
X Toolkit Intrinsics − C Language Interface

X Window System

X Version 11, Release 6

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group

MIT X Consortium

version 6 edited by Donna Converse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-

tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-

ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR

ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-

ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appears in all copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-

taining to distribution of the software without specific, written prior permission. Digital makes no representations

about the suitability of the software described herein for any purpose. It is provided ‘‘as is’’ without express or implied

warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Haynes, Mike Chow,
and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)
Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)
Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the X11 Intrinsics present an
entirely different programming style, they borrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the above, as well as
by:

Ram Rao (Digital UEG)
Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 intrinsics.

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March, 1988

x

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals have dedicated significant time to suggesting improvements to the Intrin-
sics:

Steve Pitschke (Stellar) C. Doug Blewett (AT&T)
Bob Miller (HP) David Schiferl (Tektronix)
Fred Taft (HP) Michael Squires (Sequent)
Marcel Meth (AT&T) Jim Fulton (MIT)
Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)
Julian Payne (ESS) Jacques Davy (Bull)
Gabriel Beged-Dov (HP) Glenn Widener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick
External Research Group
Digital Equipment Corporation
MIT Project Athena

June, 1988

From Release 3 to Release 4, several new members joined the design team. We greatly appreciate
the thoughtful comments, suggestions, lengthy discussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Converse (MIT) Clive Feather (IXI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational process for many of
us and Bill and Frank’s tutelage has carried us through. Vania Joloboff of the OSF also con-
tributed to the internationalization additions. The implementation efforts of Bill, Gabe Beged-
Dov, and especially Donna Converse for this release are also gratefully acknowledged.

Ralph R. Swick

December, 1989
and
July, 1991

xi

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in lengthy discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. They deserve recognition and thanks for their
major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)
Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Joloboff (OSF) Kaleb Keithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)
Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people deserve thanks for their contributions:
Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Grotsky, Keith Edwards, Clive
Feather, Stephen Gildea, Dan Heller, Steve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-
bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGilder, Will Walker, and Mike Wexler.

I am especially grateful to two of my colleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithley for leadership in the implementation and the specification work.

Donna Converse
X Consortium
April, 1994

xii

About This Manual

X Toolkit Intrinsics − C Language Interfaceis intended to be read by both application program-
mers who will use one or more of the many widget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, however, applies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is is likely to use many more, if not all, of the Intrinsics functions
in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application programmer. (It is assumed the widget pro-
grammer will have to be familiar with all the information.) Therefore, all entries in the table of
contents that are printed inbold indicate the information that should be of special interest to an
application programmer.

It is also assumed that as application programmers become more familiar with the concepts dis-
cussed in this manual they will find it more convenient to implement portions of their applications
as special-purpose or custom widgets. It is possible, none the less, to use widgets without know-
ing how to build them.

Conventions Used in this Manual

This document uses the following conventions:

• Global symbols are printed inthis special font. These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printed initalics.

• Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
General discussion of the function, if any is required, follows the arguments.

• To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesor, in the case of multiple arguments, the wordspecify. The explanations for all
arguments that are returned to you start with the wordreturnsor, in the case of multiple
arguments, the wordreturn.

xiii

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network window system, specifically the X Window System. The Intrinsics
and a widget set make up an X Toolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and application environments. The Intrinsics are a layer on top of Xlib, the C Library
X Interface. They extend the fundamental abstractions provided by the X Window System while
still remaining independent of any particular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and composing user interface components, known as widgets. This allows program-
mers to extend a widget set in new ways, either by deriving new widgets from existing ones (sub-
classing), or by writing entirely new widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a widget class
named Core. In release 4 of the Intrinsics, three nonwidget superclasses were added above Core.
These superclasses are described in Chapter 12. The name of the class now at the root of the
Intrinsics class hierarchy is Object. The remainder of this specification refers uniformly towid-
getsandCoreas if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence towidgetactually meanswidget or object.

1.2. Languages

The Intrinsics are intended to be used for two programming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X display. The Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather than by value. The interfaces primarily
intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming conventions apply. In this specification, the termclient
refers to any module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/Intrinsic.h >
and <X11/StringDefs.h>, or their equivalent, and they may also include <X11/Xatoms.h> and
<X11/Shell.h>. In addition, widget implementations should include <X11/IntrinsicP.h > instead
of <X11/Intrinsic.h >.

1

X Toolkit Intrinsics X11 Release 6

The applications must also include the additional header files for each widget class that they are
to use (for example, <X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). On a POSIX-based sys-
tem, the Intrinsics object library file is namedlibXt.a and is usually referenced as −lXt when
linking the application.

1.3. Procedures and Macros

All functions defined in this specification except those specified below may be implemented as C
macros with arguments. C applications may use ‘‘#undef ’’ to remove a macro definition and
ensure that the actual function is referenced. Any such macro will expand to a single expression
which has the same precedence as a function call and that evaluates each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that may expand
their arguments in a manner other than that described above:XtCheckSubclass, XtNew,
XtNumber , XtOffsetOf , XtOffset , andXtSetArg .

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X window and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointer or keyboard input, and others change their dis-
play in response to input and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allowable on widgets of that class. Logically, a widget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physically, a widget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, ‘‘constant’’ means the class structure is initialized at compile time and never
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is created.) For further informa-
tion, see Section 2.5.

The distribution of the declarations and code for a new widget class among a public .h file for
application programmer use, a private .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:

• A data structure which contains instance-specific values.

• A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, border widths, and so on)
is customizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

2

X Toolkit Intrinsics X11 Release 6

1.4.1. Core Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined by theCoreClassPartandCorePart
structures.

1.4.1.1. CoreClassPart Structure

All widget classes contain the fields defined in theCoreClassPartstructure.

typedef struct {
WidgetClass superclass; See Section 1.6
String class_name; See Chapter 9
Cardinal widget_size; See Section 1.6
XtProc class_initialize; See Section 1.6
XtWidgetClassProc class_part_initialize;See Section 1.6
XtEnum class_inited; See Section 1.6
XtInitProc initialize; See Section 2.5
XtArgsProc initialize_hook; See Section 2.5
XtRealizeProc realize; See Section 2.6
XtActionList actions; See Chapter 10
Cardinal num_actions; See Chapter 10
XtResourceList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
XrmClass xrm_class; Private to resource manager
Boolean compress_motion; See Section 7.9
XtEnum compress_exposure; See Section 7.9
Boolean compress_enterleave; See Section 7.9
Boolean visible_interest; See Section 7.10
XtWidgetProc destroy; See Section 2.8
XtWidgetProc resize; See Chapter 6
XtExposeProc expose; See Section 7.10
XtSetValuesFunc set_values; See Section 9.7
XtArgsFunc set_values_hook; See Section 9.7
XtAlmostProc set_values_almost; See Section 9.7
XtArgsProc get_values_hook; See Section 9.7
XtAcceptFocusProc accept_focus; See Section 7.3
XtVersionType version; See Section 1.6
XtPointer callback_private; Private to callbacks
String tm_table; See Chapter 10
XtGeometryHandler query_geometry; See Chapter 6
XtStringProc display_accelerator; See Chapter 10
XtPointer extension; See Section 1.6

} CoreClassPart;

All widget classes have the Core class fields as their first component. The prototypicalWidget-
ClassandCoreWidgetClassare defined with only this set of fields.

typedef struct {
CoreClassPart core_class;

} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

3

X Toolkit Intrinsics X11 Release 6

Various routines can cast widget class pointers, as needed, to specific widget class types.

The single occurrences of the class record and pointer for creating instances of Core are

In IntrinsicP.h :

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h :

extern WidgetClass widgetClass, coreWidgetClass;

The opaque typesWidget andWidgetClassand the opaque variablewidgetClassare defined
for generic actions on widgets. In order to make these types opaque and ensure that the compiler
does not allow applications to access private data, the Intrinsics use incomplete structure defini-
tions in Intrinsic.h :

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CorePart Structure

All widget instances contain the fields defined in theCorePart structure.

typedef struct _CorePart {
Widget self; described below
WidgetClass widget_class; See Section 1.6
Widget parent; See Section 2.5
Boolean being_destroyed; See Section 2.8
XtCallbackList destroy_callbacks; See Section 2.8
XtPointer constraints; See Section 3.6
Position x; See Chapter 6
Position y; See Chapter 6
Dimension width; See Chapter 6
Dimension height; See Chapter 6
Dimension border_width; See Chapter 6
Boolean managed; See Chapter 3
Boolean sensitive; See Section 7.7
Boolean ancestor_sensitive; See Section 7.7
XtTranslations accelerators; See Chapter 10
Pixel border_pixel; See Section 2.6
Pixmap border_pixmap; See Section 2.6
WidgetList popup_list; See Chapter 5
Cardinal num_popups; See Chapter 5
String name; See Chapter 9
Screen *screen; See Section 2.6
Colormap colormap; See Setcion 2.6
Window window; See Section 2.6
Cardinal depth; See Section 2.6
Pixel background_pixel; See Section 2.6
Pixmap background_pixmap; See Section 2.6
Boolean visible; See Section 7.10

4

X Toolkit Intrinsics X11 Release 6

Boolean mapped_when_managed; See Chapter 3
} CorePart;

All widget instances have the Core fields as their first component. The prototypical typeWidget
is defined with only this set of fields.

typedef struct {
CorePart core;

} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to make these types opaque and ensure that the compiler does not allow applications to
access private data, the Intrinsics use incomplete structure definitions inIntrinsic.h .

typedef struct _WidgetRec *Widget, *CoreWidget;

1.4.1.3. Core Resources

The resource names, classes, and representation types specified in thecoreClassRecresource list
are

Name Class Representation

XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets via theobjectClassRecand rectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Default Value

self Address of the widget structure (may not be changed).
widget_class widget_classargument toXtCreateWidget (may not be changed).

5

X Toolkit Intrinsics X11 Release 6

parent parentargument toXtCreateWidget (may not be changed).
being_destroyed Parent’sbeing_destroyedvalue.
destroy_callbacks NULL
constraints NULL
x 0
y 0
width 0
height 0
border_width 1
managed False
sensitive True
ancestor_sensitive logical AND of parent’ssensitiveandancestor_sensitivevalues.
accelerators NULL
border_pixel XtDefaultForeground
border_pixmap XtUnspecifiedPixmap
popup_list NULL
num_popups 0
name nameargument toXtCreateWidget (may not be changed).
screen Parent’sscreen; top-level widget gets screen from display specifier

(may not be changed).
colormap Parent’scolormapvalue.
window NULL
depth Parent’sdepth; top-level widget gets root window depth.
background_pixel XtDefaultBackground
background_pixmap XtUnspecifiedPixmap
visible True
mapped_when_managed True

XtUnspecifiedPixmap is a symbolic constant guaranteed to be unequal to any valid Pixmap id,
None, andParentRelative.

1.4.2. Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by theCompositeClassPartandCompositePart structures.

1.4.2.1. CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following class fields.

typedef struct {
XtGeometryHandler geometry_manager; See Chapter 6
XtWidgetProc change_managed; See Chapter 3
XtWidgetProc insert_child; See Chapter 3
XtWidgetProc delete_child; See Chapter 3
XtPointer extension; See Section 1.6

} CompositeClassPart;

6

X Toolkit Intrinsics X11 Release 6

The extension record defined forCompositeClassPartwith record_typeequal toNULLQUARK
is CompositeClassExtensionRec.

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_objects; See Section 2.5.2
Boolean allows_change_managed_set; See Section 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core class fields.

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are

In IntrinsicP.h :

extern CompositeClassRec compositeClassRec;

In Intrinsic.h :

extern WidgetClass compositeWidgetClass;

The opaque typesCompositeWidgetandCompositeWidgetClassand the opaque variable
compositeWidgetClassare defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant for theCompositeClassExtensionversion
identifier isXtCompositeExtensionVersion(see Section 1.6.12).Intrinsic.h uses an incom-
plete structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following instance
fields defined in theCompositePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets have the Composite instance fields immediately following the Core instance
fields.

7

X Toolkit Intrinsics X11 Release 6

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. Composite Resources

The resource names, classes, and representation types that are specified in thecompositeClass-
Rec resource list are

Name Class Representation

XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtCInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Default Value

children NULL
num_children 0
num_slots 0
insert_position Internal function to insert at end

Thechildren, num_children, andinsert_positionfields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read by any client but
should only be modified by the composite widget class procedures.

1.4.3. Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’s geometry. The additional data used by constraint widgets are defined by the
ConstraintClassPart andConstraintPart structures.

8

X Toolkit Intrinsics X11 Release 6

1.4.3.1. ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the fol-
lowing class fields.

typedef struct {
XtResourceList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destroy; See Section 3.6
XtSetValuesFunc set_values; See Section 9.7.2
XtPointer extension; See Section 1.6

} ConstraintClassPart;

The extension record defined forConstraintClassPart with record_typeequal toNULLQUARK
is ConstraintClassExtensionRec.

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_values_hook; See Section 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are

In IntrinsicP.h :

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h :

extern WidgetClass constraintWidgetClass;

The opaque typesConstraintWidget andConstraintWidgetClass and the opaque variablecon-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant for theConstraintClassExtensionversion identi-
fier is XtConstraintExtensionVersion (see Section 1.6.12).Intrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

9

X Toolkit Intrinsics X11 Release 6

1.4.3.2. ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the
following unused instance fields defined in theConstraintPart structure

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. Constraint Resources

The constraintClassReccore_classandconstraint_class resourcesfields are NULL and the
num_resourcesfields are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

1.5. Implementation-specific Types

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics define several types whose precise representation is explicitly dependent
upon, and chosen by, each individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzero value. Unless explicitly stated, clients
should not assume that the nonzero value is equal to the symbolic valueTrue .

Cardinal An unsigned integer datum with a minimum range of [0..2ˆ16-1]

Dimension An unsigned integer datum with a minimum range of [0..2ˆ16-1]

Position A signed integer datum with a minimum range of [-2ˆ15..2ˆ15-1]

XtPointer A datum large enough to contain the largest of a char*, int*, function pointer, struc-
ture pointer, or long value. A pointer to any type or function, or a long value may
be converted to anXtPointer and back again and the result will compare equal to
the original value. In ANSI C environments it is expected thatXtPointer will be
defined as void*.

XtArgVal A datum large enough to contain anXtPointer , Cardinal , Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct values, two of which
are the symbolic valuesTrue andFalse. The symbolic valuesTRUE andFALSE
are also defined to be equal toTrue andFalse, respectively.

10

X Toolkit Intrinsics X11 Release 6

In addition to these specific types, the precise order of the fields within the structure declarations
for any of the instance part recordsObjectPart , RectObjPart , CorePart, CompositePart,
ShellPart, WMShellPart , TopLevelShellPart, andApplicationShellPart is implementation-
defined. These structures may also have additional private fields internal to the implementation.
The ObjectPart , RectObjPart , andCorePart structures must be defined so that any member
with the same name appears at the same offset inObjectRec, RectObjRec andCoreRec
(WidgetRec). No other relations between the offsets of any two fields may be assumed.

1.6. Widget Classing

Thewidget_classfield of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; rather, they implement procedures, called methods, that are
available through their widget class structure. These methods are invoked by generic procedures
that envelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces the
amount of code and declarations necessary to make a new widget class that is similar to an exist-
ing class. For example, you do not have to describe every resource your widget uses in an
XtResourceList. Instead, you describe only the resources your widget has that its superclass
does not. Subclasses usually inherit many of their superclasses’ procedures (for example, the
expose procedure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether you have chosen the most appropriate
superclass.

To make good use of subclassing, widget declarations and naming conventions are highly styl-
ized. A widget consists of three files:

• A public .h file, used by client widgets or applications.

• A private .h file, used by widgets whose classes are subclasses of the widget class.

• A .c file, which implements the widget.

1.6.1. Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgets into an application. To ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writing new widgets:

• Use the X library naming conventions that are applicable. For example, a record compo-
nent name is all lower case and uses underscores (_) for compound words (for example,
background_pixmap). Type and procedure names start with upper case and use capitaliza-
tion for compound words (for example,ArgList or XtSetValues).

• A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscore. To let the compiler catch spelling errors, each
resource name should have a symbolic identifier prefixed with ‘‘XtN’’. For example, the
background_pixmapfield has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string ‘‘backgroundPixmap’’. Many predefined names are listed in

11

X Toolkit Intrinsics X11 Release 6

<X11/StringDefs.h>. Before you invent a new name, you should make sure there is not
already a name that you can use.

• A resource class string starts with a capital letter and uses capitalization for compound
names (for example,‘‘BorderWidth’’). Each resource class string should have a symbolic
identifier prefixed with ‘‘XtC’’ (for example, XtCBorderWidth). Many predefined classes
are listed in <X11/StringDefs.h>.

• A resource representation string is spelled identically to the type name (for example,
‘‘TranslationTable’’). Each representation string should have a symbolic identifier prefixed
with ‘‘XtR’’ (for example, XtRTranslationTable). Many predefined representation types are
listed in <X11/StringDefs.h>.

• New widget classes start with a capital and use upper case for compound words. Given a
new class name AbcXyz, you should derive sev eral names:

− Additional widget instance structure part name AbcXyzPart.

− Complete widget instance structure names AbcXyzRec and _AbcXyzRec.

− Widget instance structure pointer type name AbcXyzWidget.

− Additional class structure part name AbcXyzClassPart.

− Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.

− Class structure pointer type name AbcXyzWidgetClass.

− Class structure variable abcXyzClassRec.

− Class structure pointer variable abcXyzWidgetClass.

• Action procedures available to translation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter, and compound names
use upper case (for example, ‘‘Highlight’’ and ‘‘NotifyClient’’).

The symbolic identifiers XtN..., XtC... and XtR... may be implemented as macros, as global sym-
bols, or as a mixture of the two. The (implicit) type of the identifier isString . The pointer value
itself is not significant; clients must not assume that inequality of two identifiers implies inequal-
ity of the resource name, class, or representation string. Clients should also note that although
global symbols permit savings in literal storage in some environments, they also introduce the
possibility of multiple definition conflicts when applications attempt to use independently devel-
oped widgets simultaneously.

1.6.2. Widget Subclassing in Public .h Files

The public .h file for a widget class is imported by clients and contains

• A reference to the public .h file for the superclass.

• Symbolic identifiers for the names and classes of the new resources that this widget adds to
its superclass. The definitions should have a single space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

• Type declarations for any new resource data types defined by the class.

• The class record pointer variable used to create widget instances.

• The C type that corresponds to widget instances of this class.

• Entry points for new class methods.

12

X Toolkit Intrinsics X11 Release 6

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */
#define XtNjustify "justify"
#define XtNforeground "foreground"
#define XtNlabel "label"
#define XtNfont "font"
#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;

/* New class method entry points */
extern void LabelSetText();

/* Widget w */
/* String text */

extern String LabelGetText();
/* Widget w */

#endif LABEL_H

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned that they already may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget class. For example, the public .h file for the Constraint
widget class isConstraint.h .

1.6.3. Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains

• A reference to the public .h file for the class.

• A reference to the private .h file for the superclass.

• Symbolic identifiers for any new resource representation types defined by the class. The
definitions should have a single space between the definition name and the value and no
trailing space or comment.

• A structure part definition for the new fields that the widget instance adds to its superclass’s
widget structure.

• The complete widget instance structure definition for this widget.

13

X Toolkit Intrinsics X11 Release 6

• A structure part definition for the new fields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

• The complete constraint structure definition if the widget class is a subclass of Constraint.

• Type definitions for any new procedure types used by class methods declared in the widget
class part

• A structure part definition for the new fields that this widget class adds to its superclass’s
widget class structure.

• The complete widget class structure definition for this widget.

• The complete widget class extension structure definition for this widget, if any.

• The symbolic constant identifying the class extension version, if any.

• The name of the global class structure variable containing the generic class structure for
this class.

• An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */
typedef struct {
/* Settable resources */

Pixel foreground;
XFontStruct *font;
String label; /* text to display */
XtJustify justify;
Dimension internal_width; /* # pixels horizontal border */
Dimension internal_height; /* # pixels vertical border */

/* Data derived from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensitive;

} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {

14

X Toolkit Intrinsics X11 Release 6

CorePart core;
LabelPart label;

} LabelRec;

/* Types for Label class methods */
typedef void (*LabelSetTextProc)();

/* Widget w */
/* String text */

typedef String (*LabelGetTextProc)();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {

LabelSetTextProc set_text;
LabelGetTextProc get_text;
XtPointer extension;

} LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {

CoreClassPart core_class;
LabelClassPart label_class;

} LabelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

#define LabelInheritSetText((LabelSetTextProc)_XtInherit)
#define LabelInheritGetText((LabelGetTextProc)_XtInherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private .h
file is the first nine characters of the widget class followed by a capital P. For example, the private
.h file for the Constraint widget class isConstrainP.h.

1.6.4. Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-
tains the following parts:

• Class information (for example,superclass, class_name, widget_size, class_initialize, and
class_inited).

• Data constants (for example,resourcesandnum_resources, actionsandnum_actions, visi-
ble_interest, compress_motion, compress_exposure, andversion)

• Widget operations (for example,initialize, realize, destroy, resize, expose, set_values,
accept_focus, and any new operations specific to the widget).

Thesuperclassfield points to the superclass global class record, declared in the superclass private
.h file. For direct subclasses of the generic core widget,superclassshould be initialized to the
address of thewidgetClassRecstructure. The superclass is used for class chaining operations

15

X Toolkit Intrinsics X11 Release 6

and for inheriting or enveloping a superclass’s operations (see Sections 1.6.7, 1.6.9, and 1.6.10).

Theclass_namefield contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string ‘‘Label’’. More than one widget class can share the
same text class name. This string must be permanently allocated prior to or during the execution
of the class initialization procedure and must not be subsequently deallocated.

Thewidget_sizefield is the size of the corresponding widget instance structure (not the size of the
class structure).

Theversionfield indicates the toolkit implementation version number and is used for runtime
consistency checking of the X Toolkit and widgets in an application. Widget writers must set it to
the implementation-defined symbolic valueXtVersion in the widget class structure initialization.
Those widget writers who believe that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special valueXtVersionDontCheck in theversionfield to
disable version checking for those widgets. If a widget needs to compile alternative code for dif-
ferent revisions of the Intrinsics interface definition, it may use the symbol
XtSpecificationRelease, as described in Chapter 13. Use ofXtVersion allows the Intrinsics
implementation to recognize widget binaries that were compiled with older implementations.

Theextensionfield is for future upward compatibility. If the widget programmer adds fields to
class parts, all subclass structure layouts change, requiring complete recompilation. To allow
clients to avoid recompilation, an extension field at the end of each class part can point to a record
that contains any additional class information required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,
XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

.

.

.
}

/* Forward declarations of procedures */
static void ClassInitialize();
static void Initialize();
static void Realize();
static void SetText();
static void GetText();

.

16

X Toolkit Intrinsics X11 Release 6

.

.

/* Class record constant */
LabelClassRec labelClassRec = {
{
/* core_class fields */

/* superclass */ (WidgetClass)&coreClassRec,
/* class_name */ "Label",
/* widget_size */ sizeof(LabelRec),
/* class_initialize */ ClassInitialize,
/* class_part_initialize */ NULL,
/* class_inited */ False,
/* initialize */ Initialize,
/* initialize_hook */ NULL,
/* realize */ Realize,
/* actions */ NULL,
/* num_actions */ 0,
/* resources */ resources,
/* num_resources */ XtNumber(resources),
/* xrm_class */ NULLQUARK,
/* compress_motion */ True,
/* compress_exposure */ True,
/* compress_enterleave */ True,
/* visible_interest */ False,
/* destroy */ NULL,
/* resize */ Resize,
/* expose */ Redisplay,
/* set_values */ SetValues,
/* set_values_hook */ NULL,
/* set_values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback_offsets */ NULL,
/* tm_table */ NULL,
/* query_geometry */ XtInheritQueryGeometry,
/* display_accelerator */ NULL,
/* extension */ NULL

},
{
/* Label_class fields */

/* get_text */ GetText,
/* set_text */ SetText,
/* extension */ NULL

}
};

/* Class record pointer */

17

X Toolkit Intrinsics X11 Release 6

WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSetText(w, text)

Widget w;
String text;

{
Label WidgetClass lwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label_class.set_text)(w, text)

}
/* Private procedures */

.

.

.

1.6.5. Widget Class and Superclass Look Up

To obtain the class of a widget, useXtClass.

WidgetClass XtClass(w)
Widgetw;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtClass function returns a pointer to the widget’s class structure.

To obtain the superclass of a widget, useXtSuperclass.

WidgetClass XtSuperclass(w)
Widgetw;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtSuperclassfunction returns a pointer to the widget’s superclass class structure.

1.6.6. Widget Subclass Verification

To check the subclass to which a widget belongs, useXtIsSubclass.

Boolean XtIsSubclass(w, widget_class)
Widgetw;
WidgetClasswidget_class;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must beobjectClassor any subclass
thereof.

The XtIsSubclassfunction returnsTrue if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items they contain can useXtIsSubclassto find out if a widget belongs
to the desired class of objects.

18

X Toolkit Intrinsics X11 Release 6

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equivalent toXtIsSubclassfor each of the built-in classes. These proce-
dures areXtIsObject , XtIsRectObj , XtIsWidget , XtIsComposite, XtIsConstraint ,
XtIsShell, XtIsOverrideShell , XtIsWMShell , XtIsVendorShell, XtIsTransientShell,
XtIsTopLevelShell, XtIsApplicationShell andXtIsSessionShell.

All these macros and functions have the same argument description.

Boolean XtIs<class> (w)
Widgetw;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

These procedures may be faster than callingXtIsSubclassdirectly for the built-in classes.

To check a widget’s class and to generate a debugging error message, useXtCheckSubclass,
defined in <X11/IntrinsicP.h >:

void XtCheckSubclass(w, widget_class, message)
Widgetw;
WidgetClasswidget_class;
Stringmessage;

w Specifies the widget or object whose class is to be checked. Must be of class
Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must beobjectClassor any subclass
thereof.

message Specifies the message to be used.

The XtCheckSubclassmacro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. If the specified widget’s class
is not a subclass,XtCheckSubclassconstructs an error message from the supplied message, the
widget’s actual class, and the expected class and callsXtErrorMsg . XtCheckSubclassshould
be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclassis only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structures. With a linked field, the Intrinsics access the
field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). The self-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest

19

X Toolkit Intrinsics X11 Release 6

resize
expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set_values_almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry_manager
change_managed
insert_child
delete_child
accepts_objects
allows_change_managed_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_manager

With downward superclass chaining, the invocation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widget’s class structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values_hook
resources

In addition, for subclasses of Constraint, the following fields of theConstraintClassPart and
ConstraintClassExtensionRecstructures are chained from the Constraint class down to the sub-
class:

resources
initialize
set_values
get_values_hook

With upward superclass chaining, the invocation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

20

X Toolkit Intrinsics X11 Release 6

For subclasses of Constraint, the following field ofConstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some cases, however,
a class may need to register type converters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does not have initialization procedures that are invoked automatically
when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsics. A class initialization procedure pointer is of type
XtProc :

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initializefield.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class
but for subclasses as well, and are done in the class’s class part initialization procedure, a pointer
to which is stored in theclass_part_initializefield. The class_part_initialize procedure pointer is
of typeXtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClasswidget_class;

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These procedures have the
responsibility of doing any dynamic initializations necessary to their class’s part of the record.
The most common is the resolution of any inherited methods defined in the class. For example, if
a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core ’s class_part_initialize procedure. This resolves any inherited Core methods and com-
piles the textual representations of the resource list and action table that are defined in the class
record. Next, Composite’s class_part_initialize procedure is called to initialize the composite part
of C’s class record. Finally, the class_part_initialize procedures for A, B, and C, in that order, are
called. For further information, see Section 1.6.9. Classes that do not define any new class fields
or that need no extra processing for them can specify NULL in theclass_part_initializefield.

All widget classes, whether they hav e a class initialization procedure or not, must start with their
class_initedfield False.

The first time a widget of a class is created,XtCreateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass order, by checking eachclass_initedfield
and, if it isFalse, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then set theclass_initedfield to a nonzero value.
After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void ClassInitialize()

21

X Toolkit Intrinsics X11 Release 6

{
XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,

NULL, 0, XtCacheNone, NULL);
}

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class or any subclass is created. To initialize a
widget class without creating any widgets, useXtInitializeWidgetClass .

void XtInitializeWidgetClass(object_class)
WidgetClassobject_class;

object_class Specifies the object class to initialize. May beobjectClassor any subclass
thereof.

If the specified widget class is already initialized,XtInitializeWidgetClass returns immediately.

If the class initialization procedure registers type converters, these type converters are not avail-
able until the first object of the class or subclass is created orXtInitializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritance of Superclass Operations

A widget class is free to use any of its superclass’s self-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose

realize

insert_child

delete_child

geometry_manager

set_values_almost

To inherit an operationxyz, specify the constantXtInherit Xyzin your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are never inherited. Widget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclass’s value for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal value_XtInherit cast to the appropriate type._XtIn-
herit is a procedure that issues an error message if it is actually called.

For example,CompositeP.hcontains these definitions:

#define XtInheritGeometryManager ((XtGeometryHandler) _XtInherit)
#define XtInheritChangeManaged ((XtWidgetProc) _XtInherit)
#define XtInheritInsertChild ((XtArgsProc) _XtInherit)
#define XtInheritDeleteChild ((XtWidgetProc) _XtInherit)

22

X Toolkit Intrinsics X11 Release 6

Composite’s class_part_initialize procedure begins as follows:

static void CompositeClassPartInitialize(widgetClass)
WidgetClass widgetClass;

{
CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (wc->composite_class.geometry_manager == XtInheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

}

if (wc->composite_class.change_managed == XtInheritChangeManaged) {
wc->composite_class.change_managed = super->composite_class.change_managed;

}
.
.
.

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare any reserved value it wishes for the inheritance constant for its new fields. The following
inheritance constants are defined:

For Object:

XtInheritAllocate

XtInheritDeallocate

For Core:

XtInheritRealize

XtInheritResize

XtInheritExpose

XtInheritSetValuesAlmost

XtInheritAcceptFocus

XtInheritQueryGeometry

XtInheritTranslations

XtInheritDisplayAccelerator

For Composite:

XtInheritGeometryManager

XtInheritChangeManaged

XtInheritInsertChild

XtInheritDeleteChild

For Shell:

XtInheritRootGeometryManager

23

X Toolkit Intrinsics X11 Release 6

1.6.11. Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, a wid-
get’s expose procedure might call its superclass’sexposeand then perform a little more work on
its own. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclass’sinsert_childand then callingXtManageChild to add
the child to the managed set.

Note

A class method should not useXtSuperclassbut should instead call the class
method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers only, not the widget’s class pointers, as the wid-
get’s class may be a subclass of the class whose implementation is being referenced.

This technique is referred to asenvelopingthe superclass’s operation.

1.6.12. Class Extension Records

It may be necessary at times to add new fields to already existing widget class structures. To per-
mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointer. If no extension fields for a class have yet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint and Shell classes, sub-
classes can provide values for these fields by setting theextensionpointer for the appropriate part
in their class structure to point to a statically declared extension record containing the additional
fields. Setting theextensionfield is never mandatory; code that uses fields in the extension record
must always check theextensionfield and take some appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from a singleexten-
sionfield, extension records should be declared as a linked list and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;

};

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to which each extension record
instance conforms.

version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.

record_size Specifies the total number of bytes allocated for the extension record.

Therecord_typefield identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list. Therecord_typefield is normally
assigned the result ofXrmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with the two characters ‘‘XT’’ for future standard uses. The
valueNULLQUARK may also be used by the class part owner in extension records attached to its

24

X Toolkit Intrinsics X11 Release 6

own class part extension field to identify the extension record unique to that particular class.

Theversionfield is an owner-defined constant that may be used to identify binary files that have
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. Therecord_sizefield value includes the four common header fields and
should normally be initialized withsizeof().

Any value stored in the class part extension fields ofCompositeClassPart,
ConstraintClassPart, or ShellClassPartmust point to an extension record conforming to this
definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, given a widget class and the offset of theextensionfield in the class record.

To locate a class extension record, useXtGetClassExtension.

XtPointer XtGetClassExtension(object_class, byte_offset, type, version, record_size);
WidgetClassobject_class;
Cardinalbyte_offset;
XrmQuarktype;
longversion;
Cardinalrecord_size;

object_class Specifies the object class containing the extension list to be searched.

byte_offset Specifies the offset in bytes from the base of the class record of the extension
field to be searched.

type Specifies the record_type of the class extension to be located.

version Specifies the minimum acceptable version of the class extension required for a
match.

record_size Specifies the minimum acceptable length of the class extension record required
for a match, or 0.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is nonzero.XtGetClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the object class
owner.

25

X Toolkit Intrinsics X11 Release 6

Chapter 2

Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned byXtAp-
pCreateShell is the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no children of any kind are the leaves of
the widget tree. With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the classcompositeWidgetClass, are containers for an
arbitrary but widget implementation-defined collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of the two. Composite widgets
also contain methods for managing the geometry (layout) of any child widget. Under unusual cir-
cumstances, a composite widget may have zero children, but it usually has at least one. By con-
trast, primitive widgets that contain children typically instantiate specific children of known
classes themselves and do not expect external clients to do so. Primitive widgets also do not have
general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, realization and
destruction) on composite widgets and all their children. Primitive widgets that have children
must be prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example,XtRealizeWidget tra-
verses the tree downward and recursively realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resources traverse the tree
upward and determine the inheritance of resources from a widget’s ancestors.XtMake-
GeometryRequesttraverses the tree up one level and calls the geometry manager that is respon-
sible for a widget child’s geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget thatXtAppCreateShell returns has aparentpointer of NULL.

To facilitate downward traversal of the widget tree, thechildrenfield of each composite widget is
a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite widget’s geometry manager. Primitive widgets
that instantiate children are entirely responsible for all operations that require downward traversal
below themselves. In addition, every widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can call any Intrinsics function other thanXtSetLanguageProcand
XtToolkitThreadInitialize , it must initialize the Intrinsics by using

• XtToolkitInitialize , which initializes the Intrinsics internals.

26

X Toolkit Intrinsics X11 Release 6

• XtCreateApplicationContext , which initializes the per-application state.

• XtDisplayInitialize or XtOpenDisplay, which initializes the per-display state.

• XtAppCreateShell, which creates the root of a widget tree.

or an application can call the convenience procedureXtOpenApplication which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mecha-
nism should callXtSetLanguageProcprior to callingXtDisplayInitialize , XtOpenDisplay,
XtOpenApplication , or XtAppInitialize .

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatch events independently of any other instance.
Further, an application instance may need multiple display connections to have widgets on multi-
ple displays. From the application’s point of view, multiple display connections usually are
treated together as a single unit for purposes of event dispatching. To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed
to distinguish one application instance from another. The major component of an application
context is a list of one or more XDisplay pointers for that application. The Intrinsics handle all
display connections within a single application context simultaneously, handling input in a round-
robin fashion. The application context typeXtAppContext is opaque to clients.

To initialize the Intrinsics internals, useXtToolkitInitialize .

void XtToolkitInitialize()

If XtToolkitInitialize was previously called, it returns immediately. WhenXtToolkitThrea-
dInitialize is called beforeXtToolkitInitialize , the latter is protected against simultaneous acti-
vation by multiple threads.

To create an application context, useXtCreateApplicationContext .

XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in it, use
XtDestroyApplicationContext .

void XtDestroyApplicationContext(app_context)
XtAppContextapp_context;

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application context. If called
from within an event dispatch (for example, in a callback procedure),XtDestroyApplication-
Context does not destroy the application context until the dispatch is complete.

To get the application context in which a given widget was created, use
XtWidgetToApplicationContext .

XtAppContext XtWidgetToApplicationContext(w)
Widgetw;

w Specifies the widget for which you want the application context. Must be of class
Object or any subclass thereof.

27

X Toolkit Intrinsics X11 Release 6

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, useXtDisplayInitialize .

void XtDisplayInitialize(app_context, display, application_name, application_class,
options, num_options, argc, argv)

XtAppContextapp_context;
Display *display;
Stringapplication_name;
Stringapplication_class;
XrmOptionDescRec *options;
Cardinalnum_options;
int *argc;
String *argv;

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single dis-
play connection can be in at most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. Theoptionsargument is passed as a parameter to
XrmParseCommand. For further information, see Section 15.9 inXlib −
C Language X Interfaceand Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtDisplayInitialize function retrieves the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls the XlibXrmParseCommand function to parse
the command line, and performs other per-display initialization. AfterXrmParseCommand has
been called,argcandargvcontain only those parameters that were not in the standard option
table or in the table specified by theoptionsargument. If the modifiedargc is not zero, most
applications simply print out the modifiedargvalong with a message listing the allowable
options. On POSIX-based systems, the application name is usually the final component of
argv[0]. If the synchronous resource isTrue , XtDisplayInitialize calls the XlibXSynchronize
function to put Xlib into synchronous mode for this display connection and any others currently
open in the application context. See Sections 2.3 and 2.4 for details on theapplication_name,
application_class, options, andnum_optionsarguments.

XtDisplayInitialize calls XrmSetDatabaseto associate the resource database of the default
screen with the display before returning.

28

X Toolkit Intrinsics X11 Release 6

To open a display, initialize it, and then add it to an application context, useXtOpenDisplay.

Display *XtOpenDisplay(app_context, display_string, application_name, application_class,
options, num_options, argc, argv)

XtAppContextapp_context;
Stringdisplay_string;
Stringapplication_name;
Stringapplication_class;
XrmOptionDescRec *options;
Cardinalnum_options;
int *argc;
String *argv;

app_context Specifies the application context.

display_string Specifies the display string, or NULL.

application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function callsXOpenDisplay with the specifieddisplay_string. If dis-
play_stringis NULL, XtOpenDisplay uses the current value of the −display option specified in
argv. If no display is specified inargv, the user’s default display is retrieved from the environ-
ment. On POSIX-based systems, this is the value of theDISPLAY environment variable.

If this succeeds,XtOpenDisplay then callsXtDisplayInitialize and passes it the opened display
and the value of the −name option specified inargvas the application name. If no −name option
is specified andapplication_nameis non-NULL,application_nameis passed to
XtDisplayInitialize . If application_nameis NULL and if the environment variable
RESOURCE_NAME is set, the value ofRESOURCE_NAME is used. Otherwise, the application
name is the name used to invoke the program. On implementations that conform to ANSI C
Hosted Environment support, the application name will beargv[0] less any directory and file type
components, that is, the final component ofargv[0], if specified. Ifargv[0] does not exist or is the
empty string, the application name is ‘‘main’’.XtOpenDisplay returns the newly opened display
or NULL if it failed.

See Section 7.12 for information regarding the use ofXtOpenDisplay in multiple threads.

To close a display and remove it from an application context, useXtCloseDisplay.

void XtCloseDisplay(display)
Display *display;

display Specifies the display.

The XtCloseDisplay function callsXCloseDisplaywith the specifieddisplayas soon as it is
safe to do so. If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications

29

X Toolkit Intrinsics X11 Release 6

need only callXtCloseDisplay if they are to continue executing after closing the display; other-
wise, they should callXtDestroyApplicationContext .

See Section 7.12 for information regarding the use ofXtCloseDisplay in multiple threads.

2.2. Establishing the Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of typeXtLanguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display;
String language;
XtPointerclient_data;

display Passes the display.

language Passes the initial language value obtained from the command line or server per-
display resource specifications.

client_data Passes the additional client data specified in the call toXtSetLanguageProc.

The language procedure allows an application to set the locale to the value of the language
resource determined byXtDisplayInitialize . The function returns a new language string that
will be subsequently used byXtDisplayInitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use by
XtDisplayInitialize useXtSetLanguageProc.

XtLanguageProc XtSetLanguageProc(app_context, proc, client_data)
XtAppContextapp_context;
XtLanguageProcproc;
XtPointerclient_data;

app_context Specifies the application context in which the language procedure is to be used,
or NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProcsets the language procedure that will be called fromXtDisplayInitialize
for all subsequent Displays initialized in the specified application context. Ifapp_contextis
NULL, the specified language procedure is registered in all application contexts created by the
calling process, including any future application contexts that may be created. Ifproc is NULL a
default language procedure is registered.XtSetLanguageProcreturns the previously registered
language procedure. If a language procedure has not yet been registered, the return value is
unspecified but if this return value is used in a subsequent call toXtSetLanguageProc, it will
cause the default language procedure to be registered.

30

X Toolkit Intrinsics X11 Release 6

The default language procedure does the following:

• Sets the locale according to the environment. On ANSI C-based systems this is done by
calling setlocale(LC_ALL , language). If an error is encountered a warning message is
issued withXtWarning .

• Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued withXtWarning and the locale is set to ‘‘C’’.

• Calls XSetLocaleModifiers specifying the empty string.

• Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call tosetlocale(LC_ALL , NULL).

A client wishing to use this mechanism to establish locale can do so by callingXtSetLanguage-
Proc prior to XtDisplayInitialize , as in the following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);
...

2.3. Loading the Resource Database

The XtDisplayInitialize function first determines the language string to be used for the specified
display. It then creates a resource database for the default screen of the display by combining the
following sources in order, with the entries in the first named source having highest precedence:

• Application command line (argc, argv).

• Per-host user environment resource file on the local host.

• Per-screen resource specifications from the server.

• Per-display resource specifications from the server or from
the user preference file on the local host.

• Application-specific user resource file on the local host.

• Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either internally, or
whenXtScreenDatabaseis called), it is created in the following manner using the sources listed
above inthe same order:

• A temporary database, the ‘‘server resource database’’, is created from the string returned
by XResourceManagerStringor, if XResourceManagerStringreturns NULL, the con-
tents of a resource file in the user’s home directory. On POSIX-based systems, the usual
name for this user preference resource file is $HOME/.Xdefaults.

• If a language procedure has been set,XtDisplayInitialize first searches the command line
for the option ‘‘-xnlLanguage’’, or for a -xrm option that specifies the xnlLan-
guage/XnlLanguage resource, as specified by Section 2.4. If such a resource is found, the
value is assumed to be entirely in XPCS, the X Portable Character Set. If neither option is
specified on the command line,XtDisplayInitialize queries the server resource database

31

X Toolkit Intrinsics X11 Release 6

(which is assumed to be entirely in XPCS) for the resourcename.xnlLanguage, class
Class.XnlLanguagewherenameandClassare theapplication_nameandapplica-
tion_classspecified toXtDisplayInitialize . The language procedure is then invoked with
the resource value if found, else the empty string. The string returned from the language
procedure is saved for all future references in the Intrinsics that require the per-display lan-
guage string.

• The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.

• If a language procedure has not been set, the initial database is then queried for the resource
name.xnlLanguage, classClass.XnlLanguageas specified above. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment variable. If no language string is found, the empty string is
used. This language string is saved for all future references in the Intrinsics that require the
per-display language string.

• After determining the language string, the user’s environment resource file is then merged
into the initial resource database if the file exists. This file is user-, host-, and process-
specific and is expected to contain user preferences that are to override those specifications
in the per-display and per-screen resources. On POSIX-based systems, the user’s environ-
ment resource file name is specified by the value of theXENVIRONMENT environment
variable. If this environment variable does not exist, the user’s home directory is searched
for a file named.Xdefaults-host, wherehostis the host name of the machine on which the
application is running.

• The per-screen resource specifications are then merged into the screen resource database, if
they exist. These specifications are the string returned byXScreenResourceStringfor the
respective screen and are owned entirely by the user.

• Next, the server resource database created earlier is merged into the screen resource
database. The server property, and corresponding user preference file, are owned and con-
structed entirely by the user.

• The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user. Either the user or the application or both can store resource specifications in
the file. Each should be prepared to find and respect entries made by the other. The file
name is found by callingXrmSetDatabasewith the current screen resource database, after
preserving the original display-associated database, then callingXtResolvePathnamewith
the parameters (display, NULL, NULL, NULL, path, NULL, 0, NULL) wherepath is
defined in an operating-system-specific way. On POSIX-based systems,path is defined to
be the value of the environment variableXUSERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. This default value is constrained in the following manner:

32

X Toolkit Intrinsics X11 Release 6

− If the environment variableXAPPLRESDIR is not defined, the defaultXUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain $HOME as
the directory prefix, plus the following substitutions:

1. %C, %N, %L or %C, %N, %l, %t, %c
2. %C, %N, %l
3. %C, %N
4. %N, %L or %N, %l, %t, %c
5. %N, %l
6. %N

The order of these six entries within the path must be as given above. The order and
use of substitutions within a given entry is implementation dependent.

− If XAPPLRESDIR is defined, the defaultXUSERFILESEARCHPATH must contain at
least seven entries. These entries must contain the following directory prefixes and sub-
stitutions:

1. $XAPPLRESDIR with %C, %N, %L or %C, %N, %l, %t, %c
2. $XAPPLRESDIR with %C, %N, %l
3. $XAPPLRESDIR with %C, %N
4. $XAPPLRESDIR with %N, %L or %N, %l, %t, %c
5. $XAPPLRESDIR with %N, %l
6. $XAPPLRESDIR with %N
7. $HOME with %N

The order of these seven entries within the path must be as given above. The order and
use of substitutions within a given entry is implementation dependent.

• Lastly, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain site-wide customizations
specified by the system manager. The name of the application class resource file is found
by callingXtResolvePathnamewith the parameters (display, ‘‘app-defaults’’, NULL,
NULL, NULL, NULL, 0, NULL). This file is expected to be provided by the developer of
the application and may be required for the application to function properly. A simple
application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specifications with
XtAppSetFallbackResources. Note that the customization substitution string is retrieved
dynamically byXtResolvePathnameso that the resolved file name of the application class
resource file can be affected by any of the earlier sources for the screen resource database,
ev en though the contents of the class resource file have lowest precedence. After calling
XtResolvePathname, the original display-associated database is restored.

To obtain the resource database for a particular screen, useXtScreenDatabase.

XrmDatabase XtScreenDatabase(screen)
Screen *screen;

33

X Toolkit Intrinsics X11 Release 6

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabasefunction returns the fully merged resource database as specified above,
associated with the specified screen. If the specifiedscreendoes not belong to aDisplay initial-
ized byXtDisplayInitialize , the results are undefined.

To obtain the default resource database associated with a particular display, useXtDatabase.

XrmDatabase XtDatabase(display)
Display *display;

display Specifies the display.

The XtDatabase function is equivalent toXrmGetDatabase. It returns the database associated
with the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources listed above), use
XtAppSetFallbackResources.

void XtAppSetFallbackResources(app_context, specification_list)
XtAppContextapp_context;
String *specification_list;

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry inspecification_listpoints to a string in the format ofXrmPutLineResource. Fol-
lowing a call toXtAppSetFallbackResources, when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class
resource file according to the rules given above and ifspecification_listis not NULL the resource
specifications inspecification_listwill be merged into the screen resource database in place of the
application-specific class resource file.XtAppSetFallbackResourcesis not required to copy
specification_list; the caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or untilXtAppSetFallbackResourcesis
called again. The value NULL forspecification_listremoves any previous fallback resource spec-
ification for the application context. The intended use for fallback resources is to provide a mini-
mal number of resources that will make the application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Parsing the Command Line

The XtOpenDisplay function first parses the command line for the following options:

−display Specifies the display name forXOpenDisplay.

−name Sets the resource name prefix, which overrides the application name passed to
XtOpenDisplay.

−xnllanguage Specifies the initial language string for establishing locale and for finding appli-
cation class resource files.

34

X Toolkit Intrinsics X11 Release 6

XtDisplayInitialize has a table of standard command line options that are passed toXrmPar-
seCommandfor adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbreviations. The format of this table is described in Section 15.9
in Xlib − C Language X Interface.

typedef enum {
XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
XrmoptionIsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNArgs, /* Ignore this option and the next */

/* OptionDescRec.value arguments in argv */
XrmoptionSkipLine /* Ignore this option and the rest of argv */

} XrmOptionKind;

typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (without application name) */
XrmOptionKind argKind; /* Location of the resource value */
XPointer value; /* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value

−background *background SepArg next argument
−bd *borderColor SepArg next argument
−bg *background SepArg next argument
−borderwidth .borderWidth SepArg next argument
−bordercolor *borderColor SepArg next argument
−bw .borderWidth SepArg next argument
−display .display SepArg next argument
−fg *foreground SepArg next argument
−fn *font SepArg next argument
−font *font SepArg next argument
−foreground *foreground SepArg next argument
−geometry .geometry SepArg next argument
−iconic .iconic NoArg ‘‘true’’
−name .name SepArg next argument
−reverse .reverseVideo NoArg ‘‘on’’
−rv .reverseVideo NoArg ‘‘on’’
+rv .reverseVideo NoArg ‘‘off’’
−selectionTimeout .selectionTimeout SepArg next argument
−synchronous .synchronous NoArg ‘‘on’’
+synchronous .synchronous NoArg ‘‘off’’
−title .title SepArg next argument

35

X Toolkit Intrinsics X11 Release 6

−xnllanguage .xnlLanguage SepArg next argument
−xrm next argument ResArg next argument
−xtsessionID .sessionID SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo isTrue , the values ofXtDefaultForeground andXtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. If a value is found in the resource database during display initialization,XtDisplayInitial-
ize makes a call toXSynchronize for all display connections currently open in the application
context. Therefore, when multiple displays are initialized in the same application context, the
most recent value specified for the synchronous resource is used for all displays in the application
context.

The value of the selectionTimeout resource applies to all displays opened in the same application
context. When multiple displays are initialized in the same application context, the most recent
value specified is used for all displays in the application context.

The −xrm option provides a method of setting any resource in an application. The next argument
should be a quoted string identical in format to a line in the user resource file. For example, to
give a red background to all command buttons in an application namedxmh, you can start it up
as

xmh −xrm ’xmh*Command.background: red’

When it parses the command line,XtDisplayInitialize merges the application option table with
the standard option table before calling the XlibXrmParseCommand function. An entry in the
application table with the same name as an entry in the standard table overrides the standard table
entry. If an option name is a prefix of another option name, both names are kept in the merged
table. The Intrinsics reserve all option names beginning with the characters ‘‘-xt’’ for future stan-
dard uses.

2.5. Creating Widgets

The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up traversal of the
widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application callsXtCreateWidget for all its widgets and adds some
(usually, most or all) of its widgets to their respective parents’ managed set by calling
XtManageChild . To avoid anO(n2) creation process where each composite widget lays itself
out each time a widget is created and managed, parent widgets are not notified of changes in their
managed set during this phase.

After all widgets have been created, the application callsXtRealizeWidget with the top-level
widget to execute the second and third phases.XtRealizeWidget first recursively traverses the

36

X Toolkit Intrinsics X11 Release 6

widget tree in a postorder (bottom-up) traversal and then notifies each composite widget with one
or more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry negoti-
ation. A parent deals with constraints on its size imposed from above (for example, when a user
specifies the application window size) and suggestions made from below (for example, when a
primitive child computes its preferred size). One difference between the two can cause geometry
changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its children. You cannot predict where anything will go on the screen
until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is
likely that they will get moved around after creation. This avoids unnecessary requests to the X
server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-down) traversal of the
widget tree, allocates an X window to each widget by means of its realize procedure, and finally
maps the widgets that are managed.

2.5.1. Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These are passed as
an arglist, a pointer to an array ofArg structures, which contains

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

whereXtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the size of anXtArgVal , the resource value is
stored directly invalue; otherwise, a pointer to it is stored invalue.

To set values in anArgList , useXtSetArg .

void XtSetArg(arg, name, value)
Arg arg;
Stringname;
XtArgVal value;

arg Specifies thename/valuepair to set.

name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in anXtArgVal , else the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg args[20];
int n;

n = 0;
XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;

37

X Toolkit Intrinsics X11 Release 6

XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and useXtNumber :

static Args args[] = {
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

};
XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-
decrement within the first argument toXtSetArg . XtSetArg can be implemented as a macro
that evaluates the first argument twice.

To merge two arglist arrays, useXtMergeArgLists .

ArgList XtMergeArgLists(args1, num_args1, args2, num_args2)
ArgList args1;
Cardinalnum_args1;
ArgList args2;
Cardinalnum_args2;

args1 Specifies the first argument list.

num_args1 Specifies the number of entries in the first argument list.

args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by usingXtFree.

All Intrinsics interfaces that requireArgList arguments have analogs conforming to the ANSI C
variable argument list (traditionally called ‘‘varargs’’) calling convention. The name of the analog
is formed by prefixing ‘‘Va’’ to the name of the correspondingArgList procedure; e.g.,
XtVaCreateWidget. Each procedure namedXtVasomethingtakes as its last arguments, in place
of the correspondingArgList / Cardinal parameters, a variable parameter list of resource name
and value pairs where each name is of typeString and each value is of typeXtArgVal . The end
of the list is identified by anameentry containing NULL. Developers writing in the C language
wishing to pass resource name and value pairs to any of these interfaces may use theArgList and
varargs forms interchangeably.

Tw o special names are defined for use only in varargs lists:XtVaTypedArg and
XtVaNestedList.

#define XtVaTypedArg "XtVaTypedArg"

If the nameXtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted as aname/type/value/sizetuplewherename is of typeString , typeis of
type String , valueis of typeXtArgVal , andsizeis of type int. When a varargs list containing
XtVaTypedArg is processed, a resource type conversion (see Section 9.6) is performed if

38

X Toolkit Intrinsics X11 Release 6

necessary to convert the value into the format required by the associated resource. Iftypeis
XtRString thenvaluecontains a pointer to the string andsizecontains the number of bytes allo-
cated, including the trailing null byte. Iftypeis not XtRString, thenif size is less than or equal to
sizeof(XtArgVal), the value should be the data cast to the typeXtArgVal , otherwisevalueis a
pointer to the data. If the type conversion fails for any reason, a warning message is issued and
the list entry is skipped.

#define XtVaNestedList "XtVaNestedList"

If the nameXtVaNestedList is specified in place of a resource name, then the following argu-
ment is interpreted as anXtVarArgsList value, which specifies another varargs list that is logi-
cally inserted into the original list at the point of declaration. The end of the nested list is identi-
fied with a name entry containing NULL. Varargs lists may nest to any depth.

To dynamically allocate a varargs list for use withXtVaNestedList in multiple calls, use
XtVaCreateArgsList .

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(unused, ...)
XtPointerunused;

unused This argument is not currently used and must be specified as NULL.

... Specifies a variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer, which may be used withXtVaNestedList. The end of both lists is identified by aname
entry containing NULL. Any entries of typeXtVaTypedArg are copied as specified without
applying conversions. Data passed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the cre-
ated varargs list. The list should be freed usingXtFree when no longer needed.

Use of resource files and the resource database is generally encouraged over lengthy arglist or
varargs lists whenever possible in order to permit modification without recompilation.

2.5.2. Creating a Widget Instance

To create an instance of a widget, useXtCreateWidget.

Widget XtCreateWidget(name, object_class, parent, args, num_args)
Stringname;
WidgetClassobject_class;
Widgetparent;
ArgList args;
Cardinalnum_args;

name Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any other wid-
get that is a child of the same parent.

object_class Specifies the widget class pointer for the created object. Must beobjectClassor
any subclass thereof.

39

X Toolkit Intrinsics X11 Release 6

parent Specifies the parent widget. Must be of class Object or any subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing
the following in order:

• Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

• If the specified class is notcoreWidgetClassor a subclass thereof, and the parent’s class is
a subclass ofcompositeWidgetClassand either no extension record in the parent’s com-
posite class part extension field exists with therecord_typeNULLQUARK or the
accepts_objectsfield in the extension record isFalse, XtCreateWidget issues a fatal error;
see Section 3.1 and Chapter 12.

• If the specified class contains an extension record in the object class partextensionfield
with record_typeNULLQUARK and theallocatefield is not NULL, the procedure is
invoked to allocate memory for the widget instance. If the parent is a member of the class
constraintWidgetClass, the procedure also allocates memory for the parent’s constraints
and stores the address of this memory into theconstraintsfield. If no allocate procedure is
found, the Intrinsics allocate memory for the widget and, when applicable, the constraints,
and initializes theconstraintsfield.

• Initializes the Core nonresource data fieldsself, parent, widget_class, being_destroyed,
name, managed, window, visible, popup_list, andnum_popups.

• Initializes the resource fields (for example,background_pixel) by using theCoreClassPart
resource lists specified for this class and all superclasses.

• If the parent is a member of the classconstraintWidgetClass, initializes the resource
fields of the constraints record by using theConstraintClassPart resource lists specified
for the parent’s class and all superclasses up toconstraintWidgetClass.

• Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widget’s initialize procedure.

• If the parent is a member of the classconstraintWidgetClass, calls theConstraintClass-
Part initialize procedures, starting atconstraintWidgetClasson down to the parent’s
ConstraintClassPart initialize procedure.

• If the parent is a member of the classcompositeWidgetClass, puts the widget into its par-
ent’s children list by calling its parent’s insert_child procedure. For further information,
see Section 3.1.

To create an instance of a widget using varargs lists, useXtVaCreateWidget.

Widget XtVaCreateWidget(name, object_class, parent, ...)
Stringname;
WidgetClassobject_class;
Widgetparent;

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. Must beobjectClassor
any subclass thereof.

parent Specifies the parent widget. Must be of class Object or any subclass thereof.

40

X Toolkit Intrinsics X11 Release 6

... Specifies the variable argument list to override any other resource specifications.

The XtVaCreateWidget procedure is identical in function toXtCreateWidget with theargsand
num_argsparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.3. Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget tree
which can potentially be on different screens or displays. An application usesXtAppCre-
ateShell to create independent widget trees.

Widget XtAppCreateShell(name, application_class, widget_class, display,
args, num_args)

Stringname;
Stringapplication_class;
WidgetClasswidget_class;
Display *display;
ArgList args;
Cardinalnum_args;

name Specifies the instance name of the shell widget. Ifnameis NULL, the appli-
cation name passed toXtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_namestring whenwidget_classis applicationShellWidgetClassor a
subclass thereof.

widget_class Specifies the widget class for the top-level widget (e.g.,
applicationShellWidgetClass)

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a new shell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scanningargsfor the XtNscreen argu-
ment. If no XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resourcename.screen, classClass.Screen where
Classis the specifiedapplication_classif widget_classis applicationShellWidgetClassor a
subclass thereof. Ifwidget_classis notapplicationShellWidgetClassor a subclass,Classis the
class_namefield from theCoreClassPartof the specifiedwidget_class. If this query fails, the
default screen of the specified display is used. Once the screen is determined, the resource
database associated with that screen is used to retrieve all remaining resources for the shell widget
not specified inargs. The widget name andClassas determined above are used as the leftmost
(i.e., root) components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name andClassas determined above
will be stored into theWM_CLASS property on the widget’s window when it becomes realized.
If the specifiedwidget_classis applicationShellWidgetClassor a subclass thereof the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

41

X Toolkit Intrinsics X11 Release 6

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

• Designate one shell as the real top-level shell and create the others as pop-up children of it
by usingXtCreatePopupShell.

• Hav e all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window,
leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource specifications like
the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use
XtVaAppCreateShell.

Widget XtVaAppCreateShell(name, application_class, widget_class, display, ...)
Stringname;
Stringapplication_class;
WidgetClasswidget_class;
Display *display;

name Specifies the instance name of the shell widget. Ifnameis NULL, the applica-
tion name passed toXtDisplayInitialize is used.

application_class
Specifies the resource class string to be used in place of the widgetclass_name
string whenwidget_classis applicationShellWidgetClassor a subclass thereof.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for the resource database used to
retrieve the shell widget resources.

... Specifies the variable argument list to override any other resource specifications.

The XtVaAppCreateShell procedure is identical in function toXtAppCreateShell with theargs
andnum_argsparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application may useXtOpenApplication or
XtVaOpenApplication .

42

X Toolkit Intrinsics X11 Release 6

Widget XtOpenApplication(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, widget_class, args, num_args)

XtAppContext *app_context_return;
Stringapplication_class;
XrmOptionDescListoptions;
Cardinalnum_options;
int *argc_in_out;
String *argv_in_out;
String *fallback_resources;
WidgetClasswidget_class;
ArgList args;
Cardinalnum_args;

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries inoptions.

argc_in_out Specifies a pointer to the number of command line arguments.

argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

args Specifies the argument list to override any other resource specifications
for the created shell widget.

num_args Specifies the number of entries in the argument list.

The XtOpenApplication function callsXtToolkitInitialize followed by
XtCreateApplicationContext , then callsXtOpenDisplay with display_stringNULL andappli-
cation_nameNULL, and finally callsXtAppCreateShell with nameNULL, the specifiedwid-
get_class, an argument list and count, and returns the created shell. The recommendedwid-
get_classis sessionShellWidgetClass. The argument list and count are created by merging the
specifiedargsandnum_argswith a list containing the specifiedargcandargv. The modified
argcandargv returned byXtDisplayInitialize are returned inargc_in_outandargv_in_out. If
app_context_returnis not NULL, the created application context is also returned. If the display
specified by the command line cannot be opened, an error message is issued andXtOpenAppli-
cation terminates the application. Iffallback_resourcesis non-NULL, XtAppSetFallbackRe-
sourcesis called with the value prior to callingXtOpenDisplay.

43

X Toolkit Intrinsics X11 Release 6

Widget XtVaOpenApplication(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, widget_class, ...)

