
DIGITAL UNIX
System Configuration and Tuning

Part Number: AA-Q0R3F-TE

December 1997

Product Version: DIGITAL UNIX Version 4.0D

This manual describes how to set up and tune high-performance and
high-availability systems running the DIGITAL UNIX operating system.

Digital Equipment Corporation
Maynard, Massachusetts

© Digital Equipment Corporation 1997
All rights reserved.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP,
AlphaGeneration, AlphaServer, AltaVista, ATMworks, AXP, Bookreader, CDA, DDIS, DEC, DEC Ada,
DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem, DECterm, DECUS, DECwindows, DTIF,
Massbus, MicroVAX, OpenVMS, POLYCENTER, Q–bus, StorageWorks, TruCluster, ULTRIX, ULTRIX
Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and the
DIGITAL logo.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

Prestoserve is a trademark of Legato Systems, Inc.; the trademark and software are licensed to Digital
Equipment Corporation by Legato Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from DIGITAL or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety and
health of its employees, customers, and the community.

Contents

About This Manual

1 Introduction to High-Performance and High-Availability Systems
1.1 Terminology and Concepts 1–1
1.1.1 System Configuration 1–1
1.1.2 System Performance 1–3
1.1.3 Disk Performance 1–3
1.1.4 High Availability 1–5
1.2 Understanding High Availability 1–6
1.2.1 Eliminating Points of Failure 1–8
1.2.2 Increasing System Availability 1–10
1.2.3 Increasing Data Availability 1–11
1.2.4 Achieving High Availability and High Performance 1–12
1.3 Understanding High Performance 1–13
1.4 Planning Your Configuration 1–14
1.4.1 Understanding Your Workload 1–15
1.4.2 Determining Performance and Availability Goals 1–16
1.4.3 Choosing an Appropriate Configuration 1–17
1.5 Primary Configuration and Tuning Recommendations 1–20
1.6 Steps to Configure and Tune Systems 1–22

2 Diagnosing Performance Problems
2.1 Checking System Performance 2–1
2.2 Obtaining Performance Information 2–2
2.2.1 Configuring Event Logging 2–3
2.2.2 Setting up System Accounting and Disk Quotas 2–4
2.2.3 Choosing How to Monitor System Events 2–4
2.2.3.1 Using DECevent 2–5
2.2.3.2 Using Performance Manager 2–5
2.2.3.3 Using Performance Visualizer 2–6
2.2.4 Gathering Performance Statistics 2–7
2.3 Performance Monitoring Tools Overview 2–7
2.4 Gathering CPU and Virtual Memory Information 2–19
2.4.1 Using ps to Display CPU and Memory Usage 2–20

Contents iii

2.4.2 Using vmstat to Display Virtual Memory and CPU
Statistics 2–22

2.4.3 Using uptime to Display the Load Average 2–24
2.4.4 Using swapon to Display Swap Space Usage 2–25
2.4.5 Checking CPU Usage With kdbx cpustat 2–25
2.4.6 Checking Lock Usage With kdbx lockstats 2–26
2.4.7 Checking Virtual Memory With dbx vm_perfsum 2–26
2.5 Gathering General Disk Information 2–28
2.5.1 Using iostat to Display Disk Usage 2–28
2.5.2 Checking the namei Cache With dbx nchstats 2–29
2.5.3 Checking the UBC With dbx vm_perfsum 2–30
2.5.4 Monitoring CAM Data Structures With dbx 2–32
2.6 Gathering UFS Information 2–34
2.6.1 Using dumpfs to Display UFS Information 2–34
2.6.2 Checking UFS Clustering With dbx ufs_clusterstats 2–35
2.6.3 Checking the Metadata Buffer Cache With dbx bio_stats 2–36
2.7 Gathering AdvFS Information 2–37
2.7.1 Using advfsstat to Display AdvFS Performance

Information 2–37
2.7.2 Using advscan to Identify Disks in an AdvFS File

Domain 2–39
2.7.3 Using showfdmn to Display AdvFS File Domain

Information 2–40
2.7.4 Using showfile to Display AdvFS File Information 2–41
2.7.5 Using showfsets to Display AdvFS Filesets in a File

Domain 2–42
2.8 Gathering LSM Information 2–42
2.8.1 Using volprint to Display LSM Configuration

Information 2–42
2.8.2 Using volstat to Display LSM Performance Information . 2–43
2.8.3 Using voltrace to Display LSM I/O Operation

Information 2–44
2.8.4 Using volwatch to Monitor LSM Failures 2–44
2.8.5 Using dxlsm to Display LSM Configuration Information . 2–44
2.9 Gathering Network Information 2–45
2.9.1 Using netstat to Display Network Information 2–45
2.9.2 Using nfsstat to Display Network and NFS Information . 2–48
2.9.3 Checking Socket Listen Queue Statistics With sysconfig . 2–50
2.9.4 Using ps to Display Idle Thread Information 2–50
2.10 Gathering Profiling and Debugging Information 2–51
2.11 Modifying the Kernel 2–51

iv Contents

2.11.1 Using dbx to Display and Modify Run-Time Kernel
Variables 2–52

2.11.2 Using the Kernel Tuner to Display and Modify Attributes 2–54
2.11.3 Using the sysconfig Command to Display and Modify

Run-Time Attributes 2–54
2.11.4 Using the sysconfigdb Command to Modify Attributes 2–55
2.11.5 Modifying Parameters in the System Configuration File . 2–56

3 Optimizing Applications and CPU Performance
3.1 Configuring CPU Resources 3–1
3.2 Identifying CPU Bottlenecks 3–2
3.3 Optimizing CPU Resources 3–3
3.4 Identifying Application Bottlenecks 3–4
3.5 Improving Application Performance 3–4
3.6 Interprocess Communications Facilities 3–5

4 Configuring and Tuning Memory
4.1 Understanding Memory Management 4–1
4.2 Understanding Memory Hardware 4–3
4.3 Understanding Virtual Memory 4–5
4.3.1 Allocating Virtual Address Space to Processes 4–6
4.3.2 Translating Virtual Addresses to Physical Addresses 4–7
4.3.3 Page Faulting 4–7
4.3.4 Managing and Tracking Pages 4–9
4.3.5 Prewriting Modified Pages 4–10
4.3.6 Using Attributes to Control Paging and Swapping 4–10
4.3.7 Using Attributes to Control UBC Memory Allocation 4–12
4.3.8 Paging Operation 4–13
4.3.9 Swapping Operation 4–14
4.3.10 Using Swap Buffers 4–15
4.4 Understanding the Unified Buffer Cache 4–15
4.5 Understanding the Metadata Buffer Cache 4–16
4.6 Configuring Memory and Swap Space 4–16
4.6.1 Determining Your Physical Memory Requirements 4–17
4.6.2 Configuring Swap Space 4–17
4.6.3 Choosing a Swap Space Allocation Mode 4–18
4.7 Tuning Virtual Memory 4–19
4.7.1 Reducing the Number of Processes Running

Simultaneously 4–23
4.7.2 Reducing the Static Size of the Kernel 4–23
4.7.3 Increasing the Available Address Space 4–23

Contents v

4.7.4 Increasing the Available System Resources 4–24
4.7.5 Increasing the Number of Memory-Mapped Files 4–26
4.7.6 Increasing the Number of Pages With Individual

Protections 4–26
4.7.7 Increasing the Size of a System V Message and Queue .. . 4–26
4.7.8 Increasing the Size of a System V Shared Memory

Region 4–27
4.7.9 Increasing the Minimum Size of a System V Shared

Memory Segment 4–27
4.7.10 Reducing Application Memory Requirements 4–27
4.7.11 Reducing the Memory Available to the UBC 4–28
4.7.12 Changing the Rate of Swapping 4–29
4.7.13 Controlling Dirty Page Prewriting 4–30
4.7.14 Modifying the Size of the Page-In and Page-Out Clusters 4–30
4.7.15 Modifying the Swap I/O Queue Depth for Pageins and

Swapouts 4–31
4.7.16 Modifying the Swap I/O Queue Depth for Pageouts 4–31
4.7.17 Modifying the UBC Write Device Queue Depth 4–32
4.7.18 Controlling Large File Caching 4–32
4.7.19 Increasing the Paging Threshold 4–33
4.7.20 Enabling Aggressive Task Swapping 4–33
4.7.21 Decreasing the Size of the Metadata Buffer Cache 4–34
4.7.22 Decreasing the Size of the namei Cache 4–34
4.7.23 Decreasing the Size of the AdvFS Buffer Cache 4–34
4.7.24 Reserving Physical Memory for Shared Memory 4–34
4.7.24.1 Tuning the Kernel to Use Granularity Hints 4–35
4.7.24.2 Modifying Applications to Use Granularity Hints 4–36
4.8 Tuning the UBC 4–37
4.8.1 Increasing the Maximum Size of the UBC 4–38
4.8.2 Decreasing the Amount of Borrowed Memory 4–39
4.8.3 Increasing the Minimum Size of the UBC 4–39
4.8.4 Using mmap in Your Applications 4–40
4.9 Tuning the Metadata Buffer Cache 4–40
4.9.1 Increasing the Size of the Metadata Buffer Cache 4–40
4.9.2 Increasing the Size of the Hash Chain Table 4–41

5 Configuring and Tuning Storage Subsystems
5.1 Understanding Storage Subsystems 5–1
5.2 Choosing How to Manage Disks and Files 5–3
5.2.1 Understanding RAID Levels and Products 5–4
5.2.1.1 Hardware RAID Subsystem Features 5–7

vi Contents

5.2.1.2 LSM Features 5–9
5.2.2 Understanding AdvFS 5–10
5.3 General Disk Storage Guidelines 5–11
5.3.1 High-Performance Hardware Guidelines 5–11
5.3.1.1 Using Fast Disks 5–12
5.3.1.2 Using Disks with Small Platters 5–12
5.3.1.3 Using Disks with Wide Data Paths 5–13
5.3.1.4 Using Solid-State Disks 5–13
5.3.1.5 Using High-Performance Host Bus Adapters 5–13
5.3.1.6 Using DMA Host Bus Adapters 5–13
5.3.1.7 Using Prestoserve 5–14
5.3.1.8 Using Write-Back Caches 5–14
5.3.2 Distributing the Disk I/O Load Guidelines 5–14
5.3.2.1 Distributing Swap Space Across Disks and Buses 5–15
5.3.2.2 Distributing I/O Across Disks and Buses 5–15
5.3.2.3 Distributing File Systems Across Disks 5–15
5.3.2.4 Placing Data at the Beginning of ZBR Disks 5–16
5.3.3 General File System Tuning Guidelines 5–16
5.3.3.1 Increasing the Maximum Number of Open Files 5–18
5.3.3.2 Increasing the Size of the namei Cache 5–18
5.3.3.3 Increasing the Size of the Hash Chain Table for the

namei Cache 5–18
5.3.3.4 Allocating More Memory for the UBC 5–19
5.3.3.5 Using Prestoserve to Cache Only File System

Metadata 5–19
5.3.3.6 Caching More Free vnodes 5–19
5.3.3.7 Increasing the Time vnodes Remain on the Free List 5–20
5.3.3.8 Delaying the Deallocation of vnodes 5–20
5.3.3.9 Accelerating the Deallocation of vnodes 5–20
5.3.3.10 Disabling vnode Deallocation 5–20
5.3.3.11 Modifying the Maximum Number of Open File

Descriptors 5–20
5.3.3.12 Disabling Clearing of the DMA Scatter/Gather Map

Registers 5–21
5.4 Using the Logical Storage Manager 5–21
5.4.1 Basic LSM Configuration Guidelines 5–22
5.4.1.1 Initializing LSM Disks as Sliced Disks 5–22
5.4.1.2 Increasing the Maximum Number of LSM Volumes . . 5–23
5.4.1.3 Sizing the rootdg Disk Group 5–23
5.4.1.4 Sizing Private Regions 5–23

Contents vii

5.4.1.5 Making Private Regions in a Disk Group the Same
Size 5–23

5.4.1.6 Grouping Disks in Disk Groups 5–24
5.4.1.7 Choosing the Number and Size of the Database and

Log Copies 5–24
5.4.1.8 Distributing the Database and Log Copies Across

Buses 5–25
5.4.2 LSM Mirrored Volume Configuration Guidelines 5–25
5.4.2.1 Mirroring Volumes Across Different Buses 5–26
5.4.2.2 Choosing a Read Policy for a Mirrored Volume 5–27
5.4.2.3 Using Multiple Plexes in a Mirrored Volume 5–27
5.4.2.4 Using a Symmetrical Configuration 5–27
5.4.2.5 Using Multiple BCL Subdisks 5–27
5.4.2.6 Using a Write-Back Cache with LSM 5–28
5.4.2.7 Sizing BCL Subdisks 5–28
5.4.2.8 Placing BCL Logging Subdisks on Infrequently Used

Disks 5–28
5.4.2.9 Using Solid-State Disks for BCL Subdisks 5–28
5.4.3 LSM Striped Volume Configuration Guidelines 5–28
5.4.3.1 Increasing the Number of Disks in a Striped Volume 5–29
5.4.3.2 Distributing Striped Volume Subdisks Across

Different Buses 5–29
5.4.3.3 Choosing the Correct Stripe Width 5–30
5.4.4 LSM Tuning Guidelines 5–30
5.5 Hardware RAID Subsystem Configuration Guidelines 5–31
5.5.1 Distributing Storage Set Disks Across Buses 5–32
5.5.2 Using Disks with the Same Data Capacity 5–32
5.5.3 Choosing the Correct Chunk Size 5–32
5.5.4 Striping Mirrored Sets 5–33
5.5.5 Using a Write-Back Cache 5–33
5.5.6 Using Dual-Redundant Controllers 5–34
5.5.7 Using Spare Disks 5–34
5.6 Using the Advanced File System 5–34
5.6.1 AdvFS Configuration Guidelines 5–34
5.6.1.1 Using Multiple-Volume File Domains 5–35
5.6.1.2 Improving the Transaction Log Performance 5–36
5.6.1.3 Improving Bitmap Metadata Table Performance 5–36
5.6.1.4 Striping Files 5–38
5.6.1.5 Using AdvFS Quotas 5–38
5.6.2 AdvFS Tuning Guidelines 5–38
5.6.2.1 Modifying the Size of the AdvFS Buffer Cache 5–40

viii Contents

5.6.2.2 Defragmenting a File Domain 5–40
5.6.2.3 Increasing the Dirty Data Caching Threshold for a

Volume 5–41
5.6.2.4 Decreasing the I/O Transfer Read-Ahead Size 5–41
5.6.2.5 Disabling the Flushing of Dirty mmapped Pages 5–41
5.6.2.6 Modifying the AdvFS Device Queue Limit 5–42
5.6.2.7 Consolidating I/O Transfers 5–43
5.6.2.8 Forcing Synchronous Writes 5–43
5.6.2.9 Moving the Transaction Log 5–43
5.6.2.10 Balancing a Multivolume File Domain 5–43
5.6.2.11 Migrating Files Within a File Domain 5–44
5.7 Using the UNIX File System 5–44
5.7.1 UFS Configuration Guidelines 5–44
5.7.1.1 Modifying the File System Fragment Size 5–45
5.7.1.2 Reducing the Density of inodes 5–45
5.7.1.3 Allocating Blocks Contiguously 5–46
5.7.1.4 Increasing the Number of Blocks Combined for a

Read 5–46
5.7.1.5 Using a Memory File System 5–46
5.7.1.6 Using UFS Disk Quotas 5–46
5.7.2 UFS Tuning Guidelines 5–47
5.7.2.1 Defragmenting a File System 5–47
5.7.2.2 Delaying Full Write Buffer Flushing 5–48
5.7.2.3 Increasing the Number of Blocks Combined for Read

Ahead 5–48
5.7.2.4 Increasing the Number of Blocks Combined for a

Write 5–48
5.7.2.5 Increasing the Number of UFS or MFS Mounts 5–49
5.8 Tuning CAM 5–49

6 Tuning the Network Subsystem
6.1 Tuning Networks 6–1
6.1.1 Improving the Lookup Rate for TCP Control Blocks 6–3
6.1.2 Tuning the Socket Listen Queue Limits 6–3
6.1.3 Increasing the Maximum Number of Concurrent

Nonreserved Dynamically Allocated Ports 6–4
6.1.4 Enabling TCP keepalive Functionality 6–5
6.1.5 Improving the Lookup Rate for IP Addresses 6–6
6.1.6 Decreasing the Partial TCP Connection Timeout Limit . . 6–6
6.1.7 Decreasing the TCP Connection Context Timeout Limit . 6–7
6.1.8 Decreasing the TCP Retransmission Rate 6–7

Contents ix

6.1.9 Disabling Delaying the Acknowledgment of TCP Data . . 6–7
6.1.10 Increasing the Maximum TCP Segment Size 6–8
6.1.11 Increasing the Transmit and Receive Buffers for a TCP

Socket 6–8
6.1.12 Increasing the Transmit and Receive Buffers for a UDP

Socket 6–8
6.1.13 Allocating Sufficient Memory to the UBC 6–8
6.1.14 Disabling Use of a PMTU 6–9
6.2 Tuning the Network File System 6–9
6.2.1 Using Prestoserve to Improve Server Performance 6–10
6.2.2 Using the Appropriate Number of nfsd Daemons 6–10
6.2.3 Using the Appropriate Number of nfsiod Daemons 6–11
6.2.4 Increasing the Number of Threads 6–11
6.2.5 Modifying Cache Timeout Limits 6–11
6.2.6 Decreasing Network Timeouts 6–12
6.2.7 Using NFS Protocol Version 3.0 6–12

A Tuning Special Configurations
A.1 Tuning Internet Servers A–1
A.2 Tuning a Low-Memory Workstation A–2
A.2.1 Attribute Settings for Low-Memory Workstations A–2
A.2.2 Swap Space and Memory Tuning on Low-Memory

Systems A–3
A.2.3 X Window System Considerations for Low-Memory

Workstations A–3

B Configuration Attribute Definitions
B.1 AdvFS Subsystem Attributes B–2
B.2 TTY Subsystem Attribute B–4
B.3 Configuration Manager Subsystem Attribute B–4
B.4 DLI Subsystem Attributes B–4
B.5 Generic Kernel Subsystem Attributes B–5
B.6 Internet Subsystem Attributes B–8
B.7 I/O Subsystem Attributes B–13
B.8 IPC Subsystem Attributes B–15
B.9 LSM Subsystem Attributes B–18
B.10 Network Subsystem Attributes B–18
B.11 Prestoserve Subsystem Attribute B–18
B.12 Process Subsystem Attributes B–19
B.13 Pseudoterminal Subsystem Attribute B–22
B.14 Real-Time Subsystem Attributes B–22

x Contents

B.15 Security Subsystem Attributes B–24
B.16 SNMP Information Subsystem Attribute B–24
B.17 Socket Subsystem B–25
B.18 STREAMS Subsystem Attributes B–26
B.19 UFS Subsystem Attributes B–26
B.20 VFS Subsystem Attributes B–27
B.21 Virtual Memory Subsystem Attributes B–30
B.22 XPR Subsystem Attributes B–38

Glossary

Index

Figures
1–1 Configuration With Potential Points of Failure 1–7
1–2 Fully Redundant Cluster Configuration 1–10
1–3 Configuration and Tuning Process 1–24
4–1 Physical Memory Usage 4–2
4–2 Moving Instructions and Data Through the Memory

Hardware 4–4
4–3 Time Consumed to Access Storage Locations 4–5
4–4 Virtual Address Space Usage 4–6
4–5 Virtual-to-Physical Address Translation 4–7
4–6 Paging and Swapping Attributes − Default Values 4–11
4–7 UBC Memory Allocation 4–12
4–8 Paging Operation 4–14

Tables
1–1 Increasing System Availability 1–11
1–2 Increasing Data Availability 1–12
1–3 Impact of High Availability on System Performance 1–12
1–4 Application Characteristics 1–15
1–5 User Characteristics 1–16
1–6 System Characteristics 1–19
1–7 System Requirements 1–19
2–1 CPU and Memory Monitoring Tools 2–8
2–2 General Disk Monitoring Tools 2–10
2–3 UFS Monitoring Tools 2–11
2–4 AdvFS Monitoring Tools 2–12
2–5 LSM I/O Performance and Event Monitoring Tools 2–13

Contents xi

2–6 Network Monitoring Tools 2–14
2–7 Profiling and Debugging Tools 2–17
4–1 Memory Management Hardware Resources 4–3
4–2 Primary Virtual Memory Tuning Guidelines 4–20
4–3 Advanced Virtual Memory Tuning Guidelines 4–22
4–4 Guidelines for Tuning the UBC 4–38
4–5 Guidelines for Tuning the Metadata Buffer Cache 4–40
5–1 RAID Level Performance and Availability Features 5–6
5–2 Guidelines for High-Performance Hardware Configurations . . 5–11
5–3 Guidelines for Distributing the Disk I/O Load 5–15
5–4 Guidelines for General File System Tuning 5–17
5–5 Guidelines for LSM Disks, Disk Groups, and Databases 5–22
5–6 Configuration Database and Kernel Change Log Guidelines . 5–24
5–7 Guidelines for LSM Mirrored Volumes 5–26
5–8 Guidelines for LSM Block-Change Logging 5–26
5–9 Guidelines for LSM Striped Volumes 5–29
5–10 Guidelines for Configuring Hardware RAID Subsystems 5–31
5–11 AdvFS Configuration Guidelines 5–35
5–12 BMT Sizing Guidelines 5–37
5–13 AdvFS Tuning Guidelines 5–39
5–14 UFS Configuration Guidelines 5–45
5–15 UFS Tuning Guidelines 5–47
6–1 Network Tuning Guidelines 6–2
6–2 Guidelines for NFS Tuning 6–9

xii Contents

About This Manual

This manual contains information about configuring systems for high
performance and high availability. It describes how to determine the needs
of your environment, including performance and availability requirements,
and how to configure a system that will meet your current and future needs.
This manual also describes how to tune systems to improve performance.

For DIGITAL UNIX Version 4.0D and higher, DIGITAL recommends that
you use the graphical user interface (GUI) to system administration. This
GUI is presented by SysMan, an application that is loaded by default when
the Common Desktop Environment (CDE) software is loaded on your
system. If your system is a workstation or a server with the CDE software,
the SysMan applications are available in the Application Manager. You can
access the Application Manager from the CDE Front Panel by clicking on
its icon. The SysMan applications are organized into five groups within the
System_Admin group. Double click on the System_Admin group to access
the SysMan Configuration Checklist, the Welcome to SysMan online help
volume, and the five application groups. See the System Administration
manual for more information about accessing SysMan.

Audience

This manual is intended for system administrators who are responsible for
managing a DIGITAL UNIX operating system. Administrators should have
an in-depth knowledge of operating system concepts, commands, and
utilities. It is also important for administrators to understand how their
systems are being used. Such an understanding is crucial to successfully
tuning a system for better performance.

Organization

This manual consists of six chapters, two appendixes, and a glossary:

Chapter 1 Introduces the terms and concepts related to performance and
availability.

Chapter 2 Describes the tools for analyzing system resource usage.

Chapter 3 Describes how to optimize applications and CPU usage.

About This Manual xiii

Chapter 4 Describes how to configure and tune the memory subsystem for high
performance.

Chapter 5 Describes how to configure and tune your storage subsystem for high
performance.

Chapter 6 Describes how to tune your network subsystem for high performance.

Appendix A Describes tuning guidelines for special types of systems.

Appendix B Describes kernel subsystem attributes.

Glossary Lists terms relating to system performance and availability.

Related Documents

The System Administration manual provides information on managing and
monitoring your system. The Programmer’s Guide provides information on
the tools for programming on the DIGITAL UNIX operating system. It also
provides information on how to optimize the code used to create an
application program, and how to optimize the results of the build process.
The Asynchronous Transfer Mode manual contains information about
tuning Asynchronous Transfer Mode (ATM).

The following manuals also provide useful, relevant information:

• Technical Overview

• Network Administration

• Logical Storage Manager

• AdvFS Guide to File Administration

• DIGITAL Systems & Options Catalog

The printed version of the DIGITAL UNIX documentation set is color coded
to help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from DIGITAL.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General users G Blue

System and network administrators S Red

Programmers P Purple

xiv About This Manual

Audience Icon Color Code

Device driver writers D Orange

Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the DIGITAL UNIX documentation set.

Reader’s Comments

DIGITAL welcomes any comments and suggestions you have on this and
other DIGITAL UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of DIGITAL UNIX that you are using.

• If known, the type of processor that is running the DIGITAL UNIX
software.

About This Manual xv

The DIGITAL UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate DIGITAL technical support office.
Information provided with the software media explains how to send
problem reports to DIGITAL.

Conventions

The following conventions are used in this manual:

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | } In syntax definitions, brackets indicate items that

are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

cat (1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat (1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

xvi About This Manual

1
Introduction to High-Performance and

High-Availability Systems

Businesses want a computing environment that is dependable and able to
handle the workload placed on that environment. Users and applications
place different demands on a system, and both require consistent
performance with minimal down time. A system also must be able to
absorb an increase in workload without a decline in performance. By
following the guidelines in this manual, you can configure and tune a
dependable, high-performance system that will meet your current and
future computing needs.

This chapter introduces you to the process of configuring a system and
includes information about the following topics:

• Common terms related to performance and availability (Section 1.1)

• How to obtain high availability and high performance (Section 1.2 and
Section 1.3)

• How to plan your configuration (Section 1.4)

• Configuration and tuning recommendations (Section 1.5)

• The steps to configure and tune systems (Section 1.6)

Later chapters provide detailed information about monitoring systems,
identifying performance problems, optimizing applications and the central
processing unit (CPU), and configuring and tuning the virtual memory,
storage, and network subsystems.

1.1 Terminology and Concepts

This section introduces the terms and concepts that are used to describe
performance and availability.

1.1.1 System Configuration

Your system configuration consists of a combination of hardware and
software for a single system or a cluster of systems. For example, CPUs,
memory boards, the operating system, and mirrored disks are parts of a
configuration. To configure a system, you need to set up a new or modify

Introduction to High-Performance and High-Availability Systems 1–1

an existing hardware or software configuration. For example, configuring
the I/O subsystem can include setting up mirrored disks.

Systems can be single-CPU systems or multiprocessor systems, which
allow two or more processors to share common physical memory. An
example of a multiprocessing system is a symmetrical multiprocessing
(SMP) system, in which the CPUs execute the same version of the operating
system, access common memory, and execute instructions simultaneously.

Certain types of environments, such as large database environments,
require multiprocessing systems and large storage configurations to handle
the workload. Very-large memory (VLM) systems utilize 64-bit
architecture, multiprocessing, and at least 2 GB of memory. Very-large
database (VLDB) systems are VLM systems that also use a large and
complex storage configuration. The following list describes the components
of a typical VLM/VLDB configuration:

• An SMP system with two or more high-speed CPUs

• More than 4 GB of physical memory

• Multiple high-performance host bus adapters

• RAID storage configuration for high performance and high availability

The virtual memory subsystem controls the allocation of memory to
processes by using a portion of physical memory, disk swap space, and
various daemons and algorithms. A page is the smallest portion of physical
memory that the system can allocate (8 KB of memory). Virtual memory
operation involves paging, reclaiming pages so they can be reused, and
swapping, writing a suspended process’ modified (dirty) pages to swap
space, which frees large amounts of memory.

After a system is configured, you may want to tune the system to improve
performance. You can tune a system by changing the values of kernel
variables in order to modify the kernel. Kernel variables affect the
behavior and performance of the kernel, the virtual memory subsystem, the
I/O subsystems, and applications. You can temporarily modify the kernel by
changing the kernel variables while the system is running, or you can
permanently modify the kernel by changing the values of attributes.

Use attributes to modify the kernel without rebuilding the kernel. In
some cases, you can modify the kernel by changing parameter values in
the system configuration file; however, you must rebuild the kernel to use
the new parameter values. See Section 2.11 for information about viewing
and modifying kernel variables, attributes, and parameters.

If tuning a system does not sufficiently improve performance, you may have
to reconfigure your system, which can involve adding CPUs or memory,
changing the storage configuration, or modifying the software application.

1–2 Introduction to High-Performance and High-Availability Systems

1.1.2 System Performance

System performance depends on an efficient utilization of system
resources, which are the hardware and software components (CPUs,
memory, networks, and disk storage) that are available to users or
applications. A system must perform well under the normal workload
exerted on the system by the applications and the users.

The system workload changes over time. You may add users or run
additional applications. You may need to reconfigure your system to handle
an increasing workload. Scalability refers to a system’s ability to utilize
additional resources with a predictable increase in performance, or the
ability to absorb an increase in workload without a significant performance
degradation.

A performance problem in a specific area of the configuration is called a
bottleneck. Potential bottlenecks include the virtual memory subsystem
and I/O buses. A bottleneck can occur if the workload demands more from a
resource than its capacity, which is the maximum theoretical throughput
of a system resource.

Performance is often described in terms of two rates. Bandwidth is the
rate at which an I/O subsystem or component can transfer bytes of data.
Bandwidth is often called the transfer rate. Bandwidth is especially
important for applications that perform large sequential data transfers.
Throughput is the rate at which an I/O subsystem or component can
perform I/O operations. Throughput is especially important for applications
that perform many small I/O operations.

Performance is also measured in terms of latency, which is the amount of
time to complete a specific operation. Latency is often called delay. High
system performance requires a low latency time. I/O latency is measured in
milliseconds; memory latency is measured in nanoseconds. Memory latency
depends on the memory bank configuration and the system’s memory
requirements.

1.1.3 Disk Performance

Disk performance is often described in terms of disk access time, which is
a combination of the seek time, the amount of time for a disk head to
move to a specific disk track, and the rotational latency, which is the
amount of time for a disk to rotate to a specific disk sector.

The Unified Buffer Cache (UBC) affects disk I/O performance. The UBC is
allocated a portion of physical memory to cache most-recently accessed file
system data. By functioning as a layer between the operating system and

Introduction to High-Performance and High-Availability Systems 1–3

the storage subsystem, the UBC is able to decrease the number of disk
operations.

Disk I/O performance also depends on the characteristics of the workload’s
I/O operations. Data transfers can be large or small and can involve
reading data from a disk or writing data to a disk.

Data transfers also have different access patterns. A sequential access
pattern is an access pattern in which data is read from or written to
contiguous (adjacent) blocks on a disk. A random access pattern is an
access pattern in which data is read from or written to blocks in different
(usually nonadjacent) locations on a disk.

In addition, data transfers can consist of file-system data or raw I/O,
which is I/O to a disk or disk partition that does not contain a file system.
Raw I/O bypasses buffers and caches, and it may provide better
performance than file system I/O. Raw I/O is often used by the operating
system and by database application software.

Disk I/O performance also is affected by the use of redundant array of
independent disks (RAID) technology, which can provide both high disk I/O
performance and high data availability. The DIGITAL UNIX operating
system provides RAID functionality by using the Logical Storage Manager
(LSM) software. DIGITAL UNIX also supports hardware-based RAID
products, which provide RAID functionality by using intelligent controllers,
caches, and software.

There are four primary RAID levels:

• RAID 0—Also known as disk striping, RAID 0 divides data into blocks
and distributes the blocks across multiple disks in a array. Distributing
the disk I/O load across disks and controllers improves disk I/O
performance.

• RAID 1—Also known as disk mirroring, RAID 1 maintains identical
copies of data on different disks in an array. Duplicating data on
different disks provides high data availability and improves disk read
performance.

• RAID 3—A type of parity RAID, RAID 3 divides data blocks and
distributes (stripes) the data across a disk array, providing parallel
access to data and increasing bandwidth. RAID 3 also provides high
data availability by placing redundant parity information on a separate
disk, which is used to regenerate data if a disk in the array fails.

1–4 Introduction to High-Performance and High-Availability Systems

• RAID 5—A type of parity RAID, RAID 5 distributes data blocks across
disks in an array. RAID 5 allows independent access to data and can
handle simultaneous I/O operations, which improves throughput. RAID
5 provides data availability by distributing redundant parity
information across the array of disks.

To address your performance and availability needs, you can combine some
RAID levels (for example, you can combine RAID 1 with RAID 0 to mirror
striped disks). Some hardware-based RAID products support adaptive
RAID 3/5 (also called dynamic parity RAID), which improves disk I/O
performance for a wide variety of applications by dynamically adjusting,
according to workload needs, between data transfer-intensive algorithms
and I/O operation-intensive algorithms.

See Section 5.2.1 for more information about RAID and RAID products.

1.1.4 High Availability

High availability is the ability of a resource to withstand a hardware or
software failure. Resources (for example, systems or disk data) can be made
highly available by using some form of resource duplication or
redundancy.

For example, you can make the data on a disk highly available by
mirroring that disk; that is, replicating the data on a different disk. If the
original disk fails, the copy is still available to users and applications. If
you use parity RAID, the redundant data is stored in the parity
information, which is used to regenerate data if a disk failure occurs.

In addition, you can make the network highly available by using redundant
network connections. If one connection becomes unavailable, you can still
use the other connection for network access. Network availability depends
on the application, the network configuration, and the network protocol.

To make a system highly available, you must set up a cluster, which is a
loosely coupled group of servers configured as cluster member systems. In a
cluster, software applications are capable of running on any member
system. Some applications can run on only one member system at a time;
others can run on multiple systems simultaneously. Cluster member
systems usually share highly available disk data, and some clusters
support a high-performance interconnect that enables fast and reliable
communications between members.

A cluster utilizes failover to ensure application and system availability. If
a member system fails, all cluster-configured applications running on that
system fail over to a different member system, which restarts the
applications and makes them available to users.

Introduction to High-Performance and High-Availability Systems 1–5

To completely protect a configuration from failure, you must eliminate each
point of failure. An example of a configuration that has no single point of
failure is as follows:

• A cluster to protect against a system failure

• Two network connections to protect against a network failure

• Disks mirrored across different buses to protect against a disk, bus, or
adapter failure

For increased availability, you can use multiple layers of redundancy to
protect against multiple failures. See Section 1.2 for more information
about availability.

Availability is also measured by a resource’s reliability, which is the
average amount of time that a component will perform before a failure that
causes a loss of data. It is often expressed as the mean time to data loss
(MTDL), the mean time to first failure (MTTF), and the mean time
between failures (MTBF).

1.2 Understanding High Availability

A resource that is highly available is resistant to specific hardware and
software failures. This is accomplished by duplicating resources (for
example, systems, network interfaces, or data), and may also include an
automatic failover mechanism that makes the resource failure virtually
imperceptible to users.

There are various degrees of high availability, and you must determine how
much you need for your environment. A configuration that has no single
point of failure is one in which you have duplicated each vital resource.
Environments that are not prone to failure or are able to accommodate
down time may only require data to be highly available.

Figure 1–1 shows a configuration that is vulnerable to multiple failures,
including system, network, disk, and bus failures.

1–6 Introduction to High-Performance and High-Availability Systems

Figure 1–1: Configuration With Potential Points of Failure

SCSI bus

ZK-1365U-AI

Client Client

Single
system

Network
adapter

Host bus
adapter

Network

Disks

The more levels of resource redundancy, the greater the resource
availability. Mission-critical operations and production environments often
require that resources be resistant to multiple failures. For example, if you
have only two cluster member systems and one fails, you now have a
potential point of failure (the remaining system), and your configuration is
vulnerable to down time. Therefore, a cluster with three or more member
systems has more levels of redundancy and higher availability than a
two-system cluster, because it can survive multiple system failures.

However, it is not always possible or practical to protect against every
possible failure scenario or to provide multiple levels of redundancy. When
planning your configuration, you must determine how much availability
you need and the best way to achieve it.

Software-based RAID (LSM) and hardware-based RAID products provide
you with various degrees of data availability. In addition, specific
configurations can improve data availability. For example, mirroring data
across buses protects against disk, bus, and adapter failures.

Introduction to High-Performance and High-Availability Systems 1–7

DIGITAL UNIX TruCluster TM products provide high system and
application availability. Brief descriptions of some cluster products are as
follows:

• TruCluster Available Server Software

Allows you to set up an available server environment (ASE), which
consists of systems and disk and tape devices that are connected to
shared SCSI buses. Together they provide highly available software and
data to client systems. An ASE uses failover to significantly reduce
down time due to hardware and software failures.

• TruCluster Production Server Software

Provides you with high performance and highly available access to
applications and data in a network environment. Production Server
significantly reduces down time caused by hardware and software
failures, and provides scalability beyond the limits of a single system. A
Production Server configuration is similar to an ASE, but it also uses a
PCI-based cluster interconnect that enables fast and reliable
communications between cluster members.

The following sections describe how to eliminate points of failure, and how
to increase resource availability.

1.2.1 Eliminating Points of Failure

When configuring a system for high availability, you must protect the
system’s resources from failure. The following list describes each potential
point of failure and how to eliminate it:

• System failure

If users and applications depend on the availability of a single system
for CPU, memory, data, and network resources, they will experience
down time if a hardware or software failure occurs (for example, a
system crashes or an application fails). To obtain protection against a
failure on a single system, you must set up a cluster with at least two
member systems. If a failure occurs on one member system, the
cluster-configured applications running on that system fail over to
another member system, which then runs the applications.

However, a two-member cluster is no longer a highly available
configuration if one member fails, because the remaining member is
now a potential point of failure. To protect against multiple system
failures, you must set up a cluster with more than two member systems.

• Disk failure

To protect against disk failure, mirror disks or use parity RAID.

1–8 Introduction to High-Performance and High-Availability Systems

• Host bus adapter or bus failure

To protect data against a host bus adapter or bus failure, mirror the
data across disks located on different buses.

• Network connection failure

Network connections may fail because of a failed network interface or a
problem in the network itself. To maintain network access if a network
connection fails, install more than one network interface in a system
and make sure that your applications support this functionality.

• Power failure

Systems and storage units are vulnerable to power failures. To protect
against a power supply failure, use redundant power supplies from
different power sources. You can also protect disks against a power
supply failure in a storage cabinet by mirroring the disks across
independently powered cabinets.

Use an uninterruptible power system (UPS) to protect against a total
power failure (for example, the power in a building fails). A UPS
depends on a viable battery source and monitoring software.

• Cluster interconnect failure

If a cluster supports high-performance cluster interconnects, you can
connect each member system to redundant (two) interconnects. If one
cluster interconnect fails, the cluster members can still communicate
over the remaining interconnect.

Figure 1–2 shows a fully redundant cluster configuration with no single
point of failure for the server systems.

Introduction to High-Performance and High-Availability Systems 1–9

Figure 1–2: Fully Redundant Cluster Configuration

Redundant
Cluster interconnects

Mirrored disk sets

ZK-1364U-AI

UPS

Client Client Client

Cluster member
system

Cluster member
system

Redundant
network
adapters

Multiple
host bus
adapters

Networks

Because you can never eliminate the possibility that multiple failures will
make a resource or component unavailable, you must repair or replace a
failed component as soon as possible to maintain some form of redundancy.
This will help to ensure that you do not experience down time.

1.2.2 Increasing System Availability

You must decide how much system availability you need and where a
system is most vulnerable to failure. Table 1–1 describes how to increase
the system availability by eliminating single points of failure, as well as
the tradeoffs.

1–10 Introduction to High-Performance and High-Availability Systems

Table 1–1: Increasing System Availability

To protect against: You can: Tradeoff:

Single system failure Set up a cluster with at
least two members

Cost of additional
hardware and software,
increased management
complexity

Use the lastest versions of
hardware, firmware, and
operating system

Possible down time
during upgrade

Multiple system failures Set up a cluster with more
than two members

Cost of additional
hardware and software,
increased management
complexity

Network connection failure Configure multiple network
connections

Cost of additional
hardware, requires I/O
slots

Cluster interconnect failure Set up a second cluster
interconnect

Cost of additional
hardware, uses a PCI
slot

Total power failure Use a battery-backed
uninterruptible power
system (UPS)

Cost of UPS hardware

Cabinet power supply
failure

Use redundant power
supplies or mirror disks
across cabinets with
independent power supplies

Cost of additional
hardware and decrease
in write performance
on mirrored disks

1.2.3 Increasing Data Availability

Not only is it important for users and applications to be able to access data
easily and quickly, data needs to be available. Table 1–2 describes how to
increase the availability of data by addressing points of failure, as well as
the tradeoffs.

Introduction to High-Performance and High-Availability Systems 1–11

Table 1–2: Increasing Data Availability

To protect against: You can: Tradeoff:

Disk failure Mirror disks Cost of additional disks
and decrease in write
performance

Use parity RAID Cost of additional hardware
and software, increase in
management complexity,
and performance impact
under write loads

Host bus adapter or bus
failure

Mirror data across disks on
different buses

Cost of additional
hardware and requires
additional I/O bus slots

System failure Set up a cluster Cost of additional hardware
and software, increase in
management complexity

Total power failure Use a battery-backed
uninterruptible power
system (UPS)

Cost of UPS hardware

Cabinet power supply
failure

Use redundant power
supplies or mirror disks
across cabinets with
independent power supplies

Cost of additional
hardware and decrease in
write performance on
mirrored disks

1.2.4 Achieving High Availability and High Performance

Configuring a system for high availability can affect performance,
depending on your configuration and the characteristics of your workload.
Table 1–3 shows how high-availability solutions affect system performance.

Table 1–3: Impact of High Availability on System Performance

Availability Solution Performance Impact

Mirroring disks Can improve disk read performance, but may cause a
degradation in write performance (you can mirror
striped disks to combine the performance benefits of
striping with high availability)

Mirroring disks across
different buses

Prevents a single bus from becoming an I/O bottleneck

Parity RAID Improves disk I/O performance only if all member
disks are available; performance degrades as disks fail

1–12 Introduction to High-Performance and High-Availability Systems

Table 1–3: Impact of High Availability on System Performance (cont.)

Availability Solution Performance Impact

Redundant network
connections

Improves network performance and increases client
access

Cluster Improves overall performance by spreading workload
across member systems, which provides applications
and users with more CPU and memory resources

1.3 Understanding High Performance

A system must have a dependable level of performance to meet the needs of
users and applications. You must configure your system so that it can
rapidly respond to the demands of a normal workload and maintain an
adequate level of performance if the workload increases.

Some environments require that a system be scalable. A scalable system
allows you to add hardware (for example, CPUs) to improve performance or
to absorb an increase in the workload.

You must understand the characteristics of your workload to determine the
level of performance you require, and which configuration will meet your
performance needs. Although some environments require the highest
possible performance, this level of performance may not be necessary or
cost effective.

System performance depends on the interaction between the hardware and
software configuration and the workload. A system that performs well must
use CPU, memory, and I/O resources efficiently. If a resource reaches its
capacity, it becomes a bottleneck and can degrade performance. Bottlenecks
are often interrelated; for example, insufficient memory can cause excessive
paging and swapping, which may result in a bottleneck in the disk I/O
subsystem.

To plan a configuration that will meet your performance needs, you must
identify which resources will have the biggest impact on performance. For
example, if your applications are CPU-intensive, you may want to consider
a system with multiple CPUs and sufficient memory bandwidth. If the
applications require a lot of memory, you must configure sufficient memory
for the system. An inadequate amount of memory will degrade the overall
system performance.

If your applications perform a large number of disk I/O operations,
configure your storage subsystem to prevent disk and bus bottlenecks. If
your system is an Internet server, you must be sure it can handle many
network requests. In addition, if you require both high availability and

Introduction to High-Performance and High-Availability Systems 1–13

high performance, you must determine how a high-availability
configuration impacts system performance.

After you plan and set up your configuration, you may be able to improve
performance by tuning the system. However, tuning may provide only
marginal performance improvements, so make sure that your configuration
is appropriate for your workload.

Performance problems can have various sources, including the following:

• Incorrect values for kernel variables

Depending on your configuration and workload, you may need to modify
some kernel variable values to obtain optimal performance.

• Incorrect configuration for the workload

If tuning the system does not improve performance, your configuration
may not be suitable for your workload. In addition, your resources may
be inadequate for the workload. For example, you may need to increase
your CPU or memory resources, upgrade to high-performance
hardware, or add disks.

• Fragmented disks

Disk fragmentation, in which file data is not contiguously located on a
disk, can degrade read and write performance because multiple I/O
operations are required to access a file.

• Poorly written or nonoptimized applications

If an application is the source of a performance problem, you must
rewrite or optimize the application.

The commands described in Chapter 2 can help you identify the source of a
performance problem.

1.4 Planning Your Configuration

To plan your DIGITAL UNIX configuration, follow these steps:

1. Understand your workload and the characteristics of the users and
applications.

2. Determine your performance and availability requirements.

3. Choose which hardware and software configuration will satisfy your
performance and availability needs.

The following sections describe these steps in detail.

1–14 Introduction to High-Performance and High-Availability Systems

1.4.1 Understanding Your Workload

Before choosing a configuration to meet your needs, you must determine
the impact of your workload on the system. To do this, you must
understand the characteristics of your applications and users and how they
utilize the software and hardware (for example, how they perform disk I/O).

Use Table 1–4 to help you understand application behavior. You may want
to duplicate and fill out this table for each application.

Table 1–4: Application Characteristics

Application Name:

Describe the application objectives.

Describe the performance requirements.

Is the application CPU-intensive?

What are the application’s memory needs?

How much disk storage does the application
require?

Does the application require high bandwidth
or throughput?

Does the application perform large
sequential data transfers?

Does the application perform many small
data transfers?

What is the size of the average data transfer?

What percentage of the data transfers are
reads?

What percentage of the data transfers are
writes?

Does the application perform many network
operations?

What are your system availability
requirements?

What are your data availability
requirements?

What are your network availability
requirements?

Use Table 1–5 to help you understand user behavior. Different users may
place different demands on the system. For example, some users may be

Introduction to High-Performance and High-Availability Systems 1–15

performing data processing, while others may be compiling code. You may
want to duplicate and fill out this table for each type of user.

Table 1–5: User Characteristics

User Type:

Describe the type of user.

Specify the number of users.

Describe the objectives of the users.

Describe the tasks that the users
perform.

List the applications run by the
users.

What are the data storage
requirements for the users?

After you understand how your applications and users use the hardware
and software, you can determine the performance and availability goals for
your environment.

1.4.2 Determining Performance and Availability Goals

Before you configure a system, you must determine the goals for the
environment in terms of the following criteria:

• Performance

You must determine an acceptable level of performance for the
applications and users. For example, may want a real-time
environment that responds immediately to user input, or you may want
an environment that has high throughput.

• Availability

You must determine how much availability is needed. Some
environments require only highly available data. Other environments
require you to eliminate all single points of failure.

• Cost

You must determine the cost limitations for the environment. For
example, solid-state disks provide high throughput and high
bandwidth, but at a high cost.

• Scalability

You must determine how future expansion will affect performance. Be
sure to include in your plans any potential workload increases and, if

1–16 Introduction to High-Performance and High-Availability Systems

necessary, choose a configuration that is scalable or can absorb an
increase in workload.

After you determine the goals for your environment, you can choose the
configuration that will meet the needs of the applications and users and
address your environment goals.

1.4.3 Choosing an Appropriate Configuration

After you understand the needs of your applications and users and
determine your performance and availability goals, choose the hardware
and software configuration that meets your needs.

You must choose a system that will provide the necessary CPU and memory
resources, and that will support your network and storage configuration.
Because systems have different characteristics and features, the type of
system you choose determines whether you can install additional CPU or
memory boards, connect multiple I/O buses, or use the system in a cluster.
Systems also vary in their scalability, which will determine whether you
can improve system performance by adding resources, such as CPUs.

A primary consideration for choosing a system is its CPU and memory
capabilities. Some systems support multiple CPUs. Another consideration
is the number of I/O bus slots in the system.

For detailed information about features for systems, network adapters,
host bus adapters, RAID controllers, and disks, see the DIGITAL Systems
& Options Catalog. For information about operating system hardware
support, see the DIGITAL UNIX Software Product Description.

When choosing a system that will meet your needs, you must determine
your requirements for the following hardware and functionality:

• Number and speed of CPUs

Only certain types of systems support multiprocessing. If your
environment is CPU-intensive or if your applications can benefit from
multiprocessing, you may want a system that supports multiple CPUs.

Depending on the type of multiprocessing system, you can install two or
more CPUs. You must determine the number of CPUs that you need,
and then choose a system that supports that number of CPUs and has
enough backplane slots available for the CPU boards.

CPUs have different processing speeds. If your environment is
CPU-intensive, you may want to choose a system that supports CPUs
with fast speeds. CPUs also have different sizes for on-chip caches,
which provide high performance. Some systems have secondary caches
that reside on the main processor board and some have tertiary caches.

Introduction to High-Performance and High-Availability Systems 1–17

See Chapter 3 for information about CPU configuration.

• Amount of memory and the number of memory boards

You must determine the total amount of memory that you need to
handle your workload. Insufficient memory resources will cause
performance problems. In addition, your memory bank configuration
will affect performance. You must choose a system that provides the
necessary amount of memory.

See Chapter 4 for information about memory requirements and
configuration.

• Cluster support

There are various cluster products that can provide you with high
system availability. However, you can use only specific systems,
adapters, controllers, and disks with the cluster products.

In addition, some cluster products use high-performance cluster
interconnects that are connected to PCI bus slots. You must ensure that
a cluster system has enough PCI slots for the cluster interconnects.

See a specific cluster product’s Software Product Description for
information about the systems and other hardware that can be used
with that product.

• Number and type of network adapters

Systems support a variety of network adapters that you use to connect
to a network. Adapters have different performance features. In
addition, you can use multiple network connections to improve network
availability. You must choose a system that supports the network
adapters that you require, and that has enough I/O slots available for
the adapters.

See Chapter 6 and the Network Administration manual for information
about network configuration.

• Number and type of host bus adapters

Systems use buses to communicate with devices. Host bus adapters are
used to communicate between buses. Host bus adapters are installed in
I/O bus slots, so you must choose a system that has enough I/O slots
available for the adapters.

See Chapter 5 for information about storage configurations.

• Number and type of RAID controllers

You can connect only a limited number of devices to a SCSI bus. The
SCSI-2 specification allows 8 devices on each SCSI bus, and the SCSI-3
specification allows 16 devices on a bus. A RAID controller allows you

1–18 Introduction to High-Performance and High-Availability Systems

to increase the number of SCSI buses that can be accessed through a
single I/O bus slot.

Some RAID controllers are installed directly in I/O bus slots, while
others are connected to systems through a host bus adapter installed in
an I/O bus slot. You must choose a system that supports RAID
controllers and has a sufficient number of I/O bus slots available for the
controllers.

See Chapter 5 for information about hardware RAID configurations.

Table 1–6 can help you identify the characteristics of a system that will
meet your needs.

Table 1–6: System Characteristics

If you require: You need a system that:

Multiprocessing support Supports multiprocessing and the number of CPUs
that you want.

Fast processing time Supports CPUs with fast speeds and fast memory.

Additional memory boards Has backplane slots available for memory boards.

Cluster support Supports the cluster product that you want to use.

Network adapters Supports the network adapters that you want to use,
and has an I/O slot available for each adapter.

Host bus adapters Supports the host bus adapters that you want to use,
and has an I/O slot available for each adapter.

RAID controllers Supports the RAID controllers that you want to use,
and has an I/O bus slot available for each controller.

Cluster interconnects Has a PCI slot available for each interconnect.

Fill in the requirements listed in Table 1–7 to get a profile of the system
that will meet your needs.

Table 1–7: System Requirements

Feature: Requirement:

Number of CPU boards:

CPU processing speed:

Total amount of memory:

Number of memory boards:

Cluster support:

Introduction to High-Performance and High-Availability Systems 1–19

Table 1–7: System Requirements (cont.)

Feature: Requirement:

Type and number of network
adapters:

Type and number of host bus
adapters:

Type and number of backplane
RAID controllers:

Number of cluster
interconnects:

1.5 Primary Configuration and Tuning Recommendations

This manual describes many configuration and tuning tasks that you can
use to improve system performance. Some of the recommendations can
greatly improve performance. However, many of the recommendations
provide only marginal improvement and should be used with caution.

To help you configure and tune your system, there are recommendations to
follow that will provide you with the best performance improvement for
most configurations. Many of these recommendations are used by the
sys_check utility, which gathers performance information and outputs
this information in an easy-to-read format. The sys_check utility uses
some of the tools described in Chapter 2 to check your configuration and
kernel variable settings and provides warnings and tuning
recommendations if necessary.

To obtain the sys_check utility, access the following location or call your
customer service representative:

ftp://ftp.digital.com/pub/DEC/IAS/sys_check

The following list describes the primary tuning recommendations. If these
recommendations do not solve your performance problem, use the other
recommendations described in this manual.

• Operating system and kernel recommendations

– Ensure that you are using the latest patches for the operating
system. Examine the system startup messages or use the DECevent
utility to show the operating system revision.

– Ensure that you are using the latest firmware for your system,
adapters, controllers, and disks. Examine the system startup
messages or use the DECevent utility to show firmware revisions.

1–20 Introduction to High-Performance and High-Availability Systems

– Ensure that important applications have high priority. Use the
nice command or the Class Scheduler to assign CPU priorities. See
Chapter 3.

– Apply any kernel variable modifications that are recommended for
your type of configuration (for example, an Internet server). See
Appendix A.

• Memory recommendations

– Ensure that you have sufficient memory for your configuration. See
Section 4.6.1.

– Ensure that your system has sufficient swap space and distribute
swap space across different disks and buses. See Section 4.6.2.

– Increase the address space available to processes. See Section 4.7.3.

– Increase the system resources available to processes. See
Section 4.7.4, Section 4.7.5, Section 4.7.6, Section 4.7.7,
Section 4.7.8 and Section 5.3.3.1.

– Reduce application memory requirements. See Section 4.7.10.

– If your system does few disk I/O operations, reduce the amount of
memory allocated to the Unified Buffer Cache (UBC). See
Section 4.8.

– Modify the rate of swapping. See Section 4.7.12.

– Modify the rate of dirty page prewriting. See Section 4.7.13.

• General disk and I/O recommendations

– Use high-performance hardware. See Section 5.3.1.

– Distribute disk I/O and file systems across different disks and
multiple buses. See Section 5.3.2.2 and and Section 5.3.2.3. You can
distribute disk and file system I/O by striping data across multiple
disks. See Section 5.2.1.

– Defragment file systems. See Section 5.6.2.2 and Section 5.7.2.1.

– If your applications are disk I/O-intensive, increase the amount of
memory allocated to the UBC. See Section 5.3.3.4.

– Increase the maximum number of open files. See Section 5.3.3.1.

– Increase the size of the namei cache. See Section 5.3.3.2.

• Advanced File System (AdvFS) recommendations

– Use multiple-volume file domains. See Section 5.6.1.1.

– Increase the amount of memory allocated to the AdvFS buffer cache.
See Section 5.6.2.1.

Introduction to High-Performance and High-Availability Systems 1–21

– Increase the dirty data caching threshold. See Section 5.6.2.3.

– Decrease the I/O transfer read-ahead size. See Section 5.6.2.4.

– Disable the flushing of dirty pages mapped with the mmapfunction
during a sync call. See Section 5.6.2.5.

– Modify the AdvFS device queue limit. See Section 5.6.2.6.

• UNIX File System (UFS) recommendations

– Modify the file system fragment size. See Section 5.7.1.1.

– Increase the size of metadata buffer cache. See Section 4.9.1.

– Delay flushing full write buffers to disk. See Section 5.7.2.2.

• Network recommendations (Internet servers)

– Increase the size of the hash table that the kernel uses to look up
TCP control blocks. See Section 6.1.1.

– Increase the limits for partial TCP connections on the socket listen
queue. See Section 6.1.2.

– Increase the maximum number of concurrent nonreserved,
dynamically allocated ports. See Section 6.1.3.

– Enable TCP keepalive functionality. See Section 6.1.4.

• Network File System (NFS) recommendations

– Ensure that you have a sufficient number of nfsd daemons running
on the server. See Section 6.2.2.

– Ensure that you have a sufficient number of nfsiod daemons
running on the client. See Section 6.2.3.

1.6 Steps to Configure and Tune Systems

Setting up and maintaining a high-performance or high-availability system
requires a number of steps. The process is as follows:

1. Configure the system.

To configure (or reconfigure) a system, you must determine the
requirements of your environment and choose a configuration to meet
your needs. Then, you can set up the hardware, operating system,
layered products, and applications.

