
Tru64 UNIX
Writing Software for the International Market

Part Number: AA-Q0R4D-TE

April 1999

Product Version: Tru64 UNIX Version 4.0F or higher

This guide provides an overview of writing international software and
discusses using the tools provided with the Tru64 UNIX (formerly
known as DIGITAL UNIX) operating system to help write international
programs.

Compaq Computer Corporation
Houston, Texas

© Digital Equipment Corporation 1994, 1996, 1999
All rights reserved.

COMPAQ, the Compaq logo, and the Digital logo are registered in the U.S. Patent and Trademark Office.
The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP,
AlphaGeneration, AlphaServer, AltaVista, ATMworks, AXP, Bookreader, CDA, DDIS, DEC, DEC Ada,
DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem, DECterm, DECUS, DECwindows, DTIF,
Massbus, MicroVAX, OpenVMS, POLYCENTER, PrintServer, Q–bus, StorageWorks, Tru64, TruCluster,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS,
and XUI. Other product names mentioned herein may be the trademarks of their respective companies.
Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc. UNIX is a registered trademark and The Open Group is a trademark of The Open Group
in the US and other countries. X/Open is a trademark of X/Open Company Limited. Adobe, Acrobat
Reader, PostScript, and Display PostScript are registered trademarks of Adobe Systems Incorporated.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii).

Compaq Computer Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Compaq or an authorized sublicensor.

Compaq conducts its business in a manner that conserves the environment and protects the safety and
health of its employees, customers, and the community.

Contents

About This Manual

1 Introduction
1.1 Language 1–1
1.2 Cultural Data 1–2
1.3 Character Sets 1–2
1.4 Localization 1–2
1.4.1 Collating Sequence 1–3
1.4.2 Character Classification 1–3
1.4.3 Case Conversion 1–4
1.4.4 Language Information 1–4
1.4.5 Message Catalogs 1–4
1.5 Language Announcement 1–4
1.6 Terms and Definitions 1–4
1.6.1 Characters and Strings 1–5
1.6.2 Portable Character Set 1–5
1.6.3 The Universal Character Set 1–6

2 Developing Internationalized Software
2.1 Using Codesets 2–2
2.1.1 Ensuring Data Transparency 2–5
2.1.2 Using In-Code Literals 2–6
2.1.3 Manipulating Characters That Span Multiple Bytes 2–7
2.1.4 Converting Between Multibyte-Character and

Wide-Character Data 2–7
2.1.5 Rules for Multibyte Characters in Source and Execution

Codesets 2–9
2.1.6 Classifying Characters 2–10
2.1.7 Converting Characters 2–11
2.1.8 Comparing Strings 2–11
2.2 Handling Cultural Data 2–12
2.2.1 The langinfo Database 2–13
2.2.2 Querying the langinfo Database 2–13

Contents iii

2.2.3 Generating and Interpreting Date and Time Strings That
Observe Local Customs 2–14

2.2.4 Formatting Monetary Values 2–15
2.2.5 Formatting Numeric Values in Program-Specific Ways .. . 2–15
2.2.6 Using the langinfo Database for Other Tasks 2–16
2.3 Handling Text Presentation and Input 2–16
2.3.1 Creating and Using Messages 2–16
2.3.2 Formatting Output Text 2–18
2.3.3 Scanning Input Text 2–19
2.4 Binding a Locale to the Run-Time Environment 2–20
2.4.1 Binding to the Locale Set for the System or User 2–21
2.4.2 Changing Locales During Program Execution 2–21

3 Creating and Using Message Catalogs
3.1 Creating Message Text Source Files 3–1
3.1.1 General Rules 3–3
3.1.2 Message Sets 3–5
3.1.3 Message Entries 3–7
3.1.4 Quote Directive 3–9
3.1.5 Comment Lines 3–9
3.1.6 Style Guidelines for Messages 3–10
3.2 Extracting Message Text from Existing Programs 3–13
3.3 Editing and Translating Message Source Files 3–15
3.4 Generating Message Catalogs 3–16
3.4.1 Using the mkcatdefs Command 3–18
3.4.2 Using the gencat Command 3–19
3.4.3 Design and Maintenance Considerations for Message

Catalogs 3–20
3.5 Displaying Messages and Locale Data Interactively or from

Scripts 3–23
3.6 Accessing Message Catalogs in Programs 3–25
3.6.1 Opening Message Catalogs 3–25
3.6.2 Closing Message Catalogs 3–30
3.6.3 Reading Program Messages 3–30

4 Handling Wide-Character Data with curses Routines
4.1 Writing a Wide Character to a curses Window 4–2
4.1.1 Add Wide Character (Overwrite) and Advance Cursor 4–2
4.1.2 Insert Wide Character (no Overwrite) and Do Not

Advance Cursor 4–3
4.2 Writing a Wide-Character String to a curses Window 4–3

iv Contents

4.2.1 Add Wide-Character String (Overwrite) and Do Not
Advance Cursor 4–4

4.2.2 Add Wide-Character String (Overwrite) and Advance
Cursor 4–5

4.2.3 Insert Wide-Character String (no Overwrite) and Do Not
Advance Cursor 4–6

4.3 Removing a Wide Character from a curses Window 4–7
4.4 Reading a Wide Character from a curses Window 4–8
4.5 Reading a Wide-Character String from a curses Window 4–8
4.5.1 Reading Wide-Character Strings with Attributes 4–9
4.5.2 Reading Wide-Character Strings Without Attributes 4–10
4.6 Reading a String of Characters from a Terminal 4–11
4.7 Reading or Queuing a Wide Character from the Keyboard .. . 4–12
4.8 Converting Formatted Text in a curses Window 4–13
4.9 Printing Formatted Text on a curses Window 4–14

5 Creating Internationalized X, Xt, and Motif Applications
5.1 Using Internationalization Features in the X Toolkit

Intrinsics 5–2
5.1.1 Establishing a Locale with Xt Functions 5–2
5.1.2 Using Font Set Resources with Xt Functions 5–3
5.1.3 Filtering Events During Text Input with Xt Functions .. . 5–3
5.1.4 Including the Codeset Component of Locales with Xt

Functions 5–3
5.2 Using Internationalization Features of the OSF/Motif and

DECwindows Motif Toolkits 5–3
5.2.1 Setting Language in a Motif Application 5–3
5.2.2 Using Compound Strings and the XmText, XmTextField,

and DXmCSText Widgets 5–4
5.2.3 Internationalization Features of Widget Classes 5–6
5.3 Using Internationalization Features in the X Library 5–6
5.3.1 Using the X Library to Manage Locales 5–7
5.3.2 Displaying Text for Different Locales 5–10
5.3.2.1 Creating and Manipulating Font Sets 5–10
5.3.2.2 Obtaining Metrics for Font Sets 5–12
5.3.2.3 Drawing Text with Font Sets 5–12
5.3.2.4 Handling Text with the X Output Method 5–14
5.3.2.5 Converting Between Different Font Set Encodings .. . 5–16
5.3.3 Handling Interclient Communication 5–16
5.3.4 Handling Localized Resource Databases 5–18
5.3.5 Handling Text Input with the X Input Method 5–19

Contents v

5.3.5.1 Opening and Closing an Input Method 5–19
5.3.5.2 Querying Input Method Values 5–21
5.3.5.3 Creating and Using Contexts for an Input Method .. . 5–23
5.3.5.4 Providing Preediting Callbacks for the On-the-Spot

Input Style 5–26
5.3.5.5 Filtering Events for an Input Method 5–29
5.3.5.6 Obtaining Composed Strings from the Keyboard 5–30
5.3.5.7 Handling Failure of the Input Method Server 5–32
5.3.6 Using X Library Features: A Summary 5–33

6 Using Internationalized Software
6.1 Working in a Multilanguage Environment: Introduction 6–1
6.2 Setting Locale and Language 6–2
6.3 Selecting Keyboard Type 6–4
6.3.1 Determining Keyboard Layout 6–5
6.4 Determining Input Method 6–5
6.5 Determining the Input Mode Switch State 6–7
6.6 Defining the Search Path for Specialized Components 6–8
6.7 Using Terminal Interface Features for Asian Languages 6–9
6.7.1 Converting Between Application and Terminal Codesets . 6–11
6.7.2 Command Line Editing That Supports Multibyte

Characters 6–12
6.7.3 Kana-Kanji Conversion: Customization of Japanese Input

Options 6–14
6.8 Supporting User-Defined Characters and Phrase Input 6–18
6.9 Using Printer Interface Features That Support Local

Languages 6–19
6.9.1 Generic Internationalized Print Filters 6–20
6.9.1.1 pcfof Print Filter 6–20
6.9.1.2 wwpsof Print Filter 6–21
6.9.2 Print Filters for Specific Local Language Printers 6–21
6.9.3 Support for Local Language Printers in /etc/printcap 6–23
6.9.4 Enhancements to Printer Configuration Software 6–26
6.9.5 Print Commands and the Printer Daemon 6–28
6.9.6 Choosing PostScript Fonts for Different Locales 6–28
6.10 Using Mail in a Multilanguage Environment 6–32
6.10.1 The sendmail Utility 6–33
6.10.2 The mailx Command and MH Commands 6–33
6.10.3 The comsat Server 6–34
6.11 Applying Sort Orders to Non-English Characters 6–35

vi Contents

6.12 Processing Reference Pages in Languages Other Than
English 6–36

6.12.1 The nroff Command 6–36
6.12.2 The tbl Command 6–38
6.12.3 The man Command 6–38
6.13 Converting Data Files from One Codeset to Another 6–39
6.14 Miscellaneous Information for Base System Commands 6–40
6.15 Using Language Support Enhancements for Motif

Applications 6–41
6.15.1 Tuning the X Server for Ideographic Languages 6–42
6.15.2 Using Font Renderers for Multibyte PostScript Fonts 6–44
6.15.2.1 Setting Up the Font Renderer for Double-Byte

PostScript Fonts 6–44
6.15.2.2 Setting Up the Font Renderer for UDC Fonts 6–45
6.15.3 Setting Fonts for Display of Local Languages 6–46
6.15.3.1 Accessing Local-Language Fonts for Remote Displays 6–47
6.15.4 Customizing a Terminal Emulation Window for Asian

Languages 6–62

7 Creating Locales
7.1 Creating a Character Map Source File for a Locale 7–1
7.2 Creating Locale Definition Source Files 7–6
7.2.1 Defining the LC_CTYPE Locale Category 7–8
7.2.2 Defining the LC_COLLATE Locale Category 7–10
7.2.3 Defining the LC_MESSAGES Locale Category 7–14
7.2.4 Defining the LC_MONETARY Locale Category 7–15
7.2.5 Defining the LC_NUMERIC Locale Category 7–18
7.2.6 Defining the LC_TIME Locale Category 7–18
7.3 Building Libraries to Convert Multibyte/Wide-Character

Encodings 7–21
7.3.1 Required Methods 7–22
7.3.1.1 Writing the _ _mbstopcs Method for the fgetws

Function 7–22
7.3.1.2 Writing the _ _mbtopc Method for the getwc()

Function 7–25
7.3.1.3 Writing the _ _pcstombs Method for the fputws()

Function 7–29
7.3.1.4 Writing a _ _pctomb Method 7–31
7.3.1.5 Writing a Method for the mblen() Function 7–31
7.3.1.6 Writing a Method for the mbstowcs() Function 7–34
7.3.1.7 Writing a Method for the mbtowc() Function 7–37

Contents vii

7.3.1.8 Writing a Method for the wcstombs() Function 7–41
7.3.1.9 Writing a Method for the wctomb() Function 7–43
7.3.1.10 Writing a Method for the wcswidth() Function 7–46
7.3.1.11 Writing a Method for the wcwidth() Function 7–48
7.3.2 Optional Methods 7–50
7.3.3 Building a Shareable Library to Use with a Locale 7–52
7.3.4 Creating a methods File for a Locale 7–52
7.4 Building and Testing the Locale 7–53

A Summary Tables of Worldwide Portability Interfaces
A.1 Locale Announcement A–1
A.2 Character Classification A–1
A.3 Case and Generic Property Conversion A–3
A.4 Character Collation A–4
A.5 Access to Data That Varies According to Language and

Custom A–4
A.6 Conversion and Format of Date/Time Values A–5
A.7 Printing and Scanning Text A–5
A.8 Number Conversion A–7
A.9 Conversion of Multibyte and Wide-Character Values A–7
A.10 Input and Output A–9
A.11 String Handling A–10
A.12 Codeset Conversion A–12

B Setting Up and Using User-Defined Character Databases
B.1 Creating User-Defined Characters B–3
B.1.1 Working on the cedit User Interface Screen B–4
B.1.2 Editing Font Glyphs B–8
B.2 Creating UDC Support Files That System Software Uses B–18
B.3 Processing UDC Fonts for Use with X11 or Motif

Applications B–20
B.3.1 Using fontconverter Command Options B–20
B.3.2 Controlling Output File Format B–23

C Setting Up and Using the Chinese Phrase Input Method
C.1 Enabling the SIM Service C–2
C.2 Creating and Maintaining a Chinese Phrase Database C–3
C.3 Using a Chinese Phrase Database C–7
C.3.1 Phrase Input Supported Through the SIM Service C–7

viii Contents

C.3.2 Phrase Input from the Input Options Application C–9

D Using DECterm Localization Features in Programs
D.1 Drawing Ruled Lines in a DECterm Window D–1
D.1.1 Drawing Ruled Lines in a Pattern D–1
D.1.2 Erasing Ruled Lines in a Pattern D–4
D.1.3 Erasing All Ruled Lines in an Area D–4
D.1.4 Interaction of Ruled Lines and Other DECterm Escape

Sequences D–5
D.1.5 Determining if the DECterm Device Setting Supports

Ruled Lines D–7
D.2 DECterm Programming Restrictions D–7
D.2.1 Downline Loadable Characters D–8
D.2.2 DRCS Characters D–8

E Sample Locale Source Files
E.1 Character Map (charmap) Source File E–1
E.2 Locale Definition Source File E–8