XtAppContext *app_context_return;
Stringapplication_class;
XrmOptionDescListoptions;
Cardinalnum_options;
int *argc_in_out;
String *argv_in_out;
String *fallback_resources;
WidgetClasswidget_class;

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries inoptions.

argc_in_out Specifies a pointer to the number of command line arguments.

argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

... Specifies the variable argument list to override any other resource specifi-
cations for the created shell.

The XtVaOpenApplication procedure is identical in function toXtOpenApplication with the
argsandnum_argsparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.5. Widget Instance Allocation: the allocate Procedure

A widget class may optionally provide an instance allocation procedure in theObjectClassEx-
tension record.

When the call to create a widget includes a varargs list containingXtVaTypedArg , these argu-
ments will be passed to the allocation procedure in anXtTypedArgList .

typedef struct {
String name;
String type;
XtArgVal value;
int size;

} XtTypedArg, *XtTypedArgList;

The allocate procedure pointer in theObjectClassExtensionrecord is of typeXtAllocateProc.

44

X Toolkit Intrinsics X11 Release 6

typedef void (*XtAllocateProc)(WidgetClass, Cardinal*, Cardinal*, ArgList, Cardinal*,
XtTypedArgList, Cardinal*, Widget*, XtPointer*);

WidgetClasswidget_class;
Cardinal*constraint_size;
Cardinal*more_bytes;
ArgList args;
Cardinal*num_args;
XtTypedArgListtyped_args,
Cardinal*num_typed_args;
Widget* new_return;
XtPointer*more_bytes_return;

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate, or 0.

more_bytes Specifies the number of auxiliary bytes of memory to allocate.

args Specifies the argument list as given in the call to create the widget.

num_args Specifies the list of arguments.

typed_args Specifies the list of typed arguments given in the call to create the wid-
get.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or NULL in case of
error.

more_bytes_return Returns the auxiliary memory if it was requested, or NULL if requested
and an error occurred; otherwise, unchanged.

At widget allocation time, if an extension record withrecord_typeequal toNULLQUARK is
located through the object class partextensionfield and theallocatefield is not NULL, theXtAl-
locateProcwill be invoked to allocate memory for the widget. If no ObjectClassPart extension
record is declared withrecord_type equalto NULLQUARK , thenXtInheritAllocate andXtIn-
heritDeallocate are assumed. If noXtAllocateProc is found, the Intrinsics will allocate mem-
ory for the widget.

An XtAllocateProc must perform the following:

• Allocate memory for the widget instance and return it innew_return. The memory must be
at leastwc->core_class.widget_sizebytes in length, double word aligned.

• Initialize thecore.constraintsfield in the instance record to NULL or to point to a con-
straint record. Ifconstraint_sizeis not 0, the procedure must allocate memory for the con-
straint record. The memory must be double word aligned.

• If more_bytesis not 0, then the address of a block of memory at leastmore_bytesin size,
double word aligned, must be returned in themore_bytes_returnparameter, or NULL to
indicate an error.

A class allocation procedure which envelopes the allocation procedure of a superclass must rely
on the enveloped procedure to perform the instance and constraint allocation. Allocation proce-
dures are discouraged from initializing fields in the widget record but if they choose to do so they
should not touch the instance part of any superclass.

45

X Toolkit Intrinsics X11 Release 6

2.5.6. Widget Instance Initialization: the initialize Procedure

The initialize procedure pointer in a widget class is of typeXtInitProc .

typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);
Widgetrequest;
Widgetnew;
ArgList args;
Cardinal *num_args;

request Specifies a copy of the widget with resource values as requested by the argument
list, the resource database, and the widget defaults.

new Specifies the widget with the new values, both resource and nonresource, that are
actually allowed.

args Specifies the argument list passed by the client, for computing derived resource
values. If the client created the widget using a varargs form, any resources speci-
fied viaXtVaTypedArg are converted to the widget representation and the list is
transformed into theArgList format.

num_args Specifies the number of entries in the argument list.

An initialization procedure performs the following:

• Allocates space for and copies any resources referenced by address that the client is
allowed to free or modify after the widget has been created. For example, if a widget has a
field that is aString , it may choose not to depend on the characters at that address remain-
ing constant but dynamically allocate space for the string and copy it to the new space.
Widgets that do not copy one or more resources referenced by address should clearly so
state in their user documentation.

Note

It is not necessary to allocate space for or to copy callback lists.

• Computes values for unspecified resource fields. For example, ifwidthandheightare zero,
the widget should compute an appropriate width and height based on its other resources.

Note

A widget may only directly assign its ownwidthandheightwithin the initial-
ize, initialize_hook, set_values and set_values_hook procedures; see Chapter 6.

• Computes values for uninitialized nonresource fields that are derived from resource fields.
For example, graphics contexts (GCs) that the widget uses are derived from resources like
background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For example, it
makes no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields specified in the
resource lists have been initialized. The initialize procedure does not need to examineargsand
num_argsif all public resources are declared in the resource list. Most of the initialization code
for a specific widget class deals with fields defined in that class and not with fields defined in its
superclasses.

If a subclass does not need an initialization procedure because it does not need to perform any of
the above operations, it can specify NULL for theinitialize field in the class record.

46

X Toolkit Intrinsics X11 Release 6

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass, and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass initialize procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass’s size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size is
explicitly given, but they should compute a reasonable size if no size is requested.

Therequestandnewarguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclass. Therequest
widget is a copy of the widget as initialized by the arglist and resource database. Thenewwidget
starts with the values in the request, but it has been updated by all superclass initialization proce-
dures called so far. A subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the above example, the subclass with the visual surround can see if thewidthandheightin the
requestwidget are zero. If so, it adds its surround size to thewidthandheightfields in thenew
widget. If not, it must make do with the size originally specified.

Thenewwidget will become the actual widget instance record. Therefore, the initialization pro-
cedure should do all its work on thenewwidget; therequestwidget should never be modified. If
the initialize procedure needs to call any routines that operate on a widget, it should specifynew
as the widget instance.

2.5.7. Constraint Instance Initialization: the ConstraintClassPart initialize Procedure

The constraint initialization procedure pointer, found in theConstraintClassPart initialize field
of the widget class record, is of typeXtInitProc . The values passed to the parent constraint ini-
tialization procedures are the same as those passed to the child’s class widget initialization proce-
dures.

Theconstraintsfield of therequestwidget points to a copy of the constraints record as initialized
by the arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived from con-
straint resources. It can make further changes to thenewwidget to make the widget and any other
constraint fields conform to the specified constraints, for example, changing the widget’s size or
position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
the initialize field of theConstraintClassPart in the class record.

2.5.8. Nonwidget Data Initialization: the initialize_hook Procedure

Note

The initialize_hook procedure is obsolete, as the same information is now available
to the initialize procedure. The procedure has been retained for those widgets that
used it in previous releases.

The initialize_hook procedure pointer is of typeXtArgsProc :

47

X Toolkit Intrinsics X11 Release 6

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArgList args;
Cardinal *num_args;

w Specifies the widget.

args Specifies the argument list passed by the client. If the client created the widget
using a varargs form, any resources specified viaXtVaTypedArg are converted
to the widget representation and the list is transformed into theArgList format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize proce-
dure or in its place if theinitialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using infor-
mation from the specified argument list as if it were a resource.

2.6. Realizing Widgets

To realize a widget instance, useXtRealizeWidget.

void XtRealizeWidget(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized,XtRealizeWidget simply returns. Otherwise it performs the fol-
lowing:

• Binds all action names in the widget’s translation table to procedures (see Section 10.1.2).

• Makes a postorder traversal of the widget tree rooted at the specified widget and calls each
non-NULL change_managed procedure of all composite widgets that have one or more
managed children.

• Constructs anXSetWindowAttributes structure filled in with information derived from
the Core widget fields and calls the realize procedure for the widget, which adds any wid-
get-specific attributes and creates the X window.

• If the widget is not a subclass ofcompositeWidgetClass, XtRealizeWidget returns; oth-
erwise it continues and performs the following:

− Descends recursively to each of the widget’s managed children and calls the realize
procedures. Primitive widgets that instantiate children are responsible for realizing
those children themselves.

− Maps all of the managed children windows that havemapped_when_managedTrue .
If a widget is managed butmapped_when_managedis False, the widget is allocated
visual space but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent), andmapped_when_managedis
True , XtRealizeWidget maps the widget window.

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren ,
XtUnmanageChildren, XtUnrealizeWidget, XtSetMappedWhenManaged, andXtDestroy-
Widget maintain the following invariants:

• If a composite widget is realized, then all its managed children are realized.

48

X Toolkit Intrinsics X11 Release 6

• If a composite widget is realized, then all its managed children that have
mapped_when_managedTrue are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized wid-
gets. When calling the realize or change_managed procedures for children of a composite wid-
get,XtRealizeWidget calls the procedures in reverse order of appearance in theCompositePart
children list. By default, this ordering of the realize procedures will result in the stacking order of
any newly created subwindows being top-to-bottom in the order of appearance on the list, and the
most recently created child will be at the bottom.

To check whether or not a widget has been realized, useXtIsRealized.

Boolean XtIsRealized(w)
Widgetw;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtIsRealized function returnsTrue if the widget has been realized, that is, if the widget has
a nonzero window ID. If the specified object is not a widget, the state of the nearest widget
ancestor is returned.

Some widget procedures (for example, set_values) might wish to operate differently after the wid-
get has been realized.

2.6.1. Widget Instance Window Creation: the realize Procedure

The realize procedure pointer in a widget class is of typeXtRealizeProc.

typedef void (*XtRealizeProc)(Widget, XtValueMask*, XSetWindowAttributes*);
Widgetw;
XtValueMask *value_mask;
XSetWindowAttributes *attributes;

w Specifies the widget.

value_mask Specifies which fields in theattributesstructure are used.

attributes Specifies the window attributes to use in theXCreateWindow call.

The realize procedure must create the widget’s window.

Before calling the class realize procedure, the genericXtRealizeWidget function fills in a mask
and a correspondingXSetWindowAttributes structure. It sets the following fields inattributes
and corresponding bits invalue_maskbased on information in the widget core structure:

• Thebackground_pixmap(or background_pixelif background_pixmapis
XtUnspecifiedPixmap) is filled in from the corresponding field.

• Theborder_pixmap(or border_pixelif border_pixmapis XtUnspecifiedPixmap) is filled
in from the corresponding field.

• Thecolormapis filled in from the corresponding field.

• Theevent_maskis filled in based on the event handlers registered, the event translations
specified, whether theexposefield is non-NULL, and whethervisible_interestis True .

• Thebit_gravity is set toNorthWestGravity if the exposefield is NULL.

These or any other fields in attributes and the corresponding bits invalue_maskcan be set by the
realize procedure.

49

X Toolkit Intrinsics X11 Release 6

Note that because realize is not a chained operation, the widget class realize procedure must
update theXSetWindowAttributes structure with all the appropriate fields from non-Core super-
classes.

A widget class can inherit its realize procedure from its superclass during class initialization. The
realize procedure defined forcoreWidgetClasscalls XtCreateWindow with the passed
value_maskandattributesand withwindow_classandvisualset toCopyFromParent. Both
compositeWidgetClassandconstraintWidgetClass inherit this realize procedure, and most
new widget subclasses can do the same (see Section 1.6.10).

The most common noninherited realize procedures setbit_gravity in the mask and attributes to
the appropriate value and then create the window. For example, depending on its justification,
Label might setbit_gravityto WestGravity , CenterGravity , or EastGravity . Consequently,
shrinking it would just move the bits appropriately, and no exposure event is needed for repaint-
ing.

If a composite widget’s children should be realized in an order other than that specified (to control
the stacking order, for example), it should callXtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that have children and whose class is not a subclass ofcompositeWidgetClassare
responsible for callingXtRealizeWidget on their children, usually from within the realize proce-
dure.

Realize procedures cannot manage or unmanage their descendants.

2.6.2. Window Creation Convenience Routine

Rather than call the XlibXCreateWindow function explicitly, a realize procedure should nor-
mally call the Intrinsics analogXtCreateWindow , which simplifies the creation of windows for
widgets.

void XtCreateWindow(w, window_class, visual, value_mask, attributes)
Widgetw;
unsigned intwindow_class;
Visual *visual;
XtValueMaskvalue_mask;
XSetWindowAttributes *attributes;

w Specifies the widget that defines the additional window attributed. Must be of
class Core or any subclass thereof.

window_class Specifies the Xlib window class (for example,InputOutput , InputOnly , or
CopyFromParent).

visual Specifies the visual type (usuallyCopyFromParent).

value_mask Specifies which fields in theattributesstructure are used.

attributes Specifies the window attributes to use in theXCreateWindow call.

The XtCreateWindow function calls the XlibXCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the created window to the widget’s
windowfield.

XtCreateWindow evaluates the following fields of the widget core structure:depth, screen, par-
ent->core.window, x, y, width, height, andborder_width.

50

X Toolkit Intrinsics X11 Release 6

2.7. Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window ids. Thewindowfield may be
NULL for a while (see Sections 2.5 and 2.6).

The display pointer, the parent widget, screen pointer, and window of a widget are available to the
widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplay(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w)
Widgetw;

w Specifies the widget. Must be of class Object or any subclass thereof.

XtParent returns the parent object for the specified widget. The returned object will be of class
Object or a subclass.

Screen *XtScreen(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtWindow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest widget ancestor of a
nonwidget object are available by means ofXtDisplayOfObject , XtScreenOfObject, and
XtWindowOfObject .

Display *XtDisplayOfObject(object)
Widgetobject;

object Specifies the object. Must be of class Object or any subclass thereof.

XtDisplayOfObject is identical in function toXtDisplay if the object is a widget; otherwise
XtDisplayOfObject returns the display pointer for the nearest ancestor ofobjectthat is of class
Widget or a subclass thereof.

Screen *XtScreenOfObject(object)
Widgetobject;

51

X Toolkit Intrinsics X11 Release 6

object Specifies the object. Must be of class Object or any subclass thereof.

XtScreenOfObject is identical in function toXtScreen if the object is a widget; otherwise
XtScreenOfObject returns the screen pointer for the nearest ancestor ofobjectthat is of class
Widget or a subclass thereof.

Window XtWindowOfObject(object)
Widgetobject;

object Specifies the object. Must be of class Object or any subclass thereof.

XtWindowOfObject is identical in function toXtWindow if the object is a widget; otherwise
XtWindowOfObject returns the window for the nearest ancestor ofobjectthat is of class Widget
or a subclass thereof.

To retrieve the instance name of an object, useXtName.

String XtName(object)
Widgetobject;

object Specifies the object whose name is desired. Must be of class Object or any sub-
class thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned by
the Intrinsics and must not be modified. The name is not qualified by the names of any of the
object’s ancestors.

Several window attributes are locally cached in the widget instance. Thus, they can be set by the
resource manager andXtSetValuesas well as used by routines that derive structures from these
values (for example,depthfor deriving pixmaps,background_pixelfor deriving GCs, and so on)
or in theXtCreateWindow call.

Thex, y, width, height, andborder_widthwindow attributes are available to geometry managers.
These fields are maintained synchronously inside the Intrinsics. When anXConfigureWindow
is issued by the Intrinsics on the widget’s window (on request of its parent), these values are
updated immediately rather than some time later when the server generates aConfigureNotify
ev ent. (In fact, most widgets do not selectSubstructureNotify ev ents.) This ensures that all
geometry calculations are based on the internally consistent toolkit world rather than on either an
inconsistent world updated by asynchronousConfigureNotify ev ents or a consistent but slow
world in which geometry managers ask the server for window sizes whenever they need to lay out
their managed children (see Chapter 6).

2.7.1. Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants, use
XtUnrealizeWidget.

void XtUnrealizeWidget(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized,XtUnrealizeWidget simply returns. Otherwise it performs
the following:

• Unmanages the widget if the widget is managed.

52

X Toolkit Intrinsics X11 Release 6

• Makes a postorder (child-to-parent) traversal of the widget tree rooted at the specified wid-
get and, for each widget that has declared a callback list resource named ‘‘unrealizeCall-
back’’, executes the procedures on the XtNunrealizeCallback list.

• Destroys the widget’s window and any subwindows by callingXDestroyWindow with the
specified widget’swindowfield.

Any events in the queue or which arrive following a call toXtUnrealizeWidget will be dis-
patched as if the window(s) of the unrealized widget(s) had never existed.

2.8. Destroying Widgets

The Intrinsics provide support

• To destroy all the pop-up children of the widget being destroyed and destroy all children of
composite widgets.

• To remove (and unmap) the widget from its parent.

• To call the callback procedures that have been registered to trigger when the widget is
destroyed.

• To minimize the number of things a widget has to deallocate when destroyed.

• To minimize the number ofXDestroyWindow calls when destroying a widget tree.

To destroy a widget instance, useXtDestroyWidget.

void XtDestroyWidget(w)
Widgetw;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including wid-
gets that need to destroy themselves. It can be called at any time, including from an application
callback routine of the widget being destroyed. This requires a two-phase destroy process in
order to avoid dangling references to destroyed widgets.

In phase 1,XtDestroyWidget performs the following:

• If the being_destroyedfield of the widget isTrue , it returns immediately.

• Recursively descends the widget tree and sets thebeing_destroyedfield to True for the
widget and all normal and pop-up children.

• Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is
safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the destroy list, then
w2 is not a descendent, either normal or pop-up, of w1.

Phase 2 occurs when all procedures that should execute as a result of the current event have been
called, including all procedures registered with the event and translation managers, that is, when
the current invocation ofXtDispatchEvent is about to return, or immediately if not in
XtDispatchEvent.

In phase 2,XtDestroyWidget performs the following on each entry in the destroy list in the
order specified:

• If the widget is not a pop-up child and the widget’s parent is a subclass ofcomposite-
WidgetClass, and if the parent is not being destroyed, it callsXtUnmanageChild on the
widget and then calls the widget’s parent’s delete_child procedure (see Section 3.3).

53

X Toolkit Intrinsics X11 Release 6

• Calls the destroy callback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

The XtDestroyWidget function then makes second traversal of the widget and all normal and
pop-up descendants to perform the following three items on each widget in postorder:

• If the widget is not a pop-up child and the widget’s parent is a subclass ofconstraint-
WidgetClass, it calls theConstraintClassPart destroy procedure for the parent, then for
the parent’s superclass, until finally it calls theConstraintClassPart destroy procedure for
constraintWidgetClass.

• Calls theCoreClassPartdestroy procedure declared in the widget class, then the destroy
procedure declared in its superclass, until finally it calls the destroy procedure declared in
the Object class record. Callback lists are deallocated.

• If the widget class object class part contains anObjectClassExtensionrecord with the
record_typeNULLQUARK and thedeallocatefield is not NULL, calls the deallocate pro-
cedure to deallocate the instance and if one exists, the constraint record. Otherwise, the
Intrinsics will deallocate the widget instance record and if one exists, the constraint record.

• Calls XDestroyWindow if the specified widget is realized (that is, has an X window). The
server recursively destroys all normal descendant windows. (Windows of realized pop-up
Shell children, and their descendants, are destroyed by a shell class destroy procedure.)

2.8.1. Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a destroy callback procedure for the widget. The destroy callback procedures use
the mechanism described in Chapter 8. The destroy callback list is identified by the resource
name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedureClientDe-
stroywith client data to a widget by callingXtAddCallback .

XtAddCallback(w, XtNdestroyCallback,ClientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback procedureClientDe-
stroyby callingXtRemoveCallback.

XtRemoveCallback(w, XtNdestroyCallback,ClientDestroy, client_data)

TheClientDestroyargument is of typeXtCallbackProc ; see Section 8.1.

2.8.2. Dynamic Data Deallocation: the destroy Procedure

The destroy procedure pointers in theObjectClassPart, RectObjClassPart, andCoreClass-
Part structures are of typeXtWidgetProc .

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, a widget’s destroy
procedure only should deallocate storage that is specific to the subclass and should ignore the
storage allocated by any of its superclasses. The destroy procedure should only deallocate
resources that have been explicitly created by the subclass. Any resource that was obtained from

54

X Toolkit Intrinsics X11 Release 6

the resource database or passed in an argument list was not created by the widget and therefore
should not be destroyed by it. If a widget does not need to deallocate any storage, the destroy
procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

• Calling XtFree on dynamic storage allocated withXtMalloc , XtCalloc , and so on.

• Calling XFreePixmap on pixmaps created with direct X calls.

• Calling XtReleaseGCon GCs allocated withXtGetGC .

• Calling XFreeGC on GCs allocated with direct X calls.

• Calling XtRemoveEventHandler on event handlers added to other widgets.

• Calling XtRemoveTimeOut on timers created withXtAppAddTimeOut .

• Calling XtDestroyWidget for each child if the widget has children and is not a subclass of
compositeWidgetClass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the modal cascade,
unregister all event handlers, remove all key, keyboard, button, and pointer grabs and remove all
callback procedures registered on the widget. Any outstanding selection transfers will time out.

2.8.3. Dynamic Constraint Data Deallocation: the ConstraintClassPart destroy Procedure

The constraint destroy procedure identified in theConstraintClassPart structure is called for a
widget whose parent is a subclass ofconstraintWidgetClass. This constraint destroy procedure
pointer is of typeXtWidgetProc . The constraint destroy procedures are called in subclass-to-
superclass order, starting at the class of the widget’s parent and ending atconstraint-
WidgetClass. Therefore, a parent’s constraint destroy procedure only should deallocate storage
that is specific to the constraint subclass and not storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy procedure
entry in its class record can be NULL.

2.8.4. Widget Instance Deallocation: the deallocate Procedure

The deallocate procedure pointer in theObjectClassExtensionrecord is of type
XtDeallocateProc.

typedef void (*XtDeallocateProc)(Widget, XtPointer);
Widgetwidget;
XtPointermore_bytes;

widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory received from the corresponding allocator along
with the widget, or NULL.

When a widget is destroyed, if anObjectClassExtensionrecord exists in the object class part
extensionfield with record_typeNULLQUARK and thedeallocatefield is not NULL, the
XtDeallocateProcwill be called. If no ObjectClassPart extension record is declared with
record_typeequal toNULLQUARK , thenXtInheritAllocate andXtInheritDeallocate are
assumed. The responsibilities of the deallocate procedure are to deallocate the memory specified
by more_bytesif it is not NULL, to deallocate the constraints record as specified by the widget’s
core.constraintsfield if it is not NULL, and to deallocate the widget instance itself.

55

X Toolkit Intrinsics X11 Release 6

If no XtDeallocateProc is found, it is assumed that the Intrinsics originally allocated the memory
and is responsible for freeing it.

2.9. Exiting from an Application

All X Toolkit applications should terminate by callingXtDestroyApplicationContext and then
exiting using the standard method for their operating system (typically, by callingexit for
POSIX-based systems). The quickest way to make the windows disappear while exiting is to call
XtUnmapWidget on each top-level shell widget. The Intrinsics have no resources beyond those
in the program image, and the X server will free its resources when its connection to the applica-
tion is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy individual wid-
gets or widget trees withXtDestroyWidget before callingXtDestroyApplicationContext in
order to ensure that any required widget cleanup is properly executed. The application developer
must refer to the widget documentation to learn if a widget needs to perform additional cleanup
beyond that performed automatically by the operating system. If the client is a session participant
(see section 4.2) then the client may wish to resign from the session before exiting. See section
4.2.4 for details.

56

X Toolkit Intrinsics X11 Release 6

Chapter 3

Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclass ofcompositeWidgetClass) can have an
arbitrary number of children. Consequently, they are responsible for much more than primitive
widgets. Their responsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include

• Overall management of children from creation to destruction.

• Destruction of descendants when the composite widget is destroyed.

• Physical arrangement (geometry management) of a displayable subset of children (that is,
the managed children).

• Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic proceduresXtCreateWidget and
XtDestroyWidget. XtCreateWidget adds children to their parent by calling the parent’s
insert_child procedure.XtDestroyWidget removes children from their parent by calling the par-
ent’s delete_child procedure and ensures that all children of a destroyed composite widget also
get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and
hence possibly visible. For example, a composite editor widget supporting multiple editing
buffers might allocate one child widget for each file buffer, but it might only display a small num-
ber of the existing buffers. Widgets that are in this displayable subset are called managed widgets
and enter into geometry manager calculations. The other children are called unmanaged widgets
and, by definition, are not mapped by the Intrinsics.

Children are added to and removed from their parent’s managed set by usingXtManageChild ,
XtManageChildren , XtUnmanageChild, XtUnmanageChildren, and
XtChangeManagedSet, which notify the parent to recalculate the physical layout of its children
by calling the parent’s change_managed procedure. TheXtCreateManagedWidget convenience
function callsXtCreateWidget andXtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state where they take up physi-
cal space but do not show anything. Managed widgets are not mapped automatically if their
map_when_managedfield is False. The default isTrue and is changed by using
XtSetMappedWhenManaged.

Each composite widget class declares a geometry manager, which is responsible for figuring out
where the managed children should appear within the composite widget’s window. Geometry
management techniques fall into four classes:

Fixed boxes Fixed boxes have a fixed number of children created by the parent. All
these children are managed, and none ever makes geometry manager
requests.

Homogeneous boxes Homogeneous boxes treat all children equally and apply the same
geometry constraints to each child. Many clients insert and delete wid-
gets freely.

57

X Toolkit Intrinsics X11 Release 6

Heterogeneous boxes Heterogeneous boxes have a specific location where each child is
placed. This location usually is not specified in pixels, because the
window may be resized, but is expressed rather in terms of the relation-
ship between a child and the parent or between the child and other spe-
cific children. The class of heterogeneous boxes is usually a subclass
of Constraint .

Shell boxes Shell boxes typically have only one child, and the child’s size is usually
exactly the size of the shell. The geometry manager must communicate
with the window manager, if it exists, and the box must also accept
ConfigureNotify ev ents when the window size is changed by the win-
dow manager.

3.1. Addition of Children to a Composite Widget: the insert_child Procedure

To add a child to the parent’s list of children, theXtCreateWidget function calls the parent’s
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtWidgetProc .

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the newly created child.

Most composite widgets inherit their superclass’s operation. The insert_child routine in
CompositeWidgetClasscalls and inserts the child at the specified position in thechildren list,
expanding it if necessary.

Some composite widgets define their own insert_child routine so that they can order their children
in some convenient way, create companion controller widgets for a new widget, or limit the num-
ber or class of their child widgets. A composite widget class that wishes to allow nonwidget chil-
dren (see Chapter 12) must specify aCompositeClassExtensionextension record as described in
section 1.4.2.1 and set theaccepts_objectsfield in this record toTrue . If the CompositeClas-
sExtensionrecord is not specified or theaccepts_objectsfield is False, the composite widget can
assume that all its children are of a subclass of Core without an explicit subclass test in the
insert_child procedure.

If there is not enough room to insert a new child in thechildrenarray (that is,num_childrenis
equal tonum_slots), the insert_child procedure must first reallocate the array and update
num_slots. The insert_child procedure then places the child at the appropriate position in the
array and increments thenum_childrenfield.

3.2. Insertion Order of Children: the insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their
children are kept. For example, an application may want a set of command buttons in some logi-
cal order grouped by function, and it may want buttons that represent file names to be kept in
alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosi-
tion resource. The insert_position procedure pointer in a composite widget instance is of type
XtOrderProc .

58

X Toolkit Intrinsics X11 Release 6

typedef Cardinal (*XtOrderProc)(Widget);
Widgetw;

w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes) can call
their widget instance’s insert_position procedure from the class’s insert_child procedure to deter-
mine where a new child should go in itschildrenarray. Thus, a client using a composite class can
apply different sorting criteria to widget instances of the class, passing in a different
insert_position procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicates how many children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returningnum_childrenindicates that it should go after all other children. The default
insert_position function returnsnum_childrenand can be overridden by a specific composite wid-
get’s resource list or by the argument list provided when the composite widget is created.

3.3. Deletion of Children: the delete_child Procedure

To remove the child from the parent’schildren list, theXtDestroyWidget function eventually
causes a call to the Composite parent’s class delete_child procedure. The delete_child procedure
pointer is of typeXtWidgetProc .

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure to remove these companion
widgets.

3.4. Adding and Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or the removal
of widgets from a composite widget’s managed set. These generic routines eventually call the
composite widget’s change_managed procedure if the procedure pointer is non-NULL. The
change_managed procedure pointer is of typeXtWidgetProc . The widget argument specifies the
composite widget whose managed child set has been modified.

3.4.1. Managing Children

To add a list of widgets to the geometry-managed (and hence displayable) subset of their Com-
posite parent, useXtManageChildren .

typedef Widget *WidgetList;

void XtManageChildren(children, num_children)
WidgetListchildren;
Cardinalnum_children;

children Specifies a list of child widgets. Each child must be of class RectObj or any sub-
class thereof.

59

X Toolkit Intrinsics X11 Release 6

num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent’s class is not a
subclass ofcompositeWidgetClass.

• Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list,XtManageChildren ignores the child if it already is managed or is being
destroyed, and marks it if not.

• If the parent is realized and after all children have been marked, it makes some of the newly
managed children viewable:

− Calls the change_managed routine of the widgets’ parent.

− Calls XtRealizeWidget on each previously unmanaged child that is unrealized.

− Maps each previously unmanaged child that hasmap_when_managedTrue .

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children whosemanagedfield
is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, callXtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and resize any of its children. It moves
each child as needed by callingXtMoveWidget , which first updates thex andy fields and which
then callsXMoveWindow .

If the composite widget wishes to change the size or border width of any of its children, it calls
XtResizeWidget, which first updates thewidth, height, andborder_widthfields and then calls
XConfigureWindow . Simultaneous repositioning and resizing may be done with
XtConfigureWidget ; see Section 6.6.

To add a single child to its parent widget’s set of managed children, useXtManageChild .

void XtManageChild(child)
Widgetchild;

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtManageChild function constructs aWidgetList of length 1 and calls
XtManageChildren .

To create and manage a child widget in a single procedure, useXtCreateManagedWidget or
XtVaCreateManagedWidget.

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
Stringname;
WidgetClasswidget_class;
Widgetparent;
ArgList args;
Cardinalnum_args;

name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Must berectObjClass
or any subclass thereof.

60

X Toolkit Intrinsics X11 Release 6

parent Specifies the parent widget. Must be of class Composite or any subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a convenience routine that callsXtCreateWidget
andXtManageChild .

Widget XtVaCreateManagedWidget(name, widget_class, parent, ...)
Stringname;
WidgetClasswidget_class;
Widgetparent;

name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Must berectObjClass
or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass thereof.

... Specifies the variable argument list to override any other resource specifications.

XtVaCreateManagedWidget is identical in function toXtCreateManagedWidget with the
argsandnum_argsparameters replaced by a varargs list, as described in Section 2.5.1.

3.4.2. Unmanaging Children

To remove a list of children from a parent widget’s managed list, useXtUnmanageChildren.

void XtUnmanageChildren(children, num_children)
WidgetListchildren;
Cardinalnum_children;

children Specifies a list of child widgets. Each child must be of class RectObj or any sub-
class thereof.

num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

• Returns immediately if the common parent is being destroyed.

• Issues an error if the children do not all have the same parent or if the parent is not a sub-
class ofcompositeWidgetClass.

• For each unique child on the list,XtUnmanageChildren ignores the child if it is unman-
aged; otherwise it performs the following:

− Marks the child as unmanaged.

− If the child is realized and themap_when_managedfield is True , it is unmapped.

• If the parent is realized and if any children have become unmanaged, calls the
change_managed routine of the widgets’ parent.

XtUnmanageChildren does not destroy the child widgets. Removing widgets from a parent’s
managed set is often a temporary banishment, and some time later the client may manage the
children again. To destroy widgets entirely,XtDestroyWidget should be called instead; see Sec-
tion 2.9.

61

X Toolkit Intrinsics X11 Release 6

To remove a single child from its parent widget’s managed set, useXtUnmanageChild.

void XtUnmanageChild(child)
Widgetchild;

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtUnmanageChild function constructs a widget list of length 1 and calls
XtUnmanageChildren.

These functions are low-level routines that are used by generic composite widget building rou-
tines. In addition, composite widgets can provide widget-specific, high-level convenience proce-
dures.

3.4.3. Bundling Changes to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics.
In this same call the client may provide a callback procedure that can modify the geometries of
one or more children. The composite widget class defines whether this single client call results in
separate invocations of the change_managed method, one to unmanage and the other to manage,
or in just a single invocation.

To simultaneously remove from and add to the geometry-managed set of children of a composite
parent, useXtChangeManagedSet.

void XtChangeManagedSet(unmanage_children, num_unmanage_children,
do_change_proc, client_data,
manage_children, num_manage_children)

WidgetListunmanage_children;
Cardinalnum_unmanage_children;
XtDoChangeProcdo_change_proc;
XtPointerclient_data;
WidgetListmanage_children;
Cardinalnum_manage_children;

unmanage_children Specifies the list of widget children to initially remove from the
managed set.

num_unmanage_children Specifies the number of entries in theunmanage_childrenlist.

do_change_proc Specifies a procedure to invoke between unmanaging and managing
the children, or NULL.

client_data Specifies client data to be passed to the do_change_proc.

manage_children Specifies the list of widget children to finally add to the managed
set.

num_manage_children Specifies the number of entries in themanage_childrenlist.

The XtChangeManagedSetfunction performs the following:

• Returns immediately ifnum_unmanage_childrenandnum_manage_childrenare both 0.

• Issues a warning and returns if the widgets specified in themanage_childrenand the
unmanage_childrenlists do not all have the same parent, or if that parent is not a subclass
of compositeWidgetClass.

• Returns immediately if the common parent is being destroyed.

62

X Toolkit Intrinsics X11 Release 6

• If do_change_procis not NULL and the parent’sCompositeClassExtension
allows_change_managed_setfield is False thenXtChangeManagedSetperforms the fol-
lowing:

− Calls XtUnmanageChildren (unmanage_children, num_unmanage_children).

− Calls thedo_change_proc.

− Calls XtManageChildren (manage_children, num_manage_children).

• Otherwise, the following is performed:

− For each child on theunmanage_childrenlist; if the child is already unmanaged it is
ignored, otherwise it is marked as unmanaged and if it is realized and its
map_when_managedfield is True , it is unmapped.

− If do_change_procis non-NULL the procedure is invoked.

− For each child on themanage_childrenlist; if the child is already managed or is
being destroyed it is ignored, otherwise it is marked as managed.

− If the parent is realized and after all children have been marked, the change_managed
method of the parent is invoked and subsequently some of the newly managed chil-
dren are made viewable by callingXtRealizeWidget on each previously unmanaged
child that is unrealized and mapping each previously unmanaged child that has
map_when_managedTrue .

If no CompositeClassExtensionrecord is found in the parent’s composite class partextension
field with record typeNULLQUARK and version greater than 1 and ifXtInheritChangeMan-
agedwas specified in the parent’s class record during class initialization, the value of the
allows_change_managed_setfield is inherited from the superclass. The value inherited from
compositeWidgetClassfor theallows_change_managed_setfield is False.

It is not an error to include a child in both theunmanage_childrenand themanage_childrenlists.
The effect of such a call is that the child remains managed following the call but the
do_change_procis able to affect the child while it is in an unmanaged state.

Thedo_change_procis of typeXtDoChangeProc.

typedef void (XtDoChangeProc*)(Widget, WidgetList, Cardinal*, WidgetList, Cardinal*, XtPointer);
Widgetcomposite_parent;
WidgetListunmange_children;
Cardinal *num_unmanage_children;
WidgetListmanage_children;
Cardinal *num_manage_children;
XtPointerclient_data;

composite_parent Passes the composite parent whose managed set is being altered.

unmanage_children Passes the list of children just removed from the managed set.

num_unmanage_children Passes the number of entries in theunmanage_childrenlist.

manage_children Passes the list of children about to be added to the managed set.

num_manage_children Passes the number of entries in themanage_childrenlist.

client_data Passes the client data passed toXtChangeManagedSet.

Thedo_change_procprocedure is used by the caller ofXtChangeManagedSetto make changes
to one or more children at the point when the managed set contains the fewest entries. These
changes may involve geometry requests and in this case the caller ofXtChangeManagedSet

63

X Toolkit Intrinsics X11 Release 6

may take advantage of the fact that the Intrinsics internally grant geometry requests made by
unmanaged children without invoking the parent’s geometry manager. To achieve this advantage,
if the do_change_procprocedure changes the geometry of a child or of a descendant of a child
then that child should be included in theunmanage_childrenandmanage_childrenlists.

3.4.4. Determining If a Widget Is Managed

To determine the managed state of a given child widget, useXtIsManaged.

Boolean XtIsManaged(w)
Widgetw;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtIsManaged function returnsTrue if the specified widget is of class RectObj or any sub-
class thereof and is managed, orFalseotherwise.

3.5. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden by set-
ting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_managedfield to False.

To change the value of a given widget’smap_when_managedfield, use
XtSetMappedWhenManaged.

void XtSetMappedWhenManaged(w, map_when_managed)
Widgetw;
Booleanmap_when_managed;

w Specifies the widget. Must be of class Core or any subclass thereof.

map_when_managed
Specifies a Boolean value that indicates the new value that is stored into the wid-
get’smap_when_managedfield.

If the widget is realized and managed and ifmap_when_managedis True , XtSetMappedWhen-
Managed maps the window. If the widget is realized and managed and ifmap_when_managedis
False, it unmaps the window.XtSetMappedWhenManagedis a convenience function that is
equivalent to (but slightly faster than) callingXtSetValuesand setting the new value for the XtN-
mappedWhenManaged resource then mapping the widget as appropriate. As an alternative to
usingXtSetMappedWhenManagedto control mapping, a client may set
mapped_when_managedto Falseand useXtMapWidget andXtUnmapWidget explicitly.

To map a widget explicitly, useXtMapWidget .

XtMapWidget(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

To unmap a widget explicitly, useXtUnmapWidget .

64

X Toolkit Intrinsics X11 Release 6

XtUnmapWidget(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

3.6. Constrained Composite Widgets

The Constraint widget class is a subclass ofcompositeWidgetClass. The name is derived from
the fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and height
the parent will allow the child to occupy or can be as complicated as how other children should
change if this child is moved or resized. Constraint widgets let a parent define constraints as
resources that are supplied for their children. For example, if the Constraint parent defines the
maximum sizes for its children, these new size resources are retrieved for each child as if they
were resources that were defined by the child widget’s class. Accordingly, constraint resources
may be included in the argument list or resource file just like any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has aconstraintsfield, which is the address of a parent-specific structure that
contains constraint information about the child. If a child’s parent does not belong to a subclass
of constraintWidgetClass, then the child’sconstraintsfield is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their super-
class. To allow this, widget writers should define the constraint records in their private .h file by
using the same conventions as used for widget records. For example, a widget class that needs to
maintain a maximum width and height for each child might define its constraint record as fol-
lows:

typedef struct {
Dimension max_width, max_height;

} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its con-
straint record as follows:

typedef struct {
Dimension min_width, min_height;

} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part has several entries that facilitate this. All entries

65

X Toolkit Intrinsics X11 Release 6

in ConstraintClassPart are fields and procedures that are defined and implemented by the par-
ent, but they are called whenever actions are performed on the parent’s children.

The XtCreateWidget function uses theconstraint_sizefield in the parent’s class record to allo-
cate a constraint record when a child is created.XtCreateWidget also uses the constraint
resources to fill in resource fields in the constraint record associated with a child. It then calls the
constraint initialize procedure so that the parent can compute constraint fields that are derived
from constraint resources and can possibly move orresize the child to conform to the given con-
straints.

When theXtGetValues andXtSetValues functions are executed on a child, they use the con-
straint resources to get the values or set the values of constraints associated with that child.
XtSetValues then calls the constraint set_values procedures so that the parent can recompute
derived constraint fields and move orresize the child as appropriate. If a Constraint widget class
or any of its superclasses have declared aConstraintClassExtensionrecord in theConstraint-
ClassPart extensionfields with a record type ofNULLQUARK and theget_values_hookfield in
the extension record is non-NULL,XtGetValues calls the get_values_hook procedure(s) to allow
the parent to return derived constraint fields.

The XtDestroyWidget function calls the constraint destroy procedure to deallocate any dynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destroy procedure;XtDestroyWidget does this automatically.

66

X Toolkit Intrinsics X11 Release 6

Chapter 4

Shell Widgets

Shell widgets hold an application’s top-level widgets to allow them to communicate with the win-
dow manager and session manager. Shells have been designed to be as nearly invisible as possi-
ble. Clients have to create them, but they should never hav e to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the shell widget
also resizes its managed child widget automatically. Similarly, if the shell’s child widget needs to
change size, it can make a geometry request to the shell, and the shell negotiates the size change
with the outer environment. Clients should never attempt to change the size of their shells
directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the window manager
(for example, pop-up menu shells).

TransientShell Used for shell windows that have theWM_TRANSIENT_FOR prop-
erty set. The effect of this property is dependent upon the window
manager being used.

TopLevelShell Used for normal top-level windows (for example, any additional top-
level widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the window
manager identifies as an application instance and made obsolete by
SessionShell.

SessionShell Used for the single main top-level window that the window manager
identifies as an application instance and that interacts with the ses-
sion manager.

4.1. Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains them. Widgets at the top of the hierarchy do not have parent widgets. Instead, they must
deal with the outside world. To provide for this, each top-level widget is encapsulated in a special
widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and
can allow a widget to avoid the geometry clipping imposed by the parent-child window relation-
ship. They also can provide a layer of communication with the window manager.

The eight different types of shells are

Shell The base class for shell widgets; provides the fields needed for all types
of shells. Shell is a direct subclass ofcompositeWidgetClass.

67

X Toolkit Intrinsics X11 Release 6

OverrideShell A subclass of Shell; used for shell windows that completely bypass the
window manager.

WMShell A subclass of Shell; contains fields needed by the common window man-
ager protocol .

VendorShell A subclass of WMShell; contains fields used by vendor-specific window
managers.

TransientShell A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

TopLevelShell A subclass of VendorShell; used for normal top level windows.

ApplicationShell A subclass of TopLevelShell; may be used for an application’s additional
root windows.

SessionShell A subclass of ApplicationShell; used for an application’s main root win-
dow.

Note that the classes Shell, WMShell, and VendorShell are internal and should not be instantiated
or subclassed. Only OverrrideShell, TransientShell, TopLevelShell, ApplicationShell, and Ses-
sionShell are intended for public use.

4.1.1. ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the
ShellClassExtensionRec. None of the other Shell classes have any additional class fields:

typedef struct { XtPointer extension; } ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are

typedef struct _ShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;

} ShellClassRec;

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtGeometryHandler root_geometry_manager; See below

} ShellClassExtensionRec, *ShellClassExtension;

68

X Toolkit Intrinsics X11 Release 6

typedef struct _OverrideShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
OverrideShellClassPart override_shell_class;

} OverrideShellClassRec;

typedef struct _WMShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;

} WMShellClassRec;

typedef struct _VendorShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;

} VendorShellClassRec;

typedef struct _TransientShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

} TransientShellClassRec;

typedef struct _TopLevelShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;

} TopLevelShellClassRec;

typedef struct _ApplicationShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;
ApplicationShellClassPart application_shell_class;

} ApplicationShellClassRec;

69

X Toolkit Intrinsics X11 Release 6

typedef struct _SessionShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;
ApplicationShellClassPart application_shell_class;
SessionShellClassPart session_shell_class;

} SessionShellClassRec;

The single occurrences of the class records and pointers for creating instances of shells are

extern ShellClassRec shellClassRec;
extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;
extern VendorShellClassRec vendorShellClassRec;
extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;

extern WidgetClass shellWidgetClass;
extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;
extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;
extern WidgetClass sessionShellWidgetClass;

70

X Toolkit Intrinsics X11 Release 6

The following opaque types and opaque variables are defined for generic operations on widgets
whose class is a subclass of Shell.

Types Variables

ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass
ShellWidgetClass
OverrideShellWidgetClass
WMShellWidgetClass
VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appear inShell.h and
ShellP.h. VendorShell has separate public and private .h files which are included byShell.h and
ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access private data in any of the Shell instance or class data structures.

The symbolic constant for theShellClassExtensionversion identifier isXtShellExtensionVer-
sion (see Section 1.6.12).

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls eitherXtMakeGeometryRequestor
XtMakeResizeRequest, the root_geometry_manager procedure is invoked to negotiate the new
geometry with the window manager. If the window manager permits the new geometry, the
root_geometry_manager procedure should returnXtGeometryYes; if the window manager
denies the geometry request or it does not change the window geometry within some timeout
interval (equal towm_timeoutin the case of WMShells), the root_geometry_manager procedure
should returnXtGeometryNo. If the window manager makes some alternative geometry change,
the root_geometry_manager procedure may either returnXtGeometryNo and handle the new
geometry as a resize, or may returnXtGeometryAlmost in anticipation that the shell will accept
the compromise. If the compromise is not accepted, the new size must then be handled as a
resize. Subclasses of Shell that wish to provide their own root_geometry_manager procedures are
strongly encouraged to use enveloping to invoke their superclass’s root_geometry_manager pro-
cedure under most situations, as the window manager interaction may be very complex.

If no ShellClassPartextension record is declared withrecord_typeequal toNULLQUARK , then
XtInheritRootGeometryManager is assumed.

71

X Toolkit Intrinsics X11 Release 6

4.1.2. ShellPart Definition

The various shell widgets have the following additional instance fields defined in their widget
records:

typedef struct {
String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow_shell_resize;
Boolean client_specified;
Boolean save_under;
Boolean override_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;
Visual* visual;

} ShellPart;

typedef struct { int empty; } OverrideShellPart;

typedef struct {
String title;
int wm_timeout;
Boolean wait_for_wm;
Boolean transient;
Boolean urgency;
Widget client_leader;
String window_role;
struct _OldXSizeHints {

long flags;
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

int x;
int y;

} min_aspect, max_aspect;
} size_hints;
XWMHints wm_hints;
int base_width, base_height, win_gravity;
Atom title_encoding;

} WMShellPart;

typedef struct {
int vendor_specific;

} VendorShellPart;

72

X Toolkit Intrinsics X11 Release 6

typedef struct {
Widget transient_for;

} TransientShellPart;

typedef struct {
String icon_name;
Boolean iconic;
Atom icon_name_encoding;

} TopLevelShellPart;

typedef struct {
char *class;
XrmClass xrm_class;
int argc;
char **argv;

} ApplicationShellPart;

typedef struct {
SmcConn connection;
String session_id;
String * restart_command;
String * clone_command;
String * discard_command;
String * resign_command;
String * shutdown_command;
String * environment;
String current_dir;
String program_path;
unsigned char restart_style;
Boolean join_session;
XtCallbackList save_callbacks;
XtCallbackList interact_callbacks;
XtCallbackList cancel_callbacks;
XtCallbackList save_complete_callbacks;
XtCallbackList die_callbacks;
XtCallbackList error_callbacks;

} SessionShellPart;

The full shell widget instance record definitions are

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

73

X Toolkit Intrinsics X11 Release 6

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShellPart override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TransientShellPart transient;

} TransientShellRec, *TransientShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicationShellRec, *ApplicationShellWidget;

74

X Toolkit Intrinsics X11 Release 6

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;
SessionShellPart session;

} SessionShellRec, *SessionShellWidget;

4.1.3. Shell Resources

The resource names, classes, and representation types specified in theshellClassRecresource list
are

Name Class Representation

XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in thewmShellClassRec
resource list are

Name Class Representation

XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNclientLeader XtCClientLeader XtRWidget
XtNheightInc XtCHeightInc XtRInt
XtNiconMask XtCIconMask XtRBitmap
XtNiconPixmap XtCIconPixmap XtRBitmap
XtNiconWindow XtCIconWindow XtRWindow
XtNiconX XtCIconX XtRInt
XtNiconY XtCIconY XtRInt
XtNinitialState XtCInitialState XtRInitialState
XtNinput XtCInput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt

75

X Toolkit Intrinsics X11 Release 6

XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitforwm, XtNwaitForWm XtCWaitforwm, XtCWaitForWm XtRBoolean
XtNwidthInc XtCWidthInc XtRInt
XtNwindowRole XtCWindowRole XtRString
XtNwinGravity XtCWinGravity XtRGravity
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt
XtNurgency XtCUrgency XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specified in thetransient-
ShellClassRecresource list are

Name Class Representation

XtNtransientFor XtCTransientFor XtRWidget

The resource names, classes, and representation types that are specified in thetopLevelShell-
ClassRecresource list are

Name Class Representation

XtNiconName XtCIconName XtRString
XtNiconNameEncoding XtCIconNameEncoding XtRAtom
XtNiconic XtCIconic XtRBoolean

The resource names, classes, and representation types that are specified in theapplication-
ShellClassRecresource list are

Name Class Representation

XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

76

X Toolkit Intrinsics X11 Release 6

The resource names, classes, and representation types that are specified in thesessionShellClass-
Rec resource list are

Name Class Representation

XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionID XtCSessionID XtRString
XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

4.1.4. ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource
lists and the Shell initialize procedures) are

Field Default Value

geometry NULL
create_popup_child_proc NULL
grab_kind (none)
spring_loaded (none)
popped_up False
allow_shell_resize False
client_specified (internal)
save_under True for OverrideShell and TransientShell,

Falseotherwise
override_redirect True for OverrideShell,Falseotherwise
popup_callback NULL
popdown_callback NULL
visual CopyFromParent

Thegeometryfield specifies the size and position and is usually given only on a command line or
in a defaults file. If thegeometryfield is non-NULL when a widget of class WMShell is realized,
the geometry specification is parsed usingXWMGeometry with a default geometry string con-
structed from the values ofx, y, width, height, width_inc, andheight_incand the size and position

77

X Toolkit Intrinsics X11 Release 6

flags in the window manager size hints are set. If the geometry specifies an x or y position, then
USPosition is set. If the geometry specifies a width or height, thenUSSizeis set. Any fields in
the geometry specification override the corresponding values in the Corex, y, width, andheight
fields. Ifgeometryis NULL or contains only a partial specification, then the Corex, y, width, and
heightfields are used andPPosition andPSizeare set as appropriate. The geometry string is not
copied by any of the Intrinsics Shell classes; a client specifying the string in an arglist or varargs
list must ensure that the value remains valid until the shell widget is realized. For further infor-
mation on the geometry string, see Section 10.3 inXlib − C Language X Interface.

Thecreate_popup_child_procprocedure is called by theXtPopup procedure and may remain
NULL. Thegrab_kind, spring_loaded, andpopped_upfields maintain widget state information
as described underXtPopup, XtMenuPopup, XtPopdown, andXtMenuPopdown. The
allow_shell_resizefield controls whether the widget contained by the shell is allowed to try to
resize itself. If allow_shell_resize isFalse, any geometry requests made by the child will always
returnXtGeometryNo without interacting with the window manager. Settingsave_underTrue
instructs the server to attempt to save the contents of windows obscured by the shell when it is
mapped and to restore those contents automatically when the shell is unmapped. It is useful for
pop-up menus. Settingoverride_redirectTrue determines whether the window manager can
intercede when the shell window is mapped. For further information on override_redirect, see
Section 3.2 inXlib − C Language X Interfaceand Sections 4.1.10 and 4.2.2 in theInter-Client
Communication Conventions Manual. The pop-up and pop-down callbacks are called during
XtPopup andXtPopdown. The default value of thevisualresource is the symbolic value
CopyFromParent. The Intrinsics do not need to query the parent’s visual type when the default
value is used; if a client usingXtGetValues to examine the visual type receives the value
CopyFromParent, it must then useXGetWindowAttributes if it needs the actual visual type.

The default values for Shell fields in WMShell and its subclasses are

Field Default Value

title Icon name, if specified, otherwise the application’s name.
wm_timeout Five seconds, in units of milliseconds.
wait_for_wm True
transient True for TransientShell,Falseotherwise
urgency False
client_leader NULL
window_role NULL
min_width XtUnspecifiedShellInt
min_height XtUnspecifiedShellInt
max_width XtUnspecifiedShellInt
max_height XtUnspecifiedShellInt
width_inc XtUnspecifiedShellInt
height_inc XtUnspecifiedShellInt
min_aspect_x XtUnspecifiedShellInt
min_aspect_y XtUnspecifiedShellInt
max_aspect_x XtUnspecifiedShellInt
max_aspect_y XtUnspecifiedShellInt
input False
initial_state Normal

78

X Toolkit Intrinsics X11 Release 6

icon_pixmap None
icon_window None
icon_x XtUnspecifiedShellInt
icon_y XtUnspecifiedShellInt
icon_mask None
window_group XtUnspecifiedWindow
base_width XtUnspecifiedShellInt
base_height XtUnspecifiedShellInt
win_gravity XtUnspecifiedShellInt
title_encoding See text

Thetitle andtitle_encodingfields are stored in theWM_NAME property on the shell’s window
by the WMShell realize procedure. If thetitle_encodingfield is None, thetitle string is assumed
to be in the encoding of the current locale and the encoding of theWM_NAME property is set to
XStdICCTextStyle. If a language procedure has not been set the default value oftitle_encoding
is XA_STRING , otherwise the default value isNone. Thewm_timeoutfield specifies, in millisec-
onds, the amount of time a shell is to wait for confirmation of a geometry request to the window
manager. If none comes back within that time, the shell assumes the window manager is not
functioning properly and setswait_for_wmto False (later events may reset this value). When
wait_for_wmis False, the shell does not wait for a response but relies on asynchronous notifica-
tion. If transientis True , the WM_TRANSIENT_FOR property will be stored on the shell win-
dow with a value as specified below. The interpretation of this property is specific to the window
manager under which the application is run; see theInter-Client Communication Conventions
Manualfor more details.

The realize and set_values procedures of WMShell store theWM_CLIENT_LEADER property
on the shell window. Whenclient_leaderis not NULL and the client leader widget is realized,
the property will be created with the value of the window of the client leader widget. When
client_leaderis NULL and the shell widget has a NULL parent, the widget’s window is used as
the value of the property. Whenclient_leaderis NULL and the shell widget has a non-NULL
parent, a search is made for the closest shell ancestor with a non-NULLclient_leader, and if none
is found the shell ancestor with a NULL parent is the result. If the resulting widget is realized,
the property is created with the value of the widget’s window.

When the value ofwindow_roleis not NULL, the realize and set_values procedures store the
WM_WINDOW_ROLE property on the shell’s window with the value of the resource.

All other resources specify fields in the window manager hints and the window manager size
hints. The realize and set_values procedures of WMShell set the corresponding flag bits in the
hints if any of the fields contain non-default values. In addition, if a flag bit is set that refers to a
field with the valueXtUnspecifiedShellInt, the value of the field is modified as follows:

Field Replacement

base_width, base_height 0
width_inc, height_inc 1
max_width, max_height 32767
min_width, min_height 1
min_aspect_x, min_aspect_y -1
max_aspect_x, max_aspect_y -1

79

X Toolkit Intrinsics X11 Release 6

icon_x, icon_y -1
win_gravity value returned byXWMGeometry if called,

elseNorthWestGravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace the
valueXtUnspecifiedWindow in thewindow_groupfield with the window id of the root widget
of the widget tree if the root widget is realized. The symbolic constantXtUnspecifiedWindow-
Group may be used to indicate that thewindow_grouphint flag bit is not to be set. Iftransientis
True and the shell’s class is not a subclass of TransientShell andwindow_groupis notXtUn-
specifiedWindowGroup the WMShell realize and set_values procedures then store the
WM_TRANSIENT_FOR property with the value ofwindow_group.

Transient shells have the following additional resource:

Field Default Value

transient_for NULL

The realize and set_values procedures of TransientShell store theWM_TRANSIENT_FOR prop-
erty on the shell window iftransientis True . If transient_foris non-NULL and the widget speci-
fied bytransient_foris realized, then its window is used as the value of the
WM_TRANSIENT_FOR property; otherwise, the value ofwindow_groupis used.

TopLevel shells have the the following additional resources:

Field Default Value

icon_name Shell widget’s name
iconic False
icon_name_encoding See text

The icon_nameandicon_name_encodingfields are stored in theWM_ICON_NAME property on
the shell’s window by the TopLevelShell realize procedure. If theicon_name_encodingfield is
None, theicon_namestring is assumed to be in the encoding of the current locale and the encod-
ing of theWM_ICON_NAME property is set toXStdICCTextStyle. If a language procedure has
not been set the default value oficon_name_encodingis XA_STRING , otherwise the default value
is None. Theiconicfield may be used by a client to request that the window manager iconify or
deiconify the shell; the TopLevelShell set_values procedure will send the appropriate
WM_CHANGE_STATE message (as specified by theInter-Client Communication Conventions
Manual) if this resource is changed fromFalse to True , and will callXtPopup specifying
grab_kindasXtGrabNone if iconic is changed fromTrue to False. The XtNiconic resource is
also an alternative way to set the XtNinitialState resource to indicate that a shell should be ini-
tially displayed as an icon; the TopLevelShell initialize procedure will setinitial_stateto Iconic-
State if iconic is True .

Application shells have the following additional resources:

Field Default Value

80

X Toolkit Intrinsics X11 Release 6

argc 0
argv NULL

Theargcandargvfields are used to initialize the standard propertyWM_COMMAND . See the
Inter-Client Communication Conventions Manualfor more information.

The default values for the SessionShell instance fields, which are filled in from the resource lists
and by the initialize procedure, are

Field Default Value

cancel_callbacks NULL
clone_command See text
connection NULL
current_dir NULL
die_callbacks NULL
discard_command NULL
environment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
resign_command NULL
restart_command See text
restart_style SmRestartIfRunning
program_path See text
save_callbacks NULL
save_complete_callbacks NULL
session_id NULL
shutdown_command NULL

Theconnectionfield contains the session connection object, or NULL if a session connection is
not being managed by this widget.

Thesession_idis an identification assigned to the session participant by the session manager.
Thesession_idwill be passed to the session manager as the client identifier of the previous ses-
sion. When a connection is established with the session manager, the client id assigned by the
session manager is stored in thesession_idfield. When not NULL, thesession_idof the Session
shell widget which is at the root of the widget tree of the client leader widget will be used to cre-
ate theSM_CLIENT_ID property on the client leader’s window.

If join_sessionis False, the widget will not attempt to establish a connection to the session man-
ager at shell creation time. See sections 4.3 and 4.6 for more information on the functionality of
this resource.

Therestart_command, clone_command, discard_command, resign_command, shut-
down_command, environment, current_dir, program_path, andrestart_stylefields contain stan-
dard session properties.

When a session connection is established or newly managed by the shell, the shell initialize and
set_values methods check the values of therestart_command, clone_command, andpro-
gram_pathresources. At that time, ifrestart_commandis NULL, the value of theargv resource
will be copied torestart_command. Whether or notrestart_commandwas NULL, if

81

X Toolkit Intrinsics X11 Release 6

‘‘-xtsessionID’’ ‘‘<session id>’’ does not already appear in therestart_command, it will be added
by the initialize and set_values methods at the beginning of the command arguments; if the
‘‘-xtsessionID’’ argument already appears with an incorrect session id in the following argument,
that argument will be replaced with the current session id.

After this, the shell initialize and set_values procedures check theclone_command. If
clone_commandis NULL, restart_commandwill be copied toclone_command, except the
‘‘-xtsessionID’’ and following argument will not be copied.

Finally, the shell initialize and set_values procedures check theprogram_path. If program_path
is NULL, the first element ofrestart_commandis copied toprogram_path.

The possible values ofrestart_styleareSmRestartIfRunning, SmRestartAnyway,
SmRestartImmediately, andSmRestartNever. A resource converter is registered for this
resource; for the strings that it recognizes see section 9.6.1.

The resource type EnvironmentArray is an array of pointers to strings; each string has the format
"name=value". The ‘=’ character may not appear in the name, and the string is terminated by a
null character.

4.2. Session Participation

Applications can participate in a user’s session, exchanging messages with the session manager as
described in theX Session Management Protocoland theX Session Management Library.

When a widget ofsessionShellWidgetClassor a subclass is created, the widget provides support
for the application as a session participant, and continues to provide support until the widget is
destroyed.

4.2.1. Joining a Session

When a Session shell is created, ifconnectionis NULL, and if join_sessionis True , and ifargv
or restart_commandis not NULL, and if in POSIX environments theSESSION_MANAGER envi-
ronment variable is defined, the shell will attempt to establish a new connection with the session
manager.

To transfer management of an existing session connection from an application to the shell at wid-
get creation time, pass the existing session connection ID as theconnectionresource value when
creating the Session shell, and if the other creation-time conditions on session participation are
met, the widget will maintain the connection with the session manager. The application must
insure that only one Session shell manages the connection.

In the Session shell set_values procedure, ifjoin_sessionchanges fromFalse to True andcon-
nectionis NULL and when in POSIX environments theSESSION_MANAGER environment vari-
able is defined, the shell will attempt to open a connection to the session manager. Ifconnection
changes from NULL to non-NULL, the Session shell will take over management of that session
connection and will setjoin_sessionto True . If join_sessionchanges fromFalse to True and
connectionis not NULL, the Session shell will take over management of the session connection.

When a successful connection has been established,connectioncontains the session connection
ID for the session participant. When the shell begins to manage the connection, it will callXtAp-
pAddInput to register the handler which watches for protocol messages from the session man-
ager. When the attempt to connect fails, a warning message is issued andconnectionis set to
NULL.

