
Digital UNIX
X Window System Environment

Part Number: AA-Q7RNB-TE

March 1996

Product Version: Digital UNIX Version 4.0 or higher

This manual contains information for system administrators and
programmers about the Digital UNIX implementation of the X Window
System, Release 6 (X11 R6). This manual also contains information about
customizing the Digital UNIX window system workstation environment.

Digital Equipment Corporation
Maynard, Massachusetts

© Digital Equipment Corporation 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP, AlphaGeneration,
AXP, Bookreader, CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation,
DECsystem, DECterm, DECUS, DECwindows, DTIF, Massbus, MicroVAX, OpenVMS, POLYCENTER,
Q–bus, TruCluster, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
VAXstation, VMS, XUI, and the Digital logo.

This manual is derived from MIT documentation, which contains the following permission notice:
Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name of MIT or
DIGITAL not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission. MIT and DIGITAL make no representations about the suitability of the software
described herein for any purpose. It is provided “as is,” without express or implied warranty. Open
Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation,
Inc. Adobe, PostScript, and Display PostScript are registered trademarks of Adobe Systems, Inc. UNIX is a
registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety and
health of its employees, customers, and the community.

Contents

About This Manual

1 Introduction to the Digital UNIX Window System Environment

2 X Window System Administration in the Digital UNIX Environment
2.1 Choosing the xdm or the dtlogin Display Manager 2–2

2.2 Administrator’s Guide − Digital UNIX Differences 2–2

2.3 Locations of the X Window System Files 2–4

2.4 X Display Manager (xdm) and the Login Process 2–8

2.5 Security and xdm Authorization 2–13

2.5.1 Host-Based Security 2–13

2.5.2 User-Based Security 2–13

2.6 Solving X Window System Login Problems 2–14

2.6.1 Login Problems 2–14

2.6.2 Failsafe Mode 2–16

2.7 Managing the X Server 2–16

2.8 Graphics Adapters 2–21

2.9 Font Server Management 2–24

2.9.1 Using the Font Server 2–26

2.9.2 Font Server Client Utility Applications 2–27

2.10 Managing X Terminals 2–29

2.11 Memory Utilization by the X Server 2–31

2.11.1 General Observations About X Server Memory Growth . . 2–31

3 Customizing the X Environment
3.1 Resource Definition Overview 3–1

Contents iii

3.1.1 Setting Resources 3–2

3.1.2 Resource Definition Precedence 3–2

3.1.3 Loading Resource Definitions 3–4

3.2 Using Command-Line Flags 3–5

3.3 Using Resource Definitions 3–7

3.3.1 Resource Definition Structure 3–8

3.3.2 Resource Definition Files 3–9

3.4 Using Client Utilities for Customization 3–11

3.4.1 The editres Utility 3–11

3.4.2 The xset Utility 3–12

3.4.3 The xsetroot Utility 3–13

3.4.4 The xrdb Utility 3–13

3.4.5 The xmodmap Utility 3–14

3.4.6 Utilities Using the X Keyboard Extensions 3–16

3.5 Using an X Session Script 3–18

3.6 Bypassing the Login Manager 3–21

4 Programming in the Digital UNIX X Window Environment
4.1 Extensions to the X Server 4–1

4.1.1 BIG-REQUESTS 4–2

4.1.2 DPS − Display PostScript Extension (Adobe Systems) 4–2

4.1.3 MIT-SCREEN-SAVER Extension 4–3

4.1.4 MIT-SHM − MIT Shared Memory Extension 4–3

4.1.5 MIT-SUNDRY-NONSTANDARD Protocol Extension 4–3

4.1.6 Multibuffering Extension 4–3

4.1.7 OpenGL − Open Graphics Library Extension 4–4

4.1.8 PEX (PHIGS Extension) 4–4

4.1.9 SHAPE − X11 Nonrectangular Window Shape Extension 4–5

4.1.10 SMT − Shared Memory Transport Extension (Digital
provided) 4–5

iv Contents

4.1.11 SYNC −Synchronization Extension 4–5

4.1.12 XC-MISC 4–6

4.1.13 XIE − X Imaging Extension 4–6

4.1.14 X Input Extension 4–7

4.1.15 X Keyboard Extension for X11 R6 4–7

4.1.16 XKME − X Server Keyboard Management Extension 4–8

4.1.17 XTrap Extension 4–9

4.1.18 XTEST Extension 4–9

4.1.19 XV − X Video Extension 4–9

4.2 X Display Manager Greeter Module 4–10

4.3 Programming Updates 4–12

4.3.1 XChangeProperty and GetWindowProperty Functions 4–12

4.3.2 Link Order for Static X Clients 4–12

4.3.3 DECnet Transport for X Client/Server Connections 4–13

4.3.4 Client Events with Display PostScript Libraries 4–13

Index

Examples
2–1 Xserver.conf Resource File 2–18

2–2 Font Server config File 2–24

3–1 Session Script 3–19

Figures
2–1 The xdm Processes 2–8

Tables
2–1 Digital UNIX Implementation-Specific Differences 2–2

3–1 Standard Command-line Flags 3–5

Contents v

About This Manual

The Digital UNIX X Window System Environment manual discusses
various aspects of the X Window System (X11) Release 6 implementation
on the Digital UNIX® (formerly DEC OSF/1) operating system. Digital has
changed the name of its UNIX operating system from DEC OSF/1 to
Digital UNIX. The new name reflects Digital’s commitment to UNIX and
its conformance to UNIX standards.

Audience

This manual provides general information as well as specific information
about the X Window System as supplied by the Digital UNIX operating
system. The audience for this information includes end users, system
administrators, and applications programmers.

New and Changed Features

This manual has been revised to document X11 R6.

Organization

This document has four chapters:

Chapter 1 Provides introductory information and lists the books that this
manual complements.

Chapter 2 Discusses X Window System system administration topics for
Digital UNIX systems.

Chapter 3 Explains how to customize X environment resources and keysyms
on Digital UNIX systems.

Chapter 4 Discusses X server extensions that are part of the Digital UNIX X
Window System environment as well as other programming topics
that apply to Digital UNIX systems.

About This Manual vii

Related Documents

The following books are part of the Digital UNIX hardcopy documentation
set. The information in the Digital UNIX X Window System Environment
supplements information found in these books:

• X Window System Administrator’s Guide, Linda Mui and Eric Pearce,
O’Reilly & Associates, Inc.

• PostScript Language Reference Manual, Adobe Systems Incorporated,
Addison-Wesley Publishing Company, Inc.

For Digital UNIX, the X Consortium provides programming documentation.
See the Documentation Overview, Glossary, and Master Index for
information on where this documentation is located.

The following manuals are available on Digital UNIX through Bookreader
as well as being part of the hardcopy documentation set:

• DECwindows User’s Guide

• DECwindows Companion to the OSF/Motif Style Guide

• DECwindows Extensions to Motif

• DECwindows Motif Guide to Application Programming

• OSF/Motif Style Guide

• OSF/Motif Programmer’s Guide

The following book provides extensive information about the Motif window
interface, including topics on the mwmwindow manager, font specification,
graphics utilities, and customizing your X Window System working
environment:

• X Window System User’s Guide, OSF/Motif 1.2 Edition, Valerie
Quercia and Tim O’Reilly, O’Reilly & Associates, Inc.

Programmers creating Display PostScript applications can find detailed
information in the following book:

• Programming the Display PostScript System with X, Addison-Wesley
Publishing Company, Inc.

viii About This Manual

The Digital UNIX operating system includes online PostScript files of
several technical papers from Adobe Systems Incorporated. These files
are located in the /usr/share/doclib/dps directory.

Documents from the X Consortium describing the X Image Extension,
Version 5, protocols and architecture are provided in PostScript files in the
/usr/share/doclib/xie directory.

Reference pages document all Digital UNIX X Window System commands,
OSF/Motif routines, DECwindows routines, and most X Window System
routines. Use the man or xman command to review these pages.

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General users G Blue

System and network
administrators

S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader’s Comments

Digital welcomes any comments and suggestions you have on this and
other Digital UNIX manuals.

About This Manual ix

You can send your comments in the following ways:

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on line in the following location:

/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Digital UNIX that you are using.

• If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send
problem reports to Digital.

Conventions

This document uses the following typographical and symbol conventions:

x About This Manual

%

$

A percent sign represents the C shell system
prompt. A dollar sign represents the system prompt
for the Bourne and Korn shells.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | }

In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

cat (1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat (1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

About This Manual xi

1
Introduction to the Digital UNIX Window

System Environment

The X Window System that is part of the Digital UNIX operating system
software is a standard X implementation. It conforms as closely as possible
with the sample X Window System Release 6 (X11 R6) implementation
from the X Consortium. This manual discusses everything except for the
CDE environment. See Common Desktop Environment: User’s Guide for
information on CDE.

The Digital UNIX implementation includes the standard X client
applications, such as xterm , xmh, xclock , twm, and editres . In addition,
the Digital UNIX window environment provides Motif or CDE client
applications and DECwindows client applications.

Digital UNIX contains CDE/Motif Release 1.0 and uses dtwm as the default
window manager. Two X session styles are offered. CDE is the default X
session. Information on CDE can be found in Common Desktop
Environment: User’s Guide. The previous DECwindows session manager is
still available, as well as DECwindows applications such as dxsession ,
dxconsole , dxkeycaps , and dxterm .

Digital UNIX also includes PostScript and Display PostScript from Adobe
Systems Inc.

All X Window System files in Digital UNIX are located in the standard
directories, such as /usr/bin/X11 and /usr/lib/X11 . See Section 2.3 for
lists of the X Window System files and their locations. CDE files can be
found in the/usr/dt directory.

This chapter lists windowing system documentation for end users, system
administrators, and programmers. Chapter 2 discusses system
administration topics; Chapter 3 explains how to customize X Window
System resources; Chapter 4 contains programming information.

Introduction to the Digital UNIX Window System Environment 1–1

Documentation for the Digital UNIX X Window System
Environment

The X Window System environment is used by three different audiences:
end users, system administrators, and programmers. Some of the windows
documentation that each of these groups can use is written by Digital; other
pieces come from outside publishers. Some books from outside publishers
are provided as part of the Digital UNIX hardcopy documentation set.

The following list summarizes the available documentation. For further
information, see the Documentation Overview, Glossary, and Master Index.

DECwindows User’s Guide

X Window System User’s Guide, OSF/Motif 1.2
Edition (O’Reilly & Associates, Inc.)

X Window System Administrator’s Guide (O’Reilly & Associates, Inc.)

X Window System Environment

X Window System (Digital Press)

X Window System Toolkit (Digital Press)

Inter-Client Communication Conventions Manual (X Consortium)

X Logical Font Description Conventions(X Consortium)

X Window System Protocol (X Consortium)

X Toolkit Intrinsics — C Language Interface (X Consortium)

Xlib — C Language X Interface (X Consortium)

DECwindows Extensions to Motif

DECwindows Companion to the OSF/Motif Style Guide

DECwindows Motif Guide to Application Programming

OSF/Motif Style Guide (P T R Prentice-Hall, Inc.)

OSF/Motif Programmer’s Guide (P T R Prentice-Hall, Inc.)

Developing Applications for the Display PostScript System

1–2 Introduction to the Digital UNIX Window System Environment

PostScript Language Reference
Manual (Addison-Wesley Publishing Company, Inc.)

Programming the Display PostScript System with X

Common Desktop Environment: User’s Guide

Common Desktop Environment: Advanced User’s and System
Administrator’s Guide

Common Desktop Environment: Application Builder User’s Guide

Common Desktop Environment: Desktop Kornshell User’s Guide

Common Desktop Environment: Help System Author’s and
Programmer’s Guide

Common Desktop Environment: Internationalization

Common Desktop Environment: Programmer’s Guide

Common Desktop Environment: Programmer’s Overview

Common Desktop Environment: Style Guide and Certification Checklist

Common Desktop Environment: ToolTalk Messaging Overview

Common Desktop Environment: Product Glossary

Display PostScript documents
Adobe System Incorporated

PostScript Language Reference Manual Supplement
/usr/share/doclib/dps/2015supplement.ps.Z

Display PostScript Developer TechNotes
/usr/share/doclib/dps/Developer-TechNotes-Volume1.ps.Z

Adobe CID-Fonts Web Location
/usr/share/doclib/dps/CID-Fonts.README

X Image Extension Version 5 documents
X Consortium

X Image Extension Overview
/usr/share/doclib/xie/overview.ps.gz

Introduction to the Digital UNIX Window System Environment 1–3

XIElib Specification
/usr/share/doclib/xie/xielib.ps.gz

XIE Sample Implementation Architecture
/usr/share/doclib/xie/xieSIarch.ps.gz

X Image Extension Protocol Reference Manual, Version 5.0
/usr/share/doclib/xie/XIEProto.ps.gz

1–4 Introduction to the Digital UNIX Window System Environment

2
X Window System Administration in the

Digital UNIX Environment

This chapter provides information about administering the X Window
System environment for systems running the Digital UNIX operating
software. The X Window System Administrator’s Guide (O’Reilly &
Associates, Inc.) is included in the Digital UNIX hardcopy documentation
set as the primary reference for information on how to manage X resources
that control the X Window environment. Most of the information in that
manual is generally applicable to the Digital UNIX implementation of the
X Window System.

You should read the O’Reilly manual in conjunction with this manual.
Section 2.2 in this manual provides a list of items in the O’Reilly manual
that are handled differently or are not supported by the Digital UNIX
implementation of the X Window System. Although the O’Reilly manuals
have not been updated for X11 R6, they are still a valid resource.

This chapter includes information on the following topics:

• Display managers

• Locations of the X Window System files on Digital UNIX

• X Display Manager (xdm) and the login process

• Security and xdm authorization

• X Window System login problems

• X server management

• Graphics adapters

• Font server management

• X terminal management

• X server memory utilization

Many of these topics are covered in greater detail in the O’Reilly manual.

X Window System Administration in the Digital UNIX Environment 2–1

2.1 Choosing the xdm or the dtlogin Display Manager

You can configure your system to either the standard X11 R6 display
manager xdm or the CDE display manager dtlogin . Run the
/usr/sbin/xsetup script to switch between CDE and xdm. The xsetup
script sets the value of the /etc/rc.config variable XLOGIN to be xdm or
cde and will optionally restart your X display manager using the
/sbin/init.d/xlogin script. When your system boots, the
/sbin/init.d/xlogin script uses the value of the /etc/rc.config
XLOGIN variable to determine whether to start xdm or CDE’s dtlogin .

If for any reason you need to restart your X display manager, this can be
done using xsetup , whether or not you choose to switch from one display
manager to another. Alternatively, the X display manager can be stopped,
started, or restarted using the /sbin/init.d/xlogin command with
stop , start , or restart specified as the parameter.

For further information on configuring CDE and dtlogin , refer to
Common Desktop Environment: User’s Guide.

The information in the rest of this chapter primarily applies if you choose
to run xdm. While dtlogin is similar to xdm and uses the same methods
and concepts, there are important differences in the details.

2.2 Administrator’s Guide − Digital UNIX Differences

Table 2–1 lists specific sections in the X Window System Administrator’s
Guide (O’Reilly & Associates, Inc.) where the information does not apply to
the Digital UNIX X Window System environment. (The differences do not
in any way reflect errors or omissions on the part of the authors of that
manual.)

Table 2–1: Digital UNIX Implementation-Specific Differences

Section Difference

Section 1.1.3 Digital UNIX does not support OPEN LOOK.