Glossary

Index

Examples
3–1 Message Text Source File 3–2
3–2 Generating a Message Catalog Interactively 3–17
5–1 Setting Locale in an X Windows Application 5–9
5–2 Creating and Using Font Sets in an X Windows Application . 5–11
5–3 Drawing Text in an X Windows Application 5–13
5–4 Communicating with Other Clients in an X Windows

Application 5–17
5–5 Opening and Closing an Input Method in an X Windows

Application 5–21
5–6 Obtaining the User Interaction Styles for an Input Method . . 5–22
5–7 Creating and Destroying an Input Method Context in an X

Windows Application 5–23
5–8 Using Preediting Callbacks in an X Windows Application 5–26
5–9 Filtering Events for an Input Method in an X Windows

Application 5–29

Contents ix

5–10 Obtaining Keyboard Input in an X Windows Application 5–30
5–11 Handling Failure of the Input Method Server 5–32
6–1 Default cp_dirs File 6–18
6–2 Setting Up a Local Language Printer with lprsetup 6–26
7–1 The charmap File for a Sample Locale 7–1
7–2 Fragment from a charmap File for a Multibyte Codeset 7–5
7–3 Structure of Locale Source Definition File 7–6
7–4 LC_CTYPE Category Definition 7–8
7–5 LC_COLLATE Category Definition 7–10
7–6 LC_MESSAGES Category Definition 7–14
7–7 LC_MONETARY Category Definition 7–16
7–8 LC_NUMERIC Category Definition 7–18
7–9 LC_TIME Category Definition 7–18
7–10 The _ _mbstopcs_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–22
7–11 The _ _mbtopc_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–25
7–12 The _ _pcstombs_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–29
7–13 The _ _pctomb_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–31
7–14 The _ _mblen_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–32
7–15 The _ _mbstowcs_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–35
7–16 The _ _mbtowc_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–37
7–17 The _ _wcstombs_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–41
7–18 The _ _wctomb_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–44
7–19 The _ _wcswidth_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–46
7–20 The _ _wcwidth_sdeckanji Method for the ja_JP.sdeckanji

Locale 7–49
7–21 Building a Library of Methods Used with the ja_JP.sdeckanji

Locale 7–52
7–22 The methods File for the ja_JP.sdeckanji Locale 7–52
7–23 Building the de_DE.ISO8859-1@example Locale 7–54

x Contents

7–24 Setting the LOCPATH Variable and Testing a Locale 7–55

Figures
3–1 Converting an Existing Program to Use a Message Catalog . . 3–15
B–1 Components That Support User-Defined Characters B–3
B–2 The cedit User Interface Screen B–5
B–3 The cedit Font Editing Screen B–9
B–4 Interpretation of Font Editing Screen for Sizing a Font B–10
B–5 Keymap for cedit Functions B–13
C–1 User Interface Screen of the phrase Utility C–4
D–1 Drawing Ruled Lines with the DECDRLBR Sequence D–2
D–2 Bit Pattern for DECDRLBR Parameters D–3

Tables
3–1 Coding of Special Characters in Message Text Source Files . . 3–4
5–1 Locale Announcement Functions in the X Library 5–8
5–2 X Library Functions That Create and Manipulate Font Sets . 5–10
5–3 X Library Functions That Measure Text 5–12
5–4 X Library Functions That Draw Text 5–13
5–5 X Library Functions for Output Method and Context 5–15
5–6 X Library Functions for Interclient Communication 5–17
5–7 X Library Functions That Handle Localized Resource

Databases 5–18
5–8 X Library Functions That Manage Input Context (XIC) 5–26
6–1 The stty Command Options for Controlling Terminal Line

Discipline 6–10
6–2 The stty Options to Explicitly Set Application and Terminal

Code 6–12
6–3 The stty Options to Enable/Disable History Mode 6–13
6–4 Command Line Editing in History Mode 6–13
6–5 The stty Options to Enable and Customize Japanese Input . . 6–15
6–6 Symbols in /etc/printcap File for Local Language Printers 6–23
6–7 Local Language Printers Supported by the lprsetup

Command 6–27
6–8 Supported Codeset Conversions for English 6–40
6–9 X Server Options for Tuning the Font-Cache Mechanism 6–43
6–10 XLFD Registry Names for UDC Characters 6–46
6–11 Bitmap Fonts for Asian Locales 6–47
6–12 Bitmap Fonts for *.ISO8859-2 Locales 6–49
6–13 Bitmap Fonts for *.ISO8859-4 Locales 6–51
6–14 Bitmap Fonts for *.ISO8859-5 Locales 6–54

Contents xi

6–15 Bitmap Fonts for *.ISO8859-7 Locales 6–56
6–16 Bitmap Fonts for *.ISO8859-8 Locales 6–58
6–17 Bitmap Fonts for *.ISO8859-9 Locales 6–60
B–1 The stty Options for On-Demand Loading of UDC Support

Files B–1
B–2 The cedit Command Options B–4
B–3 Keys for Miscellaneous Font Editing Functions B–13
B–4 Keys for cedit Mode Switching B–14
B–5 Keys for Fine Control of Cursor Movement B–14
B–6 Keys for Moving Cursor to Window Areas B–15
B–7 Keys for Drawing Font Glyphs B–15
B–8 Keys for Editing Font Glyphs B–16
B–9 The cgen Command Options B–19
B–10 Options and Arguments of the fontconverter Command B–22
C–1 Chinese Phrase Input Definitions C–2
C–2 The stty Options Used for the SIM Service C–3
C–3 The phrase Options for the VT382-D Terminal C–3
D–1 Behavior of Standard Escape Sequences with Ruled Lines .. . D–5

xii Contents

About This Manual

The Tru64 UNIX (formerly DIGITAL UNIX) internationalization tools and
routines allow you to write programs for use in a number of nations. These
features let you write programs with:

• An interface that appears to a nation’s users as if it was designed for
them

• Source code that is independent of specific native languages and
customs

Audience

This guide is intended for experienced applications developers who are
writing programs intended for multinational or non-English language use.
Translators who translate the messages displayed by international
programs might also find this guide useful.

New and Changed Features

This manual was produced for Tru64 UNIX Version 4.0F. The following
section discusses changes made for this revision of the manual. For the
benefit of customers who are upgrading from a Version 3 rather than a
Version 4 release, changes made to the manual for Version 4.0 are included
in a subsequent section.

New and Changed Features for Tru64 UNIX Version 4.0F

This version of the manual, along with associated reference pages, was
revised to discuss the following features:

• Codeset converters, locales, or both for the UCS-2, UTF-8, and PC code
page encoding formats

• Support for the European monetary sign (euro character)

• Generic internationalized PostScript print filters

• Support for running a CDE application in a language different from the
session language

About This Manual xiii

• New and changed functions for conformance to the XSH5 CAE
specification. This specification includes functions added or changed by
the 1994 amendment to the ISO C standard.

• Minor changes to Curses library functions for conformance to Issue 4
Version 2 of the X/Open Curses CAE specification

• Addition of PostScript fonts for Hebrew

In addition, this manual was revised to correct various omissions,
inaccuracies, and typographical errors.

New and Changed Features for DIGITAL UNIX Version 4.0

The version of this manual produced for DIGITAL UNIX Version 4.0 was
revised to discuss the following features:

• Locales and other software to support Catalan, Lithuanian, and Slovene

• Support for character processing in UCS-4 format

• Curses library routines that handle multibyte characters and also
conform to the X/Open Curses CAE specification

• Support for X11R6 libraries

• Support for the Common Desktop Environment (CDE)

• Internationalization enhancements to the printing and mail subsystems

• Font renderers for use by X applications

• Multilingual Emacs editor (mule)

• Codeset conversion improvements to support better the multiple
codesets available for Chinese and Japanese

• Functions added to the Standard C Library by the 1994 amendment to
the ISO C standard

In addition, a glossary was added to the manual.

Organization

This guide includes seven chapters, five appendixes, and a glossary.

xiv About This Manual

Chapter 1 Introduction
Introduces the basic concepts and procedures for writing
programs that meet the needs of international users.

Chapter 2 Developing Internationalized Software
Discusses techniques for handling character sets, cultural
data, and language in an application.

Chapter 3 Creating and Using Message Catalogs
Explains how to extract and translate text for messages, and
how to generate and access message catalogs.

Chapter 4 Handling Wide–Character Data with curses Routines
Describes the curses library routines for handling
wide-character data and discusses terminal-programming
extensions for drawing ruled lines in a DECterm window.

Chapter 5 Creating Internationalized X, Xt, and Motif Applications
Discusses how to use GUI programming libraries (X,
OSF/Motif, and DECwindows Extensions to OSF/Motif) when
writing internationalized programs.

Chapter 6 Using Internationalized Software
From a programmer’s perspective, discusses setup
requirements for using applications in different language
environments. This chapter also explains how to use Tru64
UNIX commands and other applications in a multilanguage
working environment.

Chapter 7 Creating Locales
Discusses the source files for a locale and how to process
them with the localedef utility.

Appendix A Summary Tables of Worldwide Portability Interfaces
Lists and summarizes internationalized functions for locale
initialization, character classification, case conversion,
character collation, language information, date and time
interpretation, printing and scanning text strings, number
conversion, handling multibyte characters, input/output, and
string manipulation.

Appendix B Setting Up and Using User-Defined Character Databases
Describes support for user-defined characters (UDCs) in
Chinese, Japanese, and Korean.

Appendix C Setting Up and Using the Chinese Phrase Input Method
Describes support for phrase input that is used with Chinese.

Appendix D Using DECterm Localization Features in Programs
Describes programming features specific to the dxterm
terminal emulator.

About This Manual xv

Appendix E Sample Locale Source Files
Contains complete source files for the sample locale discussed
in Chapter 7.

Glossary Defines terms and acronyms used in this book.

Related Documentation

The following manuals in the Tru64 UNIX documentation set provide
information about using the C compiler and other program development
tools on a Tru64 UNIX system. If you are developing internationalized
applications, refer to these manuals for general programming information.

• Programmer’s Guide

• Programming Support Tools

• OSF/Motif Programmer’s Guide

The following book, published by O’Reilly and Associates, Inc., is also a
good reference:

Programmer’s Supplement for Release 5 of the X Window System, Version 11

The following standards or draft standards apply to software components
discussed in this guide. This guide refers to some of these documents.

• ANS X3.159 Programming Language C

• ISO/IEC 646: 1983

Information processing − ISO 7-bit coded character set for information
interchange.

• ISO 6937: 1983

Information processing − Coded character sets for text communication.

• ISO 8859-1: 1987

Information processing − ISO 8-bit single-byte coded graphic character
sets − Latin alphabet No. 1.

• ISO/IEC 9899: 1990

Information technology − Programming Languages − C.

• ISO/IEC 9945-1: 1990

Information technology − Portable operating system interface (POSIX) −
Part 1: System application programming interface (API) [C Language].

• ISO/IEC 9945-2: 1993

Information technology − Portable operating system interface (POSIX) −
Part 2: Shells and Utilities.

xvi About This Manual

• ISO/IEC 10646-1:1993

Information Technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane, 1993

• Code for Information Interchange, JIS X0201-1976; Japanese national
standard.

• Code of the Japanese Graphic Character Set for Information
Interchange, JIS X0208-1990; Japanese national standard.

• Code of the Supplementary Japanese Graphic Character Set, JIS
X0212-1990; Japanese national standard.

• Codes of Chinese Graphic Characters for Information Interchange,
Primary Set (GB2312-80); National Standards Bureau of China,
Beijing, 1980.

• Standard Codes of Common Chinese Characters for Information
Interchange, CNS 11643; Taiwan, 1986, 1992.

• Standard Codes of Korean Characters for Information Interchange, KSC
5601; Korea, 1987.

• Thai Industrial Standard, TIS 620-2533; Standard for a primary set of
graphic characters used for Thai information interchange.

• The Open Group UNIX CAE specifications, specifically:

– Commands and Utilities, Issue 5

– Systems Interfaces and Headers, Issue 5

– System Interface Definitions, Issue 5

– Networking Services, Issue 5

– X/Open Curses, Issue 4 Version 2

• The Unicode Standard, Version 2.0

The following book provides information about cultural and linguistic
requirements around the world and the changes needed in computer
systems to handle those requirements:

• Programming for the World: A Guide to Internationalization, O’Donnell,
Sandra Martin, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994

Articles in the following technical journal cover topics related to product
internationalization:

• Digital Technical Journal, Volume 5 Number 3 (published Summer
1993)

The printed version of the Tru64 UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You

About This Manual xvii

can order the printed documentation from Compaq.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General users G Blue

System and network administrators S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

xviii About This Manual

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX
software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send
problem reports to Compaq.

Conventions

The following conventions are used in this manual:

%
$ A percent sign represents the C shell system

prompt. A dollar sign represents the system prompt
for the Bourne and Korn shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | } In syntax definitions, brackets indicate items that

are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

About This Manual xix

cat (1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat (1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

Ctrl-x This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the hyphen, for example, Ctrl-c.

Alt x Multiple key or mouse button names separated by
spaces indicate that you press and release each in
sequence, for example, Alt Space.

xx About This Manual

1
Introduction

Internationalization refers to the process of developing software programs
without prior knowledge of the language, cultural data, or
character-encoding schemes that the programs are expected to handle. In
system terms, internationalization refers to the provision of interfaces that
let programs produce varying output, depending on the specific
environment in which they are run. The mnemonic I18N is frequently used
as an abbreviation for internationalization.

This manual describes Tru64 UNIX interfaces and utilities that help you
develop internationalized programs. These interfaces and utilities conform
to specifications in the X/Open UNIX standard, which allows for
implementation-defined behavior in certain areas. This manual identifies
those software characteristics that are specific to the Tru64 UNIX
operating system.

1.1 Language

An internationalized program makes no assumptions about the language of
character data (text) that the program is designed to handle. The term
data refers to data generated internally, data extracted from or written to
files, and message text used for communication with the program’s user.

Language has implications for processing text for such things as character
handling and word ordering. Tru64 UNIX provides interfaces that allow
internationalized programs to manipulate text according to the language
requirements of individual users.