82

X Toolkit Intrinsics X11 Release 6

While the connection is being managed, if aSaveYourself, SaveYourselfPhase2, Interact ,
ShutdownCancelled, SaveComplete, or Die message is received from the session manager, the
Session shell will call out to application callback procedures registered on the respective callback
list of the Session shell, and will sendSaveYourselfPhase2Request, InteractRequest,
InteractDone, SaveYourselfDone, andConnectionClosedmessages as appropriate. Initially,
all of the client’s session properties are undefined. When any of the session property resource
values are defined or change, the Session shell initialize and set_values procedures will update the
client’s session property value by aSetPropertiesor aDeletePropertiesmessage, as appropri-
ate. The session ProcessID and UserID properties are always set by the shell when it is possible
to determine the value of these properties.

4.2.2. Saving Application State

The session manager instigates an application checkpoint by sending aSaveYourselfrequest.
Applications are responsible for saving their state in response to the request.

When theSaveYourselfrequest arrives, the procedures registered on the Session shell’s sav e call-
back list are called. If the application does not register any sav e callback procedures on the save
callback list, the shell will report to the session manager that the application failed to save its
state. Each procedure on the save callback list receives a token in thecall_dataparameter.

The checkpoint token in thecall_dataparameter is of typeXtCheckpointToken.

typedef struct {
int save_type;
int interact_style;
Boolean shutdown;
Boolean fast;
Boolean cancel_shutdown
int phase;
int interact_dialog_type; /* return */
Boolean request_cancel; /* return */
Boolean request_next_phase; /* return */
Boolean save_success; /* return */

} XtCheckpointTokenRec, *XtCheckpointToken;

Thesave_type, interact_style, shutdown, andfastfields of the token contain the parameters of the
SaveYourselfmessage. The possible values ofsave_typeareSmSaveLocal, SmSaveGlobal,
andSmSaveBoth; these indicate the type of information to be saved. The possible values of
interact_styleareSmInteractStyleNone, SmInteractStyleErrors , andSmInteractStyleAny;
these indicate whether user interaction would be permitted and if so, what kind of interaction. If
shutdownis True , the checkpoint is being performed in preparation for the end of the session. If
fast is True , the client should perform the checkpoint as quickly as possible. Ifcancel_shutdown
is True , a ShutdownCancelledmessage has been received for the current save operation. (See
section 4.4.4.) Thephaseis used by manager clients, such as a window manager, to distinguish
between the first and second phase of a save operation. Thephasewill be either 1 or 2. The
remaining fields in the checkpoint token structure are provided for the application to communi-
cate with the shell.

Upon entry to the first application save callback procedure, the return fields in the token have the
following initial values:interact_dialog_typeis SmDialogNormal; request_cancelis False;
request_next_phaseis False; andsave_successis True . When a token is returned with any of

83

X Toolkit Intrinsics X11 Release 6

the four return fields containing a non-initial value, and when the field is applicable, subsequent
tokens passed to the application during the current save operation will always contain the non-
initial value.

The purpose of the token’ssave_successfield is to indicate the outcome of the entire operation to
the session manager and ultimately, to the user. ReturningFalse indicates some portion of the
application state could not be successfully saved. If any token is returned to the shell with
save_successFalse, tokens subsequently received by the application for the current save opera-
tion will showsave_successasFalse. When the shell sends the final status of the checkpoint to
the session manager, it will indicate failure to save application state if any token was returned
with save_successFalse.

Session participants which manage and save the state of other clients should structure their save
or interact callbacks to setrequest_next_phaseto True when phase is 1, which will cause the
shell to send theSaveYourselfPhase2Requestwhen the first phase is complete. When the
SaveYourselfPhase2message is received, the shell will invoke the save callbacks a second time
with phaseequal to 2. Manager clients should save the state of other clients when the callbacks
are invoked the second time andphaseequal to 2.

The application may request additional tokens while a checkpoint is under way, and these addi-
tional tokens must be returned by an explicit call.

To request an additional token for a save callback response which has a deferred outcome, use
XtSessionGetToken.

XtCheckpointToken XtSessionGetToken(widget)
Widgetwidget;

widget Specifies the Session shell widget which manages session participation.

The XtSessionGetTokenfunction will return NULL if no checkpoint operation is currently
under way.

To indicate the completion of checkpoint processing including user interaction, the application
must signal the Session shell by returning all tokens. (See Sections 4.2.2.2 and 4.2.2.4). To
return a token useXtSessionReturnToken.

void XtSessionReturnToken(token)
XtCheckpointTokentoken;

token Specifies a token which was received as thecall_databy a procedure on the
interact callback list, or a token which was received by a call to
XtSessionGetToken.

Tokens passed ascall_datato save callbacks are implicitly returned when the save callback pro-
cedure returns. A sav e callback procedure should not callXtSessionReturnTokenon the token
passed in itscall_data.

4.2.2.1. Requesting Interaction

When the tokeninteract_styleallows user interaction, the application may interact with the user
during the checkpoint, but must wait for permission to interact. Applications request permission
to interact with the user during the checkpointing operation by registering a procedure on the Ses-
sion shell’s interact callback list. When all save callback procedures have returned, and each time

84

X Toolkit Intrinsics X11 Release 6

a token which was granted by a call toXtSessionGetTokenis returned, the Session shell exam-
ines the interact callback list. If interaction is permitted and the interact callback list is not empty,
the shell will send anInteractRequest to the session manager when an interact request is not
already outstanding for the application.

The type of interaction dialog that will be requested is specified by theinteract_dialog_typefield
in the checkpoint token. The possible values forinteract_dialog_typeareSmDialogError and
SmDialogNormal. If a token is returned withinteract_dialog_typecontainingSmDialogError ,
the interact request and any subsequent interact requests will be for an error dialog; otherwise, the
request will be for a normal dialog with the user.

When a token is returned withsave_successFalseor interact_dialog_typeSmDialogError ,
tokens subsequently passed to callbacks during the same activeSaveYourselfresponse will
reflect these changed values, indicating that an error condition has occurred during the check-
point.

Therequest_cancelfield is a return value for interact callbacks only. Upon return from a proce-
dure on the save callback list, the value of the token’srequest_cancelfield is not examined by the
shell. This is also true of tokens received through a call toXtSessionGetToken.

4.2.2.2. Interacting with the User

When the session manager grants the application’s request for user interaction, the Session shell
receives anInteract message. The procedures registered on the interact callback list are
executed, but not as if executing a typical callback list. These procedures are individually
executed in sequence, with a checkpoint token functioning as the sequencing mechanism. Each
step in the sequence begins by removing a procedure from the interact callback list and executing
it with a token passed in thecall_data. The interact callback will typically pop up a dialog box
and return. When the user interaction and associated application checkpointing has completed,
the application must return the token by callingXtSessionReturnToken. Returning the token
completes the current step, and triggers the next step in the sequence.

During interaction the client may request cancellation of a shutdown. When a token passed as
call_datato an interact procedure is returned, ifshutdownis True andcancel_shutdownis False,
request_cancelindicates whether the application requests that the pending shutdown be cancelled.
If request_cancelis True , the field will also beTrue in any tokens subsequently granted during
the checkpoint operation. When a token is returned requesting cancellation of the session shut-
down, pending interact procedures will still be called by the Session shell. When all interact pro-
cedures have been removed from the interact callback list, executed, and the final interact token
returned to the shell, anInteractDone message is sent to the session manager, indicating whether
a pending session shutdown is requested to be cancelled.

4.2.2.3. Responding to a Shutdown Cancellation

Callbacks registered on the cancel callback list are invoked when the Session shell processes a
ShutdownCancelledmessage from the session manager. This may occur during the processing
of save callbacks, while waiting for interact permission, during user interaction, or after the save
operation is complete and the application is expecting aSaveCompleteor aDie message. The
call_datafor these callbacks is NULL.

When the shell notices that a pending shutdown has been cancelled, the tokencancel_shutdown
field will be True in tokens subsequently given to the application.

85

X Toolkit Intrinsics X11 Release 6

Receiving notice of a shutdown cancellation does not cancel the pending execution of save call-
backs or interact callbacks. After the cancel callbacks execute, ifinteract_styleis notSmInter-
actStyleNoneand the interact list is not empty, the procedures on the interact callback list will be
executed and passed a token withinteract_styleSmInteractStyleNone. The application should
not interact with the user, and the Session shell will not send anInteractDone message.

4.2.2.4. Completing a Sav e

When there is no user interaction, the shell regards the application as having finished saving state
when all callback procedures on the save callback list have returned, and any additional tokens
passed out byXtSessionGetTokenhave been returned by corresponding calls to
XtSessionReturnToken. If the save operation involved user interaction, the above completion
conditions apply, and in addition, all requests for interaction have been granted or cancelled, and
all tokens passed to interact callbacks have been returned through calls to
XtSessionReturnToken. If the save operation involved a manager client that requested the sec-
ond phase, the above conditions apply to both the first and second phase of the save operation.

When the application has finished saving state, the Session shell will report the result to the ses-
sion manager by sending theSaveYourselfDonemessage. If the session is continuing, the shell
will receive theSaveCompletemessage when all applications have completed saving state. This
message indicates that applications may again allow changes to their state. The shell will execute
the save_complete callbacks. Thecall_datafor these callbacks is NULL.

4.2.3. Responding to a Shutdown

Callbacks registered on the die callback list are invoked when the session manager sends aDie
message. The callbacks on this list should do whatever is appropriate to quit the application.
Before executing procedures on the die callback list, the Session shell will close the connection to
the session manager and will remove the handler which watches for protocol messages. The
call_datafor these callbacks is NULL.

4.2.4. Resigning from a Session

When the Session shell widget is destroyed, the destroy method will close the connection to the
session manager by sending aConnectionClosedprotocol message, and will remove the input
callback which was watching for session protocol messages.

WhenXtSetValues is used to setjoin_sessionto False, the set_values method of the Session
shell will close the connection to the session manager if one exists by sending aConnection-
Closedmessage, andconnectionwill be set to NULL.

Applications which exit in response to user actions and which do not wait for phase 2 destroy to
complete on the Session shell should setjoin_sessionto Falsebefore exiting.

WhenXtSetValues is used to setconnectionto NULL, the Session shell will stop managing the
connection, if one exists. However that session connection will not be closed.

Applications which wish to ensure continuation of a session connection beyond the destruction of
the shell, should first retrieve theconnectionresource value, then set theconnectionresource to
NULL, and then they may safely destroy the widget without losing control of the session connec-
tion.

The error callback list will be called if an unrecoverable communications error occurs while the
shell is managing the connection. The shell will close the connection, setconnectionto NULL,

86

X Toolkit Intrinsics X11 Release 6

remove the input callback, and call the procedures registered on the error callback list. The
call_datafor these callbacks is NULL.

87

X Toolkit Intrinsics X11 Release 6

Chapter 5

Pop-Up Widgets

Pop-up widgets are used to create windows outside of the window hierarchy defined by the wid-
get tree. Each pop-up child has a window that is a descendant of the root window, so that the
pop-up window is not clipped by the pop-up widget’s parent window. Therefore, pop-ups are cre-
ated and attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually does
not operate upon them in any way. Thepopup_listfield in theCorePart structure contains the
list of its pop-up children. This pop-up list exists mainly to provide the proper place in the widget
hierarchy for the pop-up to get resources and to provide a place forXtDestroyWidget to look for
all extant children.

A composite widget can have both normal and pop-up children. A pop-up can be popped up from
almost anywhere, not just by its parent. The termchild always refers to a normal, geometry-
managed widget on the composite widget’s list of children, and the termpop-up childalways
refers to a widget on the pop-up list.

5.1. Pop-Up Widget Types

There are three kinds of pop-up widgets:

• Modeless pop-ups

A modeless pop-up (for example, a dialog box that does not prevent continued interaction
with the rest of the application) can usually be manipulated by the window manager and
looks like any other application window from the user’s point of view. The application
main window itself is a special case of a modeless pop-up.

• Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue) can some-
times be manipulated by the window manager, and except for events that occur in the dia-
log box, it disables user-event distribution to the rest of the application.

• Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the window
manager, and except for events that occur in the pop-up or its descendants, it disables user-
ev ent distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they were
the same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both
as a modal pop-up and as a spring-loaded pop-up within the same application. The main differ-
ence is that spring-loaded pop-ups are brought up with the pointer and, because of the grab that
the pointer button causes, require different processing by the Intrinsics. Further, all user input
remap events occurring outside the spring-loaded pop-up (e.g., in a descendant) are also delivered
to the spring-loaded pop-up after they hav e been dispatched to the appropriate descendant, so
that, for example, button-up can take down a spring-loaded pop-up no matter where the button-up
occurs.

88

X Toolkit Intrinsics X11 Release 6

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain user events to the most recent such pop-up or allow user events to be dispatched to any
of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the X
window manager and therefore are subclasses of one of the Shell widget classes.

5.2. Creating a Pop-Up Shell

For a widget to be popped up, it must be the child of a pop-up shell widget. None of the Intrin-
sics-supplied shells will simultaneously manage more than one child. Both the shell and child
taken together are referred to as the pop-up. When you need to use a pop-up, you always refer to
the pop-up by the pop-up shell, not the child.

To create a pop-up shell, useXtCreatePopupShell.

Widget XtCreatePopupShell(name, widget_class, parent, args, num_args)
Stringname;
WidgetClasswidget_class;
Widgetparent;
ArgList args;
Cardinalnum_args;

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreatePopupShell function ensures that the specified class is a subclass of Shell and,
rather than using insert_child to attach the widget to the parent’schildren list, attaches the shell to
the parent’spopup_listdirectly.

The screen resource for this widget is determined by first scanningargsfor the XtNscreen argu-
ment. If no XtNscreen argument is found, the resource database associated with the parent’s
screen is queried for the resourcename.screen, classClass.Screen whereClassis theclass_name
field from theCoreClassPartof the specifiedwidget_class. If this query fails, the parent’s
screen is used. Once the screen is determined, the resource database associated with that screen is
used to retrieve all remaining resources for the widget not specified inargs.

A spring-loaded pop-up invoked from a translation table viaXtMenuPopup must already exist at
the time that the translation is invoked, so the translation manager can find the shell by name.
Pop-ups invoked in other ways can be created when the pop-up actually is needed. This delayed
creation of the shell is particularly useful when you pop up an unspecified number of pop-ups.
You can look to see if an appropriate unused shell (that is, not currently popped up) exists and
create a new shell if needed.

To create a pop-up shell using varargs lists, useXtVaCreatePopupShell.

89

X Toolkit Intrinsics X11 Release 6

Widget XtVaCreatePopupShell(name, widget_class, parent, ...)
Stringname;
WidgetClasswidget_class;
Widgetparent;

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.

... Specifies the variable argument list to override any other resource specifications.

XtVaCreatePopupShell is identical in function toXtCreatePopupShellwith theargs and
num_argsparameters replaced by a varargs list as described in Section 2.5.1.

5.3. Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either statically
or dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up
children composed of a fixed set of widgets. The application can change the state of the subparts
of the pop-up child as the application state changes. For example, if an application creates a static
menu, it can callXtSetSensitive(or, in general,XtSetValues) on any of the buttons that make up
the menu. Creating the pop-up child early means that pop-up time is minimized, especially if the
application callsXtRealizeWidget on the pop-up shell at startup. When the menu is needed, all
the widgets that make up the menu already exist and need only be mapped. The menu should pop
up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which mini-
mizes application startup time and allows the pop-up child to reconfigure itself each time it is
popped up. In this case, the pop-up child creation routine might poll the application to find out if
it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and callXtReal-
izeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Note that excessive use of pop-up callbacks can make popping up occur more slowly.

5.4. Mapping a Pop-Up Widget

Pop-ups can be popped up through several mechanisms:

• A call to XtPopup or XtPopupSpringLoaded.

• One of the supplied callback proceduresXtCallbackNone, XtCallbackNonexclusive, or
XtCallbackExclusive.

• The standard translation actionXtMenuPopup.

Some of these routines take an argument of typeXtGrabKind , which is defined as

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

90

X Toolkit Intrinsics X11 Release 6

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
XtCreatePopupChildProc.

typedef void (*XtCreatePopupChildProc)(Widget);
Widgetw;

w Specifies the shell widget being popped up.

To map a pop-up from within an application, useXtPopup.

void XtPopup(popup_shell, grab_kind)
Widgetpopup_shell;
XtGrabKindgrab_kind;

popup_shell Specifies the shell widget.

grab_kind Specifies the way in which user events should be constrained.

The XtPopup function performs the following:

• Calls XtCheckSubclassto ensurepopup_shell’s class is a subclass ofshellWidgetClass.

• Raises the window and returns if the shell’spopped_upfield is alreadyTrue .

• Calls the callback procedures on the shell’spopup_callbacklist, specifying a pointer to the
value ofgrab_kindas thecall_dataargument.

• Sets the shellpopped_upfield to True , the shellspring_loadedfield to False, and the shell
grab_kindfield fromgrab_kind.

• If the shell’screate_popup_child_procfield is non-NULL,XtPopup calls it with
popup_shellas the parameter.

• If grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls

XtAddGrab(popup_shell, (grab_kind== XtGrabExclusive), False)

• Calls XtRealizeWidget with popup_shellspecified.

• Calls XMapRaised with the window ofpopup_shell.

To map a spring-loaded pop-up from within an application, useXtPopupSpringLoaded.

void XtPopupSpringLoaded(popup_shell)
Widgetpopup_shell;

popup_shell Specifies the shell widget to be popped up.

The XtPopupSpringLoaded function performs exactly asXtPopup except that it sets the shell
spring_loadedfield to True and always callsXtAddGrab with exclusiveTrue andspring-
loadedTrue .

To map a pop-up from a given widget’s callback list, you also can register one of the
XtCallbackNone, XtCallbackNonexclusive, or XtCallbackExclusive convenience routines as
callbacks, using the pop-up shell widget as the client data.

void XtCallbackNone(w, client_data, call_data)
Widgetw;
XtPointerclient_data;
XtPointercall_data;

91

X Toolkit Intrinsics X11 Release 6

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackNonexclusive(w, client_data, call_data)
Widgetw;
XtPointerclient_data;
XtPointercall_data;

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackExclusive(w, client_data, call_data)
Widgetw;
XtPointerclient_data;
XtPointercall_data;

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, andXtCallbackExclusive functions call
XtPopup with the shell specified by theclient_dataargument andgrab_kindset as the name
specifies.XtCallbackNone, XtCallbackNonexclusive, andXtCallbackExclusive specify
XtGrabNone, XtGrabNonexclusive, andXtGrabExclusive, respectively. Each function then
sets the widget that executed the callback list to be insensitive by callingXtSetSensitive. Using
these functions in callbacks is not required. In particular, an application must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than desensitizing
the button.

Within a translation table, to pop up a menu when a key or pointer button is pressed or when the
pointer is moved into a widget, useXtMenuPopup, or its synonym,MenuPopup. From a trans-
lation writer’s point of view, the definition for this translation action is

void XtMenuPopup(shell_name)
Stringshell_name;

shell_name Specifies the name of the shell widget to pop up.

XtMenuPopup is known to the translation manager, which registers the corresponding built-in
action procedureXtMenuPopupAction usingXtRegisterGrabAction specifyingowner_events
True , event_maskButtonPressMask | ButtonReleaseMask, andpointer_modeand
keyboard_modeGrabModeAsync.

If XtMenuPopup is invoked onButtonPress, it calls XtPopupSpringLoaded on the specified
shell widget. IfXtMenuPopup is invoked onKeyPressor EnterWindow , it calls XtPopup on
the specified shell widget withgrab_kindset toXtGrabNonexclusive. Otherwise, the transla-
tion manager generates a warning message and ignores the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the widget in which
it is invoked. If it finds a shell with the specified name in the pop-up children of that widget, it

92

X Toolkit Intrinsics X11 Release 6

pops up the shell with the appropriate parameters. Otherwise, it moves up the parent chain to find
a pop-up child with the specified name. IfXtMenuPopup gets to the application top-level shell
widget and has not found a matching shell, it generates a warning and returns immediately.

5.5. Unmapping a Pop-Up Widget

Pop-ups can be popped down through several mechanisms:

• A call to XtPopdown

• The supplied callback procedureXtCallbackPopdown

• The standard translation actionXtMenuPopdown

To unmap a pop-up from within an application, useXtPopdown.

void XtPopdown(popup_shell)
Widgetpopup_shell;

popup_shell Specifies the shell widget to pop down.

The XtPopdown function performs the following:

• Calls XtCheckSubclassto ensurepopup_shell’s class is a subclass ofshellWidgetClass.

• Checks that thepopped_upfield of popup_shellis True ; otherwise, it returns immediately.

• Unmapspopup_shell’s window and, ifoverride_redirectis False, sends a synthetic
UnmapNotify ev ent as specified by theInter-Client Communication Conventions Manual.

• If popup_shell’s grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.

• Setspopup_shell’s popped_upfield to False.

• Calls the callback procedures on the shell’spopdown_callbacklist, specifying a pointer to
the value of the shell’sgrab_kindfield as thecall_dataargument.

To pop down a pop-up from a callback list, you may use the callbackXtCallbackPopdown.

void XtCallbackPopdown(w, client_data, call_data)
Widgetw;
XtPointerclient_data;
XtPointercall_data;

w Specifies the widget.

client_data Specifies a pointer to theXtPopdownID structure.

call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackPopdown function casts theclient_dataparameter to a pointer of type
XtPopdownID .

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

Theshell_widgetis the pop-up shell to pop down, and theenable_widgetis usually the widget
that was used to pop it up in one of the pop-up callback convenience procedures.

93

X Toolkit Intrinsics X11 Release 6

XtCallbackPopdown calls XtPopdown with the specifiedshell_widgetand then callsXtSet-
Sensitiveto resensitizeenable_widget.

Within a translation table, to pop down a spring-loaded menu when a key or pointer button is
released or when the pointer is moved into a widget, useXtMenuPopdown or its synonym,
MenuPopdown. From a translation writer’s point of view, the definition for this translation
action is

void XtMenuPopdown(shell_name)
Stringshell_name;

shell_name Specifies the name of the shell widget to pop down.

If a shell name is not given,XtMenuPopdown calls XtPopdown with the widget for which the
translation is specified. Ifshell_nameis specified in the translation table,XtMenuPopdown tries
to find the shell by looking up the widget tree starting at the widget in which it is invoked. If it
finds a shell with the specified name in the pop-up children of that widget, it pops down the shell;
otherwise, it moves up the parent chain to find a pop-up child with the specified name. If
XtMenuPopdown gets to the application top-level shell widget and cannot find a matching shell,
it generates a warning and returns immediately.

94

X Toolkit Intrinsics X11 Release 6

Chapter 6

Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for con-
trolling them. Although the position of children is usually left up to their parent, the widgets
themselves often have the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its parent,
the Intrinsics provide the geometry management mechanism. Almost all composite widgets have
a geometry manager specified in thegeometry_managerfield in the widget class record that is
responsible for the size, position, and stacking order of the widget’s children. The only exception
is fixed boxes, which create their children themselves and can ensure that their children will never
make a geometry request.

6.1. Initiating Geometry Changes

Parents, children, and clients each initiate geometry changes differently. Because a parent has
absolute control of its children’s geometry, it changes the geometry directly by calling
XtMoveWidget , XtResizeWidget, or XtConfigureWidget . A child must ask its parent for a
geometry change by callingXtMakeGeometryRequestor XtMakeResizeRequest. An appli-
cation or other client code initiates a geometry change by callingXtSetValueson the appropriate
geometry fields, thereby giving the widget the opportunity to modify or reject the client request
before it gets propagated to the parent and the opportunity to respond appropriately to the parent’s
reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its par-
ent’s geometry manager to make the desired changes, the geometry manager can allow the
request, disallow the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resize any or all of the other children that it controls. The geometry man-
ager can move children around freely usingXtMoveWidget . When it resizes a child (that is,
changes the width, height, or border width) other than the one making the request, it should do so
by callingXtResizeWidget. The requesting child may be given special treatment; see Section
6.5. It can simultaneously move and resize a child with a single call toXtConfigureWidget .

Often, geometry managers find that they can satisfy a request only if they can reconfigure a wid-
get that they are not in control of; in particular, the composite widget may want to change its own
size. In this case, the geometry manager makes a request to its parent’s geometry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation, windows
are not actually allocated to widgets at application startup until all widgets are satisfied with their
geometry; see Sections 2.5 and 2.6.

95

X Toolkit Intrinsics X11 Release 6

Notes

1. The Intrinsics treatment of stacking requests is deficient in several areas. Stacking requests
for unrealized widgets are granted but will have no effect. In addition, there is no way to
do anXtSetValues that will generate a stacking geometry request.

2. After a successful geometry request (one that returnedXtGeometryYes), a widget does not
know whether its resize procedure has been called. Widgets should have resize procedures
that can be called more than once without ill effects.

6.2. General Geometry Manager Requests

When making a geometry request, the child specifies anXtWidgetGeometry structure.

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

To make a general geometry manager request from a widget, useXtMakeGeometryRequest.

XtGeometryResult XtMakeGeometryRequest(w, request, reply_return)
Widgetw;
XtWidgetGeometry *request;
XtWidgetGeometry *reply_return;

w Specifies the widget making the request. Must be of class RectObj or any sub-
class thereof.

request Specifies the desired widget geometry (size, position, border width, and stacking
order).

reply_return Returns the allowed widget size, or may be NULL if the requesting widget is not
interested in handlingXtGeometryAlmost.

Depending on the condition,XtMakeGeometryRequestperforms the following:

• If the widget is unmanaged or the widget’s parent is not realized, it makes the changes and
returnsXtGeometryYes.

• If the parent’s class is not a subclass ofcompositeWidgetClassor the parent’sgeome-
try_managerfield is NULL, it issues an error.

• If the widget’sbeing_destroyedfield is True , it returnsXtGeometryNo.

• If the widgetx, y, width, heightand,border_widthfields are all equal to the requested val-
ues, it returnsXtGeometryYes; otherwise, it calls the parent’s geometry_manager proce-
dure with the given parameters.

• If the parent’s geometry manager returnsXtGeometryYes and if XtCWQueryOnly is not
set inrequest->request_modeand if the widget is realized,XtMakeGeometryRequest

96

X Toolkit Intrinsics X11 Release 6

calls theXConfigureWindow Xlib function to reconfigure the widget’s window (set its
size, location, and stacking order as appropriate).

• If the geometry manager returnsXtGeometryDone, the change has been approved and
actually has been done. In this case,XtMakeGeometryRequestdoes no configuring and
returnsXtGeometryYes. XtMakeGeometryRequestnever returnsXtGeometryDone.

• Otherwise,XtMakeGeometryRequestjust returns the resulting value from the parent’s
geometry manager.

Children of primitive widgets are always unmanaged; therefore,XtMakeGeometryRequest
always returnsXtGeometryYes when called by a child of a primitive widget.

The return codes from geometry managers are

typedef enum {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

Therequest_modedefinitions are from <X11/X.h>.

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

The Intrinsics also support the following value.

#define XtCWQueryOnly (1<<7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to what
would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest, like theXConfigureWindow Xlib function, usesrequest_modeto
determine which fields in theXtWidgetGeometry structure the caller wants to specify.

Thestack_modedefinitions are from <X11/X.h>:

#define Above 0
#define Below 1
#define TopIf 2
#define BottomIf 3
#define Opposite 4

The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behavior ofAbove, Below, TopIf , BottomIf , andOpposite, see Section 3.7
in Xlib − C Language X Interface. XtSMDontChange indicates that the widget wants its current
stacking order preserved.

97

X Toolkit Intrinsics X11 Release 6

6.3. Resize Requests

To make a simple resize request from a widget, you can useXtMakeResizeRequestas an alter-
native toXtMakeGeometryRequest.

XtGeometryResult XtMakeResizeRequest(w, width, height, width_return, height_return)
Widgetw;
Dimensionwidth, height;
Dimension *width_return, *height_return;

w Specifies the widget making the request. Must be of class RectObj or any sub-
class thereof.

width
height Specify the desired widget width and height.

width_return
height_return Return the allowed widget width and height.

The XtMakeResizeRequestfunction, a simple interface toXtMakeGeometryRequest, creates
an XtWidgetGeometry structure and specifies that width and height should change by setting
request_modeto CWWidth | CWHeight . The geometry manager is free to modify any of the
other window attributes (position or stacking order) to satisfy the resize request. If the return
value isXtGeometryAlmost, width_returnandheight_returncontain a compromise width and
height. If these are acceptable, the widget should immediately callXtMakeResizeRequestagain
and request that the compromise width and height be applied. If the widget is not interested in
XtGeometryAlmost replies, it can pass NULL forwidth_returnandheight_return.

6.4. Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without first
making a geometry request to the widget’s own parent (the original requestor’s grandparent). If
the request to the grandparent would allow the parent to satisfy the original request, the geometry
manager can make the intermediate geometry request as if it were the originator. On the other
hand, if the geometry manager already has determined that the original request cannot be com-
pletely satisfied (for example, if it always denies position changes), it needs to tell the grandparent
to respond to the intermediate request without actually changing the geometry because it does not
know if the child will accept the compromise. To accomplish this, the geometry manager uses
XtCWQueryOnly in the intermediate request.

WhenXtCWQueryOnly is used, the geometry manager needs to cache enough information to
exactly reconstruct the intermediate request. If the grandparent’s response to the intermediate
query wasXtGeometryAlmost, the geometry manager needs to cache the entire reply geometry
in the event the child accepts the parent’s compromise.

If the grandparent’s response wasXtGeometryAlmost, it may also be necessary to cache the
entire reply geometry from the grandparent whenXtCWQueryOnly is not used. If the geometry
manager is still able to satisfy the original request, it may immediately accept the grandparent’s
compromise and then act on the child’s request. If the grandparent’s compromise geometry is
insufficient to allow the child’s request and if the geometry manager is willing to offer a different
compromise to the child, the grandparent’s compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned withXtGeometryAlmost is guaranteed only for the
next call to the same widget; therefore, a cache of size 1 is sufficient.

98

X Toolkit Intrinsics X11 Release 6

6.5. Child Geometry Management: the geometry_manager Procedure

The geometry_manager procedure pointer in a composite widget class is of type
XtGeometryHandler .

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtWidgetGeometry *request;
XtWidgetGeometry *geometry_return;

w Passes the widget making the request.

request Passes the new geometry the child desires.

geometry_return Passes a geometry structure in which the geometry manager may store a com-
promise.

A class can inherit its superclass’s geometry manager during class initialization.

A bit set to zero in the request’srequest_modefield means that the child widget does not care
about the value of the corresponding field, so the geometry manager can change this field as it
wishes. A bit set to 1 means that the child wants that geometry element set to the value in the
corresponding field.

If the geometry manager can satisfy all changes requested and ifXtCWQueryOnly is not speci-
fied, it updates the widget’sx, y, width, height, andborder_widthfields appropriately. Then, it
returnsXtGeometryYes, and the values pointed to by thegeometry_returnargument are unde-
fined. The widget’s window is moved and resized automatically byXtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making the request
the same as any other widget, including reconfiguring it usingXtConfigureWidget or XtRe-
sizeWidgetas part of its layout process, unlessXtCWQueryOnly is specified. If it does this, it
should returnXtGeometryDone to inform XtMakeGeometryRequestthat it does not need to
do the configuration itself.

Note

To remain compatible with layout techniques used in older widgets (beforeXtGeom-
etryDone was added to the Intrinsics), a geometry manager should avoid using
XtResizeWidgetor XtConfigureWidget on the child making the request because
the layout process of the child may be in an intermediate state in which it is not pre-
pared to handle a call to its resize procedure. A self-contained widget set may
choose this alternative geometry management scheme, however, provided that it
clearly warns widget developers of the compatibility consequences.

Although XtMakeGeometryRequestresizes the widget’s window (if the geometry manager
returnsXtGeometryYes), it does not call the widget class’s resize procedure. The requesting
widget must perform whatever resizing calculations are needed explicitly.

If the geometry manager disallows the request, the widget cannot change its geometry. The val-
ues pointed to bygeometry_returnare undefined, and the geometry manager returns
XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy a
similar request. That is, it could satisfy only a subset of the requests (for example, size but not
position) or a lesser request (for example, it cannot make the child as big as the request but it can
make the child bigger than its current size). In such cases, the geometry manager fills in the
structure pointed to bygeometry_returnwith the actual changes it is willing to make, including
an appropriaterequest_modemask, and returnsXtGeometryAlmost. If a bit in

99

X Toolkit Intrinsics X11 Release 6

geometry_return->request_modeis zero, the geometry manager agrees not to change the corre-
sponding value ifgeometry_returnis used immediately in a new request. If a bit is 1, the geome-
try manager does change that element to the corresponding value ingeometry_return. More bits
may be set ingeometry_return->request_modethan in the original request if the geometry man-
ager intends to change other fields should the child accept the compromise.

WhenXtGeometryAlmost is returned, the widget must decide if the compromise suggested in
geometry_returnis acceptable. If it is, the widget must not change its geometry directly; rather, it
must make another call toXtMakeGeometryRequest.

If the next geometry request from this child uses thegeometry_returnvalues filled in by the
geometry manager with anXtGeometryAlmost return and if there have been no intervening
geometry requests on either its parent or any of its other children, the geometry manager must
grant the request, if possible. That is, if the child asks immediately with the returned geometry, it
should get an answer ofXtGeometryYes. Howev er, dynamic behavior in the user’s window
manager may affect the final outcome.

To returnXtGeometryYes, the geometry manager frequently rearranges the position of other
managed children by callingXtMoveWidget . Howev er, a few geometry managers may some-
times change the size of other managed children by callingXtResizeWidgetor
XtConfigureWidget . If XtCWQueryOnly is specified, the geometry manager must return data
describing how it would react to this geometry request without actually moving or resizing any
widgets.

Geometry managers must not assume that therequestandgeometry_returnarguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry
manager must allocate its own temporary storage, if necessary.

6.6. Widget Placement and Sizing

To move a sibling widget of the child making the geometry request, the parent uses
XtMoveWidget .

void XtMoveWidget(w, x, y)
Widgetw;
Positionx;
Positiony;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

x
y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry fields are the same as
the old values. Otherwise,XtMoveWidget writes the newx andy values into the object and, if
the object is a widget and is realized, issues an XlibXMoveWindow call on the widget’s win-
dow.

To resize a sibling widget of the child making the geometry request, the parent uses
XtResizeWidget.

100

X Toolkit Intrinsics X11 Release 6

void XtResizeWidget(w, width, height, border_width)
Widgetw;
Dimensionwidth;
Dimensionheight;
Dimensionborder_width;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

width
height
border_width Specify the new widget size.

The XtResizeWidget function returns immediately if the specified geometry fields are the same
as the old values. Otherwise,XtResizeWidgetwrites the newwidth, height, andborder_width
values into the object and, if the object is a widget and is realized, issues anXConfigureWindow
call on the widget’s window.

If the new width or height is different from the old values,XtResizeWidgetcalls the object’s
resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, the parent uses
XtConfigureWidget .

void XtConfigureWidget(w, x, y, width, height, border_width)
Widgetw;
Positionx;
Positiony;
Dimensionwidth;
Dimensionheight;
Dimensionborder_width;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

x
y Specify the new widget x and y coordinates.

width
height
border_width Specify the new widget size.

The XtConfigureWidget function returns immediately if the specified new geometry fields are
all equal to the current values. Otherwise,XtConfigureWidget writes the newx, y, width,
height, andborder_widthvalues into the object and, if the object is a widget and is realized,
makes an XlibXConfigureWindow call on the widget’s window.

If the new width or height is different from its old value,XtConfigureWidget calls the object’s
resize procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the new values of its width, height, and border width, the
parent usesXtResizeWindow.

void XtResizeWindow(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtResizeWindow function calls theXConfigureWindow Xlib function to make the win-
dow of the specified widget match its width, height, and border width. This request is done

101

X Toolkit Intrinsics X11 Release 6

unconditionally because there is no inexpensive way to tell if these values match the current val-
ues. Note that the widget’s resize procedure is not called.

There are very few times to useXtResizeWindow; instead, the parent should use
XtResizeWidget.

6.7. Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries of
their children. They can useXtQueryGeometry to obtain the preferred geometry and, as they
see fit, can use or ignore any portion of the response.

To query a child widget’s preferred geometry, useXtQueryGeometry.

XtGeometryResult XtQueryGeometry(w, intended, preferred_return)
Widgetw;
XtWidgetGeometry *intended, *preferred_return;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

intended Specifies the new geometry the parent plans to give to the child, or NULL.

preferred_returnReturns the child widget’s preferred geometry.

To discover a child’s preferred geometry, the child’s parent stores the new geometry in the corre-
sponding fields of the intended structure, sets the corresponding bits inintended.request_mode,
and callsXtQueryGeometry. The parent should set only those fields that are important to it so
that the child can determine whether it may be able to attempt changes to other fields.

XtQueryGeometry clears all bits in thepreferred_return->request_modefield and checks the
query_geometryfield of the specified widget’s class record. Ifquery_geometryis not NULL,
XtQueryGeometry calls the query_geometry procedure and passes as arguments the specified
widget,intended, andpreferred_returnstructures. If theintendedargument is NULL,XtQuery-
Geometry replaces it with a pointer to anXtWidgetGeometry structure withrequest_mode
equal to zero before calling the query_geometry procedure.

Note

If XtQueryGeometry is called from within a geometry_manager procedure for the
widget that issuedXtMakeGeometryRequestor XtMakeResizeRequest, the
results are not guaranteed to be consistent with the requested changes. The change
request passed to the geometry manager takes precedence over the preferred geome-
try.

The query_geometry procedure pointer is of typeXtGeometryHandler .

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtWidgetGeometry *request;
XtWidgetGeometry *preferred_return;

w Passes the child widget whose preferred geometry is required.

request Passes the geometry changes which the parent plans to make.

preferred_return Passes a structure in which the child returns its preferred geometry.

102

X Toolkit Intrinsics X11 Release 6

The query_geometry procedure is expected to examine the bits set inrequest->request_mode,
evaluate the preferred geometry of the widget, and store the result inpreferred_return(setting the
bits inpreferred_return->request_modecorresponding to those geometry fields that it cares
about). If the proposed geometry change is acceptable without modification, the query_geometry
procedure should returnXtGeometryYes. If at least one field inpreferred_returnwith a bit set
in preferred_return->request_modeis different from the corresponding field inrequestor if a bit
was set inpreferred_return->request_modethat was not set in the request, the query_geometry
procedure should returnXtGeometryAlmost. If the preferred geometry is identical to the cur-
rent geometry, the query_geometry procedure should returnXtGeometryNo.

Note

The query_geometry procedure may assume that noXtMakeResizeRequestor
XtMakeGeometryRequestis in progress for the specified widget; that is, it is not
required to construct a reply consistent with the requested geometry if such a request
were actually outstanding.

After calling the query_geometry procedure or if thequery_geometryfield is NULL, XtQuery-
Geometry examines all the unset bits inpreferred_return->request_modeand sets the corre-
sponding fields inpreferred_returnto the current values from the widget instance. IfCWStack-
Mode is not set, thestack_modefield is set toXtSMDontChange. XtQueryGeometry returns
the value returned by the query_geometry procedure orXtGeometryYes if the query_geometry
field is NULL.

Therefore, the caller can interpret a return ofXtGeometryYes as not needing to evaluate the con-
tents of the reply and, more important, not needing to modify its layout plans. A return ofXtGe-
ometryAlmost means either that both the parent and the child expressed interest in at least one
common field and the child’s preference does not match the parent’s intentions or that the child
expressed interest in a field that the parent might need to consider. A return value ofXtGeome-
tryNo means that both the parent and the child expressed interest in a field and that the child sug-
gests that the field’s current value in the widget instance is its preferred value. In addition,
whether or not the caller ignores the return value or the reply mask, it is guaranteed that thepre-
ferred_returnstructure contains complete geometry information for the child.

Parents are expected to callXtQueryGeometry in their layout routine and wherever else the
information is significant after change_managed has been called. The first time it is invoked, the
changed_managed procedure may assume that the child’s current geometry is its preferred geom-
etry. Thus, the child is still responsible for storing values into its own geometry during its initial-
ize procedure.

6.8. Size Change Management: the resize Procedure

A child can be resized by its parent at any time. Widgets usually need to know when they hav e
changed size so that they can lay out their displayed data again to match the new size. When a
parent resizes a child, it callsXtResizeWidget, which updates the geometry fields in the widget,
configures the window if the widget is realized, and calls the child’s resize procedure to notify the
child. The resize procedure pointer is of typeXtWidgetProc .

If a class need not recalculate anything when a widget is resized, it can specify NULL for the
resizefield in its class record. This is an unusual case and should occur only for widgets with
very trivial display semantics. The resize procedure takes a widget as its only argument. Thex,
y, width, height, andborder_widthfields of the widget contain the new values. The resize proce-
dure should recalculate the layout of internal data as needed. (For example, a centered Label in a

103

X Toolkit Intrinsics X11 Release 6

window that changes size should recalculate the starting position of the text.) The widget must
obey resize as a command and must not treat it as a request. A widget must not issue an
XtMakeGeometryRequestor XtMakeResizeRequestcall from its resize procedure.

104

X Toolkit Intrinsics X11 Release 6

Chapter 7

Event Management

While Xlib allows the reading and processing of events anywhere in an application, widgets in the
X Toolkit neither directly read events nor grab the server or pointer. Widgets register procedures
that are to be called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that reads events and dis-
patches them by calling the procedures that widgets have registered. The default event loop pro-
vided by the Intrinsics isXtAppMainLoop .

The event manager is a collection of functions to perform the following tasks:

• Add or remove event sources other than X server events (in particular, timer interrupts, file
input, or POSIX signals).

• Query the status of event sources.

• Add or remove procedures to be called when an event occurs for a particular widget.

• Enable and disable the dispatching of user-initiated events (keyboard and pointer events)
for a particular widget.

• Constrain the dispatching of events to a cascade of pop-up widgets.

• Register procedures to be called when specific events arrive.

• Register procedures to be called when the Intrinsics will block.

• Enable safe operation in a multi-threaded environment.

Most widgets do not need to call any of the event handler functions explicitly. The normal inter-
face to X events is through the higher-level translation manager, which maps sequences of X
ev ents, with modifiers, into procedure calls. Applications rarely use any of the event manager
routines besidesXtAppMainLoop .

7.1. Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some applications need to incorporate other
sources of input into the Intrinsics event-handling mechanism. The event manager provides rou-
tines to integrate notification of timer events and file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The application reg-
isters the files with the Intrinsics read routine. When input is pending on one of the files, the reg-
istered callback procedures are invoked.

7.1.1. Adding and Removing Input Sources

To register a new file as an input source for a given application context, useXtAppAddInput .

105

X Toolkit Intrinsics X11 Release 6

XtInputId XtAppAddInput(app_context, source, condition, proc, client_data)
XtAppContextapp_context;
int source;
XtPointercondition;
XtInputCallbackProcproc;
XtPointerclient_data;

app_context Specifies the application context that identifies the application.

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates a read, write, or exception condition or some
other operating-system-dependent condition.

proc Specifies the procedure to be called when the condition is found.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddInput function registers with the Intrinsics read routine a new source of events,
which is usually file input but can also be file output. Note thatfile should be loosely interpreted
to mean any sink or source of data.XtAppAddInput also specifies the conditions under which
the source can generate events. When an event is pending on this source, the callback procedure
is called.

The legal values for theconditionargument are operating-system-dependent. On a POSIX-based
system,sourceis a file number and the condition is some union of the following:

XtInputReadMask Specifies thatproc is to be called whensourcehas data to be read.

XtInputWriteMask Specifies thatproc is to be called whensourceis ready for writing.

XtInputExceptMask Specifies thatproc is to be called whensourcehas exception data.

Callback procedure pointers used to handle file events are of typeXtInputCallbackProc .

typedef void (*XtInputCallbackProc)(XtPointer, int*, XtInputId*);
XtPointerclient_data;
int *source;
XtInputId *id;

client_data Passes the client data argument that was registered for this procedure inXtApp-
AddInput .

source Passes the source file descriptor generating the event.

id Passes the id returned from the correspondingXtAppAddInput call.

See Section 7.12 for information regarding the use ofXtAppAddInput in multiple threads.

To discontinue a source of input, useXtRemoveInput.

void XtRemoveInput(id)
XtInputId id;

id Specifies the id returned from the correspondingXtAppAddInput call.

The XtRemoveInput function causes the Intrinsics read routine to stop watching for events from
the file source specified byid.

See Section 7.12 for information regarding the use ofXtRemoveInput in multiple threads.

106

X Toolkit Intrinsics X11 Release 6

7.1.2. Adding and Removing Blocking Notifications

Occasionally it is desirable for an application to receive notification when the Intrinsics event
manager detects no pending input from file sources and no pending input from X server event
sources, and is about to block in an operating system call.

To register a hook that is called immediately prior to event blocking, useXtAppAddBlockHook .

XtBlockHookId XtAppAddBlockHook(app_context, proc, client_data)
XtAppContextapp_context;
XtBlockHookProcproc;
XtPointerclient_data;

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called before blocking.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddBlockHook function registers the specified procedure and returns an identifier
for it. The hook procedureproc is called at any time in the future when the Intrinsics are about to
block pending some input.

The procedure pointers used to provide notification of event blocking are of type
XtBlockHookProc .

typedef void (*XtBlockHookProc)(XtPointer);
XtPointerclient_data;

client_data Passes the client data argument that was registered for this procedure inXtApp-
AddBlockHook .

To discontinue the use of a procedure for blocking notification, useXtRemoveBlockHook.

void XtRemoveBlockHook(id)
XtBlockHookId id;

id Specifies the identifier returned from the corresponding call to
XtAppAddBlockHook .

The XtRemoveBlockHook function removes the specified procedure from the list of procedures
which are called by the Intrinsics read routine before blocking on event sources.

7.1.3. Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure that a
specified time interval has elapsed. Timeout values are uniquely identified by an interval id.

To register a timeout callback, useXtAppAddTimeOut .

XtIntervalId XtAppAddTimeOut(app_context, interval, proc, client_data)
XtAppContextapp_context;
unsigned longinterval;
XtTimerCallbackProcproc;
XtPointerclient_data;

app_context Specifies the application context for which the timer is to be set.

107

X Toolkit Intrinsics X11 Release 6

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when the time expires.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The timeout
value is set tointerval. The callback procedureproc is called whenXtAppNextEvent or
XtAppProcessEventis next called after the time interval elapses, and then the timeout is
removed.

Callback procedure pointers used with timeouts are of typeXtTimerCallbackProc .

typedef void (*XtTimerCallbackProc)(XtPointer, XtIntervalId*);
XtPointerclient_data;
XtIntervalId *timer;

client_data Passes the client data argument that was registered for this procedure inXtApp-
AddTimeOut .

timer Passes the id returned from the correspondingXtAppAddTimeOut call.

See Section 7.12 for information regarding the use ofXtAppAddTimeOut in multiple threads.

To clear a timeout value, useXtRemoveTimeOut.

void XtRemoveTimeOut(timer)
XtIntervalId timer;

timer Specifies the id for the timeout request to be cleared.

The XtRemoveTimeOut function removes the pending timeout. Note that timeouts are automat-
ically removed once they trigger.

Please refer to Section 7.12 for information regarding the use ofXtRemoveTimeOut in multiple
threads.

7.1.4. Adding and Removing Signal Callbacks

The signal facility notifies the application or the widget through a callback procedure that a signal
or other external asynchronous event has occurred. The registered callback procedures are
uniquely identified by a signal id.

Prior to establishing a signal handler, the application or widget should callXtAppAddSignal ,
and store the resulting identifier in a place accessible to the signal handler. When a signal arrives,
the signal handler should callXtNoticeSignal to notify the Intrinsics that a signal has occured.
To register a signal callback useXtAppAddSignal .

XtSignalId XtAppAddSignal(app_context, proc, client_data)
XtAppContextapp_context;
XtSignalCallbackProcproc;
XtPointerclient_data;

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called when the signal is noticed.

client_data Specifies an argument passed to the specified procedure when it is called.

108

X Toolkit Intrinsics X11 Release 6

The callback procedure pointers used to handle signal events are of typeXtSignalCallbackProc

typedef void (*XtSignalCallbackProc)(XtPointer, XtSignalId*);
XtPointerclient_data;
XtSignalId *id;

client_data Passes the client data argument that was registered for this procedure in
XtAppAddSignal .

id Passes the id returned from the correspondingXtAppAddSignal call.

To notify the Intrinsics that a signal has occured, useXtNoticeSignal.

void XtNoticeSignal(id)
XtSignalId id;

id Specifies the id returned from the correspondingXtAppAddSignal call.

On a POSIX-based system,XtNoticeSignal is the only Intrinsics function that can safely be
called from a signal handler. IfXtNoticeSignal is invoked multiple times before the Intrinsics
are able to invoke the registered callback, the callback is only called once. Logically, the Intrin-
sics maintain ‘‘pending’’ flag for each registered callback. This flag is initiallyFalseand is set to
True by XtNoticeSignal. WhenXtAppNextEvent or XtAppProcessEvent(with a mask
including XtIMSignal) is called, all registered callbacks with ‘‘pending’’True are invoked and
the flags are reset toFalse.

If the signal handler wants to track how many times the signal has been raised, it can keep its own
private counter. Typically the handler would not do any other work; the callback does the actual
processing for the signal. The Intrinsics never block signals from being raised, so if a given signal
can be raised multiple times before the Intrinsics can invoke the callback for that signal, the call-
back must be designed to deal with this. In another case, a signal might be raised just after the
Intrinsics sets the pending flag toFalsebut before the callback can get control, in which case the
pending flag will still beTrue after the callback returns, and the Intrinsics will invoke the call-
back again, even though all of the signal raises have been handled. The callback must also be
prepared to handle this case.

To remove a registered signal callback, callXtRemoveSignal.

XtRemoveSignal(id)
XtSignalId id;

id Specifies the id returned by the corresponding call toXtAppAddSignal .

The client should typically disable the source of the signal before callingXtRemoveSignal. If
the signal could have been raised again before the source was disabled and the client wants to
process it, then after disabling the source but before callingXtRemoveSignalthe client can test
for signals withXtAppPending and process them by callingXtAppProcessEventwith the mask
XtIMSignal .

7.2. Constraining Events to a Cascade of Widgets

Modal widgets are widgets that, except for the input directed to them, lock out user input to the
application.

When a modal menu or modal dialog box is popped up usingXtPopup, user events (keyboard
and pointer events) that occur outside the modal widget should be delivered to the modal widget
or ignored. In no case will user events be delivered to a widget outside the modal widget.

109

X Toolkit Intrinsics X11 Release 6

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes, to create a pop-
up cascade. In this case, user events may be delivered to one of several modal widgets in the cas-
cade.

Display-related events should be delivered outside the modal cascade so that exposure events and
the like keep the application’s display up-to-date. Any event that occurs within the cascade is
delivered as usual. The user events delivered to the most recent spring-loaded shell in the cascade
when they occur outside the cascade are called remap events and areKeyPress, KeyRelease,
ButtonPress, andButtonRelease. The user events ignored when they occur outside the cascade
areMotionNotify andEnterNotify . All other events are delivered normally. In particular, note
that this is one way in which widgets can receiveLeaveNotify ev ents without first receiving
EnterNotify ev ents; they should be prepared to deal with this, typically by ignoring any
unmatchedLeaveNotify ev ents.

XtPopup uses theXtAddGrab andXtRemoveGrab functions to constrain user events to a
modal cascade and subsequently to remove a grab when the modal widget is popped down.

To constrain or redirect user input to a modal widget, useXtAddGrab .

void XtAddGrab(w, exclusive, spring_loaded)
Widgetw;
Booleanexclusive;
Booleanspring_loaded;

w Specifies the widget to add to the modal cascade. Must be of class Core or any
subclass thereof.

exclusive Specifies whether user events should be dispatched exclusively to this widget or
also to previous widgets in the cascade.

spring_loaded Specifies whether this widget was popped up because the user pressed a pointer
button.

The XtAddGrab function appends the widget to the modal cascade and checks thatexclusiveis
True if spring_loadedis True . If this condition is not met,XtAddGrab generates a warning
message.

The modal cascade is used byXtDispatchEvent when it tries to dispatch a user event. When at
least one modal widget is in the widget cascade,XtDispatchEvent first determines if the event
should be delivered. It starts at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added with theexclusiveparameterTrue .

This subset of the modal cascade along with all descendants of these widgets comprise the active
subset. User ev ents that occur outside the widgets in this subset are ignored or remapped. Modal
menus with submenus generally add a submenu widget to the cascade withexclusiveFalse.
Modal dialog boxes that need to restrict user input to the most deeply nested dialog box add a
subdialog widget to the cascade withexclusiveTrue . User events that occur within the active
subset are delivered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where in the application they occur, remap events are always delivered to the most
recent widget in the active subset of the cascade registered withspring_loadedTrue , if any such
widget exists. If the event occurred in the active subset of the cascade but outside the spring-
loaded widget, it is delivered normally before being delivered also to the spring-loaded widget.
Regardless of where it is dispatched, the Intrinsics do not modify the contents of the event.

110

X Toolkit Intrinsics X11 Release 6

To remove the redirection of user input to a modal widget, useXtRemoveGrab.

void XtRemoveGrab(w)
Widgetw;

w Specifies the widget to remove from the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade starting at the most
recent widget up to and including the specified widget. It issues a warning if the specified widget
is not on the modal cascade.

7.2.1. Requesting Key and Button Grabs

The Intrinsics provide a set of key and button grab interfaces that are parallel to those provided by
Xlib and that allow the Intrinsics to modify event dispatching when necessary. X Toolkit applica-
tions and widgets that need to passively grab keys or buttons or actively grab the keyboard or
pointer should use the following Intrinsics routines rather than the corresponding Xlib routines.

To passively grab a single key of the keyboard, useXtGrabKey .

void XtGrabKey(widget, keycode, modifiers, owner_events, pointer_mode, keyboard_mode)
Widgetwidget;
Ke yCodekeycode;
Modifiersmodifiers;
Booleanowner_events;
int pointer_mode, keyboard_mode;

widget Specifies the widget in whose window the key is to be grabbed. Must be of class
Core or any subclass thereof.

keycode
modifiers
owner_events
pointer_mode
keyboard_mode

Specify arguments toXGrabKey ; see Section 12.2 inXlib − C Language X
Interface.

XtGrabKey calls XGrabKey specifying the widget’s window as the grab window if the widget
is realized. The remaining arguments are exactly as forXGrabKey . If the widget is not realized,
or is later unrealized, the call toXGrabKey is performed (again) when the widget is realized and
its window becomes mapped. In the future, ifXtDispatchEvent is called with aKeyPressev ent
matching the specified keycode and modifiers (which may beAnyKey or AnyModifier , respec-
tively) for the widget’s window, the Intrinsics will callXtUngrabKeyboard with the timestamp
from theKeyPressev ent if either of the following conditions is true:

• There is a modal cascade and the widget is not in the active subset of the cascade and the
keyboard was not previously grabbed, or

• XFilterEvent returnsTrue .

To cancel a passive key grab, useXtUngrabKey .

111

X Toolkit Intrinsics X11 Release 6

void XtUngrabKey(widget, keycode, modifiers)
Widgetwidget;
Ke yCodekeycode;
Modifiersmodifiers;

widget Specifies the widget in whose window the key was grabbed.

keycode
modifiers Specify arguments toXUngrabKey ; see Section 12.2 inXlib − C Language X

Interface.

The XtUngrabKey procedure callsXUngrabKey specifying the widget’s window as the ungrab
window if the widget is realized. The remaining arguments are exactly as forXUngrabKey . If
the widget is not realized,XtUngrabKey removes a deferredXtGrabKey request, if any, for the
specified widget, keycode, and modifiers.

To actively grab the keyboard, useXtGrabKeyboard .

int XtGrabKeyboard(widget, owner_events, pointer_mode, keyboard_mode, time)
Widgetwidget;
Booleanowner_events;
int pointer_mode, keyboard_mode;
Time time;

widget Specifies the widget for whose window the keyboard is to be grabbed. Must be
of class Core or any subclass thereof.

owner_events
pointer_mode
keyboard_mode
time Specify arguments toXGrabKeyboard ; see Section 12.2 inXlib − C Language

X Interface.

If the specified widget is realizedXtGrabKeyboard calls XGrabKeyboard specifying the wid-
get’s window as the grab window. The remaining arguments and return value are exactly as for
XGrabKeyboard . If the widget is not realized,XtGrabKeyboard immediately returns
GrabNotViewable. No future automatic ungrab is implied byXtGrabKeyboard .

To cancel an active keyboard grab, useXtUngrabKeyboard .

void XtUngrabKeyboard(widget, time)
Widgetwidget;
Time time;

widget Specifies the widget that has the active keyboard grab.

time Specifies the additional argument toXUngrabKeyboard ; see Section 12.2 in
Xlib − C Language X Interface.

XtUngrabKeyboard calls XUngrabKeyboard with the specified time.

To passively grab a single pointer button, useXtGrabButton .

112

X Toolkit Intrinsics X11 Release 6

void XtGrabButton(widget, button, modifiers, owner_events, event_mask, pointer_mode,
keyboard_mode, confine_to, cursor)

Widgetwidget;
int button;
Modifiersmodifiers;
Booleanowner_events;
unsigned intevent_mask;
int pointer_mode, keyboard_mode;
Windowconfine_to;
Cursorcursor;

widget Specifies the widget in whose window the button is to be grabbed. Must be of
class Core or any subclass thereof.

button
modifiers
owner_events
event_mask
pointer_mode
keyboard_mode
confine_to
cursor Specify arguments toXGrabButton ; see Section 12.1 inXlib − C Language X

Interface.

XtGrabButton calls XGrabButton specifying the widget’s window as the grab window if the
widget is realized. The remaining arguments are exactly as forXGrabButton . If the widget is
not realized, or is later unrealized, the call toXGrabButton is performed (again) when the wid-
get is realized and its window becomes mapped. In the future, ifXtDispatchEvent is called with
a ButtonPressev ent matching the specified button and modifiers (which may beAnyButton or
AnyModifier , respectively) for the widget’s window, the Intrinsics will callXtUngrabPointer
with the timestamp from theButtonPressev ent if either of the following conditions is true:

• There is a modal cascade and the widget is not in the active subset of the cascade and the
pointer was not previously grabbed, or

• XFilterEvent returnsTrue .

To cancel a passive button grab, useXtUngrabButton .

void XtUngrabButton(widget, button, modifiers)
Widgetwidget;
unsigned intbutton;
Modifiersmodifiers;

widget Specifies the widget in whose window the button was grabbed.

button
modifiers Specify arguments toXUngrabButton ; see Section 12.1 inXlib − C Language

X Interface.

The XtUngrabButton procedure callsXUngrabButton specifying the widget’s window as the
ungrab window if the widget is realized. The remaining arguments are exactly as for
XUngrabButton . If the widget is not realized,XtUngrabButton removes a deferredXtGrab-
Button request, if any, for the specified widget, button, and modifiers.

113

X Toolkit Intrinsics X11 Release 6

To actively grab the pointer, useXtGrabPointer .

int XtGrabPointer(widget, owner_events, event_mask, pointer_mode, keyboard_mode,
confine_to, cursor, time)

Widgetwidget;
Booleanowner_events;
unsigned intevent_mask;
int pointer_mode, keyboard_mode;
Windowconfine_to;
Cursorcursor;
Time time;

widget Specifies the widget for whose window the pointer is to be grabbed. Must be of
class Core or any subclass thereof.

owner_events
event_mask
pointer_mode
keyboard_mode
confine_to
cursor
time Specify arguments toXGrabPointer ; see Section 12.1 inXlib − C Language X

Interface.

If the specified widget is realized,XtGrabPointer calls XGrabPointer , specifying the widget’s
window as the grab window. The remaining arguments and return value are exactly as for
XGrabPointer . If the widget is not realized,XtGrabPointer immediately returns
GrabNotViewable. No future automatic ungrab is implied byXtGrabPointer .

To cancel an active pointer grab, useXtUngrabPointer .

void XtUngrabPointer(widget, time)
Widgetwidget;
Time time;

widget Specifies the widget that has the active pointer grab.

time Specifies the time argument toXUngrabPointer ; see Section 12.1 inXlib − C
Language X Interface.

XtUngrabPointer calls XUngrabPointer with the specified time.

7.3. Focusing Events on a Child

To redirect keyboard input to a normal descendant of a widget without callingXSetInputFocus,
useXtSetKeyboardFocus.

void XtSetKeyboardFocus(subtree descendant)
Widgetsubtree, descendant;

subtree Specifies the subtree of the hierarchy for which the keyboard focus is to be set.
Must be of class Core or any subclass thereof.

descendant Specifies either the normal (non-pop-up) descendant ofsubtreeto which
keyboard events are logically directed, orNone. It is not an error to specify
None when no input focus was previously set. Must be of class Object or any

114

X Toolkit Intrinsics X11 Release 6

subclass thereof.

XtSetKeyboardFocuscausesXtDispatchEvent to remap keyboard events occurring within the
specified subtree and dispatch them to the specified descendant widget or to an ancestor. If the
descendant’s class is not a subclass of Core, the descendant is replaced by its closest windowed
ancestor.