Section 2.2.3.1 The information in the third and fourth paragraphs is true if
you are using a .xsession script in your home directory. If
you are using dxsession (the default), this information does
not apply. See the dxsession (1X) reference page for
details.

2–2 X Window System Administration in the Digital UNIX Environment

Section Difference

Section 2.4 The xinit command is not supported by Digital UNIX
Version 4.0

Section 3.5.4.1 The information about the Athena-style login box does not
apply to the default Motif style login box used by the Digital
UNIX X server. To customize the Motif style login box,
modify the Xresources configuration file. To use an Athena
style login box, modify the xdm configuration file to specify
/usr/shlib/X11/libXdmGreet.so for the
DisplayManager.greeterLib resource.

Section 3.5.4.2 The dxconsole client is started by default, not the
xconsole client. The dxconsole client presents the Motif
interface.

Section 3.5.5 The default Xsession file on the installation kit differs in a
number of ways from the Xsession file shown in this
section. The major difference is the invocation of dxsession
and the affect that dxsession has on the window
environment. See the xdm(1X) and dxsession (1X)
reference pages for details.

Section 3.7 This section does not describe how the xdm client is installed
on Digital UNIX systems. When the boot process goes into
multiuser mode, the symbolic links in /sbin/rc3.d are run
in sequence as they appear in the directory. The last file to
be run is a symbolic link to the xdm script ,
/sbin/init.d/xdm .

Section 4.2.2 The xrsh command is not supported. Note that xon can be
used as an alternative unless it is necessary to send
authorization information to remote hosts.

Section 4.4 The SUN-DES-1 mechanism for display access control is not
supported.

Section 5.1.4 The font paths shown in the example output for the xset
commands differ from the default font paths on Digital UNIX
systems.

Section 5.5.2 To start the font server at boot time, create a symbolic link
to a script in the /sbin/rc3.d directory.

Section 7.3.1 The rarpd daemon is not supported.

Section E.4 Much of the information in this section does not apply to
Digital UNIX. See Section 2.2 for information on X server
files on the Digital UNIX Version 4.0 installation kit.

X Window System Administration in the Digital UNIX Environment 2–3

2.3 Locations of the X Window System Files

The file locations shown in the following list reflect the locations of the X
Window System files as established by the workstation installation kits.

Files Contents

/usr/bin/X11 X binaries. (In some previous X implementations,
some X binaries were located in /usr/bin .)

/usr/bin/X11/demos Binaries of X demo programs.

/usr/examples Example files and (possibly) program sources.

/usr/include/DPS Display PostScript header files.

/usr/include/DXm DECwindows Motif widget header files.

/usr/include/Mrm Motif resource manager header files.

/usr/include/uil User Interface Language (UIL) header files.

/usr/include/X11 X11 header files.

/usr/include/X11/bitmaps

Bitmaps used by various window managers and
applications.

/usr/include/X11/extensions

Header files for extensions to X11 R6. (The
extensions are discussed in Chapter 3.)

/usr/include/X11/ICE InterClient Exchange library header files.

/usr/include/X11/SM Session management library header files.

/usr/include/X11/Xaw Athena widget header files.

/usr/include/X11/Ximp Header files for libXimp .

/usr/include/Xm Motif header files.

/usr/include/X11/Xmu X utility header files.

usr/include/X11/Xserver Header files for loadable X server libraries.

2–4 X Window System Administration in the Digital UNIX Environment

/usr/lib/dxbook Bookreader (dxbook) bookshelves and documents
for Digital UNIX Version 4.0

/usr/lib/lib* Developers’ libraries (static versions).

/usr/lib/X11/app-defaults Application default files used by applications to
define default interface configurations and, in
some cases, layout of applications.

/usr/lib/X11/locale/C

Internationalization files.

/usr/lib/X11/config Configuration files that can be used to build
Makefiles from Imakefiles so that developers can
use more generic build configurations for their
applications. These configuration files define the
proper configuration parameters for the system.

/usr/lib/X11/DPS Display PostScript configuration files that denote
the location of fonts and the DPS kernel file
(masterDPSVM).

/usr/lib/X11/fonts/100dpi

The 100 dpi fonts from the X Consortium.

/usr/lib/X11/fonts/75dpi The 75 dpi fonts from the X Consortium.

/usr/lib/X11/fonts/decwin/100dpi

The 100 dpi DECwindows fonts.

/usr/lib/X11/fonts/decwin/75dpi

The 75 dpi DECwindows fonts.

/usr/lib/X11/fonts/misc Fonts from the X Consortium.

/usr/lib/X11/fonts/Speedo Speedo scalable fonts.

/usr/lib/X11/fonts/Type1

Type1 scalable fonts.

/usr/lib/X11/fonts/Type1Adobe

Adobe Type1 scalable fonts.

/usr/lib/X11/fonts/Type1Adobe/afm

Font metrics files.

X Window System Administration in the Digital UNIX Environment 2–5

/usr/lib/X11/fonts/user/100dpi

The 100 dpi fonts from layered products and local
installations.

/usr/lib/X11/fonts/user/75dpi

The 75 dpi fonts from layered products and local
installations.

/usr/lib/X11/fonts/user/misc

Other fonts from layered products and local
installations.

/usr/lib/X11/fs Font server configuration and error log files.

/usr/lib/X11/help Directories in this directory contain the help files
for various applications.

/usr/lib/X11/ja Internationalization files.

/usr/lib/X11/japan Internationalization files.

/usr/lib/X11/locale Internationalization files.

/usr/lib/X11/keymaps Alternate keymaps for different international
keyboards.

/usr/lib/X11/nls Natural language support for native character
mappings.

/usr/lib/X11/nls/local_im_tbl

Internationalization files.

/usr/lib/X11/rgb* Color database used by the server to convert color
names to red-green-blue values.

/usr/lib/X11/system.mwmrc

Default systemwide configuration file for mwm.

/usr/lib/X11/twm Default configuration information for twm.

/usr/lib/X11/uid User interface control files used by some
applications.

/usr/lib/X11/x11perfcomp

Utility scripts for reformatting x11perf output.

/usr/var/X11/xkb XKB keymap files.

2–6 X Window System Administration in the Digital UNIX Environment

/usr/lib/X11/xkb XKB keymap files.

/usr/bin/X11/xkbcomp

XKB keymap compiler.

/usr/bin/X11/xkbprint

XKB keymap to PostScript generator.

/usr/bin/X11/xkbdfltmap

Determines the default keymap based on the
console, language, and keyboard.

/usr/bin/X11/dxkbledpanel Displays a graphical user interface of the
available XKB indicators. Used primarily to show
the current keyboard group. Replaces the
kb_indicator application.

/var/X11/xdm X Display Manager configuration and resource
files, and the xdm error log. (The file
/usr/lib/X11/xdm is a link to /var/X11/xdm .)

/usr/lib/X11/XErrorDB Error messages used by the X library.

/usr/lib/X11/XKeysymDB The keysym mappings for X toolkit based
applications.

/var/X11/Xserver.conf

Configuration information file for the X server.
(The file /usr/lib/X11/Xserver.conf is a link
to /var/X11/Xserver.conf .)

/usr/share/uwsvers Workstation software version file.

/usr/shlib Run-time shared libraries.

/usr/shlib/X11 Run-time shared libraries for the X server, font
server, and xdm.

/usr/shlib/_null Older versions of sharable libraries.

/var/X11/fs Font server configuration files. (The file
/usr/lib/X11/fs is a link to
/var/X11/fs.conf .)

X Window System Administration in the Digital UNIX Environment 2–7

2.4 X Display Manager (xdm) and the Login Process

The X Display Manager (xdm) manages user sessions on both local and
remote displays. On Digital UNIX systems, the xdm utility provides the
mechanism for logging in to the X display and then starts certain client
applications automatically.

The xdm utility creates child processes for each display both locally and
remotely. The xdm utility is an X client that manages user session
elements, such as logging in, authentication, and default resource set up.
System administrators can use xdm to make systemwide configurations of
the X Window System environment.

Figure 2–1 shows the kinds of processes that xdm manages.

Figure 2–1: The xdm Processes

ZK−1009U−R

xdm Parent Process

xdm Local
Display Process

X Terminal

User Session

Local X Server
xdm Remote

Display Process

User Session

2–8 X Window System Administration in the Digital UNIX Environment

The xdm daemon starts when the system boots in multiuser mode, so it is
ready to manage the login process. The following list shows the steps
involved in the login process on Digital UNIX systems:

1. The system uses the following command during the booting procedure
to start the xdm daemon:

/sbin/init.d/xlogin start

On Digital UNIX systems, the xdm daemon is started by an
initialization script that is run using the following link:

/sbin/rc3.d/S95xlogin -> ../init.d/xlogin

2. The xdm program reads its main configuration file:

/usr/var/X11/xdm/xdm-config

3. The xdm program listens on its socket for requests from any X
terminals.

4. The xdm program forks a child process for managing the local display.

5. The xdm program displays the login box (login widget) on the local
display. For this procedure, xdm executes the following steps:

a. Secures the display.

b. Loads Xresources from the X server resource database utility
xrdb . Loading the resources sets the display characteristics for the
xdm login box.

c. Runs the Xsetup_0 setup script on the local display.

d. Displays the login box (login widget) on the local display.

6. The user enters his or her name and password in the login box. User
authentication takes place ensures that the user is allowed to access
this display.

7. The login widget is destroyed and xdm runs the GiveConsole startup
script on the local display using the root uid .

8. The X session starts up as a child process using the user’s id (uid). The
startup action involves executing the /var/X11/xdm/Xsession script
which either runs the user’s $HOME/.xsession script or dxsession .

9. The user exits the session.

X Window System Administration in the Digital UNIX Environment 2–9

10. The xdm program runs the /var/X11/xdm/TakeConsole script on the
local display using root’s uid.

11. The xdm local display process exits. At this point the workstation
returns to the state it was in at step 4, where xdm forks a child process
for managing the local display and displays the login widget. The
workstation is ready for a user to log in.

On Digital UNIX, the /var/X11/xdm directory contains the following files:

• GiveConsole

This script is run when xdm starts up and changes the ownership of the
console, /dev/console , from root to the user. The script only runs on
the local display. (It cannot be used with X terminals.)

• TakeConsole

This script is run when xdm is reset and returns ownership of the
console, /dev/console , from the user to root. The script only runs on
the local display. (It cannot be used with X terminals.)

• Xaccess

This configuration file controls how xdm responds to different queries
from the X Display Manager Control Protocol (XDMCP). This file is
used to manage X terminals.

• Xkeymaps

This file defines the mapping between language and keyboard and the
corresponding keymap file in the /usr/lib/X11/keymaps directory.
Whenever the server is started or reset, the keymap is loaded into the
X server by xdm using the xmodmap command.

The value of the console language variable and the keyboard type are
retrieved from the kernel and used as an index into the Xkeymaps
table to define the appropriate keymap.

• Xresources

This file contains resource specifications that are loaded into the X
server’s resource database, xrdb , before the login widget is displayed.
These resources affect the appearance of the login window and screen
(either dxlogin or xlogin), the background color of all clients, as well
as the appearance of the clients which are started by xdm: xconsole ,
dxconsole , and chooser .

2–10 X Window System Administration in the Digital UNIX Environment

The dxlogin resources can control the following elements:

– Digital logo pixmap, clipmask, foreground color, background color,
and login box position

– Root window color

– Greeting text, font, and color

– Prompt text as well as color and font for both the prompt and
answer

The default background color for all clients is #ca94aa469193 , which
is a light tan.

• Xservers

This file defines the command that starts the server on the local display.
More entries for workstations or X terminals can be added as needed.

The default definition for the UNIX socket transport (DISPLAY :0) is:

:0 local /usr/bin/X11/X

The default definition for the Shared Memory Transport (SMT)
(DISPLAY local:0) is:

local:0 local /usr/bin/X11/X

This file can also be used to specify entries for X terminals that do not
support XDMCP.

• Xservers.fs

The file is read by file server systems that use the xdm-config.fs
configuration file. This file is used to specify entries for X terminals
that do not support XDMCP.

• Xsession

This initial startup script is executed under the user’s uid to run the
login session. If a $HOME/.xsession script is available, it runs.
Otherwise, xdm runs the default session, dxsession , which is the
DECwindows Session Manager.

• Xsetup_0

This script is used only to configure the local X server; it cannot be used
with remote X terminals. The script attempts to determine the display

X Window System Administration in the Digital UNIX Environment 2–11

resolution and uses that information to set the appropriate font path. It
also starts dxconsole , unless an alternate console is being used.

• keymap_default

The xdm program links to the appropriate keymap file in
/usr/lib/X11/keymaps .

• xdm-config

This configuration file contains the values for a number of
DisplayManager resources.

• xdm-config.fs

This version of the xdm_config file is for use by server systems that
do not have a local graphics display.

• xdm-errors

This file is an error log file. Both xdm and the X server write all error
messages to this file.

• xdm-pid

Once this file records the xdm process id, it is locked to prevent
multiple invocations of xdm.

The following files are the default and alternate greeter modules. They are
located in the /usr/shlib/X11 directory:

libXdmDecGreet.so
libXdmGreet.so

These files provide the login box for users. The greeter module presents the
login interface and authenticates the user. This module is dynamically
loaded by xdm. The libXdmDecGreet.so file uses OSF/Motif-style widgets.
The libXdmGreet.so file uses Athena-style widgets. The greeter module
is dynamically loaded by xdm.

The OSF/Motif-style greeter is the default. It displays the Digital logo and
login box. It uses the Security Integration Architecture (SIA) to provide
improved security.

The Athena-style greeter uses the standard X Consortium graphical user
interface (GUI). It does not use SIA and therefore cannot be used with
enhanced C2 security.

2–12 X Window System Administration in the Digital UNIX Environment

2.5 Security and xdm Authorization

Because the X Window System runs in a networked environment, any
other host on the network can access individual workstation unless some
kind of security mechanism is in place. The X Window System design
makes it possible for any client that is able to connect to a workstation’s X
server to have complete control over that workstation’s display. As a result,
a client can take control of the mouse or keyboard, send keystrokes to any
application running on the workstation, or kill windows in which other
applications are running.

This section presents a summary of the X security environment. Refer to
the X Window System Administrator’s Guide for details about
implementing X security mechanisms for your system.

There are two approaches to X Window System security: host-based security
and user-based security. The next sections briefly discuss each type.

2.5.1 Host-Based Security

With host-based access control, only local clients are accepted by default. X
Window System administrators can use the /usr/bin/X11/xhost client
application to add or delete host names as well as user names from a list of
those allowed to connect to the X server. The xhost program uses host
names to limit host connections. Therefore, there is no security among
users on an individual host; only security among hosts.

Another host-based security mechanism involves using the /etc/X n.hosts
file to list systems that can access the local server, specified by n. However,
this method is not recommended because it is hard to maintain a truly
limited list of hosts if more than one user has access to the workstation
where the list resides and because the method allows access to the X server
at any time, even when the xdm login window appears.

2.5.2 User-Based Security

Digital UNIX supports two types of user-based X access control
authorization mechanisms: MIT-MAGIC-COOKIE-1 and
XDM-AUTHORIZATION-1.

The xdm-config resources DisplayManager. DISPLAY.authorize and
DisplayManager. DISPLAY.authName control whether xdm uses

X Window System Administration in the Digital UNIX Environment 2–13

authorization for local displays. X terminals using XDMCP negotiate with
xdm to determine which mechanism to use.