Language differences require the separation of message text from program
code. Tru64 UNIX provides facilities that allow message text to be
separated from the code, translated into different languages, and accessed
by the program at run time. Chapter 3 explains how an internationalized
program that uses the Worldwide Portability Interfaces (WPI) generates
and accesses messages.

An internationalized program that uses X and Motif interfaces can
separate message text from program code in the following ways:

• By defining menu items, titles, text fields, and messages in UIL (User
Interface Language) files

Introduction 1–1

• By specifying titles and font lists in application resource files

• By specifying help messages in files that the Help widget uses

For information about separating message text from program code for X
and Motif interfaces, refer to the following books:

• X Window System Toolkit

• OSF/Motif Programmer’s Guide

• Common Desktop Environment: Internationalization Programmer’s
Guide

1.2 Cultural Data
Cultural data refers to the conventions of a geographic area or territory for
such things as date, time, and currency formats.

An internationalized program cannot assume how these formats are set in
advance and uses system facilities to determine formats at run time. This
capability is provided through a language information database that
programs can query for the required formats of cultural data items.

1.3 Character Sets
A character set is a set of alphabetic or other characters used to construct
the words and other elementary units of a native language or computer
language. A coded character set (or codeset) is a set of unambiguous rules
that establishes a character set and the one-to-one relationship between
each character of the set and its bit representation.

For a program to be able to handle text recorded in different codesets, the
program cannot make assumptions about the size or bit assignment of
character encodings. In particular, the program cannot assume that any
part of an area used to store a character is available for other uses.

1.4 Localization
Localization refers to the process of implementing local requirements
within a computer system. Some of these requirements are addressed by
locales. Each locale is a set of data that supports a particular combination
of native language, cultural data, and codeset. The type of information a
locale can contain and the interfaces that use a locale are subject to
standardization. However, where locales reside on the system and how they
are named can vary from one vendor to another.

There is more to localization than providing locales. For example, the
localization process means making sure that translations are available for

1–2 Introduction

software messages; appropriate fonts, and measurement systems are
supported and available for display and printing devices; and, in some
cases, additional software is written to handle local requirements.

The mnemonic L10N is frequently used as an abbreviation for localization.

1.4.1 Collating Sequence

The ordering of characters may be implicit in underlying hardware but can
be defined for software to conform to the way language is used in a
particular territory. Many languages have more complex rules for sorting
than English. The following list describes some collating rules that do not
exist for English:

• A single letter is not necessarily represented by a single character. In
traditional Spanish, for example, the character combination ch sorts
between the characters c and d.

• A single character can be equivalent to a combined set of characters.
For example, the ß character is equivalent to ss in standard and Swiss
German and to sz in Austrian German.

• Accented letters do not always follow unaccented letters. In many
languages, this is true only if the words that contain those letters are
otherwise identical. In other languages, a particular accented letter
may be considered unique and sort after a letter that is different from
the unaccented counterpart.

• Characters can be sorted in multiple ways for the same language. The
ideographic characters in Asian languages have sort orders based on
pronunciation and on two visually recognized components (radicals,
which are pictograms for elements of meaning, and the number of
strokes).

Each locale contains information about collating sequences that informs
string comparison functions about the relative ordering of characters
defined in the associated codeset. Internationalized regular expressions
also use the collating sequence for implementing character ranges, collating
symbols, and equivalence classes.

1.4.2 Character Classification

Character classification information describes the characteristics associated
with each valid character code; that is, whether the code defines an
alphabetic, uppercase, lowercase, punctuation, control, space, or other kind
of character. Character classification functions and internationalized
regular expressions use this information to determine character classes.

Introduction 1–3

1.4.3 Case Conversion

Case conversion refers to information that identifies the possible
alternative case of each valid character code. Case conversion functions use
this information to change characters from uppercase to lowercase or from
lowercase to uppercase. Note that case is not a characteristic of all of the
letters, or even of any characters, in some languages.

1.4.4 Language Information

Language information (or langinfo database) refers to localization data
that describes the format and setting of cultural data that can vary from
one locale to another. This information includes the appropriate formats
and characters for date and time, currency, and numeric values.

1.4.5 Message Catalogs

A message catalog is a file or storage area that contains program messages,
command prompts, and responses to prompts for a particular language.
Motif applications also use resource files and UIL files in addition to or in
place of message catalogs for text and other values that can vary from one
locale to another. Chapter 3 describes the messaging system.

1.5 Language Announcement

Language announcement is the mechanism by which language, cultural
data, and codeset requirements are set either for the system as a whole, by
an application, or by individual users. Language announcement is
performed by setting a locale name in a set of reserved environment
variables. System managers can set the default values for these variables
for different shell environments; refer to the System Administration book
for information about setting locale defaults for shells. Users can also set
locale variables on a per-process basis.

Typically, internationalized programs read locale variables at run time and
use them to attach settings to locale categories in the programs’ operational
environment. However, programs can also set these categories internally
when appropriate. Therefore, the binding to a particular locale need not be
general for all parts of a program. Within one execution cycle, different
parts of the program can request different localizations.

1.6 Terms and Definitions

This section defines terms used extensively in this guide. Less common
terms are defined when they first appear.

1–4 Introduction

1.6.1 Characters and Strings

A character is a sequence of one or more bytes that represent a single
graphic symbol or control code. Do not confuse the term character with
the C programming language char data type, which represents an object
large enough to store any member of the basic execution character set and
which is usually mapped as an 8-bit value. Unlike the char data type in C,
a character can be represented by a value that is one or more bytes. The
expression multibyte character is synonymous with the term character;
that is, both refer to character values of any length, including single-byte
values.

A character string or string is a contiguous sequence of bytes terminated
by and including the null byte. A string is an array of type char in the C
programming language. The null byte is a value with all bits set to zero (0).

A wide character is an integral type that is large enough to hold any
member of the extended execution character set. In program terms, a wide
character is an object of type wchar_t , which is defined in the header files
/usr/include/stddef.h (for conformance to the X/Open XSH
specification) and /usr/include/stdlib.h (for conformance to the ANSI
C standard). The file locations where this data type is defined are
determined by standards organizations; however, the definition itself is
implementation specific. For example, implementations that support only
single-byte codesets (not the case for Tru64 UNIX) might define wchar_t
as a byte value.

A wide-character string is a contiguous sequence of wide characters
terminated by and including the null wide character. A wide-character
string is an array of type wchar_t . The null wide character is a wchar_t
value with all bits set to zero (0).

An empty string is a character string whose first element is the null byte.
Similarly, an empty wide-character string is a wide-character string
whose first element is the null wide character.

1.6.2 Portable Character Set

The Portable Character Set (PCS) is supported in both compile-time (source)
and run-time (executable) environments for all locales. The PCS contains:

• The 26 uppercase letters of the English alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• The 26 lowercase letters of the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z

Introduction 1–5

• The 10 decimal digits:

0 1 2 3 4 5 6 7 8 9

• The following 32 graphic characters:

! " # $ % & ’ () * + , - . / : ; < = > ? @ [\] ^ _ ‘ { | } ~

• The space character, plus control characters that represent the
horizontal tab, vertical tab, and form feed.

• In addition to the preceding characters, the execution version of the
PCS contains control characters that represent alert, backspace,
carriage return, and new line.

The PCS as defined by X/Open is similar to the basic source and basic
execution character sets defined in ISO/IEC 9899:1990, except that the
X/Open version also includes the dollar sign ($), commercial at sign (@),
and grave accent ()` characters.

Some locales (for example, ISO 646 variants) may make substitutions for
one or more of the preceding characters. In such cases, the substituted
character has the same syntactic meaning as the character it replaces in
the PCS. An example of a character substitution might be the British
pound sign (£) for the number sign (#) that is the default.

The definition of a character set that is portable across all codesets is
particularly relevant to encoding formats that support a limited set of
native languages. This is typical for most of the character encoding formats
developed for UNIX systems. In other words, the codeset used for a
Chinese locale must include all the PCS characters in addition to
characters that are part of the Chinese language. However, that same
codeset probably would not include characters needed to support Russian
or Icelandic. Similarly, the codeset used for the Russian language probably
would not include any Chinese characters but must include all the PCS
characters. Therefore, no matter what the locale setting, programs can
assume that characters in the PCS are available.

1.6.3 The Universal Character Set

The Universal Character Set (UCS) was developed to support all characters
in all native languages. This character set supports the philosophy that
applications should be able to manipulate characters in any language by
using the same encoding format and set of rules. The first implementation
of this character enoding format, widely known as Unicode, was limited to
the 16–bit values supported by early PC systems. However, current
standards (ISO/IEC 10646 and the Unicode Standard) specify a 32–bit
(UCS-4) encoding format that expands the number of characters that can

1–6 Introduction

be supported and is more efficiently manipulated as process code on larger
computer systems.

The operating system supports various UCS encoding formats through a
set of locales and codeset converters. The locales and some library functions
allow applications to use UCS-4 as internal process code. The codeset
converters allow file data to be converted to encoding formats supported by
fonts and other software resident on the system.

Introduction 1–7

2
Developing Internationalized Software

This chapter explains how language, codeset, and cultural differences
change the way you implement basic coding operations. After reading this
chapter, you will be ready to examine an application that applies the
program development techniques that are suggested. Such an application is
provided on line in the /usr/examples/i18n/xpg4demo directory. Refer
to the READMEdocument in that directory for an introduction to the
application and how you can compile and run it with different locales.
Parts of the xpg4demo application are used as examples in this and other
chapters.

One of the primary functions of most computer programs is to manipulate
data, some or all of which may involve interaction between the program
and a computer user. In commercial situations, it is important that such
interactions take place in the native language of each user. Cultural data
should also observe the correct customs.

When you write programs to support multilanguage operation, you must
consider the fact that languages can be represented within the computer
system by one or more codesets. Because of the requirements of different
languages, characters in codesets may vary in both size (8-bit, 16-bit, and
so on) and binary representation.

You can satisfy the preceding requirements by writing programs that make
no hard-coded assumptions about language, cultural data, or character
encodings. Such programs are said to be internationalized. Data specific to
each supported language, territory, and codeset combination are held
separately from the program code and can be bound to the run-time
environment by language-initialization functions.

Tru64 UNIX provides the following facilities for developing
internationalized software, defining localization data, and announcing
specific language requirements:

• Library functions that handle extended character codes and that
provide language- and codeset-independent character classification, case
conversion, number format conversion, and string collation

• Library functions that let programs dynamically determine cultural and
language-specific data

Developing Internationalized Software 2–1

• A message system that allows program messages to be held apart from
the program code, translated into different languages, and retrieved by
a program at run time

• An initialization function that binds a program at run time to the
linguistic and cultural requirements of each user

The rest of this chapter describes each of these facilities in more detail.

The discussion and examples in this chapter focus on functions provided in
the Standard C Library. Refer to Chapter 4 and Chapter 5 for information
about using functions in the curses , X, and Motif libraries.

2.1 Using Codesets

In the past, most UNIX systems were based on the 7-bit ASCII codeset.
However, most non-English languages include characters in addition to
those contained in the ASCII codeset.

The X/Open UNIX standard does not require an operating system to supply
any particular codesets in addition to ASCII. The standard does specify
requirements for the interfaces that manipulate characters so that
programs are able to handle characters from whatever codeset is available
on a given system.

The first group of the International Standards Organization (ISO) codesets
covered only the major European languages. In this group, several codesets
allow for the mixing of major languages within a single codeset. All of these
codesets are a superset of the ASCII codeset, and therefore systems can
support non-English languages without invalidating existing software that
is not internationalized. A Tru64 UNIX operating system always includes a
locale for the United States that uses the ISO 8859–1 (ISO Latin–1) codeset.

Subsets that support localized variants of the operating system may
include locales based on additional ISO codesets. For example, the optional
language variant subsets included with Tru64 UNIX to support Czech,
Hungarian, Polish, Russian, Slovak, and Slovene provide locales based on
the ISO 8859-2 (Latin–2) codeset. Following is a complete list of ISO
codesets with the languages that they support:

• ISO 8859-1, Latin–1

Western European languages, including Catalan, Danish, Dutch,
English, Finnish, French, German, Icelandic, Italian, Norwegian,
Portuguese, Spanish, and Swedish

• ISO 8859-2, Latin–2

2–2 Developing Internationalized Software

Eastern European languages, including Albanian, Czech, English,
German, Hungarian, Polish, Rumanian, Serbo-Croatian, Slovak, and
Slovene

• ISO 8859-3, Latin–3

Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, and Turkish

• ISO 8859-4, Latin–4

Danish, English, Estonian, Finnish, German, Greenlandic, Lappish,
Latvian, and Lithuanian

• ISO 8859-5, Latin/Cyrillic

Bulgarian, Byelorussian, English, Macedonian, Russian,
Serbo-Croatian, and Ukranian

• ISO 8859-6, Latin/Arabic

Arabic

• ISO 8859-7, Latin/Greek

Greek

• ISO 8859-8, Latin/Hebrew

Hebrew

• ISO 8859-9, Latin–5

Danish, Dutch, English, Finnish, French, German, Irish, Italian,
Norwegian, Portuguese, Spanish, Swedish, and Turkish

• ISO 8859-10, Latin–6

Danish, English, Estonian, Faroese, Finnish, German, Greenlandic,
Icelandic, Sami (Lappish), Latvian, Lithuanian, Norwegian, and
Swedish

Another ISO codeset supported by utilities on a standard operating system
is ISO 6937:1983. This codeset, which accommodates both 7-bit and 8-bit
characters, is used for text communication over communication networks
and interchange media, such as magnetic tape and disks.

