI AENTI TY;

20.7 Parameter Collection

The SIA provides parameter collection callback capability so that any
graphical user interface (GUI) can provide a callback. The

sia_collect _trm) routineis used for termina parameter collection.
Commands calling the si a_* () routines pass as an argument to the
appropriate collection routine pointer, thus allowing the security mechanism
to prompt the user for specific input. If the collection routine argument is
NULL, the security mechanism assumes that no collection is alowed and
that the other arguments must be used to satisfy the request. The previous
case is used for noninteractive commands. For reliability, use a collection
routine whenever possible.

Thecan_col | ect i nput argument is included in the session processing
and disables the collection facility for input while allowing the output of
warnings or error messages. Collection routines support smple form and
menu data collection. Some field verification is supported to check parameter
lengths and content (al phanumeric, numeric only, letters only, and invisible).
The collection routine supplied by the command or utility is responsible for

20-6 Using the SIA Interface

providing the appropriate display characteristics.

The parameter collection capability provided by SIA uses the following
interface definition in si a. h:

int sia collect _trm(tineout, rendition, title,
num pronpts, pronpts);

int tineout /* nunber of seconds to wait */
/[* 0 => wait forever */
int rendition

SI AMENUONE 1 /* select one of the choices given */
S| AVENUANY 2 /* select any of the choices given */
SI AFORM 3 /* fill out the form */
S| AONELI NER 4 /* One question with one answer */
SI Al NFO 5 /* Information only */
SI AWARNI NG 6 /* ERROR or WARNI NG nessage */
unsi gned char *title /* pointer to atitle string. */
/* NULL => no title */
int num_pronpts /* Nunber of pronpts in collection */
pronpt _t *pronpts /* pointer to pronmpts */

t ypedef struct pronpt_t

unsi gned char *prompt;

unsi gned char *result;

int max_result _length; /* in chars */
int mn_result_length; /* in chars */
int control _flags;

} pronpt _t;

control _fl ags
SI ARESI NVI' S 0x2 result is invisible
S| ARESANY 0x10 result can contain any ASCI| chars
S| APRI NTABLE 0x20 result can contain only printable chars
SI AALPHA 0x40 result can contain only letters
SI ANUVBER 0x80 result can contain only nunbers
SI AALPHANUM 0x100 result can contain only letters and numnbers

Seethesi a_col | ect _t r m(3) reference page for more information on
parameter collection.

20.8 Maintaining State

Some commands require making multiple callsto si a_* () routines and
maintaining state across those calls. The state is always associated with a
particular user (also called an entity). SIA uses the term entity to mean a
user, program, or system which can be authenticated. The entity identifier is
the user ID (UID). All security mechanisms which are ported to Digital

Using the SIA Interface 20-7

20.9

UNIX must be administered such that a particular UID maps equivalently
across each mechanism. This constraint allows for the interaction and
coexistence of multiple security mechanisms. If a security mechanism has an
aternative identifier for a user, it must provide a mapping to a unique UID
for other mechanisms to properly interoperate and provide synchronized
security information.

A pointer to the SIAENTITY structure (see Section 20.6) is used as an

argument containing intermediate state identifying the entity requesting a
security session function. The SIAENTITY structure also alows for the
sharing of state between security mechanisms while processing a session.

Thel i bc library provides for the allocating and freeing of primitives for
SIAENTITY structures. The allocation of the SIAENTITY structures occurs
as part of the session initialization routine, si a_ses_init (). The
deallocation of the SIAENTITY structure occurs in the call to the session
releasesi a_ses_rel ease() routine. If errors occur during session
processing (such asinthesi a_ses_*aut hent () routines) and you give
up instead of retrying, si a_ses_r el ease() must be called to clean or
free up the SIAENTITY structure related to the session. If errors occur
during asi a_ses_estab() orsia_ses_| aunch() routine causing
failure status to be returned, the routines call si a_ses_r el ease() .

Return Values

SIA supports the passing of a success or failure response back to the calling
command or utility. The SIAENTITY structure has a reserved error code
field (er r or), which is available for finer error definition.

Thesi ad_ses_*() routines return bitmapped values that indicate the
following status.

SIADFAIL Indicates conditional failure. Lowest bit set to 0.
Continue to call subsequent security mechanisms.

SIADSUCCESS Indicates conditional success. Lowest bit set to 1.

SIADSTOP Modifies the return to be unconditional. Second lowest
bit set to 1. Included with either SIADFAIL or
SIADSUCCESS.

20.10 Audit Logs

SIA supports a general logging capability that allows appending data to the
/var/ adni si al og file. The SIA logging facility supports the following
three log-item types:

EVENT Success cases within the SIA processing

20-8 Using the SIA Interface

ERROR Failures within the SIA processing
ALERT Security configuration or security risks within the SIA interfaces

Thesi a_l og() logging routine is available to security mechanisms and
accepts formatting strings compatible to pri nt f () format. Each log entry
is time stamped. Example 20-2 isatypical / var/ adni si al og file.

Example 20-2: Typical /var/adm/sialog File

SI A EVENT Wd Feb 3 05:21:31 1995

Successful SIAinitialization

SI A: EVENT Wd Feb 3 05:22:08 1995

Successful session authentication for terry on :0
SI A: EVENT Wed Feb 3 05:22:08 1995

Successful establishnment of session

SI A: ERROR Wd Feb 3 05:22:47 1995

Failure to authenticate session for root on :0

SI A: ERROR Wd Feb 3 05:22:52 1995

Failure to authenticate session for root on :0

SI A: EVENT Wed Feb 3 05:22:59 1995

Successful session authentication for root on :0
SI A EVENT Wed Feb 3 05:22:59 1995

Successful establishnent of session

SI A: EVENT Wd Feb 3 05:23:00 1995

Successful | aunching of session

SI A: EVENT Wed Feb 3 05:24:40 1995

Successful authentication for su fromroot to terry
SI A: EVENT Wd Feb 3 05:25:46 1995

Successful password change for terry

Thesi a_l og() routineis for debugging only. The _ses_* routines use
audgen() for audit logging.

20.11 Integrating Security Mechanisms

Depending on the class or type of SIA processing being requested, the
selection and order of security mechanisms may vary. A typical set of
security mechanisms might include a local mechanism (one that is only
concerned with the local system security) and a distributed security
mechanism (one that is concerned with aspects of security that span severa
systems). SIA layering allows these two security mechanisms to either
coexist or be better integrated.

An example of security mechanism integration is the log in or session
processing. SIA layering passes state (SIAENTITY') between the various
security mechanisms during the session processing. This state contains
collected names and passwords and the current state of session processing.
The local security mechanism can be designed to trust the authentication
process of a previously run security mechanism, thus allowing authentication

Using the SIA Interface 20-9

vouching. In this case, if a user is successfully authenticated by the
distributed mechanism, the local mechanism can accept or trust that
authentication and continue with session processing.

SIA also alows the local mechanism to not accept vouching. In this case, the
local mechanism would be forced to do its own authentication process
regardless of previous authentication outcomes. This typically results in the
user being asked for several sets of user names and passwords. Although
SIA allows any ordering of security mechanisms, it makes sense that those
mechanisms that accept vouching be ordered after those that do not.

Notes

The default security mechanism, BASE, accepts authentication
vouching.

The SIA layer deals with the isolation of security mechanisms from the
commands specific user interface preferences. To accomplish this isolation,
the calling command provides a pointer to a parameter collection routine as
an argument to the si a_* () routines. The collection routine must support
simple form and menu type of processing. The definitions or the
requirements of the collection routine are defined in si a. h. This separation
of user interface from the security mechanisms allows for the flexibility to
change the user interface to suit any workstation or dumb terminal model.

20.12 Session Processing

The session processing interfaces are associated with the process of a utility
or command that needs to become or act as some other entity. Figure 20-2
illustrates the SIA routines and their relationship in atypical login session.

20-10 Using the SIA Interface

Figure 20-2: SIA Session Processing

Login Code
Independent Layer

a_ses_establish

ia_ses_launch

) | S|
—) | Si

ia_ses_release

SIA Entity

e | Sia_ses_init
e | [Sia_ses_auth]
e | Si

]

siad_ses_auth
siad_ses_establish

siad _ses_release

siad_ses_launch

iad_ses_init

[

Dependent Layer

Mech Implementation

ZK-1085U-Al

The session processing interfaces to the security mechanism-dependent
routines (si ad_* ()) all use the same returns to determine the state of the
session and whether it should continue. The returns are as follows:

SIADFAIL
A SIADFAIL response from a security mechanism si ad_* () routine
indicates that the security mechanism has failed but that processing
should continue.

SIADFAIL or SIASTOP
A SIADFAIL | SIADSTOP response from a security mechanism
si ad_* () routine indicates that the security mechanism has failed and
that the session processing should be stopped. This return is used if
some major security problem or risk is found. Such an event should be
sent to the si al og file asan ALERT.

Using the SIA Interface 20-11

SIADSUCCESS
The final response is SIADSUCCESS, which indicates that the security
mechanism has successfully completed that phase of session processing.
Under some conditions, a return of SIADSUCCESS |SIADSTOP is adso
useful.

Not all security mechanisms have processing required in each phase of the
session processing. In general, the default response is SIADFAIL to force
the other configured security mechanisms to produce the required
SIADSUCCESS response. The only exceptions to this is the first and last
stage of session processing. If a security mechanism has nothing to do in
either session initialization or session release, it should return a
SIADSUCCESS response. For all other phases of session processing, a
SIADFAIL response is the default.

The session processing interfaces are typically caled in the following order:

sia_ses_init() Initialize the session.

si a_ses_aut hent () Authenticate the session. Can be recalled on
failure for retries.

sia_ses_estab() Establish the session. On failure, calls
sia_ses_rel ease().

sia_ses_l aunch() Launch the session. On failure, calls
sia_ses_rel ease().

sia_ses_rel ease() Release the session

The session routines must all have the same number and order of
mechanisms to keep the mechanism index (mechi nd) consistent.

Example 20-3 is a code fragment that shows session processing for the
| ogi n command.

Example 20-3: Session Processing Code

/* SIA LOG N PROCESS BEG NS */

/* Logging of failures to sia_log is done within the libsia */
/* Logging to syslog is responsibility of calling routine */

if((sia_ses_init(&entity, oargc, oargv, hostname, |oginname, \
ttyn, 1, NULL)) == SI ASUCCESS) ({

[***** G A SESSI ON AUTHENTI CATI ON *****/

if(lfflag) {
for(cnt=5; cnt; cnt--) {

20-12 Using the SIA Interface

Example 20-3: (continued)
i f((authret=sia_ses_authent(sia_collect, NULL,entity)) \

== S| ASUCCESS)
br eak;
el se i f(authret & SIASTOP)
br eak;

f put s(MSGSTR(| NCORRECT, "Login incorrect\n"), stderr);

}

if(cnt <= 0 || (authret & SIASTORP)) {
sia_ses_rel ease(&entity);
exit(1l);

}
[***** G A SESSI ON ESTABLI SHVENT *****/

i f(sia_ses_estab(sia_collect,entity) == SI ASUCCESS) {
[****x%* get up environnent Fokk kx|
/* destroy environ. unless user requested preservation */
if (!'pflag) {
pp = getenv("TERM');
if (pp)
strncpy(term pp, sizeof term;
clearenv();
}
(voi d)setenv("HOVE", entity->pwd->pw dir, 1);
if(entity->pwd->pw shell && *entity->pwd->pw shell)

strncpy(shell, entity->pwd->pw shell, sizeof shell);
(voi d)setenv("SHELL", shell, 1);
if (ternf0] ==" ")

(void)strncpy(term stypeof (tty), sizeof(term);
(void)setenv("TERM', term O0);
(void)setenv("USER', entity->pwd->pw_nane, 1);
(voi d)setenv("LOGNAME", entity->pwd->pw_nane, 1);
(voi d)setenv("PATH', _PATH DEFPATH, O0);

[rxxxx G A LAUNCHI NG SESSI ON *****/

i f(sia_ses_launch(sia_collect,entity) == SI ASUCCESS) ({
/* 004 - start */
if ((entity -> pwd = NULL) &&
(entity -> pwd -> pw.dir !'= NULL) &&
(entity -> pwd -> pw dir [0] !'=0))
sprintf (hush_path, "%/ %",
entity -> pwd -> pw.dir,
_PATH_HUSHLOGA N) ;
el se strcpy (hush_path, _PATH HUSHLOG N) ;
qui etl og = access(hush_path, F_OK) == 0;
/* 004 - end */
i f(!quietlog)
quietlog = I'*entity->pwd->pw_passwd && \
lusershel | (entity->pwd->pw_shel |);
if (lquietlog) {
struct stat st;