When both the host workstation and the X server are configured to use
MIT-MAGIC-COOKIE-1 or XDM_AUTHORIZATION-1, a machine-readable
code is placed in the /˜ Xauthority file in your home directory every time
you log in under xdm control. The term used for this machine-readable code
is the magic cookie. The X server is informed of the same magic cookie for
the current session. The code is stored in a file in the /usr/lib/X11/xdm/
directory, which the X server reads using its −auth capability.

Whenever a client application starts, it must supply the correct magic
cookie code from the /˜ Xauthority file to the X server to open the display.
Since the permissions on this file are restricted to read/write for the user,
only clients that the user starts have permission to read the magic cookie
code. The assumption is that if the user starts the client application, he or
she wants that application to have permission to run on the user’s
workstation.

You can use the xauth program to propagate the magic cookie code from
one host to another. This feature allows users to run client applications on
other workstations that do not share their home directory.

2.6 Solving X Window System Login Problems

This section describes some useful techniques for solving problems you
might encounter when trying to log in to the X Window System
environment. The first section discusses possible causes for login problems.
The second section describes using the failsafe mode to correct various
login problems.

2.6.1 Login Problems

If you cannot log in at all to your workstation, you should check for errors
in the following places:

• $HOME/.xsession-errors

This file contains errors generated by your own user account.

• /usr/lib/X11/xdm-errors

This file contains xdm errors that are not limited to your own user
account.

2–14 X Window System Administration in the Digital UNIX Environment

The following list describes the most common login problems and likely
causes:

• After you enter your name and password in the login box, the screen
immediately resets, redisplaying the login box.

Possible causes for these problems are as follows:

– There might be errors in the $HOME/.xsession script. For
example, if there is an ampersand (&) on the last command line in
the file, there would be no controlling process for the X session and
the session would exit immediately.

– If your user disk and /tmp file system are both more than 100%
full, you cannot log in because there is no space to write the
.Xauthority file.

– If the /usr/lib/X11/xdm/Xsession script was customized, errors
might have been introduced accidentally.

• You are able to log in, but only a single terminal window appears.

The Xsession script has resorted to failsafe mode. Possible causes are
as follows:

– The user disk is more than 100% full.

– The user’s home directory is not writable.

• No login box appears on the local display and there is no X server.

If you encounter this problem, check the /usr/lib/X11/xdm-errors
file for error messages. Possible causes for these error messages are as
follows:

– There are problems in the /usr/lib/X11/Xserver.conf file.

– There are problems in the /usr/lib/X11/xdm/xdm-config file or
the files that it references.

• You cannot log in to an X display as root.

For root login to an X display to be allowed, the name of the display
must be listed in the /etc/securettys file for your workstation. If the
display name is listed in that file, you can log in as root to the X display.

X Window System Administration in the Digital UNIX Environment 2–15

The /etc/securettys file usually includes the entries :0 and
local:0 to allow root login to the local display. You can add entries for
remote X terminals or X displays so you can log in remotely as root
from those machines.

2.6.2 Failsafe Mode

When you have problems logging in to your workstation, you can use
failsafe mode to bring up a terminal window. You can use this terminal
window to perform operations that can solve some of the login problems
outlined in the previous section. Failsafe mode bypasses the .xsession
script and dxsession session manager to display a single dxterm window.
You can use this dxterm window to debug your .xsession script.

You can invoke the failsafe mode by pressing the F1 or F2 key after typing
your password in the login box. Do not press the Return key.

If you are able to log in, but only a single terminal window appears, you
are already in failsafe mode.

Once you are in failsafe mode, you can check the errors in the xdm-errors
file; check for errors in the xsession script, Xsession file, Xserver-conf
file, or xdm-config file; or delete files if the user disk is full.

2.7 Managing the X Server

The X server consists of components that are all located in dynamically
loadable libraries. The libraries are in the following directory:

/usr/shlib/X11

There are libraries for device support as well as others for X server
extensions and font renderers. Section 4.1 provides descriptions of the X
server extensions that the Digital UNIX operating system supports.

You specify which libraries you want loaded in the
/usr/var/X11/Xserver.conf resource file.

On Digital UNIX systems, the X Window System programming extensions
are built and dynamically loaded as sharable libraries. The X protocol
requires that client applications must call the XQueryExtension function
before using an extension. The XQueryExtension function returns
extension information such as the base request number, number of
requests, base error number, number of errors, and version string.

2–16 X Window System Administration in the Digital UNIX Environment

With this mechanism in place, the X server can defer loading any extension
libraries until a client requests a specific extension. When the X server
receives an XQueryExtension protocol request, it loads and initializes the
appropriate extension library if that library has not previously been loaded.

In real time, this loading causes a slight delay in processing the first
request for an extension library. However, no such delay is experienced
during server start up. When the X server is shut down, it closes all
libraries that were loaded on demand and returns to its zero state.

The extension library on Digital UNIX consists of the following sharable
libraries. The first four libraries are loaded at server startup time; the
remaining libraries are loaded on demand.

• libxkb.so

• libextshm.so

• libextMultibuf.so

• libextshape.so

• libextMITMisc.so

• libextScrnSvr.so

• libextxtest.so

• libextkme.so

• libextSync.so

• libextXCMisc.so

• libextbigreq.so

• libextxtrap.so

• lib_adobe.dps.ps

• libdixie.so

• libmixie.so

• libxinput.so

• libdbe.so

Example 2–1 shows the default Xserver.conf resource file that Digital
UNIX provides.

X Window System Administration in the Digital UNIX Environment 2–17

Example 2–1: Xserver.conf Resource File

! Default configuration file for extensible X server

! no other sysyem files are needed
! no other core files are needed
!

! device <
! >

! You can set alternate library search paths here or supplement the
! default path.
! library_path < /newserver/fonts/lib/font:/usr/shlib >

! Add a few more extensions
extensions <

< extdpms libextdpms.so DPMSExtensionInit DPMS >
< dbe libdbe.so DbeExtensionInit DOUBLE-BUFFER >
< extshape libextshape.so ShapeExtensionInit SHAPE >
< extMultibuf libextMultibuf.so MultibufferExtensionInit Multi-Buffering >

! The KME extension is obsolete functionality that supports lock down
! and latching modifiers. It has been replaced by the XKB extension
! and is only provided here for interoperability with R5 servers.

< extkme libextkme.so KMEInit Keyboard-Management-Extension >
< extMITMi libextMITMisc. MITMiscExtensionInit MIT-SUNDRY-NONSTANDARD >
< extScrnSvr libextScrnSvr.so ScreenSaverExtensionInit MIT-SCREEN-SAVER >
< extSync libextSync.so SyncExtensionInit SYNC >
< extxtest libextxtest.so XTestExtensionInit XTEST >
< extbigreq libextbigreq.so BigReqExtensionInit BIG-REQUESTS >
< extXCMisc libextXCMisc.so XCMiscExtensionInit XC-MISC >
! add the xtrap extension
< extxtrap libextxtrap.so DEC_XTRAPInit DEC-XTRAP >

! add the video extension along with device specific handlers
! for the TX device
< xv libxv.so XvExtensionInit XVideo

< _dec_xv_tx lib_dec_xv_tx.so XvropScreenInit PMAG-RO >
< _dec_xv_tx lib_dec_xv_tx.so XvropScreenInit PMAG-JA >

>

! add the X imaging extension
!not R6 < _dec_xie lib_dec_xie.so Xie3Init Xie >

< dixie libdixie.so XieInit XIE
< mixie libmixie.so >

>
< _adobe_dps lib_adobe_dps.so XDPSExtensionDeferredInit Adobe-DPS-

Extension >
< _adobe_dps lib_adobe_dps.so XDPSExtensionDeferredInit DPSExtension >

>

! Load Speedo and Type1 renderers and
! enable communication with a font server
font_renderers <

< fr_fs libfr_fs.so fs_register_fpe_functions >
< fr_Speedo libfr_Speedo.so SpeedoRegisterFontFileFunctions >

2–18 X Window System Administration in the Digital UNIX Environment

Example 2–1: Xserver.conf Resource File (cont.)

< fr_Type1 libfr_Type1.so Type1RegisterFontFileFunctions >
>

! Enable X Input Devices
!input <
! Dial and Button Box on port /dev/tty01
! < _dec_xi_pcm lib_dec_xi_pcm.so XiPcmInit /dev/tty01 >
!
! Serial Mouse. Use the following format for the last parameter:
!
! device:type:baud:emulate3:chordmid:samplerate:cleardtr:clearrts:core
!
! where
!
! device: The port the device is connectd to.
! For example, /dev/tty00. /dev/tty00 is the
! default.
!
! type: The mouse type. It must be one of the following
! strings (case does not matter): microsoft
! mousesystems mmseries logitech busmouse mouseman
! ps/2 mmhittab. mousesystems is the default.

! baud: The baud rate of the mouse. Mine is 1200, I think
! others will do 9600. 1200 is the default.
!
! emulate3: Either 0 or 1. 1 means emulate a 3 button mouse
! with a 2 button mouse. This is not implemented yet,
! though 0 is the default.
!
! chordmid: Either 0 or 1. Some 3 button mice treat MB2 kind of
! whacky. A value of 1 supports those meesers. 0 is
! the default.
!
! samplerate: The sample rate of the mouse. I don’t have a mouse
! that supports this, so I don’t know what it does.
! 150 is the default.
!
! cleardtr: Either 0 or 1. 1 means clear the DTR signal for
! the port before using the mouse. 0 is the default.
!
! clearrts: Either 0 or 1. 1 means clear the RTS signal for
! the port before using the mouse. 0 is the default.
!
! core: Either 0 or 1. 1 means make this emulate the core
! device. 0 means make it a two relative motion
! valuator, n-button X Input Device. 0 isn’t
! implemented yet. 1 is the default.
!
! < _dec_xi_serial_mouse lib_dec_xi_serial_mouse.so XiSerialMouseInit /dev/tty00:
microsoft:1200:1 >
!>
! transport and auth_protocol library loading is not yet supported

! you specify command line arguments here
args <

X Window System Administration in the Digital UNIX Environment 2–19

Example 2–1: Xserver.conf Resource File (cont.)

-pn
>!

The following three Xserver command flags are especially useful in
managing the X server. For more complete information on the Digital
UNIX Xdec and Xserver command, see the Xdec (1X) reference page.

• −terminate

This flag causes the server to exit rather than to reset.

You can also achieve the same effect by setting the following xdm
resources in the xdm-config file:

– DisplayManager._0.terminateServer: true

– DisplayManager.local._0.terminateServer: true

• −edge_left scr1 scr2

• −edge_right scr1 scr2

You use one of these flags to connect the edges of screens in a
multihead display configuration.

• −fp fontpath

You can use this flag to set the default font path. The path consists of a
comma-separated list of directories for the X server to search to find
the font databases. Make sure that all components of the list are valid
font directories or else the X server will exit.

The X server has been modified to query the kernel automatically for the
language and keyboard of the console. Given this information, the X server
will examine the contents of the /usr/lib/X11/xkb/keymaps.dir file to
determine which default keymap to use. The X server will then compile the
keymap, place the compiled version in the directory
/usr/lib/X11/xkb/compiled , and load it. This feature has been enabled
by default. To disable it, add the -noloadxkb switch to the command line.
If you wish to disable the XKB extension altogether, add the -kb switch to

2–20 X Window System Administration in the Digital UNIX Environment

the command line. See the Xdec (1X) reference page or run Xdec with the
-? option for more information.

2.8 Graphics Adapters

This section lists many of the graphics adapters supported by Digital
UNIX. (Absence of any adapter from this list does not necessarily mean
that the adapter is not supported.) Some graphics adapters require the
DEC Open3D software product for full three-dimensional support.

PMAGB-B HX Smart Frame
Buffer (SFB)

PMAGB-BA/BB 72HZ 1280x1024 -or-
66HZ 1280x1024
PMAGB-BC/BD 72HZ 1280x1024 -or-
60HZ 1024x864
PMAGB-BE/BF 72HZ 1280x1024 -or-
66HZ 1280x1024

Supported by lib_dec_sfb.so

PMAGD-A HX+ 8-Plane Smart
Frame Buffer Plus (SFB+)

PMAGD-AA HX+ 72HZ 1280x1024

Supported by lib_dec_ffb.so

PMAGD-B HX+ 24-Plane
Smart Frame Buffer Plus with
no Z-buffer(SFB+)

PMAGD-BA HX+ 72HZ 1280X1024

Supported by lib_dec_ffb.so

PMAGD-C HX+ 24-Plane
Smart Frame Buffer Plus with
Z-buffer(SFB+)

PMAGD-CA HX+ 72HZ 1280X1024

Supported by lib_dec_ffb.so

PMAGB-J TX 24-plane frame
buffer

PMAGB-JA/JB TX 72HZ 1280x1024
PMAG=JA/JB TX 72HZ 1280X1024
A10U-AA/DA Picture-in-Picture
option card for TX

Supported by lib_dec_tx.so

PMAGC-AA ZLX-M1 graphics
accelerator

PMAGC-AA ZLX-M1 graphics
adapter

Supported by lib_dec_pvg.so

PMAGC-BA ZLX-M2 graphics
accelerator

PMAGC-BA ZLX-M2 graphics
adapter

X Window System Administration in the Digital UNIX Environment 2–21

Supported by lib_dec_pvg.so

PMAGC-DA ZLX-L1 graphics
accelerator

PMAGC-DA ZLX-L1 graphics adapter

Supported by lib_dec_pvl.so

PMAGC-EA ZLX-L2 graphics
accelerator

PMAGC-EA ZLX-L2 graphics adapter

Supported by lib_dec_pvl.so

PB2GA-AA QVision Triton
EISA graphics adapter

PB2GA-AA Triton 72HZ 1024x768

Supported by lib_dec_triton.so

PB2GA-FA ATI Mach64 PCI
VGA graphics adapter

PB2GA-FA ATI Mach64 PCI VGA
graphics adapter
PB2GA-FA Mach64 72HZ 800X600
PB2GA-FA Mach64 70HZ 1024X768
(Default hz & resolution)
PB2GA-FA Mach64 66HZ 1280X1024
PB2GA-FA Mach64 70HZ 1280X1024
PB2GA-FA Mach64 72HZ 1280X1024

Note that 1280X1024 is only available on
cards with at least 2MB RAM

Supported by lib_dec_ati64.so

PB2GA-FB ATI Mach64 ISA
VGA graphics adapter

PB2GA-FA Mach64 72HZ 640X480
PB2GA-FA Mach64 72HZ 800X600
PB2GA-FA Mach64 70HZ 1024X768
(Default hz & resolution)
PB2GA-FA Mach64 66HZ 1280X1024
PB2GA-FA Mach64 70HZ 1280X1024
PB2GA-FA Mach64 72HZ 1280X1024

Note that 1280X1024 is only available on
cards with at least 2MB RAM

Supported by lib_dec_ati64.so

Cirrus 5422 VGA graphics
adapter (embedded on
Alphaserver 1000)

Cirrus 5422 60HZ 640X480
Cirrus 5422 56HZ 800x600

Supported by lib_dec_cirrus.so

PB2GA-J Trio64 60HZ 640X480 PB2GA-J Trio64 60HZ 640X480

2–22 X Window System Administration in the Digital UNIX Environment

PB2GA-J Trio64 72HZ 640X480
PB2GA-J Trio64 60HZ 800X600
PB2GA-J Trio64 72HZ 800X600
PB2GA-J Trio64 60HZ 1024X768
PB2GA-J Trio64 70HZ 1024X768
(Default hz & resolution)
PB2GA-J Trio64 72HZ 1024X768
PB2GA-J Trio64 60HZ 1280X1024
PB2GA-J Trio64 66HZ 1280X1024
PB2GA-J Trio64 72HZ 1280X1024