The codesets discussed up to this point address the requirements of
languages whose characters can be stored in a single byte. Such codesets do
not meet the needs of Asian languages, whose characters can occupy
multiple bytes. The operating system software supplies the following
codesets through subsets that support Asian languages and countries:

• eucJP (Japanese Extended UNIX Code)

• SJIS (Shift JIS)

Developing Internationalized Software 2–3

• deckanji (DEC Kanji)

• sdeckanji (Super DEC Kanji)

• deckorean (DEC Korean)

• eucKR (Korean Extended UNIX Code)

• TACTIS (Thai API Consortium/Thai Industrial Standard)

• dechanzi (DEC Hanzi)

• dechanyu (DEC Hanyu)

• eucTW (Taiwanese Extended UNIX Code)

• big5 (BIG-5)

These codesets are supplied when you install Asian-language variant
subsets of the operating system software. Also supplied are a specialized
terminal driver and associated utilities that must be available on your
system to support the input and display of Asian characters at run time.

Codesets developed for PC systems are commonly called code pages. There
are PC code pages that correspond to most of the language-specific codesets
developed for UNIX systems. The operating system supports PC codesets
mostly through converters that can change file data from one type of
encoding format to another. The operating system also supplies a limited
number of locales for which characters are defined in PC code page format.
For detailed information about code page support, see code_page (5).

The Unicode and ISO/IEC 10646 standards specify the Universal Character
Set (UCS), which allows character units to be processed for all languages,
including Asian languages, by using the same set of rules. The operating
system supports the UCS-4 (32–bit) encoding of this character set in locales
that also provide local cultural data, such as collating sequences and date
and monetary formats. These locales are derived from similar locales that
use UNIX codesets. Therefore, only the characters appropriate for the set of
languages supported by the underlying UNIX locale are defined as valid
characters in the UCS-4 version.

Two other encoding formats are defined by the Unicode and ISO/IEC 10646
standards:

• UCS-2, the 16–bit implementation of the UCS

• UTF-8, a UCS transformation format for handling file data containing
characters coded in more than one byte

The operating system supports these encoding formats through both locales
and codeset converters. Locales whose name extensions include .UTF-8
handle file data in UTF-8 format as well as supporting UCS-4 process code.
Among these locales are special variants (*.UTF-8@euro locales) that also

2–4 Developing Internationalized Software

support the euro monetary character. There is also one locale,
universal.UTF-8 , that an application can use along with the
fold_string_w() function to process the full range of characters defined
by the Unicode and ISO/IEC 10646 standards. This particular locale differs
from most others because it does not provide access to local cultural
conventions. See Unicode (5) for detailed information about support for the
UCS-2, UCS-4, and UTF-8 encoding formats. See euro (5) for more
information about the euro monetary character.

Reference pages are available for all the codesets that the operating system
supports. For more information on a specific codeset, refer to its reference
page. For information on how codesets are supported for a particular local
language, refer to the reference page for that language. Reference pages for
languages, particularly Asian languages, may note additional codesets that
are not supported in a locale but for which there is a codeset converter.

The following sections discuss important issues that affect the way you
write source code when your program must process characters in different
codesets:

• Ensuring data transparency

• Using in-code literals

• Manipulating multibyte characters

• Converting between multibyte-character and wide-character data

• Rules for multibyte characters

• Classifying characters

• Converting characters (case)

• Comparing strings

2.1.1 Ensuring Data Transparency

As discussed in Section 2.1, internationalized software must accommodate
a wide variety of character-encoding schemes. Programs cannot assume
that a particular codeset is on all systems that conform to requirements in
the X/Open UNIX CAE specifications, nor that individual characters occupy
a fixed number of bits.

Another legacy of the historical dependence of UNIX systems on 7-bit
ASCII character encoding is that some programs use the most significant
bit of a byte for their own internal purposes. This was a dubious
programming practice, although quite safe when characters in the
underlying codeset always mapped to the remaining 7 bits of the byte. In
the world of international codesets, the practice of using the most
significant bit of a byte for program purposes must be avoided.

Developing Internationalized Software 2–5

2.1.2 Using In-Code Literals

When writing internationalized software, using in-code literals can cause
problems. Consider, for example, the following conditional statement:

if ((c = getchar()) == \141)

This condition assumes that lowercase a is always represented by a fixed
octal value, which may not be true for all codesets. The following statement
represents an improvement in that it substitutes a character constant for
the octal value:

if ((c = getchar()) == ’a’)

This example still presents problems, however, because the getchar()
function operates on bytes. The statement would not work correctly if the
next character in the input stream spanned multiple bytes. The following
statement substitutes the getwchar() function for the getchar()
function. The statement works correctly with any codeset because a is a
member of the PCS and is transformed into the same wide-character value
in all locales.

if ((c = getwchar()) == L’a’)

The X/Open UNIX standard specifies that each member of the source
character set and each escape sequence in character constants and string
literals is converted to the same member of the execution character set in
all locales. It is therefore safe for you to use any of the characters in the
PCS as a character constant or in string literals. Note that non-English
characters are not included in the PCS and may not translate correctly
when used as literals. Consider the following example:

if ((c = getwchar()) == L’à ’)

The accented character à may not be represented in the codeset’s source
character set, execution character set, or both; or the binary value of the
accented character may not be translatable from one set to the other. When
source files specify non-English characters in constants, the results are
undefined.

The following example shows how to construct a test for a constant that for
whatever reason may be a non-English character. The constant has been
defined in a message catalog with the symbolic identifier MSG_ID.
Statements in the example retrieve the value for MSG_IDfrom the message
catalog, which is locale specific and bound to the program at run time.

...
char *schar; 1
wchar_t wchar; 2

2–6 Developing Internationalized Software

...
schar = catgets(catd,NL_SETD,MSG_ID,"a"); 3
if (mbtowc (&wchar,schar,MB_CUR_MAX) == -1) 4

error();
if ((c = getwchar()) == wchar) 5
...

1 Declares a pointer to schar as char .
2 Declares the variable wchar to be of type wchar_t .

3 Calls the catgets() function to retrieve the value of MSG_IDfrom the
message catalog for the user’s locale.

The catgets() function returns a value as an array of bytes so the
value is returned to the schar variable. If the accented character is
not available in the locale’s codeset, the test is made against the
unaccented base character (a).

4 Tests to make sure the value contained in schar represents a valid
multibyte character; if yes, converts it to a wide-character value and
stores the results in the variable wchar .

If schar does not contain a valid multibyte character, signals an error.
5 Codes the conditional statement to include the value contained in

wchar as the constant.

Refer to Chapter 3 for more information about message catalogs and the
catgets() function. See Section 2.1.4 for information about converting
multibyte characters and strings to wide-character data that your program
can process.

2.1.3 Manipulating Characters That Span Multiple Bytes

Tru64 UNIX provides all the interfaces (such as putwc() , getwc() ,
fputws() , and fgetws()) that are needed to support codesets with
characters that span multiple bytes. Language variant subsets of the
operating system must be installed to supply the locales and facilities that
make this support operational. On systems where such locales are not
available, or are available and not bound to the program at run time, the
ws and *wc* functions are merely synonyms for the associated
single-byte functions (such as putc() , getc() , fputs() , and fgets()).

2.1.4 Converting Between Multibyte-Character and Wide-Character
Data

On an internationalized system, data can be encoded as either
multibyte-character or wide-character data.

Developing Internationalized Software 2–7

Multibyte encoding is typically the encoding used when data is stored in a
file or generated for external use or data interchange. Multibyte encoding
has the following disadvantages:

• Multibyte characters are not represented by a fixed number of bytes per
character, even in the same codeset, so the size of a character in a
multibyte data record can vary from one character to the next.

• The parsing rules for retrieving character codes from a multibyte data
record are locale dependent.

Because of these disadvantages, wide-character encoding, which allocates a
fixed number of bytes per character, is typically used for internal
processing by programs; in fact, internal process code is another way of
referring to data in wide-character format. The size of a wide character
varies from one system implementation to another. On Tru64 UNIX
systems, the size for a wide character is set to 4 bytes (32 bits), a setting
that optimizes performance for the Alpha processor.

Library routines that print, scan, input, or output text can automatically
convert data from multibyte characters to wide characters or from wide
characters to multibyte characters, as appropriate for the operation.
However, applications almost always have additional statements or
requirements for which conversion to and from multibyte characters needs
to be explicit.

The following example is from a program module that reads records from a
database of employee data. In this case, the programmer wants to process
the data in fixed-width units, so uses the mbstowcs() function to
explicitly convert an employee’s first and last names from
multibyte-character to wide-character encoding.

/*
* The employee record is normalized with the following format, which
* is locale independent: Badge number, First Name, Surname,
* Cost Center, Date of Join in the ‘yy/mm/dd’ format. Each field is
* separated by a TAB. The space character is allowed in the First
* Name and Surname fields.
*/

static const char *dbOutFormat = "%ld\t%S\t%S\t%S\t%02d/%02d/%02d\n";
static const char *dbInFormat = "%ld %[^\t] %[^\t] %S %02d/%02d/%02d\n";
.
.
.

sscanf(record, dbInFormat,
&emp->badge_num,
firstname,
surname,
emp->cost_center,
&emp->date_of_join.tm_year,
&emp->date_of_join.tm_mon,
&emp->date_of_join.tm_mday);

(void) mbstowcs(emp->first_name, firstname, FIRSTNAME_MAX+1);
(void) mbstowcs(emp->surname, surname, SURNAME_MAX+1);

.

.

.

2–8 Developing Internationalized Software

Refer to Section A.9 for a complete list of functions that work directly with
multibyte data.

2.1.5 Rules for Multibyte Characters in Source and Execution
Codesets

Both the source and execution character set variants of the same codeset
can contain multibyte characters. The encodings do not have to be the
same, but both set variants observe certain rules in codesets that meet
X/Open requirements. PC code pages and UCS-based codesets may adhere
to some or most of these rules, but the codesets native to any UNIX system
that conforms to X/Open standards must adhere to all of them.

• The characters defined in the Portable Character Set must be present
in both sets.

• The existence, meaning, and encoding of any additional members are
locale specific.

• A character may have a state-dependent encoding. A string of
characters may contain a shift-state character that affects the system’s
interpretation of the following bytes until another shift-state character
is encountered.

• While in the initial shift state, all characters from the basic character
set retain their usual interpretation and do not alter the shift state.

• The interpretation for subsequent bytes in the sequence is a function of
the current shift state.

• A byte with all bits set to zero is interpreted as a null character,
independent of the shift state.

• A byte with all bits zero must not occur in the second or subsequent
bytes of a multibyte character.

The source variant of a codeset must observe the following additional rules:

• A comment, string literal, character constant, or header name must
begin and end in the initial shift state.

• A comment, string literal, character constant, or header name must
consist of a sequence of valid multibyte characters.

The C language compiler also supports trigraph sequences when you
specify the -std1 or -std flag on the cc command line. Trigraph
sequences, which are part of the ANSI C specification, allow users to enter
the full range of basic characters in programs, even if their keyboards do
not support all characters in the source codeset. The following trigraph
sequences are currently defined, each of which is replaced by the
corresponding single character:

Developing Internationalized Software 2–9

Trigraph Sequence Single Character

??= #

??([

??/ \

??’ ^

??< {

??)]

??! |

??> }

??- ~

2.1.6 Classifying Characters

Another feature of program operation that depends on the locale is
character classification; that is, determining whether a particular character
code refers to an uppercase alphabetic, lowercase alphabetic, digit,
punctuation, control, or space character.

In the past, many programs classified characters according to whether the
character’s value fell between certain numerical limits. For example, the
following statement tests for all uppercase alphabetic characters:

if (c >= ’A’ && c <= ’Z’)

This statement is valid for the ASCII codeset, in which all uppercase
letters have values in the range 0x41 to 0x5a (A to Z). However, the
statement is not valid for the ISO 8859-1 codeset, in which uppercase
letters occupy the ranges 0x41 to 0x5a , 0xc0 to 0xd6 , and 0xd8 to 0xdf .
In the EBCDIC codeset, character values are different again and, in this
case, even the uppercase English letters have a different encoding.

When you write internationalized programs, classify characters by calling
the appropriate internationalization function. For example:

if (iswupper (c))

Internationalization functions classify wide-character code values according
to ctype information in the user’s locale. Refer to Section A.2 for a
complete list and description of character classification functions.

2–10 Developing Internationalized Software

2.1.7 Converting Characters

You can do case conversion of ASCII characters with statements such as
the following ones, which convert the character in a_var first to lowercase
and then to uppercase:

a_var |= 0x20;
...
a_var &= 0xdf;

The preceding statements are not safe to use in internationalized programs
because they:

• Assume ASCII-coded character values

• Can convert invalid values

The correct way to handle case conversion is to call the towlower()
function for conversion to lowercase and the towupper() function for
conversion to uppercase. For example:

a_var = towlower(a_var);
...
a_var = towupper(a_var);

These functions use information specified in the user’s locale and are
independent of the codeset where characters are defined. The functions
return the argument unchanged if input is invalid. Refer to Section A.3 for
more detailed discussion of case conversion functions.

2.1.8 Comparing Strings

UNIX systems have always provided functions for comparing character
strings. The following statement, for example, compares the strings s1 and
s2 , returning an integer greater than, equal to, or less than zero,
depending on whether the value of s1 is greater than, equal to, or less than
the value of s2 in the machine-collating sequence:

...
int cmp_val;
char *s1;
char *s2;
...
cmp_val = strcmp(s1, s2);
...

Many languages, however, require more complex collation algorithms than
a simple numerical sort. For example, multiple passes may be required for
the following reasons:

Developing Internationalized Software 2–11

• Ordering accented characters within a particular character class for a
language (for example, a, á, à, and so on)

• Collating certain multiple character sequences as a single character (for
example, the Welsh character ch, which collates after c and before d)

• Collating certain single characters as a 2-character sequence (for
example, the German character sharp s, which collates as ss)

• Ignoring certain characters during collation (for example, hyphens in
dictionary words)

String comparison in an international environment thus depends on the
codeset and language. This dependency means that additional functions are
required to compare strings according to collating sequence information in
the user’s locale. These functions include:

• strcoll() , which uses collation information defined in the user’s
locale rather than performing a simple numeric comparison as does the
strcmp() function

• wcscoll() , which performs the same operation as strcoll() , except
that it operates on wide characters

• wcsxfrm() , which transforms a wide-character string by using
collating sequence information in the user’s locale so that the resulting
string can be compared using the wcscmp() function

If two strings are being compared only for equality, you can use
strcmp() or wcscmp() , which are faster in most environments than
wcscoll() .