Using the SIA Interface 20-13

Example 20-3: (continued)

notd();
(void)sprintf(tbuf, "%/%", _PATH MAILD R, \
entity->pwd- >pw_nane) ;
if (stat(tbuf, &t) == 0 && st.st_size !=0)
(void)printf(MGSTR(MAIL, "You have %namil.\n"),
(st.st_ntime > st.st_atine) ? MBGSTR(NEW \
"new ") : "");

}

sia_ses_rel ease(&entity);
[*xxx*xxx Satup default signals ****xx*xxx/

(voi d)signal (SI GALRM SI G DFL);
(void)signal (SIGQU T, SIGDFL);
(void)signal (SIGNT, SIGDFL);

(void)signal (SIGISTP, SIG IGN);

tbuf[0] = "-";
(void)strcpy(tbuf + 1, (p = rindex(shell, "/")) ?
p+ 1: shell);

[***xx*x* Nothing left to fail *******/

i f(setreuid(geteuid(),geteuid()) < 0) {
perror("setreuid()");
exit(3);

}

execl p(shell, tbuf, 0);

(void)fprintf(stderr, MSGSTR(NO SHELL, \
"login: no shell: %.\n"), strerror(errno));
exit(0);

[***** G| A session |aunch failure ***x*/

[***x** G| A session establishment failure *****/

}
| ogerror(entity);
exit(1);

| ogerror(entity)
SI AENTI TY *entity;

{
if(entity !'= NULL)
{

sia_ses_rel ease(&entity);

}
sysl og(LOG ERR, MBGSTR(FAI LURE3, " LOG N FAILURE "));

20-14 Using the SIA Interface

20.12.1 Session Initialization

Session initialization is performed by the si a_ses_i ni t () routine. The
sia_ses_init() routine cals each configured security mechanism’s
siad_ses_init() entry point to do any processing associated with the
start of a session processing sequence. The session initialization stage is
responsible for setting up the SIAENTITY structure, which is used to
maintain state though the different stages of session processing.

20.12.2 Session Authentication

The authentication stage of session processing is responsible for proving the
identity for the session. This stage of the processing must determine the
entity associated with the session. If the entity can not be determined, the
authentication fails. If the authentication is successful, an entity is derived.

The top level SIA session authentication routine, si a_ses_aut hent (),
calls the security mechanism-dependent si ad_ses_aut hent () routines
according to the configured sequence stored in the mat ri x. conf file. As
the multiple authentication routines are called, the SIAENTITY structure is
used to hold precollected parameters like the name, password, and eventually
the associated / et ¢/ passwd entry of the entity.

By using precollected arguments, the security mechanisms avoid re-collecting
arguments. An example is when root attempts to log in to a system
configured to first call the DCE si ad_ses_aut hent () routine followed
by the local ENHANCED (enhanced security) si ad_ses_aut hent ()
routine.

Itislikely that the DCE authentication process will not be capable of
authenticating root. However, it is capable of asking the user for a name and
password, which are then passed on to the ENHANCED

si ad_ses_aut hent () routine using the SIAENTITY structure. This
allows the ENHANCED mechanism to verify the root name and password,
thus authenticating root. As soon as the session authentication stage is
complete, the password field is cleared.

Each security mechanism-dependent authentication routine must have the
ability to determine and set the entity on a successful authentication. If a
security mechanism has its own private interpretation of the entity, it must
provide a trandation to the common SIA entity, user name and UID.
Without this restriction there is no way to synchronize security mechanisms
with respect to a common entity.

At the successful completion of the session authentication stage, the
SIAENTITY structure must contain the user name and UID of the
authenticated entity. If the session authentication fails, the calling command
or program can cal si a_ses_aut hent () again to retry the authentication
process. Certain mechanisms may allow other mechanisms to vouch for this

Using the SIA Interface 20-15

stage of session processing. This usually occurs when local mechanisms
default their authentication process to other distributed mechanisms.

20.12.3 Session Establishment

The session establishment stage is invoked with si a_ses_est ab()
following a successful session authentication stage. The

si a_ses_estab() routineis configured to call multiple security
mechanism’'s si ad_ses_est ab() routinesin the order defined in the
mat ri x. conf file. The session establishment stage of session processing
is responsible for checking mechanism resources and licensing to determine
whether this session can be successfully launched. The determination of the
passwd struct entry and any other required security context must occur
in this stage. At the successful completion of the session establishment stage,
the system is prepared to grant the session launching.

20.12.4 Session Launch

The session launch stage is responsible for the logging and the accounting of
the session startup. The local mechanism is additionally responsible for
setting the wt np and ut np entries, and for setting the effective UID to the
UID associated with the entity. The processing by the set gi d() and

i nitgroup() routinesaswell as| ast | og updating are also done by the
local mechanism. Only catastrophic errors should be able to stop the session
from continuing.

20.12.5 Session Release

The last stage of the session processing sequence (either successful or failed)
isthe call tothesi a_ses_r el ease() routine. This routine frees all
session processing resources, such as the SIAENTITY structure. Each
configured mechanism is called to release any resources which are no longer
required for the session.

20.12.6 Specific Session Processing

The following sections describe specific session processing for the | ogi n,
rshd, and r | ogi nd commands. See Section 20.12 for a generic description
of session processing.

20.12.6.1 The login Process

The most common case of session processing is the login process becoming
the entity associated with auser. The entity is the unique SIA identifier for
any person or process that can be authenticated and authorized. The code in
Example 20-3 is from the | ogi n command.

20-16 Using the SIA Interface

20.12.6.2 Thershd Process

Session processing for / usr/ sbi n/ r shd differsfrom | ogi n. Ther shd
process requires calling r user ok() to check the. r host s and
host . equi v files for authorization. If r user ok() fails, ther shd fails.

20.12.6.3 Therlogind Process

Ther | ogi nd, program executes the | ogi n command with the —f flag if
its call tor user ok() is successful, and without —f if the call to

ruser ok() isunsuccessful. If | ogi n is executed without the —f flag,
si a_ses_aut hent () iscalled, which prompts for a user name and
password, if required.

20.13 Changing Secure Information

The routines described in this section handle the changing of the traditional

/ et ¢/ passwd entry information. This class of routines could be extended
to handle other types of common secure information. Only the traditional
passwd, chf n, and chsh types of command processing are specified. Each
of these routines follows the same operational model. When a user requests a
change, the routines in this class check each mechanism that was configured
by calling si ad_chk_user () to determine whether the user is registered
with the mechanism. Once it is determined that the user is registered with
more than one security mechanism, the user is given a menu selection by the
collection routine, to choose which mechanism is targeted for the change. If
only one mechanism is configured to handle the request then that mechanism
is called directly.

20.13.1 Changing a User’s Password

To change a password, the si a_chg_passwor d() routine calsthe
configured mechanisms by using the si ad_chg_passwor d() routine. To
determine which mechanisms support a particular user, the

si ad_chk_user () cal is made to al mechanisms configured for the

si ad_chg_passwd() routine. When multiple mechanisms claim registry
of auser, the user is given a selection to choose from. If the user is only
registered with one mechanism, then that mechanism is called.

20.13.2 Changing a User’s Finger Information

Thesi a_chg_finger () routine cals the configured mechanisms by the
siad_chg_finger () routineto change finger information. To determine
which mechanisms support a particular user, the si ad_chk_user () calis
made to all mechanisms configured for the si ad_chg_fi nger () routine.
When multiple mechanisms claim registry of the user, the user is given a

Using the SIA Interface 20-17

selection menu to choose one from. If the user is only registered with one
mechanism, then that mechanism is called.

20.13.3 Changing a User’s Shell

Thesi a_chg_shel I () routine cals the configured mechanisms by the

si ad_chg_shel | () routine to change auser'slogin shell. To determine
which mechanisms support a particular user, the si ad_chk_user () calis
made to all mechanisms configured for the si ad_chg_shel | () routine.
When multiple mechanisms claim registry of the user, the user is given a
selection menu from which to choose a mechanism. If the user is only
registered with one mechanism, then that mechanism is called.

20.14 Accessing Security Information

The SIA interfaces described in the following sections handle the access to
the traditional UNIX / et ¢/ passwd and / et ¢/ gr oup information. You
can create routines to handle the access of other common secure information.
M echanism-dependent security information access should not be handled by
the SIA interfaces unless nearly all mechanisms support the type of
information being accessed.

Thesi a_cont ext and nech_cont ext s structures, defined in si a. h,
are used to maintain state across mechanisms. The structures are as follows:

struct mech_contexts {
voi d *val ue;
void (*destructor)();

}s

struct sia_context {
FI LE *f p;
uni on {
struct group *group;
struct passwd *pass;
} val ue;
int pkgind;
unsi gned bufl en;
char *buffer;
struct mech_contexts mech_cont exts[SI ASWWAX] ;

}s

Because the get gr * () and the get pw* () routines have SIA interfaces,
security mechanisms need only provide one routine for both reentrant and
non-reentrant, threadsafe applications. This is accomplished by the

si a_get passwd() andsi a_get group() routines which encapsulate
the arguments in a common form for the security mechanism’'ssi ad_* ()
routines.

20-18 Using the SIA Interface

20.14.1 Accessing /etc/passwd Information

Access to traditional / et ¢/ passwd entries is accomplished by the

get pwt () routinesinlibc andlibc_r. Thesi a_get passwd()
routine in the SIA layer preserves the calling semantics of the current

get pw* () routines and converts them into one common routine used for
both single and multithreaded processes. By doing this conversion, security
mechanisms need only support one set of get pw* () routines. The
processing of the get pwent () routine is accomplished by calling each
configured security mechanism in the predefined order until all entries have
been exhausted.

20.14.2 Accessing /etc/group Information

Access to traditional / et ¢/ gr oup entries is accomplished by the
getgr*() routinesinlibc andlibc_r. Thesi a_getgroup()
routine in the SIA layer preserves the calling semantics of the current

get gr *() routines and converts them into one common routine used for
both single and multithreaded processes. The conversion to a single routine
eases the security mechanism port by reducing the number of routines
required. The processing of the get gr ent () routine works by calling each
configured security mechanism in the predefined order until all group entries
have been exhausted.

20.15 Session Parameter Collection

The SIA session interfaces and the interfaces that change secure information
use a predefined parameter collection capability. The calling application
passes the address to a parameter collection routine through the SIA to the
si ad_* () routines. The collection routine allows different security
mechanisms to prompt the user for different parameters without having to be
aware of the user interface details.

This capability isolates the SIA security mechanisms from the user interface
and the ability to do simple forms and menus. This collection capability is
sufficiently limited to allow ease of implementation by different user-interface
packages or windowing systems. However, the collection routines must
support simple (up to eight item) menu or form styles of processing. On
dumb terminals, forms processing becomes a set of one line questions.
Without this capability, the application needs to be modified to support new
security questions.

Using the SIA Interface 20-19

20.16 Packaging Products for the SIA

The SIA defines the security mechanism components that are required to port
to the Digital UNIX system. These components are as follows:

* A shared library containing the mechanism-dependent (si ad_*())
routines used as an interface to commands and utilities

e Adefault/ etc/sial/ matri x. conf file, which isinstaled to use the
security mechanism through SIA.

The shared library must contain all of thesi ad_* () routines described in
this chapter. The default dummy routine for any si ad_* () routine always
returns the SIADFAIL failure response. If a security mechanism is supplying
dummy routines, these routines should not be configured into the

mat ri x. conf file

The/etc/sia/ matri x. conf file contains one line for each si ad_* ()
routine. This line contains the mechanism identifiers (called mech_t ypes)
and the actual path to the security mechanism library. Thesi a_* () routines
use this set of keysto call mechanismsin aright to left ordering. Example
13-1 illustrates the default mat ri x. conf settings for Digital UNIX.

If the DCE security mechanism is to be called first followed by the BASE
(BSD) security mechanism, the configuration line for si ad_i ni t () might
look like the following:

siad_ini t=(DCE, /usr/shlib/libdcesia.so)(BSDIlibc.so)

Layered security products must deliver pretested nat ri x. conf fileson
their kits. The relinking of a SIA mat ri x. conf fileisfollowed by a
reboot. System administrators must never be required to edit alive
matri x. conf file.

See Chapter 13 for a more detailed discussion of the mat ri x. conf file.

20.17 Security Mechanism-Dependent Interface

Security mechanisms are required to provide al of thesi ad_* () entry
points (See Table 20-3). The default stub routine should simply return
SIADFAIL. With the exception of the session routines, no stubs should ever
becaledinthe/ et c/ sia/ matri x. conf file. The session routines must
all have the same number and order of mechanism to keep the mechanism
index (mechi nd) consistent. However, if an error in configuration occurs,
the stub routines deliver the appropriate SIADFAIL response.