Note that 1280X1024 is only available on
cards with at least 2MB RAM

Supported by lib_dec_s3.so

PBXGA-A HX+ 8-Plane Smart
Frame Buffer Plus for PCI
(SFB+)

PBXGA-AA HX+ 72HZ 1280X1024

Supported by lib_dec_ffb.so

PBXGA-B HX+ 24-Plane Smart
Frame Buffer Plus for PCI with
no Z-buffer(SFB+)

PBXGA-BA HX+ 72HZ 1280X1024

Supported by lib_dec_ffb.so

PBXGA-C HX+ 24-Plane Smart
Frame Buffer Plus for PCI with
Z-buffer(SFB+)

PBXGA-CA HX+ 72HZ 1280X1024

Supported by lib_dec_ffb.so

PBXGC-A ZLXp-L1 graphics
accelerator

PBXGC-AA ZLXp-L1 graphics
adapter

Supported by lib_dec_pvp.so

PBXGC-B ZLXp-L2 graphics
accelerator

PBXGC-BA ZLXp-L2 graphics
adapter

Supported by lib_dec_pvp.so

PBXGB-A TGA2 8mb Smart
Frame Buffer for PCI

PBXGB-AA TGA2 graphics adapter

PBXGB-AA TGA2 graphics adapter

Supported by lib_dec_ffb.so

PBXGB-C TGA2 Smart Frame
Buffer for PCI

PBXGB-CA TGA2 graphics adapter

Supported by lib_dec_ffb.so

X Window System Administration in the Digital UNIX Environment 2–23

In addition, the X Window System environment on Digital UNIX supports
the following monitors:

VRT16−HA/H4 16" 66/72HZ 1280x1024
VRT19−HA/H4 19" 66/72HZ 1280x1024
VRM17−HA/H4 17" 72HZ 1280x1024
VR319−DA/D4 19" 72HZ 1280x1024
VR320−Dx 19" 72HZ 1280x1024
VR320−Cx 19" 66HZ 1280x1024
VR160−Dx 16" 60HZ 1280x1024
VR297−Dx 19" 60HZ 1024x864
VR290−x 19" 60HZ 1024x864
VR299−Dx 19" 60HZ 1024x864
VRC16−Cx 17" 72HZ 1024x768

2.9 Font Server Management

In Digital UNIX, /usr/bin/X11/xfs is the X Window System font server.
The font server supplies fonts to the X Window System display servers.

For X11 R6, the font server was renamed from fs to xfs . For
compatibility, the symbolic link/usr/bin/X11/fs —> xfs is provided on
Digital UNIX. Most X11 R5 and X11 R6 X servers can communicate with a
font server. For example, Digital VXT V2.1 X terminals can communicate
with the font server in the Digital UNIX operating system.

For Digital UNIX, the font server loads the following configuration file by
default:

/var/X11/fs/config

Example 2–2 shows the default configuration file. Note that on the Digital
UNIX system, the catalogues and renderers lines are not separated as
shown in the example.

Example 2–2: Font Server config File

font server configuration file
$XConsortium: config.cpp,v 1.7 91/08/22 11:39:59 rws Exp $

clone-self = on
use-syslog = off

2–24 X Window System Administration in the Digital UNIX Environment

Example 2–2: Font Server config File (cont.)

catalogue = /usr/lib/X11/fonts/decwin/100dpi/,
/usr/lib/X11/fonts/decwin/75dpi/,
/usr/lib/X11/fonts/misc/,
/usr/lib/X11/fonts/75dpi/,
/usr/lib/X11/fonts/100dpi/,
/usr/lib/X11/fonts/Type1Adobe/,
/usr/var/X11/fonts/user/misc/,
/usr/var/X11/fonts/user/100dpi/,
/usr/var/X11/fonts/user/75dpi/

error-file = /usr/var/X11/fs/fs-errors
in decipoints
default-point-size = 120
default-resolutions = 75,75,100,100
renderers = libfr_Type1.so;

Type1RegisterFontFileFunctions,libfr_Speedo.so;
SpeedoRegisterFontFileFunctions

The following list explains the elements in the file:

• clone-self

This line indicates whether the font server should try to clone itself or
use delegates when it reaches the limit for number of clients. By
default, the Digital UNIX font server clones itself when the limit is
reached.

• use-syslog

This line indicates whether or not syslog() is used for font server
error logging. For Digital UNIX, the value is set to off , which means
that, by default, errors are logged to the error-file specified in this
configuration file.

• catalogue

This line contains the list of font directories that are available by
default from the Digital UNIX font server.

• error-file

This line lists the pathname of the error log file. This file is used
instead of syslog() . If you encounter problems after you have
modified the configuration file, check the
/usr/lib/X11/fs/fs-errors log file to debug your changes.

X Window System Administration in the Digital UNIX Environment 2–25

• default-point-size

This line indicates the default point size for any font request that does
not specify a point size. Note that the point size is specified in
decipoints, so that a value of 120 indicates a point size of 12.

• default-resolutions

This line lists the default resolutions supported by the Digital UNIX
font server. The values are given in pairs of horizontal and vertical
resolutions per inch.

• renderers

This line defines the dynamically loaded renderer libraries for scalable
fonts. These renderer libraries are the same font renderer libraries that
can be loaded by the X server.

2.9.1 Using the Font Server

To use the font server, you need to add the appropriate port to your font
path. For Digital UNIX, the default port number is 7100 . The default port
number is the registered port 7100 . (Note that many R5 implementations
used port 7000 which was not registered. Use the following syntax to add
the font server to your font path:

xset +fp tcp/ hostname :7100

Replace the hostname variable with the name of the system where the font
server is running.

You can create a script that automatically starts the font server when you
boot your system in multiuser mode. Add a symbolic link to your script in
/sbin/rc3.d . For example:

/sbin/rc3.d/S94fs -> ../init.d/fs

For more details, see the rc3 (8) reference page.

The following example shows a sample font server initialization script:

#!/sbin/sh
PATH=/sbin:/usr/sbin:/usr/bin
export PATH
#
Control X font server

2–26 X Window System Administration in the Digital UNIX Environment

#
case $1 in

\’start\’)
if [-f /usr/bin/X11/xfs]
then

/usr/bin/X11/fs -config /usr/lib/X11/fs/config -port 7100
&

else
echo "WARNING: Font server not found."
exit 1

fi
;;

\’restart\’)

$0 stop
sleep 5
$0 start

;;
\’stop\’)

pid=‘/bin/ps -e | grep ’/usr/bin/X11/fs’ |
sed -e ’s/^ *//’ -e ’s/ .*//’ | head -1‘

if ["X$pid" != "X"]
then

/bin/kill $pid
fi
;;

esac

2.9.2 Font Server Client Utility Applications

Digital UNIX includes several font server client utilities: fsinfo ,
fslsfonts , fstobdf , and showfont . The following list shows how to
invoke each utility and provides a brief description. See the reference page
for each utility for more information.

• fsinfo

The fsinfo utility displays information about an X font server. You
can use it to examine the capabilities of the server currently running
on your system. The display shows predefined values for various
parameters that are used for communication between clients and the
server. The display also lists the font catalogues and alternate servers
that are available.

X Window System Administration in the Digital UNIX Environment 2–27

The following example shows the default fsinfo display for a Digital
UNIX system named COFFEE:

% fsinfo −server tcp/coffee:7100
name of server: tcp/coffee:7100
version number: 2
vendor string: Digital Equipment Corporation Digital UNIX V4.0
vendor release number: 5001
maximum request size: 16384 longwords (131072 bytes)
number of catalogues: 1

all
Number of alternate servers: 0
number of extensions: 0

• fslsfonts

You can use the fslsfonts utility to display a list of all the fonts
served by the current font server. The following example shows a
partial display for the default Digital UNIX font server on a system
named COFFEE:

% fslsfonts −server tcp/coffee:7100
adobe-avantgarde-demi-i-normal--0-0-0-0-p-0-iso8859-1
adobe-avantgarde-demi-r-normal--0-0-0-0-p-0-iso8859-1
adobe-avantgarde-medium-i-normal--0-0-0-0-p-0-iso8859-1
adobe-avantgarde-medium-r-normal--0-0-0-0-p-0-iso8859-1
adobe-courier-bold-i-normal--0-0-0-0-p-0-iso8859-1

.

.

.

You can also use the fslsfonts utility to list the fonts that match a
specified pattern. See the fslsfonts (1X) reference page for details.

• fstobdf

The fstobdf utility reads a font from the font server and creates a
BDF (bitmap distribution format) file on the standard output that can
be used to recreate the font. You can use this utility to test font
servers, debug font metrics, and reproduce lost BDF files. However, you
should be careful not to violate any copyrights or licensing agreements
that pertain to the fonts.

The following command invokes the utility to create a BDF file for a
bold font using the font server on system COFFEE:

% fstobdf −server tcp/coffee:7100 −fn "*bold*" > boldfont.bdf

2–28 X Window System Administration in the Digital UNIX Environment

• showfont

You can use the showfont utility to display information about a
particular font that is served by the current font server.

Each of the following commands invokes the utility to display
information about the Adobe Avantgarde Demi font available from the
font server on system COFFEE:

% showfont −server tcp/coffee:7100 \ −fn "-adobe-avantgarde-
demi-*-*--*-*-*-*-*-*-*-*"
% showfont −server tcp/coffee:7100 \ −fn "-adobe-avantgarde-
demi-r-normal--0-0-0-0-p-0-iso8859-1"

2.10 Managing X Terminals

Like workstations, X terminals have monitors, pointers, and keyboards but
otherwise they resemble dumb ASCII terminals because they need to be
connected to a host computer to function. In most instances, the X terminal
reads the X server program at boot time from the host system over the
network. However, there are some X terminals that also have the X server
built directly into the terminal’s read-only memory (ROM).

For X terminals that have X11 R4, R5, or R6 installed, host systems use
the X Display Manager (xdm) and the X Display Manager Control Protocol
(XDMCP) to serve those terminals. X11 R5 or X11 R6 have many more
capabilities and are therefore preferable if you are considering purchasing
new X terminals.

There are three types of XDMCP queries that an X11 R4, R5, or R6
terminal can use to connect to a host:

• Direct

With a direct query, the X terminal requests a login from only one host.
The xdm program on the host responds and displays the login window.

• Indirect

With an indirect query, depending on the host’s Xaccess file, xdm
either forwards the query to another host or displays the chooser box,
which contains a list of available host nodes. If the chooser box is
displayed, the user selects a host. Next, the chooser client forwards the
query to that host. In either case, the second host then displays the
login window.

X Window System Administration in the Digital UNIX Environment 2–29

• Broadcast

With a broadcast query, the X terminal requests a response from any
xdm host on the subnet. The X terminal can either request a direct
connection to the first xdm host that responds or collect responses for a
period of time and offer the list to the user to select one.

Once the connection between the X terminal and the host has been made,
the user has access to all the X Window System features that are available
on the host system.

You specify access control for XDMCP connections to X terminals in the
/usr/lib/X11/Xaccess file. This file is defined in the xdm-config file
by the DisplayManager.accessFile resource. The following list contains
examples of different types of connection queries:

• Direct or broadcast queries

disallow direct/broadcast service for xtra
!xtra.lcs.mit.edu

allow access from this particular display
mars.osf.org

allow access from any display in LCS
*.lcs.dec.com

• Indirect queries

%HOSTS expo.lcs.dec.com xenon.lcs.dec.com \
excess.lcs.dec.com kanga.lcs.dec.com

force extract to contact xenon
extract.lcs.dec.com xenon.lcs.dec.com

disallow indirect access
!xtra.lcs.dec.com dummy

all others get to choose
*.lcs.dec.com %HOSTS

• Indirect queries from the chooser

offer a menu of these hosts
extract.lcs.dec.com CHOOSER %HOSTS

2–30 X Window System Administration in the Digital UNIX Environment

offer a menu of all hosts
xtra.lcs.dec.com CHOOSER BROADCAST

offer any host a menu of all hosts
* CHOOSER BROADCAST

Older X terminals with X11 R3 can be managed directly without XDMCP.
To use these X terminals, you must include a specific entry in the
/var/X11/xdm/Xserver file. For example, to manage an X terminal
named CREAM, include the following line in the Xservers file:

cream:0 foreign

With such a connection, the xdm utility immediately displays a login
window on the X terminal.

2.11 Memory Utilization by the X Server

Under normal operating conditions, the X server requires large amounts of
memory. The following sections explain why and how some of the normal
memory utilization occurs.

2.11.1 General Observations About X Server Memory Growth

Like all programs, once space is allocated to the X server,, it is never freed
to the system. It can be reused, but never freed. This means that the X
server memory allocation may increase dramatically at startup and then
become fairly stable, unless you continue to start new and unique client
applications without terminating any of the earlier applications.

X Window System Administration in the Digital UNIX Environment 2–31

3
Customizing the X Environment

With the Digital UNIX operating software, you can use resource definitions
to customize and manage your workstation environment and certain
elements of X Window System, OSF/Motif, and DECwindows applications
that you are running. This chapter contains information about how to
specify and modify these resource definitions. The following documentation
contains more details:

• The appendix on resources and keysym mappings in X Window System
Administrator’s Guide (O’Reilly & Associates, Inc.)

• Part II of the X Window System User’s Guide OSF/Motif 1.2 Edition,
(O’Reilly & Associates, Inc.)

3.1 Resource Definition Overview

The term resources file refers to characteristics of X Window System
applications or applications built on X Window System technology.
Resources values define all sorts of aspects of the X display on a
workstation and the window applications that run in the X Window System
environment.

X resources are defined for display aspects of the Digital UNIX operating
system itself as well as for all the X client applications that are part of the
operating system. X applications that are installed on top of the operating
system also have resource definitions. Resources characteristics include
color specifications for various elements in a window display, presence of
scroll bars for a window, location of windows on the desk top area, font
used for text, and width of window borders.

Resource definitions are used in all applications based on the X Window
System, such as xterm , Calendar , and even the X Display Manager xdm.
The Digital UNIX operating software provides default resource definitions
for the X Window System. Users can modify some resource definitions to
customize their workstation environment; for example, to set the colors and
positions of windows.

Customizing the X Environment 3–1

3.1.1 Setting Resources

System administrators can set systemwide resources to provide a more
uniform environment for the people working at the workstations or X
terminals for which they are responsible. Programmers rely on resource
specifications to create application windows, dialog boxes, and menus as
well as to establish a particular look and feel for their applications’ displays.

There are three ways to set resources:

• Using command-line flags when invoking a particular client such as
dxterm , xterm , or xclock

Only a subset of resources can be set from the command line, but the
advantage of this method is that you do not need to edit any files to
apply the definitions. Section 3.2 discusses this method.

• Defining resources in files that are processed whenever an X client
application starts. These files include $HOME/.Xdefaults-hostname
and files to which the XENVIRONMENTvariable points. Resource
definition files can be located in the user’s home directory and in the
/usr/lib/X11/app-defaults directory, which is part of the
operating software.

The system administrator can use systemwide files to establish uniform
settings for small or large groups of users; or special individual
settings. Section 3.3 discusses this method.