When there is no modal cascade, keyboard events can be dispatched to a widget in one of five
ways. Assume the server delivered the event to the window for widget E (because of X input
focus, key or keyboard grabs, or pointer position).

• If neither E nor any of E’s ancestors have redirected the keyboard focus, or if the event acti-
vated a grab for E as specified by a call toXtGrabKey with any value ofowner_events, or if
the keyboard is actively grabbed by E withowner_eventsFalsevia XtGrabKeyboard or
XtGrabKey on a previous key press, the event is dispatched to E.

• Beginning with the ancestor of E closest to the root that has redirected the keyboard focus or
E if no such ancestor exists, if the target of that focus redirection has in turn redirected the
keyboard focus, recursively follow this focus chain to find a widget F that has not redirected
focus.

− If E is the final focus target widget F or a descendant of F, the event is dispatched to E.

− If E is not F, an ancestor of F, or a descendant of F, and the event activated a grab for E as
specified by a call toXtGrabKey for E, XtUngrabKeyboard is called.

− If E is an ancestor of F, and the event is a key press, and either

+ E has grabbed the key withXtGrabKey andowner_eventsFalse, or

+ E has grabbed the key withXtGrabKey andowner_eventsTrue , and the coordinates
of the event are outside the rectangle specified by E’s geometry,

then the event is dispatched to E.

− Otherwise, define A as the closest common ancestor of E and F:

+ If there is an active keyboard grab for any widget via eitherXtGrabKeyboard or
XtGrabKey on a previous key press, or if no widget between F and A (noninclusive)
has grabbed the key and modifier combination withXtGrabKey and any value of
owner_events, the event is dispatched to F.

+ Else, the event is dispatched to the ancestor of F closest to A that has grabbed the key
and modifier combination withXtGrabKey .

When there is a modal cascade, if the final destination widget as identified above is inthe active
subset of the cascade, the event is dispatched; otherwise the event is remapped to a spring-loaded
shell or discarded. Regardless of where it is dispatched, the Intrinsics do not modify the contents
of the event.

Whensubtreeor one of its descendants acquires the X input focus or the pointer moves into the
subtree such that keyboard events would now be delivered to the subtree, aFocusIn ev ent is gen-
erated for the descendant ifFocusChangeev ents have been selected by the descendant. Simi-
larly, whensubtreeloses the X input focus or the keyboard focus for one of its ancestors, aFocu-
sOut ev ent is generated for descendant ifFocusChangeev ents have been selected by the descen-
dant.

A widget tree may also actively manage the X server input focus. To do so, a widget class speci-
fies an accept_focus procedure.

The accept_focus procedure pointer is of typeXtAcceptFocusProc.

115

X Toolkit Intrinsics X11 Release 6

typedef Boolean (*XtAcceptFocusProc)(Widget, Time*);
Widgetw;
Time *time;

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can callXSetInputFocus explicitly, pursuant to the restrictions
of theInter-Client Communication Conventions Manual. To allow outside agents, such as the
parent, to cause a widget to take the input focus, every widget exports an accept_focus procedure.
The widget returns a value indicating whether it actually took the focus or not, so that the parent
can give the focus to another widget. Widgets that need to know when they lose the input focus
must use the Xlib focus notification mechanism explicitly (typically by specifying translations for
FocusIn andFocusOut ev ents). Widgets classes that never want the input focus should set the
accept_focusfield to NULL.

To call a widget’s accept_focus procedure, useXtCallAcceptFocus.

Boolean XtCallAcceptFocus(w, time)
Widgetw;
Time *time;

w Specifies the widget. Must be of class Core or any subclass thereof.

time Specifies the X time of the event that is causing the focus change.

The XtCallAcceptFocus function calls the specified widget’s accept_focus procedure, passing it
the specified widget and time, and returns what the accept_focus procedure returns. If
accept_focusis NULL, XtCallAcceptFocus returnsFalse.

7.3.1. Events for Drawables which are not a Widget’s Window

Sometimes an application must handle events for drawables that are not associated with widgets
in its widget tree. Examples include handlingGraphicsExposeandNoExposeev ents on
Pixmaps, and handlingPropertyNotify ev ents on the root window.

To register a drawable with the Intrinsics event dispatching, useXtRegisterDrawable.

void XtRegisterDrawable(display, drawable, widget)
Display *display;
Drawabledrawable;
Widgetwidget;

display Specifies the drawable’s display.

drawable Specifies the drawable to register.

widget Specifies the widget to register the drawable for.

XtRegisterDrawable associates the specified drawable with the specified widget so that future
calls toXtWindowToWidget with the drawable will return the widget. The default event dis-
patcher will dispatch future events that arrive for the drawable to the widget as though the event
contained the widget’s window, but the event itself will not be changed in any way when being
passed to event handler or action procedures.

If the drawable is already registered with another widget, or if the drawable is the window of a
widget in the client’s widget tree, the results of callingXtRegisterDrawable are undefined.

116

X Toolkit Intrinsics X11 Release 6

To unregister a drawable with the Intrinsics event dispatching, useXtUnregisterDrawable.

void XtUnregisterDrawable(display, drawable)
Display *display;
Drawabledrawable;

display Specifies the drawable’s display.

drawable Specifies the drawable to unregister.

XtUnregisterDrawable removes an association created withXtRegisterDrawable. If the draw-
able is the window of a widget in the client’s widget tree the results of callingXtUnregister-
Drawable are undefined.

7.4. Querying Event Sources

The event manager provides several functions to examine and read events (including file and
timer events) that are in the queue. The next three functions are Intrinsics equivalents of the
XPending, XPeekEvent, andXNextEvent Xlib calls.

To determine if there are any events on the input queue for a given application, use
XtAppPending.

XtInputMask XtAppPending(app_context)
XtAppContextapp_context;

app_context Specifies the application context that identifies the application to check.

The XtAppPending function returns a nonzero value if there are events pending from the X
server, timer pending, other input sources pending, or signal sources pending. The value returned
is a bit mask that is the OR ofXtIMXEvent , XtIMTimer , XtIMAlternateInput , andXtIM-
Signal (seeXtAppProcessEvent). If there are no events pending,XtAppPending flushes the
output buffers of each Display in the application context and returns zero.

To return the event from the head of a given application’s input queue without removing input
from the queue, useXtAppPeekEvent.

Boolean XtAppPeekEvent(app_context, event_return)
XtAppContextapp_context;
XEvent *event_return;

app_context Specifies the application context that identifies the application.

event_return Returns the event information to the specified event structure.

If there is an X event in the queue,XtAppPeekEvent copies it intoevent_returnand returns
True . If no X input is on the queue,XtAppPeekEvent flushes the output buffers of each Dis-
play in the application context and blocks until some input is available (possibly calling some
timeout callbacks in the interim). If the next available input is an X event,XtAppPeekEvent fills
in event_returnand returnsTrue . Otherwise, the input is for an input source registered with
XtAppAddInput , andXtAppPeekEvent returnsFalse.

To remove and return the event from the head of a given application’s X event queue, use
XtAppNextEvent .

117

X Toolkit Intrinsics X11 Release 6

void XtAppNextEvent(app_context, event_return)
XtAppContextapp_context;
XEvent *event_return;

app_context Specifies the application context that identifies the application.

event_return Returns the event information to the specified event structure.

If the X event queue is empty,XtAppNextEvent flushes the X output buffers of each Display in
the application context and waits for an X event while looking at the other input sources and time-
out values and calling any callback procedures triggered by them. This wait time can be used for
background processing; see Section 7.8.

7.5. Dispatching Events

The Intrinsics provide functions that dispatch events to widgets or other application code. Every
client interested in X events on a widget usesXtAddEventHandler to register which events it is
interested in and a procedure (event handler) to be called when the event happens in that window.
The translation manager automatically registers event handlers for widgets that use translation
tables; see Chapter 10.

Applications that need direct control of the processing of different types of input should use
XtAppProcessEvent.

void XtAppProcessEvent(app_context, mask)
XtAppContextapp_context;
XtInputMaskmask;

app_context Specifies the application context that identifies the application for which to pro-
cess input.

mask Specifies what types of events to process. The mask is the bitwise inclusive OR
of any combination ofXtIMXEvent , XtIMTimer , XtIMAlternateInput , and
XtIMSignal . As a convenience,Intrinsic.h defines the symbolic nameXtI-
MAll to be the bitwise inclusive OR of these four event types.

The XtAppProcessEventfunction processes one timer, input source, signal source, or X event.
If there is no event or input of the appropriate type to process, thenXtAppProcessEventblocks
until there is. If there is more than one type of input available to process, it is undefined which
will get processed. Usually, this procedure is not called by client applications; see
XtAppMainLoop . XtAppProcessEventprocesses timer events by calling any appropriate
timer callbacks, input sources by calling any appropriate input callbacks, signal source by calling
any appropriate signal callbacks, and X events by callingXtDispatchEvent.

When an X event is received, it is passed toXtDispatchEvent, which calls the appropriate event
handlers and passes them the widget, the event, and client-specific data registered with each pro-
cedure. If no handlers for that event are registered, the event is ignored and the dispatcher simply
returns.

To dispatch an event returned byXtAppNextEvent , retrieved directly from the Xlib queue, or
synthetically constructed, to any registered event filters or event handlers callXtDispatchEvent.

118

X Toolkit Intrinsics X11 Release 6

Boolean XtDispatchEvent(event)
XEvent *event;

event Specifies a pointer to the event structure to be dispatched to the appropriate event
handlers.

The XtDispatchEvent function first callsXFilterEvent with theeventand the window of the
widget to which the Intrinsics intend to dispatch the event, or the event window if the Intrinsics
would not dispatch the event to any handlers. IfXFilterEvent returnsTrue and the event acti-
vated a server grab as identified by a previous call toXtGrabKey or XtGrabButton ,
XtDispatchEventcalls XtUngrabKeyboard or XtUngrabPointer with the timestamp from the
ev ent and immediately returnsTrue . If XFilterEvent returnsTrue and a grab was not activated,
XtDispatchEvent just immediately returnsTrue . Otherwise,XtDispatchEvent sends the event
to the event handler functions that have been previously registered with the dispatch routine.
XtDispatchEvent returnsTrue if XFilterEvent returnedTrue , or if the event was dispatched
to some handler andFalse if it found no handler to which to dispatch the event.XtDis-
patchEvent records the last timestamp in any event that contains a timestamp (see
XtLastTimestampProcessed), regardless of whether it was filtered or dispatched. If a modal
cascade is active withspring_loadedTrue , and if the event is a remap event as defined by
XtAddGrab , XtDispatchEvent may dispatch the event a second time. If it does so,XtDis-
patchEvent will call XFilterEvent again with the window of the spring-loaded widget prior to
the second dispatch and ifXFilterEvent returnsTrue , the second dispatch will not be per-
formed.

7.6. The Application Input Loop

To process all input from a given application in a continuous loop, use the convenience procedure
XtAppMainLoop .

void XtAppMainLoop(app_context)
XtAppContextapp_context;

app_context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming X event by callingXtAppNex-
tEvent and then dispatches the event to the appropriate registered procedure by calling
XtDispatchEvent. This constitutes the main loop of X Toolkit applications. There is nothing
special aboutXtAppMainLoop ; it simply callsXtAppNextEvent and thenXtDispatchEvent
in a conditional loop. At the bottom of the loop, it checks to see if the specified application con-
text’s destroy flag is set. If the flag is set, the loop breaks. The whole loop is enclosed between a
matchingXtAppLock andXtAppUnlock .

Applications can provide their own version of this loop, which tests some global termination flag
or tests that the number of top-level widgets is larger than zero before circling back to the call to
XtAppNextEvent .

7.7. Setting and Checking the Sensitivity State of a Widget

Many widgets have a mode in which they assume a different appearance (for example, are grayed
out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive, the event man-
ager does not dispatch any events to the widget with an event type ofKeyPress, KeyRelease,
ButtonPress, ButtonRelease, MotionNotify , EnterNotify , LeaveNotify, FocusIn, or

119

X Toolkit Intrinsics X11 Release 6

FocusOut.

A widget can be insensitive because itssensitivefield is Falseor because one of its ancestors is
insensitive and thus the widget’sancestor_sensitivefield also isFalse. A widget can but does not
need to distinguish these two cases visually.

Note

Pop-up shells will haveancestor_sensitiveFalse if the parent was insensitive when
the shell was created. SinceXtSetSensitiveon the parent will not modify the
resource of the pop-up child, clients are advised to include a resource specification of
the form ‘‘*TransientShell.ancestorSensitive: True’’ in the application defaults
resource file or to otherwise ensure that the parent is sensitive when creating pop-up
shells.

To set the sensitivity state of a widget, useXtSetSensitive.

void XtSetSensitive(w, sensitive)
Widgetw;
Booleansensitive;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

sensitive Specifies whether the widget should receive keyboard, pointer, and focus events.

The XtSetSensitivefunction first callsXtSetValueson the current widget with an argument list
specifying the XtNsensitive resource and the new value. Ifsensitiveis Falseand the widget’s
class is a subclass of Composite,XtSetSensitiverecursively propagates the new value down the
child tree by callingXtSetValueson each child to setancestor_sensitiveto False. If sensitiveis
True and the widget’s class is a subclass of Composite and the widget’sancestor_sensitivefield
is True , XtSetSensitivesets theancestor_sensitiveof each child toTrue and then recursively
calls XtSetValueson each normal descendant that is now sensitive to setancestor_sensitiveto
True .

XtSetSensitivecalls XtSetValues to change thesensitiveandancestor_sensitivefields of each
affected widget. Therefore, when one of these changes, the widget’s set_values procedure should
take whatever display actions are needed (for example, graying out or stippling the widget).

XtSetSensitivemaintains the invariant that if the parent has eithersensitiveor ancestor_sensitive
False, then all children haveancestor_sensitiveFalse.

To check the current sensitivity state of a widget, useXtIsSensitive.

Boolean XtIsSensitive(w)
Widgetw;

w Specifies the object. Must be of class Object or any subclass thereof.

The XtIsSensitive function returnsTrue or False to indicate whether user input events are being
dispatched. If object’s class is a subclass of RectObj and bothsensitiveandancestor_sensitive
areTrue , XtIsSensitive returnsTrue ; otherwise, it returnsFalse.

7.8. Adding Background Work Procedures

The Intrinsics have some limited support for background processing. Because most applications
spend most of their time waiting for input, you can register an idle-time work procedure that is

120

X Toolkit Intrinsics X11 Release 6

called when the toolkit would otherwise block inXtAppNextEvent or XtAppProcessEvent.
Work procedure pointers are of typeXtWorkProc .

typedef Boolean (*XtWorkProc)(XtPointer);
XtPointerclient_data;

client_data Passes the client data specified when the work procedure was registered.

This procedure should returnTrue when it is done to indicate that it should be removed. If the
procedure returnsFalse, it will remain registered and called again when the application is next
idle. Work procedures should be very judicious about how much they do. If they run for more
than a small part of a second, interactive feel is likely to suffer.

To register a work procedure for a given application, useXtAppAddWorkProc .

XtWorkProcId XtAppAddWorkProc(app_context, proc, client_data)
XtAppContextapp_context;
XtWorkProcproc;
XtPointerclient_data;

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called when the application is idle.

client_data Specifies the argument passed to the specified procedure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the application identi-
fied byapp_contextand returns an opaque unique identifier for this work procedure. Multiple
work procedures can be registered, and the most recently added one is always the one that is
called. However, if a work procedure adds another work procedure, the newly added one has
lower priority than the current one.

To remove a work procedure, either returnTrue from the procedure when it is called or use
XtRemoveWorkProcoutside

void XtRemoveWorkProc(id)
XtWorkProcIdid;

id Specifies which work procedure to remove.

The XtRemoveWorkProc function explicitly removes the specified background work procedure.

7.9. X Event Filters

The event manager provides filters that can be applied to specific X events. The filters, which
screen out events that are redundant or are temporarily unwanted, handle pointer motion compres-
sion, enter/leave compression, and exposure compression.

7.9.1. Pointer Motion Compression

Widgets can have a hard time keeping up with a rapid stream of pointer motion events. Further,
they usually do not care about every motion event. To throw out redundant motion events, the
widget class fieldcompress_motionshould beTrue . When a request for an event would return a
motion event, the Intrinsics check if there are any other motion events for the same widget imme-
diately following the current one and, if so, skip all but the last of them.

121

X Toolkit Intrinsics X11 Release 6

7.9.2. Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen when
the user moves the pointer across a widget without stopping in it, the widget class fieldcom-
press_enterleaveshould beTrue . These enter and leave events are not delivered to the client if
they are found together in the input queue.

7.9.3. Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather than
as individual rectangles. Widgets with complex displays might use the expose region as a clip list
in a graphics context, and widgets with simple displays might ignore the region entirely and redis-
play their whole window or might get the bounding box from the region and redisplay only that
rectangle.

In either case, these widgets do not care about getting partial exposure events. Thecom-
press_exposurefield in the widget class structure specifies the type and number of exposure
ev ents that are dispatched to the widget’s expose procedure. This field must be initialized to one
of the following values,

#define XtExposeNoCompress ((XtEnum)False)
#define XtExposeCompressSeries ((XtEnum)True)
#define XtExposeCompressMultiple <implementation-defined>
#define XtExposeCompressMaximal <implementation-defined>

optionally ORed with any combination of the following flags (all with implementation-defined
values):

XtExposeGraphicsExpose, XtExposeGraphicsExposeMerged, XtExposeNoExposeand
XtExposeNoRegion.

If the compress_exposurefield in the widget class structure does not specify
XtExposeNoCompress, the event manager calls the widget’s expose procedure only once for a
series of exposure events. In this case, allExposeor GraphicsExposeev ents are accumulated
into a region. When the final event is received, the event manager replaces the rectangle in the
ev ent with the bounding box for the region and calls the widget’s expose procedure, passing the
modified exposure event and (unlessXtExposeNoRegionis specified) the region. For more
information on regions, see Section 16.5 inXlib − C Language X Interface.)

The values have the following interpretation:

XtExposeNoCompress

No exposure compression is performed; every selected event is individually dispatched to
the expose procedure with aregionargument of NULL.

XtExposeCompressSeries

Each series of exposure events is coalesced into a single event, which is dispatched when
an exposure event with count equal to zero is reached.

122

X Toolkit Intrinsics X11 Release 6

XtExposeCompressMultiple

Consecutive series of exposure events are coalesced into a single event, which is dispatched
when an exposure event with count equal to zero is reached and either the event queue is
empty or the next event is not an exposure event for the same widget.

XtExposeCompressMaximal

All expose series currently in the queue for the widget are coalesced into a single event
without regard to intervening nonexposure events. If a partial series is in the end of the
queue, the Intrinsics will block until the end of the series is received.

The additional flags have the following meaning:

XtExposeGraphicsExpose

Specifies thatGraphicsExposeev ents are also to be dispatched to the expose procedure.
GraphicsExposeev ents are compressed, if specified, in the same manner asExpose
ev ents.

XtExposeGraphicsExposeMerged

Specifies in the case ofXtExposeCompressMultipleandXtExposeCompressMaximal
that series ofGraphicsExposeandExposeev ents are to be compressed together, with the
final event type determining the type of the event passed to the expose procedure. If this
flag is not set, then only series of the same event type as the event at the head of the queue
are coalesced. This flag also impliesXtExposeGraphicsExpose.

XtExposeNoExpose

Specifies thatNoExposeev ents are also to be dispatched to the expose procedure.NoEx-
poseev ents are never coalesced with other exposure events or with each other.

XtExposeNoRegion

Specifies that the final region argument passed to the expose procedure is NULL. The rect-
angle in the event will still contain bounding box information for the entire series of com-
pressed exposure events. This option saves processing time when the region is not needed
by the widget.

7.10. Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by means of direct
Xlib calls. Widgets cannot simply write to the screen and forget what they hav e done. They must
keep enough state to redisplay the window or parts of it if a portion is obscured and then reex-
posed.

7.10.1. Redisplay of a Widget: the expose Procedure

The expose procedure pointer in a widget class is of typeXtExposeProc.

123

X Toolkit Intrinsics X11 Release 6

typedef void (*XtExposeProc)(Widget, XEvent*, Region);
Widgetw;
XEvent *event;
Regionregion;

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring redisplay.

region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in the wid-
get’s class record. If a widget has no display semantics, it can specify NULL for theexposefield.
Many composite widgets serve only as containers for their children and have no expose proce-
dure.

Note

If the exposeprocedure is NULL,XtRealizeWidget fills in a default bit gravity of
NorthWestGravity before it calls the widget’s realize procedure.

If the widget’scompress_exposureclass field specifiesXtExposeNoCompressor
XtExposeNoRegion, or if the event type isNoExpose(see Section 7.9.3),region is NULL. If
XtExposeNoCompressis not specified and the event type is notNoExpose, the event is the final
ev ent in the compressed series butx, y, width, andheightcontain the bounding box for all the
compressed events. The region is created and destroyed by the Intrinsics, but the widget is per-
mitted to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box information in the event
and redisplay the entire window. A more complicated widget (for example, Text) can use the
bounding box information to minimize the amount of calculation and redisplay it does. A very
complex widget uses the region as a clip list in a GC and ignores the event information. The
expose procedure is not chained and is therefore responsible for exposure of all superclass data as
well as its own.

However, it often is possible to anticipate the display needs of several levels of subclassing. For
example, rather than implement separate display procedures for the widgets Label, Pushbutton,
and Toggle, you could write a single display routine in Label that uses display state fields like

Boolean invert;
Boolean highlight;
Dimension highlight_width;

Label would haveinvertandhighlightalwaysFalseandhighlight_widthzero. Pushbutton would
dynamically sethighlightandhighlight_width, but it would leaveinvertalwaysFalse. Finally,
Toggle would dynamically set all three. In this case, the expose procedures for Pushbutton and
Toggle inherit their superclass’s expose procedure; see Section 1.6.10.

7.10.2. Widget Visibility

Some widgets may use substantial computing resources to produce the data they will display.
However, this effort is wasted if the widget is not actually visible on the screen, that is, if the wid-
get is obscured by another application or is iconified.

Thevisiblefield in the core widget structure provides a hint to the widget that it need not compute
display data. This field is guaranteed to beTrue by the time an exposure event is processed if

124

X Toolkit Intrinsics X11 Release 6

any part of the widget is visible but isFalse if the widget is fully obscured.

Widgets can use or ignore thevisiblehint. If they ignore it, they should havevisible_interestin
their widget class record setFalse. In such cases, thevisiblefield is initializedTrue and never
changes. Ifvisible_interestis True , the event manager asks forVisibilityNotify ev ents for the
widget and setsvisibleto True on VisibilityUnobscured or VisibilityPartiallyObscured ev ents
andFalseon VisibilityFullyObscured ev ents.

7.11. X Event Handlers

Event handlers are procedures called when specified events occur in a widget. Most widgets need
not use event handlers explicitly. Instead, they use the Intrinsics translation manager. Event han-
dler procedure pointers are of the typeXtEventHandler .

typedef void (*XtEventHandler)(Widget, XtPointer, XEvent*, Boolean*);
Widgetw;
XtPointerclient_data;
XEvent *event;
Boolean *continue_to_dispatch;

w Specifies the widget for which the event arrived.

client_data Specifies any client-specific information registered with the event handler.

event Specifies the triggering event.

continue_to_dispatch
Specifies whether the remaining event handlers registered for the current event
should be called.

After receiving an event and before calling any event handlers, the Boolean pointed to bycon-
tinue_to_dispatchis initialized toTrue . When an event handler is called, it may decide that fur-
ther processing of the event is not desirable and may storeFalse in this Boolean, in which case
any handlers remaining to be called for the event are ignored.

The circumstances under which the Intrinsics may add event handlers to a widget are currently
implementation-dependent. Clients must therefore be aware that storingFalse into thecon-
tinue_to_dispatchargument can lead to portability problems.

7.11.1. Event Handlers that Select Events

To register an event handler procedure with the dispatch mechanism, useXtAddEventHandler .

void XtAddEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widgetw;
EventMaskevent_mask;
Booleannonmaskable;
XtEventHandlerproc;
XtPointerclient_data;

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, andMappingNotify).

125

X Toolkit Intrinsics X11 Release 6

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the event handler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is to
be called when an event that matches the mask occurs on the specified widget. Each widget has a
single registered event handler list, which will contain any procedure--client_data pair exactly
once regardless of the manner in which it is registered. If the procedure is already registered with
the sameclient_datavalue, the specified mask augments the existing mask. If the widget is real-
ized,XtAddEventHandler calls XSelectInput, if necessary. The order in which this procedure
is called relative to other handlers registered for the same event is not defined.

To remove a previously registered event handler, useXtRemoveEventHandler.

void XtRemoveEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widgetw;
EventMaskevent_mask;
Booleannonmaskable;
XtEventHandlerproc;
XtPointerclient_data;

w Specifies the widget for which this procedure is registered. Must be of class Core
or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, andMappingNotify).

proc Specifies the procedure to be removed.

client_data Specifies the registered client data.

The XtRemoveEventHandler function unregisters an event handler registered withXtAddE-
ventHandler or XtInsertEventHandler for the specified events. The request is ignored if
client_datadoes not match the value given when the handler was registered. If the widget is real-
ized and no other event handler requires the event,XtRemoveEventHandler calls
XSelectInput. If the specified procedure has not been registered or if it has been registered with
a different value ofclient_data, XtRemoveEventHandler returns without reporting an error.

To stop a procedure registered withXtAddEventHandler or XtInsertEventHandler from
receiving all selected events, callXtRemoveEventHandler with anevent_maskof XtAllEvents
andnonmaskableTrue . The procedure will continue to receive any events that have been speci-
fied in calls toXtAddRawEventHandler or XtInsertRawEventHandler .

To register an event handler procedure that receives events before or after all previously registered
ev ent handlers, useXtInsertEventHandler .

typedef enum {XtListHead, XtListTail} XtListPosition;

126

X Toolkit Intrinsics X11 Release 6

void XtInsertEventHandler(w, event_mask, nonmaskable, proc, client_data, position)
Widgetw;
EventMaskevent_mask;
Booleannonmaskable;
XtEventHandlerproc;
XtPointerclient_data;
XtListPositionposition;

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, andMappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the client’s event handler.

position Specifies when the event handler is to be called relative to other previously regis-
tered handlers.

XtInsertEventHandler is identical toXtAddEventHandler with the additionalpositionargu-
ment. Ifpositionis XtListHead , the event handler is registered so that it is called before any
ev ent handlers that were previously registered for the same widget. Ifpositionis XtListTail , the
ev ent handler is registered to be called after any previously registered event handlers. If the pro-
cedure is already registered with the sameclient_datavalue, the specified mask augments the
existing mask and the procedure is repositioned in the list.

7.11.2. Event Handlers that Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch mechanism
without explicitly causing the X server to select for that event. To do this, use
XtAddRawEventHandler .

void XtAddRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widgetw;
EventMaskevent_mask;
Booleannonmaskable;
XtEventHandlerproc;
XtPointerclient_data;

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, andMappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the client’s event handler.

The XtAddRawEventHandler function is similar toXtAddEventHandler except that it does
not affect the widget’s event mask and never causes anXSelectInput for its events. Note that the

127

X Toolkit Intrinsics X11 Release 6

widget might already have those mask bits set because of other nonraw event handlers registered
on it. If the procedure is already registered with the sameclient_data, the specified mask aug-
ments the existing mask. The order in which this procedure is called relative to other handlers
registered for the same event is not defined.

To remove a previously registered raw event handler, useXtRemoveRawEventHandler.

void XtRemoveRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widgetw;
EventMaskevent_mask;
Booleannonmaskable;
XtEventHandlerproc;
XtPointerclient_data;

w Specifies the widget for which this procedure is registered. Must be of class Core
or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, andMappingNotify).

proc Specifies the procedure to be registered.

client_data Specifies the registered client data.

The XtRemoveRawEventHandler function unregisters an event handler registered withXtAd-
dRawEventHandler or XtInsertRawEventHandler for the specified events without changing
the window event mask. The request is ignored ifclient_datadoes not match the value given
when the handler was registered. If the specified procedure has not been registered or if it has
been registered with a different value ofclient_data, XtRemoveRawEventHandler returns with-
out reporting an error.

To stop a procedure registered withXtAddRawEventHandler or XtInsertRawEventHandler
from receiving all nonselected events, callXtRemoveRawEventHandlerwith anevent_maskof
XtAllEvents andnonmaskableTrue . The procedure will continue to receive any events that
have been specified in calls toXtAddEventHandler or XtInsertEventHandler .

To register an event handler procedure that receives events before or after all previously registered
ev ent handlers without selecting for the events, useXtInsertRawEventHandler .

void XtInsertRawEventHandler(w, event_mask, nonmaskable, proc, client_data, position)
Widgetw;
EventMaskevent_mask;
Booleannonmaskable;
XtEventHandlerproc;
XtPointerclient_data;
XtListPositionposition;

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, andMappingNotify).

128

X Toolkit Intrinsics X11 Release 6

proc Specifies the procedure to be registered.

client_data Specifies additional data to be passed to the client’s event handler.

position Specifies when the event handler is to be called relative to other previously regis-
tered handlers.

The XtInsertRawEventHandler function is similar toXtInsertEventHandler except that it
does not modify the widget’s event mask and never causes anXSelectInput for the specified
ev ents. If the procedure is already registered with the sameclient_datavalue, the specified mask
augments the existing mask and the procedure is repositioned in the list.

7.11.3. Current Event Mask

To retrieve the event mask for a given widget, useXtBuildEventMask .

EventMask XtBuildEventMask(w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtBuildEventMask function returns the event mask representing the logical OR of all event
masks for event handlers registered on the widget withXtAddEventHandler andXtIn-
sertEventHandler and all event translations, including accelerators, installed on the widget.
This is the same event mask stored into theXSetWindowAttributes structure byXtRealizeWid-
get and sent to the server when event handlers and translations are installed or removed on the
realized widget.

7.11.4. Event Handlers for X11 Protocol Extensions

To register an event handler procedure with the Intrinsics dispatch mechanism according to an
ev ent type, useXtInsertEventTypeHandler .

void XtInsertEventTypeHandler(widget, event_type, select_data, proc, client_data, position)
Widgetwidget;
int event_type;
XtPointerselect_data;
XtEventHandlerproc;
XtPointerclient_data;
XtListPositionposition;

widget Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.

event_type Specifies the event type for which to call this event handler.

select_data Specifies data used to request events of the specified type from the server, or
NULL.

proc Specifies the event handler to be called.

client_data Specifies additional data to be passed to the event handler.

position Specifies when the event handler is to be called relative to other previously regis-
tered handlers.

XtInsertEventTypeHandler registers a procedure with the dispatch mechanism that is to be
called when an event that matches the specifiedevent_typeis dispatched to the specifiedwidget.

129

X Toolkit Intrinsics X11 Release 6

If event_typespecifies one of the core X protocol events thenselect_datamust be a pointer to a
value of typeEventMask, indicating the event mask to be used to select for the desired event.
This event mask is included in the value returned byXtBuildEventMask . If the widget is real-
ized XtInsertEventTypeHandler calls XSelectInput if necessary. Specifying NULL for
select_datais equivalent to specifying a pointer to an event mask containing 0. This is similar to
the XtInsertRawEventHandler function.

If event_typespecifies an extension event type then the semantics of the data pointed to by
select_dataare defined by the extension selector registered for the specified event type.

In either case the Intrinsics are not required to copy the data pointed to byselect_data, so the
caller must ensure that it remains valid as long as the event handler remains registered with this
value ofselect_data.

Thepositionargument allows the client to control the order of invocation of event handlers regis-
tered for the same event type. If the client does not care about the order, it should normally spec-
ify XtListTail , which registers this event handler after any previously registered handlers for this
ev ent type.

Each widget has a single registered event handler list, which will contain any procedure/client
data pair exactly once if it is registered withXtInsertEventTypeHandler , reg ardless of the man-
ner in which it is which it is registered, and regardless of the value(s) ofselect_data. If the proce-
dure is already registered with the sameclient_datavalue, the specified mask augments the exist-
ing mask and the procedure is repositioned in the list.

To remove an event handler registered withXtInsertEventTypeHandler , use
XtRemoveEventTypeHandler.

void XtRemoveEventTypeHandler(widget, event_type, select_data, proc, client_data)
Widgetwidget;
int event_type;
XtPointerselect_data;
XtEventHandlerproc;
XtPointerclient_data;

widget Specifies the widget for which the event handler was registered. Must be of class
Core or any subclass thereof.

event_type Specifies the event type for which the handler was registered.

select_data Specifies data used to deselect events of the specified type from the server, or
NULL.

proc Specifies the event handler to be removed.

client_data Specifies the additional client data with which the procedure was registered.

The XtRemoveEventTypeHandler function unregisters an event handler registered withXtIn-
sertEventTypeHandler for the specified event type. The request is ignored ifclient_datadoes
not match the value given when the handler was registered.

If event_typespecifies one of the core X protocol events,select_datamust be a pointer to a value
of typeEventMask,indicating mask to be used to deselect for the appropriate event. If the wid-
get is realized,XtRemoveEventTypeHandlercalls XSelectInput if necessary. Specifying
NULL for select_datais equivalent to specifying a pointer to an event mask containing 0. This is
similar to theXtRemoveRawEventHandler function.

If event_typespecifies an extension event type then the semantics of the data pointed to by
select_dataare defined by the extension selector registered for the specified event type.

130

X Toolkit Intrinsics X11 Release 6

To register a procedure to select extension events for a widget, use
XtRegisterExtensionSelector.

void XtRegisterExtensionSelector(display, min_event_type, max_event_type, proc,
client_data)

Display*display;
int min_event_type;
int max_event_type;
XtExtensionSelectProcproc;
XtPointerclient_data;

display Specifies the display for which the extension selector is to be registered.

min_event_type

max_event_type Specifies the range of event types for the extension.

proc Specifies the extension selector procedure.

client_data Specifies additional data to be passed to the extension selector.

The XtRegisterExtensionSelectorfunction registers a procedure to arrange for the delivery of
extension events to widgets.

If min_event_typeandmax_event_typematch the parameters to a previous call toXtRegisterEx-
tensionSelectorfor the samedisplay, thenprocandclient_datareplace the previously registered
values. If the range specified bymin_event_typeandmax_event_typeoverlaps the range of the
parameters to a previous call for the same display in any other way, an error results.

When a widget is realized, after thecore.realizemethod is called, the Intrinsics check to see if
any event handler specifies an event type within the range of a registered extension selector. If so,
the Intrinsics call each such selector. If an event type handler is added or removed, the Intrinsics
check to see if the event type falls within the range of a registered extension selector and if it does
calls the selector. In either case the Intrinsics pass a list of all the widget’s event types that are
within the selector’s range. The corresponding select data are also passed. The selector is
responsible for enabling the delivery of extension events required by the widget.

An extension selector is of typeXtExtensionSelectProc.

typedef void (*XtExtensionSelectProc)(Widget, int *, XtPointer *, int, XtPointer);
Widgetwidget;
int *event_types;
XtPointer *select_data;
int count;
XtPointerclient_data;

widget Specifies the widget that is being realized or is having an event handler added or
removed.

event_types Specifies a list of event types that the widget has registered event handlers for.

select_data Specifies a list of the select_data parameters specified in
XtInsertEventTypeHandler .

count Specifies the number of entries in theevent_typesandselect_datalists.

client_data Specifies the additional client data with which the procedure was registered.

Theevent_typesandselect_datalists will always have the same number of elements, specified by
count. Each event type/select data pair represents one call toXtInsertEventTypeHandler .

131

X Toolkit Intrinsics X11 Release 6

To register a procedure to dispatch events of a specific type withinXtDispatchEvent, use
XtSetEventDispatcher.

XtEventDispatchProc XtSetEventDispatcher(display, event_type, proc)
Display *display;
int event_type;
XtEventDispatchProcproc;

display Specifies the display for which the event dispatcher is to be registered.

event_type Specifies the event type for which the dispatcher should be invoked.

proc Specifies the event dispatcher procedure.

The XtSetEventDispatcher function registers the event dispatcher procedure specified byproc
for events with the typeevent_type. The previously registered dispatcher (or the default dis-
patcher if there was no previously registered dispatcher) is returned. Ifproc is NULL, the default
procedure is restored for the specified type.

In the future, whenXtDispatchEvent is called with an event type ofevent_type, the specified
proc (or the default dispatcher) is invoked to determine a widget to which to dispatch the event.

The default dispatcher handles the Intrinsics modal cascade and keyboard focus mechanisms,
handles the semantics ofcompress_enterleaveandcompress_motion, and discards all extension
ev ents.

An event dispatcher procedure pointer is of typeXtEventDispatchProc.

typedef Boolean (*XtEventDispatchProc)(XEvent*)
XEvent *event;

event Passes the event to be dispatched.

The event dispatcher procedure should determine whether this event is of a type that should be
dispatched to a widget.

If the event should be dispatched to a widget, the event dispatcher procedure should determine the
appropriate widget to receive the event, callXFilterEvent with the window of this widget, or
None if the event is to be discarded, and ifXFilterEvent returnsFalse, dispatch the event to the
widget usingXtDispatchEventToWidget. The procedure should returnTrue if either XFil-
terEvent or XtDispatchEventToWidget returnedTrue andFalseotherwise.

If the event should not be dispatched to a widget, the event dispatcher procedure should attempt
to dispatch the event elsewhere as appropriate and returnTrue if it successfully dispatched the
ev ent andFalseotherwise.

Some dispatchers for extension events may wish to forward events according to the Intrinsics’
keyboard focus mechanism. To determine which widget is the end result of keyboard event for-
warding, useXtGetKeyboardFocusWidget.

Widget XtGetKeyboardFocusWidget(widget)
Widgetwidget;

widget Specifies the widget to get forwarding information for.

The XtGetKeyboardFocusWidget function returns the widget that would be the end result of
keyboard event forwarding for a keyboard event for the specified widget.

132

X Toolkit Intrinsics X11 Release 6

To dispatch an event to a specified widget, useXtDispatchEventToWidget.

Boolean XtDispatchEventToWidget(widget, event)
Widgetwidget;
XEvent *event;

widget Specifies the widget to which to dispatch the event.

event Specifies a pointer to the event to be dispatched.

The XtDispatchEventToWidget function scans the list of registered event handlers for the speci-
fied widget and calls each handler that has been registered for the specified event type, subject to
thecontinue_to_dispatchvalue returned by each handler. The Intrinsics behave as if event han-
dlers were registered at the head of the list forExpose, NoExpose, GraphicsExpose, andVisi-
bilityNotify ev ents to invoke the widget’s expose procedure according to the exposure compres-
sion rules and to update the widget’svisiblefield if visible_interestis True . These internal event
handlers never setcontinue_to_dispatchto False.

XtDispatchEventToWidget returnsTrue if any event handler was called andFalseotherwise.

7.12. Using the Intrinsics in a Multi-threaded Environment

The Intrinsics may be used in environments which offer multiple threads of execution within the
context of a single process. A multi-threaded application using the Intrinsics must explicitly ini-
tialize the toolkit for mutually exclusive access by callingXtToolkitThreadInitialize .

7.12.1. Initializing a Multithreaded Intrinsics Application

To test and initialize Intrinsics support for mutually exclusive thread access, call
XtToolkitThreadInitialize .

Boolean XtToolkitThreadInitialize()

XtToolkitThreadInitialize returnsTrue if the Intrinsics support mutually exclusive thread
access, otherwise it returnsFalse. XtToolkitThreadInitialize must be called before
XtCreateApplicationContext , XtAppInitialize , XtOpenApplication , or XtSetLanguageProc
is called.XtToolkitThreadInitialize may be called more than once; however the application
writer must ensure that it is not called simultaneously by two or more threads.

7.12.2. Locking X Toolkit Data Structures

The Intrinsics employs two lev els of locking: application context and process. Locking an appli-
cation context ensures mutually exclusive access by a thread to the state associated with the appli-
cation context, including all displays and widgets associated with it. Locking a process ensures
mutually exclusive access by a thread to Intrinsics process global data.

A client may acquire a lock multiple times--the effect is cumulative--the client must ensure that
the lock is released an equal number of times in order for the lock to be acquired by another
thread.

Most application writers will have little need to use locking as the Intrinsics performs the neces-
sary locking internally. An exception is resource type converters, which require that the applica-
tion context be locked before calling them directly, e.g.:

133

X Toolkit Intrinsics X11 Release 6

...
XtAppLock(app_context);
XtCvtStringToPixel(dpy, args, num_args, fromVal, toVal, closure_ret);
XtAppUnlock(app_context);
...

Application writers who write their own utility functions, e.g. retrieving the being_destroyed field
from a widget instance, must lock the application context before accessing widget internal data,
e.g.:

#include <X11/CoreP.h>
Boolean BeingDestroyed (widget)

Widget widget;
{

Boolean ret;
XtAppLock(XtWidgetToApplicationContext(widget));
ret = widget->core.being_destroyed;
XtAppUnlock(XtWidgetToApplicationContext(widget));
return ret;

}

A client that wishes to atomically call two or more Intrinsics functions must lock the application
context, e.g.:

...
XtAppLock(XtWidgetToApplicationContext(widget));
XtUnmanageChild (widget1);
XtManageChild (widget2);
XtAppUnlock(XtWidgetToApplicationContext(widget));
...

7.12.2.1. Locking the Application Context

To ensure mutual exclusion of application context, display, or widget internal state, useXtAp-
pLock.

void XtAppLock(app_context)
XtAppContextapp_context;

app_context Specifies the application context to lock.

XtAppLock blocks until it is able to acquire the lock. Locking the application context also
ensures that only the thread holding the lock makes Xlib calls from within Xt. An application
which makes its own direct Xlib calls must either lock the application context around every call,
or enable thread locking in Xlib.

To unlock a locked application context, useXtAppUnlock.

void XtAppUnlock(app_context)
XtAppContextapp_context;

app_context Specifies the application context which was previously locked.

134

X Toolkit Intrinsics X11 Release 6

7.12.2.2. Locking the Process

To ensure mutual exclusion of X Toolkit process global data, a widget writer must useXtPro-
cessLock.

void XtProcessLock()

XtProcessLockblocks until it is able to acquire the lock. Widget writers may use XtProcessLock
to guarantee mutually exclusive access to widget static data.

To unlock a locked process, useXtProcessUnlock.

void XtProcessUnlock()

To lock both an application context and the process at the same time, callXtAppLock first and
thenXtProcessLock. To release both locks, callXtProcessUnlockfirst and then
XtAppUnlock . The order is important to avoid deadlock.

7.12.3. Event Management in a Multi-Threaded Environment

In a non-threaded environment an application writer could reasonably assume that it is safe to exit
the application from a quit callback. This assumption may no longer hold true in a multi-threaded
environment; therefore it’s desirable to provide a mechanism to terminate an event processing
loop without necessarily terminating its thread.

To indicate that the event loop should terminate after the current event dispatch has completed,
useXtAppSetExitFlag .

void XtAppSetExitFlag(app_context)
XtAppContextapp_context;

app_context Specifies the application context.

XtAppMainLoop tests the value of the flag and will return if the flag isTrue.

Application writers who implement their own main loop may test the value of the exit flag with
XtAppGetExitFlag .

Boolean XtAppGetExitFlag(app_context)
XtAppContextapp_context;

app_context Specifies the application context.

XtAppGetExitFlag will normally returnFalse, indicating that event processing may continue.
WhenXtAppGetExitFlag returnsTrue, the loop must terminate and return to the caller, which
might then destroy the application context.

Application writers should be aware that if a thread is blocked inXtAppNextEvent ,
XtAppPeekEvent, or XtAppProcessEventand another thread in the same application context
opens a new display, adds an alternate input, or a timeout, that any new source(s) will not nor-
mally be "noticed" by the blocked thread. Any new sources are "noticed" the next time one of
these functions is called.

The Intrinsics manage access to events on a last in, first out basis. If multiple threads in the same
application context block inXtAppNextEvent , XtAppPeekEvent, or XtAppProcessEvent, the
last thread to call one of these functions is the first thread to return.

135

X Toolkit Intrinsics X11 Release 6

Chapter 8

Callbacks

Applications and other widgets often need to register a procedure with a widget that gets called
under certain prespecified conditions. For example, when a widget is destroyed, every procedure
on the widget’sdestroy_callbackslist is called to notify clients of the widget’s impending doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define additional
callback lists as they see fit. For example, the Pushbutton widget has a callback list to notify
clients when the button has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any
time, including from within callback procedures, action routines, and event handlers.

8.1. Using Callback Procedure and Callback List Definitions

Callback procedure pointers for use in callback lists are of typeXtCallbackProc .

typedef void (*XtCallbackProc)(Widget, XtPointer, XtPointer);
Widgetw;
XtPointerclient_data;
XtPointercall_data;

w Specifies the widget owning the list in which the callback is registered.

client_data Specifies additional data supplied by the client when the procedure was regis-
tered.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its XtNthumbChanged callback list, it passes
the new position of the thumb.

Theclient_dataargument provides a way for the client registering the callback procedure also to
register client-specific data, for example, a pointer to additional information about the widget, a
reason for invoking the callback, and so on. Theclient_datavalue may be NULL if all necessary
information is in the widget. Thecall_dataargument is a convenience to avoid having simple
cases where the client could otherwise always callXtGetValues or a widget-specific function to
retrieve data from the widget. Widgets should generally avoid putting complex state information
in call_data. The client can use the more general data retrieval methods, if necessary.

Whenever a client wants to pass a callback list as an argument in anXtCreateWidget,
XtSetValues, or XtGetValues call, it should specify the address of a NULL-terminated array of
type XtCallbackList .

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and client-
DataB, respectively, is

136

X Toolkit Intrinsics X11 Release 6

static XtCallbackRec callbacks[] = {
{A, (XtPointer) clientDataA},
{B, (XtPointer) clientDataB},
{(XtCallbackProc) NULL, (XtPointer) NULL}

};

Although callback lists are passed by address in arglists and varargs lists, the Intrinsics recognize
callback lists through the widget resource list and will copy the contents when necessary. Widget
initialize and set_values procedures should not allocate memory for the callback list contents.
The Intrinsics automatically do this, potentially using a different structure for their internal repre-
sentation.

8.2. Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it also exports in its public .h file the
resource name of the callback list. Applications and client widgets never access callback list
fields directly. Instead, they always identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this chapter exceptXtCall-
CallbackList check to see that the requested callback list is indeed implemented by the widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared with a resource
type ofXtRCallback . The internal representation of a callback list is implementation-
dependent; widgets may make no assumptions about the value stored in this resource if it is non-
NULL. Except to compare the value to NULL (which is equivalent toXtCallbackStatus
XtCallbackHasNone), access to callback list resources must be made through other Intrinsics
procedures.

8.3. Adding Callback Procedures

To add a callback procedure to a widget’s callback list, useXtAddCallback .

void XtAddCallback(w, callback_name, callback, client_data)
Widgetw;
Stringcallback_name;
XtCallbackProccallback;
XtPointerclient_data;

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to which the procedure is to be appended.

callback Specifies the callback procedure.

client_data Specifies additional data to be passed to the specified procedure when it is
invoked, or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget’s callback list, useXtAddCallbacks .

void XtAddCallbacks(w, callback_name, callbacks)
Widgetw;
Stringcallback_name;
XtCallbackListcallbacks;

137

X Toolkit Intrinsics X11 Release 6

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to which the procedures are to be appended.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

8.4. Removing Callback Procedures

To delete a callback procedure from a widget’s callback list, useXtRemoveCallback.

void XtRemoveCallback(w, callback_name, callback, client_data)
Widgetw;
Stringcallback_name;
XtCallbackProccallback;
XtPointerclient_data;

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list from which the procedure is to be deleted.

callback Specifies the callback procedure.

client_data Specifies the client data to match with the registered callback entry.

The XtRemoveCallback function removes a callback only if both the procedure and the client
data match.

To delete a list of callback procedures from a given widget’s callback list, use
XtRemoveCallbacks.

void XtRemoveCallbacks(w, callback_name, callbacks)
Widgetw;
Stringcallback_name;
XtCallbackListcallbacks;

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list from which the procedures are to be deleted.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

To delete all callback procedures from a given widget’s callback list and free all storage associ-
ated with the callback list, useXtRemoveAllCallbacks.

void XtRemoveAllCallbacks(w, callback_name)
Widgetw;
Stringcallback_name;

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to be cleared.

8.5. Executing Callback Procedures

To execute the procedures in a given widget’s callback list, specifying the callback list by
resource name, useXtCallCallbacks .

138

X Toolkit Intrinsics X11 Release 6

void XtCallCallbacks(w, callback_name, call_data)
Widgetw;
Stringcallback_name;
XtPointercall_data;

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the callback proce-
dure in the list, or NULL.

XtCallCallbacks calls each of the callback procedures in the list named bycallback_namein the
specified widget, passing the client data registered with the procedure andcall-data.

To execute the procedures in a callback list, specifying the callback list by address, use
XtCallCallbackList .

void XtCallCallbackList(widget, callbacks, call_data)
Widgetwidget;
XtCallbackListcallbacks;
XtPointercall_data;

widget Specifies the widget instance that contains the callback list. Must be of class
Object or any subclass thereof.

callbacks Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the callback proce-
dures in the list, or NULL.

Thecallbacksparameter must specify the contents of a widget or object resource declared with
representation typeXtRCallback . If callbacksis NULL, XtCallCallbackList returns immedi-
ately; otherwise it calls each of the callback procedures in the list, passing the client data and
call_data.

8.6. Checking the Status of a Callback List

To find out the status of a given widget’s callback list, useXtHasCallbacks.

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback_name)
Widgetw;
Stringcallback_name;

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to be checked.

The XtHasCallbacks function first checks to see if the widget has a callback list identified by
callback_name. If the callback list does not exist,XtHasCallbacks returnsXtCallbackNoList .
If the callback list exists but is empty, it returnsXtCallbackHasNone. If the callback list exists
and has at least one callback registered, it returnsXtCallbackHasSome.

139

X Toolkit Intrinsics X11 Release 6

Chapter 9

Resource Management

A resource is a field in the widget record with a corresponding resource entry in theresourceslist
of the widget or any of its superclasses. This means that the field is settable byXtCreateWidget
(by naming the field in the argument list), by an entry in a resource file (by using either the name
or class), and byXtSetValues. In addition, it is readable byXtGetValues. Not all fields in a
widget record are resources. Some are for bookkeeping use by the generic routines (likeman-
agedandbeing_destroyed). Others can be for local bookkeeping, and still others are derived
from resources (many graphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time. Some of the
resources come from the argument list supplied in the call toXtCreateWidget, some from the
resource database, and some from the internal defaults specified by the widget. Resources are
obtained first from the argument list, then from the resource database for all resources not speci-
fied in the argument list, and last, from the internal default, if needed.

9.1. Resource Lists

A resource entry specifies a field in the widget, the textual name and class of the field that argu-
ment lists and external resource files use to refer to the field, and a default value that the field
should get if no value is specified. The declaration for theXtResourcestructure is

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
XtPointer default_addr;

} XtResource, *XtResourceList;

When the resource list is specified as theCoreClassPart, ObjectClassPart,
RectObjClassPart, or ConstraintClassPart resourcesfield the strings pointed to by
resource_name, resource_class, resource_type, anddefault_typemust be permanently allocated
prior to or during the execution of the class initialization procedure and must not be subsequently
deallocated.

Theresource_namefield contains the name used by clients to access the field in the widget. By
convention, it starts with a lower-case letter and is spelled exactly like the field name, except all
underscores (_) are deleted and the next letter is replaced by its upper-case counterpart. For
example, the resource name for background_pixel becomes backgroundPixel. Resource names
beginning with the two-character sequence ‘‘xt’’ and resource classes beginning with the two-
character sequence ‘‘Xt’’ are reserved to the Intrinsics for future standard and implementation-
dependent uses. Widget header files typically contain a symbolic name for each resource name.

140

X Toolkit Intrinsics X11 Release 6

All resource names, classes, and types used by the Intrinsics are named in <X11/StringDefs.h>.
The Intrinsics’s symbolic resource names begin with ‘‘XtN’’ and are followed by the string name
(for example, XtNbackgroundPixel for backgroundPixel).

Theresource_classfield contains the class string used in resource specification files to identify
the field. A resource class provides two functions:

• It isolates an application from different representations that widgets can use for a similar
resource.

• It lets you specify values for several actual resources with a single name. A resource class
should be chosen to span a group of closely related fields.

For example, a widget can have sev eral pixel resources: background, foreground, border, block
cursor, pointer cursor, and so on. Typically, the background defaults to white and everything else
to black. The resource class for each of these resources in the resource list should be chosen so
that it takes the minimal number of entries in the resource database to make the background
offwhite and everything else darkblue.

In this case, the background pixel should have a resource class of ‘‘Background’’ and all the other
pixel entries a resource class of ‘‘Foreground’’. Then, the resource file needs only two lines to
change all pixels to offwhite or darkblue:

*Background: offwhite
*Foreground: darkblue

Similarly, a widget may have sev eral font resources (such as normal and bold), but all fonts
should have the class Font. Thus, changing all fonts simply requires only a single line in the
default resource file:

*Font: 6x13

By convention, resource classes are always spelled starting with a capital letter to distinguish
them from resource names. Their symbolic names are preceded with ‘‘XtC’’ (for example,
XtCBackground).

Theresource_typefield gives the physical representation type of the resource and also encodes
information about the specific usage of the field. By convention, it starts with an upper-case letter
and is spelled identically to the type name of the field. The resource type is used when resources
are fetched to convert from the resource database format (usuallyString) or the format of the
resource default value (almost anything, but oftenString) to the desired physical representation
(see Section 9.6). The Intrinsics define the following resource types:

Resource Type Structure or Field Type

XtAcceleratorsXtRAcceleratorTable
AtomXtRAtom
Pixmap, depth=1XtRBitmap
BooleanXtRBoolean
BoolXtRBool
XtCallbackListXtRCallback
CardinalXtRCardinal
XColorXtRColor

141

X Toolkit Intrinsics X11 Release 6

Resource Type Structure or Field Type

ColormapXtRColormap
String*XtRCommandArgArray
CursorXtRCursor
DimensionXtRDimension
StringXtRDirectoryString
Display*XtRDisplay
XtEnumXtREnum
String*XtREnvironmentArray
FILE*XtRFile
floatXtRFloat
FontXtRFont
XFontSetXtRFontSet
XFontStruct*XtRFontStruct
(*)()XtRFunction

XtRGeometry char*, format as defined byXParseGeome-
try
intXtRGravity
intXtRInitialState
intXtRInt
longXtRLongBoolean
ObjectXtRObject
PixelXtRPixel
PixmapXtRPixmap
XtPointerXtRPointer
PositionXtRPosition
unsigned charXtRRestartStyle
Screen*XtRScreen
shortXtRShort
XtPointerXtRSmcConn
StringXtRString
String*XtRStringArray
String*XtRStringTable
XtTranslationsXtRTranslationTable
unsigned charXtRUnsignedChar
Visual*XtRVisual
WidgetXtRWidget
WidgetClassXtRWidgetClass
WidgetListXtRWidgetList
WindowXtRWindow

<X11/StringDefs.h> also defines the following resource types as a convenience for widgets,
although they do not have any corresponding data type assigned:XtREditMode , XtRJustify ,
andXtROrientation .

Theresource_sizefield is the size of the physical representation in bytes; you should specify it as
sizeof(type) so that the compiler fills in the value. Theresource_offsetfield is the offset in bytes
of the field within the widget. You should use theXtOffsetOf macro to retrieve this value. The

142

X Toolkit Intrinsics X11 Release 6

default_typefield is the representation type of the default resource value. Ifdefault_typeis differ-
ent fromresource_typeand the default value is needed, the resource manager invokes a conver-
sion procedure fromdefault_typeto resource_type. Whenever possible, the default type should
be identical to the resource type in order to minimize widget creation time. However, there are
sometimes no values of the type that the program can easily specify. In this case, it should be a
value for which the converter is guaranteed to work (for example,XtDefaultForeground for a
pixel resource). Thedefault_addrfield specifies the address of the default resource value. As a
special case, ifdefault_typeis XtRString , then the value in thedefault_addrfield is the pointer
to the string rather than a pointer to the pointer. The default is used if a resource is not specified
in the argument list or in the resource database, or if the conversion from the representation type
stored in the resource database fails, which can happen for various reasons (for example, a mis-
spelled entry in a resource file).

Tw o special representation types (XtRImmediate and XtRCallProc) are usable only as default
resource types. XtRImmediate indicates that the value in thedefault_addrfield is the actual value
of the resource rather than the address of the value. The value must be in the correct representa-
tion type for the resource, coerced to anXtPointer . No conversion is possible, since there is no
source representation type. XtRCallProc indicates that the value in thedefault_addrfield is a
procedure pointer. This procedure is automatically invoked with the widget,resource_offset, and
a pointer to anXrmValue in which to store the result. XtRCallProc procedure pointers are of
type XtResourceDefaultProc.

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue*);
Widgetw;
int offset;
XrmValue *value;

w Specifies the widget whose resource value is to be obtained.

offset Specifies the offset of the field in the widget record.

value Specifies the resource value descriptor to return.

The XtResourceDefaultProcprocedure should fill in thevalue->addrfield with a pointer to the
resource value in its correct representation type.

To get the resource list structure for a particular class, useXtGetResourceList.

void XtGetResourceList(class, resources_return, num_resources_return);
WidgetClassclass;
XtResourceList *resources_return;
Cardinal *num_resources_return;

class Specifies the object class to be queried. It must beobjectClassor any
subclass thereof.

resources_return Returns the resource list.

num_resources_returnReturns the number of entries in the resource list.

If XtGetResourceList is called before the class is initialized, it returns the resource list as speci-
fied in the class record. If it is called after the class has been initialized,XtGetResourceList
returns a merged resource list that includes the resources for all superclasses. The list returned by
XtGetResourceList should be freed usingXtFree when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use
XtGetConstraintResourceList.

143

X Toolkit Intrinsics X11 Release 6

void XtGetConstraintResourceList(class, resources_return, num_resources_return)
WidgetClassclass;
XtResourceList *resources_return;
Cardinal *num_resources_return;

class Specifies the object class to be queried. It must beobjectClassor any
subclass thereof.

resources_return Returns the constraint resource list.

num_resources_returnReturns the number of entries in the constraint resource list.

If XtGetConstraintResourceList is called before the widget class is initialized, the resource list
as specified in the widget class Constraint part is returned. IfXtGetConstraintResourceList is
called after the widget class has been initialized, the merged resource list for the class and all
Constraint superclasses is returned. If the specified class is not a subclass of
constraintWidgetClass, *resources_returnis set to NULL and *num_resources_returnis set to
zero. The list returned byXtGetConstraintResourceList should be freed usingXtFree when it
is no longer needed.

The routinesXtSetValuesandXtGetValues also use the resource list to set and get widget state;
see Sections 9.7.1 and 9.7.2.

Here is an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */
static XtResource resources[] = {
{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),

XtOffsetOf(LabelRec, label.foreground), XtRString, XtDefaultForeground},
{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),

XtOffsetOf(LabelRec, label.font), XtRString, XtDefaultFont},
{XtNlabel, XtCLabel, XtRString, sizeof(String),

XtOffsetOf(LabelRec, label.label), XtRString, NULL},
.
.
.

}

The complete resource name for a field of a widget instance is the concatenation of the applica-
tion shell name (fromXtAppCreateShell), the instance names of all the widget’s parents up to
the top of the widget tree, the instance name of the widget itself, and the resource name of the
specified field of the widget. Similarly, the full resource class of a field of a widget instance is the
concatenation of the application class (fromXtAppCreateShell), the widget class names of all
the widget’s parents up to the top of the widget tree, the widget class name of the widget itself,
and the resource class of the specified field of the widget.

9.2. Byte Offset Calculations

To determine the byte offset of a field within a structure type, useXtOffsetOf .

Cardinal XtOffsetOf(structure_type, field_name)
Type structure_type;
Field field_name;

144

X Toolkit Intrinsics X11 Release 6

structure_type Specifies a type that is declared as a structure.

field_name Specifies the name of a member within the structure.

The XtOffsetOf macro expands to a constant expression that gives the offset in bytes to the spec-
ified structure member from the beginning of the structure. It is normally used to statically ini-
tialize resource lists and is more portable thanXtOffset , which serves the same function.

To determine the byte offset of a field within a structure pointer type, useXtOffset .

Cardinal XtOffset(pointer_type, field_name)
Type pointer_type;
Field field_name;

pointer_type Specifies a type that is declared as a pointer to a structure.

field_name Specifies the name of a member within the structure.

The XtOffset macro expands to a constant expression that gives the offset in bytes to the speci-
fied structure member from the beginning of the structure. It may be used to statically initialize
resource lists.XtOffset is less portable thanXtOffsetOf .

9.3. Superclass-to-Subclass Chaining of Resource Lists

The XtCreateWidget function gets resources as a superclass-to-subclass chained operation.
That is, the resources specified in theobjectClassresource list are fetched, then those in
rectObjClass, and so on down to the resources specified for this widget’s class. Within a class,
resources are fetched in the order they are declared.