2.2 Handling Cultural Data

Cultural data refers to items of information that can vary between
languages or territories. For example:

• In the United Kingdom and the United States, a period represents the
radix character and a comma represents the thousands separator in
decimal numbers. In Germany, the same two characters are used in
decimal numbers with exactly the opposite meaning.

• In the United States, the date October 7, 1986 is represented as
10/7/1986, whereas in the United Kingdom, the same date is
represented as 7/10/1986. This example indicates that cultural data
items can vary when the same language is spoken.

• Date delimiters, as well as the order of year, month, and day, can vary
among countries. In Germany, for example, the date October 7, 1986 is
represented as 7.10.1986 rather than as 7/10/1986.

2–12 Developing Internationalized Software

• Currency symbols can vary both in terms of the characters used and
where they are placed in a currency value; that is, currency symbols
can precede, follow, or be embedded in the value.

You cannot make assumptions about cultural data when writing
internationalized programs. Your program must operate according to the
local customs of users. The X/Open UNIX standard specifies that this
requirement be met through a database of cultural data items that a
program can access at run time, plus a set of associated interfaces. The
following sections discuss this database and the functions used to extract
and process its data items.

2.2.1 The langinfo Database

The language information database, named langinfo , contains items that
represent the cultural details of each locale supported on the system. The
langinfo database contains the following information for each locale, as
required by the X/Open UNIX standard:

• Codeset name

• Date and time formats

• Names of the days of the week

• Names of the months of the year

• Abbreviations for names of days

• Abbreviations for names of months

• Radix character (the character that separates whole and fractional
quantities

• Thousands separator character

• Affirmative and negative responses for yes/no queries

• Currency symbol and its position within a currency value

• Emperor/Era name and year (for Japanese locales)

2.2.2 Querying the langinfo Database

You can extract cultural data items from the langinfo database by calling
the nl_langinfo() function. This function takes an item argument that
is one of several constants defined in the /usr/include/langinfo.h
header file. The function returns a pointer to the string with the value for
item in the current locale. The following example shows a call to
nl_langinfo() that extracts the string for formatting date and time
information. This value is associated with the constant D_T_FMT.

Developing Internationalized Software 2–13

nl_langinfo(D_T_FMT);

2.2.3 Generating and Interpreting Date and Time Strings That
Observe Local Customs

Programs often generate date and time strings. Internationalized programs
generate strings that observe the local customs of the user. You can meet
this requirement by calling the strftime() or wcsftime() function.
Both functions indirectly use the langinfo database. The difference is
that wcsftime() converts date and time to wide-character format.

In the following example, the strftime() function generates a date string
as defined by the D_FMTitem in the langinfo database:

...
setlocale(LC_ALL, ""); 1
...
clock = time((time_t*)NULL); 2
tm = localtime(&clock); 3
...
strftime(buf, size, "%x", tm); 4
puts(buf); 5
...

1 Binds the program at run time to the locale set for the system or
individual user.

2 Calls the time() subroutine to return the time value, relative to
Coordinated Universal Time, to the clock variable.

3 Calls the localtime() function to convert the value contained in
clock to a value that can be stored in a tm structure, whose members
represent values for year, month, day, hour, minute, and so forth.

4 Calls strftime() to generate a date string formatted as defined in
the user’s locale from the value contained in the tm structure.

The buf argument is a pointer to a string variable in which the date
string is returned. The size argument contains the maximum size of
buf . The "%x" argument specifies conversion specifications, similar to
the format strings used with the printf() and scanf() functions.
The "%x" argument is replaced in the output string by representation
appropriate for the locale.

5 Calls the puts() function to copy the string contained in buf to the
standard output stream (stdout) and to append a newline character.

The following example shows how to use strftime() and nl_langinfo()
in combination to generate a date and time string. Assume that the same

2–14 Developing Internationalized Software

calls to the setlocale() , time() , and localtime() interfaces have been
made here as shown in the preceding example. The only difference is that a
call to nl_langinfo() has replaced the format string argument in the call
to strftime() :

...
strftime(buf, size, nl_langinfo(D_T_FMT), tm);
puts(buf);
...

To convert a string to a date/time value, the reverse of the operation
performed by strftime() , you can use the strptime() function. The
strptime() supports a number of conversion specifiers that behave in a
locale-dependent manner.

2.2.4 Formatting Monetary Values

The strfmon() function formats monetary values according to information
in the locale that is bound to the program at run time. For example:

strfmon(buf, size, "%n", value);

This statement formats the double-precision floating-point value contained
in the value variable. The "%n" argument is the format specification that
is replaced by the format defined in the run-time locale. The results are
returned to the buf array, whose maximum length is contained in the size
variable.

The money program demonstrates how the strfmon() function works. The
source file for this sample program is available in the
/usr/i18n/examples/money directory.

2.2.5 Formatting Numeric Values in Program-Specific Ways

You may want to perform your own conversions of numeric quantities,
monetary or otherwise, by using specific formatting details in the user’s
locale. The localeconv() function, which has no arguments, returns all
the number formatting details defined in the locale to a structure declared
in your program. For example:

struct lconv *app_conv;

You can use the following features, which are contained in the lconv
structure, in program-defined routines:

• Radix character

• Thousands separator character

Developing Internationalized Software 2–15

• Digit grouping size

• International currency symbol

• Local currency symbol

• Radix character for monetary values

• Thousands separator for monetary values

• Digit grouping size for monetary values

• Positive sign

• Negative sign

• Number of fractional digits to be displayed

• Parenthesis symbols for negative monetary values

2.2.6 Using the langinfo Database for Other Tasks

Functions in addition to the ones discussed so far use the langinfo
database to determine settings for specific items of cultural data. For
example, the wscanf() , wprintf() , and wcstod() functions determine
the appropriate radix character from information in the langinfo
database.

2.3 Handling Text Presentation and Input

The language of the program user affects:

• The way program messages are defined and accessed

• How the program presents output text

• How the program processes input text

These considerations are discussed in the following sections.

2.3.1 Creating and Using Messages

Programs need to communicate with users in their own language. This
requirement places some constraints on the way program messages are
defined and accessed. More specifically, messages are defined in a file that
is independent of the program source code and are not compiled into object
files. Because messages are in a separate file, they can be translated into
different languages and stored in a form that is linked to the program at
run time. Programs can then retrieve message text translations that are
appropriate for the user’s language.

The X/Open UNIX standard specifies:

2–16 Developing Internationalized Software

• A messaging system that contains a definition of message text source
files

• The gencat command to generate message catalogs from these source
files

• A set of library functions to retrieve individual messages from one or
more catalogs at run time

The following example shows how an internationalized program retrieves a
message from a catalog:

#include <stdio.h> 1

#include <locale.h> 2
#include <nl_types.h> 3
#include "prog_msg.h" 4
main()
{

nl_catd catd; 5
setlocale(LC_ALL, ""); 6
catd = catopen("prog.cat", NL_CAT_LOCALE); 7
puts(catgets(catd, SETN, HELLO_MSG, "Hello, world!")); 8
catclose(catd); 9

}
...

1 Includes the header file for the Standard C Library.

2 Includes the /usr/include/locale.h header file, which declares the
setlocale() function and associated constants and variables.

3 Includes the /usr/include/nl_types.h header file, which declares
the catopen() , catgets() , and catclose() functions.

4 Includes the program-specific prog_msg.h header file, which sets
constants to identify the message set (SETN) and specific messages
(HELLO_MSG being one) that are used by this program module.

A message catalog can contain one or more message sets and
individual messages are ordered within each set.

5 Declares a message catalog descriptor catd to be of type nl_catd .

This descriptor is returned by the function that opens the catalog. The
descriptor is also passed as an argument to the function that closes the
catalog.

6 Calls the setlocale() function to bind the program’s locale
categories to settings for the user’s locale environment variables.

The locale name set for the LC_MESSAGEScategory is the locale used
by the catopen() and catgets() functions in this example.
Typically, the system manager or user sets only the LANGor LC_ALL

Developing Internationalized Software 2–17

environment variable to a particular locale name, and this operation
implicitly sets the LC_MESSAGESvariable as well.

7 Calls the catopen() function to open the prog.cat message catalog
for use by this program.

The NL_CAT_LOCALEargument specifies that the program will use the
locale name set for LC_MESSAGES. The catopen() function uses the
value set for the NLSPATHenvironment variable to determine the
location of the message catalog. The call returns the message catalog
descriptor to the catd variable.

8 Calls the puts() function to display the message.

The first argument to this call is a call to the catgets() function,
which retrieves the appropriate text for the message with the
HELLO_MSGidentifier. This message is contained in the message set
identified by the SETNconstant. The final argument to catgets() is
the default text to be used if the messaging call cannot retrieve the
translated text from the catalog. Default text is usually in English.

9 Calls the catclose() function to close the message catalog whose
descriptor is contained in the catd variable.

Refer to Chapter 3 for information about creating and using message
catalogs.

2.3.2 Formatting Output Text

Successful translation of messages into different languages depends not
only on making messages independent of the program source code but also
on careful construction of message strings within the program.

Consider the following example:

printf(catgets(catd, set_id, WRONG_OWNER_MSG,
"%s is owned by %s\n"),
folder_name, user_name);

The preceding statement uses a message catalog but assumes a particular
language construction (a noun followed by a verb in passive voice followed
by a noun). Passive-verb constructions are not part of all languages;
therefore, message translation might mean printing user_name before
folder_name . In other words, the translator might need to change the
construction of the message so that the user sees the translated equivalent
of “John_Smith owns JULY_REVENUE” rather than “JULY_REVENUE is
owned by John_Smith.”

To overcome the problems imposed by fixed ordering of message elements,
the format specifiers for the printf() routine have been extended so that

2–18 Developing Internationalized Software

format conversion applies to the nth argument in an argument list rather
than to the next unused argument. To apply the format conversion
extension, replace the %conversion character with the sequence %digit $,
where digit specifies the position of the argument in the argument list.
The following example illustrates how the programmer applies this feature
to the format string "%s is owned by %s\n" :

printf(catgets(catd, set_id, WRONG_OWNER_MSG,
"%1$s is owned by %2$s\n"),
folder_name, user_name);

The construction of the string "%1$s is owned by %2$s" , which is the
default value for the WRONG_OWNER_MSGentry in the program’s message
file, can then be changed by the translator to the non-English equivalent of:

WRONG_OWNER_MSG "%2$s owns %1$s\n"

2.3.3 Scanning Input Text

The string construction issues that are discussed for output text in
Section 2.3.2 also apply to input text. For example, in different countries
there are different conventions that apply to the order in which users
specify the elements of a date or there are differences in characters that
are input to delimit parts of monetary or other numeric strings. Therefore,
the scanf() family of functions also support extended format conversion
specifiers to allow for variation in the way that users enter elements of a
string.

Consider the following example:

...
int day;
int month;
int year;
...
scanf("%d/%d/%d", &month, &day, &year);
...

The format string in this statement is governed by the assumption that all
users use a United States format (mm/dd/yyyy) to input dates. In an
internationalized program, you use extended format specifiers to support
requirements that language may impose on the order of string elements.
For example:

...
scanf(catgets(catd, NL_SETD, DATE_STRING,

"%1$d/%2$d/%3$d"), &month, &day, &year);

Developing Internationalized Software 2–19

...

The default "%1$d/%2$d/%3$d" value for the DATE_STRING messageis
still appropriate only for countries where users use the format mm/dd/yyyy
to enter dates. However, for countries in which the order or formatting
would be different, the translator can change the entry in the program’s
message file. For example:

• British English (dd/mm/yyyy):

DATE_STRING "%2$d/%1$d/%3$d"

• German (dd.mm.yyyy)

DATE_STRING "%2$d.%1$d.%3$d"

2.4 Binding a Locale to the Run-Time Environment

For an internationalized program to operate correctly, it must bind to
localized data that is appropriate for the user at run time. The
setlocale() function performs this task. You can call setlocale() to:

• Bind to locale settings that are already in effect for the user’s process

• Bind to locale settings controlled by the program

• Query current locale settings without changing them

The call takes two arguments: category and locale_name .

The category argument specifies whether you want to query, change, or
use all or a specific section of a locale. Values for category and what they
represent are as follows:

• LC_ALL, all sections of a locale

• LC_CTYPE, the locale section that classifies characters

• LC_COLLATE, the locale section that specifies character collation order

• LC_MESSAGES, the locale section that specifies yes/no responses and
program messages

• LC_MONETARY, the locale section that specifies special characters used
in monetary values

• LC_NUMERIC, the locale section that specifies the characters used for
decimal point and thousands separator

• LC_TIME, the locale section that specifies names and abbreviations for
days of the week and months of the year, and other strings and
formatting conventions that govern expressions of date and time

The locale_name argument is one of the following values:

2–20 Developing Internationalized Software

• An empty string ("") to bind the program at run time to the locale
name set for category by the system manager or user

• A locale name to change the locale that may already be set for
category

• NULL to determine the locale name currently set for category

2.4.1 Binding to the Locale Set for the System or User

Typically, the system manager or user sets the LANGor LC_ALL
environment variable to the name of a locale; setting either of these
variables automatically sets all locale category variables to the same locale
name. On occasion (if they do not use LC_ALL), system managers or
individual users may set locale category variables to different locale names.
Usually, internationalized programs contain the following call, which
initializes all locale categories in the program to environment variable
settings already in effect for the user:

setlocale(LC_ALL, "");

2.4.2 Changing Locales During Program Execution

Some internationalized programs may need to prompt the user for a locale
name or change locales during program execution. The following example
shows how to call setlocale() when you want to explicitly initialize or
reinitialize all locale categories to the same locale name:

...
nl_catd catd; 1
char buf[BUFSIZ]; 2
...
setlocale(LC_ALL, ""); 3
catd = catopen(CAT_NAME, NL_CAT_LOCALE); 4
...
printf(catgets(catd, NL_SETD, LOCALE_PROMPT_MSG,

"Enter locale name: ")); 5
gets(buf); 6
setlocale(LC_ALL, buf); 7
...