The order of security mechanismsinthe/ et ¢/ si a/ matri x. conf fileis
the same for each class of interfaces. Therefore, if a security mechanism
supports session processing it is called in the same order for all the session
related interfaces.

20-20 Using the SIA Interface

The layered security mechanism should provide a set of private entry points
prefixed by mechani sm name__ for each of thesi ad_* () entries used
for internal calls within the mechanism to si ad_* () routines. An example
of thisisin the BASE mechanismin | i bc. To assure that the BASE
mechanism is calling its own si ad_get pwui d() routine, a separate entry
point is created and called from the si ad_get pwui d() entry as follows:

int siad_getpwuid(uid_t uid, struct passwd *result, \
char *buffer, int buflen)

return(bsd_si ad_get pwui d(ui d, resul t, buffer, buflen));

}

static int bsd_siad_getpwuid(uid_t uid, struct passwd *result, \
char *buffer, int buflen)

/* The BSD security mechani sm si ad_get pwui d() routine */

}

If the convention of supplying internal names is used for al of the

si ad_* () entry points, alayered security mechanism can then produce a
separate library containing all the security mechanism-dependent code. This
leaves the configured shared library with only stubs that call the other library.

Security mechanisms generally fall into two categories. local and distributed.
The local security mechanism is responsible for establishing all of the local
context required to establish a session on the local system. There are two
local security mechanism in Digital UNIX: the BASE mechanism and the
ENHANCED mechanism.

Distributed mechanisms, like DCE, are more concerned with establishing
distributed session context like Kerberos tickets. However, the distributed
security mechanism may provide some local context that can be used by the
local security mechanism. The distributed security mechanism may also
provide a sufficiently strong authentication to allow alocal mechanism to
trust it for authentication. This notion of one mechanism trusting another is
called vouching and allows the user to be authenticated only once to establish
alogin session. Local mechanisms should always be configured last in the
calling sequences.

All of the SIA capabilities listed in this section can be configured to use
multiple security mechanisms.

20.18 Single User Mode

If you want to have your own single-user security mode, you need to rebuild
and replace the commands and utilities affected, such as any staticly linked
binaries found in / sbi n. This can be accomplished by providing a

si ad_* () routine library to precedel i bc in the link order for the affected

Using the SIA Interface 20-21

commands.

The new routines need to overridethe si ad_* () routines, as opposed to
thesi ad_*() routines. Thesi ad_* () naming convention is the weak
symbol, whilethe siad_*() convention is the strong symbol entry point
that is actually used. See Appendix E for more information about routine
naming conventions.

20-22 Using the SIA Interface

21.1

Programming With ACLs 21

This chapter discusses the following topics:

« Termsused for DAC read, write, execute, search, and owner access
permissions

» ACL data representations

» Specifying default ACLs

» Rulesfor creating and replicating ACLs
* Anexample of ACL inheritance

Note
The ACL library routines (I pacl) are not thread safe.

The Digital UNIX ACLs are based on the POSIX P1003.6 Draft 13
standard. The ACL library routines may change in the final version of
the standard.

Introduction to ACLs

Aaccess control lists (ACLS) are the method used to implement discretionary
access control (DAC). ACLs provide a more granular discretionary access
control mechanism than traditional UNIX permission bits. All objects are
considered to be protected by an ACL. An object protected by traditional
UNIX DAC has abase entry ACL. |f additional entries are added to the
ACL, they are evaluated according to entry type by rules defined by the
POSIX specification.

The POSIX ACL policy has been defined by the POSIX P1003.6 DAC
security specification and features the following:

* Anunordered ACL with a dependent relationship on the UNIX
discretionary access control mechanism

* Inheritance rules that allow the presence of a default ACL on directories

In addition to the POSIX ACLs, Digital UNIX provides enhanced library
interfaces.

21.2

You can apply ACLs to any traditional UNIX file system object that has
permission hits that are used for access control, such as files and directories.
Symboalic links have permission bits that are initialized according to the usua
rules but are never used for access control; ACLs on this file type are not
supported. The guidelines in this chapter apply to all objects that may be

protected by ACLs.

Refer to the acl (4) reference page for a description of POSIX ACL support.

Library Routines

Table 21-1 lists the ACL library routines:

Table 21-1: ACL Library Routines

Routine

acl _add_perm()

acl _cl ear_perm()
acl _convert _posi x()
acl _copy_entry()
acl _copy_ext ()

acl _copy_int()

acl _create_entry()
acl _del ete_def_fd(
acl _delete def fil
acl _delete _entry()
acl _delete_pernm()
acl _dup()

acl _first_entry()
acl _free()

acl _free_qualifier()
acl _free_text()

acl _fromtext()

)
e()

acl _get_entry()

acl _get _fd()

acl _get file()

acl _get permset ()
acl _get _qualifier()
acl _get _tag type()
acl _init()

acl _locate entry()
acl _set _fd()

acl _set file()

acl _set _permset ()
acl _set _qualifier()

21-2 Programming With ACLs

Description

Add a set of permissions

Clear the permissions

Remove non-POSIX entries from an ACL
Copy an ACL entry

Copies an ACL from system to user space
Copies an ACL from user to system space
Create anew ACL entry

Delete the default ACL from a directory
Delete the default ACL from afile
Delete an entry

Delete a set of permissions

Create a duplicate ACL

Move current entry to first entry

Free the ACL working storage memory
Free the acl_id entry in an ACL

Free the ACL text working storage memory
Convert the text ACL to the interna
representation

Get the descriptor to an ACL

Get ACL using the file descriptor
Retrieve an ACL

Retrieve the permissions for an ACL
Retrieve the ID from the current ACL
Retrieve the entry type identifier

Allocate and initialize ACL working
storage

Locate an entry in an ACL

Set the ACL by the file descriptor

Set the ACL by the pathname

Set permissionsin a ACL entry

Set the ACL entry type

21.3

21.4

Table 21-1:

Routine

(continued)

Description

acl _set _tag_type() Set the ACL entry type

acl _size()

Determine the size of an ACL

acl _to text() Convert an IR to an ASCII string
acl _validate_and sort() Check ACL for validity and sort for

decision order

Discretionary Access Terms
Table 21-2 describes the terms used with discretionary access to objects:

Table 21-2:

Term

Read access

Write access

Execute access

Search access

Owner access

Discretionary Access Terms

Definition
Either the subject is granted read permission by the
object’s mode and ACL, or the subject is root.

Either the subject is granted write permission by the
object’s mode and ACL, or the subject is root.

Either the subject is granted execute permission by
the object’s mode and ACL, or the subject is root.

Either the subject is granted search permission by
the directory’s mode or the subject is root.

Either the subject’s EUID is the same as the object’s
UID, or the subject is root.

ACL Data Representations

Two internal ACL data structures are defined by the POSIX specification. In
addition, thereis atextual representation for ACLs that is presented to the
user. You must be careful not to mix data structures when using the ACL
system calls and library routines.

All data representations use the following basic types, most of which are

Programming With ACLs 21-3

required by the POSIX ACL specification:

t ypedef unsigned short acl_tag_t;
t ypedef unsigned short acl _pernset_t;

/* acl _tag t val ues */

#defi ne BOGUS_OBJ 0
#defi ne USER _OBJ 1
#defi ne USER 3
#defi ne GROUP_OBJ 4
#defi ne GROUP 5
#defi ne OTHER OBJ 6

/* acl _pernset _t val ues */
#defi ne ACL_NOPERM 0x0
#def i ne ACL_PEXECUTE 0ox1
#define ACL_PWRI TE 0x2
#defi ne ACL_PREAD 0x4
/* tag qualifier type */
t ypedef union {

uid_t _acl _uid;

gid_t _acl _gid;
} acl _id;

21.4.1 Working Storage Representation

Many of the ACL routines operate on the working storage representation,
which is a set of opague data structures for ACLs and ACL entries. Your
program should operate on these data structures only through the defined
routines. Because the working storage data structures are subject to change,
the interface is the only reliable way to access the data

The working storage representation is not contiguous in memory. Also, your
program cannot determine the sizes of ACL entries and ACL descriptors.

The working storage data structures contain internal pointer references and
are therefore meaningless if passed between processes or stored in afile. The
working storage representation of an ACL can be converted to other
representations of an ACL, as described in Section 21.4.2.

21.4.2 Data Package Representation

The data package represents an ACL in a contiguous section of memory that
is independent of the process address space in which it resides. The data
package can be passed between processes or stored in a file becauseit is
contiguous and does not have internal pointer references.

21-4 Programming With ACLs

The data structure associated with the data package is visible at the
programmer interface. It contains a header that includes the number of
entries in the ACL and a magic number to identify the data structure type,
followed by an array of ACL entries that contain the tag type, permissions,
and qualifier.
The following structure describes the header:
/ *

* Header for data package type.

*/

typedef struct {
ushort acl _num
ushort acl _magic;
} aclh_t;

In addition to including the header, the data structure for the data package
includes an array of ACL entries of the following format:

/*
* Descriptor for a specific ACL entry
* in internal representation.
*/
typedef struct {
acl _tag_t acl _tag;
acl _permnset _t acl _perm
acl _id acl _id;
} acle_t;
/*
* Descriptor for specific ACL entry
* in (data package fornat).
*/
struct acl _data {
acl h_t acl _hdr;
/* acle_t *acl _entry; coment; acl entries follow */
b
t ypedef struct acl_data *acl _data_t;

The following code fragment operates on al entries in a data package ACL
representation:

acl _data_t dat a_p;
acle_t *entry_p;
i nt i

entry_ p = (acle_t *) (data_p + 1);
/* The pointer arithnmetic addresses the first
acl entry.*/
for (i =0; i < data_p->acl_num i++ entry_p++) {
/* reference the ACL entries through entry_p */
}

Programming With ACLs 21-5

21.4.3 External Representation

The external representation is a textual, human readable version of the ACL
that corresponds to the text package described in the POSIX specification and
the acl (4) reference page. The external representation is composed of a
sequence of lines, each of which is terminated by a newline character. Table
21-3 shows how the individual entries are structured.

Table 21-3: ACL Entry External Representation

Entry Type acl_tag_t Value Entry

base user USER OBJ user::perms

base group GROUP_OBJ group::perms

base other OTHER _OBJ other::perms

user USER user:user _namne:perms
group GROUP group:gr oup_namne:perms

The external representation is used by the POSIX routines that convert
between the working storage representation and the text package.

21.5 Default ACLs

The POSIX specification allows a default access ACL to be associated with
directories. When a directory has a default access ACL, files and directories
created in the directory are protected with DAC attributes that are derived
from the default ACL and the mode that is specified on the object creation
system call. You can set a default access ACL on adirectory by using the
acl _write() cal with asecond argument of ACL_TYPE_DEFAULT.
You can retrieve a default ACL by using theacl _read() cal with a
second argument of ACL_TYPE_DEFAULT.

Note that, although the system consults the owner and group of the directory
when it is checking for access against the access ACL, the owner and group
are not inherited from the default access ACL when afile is created in a
directory that has a default access ACL. The default access ACL does not
include an owner and group ID. Rather, the base user and group entries
include permissions that are used when computing the access ACL for afile;
the file owner is set from the process and the group is inherited from the
parent directory.

The Digital UNIX system provides an extension of the POSIX ACLsin the
form of an added default directory ACL type that can be used by other ACL
implementations (for example, the Distributed Computing Environment

21-6 Programming With ACLs

21.6

(DCE)). ThisACL isACL_TYPE_DEFAULT_DI Rand is used for
directories only. If a parent directory has ACL_TYPE_DEFAULT_DI R, then
new directories are set to the parents ACL_TYPE_DEFAULT_DI R.

The inheritance rules are described in detail in the acl (4) reference page and
Section 5.9 of this manual.

ACL Rules

Some interactions between the ACL and the UNIX permissions are subtle,
and you may end up with different permissions than you intended because of
the way that ACL system calls interact with the system calls that manipulate
the UNIX DAC attributes.

The following sections describe rules for programs that handle ACLSs.

21.6.1 Object Creation

When copying one file to another, it is a common practice for a program to
create a new file and propagate the owner, group, and mode. The program
must now handle the possibility that the file may also be protected by an
ACL. Your program should propagate the ACL in all cases where the UNIX
DAC attributes would be propagated.

When the parent directory of the file to be created has a default ACL, the
owner of the created file is inherited from the process and the group is
inherited from the parent directory. In addition, the specified mode is used
instead of the process umask. Therefore, your program must specify a
proper mode on the object creation system call and must not depend on the
urmask to properly protect objects.