2. Perform any recommended initial tuning tasks.

For some configurations, you may have to perform some tuning tasks
immediately after you configure your system. For example, if your
system is used as an Internet server, follow the recommendations to
modify the default values of system parameters and attributes.

1–22 Introduction to High-Performance and High-Availability Systems

3. Monitor system performance.

You must carefully monitor the performance of your system, as
described in Chapter 2.

If system performance is acceptable, you must continue to monitor the
system on a consistent basis, because performance may degrade if
resources reach their capacity or if there is a significant change in the
environment (for example, you increase the workload or you
reconfigure the system).

If system performance is not acceptable, you must determine the
source of the problem.

4. Identify the source of the performance problem.

Use the tools described in Chapter 2 to locate the source of the
problem. The DIGITAL Systems & Options Catalog contains
information about the capacity of hardware resources.

5. Determine if there is a tuning solution that will eliminate the
performance problem.

If there is no tuning solution or if you have exhausted all possible
tuning solutions, you may have to reconfigure the system to eliminate
the performance problem.

6. Eliminate the performance problem.

To eliminate a performance problem, first try simple, no-cost solutions,
such as running applications at offpeak hours or restricting disk access.
Then, you can try more complex and expensive solutions, such as
tuning the system or adding more hardware. Section 1.5 includes a list
of the primary tuning tasks that may help you to improve performance.

If you are sure your CPU and applications are optimized, tuning the
virtual memory subsystem provides the best performance benefit and
should be the primary area of focus. If tuning memory does not
eliminate the problem, tune the I/O subsystem. Tuning usually
requires modifying kernel attributes. However, you may be able to
improve system performance by performing some administrative tasks,
such as defragmenting file systems or modifying stripe widths.

7. Monitor system performance.

After you tune the system, you must carefully monitor the system to
ensure that the performance problem has been eliminated. If a tuning
recommendation does not eliminate the problem, try another
recommendation. If you cannot reduce or eliminate a performance
problem by tuning the system, you must reconfigure the system.

The flowchart shown in Figure 1–3 describes the configuration and tuning
process. Detailed information about diagnosing performance problems and

Introduction to High-Performance and High-Availability Systems 1–23

information about configuring and tuning the CPU, virtual memory,
storage, and networks is discussed in later chapters.

Figure 1–3: Configuration and Tuning Process

Configure the
System

Initial
Tuning

OK?
Change in

Environment

Identify
Performance

Problem

Tune to
Eliminate
Problem

Monitor
Performance

Monitor
Performance

OK?

No

No

No

Yes

Yes

Yes

ZK-1306U-AI

Tuning
Solution?

1–24 Introduction to High-Performance and High-Availability Systems

2
Diagnosing Performance Problems

To get the maximum performance from a system, you must eliminate any
performance bottlenecks. Diagnosing performance problems involves
identifying the problem (for example, excessive paging and swapping), and
then determining the source of the problem (for example, insufficient
memory or incorrect virtual memory subsystem attribute values).

This chapter describes how to gather and analyze information that will
help you diagnose performance problems. This chapter also describes how
to modify kernel variables, attributes, and parameters. Later chapters
describe how to correct performance problems found in various subsystems.

2.1 Checking System Performance

Although performance problems often are readily apparent (for example,
applications complete slowly or the system logs messages stating that it is
out of resources), other problems may not be obvious to users or
administrators. In addition, it may be difficult to identify the source of the
problem.

There are several ways to determine if a system has a performance
problem or if you can improve system performance. Some indications of
performance problems are as follows:

• Slow system response time

If users complain about a slow system response time, this may indicate
that processes are being swapped out because of a lack of memory. The
ps command displays information about swapped-out processes. See
Section 2.4.1 for more information.

• Slow application completion time

If the application completion time is inadequate, this may indicate
inadequate memory or CPU power, an I/O bottleneck, or a poorly
designed application. The ps command displays information about an
application’s use of system resources. See Section 2.4.1 for more
information.

Use process accounting commands to obtain information about a
process’ use of memory, CPU, and I/O resources and its completion
time. See accton (8) for more information.

Diagnosing Performance Problems 2–1

Use the profiling and debugging commands to analyze applications. See
Table 2–7 for more information.

• Unbalanced use of disks

Excessive activity on only a few disks may indicate an uneven
distribution of disk I/O. Use the iostat command to display the
utilization of disks. Use the swapon -s command to display the
utilization of swap disk space. Use the volstat command to display
information about the LSM I/O workload. See Section 2.4.4,
Section 2.5.1, and Section 2.8.2 for more information.

• Excessive paging and swapping

A high rate of paging and swapping may indicate inadequate memory
for the workload. Use the vmstat command to display information
about paging and memory consumption. See Section 2.4.2 for more
information.

• Slow or incomplete network connections

Prematurely dropped network connections may be the cause of network
performance problems. Use the netstat command to display
information about dropped network connections. See Section 2.9.1 for
more information. Use the ping command to determine if a remote
system is available. See ping (8) for more information.

• Event messages indicating problems in the system

The information in the ASCII system log files or the binary log files
may alert you to potential or existing performance problems. Use the
DECevent utility, the dia , or the uerf command to examine the binary
log files. See Section 2.2.1 for more information.

• Information from kernel and program analysis tools

The output of profiling and debugging tools that are used to analyze
code may indicate areas of code that are degrading performance or
using excessive resources. See Table 2–7 for more information.

The following sections describe how to obtain information that will help
you identify a performance problem and its source.

2.2 Obtaining Performance Information

To determine how your system is performing and to help diagnose
performance problems, you must obtain information about your system. To
do this, you need to log system events and monitor resources.

In addition, you must gather performance statistics under different
conditions. For example, gather information when the system is running

2–2 Diagnosing Performance Problems

well and when system performance is poor. This will allow you to compare
different sets of data.

After you set up your environment, immediately start to gather
performance information by performing the following tasks:

• Configure event logging (Section 2.2.1)

• Set up system accounting and disk quotas to track resource utilization
by each user (Section 2.2.2)

• Set up a routine to continuously monitor performance (Section 2.2.3)

• Gather initial performance statistics (Section 2.2.4)

The following sections describe these tasks in detail.

2.2.1 Configuring Event Logging

The DIGITAL UNIX operating system uses the system event-logging
facility and the binary event-logging facility to log system events. The log
files can help you diagnose performance problems.

The system event-logging facility uses the syslog function to log events in
ASCII format. The syslogd daemon collects the messages logged from the
various kernel, command, utility, and application programs. The daemon
then writes the messages to a local file or forwards the messages to a
remote system, as specified in the /etc/syslog.conf default
event-logging configuration file. See syslogd (8) for more information.

The binary event-logging facility detects hardware and software events in
the kernel and logs detailed information in binary format records. The
binary event-logging facility uses the binlogd daemon to collect various
event-log records. The daemon then writes these records to a local file or
forwards the records to a remote system, as specified in the
/etc/binlog.conf default configuration file.

You can examine the binary event log files by using the DECevent utility,
which translates the records from binary format to ASCII format.
DECevent features can analyze the information and isolate the cause of the
error. DECevent also can continuously monitor the log file and display
information about system events.

You must register a license Product Authorization Key (PAK) to use
DECevent’s analysis and notification features, or these features may also
be available as part of your DIGITAL service agreement. A PAK is not
needed to use DECevent to translate the binary log file to ASCII format.
See Section 2.2.3.1 for more information about DECevent.

Diagnosing Performance Problems 2–3

You can also use the dia or the uerf command to translate binary log files
to ASCII format. See dia (8) and uerf (8) for information.

After you install the operating system, you can customize system and
binary event logging by modifying the default configuration files. See the
System Administration manual and the Release Notes for more information
about configuring event logging.

2.2.2 Setting up System Accounting and Disk Quotas

System accounting allows you to obtain information about how users utilize
resources. You can obtain information about the amount of CPU time and
connect time, the number of processes spawned, memory and disk usage,
the number of I/O operations, and the number of printing operations.

Disk quotas allow you to limit the disk space available to users and to
monitor disk space usage. See the System Administration manual for
information about setting up system accounting and UNIX file system
(UFS) disk quotas. See the Advanced File System (AdvFS) documentation
for information about AdvFS quotas.

2.2.3 Choosing How to Monitor System Events

DIGITAL recommends that you set up a routine to continuously monitor
system performance and to alert you when serious problems occur. There
are a number of products and commands that provide system monitoring:

• DECevent utility

Monitors system events through the binary event-logging facility,
analyzes events, and performs event notification. See Section 2.2.3.1 for
more information.

• Performance Manager

Simultaneously monitors multiple DIGITAL UNIX systems, detects
performance problems, and performs event notification. See
Section 2.2.3.2 for more information.

• Performance Visualizer

Graphically displays the performance of all significant components of a
parallel system. Using Performance Visualizer, you can monitor the
performance of all the member systems in a cluster. See Section 2.2.3.3
for more information.

• tcpdump

Continuously monitors the network traffic associated with a particular
network service and allows you to identify the source of a packet. See
tcpdump (8) for information.

2–4 Diagnosing Performance Problems

• nfswatch

Continuously monitors all incoming network traffic to a Network File
System (NFS) server, and displays the number and percentage of
packets received. See nfswatch (8) for information.

• xload

Displays the system load average in a histogram that is periodically
updated. See xload (1X) for information.

• volwatch

Monitors the Logical Storage Manager (LSM) for failures in disks,
volumes, and plexes, and sends mail if a failure occurs. See
Section 2.8.4 for information.

• volstat

Provides information about activity on volumes, plexes, subdisks, and
disks under LSM control. The volstat utility reports statistics that
reflect the activity levels of LSM objects since boot time, and can also
reset the statistics information to zero. See Section 2.8.2 for information.

The following sections describe the DECevent utility, Performance
Manager, and Performance Visualizer in detail.

2.2.3.1 Using DECevent

The DECevent utility continuously monitors system events through the
binary event-logging facility, decodes events, and tracks the number and
the severity of events logged by system devices. DECevent attempts to
isolate failing device components and provides a notification mechanism
that can warn of potential problems.

DECevent determines if a threshold has been crossed, according to the
number and severity of events reported. Depending on the type of threshold
crossed, DECevent analyzes the events and notifies users of the events (for
example, through mail). You must register a license PAK to use the
DECevent analysis and notification features.

2.2.3.2 Using Performance Manager

Performance Manager (PM) for DIGITAL UNIX allows you to
simultaneously monitor many DIGITAL UNIX nodes, so you can detect and
correct performance problems. PM can operate in the background, alerting
you to performance problems. You can also configure PM to continuously
monitor systems and data. Monitoring only a local node does not require a
PM license. However, a PM license is required to monitor multiple nodes
and clusters.

Diagnosing Performance Problems 2–5

PM gathers and displays Simple Network Protocol (SNMP and eSNMP)
data for the systems you choose, and allows you to detect and correct
performance problems from a central location. PM has a graphical user
interface (GUI) that runs locally and displays data from the monitored
systems.

Use the GUI to choose the systems, data, and displays you want to monitor.
You can customize and extend PM, so you can create and save performance
monitoring sessions. Graphs and charts can show hundreds of different
system values, including CPU performance, memory usage, disk transfers,
file-system capacity, network efficiency, database performance, and AdvFS
and cluster-specific metrics. Data archives can be used for high-speed
playback or long-term trend analysis.

PM provides comprehensive thresholding, rearming, and tolerance facilities
for all displayed metrics. You can set a threshold on every key metric, and
specify the PM reaction when a threshold is crossed. For example, you can
configure PM to send mail, to execute a command, or to display a
notification message.

PM also has performance analysis and system management scripts, as well
as cluster-specific and AdvFS-specific scripts. Run these scripts separately
to target specific problems or run them simultaneously to check the general
system performance. The PM analyses include suggestions for eliminating
problems. PM automatically discovers cluster members when a single
cluster member node is specified, and it can monitor both individual cluster
members and an entire cluster concurrently.

See the Performance Manager online documentation for more information.

2.2.3.3 Using Performance Visualizer

Performance Visualizer is a valuable tool for developers of parallel
applications. Because it monitors performance of several systems
simultaneously, it allows you to see the impact of a parallel application on
all the systems, and to ensure that the application is balanced across all
systems. When problems are identified, you can change the application
code and use Performance Visualizer to evaluate the effects of these
changes. Performance Visualizer is a DIGITAL UNIX layered product and
requires a license.

Performance Visualizer also helps you identify overloaded systems,
underutilized resources, active users, and busy processes.

Using Performance Visualizer, you can monitor the following:

• CPU utilization by each CPU in a multiprocessing system

• Load average

2–6 Diagnosing Performance Problems

• Use of paged memory

• Paging events, which indicate how much a system is paging

• Use of swap space

• Behavior of individual processes

You can choose to look at all of the hosts in a parallel system or at
individual hosts. See the Performance Visualizer documentation for more
information.

2.2.4 Gathering Performance Statistics

Use the commands described in this chapter to gather performance
statistics to benchmark your system, and to help identify performance
problems. It is important to gather statistics from a variety of conditions.
For example, gather information at the following opportunities:

• Immediately after you install the system and before any applications
are running to obtain baseline system performance information

• When the system is running well under a normal workload

• When the system has poor performance under a normal workload

• After you have tuned or reconfigured the system

In addition, you may want to use the sys_check utility to check your
configuration and kernel variable settings. The sys_check utility uses
some of the tools described in Section 2.3 to gather performance
information and outputs this information in an easy-to-read format. The
sys_check utility provides warnings and tuning recommendations if
necessary. To obtain the sys_check utility, access the following location or
call your customer service representative:

ftp://ftp.digital.com/pub/DEC/IAS/sys_check

See Section 2.3 for a list of tools that you can use to gather information
about your system.

2.3 Performance Monitoring Tools Overview

There are various utilities and commands that you can use to gather
performance statistics and other information about the system. You may
have to use a combination of tools to obtain a comprehensive picture of
your system.

It is important for you to gather information about your system while it is
running well, in addition to when it has poor performance. Comparing the
two sets of data will help you to diagnose performance problems.

Diagnosing Performance Problems 2–7

In addition to tools that gather system statistics, there are application
profiling tools that allow you to collect statistics on CPU usage, call counts,
call cost, memory usage, and I/O operations at various levels (for example,
at a procedure level or at an instruction level). Profiling allows you to
identify sections of code that consume large portions of execution time. In a
typical program, most execution time is spent in relatively few sections of
code. To improve performance, the greatest gains result from improving
coding efficiency in time-intensive sections. There also are tools that you
can use to debug or profile the system kernel and collect CPU statistics and
other information.

The following tables describe the tools that you can use to gather resource
statistics and profiling information. In addition, there are many freeware
programs available in prebuilt formats on the DIGITAL UNIX Freeware
CD-ROM. These include the top , lsof , and monitor commands. You can
also use the Continuous Profiling Infrastructure dcpi tool, which provides
continuous, low-overhead system profiling. The dcpi tool is available from
the DIGITAL Systems Research Center at the following location:

http://www.research.digital.com/SRC/dcpi

Table 2–1 describes the tools you can use to gather information about CPU
and memory usage.

Table 2–1: CPU and Memory Monitoring Tools

Name Use Description

vmstat Displays virtual
memory and CPU
usage statistics
(Section 2.4.2)

Displays information about process threads,
virtual memory usage (page lists, page faults,
pageins, and pageouts), interrupts, and CPU
usage (percentages of user, system and idle
times). First reported are the statistics since
boot time; subsequent reports are the statistics
since a specified interval of time.

ps Displays CPU and
virtual memory
usage by processes
(Section 2.4.1)

Displays current statistics for running
processes, including CPU usage, the processor
and processor set, and the scheduling priority.
The ps command also displays virtual memory
statistics for a process, including the number of
page faults, page reclamations, and pageins;
the percentage of real memory (resident set)
usage; the resident set size; and the virtual
address size.

2–8 Diagnosing Performance Problems

Table 2–1: CPU and Memory Monitoring Tools (cont.)

Name Use Description

ipcs Displays IPC
statistics

Displays interprocess communication (IPC)
statistics for currently active message queues,
shared-memory segments, semaphores, remote
queues, and local queue headers. The
information provided in the following fields
reported by the ipcs −a command can be
especially useful: QNUM, CBYTES, QBYTES,
SEGSZ, and NSEMS. See ipcs (1) for more
information.

swapon Displays
information about
swap space
utilization
(Section 2.4.4)

Displays the total amount of allocated swap
space, swap space in use, and free swap space,
and also displays this information for each
swap device. You can also use the swapon
command to allocate additional swap space.

uptime Displays the system
load average
(Section 2.4.3)

Displays the number of jobs in the run queue
for the last 5 seconds, the last 30 seconds, and
the last 60 seconds. The uptime command also
shows the number of users logged into the
system and how long a system has been
running.

w Reports system load
averages and user
information

Displays the current time, the amount of time
since the system was last started, the users
logged in to the system, and the number of jobs
in the run queue for the last 5 seconds, 30
seconds, and 60 seconds. The w command also
displays information about system users,
including login and process information. See
w(1) for more information.

xload Monitors the
system load average

Displays the system load average in a
histogram that is periodically updated. See
xload (1X) for more information.

memx Exercises system
memory

Exercises memory by running a number of
processes. You can specify the amount of
memory to exercise, the number of processes to
run, and a file for diagnostic output. Errors are
written to a log file. See memx(8) for more
information.

Diagnosing Performance Problems 2–9

Table 2–1: CPU and Memory Monitoring Tools (cont.)

Name Use Description

shmx Exercises shared
memory

Exercises shared memory segments by running
a shmxb process. The shmx and shmxb
processes alternate writing and reading the
other process’ data in the shared memory
segments. You can specify the number of
memory segments to test, the size of the
segment, and a file for diagnostic output.
Errors are written to a log file. See shmx(8) for
more information.

kdbx
cpustat

Reports CPU
statistics
(Section 2.4.5)

Displays CPU statistics, including the
percentages of time the CPU spends in various
states.

kdbx
lockstats

Reports lock
statistics
(Section 2.4.6)

Displays lock statistics for each lock class on
each CPU in the system.

dbx print
vm_perfsum

Reports virtual
memory statistics
(Section 2.4.7)

You can check virtual memory by using the dbx
debugger and examining the vm_perfsum data
structure, which contains information about
page faults, swap space, and the free page list.

Table 2–2 describes the tools you can use to obtain information about disk
activity and usage.

Table 2–2: General Disk Monitoring Tools

Name Use Description

iostat Displays disk and
CPU usage
(Section 2.5.1)

Displays transfer statistics for each disk,
and the percentage of time the system has
spent in user mode, in user mode running
low priority (nice) processes, in system
mode, and in idle mode.

diskx Tests disk driver
functionality

Reads and writes data to disk partitions.
The diskx exerciser analyzes data transfer
performance, verifies the disktab database
file entry, and tests reads, writes, and seeks.
The diskx exerciser can destroy the
contents of a partition. See diskx (8) for
more information.

dbx print
nchstats

Reports namei
cache statistics
(Section 2.5.2)

Reports namei cache statistics, including hit
rates.

2–10 Diagnosing Performance Problems

Table 2–2: General Disk Monitoring Tools (cont.)

Name Use Description

dbx print
vm_perfsum

Reports UBC
statistics
(Section 2.5.3)

Reports Unified Buffer Cache (UBC)
statistics, including the number of pages of
memory that the UBC is using.

dbx print
xpt_qhead ,
ccmn_bp_head ,
and
xpt_cb_queue

Reports Common
Access Method
(CAM) statistics
(Section 2.5.4)

Reports CAM statistics, including
information about buffers and completed
I/O operations.

Table 2–3 describes the tools you can use to obtain information about the
UNIX File System (UFS).

Table 2–3: UFS Monitoring Tools

Name Use Description

dumpfs Displays UFS
information
(Section 2.6.1)

Displays detailed information
about a UFS file system or a
special device, including
information about the file
system fragment size, the
percentage of free space, super
blocks, and the cylinder groups.

dbx print
ufs_clusterstats

Reports UFS
clustering statistics
(Section 2.6.2)

Reports statistics on how the
system is performing cluster
read and write transfers.

dbx print bio_stats Reports UFS
metadata buffer
cache statistics
(Section 2.6.3)

Reports statistics on the
metadata buffer cache, including
superblocks, inodes, indirect
blocks, directory blocks, and
cylinder group summaries.

fsx Exercises file
systems

Exercises UFS and AdvFS file
systems by creating, opening,
writing, reading, validating,
closing, and unlinking a test file.
Errors are written to a log file.
See fsx (8) for more information.

Diagnosing Performance Problems 2–11

Table 2–4 describes the tools you can use to obtain information about the
Advanced File System (AdvFS).

Table 2–4: AdvFS Monitoring Tools

Name Use Description

advfsstat Displays AdvFS
performance
statistics
(Section 2.7.1)

Allows you to obtain extensive AdvFS
performance information, including buffer
cache, fileset, volume, and bitfile metadata
table (BMT) statistics, for a specific interval of
time.

advscan Identifies disks in a
file domain
(Section 2.7.2)

Locates pieces of AdvFS file domains on disk
partitions and in LSM disk groups.

showfdmn Displays detailed
information about
AdvFS file domains
and volumes
(Section 2.7.3)

Allows you to determine if files are evenly
distributed across AdvFS volumes. The
showfdmn utility displays information about a
file domain, including the date created and the
size and location of the transaction log, and
information about each volume in the domain,
including the size, the number of free blocks,
the maximum number of blocks read and
written at one time, and the device special file.
For multivolume domains, the utility also
displays the total volume size, the total
number of free blocks, and the total percentage
of volume space currently allocated.

showfile Displays
information about
files in an AdvFS
fileset
(Section 2.7.4)

Displays detailed information about files (and
directories) in an AdvFS fileset. The
showfile command allows you to check a
file’s fragmentation. A low performance
percentage (less than 80 percent) indicates
that the file is fragmented on the disk. The
command also displays the extent map of each
file. An extent is a contiguous area of disk
space that AdvFS allocates to a file. Simple
files have one extent map; striped files have
an extent map for every stripe segment. The
extent map shows whether the entire file or
only a portion of the file is fragmented.

2–12 Diagnosing Performance Problems

Table 2–4: AdvFS Monitoring Tools (cont.)

Name Use Description

showfsets Displays AdvFS
fileset information
for a file domain
(Section 2.7.5)

Displays information about the filesets in a
file domain, including the fileset names, the
total number of files, the number of free
blocks, the quota status, and the clone status.
The showfsets command also displays block
and file quota limits for a file domain or for a
specific fileset in the domain.

fsx Exercises file
systems

Exercises AdvFS and UFS file systems by
creating, opening, writing, reading, validating,
closing, and unlinking a test file. Errors are
written to a log file. See fsx (8) for more
information.

Table 2–5 describes the commands you can use to obtain information about
the Logical Storage Manager (LSM).

Table 2–5: LSM I/O Performance and Event Monitoring Tools

Name Use Description

volprint Displays LSM disk
configuration
information
(Section 2.8.1)

Displays information about LSM disk groups,
disk media, volumes, plexes, and subdisk
records. It does not display disk access records.
See volprint (8) for more information.

volstat Displays LSM I/O
performance
statistics
(Section 2.8.2)

Displays performance statistics since boot time
for all LSM objects (volumes, plexes, subdisks,
and disks). These statistics include information
about read and write operations, including the
total number of operations, the number of
failed operations, the number of blocks read or
written, and the average time spent on the
operation in a specified interval of time. The
volstat utility also can reset the I/O statistics.
See volstat (8) for more information.

voltrace Tracks I/O
operations on LSM
volumes
(Section 2.8.3)

Sets I/O tracing masks against one or all
volumes in the LSM configuration and logs the
results to the LSM default event log,
/dev/volevent . The utility also formats and
displays the tracing mask information and can
trace the following ongoing LSM events:
requests to logical volumes, requests that LSM
passes to the underlying block device drivers,
and I/O events, errors, and recoveries. See
voltrace (8) for more information.

Diagnosing Performance Problems 2–13

Table 2–5: LSM I/O Performance and Event Monitoring Tools (cont.)

Name Use Description

volwatch Monitors LSM for
object failures
(Section 2.8.4)

Monitors LSM for failures in disks, volumes,
and plexes, and sends mail if a failure occurs.
The volwatch script starts automatically
when you install LSM. See volwatch (8) for
more information.

dxlsm Displays statistics
on LSM objects
(Section 2.8.5)

Using the Analyze menu, displays information
about LSM disks, volumes, and subdisks. See
dxlsm (8) for more information.

Table 2–6 describes the commands you can use to obtain information about
network operations.

Table 2–6: Network Monitoring Tools

Name Use Description

netstat Displays network
statistics
(Section 2.9.1)

Displays a list of active sockets for each
protocol, information about network
routes, and cumulative statistics for
network interfaces, including the
number of incoming and outgoing
packets and packet collisions. Also,
displays information about memory
used for network operations.

nfsstat Displays network
and NFS statistics
(Section 2.9.2)

Displays Network File System (NFS)
and Remote Procedure Call (RPC)
statistics for clients and servers,
including the number of packets that
had to be retransmitted (retrans) and
the number of times a reply transaction
ID did not match the request
transaction ID (badxid).

2–14 Diagnosing Performance Problems

Table 2–6: Network Monitoring Tools (cont.)

Name Use Description

tcpdump Monitors network
interface packets

Monitors and displays packet headers
on a network interface. You can specify
the interface on which to listen, the
direction of the packet transfer, or the
type of protocol traffic to display. The
tcpdump command allows you to
monitor the network traffic associated
with a particular network service and to
identify the source of a packet. It lets
you determine whether requests are
being received or acknowledged, or to
determine the source of network
requests, in the case of slow network
performance. Your kernel must be
configured with the packetfilter
option to use the command. See
tcpdump (8) and packetfilter (7)
for more information.

traceroute Displays the packet
route to a network
host

Tracks the route network packets follow
from gateway to gateway. See
traceroute (8) for more information.

ping Determines if a
system can be
reached on the
network

Sends an Internet Control Message
Protocol (ICMP) echo request to a host
in order to determine if a host is
running and reachable and to determine
if an IP router is reachable. Enables
you to isolate network problems, such
as direct and indirect routing problems.
See ping (8) for more information.

nfswatch Monitors an NFS
server

Monitors all incoming network traffic to
an NFS server and divides it into
several categories, including NFS reads
and writes, NIS requests, and RPC
authorizations. The number and
percentage of packets received in each
category appears on the screen in a
continuously updated display. Your
kernel must be configured with the
packetfilter option to use the
command. See nfswatch (8) and
packetfilter (7) for more
information.

Diagnosing Performance Problems 2–15

Table 2–6: Network Monitoring Tools (cont.)

Name Use Description

sobacklog_hiwat
attribute

Reports the
maximum number
of pending requests
to any server socket
(Section 2.9.3)

Allows you to display the maximum
number of pending requests to any
server socket in the system.

sobacklog_drops
attribute

Reports the number
of backlog drops
that exceed a
socket’s backlog
limit (Section 2.9.3)

Allows you to display the number of
times the system dropped a received
SYN packet, because the number of
queued SYN_RCVD connections for a
socket equaled the socket’s backlog
limit.

somaxconn_drops
attribute

Reports the number
of drops that exceed
the value of the
somaxconn
attribute
(Section 2.9.3)

Allows you to display the number of
times the system dropped a received
SYN packet because the number of
queued SYN_RCVD connections for a
socket equaled the upper limit on the
backlog length (somaxconn attribute).

ps axlmp Displays
information about
idle threads
(Section 2.9.4)

Displays information about idle threads
on a client system.

Table 2–7 describes the commands you can use to obtain information about
the kernel and applications. Detailed information about these profiling and
debugging tools is located in the Programmer’s Guide and the Kernel
Debugging manual.

2–16 Diagnosing Performance Problems

Table 2–7: Profiling and Debugging Tools

Name Use Description

atom Profiles applications Consists of a set of prepackaged tools (third ,
hiprof , or pixie) that can be used to
instrument applications for profiling or
debugging purposes. The atom toolkit also
consists of a command interface and a collection
of instrumentation routines that you can use to
create custom tools for instrumenting
applications. See the Programmer’s Guide
manual and atom (1) for more information.

third Checks memory
access and detects
memory leaks in
applications

Performs memory access checks and memory
leak detection of C and C++ programs at run
time, by using the atom tool to add code to
executable and shared objects. The Third
Degree tool instruments the entire program,
including its referenced libraries. See third (5)
for more information.

hiprof Produces a profile
of procedure
execution times in
an application

An atom -based program profiling tool that
produces a flat profile, which shows the
execution time spent in any given procedure,
and a hierarchical profile, which shows the
time spent in a given procedure and all of its
descendents. The hiprof tool uses code
instrumentation rather than PC sampling to
gather statistics. The gprof command is
usually used to filter and merge output files
and to format profile reports. See hiprof (5)
for more information.

pixie Profiles basic blocks
in an application

Reads an executable program, partitions it into
basic blocks, and writes an equivalent program
containing additional code that counts the
execution of each basic block. The pixie utility
also generates a file containing the address of
each of the basic blocks. When you run this
pixie -generated program, it generates a file
containing the basic block counts. The prof
and pixstats commands can analyze these
files. See pixie (5) for more information.

Diagnosing Performance Problems 2–17

Table 2–7: Profiling and Debugging Tools (cont.)

Name Use Description

prof Analyzes profiling
data and displays a
profile of statistics
for each procedure
in an application

Analyzes profiling data and produces statistics
showing which portions of code consume the
most time and where the time is spent (for
example, at the routine level, the basic block
level, or the instruction level). The prof
command uses as input one or more data files
generated by the kprofile , uprofile , or
pixie profiling tools. The prof command also
accepts profiling data files generated by
programs linked with the -p switch of
compilers such as cc . The information
produced by prof allows you to determine
where to concentrate your efforts to optimize
source code. See prof (1) for more information.

gprof Analyzes profiling
data and displays
procedure call
information and
statistical PC
sampling in an
application

Analyzes profiling data and allows you to
determine which routines are called most
frequently and the source of the routine call, by
gathering procedure call information and
performing statistical program counter (PC)
sampling. The gprof tool produces a flat
profile of the routines’ CPU usage. To produce a
graphical execution profile of a program, the
tool uses data from PC sampling profiles, which
are produced by programs compiled with the
cc -pg command, or from instrumented
profiles, which are produced by programs
modified by the atom -tool hiprof
command. See gprof (1) for more information.

kprofile Produces a PC
profile of a running
kernel

Profiles a running kernel using the
performance counters on the Alpha chip. You
analyze the performance data collected by the
tool with the prof command. See
kprofile (1) for more information.

uprofile Profiles user code in
an application

Profiles user code using performance counters
in the Alpha chip. The uprofile tool allows
you to profile only the executable part of a
program. The uprofile tool does not collect
information on shared libraries. You process
the performance data collected by the tool with
the prof command. See the Kernel Debugging
manual or uprofile (1) for more information.

2–18 Diagnosing Performance Problems

Table 2–7: Profiling and Debugging Tools (cont.)

Name Use Description

dbx Debugs running
kernels, programs,
and crash dumps,
and examines and
temporarily
modifies kernel
variables

Provides source-level debugging for C, Fortran,
Pascal, assembly language, and machine code.
The dbx debugger allows you to analyze crash
dumps, trace problems in a program object at
the source-code level or at the machine code
level, control program execution, trace program
logic and flow of control, and monitor memory
locations. Use dbx to debug kernels, debug
stripped images, examine memory contents,
debug multiple threads, analyze user code and
applications, display the value and format of
kernel data structures, and temporarily modify
the values of some kernel variables. See dbx (8)
for more information.

kdbx Debugs running
kernels and crash
dumps

Allows you to examine a running kernel or a
crash dump. The kdbx debugger, a frontend to
the dbx debugger, is tailored specifically to
debugging kernel code and displays kernel data
in a readable format. The debugger is
extensible and customizable, allowing you to
create commands that are tailored to your
kernel debugging needs. You can also use
extensions to check resource usage (for
example, CPU usage). See dbx (8) for more
information.

ladebug Debugs kernels and
applications

Debugs programs and the kernel and helps
locate run-time programming errors. The
ladebug symbolic debugger is an alternative
to the dbx debugger and provides both
command-line and graphical user interfaces
and support for debugging multithreaded
programs. See the Ladebug Debugger Manual
and ladebug (1) for more information.

2.4 Gathering CPU and Virtual Memory Information

Use the following commands to obtain information about CPUs and the
virtual memory subsystem:

• The ps command displays CPU and memory usage by processes. See
Section 2.4.1.

• The vmstat command displays virtual memory and CPU statistics. See
Section 2.4.2.

Diagnosing Performance Problems 2–19

• the uptime command displays the system load average. See
Section 2.4.3.

• The swapon command displays information about swap space
utilization. See Section 2.4.4.

• The kdbx cpustat extension reports CPU statistics. See Section 2.4.5.

• The kdbx lockstats extension reports lock statistics. See
Section 2.4.6.

• The dbx vm_perfsum data structure reports virtual memory
information. See Section 2.4.7.

The following sections describe these commands in detail.

In addition, you can use the following commands to obtain CPU and virtual
memory information:

• The ipcs command displays IPC statistics. See ipcs (1).

• The w command reports system load averages and user information.
See w(1).

• The xload command monitors the system load. See xload (1X).

• The memxexerciser tests system memory. See memx(8).

• The shmx exerciser tests shared memory. See shmx(8).

2.4.1 Using ps to Display CPU and Memory Usage

The ps command displays the current status of the system processes. You
can use it to determine the current running processes (including users),
their state, and how they utilize system memory. The command lists
processes in order of decreasing CPU usage, so you can identify which
processes are using the most CPU time. Note that the ps command
provides only a snapshot of the system; by the time the command finishes
executing, the system state has probably changed. In addition, one of the
first lines of the command may refer to the ps command itself.

An example of the ps command is as follows:

ps aux
USER PID %CPU %MEM VSZ RSS TTY S STARTED TIME COMMAND
chen 2225 5.0 0.3 1.35M 256K p9 U 13:24:58 0:00.36 cp /vmunix /tmp
root 2236 3.0 0.5 1.59M 456K p9 R + 13:33:21 0:00.08 ps aux
sorn 2226 1.0 0.6 2.75M 552K p9 S + 13:25:01 0:00.05 vi met.ps
root 347 1.0 4.0 9.58M 3.72 ?? S Nov 07 01:26:44 /usr/bin/X11/X -a
root 1905 1.0 1.1 6.10M 1.01 ?? R 16:55:16 0:24.79 /usr/bin/X11/dxpa
mat 2228 0.0 0.5 1.82M 504K p5 S + 13:25:03 0:00.02 more
mat 2202 0.0 0.5 2.03M 456K p5 S 13:14:14 0:00.23 -csh (csh)
root 0 0.0 12.7 356M 11.9 ?? R < Nov 07 3-17:26:13 [kernel idle]

1 2 3 4 5 6 7

2–20 Diagnosing Performance Problems

The ps command output includes the following information that you can
use to diagnose CPU and virtual memory problems:

1 Percentage of CPU time usage (%CPU)
2 Percentage of real memory usage (%MEM)
3 Process virtual address size (VSZ)—This is the total amount of virtual

memory allocated to the process.
4 Real memory (resident set) size of the process (RSS)—This is the total

amount of physical memory mapped to virtual pages (that is, the total
amount of memory that the application has physically used). Shared
memory is included in the resident set size figures; as a result, the
total of these figures may exceed the total amount of physical memory
available on the system.

5 Process status or state (S)—This specifies whether a process is in one
of the following states:

• Runnable (R)

• Uninterruptible sleeping (U)

• Sleeping (S)

• Idle (I)

• Stopped (T)

• Halted (H)

• Swapped out (W)

• Has exceeded the soft limit on memory requirements (>)

• A process group leader with a controlling terminal (+)

• Has a reduced priority (N)

• Has a raised priority (<)
6 Current CPU time used (TIME).
7 The command that is running (COMMAND).

From the output of the ps command, you can determine which processes
are consuming most of your system’s CPU time and memory and whether
processes are swapped out. Concentrate on processes that are runnable or
paging. Here are some concerns to keep in mind:

• If a process is using a large amount of memory (see the RSSand VSZ
fields), the process may have a problem with memory usage.

• Are duplicate processes running? Use the kill command to terminate
any unnecessary processes. See kill (1) for more information.

• If a process is using a large amount of CPU time, it may be in an
infinite loop. You may have to use the kill command to terminate the

Diagnosing Performance Problems 2–21

process and then correct the problem by making changes to its source
code. You can also lower the process’ priority by using either the nice
or renice command. These commands have no effect on memory usage
by a process.

• Check the processes that are swapped out. Examine the S (state) field.
A Wentry indicates a process that has been swapped out. If processes
are continually being swapped out, this could indicate a virtual memory
problem.

For information about memory tuning, see Chapter 4. For information
about improving the performance of your applications, see the
Programmer’s Guide.

2.4.2 Using vmstat to Display Virtual Memory and CPU Statistics

The vmstat command shows the virtual memory, process, and total CPU
statistics for a specified time interval. The first line of the output is for all
time since a reboot, and each subsequent report is for the last interval.
Because the CPU operates faster than the rest of the system, performance
bottlenecks usually exist in the memory or I/O subsystems.

To determine the amount of memory on your system, use the uerf -r 300
command. The beginning of the listing shows the total amount of physical
memory (including wired memory) and the amount of available memory.

An example of the vmstat command is as follows; output is provided in
one-second intervals:

vmstat 1
Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
r w u act free wire fault cow zero react pin pout in sy cs us sy id
2 66 25 6417 3497 1570 155K 38K 50K 0 46K 0 4 290 165 0 2 98
4 65 24 6421 3493 1570 120 9 81 0 8 0 585 865 335 37 16 48
2 66 25 6421 3493 1570 69 0 69 0 0 0 570 968 368 8 22 69
4 65 24 6421 3493 1570 69 0 69 0 0 0 554 768 370 2 14 84
4 65 24 6421 3493 1570 69 0 69 0 0 0 865 1K 404 4 20 76

1 2 3 4

The vmstat command includes information that you can use to diagnose
CPU and virtual memory problems. The following fields are particularly
important:

1 Virtual memory information (memory), including the number of pages
that are on the active list, including inactive pages and Unified Buffer
Cache least-recently used (UBC LRU) pages (act); the number of
pages on the free list (free), and the number of pages on the wire list
(wire). Pages on the wire list cannot be reclaimed. See Chapter 4 for
more information on page lists.

2–22 Diagnosing Performance Problems

2 The number of pages that have been paged out (pout).

3 Interrupt information (intr), including the number of nonclock device
interrupts per second (in), the number of system calls called per
second (sy), and the number of task and thread context switches per
second (cs).

4 CPU usage information (cpu), including the percentage of user time
for normal and priority processes (us), the percentage of system time
(sy), and the percentage of idle time (id). User time includes the time
the CPU spent executing library routines. System time includes the
time the CPU spent executing system calls.

When diagnosing a bottleneck situation, keep the following issues in mind:

• Invoke the vmstat command when the system is idle and also when
the system is busy in order to compare the resulting data. You can use
the memxmemory exerciser to put a load on the memory subsystem.

• Is the system workload normal? Ensure that poor performance is not
caused by an atypical event or by a temporary increase in resource
demand.

• Check the size of the free page list (free). Compare the number of free
pages to the values for the active pages (act) and the wired pages
(wire). The sum of the free, active, and wired pages should be close to
the amount of physical memory in your system. Although the value for
free should be small, if the value is consistently small (less than 128
pages) and accompanied by excessive paging and swapping, you may
have a physical memory problem.

• Examine the pout field. If the number of pageouts is consistently high,
you may have insufficient memory. You also may have insufficient swap
space or your swap space may be configured inefficiently. Use the
swapon -s command to display your swap device configuration, and
use the iostat command to determine which swap disk is being used
the most.

• Check the user (us), system (sy), and idle (id) time split. You must
understand how your applications use the system to determine the
appropriate values for these times. The goal is to keep the CPU as
productive as possible. Idle CPU cycles occur when no runnable
processes exist or when the CPU is waiting to complete an I/O or
memory request.

The following list presents information on how to interpret the values
for user, idle, and system time:

– A high user time and a low idle time may indicate that your
application code is consuming most of the CPU. You can optimize
the application, or you may need a more powerful processor.

Diagnosing Performance Problems 2–23

– A high system time and low idle time may indicate that something
in the application load is stimulating the system with high overhead
operations. Such overhead operations could consist of high system
call frequencies, high interrupt rates, large numbers of small I/O
transfers, or large numbers of IPCs or network transfers.

A high system time and low idle time may be caused by failing
hardware. Use the uerf command to check your hardware.

A high system time may also indicate that the system is thrashing;
that is, the amount of memory available to the virtual memory
subsystem has gotten so low that the system is spending all its time
paging and swapping in an attempt to regain memory. A system
that spends more than 50 percent of its time in system mode and
idle mode may be doing a lot of paging and swapping I/O, and
therefore may have a virtual memory performance problem.

– If the idle time is very low but performance is acceptable, your
system is utilizing its CPU efficiently.

If you have a high idle time and poor response time, and you are
sure that your system has a typical load, one or more of the
following problems may exist: The hardware may have reached its
capacity, one or more kernel data structures is being exhausted, or
you may have a hardware or kernel resource problem such as an
application, disk I/O, or network bottleneck.

See Chapter 3 for information on improving CPU performance and
Chapter 4 for information on tuning memory.

2.4.3 Using uptime to Display the Load Average

The uptime command shows how long a system has been running and the
load average. The load average counts jobs that are waiting for disk I/O,
and applications whose priorities have been changed with either the nice
or renice command. The load average numbers give the average number
of jobs in the run queue for the last 5 seconds, the last 30 seconds, and the
last 60 seconds.

An example of the uptime command is as follows:

uptime
1:48pm up 7 days, 1:07, 35 users, load average: 7.12, 10.33, 10.31

The command output displays the current time, the amount of time since
the system was last started, the number of users logged into the system,
and the load averages for the last 5 seconds, the last 30 seconds, and the
last 60 seconds.

2–24 Diagnosing Performance Problems

From the command output, you can determine whether the load is
increasing or decreasing. An acceptable load average depends on your type
of system and how it is being used. In general, for a large system, a load of
10 is high, and a load of 3 is low. Workstations should have a load of 1 or 2.
If the load is high, look at what processes are running with the ps
command. You may want to run some applications during offpeak hours.
You can also lower the priority of applications with the nice or renice
command to conserve CPU cycles.

2.4.4 Using swapon to Display Swap Space Usage

Use the swapon -s command to display your swap device configuration.
For each swap partition, the command displays the total amount of
allocated swap space, the amount of swap space that is being used, and the
amount of free swap space. This information can help you determine how
your swap space is being utilized.

An example of the swapon command is as follows:

swapon -s
Swap partition /dev/rz2b (default swap):

Allocated space: 16384 pages (128MB)
In-use space: 1 pages (0%)
Free space: 16383 pages (99%)

Swap partition /dev/rz12c:
Allocated space: 128178 pages (1001MB)
In-use space: 1 pages (0%)
Free space: 128177 pages (99%)

Total swap allocation:
Allocated space: 144562 pages (1129MB)
Reserved space: 2946 pages (2%)
In-use space: 2 pages (0%)
Available space: 141616 pages (97%)

See Chapter 4 and Chapter 5 for information on how to configure swap
space. Use the iostat command to determine which disks are being used
the most.

2.4.5 Checking CPU Usage With kdbx cpustat

The kdbx cpustat extension displays CPU statistics, including the
percentages of time the CPU spends in the following states:

• Running user level code

• Running system level code

Diagnosing Performance Problems 2–25

• Running at a priority set with the nice function

• Idle

• Waiting (idle with input or output pending)

By default, kdbx displays statistics for all CPUs in the system.

For example:

(kdbx) cpustat
Cpu User (%) Nice (%) System (%) Idle (%) Wait (%)

===== ========== ========== ========== ========== ==========
0 0.23 0.00 0.08 99.64 0.05
1 0.21 0.00 0.06 99.68 0.05

See the Kernel Debugging manual and kdbx (8) for more information.

2.4.6 Checking Lock Usage With kdbx lockstats

The kdbx lockstats extension displays lock statistics for each lock class
on each CPU in the system, including the following information:

• Address of the structure

• Class of the lock for which lock statistics are being recorded

• CPU for which the lock statistics are being recorded

• Number of instances of the lock

• Number of times that processes have tried to get the lock

• Number of times that processes have tried to get the lock and missed

• Percentage of time that processes miss the lock

• Total time that processes have spent waiting for the lock

• Maximum amount of time that a single process has waited for the lock

• Minimum amount of time that a single process has waited for the lock

See the Kernel Debugging manual and kdbx (8) for more information.

2.4.7 Checking Virtual Memory With dbx vm_perfsum

You can check virtual memory by using the dbx command and examining
the vm_perfsum data structure.

An example of the dbx print vm_perfsum command is as follows:

(dbx) print vm_perfsum
struct {

vpf_pagefaults = 2657316

2–26 Diagnosing Performance Problems

vpf_kpagefaults = 23527
vpf_cowfaults = 747352
vpf_cowsteals = 964903
vpf_zfod = 409170
vpf_kzfod = 23491
vpf_pgiowrites = 6768
vpf_pgwrites = 12646
vpf_pgioreads = 981605
vpf_pgreads = 80157
vpf_swapreclaims = 0
vpf_taskswapouts = 1404
vpf_taskswapins = 1386
vpf_vmpagesteal = 0
vpf_vmpagewrites = 7304
vpf_vmpagecleanrecs = 14898
vpf_vplmsteal = 36
vpf_vplmstealwins = 33
vpf_vpseqdrain = 2
vpf_ubchit = 3593
vpf_ubcalloc = 133065
vpf_ubcpushes = 3
vpf_ubcpagepushes = 3
vpf_ubcdirtywra = 1
vpf_ubcreclaim = 0
vpf_ubcpagesteal = 52092
vpf_ubclookups = 2653080
vpf_ubclookuphits = 2556591
vpf_reactivate = 135376
vpf_allocatedpages = 6528
vpf_vmwiredpages = 456
vpf_ubcwiredpages = 0
vpf_mallocpages = 1064
vpf_totalptepages = 266
vpf_contigpages = 3
vpf_rmwiredpages = 0
vpf_ubcpages = 2785
vpf_freepages = 190
vpf_vmcleanpages = 215
vpf_swapspace = 8943

}
(dbx)

Important fields include the following:

• vpf_pagefaults —Number of hardware page faults

• vpf_swapspace —Number of pages of swap space not reserved

To obtain information about the current use of memory, use the dbx print
command to display the values of the following kernel variables:

Diagnosing Performance Problems 2–27

• vm_page_free_count —Number of pages on the free list

• vm_page_active_count —Number of pages on the active list

• vm_page_inactive_count —Number of inactive pages

• ubc_lru_page_count —Number of UBC LRU pages

The following example shows the current value of the
vm_page_free_count kernel variable:

(dbx) print vm_page_free_count
336

See Chapter 4 for information on managing memory resources.

2.5 Gathering General Disk Information

Use the following commands to gather general information about disks:

• The iostat command displays I/O statistics for disks, the CPU, and
terminals. See Section 2.5.1.

• The dbx nchstats structure reports namei cache statistics. See
Section 2.5.2.

• The dbx vm_perfsum structure reports UBC statistics, including the
number of pages of memory that the UBC is using. See Section 2.5.3.

• The dbx debugger’s xpt_qhead , ccmn_bp_head , and xpt_cb_queue
structures report Common Access Method (CAM) statistics. See
Section 2.5.4.

The following sections describe these commands in detail. You can also use
the diskx exerciser to test disk drivers. See diskx (8).

2.5.1 Using iostat to Display Disk Usage

The iostat command reports I/O statistics for terminals, disks, and the
CPU. The first line of the output is the average since boot time, and each
subsequent report is for the last interval.

An example of the iostat command is as follows; output is provided in
one-second intervals:

iostat 1
tty rz1 rz2 rz3 cpu

tin tout bps tps bps tps bps tps us ni sy id
0 3 3 1 0 0 8 1 11 10 38 40
0 58 0 0 0 0 0 0 46 4 50 0
0 58 0 0 0 0 0 0 68 0 32 0
0 58 0 0 0 0 0 0 55 2 42 0

2–28 Diagnosing Performance Problems

The iostat command reports I/O statistics that you can use to diagnose
disk I/O performance problems. For example, the command displays the
following information:

• For each disk, (rz n), the number of bytes (in thousands) transferred per
second (bps) and the number of transfers per second (tps).

• For the system (cpu), the percentage of time the CPU has spent in user
state running processes either at their default priority or higher
priority (us), in user mode running processes at a lowered priority (ni),
in system mode (sy), and idle (id). This information enables you to
determine how disk I/O is affecting the CPU.

The iostat command can help you to do the following:

• Determine which disk is being used the most and which is being used
the least. The information will help you determine how to distribute
your file systems and swap space. Use the swapon -s command to
determine which disks are used for swap space.

If the iostat command output shows a lot of disk activity and a high
system idle time, the system may be disk bound. You may need to
balance the disk I/O load, defragment disks, or upgrade your hardware.

• If a disk is doing a large number of transfers (the tps field) but reading
and writing only small amounts of data (the bps field), examine how
your applications are doing disk I/O. The application may be performing
a large number of I/O operations to handle only a small amount of data.
You may want to rewrite the application if this behavior is not
necessary.

See Chapter 5 for more information on how to improve disk performance.

2.5.2 Checking the namei Cache With dbx nchstats

The namei cache is used by UFS, AdvFS, CD-ROM File System (CDFS),
and NFS to store recently used file system pathname/inode number pairs.
It also stores inode information for files that were referenced but not found.
Having this information in the cache substantially reduces the amount of
searching that is needed to perform pathname translations.

To check the namei cache, use the dbx debugger and look at the nchstats
data structure. In particular, look at the ncs_goodhits , ncs_neghits ,
and ncs_misses fields to determine the hit rate. The hit rate should be
above 80 percent (ncs_goodhits plus ncs_neghits divided by the sum of
the ncs_goodhits , ncs_neghits , and ncs_misses).

Diagnosing Performance Problems 2–29

Consider the following example:

(dbx) print nchstats
struct {

ncs_goodhits = 9748603 −found a pair
ncs_neghits = 888729 −found a pair that didn’t exist
ncs_badhits = 23470
ncs_falsehits = 69371
ncs_miss = 1055430 −did not find a pair
ncs_long = 4067 −name was too long to fit in the cache
ncs_pass2 = 127950
ncs_2passes = 195763
ncs_dirscan = 47

}
(dbx)

See Chapter 5 for information on how to improve the namei cache hit rate
and lookup speeds.

2.5.3 Checking the UBC With dbx vm_perfsum

To check the Unified Buffer Cache (UBC), use the dbx debugger to examine
the vm_perfsum data structure. In particular, look at the
vpf_pgiowrites field (number of I/O operations for pageouts generated
by the page stealing daemon) and the vpf_ubcalloc field (number of
times the UBC had to allocate a page from the virtual memory free page
list to satisfy memory demands).

Consider the following example:

(dbx) print vm_perfsum
struct {

vpf_pagefaults = 493749
vpf_kpagefaults = 3851
vpf_cowfaults = 144197
vpf_cowsteals = 99541
vpf_zfod = 65590
vpf_kzfod = 3846
vpf_pgiowrites = 863
vpf_pgwrites = 1572
vpf_pgioreads = 187350
vpf_pgreads = 17228
vpf_swapreclaims = 0
vpf_taskswapouts = 297
vpf_taskswapins = 272
vpf_vmpagesteal = 0
vpf_vmpagewrites = 843
vpf_vmpagecleanrecs = 1270
vpf_vplmsteal = 18
vpf_vplmstealwins = 16
vpf_vpseqdrain = 0
vpf_ubchit = 398

2–30 Diagnosing Performance Problems

vpf_ubcalloc = 21683
vpf_ubcpushes = 0
vpf_ubcpagepushes = 0
vpf_ubcdirtywra = 0
vpf_ubcreclaim = 0
vpf_ubcpagesteal = 7071
vpf_ubclookups = 364856
vpf_ubclookuphits = 349473
vpf_reactivate = 17352
vpf_allocatedpages = 5800
vpf_vmwiredpages = 437
vpf_ubcwiredpages = 0
vpf_mallocpages = 1115
vpf_totalptepages = 207
vpf_contigpages = 3
vpf_rmwiredpages = 0
vpf_ubcpages = 2090
vpf_freepages = 918
vpf_vmcleanpages = 213
vpf_swapspace = 7996

}
(dbx)

The vpf_ubcpages field gives the number of pages of physical memory
that the UBC is using to cache file data. If the UBC is using significantly
more than half of physical memory and the paging rate is high
(vpf_pgiowrites field), you may want to reduce the amount of memory
available to the UBC to reduce paging. The default value of the
ubc-maxpercent attribute is 100 percent of physical memory. Decrease
this value only by increments of 10. However, reducing the value of the
ubc-maxpercent attribute may degrade file system performance.

You can also monitor the UBC by examining the ufs_getapage_stats
kernel data structure. To calculate the hit rate, divide the value for
read_hits by the value for read_looks . A good hit rate is a rate above
95 percent.

Consider the following example:

(dbx) print ufs_getapage_stats
struct {

read_looks = 2059022
read_hits = 2022488
read_miss = 36506

}
(dbx)

In the previous example, the hit rate is approximately 98 percent.

Diagnosing Performance Problems 2–31

You can also check the UBC by examining the vm_tune data structure and
the vt_ubcseqpercent and vt_ubcseqstartpercent fields. These
values are used to prevent a large file from completely filling the UBC,
which limits the amount of memory available to the virtual memory
subsystem.

Consider the following example:

(dbx) print vm_tune
struct {

vt_cowfaults = 4
vt_mapentries = 200
vt_maxvas = 1073741824
vt_maxwire = 16777216
vt_heappercent = 7
vt_anonklshift = 17
vt_anonklpages = 1
vt_vpagemax = 16384
vt_segmentation = 1
vt_ubcpagesteal = 24
vt_ubcdirtypercent = 10
vt_ubcseqstartpercent = 50
vt_ubcseqpercent = 10
vt_csubmapsize = 1048576
vt_ubcbuffers = 256
vt_syncswapbuffers = 128
vt_asyncswapbuffers = 4
vt_clustermap = 1048576
vt_clustersize = 65536
vt_zone_size = 0
vt_kentry_zone_size = 16777216
vt_syswiredpercent = 80
vt_inswappedmin = 1

}

When copying large files, the source and destination objects in the UBC
will grow very large (up to all of the available physical memory). Reducing
the value of the vm-ubcseqpercent attribute decreases the number of
UBC pages that will be used to cache a large sequentially accessed file. The
value represents the percentage of UBC memory that a sequentially
accessed file can consume before it starts reusing UBC memory. The value
imposes a resident set size limit on a file.

See Chapter 4 for information on how to tune the UBC.

2.5.4 Monitoring CAM Data Structures With dbx

The operating system uses the Common Access Method (CAM) as the
operating system interface to the hardware. CAM maintains the

2–32 Diagnosing Performance Problems

xpt_qhead , ccmn_bp_head , and xpt_cb_queue data structures as
follows:

• xpt_qhead —Contains information about the current size of the buffer
pool free list (xpt_nfree), the current number of processes waiting for
buffers (xpt_wait_cnt), and the total number of times that processes
had to wait for free buffers (xpt_times_wait).

• ccmn_bp_head —Provides statistics on the buffer structure pool. This
pool is used for raw I/O to disk. Some database applications with their
own file system use the raw device instead of UFS. The information
provided is the current size of the buffer structure pool (num_bp) and
the wait count for buffers (bp_wait_cnt).

• xpt_cb_queue —Contains the actual link list of the I/O operations that
have been completed and are waiting to be passed back to the
peripheral drivers (cam_disk or cam_tape , for example).