• Defining resources in client applications

Programmers who are writing X Window System client applications
include resource definitions in their code so that they control the look
and feel of the application. Section 3.4 describes some utilities that help
users and programmers specify resource definitions.

3.1.2 Resource Definition Precedence

Because of the variety of methods for setting resources, there could be
times when there are several definitions for a particular resource. For X
Window System environment resources, the definitions are applied in the
following order:

1. Systemwide application default resource definitions

3–2 Customizing the X Environment

Resource definitions for the Digital UNIX operating software clients are
located in the /usr/lib/X11/app-defaults/ClassName files. These
resources are used only by a client that runs on the local host, even if
the client appears on a remote X display.

2. User-specific default resource definitions

These definitions are usually located in files in the user’s home
directory, $HOME/ClassName. If several hosts share the home directory,
the definitions in the directory will also be shared by those same hosts.

3. Host-specific default resource definitions

Host-specific resource definitions are located in either the
$HOME/.Xdefaults-hostname file or a file pointed to by the
$XENVIRONMENTvariable. These definitions are only used by
applications running on the host system and are not specific to the
display.

4. Resource database resource definitions

Some users use a resource database loaded by the X Server Resource
Database utility (xrdb) to specify display-specific default resource
settings.

5. .Xdefaults file resource definitions

If no resource database exists for the user, the X server applies the
resource definitions in the $HOME/.Xdefaults file.

6. Command-line flags

Users can change some resource definitions by specifying the new
resource settings on the command line when they invoke the client
application. Section 3.2 and the X(1X) reference page provide
information on the standard resources that can be set from the
command line for most applications. Client applications can create
additional flags that set resource definitions which are specific to the
particular application.

It is important to be aware of which resource definitions take precedence of
other definitions; hence, the use of ascending numbers in the preceding list.
System definitions are overridden by user definitions, which are, in turn,
overridden by host-specific definition. A definition supplied through a
command-line flag overrides any existing definition for that resource.
However, only the 17 standard resources or resources for which the client
application has provided a command flag can be defined using

Customizing the X Environment 3–3

command-line flags. Other resources must be specified in definition files or
by using the −xrm flag.

Note that host-specific and user-specific resource files do not necessarily
have to reside in the user’s home directory. There are several environment
variables that can be set to specify a search path for default files:

• XFILESEARCHPATH

This environment variable is used to set the path for systemwide
application-specific resource definition files.

• XUSERFILESEARCHPATH

This environment variable is used in place of $HOMEfor
application-specific user resource definition files.

• XAPPLRESDIR

If this environment variable is defined and XUSERFILESEARCHPATHis
not, the search path becomes:

$XAPPLRESDIR/%L/%N:$XAPPLRESDIR/%l/%N:$XAPPLRESDIR/%N:$HOME/%N

$XAPPLRESDIRis replaced by the value of that environment variable;
$HOMEis replaced by the user’s home directory. If there is no definition
for $XAPPLRESDIR, the path is the user’s home directory:

$HOME/%L/%N:HOME/%l/%N:$HOME/%N

The %Lelement resolves to a full-locale name if one exists; %l resolves
to the language component element of the locale; %Nresolves to the
name of the file being searched for. If no file exists in the locale or if no
locale has been defined, the path collapses to the next level.

3.1.3 Loading Resource Definitions

The X Window System Administrator’s Guide recommends that you use
xrdb to load resource definitions directly into the X server. Using xrdb
promotes consistency in the way applications run. In addition, because
xrdb runs the resource definition file through a C preprocessor, you can
further customize the environment by using #ifdef and #include
commands in the resource definition files. You can also use the −D (define
symbol) and −U (undefine symbol) flags on the xrdb command line to set up
different environments on different hosts; so users can move among

3–4 Customizing the X Environment

workstations with different capabilities and maximize the special features
on each one. (See Section 3.4.4 for more information.)

To load resources using xrdb, use either the −load flag (the default) or
the −merge flag and specify a new resource definition file. With the −load
flag, all previous resource definitions in the X server are deleted and
replaced with the new definitions in the specified file. If the new file does
not contain a definition for a resource that was defined previously, that
resource definition is either lost or reverts to a default. The −merge flag
allows you to change and add resource definitions without losing existing
ones that you do not modify in the new definition file that you specify with
the xrdb command.

3.2 Using Command-Line Flags

When you invoke a client application on your workstation, you can use
command line flags to specify certain characteristics for the appearance,
location, and features of the window display. There are a number of
standard flags that are used with X Toolkit or Motif Toolkit applications.
Not all such applications use all the standard resource flags, but many use
most of them. Programmers can also create application-specific flags so
that users can set other resources for those applications.

Table 3–1 lists the standard command-line flags and the resources they
modify.

Table 3–1: Standard Command-line Flags

Flag Resource Description

−bg −background background Sets the background color of
the window.

−bd −bordercolor borderColor Sets the color of the window
border.

−bw −borderwidth borderWidth Sets the width of the
window border in pixels.

−display display Specifies the display on
which the client runs.

−fn −font font Sets the font used for text
display.

Customizing the X Environment 3–5

Flag Resource Description

−fg −foreground foreground Sets the window’s
foreground color that is
used for the text or
graphics.

−geometry geometry Specifies a geometry string
that sets the startup size
and placement of the
window.

−iconic iconic Invokes the application in
the iconic state.

−name name Specifies the name of the
application. This name is
used for the window icon.

−rv −reverse reverseVideo Reverses the foreground
and background colors.

+rv reverseVideo Restores the foreground and
background colors to their
current specifications.

−selectionTimeout selectionTimeout Specifies the timeout period
in milliseconds. This value
determines the timeout
period within which two
communicating applications
must respond to one
another after a selection
request.

−synchronous synchronous Enables synchronous
debugging mode.

+synchronous synchronous Disables synchronous
debugging mode.

−title title Specifies the application
title that is used in the
window’s title bar.

−xnllanguage xnlLanguage Sets the language, territory,
and National Language
Support codeset.

−xrm Allows you to specify a
resource name and value to
override any defaults.

3–6 Customizing the X Environment

To modify an application resource definition, include the flag on the
command line that invokes the application. Most flags require a parameter
such as the name of a color, a file name, or a text string. The reference
page for the command that invokes the application lists the appropriate
flags and their parameters.

The following examples show how some of these standard flags are
specified when an application is invoked:

dxterm −bg "pale green" −fg "sandy brown" &

Starts a DECterm window with a pale green background. The text and
graphics appear in sandy brown.

xterm −iconic −name Letters &

Creates an xterm window, but places it immediately in the icon state. The
name of the icon is Letters .

dxcalc −geometry +0-0 &

Invokes the DECwindows Calculator application and places the window in
the lower left corner of the screen.

3.3 Using Resource Definitions

Resources are defined in several places in the X Window System
environment. There are resource definition files such as local and groupwide
Xdefaults files that contain resource definitions for your X workstation
environment. Then there are resource definitions in window applications
based on the X Toolkit (including DECwindows and OSF/Motif Toolkit
applications) that determine the various visible aspects of the application.

Programmers need to understand resource definitions so they can use them
when they create their applications. System administrators use resource
definitions to set up a default working environment for the workstations
they maintain. End users can use resource definitions to customize their
workstation environment and even to customize some display
characteristics of applications they run.

This section explains the structure of resource definitions, gives examples
of how to create and modify the definitions, and describes the kinds of
resource definition files that you can edit to customize your environment.

Customizing the X Environment 3–7

3.3.1 Resource Definition Structure

The syntax for resource definitions is as follows:

object.subobject[.subobject...].attribute: value

The parameters have the following definitions:

object The client program or a specific instance of the
client program. This parameter can specify any
client, such as a DECterm window or the clock
application.

subobject A subobject is an element of the object client
program. A subobject corresponds to the widgets
that make up the client program. The number of
subobjects you need to include to reach the
particular resource you want to specify is
determined by the widget hierarchy of the client
program.

attribute This parameter specifies the characteristic that you
want to define. The attribute must be a feature
of the last subobject you listed. The attribute
refers to such things as font, color, or location of the
subobject .

value This parameter specifies the definition for the
attribute . Definitions can include color names,
pixel coordinates, and Boolean values such as True
or False .

Specifying the object , attribute , and value parameters is relatively
straightforward. In general, the object parameter is the name of the
client program. The resource attribute refers to the characteristic you
want to modify, add, or delete. The second column in Table 3–1 contains
the names of some resource attributes. The description gives you an idea of
the kinds of values you can specify such as a color name for foreground ,
pixel coordinates for geometry , a font string for font , and a locale for
xnlLanguage .

Creating resource definitions can be a bit more complex if you have to deal
with subobjects . When you want a value to apply to an attribute
throughout the application, you can use an asterisk (*) to indicate all the
subobjects . For example, if you want the background color to be light

3–8 Customizing the X Environment

blue for every dialog box, menu, message box, and so on in the AccessX
client, you could use the following resource definition:

accessx*background: lightblue

This kind of definition is known as a loose binding because the value
applies to all appropriate widgets in the hierarchy.

If you want to have a dark-blue background only for the status boxes, you
would use the following resource definition:

accessx.mousekeys.statusbox: darkblue

This definition requires that you know every element in the widget
hierarchy from the main widget, accessx to the status box widgets. This
kind of definition has a tight binding; that is, each subwidget between the
accessx widget and the statusbox widget is listed in order, separated by
periods.

To determine the elements in the widget hierarchy for an application, you
need to use the editres utility. This utility creates a display of the
hierarchy and also provides a way to test your resource definition. See
Section 3.4.1 and the editres (1X) reference page for details.

3.3.2 Resource Definition Files

A resource definition file consists of lists of resource definitions and
comments. Comments are prefixed by an exclamation point (!). You can use
the exclamation point to disable a definition that you do not want to use,
but want to retain in the file.

If your resource definition file will be run through the C language
preprocessor, you can use #ifdef and #endif constructs to deal with
definitions that are to be applied under certain circumstances. For
example, you might have color definitions that would only be applied when
you were working at a workstation with a color monitor.

The /usr/lib/X11/app-defaults directory contains resource definition
files for many of the window client applications that are included with the
Digital UNIX operating software. These files are read-only, so users cannot
edit the contents to change or add resource definitions. However, you can
use some of these definitions as models for your own definitions in a
resource file or as part of the command line you issue to invoke the client.
Note that many of these definitions specify things that you would not want

Customizing the X Environment 3–9

to customize, such as the alignment of the buttons on the calculator
application.

The files in the /usr/lib/X11/app-defaults directory do contain some
resource definitions that you might find useful as models for definitions you
create. For example, you could use the Clock-Color file to get some ideas
for color definitions.

More resource definitions files are located in your $HOMEdirectory. Some of
these files can be specific to applications that you run. For example, you
could create a file called XTerm in your $HOMEdirectory that would be read
every time a new XTerm window was created on the display. Any
definitions for resources already defined in the
/usr/lib/X11/app-defaults/XTerm file would be overridden by the
definitions in your personal XTerm file.

Host-specific resource definition files customize your display environment
and are read by all client applications running on your host. One such file
is called $HOME/.Xdefaults . You can set colors for the display
background and foreground as well as for various elements of the windows
that appear. You use this file to specify your default window manager. If
you usually work on a system with a color monitor, but occasionally use a
monochrome monitor, you can include color definitions in your .Xdefaults
file surrounded by #ifdef and #endif statements. These definitions will
only be processed if the COLOR C preprocessor symbol is defined. If you
use dxsession , the definitions in the .Xdefaults file will be loaded into
the X servers resource database. Otherwise, you can use the xrdb utility,
which automatically uses the C preprocessor to deal with such
programming constructs. Note that dxsession does not use the C
preprocessor to process the .Xdefaults file and dxsession only
understands a limited number of C preprocessor directives. You can use the
xrdb -symbols command to see which symbols xrdb has defined.

In general, you will want to use xrdb to load one or more resource
definition files into the X server’s database. The xrdb utility is usually
invoked by a session script such as $HOME/.xsession . See Section 3.4.4
for more information on xrdb .

If you do not load the X server’s resource database either by using xrdb or
by using the Session Manager, each time an X application starts up, it
reads the .Xdefaults file and applies all relevant resource definitions.
The dxsession program processes the local .Xdefaults file and loads the
resource definitions into the X server’s database.

3–10 Customizing the X Environment

3.4 Using Client Utilities for Customization

The preceding section referred to some utilities that are useful in creating
and processing resource definitions. The next sections describe each of the
following client utilities that you can use to customize resources:

• editres

• xset

• xsetroot

• xrdb

• xmodmap

3.4.1 The editres Utility

The editres utility is a dynamic resource editor for use with X Toolkit
applications. Motif applications are also X Toolkit applications and also
work with editres . The utility allows users and application programmers
to view the full widget hierarchy of any X Toolkit client that understands
the editres protocol. You can use editres to apply resource definitions
to an application and see the results immediately. Users can save these
definitions by having editres append the definitions to an existing X
resource definitions file such as .Xdefaults .

The editres utility displays the widget hierarchy along with the names
and definitions of all the resources for a particular X client application. This
information enables a user or programmer to add, modify, or delete resource
definitions for the application. The editres utility can dynamically apply
the resource changes to the application. Thus, the user or programmer can
immediately see the results of the new definition and decide whether or not
to save the change, restore the original setting, or make another change.

The editres main window has four areas: Menu Bar, Panner, Message
Area, and Application Widget Tree display. You use the Menu Bar to access
the different editres features. The Panner provides an intuitive method
for scrolling through the Application Widget Tree display. The display area
shows the widget tree for the application specified through the Get Widget
Tree menu item.

The Show Resource Box menu item creates a pop-up window that contains
resource definitions for the widget that is currently selected in the
Application Widget Tree display.

Customizing the X Environment 3–11

You use the Set Resource pop-up window to enter a resource definition for
all the widgets currently selected in the Application Widget Tree display.
(You can use Tree menu commands to select more than one widget by
specifying such keywords as All, Children, Parents, Descendents, or
Ancestors; or by specifying a widget class.)

In most instances, you use the Resource Box to determine whether a
resource has been defined and what that definition is. You also use this box
to add, modify, or delete resource definitions and to indicate to which
widgets these changes apply. Once you have made your change, you use
the Apply button to see the effects of your change. Press the Save button to
save the change you have made. There is also a Save And Apply button,
which performs both operations at once.

Note that some client applications have hard-coded the attributes for
certain elements rather than use resource definitions. There is no way for
editres to modify hard-coded attribute specifications.

3.4.2 The xset Utility

The xset utility is described in the reference page as the “user preference
utility for X”. You can use this utility to set various user preference options
for your workstation’s display. These options include the following:

• Volume, pitch, and duration of the computer’s beep sound

• Whether the keyclick sound is enabled or disabled and what volume it
has

• Font path that specifies which fonts the X server can use

• Control of the use of LED lights for such things as Shift/Caps Lock

• Control of the mouse for such things as pointer acceleration and the
length of the delay time until the maximum acceleration speed is
reached

• Pixel color values

• Whether the autorepeat feature for keys is enabled or disabled

• Screen save parameter settings

You can use the −q flag with the xset command to display the current
settings for your workstation. To change a setting, issue the xset
command with the appropriate flag. See the xset (1X) reference page for
the description of each flag.