21.6.2 ACL Replication

ACLs are preserved automatically in programs that replicate permissions.

21.6.3 ACL Validity

The ACL must be valid according to the following POSIX ACL rules.
* |t must have at least the three base entries

* The user entries must have unique valid qualifiers

* The group entries must have unique valid qualifiers

* The user and group identifiers must be valid

» DCE entries must be unique

Programming With ACLs 21-7

21.7 ACL Creation Example

Assume that you want to set up afile's access ACL as follows:

user::rwx
user:june:r-x
user:sally:r-x

group: : rwx
group: nkt g: rwx
other::r-x

The following code takes the tabular form of the ACL, creates a working
storage representation of the ACL, and appliesit to afile.

struct entries {

acl _tag_t tag_type;
char *qualifier;
acl _permnset _t perns;
} table[] = {
{ USER_OBJ, NULL, ACL_PRDWREX 1},
{ USER, "june", ACL_PRDEX },
{ USER, "sal ly", ACL_PRDEX },
{ GROUP_COBJ, NULL, ACL_PRDWREX },
{ GROUP, "nktg", ACL_PRDWREX },
{ OTHER_OBJ, NULL, ACL_PRDEX }
}s
#define TABLE ENTRI ES (sizeof (table)/sizeof (table[0]))
acl t acl _p;
acl _entry_t entry_p;
i nt i;
uid t ui d;
gid_t gi d;

/* allocate an ACL */
acl _al l oc(&acl _p); 1

/* wal k through the table and create entries */
for (i =0; i < TABLE_ENTRIES; i++) {

/* allocate the entry */
acl create entry(acl _p, &entry p); 2

/* set the perm ssions */
acl _set _perm(entry_p, table[i].perns);

/* setting the tag type and qualifier depends
on the type */
switch (table[i].tag_type) {

case USER:

21-8 Programming With ACLs

/* map user nanme to |ID and specify as qualifier */

uid = pw_nanmetoid(table[i].qualifier); 3
acl _set_tag(entry_p, table[i].tag_type,
(void *) uid);

br eak;
case CGROUP:
/* map group nane to ID and specify as qualifier */

gid = gr_nanetoid(table[i].qualifier); 5

acl _set _tag(entry_p, table[i].tag_type,
(void *) gid);

br eak;

defaul t:
/* qualifier is NULL for other types */

acl _set _tag(entry_p, table[i].tag_type, NULL);
br eak;

/* set the ACL on the file */

if (acl _wite(filenane, ACL_TYPE ACCESS, acl_p) < 0)
perror(fil enane);

/* free storage allocated for the ACL */

acl _free(acl _p);
Notes:

1 This demonstrates the use of the alocation call for a working storage
representation of the ACL.

2 A new ACL entry is allocated with this call. The tag type, qualifier, and
permissions have an unspecified type.

3 Thepw_nanet oi d() routine is an optimized mapping from user name
to ID. Itisdescribed inthe map_i ds() reference page.

4 Theacl _set_tag() functiontakesavoi d argument for the qualifier,
and casts it to the appropriate data type, depending on obj _t ype.

5 Thegr_nanet oi d() routine is an optimized mapping from group
nameto ID. It isdescribedinthemap_i ds() reference page.

Programming With ACLs 21-9

21.8 Imported and Exported Data

When imported and exported objects with ACLs are accessed, severa issues
arise that vary depending on the scenario.

21.8.1 Digital UNIX System to Same Digital UNIX System

From a Digital UNIX system to the same Digital UNIX system, the ACL
does not have to be converted from the internal to the external format. It can
be saved in its compacted data format. This saves the effort of having to
convert the ACL from the external to internal format and back.

21.8.2 Digital UNIX System to Another Digital UNIX System

If the two Digital UNIX systems have the exact same password and group
files (that is, these files are distributed using NIS or some other means), then
saving the ACL is done the same as from a Digital UNIX system to the same
Digital UNIX system. If the systems do not share the same password and
group files, then the ACLs must be converted to the external format when
backing up. If thisis not done, unintended access may be granted to the files
being restored. Also, this ensures that all the UIDs and GIDs are known.

21.8.3 Digital UNIX System to Other

If you are exporting data to another machine, the remote system’s ACL
policy needs to be based on Draft 13 of POSIX P1003.6 (or something
compatible).

21.8.4 Other to Digital UNIX System

When importing data containing ACLs from another vendor’s machine, the
ACL format must be based on Draft 13 of POSIX P1003.6. The ACL is
validated and then set on the object if valid. If the ACL cannot be set on the
object being restored, 0700 is added to the standard UNIX permissions.

21-10 Programming With ACLs

File Summary A

Table A-1 contains a summary of all the files that are in the trusted
computing base (TCB) on the trusted Digital UNIX system. Most of these
files are installed on the base system, some of the files are created during the
installation process, and some are databases created by a running system.
Characteristics of those files are included in the Remarks column of the table.

Table A-1: Trusted Computing Base

File Name
/. cshrc
/.1ogin
/. 1 ogout
/.profile
[vimuni x

/dev/[rz][0-3][a-z]
/ dev/ consol e

/ dev/ knem

/ dev/ nem

/ dev/ nul |

/ dev/ pts/*
/dev/rrz[0-3][a-2z]
/dev/tty
/dev/tty[O-f]
/dev/tty*

/et claut h/ syst em def aul t

/ et c/ aut h/ syst em devassi gn
/etcl/auth/system files
/etc/auth/system gr_id_map
/etc/auth/system pw_id_map
/ et c/ aut h/ syst em subsyst ens

/etcl/auth/systemttys. db
/etc/fstab

[etc/ group
/etc/inittab

Remarks

Root account csh startup script
Root account csh startup script
Root account csh logout script
Root account startup script

OS execution image

Block device disk partitions
System console device used in single-
user mode

Kernel memory pseudodevice
Kernel memory pseudodevice
Bit bucket pseudodevice
Pseudo-ttys

Character device disk partitions
Current terminal pseudodevice
Terminal devices

Pseudo-ttys

System defaults database
Device assignment database
File control database

Binary group nameto ID map
Binary user nameto ID map
Printable names for protected
subsystems

Terminal control database

Contains file systems to be mounted
Groups database
System initialization control file

Table A-1: (continued)

File Name
/ et c/ passwd

/ sbin/arp

/ sbi n/ chown
/sbin/clri

/ sbi n/ dat e

/ sbi n/ df

/ sbin/fsck

/ sbin/fsdb

/ sbin/halt

/ sbin/hostid

/ sbi n/ host nane
/sbin/ifconfig

/sbin/kill
/sbin/killall
/ sbi n/ nknod
/ sbi n/ nount

/ sbi n/ newf s
/ sbi n/ ping

/ sbi n/ ps
/sbin/rc[0-3].d
/ sbi n/ reboot
/sbin/route

/ sbi n/ savecore
/ sbin/sh
/ sbi n/ sul ogi n

/ sbi n/ swapon
/ sbi n/ umount

/tcb/ bin/ Xl sso

/t cb/ bi n/ XSysadm n
/ t cb/ bi n/ aut hck
/usr/tcb/ bin/edauth

/usr/tcb/bin/convauth
/usr/tcb/ bin/convuser

/tcb/ fil es/ aut h/ <a- z>/ username

/tcb/files/auth.db

A-2 File Summary

Remarks
Accounts database

Address resolution protocol
(networking)

Change file owner

Clear on-disk inode
Display/change time of day
Display file system free space
File system consistency checker
File system debugger

Bring system down

Display/set system host ID
Display/set host name
Display/change network interface
config (BSD networking)

Send software signal to process
Kill al active processes

Create specia files

Mount file systems or display mount
table

Format disk partition

Send ICMP alive request (BSD
networking)

Display process status

System setup scripts

Reboot the system

Manage route tables (BSD
networking)

Dump memory image after crash
Shell

Single-user root login password
verifier

Add swap devices

Unmount mounted file systems

ISSO role program

System administrator role program
Security database consistency checker
Authcap database editor

Convert auth databases

Convert user profile

Protected password file
Protected password database for
system accounts

Table A-1:

File Name

/var/tcb/fil es/auth.db

/[t

/users

[usr/ bin/ at
/usr/bin/atq
/usr/bin/atrm
[usr/ bi n/ cancel
[usr/bin/chgrp
/usr/ bin/cpio
/usr/bin/crontab
[usr/bin/csh

[usr/bin/finger
/fusr/bin/from
/usr/bin/ipcs
[usr/bin/login
fusr/bin/lp
[usr/bin/lpr
[fusr/bin/lprm
/usr/ bin/lpstat

/var/ spo

ol /mail/

[usr/ bi n/ mesg
[usr/bin/nt

[usr/ bi n/ newgrp
/usr/bin/nice

[usr/ bi n/ passwd
fusr/bin/rcp
/fusr/bin/rlogin
[usr/bin/rsh
[usr/bin/tar
lusr/bin/wite

/usr/| bi
[usr/| bi

[usr/ sbi
/usr/ sbi
/usr/ sbi
[usr/ sbi
[usr/ sbi
[usr/ sbi
[usr/ sbi
/usr/ sbi

n/ acct/accton
n/ ex3. 7preserve

n/ cron

n/ dcheck
n/ dunpf s
n/ edquot a
n/ f ast boot
n/ fast hal t
n/ i check
n/link

(continued)

Remarks

Protected password database for user
accounts

Temporary directory
Parent of users home directory

Delayed job submission

List delayed job submissions
Remove delayed job submissions
Cancel a print request

Change file group

Perform single-level import/export
Periodic job table submission
Root account shell

Display account information
Display mail headers

Display system V IPC object status
Login program

Submit print request

Submit print request

Cancel print request

Display print subsystem status
Mail directory

Disable/enable terminal messages
Manipulate tape device

Change process group assignment
Run process with different priority
Password change program
Network copy (BSD networking)
Network login (BSD networking)
Remote shell (BSD networking)
Perform single-level import/export
Open connection to another
user/window

Enable system accounting
Preserve an interrupted edit session

Delayed/periodic job daemon
Directory check utility
Display superblock

Edit quota controls

Bring system down

Bring system down

Inode check utility

Perform I i nk(2) system call

File Summary A-3

Table A-1: (continued)

File Name
/usr/sbin/lpc
/usr/sbin/lpd

[usr/ sbi n/ mkpasswd

/usr/ sbi n/ ncheck

[usr/ sbi n/ net st at

[usr/sbin/ nfsst at

[usr/ sbi n/ quot

[usr/ sbi n/ quot acheck
[usr/ sbi n/ quot aof f
[usr/ sbi n/ quot aon
/usr/sbin/renice

[usr/ sbin/repquota
[usr/ sbi n/ shut down
[usr/sbin/trpt
/usr/sbin/tunefs

[usr/sbin/vipw

[usr/sbi n/wall

/usr/share/lib/sechel p/
/fusr/shlib/libsecurity.so

/var/adm cron/
/ var/ adm pacct
/var/ adm ut np

/var/adm wt np

Remarks

Line printer control program

Line printer daemon

Create binary database from

/ et c/ passwd

Display file associated with inode
number

Display network statistics

Display NFS statistics (NFS)

Disk quota maintenance command
Disk quota maintenance command
Disk quota maintenance command
Disk quota maintenance command
Change priority of running command
Disk quota report

System shutdown program

System reporting program

Change values in super block
Manipulate / et ¢/ passwd file
Send message to all logged in users

Help files for user interface programs
Security-relevant library routines

Administrative control files for cr on
Accounting file

Hold user and accounting information
(current)

Hold user and accounting information
(since boot)

Table A-2 lists files that are installed on the trusted system but not on a
nontrusted system, and files that are modified on a trusted system. The files
in this table are not considered part of the trusted computing base.

Table A-2: Files Notin Trusted Computing Base

File Name
/usr/include/*.h
/usr/include/sys/*.h

Remarks
Many files modified/added
Many files modified/added

fusr/lib/libsecurity.a Security-relevant library routines

A—4 File Summary

B.1

Auditable Events and Aliases

This appendix contains the default auditable events
(/ etc/ sec/ audit _event s) and the default audit event aliases
(/etc/ sec/ event _al i ases) asthey as delivered on Digital UNIX.