The following examples use the dbx debugger to examine these three data
structures:

(dbx) print xpt_qhead
struct {

xws = struct {
x_flink = 0xffffffff81f07400
x_blink = 0xffffffff81f03000
xpt_flags = 2147483656
xpt_ccb = (nil)
xpt_nfree = 300
xpt_nbusy = 0

}
xpt_wait_cnt = 0
xpt_times_wait = 2
xpt_ccb_limit = 1048576
xpt_ccbs_total = 300
x_lk_qhead = struct {

sl_data = 0
sl_info = 0
sl_cpuid = 0
sl_lifms = 0

}
}
(dbx) print ccmn_bp_head
struct {

num_bp = 50
bp_list = 0xffffffff81f1be00
bp_wait_cnt = 0

}
(dbx) print xpt_cb_queue
struct {

flink = 0xfffffc00004d6828

Diagnosing Performance Problems 2–33

blink = 0xfffffc00004d6828
flags = 0
initialized = 1
count = 0
cplt_lock = struct {

sl_data = 0
sl_info = 0
sl_cpuid = 0
sl_lifms = 0

}
}
(dbx)

If the values for xpt_wait_cnt or bp_wait_cnt are nonzero, CAM has
run out of buffer pool space. If this situation persists, you may be able to
eliminate the problem by changing one or more of CAM’s I/O attributes
(see Chapter 5).

The count parameter in xpt_cb_queue is the number of I/O operations
that have been completed and are ready to be passed back to a peripheral
device driver. Normally, the value of count should be 0 or 1. If the value is
greater than 1, it may indicate either a problem or a temporary situation in
which a large number of I/O operations are completing simultaneously. If
repeated monitoring demonstrates that the value is consistently greater
than 1, one or more subsystems may require tuning.

2.6 Gathering UFS Information

Use the following commands to gather information about the UNIX file
system (UFS):

• The dumpfs command displays information about UFS file systems. See
Section 2.6.1.

• The dbx ufs_clusterstats structure reports cluster read and write
transfer statistics. See Section 2.6.2.

• The dbx bio_stats structure reports information about the metadata
buffer cache. See Section 2.6.3.

The following sections describe these commands in detail.

In addition, you can use the fsx exerciser to test UFS and AdvFS file
systems. See fsx (8) for information.

2.6.1 Using dumpfs to Display UFS Information

The dumpfs command displays UFS information, including super block and
cylinder group information, for a specified file system. Use this command to

2–34 Diagnosing Performance Problems

obtain information about the file system fragment size and the minimum
free space percentage.

The following example shows part of the output of the dumpfs command:

dumpfs /dev/rrz3g | more
magic 11954 format dynamic time Tue Sep 14 15:46:52 1996
nbfree 21490 ndir 9 nifree 99541 nffree 60
ncg 65 ncyl 1027 size 409600 blocks 396062
bsize 8192 shift 13 mask 0xffffe000
fsize 1024 shift 10 mask 0xfffffc00
frag 8 shift 3 fsbtodb 1
cpg 16 bpg 798 fpg 6384 ipg 1536
minfree 10% optim time maxcontig 8 maxbpg 2048
rotdelay 0ms headswitch 0us trackseek 0us rps 60

The information contained in the first lines are relevant for tuning. Of
specific interest are the following fields:

• bsize —The block size of the file system in bytes (8 KB).

• fsize —The fragment size of the file system in bytes. For the optimum
I/O performance, you can modify the fragment size.

• minfree —The percentage of space held back from normal users; the
minimum free space threshold.

• maxcontig —The maximum number of contiguous blocks that will be
laid out before forcing a rotational delay; that is, the number of blocks
that are combined into a single read request.

• maxbpg—The maximum number of blocks any single file can allocate
out of a cylinder group before it is forced to begin allocating blocks from
another cylinder group. A large value for maxbpg can improve
performance for large files.

• rotdelay —The expected time (in milliseconds) to service a transfer
completion interrupt and initiate a new transfer on the same disk. It is
used to decide how much rotational spacing to place between successive
blocks in a file. If rotdelay is zero, then blocks are allocated
contiguously.

See Chapter 5 for more information about improving disk I/O performance.

2.6.2 Checking UFS Clustering With dbx ufs_clusterstats

To check UFS by using the dbx debugger, examine the ufs_clusterstats
data structure to see how efficiently the system is performing cluster read
and write transfers. You can examine the cluster reads and writes
separately with the ufs_clusterstats_read and
ufs_clusterstats_write data structures.

Diagnosing Performance Problems 2–35

The following example shows a system that is not clustering efficiently:

(dbx) print ufs_clusterstats
struct {

full_cluster_transfers = 3130
part_cluster_transfers = 9786
non_cluster_transfers = 16833
sum_cluster_transfers = {

[0] 0
[1] 24644
[2] 1128
[3] 463
[4] 202
[5] 55
[6] 117
[7] 36
[8] 123
[9] 0

}
}
(dbx)

The preceding example shows 24644 single-block transfers and no 9-block
transfers. A single block is 8 KB. The trend of the data shown in the
example is the reverse of what you want to see. It shows a large number of
single-block transfers and a declining number of multiblock (1−9) transfers.
However, if the files are all small, this may be the best blocking that you
can achieve.

See Chapter 5 for information on how to tune a UFS file system.

2.6.3 Checking the Metadata Buffer Cache With dbx bio_stats

The metadata buffer cache contains UFS file metadata—superblocks,
inodes, indirect blocks, directory blocks, and cylinder group summaries. To
check the metadata buffer cache, use the dbx debugger to examine the
bio_stats data structure.

Consider the following example:

(dbx) print bio_stats
struct {

getblk_hits = 4590388
getblk_misses = 17569
getblk_research = 0
getblk_dupbuf = 0
getnewbuf_calls = 17590
getnewbuf_buflocked = 0
vflushbuf_lockskips = 0
mntflushbuf_misses = 0

2–36 Diagnosing Performance Problems

mntinvalbuf_misses = 0
vinvalbuf_misses = 0
allocbuf_buflocked = 0
ufssync_misses = 0

}
(dbx)

If the miss rate is high, you may want to raise the value of the bufcache
attribute. The number of block misses (getblk_misses) divided by the
sum of block misses and block hits (getblk_hits) should not be more than
3 percent.

See Chapter 4 for information on how to tune the metadata buffer cache.

2.7 Gathering AdvFS Information
Use the following commands to gather information about the Advanced File
System (AdvFS):

• The advsstat command displays AdvFS performance statistics. See
Section 2.7.1.

• The advscan command identifies which disks are in a file domain. See
Section 2.7.2.

• The showfdmn utility displays information about AdvFS file domains.
See Section 2.7.3.

• The showfile command displays information about AdvFS filesets.
See Section 2.7.4.

• The showfsets command displays information about the filesets in a
file domain. See Section 2.7.5.

The following sections describe these commands in detail.

In addition, you can use the fsx exerciser to test AdvFS and UFS file
systems. See fsx (8) for more information.

2.7.1 Using advfsstat to Display AdvFS Performance Information

The advfsstat command displays various AdvFS performance statistics.
The command reports information in units of one disk block (512 bytes) for
each interval of time (the default is one second).

Use the advfsstat command to monitor the performance of AdvFS
domains and filesets. Use this command to obtain detailed information,
especially if the iostat command output indicates a disk bottleneck.

The advfsstat command displays detailed information about a file
domain, including information about the AdvFS buffer cache, fileset vnode

Diagnosing Performance Problems 2–37

operations, locks, the namei cache, and volume I/O performance. You can
use the -i option to output information at specific time intervals.

For example:

advfsstat -v 2 test_domain
vol1

rd wr rg arg wg awg blk wlz rlz con dev
54 0 48 128 0 0 0 1 0 0 65

Compare the number of read requests (rd) to the number of write requests
(wr). Read requests are blocked until the read completes, but write
requests will not block the calling thread, which increases the throughput
of multiple threads.

Consolidating reads and writes improves performance. The consolidated
read values (rg and arg) and write values (wg and awg) indicate the
number of disparate reads and writes that were consolidated into a single
I/O to the device driver. If the number of consolidated reads and writes
decreases compared to the number of reads and writes, AdvFS may not be
consolidating I/O.

The I/O queue values (blk to dev) can indicate potential performance
issues. The con value specifies the number of entries on the consolidate
queue. These entries are ready to be consolidated and moved to the device
queue. The device queue value (dev) shows the number of I/O requests that
have been issued to the device controller. The system must wait for these
requests to complete. If this number of I/O requests on the device queue
increases continually and you experience poor performance, applications
may be I/O bound on this device.

If an application is I/O bound, you may be able to eliminate the problem by
adding more disks to the domain or by striping disks. If the values for both
the consolidate queue (con) and the device queue (dev) are large during
periods of poor performance, you may want to increase the value of the
AdvfsMaxDevQLen attribute. See Section 5.6.2.6 for information about
modifying the attribute.

You can monitor the type of requests that applications are issuing by using
the advfsstat command’s -f flag to display fileset vnode operations. You
can display the number of file creates, reads, and writes and other
operations for a specified domain or fileset.

The following example shows the startup, running, and completion times
for an application:

advfsstat -i 3 -f 2 scratch_domain fset1
lkup crt geta read writ fsnc dsnc rm mv rdir mkd rmd link

0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 10 0 0 0 0 2 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

2–38 Diagnosing Performance Problems

0 0 0 0 0 0 0 0 0 0 0 0 0
24 8 51 0 9 0 0 3 0 0 4 0 0

1201 324 2985 0 601 0 0 300 0 0 0 0 0
1275 296 3225 0 655 0 0 281 0 0 0 0 0
1217 305 3014 0 596 0 0 317 0 0 0 0 0
1249 304 3166 0 643 0 0 292 0 0 0 0 0
1175 289 2985 0 601 0 0 299 0 0 0 0 0

779 148 1743 0 260 0 0 182 0 47 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

See advfsstat (8) for more information. Note that it is difficult to link
performance problems to some statistics such as buffer cache statistics. In
addition, lock performance that is related to lock statistics cannot be tuned.

2.7.2 Using advscan to Identify Disks in an AdvFS File Domain

The advscan command locates pieces of AdvFS domains on disk partitions
and in LSM disk groups. Use the advscan command when you have moved
disks to a new system, have moved disks around in a way that has changed
device numbers, or have lost track of where the domains are. You can also
use this command for repair if you delete the /etc/fdmns directory, delete
a directory domain under /etc/fdmns , or delete some links from a domain
directory under /etc/fdmns .

The advscan command accepts a list of volumes or disk groups and
searches all partitions and volumes in each. It determines which partitions
on a disk are part of an AdvFS file domain. You can run the advscan
command to rebuild all or part of your /etc/fdmns directory, or you can
manually rebuild it by supplying the names of the partitions in a domain.

The following example scans two disks for AdvFS partitions:

advscan rz0 rz5

Scanning disks rz0 rz5
Found domains:

usr_domain
Domain Id 2e09be37.0002eb40
Created Thu Jun 23 09:54:15 1996

Domain volumes 2
/etc/fdmns links 2

Actual partitions found:
rz0c
rz5c

Diagnosing Performance Problems 2–39

For the following example, the rz6 file domains were removed from
/etc/fdmns . The advscan command scans device rz6 and re-creates the
missing domains.

advscan -r rz6

Scanning disks rz6
Found domains:

unknown
Domain Id 2f2421ba.0008c1c0
Created Mon Jan 23 13:38:02 1996

Domain volumes 1
/etc/fdmns links 0

Actual partitions found:
rz6a*

unknown
Domain Id 2f535f8c.000b6860
Created Tue Feb 28 09:38:20 1996

Domain volumes 1
/etc/fdmns links 0

Actual partitions found:
rz6b*

Creating /etc/fdmns/domain_rz6a/
linking rz6a

Creating /etc/fdmns/domain_rz6b/
linking rz6b

See advscan (8) for more information.

2.7.3 Using showfdmn to Display AdvFS File Domain Information

The showfdmn command displays the attributes of an AdvFS file domain
and detailed information about each volume in the file domain.

The following example of the showfdmn command displays domain
information for the usr file domain:

% showfdmn usr

Id Date Created LogPgs Domain Name
2b5361ba.000791be Tue Jan 12 16:26:34 1996 256 usr

2–40 Diagnosing Performance Problems

Vol 512-Blks Free % Used Cmode Rblks Wblks Vol Name
1L 820164 351580 57% on 256 256 /dev/rz0d

See showfdmn (8) for more information about the output of the command.

2.7.4 Using showfile to Display AdvFS File Information

The showfile command displays the full storage allocation map (extent
map) for one or more files in an AdvFS fileset. An extent is a contiguous
area of disk space that AdvFS allocates to a file. The following example of
the showfile command displays the AdvFS-specific attributes for all of
the files in the current working directory:

showfile *

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File
22a.001 1 16 1 simple ** ** async 50% Mail

7.001 1 16 1 simple ** ** async 20% bin
1d8.001 1 16 1 simple ** ** async 33% c

1bff.001 1 16 1 simple ** ** async 82% dxMail
218.001 1 16 1 simple ** ** async 26% emacs
1ed.001 1 16 0 simple ** ** async 100% foo
1ee.001 1 16 1 simple ** ** async 77% lib
1c8.001 1 16 1 simple ** ** async 94% obj
23f.003 1 16 1 simple ** ** async 100% sb

170a.008 1 16 2 simple ** ** async 35% t
6.001 1 16 12 simple ** ** async 16% tmp

The I/O column specifies whether the I/O operation is synchronous or
asynchronous.

The following example of the showfile command shows the attributes and
extent information for the tutorial file, which is a simple file:

showfile -x tutorial

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File
4198.800d 2 16 27 simple ** ** async 66% tutorial

extentMap: 1
pageOff pageCnt vol volBlock blockCnt

0 5 2 781552 80
5 12 2 785776 192

17 10 2 786800 160
extentCnt: 3

The Perf entry shows the efficiency of the file-extent allocation, expressed
as a percentage of the optimal extent layout. A high value, such as 100
percent, indicates that the AdvFS I/O subsystem is highly efficient. A low
value indicates that files may be fragmented. See showfile (8) for more
information about the command output.

Diagnosing Performance Problems 2–41

2.7.5 Using showfsets to Display AdvFS Filesets in a File Domain

The showfsets command displays the AdvFS filesets (or clone filesets)
and their characteristics in a specified domain.

The following is an example of the showfsets command:

showfsets dmn

mnt
Id : 2c73e2f9.000f143a.1.8001
Clone is : mnt_clone
Files : 79, limit = 1000
Blocks (1k) : 331, limit = 25000
Quota Status : user=on group=on

mnt_clone
Id : 2c73e2f9.000f143a.2.8001
Clone of : mnt
Revision : 1

See showfsets (8) for information about the options and output of the
command.

2.8 Gathering LSM Information

Use the following commands to gather information about a Logical Storage
Manager (LSM) configuration:

• The volprint command displays comprehensive information about an
LSM configuration. See Section 2.8.1.

• The volstat utility reports I/O performance statistics for an LSM
configuration. See Section 2.8.2.

• The voltrace utility tracks I/O operations on LSM volumes. See
Section 2.8.3.

• The volwatch script monitors an LSM configuration for failures. See
Section 2.8.4.

• The dxlsm graphical user interface (GUI) reports comprehensive
information about an LSM configuration. See Section 2.8.5.

The following sections describe these commands in detail.

2.8.1 Using volprint to Display LSM Configuration Information

The volprint command displays information from records in the LSM
configuration database. You can select the records to be displayed by name

2–42 Diagnosing Performance Problems

or by using special search expressions. In addition, you can display record
association hierarchies, so that the structure of records is more apparent.

Use the volprint command to display disk group, disk media, volume,
plex, and subdisk records. Use the voldisk list to display disk access
records, or physical disk information.

The following example uses the volprint command to show the status of
the voldev1 volume:

volprint -ht voldev1
DG NAME GROUP-ID
DM NAME DEVICE TYPE PRIVLEN PUBLEN PUBPATH
V NAME USETYPE KSTATE STATE LENGTH READPOL PREFPLEX
PL NAME VOLUME KSTATE STATE LENGTH LAYOUT ST-WIDTH MODE
SD NAME PLEX PLOFFS DISKOFFS LENGTH DISK-NAME DEVICE

v voldev1 fsgen ENABLED ACTIVE 804512 SELECT -
pl voldev1-01 voldev1 ENABLED ACTIVE 804512 CONCAT - RW
sd rz8-01 voldev1-01 0 0 804512 rz8 rz8
pl voldev1-02 voldev1 ENABLED ACTIVE 804512 CONCAT - RW
sd dev1-01 voldev1-02 0 2295277 402256 dev1 rz9
sd rz15-02 voldev1-02 402256 2295277 402256 rz15 rz15

See volprint (8) for more information about command options and output.

2.8.2 Using volstat to Display LSM Performance Information

The volstat command provides information about activity on volumes,
plexes, subdisks, and disks under LSM control. It reports statistics that
reflect the activity levels of LSM objects since boot time.

The amount of information displayed depends on which options you specify
to volstat . For example, you can display statistics for a specific LSM
object, or you can display statistics for all objects at one time. If you specify
a disk group, only statistics for objects in that disk group are displayed. If
you do not specify a particular disk group, volstat displays statistics for
the default disk group (rootdg).

You can also use the volstat command to reset the statistics information
to zero. This can be done for all objects or for only specified objects.
Resetting the information to zero before a particular operation makes it
possible to measure the subsequent impact of that particular operation.

The following example uses the volstat command to display statistics on
LSM volumes:

volstat
OPERATIONS BLOCKS AVG TIME(ms)
TYP NAME READ WRITE READ WRITE READ WRITE
vol archive 865 807 5722 3809 32.5 24.0
vol home 2980 5287 6504 10550 37.7 221.1

Diagnosing Performance Problems 2–43

vol local 49477 49230 507892 204975 28.5 33.5
vol src 79174 23603 425472 139302 22.4 30.9
vol swapvol 22751 32364 182001 258905 25.3 323.2

See volstat (8) for more information about command output.

2.8.3 Using voltrace to Display LSM I/O Operation Information

The voltrace command reads an event log (/dev/volevent) and prints
formatted event log records to standard output. Using voltrace , you can
set event trace masks to determine which type of events will be tracked.
For example, you can trace I/O events, configuration changes, or I/O errors.

The following example uses the voltrace command to display status on
all new events:

voltrace -n -e all
18446744072623507277 IOTRACE 439: req 3987131 v:rootvol p:rootvol-01 \

d:root_domain s:rz3-02 iot write lb 0 b 63120 len 8192 tm 12
18446744072623507277 IOTRACE 440: req 3987131 \

v:rootvol iot write lb 0 b 63136 len 8192 tm 12

See voltrace (8) for more information about command options and output.

2.8.4 Using volwatch to Monitor LSM Failures

The volwatch shell script is automatically started when you install LSM.
This script sends mail to root if certain LSM configuration events occur,
such as a plex detach caused by a disk failure. The script sends mail to root
by default. You also can specify another mail recipient.

See volwatch (8) for more information.

2.8.5 Using dxlsm to Display LSM Configuration Information

The LSM graphical user interface (GUI), dxlsm , includes an Analyze menu
that allows you to display statistics about volumes, LSM disks, and
subdisks. The information is displayed graphically, using colors and
patterns on the disk icons, and numerically, using the Analysis
Statistics form. You can use the Analysis Parameters form to
customize the displayed information.

See the Logical Storage Manager manual and dxlsm (8X) for more
information about dxlsm .

2–44 Diagnosing Performance Problems

2.9 Gathering Network Information
Use the following commands to gather network performance information:

• The netstat command displays network statistics. See Section 2.9.1.

• The nfsstat command displays network and NFS statistics. See
Section 2.9.2.

• The sobacklog_hiwat attribute reports pending requests to a server
socket. See Section 2.9.3.

• The sobacklog_drops attribute reports the number of backlog drops
that exceed the limit. See Section 2.9.3.

• The somaxconn_drops attribute reports the number of drops that
exceed the somaxconn limit. See Section 2.9.3.

• The ps command displays information about idle threads. See
Section 6.2.4.

The following sections describe these commands in detail.

In addition, you can use the following commands to obtain network
information:

• The tcpdump command monitors network interface packets. See
tcpdump (8).

• The traceroute command displays a packet’s route to a network host.
See traceroute (8).

• The ping command determines if a host can be reached on a network.
See ping (8).

• The nfswatch command monitors an NFS server. See nfswatch (8).

2.9.1 Using netstat to Display Network Information

To check network statistics, use the netstat command. Some problems to
look for are as follows:

• If the netstat -i command shows excessive amounts of input errors
(Ierrs), output errors (Oerrs), or collisions (Coll), this may indicate a
network problem; for example, cables are not connected properly or the
Ethernet is saturated.

• If the netstat -m command shows several requests for memory
delayed or denied, this means that your system was temporarily short
of physical memory.

• Use the netstat -m command to determine if the network is using an
excessive amount of memory in proportion to the total amount of
memory installed in the system.

Diagnosing Performance Problems 2–45

• Each socket results in a network connection. If the system allocates an
excessive number of sockets, use the netstat -an command to
determine the state of your existing network connections.

An example of the netstat -an command is as follows:
netstat -an | grep TCP | awk ’{print $6}’ | sort | uniq -c

1 CLOSED
18 CLOSE_WAIT

380 ESTABLISHED
74 LISTEN

9 TIME_WAIT

• Use the netstat -p ip command to check for bad checksums, length
problems, excessive redirects, and packets lost because of resource
problems.

• Use the netstat -p tcp command to check for retransmissions, out
of order packets, and bad checksums.

• Use the netstat -p udp command to look for bad checksums and full
sockets.

• Use the netstat -rs to obtain routing statistics.

Most of the information provided by netstat is used to diagnose network
hardware or software failures, not to analyze tuning opportunities. See the
Network Administration manual for more information on how to diagnose
failures.

The following example shows the output produced by the netstat -i
command:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ln0 1500 DLI none 133194 2 23632 4 4881
ln0 1500 <Link> 133194 2 23632 4 4881
ln0 1500 red-net node1 133194 2 23632 4 4881
sl0* 296 <Link> 0 0 0 0 0
sl1* 296 <Link> 0 0 0 0 0
lo0 1536 <Link> 580 0 580 0 0
lo0 1536 loop localhost 580 0 580 0 0

Use the following netstat command to determine the causes of the input
(Ierrs) and output (Oerrs) shown in the preceding example:

netstat -is

ln0 Ethernet counters at Fri Jan 14 16:57:36 1996

4112 seconds since last zeroed
30307093 bytes received

3722308 bytes sent
133245 data blocks received

23643 data blocks sent

2–46 Diagnosing Performance Problems

14956647 multicast bytes received
102675 multicast blocks received

18066 multicast bytes sent
309 multicast blocks sent

3446 blocks sent, initially deferred
1130 blocks sent, single collision
1876 blocks sent, multiple collisions

4 send failures, reasons include:
Excessive collisions

0 collision detect check failure
2 receive failures, reasons include:

Block check error
Framing Error

0 unrecognized frame destination
0 data overruns
0 system buffer unavailable
0 user buffer unavailable

The netstat-s command displays the following statistics for each
protocol:

netstat -s
ip:

67673 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
8616 fragments received
0 fragments dropped (dup or out of space)
5 fragments dropped after timeout
0 packets forwarded
8 packets not forwardable
0 redirects sent

icmp:
27 calls to icmp_error
0 errors not generated old message was icmp
Output histogram:

echo reply: 8
destination unreachable: 27

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 1
destination unreachable: 4
echo: 8

8 message responses generated
igmp:

365 messages received
0 messages received with too few bytes
0 messages received with bad checksum
365 membership queries received
0 membership queries received with invalid field(s)
0 membership reports received
0 membership reports received with invalid field(s)
0 membership reports received for groups to which we belong

Diagnosing Performance Problems 2–47

0 membership reports sent
tcp:

11219 packets sent
7265 data packets (139886 bytes)
4 data packets (15 bytes) retransmitted
3353 ack-only packets (2842 delayed)
0 URG only packets
14 window probe packets
526 window update packets
57 control packets

12158 packets received
7206 acks (for 139930 bytes)
32 duplicate acks
0 acks for unsent data
8815 packets (1612505 bytes) received in-sequence
432 completely duplicate packets (435 bytes)
0 packets with some dup. data (0 bytes duped)
14 out-of-order packets (0 bytes)
1 packet (0 bytes) of data after window
0 window probes
1 window update packet
5 packets received after close
0 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short

19 connection requests
25 connection accepts
44 connections established (including accepts)
47 connections closed (including 0 drops)
3 embryonic connections dropped
7217 segments updated rtt (of 7222 attempts)
4 retransmit timeouts

0 connections dropped by rexmit timeout
0 persist timeouts
0 keepalive timeouts

0 keepalive probes sent
0 connections dropped by keepalive

udp:
12003 packets sent
48193 packets received
0 incomplete headers
0 bad data length fields
0 bad checksums
0 full sockets
12943 for no port (12916 broadcasts, 0 multicasts)

See netstat (1) for information about the output produced by the various
options supported by the netstat command.

2.9.2 Using nfsstat to Display Network and NFS Information

The nfsstat command displays statistical information about the Network
File System (NFS) and Remote Procedure Call (RPC) interfaces in the
kernel. You can also use this command to reinitialize the statistics.

An example of the nfsstat command is as follows:

nfsstat

2–48 Diagnosing Performance Problems

Server rpc:
calls badcalls nullrecv badlen xdrcall
38903 0 0 0 0

Server nfs:
calls badcalls
38903 0

Server nfs V2:
null getattr setattr root lookup readlink read
5 0% 3345 8% 61 0% 0 0% 5902 15% 250 0% 1497 3%
wrcache write create remove rename link symlink
0 0% 1400 3% 549 1% 1049 2% 352 0% 250 0% 250 0%
mkdir rmdir readdir statfs
171 0% 172 0% 689 1% 1751 4%

Server nfs V3:
null getattr setattr lookup access readlink read
0 0% 1333 3% 1019 2% 5196 13% 238 0% 400 1% 2816 7%
write create mkdir symlink mknod remove rmdir
2560 6% 752 1% 140 0% 400 1% 0 0% 1352 3% 140 0%
rename link readdir readdir+ fsstat fsinfo pathconf
200 0% 200 0% 936 2% 0 0% 3504 9% 3 0% 0 0%
commit
21 0%

Client rpc:
calls badcalls retrans badxid timeout wait newcred
27989 1 0 0 1 0 0
badverfs timers
0 4

Client nfs:
calls badcalls nclget nclsleep
27988 0 27988 0

Client nfs V2:
null getattr setattr root lookup readlink read
0 0% 3414 12% 61 0% 0 0% 5973 21% 257 0% 1503 5%
wrcache write create remove rename link symlink
0 0% 1400 5% 549 1% 1049 3% 352 1% 250 0% 250 0%
mkdir rmdir readdir statfs
171 0% 171 0% 713 2% 1756 6%

Client nfs V3:
null getattr setattr lookup access readlink read
0 0% 666 2% 9 0% 2598 9% 137 0% 200 0% 1408 5%
write create mkdir symlink mknod remove rmdir
1280 4% 376 1% 70 0% 200 0% 0 0% 676 2% 70 0%
rename link readdir readdir+ fsstat fsinfo pathconf
100 0% 100 0% 468 1% 0 0% 1750 6% 1 0% 0 0%
commit
10 0%
#

The ratio of timeouts to calls (which should not exceed 1 percent) is the
most important thing to look for in the NFS statistics. A timeout-to-call
ratio greater than 1 percent can have a significant negative impact on
performance. See Chapter 6 for information on how to tune your system to
avoid timeouts.

Diagnosing Performance Problems 2–49

If you are attempting to monitor an experimental situation with nfsstat ,
reset the NFS counters to zero before you begin the experiment. Use the
nfsstat -z command to clear the counters. See nfsstat (8) for more
information about command options and output.

2.9.3 Checking Socket Listen Queue Statistics With sysconfig

You can determine whether you need to increase the socket listen queue
limit by using the sysconfig -q socket command to display the values
of the following attributes:

• sobacklog_hiwat

Allows you to monitor the maximum number of pending requests to any
server socket in the system. The initial value is 0.

• sobacklog_drops

Allows you to monitor the number of times the system dropped a
received SYN packet because the number of queued SYN_RCVD
connections for a socket equaled the socket’s backlog limit. The initial
value is 0.

• somaxconn_drops

Allows you to monitor the number of times the system dropped a
received SYN packet because the number of queued SYN_RCVD
connections for the socket equaled the upper limit on the backlog length
(somaxconn attribute). The initial value is 0.

DIGITAL recommends that the value of the sominconn attribute equal
the value of the somaxconn attribute. If so, the value of
somaxconn_drops will have the same value as sobacklog_drops .

However, if the value of the sominconn attribute is 0 (the default), and
if one or more server applications uses an inadequate value for the
backlog argument to its listen system call, the value of
sobacklog_drops may increase at a rate that is faster than the rate
at which the somaxconn_drops counter increases. If this occurs, you
may want to increase the value of the sominconn attribute.

See Chapter 6 for information on tuning socket listen queue limits.

2.9.4 Using ps to Display Idle Thread Information

On a client system, the nfsiod daemons spawn several I/O threads to
service asynchronous I/O requests to the server. The I/O threads improve
the performance of both NFS reads and writes. The optimum number of I/O
threads depends on many variables, such as how quickly the client will be
writing, how many files will be accessed simultaneously, and the

2–50 Diagnosing Performance Problems

characteristics of the NFS server. For most clients, seven threads are
sufficient.

The following example uses the ps axlmp command to display idle I/O
threads on a client system:

#
ps axlmp 0 | grep nfs

0 42 0 nfsiod_ S 0:00.52
0 42 0 nfsiod_ S 0:01.18
0 42 0 nfsiod_ S 0:00.36
0 44 0 nfsiod_ S 0:00.87
0 42 0 nfsiod_ S 0:00.52
0 42 0 nfsiod_ S 0:00.45
0 42 0 nfsiod_ S 0:00.74

#

The previous output shows a sufficient number of sleeping threads. If your
output shows that few threads are sleeping, you may be able to improve
NFS performance by increasing the number of threads. See Chapter 6,
nfsiod (8), and nfsd (8) for more information.

2.10 Gathering Profiling and Debugging Information

For information about the application and kernel profiling and debugging
tools that are described in Table 2–7, see the Programmer’s Guide, the
Kernel Debugging manual, and the reference pages associated with the
tools.

2.11 Modifying the Kernel

Kernel variables, including system attributes and parameters, determine
the behavior of the DIGITAL UNIX operating system and subsystems.
When you install the operating system or add optional subsystems, the
kernel variables are set to their default values. Modifying the values of
certain kernel variables may improve system performance. Some kernel
variables are used only to monitor the current state of the system.

You can display and modify kernel variable values by using various
methods. You can modify some variables by using all methods, but in some
cases, you must use a particular method to modify a variable.

Because you can use various methods to assign values to kernel variables,
the system uses the following hierarchy to determine which value to use:

• Run-time values

Run-time kernel variable values are effective immediately. Not all
variables can be tuned at run time. Use the Kernel Tuner,

Diagnosing Performance Problems 2–51

dxkerneltuner , or the sysconfig -r command to make run-time
modifications to attributes that support this feature. When the system
reboots, these run-time modifications are lost, and the attributes revert
to their permanently assigned values. See Section 2.11.2 and
Section 2.11.3 for more information.

You also can use the dbx assign command or the dbx patch
command to make modifications to variables in the running kernel. If
you use the dbx assign command, the modifications are lost when you
reboot the system. If you use the dbx patch command, the
modifications are lost when you rebuild the kernel. See Section 2.11.1
for more information.

• Permanent attribute values

The sysconfigtab subsystem configuration database file describes the
various subsystems and their attribute values. Use the Kernel Tuner or
the sysconfigdb command to assign values to attributes in the
sysconfigtab file. Do not manually edit the sysconfigtab file.

See Section 2.11.2 and Section 2.11.4 for more information.

• Permanent parameter values

The /usr/sys/conf/ SYSTEMconfiguration file describes system
parameters. You can edit the file to modify the values assigned to the
parameters. You must rebuild the kernel and reboot the system to use
the new parameter values.

Because some system attributes have corresponding system
parameters, the values permanently assigned to attributes supersede
the values permanently assigned to their corresponding parameters. If
possible, modify an attribute instead of its corresponding parameter.

See Section 2.11.5 for more information.

The following sections describe how to display and modify kernel variables,
attributes, and parameters. See the System Administration manual for
detailed information about kernel variables, attributes, and parameters.

2.11.1 Using dbx to Display and Modify Run-Time Kernel Variables

Use the dbx command to examine source files, control program execution,
display the state of the program, and debug at the machine-code level. To
examine the values of kernel variables and data structures, use the dbx
print command and specify the data structure or variable to examine.

An example of the dbx print command is as follows:

dbx −k /vmunix /dev/mem

2–52 Diagnosing Performance Problems

(dbx) print vm_page_free_count
248
(dbx)

dbx −k /vmunix /dev/mem

(dbx) print somaxconn
1024
(dbx)

dbx −k /vmunix /dev/mem

(dbx) print vm_perfsum
struct {

vpf_pagefaults = 1689166
vpf_kpagefaults = 13690
vpf_cowfaults = 478504
vpf_cowsteals = 638970
vpf_zfod = 255372
vpf_kzfod = 13654
vpf_pgiowrites = 3902

...

vpf_vmwiredpages = 440
vpf_ubcwiredpages = 0
vpf_mallocpages = 897
vpf_totalptepages = 226
vpf_contigpages = 3
vpf_rmwiredpages = 0
vpf_ubcpages = 2995
vpf_freepages = 265
vpf_vmcleanpages = 237
vpf_swapspace = 7806

}
(dbx)

Use the dbx patch command to modify the run-time values of some kernel
variables. Note that the values you assign by using the dbx patch
command are temporary and are lost when you rebuild the kernel.

An example of the dbx patch command is as follows:

dbx −k /vmunix /dev/mem

(dbx) patch somaxconn = 32767
32767
(dbx)

Diagnosing Performance Problems 2–53

To ensure that the system is utilizing a new kernel variable value, reboot
the system. See the Programmer’s Guide for detailed information about the
dbx debugger.

You can also use the dbx assign command to modify run-time kernel
variable values. However, the modifications are lost when you reboot the
system.

2.11.2 Using the Kernel Tuner to Display and Modify Attributes

Use the Kernel Tuner (dxkerneltuner), provided by the Common Desktop
Environment’s (CDE) graphical user interface, to display the current and
permanent values for attributes, modify the run-time values (if supported),
and modify the permanent values.

To access the Kernel Tuner, click on the Application Manager icon in the
CDE menu bar, select System_Admin, and then select MonitoringTuning.
You can then click on Kernel Tuner. A pop-up menu containing a list of
subsystems appears, allowing you to select a subsystem and generate a
display of the subsystem’s attributes and values.

2.11.3 Using the sysconfig Command to Display and Modify
Run-Time Attributes

Use the sysconfig command to display the configured subsystems,
attribute values, and other attribute information. The command also allows
you to modify the run-time values of attributes that support this feature.

Use the sysconfig -s command to list the subsystems that are configured
in your system. An example of the sysconfig -s command is as follows:

sysconfig -s
Cm: loaded and configured
Generic: loaded and configured
Proc: loaded and configured
...
Xpr: loaded and configured
Rt: loaded and configured
Net: loaded and configured
#

Use the sysconfig -q command and specify a subsystem to display the
run-time values of the subsystem attributes. An example of the sysconfig
-q command is as follows:

2–54 Diagnosing Performance Problems

sysconfig -q vfs
vfs:
name-cache-size = 32768
name-cache-hash-size = 1024
buffer-hash-size = 512
...
max-ufs-mounts = 1000
vnode-deallocation-enable = 1
pipe-maxbuf-size = 65536
pipe-single-write-max = -1
pipe-databuf-size = 8192
pipe-max-bytes-all-pipes = 81920000
noadd-exec-access = 0
#

If an attribute is not defined in the sysconfigtab database file, the
sysconfig -q command returns the default value of attribute.

To display the minimum and maximum values for an attribute, use the
sysconfig -Q command and specify the subsystem. An example of the
sysconfig -Q command is as follows:

sysconfig -Q ufs
ufs:
inode-hash-size - type=INT op=CQ min_val=0 max_val=2147483647
create-fastlinks - type=INT op=CQ min_val=0 max_val=2147483647
ufs-blkpref-lookbehind -

type=INT op=CQ min_val=0 max_val=2147483647
nmount - type=INT op=CQ min_val=0 max_val=2147483647
#

To modify the run-time value of an attribute, use the sysconfig -r
command and specify the subsystem, the attribute, and the attribute value.
Only some attributes support run-time modifications. An example of the
sysconfig -r command is as follows:

sysconfig -r socket somaxconn=1024
somaxconn: reconfigured
#

See the System Administration manual and sysconfig (8) for more
information.

2.11.4 Using the sysconfigdb Command to Modify Attributes

Use the sysconfigdb command to assign new values to attributes in the
sysconfigtab database file. Do not manually edit the sysconfigtab
database file.

Diagnosing Performance Problems 2–55

After you use the sysconfigdb command, reboot the system or invoke the
sysconfig -r command to use the new attribute values.

See the System Administration manual and sysconfigdb (8) for more
information.

2.11.5 Modifying Parameters in the System Configuration File

Use the /usr/sys/conf/ SYSTEMconfiguration file to specify values for
kernel parameters. You can edit the file to modify the values currently
assigned to the parameters or to add parameters. You must rebuild the
kernel and reboot the system to use the new parameter values.

Some kernel attributes have corresponding kernel parameters, but the
values permanently assigned to attributes supersede the values
permanently assigned to their corresponding parameters in the system
configuration file. If possible, always modify an attribute instead of its
corresponding parameter.

See the System Administration manual for descriptions of some parameters
and information about modifying the system configuration file and
rebuilding the kernel. See Appendix B for a list of attributes that have
corresponding parameters.

2–56 Diagnosing Performance Problems

3
Optimizing Applications and CPU

Performance

This chapter describes how to optimize CPU resources and applications for
high performance.

3.1 Configuring CPU Resources

You must configure enough CPU power in your system to meet the
performance needs of your users and applications. In addition, you may be
able to improve performance by optimizing the CPU and your applications.

A system must be able to efficiently allocate the available CPU cycles
among competing processes. In addition to single-CPU systems, DIGITAL
supports multiprocessing systems and processors with different speeds.

Multiprocessing systems allow you to expand the computing power of a
system by adding processors. Workloads that benefit most from
multiprocessing have multiple processes or multiple threads of execution
that can run concurrently, such as database management system (DBMS)
servers, World Wide Web (WWW) servers, mail servers, and compute
servers.

You may be able to improve the performance of a multiprocessing system
that has only a small percentage of idle time by adding processors.
However, increasing the number of processors may increase the demands
on your I/O and memory subsystems and could cause bottlenecks. If your
system is metadata-intensive (that is, it opens large numbers of small files
and accesses them repeatedly), you may gain an additional performance
benefit if you add Prestoserve or use a write-back cache when you add more
processors. See Chapter 5 for information about Prestoserve and write-back
caches.

Before you add processors, you must ensure that a performance problem is
not caused by the virtual memory or I/O subsystems. For example,
increasing the number of processors will not improve performance in a
system that lacks sufficient memory resources.

The iostat and vmstat commands let you monitor the memory, CPU, and
I/O consumption on your system. The cpustat extension to the kdbx

Optimizing Applications and CPU Performance 3–1

debugger allows application developers to monitor the time spent in user
mode, system mode, and kernel mode on each of the processors. This
information can help application developers determine how effectively they
are achieving parallelism across the system. See Chapter 2 for information
about using tools to monitor performance.

3.2 Identifying CPU Bottlenecks

Use the vmstat command to determine CPU usage as follows:

• A high percentage of idle time on one or more processors indicates
either:

– Threads are blocked because the CPU is waiting for some event or
resource (for example, memory or I/O)

– Threads are idle because the CPU is not busy

• A low percentage of idle time is the primary indication of a CPU
bottleneck.

• A high percentage of system time may indicate a system bottleneck,
which can be caused by excessive system calls, device interrupts,
context switches, soft page faults, lock contention, or cache missing.

• A high percentage of user time can be a characteristic of a
well-performing system. However, if the system has poor performance, a
high percentage of user time may indicate a user code bottleneck, which
can be caused by inefficient user code, insufficient processing power, or
excessive memory latency or cache missing.

Use profiling to determine which sections of code consume the most
processing time. See the Programmer’s Guide for more information on
profiling.

Use the kdbx cpustat extension to display statistics about CPU use,
especially for multiprocessing systems. Statistics include the percentages of
time the CPU spends in the following states:

• Running user level code

• Running system level code

• Running at a priority set with the nice function

• Idle

• Waiting (idle with input or output pending)

See Chapter 2 for information about monitoring systems.

3–2 Optimizing Applications and CPU Performance

3.3 Optimizing CPU Resources

After you configure the appropriate number of CPUs in your system, you
may be able to improve system performance by optimizing your CPU
resources. Before optimizing the CPU, ensure that the virtual memory or
I/O subsystems are not the cause of poor performance. If optimizing the
CPU does not solve the performance problem, you must upgrade your CPU
to a faster processor or use multiprocessing.

To optimize your CPU resources, use the following methods:

• Use the Class Scheduler to allocate CPU resources

The Class Scheduler allows you to allocate a percentage of CPU time to
a task or application. This allows you to reserve a majority of CPU time
for important processes, while limiting CPU usage by less critical
processes.

To use class scheduling, group together processes into classes and
assign each class a percentage of CPU time. You can display statistics
on the actual CPU usage for a class. You can also manually assign a
class to any process.

See the Release Notes, class_scheduling (4), class_admin (8),
runclass (1), and classcntl (2) for more information about the Class
Scheduler.

• Prioritize jobs so that important applications are run first

Use the nice command to specify the priority for a command. Use the
renice command to change the priority of a running process.

• Schedule jobs at different times (use the at and cron commands) or
when the load level permits (use the batch command)

• Increase the program size limits

Extremely large programs may run more efficiently if you increase the
values of the following system configuration file parameters that control
program size limits:

– dfldsiz —Default data segment size limit

– maxdsiz —Maximum data segment size limit

– dflssiz —Default stack size limit

– maxssiz —Maximum stack size limit

Some extremely large programs may not run unless these parameters
are adjusted. For example, an inadequate maxdsiz size limit may
produce the following error:

Out of process memory...

Optimizing Applications and CPU Performance 3–3

The limit and unlimit commands can affect program size limits. See
the System Administration manual for information on changing these
parameter values.

• Reduce the size of the kernel

You can reduce the static size of the kernel by deconfiguring any
unnecessary subsystems. To do this, use the setld −d command. You
can also minimize the number of kernel options for your system. See
the Installation Guide for details.

• Ensure that lockmode is set to the appropriate value

Specify 0 for UP (uniprocessing), 2 for symmetrical multiprocessing
(SMP), and 1 or 3 for realtime. This can prevent system bottlenecks in
the CPU.

• Optimize your applications

You can use various compiler and linker optimization levels to generate
more efficient user code. See the Programmer’s Guide for more
information on application optimization.

3.4 Identifying Application Bottlenecks

If an application is degrading system performance, use profiling to identify
sections of code that consume large portions of execution time. In a typical
program, most execution time is spent in relatively few sections of code. To
improve performance, concentrate on improving the coding efficiency of
those time-intensive sections. See the Programmer’s Guide for more
information on profiling.

3.5 Improving Application Performance

Well-written applications use CPU, memory, and I/O resources efficiently.
You may be able to improve system and application performance by
following these recommendations:

• Use the latest version of the operating system, compiler, firmware, and
patches

Check the software on your system to ensure that you are using the
latest versions of the compiler and the operating system to build your
application program. In general, new versions of a compiler perform
advanced optimizations, and new versions of the operating system
operate efficiently.

• Use parallelism

To enhance parallelism, application developers working in Fortran or C
should consider using the Kuch & Associates Preprocessor (KAP), which

3–4 Optimizing Applications and CPU Performance

can have a significant impact on SMP performance. See the
Programmer’s Guide for details on KAP.

• Ensure that the application runs without error

Test your application program to ensure that it runs without errors.
Whether you are porting an application from a 32-bit system to
DIGITAL UNIX or developing a new application, never attempt to
optimize an application until it has been thoroughly debugged and
tested. If you are porting an application written in C, use the lint
command with the -Q flag or compile your program using the C
compiler’s -check flag to identify possible portability problems that you
may need to resolve.

• Optimize applications

Optimizing an application program can involve modifying the build
process or modifying the source code. Various compiler and linker
optimization levels can be used to generate more efficient user code. See
the Programmer’s Guide for more information on optimization.

• Prioritize applications

Prioritize jobs so that important applications are run first. Use the
nice command to specify the priority for a command. Use the renice
command to change the priority of a running process.

• Use shared libraries

Using shared libraries reduces the need for memory and disk space.
When multiple programs are linked to a single shared library, the
amount of physical memory used by each process can be significantly
reduced. However, shared libraries initially result in an execution time
that is slower than if you had used static libraries.

3.6 Interprocess Communications Facilities

Interprocess communication (IPC) is the exchange of information between
two or more processes. Some examples of IPC include messages, shared
memory, semaphores, pipes, signals, process tracing, and processes
communicating with other processes over a network. IPC is a functional
interrelationship of several operating system subsystems. Elements are
found in scheduling and networking.

In single-process programming, modules within a single process
communicate with each other using global variables and function calls,
with data passing between the functions and the callers. If you are
programming by using separate processes with images in separate address
spaces, use additional communication mechanisms.

Optimizing Applications and CPU Performance 3–5

The DIGITAL UNIX operating system provides the following facilities for
interprocess communication:

• Pipes—See the Guide to Realtime Programming for information about
pipes.

• Signals—See the Guide to Realtime Programming for information about
signals.

• Sockets—See the Network Programmer’s Guide for information about
sockets.

• Streams—See the Programmer’s Guide: STREAMS for information
about streams.

• X/Open Transport Interface (XTI)—See the Network Programmer’s
Guide for information about XTI.

You may be able to improve IPC performance by modifying the following
attributes:

• msg-mnb (maximum number of bytes on queue)

A process will be unable to send a message to a queue if the message
will make the total number of bytes in that queue greater than the
limit specified by msg-mnb. When the limit is reached, the process
sleeps and waits for this condition to be resolved.

• msg-tql (number of system message headers)

A process will be unable to send a message if the message will make
the total number of message headers currently in the system greater
than the limit specified by msg-tql . If the limit is reached, the process
sleeps and waits for a message header to be freed.

You can track the use of IPC facilities with the ipcs -a command (see
ipcs (1)). By looking at the current number of bytes and message headers
in the queues, you can then determine whether you need to increase the
values of the msg-mnb and msg-tql attributes to diminish waiting.

You may also want to consider modifying several of the following IPC
attributes:

• Message attributes:

– msg-max (maximum message size)

– msg-mni (number of message queue identifiers)

• Semaphore attributes:

– sem-mni (number of semaphore identifiers)

– sem-msl (number of semaphores per ID)

– sem-opm (maximum number of operations per semop call)

3–6 Optimizing Applications and CPU Performance

– sem-ume (maximum number of undo entries per process)

– sem-vmx (semaphore maximum value)

– sem-aem (adjust on exit maximum value)

• Shared memory attributes:

– shm-max (maximum shared memory segment size)

– shm-min (minimum shared memory segment size)

– shm-mni (number of shared memory identifiers)

– shm-seg (maximum attached shared memory segments per process)

As a design consideration, consider whether you will get better
performance by using threads instead of shared memory.

Optimizing Applications and CPU Performance 3–7

4
Configuring and Tuning Memory

This chapter describes how the DIGITAL UNIX operating system uses the
physical memory installed in the system. This chapter also describes how
to configure and tune virtual memory, swap space, and buffer caches. Many
of the tuning tasks described in this chapter require you to modify system
attributes. See Section 2.11 for more information.

4.1 Understanding Memory Management

The total amount of physical memory is determined by the capacity of
the memory boards installed in your system. The system distributes this
memory in 8-KB units called pages.

The system distributes pages of physical memory among three areas:

• Wired memory

At boot time, the operating system and the Privileged Architecture
Library (PAL) code wire a contiguous portion of physical memory in
order to perform basic system operations. Static wired memory is
reserved for operating system data and text, system tables, the
metadata buffer cache, which temporarily holds recently accessed UNIX
File System (UFS) and CD-ROM File System (CDFS) metadata, and
the Advanced File System (AdvFS) buffer cache. Static wired memory
cannot be reclaimed through paging. You can reduce the amount of
static wired memory only by removing subsystems.

In addition, the kernel uses dynamically wired memory for
dynamically allocated data structures. User processes also wire memory
for address space. The amount of dynamically wired memory varies
according to the demand. The maximum amount is specified by the
value of the vm-syswiredpercent attribute (the default is 80 percent
of physical memory). Memory that is dynamically wired cannot be
reclaimed through paging. You can reduce the amount of dynamically
wired memory by allocating more kernel resources to processes (for
example, by increasing the value of the maxusers attribute).

• Virtual memory

The virtual memory subsystem uses a portion of physical memory to
cache processes’ most-recently accessed anonymous memory and
file-backed memory. The subsystem efficiently allocates memory to

Configuring and Tuning Memory 4–1

competing processes and tracks the distribution of all the physical
pages. This memory can be reclaimed through paging.

• Unified Buffer Cache

The Unified Buffer Cache (UBC) uses a portion of physical memory to
cache most-recently accessed file system data. The UBC contains actual
file data for reads and writes and for page faults from mapped file
regions and also AdvFS metadata. By functioning as a layer between
the operating system and the storage subsystem, the UBC can decrease
the number of disk operations. This memory can be reclaimed through
paging.

Figure 4–1 shows how physical memory is used.

Figure 4–1: Physical Memory Usage
Managed memory

(can be controlled by tuning)

Static
wired
memory
(cannot be
tuned)

ZK-1359U-AI

Dynamically-
wired
memory
(size can
change)

Memory shared by the
virtual memory subsystem
and the Unified Buffer
Cache (UBC)

The virtual memory subsystem and the UBC compete for the physical
pages that are not wired. Pages are allocated to processes and to the UBC,
as needed. When the demand for memory increases, the oldest
(least-recently used) pages are reclaimed from the virtual memory
subsystem and the UBC and reused. Various attributes control the amount
of memory available to the virtual memory subsystem and the UBC and
the rate of page reclamation. Wired pages are not reclaimed.

System performance depends on the total amount of physical memory and
also the distribution of memory resources. DIGITAL UNIX allows you to
control the allocation of memory (other than static wired memory) by
modifying the values of system attributes. Tuning memory usually involves
the following tasks:

• Increasing system resource allocation to improve application
performance

4–2 Configuring and Tuning Memory

• Modifying how the system allocates memory and the rate of page
reclamation

• Modifying how file system data is cached in memory

You can also configure your swap space for optimal performance. However,
to determine how to obtain the best performance, you must understand
your workload characteristics, as described in Chapter 1.

4.2 Understanding Memory Hardware

When programs are executed, the system moves data and instructions
among various caches, physical memory, and disk swap space. Accessing
the data and instructions occurs at different speeds, depending on the
location. Table 4–1 describes the various hardware resources (in the order
of fastest to slowest access time).

Table 4–1: Memory Management Hardware Resources

Resource Description

CPU caches Various caches reside in the CPU chip and vary in size up to
a maximum of 64 KB (depending on the type of processor).
These caches include the translation lookaside buffer, the
high-speed internal virtual-to-physical translation cache, the
high-speed internal instruction cache, and the high-speed
internal data cache.

Secondary cache The secondary direct-mapped physical data cache is external
to the CPU, but usually resides on the main processor board.
Block sizes for the secondary cache vary from 32 bytes to 256
bytes (depending on the type of processor). The size of the
secondary cache ranges from 128 KB to 8 MB.

Tertiary cache The tertiary cache is not available on all Alpha CPUs;
otherwise, it is identical to the secondary cache.

Physical memory The actual amount of physical memory varies.

Swap space Swap space consists of one or more disks or disk partitions
(block special devices).

The hardware logic and the PAL code control much of the movement of
addresses and data among the CPU cache, the secondary and tertiary
caches, and physical memory. This movement is transparent to the
operating system. Figure 4–2 shows an overview of how instructions and
data are moved among various hardware components during program
execution.

Configuring and Tuning Memory 4–3

Figure 4–2: Moving Instructions and Data Through the Memory Hardware

Swap
space

File System
disks

ZK-1362U-AI

Main processor board

Tertiary
cache

Memory boards

CPU
chip

Registers

Secondary
cache

Internal data
and instruction

caches

Movement between caches and physical memory is significantly faster than
movement between disk and physical memory, because of the relatively
slow speed of disk I/O. Therefore, avoid paging and swapping operations,
and applications should utilize caches when possible. Figure 4–3 shows the
amount of time that it takes to access data and instructions from various
hardware locations.

4–4 Configuring and Tuning Memory

Figure 4–3: Time Consumed to Access Storage Locations

ZK−1083U−AI

Registers

Internal
cache

Secondary
(external) cache

Tertiary cache
(if any)

Physical memory

Swap disks and
file system disks

Smaller
and

faster

Larger
and

slower

<1

1

5

10

25-50

~1,000,000

Approximate
number of machine

cycles used to access
the contents of a
memory location

For more information on the CPU, secondary cache, and tertiary cache, see
the Alpha Architecture Reference Manual.

4.3 Understanding Virtual Memory

The virtual memory subsystem performs the following functions:

• Allocates memory to processes

• Tracks and manages all the pages in the system

• Uses paging and swapping to ensure that there is enough memory for
processes to run and to cache file system I/O

The following sections describe these functions in detail.

Configuring and Tuning Memory 4–5

4.3.1 Allocating Virtual Address Space to Processes

For each process, the fork system call performs the following tasks:

• Creates a UNIX process body, which includes a set of data structures
that the kernel uses to track the process and a set of resource
limitations. See fork (2) for more information.

• Allocates a contiguous block of virtual address space, which is the
array of pages that an application can map into physical memory.
Virtual address space is used for anonymous memory (memory used
for the stack, heap, or malloc function) and for file-backed memory
(memory used for program text or shared libraries). Pages of
anonymous memory are paged in when needed and paged out when
pages must be reclaimed. Pages of file-backed memory are paged in
when needed and released when pages must be reclaimed.

• Creates one or more threads of execution. The default is one thread for
each process. Multiprocessing systems support multiple process threads.

Because memory is limited, a process’ entire virtual address space cannot
be in physical memory at one time. However, a process can execute when
only a portion of its virtual address space (its working set) is mapped to
physical memory.

For each process, the virtual memory subsystem allocates a large amount
of virtual address space but uses only part of this space. Only 4 TB is
allocated for user space. User space is generally private and maps to a
nonshared physical page. An additional 4 TB of virtual address space is
used for kernel space. Kernel space usually maps to shared physical pages.
The remaining space is not used for any purpose.

In addition, user space is sparsely populated with valid pages. Only valid
pages are able to map to physical pages. The vm-maxvas attribute specifies
the maximum amount of valid virtual address space for a process (that is,
the sum of all the valid pages). The default is 128000 pages (1 GB).

Figure 4–4 shows the use of process virtual address space.

Figure 4–4: Virtual Address Space Usage

User space
(4 TB)

Kernel space
(maximum 4 TB)Unused

ZK-1363U-AI

0 2
64

4–6 Configuring and Tuning Memory

4.3.2 Translating Virtual Addresses to Physical Addresses

When a virtual page is touched or accessed, the virtual memory subsystem
must locate the physical page and then translate the virtual address into a
physical address. Each process has a page table, which is an array
containing an entry for each current virtual-to-physical address
translation. Page table entries have a direct relation to virtual pages (that
is, virtual address 1 corresponds to page table entry 1) and contain a
pointer to the physical page and protection information.

Figure 4–5 shows the translation of a virtual address into a physical
address.

Figure 4–5: Virtual-to-Physical Address Translation

Virtual address

Physical address

Virtual address

Physical address

Process Virtual Address Space

Physical Memory Pages

Page table

ZK-1358U-AI

A process’ resident set is the complete set of all the virtual addresses that
have been mapped to physical addresses (that is, all the pages that have
been accessed during process execution). Resident set pages may be shared
among multiple processes. A process’ working set is the set of virtual
addresses that are currently mapped to physical physical addresses. The
working set is a subset of the resident set and represents a snapshot of the
process’ resident set.

4.3.3 Page Faulting

When a nonfile-backed virtual address is requested, the virtual memory
subsystem locates the physical page and makes it available to the process.
This process occurs at different speeds, depending on the location of the
page (see Figure 4–3).