1 Declares a catalog descriptor catd as type nl_catd .
2 Declares the buf variable into which the locale name will later be

stored.

To make sure that the variable is large enough to accommodate locale
names on different systems, you should set its maximum size to the

Developing Internationalized Software 2–21

BUFSIZ constant, which is defined by the system vendor in
/usr/include/stdio.h .

3 Calls setlocale() to initialize the program’s locale settings to those
in effect for the user who runs the program.

4 Calls catopen() to open the message catalog that contains the
program’s messages; returns the catalog’s descriptor to the catd
variable.

The CAT_NAMEconstant is defined in the program’s own header file.

5 Prompts the user for a new locale name.

The NL_SETDconstant specifies the default message set number in a
message catalog and is defined in /usr/include/nl_types.h . The
LOCALE_PROMPT_MSGidentifier specifies the prompt string translation
in the default message set.

6 Calls the gets() function to read the locale name typed by the user
into the buf variable.

7 Calls setlocale() with buf as the locale_name argument to
reinitialize all portions of the locale.

Sometimes a program needs to vary the locale only for a particular
category of data. For example, consider a program that processes different
country-specific files that contain monetary values. Before processing data
in each file, the program might reinitialize a program variable to a new
locale name and then use that variable value to reset only the
LC_MONETARYcategory of the locale.

2–22 Developing Internationalized Software

3
Creating and Using Message Catalogs

A message catalog, like the langinfo database, is a file of localization data
that programs can access. The difference between the two sets of
localization data is that data elements in the langinfo database are used
by all applications, including the library routines, commands, and utilities
provided by the operating system. The langinfo database is generated
from the source files that define locales. Message catalogs, on the other
hand, meet the specific localization needs of one program or a set of related
programs. Message catalogs are generated from message text source files
that contain error and informational messages, prompts, background text
for forms, and miscellaneous strings and constants that must vary for
language and cultural reasons.

X and Motif applications, which include a graphical user interface, usually
access X resource files, rather than message catalogs, for the small
segments of text that belong to the title bars, menus, buttons, and simple
messages for a particular window. Motif applications can also use a User
Interface Language (UIL) file, along with a text library file, to access help,
error message, and other kinds of text. However, both X and Motif
applications can access text in message catalogs as well.

This chapter focuses on message catalogs and explains how to:

• Create, edit, extract, and translate message text source files

• Generate message catalogs

• Access message catalogs interactively and from scripts

• Access message catalogs from programs

Refer to the OSF/Motif Programmer’s Guide for information on handling
text with Motif routines in internationalized applications. Refer to X
Window System for information about using text from message catalogs
with X routines. For X and Motif programmers, Section 3.1.6 of this
chapter includes some guidelines that apply to text that will be translated,
regardless of the method used to retrieve and display it.

3.1 Creating Message Text Source Files

Before creating and using a message catalog, you must first understand the
components, syntax, and semantics of a message text source file. A brief

Creating and Using Message Catalogs 3–1

overview of a source file example can help provide context for later sections
that focus on particular kinds of file entries and processing operations.
Example 3–1 shows extracts from a message text source file for the online
example xpg4demo .

Example 3–1: Message Text Source File

$ /* 1
$ * XPG4 demo program message catalogue. 1
$ * 1
$ */ 1
2
$quote " 3
$set MSGError 4
E_COM_EXISTBADGE "Employee entry for badge number %ld \ 5
already exists"
E_COM_FINDBADGE "Cannot find badge number %ld" 5
E_COM_INPUT "Cannot input" 5
E_COM_MODIFY "Data file contains no records to modify" 5
E_COM_NOENT "Data file contains no records to display" 5
E_COM_NOTDEL "Data file contains no records to delete" 5
.
.
.
$set MSGInfo 4
I_COM_NEWEMP "New employee" 5
I_COM_YN_DELETE "Do you want to delete this record?" 5
I_COM_YN_MODIFY "Do you want to modify this record?" 5
I_COM_YN_REPLACE "Are these the changes you want to make?" 5
.
.
.
I_SCR_IN_DATE_FMT "%2$d/%3$d/%1$d" 6
$set MSGString 4
$
$ One-character commands.
$S_COM_CREATE "c" 7
S_COM_DELETE "d" 7
S_COM_EXIT "e" 7

.

.

.
S_COM_LIST_TITLE "Badge Name Surname \

CC DOJ\n" 8
S_COM_LIST_LINE "--\
---------------------------------\n" 8
.
.
.$
$ If surname comes before first name, "y" should be specified.
$
S_SCR_SNAME1ST "n" 9
.
.
.

1 Lines that begin with the dollar sign ($), followed by either a space or
tab, are comment lines. Section 3.1.5 discusses comment lines.

2 To improve readability, blank lines are allowed anywhere in the file.

3 This line specifies the quote character used to delimit message text.
Section 3.1.4 discusses quote directives.

3–2 Creating and Using Message Catalogs

4 These lines define identifiers that mark the beginning of a message
set. There are three sets of messages in this source file: error messages
(in the MSGError set), informational messages (in the MSGInfo set),
and miscellaneous strings and formats (in the MSGString set). Refer to
Section 3.1.2 for more information about defining and removing
message sets.

5 Most lines in the source file are message entries, whose components
are a unique identifier and a message text string. The first message
entry is continued to the next line by using the backslash (\). Other
entries contain special character sequences, such as \n (newline), that
affect how the message is printed. Refer to Section 3.1.3 for more
information about message entries. Section 3.1.1 also discusses some
rules and options that apply to message entries.

6 This entry allows translators to vary the order in which users are
prompted to input date elements. Note that you frequently use
message entries to allow format control.

7 Message entries such as these define word abbreviations, which often
need special attention to preserve uniqueness from one language to
another.

8 Message entries also define header lines for menu displays so that
translators can adjust the field order and line length to match other
adjustments that the program allows for cultural variation.

9 In the xpg4demo program, you can change the order of first and last
name (surname). This message entry defines a constant whose value
controls how the program orders name fields.

You can use one or more message text source files to create message
catalogs (.cat files) that programs can access at run time. To create a
message catalog from the source file in Example 3–1:

1. Use the mkcatdefs command to convert symbolic identifiers for
message sets and messages to numbers that indicate the ordinal
positions of the message sets within the catalog and of messages
within each set.

2. Use the gencat command to create the message catalog from
mkcatdefs output.

Section 3.4 discusses the mkcatdefs and gencat commands.

3.1.1 General Rules

This section contains general guidelines that apply to message text source
files. A message text source file (.msg file) comprises sequences of

Creating and Using Message Catalogs 3–3

messages. Optionally, you can order these messages within one or more
message sets. For a given application, there are usually separate message
source files for each localization; for example, there are source files for each
locale (each combination of codeset, language, and territory) with which
users can run the application.

If you do not quote values for identifiers, specify a single space or tab, as
defined by the source codeset, to separate fields in lines of the source file.
Otherwise, the extra spaces or tabs are treated as part of the value. Using
the character specified in a quote directive to delimit all message strings
prevents extra spaces or tabs between the identifier and the string from
being treated as part of the string. Quoting message strings is also the only
way to indicate that the message text includes a trailing space or tab.

Message text strings can contain ordinary characters, plus sequences for
special characters as shown in Table 3–1.

Table 3–1: Coding of Special Characters in Message Text Source Files

Description Symbol Coding Sequence

Newline NL (LF) \n

Horizontal tab HT \t

Vertical tab VT \v

Backspace BS \b

Carriage return CR \r

Form feed FF \f

Backslash \ \\

Octal value ddd \ddd a

Hexadecimal value dddd \xdddd b

aThe excape sequence \ddd consists of a backslash followed by one, two, or three octal digits that specify
the value of the desired character.
bThe escape sequence \xdddd consists of a backslash followed by the character x and one, two, three, or
four hexadecimal digits that specify the value of the desired character. Note that the hexadecimal coding
sequence is an extension to X/Open UNIX CAE specifications and therefore may not be supported on other
systems that conform to these specifications.

A backslash in a message file is ignored when followed by coding sequences
other than those described in Table 3–1. For example, the sequence \m
prints in the message as m. When you use octal or hexadecimal values to
represent characters, include leading zeros if the characters following the
numeric encoding of the special character are also valid octal or
hexadecimal digits. For example, to print $5.00 when 44 is the octal
number for the dollar sign, you must specify \0445.00 to prevent the 5
from being parsed as part of the octal value.

3–4 Creating and Using Message Catalogs

A newline character normally separates message entries; however, you can
continue the same message string from one line to another by entering a
backslash before the newline character. In this context, entering a newline
character means pressing the Return or Enter key on English keyboards.
For example, the following two entries are equivalent and do not affect how
the string appears to the program user:

MSG_ID This line continues \
to the next line.
MSG_ID This line continues to the next line.

Any empty lines in a message source file are ignored; you are therefore free
to use blank lines wherever you choose to improve the readability of the file.

3.1.2 Message Sets

Message sets are an optional component within message text source files.
You can use message sets to group messages for any reason. In an
application built from multiple program source files, you can create
message sets to organize messages by program module or, as done for the
online example xpg4demo , group messages that belong to the same
semantic category (error, informational, defined strings). An advantage of
grouping messages by program module is that, should the module later be
removed from the application, you can easily find and delete its messages
from the catalog. Grouping messages by semantic category supports
message sharing among modules of the same application; when messages
are grouped by semantic category, programmers writing new modules or
maintaining existing modules for an application can easily determine if a
message meeting their needs already exists in the file.

A set directive specifies the set identifier of subsequent messages until
another set directive or end-of-file is encountered. Set directives have the
following format:

$SET set_id [comment]

The set_id variable can be one of the following:

• A number in the range [1 - NL_SETMAX]

The NL_SETMAXconstant is defined in the /usr/include/limits.h
file. Numeric set identifiers must occur in ascending order within the
source file; however, the numbers need not be contiguous values.
Furthermore, set identifier numbers must occur in ascending order
from one source file to the next when multiple message source files are
processed by the gencat command to create a message catalog.

• A user-defined symbolic identifier, such as MSGErrors

Creating and Using Message Catalogs 3–5

When you specify symbolic set identifiers, you must use the mkcatdefs
command to convert the symbols to the numeric set identifiers required
by the gencat command.

Any characters following the set identifier are treated as a comment.

If the message-text source file contains no set directives, all messages are
assigned to a default message set. The numeric value for this set is defined
by the constant NL_SETDin the /usr/include/nl_types.h file. When a
program calls the catgets() function to retrieve a message from a catalog
that has been generated from sources that do not contain set directives, the
NL_SETDconstant is specified on the call as the set identifier.

_______________________ Note _______________________

Do not specify NL_SETDin a set directive of a message text
source file or try to mix default and user-defined message sets in
the same message catalog. Doing so can result in errors from the
mkcatdefs or gencat utility. Furthermore, the value assigned
to the NL_SETDconstant is vendor defined; using NL_SETDas a
symbolic identifier in the message text source file can result in
mkcatdefs output that is not portable from one system to
another.

The rest of this section discusses entries that delete message sets from an
existing message catalog. Section 3.4.3 addresses the topic of catalog
maintenance more generally.

Message text source files can contain delset directives, which are used to
delete message sets from existing message catalogs. The delset directive
has the following format:

$delset n [comment]

The n variable must be the number that identifies the set in the existing
catalog to the gencat command. Unlike the case for the set directive, you
cannot specify symbolic set identifiers in delset directives. When message
files are preprocessed using the mkcatdefs command, you have the option
of creating a separate header file that equates your symbolic identifiers
with the set numbers and message numbers assigned by the mkcatdefs
utility. If you later want to delete one of the message sets, you first refer to
this header file to find the number that corresponds to the symbolic
identifier for the set you want to delete. This is the number that you
specify in the delset directive to delete that set.

Suppose that you are removing program module a_mod.c from an
application whose associated message text source file is appl.msg .

3–6 Creating and Using Message Catalogs

Messages used only by a_mod.c are contained in the message set whose
symbolic identifier is A_MOD_MSGS. The file appl_msg.h contains the
following definition statement:

...
#define A_MOD_MSGS 2
...

The associated delset directive could then be:

$delset 2 Removing A_MOD_MSG set for a_mod.c in appl.cat.

You can specify delset directives either in a source file by themselves or
as part of a more general message source file revision that includes both
delset and set directives. In the latter case, make sure that multiple
directives occur in ascending order according to the specifier.

Assume that the preceding example is contained in a single-directive
source file named kill_mod_a_msgs.msg and existing message catalogs
reside in the /usr/lib/nls/msg directory. In this case, the following ksh
loop would carry out the message set deletion in catalogs for all locales:

for i in /usr/lib/nls/msg/*/appl.cat
do

gencat $i kill_mod_a_msgs.msg
done

3.1.3 Message Entries

A message entry has the following format:

msg_id message_text

The msg_id can be either of the following:

• A number in the range [1 - NL_MSGMAX]

The constant NL_MSGMAXis defined in the /usr/include/limits.h
file. Message numbers are associated with the message set defined by
the preceding set directive or, if not preceded by a set directive, with
the default message set NL_SETD, a constant defined in the
/usr/include/nl_types.h file. Message numbers must occur in
ascending order within a message set; however, the numbers need not
be contiguous values. If message numbers are not in ascending order
within a set, the gencat command returns an error on attempts to
generate a message catalog from the source file.

• A user-defined symbolic name, for example, ERR_INVALID_ID

Creating and Using Message Catalogs 3–7

When a message text source file contains symbolic names, you must use
the mkcatdefs command to convert the symbolic names to numbers
that the gencat command can process.

The message_text is a string that the program refers to by msg_id . You
can quote this string if a quote directive enables a quotation character
before the message entry is encountered. Section 3.1.1 discusses the
advantages of quoting message text. Section 3.1.4 lists the rules for quote
directives.

The total length of message_text cannot exceed NL_TEXTMAXbytes. The
constant NL_TEXTMAXis defined in the /usr/include/limits.h file.