Default Auditable Events File
The following is the default / et ¢/ sec/ audi t _event s file:

! Audited systemcalls:

exit

fork

ol d open
cl ose
ol d creat
i nk
unl i nk
execv
chdir
fchdir
nknod
chnod
chown
nount
unnount
setuid
exec_wi t h_| oader
ptrace
nrecvnsg
nsendnsg
nrecvfrom
naccept
access
ki |

ol d stat
set pgid
old | stat
dup

pi pe
open

setl ogin
acct
ioctl

r eboot
revoke

succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed

fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail

B

synml i nk succeed fail

readl i nk succeed fail
execve succeed fail
chr oot succeed fail
old fstat succeed fail
vfork succeed fail
st at succeed fail
| stat succeed fail
nmap succeed fail
munmap succeed fail
npr ot ect succeed fail
ol d vhangup succeed fail
krmodcal | succeed fail
set groups succeed fail
set pgrp succeed fail
tabl e succeed fail
set host nane succeed fail
dup2 succeed fail
fstat succeed fail
fentl succeed fail
setpriority succeed fail
socket succeed fail
connect succeed fail
accept succeed fail
bi nd succeed fail
set sockopt succeed fail
recvmsg succeed fail
sendnsg succeed fail
set ti neof day succeed fail
f chown succeed fail
f chnod succeed fail
recvfrom succeed fail
setreuid succeed fail
setregid succeed fail
renane succeed fail
truncate succeed fail
ftruncate succeed fail
setgid succeed fail
sendt o succeed fail
shut down succeed fail
socket pai r succeed fail
nkdi r succeed fail
rodir succeed fail
utimes succeed fail
adjtine succeed fail
set hosti d succeed fail
old killpg succeed fail
setsid succeed fail
getdirentries succeed fail
set domai nnane succeed fail
exportfs succeed fail
get mt succeed fail
alternate setsid succeed fail
swapon succeed fail

B-2 Auditable Events and Aliases

B.2

nsgct |
nsgget
nsgrcv
nsgsnd
senct |
senget
senop

| chown
shmat
shntt |
shndt
shnget
utc_adjtine
security

kl oadcal |
priocntl set
si gsendset
nmsf s_syscal
sysi nfo
uadmi n
fuser
audcnt |
setsysinfo
swapct |
mencnt |

Syst emV/ unl i nk

Syst enV/ open

RT/rt_setprio

succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed

succeed
succeed
succeed

I Audited trusted events:

audit_start
audit _stop
audit_setup

audi t _suspend
audi t _| og_change
audit _| og_creat
audit _xmt_fail

audi t _reboot

audit_|log_overwite
audi t _daenon_exi t

I ogin

| ogout

aut h_event
audgen8

succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed
succeed

fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail

fail
fail
fail

fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail
fail

Sample Event Aliases File
The following is the sample / et ¢/ sec/ event _al i ases file provided

Auditable Events and Aliases B-3

with the Digital UNIX system:

This is a SAMPLE alias list. Your alias list should be built
to satisfy your site's requirenents.

obj _creat: "old open" "old creat” link nmknod open symink \
nkdi r SystenV/ open

obj delete: unlink truncate ftruncate SystenV/ unlink rndir
exec: execv exec_w th_| oader execve

obj _access: access "old stat" "old Istat" "old open" open \
readlink "old fstat" stat Istat \
fstat close:1:0 dup dup2 fcntl "old creat" mmap \
munmap nprotect mencntl SystenV/ open

obj nodify: chnmod chown fchown fchnod | chown utinmes renane

ipc: recvimsg nrecvnsg recvfrom nrecvfrom sendnsg \
nsendnsg sendto accept naccept connect socket \
bi nd shut down socketpair pipe sysV_ipc kill \
"old killpg" setsockopt sigsendset

sysV_ipc: nsgct!l nsgget nsgrcv nsgsnd shmat shnttl shndt \
shnget senctl senget senop

proc: exit fork chdir fchdir setuid ptrace setpgid \
setlogin chroot vfork setgroups setpgrp \
setpriority setreuid setregid setgid audcntl \
RT/rt_setprio setsid "alternate setsid" \
priocntl set

system nount unmount acct reboot table \
set host nane settimeofday adjtine sethostid \
set domai nnane exportfs getmmt swapon \
utc_adjtine audcntl setsysinfo kloadcall \
getdirentries revoke "ol d vhangup" knodcal | \
security sysinfo uadm n swapctl

m sc: ioctl nmsfs_syscall fuser
trusted_event: |ogin | ogout auth_event audgen8

al | : obj creat obj _del ete exec obj_access \
obj _nodify ipc proc systemmi sc trusted_event

B—4 Auditable Events and Aliases

Interoperating with and Migrating from

Cl

C.l1

ULTRIX Systems C

This appendix describes some of the issues you may encounter when moving
applications and accounts from an ULTRIX system to a Digital UNIX
system.

Migration Issues

The following sections describe migration issues you may encounter when
moving from ULTRIX to Digital UNIX.

Difference in the audgen System Call

Applications built under ULTRIX, that make use of the audgen() system
call, do not work on Digital UNIX because the Digital UNIX version of
audgen() takes five parametersinstead of three as on ULTRIX. To port
these applications, you can take either of the following steps:

e Convert ULTRIX-style usage of audgen() to the OSF-style usage. For
example:

[* ULTRI X */
audgen(event, tokennmask, paramvector);

becomes:

/*Digital UNI X*/
audgen(event, tokenmask, paramvector, NULL, NULL);

» Link such applications with the following module:

#i ncl ude <sys/syscall.h>

#i ncl ude <stdi o. h>
audgen(event, tokenp, argp)
int event;

char *tokenp;

char *argp[];

{

return(syscal | (SYS_audgen, event, tokenp, argp, \
NULL, NULL));

C.1.2 Differences in the audcntl Routine

The Digital UNIX audcnt | () routine takes six parameters instead of five
ason ULTRIX. You need to put a zero (0) in the unused parameter.

C.1.3 Changes to the authaudit Routines

If you are moving from ULTRIX MLS+ or a system based on OSF code,
several of the audit routines in the code base have been superceded in the
Digital UNIX operating system by the audgen() and audgenl ()
routines. The routines are provided only for backward compatibility and will
be removed in a future release. The routines are:

audit _security_failure()

audi t _no_resource()

audit _auth_entry()

audi t _subsystem()

audit _l ogi n()

audit _rcnd()

audi t _passwd()

audi t _I ock()

sa_audit_| ock()

sa_audit_audit()

The functions of the audi t _adj ust _rmask() routine have been
superceded by audcnt | ().

See Chapter 19 for examples of how to use the audcnt | () and

audgenl () routines. More information on audgen() , audgenl (), and
audcnt | () isavailablein the associated reference pages and the

audui t . h file.

C.1.4 Difference in the Authentication Interfaces

The Digital UNIX SIA authentication interfaces are different from the
ULTRIX interfaces.

C.1.5 Differences in Password Encryption

The Digital UNIX system uses a form of password encryption that is
different from that used on ULTRIX. An ULTRIX system has three security
levels: BSD, UPGRADE, and ENHANCED. A Digital UNIX has only two
security levels: BASE (equivalent to BSD) and ENHANCED. Thereis not a
direct equivalent to the ULTRIX UPGRADE security level. There are only
direct equivalents to BSD and ENHANCED modes. This is because the
default Digital UNIX ENHANCED password encryption agorithm is
compatible with the traditional password encryption, which is not the case for
ULTRIX ENHANCED security.

C-2 Interoperating with and Migrating from ULTRIX Systems

C.1.6

C.1.7

C.2

Cc.21

Running the Digital UNIX secset up script leaves the system equivalent to
the ULTRIX UPGRADE level; the old password can be used once. The
secaut hm gr at e script uses the ULTRIX ENHANCED password
encryption algorithm, which is not compatible with the traditiona style
password encryption algorithm. If secaut hni gr at e is going to be used,
run the secset up script before running secaut hm gr at e.

Trusted Path Unavailable on Digital UNIX
The ULTRIX trusted path feature is not available on Digital UNIX systems.

Secure Attention Key (SAK) Unavailable on Digital UNIX

The ULTRIX secure attention key (SAK) feature is not available on Digital
UNIX systems.

Moving ULTRIX Authentication Files to Digital UNIX

Users whose records are being transferred must have valid BSD style login
records (with the exception of valid password fields) on the ULTRIX system.
This can be through NIS as well asalocal record in/ et ¢/ passwd. (This
is checked with thel s —0.) You might want to do an account review, so
that only those users who should still have active accounts are moved.

See the secaut hm gr at e(8) reference page for more information.

Converting Shared Authentication Files

Use the following procedure to convert ULTRIX shared authentication files
(BIND/Hesiod) to DEC OSF/1 authentication files:

1. Onthe ULTRIX system, make a copy of the distributed authentication
data as follows:

cp —p /var/dss/ nanedb/ src/auth /tnp/auth. hesi od

2. Copy the/ t np/ aut h. hesi od file to the Digital UNIX system.

3. If the BSD style profile information for the ULTRIX systems is shared by
NIS, it is necessary to copy the/ var/ dss/ namedb/ sr ¢/ passwd
file to the Digital UNIX system. Add this file to the NIS password maps
or append it to the/ et ¢/ passwd file.

Interoperating with and Migrating from ULTRIX Systems C-3

4.

5.

Run the/ usr/ sbi n/ secaut hm gr at e script as follows:

/usr/sbin/secauthnigrate auth. hesi od

Y ou should test the script by setting the ROOTDIR environment variable
to atemporary location as follows:

/usr/bin/env ROOTDI R=/tnp /usr/sbin/secauthnigrate
aut h. hesi od

Continue the migration by going to Section C.2.3.

C.2.2 Converting Local Authentication Files
Use the following procedure to convert the ULTRIX files:

1

4,

Because the/ et ¢/ aut h fileis not normally up-to-date, use get aut h
to obtain the current values from / et ¢/ aut h. { pag, di r} asfollows:

umask 077
getauth > /tnp/auth.|ocal

Copy the/ t np/ aut h. | ocal fileto the Digital UNIX system.

Run the/ usr/ sbi n/ secaut hm gr at e script as follows:
[usr/sbin/secauthnigrate auth. | ocal

Y ou should test the script using the ROOTDIR environment variable first.
Continue the migration by going to Section C.2.3.

C.2.3 After Converting the Authentication Files

If any accountsareleftin /tcb/fil es/auth/ ?/ user: ULT, itis
because there was already a protected profile for the user. Usethe
following procedure to complete the migration:

1

2.

Merge the values as appropriate. Edit the file using a duplicate, copy the
new fileto /tcb/fil es/auth/ ?/ user:t,

Check to be sure that the base file (/ t cb/ fi | es/ aut h/ ?/ user) has
not been changed. If it has, merge the change into the
/tcb/files/auth/?/ user:t file

Renamethe /tcb/fil es/auth/ ?/ user:t fileto
[tcb/files/auth/?/ user.

If aUID is not known, the secaut hni gr at e script reports that it cannot

C—4 Interoperating with and Migrating from ULTRIX Systems

trandlate a UID to a name using the following code:
#1s —o /tnp/file

This test is performed on afile owned by the UID in question. It may be
necessary to check the contents of / et ¢/ passwd or the NIS setup. If this
discrepancy persists, it indicates that there was an orphaned authentication
record in the original ULTRIX data.

Once dl the records have been converted, review their contents with the
dxaccount s program.

C.3 Audit Data Compatibility

The following are compatibility issues between the auditing subsystems on
ULTRIX and Digital UNIX systems:

e Audit dataon a Digital UNIX system is not compatible with audit data
on an ULTRIX system.

e Audit data generated on an ULTRIX system is read using the
audit _tool.ultrix program. Seetheaudi t _t ool (8) reference
page for more information.

» TheDigital UNIX audi t d and the ULTRIX audi t d do not
communicate with each other.

 Theauditd command line is different between ULTRIX and Digital
UNIX systems. See the audi t d(8) reference page for details.

* Theaudi t d access control list, which was found in
/etc/auditd_clients onULTRIX,isfoundin
[etc/sec/auditd_clients on Digital UNIX systems.

Interoperating with and Migrating from ULTRIX Systems C-5

D.1

Coding Examples

D

The examples in this appendix illustrate how to use some of the routines in

the trusted Digital UNIX system.

Source Code for sia-reauth.c
Example D-1 is a program that performs password checking.