Configuring and Tuning Memory 4–7

If a requested address is currently being used (active), it will have an entry
in the page table. In this case, the PAL code loads the physical address into
the translation lookaside buffer, which then passes the address to the CPU.

If a requested address is not active in the page table, the PAL lookup code
issues a page fault, which instructs the virtual memory subsystem to
locate the page and make the virtual-to-physical address translation in the
page table.

If a requested virtual address is being accessed for the first time, the
virtual memory subsystem performs the following tasks:

1. Allocates an available page of physical memory.

2. Fills the page with zeros.

3. Enters the virtual-to-physical address translation in the page table.

This is called a zero-filled-on-demand page fault.

If a requested virtual address has already been accessed, it will be in one of
the following locations:

• The virtual memory subsystem’s internal data structures

If the physical address is located in the internal data structures (for
example, the hash queue list or the page queue list), the virtual
memory subsystem enters the virtual-to-physical address translation in
the page table. This is called a short page fault.

• Swap space

If the virtual address has already been accessed, but the physical page
has been reclaimed, the page contents will be found in swap space. The
virtual memory subsystem copies the contents of the page from swap
space into the physical address and enters the virtual-to-physical
address translation in the page table. This is called a page-in page
fault.

If a process needs to modify a read-only virtual page, the virtual memory
subsystem allocates an available page of physical memory, copies the
read-only page into the new page, and enters the translation in the page
table. This is called a copy-on-write page fault.

To improve process execution time and decrease the number of page faults,
the virtual memory subsystem attempts to anticipate which pages the task
will need next. Using an algorithm that checks which pages were most
recently used, the number of available pages, and other factors, the
subsystem maps additional pages, along with the page that contains the
requested address.

4–8 Configuring and Tuning Memory

The virtual memory subsystem also uses page coloring to reduce
execution time. If possible, the subsystem attempts to map a process’ entire
resident set into the secondary cache. If the entire task, text, and data are
executed within the cache, addresses do not have to be fetched from
physical memory.

The private-cache-percent attribute specifies the percentage of the
cache that is reserved for anonymous (nonshared) memory. The default is
to reserve 50 percent of the cache for anonymous memory and 50 percent
for file-backed memory (shared). To cache more anonymous memory,
increase the value of the private-cache-percent attribute. This
attribute is primarily used for benchmarking.

4.3.4 Managing and Tracking Pages

The virtual memory subsystem allocates physical pages to processes and
the UBC, as needed. Because physical memory is limited, these pages must
be periodically reclaimed so that they can be reused.

The virtual memory subsystem uses page lists to track the location and age
of all the physical memory pages. At any one time, each physical page can
be found on one of the following lists:

• Wired list—Pages that are wired and cannot be reclaimed

• Free list—Pages that are clean and are not being used (the size of this
list controls when page reclamation occurs)

• Active list—Pages that are being used by the virtual memory
subsystem or the UBC

To determine which pages should be reclaimed first, the page-stealer
daemon identifies the oldest pages on the active list and designates
these least-recently used (LRU) pages as follows:

– Inactive pages are the oldest pages that are being used by the
virtual memory subsystem.

– UBC LRU pages are the oldest pages that are being used by the
UBC.

Use the vmstat command or dbx to determine the number of pages that
are on the page lists. Remember that pages on the active list (the act field
in the vmstat output) include both inactive and UBC LRU pages.

As physical pages are allocated to processes and the UBC, the free list
becomes depleted, and pages must be reclaimed in order to replenish the
list. To reclaim pages, the virtual memory subsystem does the following:

• Prewrites the oldest dirty (modified) pages to swap space

Configuring and Tuning Memory 4–9

• Uses paging to reclaim individual pages

• Uses swapping to suspend processes and reclaim a large number of
pages

See Section 4.3.5, Section 4.3.6, Section 4.3.8, and Section 4.3.9 for more
information about prewriting pages, paging, and swapping.

4.3.5 Prewriting Modified Pages

The virtual memory subsystem attempts to prevent a memory shortage by
prewriting modified pages to swap space.

When the virtual memory subsystem anticipates that the pages on the free
list will soon be depleted, it prewrites to swap space the oldest modified
(dirty) inactive pages. The value of the vm-page-prewrite-target
attribute determines the number of pages that the subsystem will prewrite
and keep clean. The default value is 256 pages.

In addition, when the number of modified UBC LRU pages exceeds the
value of the vm-ubcdirtypercent attribute, the virtual memory
subsystem prewrites to swap space the oldest modified UBC LRU pages.
The default value of the vm-ubcdirtypercent attribute is 10 percent of
the total UBC LRU pages.

To minimize the impact of sync (steady state flushes) when prewriting
UBC pages, the ubc-maxdirtywrites attribute specifies the maximum
number of disk writes that the kernel can perform each second. The default
value is 5.

See Section 4.7.13 for more information about prewriting dirty pages.

4.3.6 Using Attributes to Control Paging and Swapping

When the demand for memory depletes the free list, paging begins. The
virtual memory subsystem takes the oldest inactive and UBC LRU pages,
moves the contents of the modified pages to swap space, and puts the clean
pages on the free list, where they can be reused.

If the free page list cannot be replenished by reclaiming individual pages,
swapping begins. Swapping temporarily suspends processes and moves
entire resident sets to swap space, which frees large amounts of physical
memory.

The point at which paging and swapping start and stop depends on the
values of some virtual memory subsystem attributes. Figure 4–6 shows the
default values of these attributes.

4–10 Configuring and Tuning Memory

Figure 4–6: Paging and Swapping Attributes − Default Values

(vm-page-free-target = 128)

(vm-page-free-min = 20)

(vm-page-free-hardswap = 1280)

ZK-0933U-AI

Paging starts

A page must be reclaimed for
 each page allocated

Swapping stops

(vm-page-free-optimal = 74)
Hard swapping starts

(vm-page-free-swap = 74)
Idle task swapping starts

(vm-page-free-reserved = 10)
Only privileged tasks can run

Free Page List

Detailed descriptions of the attributes are as follows:

• vm-page-free-target —Paging starts when the number of pages on
the free list is less than this value (the default is 128 pages).

• vm-page-free-min —Specifies the threshold at which a page must be
reclaimed for each page allocated (the default is 20 pages).

• vm-page-free-swap —Idle task swapping starts when the number of
pages on the free list is less than this value for a period of time (the
default is 74 pages).

• vm-page-free-optimal —Hard swapping starts when the number of
pages on the free list is less than this value for five seconds (the default
is 74 pages). The first processes to be swapped out include those with
the lowest scheduling priority and those with the largest resident set
size.

• vm-page-free-hardswap —Swapping stops when the number of pages
on the free list is more than this value (the default is 1280 pages).

• vm-page-free-reserved —Only privileged tasks can get memory
when the number of pages on the free list is less than this value (the
default is 10 pages).

Configuring and Tuning Memory 4–11

See Section 4.3.8 and Section 4.3.9 for information about paging and
swapping operations.

4.3.7 Using Attributes to Control UBC Memory Allocation

Because the UBC shares with the virtual memory subsystem the physical
pages that are not wired by the kernel, the allocation of memory to the
UBC can affect file system performance and paging and swapping activity.
The UBC is dynamic and consumes varying amounts of memory in order to
respond to changing file system demands.

Figure 4–7 shows how memory is allocated to the UBC.

Figure 4–7: UBC Memory Allocation

Available
to

processes

ZK-1360U-AI

UBC maximum (ubc-maxpercent
default is 100%)

UBC borrowing threshold
(ubc-borrowpercent default is 20%)

UBC minimum
 (ubc-minpercent default is 10%)

The following attributes control the amount of memory available to the
UBC:

• ubc-minpercent attribute

Specifies the minimum percentage of memory that the UBC can utilize.
The default is 10 percent.

• ubc-maxpercent attribute

Specifies the maximum percentage of memory that the UBC can utilize.
The default is 100 percent.

• ubc-borrowpercent attribute

Specifies the UBC borrowing threshold. The default is 20 percent. From
the value of the ubc-borrowpercent attribute to the value of the
ubc-maxpercent attribute, the UBC is only borrowing memory from
the virtual memory subsystem. When paging starts, pages are first
reclaimed from the UBC until the amount of memory allocated to the
UBC reaches the value of the ubc-borrowpercent attribute.

4–12 Configuring and Tuning Memory

4.3.8 Paging Operation

When the memory demand is high and the number of pages on the free
page list reaches the value of the vm-page-free-target attribute, the
virtual memory subsystem uses paging to replenish the free page list. The
page reclamation code controls paging and swapping. The page-out daemon
and task swapper daemon are extensions of the page reclamation code. See
Section 4.3.6 for more information about the attributes that control paging
and swapping.

The page reclamation code activates the page-stealer daemon, which first
reclaims the pages that the UBC has borrowed from the virtual memory
subsystem, until the size of the UBC reaches the borrowing threshold (the
default is 20 percent). If the reclaimed pages are dirty (modified), their
contents must be written to disk before the pages can be moved to the free
page list. Freeing borrowed UBC pages is a fast way to reclaim pages,
because UBC pages are usually unmodified. See Section 4.3.7 for more
information about UBC borrowed pages.

If freeing UBC borrowed memory does not sufficiently replenish the free
list, a pageout occurs. The page-stealer daemon reclaims the oldest
inactive and UBC LRU pages.

Paging becomes increasingly aggressive if the number of free pages
continues to decrease. If the number of pages on the free page list falls
below the value of the vm-page-free-min attribute (the default is 20
pages), a page must be reclaimed for each page allocated. To prevent
deadlocks, if the number of pages on the free page list falls below the value
of the vm-page-free-reserved attribute (the default is 10 pages), only
privileged tasks can get memory until the free page list is replenished.

Paging stops when the number of pages on the free list reaches the value of
the vm-page-free-target attribute.

If paging individual pages does not replenish the free list, swapping is used
to free a large amount of memory. See Section 4.3.9 for more information.

Figure 4–8 shows the movement of pages during paging operations.

Configuring and Tuning Memory 4–13

Figure 4–8: Paging Operation

Swap

Free pages

Active pages
(VM and UBC)

Clean pages from the free list are moved to the
active list for use by processes and the UBC

The virtual memory
subsystem identifies the
least-recently-used
active pages.

These LRU pages
are the first pages
to be reclaimed.

When memory is needed, paging begins.
The virtual memory subsystem reclaims
UBC borrowed pages and then inactive
and UBC LRU pages and moves the
pages to free list. Modified pages are
first written to swap space.

ZK-1361U-AI

Inactive
pages

UBC
LRU
pages

4.3.9 Swapping Operation

If there is a high demand for memory, the virtual memory subsystem may
be unable to replenish the free list by reclaiming pages. Swapping reduces
the demand for physical memory by suspending processes, which
dramatically increases the number of pages on the free list. To swap out a
process, the task swapper suspends the process, writes its resident set to
swap space, and moves the clean pages to the free list.

Idle task swapping begins when the number of pages on the free list falls
below the value of the vm-page-free-swap attribute for a period of time
(the default is 74 pages). The task swapper suspends all tasks that have
been idle for 30 seconds or more.

If the number of pages on the free list falls below the value of the
vm-page-free-optimal attribute (the default is 74 pages) for more than

4–14 Configuring and Tuning Memory

five seconds, hard swapping begins. The task swapper suspends, one at a
time, the tasks with the lowest priority and the largest resident set size.

Swapping stops when the number of pages on the free list reaches the
value of the vm-page-free-hardswap attribute (the default is 1280).

A swapin occurs when the number of pages on the free list reaches the
value of the vm-page-free-optimal attribute for a period of time. The
task’s working set is paged in from swap space and it can now execute. The
value of the vm-inswappedmin attribute specifies the minimum amount of
time, in seconds, that a task must remain in the inswapped state before it
can be outswapped. The default value is 1 second.

Swapping has a serious impact on system performance. You can modify the
attributes described in Section 4.3.6 to control when swapping starts and
stops.

Increasing the rate of swapping (swapping earlier during page reclamation)
increases throughput. As more processes are swapped out, fewer processes
are actually executing and more work is done. Although increasing the rate
of swapping moves long-sleeping threads out of memory and frees memory,
it degrades interactive response time. When an outswapped process is
needed, it will have a long latency.

If you decrease the rate of swapping (swap later during page reclamation),
you will improve interactive response time, but at the cost of throughput.

4.3.10 Using Swap Buffers

To facilitate the movement of data between memory and disk, the virtual
memory subsystem uses synchronous and asynchronous swap buffers. The
virtual memory subsystem uses these two types of buffers to immediately
satisfy a page-in request without having to wait for the completion of a
page-out request, which is a relatively slow process.

Synchronous swap buffers are used for page-in page faults and for swap
outs. Asynchronous swap buffers are used for asynchronous pageouts and
for prewriting modified pages. See Section 4.7.15 and Section 4.7.16 for
tuning information.

4.4 Understanding the Unified Buffer Cache

The DIGITAL UNIX operating system uses the Unified Buffer Cache (UBC)
as a layer between the operating system and disk. The UBC holds actual
file data, which includes reads and writes from conventional file activity and
page faults from mapped file sections, and AdvFS metadata. The cache can
improve I/O performance by decreasing the number of disk I/O operations.

Configuring and Tuning Memory 4–15

The UBC shares with the virtual memory subsystem the physical pages
that are not wired by the kernel. The maximum and minimum percentages
of memory that the UBC can utilize are specified by the ubc-maxpercent
attribute (the default is 100 percent) and the ubc-minpercent attribute
(the default is 10 percent). In addition, the ubc-borrowpercent attribute
specifies the percentage of memory allocated to the UBC above which the
memory is only borrowed from the virtual memory subsystem. The default
is 20 percent of physical memory. See Section 4.3.7 for more information.

The UBC is dynamic and consumes varying amounts of memory in order to
respond to changing file system demands. For example, if file system
activity is heavy, pages will be allocated to the UBC up to the value of the
ubc-maxpercent attribute. In contrast, heavy process activity, such as
large increases in the working sets for large executables, will cause the
virtual memory subsystem to reclaim UBC borrowed pages. Figure 4–7
shows the allocation of physical memory to the UBC.

The UBC uses a hashed list to quickly locate the physical pages that it is
holding. A hash table contains file and offset information that is used to
speed lookup operations.

The UBC also uses a buffer to facilitate the movement of data between
memory and disk. The vm-ubcbuffers attribute specifies maximum file
system device I/O queue depth for writes (that is, the number of UBC I/O
requests that can be outstanding). See Section 4.7.17 for tuning
information.

4.5 Understanding the Metadata Buffer Cache

The metadata buffer cache is part of kernel wired memory and is used to
cache only UFS and CDFS metadata, which includes file header
information, superblocks, inodes, indirect blocks, directory blocks, and
cylinder group summaries. The DIGITAL UNIX operating system uses the
metadata buffer cache as a layer between the operating system and disk.
The cache can improve I/O performance by decreasing disk I/O operations.

The metadata buffer cache is configured at boot time and uses bcopy
routines to move data in and out of memory. The size of the metadata
buffer cache is specified by the value of the bufcache attribute. See
Section 4.9 for tuning information.

4.6 Configuring Memory and Swap Space

The following sections describe how to configure memory and swap space,
which includes the following tasks:

4–16 Configuring and Tuning Memory

• Determining how much physical memory your system requires
(Section 4.6.1)

• Determining how much swap space you need (Section 4.6.2)

• Choosing a swap space allocation mode (Section 4.6.3)

4.6.1 Determining Your Physical Memory Requirements

This section describes how to determine your system’s memory
requirements. The amount of memory installed in your system must be
able to provide an acceptable level of user and application performance.

To determine your system’s memory requirements, you must gather the
following information:

• The amount of memory that will be wired

• The amount of memory that the virtual memory subsystem requires to
cache the anonymous regions of process data

• The amount of memory that the UBC requires to cache file system data

See Section 4.6.2 for information about swap space requirements.

4.6.2 Configuring Swap Space

Your system’s performance depends on the swap space configuration.
DIGITAL recommends a minimum of 128 MB for swap space.

To calculate the swap space required by your system and workload, compare
the total modifiable virtual address space (anonymous memory) required by
your processes with the total amount of physical memory. Modifiable
virtual address space holds data elements and structures that are modified
during process execution, such as heap space, stack space, and data space.

To calculate swap space requirements if you are using immediate mode,
total the anonymous memory requirements for all processes and then add
10 percent of that value. If you are using deferred mode, total the
anonymous memory requirements for all processes and then divide by two.

Application messages, such as the following, usually indicate that not
enough swap space is configured into the system or that a process limit has
been reached:

“lack of paging space ”
“swap space below 10 percent free ”

Use multiple disks for swap space. The page reclamation code uses a form
of disk striping (known as swap space interleaving) so that pages can be

Configuring and Tuning Memory 4–17

written to the multiple disks. To optimize swap space, ensure that all your
swap disks are configured when you boot the system, instead of adding
swap space while the system is running.

Use the swapon -s command to display your swap space configuration.
The first line displayed is the total allocated swap space. Use the iostat
to display disk usage.

The following list describes how to configure swap space for high
performance:

• Configure all of your swap space at boot time

• Use fast disks for swap space to decrease page fault latency

• Do not use busy disks for swap space

• Spread out your swap space across multiple disks (never put multiple
swap partitions on the same disk)

• Spread out your swap disks across multiple I/O buses to prevent a
single bus from becoming a bottleneck

• Use the Logical Storage Manager (LSM) to stripe your swap disks

See Chapter 5 for more information about configuring and tuning swap
disks for high performance and availability.

4.6.3 Choosing a Swap Space Allocation Mode

There are two methods that you can use to allocate swap space. The
methods differ in the point in time at which the virtual memory subsystem
reserves swap space for a process. There is no performance benefit attached
to either method; however, deferred mode is recommended for very-large
memory/very-large database (VLM/VLDB) systems. The swap allocation
methods are as follows:

• Immediate mode—Swap space is reserved when modifiable virtual
address space is created. Immediate mode is often referred to as eager
mode and is the default swap space allocation mode.

Anonymous memory is memory that is not backed by a file, but is
backed by swap space (for example, stack space, heap space, and
memory allocated by the malloc or sbrk routines). When anonymous
memory is allocated, the operating system reserves swap space for the
memory. Usually, this results in an unnecessary amount of reserved
swap space. Immediate mode requires more swap space than deferred
mode, but it ensures that the swap space will be available to processes
when it is needed.

4–18 Configuring and Tuning Memory

• Deferred mode—Swap space is not reserved until the virtual memory
subsystem needs to write a modified virtual page to swap space.
Deferred mode is sometimes referred to as lazy mode.

Deferred mode requires less swap space than immediate mode and
causes the system to run faster because it requires less swap space
bookkeeping. It postpones the reservation and allocation of swap space
for anonymous memory until it is needed. However, because deferred
mode does not reserve swap space in advance, the swap space may not
be available when a task needs it, and the process may be killed
asynchronously.

You can enable the deferred swap space allocation mode by removing or
moving the /sbin/swapdefault file.

See the System Administration manual for more information on swap space
allocation methods.

4.7 Tuning Virtual Memory

The virtual memory subsystem is a primary source of performance
problems. Performance may degrade if the virtual memory subsystem
cannot keep up with the demand for memory and excessive paging and
swapping occurs. A memory bottleneck may cause a disk I/O bottleneck,
because excessive paging and swapping decreases performance and
indicates that the natural working set size has exceeded the available
memory. The virtual memory subsystem runs at a high priority when
servicing page faults, which blocks the execution of other processes.

If you have excessive page-in and page-out activity from a swap partition,
the system may have a high physical memory commitment ratio. Excessive
paging also can increase the miss rate for the secondary cache, and may be
indicated by the following output:

• The output of the vmstat shows a very low free page count or shows
high page-in and page-out activity. See Section 2.4.2 for more
information.

• The output of the ps command shows high task swapping activity. See
Section 2.4.1 for more information.

• The output of the iostat command shows excessive swap disk I/O
activity. See Section 2.5.1 for more information.

The tuning recommendations that will provide the best performance benefit
involve the following two areas:

• System resource allocation

– Increasing the available address space

Configuring and Tuning Memory 4–19

– Increasing the kernel resources available to processes

• Memory allocation and page reclamation

– Modifying the percentage of memory allocated to the UBC

– Changing the rate of swapping

– Changing how the system prewrites modified inactive pages

Table 4–2 describes the primary tuning tasks guidelines and lists the
performance benefits as well as tradeoffs.

Table 4–2: Primary Virtual Memory Tuning Guidelines

Action Performance Benefit Tradeoff

Reduce the number of processes
running at the same time
(Section 4.7.1)

Reduces demand for memory None

Reduce the static size of the
kernel (Section 4.7.2)

Reduces demand for memory None

Increase the available address
space (Section 4.7.3)

Improves performance for
memory-intensive processes

Slightly increases
the demand for
memory

Increase the available system
resources (Section 4.7.4)

Improves performance for
memory-intensive processes

Increases wired
memory

Increase the maximum number
of memory-mapped files that
are available to a process
(Section 4.7.5)

Increases file mapping and
improves performance for
memory-intensive processes,
such as Internet servers

Consumes
memory

Increase the maximum number
of virtual pages within a
process’ address space that can
have individual protection
attributes (Section 4.7.6)

Improves performance for
memory-intensive processes
and for Internet servers that
maintain large tables or
resident images

Consumes
memory

Increase the size of a System V
message and queue
(Section 4.7.7)

Improves performance for
memory-intensive processes

Consumes
memory

Increase the maximum size of a
single System V shared
memory region (Section 4.7.8)

Improves performance for
memory-intensive processes

Consumes
memory

Increase the minimum size of a
System V shared memory
segment (Section 4.7.9)

Improves performance for
VLM and VLDB systems

Consumes
memory

Reduce process memory
requirements (Section 4.7.10)

Reduces demand for memory None

4–20 Configuring and Tuning Memory

Table 4–2: Primary Virtual Memory Tuning Guidelines (cont.)

Action Performance Benefit Tradeoff

Reduce the amount of physical
memory available to the UBC
(Section 4.7.11)

Provides more memory
resources to processes

May degrade file
system
performance

Increase the rate of swapping
(Section 4.7.12)

Frees memory and increases
throughput

Decreases
interactive
response
performance

Decrease the rate of swapping
(Section 4.7.12)

Improves interactive response
performance

Decreases
throughput

Increase the rate of dirty page
prewriting (Section 4.7.13)

Prevents drastic performance
degradation when memory is
exhausted

Decreases peak
workload
performance

Decrease the rate of dirty page
prewriting (Section 4.7.13)

Improves peak workload
performance

May cause drastic
performance
degradation when
memory is
exhausted

If the previous tasks do not sufficiently improve performance, there are
advanced tuning tasks that you can perform. The advanced tuning tasks
include the following:

• Modify the sizes of the page-in and page-out clusters

• Modify the swap device I/O queue depth

• Modify the amount of memory the UBC uses to cache large files

• Increase the paging threshold

• Enable aggressive task swapping

• Decrease the size of the file system caches

• Reserve memory at boot time for shared memory

Table 4–3 describes the advanced tuning tasks guidelines and lists the
performance benefits as well as tradeoffs.

Configuring and Tuning Memory 4–21

Table 4–3: Advanced Virtual Memory Tuning Guidelines

Action Performance Benefit Tradeoff

Increase the size of the page-in
and page-out clusters
(Section 4.7.14)

Improves peak workload
performance

Decreases total
system workload
performance

Decrease the size of the page-in
and page-out clusters
(Section 4.7.14)

Improves total system
workload performance

Decreases peak
workload
performance

Increase the swap device I/O
queue depth for pageins and
swapouts (Section 4.7.15)

Increases overall system
throughput

Consumes memory

Decrease the swap device I/O
queue depth for pageins and
swapouts (Section 4.7.15)

Improves the interactive
response time and frees
memory

Decreases system
throughput

Increase the swap device I/O
queue depth for pageouts
(Section 4.7.16)

Frees memory and
increases throughput

Decreases interactive
response performance

Decrease the swap device I/O
queue depth for pageouts
(Section 4.7.16)

Improves interactive
response time

Consumes memory

Increase the UBC write device
queue depth (Section 4.7.17)

Increases overall file
system throughput and
frees memory

Decreases interactive
response performance

Decrease the UBC write device
queue depth (Section 4.7.17)

Improves interactive
response time

Consumes memory

Increase the amount of UBC
memory used to cache a large
file (Section 4.7.18)

Improves large file
performance

May allow a large file
to consume all the
pages on the free list

Decrease the amount of UBC
memory used to cache a large
file (Section 4.7.18)

Prevents a large file from
consuming all the pages
on the free list

May degrade large
file performance

Increase the paging threshold
(Section 4.7.19)

Maintains performance
when free memory is
exhausted

May waste memory

Enable aggressive swapping
(Section 4.7.20)

Improves system
throughput

Degrades interactive
response performance

Decrease the size of the
metadata buffer cache
(Section 4.7.21)

Provides more memory
resources to processes on
large systems

May degrade UFS
performance

Decrease the size of the namei
cache (Section 4.7.22)

Decreases demand for
memory

May slow lookup
operations and
degrade file system
performance

4–22 Configuring and Tuning Memory

Table 4–3: Advanced Virtual Memory Tuning Guidelines (cont.)

Action Performance Benefit Tradeoff

Decrease the amount of
memory allocated to the AdvFS
cache (Section 4.7.23)

Provides more memory
resources to processes

May degrade AdvFS
performance

Reserve physical memory for
shared memory (Section 4.7.24)

Improves shared memory
detach time

Decreases the
memory available to
the virtual memory
subsystem and the
UBC

The following sections describe these guidelines in detail.

4.7.1 Reducing the Number of Processes Running Simultaneously

You can improve performance and reduce the demand for memory by
running fewer applications simultaneously. Use the at or the batch
command to run applications at offpeak hours.

4.7.2 Reducing the Static Size of the Kernel

You can reduce the static size of the kernel by deconfiguring any
unnecessary subsystems. Use the setld command to display the installed
subsets and to delete subsets.

Use the sysconfig command to display the configured subsystems and to
delete subsystems.

4.7.3 Increasing the Available Address Space

If your applications are memory-intensive, you may want to increase the
available address space. Increasing the address space will cause only a
small increase in the demand for memory. However, you may not want to
increase the address space if your applications use many forked processes.

The following attributes determine the available address space for
processes:

• vm-maxvas

This attribute controls the maximum amount of virtual address space
available to a process. The default value is 1 GB (1073741824). For
Internet servers, you may want to increase this value to 10 GB.

Configuring and Tuning Memory 4–23

• per-proc-address-space and max-per-proc-address-size

These attributes control the maximum amount of user process address
space, which is the maximum number of valid virtual regions. The
default value for both attributes is 1 GB.

• per-proc-stack-size and max-per-proc-stack-size

These attributes control the maximum size of a user process stack. The
default value of the per-proc-stack-size attribute is 2097152 bytes.
The default value of the max-per-proc-stack-size attribute is
33554432 bytes. You may need to increase these values if you receive
cannot grow stack messages.

• per-proc-data-size and max-per-proc-data-size

These attributes control the maximum size of a user process data
segment. The default value of the per-proc-data-size attribute is
134217728 bytes. The default value of the max-per-proc-data-size
is 1 GB.

You can use the setrlimit function to control the consumption of system
resources by a parent process and its child processes. See setrlimit (2) for
information.

4.7.4 Increasing the Available System Resources

If your applications are memory-intensive, you may want to increase the
system resources that are available to processes. Be careful when
increasing the system resources, because this will increase the amount of
wired memory in the system.

The following attributes affect system resources:

• maxusers

The maxusers attribute specifies the number of simultaneous users
that a system can support without straining system resources. System
algorithms use the maxusers attribute to size various system data
structures, and to determine the amount of space allocated to system
tables, such as the system process table, which is used to determine
how many active processes can be running at one time.

The default value assigned to the maxusers attribute depends on the
size of your system. Increasing the value of the maxusers attribute
allocates more system resources for use by the kernel. However, this
also increases the amount of physical memory consumed by the kernel.
Decreasing the value of the maxusers attribute reduces kernel memory
usage, but allocates less system resources to processes.

If your system experiences a lack of resources (for example, Out of
processes messages), you can increase the value of the maxusers

4–24 Configuring and Tuning Memory

attribute to 512. A lack of resources may also be indicated by a No
more processes error message. If you have sufficient memory on a
heavily loaded system (for example, more than 96 MB), you can
increase the value of the maxusers attribute to 1024.

• task-max

The task-max attribute specifies the maximum number of tasks that
can run simultaneously. The default value is 20 + 8 * maxusers .

• thread-max

The thread-max attribute specifies the maximum number of threads.
The default value is 2 * task-max .

• max-proc-per-user

The max-proc-per-user attribute specifies the maximum number of
processes that can be allocated at any one time to each user, except
superuser. The default value of the max-proc-per-user attribute is
64.

If your system experiences a lack of processes, you can increase the
value of the max-proc-per-user attribute. The value must be more
than the maximum number of processes that will be started by your
system. If you have a Web server, these processes include CGI
processes. If you plan to run more than 64 Web server daemons
simultaneously, increase the attribute value to 512. On a very busy
server with sufficient memory, you can use a higher value. Increasing
this value can improve the performance of multiprocess Web servers.

• max-threads-per-user

The max-threads-per-user attribute specifies the maximum number
of threads that can be allocated at any one time to each user, except
superuser. The default value is 256.

If your system, especially a Web server, experiences a lack of threads,
you can increase the value of the max-threads-per-user attribute.
The value must be more than the maximum number of threads that
will be started by your system. You can increase the value of the
max-threads-per-user attribute to 512. On a very busy server with
sufficient memory, you can use a higher value, such as 4096. Increasing
this value can improve the performance of multithreaded Web servers.

You can use the setrlimit function to control the consumption of system
resources by a parent process and its child processes. See setrlimit (2) for
information.

Configuring and Tuning Memory 4–25

4.7.5 Increasing the Number of Memory-Mapped Files

The vm-mapentries attribute specifies the maximum number of
memory-mapped files in a user address. Each map entry describes one
unique disjoint portion of a virtual address space. The default value is 200.

You may want to increase the value of the vm-mapentries attribute for
VLM systems. Because Web servers map files into memory, for busy
systems running multithreaded Web server software, you may want to
increase the value to 20000. This will increase the limit on file mapping.
This attribute affects all processes, and increasing its value will increase
the demand for memory.

4.7.6 Increasing the Number of Pages With Individual Protections

The vm-vpagemax attribute specifies the maximum number of virtual
pages within a process’ address space that can be given individual
protection attributes. These protection attributes differ from the protection
attributes associated with the other pages in the address space.

Changing the protection attributes of a single page within a virtual
memory region causes all pages within that region to be treated as though
they had individual protection attributes. For example, each thread of a
multithreaded task has a user stack in the stack region for the process in
which it runs. Because multithreaded tasks have guard pages (that is,
pages that do not have read/write access) inserted between the user stacks
for the threads, all pages in the stack region for the process are treated as
though they have individual protection attributes.

The default value of the vm-vpagemax attribute is determined by dividing
the value of the vm-maxvas attribute (the address space size in bytes) by
8192. If a stack region for a multithreaded task exceeds 16 KB pages, you
may want to increase the value of the vm-vpagemax attribute. For
example, if the value of the vm-maxvas attribute is 1 GB (the default), set
the value of vm-vpagemax to 131072 pages (1073741824/8192=131072).
This value improves the efficiency of Web servers that maintain large
tables or resident images.

You may want to increase the value of the vm-vpagemax attribute for VLM
systems. However, this attribute affects all processes, and increasing its
value will increase the demand for memory.

4.7.7 Increasing the Size of a System V Message and Queue

If your applications are memory-intensive or you have a VLM system, you
may want to increase the value of the msg-max attribute. This attribute

4–26 Configuring and Tuning Memory

specifies the maximum size of a single System V message. However,
increasing the value of this attribute will increase the demand for memory.
The default value is 8192 bytes (1 page).

In addition, you may want to increase the value of the msg-tql attribute.
This attribute specifies the maximum number of messages that can be
queued to a single System V message queue at one time. However,
increasing the value of this attribute will increase the demand for memory.
The default value is 40.

4.7.8 Increasing the Size of a System V Shared Memory Region

If your applications are memory-intensive or you have a VLM system, you
may want to increase the value of the shm-max attribute. This attribute
specifies the maximum size of a single System V shared memory region.
However, increasing the value of this attribute will increase the demand for
memory. The default value is 4194304 bytes (512 pages).

In addition, you may want to increase the value of the shm-seg attribute.
This attribute specifies the maximum number of System V shared memory
regions that can be attached to a single process at any point in time.
However, increasing the value of this attribute will increase the demand for
memory. The default value is 32.

4.7.9 Increasing the Minimum Size of a System V Shared Memory
Segment

If your applications are memory-intensive, you may want to increase the
value of the ssm-threshold attribute. Page table sharing occurs when the
size of a System V shared memory segment reaches the value specified by
this attribute. However, increasing the value of this attribute will increase
the demand for memory.

4.7.10 Reducing Application Memory Requirements

You may want to reduce your applications’ use of memory to free memory
for other purposes. Follow these coding considerations to reduce your
applications’ use of memory:

• Configure and tune applications according to the guidelines provided by
the application’s installation procedure. For example, you may be able
to reduce an application’s anonymous memory requirements, set
parallel/concurrent processing attributes, size shared global areas and
private caches, and set the maximum number of open/mapped files.

• Look for data cache collisions between heavily used data structures,
which occur when the distance between two data structures allocated in

Configuring and Tuning Memory 4–27

memory is equal to the size of the primary (internal) data cache. If your
data structures are small, you can avoid collisions by allocating them
contiguously in memory. To do this, use a single malloc call instead of
multiple calls.

• If an application uses large amounts of data for a short time, allocate
the data dynamically with the malloc function instead of declaring it
statically. When you have finished using dynamically allocated memory,
it is freed for use by other data structures that occur later in the
program. If you have limited memory resources, dynamically allocating
data reduces an application’s memory usage and can substantially
improve performance.

• If an application uses the malloc function extensively, you may be able
to improve its processing speed or decrease its memory utilization by
using the function’s control variables to tune memory allocation. See
malloc (3) for details on tuning memory allocation.

• If your application fits in a 32-bit address space and allocates large
amounts of dynamic memory by using structures that contain many
pointers, you may be able to reduce memory usage by using the -xtaso
flag. The -xtaso flag is supported by all versions of the C compiler
(-newc , -migrate , and -oldc versions). To use the -xtaso flag,
modify your source code with a C-language pragma that controls
pointer size allocations. See cc (1) for details.

See the Programmer’s Guide for more information on process memory
allocation.

4.7.11 Reducing the Memory Available to the UBC

You may be able to improve performance by reducing the maximum
percentage of memory available for the UBC. If you decrease the maximum
size of the UBC, you increase the amount of memory available to the
virtual memory subsystem, which may reduce the paging and swapping
rate. However, reducing the memory allocated to the UBC may adversely
affect I/O performance because the UBC will hold less file system data,
which results in more disk I/O operations. Therefore, do not significantly
decrease the maximum size of the UBC.

The maximum amount of memory that can be allocated to the UBC is
specified by the ubc-maxpercent attribute. The default is 100 percent.
The minimum amount of memory that can be allocated to the UBC is
specified by the ubc-minpercent attribute. The default is 10 percent. If
you have an Internet server, use these default values.

If the page-out rate is high and you are not using the file system heavily,
decreasing the value of the ubc-maxpercent attribute may reduce the

4–28 Configuring and Tuning Memory

rate of paging and swapping. Start with the default value of 100 percent
and decrease the value in increments of 10. If the values of the
ubc-maxpercent and ubc-minpercent attributes are close together, you
may seriously degrade I/O performance or cause the system to page
excessively.

Use the vmstat command to determine whether the system is paging
excessively. Using dbx , periodically examine the vpf_pgiowrites and
vpf_ubcalloc fields of the vm_perfsum kernel structure. The page-out
rate may shrink if pageouts greatly exceed UBC allocations.

You also may be able to prevent paging by increasing the percentage of
memory that the UBC borrows from the virtual memory subsystem. To do
this, decrease the value of the ubc-borrowpercent attribute. Decreasing
the value of the ubc-borrowpercent attribute allows less memory to
remain in the UBC when page reclamation begins. This can reduce the
UBC effectiveness, but may improve the system response time when a
low-memory condition occurs. The value of the ubc-borrowpercent
attribute can range from 0 to 100. The default value is 20 percent.

4.7.12 Changing the Rate of Swapping

Swapping has a drastic impact on system performance. You can modify
attributes to control when swapping begins and ends. Increasing the rate of
swapping (swapping earlier during page reclamation), moves long-sleeping
threads out of memory, frees memory, and increases throughput. As more
processes are swapped out, fewer processes are actually executing and
more work is done. However, when an outswapped process is needed, it will
have a long latency, so increasing the rate of swapping will degrade
interactive response time.

In contrast, if you decrease the rate of swapping (swap later during page
reclamation), you will improve interactive response time, but at the cost of
throughput.

To increase the rate of swapping, increase the value of the
vm-page-free-optimal attribute (the default is 74 pages). Increase the
value only by 2 pages at a time. Do not specify a value that is more than
the value of the vm-page-free-target attribute (the default is 128).

To decrease the rate of swapping, decrease the value of the
vm-page-free-optimal attribute by 2 pages at a time. Do not specify a
value that is less than the value of the vm-page-free-min attribute (the
default is 20).

Configuring and Tuning Memory 4–29

4.7.13 Controlling Dirty Page Prewriting

The virtual memory subsystem attempts to prevent a memory shortage by
prewriting modified pages to swap space. When the virtual memory
subsystem anticipates that the pages on the free list will soon be depleted,
it prewrites to swap space the oldest modified (dirty) pages on the inactive
list. To reclaim a page that has been prewritten, the virtual memory
subsystem only needs to validate the page.

Increasing the rate of dirty page prewriting will reduce peak workload
performance, but it will prevent a drastic performance degradation when
memory is exhausted. Decreasing the rate will improve peak workload
performance, but it will cause a drastic performance degradation when
memory is exhausted.

You can control the rate of dirty page prewriting by modifying the values of
the vm-page-prewrite-target attribute and the vm-ubcdirtypercent
attribute.

The vm-page-prewrite-target attribute specifies the number of virtual
memory pages that the subsystem will prewrite and keep clean. The
default value is 256 pages. To increase the rate of virtual memory dirty
page prewriting, increase the value of the vm-page-prewrite-target
attribute from the default value (256) by increments of 64 pages.

The vm-ubcdirtypercent attribute specifies the percentage of UBC LRU
pages that can be modified before the virtual memory subsystem prewrites
the dirty UBC LRU pages. The default value is 10 percent of the total UBC
LRU pages (that is, 10 percent of the UBC LRU pages must be dirty before
the UBC LRU pages are prewritten). To increase the rate of UBC LRU
dirty page prewriting, decrease the value of the vm-ubcdirtypercent
attribute by increments of 1 percent.

In addition, you may want to minimize the impact of I/O spikes caused by
the sync function when prewriting UBC LRU dirty pages. The value of the
ubc-maxdirtywrites attribute specifies the maximum number of disk
writes that the kernel can perform each second. The default value of the
ubc-maxdirtywrites attribute is 5 I/O operations per second.

To minimize the impact of sync (steady state flushes) when prewriting
dirty UBC LRU pages, increase the value of the ubc-maxdirtywrites
attribute.

4.7.14 Modifying the Size of the Page-In and Page-Out Clusters

The virtual memory subsystem reads in and writes out additional pages in
an attempt to anticipate pages that it will need.

4–30 Configuring and Tuning Memory

The vm-max-rdpgio-kluster attribute specifies the maximum size of an
anonymous page-in cluster. The default value is 16 KB (2 pages). If you
increase the value of this attribute, the system will spend less time page
faulting because more pages will be in memory. This will increase the peak
workload performance, but will consume more memory and decrease the
total system workload performance.

Decreasing the value of the vm-max-rdpgio-kluster attribute will
conserve memory and increase the total system workload performance, but
will increase paging and decrease the peak workload performance.

The vm-max-wrpgio-kluster attribute specifies the maximum size of an
anonymous page-out cluster. The default value is 32 KB (4 pages).
Increasing the value of this attribute improves the peak workload
performance and conserves memory, but causes more pageins and
decreases the total system workload performance.

Decreasing the value of the vm-max-wrpgio-kluster attribute improves
the total system workload performance and decreases the number of
pageins, but decreases the peak workload performance and consumes more
memory.

4.7.15 Modifying the Swap I/O Queue Depth for Pageins and
Swapouts

Synchronous swap buffers are used for page-in page faults and for
swapouts. The vm-syncswapbuffers attribute specifies the maximum
swap device I/O queue depth for pageins and swapouts.

You can modify the value of the vm-syncswapbuffers attribute. The
value should be equal to the approximate number of simultaneously
running processes that the system can easily handle. The default is 128.

Increasing the swap device I/O queue depth increases overall system
throughput, but consumes memory.

Decreasing the swap device I/O queue depth decreases memory demands
and improves interactive response time, but decreases overall system
throughput.

4.7.16 Modifying the Swap I/O Queue Depth for Pageouts

Asynchronous swap buffers are used for asynchronous pageouts and for
prewriting modified pages. The vm-asyncswapbuffers attribute controls
the maximum depth of the swap device I/O queue for pageouts.

Configuring and Tuning Memory 4–31

The value of the vm-asyncswapbuffers attribute should be the
approximate number of I/O transfers that a swap device can handle at one
time. The default value is 4.

Increasing the queue depth will free memory and increase the overall
system throughput.

Decreasing the queue depth will use more memory, but will improve the
interactive response time.

If you are using LSM, you may want to increase the page-out rate. Be
careful if you increase the value of the vm-asyncswapbuffers attribute,
because this will cause page-in requests to lag asynchronous page-out
requests.

4.7.17 Modifying the UBC Write Device Queue Depth

The UBC uses a buffer to facilitate the movement of data between memory
and disk. The vm-ubcbuffers attribute specifies the maximum file system
device I/O queue depth for writes. The default value is 256.

Increasing the UBC write device queue depth frees memory and increases
the overall file system throughput.

Decreasing the UBC write device queue depth increases memory demands,
but improves the interactive response time.

4.7.18 Controlling Large File Caching

If a large file completely fills the UBC, it may take all of the pages on the
free page list, which may cause the system to page excessively. The
vm-ubcseqpercent attribute specifies the maximum amount of memory
allocated to the UBC that can be used to cache a file. The default value is
10 percent of memory allocated to the UBC.

The vm-ubcseqstartpercent attribute specifies the size of the UBC as a
percentage of physical memory, at which time the virtual memory
subsystem starts stealing the UBC LRU pages for a file to satisfy the
demand for pages. The default is 50 percent of physical memory.

Increasing the value of the vm-ubcseqpercent attribute will improve the
performance of a large single file, but decrease the remaining amount of
memory.

Decreasing the value of the vm-ubcseqpercent attribute will increase the
available memory, but will degrade the performance of a large single file.

To force the system to reuse the pages in the UBC instead of taking pages
from the free list, perform the following tasks:

4–32 Configuring and Tuning Memory

• Make the maximum size of the UBC greater than the size of the UBC
as a percentage of percentage of memory. That is, the value of the
ubc-maxpercent attribute (the default is 100 percent) must be greater
than the value of the vm-ubcseqstartpercent attribute (the default
is 50 percent).

• Make the value of the vm-ubcseqpercent attribute, which specifies the
size of a file as a percentage of the UBC, greater than a referenced file.
The default value of the vm-ubcseqpercent attribute is 10 percent.

For example, using the default values, the UBC would have to be larger
than 50 percent of all memory and a file would have to be larger than 10
percent of the UBC (that is, the file size would have to be at least 5 percent
of all memory) in order for the system to reuse the pages in the UBC.

On large-memory systems that are doing a lot of file system operations, you
may want to lower the vm-ubcseqstartpercent value to 30 percent. Do
not specify a lower value unless you decrease the size of the UBC. In this
case, do not change the value of the vm-ubcseqpercent attribute.

4.7.19 Increasing the Paging Threshold

The vm-page-free-target attribute specifies the minimum number of
pages on the free list before paging starts. The default value is 128 pages.

Increasing the value of the vm-page-free-target attribute will increase
the paging activity but may improve performance when free memory is
exhausted. If you increase the value, start at the default value (128 pages
or 1 MB) and then double the value. Do not specify a value above 1025
pages or 8 MB. A high value can waste memory.

Do not decrease the value of the vm-page-free-target attribute unless
you have a lot of memory or you experience a serious performance
degradation when free memory is exhausted.

4.7.20 Enabling Aggressive Task Swapping

You can enable the vm-aggressive attribute (set the value to 1) to allow
the virtual memory subsystem to aggressively swap out processes when
memory is needed. This improves system throughput, but degrades the
interactive response performance.

By default, the vm-aggressive attribute is disabled (set to 0), which
results in less aggressive swapping. In this case, processes are swapped in
at a faster rate than if aggressive swapping is enabled.

Configuring and Tuning Memory 4–33

4.7.21 Decreasing the Size of the Metadata Buffer Cache

The metadata buffer cache contains recently accessed UFS and CDFS
metadata. On large-memory systems with a high cache hit rate, you may
want to decrease the size of the metadata buffer cache. This will increase
the amount of memory that is available to the virtual memory subsystem.
However, decreasing the size of the cache may degrade UFS performance.

The bufcache attribute specifies the percentage of physical memory that
the kernel wires for the metadata buffer cache. The default size of the
metadata buffer cache is 3 percent of physical memory. You can decrease
the value of the bufcache attribute to a minimum of 1 percent.

For systems that use only AdvFS, set the value of the bufcache attribute
to 1 percent.

4.7.22 Decreasing the Size of the namei Cache

The namei cache is used by all file systems to map file pathnames to inodes.
Use dbx to monitor the cache by examining the nchstats structure.

To free memory resources, decrease the number of elements in the namei
cache by decreasing the value of the name-cache-size attribute. The
default values are 2*nvnode *11/10 (for 32-MB or larger systems) and 150
(for 24-MB systems). The maximum value is 2*max-vnodes *11/10.

4.7.23 Decreasing the Size of the AdvFS Buffer Cache

To free memory resources, you may want to decrease the percentage of
physical memory allocated to the AdvFS buffer cache.

The AdvfsCacheMaxPercent attribute determines the maximum amount
of physical memory that can be used for the AdvFS buffer cache. The
default is 7 percent of memory. However, decreasing the size of the AdvFS
buffer cache may adversely affect AdvFS I/O performance.

4.7.24 Reserving Physical Memory for Shared Memory

Granularity hints allow you to reserve a portion of dynamically wired
physical memory at boot time for shared memory. Granularity hints allow
the translation lookaside buffer to map more than a single page and enable
shared page table entry functionality, which will cause fewer buffer misses.

On typical database servers, using granularity hints provides a 2 to 4
percent run-time performance gain that reduces the shared memory detach
time. In most cases, use the Segmented Shared Memory (SSM)
functionality (the default) instead of the granularity hints functionality.

4–34 Configuring and Tuning Memory

To enable granularity hints, you must specify a value for the gh-chunks
attribute. To make granularity hints more effective, modify applications to
ensure that both the shared memory segment starting address and size are
aligned on an 8-MB boundary.

Section 4.7.24.1 and Section 4.7.24.2 describe how to enable granularity
hints.

4.7.24.1 Tuning the Kernel to Use Granularity Hints

To use granularity hints, you must specify the number of 4-MB chunks of
physical memory to reserve for shared memory at boot time. This memory
cannot be used for any other purpose and cannot be returned to the system
or reclaimed.

To reserve memory for shared memory, specify a nonzero value for the
gh-chunks attribute. For example, if you want to reserve 4 GB of memory,
specify 1024 for the value of gh-chunks (1024 * 4 MB = 4 GB). If you
specify a value of 512, you will reserve 2 GB of memory.

The value you specify for the gh-chunks attribute depends on your
database application. Do not reserve an excessive amount of memory,
because reserving memory decreases the memory available to the virtual
memory subsystem and the UBC.

You can determine if you have reserved the appropriate amount of memory.
For example, you can initially specify 512 for the value of the gh-chunks
attribute. Then, invoke the following sequence of dbx commands while
running the application that allocates shared memory:

dbx -k /vmunix /dev/mem

(dbx) px &gh_free_counts
0xfffffc0000681748
(dbx) 0xfffffc0000681748/4X
fffffc0000681748: 0000000000000402 0000000000000004
fffffc0000681758: 0000000000000000 0000000000000002
(dbx)

The output shows the following:

• The first number (402) specifies the number of 512-page chunks (4 MB).

• The second number (4) specifies the number of 64-page chunks.

• The third number (0) specifies the number of 8-page chunks.

• The fourth number (2) specifies the number of 1-page chunks.

To save memory, you can reduce the value of the gh-chunks attribute until
only one or two 512-page chunks are free while the application that uses
shared memory is running.

Configuring and Tuning Memory 4–35

The following attributes also affect granularity hints:

• gh-min-seg-size

Specifies the shared memory segment size above which memory is
allocated from the memory reserved by the gh-chunks attribute. The
default is 8 MB.

• gh-fail-if-no-mem

When set to 1 (the default), the shmget function returns a failure if the
requested segment size is larger than the value specified by the
gh-min-seg-size attribute, and if there is insufficient memory in the
gh-chunks area to satisfy the request.

If the value of the gh-fail-if-no-mem attribute is 0, the entire
request will be satisfied from the pageable memory area if the request
is larger than the amount of memory reserved by the gh-chunks
attribute.

In addition, messages will display on the system console indicating
unaligned size and attach address requests. The unaligned attach
messages are limited to one per shared memory segment.

4.7.24.2 Modifying Applications to Use Granularity Hints

You can make granularity hints more effective by making both the shared
memory segment starting address and size aligned on an 8-MB boundary.

To share Level 3 page table entries, the shared memory segment attach
address (specified by the shmat function) and the shared memory segment
size (specified by the shmget function) must be aligned on an 8-MB
boundary. This means that the lowest 23 bits of both the address and the
size must be zero.

The attach address and the shared memory segment size is specified by the
application. In addition, System V shared memory semantics allow a
maximum shared memory segment size of 2 GB minus 1 byte. Applications
that need shared memory segments larger than 2 GB can construct these
regions by using multiple segments. In this case, the total shared memory
size specified by the user to the application must be 8-MB aligned. In
addition, the value of the shm-max attribute, which specifies the maximum
size of a System V shared memory segment, must be 8-MB aligned.

If the total shared memory size specified to the application is greater than 2
GB, you can specify a value of 2139095040 (or 0x7f800000) for the value of
the shm-max attribute. This is the maximum value (2 GB minus 8 MB) that
you can specify for the shm-max attribute and still share page table entries.

4–36 Configuring and Tuning Memory

Use the following dbx command sequence to determine if page table entries
are being shared:

dbx -k /vmunix /dev/mem

(dbx) p *(vm_granhint_stats *)&gh_stats_store
struct {

total_mappers = 21
shared_mappers = 21
unshared_mappers = 0
total_unmappers = 21
shared_unmappers = 21
unshared_unmappers = 0
unaligned_mappers = 0
access_violations = 0
unaligned_size_requests = 0
unaligned_attachers = 0
wired_bypass = 0
wired_returns = 0

}
(dbx)

For the best performance, the shared_mappers kernel variable should be
equal to the number of shared memory segments, and the
unshared_mappers , unaligned_attachers , and
unaligned_size_requests variables should be 0 (zero).

Because of how shared memory is divided into shared memory segments,
there may be some unshared segments. This occurs when the starting
address or the size is aligned on an 8-MB boundary. This condition may be
unavoidable in some cases. In many cases, the value of total_unmappers
will be greater than the value of total_mappers .

Shared memory locking changes a lock that was a single lock into a hashed
array of locks. The size of the hashed array of locks can be modified by
modifying the value of the vm-page-lock-count attribute. The default
value is 64.

4.8 Tuning the UBC

The UBC and the virtual memory subsystem compete for the physical
memory that is not wired by the kernel. You may be able to improve file
system performance by tuning the UBC. However, increasing the amount of
memory available to the UBC will affect the virtual memory subsystem and
may increase the rate of paging and swapping.

The amount of memory allocated to the UBC is determined by the
ubc-maxpercent, ubc-minpercent, and ubc-borrowpercent
attributes. You may be able to improve performance by modifying the value
of these attributes, which are described in Section 4.4.

Configuring and Tuning Memory 4–37

The following output may indicate that the size of the UBC is too small for
your configuration:

• The output of the vmstat or monitor command shows excessive file
system page in activity but little or no page out activity or shows a very
low free page count.

• The output of the iostat command shows little or no swap disk I/O
activity or shows excessive file system I/O activity.

The UBC is flushed by the update daemon. You can monitor the UBC
usage lookup hit ratio by using dbx . You can view UBC statistics by using
dbx and checking the vm_perfsum structure. You can also monitor the
UBC by using dbx -k and examining the ufs_getapage_stats
structure. See Chapter 2 for information about monitoring the UBC.

You can improve UBC performance by following the guidelines described in
Table 4–4. You can also improve file system performance by following the
guidelines described in Chapter 5.

Table 4–4: Guidelines for Tuning the UBC

Action Performance Benefit Tradeoff

Increase the memory allocated
to the UBC (Section 4.8.1)

Improves file system
performance

May cause excessive
paging and swapping

Decrease the amount of memory
borrowed by the UBC
(Section 4.8.2)

Improves file system
performance

Decreases the
memory available for
processes and may
decrease system
response time

Increase the minimum size of
the UBC (Section 4.8.3)

Improves file system
performance

Decreases the
memory available for
processes

Modify the application to use
mmap(Section 4.8.4)

Decreases memory
requirements

None

Increase the UBC write device
queue depth (Section 4.7.17)

Increases overall file
system throughput and
frees memory

Decreases interactive
response performance

Decrease the UBC write device
queue depth (Section 4.7.17)

Improves interactive
response time

Consumes memory

The following sections describe these guidelines in detail.

4.8.1 Increasing the Maximum Size of the UBC

If there is an insufficient amount of memory allocated to the UBC, I/O
performance may be degraded. If you allocate more memory to the UBC,

4–38 Configuring and Tuning Memory

you will improve the chance that data will be found in the cache. By
preventing the system from having to copy data from a disk, you may
improve I/O performance. However, allocating more memory to the UBC
may cause excessive paging and swapping.

To increase the maximum amount of memory allocated to the UBC, you can
increase the value of the ubc-maxpercent attribute. The default value is
100 percent. However, the performance of an application that generates a
lot of random I/O will not be improved by enlarging the UBC because the
next access location for random I/O cannot be predetermined. See
Section 4.3.7 for information about UBC memory allocation.

4.8.2 Decreasing the Amount of Borrowed Memory

If vmstat output shows excessive paging but few or no pageouts, you may
want to increase the value of the ubc-borrowpercent attribute. This
situation can occur on low-memory systems (24-MB systems) because they
reclaim UBC pages more aggressively than systems with more memory.

The UBC borrows all physical memory above the value of the
ubc-borrowpercent attribute and up to the value of the
ubc-maxpercent attribute. Increasing the value of the
ubc-borrowpercent attribute allows more memory to remain in the UBC
when page reclamation begins. This can increase the UBC cache
effectiveness, but may degrade system response time when a low-memory
condition occurs. The value of the ubc-borrowpercent attribute can
range from 0 to 100. The default value is 20 percent. See Section 4.3.7 for
information about UBC memory allocation.

4.8.3 Increasing the Minimum Size of the UBC

Increasing the value of the ubc-minpercent attribute will prevent large
programs from completely filling the UBC. For I/O servers, you may want
to raise the value of the ubc-minpercent attribute to ensure that memory
is available for the UBC. The default value is 10 percent.

To ensure that the value of the ubc-minpercent is appropriate, use the
vmstat command to examine the page-out rate.

If the values of the ubc-maxpercent and ubc −minpercent attributes are
close together, you may degrade I/O performance or cause the system to
page excessively. See Section 4.3.7 for information about UBC memory
allocation.

Configuring and Tuning Memory 4–39

4.8.4 Using mmap in Your Applications

You may want to use the mmapfunction instead of the read or write
function in your applications. The read and write system calls require a
page of buffer memory and a page of UBC memory, but mmaprequires only
one page of memory.