The rest of this section discusses entries that delete specific messages from
an existing message catalog. Refer to Section 3.4.3 for a general discussion
of message catalog maintenance.

To delete a particular message from an existing message catalog, enter the
identifier for the message on a line by itself. This type of entry allows you
to delete a message without affecting the ordinal position of subsequent
messages. For the message deletion to be carried out correctly, use the
following guidelines:

• Specify a numeric message identifier.

If you usually use symbolic identifiers in your message text source files,
you can obtain the associated numbers from the message header file
that is produced when the source file was last processed by the
mkcatdefs command. Unlike the case for deleting message sets with
the delset directive, mkcatdefs does not generate an error if you use
a symbolic message identifier to delete a message; however, you will
delete the wrong message if the symbol is not preceded by the same
number of message entries as is in the catalog.

• The identifier cannot be followed by any character other than a
newline. If msg_id is followed by a space or tab separator, the message
is not deleted; rather, the message text is revised to be an empty string.

• If the catalog contains user-defined message sets, make sure the
appropriate set directive precedes the entry to delete the message;
otherwise, the message may be deleted from the wrong message set.
For reasons similar to those noted for message identifiers in step 1, use
a numeric rather than symbolic set identifier in the set directive.

• Use only the gencat command to process the file if you are not
replacing all messages in a set. The mkcatdefs utility generates a
delset directive before each set directive you specify in the input file.
This is helpful when you want to replace all messages in a message set,
but it will not produce the results you intend if your input source refers
only to one or two messages that you want to delete.

3–8 Creating and Using Message Catalogs

The following example shows message text source input that could be
specified to the gencat command to delete message 5 from message set 2:

$set 2
5

If this source input were preprocessed by the mkcatdefs command, the
addition of the delset directive would result in all messages in set 2 being
deleted from the message catalog:

$delset 2
$set 2
5

3.1.4 Quote Directive

A quote directive specifies or disables a quote character that you use to
surround message text strings. The quote directive has the following
format:

$quote [c]

The c variable is the character to be recognized as the message string
delimiter. In the following example, the quote directive specifies the
double quotation mark as the message string delimiter:

$quote "

By default, or if c is omitted, quoting of message text strings is not
recognized.

A source text message file can contain more than one quote directive, in
which case each directive affects the message entries that follow it in the
file. Usually, however, a message file contains only one quote directive,
which occurs before the first message entry.

3.1.5 Comment Lines

A line beginning with the dollar sign ($), followed by a space or tab, is
treated as a comment. Neither the mkcatdefs nor the gencat commands
further interpret the line.

Remember that message files may be translated by individuals who are not
programmers. Be sure to include comment lines with instructions to
translators on how to handle message entries whose strings contain literals
and substitution format specifiers. For example:

$ Note to translators: Translate only the text that is within
$ quotation marks ("text text text") on a given line.
$ If you need to continue your translation onto the next line,

Creating and Using Message Catalogs 3–9

$ type a backslash (\) before pressing the newline
$ (Return or Enter) key to finish the message.
$ For an example of line continuation, see the
$ line that starts with the message identifier E_COM_EXISTBADGE.
.
.
.
$ Note to translator: When users see the following message, a badge
$ number appears in place of the %ld directive.
$ You can move the %ld directive to another position
$ in the translated message, but do not delete %ld or replace %ld with
$ a word.
$
E_COM_EXISTBADGE "Employee entry for badge number %ld \
already exists"
.
.
.
$
$ Note to translator: The item %2$d/%1$d/%3$d indicates month/day/year
$ as expressed in decimal numbers; for example, 3/28/81.
$ To improve the appropriateness of this date input format, you can change
$ only the order of the date elements and the delimiter (/).
$ For example, you can change the string to %1$d/%2$d/%3$d or
$ %1$d.%2$d.%3$d to indicate day/month/year or day.month.year
$ (28/3/81 or 28.3.81).
$
I_SCR_IN_DATE_FMT "%2$d/%1$d/%3$d"
.
.
.

Tru64 UNIX provides the trans utility, discussed in Section 3.3, to help
translators quickly locate and edit the translatable text in a message
source file. This utility does not eliminate the need for information from the
programmer on message context and program syntax.

3.1.6 Style Guidelines for Messages

When creating messages and other text strings in English, you need to
keep the following information in mind:

• Text strings in English are usually shorter than equivalent text strings
in other languages. When text strings are translated, their length
increases an average of 30 to 40 percent. Expect even larger increases
for strings containing fewer than 20 characters.

The following guidelines result from the likelihood that text strings will
grow when translated from English to another language:

– If you must limit a text string to one line (for example, 80
characters), make sure the English text occupies no more than half
of the available space. Whenever possible, allow text to wrap to a
subsequent line rather than restricting it to an arbitrary length.

– Do not design a menu, form, screen, or window in which English
text uses most of the available space.

– Design a dialog box so that its components can be moved around.
The developers who localize your application may have to

3–10 Creating and Using Message Catalogs

reorganize the contents of a dialog box because of text length
changes and, for Asian languages, to accommodate a particular
character input method.

– Do not embed text in a graphic. When text is embedded in a
graphic, the entire graphic must be redone when the application is
localized. Furthermore, the translated text may cause the graphic to
grow in size or to lose visual appeal.

• Nouns in languages other than English may have gender that affects
the spelling of the noun itself and associated adjectives and verbs. The
way a noun is spelled can also change, depending on whether the noun
is the subject or object of a verb, or the object of a preposition. There
can be additional grammatical rules, such as those for creating
affirmative, negative and imperative verb forms, that are very different
from English. For these reasons:

– Do not create a message at run time by concatenating different
kinds of strings; for example, strings that represent different nouns,
adjectives, verbs, or combinations of these.

If adjectives and verbs can have multiple referents, each with a
different gender, the translator may not be able to create a
grammatically correct counterpart for all the possible sentences that
the user may see. In this case, the developer who is localizing the
application may have to redesign the error-handling logic so that
the application returns several distinct messages rather than one.

– Be careful about inserting the same text variable into different
strings; word spelling may have to change if each string represents
a different grammatical context. Furthermore, you cannot assume
that there is a one-to-one correspondence between English words
and their counterparts in other languages. For example, you can
create a negative statement in English by inserting a text variable
that contains the word “not” into a verb phrase. The message could
not be translated to French, however, which usually requires two
words, “ne” before the verb and “pas” after the verb, to negate
meaning.

Pathnames, file names, and strings that are complete sentences are
usually safe to insert into other strings.

– Avoid using the word “None” as a button label or menu item; this
word may be impossible to translate if its referents have different
gender.

– Create messages that are complete sentences; in particular, do not
start messages (other than imperatives where the subject “you” is
understood) with a verb.

Creating and Using Message Catalogs 3–11

The following messages cannot be translated into some languages
because the translator cannot determine the subject of the sentence
or the correct form of the verb in the local language:

Is a directory.

Could not open file.

If your message is constructed of a facility identifier, followed by
informational or error text, you can break the rule about starting
messages with a verb. In this case, be sure to include comments to
the translator in your message source file about how the message is
constructed, the facility identifier that appears with the message,
and the kind of component (server, compiler, utility, and so forth)
the identifier represents. Refer to Section 3.1.5 for information
about adding comments to message source files.

• Unique identifiers that are based on the first letters of words may not
be unique when the words are translated. For example, a common
practice in applications that prompt users to choose among several
items is to accept a single character as the item identifier. Make sure
your application does not require this character to be the first character
or first several characters in the item name. The translator should have
the option of substituting any character or a number for the item
identifier.

• Languages can have syntax rules that require translators to change
word order. Therefore, use substitution specifiers as described in
Section 2.3.2 so that translators can change the order of message
components to meet local language requirements.

• Translations of messages with vague, ambiguous, or telegraphic
wording are likely to be incorrect. Use the following guidelines to help
ensure accurate translation:

– Include articles (the, a, an) and forms of the verb “to be” where
appropriate. Programmers often omit these words to reduce the size
of message strings; however, the omission sometimes makes it
difficult to distinguish nouns from verbs, subject nouns from
predicate nouns, and active voice from passive voice. The message
“Maximum parameter count exceeded” illustrates this problem.

– You can include very common contractions, such as “can’t” and
“don’t”, but avoid less commonly used contractions, like “should’ve”.
If you are using contractions in English to conserve line space, be
aware that your objective is likely to be lost in translation.

– Avoid using most abbreviations, particularly terms, such as pkt,
msg, tbl, ack, and max, that programmers commonly use in variable
names and code comments. These abbreviations do not appear in a

3–12 Creating and Using Message Catalogs

dictionary, and translators may have to guess at what they mean.
On the other hand, you can use formal abbreviations for product
and utility names and abbreviations for names of standards,
protocols, and so forth that appear in commercial literature.

– Use words only in grammatically correct form. English speakers
have a tendency to create new verbs or adjectives out of existing
nouns and new nouns out of existing verbs. This practice is
confusing to translators, particularly when the intended usage is
not one of those noted in an English dictionary. For example,
consider the use of the word “parameter” as an adjective in the
message “Invalid parameter delimiter.”

– Avoid using slang or words whose intended meaning is not included
in a dictionary. It is probable that these words either have no
equivalent in another language or would be misinterpreted. For
example, the message “Server hang” may be meaningful to English
speakers who develop software or manage systems, but the meaning
of the message may be transformed in another language to “The
system lynched the waiter.” The message “The %s server failed.” is
more likely to be translated correctly.

3.2 Extracting Message Text from Existing Programs

If you have an existing program that you want to internationalize, Tru64
UNIX provides the following tools to help you extract message strings into
a message source file and to change calls to retrieve messages from a
message catalog:

Tool Description

extract command Interactively extracts text strings from program source
files and writes each string to a source message file.
The command also replaces each extracted string with
a call to the catgets function.

strextract command Performs string extraction operation in batch.

strmerge command Reads strings from the message file produced by
strextract and, in the program source, replaces
those strings with calls to the catgets function.

Consider the following call:

printf("Hello, world\n");

You can use the extract command, or the strextract command followed
by the strmerge command, to:

Creating and Using Message Catalogs 3–13

• Create the following entries in a message text source file (assuming
that "Hello, world" was the first string extracted):

$set 1
$quote "
1 "Hello, world\n"

• Change the printf() call to:

printf(catgets(cat, 1, 1, "Hello, world\n"));

Assuming that input to the commands is a program source file named
prog.c , the commands create three new files: prog.msg (message text
source file), nl_prog.c (internationalized version of the program source),
and prog.str (an intermediate strings file that other utilities can
reference). The commands use the following files along with the input
source program:

• A patterns file

This file specifies patterns that the extraction commands use to find
strings in the program. You can specify your own patterns file; by
default, the extraction commands use the /usr/lib/nls/patterns
file.

• An optional ignore file

This file specifies strings that the extraction commands should ignore.

The extract , strextract , and strmerge commands do not perform all
the revisions necessary to internationalize a program. For example, you
must manually edit the revised program source to add calls to
setlocale() , catopen() , and catclose() . In addition, you may need to
add routines for multibyte-character conversion (for Asian locales) and
improve user-defined routines to vary behavior according to values defined
in message catalogs or the langinfo database.

Figure 3–1 shows the files and tools that help you change an existing
program to use a message catalog.

3–14 Creating and Using Message Catalogs

Figure 3–1: Converting an Existing Program to Use a Message Catalog

translate
(using trans)

compiler
(cc)

gencat

a.out

strmerge

extractstrextract

= Internationalization tool

source.str

Ignore file

Patterns file

nl_source
(nl_prog.c)

edit
nl_source

nl_source
(nl_prog.c)

source.cat
(prog.cat)

(prog.msg)

ZK-0045U-AI

source.str
edit

source.msg

(prog.str)

Source file
(prog.c)

For detailed instructions on using the extract , strextract , and
strmerge commands, see the extract (1), strextract (1), strmerge (1),
and patterns (4) reference pages.

3.3 Editing and Translating Message Source Files

You can use any text editor to edit message text source files, provided that:

• The input device is capable of generating the necessary characters

• If 8-bit or multibyte characters are required, the editor can
transparently handle this data

Creating and Using Message Catalogs 3–15

The first requirement is satisfied for languages other than Western
European by terminal drivers, locales, fonts, and other components that are
available with localized software subsets.

The ed , ex , and vi editors satisfy the second of the preceding requirements.
Localized software subsets may also include enhanced versions of additional
editors, such as Emacs, that can handle 8-bit and multibyte characters.

The operating system includes the trans command to assist those who
translate message text source files for different locales. The command
provides a multiwindow environment so users can see both the original and
translated versions of the file. In addition, the command automatically
guides users in the file from one translatable string to the next. For more
information on the trans command, refer to trans (1). Refer to
Section 3.1.5 for examples of comments that should be included in message
text source files to ensure that messages are correctly translated.

For examples of translated message text source files, search the
/usr/examples/xpg4demo/src directory for *.msg files, as follows:

% cd /usr/examples/xpg4demo/src
% ls *.msg
...

A translated message catalog is associated with a particular locale and
encoding format. Many languages are supported by multiple locales and
encoding formats, and this generates a requirement that messages in the
same language be available in multiple encoding formats. Although you can
use codeset converters to convert message source files, building and
installing multiple versions of the same catalog for a single language is
expensive. Therefore the catopen() and catgets() functions support
dynamic codeset conversion of message catalogs. A set of
.msg_conv- locale_name files in the /usr/share directory controls
codeset conversion of message catalogs. See catopen (3) for detailed
information.

3.4 Generating Message Catalogs

The gencat command generates message catalogs from one or more
message-text source files. If the source files contain symbolic rather than
numeric identifiers for message sets, message entries, or both, those source
files must first be preprocessed by the mkcatdefs command. Example 3–2
illustrates interactive processing of message text source files with symbolic
identifiers for a default and nondefault locale. This example provides
context for later sections that discuss each command.