3–12 Customizing the X Environment

3.4.3 The xsetroot Utility

You can use the xsetroot utility to customize the attributes of the display
background on your workstation. These attributes include the color and
shape that the pointer cursor has, except in client windows where those
settings have been defined by the client applications, and the pattern and
colors of the display background; that is, the root window. You can use
xsetroot to do such things as create plaid display backgrounds or change
the shape of the pointer cursor to look like a hand or some other object.

The xsetroot command has a −def flag that enables you to return the
display to its default settings. See the xsetroot (1X) reference page for
more details about the utility.

3.4.4 The xrdb Utility

The xrdb utility manages the X server resource database. This utility gets
and sets the contents of the RESOURCE_MANAGER property for the
display window for screen 0 on your workstation, or the
SCREEN_RESOURCES property for the display window of any or all
screens. This utility is generally invoked from users’ X session scripts.
Resource definitions are loaded directly into the X server.

One of the features of the xrdb utility is that it uses a C preprocessor
when it loads the resource definition file. This feature allows you to have
#include and #ifdef statements and some other programming constructs
in your resource definition files. In addition, you can define and undefine
symbols by using the −D or −U flags.

The following example shows how you might include an #ifdef directive
in your resource definition file that defines the colors to use for DECterm
windows on color workstation monitors and the black and white values to
use with noncolor monitors:

#ifdef COLOR
DXterm*background: lightblue
DXterm*foreground: darkblue
#else
DXterm*background: gray
DXterm*foreground: black
#endif

You can use the xrdb −query command to see the current settings for
your system. If you want to change some of these resources, you can create

Customizing the X Environment 3–13

a resource definition file and use the xrdb −merge filename command to
add or replace existing definitions with your changes. With the −merge flag,
xrdb replaces resource definitions for resources that are already defined for
your system with those in the file you specify. If you have included resource
definitions in that file for previously undefined resources, those new
definitions are added. All other existing definitions remain the same.

There is also an xrdb −load filename command that you can use to
erase all previous resource definitions and only use those in the file you
specify. By default, xrdb behaves in this manner. Most of the time, you
will probably want to use the xrdb −merge filename command because
you will not want to lose the default settings for your environment.

For more information on the xrdb utility, see the X Window System User’s
Guide and the xrdb (1X) reference page.

3.4.5 The xmodmap Utility

You can use the xmodmaputility to modify the mappings for keyboard keys
as well as mouse buttons.

The utility has three basic mapping functions:

• It reassigns a modifier function to a different key on the keyboard. For
example, to have the Right Shift key perform the Control modifier
function, use the following command:

xmodmap -e "Control_R = Shift_R"

• It reassigns a keyboard function to a different key on the keyboard. For
example, to have the exclamation point (!) be sent to the computer
when you press the vertical bar key, use the following command:

xmodmap -e "keycode 243 = slash exclam"

• It reassigns pointer functions to different mouse buttons. For example,
if you are left handed, you could use the following command to change
the order of the buttons on the mouse from 1 2 3 to 3 2 1 :

xmodmap -e "pointer = 3 2 1"

You can issue xmodmap commands during your work session or include
them in an X session script. You can also create xmodmapdefinition files for

3–14 Customizing the X Environment

the utility to read at startup time or when you invoke the utility during
your work session.

The xmodmap command has the following syntax:

xmodmap [flags] [filename]

When you use the xmodmap command with no flags, it displays the current
modifier key map, the keys that can be used to modify other keys. While
this information can be helpful in some instances, most of the time you do
not want to change these key mappings. The following example shows the
xmodmapdisplay:

xmodmap: up to 2 keys per modifier, (keycodes in parentheses)

shift Shift_R (0xab), Shift_L (0xae)
lock BadKey (0xb0)
control BadKey (0xaf)
mod1 Multi_key (0xad), Multi_key (0xb1)
mod2 Alt_L (0xac), Alt_R (0xb2)
mod3
mod4
mod5

The items in the left column are the logical key names for the modifier
keys. The items to the right are the keysym specifiers with the hardware
hexadecimal keycode in parentheses. For example, the logical key name
shift has two keys on the keyboard that perform the shift function. Their
keysyms are Shift_R and Shift_L . The hardware hexadecimal keycodes
for these keys are Oxab and Oxae respectively.

Using the xmodmap −pke command, you can see the decimal keycodes and
the keysym name or names that have been assigned to each keycode. Note
that keycode numbers vary depending on the keyboard model that you
have connected to your workstation.

When there are two names, the second one indicates which key function is
processed when the shift modifier key is pressed in combination with that
physical key. The following example shows a portion of the output:

keycode 242 = semicolon colon
keycode 243 = slash question
keycode 244 =
keycode 245 = equal plus
keycode 246 = bracketright braceright
stdin

Customizing the X Environment 3–15

keycode 247 = backslash bar
keycode 248 =
keycode 249 = minus underscore
keycode 250 = bracketleft braceleft
keycode 251 = apostrophe quotedbl

You use keycodes and keysyms in the xmodmap −e command to modify the
action that takes place when a particular keyboard key is pressed. For
example, you can change the Select key on Digital LK201/401 keyboards to
perform the Delete function:

xmodmap -e "keysym Select = Delete"

You can have your own personal keymapping file by creating a file with
xmodmapdefinitions, such as the following:

! Make the comma shift be < and the period shift be >.
keysym comma = comma less
keysym period = period greater
! Replace the Help key with the escape function.
keysym 124 = escape

To have the file processed whenever you log in, include an xmodmap
command in your X session script. For example, if you named your key
definition file .Xmodmap and located it in your home directory, you could
include the following line in your X session script:

xmodmap $HOME/.Xmodmap

For more details about the xmodmap utility, see the X Window System
User’s Guide and the xmodmap(1X) reference page.

3.4.6 Utilities Using the X Keyboard Extensions

Several applications that make use of XKB features are also new with
Digital UNIX Version 4.0. These applications include the following:

• xkbcomp

The xkbcomp utility is the XKB keymap compiler and converts XKB
keymap source files into one of several output formats. It will also
optionally load a keymap directly into the server if you specify the
display as the output file. Each of the xmodmapkeymaps located in
/usr/lib/X11/keymaps for X11 R5 has been converted to XKB

3–16 Customizing the X Environment

format for X11 R6. These new keymaps are located
in/usr/lib/X11/xkb . Refer to the xkbcomp (1X) reference page for or
run xkbcomp with the -? switch for more information.

• xkbprint

The xkbprint utility creates a PostScript representation of an XKB
keymap. If you specify the display as the input file, it will read the
XKB geometry from the server. Refer to the xkbprint reference page
or run xkbprint with the -? switch for more information.

• xkbdfltmap

The xkbdfltmap utility queries the kernel for the language and
keyboard on the console. Given this information, Xdec will examine the
/usr/lib/X11/xkb/keymaps.dir file to determine the default
keymap to use. The xkbdfltmap utility will then display the
appropriate xkbcomp command to run to download the default XKB
map to the server. If xkbdfltmap is run with the -exec switch, it will
automatically execute the xkbcomp command for you. Refer to the
xkbdfltmap reference page or run xkbdfltmap with the -? switch for
more information.

• dxkbledpanel

The dxkbledpanel utility displays the state of the keyboard
indicators. This is useful for monitoring and changing the state of
indicators that may not have keyboard LEDs. For example, the group
indicator does not always have an LED on every keyboard. Refer to the
dxkbledpanel reference page or run dxkbledpanel with the -?
switch for more information.

• dxkeyboard

The dxkeyboard utility allows you to select a localized keymap based
upon your selection of language and keyboard type. The dxkeyboard
utility optionally saves your selections and will load them if it is run
with the -load switch. The dxkeyboard utility is available as the
Keyboard Options object under CDE’s Application Manager in the
Desktop_Apps folder. Refer to the dxkeyboard reference page or run
dxkeyboard with the -? switch for more information.

• accessx

Customizing the X Environment 3–17

The accessx application for X11 R5 has been ported to use the XKB
protocol for X11 R6. Refer to the accessx(1X) reference page for
further information.

3.5 Using an X Session Script

Once you have decided on how you want to customize the X Window
System on your workstation, an effective way to preserve that environment
is to use an X session script. Note that X session scripts also work with
CDE’s dtlogin manager.

You can use a session script to invoke certain applications when you log in
and place various windows on your display in specific positions. You can set
the window manager in your session script as well as specify colors, fonts,
and window features. The file can also contain xmodmapdefinitions or call
an xmodmapdefinition file.

You can use a script to define certain environment variables before the
session manager starts. For example, the following script defines the
PRINTER environment variable, sets the default path, and invokes
dxsession as the session manager.

#!/bin/csh
setenv $PRINTER ln08r
set path=($HOME/bin /bin /usr/bin /usr/bin/mh /usr/bin/X11 \

/usr/local /usr/local/bin)
exec dxsession

The next example invokes the xconsole program and starts an xterm
window as background processes. It then starts the twm window manager
in the foreground. The twm window manager becomes the session’s
controlling process; that is, the session will last as long as the twm process
is running. When twm exits, the .xsession script completes and the user’s
X session is over. If the last command line in the script had ended with an
ampersand (&), the .xsession script would immediately complete and
exit, the X session would be over, and xdm would cause the display to reset
to the login box.

#!/bin/sh
xconsole −geometry 480x130 −0−0 −daemon −notify −verbose

−fn fixed −exitOnFail
xclock &
xterm −geometry 80x24+10+10 −ls &
exec twm

3–18 Customizing the X Environment

With the xconsole program running, messages that are usually sent to
/dev/console appear in the xconsole window on the display. The
xclock command places a clock client window on the display. The xterm
−geometry −ls command starts an xterm window at the screen location
specified with the −geometry flag and starts the login shell in that window.

You can include a wide variety of customizations in an X session script as
shown in the following example. The comments within the example explain
the code.

Example 3–1: Session Script

#!/bin/csh
#
Define environment variables, paths, and so on. Keeping these
definitions in a separate file is useful. That way, .login
and/or .cshrc can reference the same set of definitions.
#
source /̃ .environ.csh
#
Create a pipe for dxconsole to read from, so it can display the
output of other commands.
#
setenv XSESSION_PIPE .xsession_pipe.$DISPLAY
if ! { test -p .xsession_pipe.$DISPLAY } then

/usr/sbin/mknod $XSESSION_PIPE p
endif
#
Use xrdb to load the resources in the .Xresources file into the
X server’s resource database.
#
if (-f .Xresources) then

xrdb -load -retain .Xresources
endif
#
Determine whether the display is the local graphics display,
that is, :0 or local:0 .
#
if ("‘echo $DISPLAY | cut -d’:’ -f1‘" == || \

"‘echo $DISPLAY | cut -d’:’ -f1‘" == "local") then
#
These applications are run only if the display is local.
#
dxconsole < $XSESSION_PIPE &
#
Figure out how many screens the display has.
#
set SCREENS=‘xdpyinfo | grep "number of screens" \

| cut -f 4- -d " "‘
#
The xset b flag sets the bell volume, pitch, and duration.
The xset c flag controls the key click.
The xset m flag controls the mouse acceleration and

Customizing the X Environment 3–19

Example 3–1: Session Script (cont.)

threshold.
The xset s flag sets the screen save parameters.
#
xset b 18 400 100 c 22 m 7 5 s 600 600 >& $XSESSION_PIPE
#
For each screen, set the background color and the colors
and shape of the cursor. This example uses custom colors
defined in an Xcms data file as well as customized bitmaps
(created # with /usr/bin/X11/bitmap) to define the shape
of the cursor.
#
set SCREEN=0
while ($SCREEN < $SCREENS)

xsetroot -solid DarkBlueBackground -fg red -bg yellow \
-cursor cursor.bmp cursor_mask.bmp -display $DISPLAY.1 \
>& $XSESSION_PIPE

@ SCREEN=($SCREEN + 1)
end

Set the SCREEN variable to the screen number of the highest
numbered screen.
#
@ SCREEN=($SCREENS - 1)
#
The xbiff command displays a small mailbox image that lets
you know when you have mail. This example uses the ’letters’
bitmap from /usr/include/X11/bitmaps as well as custom
bitmaps for the full and empty bitmaps and shape masks.
#
xbiff -shape -update 120 -geometry 60x60-0+0 \

-display $DISPLAY.0 -bg black -fg white \
-bd ’#191919195c5c’ -xrm "XBiff*fullPixmap: letters" \
-xrm "XBiff*emptyPixmap: $HOME/bitmaps/one.xbm" \
-xrm "XBiff*fullPixmapMask: $HOME/bitmaps/lettersmask.xbm" \
-xrm "XBiff*emptyPixmapMask: $HOME/bitmaps/one.xbm" \
>& $XSESSION_PIPE &

start oclock on screen 0
oclock >& $XSESSION_PIPE &
#
Start dxcalendar, xload, and dxmail on the highest numbered
screen.
#
dxcalendar -display $DISPLAY.$SCREEN >& $XSESSION_PIPE &
xload -geometry +0-0 \

-display $DISPLAY.$SCREEN >& $XSESSION_PIPE &
dxmail -display $DISPLAY.$SCREEN >& $XSESSION_PIPE &
#
Use xmodmap to reorder the mouse buttons and remap the Shift
Lock key on the LK401 or LK201 keyboard to be Escape.
#
xmodmap -e ’pointer = 2 3 1’ >& $XSESSION_PIPE
xmodmap -e "clear lock" >& $XSESSION_PIPE
xmodmap -e "keycode 176 = Escape" >& $XSESSION_PIPE
#
Start the Motif Window Manager as the controlling process.
When mwm exits, the X session will be over.

3–20 Customizing the X Environment

Example 3–1: Session Script (cont.)

Using the shell’s built-in exec command saves the cost of
creating another process.
#
exec mwm -multiscreen >& $XSESSION_PIPE
#
End of Session
#

else
#
These applications are run only if the display is not local,
that is, the session is run on a remote X Terminal.
#
Invoking dxconsole is useful for displaying the stdout of
the commands that run, even though as a remote display,
the display console output will not actually be displayed.
#
dxconsole < $XSESSION_PIPE &
xset b 18 400 100 c 22 m 7 5 s 600 600 >& $XSESSION_PIPE
xsetroot -solid DarkBlueBackground -fg red -bg yellow \

-cursor cursor.bmp cursor_mask.bmp >& $XSESSION_PIPE
oclock&

#
If the X Terminal is running its own local window manager,
mwm is likely to exit immediately, so it is not used as the
controlling process.
#
mwm >& $XSESSION_PIPE &
#
Instead, xterm is used as the controlling process. When
xterm exits, the X session will be over.
#
exec xterm
#
End of Session
#

endif

3.6 Bypassing the Login Manager

Although Digital does not recommend bypassing the xdm or dtlogin login
manager, there are several ways you could accomplish this. Here is one
method:

1. Disable automatic startup of xdm.

mv /sbin/rc3.d/S95xlogin /sbin/rc3.d/xS95xlogin

2. Write a script that will start the X server and then start your
application. For example:

Customizing the X Environment 3–21

#!/bin/csh
#
Start the X server.
Using the -ac option disables authentication checking.
#
/usr/bin/X11/X -ac &
#
define anything you might need in your environment
#
setenv DISPLAY :0
#
You may also configure the X server’s font path, keyboard, etc.
by calling Xsetup_0. This will also start dxconsole, but if
you don’t want that make your own customized version of
Xsetup_0 and use that. But bear in mind that the X server
will reset when its last connection is closed, so you may need
to hold open a connection, something like this:
#
/usr/bin/X11/xlogo&
/var/X11/xdm/Xsetup_0
#
Now start your application
#
/path-to-wherever/your-application &

3. Create a link to your script in rc3.d named S95* :

ln -s /path-to-wherever/my-startup-
script /sbin/rc3.d/S95whatever

4. For a clean shutdown, disable stopping of xdm or dtlogin :

mv /sbin/rc0.d/K19xlogin /sbin/rc0.d/xK19xlogin

5. Write a shutdown script for your application and create a symbolic link
to it in /sbin/rc0.d/K19whatever . This step is optional and only
required if there is some clean up you need to do in case the system is
shut down.