4.9 Tuning the Metadata Buffer Cache

A portion of physical memory is wired for use by the metadata buffer cache,
which is the traditional BSD buffer cache. The file system code that deals
with UFS metadata, which includes directories, indirect blocks, and inodes,
uses this cache.

You may be able to improve UFS performance by following the guidelines
described in Table 4–5.

Table 4–5: Guidelines for Tuning the Metadata Buffer Cache

Action Performance Benefit Tradeoff

Increase the memory allocated
to the metadata buffer cache
(Section 4.9.1)

Improves UFS
performance

Reduces the memory
available to the virtual
memory subsystem
and the UBC

Increase the size of the hash
chain table (Section 4.9.2)

Improves lookup speed Consumes memory

The following sections describe these guidelines in detail.

4.9.1 Increasing the Size of the Metadata Buffer Cache

The bufcache attribute specifies the size of the kernel’s metadata buffer
cache as a percentage of physical memory. The default is 3 percent.

You may want to increase the size of the metadata buffer cache if you have
a high cache miss rate (low hit rate). In general, you do not have to
increase the cache size. Never increase the value of the bufcache to more
than 10 percent.

To determine whether to increase the size of the metadata buffer cache, use
dbx to examine the bio_stats structure. The miss rate (block misses
divided by the sum of the block misses and block hits) should not be more
than 3 percent.

Allocating additional memory to the metadata buffer cache reduces the
amount of memory available to the virtual memory subsystem and the

4–40 Configuring and Tuning Memory

UBC. In general, you do not have to increase the value of the bufcache
attribute.

4.9.2 Increasing the Size of the Hash Chain Table

The hash chain table for the metadata buffer cache stores the heads of the
hashed buffer queues. Increasing the size of the hash chain table spreads
out the buffers and may reduce linear searches, which improves lookup
speeds.

The buffer-hash-size attribute specifies the size of the hash chain table
for the metadata buffer cache. The default hash chain table size is 512 slots.

You can modify the value of the buffer-hash-size attribute so that each
hash chain has 3 or 4 buffers. To determine a value for the
buffer-hash-size attribute, use dbx to examine the value of nbuf , then
divide the value by 3 or 4, and finally round the result to a power of 2. For
example, if nbuf has a value of 360, dividing 360 by 3 gives you a value of
120. Based on this calculation, specify 128 (2 to the power of 7) as the value
of the buffer-hash-size attribute.

Configuring and Tuning Memory 4–41

5
Configuring and Tuning Storage

Subsystems

A storage subsystem consists of software (operating system or layered
product) and hardware (including host bus adapters, cables, and disks).
Your storage configuration can have a significant impact on system
performance, because disk I/O is used for file system operations and also by
the virtual memory subsystem for paging and swapping.

To configure a storage subsystem that will meet your performance and
availability needs, you must first understand the I/O requirements of the
users and applications and how they perform disk I/O, as described in
Chapter 1. After you configure your storage subsystem, you may be able to
tune the subsystem to improve performance.

This chapter describes the features of different storage subsystems and
provides guidelines for configuring and tuning the subsystems.

Many of the tuning tasks described in this chapter require you to modify
system attributes. See Section 2.11 for more information about attributes.

5.1 Understanding Storage Subsystems

Disk I/O operations are significantly slower than data transfers involving
the CPU or memory caches. Because disks are used for data storage and for
virtual memory swap space, an incorrectly configured or tuned storage
subsystem can degrade overall system performance.

Disk I/O performance can be affected by the following variables:

• Workload characteristics

Performance depends on how your users and applications perform disk
I/O. For example, a workload can involve primarily read or write I/O
operations. In addition, some workloads require low latency and high
throughput, while others require a fast data transfer rate (high
bandwidth).

Low latency is important for multiple small data transfers and also for
workstation, timesharing, and server environments. High bandwidth is
important for systems that perform large sequential data transfers,

Configuring and Tuning Storage Subsystems 5–1

such as database servers. See Chapter 1 for more information about
characterizing your disk I/O.

• Performance capacity of the hardware

DIGITAL recommends that you use hardware with the best
performance features. For example, disks with a high rate of
revolutions per minute (RPM) provide the best overall performance.
Wide disks, which support 16-bit transfers, have twice the bandwidth of
narrow (8 bit) disks and can improve performance for large data
transfers. High-performance host bus adapters, such as fast wide
differential (FWD) adapters provide low CPU overhead and high
bandwidth. In addition, a write-back cache decreases the latency of
small writes and can improve throughput.

• Memory allocation to the UBC

The Unified Buffer Cache (UBC) is allocated a portion of physical
memory and caches actual file system data for reads and writes,
Advanced File System (AdvFS) metadata, and Memory File System
(MFS) data. The UBC decreases the number of disk operations for file
systems by serving as a layer between the disk and the operating
system. The metadata buffer cache and the AdvFS buffer cache are also
allocated a percentage of physical memory.

• Kernel variable values

Disk I/O performance depends on kernel variable values that are
appropriate for your workload and configuration. You may need to
modify the default values to obtain optimal system performance, as
described in this manual.

• Mirrored disk configuration

Mirrored data across different disks improves the performance of read
operations and provides high data availability. However, because data
must be written to two separate locations, mirroring degrades disk
write performance.

• Striped disk configuration

Striping data across multiple disks distributes the I/O load and enables
parallel I/O streams to operate concurrently on different devices, which
improves disk I/O performance for some workloads.

• Hardware RAID subsystem configuration

Hardware RAID subsystems relieve the CPU of disk management
overhead and support write-back caches, which can improve disk I/O
performance for some workloads.

• File system configuration

5–2 Configuring and Tuning Storage Subsystems

File systems, including UFS and AdvFS, are used to organize and
manage files. AdvFS provides you with fast file system recovery,
improved performance for sequential and large I/O operations, and disk
defragmentation features.

• Raw I/O

For some workloads, raw I/O (I/O to a disk that does not contain a file
system) may have better performance than file system I/O because it
bypasses buffers and caches.

To choose a storage subsystem that will meet the needs of your users and
applications, you must understand the benefits and tradeoffs of the various
disk and file management options, as described in Section 5.2.

5.2 Choosing How to Manage Disks and Files
DIGITAL UNIX supports a number of methods that you can use to manage
the physical disks and files in your environment. The traditional method of
managing disks and files is to divide each disk into logical areas called disk
partitions, and to then create a file system on a partition or use a partition
for raw I/O. A disk can consist of one to eight partitions that have a fixed
size; these partitions cannot overlap.

Each disk type has a default partition scheme. The disktab database file
lists the default disk partition sizes. The partition size determines the
amount of data it can hold. To modify the size of a partition, you must back
up any data in the partition, change the size by using the disklabel
command, and then restore the data to the resized partition. You must be
sure that the data will fit into the new partition.

An alternative method to managing disks with static disk partitions is to
use the Logical Storage Manager (LSM) to set up a shared storage pool that
consists of multiple disks. You can then create virtual disks from this pool
of storage, according to your performance and capacity needs. LSM provides
you with flexible and easy management for large storage configurations.
Because there is no direct correlation between a virtual disk and a physical
disk, file system or raw I/O can span disks, as needed. In addition, you can
easily add disks to and remove disks from the pool, balance the load, and
perform other storage management tasks. LSM also provides you with
high-performance and high-availability RAID functionality.

Hardware RAID subsystems provide another method of handling storage.
These subsystems use intelligent controllers to provide high-performance
and high-availability RAID functionality, allow you to increase your storage
capacity, and support write-back caches. RAID controllers allow you to
combine several disks into a single storage set that the system sees as a
single unit.

Configuring and Tuning Storage Subsystems 5–3

You can choose to manage your file systems by using AdvFS. AdvFS
provides file system features beyond those of a traditional UFS file system.
Unlike the rigid UFS model in which the file system directory hierarchy
(tree) is bound tightly to the physical storage, AdvFS consists of two
distinct layers: the directory hierarchy layer and the physical storage layer.
This decoupled file system structure enables you to manage the physical
storage layer apart from the directory hierarchy layer. This means that you
can move files between a defined group of disk volumes without changing
file pathnames. Because the pathnames remain the same, the action is
completely transparent to end users.

You can use different configurations in your environment. For example, you
can create static partitions on some disks and use the remaining disks in
LSM volumes. You can also combine products in the same configuration.
For example, you can configure AdvFS file domains on top of LSM volumes,
or configure LSM volumes on top of RAID storage sets.

The following sections describe the features of the different disk and file
system management options.

5.2.1 Understanding RAID Levels and Products

RAID (redundant array of independent disks) technology can provide both
high disk I/O performance and high data availability. The DIGITAL UNIX
operating system provides RAID functionality by using the Logical Storage
Manager (LSM) product. DIGITAL UNIX also supports hardware RAID
subsystems, which provide RAID functionality by using intelligent
controllers, caches, and software.

There are four primary RAID levels:

• RAID 0—Also known as disk striping, RAID 0 divides data into blocks
(sometimes called chunks or stripes) and distributes the blocks across
multiple disks in a array. Striping enables parallel I/O streams to
operate concurrently on different devices. I/O operations can be handled
simultaneously by multiple devices, which balances the I/O load and
improves performance.

The performance benefit of striping depends on the size of the stripe
and how your users and applications perform disk I/O. For example, if
an application performs multiple simultaneous I/O operations, you can
specify a stripe size that will enable each disk in the array to handle a
separate I/O operation. If an application performs large sequential data
transfers, you can specify a stripe size that will distribute a large I/O
evenly across the disks.

For volumes that receive only one I/O at a time, you may not want to
use striping if access time is the most important factor. In addition,

5–4 Configuring and Tuning Storage Subsystems

striping may degrade the performance of small data transfers, because
of the latencies of the disks and the overhead associated with dividing a
small amount of data.

Striping decreases data availability because one disk failure makes the
entire disk array unavailable. To make striped disks highly available,
you can mirror the disks.

• RAID 1—Also known as disk mirroring, RAID 1 provides high data
availability by maintaining identical copies of data on different disks in
an array. RAID 1 also improves the disk read performance, because
data can be read from two different locations. However, RAID 1 can
decrease disk write performance, because data must be written to two
different locations.

• RAID 3—A type of parity RAID, RAID 3 divides data blocks and
distributes the data across a disk array, providing parallel access to
data. RAID 3 provides a high data transfer rate and increases
bandwidth, but it provides no improvement in throughput (the I/O
transaction rate).

RAID 3 can improve the I/O performance for applications that transfer
large amounts of sequential data, but it provides no improvement for
applications that perform multiple I/O operations involving small
amounts of data.

RAID 3 provides high data availability by storing redundant parity
information on a separate disk. The parity information is used to
regenerate data if a disk in the array fails. However, performance
degrades as multiple disks fail, and data reconstruction is slower than
if you had used mirroring.

• RAID 5—A type of parity RAID, RAID 5 distributes data blocks across
disks in an array. RAID 5 allows independent access to data and can
handle simultaneous I/O operations.

RAID 5 can improve throughput, especially for large file I/O operations,
multiple small data transfers, and I/O read operations. However, it is
not suited to write-intensive applications.

RAID 5 provides data availability by distributing redundant parity
information across disks. Each array member contains enough parity
information to regenerate data if a disk fails. However, performance
may degrade and data may be lost if multiple disks fail. In addition,
data reconstruction is slower than if you had used mirroring.

To address your performance and availability needs, you can combine some
RAID levels. For example, you can combine RAID 0 with RAID 1 to mirror
striped disks for high availability and high performance.

Configuring and Tuning Storage Subsystems 5–5

In addition, some DIGITAL hardware RAID subsystems support adaptive
RAID 3/5 (also called dynamic parity RAID), which improves disk I/O
performance for a wide variety of applications by dynamically adjusting,
according to workload needs, between data transfer-intensive algorithms
and I/O operation-intensive algorithms.

Table 5–1 compares the performance and availability features for the
different RAID levels.

Table 5–1: RAID Level Performance and Availability Features

RAID Level Performance Impact Availability Impact

RAID 0 Balances I/O load and improves reads
and writes

Lower than single disk

RAID 1 Improves reads, may degrade writes Highest

RAID 0+1 Balances I/O load, improves reads,
may degrade writes

Highest

RAID 3 Improves bandwidth, performance
may degrade if multiple disks fail

Higher than single disk

RAID 5 Improves throughput, performance
may degrade if multiple disks fail

Higher than single disk

Adaptive
RAID 3/5

Improves bandwidth and throughput,
performance may degrade if multiple
disks fail

Higher than single disk

It is important to understand that RAID performance depends on the state
of the devices in the RAID subsystem. There are three possible states:
steady state (no failures), failure (one or more disks have failed), and
recovery (subsystem is recovering from failure).

There are many variables to consider when choosing a RAID configuration:

• Not all RAID products support all RAID levels.

For example, LSM currently supports only RAID 0 (striping) and RAID
1 (mirroring), and only high-performance RAID controllers support
adaptive RAID 3/5.

• RAID products provide different performance benefits.

For example, hardware RAID subsystems support write-back caches
and other performance-enhancing features and also relieve the CPU of
the I/O overhead.

• Some RAID configurations are more cost-effective than others.

In general, LSM provides more cost-effective RAID functionality than
hardware RAID subsystems. In addition, parity RAID provides data

5–6 Configuring and Tuning Storage Subsystems

availability at a cost that is lower than RAID 1 (mirroring), because
mirroring n disks requires 2n disks.

• Data recovery rates depend on the RAID configuration.

For example, if a disk fails, it is faster to regenerate data by using a
mirrored copy than by using parity information. In addition, if you are
using parity RAID, I/O performance declines as additional disks fail.

There are advantages to each RAID product, and which one you choose
depends on your workload requirements and other factors. The following
sections describe the features of the different RAID subsystems and LSM.

5.2.1.1 Hardware RAID Subsystem Features

Hardware RAID subsystems use a combination of hardware (RAID
controllers, caches, and host bus adapters) and software to provide high
disk I/O performance and high data availability. A hardware RAID
subsystem is sometimes called hardware RAID.

All hardware RAID subsystems provide you with the following features:

• A RAID controller that relieves the CPU of the disk I/O overhead

• Increased disk storage capacity

Hardware RAID subsystems allow you to connect a large number of
disks to your system. In a typical storage configuration, you use a SCSI
bus connected to an I/O bus slot to attach disks to a system. However,
you can connect only a limited number of disks on a SCSI bus, and
systems have limited I/O bus slots. Hardware RAID subsystems contain
internal SCSI buses and host bus adapters, which enable you to connect
multiple SCSI buses and multiple disks to a system by using only one
I/O bus slot.

• Read cache

A read cache can improve I/O read performance by holding data that it
anticipates the host will request. If a system requests data that is
already in the read cache (a cache hit), the data is immediately
supplied without having to read the data from disk. Subsequent data
modifications are written both to disk and to the read cache
(write-through caching).

• Write-back cache

Hardware RAID subsystems support (as a standard or an optional
feature) a nonvolatile write-back cache, which can improve I/O write
performance while maintaining data integrity. A write-back cache
decreases the latency of many small writes, and can improve Web
server performance because writes appear to be executed immediately.

Configuring and Tuning Storage Subsystems 5–7

A write-back cache must be battery-backed to protect against data loss
and corruption.

With write-back caching, data intended to be written to disk is
temporarily stored in the cache, consolidated, and then periodically
written (flushed) to disk for maximum efficiency. If a failure occurs,
upon recovery, the RAID controller detects any unwritten data that still
exists in the write-back cache and writes the data to disk before
enabling normal controller operations.

• RAID 0 (disk striping) support

• RAID 1 (disk mirroring) support

• Parity RAID support

Hardware RAID subsystems provide various levels of parity RAID
support (RAID 3, RAID 5, or adaptive RAID 3/5) for high performance
and high availability.

• Hot component swapping and sparing

Hot swap support allows you to replace a failed component while the
system continues to operate. Hot spare support allows you to
automatically use previously installed components if a failure occurs.

• Non-RAID disk array capability or "just a bunch of disks" (JBOD)

• Graphical user interface (GUI) for easy management and monitoring

• The volstat command, which provides detailed LSM performance
information

There are various hardware RAID subsystems, including backplane RAID
array subsystems and high-performance standalone RAID array
subsystems, which provide different degrees of performance and availability
at various costs. The features of these two subsystems are as follows:

• Backplane RAID array subsystems

These entry-level subsystems, such as the RAID Array 230 subsystem,
provide a low-cost hardware RAID solution. A backplane RAID array
controller is installed in an I/O bus slot, either a PCI bus slot or an EISA
bus slot, and acts as both a host bus adapter and a RAID controller.

Backplane RAID array subsystems are designed for small and midsize
departments and workgroups, and provide RAID functionality (0, 1,
0+1, and 5) and an optional write-back cache.

• Standalone RAID array subsystems

These subsystems, such as the RAID Array 450 subsystem, provide
high availability and the highest performance of any RAID subsystem.
A standalone RAID array subsystem uses a high-performance
controller, such as the HSZ controller. The controller connects to the

5–8 Configuring and Tuning Storage Subsystems

system through a FWD SCSI bus and a high-performance host bus
adapter, such as a KZPSA adapter, installed in an I/O bus slot.

Standalone RAID array subsystems are designed for client/server, data
center, and medium to large departmental environments. They provide
RAID functionality (0, 1, 0+1, and adaptive RAID 3/5), dual-redundant
controller support, scalability, storage set partitioning, and a standard
write-back cache.

See Section 5.5 for information on configuring hardware RAID subsystems.

5.2.1.2 LSM Features

Logical Storage Manager (LSM) can improve disk I/O performance, provide
high data availability, and help you to manage your storage more
efficiently. All DIGITAL UNIX systems can use the basic LSM functions,
but advanced disk management functions require a separate LSM license.
When LSM is used to stripe or mirror disks, it is sometimes referred to as
software RAID.

LSM allows you to organize a shared storage pool into volumes, which are
used in the same way as disk partitions, except that I/O directed to a
volume can span disks. You can create a UFS file system or an AdvFS file
domain on a volume, or you can use a volume as a raw device. You can also
create LSM volumes on top of RAID storage sets.

LSM supports the following disk management features:

• Pool of storage

• Load balancing by transparently moving data across disks

• RAID 0 (disk striping) support (license necessary)

• RAID 1 (disk mirroring) support (license necessary)

• Disk concatenation (creating a large volume from multiple disks)

• Graphical user interface (GUI) for easy disk management and detailed
performance information (license necessary)

LSM provides more cost-effective RAID functionality than a hardware
RAID subsystem. In addition, LSM configurations are less complex than
hardware RAID configurations. To obtain the performance benefits of both
LSM and hardware RAID, you can create LSM volumes on top of RAID
storage sets.

LSM is especially suited for systems with large numbers of disks. For these
systems, you may want to use LSM to manage your disks and AdvFS to
manage your files. That is, you can organize your disks into LSM volumes
and then use those volumes to create AdvFS file domains.

Configuring and Tuning Storage Subsystems 5–9

5.2.2 Understanding AdvFS

Advanced File System (AdvFS) is a DIGITAL UNIX file system option that
provides many file management and performance features. You can use
AdvFS instead of UFS to organize and manage your files.

The AdvFS Utilities product, which is licensed separately from the
DIGITAL UNIX operating system, extends the capabilities of the AdvFS
file system. An AdvFS file domain can consist of multiple volumes, which
can be UNIX block devices (entire disks), disk partitions, LSM logical
volumes, or RAID storage sets. AdvFS filesets can span all the volumes in
the file domain.

AdvFS provides the following file management features:

• Fast file system recovery

Rebooting after a system interruption is extremely fast. AdvFS uses
write-ahead logging, instead of the fsck utility, as a way to check for
and repair file system inconsistencies. The recovery speed depends on
the number of uncommitted records in the log, not the amount of data
in the fileset; therefore, reboots are quick and predictable.

• High-performance file system

AdvFS uses an extent-based file allocation scheme that consolidates
data transfers, which increases sequential bandwidth and improves
performance for large data transfers. AdvFS performs large reads from
disk when it anticipates a need for sequential data. AdvFS also performs
large writes by combining adjacent data into a single data transfer.

• Online file system management

• File domain defragmentation

• Support for large files and file systems

• User quotas

AdvFS utilities provide the following features:

• Pool of storage that allows you to add, remove, and back up disks
without disrupting users or applications.

• Disk spanning filesets

• Ability to recover deleted files

Users can retrieve their own unintentionally deleted files from
predefined trashcan directories or from clone filesets, without
assistance from system administrators.

• I/O load balancing across disks

• Online fileset resizing

5–10 Configuring and Tuning Storage Subsystems

• Online file migration across disks

• File-level striping

File-level striping may improve I/O bandwidth (transfer rates) by
distributing file data across multiple disk volumes.

• Graphical user interface (GUI) that simplifies disk and file system
administration, provides status, and alerts you to potential problems

See Section 5.6 for information about AdvFS configuration and tuning
guidelines.

5.3 General Disk Storage Guidelines
There are some general guidelines for configuring and tuning storage
subsystems. These guidelines are applicable to most configurations and will
help you to get the best disk I/O performance, regardless of whether you
are using static partitions, raw devices, LSM, hardware RAID subsystems,
AdvFS, or UFS.

These guidelines fall into three categories:

• Using high-performance hardware (see Table 5–2)

• Distributing the disk I/O load (see Table 5–3)

• General file system tuning (see Table 5–4)

The following sections describe these guidelines in detail.

5.3.1 High-Performance Hardware Guidelines

Using high-performance hardware will provide the best disk I/O
performance, regardless of your storage configuration. Table 5–2 describes
the guidelines for hardware configurations and lists the performance
benefits as well as the tradeoffs.

Table 5–2: Guidelines for High-Performance Hardware Configurations

Hardware Performance Benefit Tradeoff

Fast (high RPM) disks
(Section 5.3.1.1)

Improve disk access time and
sequential data transfer
performance

Cost

Disks with small platter
sizes (Section 5.3.1.2)

Improve seek times for
applications that perform
many small I/O operations

No benefit for large
sequential data
transfers

Wide disks (Section 5.3.1.3) Provide high bandwidth and
improves performance for
large data transfers

Cost

Configuring and Tuning Storage Subsystems 5–11

Table 5–2: Guidelines for High-Performance Hardware Configurations
(cont.)

Hardware Performance Benefit Tradeoff

Solid-state disks
(Section 5.3.1.4)

Provide very low disk access
time

Cost

High-performance host bus
adapters (Section 5.3.1.5)

Increase bandwidth and
throughput

Cost

DMA host bus adapters
(Section 5.3.1.6)

Relieve CPU of data transfer
overhead

None

Prestoserve (Section 5.3.1.7) Improves synchronous write
performance

Cost, not supported
in a cluster or for
nonfile system I/O
operations

Hardware RAID subsystem
(Section 5.5)

Increases disk capacity and
supports write-back cache

Cost of hardware
RAID subsystem

Write-back cache
(Section 5.3.1.8)

Reduces the latency of many
small writes

Cost of hardware
RAID subsystem

See the DIGITAL Systems & Options Catalog for information about disk,
adapter, and controllers performance features.

The following sections describe these guidelines in detail.

5.3.1.1 Using Fast Disks

Disks that spin with a high rate of revolutions per minute (RPM) have a
low disk access time (latency). High-RPM disks are especially beneficial to
the performance of sequential data transfers.

High-performance 5400 RPM disks can improve performance for many
transaction processing applications (TPAs). Extra high-performance 7200
RPM disks are ideal for applications that require both high bandwidth and
high throughput.

5.3.1.2 Using Disks with Small Platters

Disks with small platter sizes provide better seek times than disks with
large platter sizes, because the disk head has less distance to travel
between tracks. There are three sizes for disk platters: 2.5, 3.5, and 5.25
inches in diameter.

A small platter size may improve disk I/O performance (seek time) for
applications that perform many small I/O operations, but it provides no
performance benefit for large sequential data transfers.

5–12 Configuring and Tuning Storage Subsystems

5.3.1.3 Using Disks with Wide Data Paths

Disks with wide (16-bit) data paths provide twice the bandwidth of disks
with narrow (8-bit) data paths. Wide disks can improve I/O performance for
large data transfers.

5.3.1.4 Using Solid-State Disks

Solid-state disks provide outstanding performance in comparison to regular
disks but at a higher cost. Solid-state disks have a disk access time that is
less than 100 microseconds, which is equivalent to memory access speed
and more than 100 times faster than the disk access time for magnetic
disks.

Solid-state disks are ideal for a wide range of response-time critical
applications, such as online transaction processing (OLTP), and
applications that require high bandwidth, such as video applications.
Solid-state disks also provide data reliability through a data-retention
system. For the best performance, use solid-state disks for your most
frequently accessed data, place the disks on a dedicated bus, and use a
high-performance host bus adapter.

5.3.1.5 Using High-Performance Host Bus Adapters

Host bus adapters provide different performance features at various costs.
For example, FWD adapters, such as the KZPSA adapter, provide high
bandwidth and high throughput connections to disk devices.

SCSI adapters let you set the SCSI bus speed, which is the rate of data
transfers. There are three possible bus speeds:

• Slow (up to 5 million bytes per second or 5 MHz)

• Fast (up to 10 million bytes per second or 10 MHz)

Fast bus speed uses the fast synchronous transfer option, enabling I/O
devices to attain high peak-rate transfers in synchronous mode.

• Ultra (up to 20 million bytes per second or 20 MHz)

Not all SCSI bus adapters support all speeds.

5.3.1.6 Using DMA Host Bus Adapters

Some host bus adapters support direct memory access (DMA), which
enables an adapter to bypass the CPU and go directly to memory to access
and transfer data. For example, the KZPAA is a DMA adapter that
provides a low-cost connection to SCSI disk devices.

Configuring and Tuning Storage Subsystems 5–13

5.3.1.7 Using Prestoserve

Prestoserve utilizes a nonvolatile, battery-backed memory cache to improve
synchronous write performance. Prestoserve temporarily caches file system
writes that otherwise would have to be written to disk. This capability
improves performance for systems that perform large numbers of
synchronous writes.

To optimize Prestoserve cache use, you may want to enable Prestoserve
only on the most frequently used file systems. You cannot use Prestoserve
in a cluster or for nonfile system I/O.

5.3.1.8 Using Write-Back Caches

Hardware RAID subsystems support (as a standard or an optional feature)
write-back caches, which can improve I/O write performance while
maintaining data integrity. A write-back cache must be battery-backed to
protect against data loss and corruption.

A write-back cache decreases the latency of many small writes and can
improve write-intensive application performance and Internet server
performance. Applications that perform few writes will not benefit from a
write-back cache.

With write-back caching, data intended to be written to disk is temporarily
stored in the cache and then periodically written (flushed) to disk for
maximum efficiency. I/O latency is reduced by consolidating contiguous
data blocks from multiple host writes into a single unit.

Because writes appear to be executed immediately, a write-back cache
improves performance. If a failure occurs and the cache is battery-backed,
upon recovery, the RAID controller will detect any unwritten data that still
exists in the write-back cache and write the data to disk before enabling
normal controller operations.

5.3.2 Distributing the Disk I/O Load Guidelines

In addition to using hardware that will provide you with the best
performance, you must distribute the disk I/O load across devices to obtain
the maximum efficiency. Table 5–3 describes guidelines on how to
distribute disk I/O and lists the performance benefits as well as tradeoffs.

5–14 Configuring and Tuning Storage Subsystems

Table 5–3: Guidelines for Distributing the Disk I/O Load

Action Performance Benefit Tradeoff

Distribute swap space across
different disks and buses
(Section 5.3.2.1)

Improves paging and
swapping performance and
helps to prevent bottlenecks

Requires additional
disks, cabling, and
adapters

Distribute disk I/O across
different disks and buses
(Section 5.3.2.2)

Allows parallel I/O operations
and helps to prevent
bottlenecks

Requires additional
disks, cables, and
adapters

Place the most frequently
used file systems on different
disks (Section 5.3.2.3)

Helps to prevent disk
bottlenecks

Requires additional
disks

Place data at the beginning of
a ZBR disk (Section 5.3.2.4)

Improves bandwidth for
sequential data transfers

None

The following sections describe these guidelines in detail.

5.3.2.1 Distributing Swap Space Across Disks and Buses

Distributing swap space across different disks and buses makes paging and
swapping more efficient and helps to prevent any single adapter, disk, or
bus from becoming a bottleneck. See the System Administration manual or
swapon (8) for information about configuring swap space.

You can also use LSM to stripe your swap disks, which distributes the disk
I/O. See Section 5.4 for more information.

5.3.2.2 Distributing I/O Across Disks and Buses

Distributing disk I/O across different disks and buses helps to prevent a
single adapter, disk, or bus from becoming an I/O bottleneck and also
allows simultaneous operations.

For example, if you have 16 GB of disk storage, you may get better
performance from sixteen 1-GB disks than four 4-GB disks. More spindles
(disks) may allow more simultaneous operations. For random I/O
operations, 16 disks may be simultaneously seeking instead of 4 disks. For
large sequential data transfers, 16 data streams can be simultaneously
working instead of 4 data streams.

You can also use LSM to stripe your disks, which distributes the disk I/O
load. See Section 5.4 for more information.

5.3.2.3 Distributing File Systems Across Disks

Place the most frequently used file systems on different disks. Distributing
file systems will help to prevent a single disk from becoming a bottleneck.

Configuring and Tuning Storage Subsystems 5–15

Directories containing executable files or temporary files are often
frequently accessed (for example, /var , /usr , and /tmp). If possible, place
/usr and /tmp on different disks.

5.3.2.4 Placing Data at the Beginning of ZBR Disks

Data is most quickly transferred when it is located at the beginning of
zone-based recording (ZBR) disks. Placing data at the beginning of these
disks improves the bandwidth for sequential data transfers.

5.3.3 General File System Tuning Guidelines

You may be able to improve I/O performance by modifying some kernel
attributes that affect overall file system performance. The guidelines apply
to all file system configurations, including UFS and AdvFS.

General file system tuning often involves tuning the Virtual File System
(VFS). VFS provides a uniform interface that allows common access to files,
regardless of the file system on which the files reside.

The file system tuning guidelines fall into these categories:

• Changing how the system allocates and deallocates vnodes

The kernel data structure for an open file is called a vnode. These are
used by all file systems. The allocation and deallocation of vnodes is
handled dynamically by the system.

• Increasing the size of the namei cache to make lookup operations faster

The namei cache is used by all file systems to map file pathnames to
inodes.

• Increasing the size of the hash chain table for the namei cache to make
lookup operations faster

Hash tables are used for lookup operations.

• Allocating more memory to the Unified Buffer Cache (UBC)

The UBC shares physical memory with the virtual memory subsystem
and is used to cache the most recently accessed file system data.

• Using Prestoserve to cache only UFS or AdvFS file system metadata

There are also specific guidelines for AdvFS and UFS file systems. See
Section 5.6 and Section 5.7 for information.

Table 5–4 describes the guidelines for general file system tuning and lists
the performance benefits as well as the tradeoffs.

5–16 Configuring and Tuning Storage Subsystems

Table 5–4: Guidelines for General File System Tuning

Action Performance Benefit Tradeoff

Increase the maximum
number of open files
(Section 5.3.3.1)

Allocates more resources to
applications

Consumes memory

Increase the size of the
namei cache (Section 5.3.3.2)

Improves cache lookup
operations

Consumes memory

Increase the size of the hash
chain table for the namei
cache (Section 5.3.3.3)

Improves cache lookup
operations

Consumes memory

Allocate more memory to the
UBC (Section 5.3.3.4)

Improves disk I/O
performance

May cause excessive
paging and swapping

Use Prestoserve to cache only
file system metadata
(Section 5.3.3.5)

Improves performance for
applications that access
large amounts of file system
metadata

Cost, not supported in
a cluster or for nonfile
system I/O operations

Cache more vnodes on the
free list (Section 5.3.3.6)

Improves cache lookup
operations

Consumes memory

Increase the amount of time
for which vnodes are kept on
the free list (Section 5.3.3.7)

Improves cache lookup
operations

None

Delay vnode deallocation
(Section 5.3.3.8)

Improves namei cache
lookup operations

Consumes memory

Accelerate vnode deallocation
(Section 5.3.3.9)

Reduces memory demands Reduces the efficiency
of the namei cache

Disable vnode deallocation
(Section 5.3.3.10)

Optimizes processing time Consumes memory

Increase the open file
descriptor limit
(Section 5.3.3.11)

Provides more file
descriptors to a process

Increases the
possibility of runaway
allocations

Decrease the open file
descriptor limit
(Section 5.3.3.11)

Prevents a process from
consuming all the file
descriptors

May adversely affect
the performance of
processes that require
many file descriptors

Disable clearing of the DMA
scatter/gather map registers
(Section 5.3.3.12)

Improves performance of
VLM/VLDB systems

None

The following sections describe these guidelines in detail.

Configuring and Tuning Storage Subsystems 5–17

5.3.3.1 Increasing the Maximum Number of Open Files

Increasing the value of the max-vnodes or maxusers attribute increases
the maximum number of vnodes, which increases the number of open files.
If your applications require many open files, you may want to raise the
values of these attributes. Raising the attribute values will increase the
demand on your memory resources, and should only be done if you get a
message stating that you are out of vnodes.

If the number of users on the system exceeds the value of maxusers , and
you increase the value of maxusers, increase the value of max-vnodes
proportionally.

5.3.3.2 Increasing the Size of the namei Cache

The namei cache is used by all file systems to map file pathnames to
inodes. Use dbx to monitor the cache by examining the nchstats
structure. The miss rate (misses / (good + negative + misses)) should be less
than 20 percent.

To make lookup operations faster, increase the size of the namei cache by
increasing the value of the maxusers attribute (the recommended way) or
by increasing the value of the name-cache-size attribute. Increasing the
value of maxusers or name-cache-size allocates more system resources
for use by the kernel. However, it also increases the amount of physical
memory consumed by the kernel. Note that many benchmarks may
perform better with a large namei cache.

5.3.3.3 Increasing the Size of the Hash Chain Table for the namei Cache

Increasing the size of hash chain table for the namei cache spreads the
namei cache elements and may reduce linear searches, which improves
lookup speeds. The name-cache-hash-size attribute specifies the size of
the hash chain table for the namei cache. The default size is 256 slots.

You can change the value of the name-cache-hash-size attribute so that
each hash chain has three or four name cache entries. To determine an
appropriate value for the name-cache-hash-size attribute, divide the
value of name-cache-size attribute by 3 or 4 and then round the result
to a power of 2. For example, if the value of name-cache-size is 1029,
dividing 1029 by 4 produces a value of 257. Based on this calculation, you
could specify 256 (2 to the power of 8) for the value of the
name-cache-hash-size attribute.

5–18 Configuring and Tuning Storage Subsystems

5.3.3.4 Allocating More Memory for the UBC

The Unified Buffer Cache (UBC) uses a portion of physical memory to
cache actual file system data for reads and writes, AdvFS metadata, and
Memory File System (MFS) data. The UBC prevents the system from
having to copy data from a disk, which improves performance. If there is an
insufficient amount of memory allocated to the UBC, disk I/O performance
may be degraded.

Increasing the size of the UBC improves the chance that data will be found
in the cache. However, because the UBC and the virtual memory
subsystem share the same physical memory pages, increasing the size of
the UBC may cause excessive paging and swapping.

See Section 4.8 for information about tuning the UBC.

5.3.3.5 Using Prestoserve to Cache Only File System Metadata

Prestoserve can improve the overall run-time performance for systems that
perform large numbers of synchronous writes. The prmetaonly attribute
controls whether Prestoserve caches only UFS and AdvFS file system
metadata, instead of both metadata and synchronous write data (the
default). If the attribute is set to 1 (enabled), Prestoserve caches only file
system metadata.

Caching only metadata may improve the performance of applications that
access many small files or applications that access a large amount of
file-system metadata but do not reread recently written data.

5.3.3.6 Caching More Free vnodes

You can raise the value of the min-free-vnodes attribute, which
determines the minimum number of vnodes on the free list. Increasing the
value causes the system to cache more free vnodes and improves the
performance of cache lookup operations. However, increasing the value will
increase the demand on your memory resources.

On 24-MB systems, the default value of the min-free-vnodes attribute is
150. On 32-MB or larger systems, the default value depends on the value of
the maxusers attribute. For these systems, if the value of
min-free-vnodes is close to the value of the max-vnodes attribute,
vnode deallocation will not be effective.

If the value of min-free-vnodes is larger than the value of max-vnodes ,
vnode deallocations will not occur. If the value of min-free-vnodes must
be close to the value of max-vnodes , you may want to disable vnode
deallocation (see Section 5.3.3.10). However, disabling vnode deallocation

Configuring and Tuning Storage Subsystems 5–19

does not free memory, because memory used by the vnodes is not returned
to the system. On systems that need to reclaim the memory used by
vnodes, make sure that the value of min-free-vnodes is significantly
lower than the value of max-vnodes .

5.3.3.7 Increasing the Time vnodes Remain on the Free List

You can increase the value of the vnode-age attribute to increase the
amount of time for which vnodes are kept on the free list. This increases
the possibility that the vnode will be successfully looked up. The default
value for vnode-age is 120 seconds on 32-MB or larger systems and 2
seconds on 24-MB systems.

5.3.3.8 Delaying the Deallocation of vnodes

Increase the value of the namei-cache-valid-time attribute to delay the
deallocation of vnodes. This can improve namei cache lookup operations but
it consumes memory resources.

5.3.3.9 Accelerating the Deallocation of vnodes

Decrease the value of the namei-cache-valid-time attribute to
accelerate the deallocation of vnodes. This causes vnodes to be deallocated
from the namei cache at a faster rate, but reduces the efficiency of the
cache.

5.3.3.10 Disabling vnode Deallocation

To optimize processing time, disable vnode deallocation by setting the value
of the vnode-deallocation-enable attribute to 0. Disabling vnode
deallocation does not free memory, because memory used by the vnodes is
not returned to the system. You may want to disable vnode allocation if the
value of min-free-vnodes is close to the value of max-vnodes .

5.3.3.11 Modifying the Maximum Number of Open File Descriptors

The open-max-soft and open-max-hard attributes control the maximum
number of open file descriptors for each process. When the open-max-soft
limit is reached, a warning message is issued, and when the
open-max-hard limit is reached, the process is stopped. These attributes
prevent runaway allocations (for example, allocations within a loop that
cannot be exited because of an error condition) from consuming all the
available file descriptors.

The open-max-soft and open-max-hard attributes both have default
values of 4096 file descriptors (open files) per process. The maximum

5–20 Configuring and Tuning Storage Subsystems

number of open files per process is 65,536. If your applications require
many open files, you may want to increase the maximum open file
descriptor limit. Increasing the limit provides more file descriptors to a
process, but it increases the possibility of runaway allocations. In addition,
if you increase the number of open files per process, make sure that the
max-vnodes attribute is set to an adequate value. See the Release Notes
for information about increasing the open file descriptor limit.

Decreasing the open file descriptor limit decreases the number of file
descriptors available to each process and prevents a process from consuming
all the file descriptors. However, decreasing the limit may adversely affect
the performance of processes that require many file descriptors.

5.3.3.12 Disabling Clearing of the DMA Scatter/Gather Map Registers

If you have an AlphaServer 8200 or 8400, the dma-sg-map-unload-zero
attribute controls whether the direct memory access (DMA) scatter/gather
map registers clear after an I/O operation completes. If your system utilizes
large amounts of memory or storage, you may be able to gain some I/O
performance benefit by setting the attribute to zero.

5.4 Using the Logical Storage Manager

The Logical Storage Manager (LSM) can improve system performance and
provide high data availability. LSM also provides you with online storage
management features and enhanced performance information and
statistics, with little additional overhead. Although any type of system can
benefit from LSM, it is especially suited for large systems with large
numbers of disks.

LSM volumes are used in the same way as disk partitions. You can create
UFS file systems and AdvFS file domains and filesets on an LSM volume,
or you can use a volume as a raw device.

To set up a high-performance LSM configuration, you must be careful how
you configure the following:

• Disks, disk groups, and databases (see Section 5.4.1)

• Mirrored disks (see Section 5.4.2)

• Striped disks (see Section 5.4.3)

The Logical Storage Manager manual provides detailed information about
using LSM. The following sections describe configuration and tuning
guidelines for LSM.

Configuring and Tuning Storage Subsystems 5–21

5.4.1 Basic LSM Configuration Guidelines

The following sections provide general guidelines to configure LSM disks,
disk groups, and databases. How you configure your LSM disks and disk
groups determines the flexibility of your LSM configuration.

In addition, each LSM disk group maintains a configuration database,
which includes detailed information about mirrored and striped disks and
volume, plex, and subdisk records.

Table 5–5 lists LSM disk, disk group, and database configuration
guidelines and performance benefits as well as tradeoffs.

Table 5–5: Guidelines for LSM Disks, Disk Groups, and Databases

Action Benefit Tradeoff

Initialize your LSM disks as
sliced disks (Section 5.4.1.1)

Provides greater storage
configuration flexibility

None

Increase the maximum number
of LSM volumes
(Section 5.4.1.2)

Improves performance on
VLM/VLDB systems

None

Make the rootdg disk group a
sufficient size (Section 5.4.1.3)

Ensure sufficient space for
disk group information

None

Use a sufficient private region
size for each disk
(Section 5.4.1.4)

Ensures sufficient space
for database copies

Large private regions
require more disk
space

Make the private regions in a
disk group the same size
(Section 5.4.1.5)

Efficiently utilizes the
configuration space

None

Group disks into different disk
groups (Section 5.4.1.6)

Allows you to move disk
groups between systems

Reduces flexibility
when configuring
volumes

Use an appropriate size and
number of database and log
copies (Section 5.4.1.7)

Ensures database
availability and improves
performance

None

Place disks containing
database and log copies on
different buses (Section 5.4.1.8)

Improves availability Cost of additional
hardware

The following sections describe these guidelines in detail.

5.4.1.1 Initializing LSM Disks as Sliced Disks

Initialize your LSM disks as sliced disks, instead of as simple disks. A
sliced disk provides greater storage configuration flexibility because the

5–22 Configuring and Tuning Storage Subsystems

entire disk is under LSM control. The disk label for a sliced disk contains
information that identifies the partitions containing the private and the
public regions. In contrast, simple disks have both public and private
regions in the same partition.

5.4.1.2 Increasing the Maximum Number of LSM Volumes

For large systems increase the value of the max-vol attribute, which
specifies the maximum number of volumes per system. The default is 1024;
you can increase it to 4096.

5.4.1.3 Sizing the rootdg Disk Group

You must make sure that the rootdg disk group has an adequate size,
because the disk group’s configuration database contains records for disks
outside of the rootdg disk group, in addition to the ordinary disk-group
configuration information. For example, the rootdg configuration database
includes disk-access records that define all disks under LSM control.

The rootdg disk group must be large enough to contain records for the
disks in all the disk groups. See Table 5–6 for more information.

5.4.1.4 Sizing Private Regions

You must make sure that the private region for each disk has an adequate
size. LSM keeps disk media label and configuration database copies in each
disk’s private region.

A private region must be large enough to accommodate the size of the LSM
database copies. In addition, the maximum number of LSM objects (disks,
subdisks, volumes, and plexes) in a disk group depends on an adequate
private region size. However, a large private region requires more disk
space. The default private region size is 1024 blocks, which is usually
adequate for configurations using up to 128 disks per disk group.

5.4.1.5 Making Private Regions in a Disk Group the Same Size

The private region of each disk in a disk group should be the same size, in
order to efficiently utilize the configuration space. One or two LSM
configuration database copies can be stored in a disk’s private region.

When you add a new disk to existing an LSM disk group, the size of the
private region on the new disk is determined by the private region size of
the other disks in the disk group. As you add more disks to a disk group,
the voldiskadd utility reduces the number of configuration copies and log

Configuring and Tuning Storage Subsystems 5–23

copies that are initialized for the new disks. See voldiskadd (8) for more
information.

5.4.1.6 Grouping Disks in Disk Groups

You may want to group disks in disk groups according to their function.
This enables disk groups to be moved between systems, and decreases the
size of the LSM configuration database for each disk group. However, using
multiple disk groups reduces flexibility when configuring volumes.

5.4.1.7 Choosing the Number and Size of the Database and Log Copies

Each disk group maintains a configuration database, which includes
detailed information about mirrored and striped disks and volume, plex,
and subdisk records. The LSM subsystem’s overhead primarily involves
managing the kernel change logs and copies of the configuration databases.

LSM performance is affected by the size and the number of copies of the
configuration database and the kernel change log. They determine the
amount of time it takes for LSM to start up, for changes to the
configuration to occur, and for the LSM disks to fail over in a cluster.

Usually, each disk in a disk group contains one or two copies of both the
kernel change log and the configuration database. Disk groups consisting of
more than eight disks should not have copies on all disks. Always use four
to eight copies.

The number of kernel change log copies must be the same as the number of
configuration database copies. For the best performance, the number of
copies must be the same on each disk that contains copies.

Table 5–6 describes the guidelines for configuration database and kernel
change log copies.

Table 5–6: Configuration Database and Kernel Change Log Guidelines

Disks Per Disk
Group

Size of Private
Region (in Blocks)

Configuration and Kernel Change Log
Copies Per Disk

1 to 3 512 Two copies in each private region

4 to 8 512 One copy in each private region

9 to 32 512 One copy on four to eight disks, zero copies
on remaining disks

33 to 128 1024 One copy on four to eight disks, zero copies
on remaining disks

5–24 Configuring and Tuning Storage Subsystems

Table 5–6: Configuration Database and Kernel Change Log Guidelines
(cont.)

Disks Per Disk
Group

Size of Private
Region (in Blocks)

Configuration and Kernel Change Log
Copies Per Disk

129 to 256 1536 One copy on four to eight disks, zero copies
on remaining disks

257 or more 2048 One copy on four to eight disks, zero copies
on remaining disks

5.4.1.8 Distributing the Database and Log Copies Across Buses

For disk groups with large numbers of disks, place the disks that contain
configuration database and kernel change log copies on different buses.
This provides you with better performance and higher availability.

5.4.2 LSM Mirrored Volume Configuration Guidelines

Use LSM mirrored volumes for high data availability. If a physical disk
fails, the mirrored plex (copy) containing the failed disk becomes
temporarily unavailable, but the remaining plexes are still available. A
mirrored volume has at least two plexes for data redundancy.

Mirroring can also improve read performance. However, a write to a
volume results in parallel writes to each plex, so write performance may be
degraded. Environments whose disk I/O operations are predominantly
reads obtain the best performance results from mirroring. See Table 5–7 for
guidelines.

In addition, use block-change logging (BCL) to improve the mirrored
volume recovery rate when a system failure occurs by reducing the
synchronization time. If BCL is enabled and a write is made to a mirrored
plex, BCL identifies the block numbers that have changed and then stores
the numbers on a logging subdisk. BCL is not used for reads.

BCL is enabled if two or more plexes in a mirrored volume have a logging
subdisk associated with them. Only one logging subdisk can be associated
with a plex. BCL can add some overhead to your system and degrade the
mirrored volume’s write performance. However, the impact is less for
systems under a heavy I/O load, because multiple writes to the log are
batched into a single write. See Table 5–8 for guidelines.

Note that BCL will be replaced by dirty region logging (DRL) in a future
release.

Table 5–7 lists LSM mirrored volume configuration guidelines and
performance benefits as well as tradeoffs.

Configuring and Tuning Storage Subsystems 5–25

Table 5–7: Guidelines for LSM Mirrored Volumes

Action Benefit Tradeoff

Map mirrored plexes across
different buses
(Section 5.4.2.1)

Improves performance and
increases availability

None

Use the appropriate read
policy (Section 5.4.2.2)

Efficiently distributes
reads

None

Attach up to eight plexes to
the same volume
(Section 5.4.2.3)

Improves performance for
read-intensive workloads
and increases availability

Uses disk space
inefficiently

Use a symmetrical
configuration (Section 5.4.2.4)

Provides more predictable
performance

None

Use block-change logging
(Table 5–8)

Improves mirrored volume
recovery rate

May decrease write
performance

Stripe the mirrored volumes
(Table 5–9)

Improves disk I/O
performance and balances
I/O load

Increases management
complexity

Table 5–8 lists LSM block-change logging (BCL) configuration guidelines
and performance benefits as well as tradeoffs.

Table 5–8: Guidelines for LSM Block-Change Logging

Action Benefit Tradeoff

Configure multiple logging
subdisks (Section 5.4.2.5)

Improves recovery time Requires additional
disks

Use a write-back cache for
logging subdisks
(Section 5.4.2.6)

Minimizes BCLs write
degradation

Cost of hardware RAID
subsystem

Use the appropriate BCL
subdisk size (Section 5.4.2.7)

Enables migration to dirty
region logging

None

Place logging subdisks on
infrequently used disks
(Section 5.4.2.8)

Helps to prevent disk
bottlenecks

None

Use solid-state disks for
logging subdisks
(Section 5.4.2.9)

Minimizes BCL’s write
degradation

Cost of disks

The following sections describe these guidelines in detail.

5.4.2.1 Mirroring Volumes Across Different Buses

Putting each mirrored plex on a different bus improves performance and
availability by helping to prevent bus bottlenecks, and allowing

5–26 Configuring and Tuning Storage Subsystems

simultaneous I/O operations. Mirroring across different buses also
increases availability by protecting against bus and adapter failure.

5.4.2.2 Choosing a Read Policy for a Mirrored Volume

To provide optimal performance for different types of mirrored volumes,
LSM supports the following read policies:

• Round-robin read

Satisfies read operations to the volume in a round-robin manner from
all plexes in the volume.

• Preferred read

Satisfies read operations from one specific plex (usually the plex with
the highest performance).

• Select

Selects a default read policy, based on the plex associations to the
volume. If the mirrored volume contains a single, enabled, striped plex,
the default is to prefer that plex. For any other set of plex associations,
the default is to use a round-robin policy.

If one plex exhibits superior performance, either because the plex is striped
across multiple disks or because it is located on a much faster device, then
set the read policy to preferred read for that plex. By default, a mirrored
volume with one striped plex should have the striped plex configured as the
preferred read. Otherwise, you almost aways use the round-robin read
policy.

5.4.2.3 Using Multiple Plexes in a Mirrored Volume

To improve performance for read-intensive workloads, up to eight plexes
can be attached to the same mirrored volume. However, this configuration
does not use disk space efficiently.

5.4.2.4 Using a Symmetrical Configuration

A symmetrical mirrored disk configuration provides predictable
performance and easy management. Use the same number of disks in each
mirrored plex. For mirrored striped volumes, you can stripe across half of
the available disks to form one plex and across the other half to form the
other plex.

5.4.2.5 Using Multiple BCL Subdisks

Using multiple block-change logging (BCL) subdisks will improve recovery
time after a failure.

Configuring and Tuning Storage Subsystems 5–27

5.4.2.6 Using a Write-Back Cache with LSM

To minimize BCL’s impact on write performance, use LSM in conjunction
with a RAID subsystem that has a write-back cache. Typically, the BCL
performance degradation is more significant on systems with few writes
than on systems with heavy write loads.

5.4.2.7 Sizing BCL Subdisks

To support migration from BCL to dirty region logging (DRL), which will be
supported in a future release, use the appropriate BCL subdisk size.

If you have less than 64 GB of disk space under LSM control, calculate the
subdisk size by multiplying 1 block by each gigabyte of storage. If the
result is an odd number, add 1 block; if the result is an even number, add 2
blocks. For example, if you have 1 GB (or less) of space, use a 2-block
subdisk. If you have 2 GB (or 3 GB) of space, use a 4-block subdisk.

If you have more than 64 GB of disk space under LSM control, use a
64-block subdisk.

5.4.2.8 Placing BCL Logging Subdisks on Infrequently Used Disks

Place a logging subdisk on an infrequently used disk. Because this subdisk
is frequently written, do not put it on a busy disk. Do not configure BCL
subdisks on the same disks as the volume data, because this will cause
head seeking or thrashing.

5.4.2.9 Using Solid-State Disks for BCL Subdisks

If persistent (nonvolatile) solid-state disks are available, use them for
logging subdisks.

5.4.3 LSM Striped Volume Configuration Guidelines

Striping volumes can increase performance because parallel I/O streams
can operate concurrently on separate devices. Striping can improve the
performance of applications that perform large sequential data transfers or
multiple, simultaneous I/O operations.

Striping distributes data across the disks in a volume in stripes with a
fixed size. The stripes are interleaved across the striped plex’s subdisks,
which are located on different disks, to evenly distribute disk I/O.

The performance benefit of striping depends on the stripe width, which is
the number of blocks in a stripe, and how your users and applications

5–28 Configuring and Tuning Storage Subsystems

perform I/O. Bandwidth increases with the number of disks across which a
plex is striped. See Table 5–9 for guidelines.

Table 5–9 lists LSM striped volume configuration guidelines and
performance benefits as well as tradeoffs.

You may want to combine mirroring with striping to obtain both high
availability and high performance. See Table 5–7 and Table 5–9 for
guidelines.

Table 5–9: Guidelines for LSM Striped Volumes

Action Benefit Tradeoff

Use multiple disks in a
striped volume
(Section 5.4.3.1)

Improves performance Decreases volume
reliability

Distribute subdisks across
different disks and buses
(Section 5.4.3.2)

Improves performance and
increases availability

None

Use the appropriate stripe
width (Section 5.4.3.3)

Improves performance None

Avoid splitting small data
transfers (Section 5.4.3.3)

Improves the performance
of volumes that quickly
receive multiple data
transfers

May use disk space
inefficiently

Split large individual data
transfers (Section 5.4.3.3)

Improves the performance
of volumes that receive
large data transfers

Decreases throughput

The following sections discuss these guidelines in detail.

5.4.3.1 Increasing the Number of Disks in a Striped Volume

Increasing the number of disks in a striped volume can increase the
bandwidth, depending on the applications and file systems you are using
and on the number of simultaneous users. However, this reduces the
effective mean-time-between-failures (MTBF) of the volume. If this
reduction is a problem, use both striping and mirroring.

5.4.3.2 Distributing Striped Volume Subdisks Across Different Buses

Distribute the subdisks of a striped volume across different buses. This
improves performance and helps to prevent a single bus from becoming a
bottleneck.

Configuring and Tuning Storage Subsystems 5–29

5.4.3.3 Choosing the Correct Stripe Width

The performance benefit of striping depends on the size of the stripe width
and the characteristics of the I/O load. Stripes of data are allocated
alternately and evenly to the subdisks of a striped plex. A striped plex
consists of a number of equal-sized subdisks located on different disks.

The number of blocks in a stripe determines the stripe width. LSM uses a
default stripe width of 64 KB (or 128 sectors), which works well in most
environments.

Use the volstat command to determine the number of data transfer
splits. For volumes that receive only small I/O transfers, you may not want
to use striping because disk access time is important. Striping is beneficial
for large data transfers.

To improve performance of large sequential data transfers, use a stripe
width that will divide each individual data transfer and distribute the
blocks equally across the disks.

To improve the performance of multiple simultaneous small data transfers,
make the stripe width the same size as the data transfer. However, an
excessively small stripe width can result in poor system performance.

If you are striping mirrored volumes, ensure that the stripe width is the
same for each plex.

5.4.4 LSM Tuning Guidelines

After you set up the LSM configuration, you may be able to improve
performance. For example, you can perform the following tasks:

• Balance the I/O load

LSM allows you to achieve a fine level of granularity in data placement,
because LSM provides a way for volumes to be distributed across
multiple disks. After measuring actual data-access patterns, you can
adjust the placement of file systems.

You can reassign data to specific disks to balance the I/O load among
the available storage devices. You can reconfigure volumes on line after
performance patterns have been established without adversely
impacting volume availability.

• Use striping to increase bandwidth for frequently accessed data

LSM provides a significant improvement in performance when there are
multiple I/O streams. After you identify the most frequently accessed
file systems and databases, you can realize significant performance

5–30 Configuring and Tuning Storage Subsystems

benefits by striping the high traffic data across portions of multiple
disks, which increases bandwidth to this data.

• Set the preferred read policy to the fastest mirrored plex

If one plex of a mirrored volume exhibits superior performance, either
because the disk is being striped or concatenated across multiple disks,
or because it is located on a much faster device, then set the read policy
to the preferred read policy for that plex. By default, a mirrored volume
with one striped plex should be configured with the striped plex as the
preferred read.