Example D-1: Reauthentication Program

#i ncl ude <si a. h>
#i ncl ude <si ad. h>

#i f ndef NOUI D
#def i ne NOUI D ((uid_t) -1)
#endi f

main (argc, argv)
int argc;
char **argv;
{ o
int i
SI AENTI TY *entity = NULL
int (*sia_collect)() = sia_collect_trm
char unane[32] ;
struct passwd *pw;
uid_t nyuid

nyuid = getluid();

if (myuid == NOU D)
nmyuid = getuid(); /* get ruid */

pw = get pwui d(myui d) ;

if (!pw || !'pw>pw nane || !*pw >pw_nane) {
sl eep(3); /* sl ow down attacks */
(void) fprintf(stderr, "sorry")
return 1;

(void) strcpy(unane, pw >pw_nane);
i = sia_ses_init(&entity, argc, argv, NULL, unanme, \

NULL, TRUE, NULL)

if (i !'= SIASUCCESS) ({
sl eep(3); /* sl ow down attacks */
(void) fprintf(stderr, "sorry")
return 1;

}

i = sia_ses_reauthent(sia_collect, entity);
if (i !'= SIASUCCESS) {

Example D-1: (continued)

(void) sia_ses_release(&entity);

sl eep(3); /* sl ow down attacks */
(void) fprintf(stderr, "sorry");
return 1;

}

i = sia_ses_rel ease(&entity);

if (i !'= SIASUCCESS) ({
sl eep(3); /* sl ow down attacks */
(void) fprintf(stderr, "sorry");
return 1;

}

(void) fprintf(stderr, "Ck");

return O;

D.2 Source Code for sia-suauth.c

Example D-2 is a program that alows root to become a user to run daemons
(suchascront ab or sendnai |) for the user.

Example D-2: Superuser Authentication Program

#i ncl ude <si a. h>
#i ncl ude <si ad. h>

mai n (argc, argv)
int argc;

char **argv;

{

int i;

i = sia_auth(getuid());
printf("result is %", i);

}
int sia_auth(uid)
int uid,
{
char unane[32] ;
static SI AENTI TY *entity=NULL;
static int oargc = 1;
static char *oargv[1l] = { "siatest" };
static int (*sia_collect)()=sia_collect_trm
struct passwd *pw,

pw = get pwui d(ui d);

it (tpw {
printf("getpwid failure");
return 8;

(void) strcpy(unane, pw >pw_nane);

D-2 Coding Examples

Example D-2: (continued)

printf("SIA authentication for uid: %, unane: % ", \
ui d, unane);
if (sia_ses_init(&entity,oargc, oargv, NULL, uname, NULL, \
FALSE, NULL) == SI ASUCCESS) ({
printf("sia_ses_init successful");
entity->authtype = SI A A SUAUTH,
if (sia_make_entity_pwd(pw, entity) == S| ASUCCESS) {
printf("sia_make_entity_pwd successful");

el se {
printf("sia_make_entity_pwd un-successful");

if ((sia_ses_launch(NULL, entity)) == SI ASUCCESS) {
printf("sia_ses_launch successful");

el se {
printf("sia_ses_launch un-successful");
entity = NULL;

}
if ((sia_ses_release(&entity)) == SI ASUCCESS) {
printf("sia_ses_rel ease successful");

el se {
printf("sia_ses_rel ease un-successful");
return(4);

el se {
printf("sia_ses_init un-successful");
return(5);

printf("sia **** successful");
return(6);

Coding Examples D-3

Symbol Preemption for SIA Routines E

This appendix describes the naming convention for routines (added by
developers) that must be followed to stay in compliance with ANSI C routine
naming rules.

E.1 Overview of the Symbol Preemption Problem

Overriding the symbols used by the SIA routinesin | i bc is not as simple as
providing routines named the same as the SIA routines (such as,
siad_ses_init())inalibrary loaded beforel i bc. a. Thisis because
of the ANSI C convention for | i bc routine names and the symbols that
must be reserved to the user.

A conflict exists between the requirements of ANSI C and the expectations of
the application developers regarding what entry points can exist in the
libc.aandlibc. so libraries. The ANSI C standard lists the symbols
allowed, and the only other symbols that are valid must be of the ‘‘reserved-
to-vendor’’ form. That is, they must start with two underscores, or one
underscore and a capital letter. This set of symbols is limited, and does not
meet the expectations of the general user community.

E.2 The Digital UNIX Solution

To satisfy both ANSI C and developer expectations, Digital UNIX uses
“‘strong’’ and ‘*weak’’ symbols to provide the additional names. If aroutine
such asbcopy() isnot allowed by ANSI C, it has a weak symbol named
bcopy() and astrong symbol named __bcopy() .

Note

In this online version of the book, the long underscore (_) in
front of the function name is actually two underscore characters

.

The weak symbol can be preempted by the user with no effect on the
bcopy() routine within | i bc, because the library uses the strong symbols
for these ** namespace-protected’’ routines.

For the SIA routines, this means that there is a weak symbol for
si ad_ses_i nit whichisnormally bound to the strong symbol
__siad_ses_init(). If other code aready uses the symbol

siad_ses_init(), onlythe binding of the weak symbol is affected.

The SIA codein | i bc references the strong symbol
__siad_ses_init() foritsown uses. Thus, to override the default
BASE security mechanism for single-user mode, it is necessary to provide a
replacement for the __si ad_ses_init () routine.

For alibrary that is only dynamically loaded under the control of the SIA
routines and the / et ¢/ si a/ mat ri x. conf file, it isonly necessary to
provide the si ad_ses_i ni t () form of the symbol name. If the
dynamically loaded library is only used through the mat r i x. conf file, itis
acceptable to provide both forms of symbols. This simplifies the code, but is
not safe if the library usage ever changes to require that the library be linked
againgt, not just dynamically loaded.

E.3 Replacing the Single-User Environment

Example E-1 shows the code to use if a security mechanism library developer
needs to replace the single-user environment as well as provide a normal
shared library for mat ri x. conf .

Example E-1: Preempting Symbols in Single-User Mode

/* preenpt libc.a synbols in single-user node */
#i f def SI NGLE_USER

pragma weak siad_ses_init = __siad_ses_init
define siad_ses_init __siad_ses_init
#endi f

#i ncl ude <sia. h>
#i ncl ude <si ad. h>

The single-user (static) library modules are then compiled as follows:
% cc —DSI NGLE_USER . . .

This keeps the shared library from interfering with the | i bc. so symboals,
but allows the preemption of thel i bc. a symbols for the nonshared images
used in single-user mode. The nonshared images are then built with the
replacement mechanism library supplied to the linker beforel i bc. a asin
the following example:

% cc —non_shared —o passwd passwd. o —| denpo_mnech

The shared library is built in the normal fashion.

E—2 Symbol Preemption for SIA Routines

Glossary

absolute pathname
A pathname that begins at the root directory; a pathname that always
begins with a slash (/). For example, / usr/ gamnes is an absolute
pathname. Also called a full pathname.

ACL (access control list)
An optional extension of the traditional UNIX permission bits, which
gives the user the ability to specify read/write/execute permissions on a
per user basis.

Access ACL
The formal name of the ACL that is checked for access decisions on an
object.

AIC (Attribute IR Cache)
A cache mechanism for storing the ACL IR in memory to eliminate
duplicate ACLs and reduce the number disk accesses.

auditing
The recording, examining, and reviewing of security-related activities on
atrusted system.

audit event
An event that is monitored and reported on by the audit subsystem.
Events include system events, application events, and site-definable
events. An event can be any command, system call, routine, or program
that runs on the system.

audit ID (AUID)
ID that is created at login time and that is inherited across all processes.

BASE security
The traditional security that is delivered on BSD UNIX systems, BASE
security consists of file permissions. A nontrusted Digital UNIX system
has BASE security.

BSD (Berkeley Software Distribution)
UNIX software release of the Computer System Research Group of the
University of California at Berkeley — the basis for some features of the
Digital UNIX and ULTRIX operating system.

Default ACL
An ACL that is associated with directories. This type of ACL
determines the Access ACL of any file created in that directory. New
directories inherit the default ACL from the parent directory as both the
Access and Default ACL.

discretionary access control (DAC)
The traditional UNIX form of file permissions set with the chnod
command.

entity
SIA introduces the term entity to mean a user, program, or System
which can be authenticated. The entity identifier is the user ID (UID).

ER (external representation)
A POSIX-compliant ASCII representation of an ACL used for
presentation to the user or interchanges between foreign systems.

effective user ID (EUID)
The current user 1D, but not necessarily the user’s ID. For example, a
user logged in under alogin ID may change to another user’s ID. The
ID to which the user changes becomes the effective user 1D until the
user switches back to the original login ID.

ENHANCED security
The optional security features that supplements BASE security.
Enhanced security consists of extended password profiles and the audit
subsystem.

entity
Term used by the security intergration architecure to define a user,
program, or system that can be authenticated.

evaluation criteria
The Trusted Computer System Evaluation Criteria (TCSEC). The
enhanced security featuresin the Digital UNIX system have been
designed to meet this criteria.

IR (internal representation)
A binary representation of an ACL, that can be easily converted into the
Distributed Computing Environment (DCE) ACL binary format.

2 Glossary

ISSO (information system security officer)
In atrusted system, the person traditionally responsible for ensuring the
security of the system. The person who serves this administrative role is
your contact for all security-related questions. The ISSO sets up an
initial authentication profile, which specifies login restrictions and
passwords options.

The ISSO is also responsible for auditing system activity, setting the
security characteristics of devices, and performing other security-related
tasks. See also system administrator.

login spoofing program
Any program that representsitself asal ogi n program in order to steal
apassword. For example, a spoofing program might print the login
banner on an unattended terminal and wait for input from the user.

object (as defined for ACLS)
An object as defined for an access control list, refers to the following
data storage entities:

¢ File system entries
¢ Semaphores

¢ Message queues

* Shared memory

operator
The person responsible for the day-to-day maintenance of a system,
including backups, line printer maintenance, and other routine
mai ntenance tasks.

Privileged process
A process that can bypass the permission checks for an operation. If
privileges are not configured in the system, then the process must be
running with the effective id of O (root). If privileges are configured, the
process must possess the appropriate granular privilege.

process ID (PID)
A unique number assigned to a process that is running.

process
A unit of control of the operating system. A process is always
executing one program, which can change when the current program
invokes the exec() system call. A processis considered trusted when
its current program is trusted. See also program.

Glossary 3

program
A set of agorithms designed, compiled, and installed in an executable
file for eventual execution by a process. A program is considered
trusted when the programmer has explicitly designed it to uphold the
security policies of the system. See aso process.

PPID, ppid (parent process |D)
The process ID of the parent or spawning process.

root
The login name for the superuser (system administrator).

root directory
The name applied to the topmost directory in the UNIX system’s tree-
like file structure; hence, the beginning of an absolute pathname. The
root directory is represented in pathnames by an initial slash (/); a
reference to the root directory itself consists of a single slash.

root file system
The basic file system, onto which all other file systems can be mounted.
The root file system contains the operating system files that get the rest
of the system to run.

security attributes
The parameters used by the trusted computing base (TCB) to enforce
security. Security attributes include the various user and group
identities.

SIA (security integration architecture)
The security integration architecture isolates the security-sensitive
commands from the specific security mechanisms, thus eliminating the
need to modify them for each new security mechanism.

site-defined events
Audit events that are created by application software (that is, not the
operating system).

spoofing program
See login spoofing program.

system administrator
In the trusted system, the person responsible for administrative tasks that
are not performed by the ISSO. The system administrator is responsible
for file system maintenance and repair, account creation, and other
miscellaneous administrative duties. In many cases, the system
administrator acts as a balance of power to the ISSO. See aso 1 SSO

4 Glossary

TCB (trusted computing base)
The set of hardware, software, and firmware that together enforce the
system’s security policy. The Digital UNIX TCB includes the system
hardware and firmware as delivered from Digital, the trusted Digital
UNIX operating system, and the trusted commands and utilities that
enforce the security policy. The operating system and all of the other
software distributed with the trusted Digital UNIX system have been
modified to satisfy security requirements.

Traditional security
See BASE security

Triviality checks
Checks performed on passwords to prevent the use of easily guessed
passwords. Triviality checks prevent the use of words found in the
dictionary, user names, and variations of the user name as passwords.

Trojan horse
Any program that when invoked by a user steals the user’ s data, corrupts
the user’sfiles, or otherwise creates a mechanism whereby the trojan
horse planter can gain access to the user’s account. Viruses and worms
can be types of trojan horses. See also virus, worm.

virus
A computer program designed to insinuate itself into other programs or
files in a system and then to replicate itself through any available means
(disk file, network, and so forth) into other similar computers, from
which it can attack yet more systems. Viruses are designed with the
object of damaging or destroying the *‘infected’’ programs or systems
and are often programmed to become destructive at a specific time, such
as the birthday of the virus's programmer. See also Trojan Hor sg,
worm.

vouching
A technique that allows a security mechanism to trust the authentication
process of a previously run security mechanism. This featureis
implemented by the security integration architecture (SIA).

worm
A computer program designed to insinuate itself into other programs or
files in a system and then to replicate itself through any available means
(disk file, network, and so forth) into other similar computers, from
which it can attack yet more systems. Worms are designed with no
serious intent to do damage, but they are harmful because they occupy
resources intended for legitimate use. See also Trojan Horse, virus.