3–22 Customizing the X Environment

4
Programming in the Digital UNIX X

Window Environment

Use the X Window System (Scheifler and Gettys) and X Window System
Toolkit (Asente and Swick) (Digital Press) manuals as the primary
references for information on how to program X Window System
applications.

However, information specific to the Digital UNIX X server is not covered
in those manuals. This chapter includes information on the following topics:

• Extensions to the X server

• X Display Manager greeter module

• Programming update

4.1 Extensions to the X Server

Digital UNIX supports a number of protocol X server extensions. These
extensions are built and dynamically loaded as sharable libraries.
Section 2.7 lists the components of the Digital UNIX extension library and
explains the processes for loading and making calls to the component
libraries.

The following list contains the X11 R6 protocol X server extensions that
Digital UNIX supports:

• BIG_REQUESTS

• DPS (Display PostScript)

• MIT-SCREEN-SAVER

• MIT-SHM (MIT Shared Memory)

• MIT-SUNDRY-NONSTANDARD

• Multibuffering

Programming in the Digital UNIX X Window Environment 4–1

• OpenGL (Open Graphics Library) − Support available with the DEC
Open3D layered product

• PEX (PHIGS Extension) − Support available with the DEC Open3D
layered product

• SHAPE (Nonrectangular Window Shape)

• SMT (Shared Memory Transport)

• SYNC (Synchronization Extension)

• XC-MISC

• XIE (X Imaging Extension)

• X Input Extension

• X Keyboard Extensions (xkb)

• XKME (X Keyboard Management Extension)

• XTrap

• XTEST

• XV (X Video)

Documentation on many of the extensions is available from the X
Consortium. Header files for several of the extensions are in the
/usr/include/X11/extensions directory. The following sections provide
brief descriptions of each extension.

4.1.1 BIG-REQUESTS

The standard X protocol only allows requests up to 2 18 bytes long.
BIG_REQUESTS , a new protocol extension, has been added. This
extension allows a client to extend the length field in protocol requests to
be a 32–bit value. This is useful for PEX and other extensions that
transmit complex information to the server.

4.1.2 DPS − Display PostScript Extension (Adobe Systems)

This extension provides a device-independent imaging model for displaying
information on a screen. This imaging model is fully compatible with the
imaging model used in PostScript printers. By allowing you to use the
PostScript language to display text, graphics, and sampled images, it frees
you from display-specific details such as screen resolution and the number
of available colors. The Digital UNIX X server includes PostScript Level 2.

4–2 Programming in the Digital UNIX X Window Environment

You can regard the Display PostScript system as part of the X Window
System. Your application will use X Window System features for window
placement and sizing, menu creation, and event handling, while using
Display PostScript system features to take care of imaging inside the
window.

Display PostScript system components include the Client Library, the
PostScript interpreter, and the pswrap translator.

The Digital UNIX documentation set includes the Developing Applications
for the Display PostScript System.

4.1.3 MIT-SCREEN-SAVER Extension

The Screen Saver extension enables a client to receive notification when
the screen has been inactive for a specified amount of time or whenever it
cycles. The extension is useful to those writing screensaver programs.

4.1.4 MIT-SHM − MIT Shared Memory Extension

This extension allows images to be placed in shared memory segments
accessible by both the application and X server. Using shared memory
reduces the amount of bandwidth required to transfer the images between
the application and the server.

4.1.5 MIT-SUNDRY-NONSTANDARD Protocol Extension

This extension permits tolerance of old X bugs. See the xset (1X) reference
page for a description of the -bc flag.

4.1.6 Multibuffering Extension

This extension enables a client application to perform the following
operations:

• Associate multiple image buffers with a window

• Paint in any image buffer associated with a window

• Display a series of image buffers in a window in rapid succession to
achieve smooth animation

• Request simultaneous display of different image buffers in different
windows

Programming in the Digital UNIX X Window Environment 4–3

4.1.7 OpenGL − Open Graphics Library Extension

This extension provides a software interface to graphics hardware. The
interface consists of a set of procedures and functions that allows a
programmer to specify the objects and operations involved in producing
high-quality graphical images − specifically color images of
three-dimensional objects.

To the programmer, OpenGL is a set of commands that allows the
specification of geometric objects in two or three dimensions, together with
commands that control how these objects are rendered into the frame
buffer. For the most part, OpenGL provides an immediate-mode interface,
so that specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window in
the frame buffer into which the program will draw. Then, calls are made to
allocate a GL context and associate it with the window. Once a GL context
is allocated, the programmer can issue OpenGL commands. Some
commands are used to draw simple geometric objects for example, points,
line segments, and polygons. Other commands affect the rendering of these
primitives, including how they are lit or colored and how they are mapped
from the user’s two- or three-dimensional model space to the
two-dimensional screen. OpenGL also has commands that affect direct
control of the frame buffer, such as those that read and write pixels.

In the X Window System, OpenGL rendering is made available as an
extension to X in the formal X sense: connection and authentication are
accomplished with the normal X mechanisms. As with other X extensions,
there is a defined network protocol for the OpenGL rendering commands
that are encapsulated within the X byte stream.

Information on OpenGL is provided in the OpenGL Reference Manual.

4.1.8 PEX (PHIGS Extension)

This extension is an X Consortium-sanctioned extension to the X Window
System. It is designed to support three-dimensional graphics efficiently
within the confines and rules of X. The PHIGS extension, PEX, provides
capabilities that allow each window on the display to act as a complete,
independent virtual three-dimensional graphics workstation. The PEX
protocol supports those three-dimensional graphics primitives used by
standard application programmer interfaces such as PHIGS, PHIGS PLUS,
GKS, and GL.

4–4 Programming in the Digital UNIX X Window Environment

The protocol version of PEX supported for Digital UNIX is PEX 5.1, which
is available only through the DEC Open3D kit.

4.1.9 SHAPE − X11 Nonrectangular Window Shape Extension

This extension provides arbitrary window and border shapes within the
X11 protocol. The oclock program, for example, uses this extension to
produce a round clock-face display.

4.1.10 SMT − Shared Memory Transport Extension (Digital provided)

The Shared Memory Transport (SMT) extension provides a completely
shared memory transport for requests. For many operations, performance
significantly increases when this extension is used. Unlike the MIT-SHM
(shared memory transport) extension which supports only image transfers,
the Digital SMT supports the full protocol.

All requests are passed to the server by means of a shared memory queue.
The server and client control the flow by using X protocol requests over
UNIX Domain sockets. All events, replies, and errors are returned through
UNIX Domain sockets.

This transport is suitable only for high-bandwidth applications that
typically use large requests. Short requests may take longer to process with
SMT than with UNIX Domain sockets because of synchronization overhead.
For example, XNoOprequests will take twice as much time to execute.

The DISPLAY environment variable must be set to local:0 when SMT is
used.

When using SMT, the X server may not be able to allocate a shared
memory segment. This problem occurs if the system shared memory
resources are depleted; a warning message appears on the client side.

4.1.11 SYNC −Synchronization Extension

The synchronization extension, SYNC, provides primitive calls that allow
synchronization between clients to take place within the X server. This
feature eliminates network errors that can arise when two communicating
systems are running a distributed application that requires both systems to
be synchronized.

Programming in the Digital UNIX X Window Environment 4–5

With this extension, clients on different hosts running different operating
systems can be synchronized. Multimedia applications can use this
extension to synchronize audio, video, and graphics data streams. In
addition, the extension provides internal timers within the X server that
can be used to synchronize client requests. Using this feature, simple
animation applications can be implemented without having to use
round-trip requests. The extension allows applications to make the best use
of buffering within the client, server, and network.

4.1.12 XC-MISC

The XC-MISC protocol allows clients to get back ID ranges from the server.
Xlib handles this automatically, making this useful for long-running
applications that use many IDs over their lifetime.

4.1.13 XIE − X Imaging Extension

The X Imaging extension provides mechanisms for the transfer and display
of virtually any image on any X-capable hardware. Although this extension
is not intended to serve as a general purpose imaging processor, it provides
a large number of primitives for image rendering and image enhancement.
These primitives can be combined to form complex expressions. XIE also
includes facilities for importing and exporting images between clients and
servers, facilities for moving images between client and servers as well as
between core X modules and XIE modules, and facilities that enable
applications to access images as resources.

The X Consortium provides documentation for XIE in PostScript format.
That documentation is located on the Digital UNIX system in the
/usr/doc/xie directory. The following list describes the documents:

• X Image Extension Overview

This document provides general information about the X Image
Extension code. Topics covered are: XIE design goals, XIE historical
summary, XIE architecture, element definitions, and subsetting.

• XIElib Specification

This document contains reference descriptions of all the XIElib
functions, XIElib events, and XIElib errors. The Functions section
covers the following types of functions: startup, LUT, photomap, ROI,

4–6 Programming in the Digital UNIX X Window Environment

photoflo, client data, abort and await, photoflo element, technique, and
free.

• XIE Sample Implementation Architecture

This document is for X Consortium members who have a working
understanding of the X Imaging Extension. It provides an architecture
overview as well as chapters on the following topics: extension
initialization, memory management, request dispatching, data
representation, data structures, protocol requests, DIXIE photoflo
management, DDXIE photoflo management, and photo elements.

• X Image Extension Protocol Reference Manual, Version 5.0

This document specifies the X wire protocol for the X Image Extension.
It defines the syntax, structure, and semantics of the XIE protocol
elements. Topics covered include syntax specification, parameter types,
resources, pipelined processing, import elements, process elements,
export elements, events and errors, techniques, service class, and
protocol encodings.

4.1.14 X Input Extension

This extension supports input devices other than the core X keyboard and
pointer. The extension is designed to handle request and event definitions
that are analogous to core request and event definitions. This design allows
extension input devices to be individually distinguishable from each other
as well as from core input devices. The extension requests and events use a
device identifier and support the reporting of n-dimensional motion data as
well as other data that is not reportable through core input events.

4.1.15 X Keyboard Extension for X11 R6

The X Keyboard Extension (XKB) server extension is new for X11 R6 and
for Digital UNIX Version 4.0. XKB enhances control and customization of
the keyboard under the X Window System by providing the following:

• Support for the ISO9996 standard for keyboard layouts

• Compatibility with the core X keyboard handling (no client
modifications are required).

• Standard methods for handling keyboard LEDs and locking modifiers
such as CapsLock and NumLock

Programming in the Digital UNIX X Window Environment 4–7

• Support for keyboard geometry

In addition, the X11 R5 (for versions of Digital UNIX earlier than Version
4.0) AccessX server extension for people with physical impairments has
been incorporated into the XKB server extension. These accessibility
features include StickyKeys, SlowKeys, BounceKeys, MouseKeys, and
ToggleKeys, as well as complete control over the autorepeat delay rate.

4.1.16 XKME − X Server Keyboard Management Extension

This extension enables an X client application to access the server
mode-switch modifier. The mode switch is designed to meet the needs of
character sets of languages that require native characters (for example,
Hebrew and Japanese). The mode switch enables a client application to
switch back and forth between character groups: Group 1 (ASCII
characters) and Group 2 (native characters).

The function of the mode switch is similar to that of the Shift or Shift Lock
key. These mechanisms both enable multiple symbols (keysym) to be
generated from single keys, with one symbol for one mode or shift or
shift-lock state and another symbol for the other state. For example, on the
American keyboard, 3 and # can be switched by the shift state.

The combination of the mode-switch and shift/lock mechanisms allows up
to four keysyms to be established for a single key.

The entry point XKMEDoKBModeSwitch is defined for the mode-switch
modifier and can be set to the following modes of operation:

LockDownModeSwitch Locks down the mode-switch modifier; that is,
switches to Group 2.

UnlockModeSwitch Unlocks the mode-switch modifier; that is,
switches to Group 1.

The dxkeycaps (1X) reference page describes how to access the shift
modifier from client applications and contains general information on
keyboard mappings.

4–8 Programming in the Digital UNIX X Window Environment

4.1.17 XTrap Extension

This extension allows a client application to track and use information
about input events occurring on a remote X server. XTrap also allows a
client application to provide input to the remote server.

4.1.18 XTEST Extension

This extension contains a minimal set of X client and server extensions
that are required to completely test the X11 server with no user
intervention. The extension is designed to meet the following goals:

• Minimize portability problems by confining the extension to an
appropriate high level within the X server. In practice, this goal means
that the extension should be at the DIX level, use the DIX/DDX
interface, or both. This specification has effects, in particular, on the
level at which input synthesis can occur.

• Minimize the changes required in the rest of the X server.

• Minimize the performance penalties that running the test produces on
normal X server operation.

4.1.19 XV − X Video Extension

This extension performs the following functions:

• Lists available video adapters

• Identifies the number of ports each adapter supports

• Describes what drawable formats each adapter supports

• Describes what video encodings each adapter supports

• Displays video from a port to a drawable format

• Captures video from a drawable format to a port

• Reserves ports for exclusive use and unreserves them

• Sets and gets port attributes

• Delivers event notification

Programming in the Digital UNIX X Window Environment 4–9

4.2 X Display Manager Greeter Module

In the X Display Manager (xdm), the greeter module is a separate
dynamically loadable library. The greeter collects identifying information
from the user (for example, name and password), authenticates the user,
and optionally starts the login session. Application programmers can
customize this module to suit the needs of their application.

The greeter library that is used is determined by the value of the
DisplayManager.greeterLib resource in the
/var/X11/xdm/xdm-config file. This library is required to define a
function named GreetUser() .

The X Display Manager uses dlopen() to dynamically load the greeter
library. It uses dlsym() to find the GreetUser() function.

The GreetUser() function can either handle the user’s session itself or
allow xdm to do so. The return value of GreetUser() indicates to xdm
whether or not to start a session.

The GreetUser() function is passed the xdm struct display pointer, a
pointer to a Display Struct (defined in /usr/include/X11/Xlib.h), and
pointers to greet and verify structures. If GreetUser() expects xdm to run
the session, it fills in the Display pointer and the fields of the greet and
verify structs.

Definitions of struct display , struct verify_info , and struct
greet_info are located in /usr/examples/xdm/dm.h . The GreetUser()
function prototype is defined in /usr/examples/xdm/greet.h .

Any greeter library compiled on a Digital UNIX system prior to Version 4.0
must be recompiled to integrate data structure changes made in X11 R6.
The use of a version field on these structs eliminates the need to recompile
for future versions of the operating system.

The GreetUser() function is defined in greet.h as follows:

int GreetUser(
struct display *d,
Display ** dpy,
struct verify_info *verify,
struct greet_info *greet,
struct dlfuncs *dlfcns)

4–10 Programming in the Digital UNIX X Window Environment

The parameters for the function are as follows:

• struct display *d [read-only]

This struct display is defined in /usr/examples/xdm/dm.h .

• Display **dpy [write]

The parameter returns the Display pointer from XtOpenDisplay()
or XOpenDisplay() .