• Increase the value of the volinfo.max_io parameter. This can
improve the performance of systems that use large amounts of memory
or storage.

5.5 Hardware RAID Subsystem Configuration Guidelines

Hardware RAID subsystems increase your storage capacity and provide
different degrees of performance and availability at various costs. For
example, some hardware RAID subsystems support dual-redundant RAID
controllers and a nonvolatile write-back cache, which greatly improve
performance and availability. Entry-level hardware RAID subsystems
provide cost-efficient RAID functionality.

Table 5–10 lists hardware RAID subsystem configuration guidelines and
performance benefits as well as tradeoffs.

Table 5–10: Guidelines for Configuring Hardware RAID Subsystems

Hardware Performance Benefit Tradeoff

Evenly distribute disks in a
storage set across different
buses (Section 5.5.1)

Improves performance and
helps to prevent bottlenecks

None

Ensure that the first
member of each mirrored
set is on a different disk

Improves performance None

Use disks with the same
data capacity in each
storage set (Section 5.5.2)

Improves performance None

Use the appropriate chunk
size (Section 5.5.3)

Improves performance None

Stripe mirrored sets
(Section 5.5.4)

Increases availability and read
performance

May degrade write
performance

Use a write-back cache
(Section 5.5.5)

Improves write performance Cost of hardware

Configuring and Tuning Storage Subsystems 5–31

Table 5–10: Guidelines for Configuring Hardware RAID Subsystems (cont.)

Hardware Performance Benefit Tradeoff

Use dual-redundant RAID
controllers (Section 5.5.6)

Improves performance,
increases availability, and
prevents I/O bus bottlenecks

Cost of hardware

Install spare disks
(Section 5.5.7)

Improves availability Cost of disks

Replace failed disks
promptly (Section 5.5.7)

Improves performance None

The following sections describe some of these guidelines. See your RAID
subsystem documentation for detailed configuration information.

5.5.1 Distributing Storage Set Disks Across Buses

You can improve performance and help to prevent bottlenecks by
distributing storage set disks evenly across different buses.

Make sure that the first member of each mirrored set is on a different bus.

5.5.2 Using Disks with the Same Data Capacity

Use disks with the same capacity in the same storage set.

5.5.3 Choosing the Correct Chunk Size

The performance benefit of stripe sets depends on how your users and
applications perform I/O and the chunk (stripe) size. For example, if you
choose a stripe size of 8 KB, small data transfers will be distributed evenly
across the member disks. However, a 64-KB data transfer will be divided
into at least eight data transfers.

You may want to use a stripe size that will prevent any particular range of
blocks from becoming a bottleneck. For example, if an application often
uses a particular 8-KB block, you may want to use a stripe size that is
slightly larger or smaller than 8 KB or is a multiple of 8 KB, in order to
force the data onto a different disk.

If the stripe size is large compared to the average I/O size, each disk in a
stripe set can respond to a separate data transfer. I/O operations can then
be handled in parallel, which increases sequential write performance and
throughput. This can improve performance for environments that perform
large numbers of I/O operations, including transaction processing, office
automation, and file services environments, and for environments that
perform multiple random read and write operations.

5–32 Configuring and Tuning Storage Subsystems

If the stripe size is smaller than the average I/O operation, multiple disks
can simultaneously handle a single I/O operation, which can increase
bandwidth and improve sequential file processing. This is beneficial for
image processing and data collection environments. However, do not make
the stripe size so small that it will degrade performance for large
sequential data transfers.

If your applications are doing I/O to a raw device and not a file system, use
a stripe size that distributes a single data transfer evenly across the
member disks. For example, if the typical I/O size is 1 MB and you have a
four-disk array, you could use a 256-KB stripe size. This would distribute
the data evenly among the four member disks, with each doing a single
256-KB data transfer in parallel.

For small file system I/O operations, use a stripe size that is a multiple of
the typical I/O size (for example, four to five times the I/O size). This will
help to ensure that the I/O is not split across disks.

5.5.4 Striping Mirrored Sets

You can stripe mirrored sets to improve performance.

5.5.5 Using a Write-Back Cache

RAID subsystems support, either as a standard or an optional feature, a
nonvolatile write-back cache that can improve disk I/O performance while
maintaining data integrity. A write-back cache improves performance for
systems that perform large numbers of writes, especially Web servers.
Applications that perform few writes will not benefit from a write-back
cache.

With write-back caching, data intended to be written to disk is temporarily
stored in the cache and then periodically written (flushed) to disk for
maximum efficiency. I/O latency is reduced by consolidating contiguous
data blocks from multiple host writes into a single unit.

A write-back cache improves performance because writes appear to be
executed immediately. If a failure occurs, upon recovery, the RAID controller
detects any unwritten data that still exists in the write-back cache and
writes the data to disk before enabling normal controller operations.

A write-back cache must be battery-backed to protect against data loss and
corruption.

If you are using an HSZ40 or HSZ50 RAID controller with a write-back
cache, the following guidelines may improve performance:

• Set CACHE_POLICYto B.

Configuring and Tuning Storage Subsystems 5–33

• Set CACHE_FLUSH_TIMERto a minimum of 45 (seconds).

• Enable the write-back cache (WRITEBACK_CACHE) for each unit, and set
the value of MAXIMUM_CACHED_TRANSFER_SIZEto a minimum of 256.

See the HSZ documentation for more information.

5.5.6 Using Dual-Redundant Controllers

If supported, use a dual-redundant controller configuration and balance the
number of disks across the two controllers. This can improve performance,
increase availability, and prevent I/O bus bottlenecks.

5.5.7 Using Spare Disks

Install predesignated spare disks on separate controller ports and storage
shelves. This will help you to maintain data availability if a disk failure
occurs.

5.6 Using the Advanced File System

The Advanced File System (AdvFS) allows you to put multiple volumes
(disks, LSM volumes, or RAID storage sets) in a file domain and distribute
the filesets and files across the volumes. A file’s blocks usually reside
together on the same volume, unless the file is striped or the volume is full.
Each new file is placed on the successive volume by using round robin
scheduling. See the AdvFS Guide to File System Administration for more
information on using AdvFS.

The following sections describe how to configure and tune AdvFS for high
performance.

5.6.1 AdvFS Configuration Guidelines

You will obtain the best performance if you carefully plan your AdvFS
configuration. Table 5–11 lists AdvFS configuration guidelines and
performance benefits as well as tradeoffs. In addition, the recommendations
described in Table 5–2 and Table 5–3 apply to AdvFS configurations.

5–34 Configuring and Tuning Storage Subsystems

Table 5–11: AdvFS Configuration Guidelines

Action Performance Benefit Tradeoff

Use multiple-volume file
domains (Section 5.6.1.1)

Improves throughput and
simplifies management

Increases chance of
domain failure and may
cause log bottleneck

Use several file domains
instead of one large domain
(Section 5.6.1.1)

Prevents log from
becoming a bottleneck

Increases maintenance
complexity

Place transaction log on fast
or uncongested volume
(Section 5.6.1.2)

Prevents log from
becoming a bottleneck

None

Preallocate space for the
BMT (Section 5.6.1.3)

Prevents prematurely
running out of domain
space

Reduces available disk
space

Increase the number of
pages by which the BMT
extent size grows
(Section 5.6.1.3)

Prevents prematurely
running out of domain
space

Reduces available disk
space

Stripe files (Section 5.6.1.4) Improves sequential read
and write performance

Increases chance of
domain failure

Use quotas (Section 5.6.1.5) Controls file system space
utilization

None

The following sections describe these AdvFS configuration guidelines in
more detail.

5.6.1.1 Using Multiple-Volume File Domains

Using multiple-volume file domains allows greater control over your
physical resources, and may improve a fileset’s total throughput. However,
be sure that the log does not become a bottleneck. Multiple-volume file
domains improve performance because AdvFS generates parallel streams of
output using multiple device consolidation queues.

In addition, using only a few file domains instead of using many file
domains reduces the overall management effort because fewer file domains
require less administration. However, a single volume failure within a file
domain renders the entire file domain inaccessible. Therefore, the more
volumes that you have in your file domain the greater the risk that a file
domain will fail.

DIGITAL recommends that you use a maximum of 12 volumes in each file
domain. However, to reduce the risk of file domain failure, limit the
number of volumes per file domain to three or use mirrored volumes
created with LSM.

Configuring and Tuning Storage Subsystems 5–35

For multiple-volume domains, make sure that busy files are not located on
the same volume. Use the migrate command to move files across volumes.

5.6.1.2 Improving the Transaction Log Performance

Each file domain has a transaction log that keeps track of fileset activity
for all filesets in the file domain. The AdvFS file domain transaction log
may become a bottleneck. This can occur if the log resides on a congested
disk or bus, or if the file domain contains many filesets.

To prevent the log from becoming a bottleneck, put the log on a fast,
uncongested volume. You may want to put the log on a disk that contains
only the log. See Section 5.6.2.9 for information on moving an existing
transaction log.

To make the transaction log highly available, use LSM to mirror the log.

5.6.1.3 Improving Bitmap Metadata Table Performance

The AdvFS fileset data structure (metadata) is stored in a file called the
bitfile metadata table (BMT). Each volume in a domain has a BMT that
describes the file extents on the volume. If a domain has multiple volumes
of the same size, files will be distributed evenly among the volumes.

The BMT is the equivalent of the UFS inode table. However, the UFS inode
table is statically allocated, while the BMT expands as more files are added
to the domain. Each time that AdvFS needs additional metadata, the BMT
grows by a fixed size (the default is 128 pages). As a volume becomes
increasingly fragmented, the size by which the BMT grows may be
described by several extents.

If a file domain has a large number of small files, you may prematurely run
out of disk space for the BMT. Handling many small files makes the system
request metadata extents more frequently, which causes the metadata to
become fragmented. Because the number of BMT extents is limited, the file
domain will appear to be out of disk space if the BMT cannot be extended
to map new files.

To monitor the BMT, use the vbmtpg command and examine the number of
mcells (freeMcellCnt). The value of freeMcellCnt can range from 0 to
22. A volume with 1 free Mcell has very little space in which to grow the
BMT. See vbmtpg (8) for more information.

You can also invoke the showfile command and specify
mount_point /.tags/M-6 to examine the BMT extents on the first
domain volume that contains the fileset mounted on the specified mount
point. To examine the extents of the other volumes in the domain, specify

5–36 Configuring and Tuning Storage Subsystems

M-12 , M-18 , and so on. If the extents at the end of the BMT are smaller
than the extents at the beginning of the file, the BMT is becoming
fragmented. See showfile (8) for more information.

If you are prematurely out of BMT disk space, you may be able to eliminate
the problem by defragmenting the file domain that contains the volume.
See defragment (8) for more information.

Table 5–12 provides some BMT sizing guidelines for the number of pages to
preallocate for the BMT, and the number of pages by which the BMT extent
size grows. The BMT sizing depends on the maximum number of files you
expect to create on a volume.

Table 5–12: BMT Sizing Guidelines

Estimated Maximum Number
of Files on a Volume

Number of Pages to
Preallocate

Number of Pages to
Grow Extent

< 50,000 3600 128

100,000 7200 256

200,000 14,400 512

300,000 21,600 768

400,000 28,800 1024

800,000 57,600 2048

You can preallocate space for the BMT when the file domain is created, and
when a volume is added to the domain by using the mkfdmn and addvol
commands with the -p flag.

You can also modify the number of extent pages by which the BMT grows
when a file domain is created and when a volume is added to the domain
by using the mkfdmn and the addvol commands with the -x flag.

If you use the mkfdmn -x or the addvol -x command when there is a
large amount of free space on a disk, as files are created, the BMT will
expand by the specified number of pages and those pages will be in one
extent. As the disk becomes more fragmented, the BMT will still expand,
but the pages will not be contiguous and will require more extents.
Eventually, the BMT will run out of its limited number of extents even
though the growth size is large.

Using the mkfdmn -p or the addvol -p command to preallocate a large
BMT before the disk is fragmented may prevent this problem because the
entire preallocated BMT is described in one extent. All subsequent growth
will be able to utilize nearly all of the limited number of BMT extents. Do
not overallocate BMT space because the disk space cannot be used for other

Configuring and Tuning Storage Subsystems 5–37

purposes. However, too little BMT space will eventually cause the BMT to
grow by a fixed amount. At this time, the disk may be fragmented and the
growth will require multiple extents. See mkfdmn(8) and addvol (8) for
more information.

5.6.1.4 Striping Files

The AdvFS stripe utility lets you improve the read and write
performance of an individual file. This is useful if an application
continually accesses a few specific files. See stripe (8) for information.

The utility directs a zero-length file (a file with no data written to it yet) to
be distributed evenly across several volumes in a file domain. As data is
appended to the file, the data is spread across the volumes. AdvFS
determines the number of pages per stripe segment and alternates the
segments among the disks in a sequential pattern. Bandwidth can be
improved by distributing file data across multiple volumes.

Do not stripe both a file and the disk on which it resides.

To determine if you should stripe files, use the iostat utility. The blocks
per second and I/O operations per second should be cross-checked with the
disks bandwidth capacity. If the disk access time is slow, in comparison to
the stated capacity, then file striping may improve performance.

5.6.1.5 Using AdvFS Quotas

AdvFS quotas allow you to track and control the amount of physical
storage that a user, group, or fileset consumes. AdvFS eliminates the slow
reboot activities associated with UFS quotas. In addition, AdvFS quota
information is always maintained, but quota enforcement can be activated
and deactivated.

For information about UFS quotas, see Section 5.7.1.6.

5.6.2 AdvFS Tuning Guidelines

After you configure AdvFS, you may be able to tune it to improve
performance. Table 5–13 lists AdvFS tuning guidelines and performance
benefits as well as tradeoffs. In addition, the recommendations described in
Table 5–4 apply to AdvFS configurations.

5–38 Configuring and Tuning Storage Subsystems

Table 5–13: AdvFS Tuning Guidelines

Action Performance Benefit Tradeoff

Increase the percentage of
memory allocated for the AdvFS
buffer cache (Section 5.6.2.1)

Improves AdvFS
performance if data reuse
is high

Consumes memory

Defragment file domains
(Section 5.6.2.2)

Improves read and write
performance

None

Increase the dirty data caching
threshold (Section 5.6.2.3)

Improves random write
performance

May cause I/O spikes
or increase the
number of lost
buffers if a crash
occurs

Decrease the I/O transfer
read-ahead size (Section 5.6.2.4)

Improves performance for
mmappage faulting

None

Disable the flushing of dirty
pages mapped with the mmap
function during a sync call
(Section 5.6.2.5)

May improve performance
for applications that
manage their own flushing

None

Modify the AdvFS device queue
limit (Section 5.6.2.6)

Influences the time to
complete synchronous
(blocking) I/O

May cause I/O spikes

Consolidate I/O transfers
(Section 5.6.2.7)

Improves AdvFS
performance

None

Force all AdvFS file writes to be
synchronous (Section 5.6.2.8)

Ensures that data is
successfully written to
disk

May degrade file
system performance

Move the transaction log to a
fast or uncongested volume
(Section 5.6.2.9)

Prevents log from
becoming a bottleneck

None

Balance files across volumes in
a file domain (Section 5.6.2.10)

Improves performance
and evens the future
distribution of files

None

Migrate frequently used or large
files to different file domains
(Section 5.6.2.11)

Improves I/O performance None

Decrease the size of the
metadata buffer cache to 1
percent (Section 4.7.21)

Improves performance for
systems that use only
AdvFS

None

The following sections describe how to tune AdvFS in detail.

Configuring and Tuning Storage Subsystems 5–39

5.6.2.1 Modifying the Size of the AdvFS Buffer Cache

The AdvfsCacheMaxPercent attribute specifies the amount of physical
memory that AdvFS uses for its buffer cache.

You may improve AdvFS performance by increasing the percentage of
memory allocated to the AdvFS buffer cache. To do this, increase the value
of the AdvfsCacheMaxPercent attribute. The default is 7 percent of
memory, the minimum is 1 percent, and the maximum is 30 percent.

Increasing the value of the AdvfsCacheMaxPercent attribute will
decrease the amount of memory available to the virtual memory subsystem,
so you must make sure that you do not cause excessive paging and
swapping. Use the vmstat command to check virtual memory statistics.

You may want to increase the AdvFS buffer cache size if data reuse is high.
If you increase the value of the AdvfsCacheMaxPercent attribute and
experience no performance benefit, return to the original value. If data
reuse is insignificant or if you have more than 2 GB of memory, you may
want to decrease the cache size.

5.6.2.2 Defragmenting a File Domain

AdvFS attempts to store file data in a collection of contiguous blocks (a file
extent) on a disk. If all data in a file is stored in contiguous blocks, the file
has one file extent. However, as files grow, contiguous blocks on the disk
may not be available to accommodate the new data, so the file must be
spread over discontiguous blocks and multiple file extents.

File fragmentation degrades read and write performance because many
disk addresses must be examined to access a file. In addition, if a domain
has a large number of small files, you may prematurely run out of disk
space, due to fragmentation.

Use the defragment utility with the −v and −n options to show the
amount of file fragmentation.

The defragment utility reduces the amount of file fragmentation in a file
domain by attempting to make the files more contiguous, which reduces the
number of file extents. The utility does not affect data availability and is
transparent to users and applications. Striped files are not defragmented.

You can improve the efficiency of the defragment process by deleting any
unneeded files in the file domain before running the defragment utility.
See defragment (8) for more information.

5–40 Configuring and Tuning Storage Subsystems

5.6.2.3 Increasing the Dirty Data Caching Threshold for a Volume

Dirty or modified data is data that has been written by an application and
cached but has not yet been written to disk. You can increase the amount of
dirty data that AdvFS will cache for each volume in a file domain. This can
improve write performance for systems that perform many random writes
by increasing the number of cache hits.

You can increase the amount of cached dirty data for all new volumes or for
a specific, existing volume. The default value is 16 KB. The minimum value
is 0, which disables dirty data caching. The maximum value is 32 KB.

If you have high data reuse (data is repeatedly read and written), you may
want to increase the dirty data threshold. If you have low data reuse, you
may want to decrease the threshold or use the default value.

Use the chvol -t command to modify the dirty data threshold for an
individual existing volume. You must specify the number of dirty, 512-byte
blocks to cache. See chvol (8) for more information.

To modify the dirty data threshold for all new volumes, modify the value of
the AdvfsReadyQLim attribute, which specifies the number of 512-byte
blocks that can be on the readylazy queue before the requests are moved to
the device queue.

If you change the dirty data threshold and performance does not improve,
return to the original value.

5.6.2.4 Decreasing the I/O Transfer Read-Ahead Size

AdvFS reads and writes data by a fixed number of 512-byte blocks. The
default is 128 blocks. Use the chvol command with the -w option to
change the write-consolidation size. Use the chvol command with the -r
option to change the read-ahead size. See chvol (8) for more information.

You may be able to improve performance for mmappage faulting and reduce
read-ahead paging and cache dilution by decreasing the read-ahead size.

If the disk is fragmented so that the pages of a file are not sequentially
allocated, reduce fragmentation by using the defragment utility. See
defragment (8) for more information.

5.6.2.5 Disabling the Flushing of Dirty mmapped Pages

A file can have dirty data in memory due to a write system call or a
memory write reference after an mmapsystem call. The update daemon
runs every 30 seconds and issues a sync call for every fileset mounted with
read and write access.

Configuring and Tuning Storage Subsystems 5–41

The AdvfsSyncMmapPages attribute controls whether modified (dirty)
mmapped pages are flushed to disk during a sync system call. If the
AdvfsSyncMmapPages attribute is set to 1, the dirty mmapped pages are
asynchronously written to disk. If the AdvfsSyncMmapPages attribute is
set to 0, dirty mmapped pages are not written to disk during a sync
system call.

If your applications manage their own mmappage flushing, set the value of
the AdvfsSyncMmapPages attribute to 0.

See mmap(2) and msync (2) for more information.

5.6.2.6 Modifying the AdvFS Device Queue Limit

Synchronous and asynchronous AdvFS I/O requests are placed on separate
consolidation queues, where small, logically contiguous block requests are
consolidated into larger I/O requests. The consolidated synchronous and
asynchronous I/O requests are moved to the AdvFS device queue and then
sent to the device driver.

The AdvfsMaxDevQLen attribute limits the AdvFS device queue length.
When the number of requests on the device queue exceeds the value of the
AdvfsMaxDevQLen attribute, only synchronous requests are accepted onto
the device queue. The default value of the AdvfsMaxDevQLen attribute is
80.

Limiting the size of the device queue affects the amount of time it takes to
complete a synchronous (blocking) I/O operation. AdvFS issues several
types of blocking I/O operations, including AdvFS metadata and log data
operations.

The default value of the AdvfsMaxDevQLen attribute is appropriate for
most configurations. However, you may need to modify this value if you are
using fast or slow adapters, striping, or mirroring. A higher value may
improve throughput, but will also increase synchronous read/write time. To
calculate response time, multiply the value of the AdvfsMaxDevQLen
attribute by 9 milliseconds (the average I/O latency).

A guideline is to specify a value for the AdvfsMaxDevQLen attribute that is
less than or equal to the average number of I/O operations that can be
performed in 0.5 seconds.

If you do not want to limit the number of requests on the device queue, set
the value of the AdvfsMaxDevQLen attribute to 0 (zero).

5–42 Configuring and Tuning Storage Subsystems

5.6.2.7 Consolidating I/O Transfers

Consolidating a number of I/O transfers into a single, large I/O transfer
can improve AdvFS performance. To do this, use the chvol command with
the −c on flag. This is the default. DIGITAL recommends that you do not
disable the consolidation of I/O transfers. See chvol (8) for more
information.

5.6.2.8 Forcing Synchronous Writes

Use the chfile -l on command to force all write requests to an AdvFS
file to be synchronous. When forced synchronous write requests to a file are
enabled, the write system call returns a success value only after the data
has been successfully written to disk. This may degrade file system
performance.

When forced synchronous write requests to a file are disabled, the write
system call returns a success value when the requests are cached. The data
is then written to disk at a later time (asynchronously).

5.6.2.9 Moving the Transaction Log

Make sure that the AdvFS transaction log resides on an uncongested disk
and bus or system performance may be degraded.

If the transaction log becomes a bottleneck, use the switchlog command
to relocate the transaction log of the specified file domain to a faster or less
congested volume in the same domain. Use the showfdmn command to
determine the current location of the transaction log. In the showfdmn
command display, the letter L displays next to the volume that contains the
log. See switchlog (8) and showfdmn (8) for more information.

In addition, you can divide the file domain into several smaller file
domains. This will cause each domain’s transaction log to handle
transactions for fewer filesets.

5.6.2.10 Balancing a Multivolume File Domain

If the files in a multivolume domain are not evenly distributed, performance
may be degraded. The balance utility distributes the percentage of used
space evenly between volumes in a multivolume file domain. This improves
performance and evens the distribution of future file allocations. Files are
moved from one volume to another until the percentage of used space on
each volume in the domain is as equal as possible.

The balance utility does not affect data availability and is transparent to
users and applications. If possible, use the defragment utility before you
balance files.

Configuring and Tuning Storage Subsystems 5–43

The balance utility does not generally split files. Therefore, file domains
with very large files may not balance as evenly as file domains with
smaller files. See balance (8) for more information.

To determine if you need to balance your files across volumes, use the
showfdmn command to display information about the volumes in a domain.
The % used field shows the percentage of volume space that is currently
allocated to files or metadata (fileset data structure). See showfdmn (8) for
more information.

5.6.2.11 Migrating Files Within a File Domain

Performance may degrade if too many frequently accessed or large files
reside on the same volume in a multivolume file domain. You can improve
I/O performance by altering the way files are mapped on the disk.

Use the migrate utility to move frequently accessed or large files to
different volumes in the file domain. You can specify the volume where a file
is to be moved, or allow the system to pick the best space in the file domain.
You can migrate either an entire file or specific pages to a different volume.
However, using the balance utility after migrating files may cause the
files to move to a different volume. See balance (8) for more information.

In addition, a file that is migrated is defragmented at the same time, if
possible. Defragmentation makes the file more contiguous, which improves
performance. Therefore, you can use the migrate command to defragment
selected files. See migrate (8) for more information.

5.7 Using the UNIX File System

The following sections will help you to configure and tune UNIX File
Systems (UFS).

5.7.1 UFS Configuration Guidelines

There are a number of parameters that can improve the UFS performance.
You can set all of the parameters when you use the newfs command to
create a file system. For existing file systems, you can tune some
parameters by using the tunefs command.

Table 5–14 describes UFS configuration guidelines and performance
benefits as well as tradeoffs. In addition, the recommendations described in
Table 5–2 and Table 5–3 apply to UFS configurations.

5–44 Configuring and Tuning Storage Subsystems

Table 5–14: UFS Configuration Guidelines

Action Performance Benefit Tradeoff

Increase the file system
fragment size to 8 KB
(Section 5.7.1.1)

Improves performance for
large files

Wastes disk space for
small files

Use the default file system
fragment size of 1 KB
(Section 5.7.1.1)

Uses disk space efficiently None

Reduce the density of
inodes (Section 5.7.1.2)

Improves performance of
large files

None

Allocate blocks
contiguously
(Section 5.7.1.3)

Aids UFS block clustering None

Increase the number of
blocks combined for a read
(Section 5.7.1.4)

Improves performance None

Use a Memory File System
(MFS) (Section 5.7.1.5)

Improves I/O performance Does not ensure data
integrity because of cache
volatility

Use disk quotas
(Section 5.7.1.6)

Controls disk space
utilization

UFS quotas may slow
reboot time

The following sections describe the UFS configuration guidelines in detail.

5.7.1.1 Modifying the File System Fragment Size

If the average file in a file system is larger than 16 KB but less than 96
KB, you may be able to improve disk access time and decrease system
overhead by making the file system fragment size equal to the block size,
which is 8 KB. Use the newfs command to do this.

However, to use disk space efficiently, use the default fragment size, which
is 1 KB. See newfs (8) for more information.

5.7.1.2 Reducing the Density of inodes

The number of files in a file system is determined by the number of inodes
and the size of the file system. The default is to create an inode for each
4096 bytes of data space.

If a file system will contain many large files, you may want to increase the
amount of data space allocated to an inode and reduce the density of
inodes. To do this, use the newfs -i command to specify the amount of
data space allocated to an inode. See newfs (8) for more information.

Configuring and Tuning Storage Subsystems 5–45

5.7.1.3 Allocating Blocks Contiguously

The UFS rotdelay parameter specifies the time, in milliseconds, to
service a transfer completion interrupt and initiate a new transfer on the
same disk. You can set the rotdelay parameter to 0 (the default) to
allocate blocks sequentially and aid UFS block clustering. You can do this
by using either the tunefs command or the newfs command. See newfs (8)
and tunefs (8) for more information.

5.7.1.4 Increasing the Number of Blocks Combined for a Read

The value of the UFS maxcontig parameter specifies the number of blocks
that can be combined into a single cluster. The default value of maxcontig
is 8 KB. The file system attempts read operations in a size that is defined
by the value of maxcontig multiplied by the block size (8 KB).

Device drivers that can chain several buffers together in a single transfer
should use a maxcontig value that is equal to the maximum chain length.

Use the tunefs command or the newfs command to change the value of
maxcontig . See newfs (8) and tunefs (8) for more information.

5.7.1.5 Using a Memory File System

Memory File System (MFS) is a UFS file system that resides only in
memory. No permanent data or file structures are written to disk An MFS
file system can improve read/write performance, but it is a volatile cache.
The contents of an MFS file system are lost after a reboot, unmount
operation, or power failure.

Because no date is written to disk, an MFS file system is a very fast file
system and can be used to store temporary files or read-only files that are
loaded into it after it is created. For example, if you are performing a
software build that would have to be restarted if it failed, use an MFS file
system to cache the temporary files that are created during the build and
reduce the build time.

5.7.1.6 Using UFS Disk Quotas

You can specify UFS file system limits for user accounts and for groups by
setting up file system quotas, also known as disk quotas. You can apply
quotas to file systems to establish a limit on the number of blocks and
inodes (or files) that a user account or a group of users can allocate. You
can set a separate quota for each user or group of users on each file system.

You may want to set quotas on file systems that contain home directories
because the sizes of these file systems can increase more significantly than
other file systems. Do not set quotas on the /tmp file system.

5–46 Configuring and Tuning Storage Subsystems

Note that, unlike AdvFS quotas, UFS quotas may slow reboot time. For
information about AdvFS quotas, see Section 5.6.1.5.

5.7.2 UFS Tuning Guidelines

After you configure your UFS file systems, you can modify some parameters
and attributes to improve performance. Table 5–15 describes UFS tuning
guidelines and performance benefits as well as tradeoffs. In addition, the
recommendations described in Table 5–4 apply to UFS configurations.

Table 5–15: UFS Tuning Guidelines

Action Performance Benefit Tradeoff

Increase size of metadata
buffer cache to more than
3 percent of main memory
(Section 4.9.1)

Increases cache hit rate
and improves UFS
performance

Requires additional
memory resources

Defragment the file
system (Section 5.7.2.1)

Improves read and write
performance

Requires down time

Delay flushing full write
buffers to disk
(Section 5.7.2.2)

Frees CPU cycles May degrade real-time
workload performance

Increase number of blocks
combined for read ahead
(Section 5.7.2.3)

Improves performance None

Increase number of blocks
combined for a write
(Section 5.7.2.4)

Improves performance None

Increase the maximum
number of UFS or MFS
mounts (Section 5.7.2.5)

Allows more mounted file
systems

None

The following sections describe how to tune UFS in detail.

5.7.2.1 Defragmenting a File System

When a file consists of many discontiguous file extents, the file is
considered fragmented. A very fragmented file decreases UFS read and
write performance because it requires more I/O operations to access the file.

You can determine whether the files in a file system are fragmented by
determining how effectively the system is clustering. You can do this by
using dbx to examine the ufs_clusterstats , ufs_clusterstats_read ,
and ufs_clusterstats_write structures. See dbx (1) for more
information.

Configuring and Tuning Storage Subsystems 5–47

UFS block clustering is usually efficient. If the numbers from the UFS
clustering kernel structures show that clustering is not being particularly
effective, the files in the file system may be very fragmented.

To defragment a UFS file system, follow these steps:

1. Back up the file system onto tape or another partition.

2. Create a new file system either on the same partition or a different
partition.

3. Restore the file system.

AdvFS provides you with the ability to defragment a file domain by using
the defragment command. See defragment (8) for more information.

5.7.2.2 Delaying Full Write Buffer Flushing

You can free CPU cycles by using the dbx debugger to set the value of the
delay_wbuffers kernel variable to 1, which delays flushing full write
buffers to disk at the next sync call. However, this may adversely affect
real-time workload performance. The default value of delay_wbuffers is
0. See dbx (1) for more information.

5.7.2.3 Increasing the Number of Blocks Combined for Read Ahead

You can increase the number of blocks that are combined for a read-ahead
operation.

To do this, use the dbx debugger to make the value of the
cluster_consec_init kernel variable equal to the value of the
cluster_max_read_ahead variable (the default is 8), which specifies the
maximum number of read-ahead clusters that the kernel can schedule. See
dbx (1) for more information.

In addition, you must make sure that cluster read operations are enabled
on nonread-ahead and read-ahead blocks. To do this, the value of the
cluster_read_all kernel variable must be set to 1 (the default).

5.7.2.4 Increasing the Number of Blocks Combined for a Write

The cluster_maxcontig parameter specifies the number of blocks that
are combined into a single write operation. The default value is 8 KB.
Contiguous writes are done in a unit size that is determined by the file
system block size (the default is 8 KB) multiplied by the value of the
cluster_maxcontig parameter.

5–48 Configuring and Tuning Storage Subsystems

5.7.2.5 Increasing the Number of UFS or MFS Mounts

Mount structures are dynamically allocated when a mount request is made
and subsequently deallocated when an unmount request is made. The
max-ufs-mounts attribute specifies the maximum number of UFS and
MFS mounts on the system.

You can increase the value of the max-ufs-mounts attribute if your
system will have more than the default limit of 1000 mounts.

5.8 Tuning CAM

DIGITAL UNIX uses the Common Access Method (CAM) as the operating
system interface to the hardware. CAM maintains pools of buffers that are
used to perform I/O. Each buffer takes approximately 1 KB of physical
memory. Monitor these pools and tune them if necessary.

You can modify the following attributes:

• cam_ccb_pool_size —The initial size of the buffer pool free list at
boot time. The default is 200.

• cam_ccb_low_water —The number of buffers in the pool free list at
which more buffers are allocated from the kernel. CAM reserves this
number of buffers to ensure that the kernel always has enough memory
to shut down runaway processes. The default is 100.

• cam_ccb_increment —The number of buffers either added or removed
from the buffer pool free list. Buffers are allocated on an as-needed
basis to handle immediate demands, but are released in a more
measured manner to guard against spikes. The default is 50.

If the I/O pattern associated with your system tends to have intermittent
bursts of I/O operations (I/O spikes), increasing the values of the
cam_ccb_pool_size and cam_ccb_increment attributes may improve
performance.

Configuring and Tuning Storage Subsystems 5–49

6
Tuning the Network Subsystem

This chapter describes the guidelines to tune networks and the Network
File System (NFS). Many of the tuning tasks described in this chapter
require you to modify system attributes. See Section 2.11 for more
information about attributes.

6.1 Tuning Networks

Most resources used by the network subsystem are allocated and adjusted
dynamically; however, there are some tuning recommendations that you
can use to improve performance, particularly with systems that are
Internet servers.

Network performance is affected when the supply of resources is unable to
keep up with the demand for resources. The following two conditions can
cause this congestion to occur:

• A problem with one or more components of the network (hardware or
software)

• A workload (network traffic) that consistently exceeds the capacity of
the available resources even though everything is operating correctly

Neither of these problems are network tuning issues. In the case of a
problem on the network, you must isolate and eliminate the problem. In
the case of high network traffic (for example, the hit rate on a Web server
has reached its maximum value while the system is 100 percent busy), you
must either redesign the network and redistribute the load, reduce the
number of network clients, or increase the number of systems handling the
network load. See the Network Programmer’s Guide and the Network
Administration manual for information on how to resolve network
problems.

To obtain the best network performance, you must understand your
workload and the performance characteristics of your network hardware,
as described in Chapter 1 and the DIGITAL Systems & Options Catalog.
Different network interfaces have different performance characteristics,
including raw performance and system overhead. For example, a Fiber
Distributed Data Interface (FDDI) interface provides better performance
than an Ethernet interface.

Tuning the Network Subsystem 6–1

Before you can tune your network, you must determine whether the source
of the performance problem is an application, network interconnect,
network controller, or the communication partner. Table 6–1 lists network
subsystem tuning guidelines and performance benefits as well as tradeoffs.

Table 6–1: Network Tuning Guidelines

Action Performance Benefit Tradeoff

Increase the size of the hash
table that the kernel uses to
look up TCP control blocks
(Section 6.1.1)

Improves the TCP control
block lookup rate and
increases the raw
connection rate

Slightly increases the
amount of wired
memory

Increase the limits for partial
TCP connections on the socket
listen queue (Section 6.1.2)

Improves throughput and
response time on systems
that handle a large
number of connections

Consumes memory
when pending
connections are
retained in the queue

Increase the maximum
number of concurrent
nonreserved, dynamically
allocated ports (Section 6.1.3)

Allows more simultaneous
outgoing connections

Negligible increase in
memory usage

Enable TCP keepalive
functionality (Section 6.1.4)

Enables inactive socket
connections to time out

None

Increase the size of the kernel
interface alias table
(Section 6.1.5)

Improves the IP address
lookup rate for systems
that serve many domain
names

Slightly increases the
amount of wired
memory

Make partial TCP connections
time out more quickly
(Section 6.1.6)

Prevents clients from
overfilling the socket
listen queue

A short time limit
may cause viable
connections to break
prematurely

Make the TCP connection
context time out more quickly
at the end of the connection
(Section 6.1.7)

Frees connection resources
sooner

Reducing the timeout
limit increases the
potential for data
corruption, so
guideline should be
applied with caution

Reduce the TCP
retransmission rate
(Section 6.1.8)

Prevents premature
retransmissions and
decreases congestion

A long retransmit
time is not
appropriate for all
configurations

Enable the immediate
acknowledgement of TCP data
(Section 6.1.9)

Can improve network
performance for some
connections

May adversely affect
network bandwidth

6–2 Tuning the Network Subsystem

Table 6–1: Network Tuning Guidelines (cont.)

Action Performance Benefit Tradeoff

Increase the TCP maximum
segment size (Section 6.1.10)

Allows sending more data
per packet

May result in
fragmentation at
router boundary

Increase the size of the
transmit and receive buffers
for a TCP socket
(Section 6.1.11)

Buffers more TCP packets
per socket

May decrease
available memory
when the buffer space
is being used

Increase the size of the
transmit and receive buffers
for a UDP socket
(Section 6.1.12)

Helps to prevent dropping
UDP packets

May decrease
available memory
when the buffer space
is being used

Allocate sufficient memory to
the UBC (Section 6.1.13)

Improves disk I/O
performance

May decrease the
physical memory
available to the
virtual memory
subsystem

Disable the use of a PMTU
(Section 6.1.14)

Improves the efficiency of
Web servers that handle
remote traffic from many
clients

May reduce server
efficiency for LAN
traffic

The following sections describe these tuning guidelines in detail.

6.1.1 Improving the Lookup Rate for TCP Control Blocks

You can modify the size of the hash table that the kernel uses to look up
Transmission Control Protocol (TCP) control blocks. The tcbhashsize
attribute specifies the number of hash buckets in the kernel TCP connection
table (the number of buckets in the inpcb hash table). The kernel must
look up the connection block for every TCP packet it receives, so increasing
the size of the table can speed the search and and improve performance.

The default value is 32. For Web servers and proxy servers, set the
tcbhashsize attribute to 16384.

6.1.2 Tuning the Socket Listen Queue Limits

You may be able to improve performance by increasing the limits for the
socket listen queue (only for TCP). The somaxconn attribute specifies the
maximum number of pending TCP connections (the socket listen queue
limit) for each server socket. If the listen queue connection limit is too
small, incoming connect requests may be dropped. Note that pending TCP
connections can be caused by lost packets in the Internet or denial of

Tuning the Network Subsystem 6–3

service attacks. The default value of the somaxconn attribute is 1024; the
maximum value is 65535.

To improve throughput and response time with fewer drops, you can
increase the value of the somaxconn attribute. A busy system running
applications that generate a large number of connections (for example, a
Web server) may have many pending connections. For these systems, set
the value of the somaxconn attribute to the maximum value of 65535.

The sominconn attribute specifies the minimum number of pending TCP
connections (backlog) for each server socket. The attribute controls how
many SYN packets can be handled simultaneously before additional
requests are discarded. The default value is 0. The value of the sominconn
attribute overrides the application-specific backlog value, which may be set
too low for some server software. To improve performance without
recompiling an application, you can set the value of the sominconn
attribute to the maximum value of 65535. The value of the sominconn
attribute should be the same as the value of the somaxconn attribute.

Network performance can degrade if a client saturates a socket listen
queue with erroneous TCP SYN packets, effectively blocking other users
from the queue. To eliminate this problem, increase the value of the
sominconn attribute to 65535. If the system continues to drop incoming
SYN packets, you can decrease the value of the tcp_keepinit attribute to
30 (15 seconds).

Three socket subsystem attributes monitor socket listen queue events:

• The sobacklog_hiwat attribute counts the maximum number of
pending requests to any server socket.

• The sobacklog_drops attribute counts the number of backlog drops
that exceed the socket set backlog.

• The somaxconn_drops attribute counts the number of drops that
exceed the value of the somaxconn attribute.

Use the sysconfig -q socket command to display the kernel variable
values. If the values show that the queues are overflowing, you may need
to increase the socket listen queue limit. See Section 2.9.3 for information
about monitoring the sobacklog_hiwat , sobacklog_drops , and
somaxconn_drops attributes.

6.1.3 Increasing the Maximum Number of Concurrent Nonreserved
Dynamically Allocated Ports

The ipport_userreserved attribute controls the number of times you
can simultaneously make outgoing connections to other systems. The

6–4 Tuning the Network Subsystem

number of outgoing ports is the value of the ipport_userreserved
attribute minus 1024. The default value of the attribute is 5000; therefore,
the default number of outgoing ports is 3976. The maximum value of the
ipport_userreserved attribute is 65535.

When the kernel dynamically allocates a nonreserved port number for use
by a TCP or UDP application that creates an outgoing connection, it selects
the port number from a range of values between 1024 and the value of the
ipport_userreserved attribute. Because each TCP client must use one
of these ports, the range limits the number of simultaneous outgoing
connections to a value specified by the value of the attribute minus 1024.

If your system requires many outgoing ports, you may need to increase the
value of the ipport_userreserved attribute. If your system is a proxy
server with a load of more than 4000 connections, increase the value of the
ipport_userreserved attribute to 65535.

DIGITAL does not recommend reducing the value of the
ipport_userreserved attribute to a value that is less than 5000.

6.1.4 Enabling TCP keepalive Functionality

Keepalive functionality enables the periodic transmission of messages on a
connected socket in order to keep connections active. If you enable
keepalive, sockets that do not exit cleanly are cleaned up when the
keepalive interval expires. If keepalive is not enabled, those sockets will
continue to exist until you reboot the system.

Applications enable keepalive for sockets by setting the setsockopt
function’s SO_KEEPALIVEoption. To override programs that do not set
keepalive on their own or if you do not have access to the application
sources, set the tcp_keepalive_default attribute to 1 in order to enable
keepalive for all sockets.

If you enable keepalive, you can also configure the following TCP options
for each socket:

• The tcp_keepidle attribute specifies the amount of idle time before
keepalive probes in 0.5 second units. The default interval is 2 hours.

• The tcp_keepintvl attribute specifies the amount of time between
retransmission of keepalive probes in 0.5 second units. The default
interval is 75 seconds.

• The tcp_keepcnt attribute specifies the maximum number of
keepalive probes that are sent before the connection is dropped. The
default is 8 probes.

Tuning the Network Subsystem 6–5

• The tcp_keepinit attribute specifies the maximum amount of time
before an initial connection attempt times out in 0.5 second units. The
default is 75 seconds.

6.1.5 Improving the Lookup Rate for IP Addresses

The inifaddr_hsize attribute specifies the number of hash buckets in
the kernel interface alias table (in_ifaddr). The default value of the
inifaddr_hsize attribute is 32; the maximum value is 512.

If a system is used as a server for many different server domain names,
each of which are bound to a unique IP address, the code that matches
arriving packets to the right server address uses the hash table to speed
lookup operations for the IP addresses. Increasing the number of hash
buckets in the table can improve performance on systems that use large
numbers of aliases.

For the best performance, the value of the inifaddr_hsize attribute is
always rounded down to the nearest power of 2. If you are using more than
500 interface IP aliases, specify the maximum value of 512. If you are
using less than 250 aliases, use the default value of 32.

6.1.6 Decreasing the Partial TCP Connection Timeout Limit

The tcp_keepinit attribute is the amount of time that a partially
established TCP connection remains on the socket listen queue before it
times out. The value of the attribute is in units of 0.5 seconds. The default
value is 150 units (75 seconds).

Partial connections consume listen queue slots and fill the queue with
connections in the SYN_RCVDstate. You can make partial connections time
out sooner by decreasing the value of the tcp_keepinit attribute.
However, do not set the value too low, because you may prematurely break
connections associated with clients on network paths that are slow or
network paths that lose many packets. Do not set the value to less than 20
units (10 seconds). If you have a 32000 socket queue limit, the default (75
seconds) is usually adequate.

Network performance can degrade if a client overfills a socket listen queue
with TCP SYN packets, effectively blocking other users from the queue. To
eliminate this problem, increase the value of the sominconn attribute to
the maximum of 64000. If the system continues to drop SYN packets,
decrease the value of the tcp_keepinit attribute to 30 (15 seconds).

6–6 Tuning the Network Subsystem

6.1.7 Decreasing the TCP Connection Context Timeout Limit

You can make the TCP connection context time out more quickly at the end
of a connection. However, this will increase the chance of data corruption.

The TCP protocol includes a concept known as the Maximum Segment
Lifetime (MSL). When a TCP connection enters the TIME_WAIT state, it
must remain in this state for twice the value of the MSL, or else
undetected data errors on future connections can occur. The tcp_msl
attribute determines the maximum lifetime of a TCP segment and the
timeout value for the TIME_WAIT state.

The value of the attribute is set in units of 0.5 seconds. The default value is
60 units (30 seconds), which means that the TCP connection remains in
TIME_WAIT state for 60 seconds (or twice the value of the MSL). In some
situations, the default timeout value for the TIME_WAIT state (60 seconds)
is too large, so reducing the value of the tcp_msl attribute frees
connection resources sooner than the default behavior.

Do not reduce the value of the tcp_msl attribute unless you fully
understand the design and behavior of your network and the TCP protocol.
DIGITAL strongly recommends using the default value; otherwise, there is
the potential for data corruption.

6.1.8 Decreasing the TCP Retransmission Rate

The tcp_rexmit_interval_min attribute specifies the minimum amount
of time between the first TCP retransmission. For some wide area networks
(WANs), the default value may be too small, causing premature
retransmission timeouts. This may lead to duplicate transmission of packets
and the erroneous invocation of the TCP congestion-control algorithms.

The tcp_rexmit_interval_min attribute is specified in units of 0.5
seconds. The default value is 1 unit (0.5 seconds).

You can increase the value of the tcp_rexmit_interval_min attribute to
slow the rate of TCP retransmissions, which decreases congestion and
improves performance. However, not every connection needs a long
retransmission time. Usually, the default value is adequate. Do not specify
a value that is less than 1 unit. Do not change the attribute unless you
fully understand TCP algorithms.

6.1.9 Disabling Delaying the Acknowledgment of TCP Data

The value of the tcpnodelack attribute determines whether the system
delays acknowledging TCP data. The default is 0, which delays the
acknowledgment of TCP data. Usually, the default is adequate. However,

Tuning the Network Subsystem 6–7

for some connections (for example, loopback), the delay can degrade
performance. You may be able to improve network performance by setting
the value of the tcpnodelack attribute to 1, which disables the
acknowledgment delay. However, this may adversely impact network
bandwidth. Use the tcpdump command to check for excessive delays.

6.1.10 Increasing the Maximum TCP Segment Size

The tcp_mssdflt attribute specifies the TCP maximum segment size (the
default value of 536). You can increase the value to 1460. This allows
sending more data per socket, but may cause fragmentation at the router
boundary.

6.1.11 Increasing the Transmit and Receive Buffers for a TCP Socket

The tcp_sendspace attribute specifies the default transmit buffer size for
a TCP socket. The tcp_recvspace attribute specifies the default receive
buffer size for a TCP socket. The default value of both attributes is 32 KB.
You can increase the value of these attributes to 60 KB. This allows you to
buffer more TCP packets per socket. However, increasing the values uses
more memory when the buffers are being used by an application (sending
or receiving data).

6.1.12 Increasing the Transmit and Receive Buffers for a UDP Socket

The udp_sendspace attribute specifies the default transmit buffer size for
an Internet User Datagram Protocol (UDP) socket; the default value is 9
KB. The udp_recvspace attribute specifies the default receive buffer size
for a UDP socket; the default value is 40 KB. You can increase the values
of these attributes to 64 KB. However, increasing the values uses more
memory when the buffers are being used by an application (sending or
receiving data).

6.1.13 Allocating Sufficient Memory to the UBC

You must ensure that you have sufficient memory allocated to the Unified
Buffer Cache (UBC). Servers that perform lots of file I/O (for example, Web
and proxy servers) extensively utilize both the UBC and the virtual
memory subsystem. In most cases, use the default value of 100 percent for
the ubc-maxpercent attribute, which specifies the maximum amount of
physical memory that can be allocated to the UBC. If necessary, you can
decrease the size of the attribute by increments of 10 percent.

See Section 4.8 for more information about tuning the UBC.

6–8 Tuning the Network Subsystem

6.1.14 Disabling Use of a PMTU

Packets transmitted between servers are fragmented into units of a specific
size in order to ease transmission of the data over routers and small-packet
networks, such as Ethernet networks. When the pmtu_enabled attribute
is enabled (the default behavior), the system determines the largest
common path maximum transmission unit (PMTU) value between servers
and uses it as the unit size. The system also creates a routing table entry
for each client network that attempts to connect to the server.

On a Web server that handles local traffic and some remote traffic, enabling
the use of a PMTU can improve bandwidth. However, if a Web server
handles traffic among many remote clients, enabling the use of a PMTU
can cause an excessive increase in the size of the kernel routing tables,
which can reduce server efficiency. If a Web server has poor performance
and the routing table increases to more than 1000 entries, set the value of
the pmtu_enabled attribute to 0 to disable the use of PMTU protocol.

6.2 Tuning the Network File System
The Network File System (NFS) shares the unified buffer cache with the
virtual memory subsystem and local file systems. Most performance
problems with NFS can be attributed to bottlenecks in the virtual memory,
network, or disk subsystem.

Lost packets on the network can severely degrade NFS performance. Lost
packets can be caused by a congested server, the corruption of packets
during transmission (which can be caused by bad electrical connections,
noisy environments, or noisy Ethernet interfaces), and routers that
abandon forwarding attempts too quickly.

You can monitor NFS by using the nfsstat command. When evaluating
NFS performance, remember that NFS does not perform well if any
file-locking mechanisms are in use on an NFS file. The locks prevent the
file from being cached on the client. See nfsstat (8) for more information.

Table 6–2 lists NFS tuning guidelines and performance benefits as well as
tradeoffs.

Table 6–2: Guidelines for NFS Tuning

Action Performance Benefit Tradeoff

Use Prestoserve (Section 6.2.1) Improves synchronous
write performance

Cost

Use the appropriate number of
nfsd daemons on the server
(Section 6.2.2)

Enables efficient I/O
blocking operations

None

Tuning the Network Subsystem 6–9

Table 6–2: Guidelines for NFS Tuning (cont.)

Action Performance Benefit Tradeoff

Use the appropriate number of
nfsiod daemons on the client
(Section 6.2.3)

Enables efficient I/O
blocking operations

None

Increase the number of I/O
threads (Section 6.2.4)

May improve NFS read
and write performance

None

Modifying cache timeout limits
(Section 6.2.5)

May improve network
performance for read-only
file systems and slow
network links

None

Decrease network timeouts
(Section 6.2.6)

May improve performance
for slow or congested
networks

None

Use NFS protocol Version 3.0
(Section 6.2.7)

Improves network
performance

Decreases the
performance benefit of
Prestoserve

The following sections describe these guidelines in detail.

6.2.1 Using Prestoserve to Improve Server Performance

You can improve NFS performance by installing Prestoserve on the server.
Prestoserve greatly improves synchronous write performance for servers
that are using NFS Version 2. Prestoserve enables an NFS Version 2 server
to write client data to a stable (nonvolatile) cache, instead of writing the
data to disk.

Prestoserve may improve write performance for NFS Version 3 servers, but
not as much as with NFS Version 2, because NFS Version 3 servers can
reliably write data to volatile storage without risking loss of data in the
event of failure. NFS Version 3 clients can detect server failures and resend
any write data that the server may have lost in volatile storage.

See the Guide to Prestoserve for more information.

6.2.2 Using the Appropriate Number of nfsd Daemons

Servers use nfsd daemons to handle NFS requests from client machines.
The number of nfsd daemons determines the number of parallel
operations and must be a multiple of 8. For good performance on frequently
used NFS servers, configure a network with either 16 or 32 nfsd daemons.
Having exactly 16 or 32 nfsd daemons produces the most efficient blocking
for I/O operations.

6–10 Tuning the Network Subsystem

6.2.3 Using the Appropriate Number of nfsiod Daemons

Clients use nfsiod daemons to service asynchronous I/O operations such
as buffer cache readahead and delayed write operations. The number of
nfsiod daemons determines the number of outstanding I/O operations.
The number of nfsiod daemons must be a multiple of 8 minus 1 (for
example, 7 or 15 is optimal).

NFS servers attempt to gather writes into complete UFS clusters before
initiating I/O, and the number of nfsiod daemons (plus 1) is the number
of writes that a client can have outstanding at any one time. Having
exactly 7 or 15 nfsiod daemons produces the most efficient blocking for
I/O operations. If write gathering is enabled, and the client is not running
any nfsiod daemons, you may experience a performance degradation. To
disable write gathering, use dbx to set the nfs_write_gather kernel
variable to 0.

6.2.4 Increasing the Number of Threads

On a client system, the nfsiod daemons spawn several I/O threads to
service asynchronous I/O operations to the server. The I/O threads improve
the performance of both NFS reads and writes. The optimum number of I/O
threads depends on many variables, such as how quickly the client will be
writing, how many files will be accessed simultaneously, and the
characteristics of the NFS server. For most clients, seven threads are
sufficient.

Use the ps axlmp 0 | grep nfs command to display idle I/O threads on
the client. If few threads are sleeping, you may be able to improve NFS
performance by increasing the number of threads. See Chapter 2,
nfsiod (8), and nfsd (8) for more information.

6.2.5 Modifying Cache Timeout Limits

For read-only file systems and slow network links, performance may be
improved by changing the cache timeout limits. These timeouts affect how
quickly you see updates to a file or directory that has been modified by
another host. If you are not sharing files with users on other hosts,
including the server system, increasing these values will give you slightly
better performance and will reduce the amount of network traffic that you
generate.

See mount (8) and the descriptions of the acregmin , acregmax , acdirmin ,
acdirmax , actimeo options for more information.

Tuning the Network Subsystem 6–11

6.2.6 Decreasing Network Timeouts

NFS does not perform well if it is used over slow network links, congested
networks, or wide area networks (WANs). In particular, network timeouts
can severely degrade NFS performance. This condition can be identified by
using the nfsstat command and determining the ratio of timeouts to
calls. If timeouts are more than 1 percent of total calls, NFS performance
may be severely degraded. See Chapter 2 for sample nfsstat output of
timeout and call statistics and nfsstat (8) for more information.

You can also use the netstat -s command to verify the existence of a
timeout problem. A nonzero count for fragments dropped after
timeout in the ip section of the netstat output may indicate that the
problem exists. See Chapter 2 for sample netstat command output.

If fragment drops are a problem, use the mount command with the
-rsize=1024 and -wsize=1024 options to set the size of the NFS read
and write buffers to 1 KB.

6.2.7 Using NFS Protocol Version 3.0

NFS protocol Version 3.0 provides client-side asynchronous write support,
which improves client perception of performance, improves the cache
consistency protocol, and requires less network load than Version 2.
Protocol Version 3 decreases the performance benefit of Prestoserve.

6–12 Tuning the Network Subsystem

A
Tuning Special Configurations

This appendix provides information about tuning special configurations.
See Section 2.11 for information about modifying system attributes.

A.1 Tuning Internet Servers

Internet servers require that you modify the default values of some system
attributes. Internet servers include World Wide Web servers, proxy servers,
mail servers, and ftp servers. See Chapter 6 for detailed information about
these attributes.

You can modify the following socket subsystem attributes and specify the
values as indicated:

• somaxconn = 65535

• sominconn = 65535

You can modify the following inet subsystem attributes and specify the
values as indicated:

• tcphashsize = 16384

• ipport_userreserved = 65535

• pmtu_enabled

You can modify the following vm subsystem attributes and specify the
values as indicated:

• ubc-maxpercent = 100

• vm-mapentries = 20000

• vm-maxvas = 10737418240

• vm-vpagemax = 131072

You can modify the following proc subsystem attributes and specify the
values as indicated:

• maxusers = 512

• max-proc-per-user = 512

• max-threads-per-user = 4096

Tuning Special Configurations A–1

A.2 Tuning a Low-Memory Workstation
The following sections describe tuning considerations for low-memory
(24-MB) Alpha systems. Some of these tuning considerations may also
apply to DIGITAL UNIX workstations in general, regardless of size.