In general, if a widget resource field is declared in a superclass, that field is included in the super-
class’s resource list and need not be included in the subclass’s resource list. For example, the
Core class contains a resource entry forbackground_pixel. Consequently, the implementation of
Label need not also have a resource entry forbackground_pixel. Howev er, a subclass, by specify-
ing a resource entry for that field in its own resource list, can override the resource entry for any
field declared in a superclass. This is most often done to override the defaults provided in the
superclass with new ones. At class initialization time, resource lists for that class are scanned
from the superclass down to the class to look for resources with the same offset. A matching
resource in a subclass will be reordered to override the superclass entry. If reordering is neces-
sary, a copy of the superclass resource list is made to avoid affecting other subclasses of the
superclass.

Also at class initialization time, the Intrinsics produce an internal representation of the resource
list to optimize access time when creating widgets. In order to save memory, the Intrinsics may
overwrite the storage allocated for the resource list in the class record; therefore, widgets must
allocate resource lists in writable storage and must not access the list contents directly after the
class_initialize procedure has returned.

9.4. Subresources

A widget does not do anything to retrieve its own resources; instead,XtCreateWidget does this
automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to fetch
resources. Such widgets callXtGetSubresourcesto accomplish this.

145

X Toolkit Intrinsics X11 Release 6

void XtGetSubresources(w, base, name, class, resources, num_resources, args, num_args)
Widgetw;
XtPointerbase;
Stringname;
Stringclass;
XtResourceListresources;
Cardinalnum_resources;
ArgList args;
Cardinalnum_args;

w Specifies the object used to qualify the subpart resource name and class. Must be
of class Object or any subclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetSubresourcesfunction constructs a name and class list from the application name and
class, the names and classes of all the object’s ancestors, and the object itself. Then it appends to
this list thenameandclasspair passed in. The resources are fetched from the argument list, the
resource database, or the default values in the resource list. Then they are copied into the subpart
record. Ifargs is NULL, num_argsmust be zero. However, ifnum_argsis zero, the argument
list is not referenced.

XtGetSubresourcesmay overwrite the specified resource list with an equivalent representation
in an internal format, which optimizes access time if the list is used repeatedly. The resource list
must be allocated in writable storage, and the caller must not modify the list contents after the call
if the same list is to be used again. Resources fetched byXtGetSubresourcesare reference-
counted as if they were referenced by the specified object. Subresources might therefore be freed
from the conversion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists, useXtVaGetSubresources.

void XtVaGetSubresources(w, base, name, class, resources, num_resources, ...)
Widgetw;
XtPointerbase;
Stringname;
Stringclass;
XtResourceListresources;
Cardinalnum_resources;

w Specifies the object used to qualify the subpart resource name and class. Must be
of class Object or any subclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

146

X Toolkit Intrinsics X11 Release 6

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.

... Specifies the variable argument list to override any other resource specifications.

XtVaGetSubresourcesis identical in function toXtGetSubresourceswith theargsand
num_argsparameters replaced by a varargs list, as described in Section 2.5.1.

9.5. Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply to the overall application, use
XtGetApplicationResources.

void XtGetApplicationResources(w, base, resources, num_resources, args, num_args)
Widgetw;
XtPointerbase;
XtResourceListresources;
Cardinalnum_resources;
ArgList args;
Cardinalnum_args;

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the resource values will be written.

resources Specifies the resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetApplicationResourcesfunction first uses the passed object, which is usually an appli-
cation shell widget, to construct a resource name and class list. The full name and class of the
specified object (that is, including its ancestors, if any) is logically added to the front of each
resource name and class. Then it retrieves the resources from the argument list, the resource
database, or the resource list default values. After adding base to each address,XtGetApplica-
tionResourcescopies the resources into the addresses obtained by addingbaseto eachoffsetin
the resource list. Ifargs is NULL, num_argsmust be zero. However, ifnum_argsis zero, the
argument list is not referenced. The portable way to specify application resources is to declare
them as members of a structure and pass the address of the structure as thebaseargument.

XtGetApplicationResourcesmay overwrite the specified resource list with an equivalent repre-
sentation in an internal format, which optimizes access time if the list is used repeatedly. The
resource list must be allocated in writable storage, and the caller must not modify the list contents
after the call if the same list is to be used again. Any per-display resources fetched byXtGetAp-
plicationResourceswill not be freed from the resource cache until the display is closed.

To retrieve resources for the overall application using varargs lists, use
XtVaGetApplicationResources.

147

X Toolkit Intrinsics X11 Release 6

void XtVaGetApplicationResources(w, base, resources, num_resources, ...)
Widgetw;
XtPointerbase;
XtResourceListresources;
Cardinalnum_resources;

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the resource values will be written.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.

... Specifies the variable argument list to override any other resource specifications.

XtVaGetApplicationResourcesis identical in function toXtGetApplicationResourceswith the
argsandnum_argsparameters replaced by a varargs list, as described in Section 2.5.1.

9.6. Resource Conversions

The Intrinsics provide a mechanism for registering representation converters that are automati-
cally invoked by the resource-fetching routines. The Intrinsics additionally provide and register
several commonly used converters. This resource conversion mechanism serves several purposes:

• It permits user and application resource files to contain textual representations of nontextual
values.

• It allows textual or other representations of default resource values that are dependent on
the display, screen, or colormap, and thus must be computed at runtime.

• It caches conversion source and result data. Conversions that require much computation or
space (for example, string-to-translation-table) or that require round-trips to the server (for
example, string-to-font or string-to-color) are performed only once.

9.6.1. Predefined Resource Converters

The Intrinsics define all the representations used in the Object, RectObj, Core, Composite, Con-
straint, and Shell widget classes. The Intrinsics register the following resource converters that
accept input values of representation typeXtRString .

Target Representation Converter Name Additional Args

XtRAcceleratorTable XtCvtStringToAcceleratorTable
Display*XtRAtom XtCvtStringToAtom

XtRBoolean XtCvtStringToBoolean
XtRBool XtCvtStringToBool
XtRCommandArgArray XtCvtStringToCommandArgAr-

ray
Display*XtRCursor XtCvtStringToCursor

XtRDimension XtCvtStringToDimension
XtRDirectoryString XtCvtStringToDirectoryString

148

X Toolkit Intrinsics X11 Release 6

XtRDisplay XtCvtStringToDisplay
XtRFile XtCvtStringToFile
XtRFloat XtCvtStringToFloat

Display*XtRFont XtCvtStringToFont
Display*, StringlocaleXtRFontSet XtCvtStringToFontSet
Display*XtRFontStruct XtCvtStringToFontStruct

XtRGravity XtCvtStringToGravity
XtRInitialState XtCvtStringToInitialState
XtRInt XtCvtStringToInt
XtRPixel XtCvtStringToPixel colorConvertArgs
XtRPosition XtCvtStringToPosition
XtRRestartStyle XtCvtStringToRestartStyle
XtRShort XtCvtStringToShort
XtRTranslationTable XtCvtStringToTranslationTable
XtRUnsignedChar XtCvtStringToUnsignedChar

Screen*, CardinaldepthXtRVisual XtCvtStringToVisual

The String-to-Pixel conversion has two predefined constants that are guaranteed to work and con-
trast with each other:XtDefaultForeground andXtDefaultBackground . They evaluate to the
black and white pixel values of the widget’s screen, respectively. If the application resource
reverseVideo isTrue , they evaluate to the white and black pixel values of the widget’s screen,
respectively. Similarly, the String-to-Font and String-to-FontStruct converters recognize the con-
stantXtDefaultFont and evaluate this in the following manner:

• Query the resource database for the resource whose full name is ‘‘xtDefaultFont’’, class
‘‘XtDefaultFont’’ (that is, no widget name/class prefixes) and use a typeXtRString value
returned as the font name, or a typeXtRFont or XtRFontStruct value directly as the
resource value.

• If the resource database does not contain a value for xtDefaultFont, class XtDefaultFont, or
if the returned font name cannot be successfully opened, an implementation-defined font in
ISO8859-1 character set encoding is opened. (One possible algorithm is to perform an
XListFonts using a wildcard font name and use the first font in the list. This wildcard font
name should be as broad as possible to maximize the probability of locating a useable font;
for example, "-*-*-*-R-*-*-*-120-*-*-*-*-ISO8859-1".)

• If no suitable ISO8859-1 font can be found, issue a warning message and returnFalse.

The String-to-FontSet converter recognizes the constantXtDefaultFontSet and evaluate this in
the following manner:

• Query the resource database for the resource whose full name is ‘‘xtDefaultFontSet’’, class
‘‘XtDefaultFontSet’’ (that is, no widget name/class prefixes) and use a typeXtRString
value returned as the base font name list, or a typeXtRFontSet value directly as the
resource value.

• If the resource database does not contain a value for xtDefaultFontSet, class XtDefault-
FontSet, or if a font set cannot be successfully created from this resource, an implementa-
tion-defined font set is created. (One possible algorithm is to perform anXCreateFontSet
using a wildcard base font name. This wildcard base font name should be as broad as pos-
sible to maximize the probability of locating a useable font; for example,
"-*-*-*-R-*-*-*-120-*-*-*-*".)

149

X Toolkit Intrinsics X11 Release 6

• If no suitable font set can be created, issue a warning message and returnFalse.

If a font set is created butmissing_charset_listis not empty, a warning is issued and the partial
font set is returned. The Intrinsics register the String-to-FontSet converter with a conversion
argument list that extracts the current process locale at the time the converter is invoked. This
ensures that the converter is invoked again if the same conversion is required in a different locale.

The String-to-Gravity conversion accepts string values which are the names of window and bit
gravities and their numerical equivalents, as defined inXlib − C Language X Interface:
ForgetGravity , UnmapGravity , NorthWestGravity , NorthGravity , NorthEastGravity ,
WestGravity , CenterGravity , EastGravity , SouthWestGravity, SouthGravity ,
SouthEastGravity, andStaticGravity . Alphabetic case is not significant in the conversion.

The String-to-CommandArgArray conversion parses a String into an array of strings. White
space characters separate elements of the command line. The converter recognizes the backslash
character ‘\’ as an escape character to allow the following white space character to be part of the
array element.

The String-to-DirectoryString conversion recognizes the string "XtCurrentDirectory" and returns
the result of a call to the operating system to get the current directory.

The String-to-RestartStyle conversion accepts the valuesRestartIfRunning , RestartAnyway,
RestartImmediately, andRestartNever as defined by theX Session Management Protocol.

The String-to-InitialState conversion accepts the valuesNormalState or IconicState as defined
by theInter-Client Communication Conventions Manual.

The String-to-Visual conversion callsXMatchVisualInfo using thescreenanddepthfields from
the core part and returns the first matching Visual on the list. The widget resource list must be
certain to specify any resource of typeXtRVisual after the depth resource. The allowed string
values are the visual class names defined inX Window System Protocol, Section 8;StaticGray,
StaticColor, TrueColor , GrayScale, PseudoColor, andDirectColor .

The Intrinsics register the following resource converter that accepts an input value of representa-
tion typeXtRColor .

Target Representation Converter Name Additional Args

XtRPixel XtCvtColorToPixel

The Intrinsics register the following resource converters that accept input values of representation
type XtRInt .

Target Representation Converter Name Additional Args

XtRBoolean XtCvtIntToBoolean
XtRBool XtCvtIntToBool
XtRColor XtCvtIntToColor colorConvertArgs
XtRDimension XtCvtIntToDimension
XtRFloat XtCvtIntToFloat
XtRFont XtCvtIntToFont
XtRPixel XtCvtIntToPixel

150

X Toolkit Intrinsics X11 Release 6

XtRPixmap XtCvtIntToPixmap
XtRPosition XtCvtIntToPosition
XtRShort XtCvtIntToShort
XtRUnsignedChar XtCvtIntToUnsignedChar

The Intrinsics register the following resource converter that accepts an input value of representa-
tion typeXtRPixel .

Target Representation Converter Name Additional Args

XtRColor XtCvtPixelToColor

9.6.2. New Resource Converters

Type converters use pointers toXrmValue structures (defined in <X11/Xresource.h>; see Sec-
tion 15.4 inXlib − C Language X Interface) for input and output values.

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

Theaddrfield specifies the address of the data and thesizefield gives the total number of signifi-
cant bytes in the data. For values of typeString , addr is the address of the first character andsize
includes the NUL terminating byte.

A resource converter procedure pointer is of typeXtTypeConverter .

typedef Boolean (*XtTypeConverter)(Display*, XrmValue*, Cardinal*,
XrmValue*, XrmValue*, XtPointer*);

Display *display;
XrmValue *args;
Cardinal *num_args;
XrmValue *from;
XrmValue *to;
XtPointer *converter_data;

display Specifies the display connection with which this conversion is associated.

args Specifies a list of additionalXrmValue arguments to the converter if additional
context is needed to perform the conversion, or NULL. For example, the String-
to-Font converter needs the widget’sdisplay, and the String-to-Pixel converter
needs the widget’sscreenandcolormap.

num_args Specifies the number of entries inargs.

from Specifies the value to convert.

to Specifies a descriptor for a location into which to store the converted value.

converter_data
Specifies a location into which the converter may store converter-specific data
associated with this conversion.

151

X Toolkit Intrinsics X11 Release 6

Thedisplayargument is normally used only when generating error messages, to identify the
application context (with the functionXtDisplayToApplicationContext).

Theto argument specifies the size and location into which the converter should store the con-
verted value. If theaddrfield is NULL, the converter should allocate appropriate storage and
store the size and location into theto descriptor. If the type converter allocates the storage, it
remains under the ownership of the converter and must not be modified by the caller. The type
converter is permitted to use static storage for this purpose, and therefore the caller must immedi-
ately copy the data upon return from the converter. If theaddrfield is not NULL, the converter
must check thesizefield to ensure that sufficient space has been allocated before storing the con-
verted value. If insufficient space is specified, the converter should update thesizefield with the
number of bytes required and returnFalsewithout modifying the data at the specified location.
If sufficient space was allocated by the caller, the converter should update thesizefield with the
number of bytes actually occupied by the converted value. For converted values of type
XtRString , the size should include the NULL terminating byte, if any. The converter may store
any value in the location specified inconverter_data; this data will be passed to the destructor, if
any, when the resource is freed by the Intrinsics.

The converter must returnTrue if the conversion was successful andFalseotherwise. If the con-
version cannot be performed because of an improper source value, a warning message should also
be issued withXtAppWarningMsg .

Most type converters just take the data described by the specifiedfromargument and return data
by writing into the location specified in theto argument. A few need other information, which is
available inargs. A type converter can invoke another type converter, which allows differing
sources that may convert into a common intermediate result to make maximum use of the type
converter cache.

Note that if an address is written intoto->addr, it cannot be that of a local variable of the con-
verter because the data will not be valid after the converter returns. Static variables may be used,
as in the following example. If the converter modifies the resource database, the changes affect
any in-progress widget creation,XtGetApplicationResources, or XtGetSubresourcesin an
implementation-defined manner; however, insertion of new entries or changes to existing entries
is allowed and will not directly cause an error.

The following is an example of a converter that takes astring and converts it to aPixel. Note
that thedisplayparameter is only used to generate error messages; theScreenconversion argu-
ment is still required to inform the Intrinsics that the converted value is a function of the particu-
lar display (and colormap).

#define done(type, value) \
{ \

if (toVal->addr != NULL) { \
if (toVal->size < sizeof(type)) { \

toVal->size = sizeof(type); \
return False; \

} \
(type)(toVal->addr) = (value); \

} \
else { \

static type static_val; \

152

X Toolkit Intrinsics X11 Release 6

static_val = (value); \
toVal->addr = (XPointer)&static_val; \

} \
toVal->size = sizeof(type); \
return True; \

}

static Boolean CvtStringToPixel(dpy, args, num_args, fromVal, toVal, converter_data)
Display *dpy;
XrmValue *args;
Cardinal *num_args;
XrmValue *fromVal;
XrmValue *toVal;
XtPointer *converter_data;

{
static XColor screenColor;
XColor exactColor;
Screen *screen;
Colormap colormap;
Status status;

if (*num_args != 2)
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),

"wrongParameters", "cvtStringToPixel", "XtToolkitError",
"String to pixel conversion needs screen and colormap arguments",
(String *)NULL, (Cardinal *)NULL);

screen = *((Screen**) args[0].addr);
colormap = *((Colormap *) args[1].addr);

if (CompareISOLatin1(str, XtDefaultBackground) == 0) {
*closure_ret = False;
done(Pixel, WhitePixelOfScreen(screen));

}
if (CompareISOLatin1(str, XtDefaultForeground) == 0) {

*closure_ret = False;
done(Pixel, BlackPixelOfScreen(screen));

}

status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (char*)fromVal->addr,
&screenColor, &exactColor);

if (status == 0) {
String params[1];
Cardinal num_params = 1;
params[0] = (String)fromVal->addr;
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),

"noColormap", "cvtStringToPixel", "XtToolkitError",
"Cannot allocate colormap entry for \"%s\"", params, &num_params);

153

X Toolkit Intrinsics X11 Release 6

*converter_data = (char *) False;
return False;

} else {
*converter_data = (char *) True;

done(Pixel, &screenColor.pixel);
}

}

All type converters should define some set of conversion values for which they are guaranteed to
succeed so these can be used in the resource defaults. This issue arises only with conversions,
such as fonts and colors, where there is no string representation that all server implementations
will necessarily recognize. For resources like these, the converter should define a symbolic con-
stant in the same manner asXtDefaultForeground , XtDefaultBackground , and
XtDefaultFont .

To allow the Intrinsics to deallocate resources produced by type converters, a resource destructor
procedure may also be provided.

A resource destructor procedure pointer is of typeXtDestructor .

typedef void (*XtDestructor) (XtAppContext, XrmValue*, XtPointer, XrmValue*, Cardinal*);
XtAppContextapp;
XrmValue *to;
XtPointerconverter_data;
XrmValue *args;
Cardinal *num_args;

app Specifies an application context in which the resource is being freed.

to Specifies a descriptor for the resource produced by the type converter.

converter_data
Specifies the converter-specific data returned by the type converter.

args Specifies the additional converter arguments as passed to the type converter when
the conversion was performed.

num_args Specifies the number of entries inargs.

The destructor procedure is responsible for freeing the resource specified by theto argument,
including any auxiliary storage associated with that resource, but not the memory directly
addressed by the size and location in theto argument nor the memory specified byargs.

9.6.3. Issuing Conversion Warnings

The XtDisplayStringConversionWarning procedure is a convenience routine for resource type
converters that convert from string values.

void XtDisplayStringConversionWarning(display, from_value, to_type)
Display *display;
Stringfrom_value, to_type;

display Specifies the display connection with which the conversion is associated.

from_value Specifies the string that could not be converted.

to_type Specifies the target representation type requested.

154

X Toolkit Intrinsics X11 Release 6

The XtDisplayStringConversionWarning procedure issues a warning message usingXtApp-
WarningMsg with name‘‘conversionError’’, type‘‘string’’, class‘‘XtToolkitError’’, and the
default message ‘‘Cannot convert "from_value" to typeto_type’’.

To issue other types of warning or error messages, the type converter should useXtAppWarn-
ingMsg or XtAppErrorMsg .

To retrieve the application context associated with a given display connection, use
XtDisplayToApplicationContext .

XtAppContext XtDisplayToApplicationContext(display)
Display *display;

display Specifies an open and initialized display connection.

The XtDisplayToApplicationContext function returns the application context in which the spec-
ified displaywas initialized. If the display is not known to the Intrinsics, an error message is
issued.

9.6.4. Registering a New Resource Converter

When registering a resource converter, the client must specify the manner in which the conversion
cache is to be used when there are multiple calls to the converter. Conversion cache control is
specified via anXtCacheType argument.

typedef int XtCacheType;

An XtCacheType field may contain one of the following values:

XtCacheNone

Specifies that the results of a previous conversion may not be reused to satisfy any other
resource requests; the specified converter will be called each time the converted value is
required.

XtCacheAll

Specifies that the results of a previous conversion should be reused for any resource request
that depends upon the same source value and conversion arguments.

XtCacheByDisplay

Specifies that the results of a previous conversion should be used as forXtCacheAll but
the destructor will be called, if specified, ifXtCloseDisplay is called for the display con-
nection associated with the converted value, and the value will be removed from the conver-
sion cache.

The qualifierXtCacheRefCount may be ORed with any of the above values. IfXtCacheRef-
Count is specified, calls toXtCreateWidget, XtCreateManagedWidget, XtGetApplication-
ResourcesandXtGetSubresourcesthat use the converted value will be counted. When a wid-
get using the converted value is destroyed, the count is decremented, and if the count reaches
zero, the destructor procedure will be called and the converted value will be removed from the
conversion cache.

155

X Toolkit Intrinsics X11 Release 6

To register a type converter for all application contexts in a process, useXtSetTypeConverter
and to register a type converter in a single application context, useXtAppSetTypeConverter.

void XtSetTypeConverter(from_type, to_type, converter, convert_args, num_args,
cache_type, destructor)

Stringfrom_type;
Stringto_type;
XtTypeConverterconverter;
XtConvertArgListconvert_args;
Cardinalnum_args;
XtCacheTypecache_type;
XtDestructordestructor;

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.

convert_args Specifies additional conversion arguments, or NULL.

num_args Specifies the number of entries inconvert_args.

cache_type Specifies whether or not resources produced by this converter are sharable or dis-
play-specific and when they should be freed.

destructor Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by the
converter.

void XtAppSetTypeConverter(app_context, from_type, to_type, converter, convert_args,
num_args, cache_type, destructor)

XtAppContextapp_context;
Stringfrom_type;
Stringto_type;
XtTypeConverterconverter;
XtConvertArgListconvert_args;
Cardinalnum_args;
XtCacheTypecache_type;
XtDestructordestructor;

app_context Specifies the application context.

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.

convert_args Specifies additional conversion arguments, or NULL.

num_args Specifies the number of entries inconvert_args.

cache_type Specifies whether or not resources produced by this converter are sharable or dis-
play-specific and when they should be freed.

destructor Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by the
converter.

156

X Toolkit Intrinsics X11 Release 6

XtSetTypeConverter registers the specified type converter and destructor in all application con-
texts created by the calling process, including any future application contexts that may be created.
XtAppSetTypeConverter registers the specified type converter in the single application context
specified. If the samefrom_typeandto_typeare specified in multiple calls to either function, the
most recent overrides the previous ones.

For the few type converters that need additional arguments, the Intrinsics conversion mechanism
provides a method of specifying how these arguments should be computed. The enumerated type
XtAddressMode and the structureXtConvertArgRec specify how each argument is derived.
These are defined in <X11/Intrinsic.h >.

typedef enum {
/* address mode parameter representation */

XtAddress, /* address */
XtBaseOffset, /* offset */
XtImmediate, /* constant */
XtResourceString, /* resource name string */
XtResourceQuark, /* resource name quark */
XtWidgetBaseOffset, /* offset */
XtProcedureArg /* procedure to call */

} XtAddressMode;

typedef struct {
XtAddressMode address_mode;
XtPointer address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

Thesizefield specifies the length of the data in bytes. Theaddress_modefield specifies how the
address_idfield should be interpreted.XtAddress causesaddress_idto be interpreted as the
address of the data.XtBaseOffsetcausesaddress_idto be interpreted as the offset from the wid-
get base.XtImmediate causesaddress_idto be interpreted as a constant.XtResourceString
causesaddress_idto be interpreted as the name of a resource that is to be converted into an offset
from the widget base.XtResourceQuark causesaddress_idto be interpreted as the result of an
XrmStringToQuark conversion on the name of a resource, which is to be converted into an off-
set from the widget base.XtWidgetBaseOffset is similar toXtBaseOffsetexcept that it
searches for the closest windowed ancestor if the object is not of a subclass of Core (See Chapter
12). XtProcedureArg specifies thataddress_idis a pointer to a procedure to be invoked to
return the conversion argument. IfXtProcedureArg is specified,address_idmust contain the
address of a function of typeXtConvertArgProc .

typedef void (*XtConvertArgProc)(Widget, Cardinal*, XrmValue*);
Widgetobject;
Cardinal *size;
XrmValue *value;

object Passes the object for which the resource is being converted, or NULL if the con-
verter was invoked byXtCallConverter or XtDirectConvert .

size Passes a pointer to thesizefield from theXtConvertArgRec .

value Passes a pointer to a descriptor into which the procedure must store the conver-
sion argument.

157

X Toolkit Intrinsics X11 Release 6

When invoked, theXtConvertArgProc procedure must derive a conversion argument and store
the address and size of the argument in the location pointed to byvalue.

In order to permit reentrancy, theXtConvertArgProc should return the address of storage whose
lifetime is no shorter than the lifetime ofobject. If objectis NULL, the lifetime of the conversion
argument must be no shorter than the lifetime of the resource with which the conversion argument
is associated. The Intrinsics do not guarantee to copy this storage but do guarantee not to refer-
ence it if the resource is removed from the conversion cache.

The following example illustrates how to register the CvtStringToPixel routine given earlier:

static XtConvertArgRec colorConvertArgs[] = {
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.screen), sizeof(Screen*)},
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.colormap),sizeof(Colormap)}

};

XtSetTypeConverter(XtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumber(colorConvertArgs), XtCacheByDisplay, NULL);

The conversion argument descriptorscolorConvertArgs andscreenConvertArg are predefined
by the Intrinsics. Both take the values from the closest windowed ancestor if the object is not of a
subclass of Core. ThescreenConvertArg descriptor puts the widget’sscreenfield intoargs[0].
The colorConvertArgs descriptor puts the widget’sscreenfield intoargs[0], and the widget’s
colormapfield intoargs[1].

Conversion routines should not just put a descriptor for the address of the base of the widget into
args[0] and use that in the routine. They should pass in the actual values on which the conversion
depends on. By keeping the dependencies of the conversion procedure specific, it is more likely
that subsequent conversions will find what they need in the conversion cache. This way the cache
is smaller and has fewer and more widely applicable entries.

If any conversion arguments of typeXtBaseOffset, XtResourceString, XtResourceQuark, and
XtWidgetBaseOffsetare specified for conversions performed byXtGetApplicationResources,
XtGetSubresources, XtVaGetApplicationResourcesor XtVaGetSubresources, the arguments
are computed with respect to the specified widget, not the base address or resource list specified
in the call.

If the XtConvertArgProc modifies the resource database, the changes affect any in-progress
widget creation,XtGetApplicationResources, or XtGetSubresourcesin an implementation-
defined manner; however, insertion of new entries or changes to existing entries is allowed and
will not directly cause an error.

9.6.5. Resource Converter Invocation

All resource-fetching routines (for example,XtGetSubresources, XtGetApplicationResources,
and so on) call resource converters if the resource database or varargs list specifies a value that
has a different representation from the desired representation or if the widget’s default resource
value representation is different from the desired representation.

To inv oke explicit resource conversions, useXtConvertAndStore or XtCallConverter .

typedef XtPointer XtCacheRef;

158

X Toolkit Intrinsics X11 Release 6

Boolean XtCallConverter(display, converter, conversion_args, num_args, from, to_in_out,
cache_ref_return)

Display* display;
XtTypeConverterconverter;
XrmValuePtrconversion_args;
Cardinalnum_args;
XrmValuePtrfrom;
XrmValuePtrto_in_out;
XtCacheRef *cache_ref_return;

display Specifies the display with which the conversion is to be associated.

converter Specifies the conversion procedure to be called.

conversion_args Specifies the additional conversion arguments needed to perform the con-
version, or NULL.

num_args Specifies the number of entries inconversion_args.

from Specifies a descriptor for the source value.

to_in_out Returns the converted value.

cache_ref_return Returns a conversion cache id.

The XtCallConverter function looks up the specified type converter in the application context
associated with the display and, if the converter was not registered or was registered with cache
type XtCacheAll or XtCacheByDisplay looks in the conversion cache to see if this conversion
procedure has been called with the specified conversion arguments. If so, it checks the success
status of the prior call, and if the conversion failed,XtCallConverter returnsFalse immediately;
otherwise it checks the size specified in theto argument and, if it is greater than or equal to the
size stored in the cache, copies the information stored in the cache into the location specified by
to->addr, stores the cache size intoto->size, and returnsTrue . If the size specified in theto
argument is smaller than the size stored in the cache,XtCallConverter copies the cache size into
to->sizeand returnsFalse. If the converter was registered with cache typeXtCacheNoneor no
value was found in the conversion cache,XtCallConverter calls the converter and, if it was not
registered with cache typeXtCacheNone, enters the result in the cache.XtCallConverter then
returns what the converter returned.

Thecache_ref_returnfield specifies storage allocated by the caller in which an opaque value will
be stored. If the type converter has been registered with theXtCacheRefCount modifier and if
the value returned incache_ref_returnis non-NULL, then the caller should store the
cache_ref_returnvalue in order to decrement the reference count when the converted value is no
longer required. Thecache_ref_returnargument should be NULL if the caller is unwilling or
unable to store the value.

To explicitly decrement the reference counts for resources obtained fromXtCallConverter , use
XtAppReleaseCacheRefs.

void XtAppReleaseCacheRefs(app_context, refs)
XtAppContextapp_context;
XtCacheRef *refs;

app_context Specifies the application context.

refs Specifies the list of cache references to be released.

XtAppReleaseCacheRefsdecrements the reference count for the conversion entries identified by
therefsargument. This argument is a pointer to a NULL-terminated list ofXtCacheRef values.

159

X Toolkit Intrinsics X11 Release 6

If any reference count reaches zero, the destructor, if any, will be called and the resource removed
from the conversion cache.

As a convenience to clients needing to explicitly decrement reference counts via a callback func-
tion, the Intrinsics define two callback procedures,XtCallbackReleaseCacheRefand
XtCallbackReleaseCacheRefList.

void XtCallbackReleaseCacheRef(object, client_data, call_data)
Widgetobject;
XtPointerclient_data;
XtPointercall_data;

object Specifies the object with which the resource is associated.

client_data Specifies the conversion cache entry to be released.

call_data Is ignored.

This callback procedure may be added to a callback list to release a previously returned
XtCacheRef value. When adding the callback, the callbackclient_dataargument must be speci-
fied as the value of theXtCacheRef data cast to typeXtPointer .

void XtCallbackReleaseCacheRefList(object, client_data, call_data)
Widgetobject;
XtPointerclient_data;
XtPointercall_data;

object Specifies the object with which the resources are associated.

client_data Specifies the conversion cache entries to be released.

call_data Is ignored.

This callback procedure may be added to a callback list to release a list of previously returned
XtCacheRef values. When adding the callback, the callbackclient_dataargument must be spec-
ified as a pointer to a NULL-terminated list ofXtCacheRef values.

To lookup and call a resource converter, copy the resulting value, and free a cached resource
when a widget is destroyed, useXtConvertAndStore .

Boolean XtConvertAndStore(object, from_type, from, to_type, to_in_out)
Widgetobject;
Stringfrom_type;
XrmValuePtrfrom;
Stringto_type;
XrmValuePtrto_in_out;

object Specifies the object to use for additional arguments, if any are needed, and the
destroy callback list. Must be of class Object or any subclass thereof.

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_in_out Specifies a descriptor for storage into which the converted value will be returned.

The XtConvertAndStore function looks up the type converter registered to convertfrom_typeto
to_type, computes any additional arguments needed, and then callsXtCallConverter (or

160

X Toolkit Intrinsics X11 Release 6

XtDirectConvert if an old-style converter was registered withXtAddConverter or
XtAppAddConverter ; see Appendix C) with thefromandto_in_outarguments. Theto_in_out
argument specifies the size and location into which the converted value will be stored and is
passed directly to the converter. If the location is specified as NULL, it will be replaced with a
pointer to private storage and the size will be returned in the descriptor. The caller is expected to
copy this private storage immediately and must not modify it in any way. If a non-NULL location
is specified, the caller must allocate sufficient storage to hold the converted value and must also
specify the size of that storage in the descriptor. Thesizefield will be modified on return to indi-
cate the actual size of the converted data. If the conversion succeeds,XtConvertAndStore
returnsTrue ; otherwise, it returnsFalse.

XtConvertAndStore addsXtCallbackReleaseCacheRefto the destroyCallback list of the spec-
ified object if the conversion returns anXtCacheRef value. The resulting resource should not be
referenced after the object has been destroyed.

XtCreateWidget performs processing equivalent toXtConvertAndStore when initializing the
object instance. Because there is extra memory overhead required to implement reference count-
ing, clients may distinguish those objects that are never destroyed before the application exits
from those that may be destroyed and whose resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a particular object
when the object is created, the client can specify a value for theBoolean resource XtNinitialRe-
sourcesPersistent, class XtCInitialResourcesPersistent.

WhenXtCreateWidget is called, if this resource is not specified asFalse in either the arglist or
the resource database, then the resources referenced by this object are not reference-counted,
regardless of how the type converter may have been registered. The effective default value is
True ; thus clients that expect to destroy one or more objects and want resources deallocated must
explicitly specifyFalse for XtNinitialResourcesPersistent.

The resources are still freed and destructors called whenXtCloseDisplay is called if the conver-
sion was registered asXtCacheByDisplay.

9.7. Reading and Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the widget
decides what changes it will actually allow and updates all derived fields appropriately.

9.7.1. Obtaining Widget State

To retrieve the current values of resources associated with a widget instance, useXtGetValues.

void XtGetValues(object, args, num_args)
Widgetobject;
ArgList args;
Cardinalnum_args;

object Specifies the object whose resource values are to be returned. Must be of class
Object or any subclass thereof.

args Specifies the argument list of name/address pairs that contain the resource names
and the addresses into which the resource values are to be stored. The resource
names are widget-dependent.

num_args Specifies the number of entries in the argument list.

161

X Toolkit Intrinsics X11 Release 6

The XtGetValues function starts with the resources specified for the Object class and proceeds
down the subclass chain to the class of the object. Thevaluefield of a passed argument list must
contain the address into which to copy the contents of the corresponding object instance field. If
the field is a pointer type, the lifetime of the pointed-to data is defined by the object class. For the
Intrinsics-defined resources, the following lifetimes apply

• Not valid following any operation that modifies the resource:

− XtNchildren resource of composite widgets.

− All resources of representation type XtRCallback.

• Remain valid at least until the widget is destroyed:

− XtNaccelerators, XtNtranslations.

• Remain valid until the Display is closed:

− XtNscreen.

It is the caller’s responsibility to allocate and deallocate storage for the copied data according to
the size of the resource representation type used within the object.

If the class of the object’s parent is a subclass ofconstraintWidgetClass, XtGetValues then
fetches the values for any constraint resources requested. It starts with the constraint resources
specified forconstraintWidgetClassand proceeds down the subclass chain to the parent’s con-
straint resources. If the argument list contains a resource name that is not found in any of the
resource lists searched, the value at the corresponding address is not modified. If any
get_values_hook procedures in the object’s class or superclass records are non-NULL, they are
called in superclass-to-subclass order after all the resource values have been fetched by
XtGetValues. Finally, if the object’s parent is a subclass ofconstraintWidgetClass, and if any
of the parent’s class or superclass records have declaredConstraintClassExtensionrecords in
the Constraint class partextensionfield with a record type ofNULLQUARK and if the
get_values_hookfield in the extension record is non-NULL,XtGetValues calls the
get_values_hook procedures in superclass-to-subclass order. This permits a Constraint parent to
provide nonresource data viaXtGetValues.

Get_values_hook procedures may modify the data stored at the location addressed by thevalue
field, including (but not limited to) making a copy of data whose resource representation is a
pointer. None of the Intrinsics-defined object classes copy data in this manner. Any operation
that modifies the queried object resource may invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists,
useXtVaGetValues.

void XtVaGetValues(object, ...)
Widgetobject;

object Specifies the object whose resource values are to be returned. Must be of class
Object or any subclass thereof.

... Specifies the variable argument list for the resources to be returned.

XtVaGetValues is identical in function toXtGetValues with theargsandnum_argsparameters
replaced by a varargs list, as described in Section 2.5.1. All value entries in the list must specify
pointers to storage allocated by the caller to which the resource value will be copied. It is the
caller’s responsibility to ensure that sufficient storage is allocated. IfXtVaTypedArg is speci-
fied, thetypeargument specifies the representation desired by the caller andthesize argument
specifies the number of bytes allocated to store the result of the conversion. If the size is

162

X Toolkit Intrinsics X11 Release 6

insufficient, a warning message is issued and the list entry is skipped.

9.7.1.1. Widget Subpart Resource Data: the get_values_hook Procedure

Widgets that have subparts can return resource values from them throughXtGetValues by sup-
plying a get_values_hook procedure. The get_values_hook procedure pointer is of type
XtArgsProc .

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArgList args;
Cardinal *num_args;

w Specifies the widget whose subpart resource values are to be retrieved.

args Specifies the argument list that was passed toXtGetValues or the transformed
varargs list passed toXtVaGetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should callXtGetSubvaluesin the get_values_hook proce-
dure and pass in its subresource list and theargsandnum_argsparameters.

9.7.1.2. Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
XtGetSubvalues. For a discussion of subpart resources, see Section 9.4.

void XtGetSubvalues(base, resources, num_resources, args, num_args)
XtPointerbase;
XtResourceListresources;
Cardinalnum_resources;
ArgList args;
Cardinalnum_args;

base Specifies the base address of the subpart data structure for which the resources
should be retrieved.

resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list of name/address pairs that contain the resource names
and the addresses into which the resource values are to be stored.

num_args Specifies the number of entries in the argument list.

The XtGetSubvaluesfunction obtains resource values from the structure identified bybase. The
valuefield in each argument entry must contain the address into which to store the corresponding
resource value. It is the caller’s responsibility to allocate and deallocate this storage according to
the size of the resource representation type used within the subpart. If the argument list contains
a resource name that is not found in the resource list, the value at the corresponding address is not
modified.

To retrieve the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaGetSubvalues.

163

X Toolkit Intrinsics X11 Release 6

void XtVaGetSubvalues(base, resources, num_resources, ...)
XtPointerbase;
XtResourceListresources;
Cardinalnum_resources;

base Specifies the base address of the subpart data structure for which the resources
should be retrieved.

resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

... Specifies a variable argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored.

XtVaGetSubvaluesis identical in function toXtGetSubvalueswith theargsandnum_args
parameters replaced by a varargs list, as described in Section 2.5.1.XtVaTypedArg is not sup-
ported forXtVaGetSubvalues. If XtVaTypedArg is specified in the list, a warning message is
issued and the entry is then ignored.

9.7.2. Setting Widget State

To modify the current values of resources associated with a widget instance, useXtSetValues.

void XtSetValues(object, args, num_args)
Widgetobject;
ArgList args;
Cardinalnum_args;

object Specifies the object whose resources are to be modified. Must be of class Object
or any subclass thereof.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their new values.

num_args Specifies the number of entries in the argument list.

The XtSetValues function starts with the resources specified for the Object class fields and pro-
ceeds down the subclass chain to the object. At each stage, it replaces theobjectresource fields
with any values specified in the argument list.XtSetValues then calls the set_values procedures
for the object in superclass-to-subclass order. If the object has any non-NULLset_values_hook
fields, these are called immediately after the corresponding set_values procedure. This procedure
permits subclasses to set subpart data viaXtSetValues.

If the class of the object’s parent is a subclass ofconstraintWidgetClass, XtSetValuesalso
updates the object’s constraints. It starts with the constraint resources specified forconstrain-
tWidgetClass and proceeds down the subclass chain to the parent’s class. At each stage, it
replaces the constraint resource fields with any values specified in the argument list. It then calls
the constraint set_values procedures fromconstraintWidgetClassdown to the parent’s class.
The constraint set_values procedures are called with widget arguments, as for all set_values pro-
cedures, not just the constraint records, so that they can make adjustments to the desired values
based on full information about the widget. Any arguments specified that do not match a resource
list entry are silently ignored.

If the object is of a subclass of RectObj,XtSetValuesdetermines if a geometry request is needed
by comparing the old object to the new object. If any geometry changes are required,XtSetVal-
ues restores the original geometry and makes the request on behalf of the widget. If the geometry
manager returnsXtGeometryYes, XtSetValuescalls the object’s resize procedure. If the

164

X Toolkit Intrinsics X11 Release 6

geometry manager returnsXtGeometryDone, XtSetValuescontinues, as the object’s resize pro-
cedure should have been called by the geometry manager. If the geometry manager returns
XtGeometryNo, XtSetValues ignores the geometry request and continues. If the geometry
manager returnsXtGeometryAlmost, XtSetValuescalls the set_values_almost procedure,
which determines what should be done.XtSetValues then repeats this process, deciding once
more whether the geometry manager should be called.

Finally, if any of the set_values procedures returnedTrue , and the widget is realized,XtSetVal-
uescauses the widget’s expose procedure to be invoked by callingXClearArea on the widget’s
window.

To modify the current values of resources associated with a widget instance using varargs lists,
useXtVaSetValues.

void XtVaSetValues(object, ...)
Widgetobject;

object Specifies the object whose resources are to be modified. Must be of class Object
or any subclass thereof.

... Specifies the variable argument list of name/value pairs that contain the resources
to be modified and their new values.

XtVaSetValues is identical in function toXtSetValueswith theargsandnum_argsparameters
replaced by a varargs list, as described in Section 2.5.1.

9.7.2.1. Widget State: the set_values Procedure

The set_values procedure pointer in a widget class is of typeXtSetValuesFunc.

typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget, ArgList, Cardinal*);
Widgetcurrent;
Widgetrequest;
Widgetnew;
ArgList args;
Cardinal *num_args;

current Specifies a copy of the widget as it was before theXtSetValuescall.

request Specifies a copy of the widget with all values changed as asked for by theXtSet-
Values call before any class set_values procedures have been called.

new Specifies the widget with the new values that are actually allowed.

args Specifies the argument list passed toXtSetValuesor the transformed argument
list passed toXtVaSetValues.

num_args Specifies the number of entries in the argument list.

The set_values procedure should recompute any field derived from resources that are changed (for
example, many GCs depend on foreground and background pixels). If no recomputation is neces-
sary and if none of the resources specific to a subclass require the window to be redisplayed when
their values are changed, you can specify NULL for theset_valuesfield in the class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in the subclass,
but it has to resolve conflicts with its superclass, especially conflicts over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass and, in this case, the subclass must

165

X Toolkit Intrinsics X11 Release 6

modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass set_values procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass’s size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size is
explicitly given, but they should compute a reasonable size if no size is requested. How does a
subclass know the difference between a specified size and a size computed by a superclass?

Therequestandnewparameters provide the necessary information. Therequestwidget is a copy
of the widget, updated as originally requested. Thenewwidget starts with the values in the
request, but it has additionally been updated by all superclass set_values procedures called so far.
A subclass set_values procedure can compare these two to resolve any potential conflicts. The
set_values procedure need not refer to therequestwidget unless it must resolve conflicts between
thecurrentandnewwidgets. Any changes the widget needs to make, including geometry
changes, should be made in thenewwidget.

In the above example, the subclass with the visual surround can see if thewidthandheightin the
requestwidget are zero. If so, it adds its surround size to thewidthandheightfields in thenew
widget. If not, it must make do with the size originally specified. In this case, zero is a special
value defined by the class to permit the application to invoke this behavior.

Thenewwidget is the actual widget instance record. Therefore, the set_values procedure should
do all its work on thenewwidget; therequestwidget should never be modified. If the set_values
procedure needs to call any routines that operate on a widget, it should specifynewas the widget
instance.

Before calling the set_values procedures, the Intrinsics modify the resources of therequestwidget
according to the contents of the arglist; if the widget names all its resources in the class resource
list, it is never necessary to examine the contents ofargs.

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs to
be redisplayed. Note that a change in the geometry fields alone does not require the set_values
procedure to returnTrue ; the X server will eventually generate anExposeev ent, if necessary.
After calling all the set_values procedures,XtSetValues forces a redisplay by callingXClear-
Area if any of the set_values procedures returnedTrue . Therefore, a set_values procedure
should not try to do its own redisplaying.

Set_values procedures should not do any work in response to changes in geometry because
XtSetValuesev entually will perform a geometry request, and that request might be denied. If
the widget actually changes size in response to a call toXtSetValues, its resize procedure is
called. Widgets should do any geometry-related work in their resize procedure.

Note that it is permissible to callXtSetValuesbefore a widget is realized. Therefore, the
set_values procedure must not assume that the widget is realized.

9.7.2.2. Widget State: the set_values_almost Procedure

The set_values_almost procedure pointer in the widget class record is of typeXtAlmostProc .

typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetold;
Widgetnew;
XtWidgetGeometry *request;
XtWidgetGeometry *reply;

166

X Toolkit Intrinsics X11 Release 6

old Specifies a copy of the object as it was before theXtSetValuescall.

new Specifies the object instance record.

request Specifies the original geometry request that was sent to the geometry manager
that causedXtGeometryAlmost to be returned.

reply Specifies the compromise geometry that was returned by the geometry manager
with XtGeometryAlmost.

Most classes inherit the set_values_almost procedure from their superclass by specifyingXtIn-
heritSetValuesAlmost in the class initialization. The set_values_almost procedure inrectObj-
Classaccepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set a widget’s geometry by
means of a call toXtSetValues, and the geometry manager cannot satisfy the request but instead
returnsXtGeometryNo or XtGeometryAlmost and a compromise geometry. Thenewobject is
the actual instance record. Thex, y, width, height, andborder_widthfields contain the original
values as they were before theXtSetValuescall and all other fields contain the new values. The
requestparameter contains the new geometry request that was made to the parent. Thereply
parameter containsreply->request_modeequal to zero if the parent returnedXtGeometryNo and
contains the parent’s compromise geometry otherwise. The set_values_almost procedure takes
the original geometry and the compromise geometry and determines if the compromise is accept-
able or whether to try a different compromise. It returns its results in therequestparameter,
which is then sent back to the geometry manager for another try. To accept the compromise, the
procedure must copy the contents of thereplygeometry into therequestgeometry; to attempt an
alternative geometry, the procedure may modify any part of therequestargument; to terminate the
geometry negotiation and retain the original geometry, the procedure must set
request->request_modeto zero. The geometry fields of theold andnewinstances must not be
modified directly.

9.7.2.3. Widget State: the ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of typeXtSetValuesFunc. The values passed to
the parent’s constraint set_values procedure are the same as those passed to the child’s class
set_values procedure. A class can specify NULL for theset_valuesfield of theConstraintPart
if it need not compute anything.

The constraint set_values procedure should recompute any constraint fields derived from con-
straint resources that are changed. Further, it may modify other widget fields as appropriate. For
example, if a constraint for the maximum height of a widget is changed to a value smaller than
the widget’s current height, the constraint set_values procedure may reset theheightfield in the
widget.

9.7.2.4. Widget Subpart State

To set the current values of subpart resources associated with a widget instance, use
XtSetSubvalues. For a discussion of subpart resources, see Section 9.4.

167

X Toolkit Intrinsics X11 Release 6

void XtSetSubvalues(base, resources, num_resources, args, num_args)
XtPointerbase;
XtResourceListresources;
Cardinalnum_resources;
ArgList args;
Cardinalnum_args;

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their new values.

num_args Specifies the number of entries in the argument list.

The XtSetSubvaluesfunction updates the resource fields of the structure identified bybase. Any
specified arguments that do not match an entry in the resource list are silently ignored.

To set the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaSetSubvalues.

void XtVaSetSubvalues(base, resources, num_resources, ...)
XtPointerbase;
XtResourceListresources;
Cardinalnum_resources;

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

... Specifies the variable argument list of name/value pairs that contain the resources
to be modified and their new values.

XtVaSetSubvaluesis identical in function toXtSetSubvalueswith theargsandnum_args
parameters replaced by a varargs list, as described in Section 2.5.1.XtVaTypedArg is not sup-
ported forXtVaSetSubvalues. If an entry containingXtVaTypedArg is specified in the list, a
warning message is issued and the entry is ignored.

9.7.2.5. Widget Subpart Resource Data: the set_values_hook Procedure

Note

The set_values_hook procedure is obsolete, as the same information is now available
to the set_values procedure. The procedure has been retained for those widgets that
used it in versions prior to Release 4.

Widgets that have a subpart can set the subpart resource values throughXtSetValuesby supply-
ing a set_values_hook procedure. The set_values_hook procedure pointer in a widget class is of
type XtArgsFunc .

168

X Toolkit Intrinsics X11 Release 6

typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal*);
Widgetw;
Arglist args;
Cardinal *num_args;

w Specifies the widget whose subpart resource values are to be changed.

args Specifies the argument list that was passed toXtSetValuesor the transformed
varargs list passed toXtVaSetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may callXtSetValues from the set_values_hook procedure
and pass in its subresource list and theargsandnum_argsparameters.

169

X Toolkit Intrinsics X11 Release 6

Chapter 10

Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user events into
widget behavior by using the event manager. Instead, they provide a default mapping of events
into behavior that you can override.

The translation manager provides an interface to specify and manage the mapping of X event
sequences into widget-supplied functionality, for example, calling procedureAbcwhen they key
is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify the mapping of externally
available procedure name strings to the corresponding procedure implemented by the wid-
get class.

• A translation table, which is in the widget class structure, specifies the mapping of event
sequences to procedure name strings.

You can override the translation table in the class structure for a specific widget instance by sup-
plying a different translation table for the widget instance. The resources XtNtranslations and
XtNbaseTranslations are used to modify the class default translation table; see Section 10.3.

10.1. Action Tables

All widget class records contain an action table, an array ofXtActionsRec entries. In addition,
an application can register its own action tables with the translation manager so that the transla-
tion tables it provides to widget instances can access application functionality directly. The trans-
lation action procedure pointer is of typeXtActionProc .

typedef void (*XtActionProc)(Widget, XEvent*, String*, Cardinal*);
Widgetw;
XEvent *event;
String *params;
Cardinal *num_params;

w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called. If the action is called after
a sequence of events, then the last event in the sequence is used.

params Specifies a pointer to the list of strings that were specified in the translation table
as arguments to the action, or NULL.

num_params Specifies the number of entries inparams.

typedef struct _XtActionsRec {
String string;
XtActionProc proc;

} XtActionsRec, *XtActionList;

Thestringfield is the name used in translation tables to access the procedure. Theprocfield is a

170

X Toolkit Intrinsics X11 Release 6

pointer to a procedure that implements the functionality.

When the action list is specified as theCoreClassPartactionsfield the string pointed to bystring
must be permanently allocated prior to or during the execution of the class initialization proce-
dure and must not be subsequently deallocated.

Action procedures should not assume that the widget in which they are invoked is realized; an
accelerator specification can cause an action procedure to be called for a widget that does not yet
have a window. Widget writers should also note which of a widget’s callback lists are invoked
from action procedures and warn clients not to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures to take the following actions:

• Set the button to indicate it is activated.

• Unset the button back to its normal mode.

• Highlight the button borders.

• Unhighlight the button borders.

• Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available to translation
tables written for Pushbutton or any subclass. The string entry is the name used in translation
tables. The procedure entry (usually spelled identically to the string) is the name of the C proce-
dure that implements that function:

XtActionsRec actionTable[] = {
{"Set", Set},
{"Unset", Unset},
{"Highlight", Highlight},
{"Unhighlight", Unhighlight}
{"Notify", Notify},

};

The Intrinsics reserve all action names and parameters starting with the characters ‘‘Xt’’ for future
standard enhancements. Users, applications, and widgets should not declare action names or pass
parameters starting with these characters except to invoke specified built-in Intrinsics functions.

10.1.1. Action Table Registration

Theactionsandnum_actionsfields ofCoreClassPartspecify the actions implemented by a wid-
get class. These are automatically registered with the Intrinsics when the class is initialized and
must be allocated in writable storage prior to Core class_part initialization, and never deallocated.
To sav e memory and optimize access, the Intrinsics may overwrite the storage in order to compile
the list into an internal representation.

To declare an action table within an application and register it with the translation manager, use
XtAppAddActions .

171

X Toolkit Intrinsics X11 Release 6

void XtAppAddActions(app_context, actions, num_actions)
XtAppContextapp_context;
XtActionList actions;
Cardinalnum_actions;

app_context Specifies the application context.

actions Specifies the action table to register.

num_actions Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table containingXtMenuPopup andXtMenuPopdown as part of
XtCreateApplicationContext .

10.1.2. Action Names to Procedure Translations

The translation manager uses a simple algorithm to resolve the name of a procedure specified in a
translation table into the actual procedure specified in an action table. When the widget is real-
ized, the translation manager performs a search for the name in the following tables, in order:

• The widget’s class and all superclass action tables, in subclass-to-superclass order.

• The parent’s class and all superclass action tables, in subclass-to-superclass order, then on
up the ancestor tree.

• The action tables registered withXtAppAddActions andXtAddActions from the most
recently added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot find a name, the
translation manager generates a warning message.

10.1.3. Action Hook Registration

An application can specify a procedure that will be called just before every action routine is dis-
patched by the translation manager. To do so, the application supplies a procedure pointer of type
XtActionHookProc .

typedef void (*XtActionHookProc)(Widget, XtPointer, String, XEvent*, String*, Cardinal*);
Widgetw;
XtPointerclient_data;
Stringaction_name;
XEvent* event;
String* params;
Cardinal*num_params;

w Specifies the widget whose action is about to be dispatched.

client_data Specifies the application-specific closure that was passed toXtAppAddAction-
Hook.

action_name Specifies the name of the action to be dispatched.

event Specifies the event argument that will be passed to the action routine.

params Specifies the action parameters that will be passed to the action routine.

num_params Specifies the number of entries inparams.

172

X Toolkit Intrinsics X11 Release 6

Action hooks should not modify any of the data pointed to by the arguments other than the
client_dataargument.

To add an action hook, useXtAppAddActionHook .

XtActionHookId XtAppAddActionHook(app, proc, client_data)
XtAppContextapp;
XtActionHookProcproc;
XtPointerclient_data;

app Specifies the application context.

proc Specifies the action hook procedure.

client_data Specifies application-specific data to be passed to the action hook.

XtAppAddActionHook adds the specified procedure to the front of a list maintained in the
application context. In the future, when an action routine is about to be invoked for any widget in
this application context, either through the translation manager or viaXtCallActionProc , the
action hook procedures will be called in reverse order of registration just prior to invoking the
action routine.

Action hook procedures are removed automatically and theXtActionHookId s destroyed when
the application context in which they were added is destroyed.

To remove anaction hook procedure without destroying the application context, use
XtRemoveActionHook.

void XtRemoveActionHook(id)
XtActionHookId id;

id Specifies the action hook id returned byXtAppAddActionHook .

XtRemoveActionHook removes the specified action hook procedure from the list in which it
was registered.

10.2. Translation Tables

All widget instance records contain a translation table, which is a resource with a default value
specified elsewhere in the class record. A translation table specifies what action procedures are
invoked for an event or a sequence of events. A translation table is a string containing a list of
translations from an event sequence into one or more action procedure calls. The translations are
separated from one another by newline characters (ASCII LF). The complete syntax of transla-
tion tables is specified in Appendix B.

As an example, the default behavior of Pushbutton is

• Highlight on enter window.

• Unhighlight on exit window.

• Inv ert on left button down.

• Call callbacks and reinvert on left button up.

The following illustrates Pushbutton’s default translation table:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow>:Unhighlight()\n\

173

X Toolkit Intrinsics X11 Release 6

<Btn1Down>: Set()\n\
<Btn1Up>: Notify() Unset()";

Thetm_tablefield of theCoreClassPartshould be filled in at class initialization time with the
string containing the class’s default translations. If a class wants to inherit its superclass’s transla-
tions, it can store the special valueXtInheritTranslations into tm_table. In Core’s class part ini-
tialization procedure, the Intrinsics compile this translation table into an efficient internal form.
Then, at widget creation time, this default translation table is combined with the XtNtranslations
and XtNbaseTranslations resources; see Section 10.3.

The resource conversion mechanism automatically compiles string translation tables that are
specified in the resource database. If a client uses translation tables that are not retrieved via a
resource conversion, it must compile them itself usingXtParseTranslationTable.

The Intrinsics use the compiled form of the translation table to register the necessary events with
the event manager. Widgets need do nothing other than specify the action and translation tables
for events to be processed by the translation manager.

10.2.1. Event Sequences

An event sequence is a comma-separated list of X event descriptions that describes a specific
sequence of X events to map to a set of program actions. Each X event description consists of
three parts: The X event type, a prefix consisting of the X modifier bits, and an event-specific suf-
fix.

Various abbreviations are supported to make translation tables easier to read. The events must
match incoming events in left-to-right order to trigger the action sequence.

10.2.2. Action Sequences

Action sequences specify what program or widget actions to take in response to incoming X
ev ents. An action sequence consists of space-separated action procedure call specifications. Each
action procedure call consists of the name of an action procedure and a parenthesized list of zero
or more comma-separated string parameters to pass to that procedure. The actions are invoked in
left-to-right order as specified in the action sequence.

10.2.3. Multi-click Time

Translation table entries may specify actions that are taken when two or more identical events
occur consecutively within a short time interval, called the multi-click time. The multi-click time
value may be specified as an application resource with name ‘‘multiClickTime’’ and class ‘‘Mul-
tiClickTime’’ and may also be modified dynamically by the application. The multi-click time is
unique for each Display value and is retrieved from the resource database by
XtDisplayInitialize . If no value is specified, the initial value is 200 milliseconds.

To set the multi-click time dynamically, useXtSetMultiClickTime .

void XtSetMultiClickTime(display, time)
Display *display;
int time;

display Specifies the display connection.

174

X Toolkit Intrinsics X11 Release 6

time Specifies the multi-click time in milliseconds.

XtSetMultiClickTime sets the time interval used by the translation manager to determine when
multiple events are interpreted as a repeated event. When a repeat count is specified in a transla-
tion entry, the interval between the timestamps in each pair of repeated events (e.g., between two
ButtonPressev ents) must be less than the multi-click time in order for the translation actions to
be taken.

To read the multi-click time, useXtGetMultiClickTime .

int XtGetMultiClickTime(display)
Display *display;

display Specifies the display connection.

XtGetMultiClickTime returns the time in milliseconds that the translation manager uses to
determine if multiple events are to be interpreted as a repeated event for purposes of matching a
translation entry containing a repeat count.

10.3. Translation Table Management

Sometimes an application needs to merge its own translations with a widget’s translations. For
example, a window manager provides functions to move a window. The window manager wishes
to bind this operation to a specific pointer button in the title bar without the possibility of user
override and bind it to other buttons that may be overridden by the user.

To accomplish this, the window manager should first create the title bar and then should merge
the two translation tables into the title bar’s translations. One translation table contains the trans-
lations that the window manager wants only if the user has not specified a translation for a partic-
ular event or event sequence (i.e., those that may be overridden). The other translation table con-
tains the translations that the window manager wants regardless of what the user has specified.

Three Intrinsics functions support this merging:

XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations Merges a compiled translation table into a widget’s compiled
translation table, ignoring any new translations that conflict
with existing translations.

XtOverrideTranslations Merges a compiled translation table into a widget’s compiled
translation table, replacing any existing translations that con-
flict with new translations.

To compile a translation table, useXtParseTranslationTable.

XtTranslations XtParseTranslationTable(table)
Stringtable;

table Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table, provided in the format
given in Appendix B, into an opaque internal representation of typeXtTranslations . Note that if
an empty translation table is required for any purpose, one can be obtained by callingXtParse-
TranslationTable and passing an empty string.

175

X Toolkit Intrinsics X11 Release 6

To merge additional translations into an existing translation table, useXtAugmentTranslations.

void XtAugmentTranslations(w, translations)
Widgetw;
XtTranslationstranslations;

w Specifies the widget into which the new translations are to be merged. Must be
of class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtAugmentTranslations function merges the new translations into the existing widget
translations, ignoring any#replace, #augment, or #override directive that may have been speci-
fied in the translation string. The translation table specified bytranslationsis not altered by this
process.XtAugmentTranslations logically appends the string representation of the new transla-
tions to the string representation of the widget’s current translations and reparses the result with
no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the new translations contain an event or event sequence that already exists in the
widget’s translations, the new translation is ignored.

To overwrite existing translations with new translations, useXtOverrideTranslations .

void XtOverrideTranslations(w, translations)
Widgetw;
XtTranslationstranslations;

w Specifies the widget into which the new translations are to be merged. Must be of
class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtOverrideTranslations function merges the new translations into the existing widget
translations, ignoring any#replace, #augment, or #override directive that may have been speci-
fied in the translation string. The translation table specified bytranslationsis not altered by this
process.XtOverrideTranslations logically appends the string representation of the widget’s
current translations to the string representation of the new translations and reparses the result with
no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the new translations contain an event or event sequence that already exists in the
widget’s translations, the new translation overrides the widget’s translation.

To replace a widget’s translations completely, useXtSetValueson the XtNtranslations resource
and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource files, the string-
to-translation-table resource type converter allows the string to specify whether the table should
replace, augment, or override any existing translation table in the widget. To specify this, a sharp
sign (#) is given as the first character of the table followed by one of the keywords ‘‘replace’’,
‘‘augment’’, or ‘‘override’’ to indicate whether to replace, augment, or override the existing table.
The replace or merge operation is performed during the Core instance initialization. Each merge
operation produces a new translation resource value; if the original tables were shared by other
widgets, they are unaffected. If no directive is specified, ‘‘#replace’’ is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was not speci-
fied or did not contain ‘‘#replace’’, the resource database is searched for the resource XtNbase-
Translations. If XtNbaseTranslations is found it is merged into the widget class translation table.

176

X Toolkit Intrinsics X11 Release 6

Then the widgettranslationsfield is merged into the result, or into the class translation table if
XtNbaseTranslations was not found. This final table is then stored into the widgettranslations
field. If the XtNtranslations resource specified ‘‘#replace’’ no merge is done. If neither XtNbase-
Translations or XtNtranslations are specified, the class translation table is copied into the widget
instance.