Glossary 5

A

absolute pathname, 16-3
access control list

See ACL
access control list (ACL), 5-1
accessing the databases, 17-1
account lock, 18-6
account management, 9-3
account template, modifying, 9-2
accountability, 1-2, 1-3
accounting, 10-36
accounting tools, 10-36
accounts, 9-10

adding, 7-1

anonymous ftp, 3-4

creating, 7-9, 9-1

disabled, 9-1

locked, 9-1

maintaining, 9-1

modifying, 9-1

new, 9-1

passwords, 9-1

retiring, 9-1
ACL, 111, 211, 51

administering, 11-2

administration, 11-1

base entry, 21-1

Index

ACL (cont.)
configuring, 7-6
data package, 21-5
data package structure, 214
decision process, 5-3
default, 21-6, 5-3
description, 6-5
disabling, 114
discretionary access control (DAC), 5-1
emacs editor, 5-12
enabling, 11-3
entry rules, 21-7
execute access definition, 21-3
exported data, 21-10
external representation, 21-6
format, 54
getacl command, 5-10, 5-3
header for data package structure, 21-5
imported data, 21-10
inheritance, 21-6, 5-5
initialization, 5-5
installation, 11-1
installing, 11-2
kernel status, 11-5
library routines, 21-2
|s command, 5-8
maintaining, 5-11
object creation, 21-6

ACL (cont.) applications (cont.)

object creation rule, 21-7 generating audit records in, 19-6
overview, 11-1, 5-1 modifying process audit attributes of, 19-2
owner access definition, 21-3 assigning terminal devices, 7-10, 8-1
permission bits, 21-1 attributes, file
propagation, 21-7 See file attributes
protecting objects, 5-8 audcntl routine, C-2
recovery, 11-5 audgen command
replication rule, 217 described, 102
search access definition, 21-3 using to create log entries, 10-13
setacl command, 5-2, 5-9 audgen system call, C-1
setting, 5-2 AUDGENS trusted event, 10-27
setting example, 21-8 audit daemon, 10-13, 10-2
standalone system, 11-6 audit events
status, 52 default events, B—1
storage, 11-1 dependencies, 10-25
umask, 21-7 state-dependent, 10-25
using, 5-1 audit features, 64
verifying status, 11-5 audit hub, 10-17
viewing, 5-3 audit 1D (AUID), 1-2, 1-3, 18-1
working storage, 214 audit log
working storage data structure, 214 default, 10-11
write access definition, 21-3 failure, 10-12
administrative roles overflow, 10-12
See role responsibilities remote, 10-13
aliases for auditable events, 10-8, B-3 audit mask, 10-7, 18-5
allowSendEvents resour ce, 16-6, 4-5 audit subsystem, 1-2
anonymous ftp account, 34 accounting tools, 10-36
ANSI C activating, 10-16
symbol preemption, E-1 active processes, 10-10
antecedent directories, 15-5 administration tools, 10-2
API, 181 anonymous ftp, 34
applications application records, 19-1
adding to the file control database, 12-2 audit hub, 10-17
audit records, 19-1 audit_setup script, 104
disabling auditing in, 19-2 audit_tool command, 10-18

Index—2

audit subsystem (cont.)

auditing remotely, 10-16
choosing events, 107
configuring, 7-6

continuous reporting of, 10-21
creating log entries for, 10-13
data recovery, 10-35

default auditable events, B—1
default event diases, B-3
default event auditing, 104
dependencies among audit events, 10-25
deselection, 10-8

deselection files, 10-21, 10-29
disabling, 10-16

dxaudit, 10-28

enabling, 10-16

letc/sec/auditd clients file, 10-17
events to audit, 10-24
example report, 10-30
fallback location, 10-14

files used for, 10-1

filtering data, 10-21
fixed-length tokens, 19-3
generating reports, 10-28
implementation notes, 10-35
log file location, 10-14

log files, 1011

log overflow, 10-15

logging tools, 10-36

negative process 1Ds, 10-21
new log, 10-16

object selection/deselection, 10-8
overview, 10-1

audit subsystem (cont.)

reading audit reports, 10-29
reducing audit information, 10-18
report location, 10-15

reports, 10-29

reports by AUID, 10-19

reports by dxaudit, 10-28

reports by events, 10-20

reports by process IDs, 10-21
reports by time range, 10-20
reports by trusted events, 10-31
reports, abbreviated, 10-33
selecting audit records, 10-19
selecting events, 10-7

selection, 10-8

selection files, 10-28

setting up, 7-10

setup, 10-3

site event mask, 10-24
site-defined events, 10-22

status display, 10-14

suggested audit events, 10-24
system audit mask, 107

tokens, 19-3 to 19-6

tracing system calls, 10-37
trusted application audit data, 10-24
trusted application responsibility, 10-23
trusted events, 1026

turning off, 10-16

ULTRIX compatibility, C-5

user audit mask, 107

using audgen, 10-13

using audit_tool interactively, 10-19

audit trail, 1-2
audit_daemon_exit trusted event, 10-27

pointer-type tokens, 194
preselection, 10-8
processing audit information, 10-18

Index-3

audit_log_change trusted event, 10-27 authentication database, 12-1, 17-1, 9-2

audit_log_create trusted event, 10-27 conversion, 7-2

audit_log_overwrite trusted event, 10-27 authentication files, C-3

audit_reboot trusted event, 10-27 authentication profile, 1-3, 14-3, 17-9, 18-1,
audit_setup trusted event, 10-2, 10-27 2-2,6-12, 6-9

audit_start trusted event, 10-27 authentication program, 184

audit_stop trusted event, 10-27 authentication subsystem, 9-2

audit_tool command, 10-18, 10-3 authorization list

audit_tool.ultrix command, 10-22, 10-3 See terminal authorization list
audit_xmit_fail trusted event, 10-28

auditable events, B—1 B

auditd command, 10-13
auditd_clientsfile, 10-13
auditi subsystem

background job, 2-9
backup procedures, 14-1, 7-11
base entry ACL, 21-1

reports by process IDs, 10-32 binary compatibility, 6-1

auditmask, 10-2 binary databases, 14-2
AUID boot loading software, 14-6
See audit ID buffer management, 174

auth_event, 10-28
authaudit routines, C-2 C

authck command, 12-1

authck program, 12-1 C2 features

authentication, 6-4, 9-2 audit, 1-2

authentication configuration, 7-7 login control, 1-1

encryption, 7-9 password control, 1-2

log in records, 7-8 centralized account management, 9-3

maximum log in attempts, 7-8 changing a password, 2-3
password aging, 7—7

password change time, 7—7

character-mode terminal, 2-1
child process

inherited file access, 16-5
profile migration, 7-9 signal mask and, 16-4

terminal break-in, 7-8 chmod command
octal example of, 3-5

password-changing controls, 7—7

time between log in attempts, 7-8
time between log ins, 7-8
vouching, 7-9

chown system call
SUID or SGID permissions, 16-1

Index—4

close-on-exec flag, 16-5
compatibility with ULTRIX auditing, C-5
configuration
encryption, 7-9
log in records, 7-8
maximum log in attempts, 7-8
password aging, 7-7
password change time, 7—7
password-changing controls, 7—7
profile migration, 7-9
terminal break-in, 7-8
time between log in attempts, 7-8
time between log ins, 7-8
vouching, 7-9
configuring
ACLs, 7-6
audit, 7-6
extended passwords, 7-6
security features, 7-6
configuring enhanced security, 6-7
console file, 14-5
console messages, 10-13
convauth command, 7-2
core files, 164
create file_securely() library routine, 17-8
creating accounts, 7-9, 9-1
creating groups, 7-9, 9-2
crypt() support, 7-9
cu command, 3-6
example of, 37

D

DAC
inheritance attribute, 216
overview, 5-1
protecting the TCB, 15-5

daemon programs, 184
data
storing in a secure location, 16-3
data files, 15-5
data loss, 14-1
data package
ACL, 214
data package ACL representation example,
21-5
data structure
opague, 214
database update, 17-6
databases
accessing, 17-1
entries, 172
file control, 122, 174
groups, 14-5
protected password, 14-3
system defaults, 17-2
terminal control, 17-2
update, 174
databases fields, 17-2
dcp command, 3-8
DECnet protocol, 3-1
dcp command, 3-8
dlogin command, 3-8
dls command, 3-8
generic guest accounts, 3-8
DECterm window
See also DECwindows environment
if application not using, 4-5
protecting, 4-5
DECwindows
authorizing host access, 4-2
blocking keyboard and mouse information,
45

Index-5

DECwindows (cont.)
controlling application access to, 4-2
secure keyboard, 44

DECwindows ACLs, 4-2, 4-3

contention between system and local, 4-3

saving changes to, 4-3
system list in /etc/X* .hosts, 4-2
DECwindows environment
use of in a secure environment, 166
writing secure programs in, 16-5
DECwindows secure keyboard
example of, 44
DECwindows session
pausing current, 4-5
default ACL, 21-6
default event auditing, 104
defaults database, 6-12
defaults for devices, 8-1
deleting layered security products, 13-5
denial of service, 6-3
dependencies among audit events, 10-25
deselection files, 10-21, 10-29
/dev/console file, 14-5
/dev/pts/* file, 14-5
/devitty* file, 14-5
device
assignment, 6-9, 7-10, 8-1
defaults, 8-1
installation, 8-1

device assignment database, 12-1, 177, 6-14,

82
disabled accounts, 9-1
discretionary access control
See DAC
discretionary check, 5-5

Index—6

display access, 4-1

dlogin command, 3-8

dls command, 3-8

dxaccounts program, 6-6, 9-1
dxaudit program, 10-28 to 10-29, 6-6
dxdevices program, 6-6

E

EACCESerrno value, 16-2
effective group 1D, 2-2
effective user 1D, 2-2
EGID
See effective group 1D
emacs editor, 5-12
encrypted password, 14-3, 17-9
encryption configuration, 7-9
enhanced passwords, 7-6
entry points, E-1
EPERM errno value, 16-2
EROFS errno value, 16-2
errno variable, 16-2
letc/auth/system/default file, 144
letc/auth/system/devassign file, 144
[etc/auth/system/gr _id_map file, 14-5
letc/auth/system/pw_id_map file, 14-5
letc/auth/system/ttys file, 17-10
[etc/auth/system/ttys.db file, 144
letc/group file, 14-5
letc/hosts.equiv file
interaction with .rhosts file, 3-3
security concerns, 3-2
letc/passwd file, 12-1, 144, 17-9, 187
letc/sec/audit_eventsfile, B-1
letc/sec/audit_events file for, 10-24
letc/sec/auditd_clients file, 1013, 10-17

letc/sec/event_aliases file, B-3
letc/sec/site_events file, 10-22
letc/X* .hosts, 4-2
EUID

See effective user ID
evasion time configuration, 7-8
event aliases, 10-8, B-3
events to audit, 10-24, B-1
execute access

ACL definition, 21-3
execve system call, 164
exported data

ACLs, 21-10
extended passwords, 7-6
extended profile configuration, 7-7
external representation

ACL, 21-6

=

fentl system call
close-on-exec flag, 16-5
file
deselection files, 10-21
deselection for audit, 10-29
protecting, 16-2
protecting with ACLs, 5-2
required, 14-2
selection for audit, 10-28
file attributes, 146
file control database, 12—2
description, 17-8, 6-13
location, 12-1
reading and writing, 174
file descriptors, 16-5
file permissions
remote sessions, 34

file permissions (cont.)
restrict access to .Xdefaults file, 4-3
file protection mechanism, 5-1
file summary, A-1
file systems, 6-10
filtering audit data, 10-21
fixed-length audit tokens, 19-3
fork system call, 164, 184
ftp command
description of, 34
security risks of anonymous ftp, 3-4
use of .netrc file with, 34
FTP protocol, 3-1
fverfy command, 14-6

G

getacl command, 5-3
getluid system call, 184
getty command, 2-9
GID

See group ID
gr_id_map file, 14-2, 14-5
group database, 14-5
group 1D

effective (EGID), 2-2

map file, 14-5

rea (RGID), 2-2
groups

creating, 7-9, 9-2

database file, 14-5

supplementary, 2-2

Index—7

H

hardware privilege, 6-2
header files, 15-1

I and A, 1-3, 18-1, 64
identification and authentication
Seel and A
imported data
ACLs, 21-10
Information Systems Security Officer
1SS0, 6-9
inheritance
ACL, 21-6
installation, 7-1
installed subsets, 1-3
installing enhanced security, 6-7
installing layered security products, 13-5
integrating security mechanisms, 209
integrity, 12-1, 6-14, 6-3, 6-9
integrity features, 6-6
interoperating with ULTRIX auditing, C-5
inter process communication
security consideration, 16-2
invalid maps, 14-2
1SS0, 6-9
tasks, 7-9