A.2.1 Attribute Settings for Low-Memory Workstations

The following attribute settings are automatically used when installing
DIGITAL UNIX on a 24-MB Alpha system:

generic:
lite-system=1

proc:
ncallout_alloc_size=4096

vfs:
bufcache=2
max-vnodes=1000
min-free-vnodes=150
vnode-age=2
namei-cache-valid-time=30
name-cache-size=150

io:
bdevsw-size = 70
cdevsw-size = 125
max-iosize-read = 65536
max-iosize-write = 65536
basic-dma-window-size = 0
cam_ccb_pool_size = 100
cam_ccb_low_water = 50
cam_ccb_increment = 25

network:
arptab_nb=19

vm:
vm-aggressive-swap = 1

The default attribute settings for 24-MB Alpha systems increase the
amount of physical memory available to user applications by reducing the
amount of memory used for system caches. These settings may also work
well on 32-MB or larger Alpha systems that are being used as personal
workstations (that is, not being used as timesharing systems or file
servers). You can apply the settings to your workstation by entering the
following command:

sysconfigdb -f /etc/sysconfigtab.lite -m

A–2 Tuning Special Configurations

The settings can be removed by entering the following command:

sysconfigdb -f /etc/sysconfigtab.lite -r

After entering either of these sysconfigdb commands, you must reboot
the system to apply the new attribute values.

A.2.2 Swap Space and Memory Tuning on Low-Memory Systems

Swapping can cause problems with low-memory systems. When operating
in deferred mode (also referred to as overcommittment or lazy mode),
low-memory systems will use more swap space. Low-memory systems have
to overcommit more physical memory than high-memory systems. As a
result, low-memory systems will do more pageouts and will use more swap
space.

When swap space is exhausted, you will receive warning messages, and
processes will be killed. The only solution to this problem is to increase
either memory or swap space. See Chapter 4 for information on swap
modes. (Low-memory systems operating in immediate mode do not have
special problems with swapping.)

Low-memory systems can also have special problems with the Unified
Buffer Cache (UBC). If vmstat output shows excessive pageins but few or
no pageouts, the value of the ubc-borrowpercent attribute may be too
small. It is particularly important to watch for this on low-memory
systems, because they tend to reclaim UBC pages more aggressively than
systems with more memory, and this condition can have an adverse effect
on system performance. See Chapter 4 for information about attribute
settings affecting the UBC.

A.2.3 X Window System Considerations for Low-Memory
Workstations

On low-memory systems, you may want to consider the following
adjustments that affect memory use by the X Window system:

• If a shortage of memory (and the paging and swapping associated with
limited memory) is slowing the performance of your system, you may
need to reset the X server to free up memory resources.

Space that has been allocated to the X server is never freed to the
system until the X server is terminated; it can be reused by the X
server, but it is not freed. As a result, the amount of memory resources
allocated to the X server is the largest amount of memory resources
ever used by the X server at any single point in time in either the
current session or any prior session. This amount can be rather large if

Tuning Special Configurations A–3

at some point you opened a large number of windows, displayed
PostScript text, and performed other windowing operations that
consume a lot of memory.

To reset the X server and eliminate any reserve of unused memory that
may have built up over time, you need to specify the −terminate option
in the Xserver.conf file (/var/X11/Xserver.conf) and then kill the
X server (kill pid). The X Display Manager, xdm, will automatically
restart your X server. (Use the ps command to locate the process
identification (PID) number for the X server.) With the −terminate
option in effect, the X server will now reset upon each logout.

The Xserver.conf file contains information on how to add options.
For example, the entry for the −terminate option, with no other
options present in the entry, is as follows:

args < -terminate >

If you are running xdm, you can establish the −terminate option in
either the Xserver.conf file or the Xservers file
(/var/X11/xdm/Xservers).

• On low-memory systems, compile Motif applications with the −shared
option (the default) instead of the −non_shared option. Applications
compiled with the −shared option have smaller executable files and
consume fewer system resources than applications compiled with the
−non_shared option. This is especially true for Motif applications; for
example, a Motif application that is 400 KB with the −shared option
may be as large as 4 MB with the −non_shared option.

A–4 Tuning Special Configurations

B
Configuration Attribute Definitions

This appendix lists all the attributes in the sysconfigtab file that can be
modified by using the Common Desktop Environment Kernel Tuner
(dxkerneltuner), the sysconfig command, and the sysconfigdb
command. See Section 2.11 for information on modifying attributes.

The attributes in this appendix are grouped by subsystem. Before you can
modify an attribute, you must know the subsystem to which the attribute
belongs. This appendix describes attributes for the following subsystems:

• advfs —Advanced File System (AdvFS) subsystem (Section B.1)

• bsd_tty —TTY subsystem (Section B.2)

• cm—Configuration Manager subsystem (Section B.3)

• dli —Data Link Interface (DLI) subsystem (Section B.4)

• generic —Generic kernel subsystem (Section B.5)

• inet —Internet subsystem (Section B.6)

• io —I/O subsystem (Section B.7)

• ipc —Interprocess Communication (IPC) subsystem (Section B.8)

• lsm —Logical Storage Manager (LSM) subsystem (Section B.9)

• net —Network subsystem (Section B.10)

• presto —Prestoserve subsystem (Section B.11)

• proc —Process subsystem (Section B.12)

• pts —Pseudoterminal subsystem (Section B.13)

• rt —Real-time subsystem (Section B.14)

• sec —Security subsystem (Section B.15)

• snmpinfo —Simple network management protocol (SNMP) information
subsystem (Section B.16)

• socket —Socket subsystem (Section B.17)

• streams —STREAMS subsystem (Section B.18)

• ufs —UNIX File System (UFS) subsystem (Section B.19)

• vfs —Virtual File System (VFS) subsystem (Section B.20)

Configuration Attribute Definitions B–1

• vm—Virtual memory subsystem (Section B.21)

• xpr —XPR subsystem (Section B.22)

This is not a complete list of the subsystems that have attributes in the
sysconfigtab file. Subsystems not included in this appendix include the
following: bufcall , cam, cam_disk , cam_tape , cma_dd, ddr , eisa , kds ,
kinfo , kio , ldtty , ppp , qvision , strstd , table_mgr , timod , tirdwr ,
vga , ws, and xtiso .

Some attributes have corresponding parameters whose values are specified
in the system configuration file. In this appendix, if an attribute has a
corresponding parameter, the name of the parameter appears in
parentheses after the attribute name. If possible, always modify the
attribute instead of its corresponding parameter.

In addition, attributes that can be modified at run time by using the Kernel
Tuner or the sysconfig −r command are preceded by an asterisk (*).

B.1 AdvFS Subsystem Attributes

The AdvFS (advfs) subsystem attributes are as follows:

AdvfsCacheMaxPercent
Determines the percentage of system memory that is allocated to the
AdvFS buffer cache. The minimum value is 1 percent. The maximum
value is 30 percent.

Default value: 7 percent.

AdvfsMaxFragGrps
Fragment group deallocation starts when the number of fragment
groups on the free list is higher than this value. The minimum value
is 4. The maximum value is 8192.

Default value: 48

AdvfsMinFragGrps
Fragment group deallocation stops when the number of fragment
groups on the free list is less than this value. The minimum value is
3. The maximum value is 8191.

Default value: 16

AdvfsSyncMmapPages
This attribute controls whether modified (dirty) mmapped pages are
flushed to disk during a sync system call. If the
AdvfsSyncMmapPages attribute is set to 1, the dirty mmapped pages

B–2 Configuration Attribute Definitions

are asynchronously written to disk. If the AdvfsSyncMmapPages
attribute is set to 0, dirty mmapped pages are not written to disk
during a sync system call.

Default value: 1

AdvfsMaxDevQLen
This attribute limits the length of the AdvFS device queue. The
AdvFS device queue accepts both asynchronous I/O requests and
synchronous I/O requests. When the number of requests on the device
queue exceeds the value of the AdvfsMaxDevQLen attribute, only
synchronous requests are accepted onto the device queue.

The minimum value is 0. The maximum value is 65536.

The default value should be appropriate for most configurations.
However, you may need to modify this value for systems with very
fast or very slow devices and adapters. One guideline is to specify a
value for the AdvfsMaxDevQLen attribute that is less than or equal
to the average number of I/O operations that can be performed in 0.5
seconds. If you do not want to limit the size of the device queue, set
the value of the AdvfsMaxDevQLen parameter to 0 (zero).

Default value: 80

AdvfsReadyQLim
This attribute specifies the number of 512-byte blocks that can be on
the readylazy queue before the requests are moved to the device
queue. The minimum value is 0, which disables buffering on the
readylazy queue. The maximum value is 32 KB.

Default value: 16 KB

AdvfsAccessMaxPercent
Specifies the maximum percentage of the malloc pool that can be
allocated for access structures. The minimum value is 5. The
maximum value is 95.

Default value: 80

AdvfsAccessCleanupPercent
When the percentage of access structures on the closed list reaches
this value, structures are reclaimed from the closed list to populate
the free list. The minimum value is 5. The maximum value is 95.

Default value: 33

Configuration Attribute Definitions B–3

AdvfsFavorBlockingQueue
Controls the movement of I/O requests from the consolidation queue
to the device queue. When enabled (the default), AdvFS first issues
synchronous I/O. When disabled (set to 0), asynchronous I/O is
flushed to disk, regardless of synchronous I/O. DIGITAL recommends
that you use the default value.

Default value: 1 (enabled)

B.2 TTY Subsystem Attribute

The TTY (bsd_tty) subsystem attribute is as follows:

nclist (nclist)
Controls the number of clist buffers allocated.

The TTY subsystem is specifically for the clist-based TTY subsystem.
(DIGITAL UNIX has both STREAMS-based and clist-based TTY
subsystems.) The clist-based TTY subsystem is used by the console
and the serial ports.

Note that is is also possible to configure the pseudoterminal
subsystem to be clist-based. This is accomplished by specifying the
pseudodevice pty nn (default: nn = 80) in the kernel configuration file.

B.3 Configuration Manager Subsystem Attribute

The Configuration Manager (cm) subsystem attribute is as follows:

max_callbacks
Specifies the maximum number of registered callbacks that are
allowed by the kernel at any point in time. If exceeded, an error
message is issued.

B.4 DLI Subsystem Attributes

The Data Link Interface (DLI) (dli) subsystem attributes are as follows:

must-be-root
When enabled, requires the user of the raw socket interface to be root.
Disabling must-be-root allows any user to use the raw socket
interface to DLI.

DECnet and STREAMS protocol stacks use a DLI-provided raw
interface to the data link. DLI also provides a raw socket interface.

Default value: 1 (enabled)

B–4 Configuration Attribute Definitions

max-ifq-length
Specifies the number of received packets that are queued to DLI. If
many packets are dropped, you may want to increase the value.

Default value: 512

B.5 Generic Kernel Subsystem Attributes

The generic kernel (generic) subsystem attributes are as follows:

binlog-buffer-size
Overrides the kernel buffer size. If the binlog-buffer-size
attribute is not specified, the kernel buffer size is assigned a value at
boot time, based on the amount of physical memory installed in the
system. The assigned size ranges from 32 KB to 1 MB. Using the
binlog-buffer-size attribute, you can specify a minimum size of 8
KB, and a maximum size of 1 MB.

booted_args
The arguments passed from osf_boot to the kernel.

booted_kernel
The name of the kernel that was loaded by osf_boot .

clock-frequency
The rate of clock interrupts per second.

Default value: 1024

cpu-enable-mask (cpu_enable_mask)
A bit mask that determines whether secondary CPUs can be started
by the master CPU. The lowest order bit (bit 0) in this mask
corresponds to CPU 0, which is usually the master CPU. The next
highest order bit corresponds to CPU 1, and so on.

The default value for this mask is -1, which means that all CPUs
present in the system are allowed to be started.

You can specify 0 for this mask to enable uniprocessor operation in a
multi-CPU system. (The bit for the master CPU does not need to be
set because the master CPU is always started. This bit is always set
automatically at boot time.)

If lockmode has been specified as 0 or 1, all bits in the
cpu_enable_mask bit mask that do not correspond to the master
CPU are set to 0.

Default value: -1

Configuration Attribute Definitions B–5

dump-sp-threshold
Creates multiple-partition dumps or allows dumps to be placed on the
primary swap partition, if possible. If a dump will fit on the primary
swap partition and leave space that is equal to the threshold value,
the dump is created as a single-volume dump on the primary swap
partition, even if secondary swap partitions are available. (See the
Kernel Debugging manual for details.)

Default value: 4096

kmem_debug
An interactive boot flag that is used for diagnostic purposes only.

If enabled (1), each time the kernel memory allocator allocates or
deallocates memory in the kernel memory pool, the system checks
whether the operation is performed correctly. If the kernel memory
pool is in a corrupt state, the system crashes and provides useful
debugging information.

lite-system
When enabled (1), applies values to various attributes in order to
improve performance for 24-MB systems.

lockdebug (lockdebug)
Controls lock debugging. If lock debugging is enabled (lockdebug=1),
the default value for lockmode will be 4. However, if you specify a
value for the lockmode attribute, this value will override the
lockdebug value. For example, if the value of lockmode is not 4
(that is, 0 to 3), the value of lockdebug will be 0. If the value of
lockmode is 4, the value of lockdebug will be 1.

Default value: 0 (disabled)

lockmode (lockmode)
The mode of the simple lock primitive package within the kernel.
Locking primitives support the following combinations of real-time
(RT) kernel preemption, symmetric multiprocessing (SMP), and lock
debugging with lock statistics:

• When neither RT nor SMP is required (lockmode=0), the calls to
the simple lock primitives are patched out completely.

• When only RT is required (lockmode=1), the simple lock
operations maintain a “preemption blocking” count.

• When SMP is required (lockmode=2), the lock operations provide
synchronization between multiple CPUs.

B–6 Configuration Attribute Definitions

• When both RT and SMP are required (lockmode=3), both sets of
processing (lockmode=1 and lockmode=2) are performed.

• When lock debugging and stats are required (lockmode=4), all of
the processing for lockmode=3 is performed, with the addition of
kernel lock debugging and statistics.

The default value for lockmode is assigned at boot time depending on
the values for rt_preempt_opt , cpu_enable_mask , and
lockdebug , and on whether multiple CPUs are able to be booted. If a
value for lockmode is specified (0-4), it overrides the default setting
and disables any of the three related capabilities that cannot be
supported by the chosen set of simple lock primitives.

lockmaxcycles
Used internally for debugging purposes. Do not modify.

locktimeout (locktimeout)
The number of seconds that a CPU will wait (spin) on a simple lock. If
a CPU cannot acquire a simple lock in the specified amount of time, a
fatal error occurs, and the system panics and issues a “simple_lock:
time limit exceeded” message.

Default value: 15 (seconds)

max-lock-per-thread
The depth to which complex locks can be nested for a thread at one
time. The value of max-lock-per-thread is used for debugging (in
lockmode=4).

message-buffer-size msgbuf_size
The size of the message buffer that is used to store boot log messages.

Default value: 4096

old_obreak
Internal use only. Do not modify.

Default value: 1 (on)

physio_max_coalescing
Do not modify.

Controls how I/O requests are gathered when readb or writeb
operations are directed at a character device (not a block device). For
example, when set to 65536, eight 8-KB buffers coalesce into one
64-KB buffer. This improves the efficiency of database operations.

Configuration Attribute Definitions B–7

rt-preempt-opt (rt_preempt_opt)
Controls whether real-time kernel preemption is enabled. If real-time
kernel preemption is enabled (1), the default value for lockmode will
be 1 on a single-CPU system or 3 on a multi-CPU system. However, if
a value for lockmode has been specified as 0 or 2, this value
overrides the rt_preempt_opt value and assign rt_preempt_opt
the value of 0.

Default value: 0 (disabled)

user_cfg_pt
Internal use only. Do not modify.

Default value: 0 (disabled)

B.6 Internet Subsystem Attributes

The Internet (inet) subsystem attributes are as follows:

inifaddr_hsize
Specifies the number of hash buckets in the kernel interface alias
table (in_ifaddr). The value of the inifaddr_hsize attribute is
always rounded down to the nearest power of 2. The maximum value
is 512.

Default value: 32

ipdefttl
The default Internet Protocol (IP) time-to-live value.

Default value: DEFTTL

ipdirected_broadcast
Enables (1) or disables (0) a check to determine whether an IP
datagram whose destination address is a directed broadcast address
has been received on the interface corresponding to that broadcast
address.

Default value: 0 (disabled)

ipforwarding
When enabled (1), causes a system to forward IP packets that are not
addressed to the system. This functionality is usually enabled by
using the /usr/sbin/iprsetup command.

Default value: 0 (disabled)

B–8 Configuration Attribute Definitions

ipfragttl
Maximum time an IP fragment can spend waiting to be reassembled.

Default value: IPFRAGTTL (in units of .05 seconds)

ipgateway
When enabled (1), causes a system to forward IP packets that are not
addressed to the system. This functionality is usually enabled by
using the /usr/sbin/iprsetup command.

Default value: 0 (disabled)

ipport_userreserved
Specifies the number of times you can simultaneously make outgoing
connections to other systems. The number of outgoing ports is the
value of the ipport_userreserved attribute minus 1024. The
default value of the attribute is 5000; therefore, the default number of
outgoing ports is 3976. The maximum value of the
ipport_userreserved attribute is 65535.

Default value: 5000

ipsendredirects
Enables (1) or disables (0) sending ICMP redirect messages.

Default value: 1 (enabled)

ipsrcroute
Enables (1) or disables (0) source routing.

Default value: 1 (enabled)

pmtu_enabled
Enables (1) or disables (0) path maximum transfer unit (PMTU)
discovery.

Default value: 1 (enabled)

pmtu_decrease_intvl
Time to wait after a decrease in a PMTU value before attempting to
determine if the PMTU value has increased.

Default value: PMTU_DECREASE_INTVL(in units of .05 seconds)

pmtu_increase_intvl
Time to wait after an increase in a PMTU value before attempting to
determine if the PMTU has increased.

Default value: PMTU_INCREASE_INTVL(in units of .05 seconds)

Configuration Attribute Definitions B–9

pmtu_rt_check_intvl
Timer processing interval for routes participating in the PMTU
discovery process.

Default value: PMTU_RT_CHECK_INTVL(in units of .05 seconds)

subnetsarelocal
When enabled (1), considers local all IP addresses that are in the
same network but in a different subnet. When disabled (0), considers
local only IP addresses that match a directly connected subnet.

Default value: 1 (enabled)

tcbhashsize
Number of buckets in the Transmission Control Protocol (TCP) inpcb
hash table.

Default value: 32

tcp_compat_42
Enables (1) or disables (0) 4.2 BSD-compatible behavior for the initial
send sequence of numbers and keepalives.

Default value: 1 (enabled)

tcp_dont_winscale
Enables (0) or disables (1) window scaling.

Default value: 0 (enabled)

tcp_keepalive_default
When set to 1, enables TCP keepalive for all sockets. Use the
tcp_keepalive_default attribute to override programs that do not
set keepalive on their own or you do not have access to the application
sources.

Keepalive enables the periodic transmission of messages on a
connected socket in order to keep connections active. If keepalive is
enabled, sockets that do not exit cleanly are cleaned up when the
keepalive interval expires. If keepalive is not enabled, those sockets
will continue to exist until you reboot the system.

Applications enable keepalive for sockets by setting the setsockopt
function’s SO_KEEPALIVEoption.

Default value: 0 (disabled)

tcp_keepcnt
Maximum number of keepalive probes that can be sent before a
connection is dropped.

B–10 Configuration Attribute Definitions

Default value: TCPTV_KEEPCNT

tcp_keepidle
Idle time before the first keepalive probe.

Default value: TCPTV_KEEP_IDLE(in units of .05 seconds)

tcp_keepinit
Initial connect timeout.

Default value: TCPTV_KEEP_INIT (in units of .05 seconds)

tcp_keepintvl
Time between keepalive probes.

Default value: TCPTV_KEEP_INTVL(in units of .05 seconds)

tcp_mssdflt
Default maximum segment size.

Default value: TCP_MSS(bytes)

tcpnodelack
Enables (0) or disables (1) delayed acknowledgments.

Default value: 0 (enabled)

tcp_msl
Determines the maximum lifetime of a TCP segment.

Default value: 60 units (30 seconds)

tcp_recvspace
Default receive buffer size for TCP sockets.

Default value: TCP_RECVSPACE(bytes)

tcp_rexmit_interval_min
Minimum amount of time between TCP retransmissions.

Default value: 1 unit (0.5 seconds)

tcprexmtthresh
Number of duplicate acknowledgments (ACKs) before retransmission.

Default value: TCPREXMTTHRESH

tcp_rttdflt
Initial assumed round-trip time.

Default value: 3 (seconds)

Configuration Attribute Definitions B–11

tcp_sendspace
Default send buffer size for TCP sockets.

Default value: TCP_SENDSPACE(bytes)

tcp_ttl
IP time-to-live for TCP packets.

Default value: TCP_TTL

tcptwreorder
Enables (1) or disables (0) the movement of TCP inpcbs in the
TIME_WAIT state to the end of the inpcb list.

Default value: 1 (enabled)

tcp_urgent_42
Enables (1) or disables (0) 4.2 BSD-compatible behavior for an urgent
pointer. When enabled, the urgent pointer is a pointer to the first
octet of data past the urgent section. When disabled, the urgent
pointer is a pointer to the last octet of data in the urgent section.

Default value: 1 (enabled)

udpcksum
Enables (1) or disables (0) Internet user datagram protocol (UDP)
checksumming.

Default value: 1 (enabled)

udp_recvspace
Default receive buffer size for UDP sockets.

Default value: UDP_RECVSPACE(bytes)

udp_sendspace
Default send buffer size for UDP sockets.

Default value: UDP_SENDSPACE(bytes)

udp_ttl
IP time-to-live for UDP packets.

Default value: UDP_TTL

B–12 Configuration Attribute Definitions

B.7 I/O Subsystem Attributes

The I/O (io) subsystem attributes are as follows:

basic-dma-window-size
Used to control the allocation of Direct Memory Access (DMA) bus
space for AlphaServer 2100 systems that use high-performance
cluster interconnects. To ensure adequate bus space for this hardware
configuration, set the attribute to 256. For other systems or for
AlphaServer 2100s without cluster interconnects, adequate bus space
is provided by the usual allocation scheme, which allocates DMA bus
space as a percentage of the physical memory on the system.

Default value: 0 (MB)

bdevsw_size (nblkdev)
Size of the in-memory table for the bdev switch. This table is used to
access device drivers, and must be large enough to accommodate the
drivers registered in the bdevsw table in the
/usr/sys/ system_name /conf.c file and any additional device
drivers that will be dynamically loaded.

Default value: 70

cdevsw_size (nchrdev)
Size of the in-memory table for the cdev switch. This table is used to
access device drivers and must be large enough to accommodate the
drivers registered in the cdevsw table in the
/usr/sys/ system_name /conf.c file and any additional device
drivers that will be dynamically loaded.

Default value: 125

cam_ccb_pool_size (cam_ccb_pool_size)
Initial size of the buffer pool free list at boot time. One Common
Access Method (CAM) control block (ccb) is needed for each
outstanding I/O request. Do not modify.

Default value = 200

cam_ccb_low_water (cam_ccb_low_water)
More buffers are allocated from the kernel when the number of
buffers in the pool free list falls below this value. CAM reserves the
number of buffers specified by the cam_ccb_low_water attribute to
ensure that the kernel always has enough memory to shut down
runaway processes. Do not modify.

Default value: 100

Configuration Attribute Definitions B–13

cam_ccb_increment (cam_ccb_increment)
Number of buffers either added to or removed from the buffer pool
free list. Buffers are allocated as they are needed in order to handle
immediate demands; however, they are deallocated carefully to
prevent spikes. Do not modify.

Default value: 50 buffers

device_switch_inited
Internal use only. Do not modify.

device_switch_print
Internal use only. Do not modify.

device_switch_stale
Internal use only. Do not modify.

max-iosize-read
When nondriver kernel code needs to know the maximum size of an
I/O request for a block-I/O device, it issues an ioctl call to the
driver. If that ioctl fails or if the value returned is 0, the value of
the max-iosize-read attribute is used.

Change the default value of this attribute only if a third-party device
driver does not use the ioctl call and has a maximum size that is
less than the default value in the sysconfigtab file (64 KB). (The
person writing the third-party device driver must provide information,
either in documentation or an installation script, on how to change
the entry in the sysconfigtab file to the correct value.)

Default value: 65536

max-iosize-write
When nondriver kernel code needs to know the maximum size of an
I/O request for a block-I/O device, it issues an ioctl call to the
driver. If that ioctl fails or if the value returned is 0, the value of
the max-iosize-write attribute is used.

Change the default value of this attribute only if a third-party device
driver does not use the ioctl call and has a maximum size that is
less than the default value in the sysconfigtab file (64 KB). (The
person writing the third-party device driver must provide information,
either in documentation or an installation script, on how to change
the entry in the sysconfigtab file to the correct value.)

Default value: 65536

B–14 Configuration Attribute Definitions

B.8 IPC Subsystem Attributes

The Interprocess Communication (IPC) (ipc) subsystem attributes are as
follows:

max-kernel-ports (port_max_num)
The maximum number of kernel IPC ports that can be used on the
system at one time.

Default value: (task-max * 3 + thread-max) + (thread-max * 2) +
2000

(Values of variables used to establish default value: task-max =
nproc +1; thread-max = nproc *2; nproc = 20 + 8 * maxusers)

msg-max (msgmax)
Maximum size of a single System V message.

Default value: 8192 bytes (1 page)

msg-mnb (msgmnb)
Maximum number of bytes that can be queued to a single System V
message queue.

Default value: 16384 bytes (2 pages)

msg-mni (msgmni)
Maximum number of System V message queues that can be used on
the system at one time.

Default value: 50 (The system rounds the number to the value
associated with the next higher power of two; for example, 64.)

msg-tql (msgtql)
Maximum number of messages that can be queued to a single System
V message queue at one time.

Default value: 40 messages

num-of-sems (num_of_sems)
Obsolete. Not used.

port-hash-max-num (port_hash_max_num)
Number of port hash buckets that the kernel uses to manage the
kernel ports.

Do not modify.

Default value: 50 * max-kernel-ports

Configuration Attribute Definitions B–15

port-reserved-max-num (port_reserved_max_num)
Maximum number of ports that can be reserved by the kernel.

Do not modify.

Default value: max-kernel-ports

sem-aem (semaem)
Maximum adjustment that can be made to any System V semaphore
when a process exits.

Default value: 16384

sem-mni (semmni)
Maximum number of System V semaphores that can be used on the
system at one time.

Default value: 10 (The system rounds the number to the value
associated with the next higher power of two; for example, 16.)

sem-msl (semmsl)
Maximum number of System V semaphores that can be used by a
single process at one time.

Default value: 25

sem-opm (semopm)
Maximum number of operations that can be outstanding on a single
System V semaphore at one time.

Default value: 10

sem-ume (semume)
Maximum number of undo operations that can be outstanding on a
single System V semaphore at one time.

Default value: 10

sem-vmx (semvmx)
Maximum integer value that any System V semaphore can contain.

Default value: 32767

set-max-num (set_max_num)
Maximum number of port sets that can be used by the kernel at one
time. Do not modify.

Default value: task-max + thread-max + 200

(Values of variables used to establish default value: task-max =
nproc +1; thread-max = nproc *2; nproc = 20 + 8 * maxusers)

B–16 Configuration Attribute Definitions

shm-max (shmmax)
Maximum size, in bytes, of a single System V shared memory region.

Default value: 4194304 bytes (512 pages)

shm-min (shmmin)
Minimum size, in bytes, of a single System V shared memory region.

Default value: 1 (All requests are rounded to the next page size.)

shm-mni (shmmni)
Maximum number of shared memory regions that can be used on the
system at one time.

Default value: 100 (The system rounds the number to the value
associated with the next higher power of two; for example, 128.)

shm-seg (shmseg)
Maximum number of System V shared memory regions that can be
attached to a single process at one time.

Default value: 32

* ssm-enable-core-dump (ssm_enable_core_dump)
If enabled (1), writes segmented shared memory contents when an
application issues a core dump. Because segmented shared memory
can be large, the amount of time needed to dump the region to a core
file and the amount of file system space required by the operation can
be extensive, especially in large database environments. Therefore,
although shared memory can be useful for debugging, you may not
want to include it in core files because of time and resource
limitations.

This attribute can be modified at run time.

Default value: 1 (enabled)

* ssm-threshold (ssm_threshold)
When not 0, specifies the minimum size of a System V shared region
for the use of shared page tables. Setting this value to 0 disables the
use of shared page tables for shared memory. The size must be at
least equal to the value of SSM_SIZE, which is defined in the
machine/pmap.h file (the default is 8 MB).

This attribute can be modified at run time.

Default value: SSM_SIZE

Configuration Attribute Definitions B–17

B.9 LSM Subsystem Attributes

The Logical Storage Manager (LSM) (lsm) subsystem attributes are as
follows:

lsm_rootdev_is_volume
Used by the subsystem when the root file system is on an LSM
volume. Do not modify.

lsm_swapdev_is_volume
Used by the subsystem when the primary swap device is on an LSM
volume. Do not modify.

max-vol
Maximum number of LSM volumes per system. The maximum
number of volumes is 4096.

Default value: 1024

B.10 Network Subsystem Attributes

The network (net) subsystem attributes are as follows:

arptab_nb
Number of hash buckets in the address resolution protocol (ARP)
table. For optimal hashing, the number should be a prime number.

Default value: 37

netisrthreads
Number of network threads configured in a system.

Default value: n (Based on the number of CPUs in a system. For a
system with one processor, the value is 1. For a multiprocessing
system, the value is 1 plus the number of processors.)

nslip
Number of serial line internet protocol (SLIP) lines.

Default value: 1

B.11 Prestoserve Subsystem Attribute

The Prestoserve (presto) attribute is as follows:

B–18 Configuration Attribute Definitions

prmetaonly (prmetaonly)
Controls whether Prestoserve will cache only UFS and AdvFS
file-system metadata. If the attribute is set to 1 (enabled), Prestoserve
caches only file-system metadata instead of both metadata and
synchronous write data. This capability may improve the performance
of applications that access many small files, or applications that
access a large amount of file-system metadata but do not reread
recently written data.

The Prestoserve product consists of optional hardware (NVRAM) and
software that must be installed on your system. See the Guide to
Prestoserve for details on Prestoserve.

Default value: 0 (disabled)

B.12 Process Subsystem Attributes

The process (proc) subsystem attributes are as follows:

autonice (autonice)
When enabled (1), applications that use more than 600 seconds of
CPU time will automatically increase their nice values (that is, lower
their scheduling priorities).

Default value: 0 (disabled)

autonice-penalty
The nice value that is assigned to a process after it has used an
amount of CPU time that exceeds the value of the autonice-time
attribute.

Default value: 4

autonice-time
The amount of CPU time, in seconds, that a process can use before it
is assigned the nice value that is specified by the
autonice-penalty attribute.

Default value: 600

enhanced-core-max-versions
Specifies the maximum number of unique core files that a program
can create on a host system. The miminum value is 1. The maximum
value is 99,999.

Default value: 16

Configuration Attribute Definitions B–19

enhanced-core-name
When enabled (1), this attribute allows you to create multiple core file
versions. When disabled, core files will be overwritten.

Default value: 0 (disabled)

give-boost (give_boost)
When enabled (1), this attribute boots the priority of processes that
have recently awakened from a block I/O operation. This reduces I/O
latency and may make the system more responsive.

Default value: 1 (enabled)

max-per-proc-address-space (vm_initial_limit_vas.rlim_max)
Maximum amount of user process address space.

Default value: 107374182 (1 GB)

max-per-proc-data-size (vm_initial_limit_data.rlim_max)
Maximum size of a data segment for each process.

Default value: 107374182 (1 GB)

max-per-proc-stack-size (vm_initial_limit_stack.rlim_max)
Specifies the maximum size of a user process stack.

Default value: 33554432

max-proc-per-user (maxuprc)
Maximum number of processes (tasks) that a user can create. (The
superuser is not affected.)

Default value: 64

max-threads-per-user (maxuthreads)
Maximum limit of threads a user can create. (The superuser is not
affected.)

maxusers (maxusers)
Number of simultaneous users that a system can support without
straining system resources. System algorithms use the maxusers
keyword to size various system data structures and to determine the
amount of space allocated to system tables, such as the system
process table.

Increasing the value of the maxusers attribute allocates more system
resources to the kernel. However, it also increases the amount of
physical memory consumed by the kernel. Changing the value of the

B–20 Configuration Attribute Definitions

maxusers attribute affects the values of other attributes, including
the taskmax , threadmax , and min-free-vnodes attributes.

Default value: System dependent

ncallout (ncallout)
Obsolete. Not used.

ncallout_alloc_size
Minimum amount of memory that can be used for timeout tables. The
value of this attribute is automatically adjusted. Do not modify.

open-max-hard (open_max_hard)
Hard limit for the number of file descriptors for each process. If the
number of file descriptors reaches the value of the open-max-hard
attribute or higher, the process is stopped. Use the getdtablesize
system call to obtain the total number of file descriptors in a process’
descriptor table.

Default value: 4096

open-max-soft (open_max_soft)
Specifies the soft limit for the number of file descriptors for a process.
When the open-max-soft limit is reached, a warning message is
issued. Use the getdtablesize system call to obtain the total
number of file descriptors in a process’ descriptor table. A process can
increase its soft limit up to its hard limit (open-max-hard) by using
the setrlimit system call.

Default value: 4096

per-proc-address-space (vm_initial_limit_vas.rlim_cur)
Specifies the maximum amount of user process address space.

Default value: 107374182 (1 GB)

per-proc-data-size (vm_initial_limit_data.rlim_cur)
Current maximum size of a data segment for each process.

Default value: 134217728

per-proc-stack-size (vm_initial_limit_stack.rlim_cur)
Specifies the maximum size of a user process stack.

Default value: 2097152

round-robin-switch-rate (round_robin_switch_rate)
Number of context switches per second that can occur between
processes with the same priority. The lower the number, the less the

Configuration Attribute Definitions B–21

system timeslices; the higher the number, the more the system
timeslices.

sched-min-idle (sched_min_idle)
Time that a thread must remain idle on a multiprocessor system
before it is eligible to migrate to another processor. This attribute is
used to tune the soft affinity algorithm on multiprocessor systems.
This enables a process to stay where it last ran, and thereby optimize
its use of any data or instructions that it had brought into cache
memory.

The sched-min-idle attribute is used for multiprocessor systems; it
has no effect on single-CPU systems.

task-max (taskmax)
Maximum number of tasks that can run simultaneously on the
system.

Default value: 20 + 8 * maxusers

thread-max (threadmax)
Maximum number of kernel threads that can run simultaneously on
the system.

Default value: 2 * task-max

B.13 Pseudoterminal Subsystem Attribute

The pseudoterminal (pts) subsystem attribute is as follows:

nptys
Number of STREAMS-based pseudoterminals (ptys) that can be
active on a system.

Default value: 255

B.14 Real-Time Subsystem Attributes

The real-time (rt) subsystem attributes are as follows:

aio-max-num
Maximum number of concurrent asynchronous I/O (AIO) requests
that can be outstanding on the system at one time.

Default value: 716

B–22 Configuration Attribute Definitions

aio-max-percent
Percentage of physical memory that the asynchronous I/O (AIO)
database can occupy. This limits the maximum number of concurrent
asynchronous I/O requests that can be set by the aio-max-num
attribute.

Default value: 1 (percent)

aio-percpu-data
When disabled (0), the system’s asynchronous I/O (AIO) resources are
consolidated into a single database, allowing a single process to
launch a number of simultaneous AIO requests up to the value of the
aio-max-num attribute.

When enabled (1), the AIO database is distributed across the CPUs in
the system. This improves access to AIO resources for systems
running multiple processes that make simultaneous AIO requests.

The appropriate setting for the aio-percpu-data attribute depends
on the characteristics of your database application.

Default value: 0 (disabled)

aio-max-retry
Number of times that the subsystem, when doing raw I/O to a device,
will retry an attempt to lock a user I/O buffer into memory before
returning a failure (EAGAIN).

Default value: 0

aio-retry-scale
Controls progression of wait periods between asynchronous I/O retries.

Default value: 4

aio-task-max-num
Maximum number of simultaneous asynchronous I/O requests that
can be outstanding per task.

Default value: 333

sigqueue-max-num
Maximum number of signal-queuing operations that can be
outstanding per process.

Default value: 64

Configuration Attribute Definitions B–23

B.15 Security Subsystem Attributes

The security (sec) subsystem attributes are as follows:

audit-buffer-size
Size of the audit buffer in 1-KB units. If the audit overhead is heavy,
I/O performance may decline. Increasing the audit buffer size reduces
I/O activity by a small amount. However, if you route audit data to a
slow device (for example, to a tape device) or across a network,
increasing the audit buffer size can impact I/O activity.

The minimum size is 16 KB; the maximum size is 1024 KB.

Default value: 16 KB

audit-site-events
The size, in bytes, reserved for the audit site mask. Each byte can
support four site events.

Default value: 16 (bytes)

nfs-flatten-mode
Controls the permission bits of a file with access control lists (ACLs)
as seen by an NFS Version 2 client. You can specify the following
values for the nfs-flatten-mode attribute:

• 0—unmodified setting. The actual file mode is sent.

• 1—restrictive setting. The group and other fields of the file mode
are modified so that only access that would be granted to everyone
in the ACL is granted by the mode bits.

• 2—permissive setting. The group and other bits are modified so
that access that would be granted to anyone in the ACL is granted
by the mode bits.

See proplistd (8) for more information.

Default value: 0

B.16 SNMP Information Subsystem Attribute

The Simple Network Management Protocol (SNMP) information
(snmpinfo) subsystem attribute is as follows:

snmp_devs
Number of times SNMP agents can concurrently access the snmpinfo
mechanism to obtain kernel information.

Default value: 12

B–24 Configuration Attribute Definitions

B.17 Socket Subsystem

The socket (socket) subsystem attributes are as follows:

sominconn
Minimum length of the socket listen queue (backlog). The value of the
sominconn attribute overrides the application-specific backlog if the
value is greater than the backlog. The sominconn attribute has
priority over the somaxconn attribute.

The maximum value of the sominconn attribute is 65535.

Default value: 0

somaxconn
Maximum length of the socket listen queue (backlog). The value of the
somaxconn attribute overrides the application-specific backlog if the
value is less than the backlog. The sominconn attribute has priority
over the somaxconn attribute.

The maximum value of the somaxconn attribute is 65535.

Default value: 1024

sb_max
Maximum size of the socket buffer.

Default value: SB_MAX

sobacklog_hiwat
A read-only attribute that shows the maximum number of pending
requests to any of the server sockets in the system. The initial value
is 0.

sobacklog_drops
A read-only attribute that is incremented when a received SYN packet
is dropped because the number of queued SYN_RCVD connections for
a socket is equal to that socket’s backlog limit. The initial value is 0.

somaxconn_drops
A read-only attribute that is incremented when a received SYN
packet is dropped because the number of queued SYN_RCVD
connections for a socket is equal to the value of the somaxconn
attribute. The initial value is 0.

Configuration Attribute Definitions B–25

B.18 STREAMS Subsystem Attributes

The STREAMS (streams) subsystem attributes are as follows:

nstrpush
Maximum number of STREAMS modules that can be pushed on a
stream. This prevents an errant user process from consuming all the
available queues on a single stream.

Default value: 9

strmsgsz
Maximum size, in bytes, of the data portion of a STREAMS message.
This prevents a single write or putmsg from consuming too many
message blocks.

Default value: 12288 (12 KB)

B.19 UFS Subsystem Attributes

The UNIX File System (ufs) subsystem attributes are as follows:

create-fastlinks (create_fastlinks)
Enables (1) or disables (0) the creation of fast symbolic link files.

Default value: 1 (enabled)

inode-hash-size (inohsz)
Size of the inode hash chain table for the inode least recently used
(LRU) cache.

Large inode hash chain tables spread the inode structures and may
make chain lengths short. This can reduce linear searches and
improve lookup speeds. In general, chains should contain only 2 or 3
elements.

The maximum value is max-vnodes /2.

Default value: 512 (slots)

nmount (nmount)
Obsolete. Replaced by the vfs subsystem’s max-ufs-mounts
attribute.

ufs-blkpref-lookbehind (ufs_blkpref_lookbehind)
Range of blocks behind the current block location through which to
search for a free block to allocate for an indirect block write operation
(for all writes other than the first).

B–26 Configuration Attribute Definitions

A value greater than 1 will enable a look-behind search before writing
each indirect block after the first write.

Default value: 8

B.20 VFS Subsystem Attributes
The Virtual File System (vfs) subsystem attributes are as follows:

bufcache (bufcache)
Percentage of memory that the kernel wires for the metadata buffer
cache. Increasing the value of the bufcache attribute can improve
I/O performance by providing more memory for caching UFS file
system data. Increasing the value of the bufcache attribute can free
memory resources. For systems that only use AdvFS, you may want
to decrease the value to 1 percent.

Default value: 3 (percent) for 32-MB or larger systems; 2 (percent) for
24-MB systems

buffer-hash-size (bufhsz)
Size of the hash chain table for the metadata buffer cache. The hash
chain table is used to store the heads of the hashed buffer queues. A
large hash chain table distributes the buffers and may make chain
lengths short. This can reduce linear searches and improve lookup
speed.

Default value: 512 (slots)

fifo-do-adaptive
When set to 0 (zero), the attribute disables the pipe code that
attempts to batch writes to a pipe and then deliver this data in a
single call to a reader.

Default value: 1 (enabled)

* max-free-file-structures (max_free_files)
Maximum number of file structures on the free list. When the number
of free file structures that are chained for reuse on the free list
reaches the value of the max_free_files attribute, file structure
deallocation begins.

You can modify this attribute at run time.

Default value: 0

* max-ufs-mounts (max_ufsmounts)
Maximum number of UFS or MFS file system mounts. You can
increase the value of the max-ufs-mounts attribute if you want to

Configuration Attribute Definitions B–27

mount more than the default number of UFS or MFS file systems.
This attribute does not affect performance.

You can modify this attribute at run time.

Default value: 1000

* max-vnodes (max_vnodes)
Maximum number of vnodes (open files) on a system. The minimum
value is specified by the nvnode attribute. The maximum value is the
number of vnodes that 5 percent of the available memory can contain.

Increasing the value of the max-vnodes attribute allows more vnodes
on a system, which may improve performance if your applications or
users create a large number of open files. However, supporting more
vnodes uses additional memory.

You can modify this attribute at run time.

Default value: 1000 (for 24-MB systems); the maximum value (for
32-MB or larger systems)

* min-free-vnodes (min_free_vnodes)
Minimum number of free vnodes on the free list. If the number of
vnodes on the free list is less than the value of the min-free-vnodes
attribute, vnodes are deallocated.

Increasing the value causes the system to cache more free vnodes and
may improve performance for vnode cache lookup operations.
However, a large value increases the demand for memory.

You can modify this attribute at run time.

Default value: nvnode attribute (for 32-MB or larger systems); 150
(for 24-MB systems)

name-cache-hash-size (nchsz)
Size of the hash chain table for the namei cache. Large hash chain
tables distribute the namei cache elements and may make chain
lengths short, which can reduce linear searches and improve lookup
speeds. In general, chains should contain only 2 or 3 elements.

Maximum value: name-cache-size /2

Default value: 256 slots

name-cache-size (nchsize)
Number of elements in the namei cache. Increasing the value of the
name-cache-size attribute may improve lookup speeds, but it
requires more memory. Decreasing the value can free memory. The
maximum value is 2*max-vnodes *11/10.

B–28 Configuration Attribute Definitions

Default value: 2*nvnode *11/10 (for 32-MB or larger systems); 150 (for
24-MB systems)

namei-cache-valid-time (ncache_valid_time)
Amount of time a namei cache entry can remain in the cache before it
is discarded. A large namei-cache-valid-time attribute value will
retain more vnodes references in the namei cache and improve the
namei cache lookup speed; however, it will require more memory
resources. A small value may cause premature deallocation of vnodes
and decrease the namei cache lookup speed.

Default value: 1200 (seconds) for 32-MB or larger systems; 30
(seconds) for 24-MB systems

noadd-exec-access
Allows you to configure your system so that new executables cannot
be created. This is a security feature and does not affect performance.

nvnode (nvnode)
Obsolete. Retained only for compatibility purposes. Determines the
maximum and the minimum number of vnodes on a system. If you
modify the value of the nvnode attribute and then reboot the system,
the lockfile zone size and the specinfo_zone size allocation are also
modified.

Default value: nproc +(2*maxusers)+128

path-num-max (path_num_max)
Size of the pathname zone for pathname lookup buffers. Increasing
the value of path-num-max increases the number of elements in the
zone that is allocated for pathnames.

Default value: 64 (zone elements)

pipe-maxbuf-siz
Maximum number of bytes buffered per pipe.

Default value: 65536 (64 KB)

pipe-single-write-max
Maximum size of a single write to a pipe.

Default value: -1

pipe-databuf-size
Number of data bytes in each pipe data buffer.

Default value: 8192 (bytes)

Configuration Attribute Definitions B–29

pipe-max-bytes-all-pipes
Maximum number of bytes reserved for all pipes.

Default value: 819200 (bytes)

special-vnode-alias-tbl-size (spechsz)
Size of the special vnodes alias table for vnodes of special device files,
such as character-I/O or block-I/O device files. Increasing the table
size allows you to create more special device files.

Default value: 64

sys-v-mode (sys_v_mode)
Obsolete System V attribute.

ucred-max (ucred_max)
Obsolete.

* vnode-age (vnode_age)
Amount of time that a vnode can remain on the free list before it is
deallocated. You can increase the value of the vnode-age attribute to
keep vnodes on the free list longer, which increases the possibility
that the vnode will be successfully looked up.

You can modify this attribute at run time.

Default value: 120 (seconds) for 32-MB or larger systems; 2 (seconds)
for 24-MB systems

vnode-deallocation-enable
Enables (1) or disables (0) vnode deallocation. Enabling vnode
deallocation decreases memory usage because it returns to the system
the memory allocated to vnodes.

Default value: 1 (enabled)

B.21 Virtual Memory Subsystem Attributes

The virtual memory (vm) subsystem attributes are as follows:

contig-malloc-percent
Percentage of physical memory that is reserved for contiguous
physical memory allocation at boot time.

Default value: 20 (percent)

B–30 Configuration Attribute Definitions

dump-user-pte-pages
Determines if the pages from the user page table are written as part
of a crash dump. Enabling this functionality provides more debugging
information when a system crashes.

Default value: 0 (disabled)

gh-chunks
Number of 4-MB chunks of memory reserved at boot time for shared
memory use.

gh-min-seg-size
Size of a shared memory segment at which shared memory is
allocated from the memory reserved for shared memory, according to
the value of the gh-chunks attribute.

Default value = 8 (MB)

gh-fail-if-no-mem
When enabled (1), causes the shmget function to return a failure if
the requested segment size is larger than the value of the
gh-min-seg-size attribute, and if there is insufficient memory
allocated by the gh-chunks attribute to satisfy the request.

Default value = 1 (enabled)

kernel-stack-guard-pages
When enabled, causes kernel stacks to be separated with unmapped
guard pages. Guard pages are debugging aids that help isolate kernel
stack corruption bugs caused by either overflowing or underflowing
the kernel stack.

Default value: 1 (enabled)

new-wire-method
Internal use only. Do not modify.

Default value: 0 (off)

private-cache-percent
Specifies the percentage of the secondary cache that is reserved for
anonymous (nonshared) memory. The default is to reserve 50 percent
of the cache for anonymous memory and 50 percent for file-backed
memory (shared). To cache more anonymous memory, increase the
value of the private-cache-percent attribute.

Default value: 50 (percent)

Configuration Attribute Definitions B–31

ubc-borrowpercent (ubc_borrowpercent)
Percentage of memory above which the UBC is only borrowing
memory from the virtual memory subsystem. Paging does not occur
until the UBC has returned all its borrowed pages.

Default value: 20 (percent)

ubc-maxdirtywrites
Number of I/O operations (per second) that the virtual memory
subsystem performs when the number of dirty (modified) pages in the
UBC exceeds the value of the vm-ubcdirtypercent attribute.

Default value: 5

ubc-maxpercent (ubc_maxpercent)
Maximum percentage of physical memory that the UBC can use at
one time.

Default value: 100 (percent)

ubc-minpercent (ubc_minpercent)
Minimum percentage of physical memory that the UBC can use.

Default value: 10 (percent)

vm-aggressive-swap
When enabled, causes the task swapper to aggressively swap out idle
tasks, which prevents a low-memory condition from occurring.
Aggressive task swapping allows more jobs to be run simultaneously,
but it may decrease the interactive response time on a system that is
excessively paging and swapping.

Default value: 0 (disabled)

vm-asyncswapbuffers (asyncswapbuffers)
Number of asynchronous I/O requests per swap partition that can be
outstanding at one time. Asynchronous swap requests are used for
pageout operations and for prewriting modified pages.

Default value: 4

vm-clustermap (clustermap)
Size of the kernel cluster submap, which is used to allocate the
scatter/gather map for clustered file and swap I/O.

Default value: 1048576 (1 MB)

B–32 Configuration Attribute Definitions

vm-clustersize (clustersize)
Maximum size of a single scatter/gather map for a clustered I/O
request.

Default value: 65536 (64 KB)

vm-cowfaults (cowfaults)
Number of times that the pages of an anonymous object are
copy-on-write faulted after a fork operation but before they are copied
as part of the fork operation.

Default value: 4

vm-csubmapsize (csubmapsize)
Size of the kernel copy submap.

Default value: 1048576 (1 MB)

vm-heappercent (heappercent)
Percentage of physical memory allocated to the kernel heap. Many of
the kernel data structures are allocated from the kernel heap. The
kernel heap wires physical memory as the kernel data structures are
allocated.

Default value: 7 (percent)

vm-inswappedmin (inswappedmin)
Minimum amount of time, in seconds, that a task remains in the
inswapped state before it is considered a candidate for outswapping.

Default value: 1 (second)

vm-kentry_zone_size (kentry_zone_size)
Size of the kernel’s map entry zone submap. Kernel map entries are
reserved for both pageable and nonpageable regions of kernel virtual
address space.

Default value: 16777216 (16 MB)

vm-mapentries (mapentries)
Maximum number of map entries that any process can use at one
time. Each map entry describes one unique disjoint portion of a
virtual address space.

Default value: 200

Configuration Attribute Definitions B–33

vm-map-index-enabled
Controls whether map entries are fully indexed. Each map entry
describes one unique disjoint portion of a virtual address space. If set
to 1 (enabled), map entries are indexed in all processes.

Default value: 1 (enabled)

vm-map-index-count
Controls the size of the map entry index. A large index can improve
the lookup time, but may affect index rebalancing.

Default value: 64

vm-map-index-rebalance
Controls how frequently the map entry index gets rebalanced. If the
difference between the longest map entry list and the shortest map
entry list is greater than the value of the vm-map-index-rebalance
attribute, the system will rebalance the index.

You can decrease the value of the vm-map-index-rebalance to
improve the lookup time. However, this will increase the rate of
rebalancing. If you increase the value of the
vm-map-index-rebalance attribute, you will experience less
rebalancing but have slower lookups.

Default value: 128

vm-map-index-hiwat
Controls when the system creates a map entry index. When a process
allocates map entries equal to the value of the vm-map-index-count
attribute multiplied by the vm-map-index-hiwat attribute, the
system creates a map entry index for fast lookups.

Default value: 4

vm-map-index-lowat
Controls when the system deletes a map entry index. When a process
removes enough map entries from an index so that the number of
entries is less than the value of the vm-map-index-count attribute
multiplied by the value of the vm-map-index-lowat attribute, the
system deletes the map entry index.

Default value: 2

vm-max-rdpgio-kluster (vm_max_rdpgio_kluster)
Size of the largest pagein (read) cluster that is passed to the swap
device.

Default value: 16384 (16 KB)

B–34 Configuration Attribute Definitions

vm-maxvas (maxvas)
Maximum amount of virtual address space that a user process can
use at one time.

Default value: 1073741824 (1 GB)

vm-maxwire (maxwire)
Maximum amount of memory that any user process can wire. (Paging
activity generally increases as the amount of wired memory increases.)

Default value: 16777216 (16 MB)

vm-max-wrpgio-kluster (vm_max_wrpgio_kluster)
Size of the largest pageout (write) cluster that is passed to the swap
device.

Default value: 32768 (32 KB)

vm-min-kernel-address
Base address of the kernel’s virtual address space. The value can be
either Oxffffffff80000000 or Oxfffffffe00000000, which sets the size of
the kernel’s virtual address space to either 2 GB or 8 GB, respectively.
You may need to increase the kernel’s virtual address space on very
large (VL) systems (for example, systems with several gigabytes of
physical memory and several thousand large processes).

Default value: 18446744071562067968 (2 to the power of 64)

vm-page-free-min (vm_page_free_min)
Paging begins when the number of pages on the free page list falls
below this value.

Default value: 20 (pages)

vm-page-free-optimal (vm_page_free_optimal)
Hard swapping begins when the number of pages on the free page list
falls below this value for five seconds.

Default value: 72 (pages)

vm-page-free-reserved (vm_page_free_reserved)
Only privileged tasks can get memory when the number of pages on
the free page list falls below this value.

Default value: 10 (pages)

Configuration Attribute Definitions B–35

vm-page-free-target (vm_page_free_target)
Paging stops when the number of pages on the free page list reaches
this value.

Default value: 128 (pages)

vm-page-free-hardswap
Task swapping stops when the number of pages on the free page list
reaches this value.

Default value: 1280 (pages)

vm-page-free-swap
Idle task swapping begins when the number of pages on the free page
list falls below this value.

Default value: 74 (pages)

vm-page-lock-count
Size of the lock array that is used to synchronize access to vm_page
kernel structures. Instead of locking each page structure, the virtual
address is used to hash into the lock array. Adjust this value only if
excessive lock contention occurs.

Default value: 64

vm-page-prewrite-target
Maximum number of pages that the vm subsystem will prewrite to
swap space if it anticipates running out of memory. The prewritten
pages are the least recently referenced (LRU) pages.

Default value: 256 (pages)

vm-segmentation (segmentation)
When enabled, causes shared regions of user address space to share
the page tables that map to those shared regions.

Default value: 1 (enabled)

vm-segment-cache-max (u_seg_cache_max)
Number of text segments that can be cached in the segment cache.
(Applies only if you enable segmentation.)

The vm subsystem uses the segment cache to cache inactive
executables and shared libraries. Because objects in the segment
cache can be accessed by mapping a page table entry, it eliminates I/O
delays for repeated executions and reloads.

Reducing the number of segments in the segment cache can free
memory and help to reduce paging overhead. (The size of each

B–36 Configuration Attribute Definitions

segment depends on the text size of the executable or the shared
library that is being cached.)

Default value: 50 (segments)

vm-syncswapbuffers (syncswapbuffers)
Number of synchronous I/O requests that can be outstanding to the
swap partitions at one time. Synchronous swap requests are used for
pagein operations and task swapping.

Default value: 128

vm-syswiredpercent (syswiredpercent)
Maximum percentage of physical memory that can be dynamically
wired. The kernel and user processes use this memory for
dynamically allocated data structures and address space, respectively.

Default value: 80 (percent)

vm-ubcbuffers (ubcbuffers)
Total number of UBC I/O requests that can be outstanding at one
time.

Default value: 256

vm-ubcdirtypercent (ubcdirtypercent)
The UBC starts writing dirty (modified) pages when the number of
dirty pages reaches this value.

Default value: 10 (percent)

vm-ubcpagesteal (ubcpagesteal)
The UBC steals file pages to satisfy the file’s demand for pages when
the number of pages for a file falls below this value.

Default value: 24 (file pages)

vm-ubcseqpercent (ubcseqpercent)
Specifies the maximum amount of UBC memory that can be used to
cache a single file.

Default value: 10 (percent)

vm-ubcseqstartpercent (ubcseqstartpercent)
The UBC starts recognizing sequential file access and stealing the
UBC LRU pages for a file to satisfy its demand for pages when the
size of the UBC reaches this percentage of physical memory.

Default value: 50 (percent)

Configuration Attribute Definitions B–37

vm-vpagemax (vpagemax)
Maximum number of virtual pages within the address space for a
process that can be given individual protection attributes (that is,
protection attributes that differ from the protection attributes
associated with the other pages in the address space).