To completely remove existing translations, useXtUninstallTranslations .

void XtUninstallTranslations(w)
Widgetw;

w Specifies the widget from which the translations are to be removed. Must be of
class Core or any subclass thereof.

The XtUninstallTranslations function causes the entire translation table for the widget to be
removed.

10.4. Using Accelerators

It is often desirable to be able to bind events in one widget to actions in another. In particular, it
is often useful to be able to invoke menu actions from the keyboard. The Intrinsics provide a
facility, called accelerators, that lets you accomplish this. An accelerator table is a translation
table that is bound with its actions in the context of a particular widget, thesourcewidget. The
accelerator table can then be installed on one or moredestinationwidgets. When an event
sequence in the destination widget would cause an accelerator action to be taken, and if the
source widget is sensitive, the actions are executed as though triggered by the same event
sequence in the accelerator source widget. The event is passed to the action procedure without
modification. The action procedures used within accelerators must not assume that the source
widget is realized nor that any fields of the event are in reference to the source widget’s window if
the widget is realized.

Each widget instance contains that widget’s exported accelerator table as a resource. Each class
of widget exports a method that takes a displayable string representation of the accelerators so
that widgets can display their current accelerators. The representation is the accelerator table in
canonical translation table form (see Appendix B). The display_accelerator procedure pointer is
of typeXtStringProc .

typedef void (*XtStringProc)(Widget, String);
Widgetw;
Stringstring;

w Specifies the source widget that supplied the accelerators.

string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in resource files, and the string representation is the same as for a
translation table. However, the interpretation of the#augmentand#override directives applies
to what will happen when the accelerator is installed; that is, whether or not the accelerator trans-
lations will override the translations in the destination widget. The default is#augment, which
means that the accelerator translations have lower priority than the destination translations. The
#replacedirective is ignored for accelerator tables.

177

X Toolkit Intrinsics X11 Release 6

To parse an accelerator table, useXtParseAcceleratorTable.

XtAccelerators XtParseAcceleratorTable(source)
Stringsource;

source Specifies the accelerator table to compile.

The XtParseAcceleratorTable function compiles the accelerator table into an opaque internal
representation. The client should set the XtNaccelerators resource of each widget that is to be
activated by these translations to the returned value.

To install accelerators from a widget on another widget, useXtInstallAccelerators .

void XtInstallAccelerators(destination, source)
Widgetdestination;
Widgetsource;

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the widget from which the accelerators are to come. Must be of class
Core or any subclass thereof.

The XtInstallAccelerators function installs theacceleratorsresource value fromsourceonto
destinationby merging the the source accelerators into the destination translations. If the source
display_acceleratorfield is non-NULL,XtInstallAccelerators calls it with the source widget
and a string representation of the accelerator table, which indicates that its accelerators have been
installed and that it should display them appropriately. The string representation of the accelera-
tor table is its canonical translation table representation.

As a convenience for installing all accelerators from a widget and all its descendants onto one
destination, useXtInstallAllAccelerators .

void XtInstallAllAccelerators(destination, source)
Widgetdestination;
Widgetsource;

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the root widget of the widget tree from which the accelerators are to
come. Must be of class Core or any subclass thereof.

The XtInstallAllAccelerators function recursively descends the widget tree rooted atsourceand
installs the accelerators resource value of each widget encountered ontodestination. A common
use is to callXtInstallAllAccelerators and pass the application main window as the source.

10.5. KeyCode-to-KeySym Conversions

The translation manager provides support for automatically translating KeyCodes in incoming
key events into KeySyms. KeyCode-to-KeySym translator procedure pointers are of type
XtKeyProc .

178

X Toolkit Intrinsics X11 Release 6

typedef void (*XtKeyProc)(Display*, KeyCode, Modifiers, Modifiers*, KeySym*);
Display *display;
Ke yCodekeycode;
Modifiersmodifiers;
Modifiers *modifiers_return;
Ke ySym *keysym_return;

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_returnSpecifies a location in which to store a mask that indicates the subset of all
modifiers that are examined by the key translator for the specified keycode.

keysym_return Specifies a location in which to store the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any giv en key trans-
lator function and keyboard encoding,modifiers_returnwill be a constant per KeyCode that indi-
cates the subset of all modifiers that are examined by the key translator for that KeyCode.

The KeyCode-to-KeySym translator procedure must be implemented such that multiple calls with
the samedisplay, keycode, andmodifiersreturn the same result until either a new case converter (
XtCaseProc) is installed or aMappingNotify ev ent is received.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open display.
Translator procedures and other clients may share a single copy of this table to perform the same
mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display, use
XtGetKeysymTable.

Ke ySym *XtGetKeysymTable(display, min_keycode_return, keysyms_per_keycode_return)
Display *display;
Ke yCode *min_keycode_return;
int *keysyms_per_keycode_return;

display Specifies the display whose table is required.

min_keycode_return
Returns the minimum KeyCode valid for the display.

keysyms_per_keycode_return
Returns the number of KeySyms stored for each KeyCode.

XtGetKeysymTable returns a pointer to the Intrinsics’ copy of the server’s KeyCode-to-KeySym
table. This table must not be modified. There arekeysyms_per_keycode_returnKe ySyms associ-
ated with each KeyCode, located in the table with indices starting at index

(test_keycode - min_keycode_return) * keysyms_per_keycode_return

for KeyCodetest_keycode. Any entries that have no KeySyms associated with them contain the
valueNoSymbol. Clients should not cache the KeySym table but should call
XtGetKeysymTable each time the value is needed, as the table may change prior to dispatching
each event.

For more information on this table, see Section 12.7 inXlib − C Language X Interface.

179

X Toolkit Intrinsics X11 Release 6

To register a key translator, useXtSetKeyTranslator .

void XtSetKeyTranslator(display, proc)
Display *display;
XtKeyProcproc;

display Specifies the display from which to translate the events.

proc Specifies the procedure to perform key translations.

The XtSetKeyTranslator function sets the specified procedure as the current key translator. The
default translator isXtTranslateKey , anXtKeyProc that uses the Shift, Lock, numlock, and
group modifiers with the interpretations defined inX Window System Protocol, Section 5. It is
provided so that new translators can call it to get default KeyCode-to-KeySym translations and so
that the default translator can be reinstalled.

To inv oke the currently registered KeyCode-to-KeySym translator, useXtTranslateKeycode.

void XtTranslateKeycode(display, keycode, modifiers, modifiers_return, keysym_return)
Display *display;
Ke yCodekeycode;
Modifiersmodifiers;
Modifiers *modifiers_return;
Ke ySym *keysym_return;

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_returnReturns a mask that indicates the modifiers actually used to generate the
Ke ySym.

keysym_return Returns the resulting KeySym.

The XtTranslateKeycode function passes the specified arguments directly to the currently regis-
tered KeyCode-to-KeySym translator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clients to register case con-
version routines. Case converter procedure pointers are of typeXtCaseProc.

typedef void (*XtCaseProc)(Display*, KeySym, KeySym*, KeySym*);
Display *display;
Ke ySymkeysym;
Ke ySym *lower_return;
Ke ySym *upper_return;

display Specifies the display connection for which the conversion is required.

keysym Specifies the KeySym to convert.

lower_return Specifies a location into which to store the lower-case equivalent for the KeySym.

upper_return Specifies a location into which to store the upper-case equivalent for the
Ke ySym.

If there is no case distinction, this procedure should store the KeySym into both return values.

180

X Toolkit Intrinsics X11 Release 6

To register a case converter, useXtRegisterCaseConverter.

void XtRegisterCaseConverter(display, proc, start, stop)
Display *display;
XtCaseProcproc;
Ke ySymstart;
Ke ySymstop;

display Specifies the display from which the key events are to come.

proc Specifies theXtCaseProc to do the conversions.

start Specifies the first KeySym for which this converter is valid.

stop Specifies the last KeySym for which this converter is valid.

The XtRegisterCaseConverterregisters the specified case converter. Thestart andstopargu-
ments provide the inclusive range of KeySyms for which this converter is to be called. The new
converter overrides any previous converters for KeySyms in that range. No interface exists to
remove converters; you need to register an identity converter. When a new converter is registered,
the Intrinsics refresh the keyboard state if necessary. The default converter understands case con-
version for all Latin KeySyms defined inX Window System Protocol, Appendix A.

To determine upper- and lower-case equivalents for a KeySym, useXtConvertCase.

void XtConvertCase(display, keysym, lower_return, upper_return)
Display *display;
Ke ySymkeysym;
Ke ySym *lower_return;
Ke ySym *upper_return;

display Specifies the display that the KeySym came from.

keysym Specifies the KeySym to convert.

lower_return Returns the lower-case equivalent of the KeySym.

upper_return Returns the upper-case equivalent of the KeySym.

The XtConvertCase function calls the appropriate converter and returns the results. A user-
suppliedXtKeyProc may need to use this function.

10.6. Obtaining a KeySym in an Action Procedure

When an action procedure is invoked on aKeyPressor KeyReleaseev ent, it often has a need to
retrieve the KeySym and modifiers corresponding to the event that caused it to be invoked. In
order to avoid repeating the processing that was just performed by the Intrinsics to match the
translation entry, the KeySym and modifiers are stored for the duration of the action procedure
and are made available to the client.

To retrieve the KeySym and modifiers that matched the final event specification in the translation
table entry, useXtGetActionKeysym.

Ke ySym XtGetActionKeysym(event, modifiers_return)
XEvent *event;
Modifiers *modifiers_return;

event Specifies the event pointer passed to the action procedure by the Intrinsics.

181

X Toolkit Intrinsics X11 Release 6

modifiers_return Returns the modifiers that caused the match, if non-NULL.

If XtGetActionKeysym is called after an action procedure has been invoked by the Intrinsics and
before that action procedure returns, and if the event pointer has the same value as the event
pointer passed to that action routine, and if the event is aKeyPressor KeyReleaseev ent, then
XtGetActionKeysym returns the KeySym that matched the final event specification in the trans-
lation table and, ifmodifiers_returnis non-NULL, the modifier state actually used to generate this
Ke ySym; otherwise, if the event is aKeyPressor KeyReleaseev ent, thenXtGetActionKeysym
calls XtTranslateKeycode and returns the results; else it returnsNoSymbol and does not exam-
inemodifiers_return.

Note that if an action procedure invoked by the Intrinsics invokes a subsequent action procedure
(and so on) viaXtCallActionProc , the nested action procedure may also callXtGetAction-
Keysym to retrieve the Intrinsics’ KeySym and modifiers.

10.7. KeySym-to-KeyCode Conversions

To return the list of KeyCodes that map to a particular KeySym in the keyboard mapping table
maintained by the Intrinsics, useXtKeysymToKeycodeList.

void XtKeysymToKeycodeList(display, keysym, keycodes_return, keycount_return)
Display *display;
Ke ySymkeysym;
Ke yCode **keycodes_return;
Cardinal *keycount_return;

display Specifies the display whose table is required.

keysym Specifies the KeySym for which to search.

keycodes_return Returns a list of KeyCodes that havekeysymassociated with them, or NULL
if keycount_returnis 0.

keycount_return Returns the number of KeyCodes in the keycode list.

The XtKeysymToKeycodeList procedure returns all the KeyCodes that havekeysymin their
entry for the keyboard mapping table associated withdisplay. For each entry in the table, the first
four KeySyms (groups 1 and 2) are interpreted as specified byX Window System Protocol, Sec-
tion 5. If no KeyCodes map to the specified KeySym,keycount_returnis zero and
*keycodes_returnis NULL.

The caller should free the storage pointed to bykeycodes_returnusingXtFree when it is no
longer useful. If the caller needs to examine the KeyCode-to-KeySym table for a particular
Ke yCode, it should callXtGetKeysymTable.

10.8. Registering Button and Key Grabs For Actions

To register button and key grabs for a widget’s window according to the event bindings in the
widget’s translation table, useXtRegisterGrabAction .

void XtRegisterGrabAction(action_proc, owner_events, event_mask, pointer_mode, keyboard_mode)
XtActionProcaction_proc;
Booleanowner_events;
unsigned intevent_mask;
int pointer_mode, keyboard_mode;

182

X Toolkit Intrinsics X11 Release 6

action_proc Specifies the action procedure to search for in translation tables.

owner_events
event_mask
pointer_mode
keyboard_mode

Specify arguments toXtGrabButton or XtGrabKey .

XtRegisterGrabAction adds the specifiedaction_procto a list known to the translation man-
ager. When a widget is realized, or when the translations of a realized widget or the accelerators
installed on a realized widget are modified, its translation table and any installed accelerators are
scanned for action procedures on this list. If any are invoked onButtonPressor KeyPress
ev ents as the only or final event in a sequence, the Intrinsics will callXtGrabButton or
XtGrabKey for the widget with every button or KeyCode which maps to the event detail field,
passing the specifiedowner_events, event_mask, pointer_mode, andkeyboard_mode. For But-
tonPressev ents, the modifiers specified in the grab are determined directly from the translation
specification andconfine_toandcursorare specified asNone. For KeyPressev ents, if the trans-
lation table entry specifies colon (:) in the modifier list, the modifiers are determined by calling
the key translator procedure registered for the display and callingXtGrabKey for every combi-
nation of standard modifiers which map the KeyCode to the specified event detail KeySym, and
ORing any modifiers specified in the translation table entry, andevent_maskis ignored. If the
translation table entry does not specify colon in the modifier list, the modifiers specified in the
grab are those specified in the translation table entry only. For bothButtonPressandKeyPress
ev ents, don’t-care modifiers are ignored unless the translation entry explicitly specifies ‘‘Any’’ in
themodifiersfield.

If the specifiedaction_procis already registered for the calling process, the new values will
replace the previously specified values for any widgets that become realized following the call,
but existing grabs are not altered on currently-realized widgets.

When translations or installed accelerators are modified for a realized widget, any previous key or
button grabs registered as a result of the old bindings are released if they do not appear in the new
bindings and are not explicitly grabbed by the client withXtGrabKey or XtGrabButton .

10.9. Invoking Actions Directly

Normally action procedures are invoked by the Intrinsics when an event or event sequence arrives
for a widget. To inv oke an action procedure directly, without generating (or synthesizing) events,
useXtCallActionProc .

void XtCallActionProc(widget, action, event, params, num_params)
Widgetwidget;
Stringaction;
XEvent *event;
String *params;
Cardinalnum_params;

widget Specifies the widget in which the action is to be invoked. Must be of class Core
or any subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of theeventpassed to the action routine.

183

X Toolkit Intrinsics X11 Release 6

params Specifies the contents of theparamspassed to the action routine.

num_params Specifies the number of entries inparams.

XtCallActionProc searches for the named action routine in the same manner and order as trans-
lation tables are bound, as described in Section 10.1.2, except that application action tables are
searched, if necessary, as of the time of the call toXtCallActionProc . If found, the action rou-
tine is invoked with the specified widget, event pointer, and parameters. It is the responsibility of
the caller to ensure that the contents of theevent, params, andnum_paramsarguments are appro-
priate for the specified action routine and, if necessary, that the specified widget is realized or sen-
sitive. If the named action routine cannot be found,XtCallActionProc generates a warning mes-
sage and returns.

10.10. Obtaining a Widget’s Action List

Occasionally a subclass will require the pointers to one or more of its superclass’s action proce-
dures. This would be needed, for example, in order to envelope the superclass’s action. To
retrieve the list of action procedures registered in the superclass’sactionsfield, use
XtGetActionList .

void XtGetActionList(widget_class, actions_return, num_actions_return)
WidgetClasswidget_class;
XtActionList *actions_return;
Cardinal *num_actions_return;

widget_class Specifies the widget class whose actions are to be returned.

actions_return Returns the action list.

num_actions_return
Returns the number of action procedures declared by the class.

XtGetActionList returns the action table defined by the specified widget class. This table does
not include actions defined by the superclasses. Ifwidget_classis not initialized, or is not
coreWidgetClassor a subclass thereof, or if the class does not define any actions,
*actions_returnwill be NULL and *num_actions_returnwill be zero. If *actions_returnis non-
NULL the client is responsible for freeing the table usingXtFree when it is no longer needed.

184

X Toolkit Intrinsics X11 Release 6

Chapter 11

Utility Functions

The Intrinsics provide a number of utility functions that you can use to

• Determine the number of elements in an array.

• Translate strings to widget instances.

• Manage memory usage.

• Share graphics contexts.

• Manipulate selections.

• Merge exposure events into a region.

• Translate widget coordinates.

• Locate a widget given a window id.

• Handle errors.

• Set the WM_COLORMAP_WINDOWS property.

• Locate files by name with string substitutions.

• Register callback functions for external agents.

• Locate all the displays of an application context.

11.1. Determining the Number of Elements in an Array

To determine the number of elements in a fixed-size array, useXtNumber .

Cardinal XtNumber(array)
ArrayType array;

array Specifies a fixed-size array of arbitrary type.

The XtNumber macro returns the number of elements allocated to the array.

11.2. Translating Strings to Widget Instances

To translate a widget name to a widget instance, useXtNameToWidget.

Widget XtNameToWidget(reference, names)
Widgetreference;
Stringnames;

reference Specifies the widget from which the search is to start. Must be of class Core or
any subclass thereof.

names Specifies the partially qualified name of the desired widget.

The XtNameToWidget function searches for a descendant of thereferencewidget whose name
matches the specified names. Thenamesparameter specifies a simple object name or a series of
simple object name components separated by periods or asterisks.XtNameToWidget returns the
descendant with the shortest name matching the specification according to the following rules,

185

X Toolkit Intrinsics X11 Release 6

where child is either a pop-up child or a normal child if the widget’s class is a subclass of Com-
posite :

• Enumerate the object subtree rooted at the reference widget in breadth-first order, qualify-
ing the name of each object with the names of all its ancestors up to but not including the
reference widget. The ordering between children of a common parent is not defined.

• Return the first object in the enumeration that matches the specified name, where each com-
ponent ofnamesmatches exactly the corresponding component of the qualified object
name, and asterisk matches any series of components, including none.

• If no match is found, return NULL.

Since breadth-first traversal is specified, the descendant with the shortest matching name (i.e., the
fewest number of components), if any, will always be returned. However, since the order of enu-
meration of children is undefined and since the Intrinsics do not require that all children of a wid-
get have unique names,XtNameToWidget may return any child that matches if there are multi-
ple objects in the subtree with the same name. Consecutive separators (periods or asterisks)
including at least one asterisk are treated as a single asterisk. Consecutive periods are treated as a
single period.

11.3. Managing Memory Usage

The Intrinsics’ memory management functions provide uniform checking for null pointers and
error reporting on memory allocation errors. These functions are completely compatible with
their standard C language runtime counterpartsmalloc, calloc, realloc, andfree with the fol-
lowing added functionality:

• XtMalloc , XtCalloc , andXtRealloc give an error if there is not enough memory.

• XtFree simply returns if passed a NULL pointer.

• XtRealloc simply allocates new storage if passed a NULL pointer.

See the standard C library documentation onmalloc, calloc, realloc, andfree for more informa-
tion.

To allocate storage, useXtMalloc .

char *XtMalloc(size)
Cardinalsize;

size Specifies the number of bytes desired.

The XtMalloc function returns a pointer to a block of storage of at least the specifiedsizebytes.
If there is insufficient memory to allocate the new block,XtMalloc calls XtErrorMsg .

To allocate and initialize an array, useXtCalloc .

char *XtCalloc(num, size)
Cardinalnum;
Cardinalsize;

num Specifies the number of array elements to allocate.

size Specifies the size of each array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of the specified
size and initializes the space to zero. If there is insufficient memory to allocate the new block,

186

X Toolkit Intrinsics X11 Release 6

XtCalloc calls XtErrorMsg . XtCalloc returns the address of the allocated storage.

To change the size of an allocated block of storage, useXtRealloc.

char *XtRealloc(ptr, num)
char *ptr;
Cardinalnum;

ptr Specifies a pointer to the old storage allocated withXtMalloc , XtCalloc , or
XtRealloc, or NULL.

num Specifies number of bytes desired in new storage.

The XtRealloc function changes the size of a block of storage, possibly moving it. Then it
copies the old contents (or as much as will fit) into the new block and frees the old block. If there
is insufficient memory to allocate the new block,XtRealloc calls XtErrorMsg . If ptr is NULL,
XtRealloc simply callsXtMalloc . XtRealloc then returns the address of the new block.

To free an allocated block of storage, useXtFree.

void XtFree(ptr)
char *ptr;

ptr Specifies a pointer to a block of storage allocated withXtMalloc , XtCalloc , or
XtRealloc, or NULL.

The XtFree function returns storage, allowing it to be reused. Ifptr is NULL, XtFree returns
immediately.

To allocate storage for a new instance of a type, useXtNew.

type*XtNew(type)
type t;

type Specifies a previously declared type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to allocate the
new block,XtNew calls XtErrorMsg . XtNew is a convenience macro that callsXtMalloc
with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated byXtNew should be freed usingXtFree.

To copy an instance of a string, useXtNewString .

String XtNewString(string)
Stringstring;

string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is insufficient memory to allo-
cate the new block,XtNewString calls XtErrorMsg . XtNewString is a convenience macro
that callsXtMalloc with the following arguments specified:

(strcpy(XtMalloc((unsigned)strlen(str) + 1), str))

187

X Toolkit Intrinsics X11 Release 6

The storage allocated byXtNewString should be freed usingXtFree.

11.4. Sharing Graphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context
(GC), thereby reducing both the number of GCs created and the total number of server calls in
any giv en application. The mechanism is a simple caching scheme and allows for clients to
declare both modifiable and nonmodifiable fields of the shared GCs.

To obtain a shareable GC with modifiable fields, useXtAllocateGC .

GC XtAllocateGC(widget, depth, value_mask, values, dynamic_mask, unused_mask)
Widgetobject;
Cardinaldepth;
XtGCMaskvalue_mask;
XGCValues *values;
XtGCMaskdynamic_mask;
XtGCMaskunused_mask;

object Specifies an object, giving the screen for which the returned GC is valid. Must
be of class Object or any subclass thereof.

depth Specifies the depth for which the returned GC is valid, or 0.

value_mask Specifies fields of the GC that are initialized fromvalues.

values Specifies the values for the initialized fields.

dynamic_maskSpecifies fields of the GC that may be modified by the caller.

unused_mask Specifies fields of the GC that will not be used by the caller.

The XtAllocateGC function returns a shareable GC that may be modified by the client. The
screenfield of the specified widget or of the nearest widget ancestor of the specified object and
the specifieddepthargument supply the root and drawable depths for which the GC is to be valid.
If depthis zero the depth is taken from thedepthfield of the specified widget or of the nearest
widget ancestor of the specified object.

Thevalue_maskargument specifies fields of the GC that are initialized with the respective mem-
ber of thevaluesstructure. Thedynamic_maskargument specifies fields that the caller intends to
modify during program execution. The caller must insure that the corresponding GC field is set
prior to each use of the GC. Theunused_maskargument specifies fields of the GC that are of no
interest to the caller. The caller may make no assumptions about the contents of any fields speci-
fied inunused_mask. The caller may assume that at all times all fields not specified in either
dynamic_maskor unused_maskhave their default value if not specified invalue_maskor the
value specified byvalues. If a field is specified in bothvalue_maskanddynamic_mask, the effect
is as if it were specified only indynamic_maskand then immediately set to the value invalues. If
a field is set inunused_maskand also in eithervalue_maskor dynamic_mask, the specification in
unused_maskis ignored.

XtAllocateGC tries to minimize the number of unique GCs created by comparing the arguments
with those of previous calls and returning an existing GC when there are no conflicts.XtAllo-
cateGC may modify and return an existing GC if it was allocated with a nonzerounused_mask.

188

X Toolkit Intrinsics X11 Release 6

To obtain a shareable GC with no modifiable fields, useXtGetGC .

GC XtGetGC(object, value_mask, values)
Widgetobject;
XtGCMaskvalue_mask;
XGCValues *values;

object Specifies an object, giving the screen and depth for which the returned GC is
valid. Must be of class Object or any subclass thereof.

value_mask Specifies which fields of thevaluesstructure are specified.

values Specifies the actual values for this GC.

The XtGetGC function returns a shareable, read-only GC. The parameters to this function are
the same as those forXCreateGC except that an Object is passed instead of a Display.
XtGetGC is equivalent toXtAllocateGC with depth, dynamic_mask, andunused_maskall zero.

XtGetGC shares only GCs in which all values in the GC returned byXCreateGC are the same.
In particular, it does not use thevalue_maskprovided to determine which fields of the GC a wid-
get considers relevant. Thevalue_maskis used only to tell the server which fields should be filled
in from valuesand which it should fill in with default values.

To deallocate a shared GC when it is no longer needed, useXtReleaseGC.

void XtReleaseGC(object, gc)
Widgetobject;
GCgc;

object Specifies any object on the Display for which the GC was created. Must be of
class Object or any subclass thereof.

gc Specifies the shared GC obtained with eitherXtAllocateGC or XtGetGC .

References to shareable GCs are counted and a free request is generated to the server when the
last user of a given GC releases it.

11.5. Managing Selections

Arbitrary widgets in multiple applications can communicate with each other by means of the
Intrinsics global selection mechanism, which conforms to the specifications in theInter-Client
Communication Conventions Manual. The Intrinsics supply functions for providing and receiv-
ing selection data in one logical piece (atomic transfers) or in smaller logical segments (incremen-
tal transfers).

The incremental interface is provided for a selection owner or selection requestor that cannot or
prefers not to pass the selection value to and from the Intrinsics in a single call. For instance,
either an application that is running on a machine with limited memory may not be able to store
the entire selection value in memory, or a selection owner may already have the selection value
available in discrete chunks, and it would be more efficient not to have to allocate additional stor-
age to copy the pieces contiguously. Any owner or requestor that prefers to deal with the selec-
tion value in segments can use the incremental interfaces to do so. The transfer between the
selection owner or requestor and the Intrinsics is not required to match the underlying transport
protocol between the application and the X server; the Intrinsics will break a too large selection
into smaller pieces for transport if necessary and will coalesce a selection transmitted

189

X Toolkit Intrinsics X11 Release 6

incrementally if the value was requested atomically.

11.5.1. Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, useXtAppSetSelectionTimeout.

void XtAppSetSelectionTimeout(app_context, timeout)
XtAppContextapp_context;
unsigned longtimeout;

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, useXtAppGetSelectionTimeout.

unsigned long XtAppGetSelectionTimeout(app_context)
XtAppContextapp_context;

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout value, in mil-
liseconds. The selection timeout is the time within which the two communicating applications
must respond to one another. The initial timeout value is set by the selectionTimeout application
resource as retrieved byXtDisplayInitialize . If selectionTimeout is not specified, the default is
five seconds.

11.5.2. Using Atomic Transfers

When using atomic transfers, the owner will completely process one selection request at a time.
The owner may consider each request individually, since there is no possibility for overlap
between evaluation of two requests.

11.5.2.1. Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection data in a sin-
gle unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsics is of
type XtConvertSelectionProc.

typedef Boolean (*XtConvertSelectionProc)(Widget, Atom*, Atom*, Atom*,
XtPointer*, unsigned long*, int*);

Widgetw;
Atom *selection;
Atom *target;
Atom *type_return;
XtPointer *value_return;
unsigned long *length_return;
int *format_return;

w Specifies the widget that currently owns this selection.

selection Specifies the atom naming the selection requested (for example,XA_PRIMARY
or XA_SECONDARY).

190

X Toolkit Intrinsics X11 Release 6

target Specifies the target type of the selection that has been requested, which indicates
the desired information about the selection (for example, File Name, Text, Win-
dow).

type_return Specifies a pointer to an atom into which the property type of the converted value
of the selection is to be stored. For instance, either File Name or Text might have
property typeXA_STRING .

value_return Specifies a pointer into which a pointer to the converted value of the selection is
to be stored. The selection owner is responsible for allocating this storage. If the
selection owner has provided anXtSelectionDoneProcfor the selection, this
storage is owned by the selection owner; otherwise, it is owned by the Intrinsics
selection mechanism, which frees it by callingXtFree when it is done with it.

length_return Specifies a pointer into which the number of elements invalue_return, each of
size indicated byformat_return, is to be stored.

format_return Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a
given type from the current selection owner. It returnsTrue if the owner successfully converted
the selection to the target type orFalseotherwise. If the procedure returnsFalse, the values of
the return arguments are undefined. EachXtConvertSelectionProcshould respond to target
valueTARGETS by returning a value containing the list of the targets into which it is prepared
to convert the selection. The value returned informat_returnmust be one of 8, 16, or 32 to allow
the server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMESTAMP
target values (see Section 2.6.2 in theInter-Client Communication Conventions Manual). A
selection request with the MULTIPLE target type is transparently transformed into a series of
calls to this procedure, one for each target type, and a selection request with the TIMESTAMP
target value is answered automatically by the Intrinsics using the time specified in the call to
XtOwnSelection or XtOwnSelectionIncremental.

To retrieve theSelectionRequestev ent that triggered theXtConvertSelectionProcprocedure,
useXtGetSelectionRequest.

XSelectionRequestEvent *XtGetSelectionRequest(w, selection, request_id)
Widgetw;
Atom selection;
XtRequestIdrequest_id;

w Specifies the widget that currently owns this selection. Must be of class Core or
any subclass thereof.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

XtGetSelectionRequestmay only be called from within anXtConvertSelectionProcprocedure
and returns a pointer to theSelectionRequestev ent that caused the conversion procedure to be
invoked. Request_idspecifies a unique id for the individual request in the case that multiple
incremental transfers are outstanding. For atomic transfers,request_idmust be specified as
NULL. If no SelectionRequestev ent is being processed for the specifiedwidget, selection, and
request_id, XtGetSelectionRequestreturns NULL.

191

X Toolkit Intrinsics X11 Release 6

The procedure pointer specified by the owner when it desires notification upon losing ownership
is of typeXtLoseSelectionProc.

typedef void (*XtLoseSelectionProc)(Widget, Atom*);
Widgetw;
Atom *selection;

w Specifies the widget that has lost selection ownership.

selection Specifies the atom naming the selection.

This procedure is called by the Intrinsics selection mechanism to inform the specified widget that
it has lost the given selection. Note that this procedure does not ask the widget to relinquish the
selection ownership; it is merely informative.

The procedure pointer specified by the owner when it desires notification of receipt of the data or
when it manages the storage containing the data is of typeXtSelectionDoneProc.

typedef void (*XtSelectionDoneProc)(Widget, Atom*, Atom*);
Widgetw;
Atom *selection;
Atom *target;

w Specifies the widget that owns the converted selection.

selection Specifies the atom naming the selection that was converted.

target Specifies the target type to which the conversion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner that
a selection requestor has successfully retrieved a selection value. If the selection owner has regis-
tered anXtSelectionDoneProc, it should expect it to be called once for each conversion that it
performs, after the converted value has been successfully transferred to the requestor. If the selec-
tion owner has registered anXtSelectionDoneProc, it also owns the storage containing the con-
verted selection value.

11.5.2.2. Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection data from the Intrinsics is
of typeXtSelectionCallbackProc.

typedef void (*XtSelectionCallbackProc)(Widget, XtPointer, Atom*, Atom*, XtPointer, unsigned long*, int*);
Widgetw;
XtPointerclient_data;
Atom *selection;
Atom *type;
XtPointervalue;
unsigned long *length;
int *format;

w Specifies the widget that requested the selection value.

client_data Specifies a value passed in by the widget when it requested the selection.

selection Specifies the name of the selection that was requested.

type Specifies the representation type of the selection value (for example,
XA_STRING). Note that it is not the target that was requested (which the client

192

X Toolkit Intrinsics X11 Release 6

must remember for itself) but the type that is used to represent the target. The
special symbolic constantXT_CONVERT_FAIL is used to indicate that the
selection conversion failed because the selection owner did not respond within
the Intrinsics selection timeout interval.

value Specifies a pointer to the selection value. The requesting client owns this storage
and is responsible for freeing it by callingXtFree when it is done with it.

length Specifies the number of elements invalue.

format Specifies the size in bits of the data in each element ofvalue.

This procedure is called by the Intrinsics selection mechanism to deliver the requested selection
to the requestor.

If the SelectionNotify ev ent returns a property ofNone, meaning the conversion has been
refused because there is no owner for the specified selection or the owner cannot convert the
selection to the requested target for any reason, the procedure is called with a value of NULL and
a length of zero.

To obtain the selection value in a single logical unit, useXtGetSelectionValueor
XtGetSelectionValues.

void XtGetSelectionValue(w, selection, target, callback, client_data, time)
Widgetw;
Atom selection;
Atom target;
XtSelectionCallbackProccallback;
XtPointerclient_data;
Time time;

w Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired; for example,XA_PRIMARY .

target Specifies the type of information needed about the selection.

callback Specifies the procedure to be called when the selection value has been obtained.
Note that this is how the selection value is communicated back to the client.

client_data Specifies additional data to be passed to the specified procedure when it is called.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuefunction requests the value of the selection converted to the target
type. The specified callback is called at some time afterXtGetSelectionValueis called, when
the selection data is received from the X server. It may be called before or afterXtGetSelection-
Value returns. For more information aboutselection, target, andtime, see Section 2.6 in the
Inter-Client Communication Conventions Manual.

193

X Toolkit Intrinsics X11 Release 6

void XtGetSelectionValues(w, selection, targets, count, callback, client_data, time)
Widgetw;
Atom selection;
Atom *targets;
int count;
XtSelectionCallbackProccallback;
XtPointer *client_data;
Time time;

w Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired (that is, primary or secondary).

targets Specifies the types of information needed about the selection.

count Specifies the length of thetargetsandclient_datalists.

callback Specifies the callback procedure to be called with each selection value obtained.
Note that this is how the selection values are communicated back to the client.

client_data Specifies a list of additional data values, one for each target type, that are passed
to the callback procedure when it is called for that target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuesfunction is similar to multiple calls toXtGetSelectionValueexcept
that it guarantees that no other client can assert ownership between requests and therefore that all
the conversions will refer to the same selection value. The callback is invoked once for each tar-
get value with the corresponding client data. For more information aboutselection, target, and
timesee Section 2.6 in theInter-Client Communication Conventions Manual.

11.5.2.3. Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in one piece, use
XtOwnSelection.

Boolean XtOwnSelection(w, selection, time, convert_proc, lose_selection, done_proc)
Widgetw;
Atom selection;
Time time;
XtConvertSelectionProcconvert_proc;
XtLoseSelectionProclose_selection;
XtSelectionDoneProcdone_proc;

w Specifies the widget that wishes to become the owner. Must be of class Core or
any subclass thereof.

selection Specifies the name of the selection (for example,XA_PRIMARY).

time Specifies the timestamp that indicates when the ownership request was initiated.
This should be the timestamp of the event that triggered ownership; the value
CurrentTime is not acceptable.

convert_proc Specifies the procedure to be called whenever a client requests the current value
of the selection.

194

X Toolkit Intrinsics X11 Release 6

lose_selection Specifies the procedure to be called whenever the widget has lost selection own-
ership, or NULL if the owner is not interested in being called back.

done_proc Specifies the procedure called after the requestor has received the selection value,
or NULL if the owner is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a widget wishes
to own a selection. It returnsTrue if the widget successfully becomes the owner andFalseoth-
erwise. The widget may fail to become the owner if some other widget has asserted ownership at
a time later than this widget. The widget can lose selection ownership either because some other
widget asserted later ownership of the selection or because the widget voluntarily gav e up owner-
ship of the selection. The lose_selection procedure is not called if the widget fails to obtain selec-
tion ownership in the first place.

If a done_proc is specified, the client owns the storage allocated for passing the value to the
Intrinsics. Ifdone_procis NULL, the convert_proc must allocate storage usingXtMalloc ,
XtRealloc, or XtCalloc , and the value specified is freed by the Intrinsics when the transfer is
complete.

Usually, a selection owner maintains ownership indefinitely until some other widget requests
ownership, at which time the Intrinsics selection mechanism informs the previous owner that it
has lost ownership of the selection. However, in response to some user actions (for example,
when a user deletes the information selected), the application may wish to explicitly inform the
Intrinsics that it no longer is to be the selection owner by usingXtDisownSelection.

void XtDisownSelection(w, selection, time)
Widgetw;
Atom selection;
Time time;

w Specifies the widget that wishes to relinquish ownership.

selection Specifies the atom naming the selection being given up.

time Specifies the timestamp that indicates when the request to relinquish selection
ownership was initiated.

The XtDisownSelectionfunction informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection,
either because it lost the selection or because it never had the selection to begin with,XtDis-
ownSelectiondoes nothing.

After a widget has calledXtDisownSelection, its convert procedure is not called even if a request
arrives later with a timestamp during the period that this widget owned the selection. However,
its done procedure is called if a conversion that started before the call toXtDisownSelectionfin-
ishes after the call toXtDisownSelection.

11.5.3. Using Incremental Transfers

When using the incremental interface, an owner may have to process more than one selection
request for the same selection, converted to the same target, at the same time. The incremental
functions take arequest_idargument, which is an identifier that is guaranteed to be unique among
all incremental requests that are active concurrently.

For example, consider the following:

195

X Toolkit Intrinsics X11 Release 6

• Upon receiving a request for the selection value, the owner sends the first segment.

• While waiting to be called to provide the next segment value but before sending it, the
owner receives another request from a different requestor for the same selection value.

• To distinguish between the requests, the owner uses the request_id value. This allows the
owner to distinguish between the first requestor, which is asking for the second segment,
and the second requestor, which is asking for the first segment.

11.5.3.1. Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection data in
multiple segments.

The procedure pointer specified by the incremental owner to supply the selection data to the
Intrinsics is of typeXtConvertSelectionIncrProc.

typedef XtPointer XtRequestId;

typedef Boolean (*XtConvertSelectionIncrProc)(Widget, Atom*, Atom*, Atom*, XtPointer*,
unsigned long*, int*, unsigned long*, XtPointer, XtRequestId*);

Widgetw;
Atom *selection;
Atom *target;
Atom *type_return;
XtPointer *value_return;
unsigned long *length_return;
int *format_return;
unsigned long *max_length;
XtPointerclient_data;
XtRequestId *request_id;

w Specifies the widget that currently owns this selection.

selection Specifies the atom that names the selection requested.

target Specifies the type of information required about the selection.

type_return Specifies a pointer to an atom into which the property type of the converted value
of the selection is to be stored.

value_return Specifies a pointer into which a pointer to the converted value of the selection is
to be stored. The selection owner is responsible for allocating this storage.

length_return Specifies a pointer into which the number of elements invalue_return, each of
size indicated byformat_return, is to be stored.

format_return Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored so that the server may byte-swap the data if necessary.

max_length Specifies the maximum number of bytes which may be transferred at any one
time.

client_data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

request_id Specifies an opaque identification for a specific request.

196

X Toolkit Intrinsics X11 Release 6

This procedure is called repeatedly by the Intrinsics selection mechanism to get the next incre-
mental chunk of data from a selection owner who has calledXtOwnSelectionIncremental. It
must returnTrue if the procedure has succeeded in converting the selection data orFalseother-
wise. On the first call with a particular request id, the owner must begin a new incremental trans-
fer for the requested selection and target. On subsequent calls with the same request id, the owner
may assume that the previously supplied value is no longer needed by the Intrinsics; that is, a
fixed transfer area may be allocated and returned invalue_returnfor each segment to be trans-
ferred. This procedure should store a non-NULL value invalue_returnand zero inlength_return
to indicate that the entire selection has been delivered. After returning this final segment, the
request id may be reused by the Intrinsics to begin a new transfer.

To retrieve theSelectionRequestev ent that triggered the selection conversion procedure, use
XtGetSelectionRequest, described in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires notification
upon no longer having ownership is of typeXtLoseSelectionIncrProc.

typedef void (*XtLoseSelectionIncrProc)(Widget, Atom*, XtPointer);
Widgetw;
Atom *selection;
XtPointerclient_data;

w Specifies the widget that has lost the selection ownership.

selection Specifies the atom that names the selection.

client_data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics to inform the selection owner that it
no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification of
receipt of the data or when it manages the storage containing the data is of type
XtSelectionDoneIncrProc.

typedef void (*XtSelectionDoneIncrProc)(Widget, Atom*, Atom*, XtRequestId*, XtPointer);
Widgetw;
Atom *selection;
Atom *target;
XtRequestId *request_id;
XtPointerclient_data;

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being transferred.

target Specifies the target type to which the conversion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specified the value passed in by the widget when it took ownership of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics after the requestor has retrieved the
final (zero-length) segment of the incremental transfer to indicate that the entire transfer is com-
plete. If this procedure is not specified, the Intrinsics will free only the final value returned by the
selection owner usingXtFree.

197

X Toolkit Intrinsics X11 Release 6

The procedure pointer specified by the incremental selection owner to notify it if a transfer should
be terminated prematurely is of typeXtCancelConvertSelectionProc.

typedef void (*XtCancelConvertSelectionProc)(Widget, Atom*, Atom*, XtRequestId*, XtPointer);
Widgetw;
Atom *selection;
Atom *target;
XtRequestId *request_id;
XtPointerclient_data;

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being transferred.

target Specifies the target type to which the conversion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

This procedure is called by the Intrinsics when it has been determined by means of a timeout or
other mechanism that any remaining segments of the selection no longer need to be transferred.
Upon receiving this callback, the selection request is considered complete and the owner can free
the memory and any other resources that have been allocated for the transfer.

11.5.3.2. Getting the Selection Value Incrementally

To obtain the value of the selection using incremental transfers, useXtGetSelectionValueIncre-
mental or XtGetSelectionValuesIncremental.

void XtGetSelectionValueIncremental(w, selection, target, selection_callback, client_data, time)
Widgetw;
Atom selection;
Atom target;
XtSelectionCallbackProcselection_callback;
XtPointerclient_data;
Time time;

w Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired.

target Specifies the type of information needed about the selection.

selection_callback
Specifies the callback procedure to be called to receive each data segment.

client_data Specifies client-specific data to be passed to the specified callback procedure
when it is invoked.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValueIncrementalfunction is similar toXtGetSelectionValueexcept that
the selection_callback procedure will be called repeatedly upon delivery of multiple segments of
the selection value. The end of the selection value is indicated whenselection_callbackis called
with a non-NULL value of length zero, which must still be freed by the client. If the transfer of

198

X Toolkit Intrinsics X11 Release 6

the selection is aborted in the middle of a transfer (for example, because to timeout), the selec-
tion_callback procedure is called with a type value equal to the symbolic constant
XT_CONVERT_FAIL so that the requestor can dispose of the partial selection value it has col-
lected up until that point. Upon receivingXT_CONVERT_FAIL , the requesting client must
determine for itself whether or not a partially completed data transfer is meaningful. For more
information aboutselection, target, andtime, see Section 2.6 in theInter-Client Communication
Conventions Manual.

void XtGetSelectionValuesIncremental(w, selection, targets, count, selection_callback, client_data, time)
Widgetw;
Atom selection;
Atom *targets;
int count;
XtSelectionCallbackProcselection_callback;
XtPointer *client_data;
Time time;

w Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired.

targets Specifies the types of information needed about the selection.

count Specifies the length of thetargetsandclient_datalists.

selection_callback
Specifies the callback procedure to be called to receive each selection value.

client_data Specifies a list of client data (one for each target type) values that are passed to
the callback procedure when it is invoked for the corresponding target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuesIncrementalfunction is similar toXtGetSelectionValueIncremen-
tal except that it takes a list of targets and client data.XtGetSelectionValuesIncrementalis
equivalent to callingXtGetSelectionValueIncrementalsuccessively for eachtarget/client_data
pair except thatXtGetSelectionValuesIncrementaldoes guarantee that all the conversions will
use the same selection value because the ownership of the selection cannot change in the middle
of the list, as would be possible when callingXtGetSelectionValueIncrementalrepeatedly. For
more information aboutselection, target, andtime, see Section 2.6 in theInter-Client Communi-
cation Conventions Manual.

11.5.3.3. Setting the Selection Owner for Incremental Transfers

To set the selection owner when using incremental transfers, useXtOwnSelectionIncremental.

199

X Toolkit Intrinsics X11 Release 6

Boolean XtOwnSelectionIncremental(w, selection, time, convert_callback, lose_callback,
done_callback, cancel_callback, client_data)

Widgetw;
Atom selection;
Time time;
XtConvertSelectionIncrProcconvert_callback;
XtLoseSelectionIncrProclose_callback;
XtSelectionDoneIncrProcdone_callback;
XtCancelConvertSelectionProccancel_callback;
XtPointerclient_data;

w Specifies the widget that wishes to become the owner. Must be of class Core
or any subclass thereof.

selection Specifies the atom that names the selection.

time Specifies the timestamp that indicates when the selection ownership request
was initiated. This should be the timestamp of the event that triggered own-
ership; the valueCurrentTime is not acceptable.

convert_callback Specifies the procedure to be called whenever the current value of the selec-
tion is requested.

lose_callback Specifies the procedure to be called whenever the widget has lost selection
ownership, or NULL if the owner is not interested in being notified.

done_callback Specifies the procedure called after the requestor has received the entire
selection, or NULL if the owner is not interested in being notified.

cancel_callback Specifies the callback procedure to be called when a selection request aborts
because a timeout expires, or NULL if the owner is not interested in being
notified.

client_data Specifies the argument to be passed to each of the callback procedures when
they are called.

The XtOwnSelectionIncremental procedure informs the Intrinsics incremental selection mecha-
nism that the specified widget wishes to own the selection. It returnsTrue if the specified widget
successfully becomes the selection owner orFalseotherwise. For more information aboutselec-
tion, target, andtime, see Section 2.6 in theInter-Client Communication Conventions Manual.

If a done_callback procedure is specified, the client owns the storage allocated for passing the
value to the Intrinsics. Ifdone_callbackis NULL, the convert_callback procedure must allocate
storage usingXtMalloc , XtRealloc, or XtCalloc , and the final value specified is freed by the
Intrinsics when the transfer is complete. After a selection transfer has started, only one of the
done_callback or cancel_callback procedures is invoked to indicate completion of the transfer.

The lose_callback procedure does not indicate completion of any in-progress transfers; it is
invoked at the time aSelectionClearev ent is dispatched regardless of any active transfers, which
are still expected to continue.

A widget that becomes the selection owner usingXtOwnSelectionIncremental may useXtDis-
ownSelectionto relinquish selection ownership.

11.5.4. Setting and Retrieving Selection Target Parameters

To specify target parameters for a selection request with a single target, use
XtSetSelectionParameters.

200

X Toolkit Intrinsics X11 Release 6

void XtSetSelectionParameters(requestor, selection, type, value, length, format)
Widgetrequestor;
Atom selection;
Atom type;
XtPointervalue;
unsigned longlength;
int format;

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the parameters are passed.

value Specifies a pointer to the parameters.

length Specifies the number of elements containing data invalue, each element of a size
indicated byformat.

format Specifies the size in bits of the data in the elements ofvalue.

The specified parameters are copied and stored in a new property of the specified type and format
on the requestor’s window. To initiate a selection request with a target and these parameters, a
subsequent call toXtGetSelectionValueor to XtGetSelectionValueIncrementalspecifying the
same requestor widget and selection atom will generate aConvertSelectionrequest referring to
the property containing the parameters. IfXtSetSelectionParametersis called more than once
with the same widget and selection without a call to specify a request, the most recently specified
parameters are used in the subsequent request.

The possible values offormatare 8, 16, or 32. If the format is 8, the elements ofvalueare
assumed to be sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target request with parameters for any of the multiple targets of the
selection request, precede individual calls toXtGetSelectionValueandXtGetSelectionValueIn-
cremental with corresponding individual calls toXtSetSelectionParameters, and enclose these
all within XtCreateSelectionRequestandXtSendSelectionRequest. XtGetSelectionValues
andXtGetSelectionValuesIncrementalcannot be used to make selection requests with parame-
terized targets.

To retrieve any target parameters needed to perform a selection conversion, the selection owner
calls XtGetSelectionParameters.

void XtGetSelectionParameters(owner, selection, request_id, type_return, value_return,
length_return, format_return)

Widgetowner;
Atom selection;
XtRequestIdrequest_id;
Atom *type_return;
XtPointer *value_return;
unsigned long *length_return;
int *format_return;

owner Specifies the widget that owns the specified selection.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

201

X Toolkit Intrinsics X11 Release 6

type_return Specifies a pointer to an atom in which the property type of the parameters are
stored.

value_return Specifies a pointer into which a pointer to the parameters are to be stored. A
NULL is stored if no parameters accompany the request.

length_return Specifies a pointer into which the number of data elements invalue_returnof
size indicated byformat_returnare stored.

format_return Specifies a pointer into which the size in bits of the parameter data in the ele-
ments ofvalueis stored.

XtGetSelectionParametermay only be called from within anXtConvertSelectionProcor from
within the first call to anXtConvertSelectionIncrProc with a new request_id.

11.5.5. Generating MULTIPLE Requests

To hav e the Intrinsics bundle multiple calls to make selection requests into a single request using
a MULTIPLE target, useXtCreateSelectionRequestandXtSendSelectionRequest.

void XtCreateSelectionRequest(requestor, selection)
Widgetrequestor;
Atom selection;

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired.

WhenXtCreateSelectionRequestis called, subsequent calls toXtGetSelectionValue,
XtGetSelectionValueIncremental, XtGetSelectionValuesand
XtGetSelectionValuesIncremental, with the requestor and selection as specified toXtCreateS-
electionRequestare bundled into a single selection request with multiple targets. The request is
made by callingXtSendSelectionRequest.

void XtSendSelectionRequest(requestor, selection, time)
Widgetrequestor;
Atom selection;
Time time;

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when the selection request was initiated.
The valueCurrentTime is not acceptable.

WhenXtSendSelectionRequestis called with a value ofrequestorandselectionmatching a pre-
vious call toXtCreateSelectionRequest, a selection request is sent to the selection owner. If a
single target request is queued, that request is made. If multiple targets are queued, they are bun-
dled into a single request with a target of MULTIPLE using the specified timestamp. As the val-
ues are returned, the callbacks specified inXtGetSelectionValue,
XtGetSelectionValueIncremental, XtGetSelectionValuesandXtGetSelectionValueIncre-
mental are invoked.

Multi-threaded applications should lock the application context before callingXtCreateSelec-
tionRequestand release the lock after callingXtSendSelectionRequestto ensure that the thread

202

X Toolkit Intrinsics X11 Release 6

assembling the request is safe from interference by another thread assembling a different request
naming the same widget and selection.

To relinquish the composition of a MULTIPLE request without sending it, use
XtCancelSelectionRequest.

void XtCancelSelectionRequest(requestor, selection)
Widgetrequestor;
Atom selection;

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired.

WhenXtCancelSelectionRequestis called, any requests queued since the last call toXtCreate-
SelectionRequestfor the same widget and selection are discarded and any resources reserved are
released. A subsequent call toXtSendSelectionRequestwill not result in any request being
made. Subsequent calls toXtGetSelectionValue, XtGetSelectionValues, XtGetSelectionVal-
ueIncremental or XtGetSelectionValuesIncrementalwill not be deferred.

11.5.6. Auxiliary Selection Properties

Certain uses of parameterized selections require clients to name other window properties within a
selection parameter. To permit reuse of temporary property names in these circumstances and
thereby reduce the number of unique atoms created in the server, the Intrinsics provides two inter-
faces for acquiring temporary property names.

To acquire a temporary property name atom for use in a selection request, the client may call
XtReservePropertyAtom.

Atom XtReservePropertyAtom(w)
Widgetw;

w Specifies the widget making a selection request.

XtReservePropertyAtom returns an atom that may be used as a property name during selection
requests involving the specified widget. As long as the atom remains reserved, it is unique with
respect to all other reserved atoms for the widget.

To return a temporary property name atom for reuse and to delete the property named by that
atom, useXtReleasePropertyAtom.

void XtReleasePropertyAtom(w, atom)
Widgetw;
Atom atom;

w Specifies the widget used to reserve the property name atom.

atom Specifies the property name atom returned byXtReservePropertyAtom that is
to be released for reuse.

XtReleasePropertyAtommarks the specified property name atom as no longer in use and
insures that any property having that name on the specified widget’s window is deleted. Ifatom
does not specify a value returned byXtReservePropertyAtom for the specified widget, the

203

X Toolkit Intrinsics X11 Release 6

results are undefined.

11.5.7. Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent call toXtDispatchEvent that contained a times-
tamp, useXtLastTimestampProcessed.

Time XtLastTimestampProcessed(display)
Display *display;

display Specifies an open display connection.

If no KeyPress, KeyRelease, ButtonPress, ButtonRelease, MotionNotify , EnterNotify ,
LeaveNotify, PropertyNotify , or SelectionClearev ent has yet been passed toXtDis-
patchEvent for the specified display,XtLastTimestampProcessedreturns zero.

11.5.8. Retrieving the Most Recent Event

To retrieve the event from the most recent call toXtDispatchEvent for a specific display, use
XtLastEventProcessed.

XEvent *XtLastEventProcessed(display)
Display *display;

display Specifies the display connection from which to retrieve the event.

Returns the last event passed toXtDispatchEvent for the specified display. Returns NULL if
there is no such event. The client must not modify the contents of the returned event.

11.6. Merging Exposure Events into a Region

The Intrinsics provide anXtAddExposureToRegion utility function that mergesExposeand
GraphicsExposeev ents into a region for clients to process at once rather than processing indi-
vidual rectangles. For further information about regions, see Section 16.5 inXlib − C Language
X Interface.

To mergeExposeandGraphicsExposeev ents into a region, useXtAddExposureToRegion.

void XtAddExposureToRegion(event, region)
XEvent *event;
Regionregion;

event Specifies a pointer to theExposeor GraphicsExposeev ent.

region Specifies the region object (as defined in <X11/Xutil.h >).

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure event and the specified region. Then it stores the results back inregion. If the event
argument is not anExposeor GraphicsExposeev ent,XtAddExposureToRegion returns with-
out an error and without modifyingregion.

This function is used by the exposure compression mechanism; see Section 7.9.3.

204

X Toolkit Intrinsics X11 Release 6

11.7. Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root window absolute coordinates,
useXtTranslateCoords.

void XtTranslateCoords(w, x, y, rootx_return, rooty_return)
Widgetw;
Positionx, y;
Position *rootx_return, *rooty_return;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

x
y Specify the widget-relative x and y coordinates.

rootx_return
rooty_return Return the root-relative x and y coordinates.

While XtTranslateCoords is similar to the XlibXTranslateCoordinates function, it does not
generate a server request because all the required information already is in the widget’s data
structures.

11.8. Translating a Window to a Widget

To translate a given window and display pointer into a widget instance, use
XtWindowToWidget .

Widget XtWindowToWidget(display, window)
Display *display;
Windowwindow;

display Specifies the display on which the window is defined.

window Specifies the drawable for which you want the widget.

If there is a realized widget whose window is the specified drawable on the specifieddisplay,
XtWindowToWidget returns that widget. If not and if the drawable has been associated with a
widget throughXtRegisterDrawable, XtWindowToWidget returns the widget associated with
the drawable. In other cases it returns NULL.

11.9. Handling Errors

The Intrinsics allow a client to register procedures that is called whenever a fatal or nonfatal error
occurs. These facilities are intended for both error reporting and logging and for error correction
or recovery.

Tw o levels of interface are provided:

• A high-level interface that takes an error name and class and retrieves the error message
text from an error resource database.

• A low-level interface that takes a simple string to display.

The high-level functions construct a string to pass to the lower-level interface. The strings may
be specified in application code and are overridden by the contents of an external system-wide
file, the ‘‘error database file’’. The location and name of this file is implementation dependent.

205

X Toolkit Intrinsics X11 Release 6

Note

The application-context-specific error handling is not implemented on many systems,
although the interfaces are always present. Most implementations will have just one
set of error handlers for all application contexts within a process. If they are set for
different application contexts, the ones registered last will prevail.

To obtain the error database (for example, to merge with an application- or widget-specific
database), useXtAppGetErrorDatabase .

XrmDatabase *XtAppGetErrorDatabase(app_context)
XtAppContextapp_context;

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database. The Intrinsics
do a lazy binding of the error database and do not merge in the database file until the first call to
XtAppGetErrorDatabaseText .

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D.

The high-level error and warning handler procedure pointers are of typeXtErrorMsgHandler .

typedef void (*XtErrorMsgHandler)(String, String, String, String, String*, Cardinal*);
Stringname;
Stringtype;
Stringclass;
Stringdefaultp;
String *params;
Cardinal *num_params;

name Specifies the name to be concatenated with the specified type to form the
resource name of the error message.

type Specifies the type to be concatenated with the name to form the resource name of
the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

params Specifies a pointer to a list of parameters to be substituted in the message.

num_params Specifies the number of entries inparams.

The specified name can be a general kind of error, like ‘‘invalidParameters’’ or ‘‘invalidWindow’’,
and the specified type gives extra information such as the name of the routine in which the error
was detected. Standardprintf notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warning by calling
XtAppGetErrorDatabaseText .

206

X Toolkit Intrinsics X11 Release 6

void XtAppGetErrorDatabaseText(app_context, name, type, class, default, buffer_return, nbytes, database)
XtAppContextapp_context;
Stringname, type, class;
Stringdefault;
Stringbuffer_return;
int nbytes;
XrmDatabasedatabase;

app_context Specifies the application context.

name
type Specify the name and type concatenated to form the resource name of the error

message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative database to be used, or NULL if the applica-
tion context’s error database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error database. To form the full
resource name and class when querying the database, thenameandtypeare concatenated with a
single ‘‘.’’ between them and theclassis concatenated with itself with a single ‘‘.’’ if it does not
already contain a ‘‘.’’.

To return the application name and class as passed toXtDisplayInitialize for a particular Dis-
play, useXtGetApplicationNameAndClass.

void XtGetApplicationNameAndClass(display, name_return, class_return)
Display* display;
String* name_return;
String* class_return;

display Specifies an open display connection that has been initialized with
XtDisplayInitialize .

name_return Returns the application name.

class_return Returns the application class.

XtGetApplicationNameAndClass returns the application name and class passed toXtDis-
playInitialize for the specified display. If the display was never initialized or has been closed,
the result is undefined. The returned strings are owned by the Intrinsics and must not be modified
or freed by the caller.

To register a procedure to be called on fatal error conditions, useXtAppSetErrorMsgHandler .

XtErrorMsgHandler XtAppSetErrorMsgHandler(app_context, msg_handler)
XtAppContextapp_context;
XtErrorMsgHandlermsg_handler;

207

X Toolkit Intrinsics X11 Release 6

app_context Specifies the application context.

msg_handler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorMsgHandler returns a pointer to the previously installed high-level fatal error
handler. The default high-level fatal error handler provided by the Intrinsics is named_XtDe-
faultErrorMsg and constructs a string from the error resource database and callsXtError . Fatal
error message handlers should not return. If one does, subsequent Intrinsics behavior is unde-
fined.

To call the high-level error handler, useXtAppErrorMsg .

void XtAppErrorMsg(app_context, name, type, class, default, params, num_params)
XtAppContextapp_context;
Stringname;
Stringtype;
Stringclass;
Stringdefault;
String *params;
Cardinal *num_params;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries inparams.

The Intrinsics internal errors all have class ‘‘XtToolkitError’’.

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarningMsgHandler .

XtErrorMsgHandler XtAppSetWarningMsgHandler(app_context, msg_handler)
XtAppContextapp_context;
XtErrorMsgHandlermsg_handler;

app_context Specifies the application context.

msg_handler Specifies the new nonfatal error procedure, which usually returns.

XtAppSetWarningMsgHandler returns a pointer to the previously installed high-level warning
handler. The default high-level warning handler provided by the Intrinsics is named_XtDefault-
WarningMsg and constructs a string from the error resource database and callsXtWarning .

To call the installed high-level warning handler, useXtAppWarningMsg .

208

X Toolkit Intrinsics X11 Release 6

void XtAppWarningMsg(app_context, name, type, class, default, params, num_params)
XtAppContextapp_context;
Stringname;
Stringtype;
Stringclass;
Stringdefault;
String *params;
Cardinal *num_params;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries inparams.

The Intrinsics internal warnings all have class ‘‘XtToolkitError’’.

The low-level error and warning handler procedure pointers are of typeXtErrorHandler .

typedef void (*XtErrorHandler)(String);
Stringmessage;

message Specifies the error message.

The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions, useXtAppSetErrorHandler .

XtErrorHandler XtAppSetErrorHandler(app_context, handler)
XtAppContextapp_context;
XtErrorHandlerhandler;

app_context Specifies the application context.

handler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorHandler returns a pointer to the previously installed low-level fatal error han-
dler. The default low-level error handler provided by the Intrinsics is_XtDefaultError . On
POSIX-based systems, it prints the message to standard error and terminates the application.
Fatal error message handlers should not return. If one does, subsequent Intrinsics behavior is
undefined.

To call the installed fatal error procedure, useXtAppError .

void XtAppError(app_context, message)
XtAppContextapp_context;
Stringmessage;

app_context Specifies the application context.

message Specifies the message to be reported.

Most programs should useXtAppErrorMsg , not XtAppError , to provide for customization and
internationalization of error messages.

209

X Toolkit Intrinsics X11 Release 6

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarningHandler .

XtErrorHandler XtAppSetWarningHandler(app_context, handler)
XtAppContextapp_context;
XtErrorHandlerhandler;

app_context Specifies the application context.

handler Specifies the new nonfatal error procedure, which usually returns.

XtAppSetWarningHandler returns a pointer to the previously installed low-level warning han-
dler. The default low-level warning handler provided by the Intrinsics is_XtDefaultWarning .
On POSIX-based systems, it prints the message to standard error and returns to the caller.

To call the installed nonfatal error procedure, useXtAppWarning .

void XtAppWarning(app_context, message)
XtAppContextapp_context;
Stringmessage;

app_context Specifies the application context.

message Specifies the nonfatal error message to be reported.

Most programs should useXtAppWarningMsg , not XtAppWarning , to provide for customiza-
tion and internationalization of warning messages.

11.10. Setting WM_COLORMAP_WINDOWS

A client may set the value of theWM_COLORMAP_WINDOWSproperty on a widget’s window by
calling XtSetWMColormapWindows .

void XtSetWMColormapWindows(widget, list, count)
Widgetwidget;
Widget* list;
Cardinalcount;

widget Specifies the widget on whose window theWM_COLORMAP_WINDOWSprop-
erty is stored. Must be of class Core or any subclass thereof.

list Specifies a list of widgets whose windows are potentially to be listed in the
WM_COLORMAP_WINDOWSproperty.

count Specifies the number of widgets inlist.

XtSetWMColormapWindows returns immediately ifwidgetis not realized or ifcountis 0.
Otherwise,XtSetWMColormapWindows constructs an ordered list of windows by examining
each widget inlist in turn and ignoring the widget if it is not realized, or adding the widget’s win-
dow to the window list if the widget is realized and if its colormap resource is different from the
colormap resources of all widgets whose windows are already on the window list.

Finally, XtSetWMColormapWindows stores the resulting window list in the
WM_COLORMAP_WINDOWSproperty on the specified widget’s window. Refer to Section 4.1.8
in theInter-Client Communication Conventions Manualfor details of the semantics of the
WM_COLORMAP_WINDOWSproperty.

210

X Toolkit Intrinsics X11 Release 6

11.11. Finding File Names

The Intrinsics provide procedures to look for a file by name, allowing string substitutions in a list
of file specifications. Tw o routines are provided for this:XtFindFile andXtResolvePathname.
XtFindFile uses an arbitrary set of client-specified substitutions, andXtResolvePathnameuses
a set of standard substitutions corresponding to theX/Open Portability Guidelanguage localiza-
tion conventions. Most applications should useXtResolvePathname.

A string substitution is defined by a list ofSubstitution entries.

typedef struct {
char match;
String substitution;

} SubstitutionRec, *Substitution;

File name evaluation is handled in an operating-system-dependent fashion by anXtFilePredicate
procedure.

typedef Boolean (*XtFilePredicate)(String);
Stringfilename;

filename Specifies a potential filename.

A file predicate procedure is called with a string that is potentially a file name. It should return
True if this string specifies a file that is appropriate for the intended use andFalseotherwise.

To search for a file using substitutions in a path list, useXtFindFile .

String XtFindFile(path, substitutions, num_substitutions, predicate)
Stringpath;
Substitutionsubstitutions;
Cardinalnum_substitutions;
XtFilePredicatepredicate;

path Specifies a path of file names, including substitution characters.

substitutions Specifies a list of substitutions to make into the path.

num_substitutionsSpecifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential file name, or NULL.

Thepathparameter specifies a string that consists of a series of potential file names delimited by
colons. Within each name, the percent character specifies a string substitution selected by the fol-
lowing character. The character sequence ‘‘%:’’ specifies an embedded colon that is not a delim-
iter; the sequence is replaced by a single colon. The character sequence ‘‘%%’’ specifies a per-
cent character that does not introduce a substitution; the sequence is replaced by a single percent
character. If a percent character is followed by any other character,XtFindFile looks through the
specifiedsubstitutionsfor that character in thematchfield and if found replaces the percent and
match characters with the string in the correspondingsubstitutionfield. A substitutionfield entry
of NULL is equivalent to a pointer to an empty string. If the operating system does not interpret
multiple embedded name separators in the path (i.e., ‘‘/’’ in POSIX) the same way as a single sep-
arator,XtFindFile will collapse multiple separators into a single one after performing all string
substitutions. Except for collapsing embedded separators, the contents of the string substitutions
are not interpreted byXtFindFile and may therefore contain any operating-system-dependent
characters, including additional name separators. Each resulting string is passed to the predicate
procedure until a string is found for which the procedure returnsTrue ; this string is the return

211

X Toolkit Intrinsics X11 Release 6

value forXtFindFile . If no string yields aTrue return from the predicate,XtFindFile returns
NULL.

If the predicateparameter is NULL, an internal procedure that checks if the file exists, is read-
able, and is not a directory is used.

It is the responsibility of the caller to free the returned string usingXtFree when it is no longer
needed.

To search for a file using standard substitutions in a path list, useXtResolvePathname.

String XtResolvePathname(display, type, filename, suffix, path, substitutions, num_substitutions, predicate)
Display *display;
Stringtype, filename, suffix, path;
Substitutionsubstitutions;
Cardinalnum_substitutions;
XtFilePredicatepredicate;

display Specifies the display to use to find the language for language substitutions.

type
filename
suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to make into the path, or NULL.

num_substitutionsSpecifies the number of entries insubstitutions.

predicate Specifies a procedure called to judge each potential file name, or NULL.

The substitutions specified byXtResolvePathnameare determined from the value of the lan-
guage string retrieved byXtDisplayInitialize for the specified display. To set the language for
all applications specify ‘‘*xnlLanguage:lang’’ in the resource database. The format and content
of the language string are implementation-defined. One suggested syntax is to compose the lan-
guage string of three parts; a ‘‘language part’’, a ‘‘territory part’’ and a ‘‘codeset part’’. The
manner in which this composition is accomplished is implementation-defined and the Intrinsics
make no interpretation of the parts other than to use them in substitutions as described below.

XtResolvePathnamecalls XtFindFile with the following substitutions in addition to any passed
by the caller and returns the value returned byXtFindFile :

%N The value of thefilenameparameter, or the application’s class name iffilenameis NULL.

%T The value of thetypeparameter.

%S The value of thesuffixparameter.

%L The language string associated with the specified display.

%l The language part of the display’s language string.

%t The territory part of the display’s language string.

%c The codeset part of the display’s language string.

%C The customization string retrieved from the resource database associated withdisplay.

%D The value of the implementation-specific default path.

If a path is passed toXtResolvePathname, it is passed along toXtFindFile . If the pathargu-
ment is NULL, the value of theXFILESEARCHPATH environment variable is passed to
XtFindFile . If XFILESEARCHPATH is not defined, an implementation-specific default path is

212

X Toolkit Intrinsics X11 Release 6

used which contains at least 6 entries. These entries must contain the following substitutions:

1. %C, %N, %S, %T, %L or %C, %N, %S, %T, %l, %t, %c
2. %C, %N, %S, %T, %l
3. %C, %N, %S, %T
4. %N, %S, %T, %L or %N, %S, %T, %l, %t, %c
5. %N, %S, %T, %l
6. %N, %S, %T

The order of these six entries within the path must be as given above. The order and use of sub-
stitutions within a given entry is implementation dependent. If the path begins with a colon, it is
preceded by %N%S. If the path includes two adjacent colons,%N%S is inserted between them.

Thetypeparameter is intended to be a category of files, usually being translated into a directory
in the pathname. Possible values might include ‘‘app-defaults’’, ‘‘help’’, and ‘‘bitmap’’.

Thesuffixparameter is intended to be appended to the file name. Possible values might include
‘‘.txt’’, ‘‘.dat’’, and ‘‘.bm’’.

A suggested value for the default path on POSIX-based systems is

/usr/lib/X11/%L/%T/%N%C%S:/usr/lib/X11/%l/%T/%N%C%S:\
/usr/lib/X11/%T/%N%C%S:/usr/lib/X11/%L/%T/%N%S:\
/usr/lib/X11/%l/%T/%N%S:/usr/lib/X11/%T/%N%S

Using this example, if the user has specified a language, it is used as a subdirectory of
/usr/lib/X11 that is searched for other files. If the desired file is not found there, the lookup is
tried again using just the language part of the specification. If the file is not there, it is looked for
in /usr/lib/X11. Thetypeparameter is used as a subdirectory of the language directory or of
/usr/lib/X11, andsuffixis appended to the file name.

The %D substitution allows the addition of path elements to the implementation-specific default
path, typically to allow additional directories to be searched without preventing resources in the
system directories from being found. For example, a user installing resource files under a direc-
tory called ‘‘ourdir’’ might setXFILESEARCHPATH to

%D:ourdir/%T/%N%C:ourdir/%T/%N

The customization string is obtained by querying the resource database currently associated with
the display (the database returned byXrmGetDatabase) for the resourceapplica-
tion_name.customization, classapplication_class.Customization whereapplication_nameand
application_classare the values returned byXtGetApplicationNameAndClass. If no value is
specified in the database, the empty string is used.

It is the responsibility of the caller to free the returned string usingXtFree when it is no longer
needed.

11.12. Hooks for External Agents

Applications may register functions which are called at a particular control points in the Intrin-
sics. These functions are intended to be used to provide notification of an ‘‘X Toolkit event’’, e.g.
widget creation, to an external agent, e.g. an interactive resource editor, drag-and-drop server, or
an aid for physically challenged users. The control points containing such registration hooks are
identified in a ‘‘hook registration’’ object.

213

X Toolkit Intrinsics X11 Release 6

To retrieve the hook registration widget, useXtHooksOfDisplay.

Widget XtHooksOfDisplay(display)
Display *display;

display Specifies the desired display.

The class of this object is a private, implementation-dependent, subclass ofObject. The hook
object has no parent. The resources of this object are the callback lists for hooks, and the read-
only resources for getting a list of parentless shells. All of the callback lists are initially empty.
When a display is closed the hook object associated with it is destroyed.

The following procedures can be called with the hook registration object as an argument:

XtAddCallback , XtAddCallbacks , XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks , XtHasCallbacks, XtCallCallbackList

XtClass, XtSuperclass, XtIsSubclass, XtCheckSubclass, XtIsObject , XtIsRectObj ,
XtIsWidget , XtIsComposite, XtIsConstraint , XtIsShell, XtIsOverrideShell ,
XtIsWMShell , XtIsVendorShell, XtIsTransientShell, XtIsToplevelShell,
XtIsApplicationShell , XtIsSessionShell

XtWidgetToApplicationContext

XtName, XtParent , XtDisplayOfObject , XtScreenOfObject

XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

11.12.1. Hook Object Resources

The resource names, classes, and representation types that are specified in the hook object
resource list are

Name Class Representation

XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called from:XtCreateWidget, XtCreateManagedWidget,
XtCreatePopupShell, XtAppCreateShell, and their corresponding varargs versions.

Thecall_dataparameter in a createHook callback may be cast to typeXtCreateHookData.

typedef struct {
String type;
Widget widget;
ArgList args;

214

X Toolkit Intrinsics X11 Release 6

Cardinal num_args;
} XtCreateHookDataRec, *XtCreateHookData;

Thetypeis set toXtHcreate, widgetis the newly created widget,argsandnum_argsare the
arguments passed to the create function. The callbacks are called before returning from the the
create function.

The XtNchangeHook callback list is called from:

XtSetValues, XtVaSetValues

XtManageChild , XtManageChildren , XtUnmanageChild, XtUnmanageChildren

XtRealizeWidget, XtUnrealizeWidget

XtAddCallback , XtRemoveCallback, XtAddCallbacks, XtRemoveCallbacks,
XtRemoveAllCallbacks

XtAugmentTranslations, XtOverrideTranslations , XtUninstallTranslations

XtSetKeyboardFocus, XtSetWMColormapWindows

XtSetMappedWhenManaged, XtMapWidget , XtUnmapWidget

XtPopup, XtPopupSpringLoaded, XtPopdown

Thecall_dataparameter in a changeHook callback may be cast to typeXtChangeHookData.

typedef struct {
String type;
Widget widget;
XtPointer event_data;
Cardinal num_event_data;

} XtChangeHookDataRec, *XtChangeHookData;

When the changeHook callbacks are called as a result of a call toXtSetValuesor
XtVaSetValues, typeis set toXtHsetValues, widgetis the new widget passed to the set_values
procedure, andevent_datamay be cast to typeXtChangeHookSetValuesData.

typedef struct {
Widget old, req;
ArgList args;
Cardinal num_args;

} XtChangeHookSetValuesDataRec, *XtChangeHookSetValuesData;

Theold, req, args, andnum_argsare the parameters passed to the set_values procedure. The call-
backs are called after the set_values and constraint set_values procedures have been called.

When the changeHook callbacks are called as a result of a call toXtManageChild or
XtManageChildren , typeis set toXtHmanageChildren, widgetis the parent,event_datamay
be cast to type WidgetList and is the list of children being managed, andnum_event_datais the
length of the widget list. The callbacks are called after the children have been managed.

When the changeHook callbacks are called as a result of a call toXtUnmanageChild or
XtUnmanageChildren, typeis set toXtHunmanageChildren, widgetis the parent,event_data
may be cast to type WidgetList and is a list of the children being unmanaged, and
num_event_datais the length of the widget list. The callbacks are called after the children have

215

X Toolkit Intrinsics X11 Release 6

been unmanaged.

The changeHook callbacks are called twice as a result of a call toXtChangeManagedSet, once
after unmanaging and again after managing. When the callbacks are called the first timetypeis
set toXtHunmanageSet, widgetis the parent,event_datamay be cast to type WidgetList and is
a list of the children being unmanaged, andnum_event_datais the length of the widget list.
When the callbacks are called the second time thetypeis set toXtHmanageSet, widgetis the
parent,event_datamay be cast to type WidgetList and is a list of the children being managed, and
num_event_datais the length of the widget list.

When the changeHook callbacks are called as a result of a call toXtRealizeWidget Thetypeis
set toXtHrealizeWidget andwidgetis the widget being realized. The callbacks are called after
the widget has been realized.

When the changeHook callbacks are called as a result of a call toXtUnrealizeWidget thetypeis
set toXtHunrealizeWidget andwidgetis the widget being unrealized. The callbacks are called
after the widget has been unrealized.

When the changeHook callbacks are called as a result of a call toXtAddCallback , typeis set to
XtHaddCallback , widgetis the widget to which the callback is being added, andevent_data
may be cast to type String and is the name of the callback being added. The callbacks are called
after the callback has been added to the widget.

When the changeHook callbacks are called as a result of a call toXtAddCallbacks thetypeis set
to XtHaddCallbacks, widgetis the widget to which the callbacks are being added, and
event_datamay be cast to type String and is the name of the callbacks being added. The call-
backs are called after the callbacks have been added to the widget.

When the changeHook callbacks are called as a result of a call toXtRemoveCallback thetypeis
set toXtHremoveCallback, widgetis the widget from which the callback is being removed, and
event_datamay be cast to type String and is the name of the callback being removed. The call-
backs are called after the callback has been removed from the widget.

When the changeHook callbacks are called as a result of a call toXtRemoveCallbacks, thetype
is set toXtHremoveCallbacks, widgetis the widget from which the callbacks are being
removed, andevent_datamay be cast to type String and is the name of the callbacks being
removed. The callbacks are called after the callbacks have been removed from the widget.

When the changeHook callbacks are called as a result of a call toXtRemoveAllCallbacks the
typeis set toXtHremoveAllCallbacks andwidgetis the widget from which the callbacks are
being removed. The callbacks are called after the callbacks have been removed from the widget.

When the changeHook callbacks are called as a result of a call toXtAugmentTranslations the
typeis set toXtHaugmentTranslations andwidgetis the widget whose translations are being
modified. The callbacks are called after the widget’s translations have been modified.

When the changeHook callbacks are called as a result of a call toXtOverrideTranslations the
typeis set toXtHoverrideTranslations andwidgetis the widget whose translations are being
modified. The callbacks are called after the widget’s translations have been modified.

When the changeHook callbacks are called as a result of a call toXtUninstallTranslations The
typeis XtHuninstallTranslations andwidgetis the widget whose translations are being unin-
stalled. The callbacks are called after the widget’s translations have been uninstalled.

When the changeHook callbacks are called as a result of a call toXtSetKeyboardFocusthetype
is set toXtHsetKeyboardFocusandevent_datamay be cast to type Widget and is the value of
the descendant argument passed toXtSetKeyboardFocus. The callbacks are called before return-
ing fromXtSetKeyboardFocus.

216

X Toolkit Intrinsics X11 Release 6

When the changeHook callbacks are called as a result of a call to
XtSetWMColormapWindows , typeis set toXtHsetWMColormapWindows , event_datamay
be cast to type WidgetList and is the value of the list argument passed toXtSetWMColormap-
Windows, andnum_event_datais the length of the list. The callbacks are called before returning
from XtSetWMColormapWindows.

When the changeHook callbacks are called as a result of a call toXtSetMappedWhenManaged
typeis set toXtHsetMappedWhenManagedandevent_datamay be cast to type Boolean and is
the value of the mapped_when_managed argument passed toXtSetMappedWhenManaged.
The callbacks are called after setting the widget’s mapped_when_managed field and before realiz-
ing or unrealizing the widget.

When the changeHook callbacks are called as a result of a call toXtMapWidget type is set to
XtHmapWidget andwidgetis the widget being mapped. The callbacks are called after mapping
the widget.

When the changeHook callbacks are called as a result of a call toXtUnmapWidget type is set to
XtHunmapWidget andwidgetis the widget being unmapped. The callbacks are called after
unmapping the widget.

When the changeHook callbacks are called as a result of a call toXtPopup, typeis set to
XtHpopup , widgetis the widget being popped up, andevent_datamay be cast to type
XtGrabKind and is the value of the grab_kind argument passed toXtPopup. The callbacks are
called before returning fromXtPopup.

When the changeHook callbacks are called as a result of a call toXtPopupSpringLoaded, type
is set toXtHpopupSpringLoaded andwidgetis the widget being popped up. The callbacks are
called before returning fromXtPopupSpringLoaded.

When the changeHook callbacks are called as a result of a call toXtPopdown, typeis set to
XtHpopdown andwidgetis the widget being popped down. The callbacks are called before
returning fromXtPopdown.

A widget set which exports interfaces which change application state without employing the
Intrinsics library should invoke the change hook itself. This is done by:

XtCallCallbacks(XtHooksOfDisplay(dpy), XtNchangeHook, call_data);

The XtNconfigureHook callback list is called any time the Intrinsics move, resize, or configure a
widget, and whenXtResizeWindow is called.

Thecall_dataparameter may be cast to typeXtConfigureHookData.

typedef struct {
String type;
Widget widget;
XtGeometryMask changeMask;
XWindowChanges changes;

} XtConfigureHookDataRec, *XtConfigureHookData;

When the configureHook callbacks are called thetypeis XtHconfigure , widgetis the widget
being configured,changeMaskandchangesreflect the changes made to the widget. The callbacks
are called after changes have been made to the widget.

217

X Toolkit Intrinsics X11 Release 6

The XtNgeometryHook callback list is called fromXtMakeGeometryRequestandXtMakeRe-
sizeRequestonce before and once after geometry negotiation occurs.

Thecall_dataparameter may be cast to typeXtGeometryHookData.

typedef struct {
String type;
Widget widget;
XtWidgetGeometry* request;
XtWidgetGeometry* reply;
XtGeometryResult result;

} XtGeometryHookDataRec, *XtGeometryHookData;

When the geometryHook callbacks are called prior to geometry negotiation,typeis
XtHpreGeometry , widgetis the widget for which the request is being made, andrequestis the
requested geometry. When the geometryHook callbacks are called after geometry negotiation,
typeis XtHpostGeometry, widgetis the widget for which the request was made,requestis the
requested geometry,reply is the resulting geometry granted, andresult is the value returned from
the geometry negotiation.

The XtNdestroyHook callback list is called when a widget is destroyed. Thecall_data parameter
may be cast to typeXtDestroyHookData.

typedef struct {
String type;
Widget widget;

} XtDestroyHookDataRec, *XtDestroyHookData;

When the destroyHook callbacks are called as a result of a call toXtDestroyWidget, typeis
XtHdestroy andwidgetis the widget being destroyed. The callbacks are called upon completion
of phase one destroy for a widget.

The XtNshells and XtnumShells are read-only resources which report a list of all parentless shell
widgets associated with a display.

Clients who use these hooks must exercise caution in calling Intrinsics functions in order to avoid
recursion.

11.12.2. Querying Open Displays

To retrieve a list of the Displays associated with an application context, useXtGetDisplays.

void XtGetDisplays(app_context, dpy_return, num_dpy_return)
XtAppContextapp_context;
Display ***dpy_return;
Cardinal *num_dpy_return;

app_context Specifies the application context.

dpy_return Returns a list of open Display connections in the specified application
context.

218

X Toolkit Intrinsics X11 Release 6

num_dpy_return Returns the count of open Display connections indpy_return.

XtGetDisplaysmay be used by an external agent to query the list of open displays that belong to
an application context. To free the list of displays, useXtFree.

219

X Toolkit Intrinsics X11 Release 6

Chapter 12

Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget hierarchy, there are
actually three classes above it. These classes are Object, RectObj, (Rectangle Object) and
(unnamed) and members of these classes are referred to generically asobjects. By convention,
the termwidgetrefers only to objects that are a subclass of Core, and the termnonwidgetrefers to
objects that are not a subclass of Core. In the preceding portion of this specification, the interface
descriptions indicate explicitly whether the genericwidgetargument is restricted to particular
subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5 summarize the permissible classes of the
arguments to, and return values from, each of the Intrinsics routines.

12.1. Data Structures

In order not to conflict with previous widget code, the data structures used by nonwidget objects
do not follow all the same conventions as those for widgets. In particular, the class records are
not composed of parts but instead are complete data structures with filler for the widget fields
they do not use. This allows the static class initializers for existing widgets to remain unchanged.

12.2. Object Objects

The Object object contains the definitions of fields common to all objects. It encapsulates the
mechanisms for resource management. All objects and widgets are members of subclasses of
Object, which is defined by theObjectClassPart andObjectPart structures.

12.2.1. ObjectClassPart Structure

The common fields for all object classes are defined in theObjectClassPart structure. All fields
have the same purpose, function, and restrictions as the corresponding fields inCoreClassPart;
fields whose names are objn for some integern are not used for Object, but exist to pad the data
structure so that it matches Core’s class record. The class record initialization must fill all objn
fields with NULL or zero as appropriate to the type.

typedef struct _ObjectClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc obj1;

220

X Toolkit Intrinsics X11 Release 6

XtPointer obj2;
Cardinal obj3;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean obj4;
XtEnum obj5;
Boolean obj6;
Boolean obj7;
XtWidgetProc destroy;
XtProc obj8;
XtProc obj9;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtProc obj10;
XtArgsProc get_values_hook;
XtProc obj11;
XtVersionType version;
XtPointer callback_private;
String obj12;
XtProc obj13;
XtProc obj14;
XtPointer extension;

} ObjectClassPart;

The extension record defined forObjectClassPart with a record_typeequal toNULLQUARK is
ObjectClassExtensionRec.

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtAllocateProc allocate; See Section 2.5.5.
XtDeallocateProc deallocate; See Section 2.8.4.

} ObjectClassExtensionRec, *ObjectClassExtension;

The prototypicalObjectClassconsists of just theObjectClassPart.

typedef struct _ObjectClassRec {
ObjectClassPart object_class;

} ObjectClassRec, *ObjectClass;

The predefined class record and pointer forObjectClassRecare

In IntrinsicP.h :

extern ObjectClassRec objectClassRec;

In Intrinsic.h :

221

X Toolkit Intrinsics X11 Release 6

extern WidgetClass objectClass;

The opaque typesObject andObjectClassand the opaque variableobjectClassare defined for
generic actions on objects. The symbolic constant for theObjectClassExtensionversion identi-
fier is XtObjectExtensionVersion (see Section 1.6.12).Intrinsic.h uses an incomplete structure
definition to ensure that the compiler catches attempts to access private data:

typedef struct _ObjectClassRec* ObjectClass;

12.2.2. ObjectPart Structure

The common fields for all object instances are defined in theObjectPart structure. All fields
have the same meaning as the corresponding fields inCorePart.

typedef struct _ObjectPart {
Widget self;
WidgetClass widget_class;
Widget parent;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;

} ObjectPart;

All object instances have the Object fields as their first component. The prototypical typeObject
is defined with only this set of fields. Various routines can cast object pointers, as needed, to spe-
cific object types.

In IntrinsicP.h :

typedef struct _ObjectRec {
ObjectPart object;

} ObjectRec, *Object;

In Intrinsic.h :

typedef struct _ObjectRec *Object;

12.2.3. Object Resources

The resource names, classes, and representation types specified in theobjectClassRecresource
list are

Name Class Representation

XtNdestroyCallback XtCCallback XtRCallback

222

X Toolkit Intrinsics X11 Release 6

12.2.4. ObjectPart Default Values

All fields in ObjectPart have the same default values as the corresponding fields inCorePart.

12.2.5. Object Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures may beobjectClassor any subclass:

XtInitializeWidgetClass , XtCreateWidget, XtVaCreateWidget

XtIsSubclass, XtCheckSubclass

XtGetResourceList, XtGetConstraintResourceList

The Widget arguments to the following procedures may be of class Object or any subclass:

XtCreateWidget, XtVaCreateWidget

XtAddCallback , XtAddCallbacks , XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks , XtHasCallbacks, XtCallCallbackList

XtClass, XtSuperclass, XtIsSubclass, XtCheckSubclass, XtIsObject , XtIsRectObj ,
XtIsWidget , XtIsComposite, XtIsConstraint , XtIsShell, XtIsOverrideShell ,
XtIsWMShell , XtIsVendorShell, XtIsTransientShell, XtIsToplevelShell,
XtIsApplicationShell , XtIsSessionShell

XtIsManaged, XtIsSensitive
(both will returnFalse if argument is not a subclass of RectObj)

XtIsRealized
(returns the state of the nearest windowed ancestor if class of argument is not a subclass of
Core)

XtWidgetToApplicationContext

XtDestroyWidget

XtParent , XtDisplayOfObject , XtScreenOfObject, XtWindowOfObject

XtSetKeyboardFocus(descendant)

XtGetGC , XtReleaseGC

XtName

XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

XtGetSubresources, XtGetApplicationResources, XtVaGetSubresources, XtVaGe-
tApplicationResources

XtConvert , XtConvertAndStore

The return value of the following procedures will be of class Object or a subclass:

XtCreateWidget, XtVaCreateWidget

XtParent

XtNameToWidget

223

X Toolkit Intrinsics X11 Release 6

The return value of the following procedures will beobjectClassor a subclass:

XtClass, XtSuperclass

12.2.6. Use of Objects

The Object class exists to enable programmers to use the Intrinsics’ classing and resource-
handling mechanisms for things smaller and simpler than widgets. Objects make obsolete many
common uses of subresources as described in sections 9.4, 9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must set theaccepts_objects
field in theCompositeClassExtensionstructure toTrue . XtCreateWidget will otherwise gen-
erate an error message on an attempt to create a nonwidget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept nonwidget chil-
dren, and the class of any nonwidget child must not berectObjClass or any subclass. The intent
of allowing Object children of ApplicationShell and SessionShell is to provide clients a simple
mechanism for establishing the resource-naming root of an object hierarchy.

12.3. Rectangle Objects

The class of rectangle objects is a subclass of Object that represents rectangular areas. It encap-
sulates the mechanisms for geometry management, and is called RectObj to avoid conflict with
the Xlib Rectangledata type.

12.3.1. RectObjClassPart Structure

As with theObjectClassPart structure, all fields in theRectObjClassPart structure have the
same purpose and function as the corresponding fields inCoreClassPart; fields whose names are
rectn for some integern are not used for RectObj but exist to pad the data structure so that it
matches Core’s class record. The class record initialization must fill all rectn fields with NULL
or zero as appropriate to the type.

typedef struct _RectObjClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc rect1;
XtPointer rect2;
Cardinal rect3;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean rect4;
XtEnum rect5;
Boolean rect6;

224

X Toolkit Intrinsics X11 Release 6

Boolean rect7;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtProc rect9;
XtVersionType version;
XtPointer callback_private;
String rect10;
XtGeometryHandler query_geometry;
XtProc rect11;
XtPointer extension ;

} RectObjClassPart;

The RectObj class record consists of just theRectObjClassPart.

typedef struct _RectObjClassRec {
RectObjClassPart rect_class;

} RectObjClassRec, *RectObjClass;

The predefined class record and pointer forRectObjClassRecare

In Intrinsic.h :

extern RectObjClassRec rectObjClassRec;

In Intrinsic.h :

extern WidgetClass rectObjClass;

The opaque typesRectObj andRectObjClassand the opaque variablerectObjClass are
defined for generic actions on objects whose class is RectObj or a subclass of RectObj.Intrin-
sic.h uses an incomplete structure definition to ensure that the compiler catches attempts to access
private data:

typedef struct _RectObjClassRec* RectObjClass;

12.3.2. RectObjPart Structure

In addition to theObjectPart fields, RectObj objects have the following fields defined in the
RectObjPart structure. All fields have the same meaning as the corresponding field in
CorePart.

typedef struct _RectObjPart {
Position x, y;
Dimension width, height;
Dimension border_width;
Boolean managed;
Boolean sensitive;
Boolean ancestor_sensitive;

225

X Toolkit Intrinsics X11 Release 6

} RectObjPart;

RectObj objects have the RectObj fields immediately following the Object fields.

typedef struct _RectObjRec {
ObjectPart object;
RectObjPart rectangle;

} RectObjRec, *RectObj;

In Intrinsic.h :

typedef struct _RectObjRec* RectObj;

12.3.3. RectObj Resources

The resource names, classes, and representation types that are specified in therectObjClassRec
resource list are

Name Class Representation

XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitive XtCSensitive XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

12.3.4. RectObjPart Default Values

All fields in RectObjPart have the same default values as the corresponding fields inCorePart.

12.3.5. Widget Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures may berectObjClass or any subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget

The Widget arguments to the following procedures may be of class RectObj or any subclass:

XtConfigureWidget , XtMoveWidget , XtResizeWidget

XtMakeGeometryRequest, XtMakeResizeRequest

XtManageChildren , XtManageChild , XtUnmanageChildren, XtUnmanageChild,
XtChangeManagedSet

XtQueryGeometry

XtSetSensitive

226

X Toolkit Intrinsics X11 Release 6

XtTranslateCoords

The return value of the following procedures will be of class RectObj or a subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget

12.3.6. Use of Rectangle Objects

RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets) that do not
use windows and do not have features often unused in simple widgets. This can save memory
resources both in the server and in applications but requires additional support code in the parent.
In the following discussion,rectobjrefers only to objects whose class is RectObj or a subclass of
RectObj but not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must set theaccepts_objectsfield
in theCompositeClassExtensionextension structure toTrue . XtCreateWidget or XtCreate-
ManagedWidget will otherwise generate an error if called to create a nonwidget child. If the
composite widget supports only children of class RectObj or a subclass (i.e., not of the general
Object class), it must declare an insert_child procedure and check the subclass of each new child
in that procedure. None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than the parent of a
widget. The parent must request and handle input events that occur for the gadget and is respon-
sible for making sure that when it receives an exposure event the gadget children get drawn cor-
rectly. Rectobj children may have expose procedures specified in their class records, but the par-
ent is free to ignore them, instead drawing the contents of the child itself. This can potentially
save graphics context switching. The precise contents of the exposure event and region argu-
ments to the RectObj expose procedure are not specified by the Intrinsics; a particular rectangle
object is free to define the coordinate system origin (self-relative or parent-relative) and whether
or not the rectangle or region is assumed to have been intersected with the visible region of the
object.

In general, it is expected that a composite widget that accepts nonwidget children will document
those children it is able to handle, since a gadget cannot be viewed as a completely self-contained
entity, as can a widget. Since a particular composite widget class is usually designed to handle
nonwidget children of only a limited set of classes, it should check the classes of newly added
children in its insert_child procedure to make sure that it can deal with them.

The Intrinsics will clear areas of a parent window obscured by rectobj children, causing exposure
ev ents, under the following circumstances:

• A rectobj child is managed or unmanaged.

• In a call toXtSetValueson a rectobj child, one or more of the set_values procedures
returnsTrue .

• In a call toXtConfigureWidget on a rectobj child, areas will be cleared corresponding to
both the old and the new child geometries, including the border, if the geometry changes.

• In a call toXtMoveWidget on a rectobj child, areas will be cleared corresponding to both
the old and the new child geometries, including the border, if the geometry changes.

• In a call toXtResizeWidgeton a rectobj child, an single rectangle will be cleared corre-
sponding to the larger of the old and the new child geometries if they are different.

227

X Toolkit Intrinsics X11 Release 6

• In a call toXtMakeGeometryRequest(or XtMakeResizeRequest) on a rectobj child
with XtQueryOnly not set, if the manager returnsXtGeometryYes, two rectangles will be
cleared corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children are
free to define any semantics desired if the child geometries overlap, including making this an
error.

When a rectobj is playing the role of a widget, developers must be reminded to avoid making
assumptions about the object passed in the Widget argument to a callback procedure.

12.4. Undeclared Class

The Intrinsics define an unnamed class between RectObj and Core for possible future use by the
X Consortium. The only assumptions that may be made about the unnamed class are

• thecore_class.superclassfield of coreWidgetClassReccontains a pointer to the unnamed
class record.

• a pointer to the unnamed class record when dereferenced as anObjectClasswill contain a
pointer torectObjClassRecin its object_class.superclassfield.

Except for the above, the contents of the class record for this class and the result of an attempt to
subclass or to create a widget of this unnamed class are undefined.

12.5. Widget Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

XtCreatePopupShell, XtVaCreatePopupShell, XtAppCreateShell,
XtVaAppCreateShell, XtOpenApplication , XtVaOpenApplication

The Widget arguments to the following procedures must be of class Core or any subclass:

XtCreatePopupShell, XtVaCreatePopupShell

XtAddEventHandler , XtAddRawEventHandler , XtRemoveEventHandler,
XtRemoveRawEventHandler, XtInsertEventHandler , XtInsertRawEventHandler
XtInsertEventTypeHandler , XtRemoveEventTypeHandler,

XtRegisterDrawable XtDispatchEventToWidget

XtAddGrab , XtRemoveGrab, XtGrabKey , XtGrabKeyboard , XtUngrabKey ,
XtUngrabKeyboard , XtGrabButton , XtGrabPointer , XtUngrabButton ,
XtUngrabPointer

XtBuildEventMask

XtCreateWindow , XtDisplay , XtScreen, XtWindow

XtNameToWidget

XtGetSelectionValue, XtGetSelectionValues, XtOwnSelection, XtDisownSelection,
XtOwnSelectionIncremental, XtGetSelectionValueIncremental,
XtGetSelectionValuesIncremental,
XtGetSelectionRequest

228

X Toolkit Intrinsics X11 Release 6

XtInstallAccelerators , XtInstallAllAccelerators (both destination and source)

XtAugmentTranslations, XtOverrideTranslations , XtUninstallTranslations ,
XtCallActionProc

XtMapWidget , XtUnmapWidget

XtRealizeWidget, XtUnrealizeWidget

XtSetMappedWhenManaged

XtCallAcceptFocus, XtSetKeyboardFocus(subtree)

XtResizeWindow

XtSetWMColormapWindows

The Widget arguments to the following procedures must be of class Composite or any subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget

The Widget arguments to the following procedures must be of a subclass of Shell:

XtPopdown, XtCallbackPopdown, XtPopup, XtCallbackNone,
XtCallbackNonexclusive, XtCallbackExclusive, XtPopupSpringLoaded

The return value of the following procedure will be of class Core or a subclass:

XtWindowToWidget

The return value of the following procedures will be of a subclass of Shell :

XtAppCreateShell, XtVaAppCreateShell, XtAppInitialize , XtVaAppInitialize ,
XtCreatePopupShell, XtVaCreatePopupShell

229

X Toolkit Intrinsics X11 Release 6

Chapter 13

Evolution of The Intrinsics

The interfaces described by this specification have undergone several sets of revisions in the
course of adoption as an X Consortium standard specification. Having now been adopted by the
Consortium as a standard part of the X Window System, it is expected that this and future revi-
sions will retain backward compatibility in the sense that fully conforming implementations of
these specifications may be produced that provide source compatibility with widgets and applica-
tions written to previous Consortium standard revisions.

The Intrinsics do not place any special requirement on widget programmers to retain source or
binary compatibility for their widgets as they evolve, but several conventions have been estab-
lished to assist those developers who want to provide such compatibility.

In particular, widget programmers may wish to conform to the convention described in Section
1.6.12 when defining class extension records.

13.1. Determining Specification Revision Level

Widget and application developers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revision levels of these specifications
but that take advantage of newer features added in later revisions may use the symbolic macro
XtSpecificationRelease.

#define XtSpecificationRelease 6

As the symbolXtSpecificationReleasewas new to Release 4, widgets and applications desiring
to build against earlier implementations should test for the presence of this symbol and assume
only Release 3 interfaces if the definition is not present.

13.2. Release 3 to Release 4 Compatibility

At the data structure level, Release 4 retains binary compatibility with Release 3 (the first X Con-
sortium standard release) for all data structures exceptWMShellPart, TopLevelShellPart, and
TransientShellPart. Release 4 changed the argument type to most procedures that now take
arguments of typeXtPointer and structure members that are now of typeXtPointer in order to
avoid potential ANSI C conformance problems. It is expected that most implementations will be
binary compatible with the previous definition.

Tw o fields inCoreClassPartwere changed fromBoolean to XtEnum to allow implementations
additional freedom in specifying the representations of each. This change should require no
source modification.

13.2.1. Additional Arguments

Arguments were added to the procedure definitions forXtInitProc , XtSetValuesFunc, and
XtEventHandler to provide more information and to allow event handlers to abort further

230

X Toolkit Intrinsics X11 Release 6

dispatching of the current event (caution is advised!). The added arguments toXtInitProc and
XtSetValuesFuncmake the initialize_hook and set_values_hook methods obsolete, but the
hooks have been retained for those widgets that used them in Release 3.

13.2.2. set_values_almost Procedures

The use of the arguments by a set_values_almost procedure was poorly described in Release 3
and was inconsistent with other conventions.

The current specification for the manner in which a set_values_almost procedure returns informa-
tion to the Intrinsics is not compatible with the Release 3 specification, and all widget implemen-
tations should verify that any set_values_almost procedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, so it is
expected that the impact of this specification change is small.

13.2.3. Query Geometry

A composite widget layout routine that callsXtQueryGeometry is now expected to store the
complete new geometry in the intended structure; previously the specification said ‘‘store the
changes it intends to make’’. Only by storing the complete geometry does the child have any way
to know what other parts of the geometry may still be flexible. Existing widgets should not be
affected by this, except to take advantage of the new information.

13.2.4. unrealizeCallback Callback List

In order to provide a mechanism for widgets to be notified when they become unrealized through
a call toXtUnrealizeWidget, the callback list name ‘‘unrealizeCallback’’ has been defined by
the Intrinsics. A widget class that requires notification on unrealize may declare a callback list
resource by this name. No class is required to declare this resource, but any class that did so in a
prior revision may find it necessary to modify the resource name if it does not wish to use the new
semantics.

13.2.5. Subclasses of WMShell

The formal adoption of theInter-Client Communication Conventions Manualas an X Consortium
standard has meant the addition of four fields toWMShellPart and one field to
TopLevelShellPart. In deference to some widget libraries that had developed their own addi-
tional conventions to provide binary compatibility, these five new fields were added at the end of
the respective data structures.

To provide more convenience for TransientShells, a field was added to the previously empty
TransientShellPart. On some architectures the size of the part structure will not have changed
as a result of this.

Any widget implementation whose class is a subclass of TopLevelShell or TransientShell must at
minimum be recompiled with the new data structure declarations. BecauseWMShellPart no
longer contains a contiguousXSizeHints data structure, a subclass that expected to do a single
structure assignment of anXSizeHints structure to thesize_hintsfield of WMShellPart must be
revised, though the old fields remain at the same positions withinWMShellPart .

231

X Toolkit Intrinsics X11 Release 6

13.2.6. Resource Type Converters

A new interface declaration for resource type converters was defined to provide more information
to converters, to support conversion cache cleanup with resource reference counting, and to allow
additional procedures to be declared to free resources. The old interfaces remain (in the compati-
bility section) and a new set of procedures was defined that work only with the new type con-
verter interface.

In the now obsolete old type converter interface, converters are reminded that they must return the
size of the converted value as well as its address. The example indicated this, but the description
of XtConverter was incomplete.

13.2.7. KeySym Case Conversion Procedure

The specification for theXtCaseProc function type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a
pointer to the display connection), and corrects the argument type of the source KeySym parame-
ter. No known implementation of the Intrinsics implemented the previously documented inter-
face.

13.2.8. Nonwidget Objects

Formal support for nonwidget objects is new to Release 4. A prototype implementation was
latent in at least one Release 3 implementation of the Intrinsics, but the specification has changed
somewhat. The most significant change is the requirement for a composite widget to declare the
CompositeClassExtensionrecord with theaccepts_objectsfield set toTrue in order to permit a
client to create a nonwidget child.

The addition of this extension field ensures that composite widgets written under Release 3 will
not encounter unexpected errors if an application attempts to create a nonwidget child. In Release
4 there is no requirement that all composite widgets implement the extra functionality required to
manage windowless children, so theaccept_objectsfield allows a composite widget to declare
that it is not prepared to do so.

13.3. Release 4 to Release 5 Compatibility

At the data structure level, Release 5 retains complete binary compatibility with release 4. The
specification of theObjectPart , RectObjPart , CorePart, CompositePart, ShellPart,
WMShellPart , TopLevelShellPart, andApplicationShellPart instance records was made less
strict to permit implementations to add internal fields to these structures. Any implementation
that chooses to do so would, of course, force a recompilation. The Xlib specification forXrm-
Value andXrmOptionDescRecwas updated to use a new type,XPointer , for theaddrand
valuefields respectively, to avoid ANSI C conformance problems. The definition ofXPointer is
binary compatible with the previous implementation.

13.3.1. baseTranslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit application developers to
specify translation tables in application defaults files while still giving end users the ability to
augment or override individual event sequences. This change will affect only those applications

232

X Toolkit Intrinsics X11 Release 6

that wish to take advantage of the new functionality, or those widgets that may have previously
defined a resource named ‘‘baseTranslations’’.

Applications wishing to take advantage of the new functionality would change their application
defaults file, e.g., from

app.widget.translations:value

to

app.widget.baseTranslations:value

If it is important to the application to preserve complete compatibility of the defaults file between
different versions of the application running under Release 4 and Release 5, the full translations
can be replicated in both the ‘‘translations’’ and the ‘‘baseTranslations’’ resource.

13.3.2. Resource File Search Path

The current specification allows implementations greater flexibility in defining the directory struc-
ture used to hold the application class and per-user application defaults files. Previous specifica-
tions required the substitution strings to appear in the default path in a certain order, preventing
sites from collecting all the files for a specific application together in one directory. The Release
5 specification allows the default path to specify the substitution strings in any order within a sin-
gle path entry. Users will need to pay close attention to the documentation for the specific imple-
mentation to know where to find these files and how to specify their ownXFILESEARCH-
PATH andXUSERFILESEARCHPATH values when overriding the system defaults.

13.3.3. Customization Resource

XtResolvePathnamesupports a new substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specified categories. The primary motivation for
this addition was separate monochrome and color application class defaults files. The substitution
value is obtained by querying the current resource database for the application resource name
‘‘customization’’, class ‘‘Customization’’. Any application that previously used this resource
name and class will need to be aware of the possibly conflicting semantics.

13.3.4. Per-Screen Resource Database

To allow a user to specify separate preferences for each screen of a display, a per-screen resource
specification string has been added and multiple resource databases are created; one for each
screen. This will affect any application that modified the (formerly unique) resource database
associated with the display subsequent to the Intrinsics database initialization. Such applications
will need to be aware of the particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantially in the description of the process
by which the resource database(s) is initialized, the net effect is the same as in prior releases with
the exception of the added per-screen resource specification and the new customization substitu-
tion string inXtResolvePathname.

233

X Toolkit Intrinsics X11 Release 6

13.3.5. Internationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an application in a
single locale. In adding support for internationalization to the Intrinsics the restrictions of this
model have been followed. In particular, the new Intrinsics interfaces are designed to not pre-
clude an application from using other alternatives. For this reason, no Intrinsics routine makes a
call to establish the locale. However, a convenience routine to establish the locale at initialize
time has been provided, in the form of a default procedure that must be explicitly installed if the
application desires ANSI C locale behavior.

As many objects in X, particularly resource databases, now inherit the global locale when they are
created, applications wishing to use the ANSI C locale model should use the new functionXtSet-
LanguageProcto do so.

The internationalization additions also define event filters as a part of the Xlib Input Method spec-
ifications. The Intrinsics enable the use of event filters through additions toXtDispatchEvent.
Applications that may not be dispatching all events throughXtDispatchEvent should be
reviewed in the context of this new input method mechanism.

In order to permit internationalization of error messages the name and path of the error database
file is now allowed to be implementation dependent. No adequate standard mechanism has yet
been suggested to allow the Intrinsics to locate the database from localization information sup-
plied by the client.

The previous specification for the syntax of the language string specified byxnlLanguage has
been dropped to avoid potential conflicts with other standards. The language string syntax is now
implementation-defined. The example syntax cited is consistent with the previous specification.

13.3.6. Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to allow the resource
manager to avoid copying certain string constants. The Intrinsics specification was updated to
explicitly require the Objectclass_name, resource_name, resource_class, resource_type,
default_typein resource tables, Coreactions stringfield, and Constraintresource_name,
resource_class, resource_type, anddefault_typeresource fields to be permanently allocated. This
explicit requirement is expected to affect only applications that may create and destroy classes on
the fly.

13.3.7. Arguments to Existing Functions

Theargsargument toXtAppInitialize , XtVaAppInitialize , XtOpenDisplay,
XtDisplayInitialize , andXtInitialize were changed fromCardinal * to int* to conform to pre-
existing convention and avoid otherwise annoying typecasting in ANSI C environments.

13.4. Release 5 to Release 6 Compatibility

At the data structure level, Release 6 retains binary compatibility with Release 5 for all data struc-
tures exceptWMShellPart . Three resources were added to the specification. The known imple-
mentations had unused space in the data structure, therefore on some architectures and implemen-
tations, the size of the part structure will not have changed as a result of this.

234

X Toolkit Intrinsics X11 Release 6

13.4.1. Widget Internals

Tw o new widget methods for instance allocation and deallocation were added to the Object class.
These new methods allow widgets to be treated as C++ objects in the C++ environment, when an
appropriate allocation method is specified or inherited by the widget class.

The textual descriptions of the processes of widget creation and widget destruction have been
edited to provide clarification to widget writers. Widgets writers may have reason to rely on the
specific order of the stages of widget creation and destruction; with that motivation, the specifica-
tion now more exactly describes the process.

As a convenience, an interface to locate a widget class extension record on a linked list,
XtGetClassExtension, has been added.

A new option to allow bundled changes to the managed set of a Composite widget is introduced
in the Composite class extension record. Widgets which define a change_managed procedure
which can accomodate additions and deletions to the managed set of children in a single invoca-
tion should set allows_change_managed_set toTrue in the extension record.

The wording of the process followed byXtUnmanageChildren has changed slightly to better
handle changes to the managed set during phase 2 destroy processing.

A new exposure event compression flag,XtExposeNoRegion, was added. Many widgets specify
exposure compression, but either ignore the actual damage region passed to the core expose pro-
cedure or use only the cumulative bounding box data available in the event. Widgets with expose
procedures which do not make use of exact exposure region information can indicate that the
Intrinsics need not compute the region.

13.4.2. General Application Development

XtOpenApplication is a new convenience procedure to initialize the toolkit, create an applica-
tion context, open an X display connection, and create the root of the widget instance tree. It is
identical to the interface it replaces,XtAppInitialize , in all respects except that it takes an addi-
tional argument specifying the widget class of the root shell to create. This interface is now the
recommended one so that clients may easily become session participants. The old convenience
procedures appear in the compatibility section.

The toolkit initialization functionXtToolkitInitialize may be called multiple times without
penalty.

In order to optimize changes in geometry to a set of geometry-managed children, a new interface
XtChangeManagedSet, has been added.

13.4.3. Communication with Window and Session Managers

The revision of theInter-Client Communication Conventions Manualas an X Consortium stan-
dard has resulted in the addition of three fields to the specification ofWMShellPart . These are
urgency, client_leader, andwindow_role.

The adoption of theX Session Management Protocolas an X Consortium standard has resulted in
the addition of a new shell widget,SessionShelland an accompanying subclass verification inter-
faceXtIsSessionShell. This widget provides support for communication between an application
and a session manager, as well as a window manager. In order to preserve compatibility with
existing subclasses ofApplicationShell, theApplicationShell was subclassed to create the new
widget class. The session protocol requires a modal response to certain checkpointing operations
by participating applications. TheSessionShellstructures the application’s notification of and

235

X Toolkit Intrinsics X11 Release 6

responses to messages from the session manager by use of various callback lists and by use of the
new interfacesXtSessionGetTokenandXtSessionReturnToken. There is also a new command
line argument, -xtsessionID, which facilitates the session manager in restarting applications based
on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widgets in <X11/Shell.h> are
now listed in appendix E. The addition of a new symbol for theWMShell wait_for_wmresource
was made to bring the external symbol and the string it represents into agreement. The actual
resource name string inWMShell has not changed. The resource representation type of the
XtNwinGravity resource of theWMShell was changed to XtRGravity in order to register a type
converter so that window gravity resource values could be specified by name.

13.4.4. Geometry Management

A clarification to the specification was made to indicate that geometry requests may include cur-
rent values along with the requested changes.

13.4.5. Event Management

In R6, support is provided for registering selectors and event handlers for events generated by X
protocol extensions, and for dispatching those events to the appropriate widget. The new event
handler registration interfaces areXtInsertEventTypeHandler and
XtRemoveEventTypeHandler. Since the mechanism to indicate selection of extension events is
specific to the extension being used, the Intrinsics introducesXtRegisterExtensionSelector
which allows the application to select for the events of interest. In order to change the dispatch-
ing algorithm to accommodate extension events as well as core X protocol events, the Intrinsics
ev ent dispatcher may now be replaced or enveloped by the application with
XtSetEventDispatcher. The dispatcher may wish to callXtGetKeyboardFocusWidget to
determine the widget with the current Intrinsics keyboard focus. A dispatcher, after determining
the destination widget, may useXtDispatchEventToWidget to cause the event to be dispatched
to the event handlers registered by a specific widget.

To permit the dispatching of events for non-widget drawables, such as pixmaps which are not
associated with a widget’s window,XtRegisterDrawable andXtUnregisterDrawable have
been added to the library. A related update was made to the description ofXtWindowToWidget .

The library is now thread-safe, allowing one thread at a time to enter the library and protecting
global data as necessary from concurrent use. Threaded toolkit applications are supported by the
new interfacesXtToolkitThreadInitialize , XtAppLock , XtAppUnlock , XtAppSetExitFlag ,
andXtAppGetExitFlag . Widget writers may also useXtProcessLockandXtProcessUnlock.

Safe handling of POSIX signals and other asynchronous notifications is now provided by use of
XtAppAddSignal , XtNoticeSignal, andXtRemoveSignal.

The application can receive notification of an impending block in the Intrinsics event manager by
registering interest throughXtAppAddBlockHook andXtRemoveBlockHook.

XtLastEventProcessedreturns the most recent event passed toXtDispatchEvent for a specified
display.

13.4.6. Resource Management

Resource converters are registered by the Intrinsics for window gravity, and for three new
resource types associated with session participation: RestartStyle, CommandArgArray and

236

X Toolkit Intrinsics X11 Release 6

DirectoryString.

The file search path syntax has been extended to make it easier to prepend and append to the
default search path, which controls resource database construction, by using the new substitution
string, %D.

13.4.7. Translation Management

The default key translator now recognizes the NumLock modifier. If NumLock is on and the sec-
ond keysym is a keypad keysym (a standard keysym named with a ‘‘KP’’ prefix or a vendor-
specific keysym in the hexadecimal range 0x11000000 to 0x1100FFFF), then the default key
translator will use the first keysym if Shift and/or ShiftLock is on, and will use the second keysym
if neither is on. Otherwise, it will ignore NumLock and apply the normal protocol semantics.

13.4.8. Selections

The targets of selection requests may be parameterized, as described by the revisedInter-Client
Communication Conventions Manual. When such requests are made,XtSetSelectionParame-
ters is used by the requestor to specify the target parameters, andXtGetSelectionParametersis
used by the selection owner to retrieve the parameters. When a parameterized target is specified
in the context of a bundled request for multiple targets,XtCreateSelectionRequest, XtCancelS-
electionRequestandXtSendSelectionRequestare used to envelope the assembly of the request.
When the parameters themselves are the names of properties, the Intrinsics provides support for
the economical use of property atom names; seeXtReservePropertyAtom and
XtReleasePropertyAtom.

13.4.9. External Agent Hooks

External agent hooks were added for the benefit of applications which instrument other applica-
tions for purposes of accessibility, testing, and customization. The external agent and the applica-
tion communicate by a shared protocol which is transparent to the application. Development of
one such protocol is occurring in the Consortium’sx-agentworking group for eventual review as
a Consortium standard. The hook callbacks permit the external agent to register interest in groups
or classes of toolkit activity, and to be notified of the type and details of the activity as it occurs.
The new interfaces related to this effort areXtHooksOfDisplay, which returns the hook registra-
tion widget, andXtGetDisplays, which returns a list of the X displays associated with an appli-
cation context.

237

X Toolkit Intrinsics X11 Release 6

Appendix A

Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications.

The format of resource files is defined byXlib − C Language X Interfaceand is reproduced here
for convenience only.

The format of a resource specification is

ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>
Comment = ‘‘!’’ {<any character except null or newline>}
IncludeFile = ‘‘#’’ WhiteSpace ‘‘include’’ WhiteSpace FileName WhiteSpace
FileName = <valid filename for operating system>
ResourceSpec = WhiteSpace ResourceName WhiteSpace ‘‘:’’ WhiteSpace Value
ResourceName = [Binding] {Component Binding} ComponentName
Binding = ‘‘.’’ | ‘‘*’’
WhiteSpace = {<space> | <horizontal tab>}
Component = ‘‘?’’ | ComponentName
ComponentName = NameChar {NameChar}
NameChar = ‘‘a’’-‘‘z’’ | ‘‘A’’-‘‘Z’’ | ‘‘0’’-‘‘9’’ | ‘‘_’’ | ‘‘-’’
Value = {<any character except null or unescaped newline>}

Elements separated by vertical bar (|) are alternatives. Curly braces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is
optional. Quotes (‘‘...’’) are used around literal characters.

If the last character on a line is a backslash (\), that line is assumed to continue on the next line.

To allow a Value to begin with whitespace, the two-character sequence ‘‘\space’’ (backslash fol-
lowed by space) is recognized and replaced by a space character, and the two-character sequence
‘‘\ tab’’ (backslash followed by horizontal tab) is recognized and replaced by a horizontal tab
character.

To allow a Value to contain embedded newline characters, the two-character sequence ‘‘\ n’’ is
recognized and replaced by a newline character. To allow a Value to be broken across multiple
lines in a text file, the two-character sequence ‘‘\newline’’ (backslash followed by newline) is rec-
ognized and removed from the value.

To allow a Value to contain arbitrary character codes, the four-character sequence ‘‘\nnn’’, where
eachn is a digit character in the range of ‘‘0’’−‘‘7’’, is recognized and replaced with a single byte
that contains the octal value specified by the sequence. Finally, the two-character sequence ‘‘\\’’
is recognized and replaced with a single backslash.

238

X Toolkit Intrinsics X11 Release 6

Appendix B

Translation Table Syntax

Notation

Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or ‘‘a’’
{ a } Means zero or more occurrences of ‘‘a’’
(a | b) Means either ‘‘a’’ or ‘‘b’’
\\n Is the newline character

All terminals are enclosed in double quotation marks (‘‘ ’’). Informal descriptions are enclosed in
angle brackets (< >).

Syntax

The syntax of a translation table is

translationTable = [directive] { production }
directive = (‘‘#replace’’ | ‘‘#override’’ | ‘‘#augment’’) ‘‘\\n’’
production = lhs ‘‘:’’ rhs ‘‘\\n’’
lhs = (event | keyseq) { ‘‘,’’ (ev ent | keyseq) }
keyseq = ‘‘"’’ keychar {keychar} ‘‘"’’
keychar = [‘‘ˆ’’ | ‘‘$’’ | ‘‘\\’’] <ISO Latin 1 character>
ev ent = [modifier_list] ‘‘<’’event_type‘‘>’’ [‘‘(’’ count[‘‘+’’] ‘‘)’’] {detail}
modifier_list = ([‘‘!’’] [‘‘:’’] {modifier}) | ‘‘None’’
modifier = [‘‘˜’’] modifier_name
count = (‘‘1’’ | ‘‘2’’ | ‘‘3’’ | ‘‘4’’ | ...)
modifier_name = ‘‘@’’ <keysym> | <see ModifierNames table below>
ev ent_type = <see Event Types table below>
detail = <event specific details>
rhs = { name ‘‘(’’ [params] ‘‘)’’ }
name = namechar { namechar }
namechar = { ‘‘a’’-‘‘z’’ | ‘‘A’’-‘‘Z’’ | ‘‘0’’-‘‘9’’ | ‘‘_’’ | ‘‘-’’ }
params = string {‘‘,’’ string}
string = quoted_string | unquoted_string
quoted_string = ‘‘"’’ {<Latin 1 character> | escape_char} [‘‘\\\\’’] ‘‘"’’
escape_char = ‘‘\\"’’
unquoted_string = {<Latin 1 character except space, tab, ‘‘,’’, ‘‘\\n’’, ‘‘)’’>}

Theparamsfield is parsed into a list ofString values that will be passed to the named action pro-
cedure. Aquoted stringmay contain an embedded quotation mark if the quotation mark is pre-
ceded by a single backslash (\). The three-character sequence ‘‘\\"’’ is interpreted as ‘‘single
backslash followed by end-of-string’’.

239

X Toolkit Intrinsics X11 Release 6

Modifier Names

The modifier field is used to specify standard X keyboard and button modifier mask bits. Modi-
fiers are legal on event typesKeyPress, KeyRelease, ButtonPress, ButtonRelease,
MotionNotify , EnterNotify , LeaveNotify, and their abbreviations. An error is generated when
a translation table that contains modifiers for any other events is parsed.

• If the modifier list has no entries and is not ‘‘None’’, it means ‘‘don’t care’’ on all modi-
fiers.

• If an exclamation point (!) is specified at the beginning of the modifier list, it means that the
listed modifiers must be in the correct state and no other modifiers can be asserted.

• If any modifiers are specified and an exclamation point (!) is not specified, it means that the
listed modifiers must be in the correct state and ‘‘don’t care’’ about any other modifiers.

• If a modifier is preceded by a tilde (˜), it means that that modifier must not be asserted.

• If ‘‘None’’ is specified, it means no modifiers can be asserted.

• If a colon (:) is specified at the beginning of the modifier list, it directs the Intrinsics to
apply any standard modifiers in the event to map the event keycode into a KeySym. The
default standard modifiers are Shift and Lock, with the interpretation as defined inX Win-
dow System Protocol, Section 5. The resulting KeySym must exactly match the specified
Ke ySym, and the nonstandard modifiers in the event must match the modifier list. For
example, ‘‘:<Key>a’’ is distinct from ‘‘:<Key>A’’, and ‘‘:Shift<Key>A’’ is distinct from
‘‘:<Key>A’’.

• If both an exclamation point (!) and a colon (:) are specified at the beginning of the modifier
list, it means that the listed modifiers must be in the correct state and that no other modi-
fiers except the standard modifiers can be asserted. Any standard modifiers in the event are
applied as for colon (:) above.

• If a colon (:) is not specified, no standard modifiers are applied. Then, for example,
‘‘<Key>A’’ and ‘‘<Key>a’’ are equivalent.

In key sequences, a circumflex (ˆ) is an abbreviation for the Control modifier, a dollar sign ($) is
an abbreviation for Meta, and a backslash (\) can be used to quote any character, in particular a
double quote ("), a circumflex (ˆ), a dollar sign ($), and another backslash (\). Briefly:

No Modifiers: None <event> detail
Any Modifiers: <event> detail
Only these Modifiers: ! mod1 mod2 <event> detail
These modifiers and any others: mod1 mod2 <event> detail

The use of ‘‘None’’ for a modifier list is identical to the use of an exclamation point with no mod-
ifers.

Modifier Abbreviation Meaning

Ctrl c Control modifier bit
Shift s Shift modifier bit
Lock l Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key modifier
Super su Super key modifier

240

X Toolkit Intrinsics X11 Release 6

Modifier Abbreviation Meaning

Alt a Alt key modifier
Mod1 Mod1 modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Button1 Button1 modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
None No modifiers
Any Any modifier combination

A key modifier is any modifier bit one of whose corresponding KeyCodes contains the corre-
sponding left or right KeySym. For example, ‘‘m’’ or ‘‘Meta’’ means any modifier bit mapping to
a KeyCode whose KeySym list contains XK_Meta_L or XK_Meta_R. Note that this interpreta-
tion is for each display, not global or even for each application context. The Control, Shift, and
Lock modifier names refer explicitly to the corresponding modifier bits; there is no additional
interpretation of KeySyms for these modifiers.