• struct verify_info *verify [write]

This struct is defined in /usr/examples/xdm/dm.h . The
GreetUser() function is passed a pointer to an existing verify-info
struct. The function is expected to write the fields of this struct. These
fields include the uid , gid , arguments to run the session; the
environment variable for the session; and the environment variable for
startup and reset .

• struct greet_info *greet [write]

This struct is defined in /usr/examples/xdm/dm.h . The
GreetUser() function is passed a pointer to an existing verify-info
struct. The function is expected to write the user’s name and password
into the name and password fields, but these values are really needed
only when xdm is compiled with SECURE_RPC defined.

• struct dlfcns

This struct is a set of function pointers to xdm functions that
GreetUser ()is likely to need.

Note that on Digital UNIX using these function pointers is not
necessary since the symbols will be resolved by the dynamic loader.

The GreetUser() function returns an enumerated type,
greet_user_rtn , defined in greet.h .

Greet_Session_Over 0 session managed and over
Greet_Success 1 greet succeeded, session not managed
Greet_Failure -1 greet failed

Programming in the Digital UNIX X Window Environment 4–11

4.3 Programming Updates

This section contains new information about programming in the X
Window System environment. The section covers the following topics:

• XChangeProperty and GetWindowProperty functions

• Link order for static X clients

• DECnet transport for client/server connections

• Client events with Display PostScript libraries

4.3.1 XChangeProperty and GetWindowProperty Functions

The X Consortium has refined the behavior of the XChangeProperty and
GetWindowProperty functions. This refinement primarily affects programs
that have arrays of integers (int) with format 32. If you have used or plan
to use either function, you should use arrays of longwords (longs) instead.

Until recently, the data type used with a format of 32 was implied, not
specified. With the new refinements, the data that is provided in format 32
to the XChangeProperty function or returned from the
GetWindowProperty function should be accessed as arrays of longwords
or typedefs based on longwords such as Window or Atom.

4.3.2 Link Order for Static X Clients

There are certain steps you must follow when compiling, loading, or linking
X client applications against a static or nonshared library.

Specify either the −ldnet_stub or −ldnet flag when:

• using the cc −non_shared command

• using the ld −non_shared command

• linking against the libX11.a static library

If you link your X client application to the nonshared version of the
/usr/lib/libDXm.a library, you must include libbkr in the link line. If
you omit libbkr , the warning messages appear about the following
undefined symbols:

DXmHelpSystemClose
DXmHelpSystemDisplay

4–12 Programming in the Digital UNIX X Window Environment

DXmHelpSystemOpen

4.3.3 DECnet Transport for X Client/Server Connections

The X server, X libraries, and various X clients use a DECnet transport
mechanism for client/server connections when the appropriate DECnet
product is installed on the system or on two systems, if the X client and X
server are running on different nodes. If DECnet is not installed, attempts
to make these client/server connections fail.

The loadable X server, as well as clients and libraries that directly execute
calls to DECnet functions, are built using the libdnet_stub.so shared
library in the ld command that links the object files. DECnet functions that
are commonly called include getnodename , dnet_addr , and dnet_conn .

X clients that are built fully static and include libX11.a or libXmu.a
must incorporate the libdnet_stub.a library if they do not use the
DECnet transport. If they do use the DECnet transport, they must
incorporate the libdnet.a library. One of these libdnet libraries must
be included to resolve function calls from within the libX11 or libXmu
modules. If the X client is not fully static, but is using libX11.a or
libXmu.a for some other reason, libdnet_stub.so should be included in
the ld command information so that the client can be used whether or not
DECnet is installed.

Note that DECnet/OSI is not part of the Digital UNIX operating system.

4.3.4 Client Events with Display PostScript Libraries

In some situations, clients lose events when using Display PostScript
libraries directly or indirectly with calls to libdvr . The events are lost
because Xlib calls a status-event handling function, which in turn calls
other Xlib functions even though Xlib is not guaranteed to be reentrant.

There are two functions in the Display PostScript language that correct
this problem:

• XDPSSetEventDelivery

• XDPSDispatchEvent

Programming in the Digital UNIX X Window Environment 4–13

These functions must be applied to all clients using Display PostScript, as
well as Xlib . You should be aware of the following rules when using these
functions:

• Always call XDPSDispatchEvent before calling XtDispatchEvent .

• Never use XtAppProcessEvent to handle X Window System events.

• Do not use either the XtAppMainLoop or XtMainLoop function because
these functions call XtDispatchEvent . Instead, use a loop that will
always call XDPSDispatchEvent before calling XtDispatchEvent .

For details about these functions, see the Adobe Systems Incorporated book
Programming the Display PostScript System with X.

4–14 Programming in the Digital UNIX X Window Environment

Index

A
access control authorization, 2–13
accessx, 3–18
adapters

graphics adapters, 2–21
app-defaults directory

location for resource definitions
files, 3–3, 3–9

authentication
at login time, 2–9

B
background resource, 3–5
borderColor resource, 3–5
borderWidth resource, 3–5
broadcast query

XDMCP, 2–30
examples of, 2–30

C
child process

created by xdm, 2–8
chooser, 2–10
client events

with Display PostScript
libraries, 4–13

client utilities
customization of, 3–11

console
ownership of, 2–10

console language variable, 2–10

customization
client utilities for, 3–11
workstation environment, 3–1

D
DECnet transport

for X client/server connections,
4–13

DECwindows session manager
(See dxsession program)

direct query
XDMCP, 2–29

examples of, 2–30
display

customization of, 3–1
logging in, 2–8
managed by xdm, 2–8, 2–20
resource definitions with, 3–5,

3–10
starting, 2–11

Display PostScript, 1–1
Display PostScript extension, 4–2

client events, 4–13
display resource, 3–5
DisplayManager resources

in xdm-config file, 2–12
DPS

(See Display PostScript
extension)

dtlogin display manager, 2–2
dxconsole, 2–10, 2–12
dxkbledpanel, 3–17
dxkeyboard, 3–17

Index–1

dxlogin, 2–10
resources for, 2–11

dxsession program, 2–9, 2–11
Xdefaults file, 3–10

E
editres utility, 3–11
error messages

in xdm-errors file, 2–12
extensions

(See X server extensions)

F
failsafe mode, 2–15

using to fix login problems, 2–16
files

in xdm directory, 2–10
location of X Window System on

Digital UNIX systems, 2–4
font renderer

location of, 2–16
font server

client utility applications, 2–27
configuration file, 2–24
configuration file example, 2–24e
initialization script, 2–26
managing, 2–24
port number, 2–26
using, 2–26

fs
(See font server)

fsinfo utility, 2–27
fslsfonts utility, 2–28
fstobdf utility, 2–28

G
geometry resource, 3–5
GetWindowProperty function, 4–12
GiveConsole startup script, 2–9,

2–10

graphics adapters, 2–21
greeter library

files for, 2–12
greeter module

Athena style, 2–12
in the X Display Manager

(xdm), 4–10
Motif style, 2–12

GreetUser function, 4–10

H
HOME directory

location for resource definition
files, 3–3

I
iconic resource, 3–5
imaging extension

(See X Imaging Extension)
indirect query

XDMCP, 2–29
example of, 2–30

input extension, 4–7

K
keyboard management extension,

4–8
keyboard mapping

keymaps directory, 2–10
with xmodmap utility, 3–14

keyboard type, 2–10
keymap file

linked to keymap_default, 2–12
keymap_default link, 2–12
keymaps directory, 2–10

L
library

X server extension, 2–17

Index–2

local display
(See display)

logging in
failsafe mode, 2–16
problems with, 2–14
through xdm, 2–8, 2–9

login box, 2–9, 2–10
provided by greeter library, 2–12

M
memory utilization

X server, 2–31
MIT-MAGIC-COOKIE-1

authorization, 2–13
MIT-SCREEN-SAVER extension,

4–3
MIT-SHM extension, 4–3
MIT-SUNDRY-NONSTANDARD

extension, 4–3
Motif, 1–1
multibuffering extension, 4–3
multiuser mode

set by xdm, 2–9
MWM

default Digital UNIX window
manager, 1–1

N
name resource, 3–5
Nonrectangular Window Shape

extension, 4–5

O
OpenGL (Open Graphics Library)

extension, 4–4
OSF/Motif, 1–1

P
PEX extension, 4–4

port number
for font server, 2–26

PostScript, 1–1

R
remote display

(See display)
resource definitions, 3–1

command-line flag examples,
3–7

command-line flags, 3–3, 3–5
database, 3–3
editres utility, 3–11
host-specific, 3–3, 3–10
host-specific files, 3–4
loading, 3–4, 3–5
precedence, 3–2
priority order, 3–2
session script examples, 3–18,

3–19e
setting, 3–2
specifying in the Xresources

file, 2–10
syntax, 3–8
systemwide, 3–3
user-specific, 3–3
using, 3–7
XAPPLRESDIR environment

variable, 3–4
XFILESEARCHPATH

environment variable, 3–4
xmodmap utility, 3–14
xrdb utility, 3–13
xset utility, 3–12
xsetroot utility, 3–13
XUSERFILESEARCHPATH

environment variable, 3–4
RESOURCE_MANAGER

environment variable, 3–13
resources

(See resource definitions)
reverseVideo resource, 3–5

Index–3

S
screen saver extension

(MIT-SCREEN-SAVER), 4–3
SCREEN_RESOURCES

environment variable, 3–13
securettys file

using with failsafe mode, 2–15
security

host-based, 2–13
MIT-MAGIC-COOKIE-1

authorization, 2–13
user-based, 2–13
using Security Integration

Architecture (SIA), 2–12
xdm authorization, 2–13
XDM-AUTHORIZATION-1, 2–13
xhost application, 2–13

Security Integration Architecture
(See SIA)

selectionTimeout resource, 3–5
session manager

(See dxsession program)
session script

example of, 3–18, 3–19e
using, 3–18

SHAPE extension, 4–5
shared memory extension

(MIT-SHM), 4–3
shared memory transport

default definition, 2–11
Shared Memory Transport

(Digital) extension, 4–5
showfont utility, 2–29
SIA (Security Integration

Architecture), 2–12
socket transport

default definition, 2–11
static X clients

link order with, 4–12
SYNC extension, 4–5
synchronization extension, 4–5
synchronous resource, 3–5

T
TakeConsole reset script, 2–10
title resource, 3–5
transport connections

DECnet with X server and X
client, 4–13

W
window manager

MWM, 1–1
workstation environment

customizing, 3–1

X
X client

DECnet transport connections,
4–13

static, link order with, 4–12
X Consortium, 1–1
X display

(See display)
X Display Manager

(See xdm utility)
(See xdm)

X Display Manager Control
Protocol

(See XDMCP)
X files

locations of, 2–4
X Imaging Extension, 4–6
X Input extension, 4–7
X resources

(See resource definitions)
X server

DECnet transport connections,
4–13

error messages, 2–12
location of loadable libraries, 2–16
management, 2–16
memory utilization, 2–31

X server extensions, 4–1

Index–4

Display PostScript, 4–2
locations of, 2–16
MIT-SCREEN-SAVER, 4–3
MIT-SHM, 4–3
MIT-SUNDRY-

NONSTANDARD Protocol,
4–3

multibuffering, 4–3
OpenGL, 4–4
PEX (PHIGS Extension), 4–4
SHAPE, 4–5
SMT, 4–5
SYNC, 4–5
X Video (XV), 4–9
XIE, 4–6
XKME (Keyboard Management

Extension), 4–8
XTrap, 4–9

X Server Resource Database utility
(See xrdb)

X session
startup, 2–9

X session script
(See Xsession script)

X terminals
entries in Xservers.fs file, 2–11
managed by Xaccess file, 2–10
managing, 2–29
with xdm, 2–29

X Video (XV) extension, 4–9
X window

configuration, 2–1
customizing, 3–1
managing the environment, 2–1

X Window System, 1–1
documentation about, 1–2
location of files on Digital UNIX

systems, 2–4
Release 6, Digital UNIX

implementation of, 2–2
X11 R6

(See X Window System Release
6)

Xaccess file, 2–10

with X terminals, 2–10
with XDMCP connections, 2–30
XDMCP queries, 2–10

XAPPLRESDIR environment
variable, 3–4

Xauthority file
inability to write to, 2–15
security, 2–14

XChangeProperty function, 4–12
xconsole, 2–10
Xdefaults file

location for resource definitions,
3–3, 3–7, 3–10

with dxsession, 3–10
xdm

greeter module, 4–10
xdm display manager, 2–2
xdm utility, 2–8

directory contents, 2–10
error messages, 2–12
greeter module, 2–12
login process, 2–8
multiuser mode, 2–9
process id, 2–12
processes, 2–8
security, 2–14
user authorization, 2–13
with X terminals, 2–29

XDM-AUTHORIZATION-1, 2–13
xdm-config file, 2–12

problems with, 2–15
specifying greeter library in, 4–10
X server management, 2–20

xdm-config.fs file, 2–12
xdm-errors file, 2–12, 2–14, 2–15
xdm-pid file, 2–12
XDMCP

managing X terminals with, 2–29
queries, 2–29
querying Xaccess file, 2–10

XDPSDispatchEvent, 4–14
XDPSSetEventDelivery, 4–13
XENVIRONMENT environment

variable

Index–5

pointer to resource definition
file , 3–3

XFILESEARCHPATH
environment variable, 3–4

xhost application, 2–13
XIE (X Imaging Extension), 4–6
xie (X Input Extension), 4–7
XKB keyboard extension, 4–7
xkbcomp, 3–16
xkbdfltmap, 3–17
xkbprint, 3–17
Xkeymaps file, 2–10
Xkeymaps table, 2–10
XKME (Keyboard Management

Extension), 4–8
xlogin, 2–10
xmodmap command, 3–15

used by xdm to load keymaps,
2–10

xmodmap utility, 3–14
xnlLanguage resource, 3–5
XQueryExtension function, 2–16
xrdb utility, 2–10, 3–3, 3–4, 3–10,

3–13
loading resource definitions, 3–5

setting login box
characteristics, 2–9

Xresources file, 2–10
xrm resource flag, 3–5
Xserver command, 2–20
Xserver.conf file

example of, 2–18e
problems with, 2–15
specifying X server extensions

in, 2–16
Xservers file, 2–11
Xservers.fs file

entries for X terminals, 2–11
Xsession script, 2–9, 2–11

errors in, 2–15
.xsession script, 2–9, 2–11, 2–15
xsession-errors file, 2–14
xset utility, 3–12
xsetroot utility, 3–13
Xsetup_0 script, 2–9, 2–11
XTEST extension, 4–9
XTrap extension, 4–9
XUSERFILESEARCHPATH

environment variable, 3–4

Index–6

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

Continental USA,
Alaska, or Hawaii

800-DIGITAL Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International — Local Digital subsidiary or approved distributor

Internal
(submit an
Internal Software
Order Form,
EN-01740-07)

— SSB Order Processing – NQO/V19
or
U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

Reader’s Comments

Digital UNIX
X Window System Environment
AA-Q7RNB-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 881-0120, Attn: UEG Publications, ZK03-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number, and
the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ __
_________ __
_________ __
_________ __

Additional comments or suggestions to improve this manual:

__
__
__
__

What version of the software described by this manual are you using? ________________________

Name, title, department __
Mailing address ___
Electronic mail __
Telephone ___
Date __

UEG PUBLICATIONS MANAGER

BUSINESS REPLY MAIL

 Do Not Cut or Tear − Fold Here

 Do Not Cut or Tear − Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST−CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3−3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062−9987

Cut on
Dotted

Line