Changing the protection attributes of a single page within a virtual
memory region causes all pages within that region to be treated as
though they had individual protection attributes. For example, each
thread of a multithreaded task has a user stack in the stack region
for the process in which they run. Because multithreaded tasks have
guard pages (that is, pages that do not have read/write access)
inserted between the user stacks for the threads, all pages in the
stack region for the process are treated as though they have
individual protection attributes.

If a stack region for a multithreaded task exceeds 16 KB pages, you
may want to increase the value of the vm-vpagemax attribute.

Default value: 16384 (16 KB)

vm-zone_size (zone_size)
Percentage of physical memory that is allocated to the kernel’s zone
submap. Many of the dynamically allocated kernel data structures are
allocated out of zones that are located in the zone submap.

Default value: 0 (percent)

B.22 XPR Subsystem Attributes

The XPR (xpr) subsystem attributes are as follows:

nxprbufs (nxprbufs)
Number of contiguous buffers allocated for XPR. Each of these buffers
is of type struct xprbuf , which occupies 56 bytes. The buffers are
not allocated if XPR is not turned on.

XPR is a facility that performs silent tracing using a circular buffer.
XPR logs the pointer to a printf string and up to six arguments,
along with a timestamp and CPU information (for multiprocessor
systems), into a circular buffer.

The kernel compile-time flag XPR_DEBUGdetermines whether the
XPR debugging facility is included in compilations. By default, the
XPR facility is not included in compilations.

Default value: 0

B–38 Configuration Attribute Definitions

xprflags (xprflags)
Bit mask in which each bit controls a message type. A type of
message is enabled or disabled by setting the value of the
corresponding bit in the xprflags mask to 1 or 0.

The mapping of the bits in the xprflags mask and the different
message types are as follows:

Bit Position Message Type

0 XPR_SYSCALLS

1 XPR_TRAPS

2 XPR_SCHED

5 XPR_TCP

6 XPR_PMAP

7 XPR_VM_MAP

8 XPR_VM_OBJECT

9 XPR_VM_OBJECT_CACHE

10 XPR_VM_PAGE

11 XPR_VM_PAGEOUT

12 XPR_MEMORY_OBJECT

13 XPR_VM_FAULT

14 XPR_INODE_PAGER

15 XPR_INODE_PAGER_DATA

16 XPR_TTY

17 XPR_BIO

18 XPR_INTR

19 XPR_CACHE

20 XPR_NFS

21 XPR_SIGNAL

See the definition of the nxprbufs attribute for more information about
the XPR facility.

Configuration Attribute Definitions B–39

Glossary

This glossary lists the terms that are used to describe performance and
availability.

active list
Pages that are being used by the virtual memory subsystem or the UBC.

adaptive RAID 3/5
Also called dynamic parity RAID, adaptive RAID 3/5 functionality improves
disk I/O performance for a wide variety of applications by dynamically
adjusting, according to workload needs, between data transfer-intensive
algorithms and I/O operation-intensive algorithms.

anonymous memory
Memory that is used for stack, heap, or malloc .

attributes
Dynamically configurable kernel variables, whose values you can modify to
improve system performance. You can utilize new attribute values without
rebuilding the kernel.

bandwidth
The rate at which an I/O subsystem or component can transfer bytes of
data. Bandwidth is especially important for applications that perform large
sequential transfers. Bandwidth is also called the transfer rate.

bottleneck
A system resource that is being pushed near to its capacity and is causing
a performance degradation.

cache
A temporary location for holding data that is used to improve performance
by reducing latency. CPU caches and secondary caches hold physical
addresses. Disk track caches and write-back caches hold disk data. Caches
can be volatile (that is, not backed by disk data or a battery) or nonvolatile.

capacity
The maximum theoretical throughput of a system resource, or the
maximum amount of data, in bytes, that a disk can contain. A resource
that has reached its capacity, may become a bottleneck and degrade
performance.

Glossary–1

cluster
A loosely coupled group of servers (cluster member systems) that share
data for the purposes of high availability. Some cluster products utilize a
high-performance interconnect for fast and dependable communication.

copy-on-write page fault
A page fault that occurs when a process needs to modify a read-only virtual
page.

configuration
The assemblage of hardware and software that comprises a system or a
cluster. For example, CPUs, memory boards, the operating system, and
mirrored disks are parts of a configuration.

configure
To set up or modify a hardware or software configuration. For example,
configuring the I/O subsystem can include connecting SCSI buses and
setting up mirrored disks.

deferred mode
A swap space allocation mode by which swap space is not reserved until
the system needs to write a modified virtual page to swap space. Deferred
mode is sometimes referred to as lazy mode.

disk access time
A combination of the seek time and the rotational latency, measured in
milliseconds. A low access time is especially important for applications that
perform many small I/O operations.

eager mode
See immediate mode.

fail over
To automatically utilize a redundant resource after a hardware or software
failure, so that the resource remains available. For example, if a cluster
member system fails, the applications running on that system
automatically fail over to another member system.

file-backed memory
Memory that is used for program text or shared libraries.

free list
Pages that are clean and are not being used (the size of this list controls
when page reclamation occurs).

hardware RAID
A storage subsystem that provides RAID functionality by using intelligent
controllers, caches, and software.

Glossary–2

high availability
The ability of a resource to withstand a hardware or software failure. High
availability is achieved by using some form of resource duplication that
removes single points of failure. Availability also is measured by a
resource’s reliability. No resource can be protected against an infinite
number of failures.

immediate mode
A swap space allocation mode by which swap space is reserved when
modifiable virtual address space is created. Immediate mode is often
referred to as eager mode and is the default swap space allocation mode

kernel variables
Variables that determine kernel and subsystem behavior and performance.
System attributes and parameters are used to access kernel variables.

lazy mode
See deferred mode.

latency
The amount of time to complete a specific operation. Latency is also called
delay. High performance requires a low latency time. I/O latency can be
measured in milliseconds, while memory latency is measured in
microseconds. Memory latency depends on the memory bank configuration
and the system’s memory requirements.

mirroring
Maintaining identical copies of data on different disks, which provides high
data availability and improves disk read performance. Mirroring is also
known as RAID 1.

multiprocessor
A system with two or more processors (CPUs) that share common physical
memory.

page
The smallest portion of physical memory that the system can allocate
(8 KB of memory).

page coloring
The attempt to map a process’ entire resident set into the secondary cache.

page fault
An instruction to the virtual memory subsystem to locate a requested page
and make the virtual-to-physical address translation in the page table.

page in
To move a page from a disk location to physical memory.

Glossary–3

page-in page fault
A page fault that occurs when a requested address is found in swap space.

page out
To write the contents of a modified (dirty) page from physical memory to
swap space.

page table
An array that contains an entry for each current virtual-to-physical
address translation.

paging
The process by which pages that are allocated to processes and the UBC
are reclaimed for reuse.

parameters
Statically configurable kernel variables, whose values can be modified to
improve system performance. You must rebuild the kernel to utilize new
parameter values. Many parameters have corresponding attributes.

parity RAID
A type of RAID functionality that provides high data availability by storing
on a separate disk or multiple disks redundant information that is used to
regenerate data.

RAID
RAID (redundant array of independent disks) technology provides high
disk I/O performance and data availability. The DIGITAL UNIX operating
system provides RAID functionality by using disks and software (LSM).
Hardware-based RAID functionality is provided by intelligent controllers,
caches, disks, and software.

RAID 0
Also known as data striping, RAID 0 functionality divides data into blocks
and distributes the blocks across multiple disks in a array. Distributing the
disk I/O load across disks and controllers improves disk I/O performance.
However, striping decreases availability because one disk failure makes the
entire disk array unavailable.

RAID 1
Also known as data mirroring, RAID 1 functionality maintains identical
copies of data on different disks in an array. Duplicating data provides high
data availability. In addition, RAID 1 improves the disk read performance,
because data can be read from two locations. However, RAID 1 decreases
disk write performance, because data must be written twice. Mirroring n
disks requires 2n disks.

Glossary–4

RAID 3
RAID 3 functionality divides data blocks and distributes (stripes) the data
across a disk array, providing parallel access to data. RAID 3 provides data
availability; a separate disk stores redundant parity information that is
used to regenerate data if a disk fails. It requires an extra disk for the
parity information. RAID 3 increases bandwidth, but it provides no
improvement in the throughput. RAID 3 can improve the I/O performance
for applications that transfer large amounts of sequential data.

RAID 5
RAID 5 functionality distributes data blocks across disks in an array.
Redundant parity information is distributed across the disks, so each array
member contains the information that is used to regenerate data if a disk
fails. RAID 5 allows independent access to data and can handle
simultaneous I/O operations. RAID 5 provides data availability and
improves performance for large file I/O operations, multiple small data
transfers, and I/O read operations. It is not suited to applications that are
write-intensive.

random access pattern
Refers to an access pattern in which data is read from or written to blocks
in various locations on a disk.

raw I/O
I/O to a device that does not use a file system. Raw I/O bypasses buffers
and caches, and can provide better performance than file system I/O.

redundancy
The duplication of a resource for purposes of high availability. For example,
you can obtain data redundancy by mirroring data across different disks or
by using parity RAID. You can obtain system redundancy by setting up a
cluster, and network redundancy by using multiple network connections.
The more levels of resource redundancy you have, the greater the resource
availability. For example, a cluster with four member systems has more
levels of redundancy and thus higher availability than a two-system cluster.

reliability
The average amount of time that a component will perform before a failure
that causes a loss of data. Often expressed as the mean time to data loss
(MTDL) or the mean time to first failure (MTTF).

resident set
The complete set of all the virtual addresses that have been mapped to
physical addresses (that is, all the pages that have been accessed during
process execution).

Glossary–5

resource
A hardware or software component (such as the CPU, memory, network, or
disk data) that is available to users or applications.

physical memory
The total capacity of the memory boards installed in your system. Physical
memory is either wired by the kernel or it is shared by virtual memory and
the UBC.

rotational latency
The amount of time, in milliseconds, for a disk to rotate to a specific disk
sector.

scalability
The ability of a system to utilize additional resources with a predictable
increase in performance, or the ability of a system to absorb an increase in
workload without a significant performance degradation.

seek time
The amount of time, in milliseconds, for a disk head to move to a specific
disk track.

sequential access pattern
Refers to an access pattern in which data is read from or written to
contiguous blocks on a disk.

short page fault
A page fault that occurs when a requested address is found in the virtual
memory subsystem’s internal data structures.

SMP
Symmetrical multiprocessing (SMP) is the ability of a multiprocessor
system to execute the same version of the operating system, access common
memory, and execute instructions simultaneously.

software RAID
Storage subsystem that provides RAID functionality by using software (for
example, LSM).

striping
Distributing data across multiple disks in a disk array, which improves I/O
performance by allowing parallel access. Striping is also known as RAID 0.
Striping can improve the performance of sequential data transfers and I/O
operations that require high bandwidth.

swap in
To move a swapped-out process’ pages from disk swap space to physical
memory in order for the process to execute. Swapins occur only if the

Glossary–6

number of pages on the free page list is higher than a specific amount for a
period of time.

swap out
To move all the modified pages associated with a low-priority process from
physical memory to swap space. A swapout occurs when number of pages
on the free page list falls below a specific amount for a period of time.
Swapouts will continue until the number of pages on the free page list
reaches a specific amount.

swapping
Writing a suspended process’ modified (dirty) pages to swap space, and
putting the clean pages on the free list. Swapping occurs when the number
of pages on the free list falls below a specific threshold.

throughput
The rate at which an I/O subsystem or component can perform I/O
operations. Throughput is especially important for applications that
perform many small I/O operations.

tune
To modify the kernel by changing the values of kernel variables, thus
improving system performance.

UBC
See Unified Buffer Cache.

Unified Buffer Cache
A portion of physical memory that is used to cache most-recently accessed
file system data.

virtual address space
The array of pages that an application can map into physical memory.
Virtual address space is used for anonymous memory (memory used for
stack, heap, or malloc) and for file-backed memory (memory used for
program text or shared libraries).

virtual memory
A subsystem that uses a portion of physical memory, disk swap space, and
daemons and algorithms in order to control the allocation of memory to
processes and to the UBC.

VLDB
Refers to very-large database (VLDB) systems, which are VLM systems
that use a large and complex storage configuration. The following is a
typical VLM/VLDB system configuration:

• An SMP system with two or more high-speed CPUs

Glossary–7

• More than 4 GB of physical memory

• Multiple high-performance host bus adapters

• RAID storage configuration for high performance and high availability

VLM
Refers to very-large memory (VLM) systems, which utilize 64-bit
architecture, multiprocessing, and at least 2 GB of memory.

wired list
Pages that are wired by the kernel and cannot be reclaimed.

working set
The set of virtual addresses that are currently mapped to physical
addresses. The working set is a subset of the resident set and represents a
snapshot of the process’ resident set.

workload
The total number of applications running on a system and the users
utilizing a system at any one time under normal conditions.

zero-filled-on-demand page fault
A page fault that occurs when a requested address is accessed for the first
time.

Glossary–8

Index

A
access patterns

random, 1–4
sequential, 1–4

accounting
use to monitor resources, 2–4

active page list
definition, 4–9
displaying pages on, 2–27
monitoring, 2–23

adaptive RAID 3/5
definition, 5–6

AdvFS
balancing volumes, 5–43
configuration recommendations,

5–34
consolidating I/O transfers, 5–43
decreasing AdvFS cache size,

4–34
decreasing I/O transfer

read-ahead size, 5–41
decreasing metadata buffer

cache size, 4–34
defragmenting file domain, 5–40
disabling dirty mmapped page

flushing, 5–41
displaying extent map, 2–13t,

2–41
exercising, 2–13t
features, 5–10
forcing synchronous writes, 5–43
improving BMT performance,

5–36
increasing AdvFS cache size, 5–40
increasing dirty data caching,

5–41
managing files with, 5–4, 5–10
migrating files, 5–44

modifying device queue limits,
5–42

monitoring, 2–13t, 2–37, 2–39,
2–40, 2–41, 2–42

monitoring tools, 2–13t
moving transaction log, 5–36,

5–43
preallocating BMT space, 5–37
sizing BMT, 5–37
striping files, 5–38
tuning recommendations,

1–21, 5–38
using multiple-volume domains,

5–35
using quotas, 5–38

AdvfsAccessCleanupPercent
attribute

definition, B–3
AdvfsAccessMaxPercent attribute

definition, B–3
AdvfsCacheMaxPercent attribute

definition, B–2
use to control AdvFS cache size,

4–34, 5–40
AdvfsFavorBlockingQueue

attribute
definition, B–4

AdvfsMaxDevQLen attribute
definition, B–3
use to modify device queue

limits, 5–42
AdvfsMaxFragGrps attribute

definition, B–2
AdvfsMinFragGrps attribute

definition, B–2
AdvfsReadyQLim attribute

definition, B–3

Index–1

use to control AdvFS dirty data
caching, 5–41

advfsstat command
use to display AdvFS

performance statistics,
2–13t, 2–37

AdvfsSyncMmapPages attribute
definition, B–2
use to disable dirty mmapped

page flushing, 5–41
advscan command

use to display file domain
location, 2–13t, 2–39

aio-max-num attribute
definition, B–22

aio-max-percent attribute
definition, B–23

aio-max-retry attribute
definition, B–23

aio-percpu-data attribute
definition, B–23

aio-retry-scale attribute
definition, B–23

aio-task-max-none attribute
definition, B–23

applications
allocating virtual address space

to, 4–6
characteristics, 1–15
debugging, 2–19t
displaying CPU and memory

statistics for, 2–10t
displaying resident set size, 2–21
displaying virtual address

space size, 2–21
improving performance of, 3–4
increasing address space for, 4–23
increasing system resources for,

4–24
monitoring CPU and memory

usage, 2–20
optimizing, 3–4
prioritizing, 3–5
profiling, 2–19t, 3–4
profiling tools, 2–19t

reducing memory requirements,
4–27

using granularity hints, 4–36
using parallelism, 3–4
using shared libraries, 3–5

arptab-nb attribute
definition, B–18

asynchronous swap buffers
definition, 4–15, 4–31

at command
use to optimize CPU usage, 3–3

atom toolkit
use to profile applications, 2–19t

attributes
definition, 1–2
displaying, 2–52, 2–54
list of, B–1
modifying, 2–51, 2–52, 2–54, 2–55
modifying run-time values, 2–54

audit-buffer-size attribute
definition, B–24

audit-site-events attribute
definition, B–24

autonice attribute
definition, B–19

autonice-penalty attribute, B–19
autonice-time attribute, B–19
availability

buses, 1–9
cluster interconnects, 1–9
definition, 1–5, 1–6
disks, 1–5, 1–7, 1–8, 1–11
eliminating points of failure, 1–8
failover, 1–5
impact on performance, 1–12
networks, 1–5, 1–9
points of failure, 1–6
power, 1–9
systems, 1–5, 1–8, 1–10
using a cluster, 1–8
using LSM, 1–7
using RAID, 1–7

Index–2

B
balance command

use to move AdvFS files across
volumes, 5–43

bandwidth
definition, 1–3

basic-dma-window-size attribute
definition, B–13

batch command
use to optimize CPU usage, 3–3

BCL
(See block-change logging)

bdevsw_size attribute
definition, B–13

binlog-buffer-size attribute
definition, B–5

bio_stats structure
determining block miss rate, 4–40
use to display metadata buffer

cache statistics, 2–36
use to display metadata buffer

cache statistics, 2–11t
bitmap metadata table

(See BMT)
block-change logging

use to improve mirroring
performance, 5–25

BMT
definition, 5–36
improving performance of, 5–36
preallocating space for, 5–37
sizing, 5–37

booted_args attribute
definition, B–5

booted_kernel attribute
definition, B–5

bottleneck
definition, 1–3
impact on performance, 1–13

bufcache attribute
definition, B–27
use to control metadata buffer

cache size, 4–34, 4–40

use to control size of metadata
buffer cache, 2–37

buffer-hash-size attribute
definition, B–27
use to control hash chain table

size, 4–41
buses

availability, 1–9
distributing I/O across, 5–15

C
cache access times

relative speeds, 4–3
CAM

monitoring, 2–32
tuning, 5–49

cam_ccb_increment attribute
definition, B–14
use to tune CAM, 5–49

cam_ccb_low_water attribute
definition, B–13
use to tune CAM, 5–49

cam_ccb_pool_size attribute
definition, B–13
use to tune CAM, 5–49

capacity
definition, 1–3
impact on performance, 1–13

cdevsw_size attribute
definition, B–13

chfile command
use to force AdvFS synchronous

writes, 5–43
chvol comand

use to control AdvFS dirty data
caching, 5–41

chvol command
use to colsolidate AdvFS I/O

transfers, 5–43
use to decrease I/O transfer

read-ahead size, 5–41
Class Scheduler

use to allocation CPU
resources, 3–3

Index–3

clock-frequency attribute
definition, B–5

cluster
definition, 1–5
interconnect availability, 1–9
member systems, 1–8
products, 1–8
system support, 1–18
use for system availability, 1–8

Common Access Method
(See CAM)

configuration
choosing a system, 1–17
definition, 1–1
planning, 1–13, 1–14
recommendations, 1–20
steps, 1–22

contig-malloc-percent attribute
definition, B–30

copy-on-write page fault
definition, 4–8

cpu-enable-mask attribute
definition, B–5

CPUs
adding processors, 3–1
allocating resources, 3–1
improving performance of, 3–1
internal caches, 4–3
monitoring, 2–10t, 2–11t, 2–20,

2–22, 2–25, 2–28, 3–2
optimizing resources, 3–3
scheduling jobs, 3–3
specifying the lockmode, 3–4
using the Class Scheduler, 3–3

cpustat extension
use to report CPU statistics,

2–10t, 2–25
create-fastlinks attribute

definition, B–26
cron command

use to optimize CPU usage, 3–3

D
dbx

use to debug kernels, 2–19t
use to display and modify

run-time kernel variables,
2–51

use to display kernel variables,
2–52

use to display virtual memory
statistics, 2–26

use to modify run-time kernel
variables, 2–52

dbx print nchstats
use to display namei cache

statistics, 2–11t
dbx print vm_perfsum

use to display UBC statistics,
2–11t

use to display virtual memory
statistics, 2–10t

dcpi tool
use to profile systems, 2–8

debugging tools
dbx, 2–19t
kdbx, 2–19t
ladebug, 2–19t

DECevent utility
use to diagnose performance

problems, 2–3
use to monitor system events,

2–4, 2–5
deferred swap mode

definition, 4–19
defragment command

use to defragment AdvFS file
domain, 5–40

delay_wbuffers variable
use to delay write buffer

flushing, 5–48
device_switch_inited attribute

definition, B–14
device_switch_print attribute

definition, B–14
device_switch_stale attribute

definition, B–14
dfldsiz parameter

when to tune, 3–3

Index–4

dflssiz parameter
when to tune, 3–3

dia command
use for event logging, 2–4

disk partitions
managing disks with, 5–3

disk quotas
use to limit disk usage, 2–4
using AdvFS, 5–38
using UFS, 5–46

disks
availability, 1–5, 1–7, 1–8, 1–11
defragmenting, 5–40
distributing file systems across,

5–15
distributing I/O across, 5–15
exercising, 2–11t
managing with hardware

RAID, 5–3
managing with LSM, 5–3, 5–9
managing with partitions, 5–3
mirroring, 5–5
monitoring, 2–11t, 2–28, 2–34
monitoring commands, 2–11t
placing data on ZBR disks, 5–16
striping, 5–4
tuning recommendations, 1–21
using high-performance, 5–12
using Prestoserve, 5–14
using quotas, 2–4
using small platter sizes, 5–12
using solid-state, 5–13
using wide data paths, 5–13

diskx exerciser
use to exercise disks, 2–11t

DMA
using for high performance, 5–13

dma-sg-map-unload-zero attribute
modifying for AlphaServer 8200

and 8400, 5–21
dump-sp-threshold attribute

definition, B–6
dump-user-pte-pages attribute

definition, B–31
dumpfs command

use to display UFS information,
2–11t, 2–34

dxkerneltuner
use to display and modify

attributes, 2–51
use to display attributes, 2–54
use to modify attributes, 2–54

dxlsm
use to graphically display LSM

statistics, 2–14t, 2–44

E
enhanced-core-max-versions

attribute
definition, B–19

enhanced-core-name attribute
definition, B–20

event logging
use to monitor system events,

2–3
using DECevent utility, 2–3
using dia, 2–4

extent map
displaying, 2–13t, 2–41

F
failover

definition, 1–5
fifo-do-adaptive attribute

definition, B–27
file domain

monitoring, 2–13t, 2–40
file system metadata

caching options, B–19
file systems

distributing across disks, 5–15
exercising, 2–11t, 2–13t
managing with AdvFS, 5–4, 5–10
tuning recommendations, 1–21
tuning VFS, 5–16

files
managing with AdvFS, 5–4, 5–10

Index–5

small files, handling many, B–19
filesets

monitoring, 2–13t, 2–41, 2–42
fragment size

monitoring, 2–11t, 2–34
free page list

definition, 4–9
displaying pages on, 2–27
monitoring, 2–23

fsx exerciser
use to test file systems, 2–11t,

2–13t

G
gh-chunks attribute, B–31

use to reserve shared memory,
4–35

gh-fail-if-no-mem attribute, B–31
use to reserve shared memory,

4–36
gh-min-seg-size attribute, B–31

use to reserve shared memory,
4–36

give-boost attribute
definition, B–20

gprof command
use to profile applications, 2–19t

granularity hints
use to reserve shared memory,

4–34

H
hardware RAID

(See also RAID)
choosing a chunk size, 5–32
configuration recommendations,

5–31
definition, 5–7
distributing disks across buses,

5–32
features, 5–7
installing spare disks, 5–34

products, 5–8
RAID level support, 5–8
striping mirrored disks, 5–33
using a write-back cache, 5–33
using dual-redundant

controllers, 5–34
using same-capacity disks, 5–32
using write-back cache, 5–7, 5–14

high availability
(See availability)

hiprof
(See atom toolkit)
use to profile applications, 2–19t

host bus adapters
using DMA, 5–13
using high-performance, 5–13

I
I/O clustering

checking cluster reads and
writes, 2–35

idle time
monitoring, 2–23, 2–28

immediate swap mode
definition, 4–18

inactive page list
definition, 4–9
displaying pages on, 2–27

inifaddr_hsize attribute
definition, B–8
use to improve IP lookups, 6–6

inode-hash-size attribute
definition, B–26

inodes
reducing density of, 5–45

Internet server
definition, A–1

interprocess communications
(See IPC)

interrupts
monitoring, 2–23

iostat command
use to diplay disk and CPU

usage, 2–11t

Index–6

use to display CPU usage, 2–28
use to display disk usage, 2–28

IPC
(See also System V IPC)
description, 3–5
monitoring, 2–10t
tuning, 3–6

ipcs command
use to monitor IPC, 2–10t, 3–6

ipdefttl attribute
definition, B–8

ipdirected_broadcast attribute
definition, B–8

ipforwarding attribute
definition, B–8

ipfragttl attribute
definition, B–9

ipgateway attribute
definition, B–9

ipport_userreserved attribute
definition, B–9
use to increase concurrent

ports, 6–4
ipsendredirects attribute

definition, B–9
ipsrcroute attribute

definition, B–9

J
job priority

adjusting to optimize CPU
usage, 3–3

job scheduling
use to optimize CPU usage, 3–3

K
kdbx

use to debug kernels, 2–19t
kernel

attributes, B–1
debugging, 2–19t
debugging tools, 2–19t

displaying variable values, 2–52
modifying attributes, 2–51
modifying parameters, 2–51
modifying variables, 2–51
profiling, 2–19t
reducing size of, 3–4, 4–23

kernel preemption, real-time
rt-preempt-opt attribute

settings, B–8
kernel variables

displaying, 2–52
modifying, 2–52
using dbx to display and

modify, 2–51
kernel-stack-guard-pages attribute

definition, B–31
kmem_debug attribute

definition, B–6
kprofile utility

use to profile kernels, 2–19t

L
ladebug

use to debug kernels and
applications, 2–19t

large programs
(See program size limits)

latency
definition, 1–3

lite-system attribute
definition, B–6

lockdebug attribute
definition, B–6

lockmaxcycles attribute
definition, B–7

lockmode
specifying for CPU, 3–4

lockmode attribute
definition, B–6

locks
monitoring, 2–10t, 2–26

lockstat extension
displaying lock statistics, 2–26

lockstats extension

Index–7

use to display lock statistics,
2–10t

locktimeout attribute
definition, B–7

LSM
choosing a mirrored volume

read policy, 5–27
configuration recommendations,

5–22
distributing database and log

copies, 5–25
distributing striped volume

subdisks, 5–29
features, 5–9
grouping disks, 5–24
increasing disks in a striped

volume, 5–29
increasing maximum volumes,

5–23
increasing the page-out rate, 4–32
increasing volinfo.max_io

parameter, 5–31
managing disks with, 5–3
mirroring volumes across

busses, 5–26
monitoring, 2–14t, 2–42, 2–43,

2–44
monitoring events with volstat,

2–5
monitoring events with

volwatch, 2–5
monitoring tools, 2–14t
RAID support, 5–9
sizing BCL subdisks, 5–28
sizing private regions, 5–23
sizing rootdg, 5–23
sizing stripe widths, 5–30
tuning recommendations, 5–30
use for disk availability, 1–7
using a symmetrical

configuration, 5–27
using BCL subdisks, 5–28
using block-change logging, 5–25
using database and log copies,

5–24

using mirrored volumes, 5–25
using multiple BCL subdisks,

5–27
using multiple plexes, 5–27
using sliced disks, 5–22
using solid-state disks for BCL

subdisks, 5–28
using striped volumes, 5–28
using with hardware RAID, 5–28

lsm_rootdev_is_volume attribute
definition, B–18

lsm_swapdev_is_volume attribute
definition, B–18

M
malloc function

use to control memory usage,
4–28

max-free-file-structures attribute
definition, B–27

max-ifq-length attribute
definition, B–5

max-iosize-read attribute
definition, B–14

max-iosize-write attribute
definition, B–14

max-kernel-ports attribute
definition, B–15

max-lock-per-thread attribute
definition, B–7

max-per-proc-address-space
attribute

definition, B–20
max-per-proc-data-size attribute

definition, B–20
use to increase user data

segment size, 4–24
max-per-proc-stack-size attribute

definition, B–20
use to increase user address

space, 4–24
max-proc-address-size attribute

use to increase user address
space, 4–24

Index–8

max-proc-per-user attribute
definition, B–20
use to increase number of

processes, 4–25
max-threads-per-user attribute

definition, B–20
use to increase number of

threads, 4–25
max-ufs-mounts attribute

definition, B–27
max-vnodes attribute

definition, B–28
use to increase number of open

files, 5–18
max-vol attribute

definition, B–18
use to increase number of LSM

volumes, 5–23
max_callbacks attribute

definition, B–4
maxdsiz parameter

when to tune, 3–3
maxssiz parameter

when to tune, 3–3
maxusers attribute

definition, B–20
use to increase namei cache

size, 5–18
use to increase number of open

files, 5–18
use to increase system

resources, 4–24
member systems

definition, 1–8
Memory File System

(See MFS)
memory management

(See also paging, swapping,
UBC, virtual memory)

controlling paging and
swapping, 4–10

CPU cache access, 4–3
effect of PAL code, 4–8
increasing system resources, 4–24

metadata buffer cache
allocation, 4–16

overview, 4–1
paging, 4–13
prewriting dirty pages, 4–10,

4–30
swap buffers, 4–15
swapping, 4–14
tracking pages, 4–9
tuning the UBC, 4–12, 4–15
tuning virtual memory, 4–19
types of caches, 4–3

memx exerciser
use to exercise memory, 2–10t

message-buffer-size attribute
definition, B–7

metadata buffer cache
decreasing size of, 4–34
definition, 4–16
increasing size of, 4–40
increasing size of hash chain

table, 4–41
monitoring, 2–11t, 2–36
tuning recommendations, 4–40

MFS
definition, 5–46
increasing the number of

mounts, 5–49
migrate command

use to move AdvFS files, 5–44
min-free-vnodes attribute

definition, B–28
use to cache more free vnodes,

5–19
mirrored disks

definition, 1–5, 5–5
use for availability, 1–7
using hardware RAID, 5–8
using LSM, 5–25

monitoring tools
advfsstat command, 2–13t, 2–37
advscan command, 2–13t, 2–39
bio_stats structure, 2–11t, 2–36
dbx, 2–19t
dbx print nchstats, 2–11t

Index–9

dcpi tool, 2–8
diskx exerciser, 2–11t
dumpfs command, 2–11t, 2–34
dxlsm, 2–14t, 2–44
fsx exerciser, 2–11t, 2–13t
iostat command, 2–11t
ipcs command, 2–10t
LSM, 2–14t, 2–42
netstat utility, 2–16t, 2–45
networks, 2–16t
nfsstat utility, 2–16t, 2–48
nfswatch command, 2–16t
ping command, 2–16t
ps, 2–10t
ps command, 2–16t, 2–50
showfdmn utility, 2–13t, 2–40
showfile utility, 2–13t, 2–41
showfsets utility, 2–13t, 2–42
sobacklog_drops attribute,

2–16t, 2–50
sobacklog_hiwat attribute,

2–16t, 2–50
somaxconn_drops attribute,

2–16t, 2–50
swapon command, 2–10t
sys_check utility, 1–20, 2–7
tcpdump utility, 2–16t
traceroute command, 2–16t
ufs_clusterstats structure,

2–11t, 2–35
uptime command, 2–10t
vmstat utility, 2–10t
volprint utility, 2–14t, 2–42
volstat utility, 2–14t, 2–43
voltrace utility, 2–14t, 2–44
volwatch script, 2–14t, 2–44
w utility, 2–10t
xload command, 2–10t

Motif applications
compilation options, A–4

msg-max attribute
definition, 3–6, B–15
use to increase message size, 4–26

msg-mnb attribute
definition, 3–6

msg-mnb attribute (IPC)
definition, B–15

msg-mni attribute
definition, 3–6

msg-mni attribute (IPC)
definition, B–15

msg-tql attribute
definition, 3–6
use to increase message queue

size, 4–27
msg-tql attribute (IPC)

definition, B–15
msgbuf_size parameter

definition, B–7
multiprocessing

using, 3–1
multiprocessor

definition, 1–2
must-be-root attribute

definition, B–4

N
name-cache-hash-size attribute

definition, B–28
use to increase hash chain table

size, 5–18
name-cache-size attribute

definition, B–28
use to control namei cache size,

4–34, 5–18
namei cache

decreasing size of, 4–34
increasing size of, 5–18
increasing size of hash chain

table, 5–18
monitoring, 2–11t, 2–29

namei-cache-valid-time attribute
definition, B–29
use to control vnode

deallocation, 5–20
ncallout attribute

definition, B–21
ncallout_alloc_size attribute

definition, B–21

Index–10

nchstats structure
use to check namei cache, 2–29
use to display namei cache

statistics, 2–11t
nclist attribute

definition, B–4
netisrthreads attribute

definition, B–18
netstat utility

use to display network
statistics, 2–16t

use to monitor networks, 2–45
networks

allocating memory for UBC, 6–8
availability, 1–5, 1–9
decrease partial TCP timeout

limit, 6–6
decreasing TCP context timeout

limit, 6–7
decreasing the TCP

retransmission rate, 6–7
delaying TCP data

acknowledgment, 6–7
disabling use of a PMTU, 6–9
enabling keepalive, 6–5
hardware performance, 6–1
improving IP lookups, 6–6
improving TCP lookup rate, 6–3
increasing concurrent ports, 6–4
increasing TCP socket buffers,

6–8
increasing the TCP segment

size, 6–8
increasing UDP socket buffers,

6–8
monitoring, 2–16t, 2–45, 2–48
monitoring events with

tcpdump utility, 2–4
monitoring NFS servers, 2–16t
monitoring socket listen queue

events, 6–4
monitoring sockets, 2–16t, 2–50
monitoring threads, 2–16t
monitoring tools, 2–16t, 2–45
querying remote systems, 2–16t

tuning recommendations,
1–22, 6–1

tuning socket listen queue, 6–3
using NFS in slow, 6–12

new-wire-method attribute, B–31
NFS

adjusting number of daemons,
6–10

adjusting number of nfsiod
daemons, 6–11

decreasing timeouts, 6–12
disabling write gathering, 6–11
increasing number of threads,

6–11
modifying cache timeout limits,

6–11
monitoring, 2–16t, 2–48, 2–50
monitoring events with

nfswatch, 2–5
monitoring servers, 2–16t
tuning recommendations,

1–22, 6–9
using Prestoserve, 6–10
using protocol version 3.0, 6–12

nfs-flatten-mode attribute
definition, B–24

nfsd daemon
adjusting number of nfsd

daemons, 6–10
nfsiod daemon

adjusting number of daemons,
6–11

nfsstat utility
use to display network and

NFS statistics, 2–16t
use to monitor NFS, 2–48

nfswatch command
use to monitor NFS events, 2–5
use to monitor NFS server, 2–16t

nice command
use to decrease system load, 2–25
use to optimize CPU usage, 3–3

nmount attribute
definition, B–26

noadd-exec-access attribute

Index–11

definition, B–29
nptys attribute

definition, B–22
nslip attribute

definition, B–18
nstrpush attribute

definition, B–26
num-of-sems attribute

definition, B–15
nvnode attribute

definition, B–29
nxprbufs attribute

definition, B–38

O
old_obreak attribute

definition, B–7
open-max-hard attribute

definition, B–21
use to control open file

descriptors, 5–20
open-max-soft attribute

definition, B–21
use to control open file

descriptors, 5–20

P
page

definition, 1–2
page coloring

definition, 4–9
page fault

definition, 4–8
page in

monitoring, 2–23
page lists

tracking, 4–9
page out

monitoring, 2–23
page table

definition, 4–7
page-in page fault

definition, 4–8
pageouts

definition, 4–13
pages

distribution of, 4–2
monitoring, 2–23
reclaiming, 4–9
tracking, 4–9

paging
attributes, 4–10
controlling rate of, 4–10
definition, 1–2, 4–10, 4–13
increasing threshold, 4–33
monitoring, 2–23, 4–29
reclaiming pages, 4–9
reducing rate of, 4–19
starting, 4–13
threshold, 4–11

PAL code
influence on memory

management, 4–8
parallelism

using in applications, 3–4
parameters

definition, 1–2
modifying, 2–52, 2–56

path-num-max attribute
definition, B–29

per-proc-address-space attribute
definition, B–21
use to increase user address

space, 4–24
per-proc-data-size attribute

definition, B–21
use to increase user data

segment size, 4–24
per-proc-stack-size attribute

definition, B–21
use to increase user address

space, 4–24
Performance Manager

use to monitor system events,
2–4, 2–5

Performance Visualizer

Index–12

use to monitor cluster events,
2–4, 2–6

physical memory
definition, 4–1
determining requirements for,

4–17
distribution of, 4–1, 4–2
reducing wired memory, 3–4
reserving for shared memory,

4–34
UBC, 4–2
virtual memory, 4–1
wired, 4–1

physio_max_coalescing attribute
definition, B–7

ping command
use to query remote system, 2–16t

pipe-databuf-size attribute
definition, B–29

pipe-max-bytes-all-pipes attribute
definition, B–30

pipe-maxbuf-siz attribute
definition, B–29

pipe-single-write-max attribute
definition, B–29

pipes, 3–5
pixie

(See atom toolkit)
use to profile applications, 2–19t

pmtu_decrease_intvl attribute
definition, B–9

pmtu_enabled attribute
definition, B–9
use to disable PMTU, 6–9

pmtu_increase_intvl attribute
definition, B–9

pmtu_rt_check_intvl attribute
definition, B–10

points of failure
buses, 1–9
cluster interconnects, 1–9
disks, 1–8, 1–11
eliminating, 1–8
networks, 1–9
power, 1–9

systems, 1–8, 1–10
port-hash-max-num attribute

definition, B–15
port-reserved-max-num attribute

definition, B–16
power

availability, 1–9
Prestoserve

prmetaonly attribute, B–19
use to improve NFS

performance, 6–10
use to cache only metadata, 5–19
use to improve synchronous

writes, 5–14
prewriting dirty pages

controlling, 4–30
use to improve performance, 4–10

priorities
changing for applications, 3–3

private-cache-percent attribute
definition, B–31
use to reserve cache memory, 4–9

prmetaonly attribute
definition, B–19
use to cache only metadata, 5–19

process management
max-proc-per-user attribute,

B–20
prof command

use to profile applications, 2–19t
profiling tools

atom toolkit, 2–19t
gprof, 2–19t
hiprof, 2–19t
kprofile utility, 2–19t
pixie, 2–19t
prof, 2–19t
third, 2–19t
uprofile utility, 2–19t

program size limits
how to adjust, 3–3

ps command
use to display CPU and

memory usage, 2–20
use to display idle threads, 2–50

Index–13

use to display process
information, 2–10t

use to display thread
information, 2–16t

R
RAID

definition, 1–4
managing storage with, 5–3
product features, 5–6
system support of, 1–18
use for disk availability, 1–7
using LSM, 5–9

RAID 0
definition, 5–4

RAID 1
definition, 5–5

RAID 3
definition, 5–5

RAID 5
definition, 5–5

RAID levels
definition, 1–4, 5–4

random access patterns
definition, 1–4

raw I/O
definition, 1–4

real-time interprocess
communication

pipes and signals, 3–6
real-time kernel preemption

rt-preempt-opt attribute
settings, B–8

redundancy
definition, 1–5
multiple levels, 1–7
use for availability, 1–7

reliability
definition, 1–6

resident set
definition, 4–7
displaying size of, 2–21

rotational latency
definition, 1–3

round-robin-switch-rate attribute
definition, B–21

rt-preempt-opt attribute
definition, B–8

S
sb_max attribute

definition, B–25
scalability

definition, 1–3, 1–13
sched-min-idle attribute

definition, B–22
seek time

definition, 1–3
sem-aem attribute

definition, 3–7, B–16
sem-mni attribute

definition, 3–6, B–16
sem-msl attribute

definition, 3–6, B–16
sem-opm attribute

definition, 3–6, B–16
sem-ume attribute

definition, 3–7, B–16
sem-vmx attribute

definition, 3–7, B–16
semaphore attributes

list of, 3–6
sequential access patterns

definition, 1–4
set-max-num attribute

definition, B–16
shared memory

exercising, 2–10t
reserving memory for, 4–34

shared memory segments
tuning, B–31

shm-max attribute
definition, 3–7, B–17
use to increase shared memory

region size, 4–27
shm-min attribute

definition, 3–7, B–17
shm-mni attribute

Index–14

definition, 3–7, B–17
shm-seg attribute

definition, 3–7, B–17
use to increase number of

attached shared memory
regions, 4–27

shmx exerciser
use to exercise shared memory,

2–10t
short page fault

definition, 4–8
showfdmn utility

use to display file domain and
volume statistics, 2–40

use to display file domain and
volumestatistics, 2–13t

showfile utility
use to display AdvFS file

information, 2–13t, 2–41
showfsets utility

use to display fileset
information, 2–13t, 2–42

signals, 3–5
sigqueue-max-num attribute

definition, B–23
SMP

cpu-enable-mask attribute
settings, B–5

definition, 1–2
snmp_devs attribute

definition, B–24
sobacklog_drops attribute

definition, B–25
use to report socket

information, 2–50
use to monitor sockets , 6–4
use to report socket

information, 2–16t
sobacklog_hiwat attribute

definition, B–25
use to report socket

information, 2–16t, 2–50
use to monitor sockets, 6–4

sockets, 3–5
monitoring, 2–16t, 2–50

software RAID
(See LSM)

solid-state disks
definition, 5–13

somaxconn attribute
definition, B–25
use to tune socket listen queue,

6–3
somaxconn_drops attribute

definition, B–25
use to report socket

information, 2–16t, 2–50
use to monitor sockets, 6–4

sominconn attribute
definition, B–25
use to tune socket listen queue,

6–3
special-vnode-alias-tbl-size

attribute
definition, B–30

ssm-enable-core-dump attribute
definition, B–17

ssm-threshold attribute
definition, B–17
use to control shared page

tables, 4–27
stack size

increasing, 4–24
storage subsystems

definition, 5–1
impact on performance, 5–1

streams , 3–5
striping

definition, 5–4
using hardware RAID, 5–8
using LSM, 5–28

striping files
using AdvFS, 5–38

strmsgsz attribute
definition, B–26

subnetsarelocal attribute
definition, B–10

swap I/O requests, asynchronous
vm-asyncswapbuffers attribute,

B–32

Index–15

swap I/O requests, synchronous
vm-syncswapbuffers attribute,

B–37
swap out

definition, 4–14
swap space

adding with swapon, 2–10t
allocation modes, 4–18
configuration recommendations,

4–18
controlling I/O queue depth,

4–15, 4–31
determining requirements for,

4–17
displaying, 4–17
distributing, 5–15
monitoring, 2–25, 2–29

swapin
definition, 4–15

swapon command
use to add swap space, 2–10t
use to monitor swap space,

2–10t, 2–25, 4–17
swapping

attributes, 4–10
controlling rate of, 4–10, 4–29
definition, 1–2, 4–10, 4–14
enabling aggressive, 4–33
impact on performance, 4–15
reducing rate of, 4–19, 4–29
specifying additional disk space

for, 2–10t
starting, 4–14, 4–15
stopping, 4–15
threshold, 4–11

switchlog command
use to move transaction log, 5–43

symmetrical multiprocessing
definition, 1–2

synchronous swap buffers
definition, 4–15, 4–31

synchronous write operations
Prestoserve caching options, B–19

sys-v-mode attribute
definition, B–30

sys_check utility
use to gather performance

information, 1–20, 2–7
sysconfig

use to display attributes, 2–52,
2–54

use to modify run-time
attribute values, 2–54

sysconfigdb
use to modify attributes, 2–52,

2–55
sysconfigtab file

modifying with sysconfigdb, 2–55
system events

monitoring with DECevent,
2–4, 2–5

monitoring with nfswatch, 2–5
monitoring with Performance

Manager, 2–4, 2–5
monitoring with Performance

Visualizer, 2–4, 2–6
monitoring with tcpdump

utility, 2–4
monitoring with volstat utility,

2–5
monitoring with volwatch, 2–5

system jobs
displaying statistics for, 2–10t

system load
decreasing with nice, 2–25
displaying statistics for, 2–10t
monitoring, 2–10t, 2–24

system time
monitoring, 2–23, 2–28

System V IPC, 3–5
systems

adding CPUs, 3–1
availability, 1–5, 1–8, 1–10
characteristics, 1–17, 1–19
cluster support, 1–18
CPU processing speed, 1–17
host bus adapter support, 1–18
memory in, 1–18
monitoring, 3–2
multiprocessing, 1–17

Index–16

network adapter support, 1–18
number of CPUs in, 1–17
optimizing CPU resources, 3–3
planning, 1–19
RAID support, 1–18
requirements for, 1–19
tuning recommendations, 1–20

T
task-max attribute

definition, B–22
use to increase number of

tasks, 4–25
tcbhashsize attribute

definition, B–10
use to improve TCP lookups, 6–3

tcp_compat_42 attribute
definition, B–10

tcp_dont_winscale attribute
definition, B–10

tcp_keepalive_default attribute
definition, B–10
use to enable keepalive, 6–5

tcp_keepcnt attribute
definition, B–10
use to specify maximum

keepalive probes, 6–5
tcp_keepidle attribute

definition, B–11
use to specify idle time, 6–5

tcp_keepinit attribute
definition, B–11
use to specify TCP timeout

limit, 6–6
tcp_keepintvl attribute

definition, B–11
use to specify retransmission

probes, 6–5
tcp_msl attribute

definition, B–11
use to decrease TCP context

timeout limit, 6–7
tcp_mssdflt attribute

definition, B–11

use to increase the TCP
segment size , 6–8

tcp_recvspace attribute
definition, B–11
use to increase TCP socket

buffers , 6–8
tcp_rexmit_interval_min attribute

definition, B–11
use to decrease TCP

retransmission rate, 6–7
tcp_rttdflt attribute

definition, B–11
tcp_sendspace attribute

definition, B–12
use to increase TCP socket

buffers, 6–8
tcp_ttl attribute

definition, B–12
tcp_urgent_42 attribute

definition, B–12
tcpdump utility

use to monitor network events,
2–4, 2–16t

tcpnodelack attribute
definition, B–11
use to delay TCP data

acknowledgment, 6–7
tcprexmtthresh attribute

definition, B–11
tcptwreorder attribute

definition, B–12
third

(See atom toolkit)
use to profile applications, 2–19t

thread-max attribute
definition, B–22
use to increase number of

threads, 4–25
threads

monitoring, 2–16t
throughput

definition, 1–3
traceroute command

Displaying network packet
route, 2–16t

Index–17

use to display packet route, 2–16t
tuning

AdvFS recommendations,
1–21, 5–38

CPUs, 3–1
definition, 1–2
disk recommendations, 1–21
file system recommendations,

1–21
Internet server

recommendations, A–1
low-memory workstation

recommendations, A–2
memory recommendations, 1–21
metadata buffer cache

recommendations, 4–40
network recommendations, 1–22
NFS recommendations, 1–22
recommendations, 1–20
steps for, 1–22
system recommendations, 1–20
UBC recommendations, 4–37
UFS recommendations, 1–22,

5–47
virtual memory

recommendations, 4–19

U
UBC

allocating memory for, 6–8
allocating memory to, 4–12
borrowing threshold, 4–13
controlling large file caching,

4–32
controlling the write device

queue depth, 4–16, 4–32
decreasing borrowed memory,

4–39
definition, 1–3, 4–2, 4–15
increasing maximum size of, 4–38
increasing minimum size of, 4–39
increasing size of, 5–19
monitoring, 2–11t, 2–30, 2–31,

4–38

reducing size of, 4–28
reusing pages, 4–32
tuning recommendations, 4–37
use of, 4–2
using mmap to reduce disk I/O,

4–40
when to tune, 4–38

UBC LRU page list
definition, 4–9
displaying pages on, 2–27

ubc-borrowpercent attribute
definition, B–32
use to control borrowed

memory, 4–39
ubc-maxdirtywrites attribute

use to prewrite dirty pages, 4–10
use to prewrite pages, 4–30

ubc-maxpercent attribute
definition, B–32
use to control UBC memory

allocation, 4–28, 4–38
use to decrease paging, 4–29
use to set UBC maximum

memory, 4–12
ubc-minpercent attribute

definition, B–32
use to control UBC minimum

size, 4–12, 4–39
ucred-max attribute

definition, B–30
udp_recvspace attribute

definition, B–12
use to increase UDP socket

buffers , 6–8
udp_sendspace attribute

definition, B–12
use to increase UDP socket

buffers, 6–8
udp_ttl attribute

definition, B–12
udpcksum attribute

definition, B–12
UFS

allocating contiguous blocks, 5–46

Index–18

configuration recommendations,
5–44

defragmenting a file system, 5–47
delaying write buffer flushing,

5–48
exercising, 2–11t
increasing blocks combined for

a read, 5–46
increasing blocks combined for

read ahead, 5–48
increasing the blocks combined

for a write, 5–48
increasing the number of

mounts, 5–49
modifying fragment size, 5–45
monitoring, 2–11t, 2–34, 2–35
reducing inode density, 5–45
tuning recommendations,

1–22, 5–47
using a memory file system

(MFS), 5–46
using quotas, 5–46

ufs-blkpref-lookbehind attribute
definition, B–26

ufs_clusterstats structure
use to display UFS clustering

statistics, 2–11t, 2–35
ufs_getapage_stats structure

use to check UBC, 2–31
Unified Buffer Cache

(See UBC)
uninterruptible power system

(See UPS)
uprofile utility

use to profile applications, 2–19t
UPS

power availability, 1–9
uptime command

use to display system load,
2–10t, 2–24

user address space
increasing, 4–24

user data segment
increasing, 4–24

user time

monitoring, 2–23, 2–28
user_cfg_pt attribute

definition, B–8
users

characteristics, 1–16

V
VFS

definition, 5–16
virtual address space

definition, 4–6
displaying size of, 2–21
increasing, 4–23

virtual file system
definition, 5–16

virtual memory
accessing addresses, 4–7
address space, 4–6
definition, 1–2, 4–1
enabling aggressive swapping,

4–33
exercising, 2–10t
function of, 4–5
increasing address space, 4–23
increasing paging threshold, 4–33
increasing stack size, 4–24
increasing user address space,

4–24
increasing user data segment

size, 4–24
monitoring, 2–10t, 2–20, 2–22,

2–26
page faulting, 4–7
page table, 4–7
reducing application memory

requirements, 4–27
resident set, 4–7
translating virtual addresses,

4–7
tuning recommendations, 1–21
use of, 4–2
when to tune, 4–19
working set, 4–7

VLDB

Index–19

definition, 1–2
VLM

definition, 1–2
vm-aggressive attribute

use for aggressive swapping, 4–33
vm-aggressive-swap attribute

definition, B–32
vm-asyncswapbuffers attribute

definition, B–32
use to control swap I/O queue

depth, 4–15, 4–31
vm-clustermap attribute

definition, B–32
vm-clustersize attribute

definition, B–33
vm-cowfaults attribute

definition, B–33
vm-csubmapsize attribute

definition, B–33
vm-heappercent attribute

definition, B–33
vm-inswappedmin attribute

definition, B–33
vm-kentry_zone_size attribute

definition, B–33
vm-map-index-count attribute

definition, B–34
vm-map-index-enabled attribute

definition, B–34
vm-map-index-hiwat attribute

definition, B–34
vm-map-index-lowat attribute

definition, B–34
vm-map-index-rebalance attribute

definition, B–34
vm-mapentries attribute

definition, B–33
use to increase mmapped files,

4–26
vm-max-rdpgio-kluster attribute

definition, B–34
use to control page-in cluster

size, 4–30
vm-max-wrpgio-kluster attribute

definition, B–35

use to control page-out cluster
size, 4–31

vm-maxvas attribute
definition, B–35
use to increase address space,

4–6, 4–23
vm-maxwire attribute

definition, B–35
vm-min-kernel-address attribute

definition, B–35
vm-page-free-hardswap attribute

definition, B–36
use to set swapping threshold,

4–11
vm-page-free-min attribute

definition, B–35
use to set free list minimum, 4–11

vm-page-free-optimal attribute
definition, B–35
use to control rate of swapping,

4–29
use to set swapping threshold,

4–11
vm-page-free-reserved attribute

definition, B–35
use to set privileged tasks

threshold, 4–11
vm-page-free-swap attribute

definition, B–36
use to set swapping threshold,

4–11
vm-page-free-target attribute

definition, B–36
use to control paging, 4–33
use to set paging threshold, 4–11

vm-page-lock-count attribute, B–36
vm-page-prewrite-target attribute

definition, B–36
use to prewrite dirty pages, 4–10
use to prewrite pages, 4–30

vm-segment-cache-max attribute
definition, B–36

vm-segmentation attribute
definition, B–36

vm-syncswapbuffers attribute

Index–20

definition, B–37
use to control swap I/O queue

depth, 4–15, 4–31
vm-syswiredpercent attribute

definition, B–37
vm-ubcbuffers attribute

definition, B–37
use to control write device

queue depth, 4–16, 4–32
vm-ubcdirtypercent attribute

definition, B–37
use to prewrite pages, 4–10, 4–30

vm-ubcpagesteal attribute
definition, B–37

vm-ubcseqpercent attribute
definition, B–37
use to control large file caching,

4–32
vm-ubcseqstartpercent attribute

definition, B–37
use to control large file caching,

4–32
vm-vpagemax attribute

definition, B–38
use to increase protected pages,

4–26
vm-zone_size attribute

definition, B–38
vm_perfsum structure

use to display virtual memory
statistics, 2–10t

use to check UBC, 2–30
use to display UBC statistics,

2–11t
use to display virtual memory

statistics, 2–26
vmstat command

use to display virtual memory
statistics, 2–22

use to monitor paging, 4–29
vmstat utility

use to display virtual memory
and CPU statistics, 2–10t

use to track page lists, 4–9
vnode-age attribute

definition, B–30
use to retain vnodes on free list,

5–20
vnode-deallocation-enable

attribute
definition, B–30
use to disable vnode

deallocation, 5–20
vnodes

accelerating deallocation, 5–20
caching free, 5–19
delaying deallocation, 5–20
disabling deallocation, 5–20
retaining on free list, 5–20

volinfo.max_io parameter
using with LSM, 5–31

volprint utility
use to display LSM

information, 2–14t, 2–42
volstat utility

use to display LSM performance
statistics, 2–14t, 2–43

use to monitor LSM events, 2–5
voltrace utility

use to track volume I/O, 2–14t,
2–44

volwatch command
use to monitor LSM events, 2–5

volwatch script
use to monitor LSM objects,

2–14t, 2–44

W
w utility

use to display system
information, 2–10t

wired memory
definition, 4–1
reducing, 3–4

wired page list
definition, 4–9
monitoring, 2–23

working set
definition, 4–7

Index–21

workload
definition, 1–3
understanding, 1–13, 1–15

write-back cache
features, 5–14
using with hardware RAID,

5–7, 5–33
using with multiprocessing

systems, 3–1

X
X server

terminate option, A–3
X Window system

reducing memory consumption,
A–3

X/Open Transport Interface, 3–5
xload command

use to monitor system load,
2–5, 2–10t

xprflags attribute
definition, B–39

XTI, 3–5

Z
zero-filled-on-demand page fault

definition, 4–8

Index–22

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a modem from anywhere in the USA,
Canada, or Puerto Rico. If you need assistance using the Electronic Store, call 800-DIGITAL
(800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

Continental USA,
Alaska, or Hawaii

800-DIGITAL Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International — Local Digital subsidiary or approved distributor

Internal
(submit an
Internal Software
Order Form,
EN-01740-07)

— SSB Order Processing – NQO/V19
or
U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

Reader’s Comments

DIGITAL UNIX
System Configuration and Tuning
AA-Q0R3F-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

 Do Not Cut or Tear - Fold Here

 Do Not Cut or Tear - Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3 3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062 9987

C
ut on D

otted L
ine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