Because it is possible to associate arbitrary KeySyms with modifiers, the set of key modifiers is
extensible. The ‘‘@’’ <keysym> syntax means any modifier bit whose corresponding KeyCode
contains the specified KeySym name.

A modifier_list/KeySym combination in a translation matches a modifiers/KeyCode combination
in an event in the following ways:

1. If a colon (:) is used, the Intrinsics call the display’sXtKeyProc with the KeyCode and
modifiers. To match, (modifiers& ˜modifiers_return) must equalmodifier_list, and
keysym_returnmust equal the given KeySym.

2. If (:) is not used, the Intrinsics mask off all don’t-care bits from the modifiers. This value
must be equal tomodifier_list. Then, for each possible combination of don’t-care modifiers
in the modifier list, the Intrinsics call the display’sXtKeyProc with the KeyCode and that
combination ORed with the cared-about modifier bits from the event.Ke ysym_returnmust
match the KeySym in the translation.

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib symbolic event type
names, the following event type synonyms are defined:

Type Meaning

Ke y KeyPress
Ke yDown KeyPress
Ke yUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease

241

X Toolkit Intrinsics X11 Release 6

Type Meaning

Motion MotionNotify
PtrMoved MotionNotify
MouseMoved MotionNotify
Enter EnterNotify
EnterWindow EnterNotify
Leave LeaveNotify
LeaveWindow LeaveNotify
FocusIn FocusIn
FocusOut FocusOut
Ke ymap KeymapNotify
Expose Expose
GrExp GraphicsExpose
NoExp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

The supported abbreviations are:

Abbreviation Event Type Including

Ctrl with Control modifierKeyPress
Meta with Meta modifierKeyPress
Shift with Shift modifierKeyPress
Btn1Down with Button1 detailButtonPress
Btn1Up with Button1 detailButtonRelease
Btn2Down with Button2 detailButtonPress
Btn2Up with Button2 detailButtonRelease
Btn3Down with Button3 detailButtonPress

242

X Toolkit Intrinsics X11 Release 6

Abbreviation Event Type Including

Btn3Up with Button3 detailButtonRelease
Btn4Down with Button4 detailButtonPress
Btn4Up with Button4 detailButtonRelease
Btn5Down with Button5 detailButtonPress
Btn5Up with Button5 detailButtonRelease
BtnMotion with any button modifierMotionNotify
Btn1Motion with Button1 modifierMotionNotify
Btn2Motion with Button2 modifierMotionNotify
Btn3Motion with Button3 modifierMotionNotify
Btn4Motion with Button4 modifierMotionNotify
Btn5Motion with Button5 modifierMotionNotify

The detail field is event-specific and normally corresponds to the detail field of the corresponding
ev ent as described byX Window System Protocol, Section 11. The detail field is supported for the
following event types:

Event Event Field

Ke yPress KeySym from eventdetail (keycode)
Ke yRelease KeySym from eventdetail (keycode)
ButtonPress button from eventdetail
ButtonRelease button from eventdetail
MotionNotify eventdetail
EnterNotify eventmode
LeaveNotify eventmode
FocusIn eventmode
FocusOut eventmode
PropertyNotify atom
SelectionClear selection
SelectionRequest selection
SelectionNotify selection
ClientMessage type
MappingNotify request

If the event type isKeyPressor KeyRelease, the detail field specifies a KeySym name in stan-
dard format which is matched against the event as described above, for example, <Key>A.

For thePropertyNotify , SelectionClear, SelectionRequest, SelectionNotify andClientMes-
sageev ents the detail field is specified as an atom name; for example, <Mes-
sage>WM_PROT OCOLS. For theMotionNotify , EnterNotify , LeaveNotify, FocusIn, Focu-
sOut andMappingNotify ev ents, either the symbolic constants as defined byX Window System
Protocol, Section 11, or the numeric values may be specified.

If no detail field is specified, then any value in the event detail is accepted as a match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal number pre-
fixed with ‘‘0x’’ or ‘‘0X’’, an octal number prefixed with ‘‘0’’ or a decimal number. A Ke ySym

243

X Toolkit Intrinsics X11 Release 6

expressed as a single digit is interpreted as the corresponding Latin 1 KeySym, for example, ‘‘0’’
is the KeySym XK_0. Other single character KeySyms are treated as literal constants from Latin
1, for example, ‘‘!’’ is treated as 0x21. Standard KeySym names are as defined in
<X11/keysymdef.h> with the ‘‘XK_’’ prefix removed.

Canonical Representation

Every translation table has a unique, canonical text representation. This representation is passed
to a widget’sdisplay_acceleratorprocedure to describe the accelerators installed on that widget.
The canonical representation of a translation table is (see also ‘‘Syntax’’)

translationTable = { production }
production = lhs ‘‘:’’ rhs ‘‘\\n’’
lhs = ev ent { ‘‘,’’ event }
ev ent = [modifier_list] ‘‘<’’event_type‘‘>’’ [‘‘(’’ count[‘‘+’’] ‘‘)’’] {detail}
modifier_list = [‘‘!’’] [‘‘:’’] {modifier}
modifier = [‘‘˜’’] modifier_name
count = (‘‘1’’ | ‘‘2’’ | ‘‘3’’ | ‘‘4’’ | ...)
modifier_name = ‘‘@’’ <keysym> | <see canonical modifier names below>
ev ent_type = <see canonical event types below>
detail = <event specific details>
rhs = { name ‘‘(’’ [params] ‘‘)’’ }
name = namechar { namechar }
namechar = { ‘‘a’’-‘‘z’’ | ‘‘A’’-‘‘Z’’ | ‘‘0’’-‘‘9’’ | ‘‘_’’ | ‘‘-’’ }
params = string {‘‘,’’ string}
string = quoted_string
quoted_string = ‘‘"’’ {<Latin 1 character> | escape_char} [‘‘\\\\’’] ‘‘"’’
escape_char = ‘‘\\"’’

The canonical modifier names are

Ctrl Mod1 Button1
Shift Mod2 Button2
Lock Mod3 Button3

Mod4 Button4
Mod5 Button5

The canonical event types are

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify FocusIn
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisibilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest

244

X Toolkit Intrinsics X11 Release 6

CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage

Examples

• Always put more specific events in the table before more general ones:

Shift <Btn1Down> : twas()\n\
<Btn1Down> : brillig()

• For double-click on Button1 Up with Shift, use this specification:

Shift<Btn1Up>(2) : and()

This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down>,Shift<Btn1Up> : and()

• For double-click on Button1 Down with Shift, use this specification:

Shift<Btn1Down>(2) : the()

This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down> : the()

• Mouse motion is always discarded when it occurs between events in a table where no
motion event is specified:

<Btn1Down>,<Btn1Up> : slithy()

This is taken, even if the pointer moves a bit between the down and up events. Similarly,
any motion event specified in a translation matches any number of motion events. If the
motion event causes an action procedure to be invoked, the procedure is invoked after each
motion event.

• If an event sequence consists of a sequence of events that is also a noninitial subsequence
of another translation, it is not taken if it occurs in the context of the longer sequence. This
occurs mostly in sequences like the following:

<Btn1Down>,<Btn1Up> : toves()\n\
<Btn1Up> : did()

The second translation is taken only if the button release is not preceded by a button press
or if there are intervening events between the press and the release. Be particularly aware
of this when using the repeat notation, above, with buttons and keys, because their expan-
sion includes additional events; and when specifying motion events, because they are
implicitly included between any two other events. In particular, pointer motion and double-
click translations cannot coexist in the same translation table.

245

X Toolkit Intrinsics X11 Release 6

• For single click on Button1 Up with Shift and Meta, use this specification:

Shift Meta <Btn1Down>, Shift Meta<Btn1Up>: gyre()

• For multiple clicks greater or equal to a minimum number, a plus sign (+) may be appended
to the final (rightmost) count in an event sequence. The actions will be invoked on the
count-th click and each subsequent one arriving within the multi-click time interval. For
example:

Shift <Btn1Up>(2+) : and()

• To indicateEnterNotify with any modifiers, use this specification:

<Enter> : gimble()

• To indicateEnterNotify with no modifiers, use this specification:

None <Enter> : in()

• To indicateEnterNotify with Button1 Down and Button2 Up and ‘‘don’t care’’ about the
other modifiers, use this specification:

Button1 ˜Button2 <Enter> : the()

• To indicateEnterNotify with Button1 down and Button2 down exclusively, use this speci-
fication:

! Button1 Button2 <Enter> : wabe()

You do not need to use a tilde (˜) with an exclamation point (!).

246

X Toolkit Intrinsics X11 Release 6

Appendix C

Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented an Xt<Widget>Create (for
example,XtLabelCreate) function, in which most of the code was identical from widget to wid-
get. In the Intrinsics, a single genericXtCreateWidget performs most of the common work and
then calls the initialize procedure implemented for the particular widget class.

Each Composite class also implemented the procedures Xt<Widget>Add and an
Xt<Widget>Delete (for example,XtButtonBoxAddButton andXtButtonBoxDeleteButton).
In the Intrinsics, the Composite generic proceduresXtManageChildren andXtUnmanageChil-
dren perform error checking and screening out of certain children. Then they call the
change_managed procedure implemented for the widget’s Composite class. If the widget’s parent
has not yet been realized, the call to the change_managed procedure is delayed until realization
time.

Old style calls can be implemented in the X Toolkit by defining one-line procedures or macros
that invoke a generic routine. For example, you could define the macroXtLabelCreate as:

#define XtLabelCreate(name, parent, args, num_args) \
((LabelWidget) XtCreateWidget(name, labelWidgetClass, parent, args, num_args))

Pop-up shells in some of the prototypes automatically performed anXtManageChild on their
child within their insert_child procedure. Creators of pop-up children need to callXtMan-
ageChild themselves.

XtAppInitialize andXtVaAppInitialize have been replaced byXtOpenApplication and
XtVaOpenApplication .

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial application shell instance, an application may useXtAppInitialize or
XtVaAppInitialize .

Widget XtAppInitialize(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, args, num_args)

XtAppContext *app_context_return;
Stringapplication_class;
XrmOptionDescListoptions;
Cardinalnum_options;
int *argc_in_out;
String *argv_in_out;
String *fallback_resources;
ArgList args;
Cardinalnum_args;

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

247

X Toolkit Intrinsics X11 Release 6

options Specifies the command line options table.

num_options Specifies the number of entries inoptions.

argc_in_out Specifies a pointer to the number of command line arguments.

argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

args Specifies the argument list to override any other resource specifications
for the created shell widget.

num_args Specifies the number of entries in the argument list.

The XtAppInitialize function callsXtToolkitInitialize followed by
XtCreateApplicationContext , then callsXtOpenDisplay with display_stringNULL andappli-
cation_nameNULL, and finally callsXtAppCreateShell with application_nameNULL, wid-
get_classapplicationShellWidgetClass, and the specifiedargsandnum_argsand returns the
created shell. The modifiedargcandargv returned byXtDisplayInitialize are returned in
argc_in_outandargv_in_out. If app_context_returnis not NULL, the created application context
is also returned. If the display specified by the command line cannot be opened, an error message
is issued andXtAppInitialize terminates the application. Iffallback_resourcesis non-NULL,
XtAppSetFallbackResourcesis called with the value prior to callingXtOpenDisplay.

Widget XtVaAppInitialize(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, ...)

XtAppContext *app_context_return;
Stringapplication_class;
XrmOptionDescListoptions;
Cardinalnum_options;
int *argc_in_out;
String *argv_in_out;
String *fallback_resources;

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries inoptions.

argc_in_out Specifies a pointer to the number of command line arguments.

argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened, or NULL.

... Specifies the variable argument list to override any other resource specifi-
cations for the created shell.

The XtVaAppInitialize procedure is identical in function toXtAppInitialize with theargsand
num_argsparameters replaced by a varargs list, as described in Section 2.5.1.

As a convenience to people converting from earlier versions of the toolkit without application
contexts, the following routines exist:XtInitialize , XtMainLoop , XtNextEvent,
XtProcessEvent, XtPeekEvent, XtPending, XtAddInput , XtAddTimeOut ,

248

X Toolkit Intrinsics X11 Release 6

XtAddWorkProc , XtCreateApplicationShell, XtAddActions , XtSetSelectionTimeout, and
XtGetSelectionTimeout.

Widget XtInitialize(shell_name, application_class, options, num_options, argc, argv)
Stringshell_name;
Stringapplication_class;
XrmOptionDescRecoptions[];
Cardinalnum_options;
int *argc;
Stringargv[];

shell_name This parameter is ignored; therefore, you can specify NULL.

application_class
Specifies the class name of this application.

options Specifies how to parse the command line for any application-specific resources.
Theoptionsargument is passed as a parameter toXrmParseCommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

XtInitialize calls XtToolkitInitialize to initialize the toolkit internals, creates a default applica-
tion context for use by the other convenience routines, callsXtOpenDisplay with display_string
NULL andapplication_nameNULL, and finally callsXtAppCreateShell with applica-
tion_nameNULL and returns the created shell. The semantics of callingXtInitialize more than
once are undefined. This routine has been replaced byXtOpenApplication .

void XtMainLoop(void)

XtMainLoop first reads the next alternate input, timer, or X event by callingXtNextEvent.
Then it dispatches this to the appropriate registered procedure by callingXtDispatchEvent. This
routine has been replaced byXtAppMainLoop .

void XtNextEvent(event_return)
XEvent *event_return;

event_return Returns the event information to the specified event structure.

If no input is on the X input queue for the default application context,XtNextEvent flushes the X
output buffer and waits for an event while looking at the alternate input sources and timeout val-
ues and calling any callback procedures triggered by them. This routine has been replaced by
XtAppNextEvent . XtInitialize must be called before using this routine.

void XtProcessEvent(mask)
XtInputMaskmask;

mask Specifies the type of input to process.

XtProcessEventprocesses one X event, timeout, or alternate input source (depending on the
value ofmask), blocking if necessary. It has been replaced byXtAppProcessEvent. XtInitial-
ize must be called before using this function.

249

X Toolkit Intrinsics X11 Release 6

Boolean XtPeekEvent(event_return)
XEvent *event_return;

event_return Returns the event information to the specified event structure.

If there is an event in the queue for the default application context,XtPeekEvent fills in the event
and returns a nonzero value. If no X input is on the queue,XtPeekEvent flushes the output
buffer and blocks until input is available, possibly calling some timeout callbacks in the process.
If the input is an event,XtPeekEvent fills in the event and returns a nonzero value. Otherwise,
the input is for an alternate input source, andXtPeekEvent returns zero. This routine has been
replaced byXtAppPeekEvent. XtInitialize must be called before using this routine.

Boolean XtPending()

XtPending returns a nonzero value if there are events pending from the X server or alternate
input sources in the default application context. If there are no events pending, it flushes the out-
put buffer and returns a zero value. It has been replaced byXtAppPending. XtInitialize must
be called before using this routine.

XtInputId XtAddInput(source, condition, proc, client_data)
int source;
XtPointercondition;
XtInputCallbackProcproc;
XtPointerclient_data;

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates either a read, write, or exception condition or
some operating-system-dependent condition.

proc Specifies the procedure called when input is available.

client_data Specifies the parameter to be passed toprocwhen input is available.

The XtAddInput function registers in the default application context a new source of events,
which is usually file input but can also be file output. (The wordfile should be loosely interpreted
to mean any sink or source of data.)XtAddInput also specifies the conditions under which the
source can generate events. When input is pending on this source in the default application con-
text, the callback procedure is called. This routine has been replaced byXtAppAddInput .
XtInitialize must be called before using this routine.

XtIntervalId XtAddTimeOut(interval, proc, client_data)
unsigned longinterval;
XtTimerCallbackProcproc;
XtPointerclient_data;

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when time expires.

client_data Specifies the parameter to be passed toprocwhen it is called.

The XtAddTimeOut function creates a timeout in the default application context and returns an
identifier for it. The timeout value is set tointerval. The callback procedure will be called after
the time interval elapses, after which the timeout is removed. This routine has been replaced by
XtAppAddTimeOut . XtInitialize must be called before using this routine.

250

X Toolkit Intrinsics X11 Release 6

XtWorkProcId XtAddWorkProc(proc, client_data)
XtWorkProcproc;
XtPointerclient_data;

proc Procedure to call to do the work.

client_data Client data to pass toprocwhen it is called.

This routine registers a work procedure in the default application context. It has been replaced by
XtAppAddWorkProc . XtInitialize must be called before using this routine.

Widget XtCreateApplicationShell(name, widget_class, args, num_args)
Stringname;
WidgetClasswidget_class;
ArgList args;
Cardinalnum_args;

name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application shell widget. This
will usually betopLevelShellWidgetClassor a subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries inargs.

The procedureXtCreateApplicationShell calls XtAppCreateShell with application_name
NULL, the application class passed toXtInitialize , and the default application context created by
XtInitialize . This routine has been replaced byXtAppCreateShell.

An old-format resource type converter procedure pointer is of typeXtConverter .

typedef void (*XtConverter)(XrmValue*, Cardinal*, XrmValue*, XrmValue*);
XrmValue *args;
Cardinal *num_args;
XrmValue *from;
XrmValue *to;

args Specifies a list of additionalXrmValue arguments to the converter if additional
context is needed to perform the conversion, or NULL.

num_args Specifies the number of entries inargs.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.

• Attempt the type conversion.

• If successful, return the size and pointer to the data in theto argument; otherwise, call
XtWarningMsg and return without modifying theto argument.

Most type converters just take the data described by the specifiedfromargument and return data
by writing into the specifiedto argument. A few need other information, which is available in the
specified argument list. A type converter can invoke another type converter, which allows differ-
ing sources that may convert into a common intermediate result to make maximum use of the type

251

X Toolkit Intrinsics X11 Release 6

converter cache.

Note that the address returned into->addr cannot be that of a local variable of the converter
because this is not valid after the converter returns. It should be a pointer to a static variable.

The procedure typeXtConverter has been replaced byXtTypeConverter .

The XtStringConversionWarning function is a convenience routine for old-format resource
converters that convert from strings.

void XtStringConversionWarning(src, dst_type)
Stringsrc, dst_type;

src Specifies the string that could not be converted.

dst_type Specifies the name of the type to which the string could not be converted.

The XtStringConversionWarning function issues a warning message with name ‘‘conversion-
Error’’, type ‘‘string’’, class ‘‘XtToolkitError, and the default message string ‘‘Cannot convert
"src" to typedst_type’’. This routine has been superseded by
XtDisplayStringConversionWarning .

To register an old-format converter, useXtAddConverter or XtAppAddConverter .

void XtAddConverter(from_type, to_type, converter, convert_args, num_args)
Stringfrom_type;
Stringto_type;
XtConverterconverter;
XtConvertArgListconvert_args;
Cardinalnum_args;

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter, or NULL.

num_args Specifies the number of entries inconvert_args.

XtAddConverter is equivalent in function toXtSetTypeConverter with cache_typeequal to
XtCacheAll for old-format type converters. It has been superseded byXtSetTypeConverter.

void XtAppAddConverter(app_context, from_type, to_type, converter, convert_args, num_args)
XtAppContextapp_context;
Stringfrom_type;
Stringto_type;
XtConverterconverter;
XtConvertArgListconvert_args;
Cardinalnum_args;

app_context Specifies the application context.

from_type Specifies the source type.

252

X Toolkit Intrinsics X11 Release 6

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter, or NULL.

num_args Specifies the number of entries inconvert_args.

XtAppAddConverter is equivalent in function toXtAppSetTypeConverter with cache_type
equal toXtCacheAll for old-format type converters. It has been superseded by
XtAppSetTypeConverter.

To inv oke resource conversions, a client may useXtConvert or, for old-format converters only,
XtDirectConvert .

void XtConvert(w, from_type, from, to_type, to_return)
Widgetw;
Stringfrom_type;
XrmValuePtrfrom;
Stringto_type;
XrmValuePtrto_return;

w Specifies the widget to use for additional arguments, if any are needed.

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_return Returns the converted value.

void XtDirectConvert(converter, args, num_args, from, to_return)
XtConverterconverter;
XrmValuePtrargs;
Cardinalnum_args;
XrmValuePtrfrom;
XrmValuePtrto_return;

converter Specifies the conversion procedure to be called.

args Specifies the argument list that contains the additional arguments needed to per-
form the conversion (often NULL).

num_args Specifies the number of entries inargs.

from Specifies the value to be converted.

to_return Returns the converted value.

The XtConvert function looks up the type converter registered to convertfrom_typeto to_type,
computes any additional arguments needed, and then callsXtDirectConvert or
XtCallConverter . TheXtDirectConvert function looks in the converter cache to see if this
conversion procedure has been called with the specified arguments. If so, it returns a descriptor
for information stored in the cache; otherwise, it calls the converter and enters the result in the
cache.

Before calling the specified converter,XtDirectConvert sets the return value size to zero and the
return value address to NULL. To determine if the conversion was successful, the client should

253

X Toolkit Intrinsics X11 Release 6

checkto_return.addrfor non-NULL. The data returned byXtConvert must be copied immedi-
ately by the caller, as it may point to static data in the type converter.

XtConvert has been replaced byXtConvertAndStore , andXtDirectConvert has been super-
seded byXtCallConverter .

To deallocate a shared GC when it is no longer needed, useXtDestroyGC.

void XtDestroyGC(w, gc)
Widgetw;
GCgc;

w Specifies any object on the display for which the shared GC was created. Must
be of class Object or any subclass thereof.

gc Specifies the shared GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server when the last
user of a given GC destroys it. Note that some earlier versions ofXtDestroyGC had only agc
argument. Therefore, this function is not very portable, and you are encouraged to useXtRe-
leaseGCinstead.

To declare an action table in the default application context and register it with the translation
manager, useXtAddActions .

void XtAddActions(actions, num_actions)
XtActionList actions;
Cardinalnum_actions;

actions Specifies the action table to register.

num_actions Specifies the number of entries inactions.

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table forXtMenuPopup andXtMenuPopdown as part of X Toolkit initialization. This
routine has been replaced byXtAppAddActions . XtInitialize must be called before using this
routine.

To set the Intrinsics selection timeout in the default application context, use
XtSetSelectionTimeout.

void XtSetSelectionTimeout(timeout)
unsigned longtimeout;

timeout Specifies the selection timeout in milliseconds. This routine has been replaced
by XtAppSetSelectionTimeout. XtInitialize must be called before using this
routine.

To get the current selection timeout value in the default application context, use
XtGetSelectionTimeout.

unsigned long XtGetSelectionTimeout()

The selection timeout is the time within which the two communicating applications must respond
to one another. If one of them does not respond within this interval, the Intrinsics abort the

254

X Toolkit Intrinsics X11 Release 6

selection request.

This routine has been replaced byXtAppGetSelectionTimeout. XtInitialize must be called
before using this routine.

To obtain the global error database (for example, to merge with an application- or widget-specific
database), useXtGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()

The XtGetErrorDatabase function returns the address of the error database. The Intrinsics do a
lazy binding of the error database and do not merge in the database file until the first call to
XtGetErrorDatbaseText . This routine has been replaced byXtAppGetErrorDatabase .

An error message handler can obtain the error database text for an error or a warning by calling
XtGetErrorDatabaseText.

void XtGetErrorDatabaseText(name, type, class, default, buffer_return, nbytes)
Stringname, type, class;
Stringdefault;
Stringbuffer_return;
int nbytes;

name
type Specify the name and type that are concatenated to form the resource name of the

error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error database associ-
ated with the default application context or returns the specified default message if one is not
found in the error database. To form the full resource name and class when querying the
database, thenameandtypeare concatenated with a single ‘‘.’’ between them and theclassis
concatenated with itself with a single ‘‘.’’ if it does not already contain a ‘‘.’’. This routine has
been superseded byXtAppGetErrorDatabaseText .

To register a procedure to be called on fatal error conditions, useXtSetErrorMsgHandler .

void XtSetErrorMsgHandler(msg_handler)
XtErrorMsgHandlermsg_handler;

msg_handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource
database and callsXtError . Fatal error message handlers should not return. If one does, subse-
quent Intrinsics behavior is undefined. This routine has been superseded by
XtAppSetErrorMsgHandler .

To call the high-level error handler, useXtErrorMsg .

255

X Toolkit Intrinsics X11 Release 6

void XtErrorMsg(name, type, class, default, params, num_params)
Stringname;
Stringtype;
Stringclass;
Stringdefault;
String *params;
Cardinal *num_params;

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries inparams.

This routine has been superseded byXtAppErrorMsg .

To register a procedure to be called on nonfatal error conditions, use
XtSetWarningMsgHandler .

void XtSetWarningMsgHandler(msg_handler)
XtErrorMsgHandlermsg_handler;

msg_handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error resource
database and callsXtWarning . This routine has been superseded by
XtAppSetWarningMsgHandler .

To call the installed high-level warning handler, useXtWarningMsg .

void XtWarningMsg(name, type, class, default, params, num_params)
Stringname;
Stringtype;
Stringclass;
Stringdefault;
String *params;
Cardinal *num_params;

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries inparams.

This routine has been superseded byXtAppWarningMsg .

To register a procedure to be called on fatal error conditions, useXtSetErrorHandler .

256

X Toolkit Intrinsics X11 Release 6

void XtSetErrorHandler(handler)
XtErrorHandlerhandler;

handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics is_XtError . On POSIX-based systems, it
prints the message to standard error and terminates the application. Fatal error message handlers
should not return. If one does, subsequent X Toolkit behavior is undefined. This routine has been
superseded byXtAppSetErrorHandler .

To call the installed fatal error procedure, useXtError .

void XtError(message)
Stringmessage;

message Specifies the message to be reported.

Most programs should useXtAppErrorMsg , not XtError , to provide for customization and
internationalization of error messages. This routine has been superseded byXtAppError .

To register a procedure to be called on nonfatal error conditions, useXtSetWarningHandler .

void XtSetWarningHandler(handler)
XtErrorHandlerhandler;

handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics is_XtWarning . On POSIX-based sys-
tems, it prints the message to standard error and returns to the caller. This routine has been super-
seded byXtAppSetWarningHandler .

To call the installed nonfatal error procedure, useXtWarning .

void XtWarning(message)
Stringmessage;

message Specifies the nonfatal error message to be reported.

Most programs should useXtAppWarningMsg , not XtWarning , to provide for customization
and internationalization of warning messages. This routine has been superseded by
XtAppWarning .

257

X Toolkit Intrinsics X11 Release 6

Appendix D

Intrinsics Error Messages

All Intrinsics errors and warnings have class ‘‘XtToolkitError’’. The following two tables sum-
marize the common errors and warnings that can be generated by the Intrinsics. Additional
implementation-dependent messages are permitted.

Error Messages

Name Type Default Message

allocError calloc Cannot perform calloc

allocError malloc Cannot perform malloc

allocError realloc Cannot perform realloc

communicationError select Select failed

internalError shell Shell’s window manager interaction is broken

invalidArgCount xtGetValues Argument count > 0 on NULL argument list in XtGetVal-

ues

invalidArgCount xtSetValues Argument count > 0 on NULL argument list in XtSetVal-

ues

invalidClass constraintSetValue Subclass of Constraint required in CallConstraintSetVal-

ues

invalidClass xtAppCreateShell XtAppCreateShell requires non-NULL widget class

invalidClass xtCreatePopupShell XtCreatePopupShell requires non-NULL widget class

invalidClass xtCreateWidget XtCreateWidget requires non-NULL widget class

invalidClass xtPopdown XtPopdown requires a subclass of shellWidgetClass

invalidClass xtPopup XtPopup requires a subclass of shellWidgetClass

invalidDimension xtCreateWindow Widget %s has zero width and/or height

invalidDimension shellRealize Shell widget %s has zero width and/or height

invalidDisplay xtInitialize Can’t Open display

invalidGeometryManager xtMakeGeometryRequest XtMakeGeometryRequest - parent has no geometry

manger

invalidParameter removePopupFromParent RemovePopupFromParent requires non-NULL popuplist

invalidParameter xtAddInput invalid condition passed to XtAddInput

invalidParameters xtMenuPopupAction MenuPopup wants exactly one argument

invalidParent realize Application shell is not a windowed widget?

invalidParent xtCreatePopupShell XtCreatePopupShell requires non-NULL parent

invalidParent xtCreateWidget XtCreateWidget requires non-NULL parent

invalidParent xtMakeGeometryRequest XtMakeGeometryRequest - NULL parent. Use SetValues

instead

invalidParent xtMakeGeometryRequest XtMakeGeometryRequest - parent not composite

invalidParent xtManageChildren Attempt to manage a child when parent is not Composite

invalidParent xtUnmanageChildren Attempt to unmanage a child when parent is not Compos-

ite

258

X Toolkit Intrinsics X11 Release 6

invalidProcedure inheritanceProc Unresolved inheritance operation

invalidProcedure realizeProc No realize class procedure defined

invalidWindow eventHandler Event with wrong window

missingEvent shell Events are disappearing from under Shell

noAppContext widgetToApplicationContext Couldn’t find ancestor with display information

noPerDisplay closeDisplay Couldn’t find per display information

noPerDisplay getPerDisplay Couldn’t find per display information

noSelectionProperties freeSelectionProperty internal error: no selection property context for display

nullProc insertChild NULL insert_child procedure

subclassMismatch xtCheckSubclass Widget class %s found when subclass of %s expected:

%s

translationError mergingTablesWithCycles Trying to merge translation tables with cycles, and can’t

resolve this cycle.

Warning Messages

Name Type Default Message

ambiguousParent xtManageChildren Not all children have same parent in XtManageChildren

ambiguousParent xtUnmanageChildren Not all children have same parent in XtUnmanageChil-

dren

communicationError windowManager Window Manager is confused

conversionError string Cannot convert string "%s" to type %s

displayError invalidDisplay Can’t find display structure

grabError xtAddGrab XtAddGrab requires exclusive grab if spring_loaded is

TRUE

grabError grabDestroyCallback XtAddGrab requires exclusive grab if spring_loaded is

TRUE

grabError xtRemoveGrab XtRemoveGrab asked to remove a widget not on the grab

list

initializationError xtInitialize Initializing Resource Lists twice

invalidArgCount getResources argument count > 0 on NULL argument list

invalidCallbackList xtAddCallbacks Cannot find callback list in XtAddCallbacks

invalidCallbackList xtCallCallback Cannot find callback list in XtCallCallbacks

invalidCallbackList xtOverrideCallback Cannot find callback list in XtOverrideCallbacks

invalidCallbackList xtRemoveAllCallback Cannot find callback list in XtRemoveAllCallbacks

invalidCallbackList xtRemoveCallbacks Cannot find callback list in XtRemoveCallbacks

invalidChild xtManageChildren null child passed to XtManageChildren

invalidChild xtUnmanageChildren Null child passed to XtUnmanageChildren

invalidDepth setValues Can’t change widget depth

invalidGeometry xtMakeGeometryRequest Shell subclass did not take care of geometry in XtSetVal-

ues

invalidParameters compileAccelerators String to AcceleratorTable needs no extra arguments

invalidParameters compileTranslations String to TranslationTable needs no extra arguments

invalidParameters mergeTranslations MergeTM to TranslationTable needs no extra arguments

invalidParameters xtMenuPopdown XtMenuPopdown called with num_params != 0 or 1

invalidParent xtCopyFromParent CopyFromParent must have non-NULL parent

invalidPopup xtMenuPopup Can’t find popup in _XtMenuPopup

259

X Toolkit Intrinsics X11 Release 6

invalidPopup xtMenuPopdown Can’t find popup in _XtMenuPopdown

invalidPopup unsupportedOperation Pop-up menu creation is only supported on ButtonPress

or EnterNotify events.

invalidPopup unsupportedOperation Pop-up menu creation is only supported on ButtonPress

or EnterNotify events.

invalidProcedure deleteChild null delete_child procedure in XtDestroy

invalidProcedure inputHandler XtRemoveInput: Input handler not found

invalidProcedure set_values_almost set_values_almost procedure shouldn’t be NULL

invalidResourceCount getResources resource count > 0 on NULL resource list

invalidResourceName computeArgs Cannot find resource name %s as argument to conversion

invalidShell xtTranslateCoords Widget has no shell ancestor

invalidSizeOverride xtDependencies Representation size %d must match superclass’s to over-

ride %s

invalidTypeOverride xtDependencies Representation type %s must match superclass’s to over-

ride %s

invalidWidget removePopupFromParent RemovePopupFromParent,widget not on parent list

missingCharsetList cvtStringToFontSet Missing charsets in String to FontSet conversion

noColormap cvtStringToPixel Cannot allocate colormap entry for "%s"

registerWindowError xtRegisterWindow Attempt to change already registered window.

registerWindowError xtUnregisterWindow Attempt to unregister invalid window.

translation error nullTable Can’t remove accelerators from NULL table

translation error nullTable Tried to remove non-existant accelerators

translationError ambiguousActions Overriding earlier translation manager actions.

translationError mergingNullTable Old translation table was null, cannot modify.

translationError nullTable Can’t translate event through NULL table

translationError unboundActions Actions not found: %s

translationError xtTranslateInitialize Initializing Translation manager twice.

translationParseError showLine ... found while parsing ’%s’

translationParseError parseError translation table syntax error: %s

translationParseError parseString Missing ’\’.

typeConversionError noConverter No type converter registered for ’%s’ to ’%s’ conversion.

versionMismatch widget Widget class %s version mismatch:\n widget %d vs.

intrinsics %d.

wrongParameters cvtIntOrPixelToXColor Pixel to color conversion needs screen and colormap

arguments

wrongParameters cvtIntToBool Integer to Bool conversion needs no extra arguments

wrongParameters cvtIntToBoolean Integer to Boolean conversion needs no extra arguments

wrongParameters cvtIntToFont Integer to Font conversion needs no extra arguments

wrongParameters cvtIntToPixel Integer to Pixel conversion needs no extra arguments

wrongParameters cvtIntToPixmap Integer to Pixmap conversion needs no extra arguments

wrongParameters cvtIntToShort Integer to Short conversion needs no extra arguments

wrongParameters cvtStringToBool String to Bool conversion needs no extra arguments

wrongParameters cvtStringToBoolean String to Boolean conversion needs no extra arguments

wrongParameters cvtStringToCursor String to cursor conversion needs screen argument

wrongParameters cvtStringToDisplay String to Display conversion needs no extra arguments

wrongParameters cvtStringToFile String to File conversion needs no extra arguments

wrongParameters cvtStringToFont String to font conversion needs screen argument

260

X Toolkit Intrinsics X11 Release 6

wrongParameters cvtStringToFontSet String to FontSet conversion needs display and locale

arguments

wrongParameters cvtStringToFontStruct String to cursor conversion needs screen argument

wrongParameters cvtStringToInt String to Integer conversion needs no extra arguments

wrongParameters cvtStringToPixel String to pixel conversion needs screen and colormap

arguments

wrongParameters cvtStringToShort String to Integer conversion needs no extra arguments

wrongParameters cvtStringToUnsignedChar String to Integer conversion needs no extra arguments

wrongParameters cvtXColorToPixel Color to Pixel conversion needs no extra arguments

261

X Toolkit Intrinsics X11 Release 6

Appendix E

Defined Strings

The StringDefs.h header file contains definitions for the following resource name, class, and rep-
resentation type symbolic constants.

Resource names:

Symbol Definition

XtNaccelerators "accelerators"
XtNallowHoriz "allowHoriz"
XtNallowVert "allowVert"
XtNancestorSensitive "ancestorSensitive"
XtNbackground "background"
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborderColor "borderColor"
XtNborder "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWidth "borderWidth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren "children"
XtNcolormap "colormap"
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth"
XtNdestroyCallback "destroyCallback"
XtNdestroyHook "destroyHook"
XtNeditType "editType"
XtNfile "file"
XtNfont "font"
XtNfontSet "fontSet"
XtNforceBars "forceBars"
XtNforeground "foreground"
XtNfunction "function"
XtNgeometryHook "geometryHook"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace"
XtNindex "index"
XtNinitialResourcesPersistent "initialResourcesPersistent"
XtNinnerHeight "innerHeight"
XtNinnerWidth "innerWidth"

262

X Toolkit Intrinsics X11 Release 6

XtNinnerWindow "innerWindow"
XtNinsertPosition "insertPosition"
XtNinternalHeight "internalHeight"
XtNinternalWidth "internalWidth"
XtNjumpProc "jumpProc"
XtNjustify "justify"
XtNknobHeight "knobHeight"
XtNknobIndent "knobIndent"
XtNknobPixel "knobPixel"
XtNknobWidth "knobWidth"
XtNlabel "label"
XtNlength "length"
XtNlowerRight "lowerRight"
XtNmappedWhenManaged "mappedWhenManaged"
XtNmenuEntry "menuEntry"
XtNname "name"
XtNnotify "notify"
XtNnumChildren "numChildren"
XtNnumShells "numShells"
XtNorientation "orientation"
XtNparameter "parameter"
XtNpixmap "pixmap"
XtNpopupCallback "popupCallback"
XtNpopdownCallback "popdownCallback"
XtNresize "resize"
XtNreverseVideo "reverseVideo"
XtNscreen "screen"
XtNscrollProc "scrollProc"
XtNscrollDCursor "scrollDCursor"
XtNscrollHCursor "scrollHCursor"
XtNscrollLCursor "scrollLCursor"
XtNscrollRCursor "scrollRCursor"
XtNscrollUCursor "scrollUCursor"
XtNscrollVCursor "scrollVCursor"
XtNselection "selection"
XtNselectionArray "selectionArray"
XtNsensitive "sensitive"
XtNsession "session"
XtNshells "shells"
XtNshown "shown"
XtNspace "space"
XtNstring "string"
XtNtextOptions "textOptions"
XtNtextSink "textSink"
XtNtextSource "textSource"
XtNthickness "thickness"
XtNthumb "thumb"
XtNthumbProc "thumbProc"
XtNtop "top"

263

X Toolkit Intrinsics X11 Release 6

XtNtranslations "translations"
XtNunrealizeCallback "unrealizeCallback"
XtNupdate "update"
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace"
XtNwidth "width"
XtNwindow "window"
XtNx "x"
XtNy "y"

Resource classes:

Symbol Definition

XtCAccelerators "Accelerators"
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean"
XtCBorderColor "BorderColor"
XtCBorderWidth "BorderWidth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"
XtCEventBindings "EventBindings"
XtCFile "File"
XtCFont "Font"
XtCFontSet "FontSet"
XtCForeground "Foreground"
XtCFraction "Fraction"
XtCFunction "Function"
XtCHeight "Height"
XtCHSpace "HSpace"
XtCIndex "Index"
XtCInitialResourcesPersistent "InitialResourcesPersistent"
XtCInsertPosition "InsertPosition"
XtCInterval "Interval"
XtCJustify "Justify"
XtCKnobIndent "KnobIndent"
XtCKnobPixel "KnobPixel"
XtCLabel "Label"
XtCLength "Length"
XtCMappedWhenManaged "MappedWhenManaged"
XtCMargin "Margin"

264

X Toolkit Intrinsics X11 Release 6

XtCMenuEntry "MenuEntry"
XtCNotify "Notify"
XtCOrientation "Orientation"
XtCParameter "Parameter"
XtCPixmap "Pixmap"
XtCPosition "Position"
XtCReadOnly "ReadOnly"
XtCResize "Resize"
XtCReverseVideo "ReverseVideo"
XtCScreen "Screen"
XtCScrollProc "ScrollProc"
XtCScrollDCursor "ScrollDCursor"
XtCScrollHCursor "ScrollHCursor"
XtCScrollLCursor "ScrollLCursor"
XtCScrollRCursor "ScrollRCursor"
XtCScrollUCursor "ScrollUCursor"
XtCScrollVCursor "ScrollVCursor"
XtCSelection "Selection"
XtCSensitive "Sensitive"
XtCSelectionArray "SelectionArray"
XtCSession "Session"
XtCSpace "Space"
XtCString "String"
XtCTextOptions "TextOptions"
XtCTextPosition "TextPosition"
XtCTextSink "TextSink"
XtCTextSource "TextSource"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Translations"
XtCValue "Value"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"
XtCX "X"
XtCY "Y"

Resource representation types:

Symbol Definition

XtRAcceleratorTable "AcceleratorTable"
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCallProc "CallProc"

265

X Toolkit Intrinsics X11 Release 6

XtRCardinal "Cardinal"
XtRColor "Color"
XtRColormap "Colormap"
XtRCommandArgArray "CommandArgArray"
XtRCursor "Cursor"
XtRDimension "Dimension"
XtRDirectoryString "DirectoryString"
XtRDisplay "Display"
XtREditMode "EditMode"
XtREnum "Enum"
XtREnvironmentArray "EnvironmentArray"
XtRFile "File"
XtRFloat "Float"
XtRFont "Font"
XtRFontSet "FontSet"
XtRFontStruct "FontStruct"
XtRFunction "Function"
XtRGeometry "Geometry"
XtRGravity "Gravity"
XtRImmediate "Immediate"
XtRInitialState "InitialState"
XtRInt "Int"
XtRJustify "Justify"
XtRLongBoolean XtRBool
XtRObject "Object"
XtROrientation "Orientation"
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRRestartStyle "RestartStyle"
XtRScreen "Screen"
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString "String"
XtRStringArray "StringArray"
XtRStringTable "StringTable"
XtRUnsignedChar "UnsignedChar"
XtRTranslationTable "TranslationTable"
XtRVisual "Visual"
XtRWidget "Widget"
XtRWidgetClass "WidgetClass"
XtRWidgetList "WidgetList"
XtRWindow "Window"

Boolean enumeration constants:

Symbol Definition

266

X Toolkit Intrinsics X11 Release 6

XtEoff "off"
XtEfalse "false"
XtEno "no"
XtEon "on"
XtEtrue "true"
XtEyes "yes"

Orientation enumeration constants:

Symbol Definition

XtEvertical "vertical"
XtEhorizontal "horizontal"

Te xt edit enumeration constants:

Symbol Definition

XtEtextRead "read"
XtEtextAppend "append"
XtEtextEdit "edit"

Color enumeration constants:

Symbol Definition

XtExtdefaultbackground "xtdefaultbackground"
XtExtdefaultforeground "xtdefaultforeground"

Font constant:

Symbol Definition

XtExtdefaultfont "xtdefaultfont"

Hooks for External Agents constants:

Symbol Definition

XtHcreate "Xtcreate"
XtHsetValues "Xtsetvalues"
XtHmanageChildren "XtmanageChildren"
XtHunmanageChildren "XtunmanageChildren"

267

X Toolkit Intrinsics X11 Release 6

XtHmanageSet "XtmanageSet"
XtHunmanageSet "XtunmanageSet"
XtHrealizeWidget "XtrealizeWidget"
XtHunrealizeWidget "XtunrealizeWidget"
XtHaddCallback "XtaddCallback"
XtHaddCallbacks "XtaddCallbacks"
XtHremoveCallback "XtremoveCallback"
XtHremoveCallbacks "XtremoveCallbacks"
XtHremoveAllCallbacks "XtremoveAllCallbacks"
XtHaugmentTranslations "XtaugmentTranslations"
XtHoverrideTranslations "XtoverrideTranslations"
XtHuninstallTranslations "XtuninstallTranslations"
XtHsetKeyboardFocus "XtsetKeyboardFocus"
XtHsetWMColormapWindows "XtsetWMColormapWindows"
XtHmapWidget "XtmapWidget"
XtHunmapWidget "XtunmapWidget"
XtHpopup "Xtpopup"
XtHpopupSpringLoaded "XtpopupSpringLoaded"
XtHpopdown "Xtpopdown"
XtHconfigure "Xtconfigure"
XtHpreGeometry "XtpreGeometry"
XtHpostGeometry "XtpostGeometry"
XtHdestroy "Xtdestroy"

The Shell.h header file contains definitions for the following resource name, class, and represen-
tation type symbolic constants.

Resource names:

Symbol Definition

XtNallowShellResize "allowShellResize"
XtNargc "argc"
XtNargv "argv"
XtNbaseHeight "baseHeight"
XtNbaseWidth "baseWidth"
XtNcancelCallback "cancelCallback"
XtNclientLeader "clientLeader"
XtNcloneCommand "cloneCommand"
XtNconnection "connection"
XtNcreatePopupChildProc "createPopupChildProc"
XtNcurrentDirectory "currentDirectory"
XtNdieCallback "dieCallback"
XtNdiscardCommand "discardCommand"
XtNenvironment "environment"
XtNerrorCallback "errorCallback"
XtNgeometry "geometry"
XtNheightInc "heightInc"
XtNiconMask "iconMask"

268

X Toolkit Intrinsics X11 Release 6

XtNiconName "iconName"
XtNiconNameEncoding "iconNameEncoding"
XtNiconPixmap "iconPixmap"
XtNiconWindow "iconWindow"
XtNiconX "iconX"
XtNiconY "iconY"
XtNiconic "iconic"
XtNinitialState "initialState"
XtNinput "input"
XtNinteractCallback "interactCallback"
XtNjoinSession "joinSession"
XtNmaxAspectX "maxAspectX"
XtNmaxAspectY "maxAspectY"
XtNmaxHeight "maxHeight"
XtNmaxWidth "maxWidth"
XtNminAspectX "minAspectX"
XtNminAspectY "minAspectY"
XtNminHeight "minHeight"
XtNminWidth "minWidth"
XtNoverrideRedirect "overrideRedirect"
XtNprogramPath "programPath"
XtNresignCommand "resignCommand"
XtNrestartCommand "restartCommand"
XtNrestartStyle "restartStyle"
XtNsaveCallback "saveCallback"
XtNsaveCompleteCallback "saveCompleteCallback"
XtNsaveUnder "saveUnder"
XtNsessionID "sessionID"
XtNshutdownCommand "shutdownCommand"
XtNtitle "title"
XtNtitleEncoding "titleEncoding"
XtNtransient "transient"
XtNtransientFor "transientFor"
XtNurgency "urgency"
XtNvisual "visual"
XtNwaitForWm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthInc "widthInc"
XtNwindowGroup "windowGroup"
XtNwindowRole "windowRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTimeout"

Resource classes:

Symbol Definition

XtCAllowShellResize "allowShellResize"

269

X Toolkit Intrinsics X11 Release 6

XtCArgc "Argc"
XtCArgv "Argv"
XtCBaseHeight "BaseHeight"
XtCBaseWidth "BaseWidth"
XtCClientLeader "ClientLeader"
XtCCloneCommand "CloneCommand"
XtCConnection "Connection"
XtCCreatePopupChildProc "CreatePopupChildProc"
XtCCurrentDirectory "CurrentDirectory"
XtCDiscardCommand "DiscardCommand"
XtCEnvironment "Environment"
XtCGeometry "Geometry"
XtCHeightInc "HeightInc"
XtCIconMask "IconMask"
XtCIconName "IconName"
XtCIconNameEncoding "IconNameEncoding"
XtCIconPixmap "IconPixmap"
XtCIconWindow "IconWindow"
XtCIconX "IconX"
XtCIconY "IconY"
XtCIconic "Iconic"
XtCInitialState "InitialState"
XtCInput "Input"
XtCJoinSession "JoinSession"
XtCMaxAspectX "MaxAspectX"
XtCMaxAspectY "MaxAspectY"
XtCMaxHeight "MaxHeight"
XtCMaxWidth "MaxWidth"
XtCMinAspectX "MinAspectX"
XtCMinAspectY "MinAspectY"
XtCMinHeight "MinHeight"
XtCMinWidth "MinWidth"
XtCOverrideRedirect "OverrideRedirect"
XtCProgramPath "ProgramPath"
XtCResignCommand "ResignCommand"
XtCRestartCommand "RestartCommand"
XtCRestartStyle "RestartStyle"
XtCSaveUnder "SaveUnder"
XtCSessionID "SessionID"
XtCShutdownCommand "ShutdownCommand"
XtCTitle "Title"
XtCTitleEncoding "TitleEncoding"
XtCTransient "Transient"
XtCTransientFor "TransientFor"
XtCUrgency "Urgency"
XtCVisual "Visual"
XtCWaitForWm "Waitforwm"
XtCWaitforwm "Waitforwm"
XtCWidthInc "WidthInc"

270

X Toolkit Intrinsics X11 Release 6

XtCWindowGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTimeout"

Resource representation types:

Symbol Definition

XtRAtom "Atom"

271

272

Table of Contents

Acknowledgments . x

About This Manual . xiii

Chapter 1 − Intrinsics and Widgets 1

1.1. Intrinsics . 1

1.2. Languages . 1

1.3. Procedures and Macros . 2

1.4. Widgets . 2

1.4.1. Core Widgets . 3

1.4.1.1. CoreClassPart Structure. 3

1.4.1.2. CorePart Structure. 4

1.4.1.3. Core Resources. 5

1.4.1.4. CorePart Default Values 5

1.4.2. Composite Widgets . 6

1.4.2.1. CompositeClassPart Structure. 6

1.4.2.2. CompositePart Structure. 7

1.4.2.3. Composite Resources. 8

1.4.2.4. CompositePart Default Values 8

1.4.3. Constraint Widgets . 8

1.4.3.1. ConstraintClassPart Structure. 9

1.4.3.2. ConstraintPart Structure. 10

1.4.3.3. Constraint Resources. 10

1.5. Implementation-Specific Types. 10

1.6. Widget Classing. 11

1.6.1. Widget Naming Conventions. 11

1.6.2. Widget Subclassing in Public .h Files. 12

1.6.3. Widget Subclassing in Private .h Files. 13

1.6.4. Widget Subclassing in .c Files. 15

1.6.5. Widget Class and Superclass Look Up. 18

1.6.6. Widget Subclass Verification 18

1.6.7. Superclass Chaining. 19

1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures. 21

1.6.9. Initializing a Widget Class 22

1.6.10. Inheritance of Superclass Operations. 22

1.6.11. Invocation of Superclass Operations. 24

1.6.12. Class Extension Records. 24

Chapter 2 − Widget Instantiation. 26

iii

2.1. Initializing the X Toolkit . 26

2.2. Establishing the Locale . 30

2.3. Loading the Resource Database 31

2.4. Parsing the Command Line. 34

2.5. Creating Widgets . 36

2.5.1. Creating and Merging Argument Lists 37

2.5.2. Creating a Widget Instance 39

2.5.3. Creating an Application Shell Instance 41

2.5.4. Convenience Procedure to Initialize an Application 42

2.5.5. Widget Instance Allocation: the allocate Procedure. 44

2.5.6. Widget Instance Initialization: the initialize Procedure. 46

2.5.7. Constraint Instance Initialization: the ConstraintClassPart initialize Procedure. . . 47

2.5.8. Nonwidget Data Initialization: the initialize_hook Procedure. 47

2.6. Realizing Widgets . 48

2.6.1. Widget Instance Window Creation: the realize Procedure. 49

2.6.2. Window Creation Convenience Routine. 50

2.7. Obtaining Window Information from a Widget 51

2.7.1. Unrealizing Widgets. 52

2.8. Destroying Widgets . 53

2.8.1. Adding and Removing Destroy Callbacks 54

2.8.2. Dynamic Data Deallocation: the destroy Procedure 54

2.8.3. Dynamic Constraint Data Deallocation: the ConstraintClassPart destroy Proce-
dure . 55

2.8.4. Widget Instance Deallocation: the deallocate Procedure. 55

2.9. Exiting from an Application 56

Chapter 3 − Composite Widgets and Their Children. 57

3.1. Addition of Children to a Composite Widget: the insert_child Procedure. 58

3.2. Insertion Order of Children: the insert_position Procedure 58

3.3. Deletion of Children: the delete_child Procedure. 59

3.4. Adding and Removing Children from the Managed Set 59

3.4.1. Managing Children . 59

3.4.2. Unmanaging Children . 61

3.4.3. Bundling Changes to the Managed Set 62

3.4.4. Determining If a Widget Is Managed 64

3.5. Controlling When Widgets Get Mapped 64

3.6. Constrained Composite Widgets 65

Chapter 4 − Shell Widgets . 67

4.1. Shell Widget Definitions . 67

4.1.1. ShellClassPart Definitions. 68

iv

4.1.2. ShellPart Definition . 72

4.1.3. Shell Resources . 75

4.1.4. ShellPart Default Values 77

4.2. Session Participation . 82

4.2.1. Joining a Session. 82

4.2.2. Saving Application State 83

4.2.2.1. Requesting Interaction 84

4.2.2.2. Interacting with the User During a Checkpoint 85

4.2.2.3. Responding to a Shutdown Cancellation 85

4.2.2.4. Completing a Save. 86

4.2.3. Responding to a Shutdown 86

4.2.4. Resigning from a Session. 86

Chapter 5 − Pop-Up Widgets . 88

5.1. Pop-Up Widget Types. 88

5.2. Creating a Pop-Up Shell. 89

5.3. Creating Pop-Up Children 90

5.4. Mapping a Pop-Up Widget 90

5.5. Unmapping a Pop-Up Widget 93

Chapter 6 − Geometry Management. 95

6.1. Initiating Geometry Changes. 95

6.2. General Geometry Manager Requests. 96

6.3. Resize Requests. 98

6.4. Potential Geometry Changes. 98

6.5. Child Geometry Management: the geometry_manager Procedure. 99

6.6. Widget Placement and Sizing. 100

6.7. Preferred Geometry. 102

6.8. Size Change Management: the resize Procedure. 103

Chapter 7 − Event Management. 105

7.1. Adding and Deleting Additional Event Sources 105

7.1.1. Adding and Removing Input Sources. 105

7.1.2. Adding and Removing Blocking Notifications 107

7.1.3. Adding and Removing Timeouts 107

7.1.4. Adding and Removing Signal Callbacks. 108

7.2. Constraining Events to a Cascade of Widgets. 109

7.2.1. Requesting Key and Button Grabs. 111

7.3. Focusing Events on a Child. 114

7.3.1. Events for Drawables which are not a Widget’s Window 116

7.4. Querying Event Sources. 117

7.5. Dispatching Events. 118

v

7.6. The Application Input Loop 119

7.7. Setting and Checking the Sensitivity State of a Widget. 119

7.8. Adding Background Work Procedures 120

7.9. X Event Filters . 121

7.9.1. Pointer Motion Compression. 121

7.9.2. Enter/Leave Compression 122

7.9.3. Exposure Compression. 122

7.10. Widget Exposure and Visibility 123

7.10.1. Redisplay of a Widget: the expose Procedure. 123

7.10.2. Widget Visibility . 124

7.11. X Event Handlers. 125

7.11.1. Event Handlers that Select Events 125

7.11.2. Event Handlers that Do Not Select Events 127

7.11.3. Current Event Mask. 129

7.11.4. Event Handlers for X11 Protocol Extensions. 129

7.12. Using the Intrinsics in a Multi-threaded Environment 133

7.12.1. Initializing a Multithreaded Intrinsics Application 133

7.12.2. Locking X Toolkit Data Structures 133

7.12.2.1. Locking the Application Context 134

7.12.2.2. Locking the Process. 135

7.12.3. Event Management in a Multi-Threaded Environment. 135

Chapter 8 − Callbacks . 136

8.1. Using Callback Procedure and Callback List Definitions 136

8.2. Identifying Callback Lists 137

8.3. Adding Callback Procedures 137

8.4. Removing Callback Procedures 138

8.5. Executing Callback Procedures. 138

8.6. Checking the Status of a Callback List. 139

Chapter 9 − Resource Management. 140

9.1. Resource Lists . 140

9.2. Byte Offset Calculations . 144

9.3. Superclass-to-Subclass Chaining of Resource Lists. 145

9.4. Subresources. 145

9.5. Obtaining Application Resources 147

9.6. Resource Conversions . 148

9.6.1. Predefined Resource Converters 148

9.6.2. New Resource Converters 151

9.6.3. Issuing Conversion Warnings 154

9.6.4. Registering a New Resource Converter 155

vi

9.6.5. Resource Converter Invocation. 158

9.7. Reading and Writing Widget State 161

9.7.1. Obtaining Widget State 161

9.7.1.1. Widget Subpart Resource Data: the get_values_hook Procedure. 163

9.7.1.2. Widget Subpart State. 163

9.7.2. Setting Widget State. 164

9.7.2.1. Widget State: the set_values Procedure. 165

9.7.2.2. Widget State: the set_values_almost Procedure. 166

9.7.2.3. Widget State: the ConstraintClassPart set_values Procedure. 167

9.7.2.4. Widget Subpart State. 167

9.7.2.5. Widget Subpart Resource Data: the set_values_hook Procedure. 168

Chapter 10 − Translation Management. 170

10.1. Action Tables . 170

10.1.1. Action Table Registration 171

10.1.2. Action Names to Procedure Translations 172

10.1.3. Action Hook Registration 172

10.2. Translation Tables . 173

10.2.1. Event Sequences . 174

10.2.2. Action Sequences . 174

10.2.3. Multi-click Time . 174

10.3. Translation Table Management 175

10.4. Using Accelerators . 177

10.5. KeyCode-to-KeySym Conversions 178

10.6. Obtaining a KeySym in an Action Procedure 181

10.7. KeySym-to-KeyCode Conversions 182

10.8. Registering Button and Key Grabs For Actions. 182

10.9. Invoking Actions Directly 183

10.10. Obtaining a Widget’s Action List. 184

Chapter 11 − Utility Functions. 185

11.1. Determining the Number of Elements in an Array. 185

11.2. Translating Strings to Widget Instances 185

11.3. Managing Memory Usage. 186

11.4. Sharing Graphics Contexts 188

11.5. Managing Selections. 189

11.5.1. Setting and Getting the Selection Timeout Value. 190

11.5.2. Using Atomic Transfers 190

11.5.2.1. Atomic Transfer Procedures. 190

11.5.2.2. Getting the Selection Value 192

11.5.2.3. Setting the Selection Owner. 194

vii

11.5.3. Using Incremental Transfers 195

11.5.3.1. Incremental Transfer Procedures. 196

11.5.3.2. Getting the Selection Value Incrementally. 198

11.5.3.3. Setting the Selection Owner for Incremental Transfers 199

11.5.4. Setting and Retrieving Selection Target Parameters 200

11.5.5. Generating MULTIPLE Requests. 202

11.5.6. Auxiliary Selection Properties 203

11.5.7. Retrieving the Most Recent Timestamp 204

11.5.8. Retrieving the Most Recent Event 204

11.6. Merging Exposure Events into a Region 204

11.7. Translating Widget Coordinates 205

11.8. Translating a Window to a Widget 205

11.9. Handling Errors . 205

11.10. Setting WM_COLORMAP_WINDOWS 210

11.11. Finding File Names. 211

11.12. Hooks for External Agents 213

11.12.1. Hook Object Resources. 214

11.12.2. Querying Open Displays 218

Chapter 12 − Nonwidget Objects. 220

12.1. Data Structures. 220

12.2. Object Objects. 220

12.2.1. ObjectClassPart Structure. 220

12.2.2. ObjectPart Structure. 222

12.2.3. Object Resources . 222

12.2.4. ObjectPart Default Values 223

12.2.5. Object Arguments To Intrinsics Routines. 223

12.2.6. Use of Objects . 224

12.3. Rectangle Objects. 224

12.3.1. RectObjClassPart Structure. 224

12.3.2. RectObjPart Structure. 225

12.3.3. RectObj Resources. 226

12.3.4. RectObjPart Default Values. 226

12.3.5.Widget Arguments To Intrinsics Routines 226

12.3.6. Use of Rectangle Objects. 227

12.4. Undeclared Class. 228

12.5. Widget Arguments To Intrinsics Routines. 228

Chapter 13 − Evolution of The Intrinsics. 230

13.1. Determining Specification Revision Level. 230

13.2. Release 3 to Release 4 Compatibility 230

viii

13.2.1. Additional Arguments . 230

13.2.2. set_values_almost Procedures. 231

13.2.3. Query Geometry. 231

13.2.4. unrealizeCallback Callback List. 231

13.2.5. Subclasses of WMShell 231

13.2.6. Resource Type Converters 232

13.2.7. KeySym Case Conversion Procedure. 232

13.2.8. Nonwidget Objects. 232

13.3. Release 4 to Release 5 Compatibility 232

13.3.1. baseTranslations Resource. 232

13.3.2. Resource File Search Path. 233

13.3.3. Customization Resource. 233

13.3.4. Per-Screen Resource Database. 233

13.3.5. Internationalization of Applications 234

13.3.6. Permanently Allocated Strings. 234

13.3.7. Arguments to Existing Functions 234

13.4. Release 5 to Release 6 Compatibility 234

13.4.1. Widget Internals. 235

13.4.2. General Application Development 235

13.4.3. Communication with Window and Session Managers. 235

13.4.4. Geometry Management. 236

13.4.5. 236

13.4.6. Resource Management. 236

13.4.7. Translation Management. 237

13.4.8. Selections. 237

13.4.9. External Agent Hooks. 237

Appendix A − Resource File Format 238

Appendix B − Translation Table Syntax 239

Appendix C − Compatibility Functions. 247

Appendix D − Intrinsics Error Messages. 258

Appendix E − Defined Strings. 262

Index . 272

ix