K

keyboard
securing, 16-6
securing in DECwindows environment, 44

Index—8

L

LAT protocol, 3-1
description of, 3-5
LAT groups, 3-5
libaud library, 15-1
libraries
as part of the TCB, 15-5
security relevent, 15-1
library routines, 15-3
libsecurity library, 15-1, 18-1
Local Area Transport
See LAT protocol
local host, workstation as, 4-2
lock file, 141
locked accounts, 9-1
log files, 10-36
audit, 10-11, 10-13
creating entries in, 10-13
login
maximum tries configuration, 7-8
log in records configuration, 7-8
logging in
to remote systems with rlogin, 3-1
logging tools, 10-36
login, 2-1
enhancements, 1-1
invalidating terminal file descriptors, 2-9
problems, 2-10
setting password during, 2—3
shell, 2-2
user ID (AUID), 2-2
login command, 2-9
login timouts, 8-2
login tips, 2—7
LOGIN trusted event, 10-27

login user ID, 2-6
logout tips, 2—7

M

maintaining accounts, 9-1
mapping database, 14-2
mask
system audit mask, 10-7
user audit mask, 107
matrix.conf file, 13-4, 2020
mechanism-dependent interface, 20-20
migration issues
audcntl routine, C-2
audgen system call, C-1
authaudit routines, C-2
BIND/Hesiod authentication files, C-3
MLS+ C-2
NIS, 9-10
password databases, C-2
secauthmigrate script, C-3
secure attention key (SAK), C-3
trusted path, C-3
ULTRIX, C-1
ULTRIX authentication files, C-3
modem
with tip and cu commands, 3-6
with UUCP utility, 3-5
modifying database entries, 17-6
modifying the account template, 9-2
modifying user accounts, 9-2
mouse
securing, 166

N

naming routines, E-1
need-to-know access, 6-3
.netrc, 34
networ k
audit hub, 10-17
auditing across a network, 10-16
network protocols, 3-1
network security concerns
anonymous ftp, 3—4
DEChnet generic guest accounts, 3-8
/etc/hosts.equiv file, 3-2
file permissions, 34
rhosts file, 3-2
tip and cu commands, 3-7
UUCP commands, 3-5
workstation display access, 4-2
new routines, 18-2
NIS
account management, 9-3
automated procedures, 9-8
backing out, 9-10
client setup, 9-9
databases, 9-3
large databases, 9-8
master server setup, 97
migration, 9-10
overrides, 94, 9-6
password database, 9-5
slave server setup, 9-8
user account database, 9-3
null password, 18-6

Index—9

O

object code, 155
object creation

ACL, 21-6, 21-7
obsolete interfaces, 18-1
obsolete structures, 18-2
opaque data structure

ACL, 214
open file descriptor, 16-5
operational features, 6-2
operator responsibilities, 6-10
owner access

ACL definition, 21-3

P

passwd file, 144
password, 18-8

aging, 2-5

aging configuration, 7—7

change time configuration, 7-7

choosing, 2-3
coding example, D-1
configuration, 7—7
controls configuration, 7-7
database, 144
enhancements, 1-2
expiration, 2-2
expiration of, 2-5
expiration time, 2-8
extended, 7-6

ID map file, 14-5

maximum tries configuration, 7-8

new accounts, 9-1
protected database, 6-12
random character, 24

Index-10

password (cont.)

random letter, 2—4

random pronounceable, 24

setting and changing, 2—-3

system-generated, 2-5

threats, 3-2

tips, 2-6
password databases, C-2
password parameters, 18-6
password protection

DECwindows secure keyboard mode, 44
PATH variable

defining, 16-3

null entry in, 164

secure shell scripts, 16—7
pathname

absolute, 16-3

relative, 16-3
permanent file, 16-2
permission bits

ACL, 21-1
physical device, 6-14
physical security

in DECwindows environment, 4—-6
pointer -type audit tokens, 194
private audit tokens, 19-5
private tokens, 19-3
process priority, 17-9
profile migration configuration, 7-9
protected password database, 12-1, 14-3,

17-9, 181, 18-5, 6-12

protected subsystem pseudogroup, 17-3
protected subsystems, 6-11
protecting removable media, 46
prpasswd file, 9-10

pseudo tty, 14-5

pts/* file, 14-5

public audit tokens, 194
public tokens, 19-3
pw_id_map file, 14-2, 14-5

R

rc[023] files, 14-5
rcp command, 3-2
read access

ACL definition, 21-3
read-only file systems, 156
recovering ACLs, 11-5
relative pathname, 16-3
remote audit log, 10-13
remote auditing, 10-16
remote file transfer

with UUCP tility, 3-5
remote login

suggestions for tip and cu commands, 3-7

using dlogin command, 3-8
using rlogin command, 3-1

using tip and cu commands, 3-6

remote systems

in /etc/hosts.equiv file, 3-2

in .rhosts file, 3-2
replication of ACLs, 21-7
reports

See audit subsystem

audit, 10-29
required files, 14-2
responsibilities

I1SSO, 6-9

operator, 6-10

system administrator, 6-10

user, 1-4

retired account, 185
retiring user accounts, 9-1
rhostsfile

interaction with /etc/hosts.equiv file, 3-3

security concerns, 3-2

suggested permissions on, 3-5

rlogin command, 3-1

role programs, 6-6

role responsibilities, 6-1
ISSO, 6-9
operator, 6-10
system administration, 6-8
system administrator, 6-10

root authentication profile, 14-3

root user, 2—6
rsh command, 3-2

S

/sbin/rc[023] files, 14-5
sear ch access

ACL definition, 21-3
secauthmigrate script, C-3
secsetup command, 7-2

secure attention key (SAK), C-3

secure keyboard, 44

Secure Keyboard menu item, 16-6

security administrator
DECwindows ACLSs, 4-2
security breach

possible program responses to, 16-2

Security Integration Architecture

See SIA

Security Integration Architecture (SIA), 13-1,

20-1
security policy, 6-2

Index-11

security requirements, 8-1
security sensitive commands, 20-1
segment sharing, 7-2
segments, 16-2
selection files, 10-28
semaphores, 16-2
session priority, 18-5
set group ID on execution
See SGID
set user 1D on execution
See SUID
set_auth_parameters() library routine, 184
setacl command, 5-2
setluid system call, 184
setting up enhanced security, 7-6
SGID
set group 1D on execution, 2-10
set group 1D programs, 16-1
shadowed passwords, 12-1, 18-5, 9-10
shared libraries,, 7-2
shell
defining variables, 16-3
path variable syntax, 164
rsh command invokes remote, 3—2
shell process, 2-6
shell script, 15-5
security consideration, 167
shell variable
specific shell variables, 16-3
SIA
accessing secure information, 20-18
administering, 13-1
audit logging, 20-9
callbacks, 20-6
changing a user shell, 20-18
changing finger information, 20-17

Index—12

SIA (cont.)

changing secure information, 2017
coding example, D-1

debugging, 209

deleting layered security product, 13-5
group info, accessing, 20-19
header files, 20-5

initialization, 20-5

installing layered security product, 13-5
integrating mechanisms, 20-9
interface routines, 20-2

layering, 204

login process, 20-16

logs, 20-8

maintaining state, 20—7

matrix.conf file, 13-4, 20-20
mechanism-dependent interface, 20-20
packaging layered products, 20-20
parameter collection, 20-19, 20-6
password, accessing, 20-19
passwords, changing, 20-17
programming, 201

return values, 20-11, 20-8

rlogind process, 2017

rshd process, 20-17

security sensitive commands, 201
session authentication, 2015
session establishment, 20-16
session initidization, 20-15

session launch, 20-16

session processing, 20-10

session release, 20-16

SIAENTITY structure, 206

siainit command, 20-5

siaog file, 20-8

vouching, 20-9

signal system audit mask, 10-7

secure response to, 164 system call
signal routine, 164 common return value, 162
SIGQUIT signal security consideration for afailed call, 16-2
security consideration, 164 system console, 144, 14-5
SIGTRAP signal system defaults database
security consideration, 164 description, 17-8, 6-12
single-user mode, 144 undefined fields, 172
site event mask, 10-24 updating, 8-2
site-defined audit events, 10-22 system startup, 14-1
site_eventsfile, 10-22
standalone system T
ACLs, 11-6 TCB, 15-4, 6-2

startup script, 184
state-dependent audit events, 10-25
sticky bit, 156
setting, 2-9
using to secure temporary files, 16-3
UUCP directory, 3-6
sticky directory, 2-9
strong symbols, E-1

defining a trusted system, 6-2

executable file, 15-5

hardware privilege, 6-2

indirect programs, 154

kernel, 6-2

security configuration, 15-1

trusted program, 154

trusted system directories, 15-2
Itcbffiles/auth directory, 17-9
Itcb/files/auth/r/root file, 14-3
TCP/IP protocol, 3-1
temporary files, 16-2, 17-8
terminal authorization list, 2-2
terminal break-in configuration, 7-8
terminal character-mode, 2-1
terminal control database, 12-1, 17-2, 17-9,

6-13, 8-2

terminal devices, assigning, 7-10, 8-1

su command, 2-6
set secure keyboard, 44
subset installation, 7-1
subsets, security, 1-3
SUID
set user |D on execution, 2—-10
set user ID programs, 16-1
supplementary groups, 2-2
symbol preemption, E-1
symboalic link
ACL, 21-2
system administrator
See also role responsibilities
remote file transfer concerns, 3-4
tasks, 7-9

terminal file descriptors
invalidating, 2-9
terminal session
security suggestions, 3-7

Index—-13

tftp command
description of, 34
TFTP protocoal, 3-1
time delay, 17-10
tip command, 3-6
tmp file
security consideration, 16-3
tokens, 19-3
tools for auditing, 10-2
tracing system calls, 10-37
traditional file protection mechanism
group, 5-5
owner, 5-5
permission bits, 5-5
traditional logging,log files, 10-36
traditional security, 1-1
trojan horse program, 3-7
troubleshooting, 14-1
trusted computing base
See TCB
trusted event, 10-26
AUDGENS, 10-27
LOGIN, 10-27
trusted path, C-3
trusted program, 154
trusted program auditing, 19-1
tty* file, 14-5

U

ULTRIX audit compatibility, C-5
ULTRIX authentication files, C-3
ULTRIX interoperability issues, C-5
ULTRIX migration issues, C-1
umask

ACL, 21-7

Index—-14

umask system call
using to secure temporary files, 16-3
undefined field, 17-2
UNIX-to-UNIX Copy Program
See UUCP
unlink system call
protecting file access, 16-3
update installation, 7-1
user audit mask, 107
user 1D, 2-2
effective (EUID), 2-2
real (RUID), 2-2
user input
security consideration, 16-5
{usr/spool/uucppublic, 3-6
lusritmp file
tmp file, 16-3
uucp command, 3-6
UUCP utility, 3-5t0 3-8
uux command, 3-7

Vv

vouching, 20-9
vouching configuration, 7-9

w

weak symbols, E-1
windowing environment, 4-1
working storage
ACL, 214
workstation
See also DECwindows
physical security, 46
protecting removable media, 4-6

workstation environment, 4-1
write access

ACL definition, 21-3
writing database entries, 17-6

X

X displays, 8-2
xauth program, 44
Xdefaults file, 4-3

block input with allowSendEvents, 4-5
XGrabKeyboard() routine, 16-5
X1sso program, 10-28, 6-6
XReparentWindow() routine

using in a secure environment, 16—7
XSendEvent() routine, 166
XSysAdmin program, 6-6

Index—-15

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor
Internal2 _— SSB Order Processing — NQO/V 19

or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

aFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Security
AA-QOR2D-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

e This postage-paid form

* Internet electronic mail: r eaders_coment @k3. dec. com

* Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y 32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manua says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Usability (ability to access information quickly)

Please list errorsyou have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the softwar e described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

_______ Do Not Cut or Tear — Fold Here and Tape ____ _ el __.

™
Hﬂﬂﬂnau NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
UEG PUBLICATIONS MANAGER
ZKO3-3/Y32

110 SPIT BROOK RD

NASHUA NH 03062-9987

Do Not Cut or Tear — Fold Here

Cut on
Dotted
Line