3–16 Creating and Using Message Catalogs

Example 3–2: Generating a Message Catalog Interactively

% mkcatdefs xpg4demo xpg4demo.msg | gencat xpg4demo.cat 1
mkcatdefs: xpg4demo_msg.h created 2
% setenv LANG fr_FR.ISO8859-1 3
% mkdir fr_FR 4
% mkcatdefs xpg4demo xpg4demo_fr_FR.msg -h | gencat \
fr_FR/xpg4demo.cat 5
mkcatdefs: no msg.h created 6

1 The mkcatdefs command specifies:

• The root name to use for the header file that maps symbolic
identifiers used in the program to their numeric values in the
message catalog

• The name of the message text source file being processed

The preprocessed message source is piped to the gencat command,
which specifies the name of the message catalog.

2 The mkcatdefs command prints the name of the header file it created
to standard output. The utility appends _msg.h to the root name to
create a name for the header file.

3 When generating a message file for a nondefault locale, you must set
the LANGenvironment variable to the name of the locale that the
message catalog will support, in this case, fr_FR.ISO8859-1.

4 Because the name of the message catalog opened by the program does
not vary by locale name, you must create a directory in which to store
each message catalog variant.

5 This line creates the local variant of the message catalog. The header
file created by the mkcatdefs utility does not vary by locale. The
header file has already been created for the default message catalog so
this mkcatdefs command includes the -h flag to disable creation of
another header file. The catalog specified to the gencat command is
directed to the temporary locale directory. On user systems, this
version of the catalog could be moved to the
/usr/lib/nls/msg/fr_FR.ISO8859-1 default directory or stored in
a directory that is application specific.

6 The mkcatdefs command announces that no header file has been
created, in this case, as intended.

Refer to the /usr/examples/xpg4demo/src/Makefile file for an
example of how you can integrate generation of a message catalog into the
makefile that builds an application.

Creating and Using Message Catalogs 3–17

3.4.1 Using the mkcatdefs Command

The mkcatdefs command preprocesses one or more message source files to
change symbolic identifiers to numeric constants. The utility has the
following features:

• Sends preprocessed message source to standard output, so you can
either pipe the output to the gencat command as shown in
Example 3–2 or use the > redirection specifier to print the output to a
file

• Creates a header file that maps numbers that will identify message sets
and messages in the new message catalog with the symbolic identifiers
referred to in source programs

You must include this header file in all the program modules that open
this catalog and refer to message sets and messages that use symbolic
identifiers.

The advantage of symbolic identifiers is that you can specify them in place
of numbers when you code calls whose arguments include message set and
message identifiers. Symbolic identifiers improve the readability of your
program source code and make the code independent of the order in which
set and message entries occur in the message catalog. Each time that the
mkcatdefs utility processes a message text source file, it produces an
associated header file to equate set and message symbols with numbers.
Updating your program after a message file revision can be as simple as
recompiling it with the new header file.

The option of defining symbolic identifiers for message sets and catalogs is
not specified by the X/Open UNIX standard, so you should not assume that
the mkcatdefs command is available on all operating systems that
conform to this standard. However, the source text message file and
program header file produced by the mkcatdefs command should be
portable among systems that conform to the X/Open UNIX standard.

The mkcatdefs command does not refer to the header file for an existing
message catalog to map symbolic identifiers to the numbers assigned when
that catalog was created. The command assigns numbers to symbols based
on the ordinal position of those symbols in the message source input stream
currently being processed. When you are processing changes to an existing
catalog, it is your responsibility to ensure correct mapping between the
symbols you specify in the source input to the mkcatdefs command and
numeric counterparts for those symbols in the existing message catalog.

In general, consider the mkcatdefs utility a tool for regenerating an entire
message catalog, not just parts of it. Use the following guidelines:

3–18 Creating and Using Message Catalogs

• For message and message set deletions, specify numeric identifiers in
place of symbols at strategic points in the message source input to
prevent deletions of message sets and individual messages from
affecting the ordinal position of subsequent entries.

• Define new sets at the end of the input source stream (at the end of the
last source file if a catalog is generated from a sequence of source files).

• Define new messages for an existing message set at the end of that set.

• Specify source entries for the entire catalog; otherwise, mkcatdefs will
not produce a complete message header file. You will need a complete
header file for recompiling programs that use both current and new
symbols to identify messages. In addition, mkcatdefs generates a
delset directive before each set directive you specify in the input
source; in other words, it expects your input to completely replace all
messages in the referenced set.

• If the catalog was generated from multiple source files, specify source
files in the same order as they were specified to generate the existing
catalog; otherwise, you will invalidate headers used to compile all
program modules that open the catalog. You can avoid recompiling
programs that do not refer to new messages as long as you do not
invalidate the symbol-number mapping in the message header file with
which those programs were compiled.

3.4.2 Using the gencat Command

The gencat command merges one or more message text source files into a
message catalog. For example:

gencat en_US/test_program.cat test_program_en_US.msg

The gencat command creates the message catalog if the specified catalog
path does not identify an existing catalog; otherwise, the command uses the
specified message text source file (or files) to modify the catalog. The
gencat command accepts message source data from standard input, so you
can omit the source file argument when piping input to gencat from
another facility, such as the mkcatdefs command.

The X/Open UNIX standard does not specify file name extensions for
message source files and catalogs; on Tru64 UNIX systems, the convention
is to use the .msg extension for source files and the .cat extension for
catalogs. Because the message catalogs produced by the gencat command
are binary encoded, they may not be portable between different types of
systems. Message text source files preprocessed by the mkcatdefs
command should be portable between systems that conform to X/Open
UNIX CAE specifications.

Creating and Using Message Catalogs 3–19

Refer to gencat (1) for more details on gencat command syntax and use.

3.4.3 Design and Maintenance Considerations for Message Catalogs

Message sets and message entries are identified at run time by numbers
that represent ordinal positions within one version of a message catalog.
Adding and deleting message sets and entries in an existing catalog can, if
not done carefully, change the ordinal position specifiers that identify
messages occurring after the point in the file where a modification is made.
Consider a message whose English text "Enter street address: " is
identified as 3 : 10 (tenth message of the third message set) in the original
generation of a message catalog. That message will have a different
identifier in the next version of the catalog if the revised source input to
the gencat command performs any of the following operations:

• Inserts message sets at the beginning of the input source

• In the third message set, inserts any messages before the "Enter street
address: " entry

• In the third message set, deletes messages before the "Enter street
address: " entry without specifying a message deletion directive (a
message number followed by no other characters on the line)

When program source refers to messages by numeric identifiers, any
changes in ordinal positions of message sets and message entries require
changes to program calls that refer to messages. When a program source
file refers to messages by symbolic identifiers, the maintenance cost of
ordinal position changes is sharply reduced on a per-module basis; in other
words, you can synchronize any particular program module with the new
version of a message catalog by recompiling with the new header file
generated by the mkcatdefs utility.

The ability to recompile program source to synchronize with new message
catalog versions does not address issues of complex applications where
multiple source files refer to the same message catalog. For such
applications, a usual goal is to ensure module-specific maintenance
updates. In other words, after an application is installed at end-user sites,
you should be able to update a specific module and its associated message
catalogs without recompiling and reinstalling all modules in the
application. You can achieve this goal in a number of ways. The following
design options can help you decide on a message system design strategy
that works best for applications developed and maintained at your site:

• One message source file and catalog per program module

– Advantages

3–20 Creating and Using Message Catalogs

This is the easiest strategy to implement for the individual
programmer as it eliminates problems that arise when
programmers share one source. Software, such as the Revision
Control System (RCS) and the Source Code Control System (SCCS)
help to manage files that multiple programmers maintain.
Sometimes, however, programmers work on different application
versions in parallel. This additional layer of complexity is not easy
to manage. A one-to-one correspondence between message source
files and associated program sources makes it easier to determine
whose changes are needed in the message file to build the
application for a particular release cycle at a specific point in time.

When the message catalog is module specific, you can replace the
entire message catalog when a new binary module is installed at
end-user sites, without risk to the run-time behavior of other
modules in the same application.

– Disadvantages

At run time, the application may need to open and close as many
message catalogs as there are modules. Opening a message catalog
entails some performance overhead and adds to the number of open
file descriptors assigned both to the user’s process and the
system-wide open file table. There is a system-wide and
process-specific maximum for the number of files that can be open
simultaneously, and these limits vary from one system to another.
On Tru64 UNIX systems, opened message catalogs are mapped into
memory (and the file closed) to improve performance of message
retrieval; this operation also means that opening multiple message
catalogs has little impact on open file limits. This situation,
however, may not exist on other platforms to which you might need
to port your application.

• One message source file per program source, single catalog for
application

– Advantages

The same advantages exist as discussed for the preceding option,
plus the single catalog design eliminates any problems associated
with numerous open operations if you port your application to
systems other than Tru64 UNIX.

– Disadvantages

When you generate a message catalog from multiple source files,
maintainability problems can occur if you do not carefully control
message set directives. The best rule to follow is to define a fixed
number of sets per source file; for example, one set for errors, one
set for informational displays, one set for miscellaneous strings. If

Creating and Using Message Catalogs 3–21

you allow programmers to change the number of message sets for
different versions of their message source files, the message set
numbers for subsequent program modules are likely to change from
one version of the catalog to another. This means that other
modules whose source code was not changed may have to be
included in an update release simply for synchronization with a new
version of the message catalog.

There are similar maintainability problems if no source files define
message sets or only some of them do. The mkcatdefs and gencat
commands concatenate input source files together so that the
end-of-file marker exists only at the end of the last input source file.
This means that, if no sets are defined in any file, all messages are
considered part of the default message set. (In program calls, the
NL_SETDconstant refers to the default message set.) In this case,
adding messages to any source file other than the last one changes
the numeric identifiers of messages in all source files that follow on
the input stream.

Finally, if only some message source files define message sets,
message sets can cross source file boundaries. Messages defined in
source files that occur later on the input stream are considered part
of a message set defined by a source file processed earlier. This
arrangement can also result in message entry position changes
when new messages are added to different source files.

Another disadvantage of the multiple source file to single message
catalog design arises when the resulting message catalog is
extremely large and memory is limited. As mentioned earlier,
message catalogs are mapped into memory when opened so that
disk I/O for message retrieval does not impede performance. If the
users who run your application typically use software and messages
that are associated only with a subset of the available modules,
module-specific message catalogs can conserve the total amount of
memory used when message catalogs are opened for a particular
execution cycle.

• Combination strategy

Depending on your application, it might make sense to have one or
more message catalogs that are generated from multiple,
module-specific source files and some that are generated from a single
source file that is maintained by all programmers. For example, if many
modules in the application generate messages for the same error
conditions, message text consistency is a desirable goal. In this case,
you could generate one message catalog with a single message text
source file where error messages are defined. This source file could
define message sets for errors, warnings, and so forth. Programmers

3–22 Creating and Using Message Catalogs

would be instructed to add new messages only to the end of each set
and to delete messages no longer used by using message deletion
directives (which remove messages from the catalog without changing
the position numbers for subsequent messages in the same set).

3.5 Displaying Messages and Locale Data Interactively or
from Scripts

After a message catalog is created, you may want to display its contents to
make sure that the catalog contains the messages you intended and that
both messages and message sets are in the proper order. Your application
might also include scripts that, like programs, need to determine locale
settings, retrieve locale-dependent data, and display messages in a
locale-dependent manner at execution time. The following list describes
three commands that display messages in a message catalog and one
command that displays information for the current locale:

• dspcat

The dspcat command can display all messages, all messages in a
particular set, or a specific message. The following example displays the
fourth message in the second set of the xpg4demo.cat catalog:

% cd /usr/examples/xpg4demo/en_US
% dspcat xpg4demo.cat 2 4
Are these the changes you want to make?%

The dspcat command also includes a −g flag that reformats the output
stream for an entire catalog or message set so that it can be piped to
the gencat command. This option may be useful if you need to add or
replace message sets in one catalog by using message sets in another
catalog, perhaps as part of an application update procedure at end-user
sites. You can also use the dspcat -g command to create a source file
from an existing message catalog. You can then translate or customize
the source file for end users before building the translated source into a
new catalog with the gencat command.

The following example first displays the message source for the
message catalog used by the du command for the en_US.ISO8859-1
locale and then redirects that source to a file that can be edited:

% dspcat -g \
/usr/lib/nls/msg/en_US.ISO8859-1/du.cat

$delset 1
$set 1
$quote "

1 "usage: du [-a|-s] [-klrx] [name ...]\n"

Creating and Using Message Catalogs 3–23

2 "du: Cannot find the current directory.\n"
3 "du: %s\n\
The specified path name exceeded 255 bytes.\n"
4 "du: %s\n\
The generated path name exceeded 255 bytes.\n"
5 "du: Cannot change directory to ../%s \n"
6 "Out of memory"
% dspcat -g \
/usr/lib/nls/msg/en_US.ISO8859-1/du.cat > \
du.msg

• dspmsg

The dspmsg command displays a particular message from a catalog and
optionally allows you to substitute text strings for all %sor %n $s
specifiers in the message. For example:

% dspmsg xpg4demo.cat -s 1 9 ’Cannot open %s for output’ xpg4demo.dat
Cannot open xpg4demo.dat for output%

• locale

The locale command displays information for the current locale
setting or tells you what locales are installed on the system. In the
following example, the locale command displays the current settings
of all locale variables, then the keywords and values for a specific
variable (LC_MESSAGES), and finally the value for a particular item of
locale data:

% locale
LANG=en_US.ISO8859-1
LC_COLLATE="en_US.ISO8859-1"
LC_CTYPE="en_US.ISO8859-1"
LC_MONETARY="en_US.ISO8859-1"
LC_NUMERIC="en_US.ISO8859-1"
LC_TIME="en_US.ISO8859-1"
LC_MESSAGES="en_US.ISO8859-1"
LC_ALL=
% locale -ck LC_MESSAGES
LC_MESSAGES
yesexpr="^([yY]|[yY][eE][sS])"
noexpr="^([nN]|[nN][oO])"
yesstr="yes:y:Y"
nostr="no:n:N"
% locale yesexpr
^([yY]|[yY][eE][sS])

• printf command

The printf command writes a formatted string to standard output.
Like the printf() function, the command supports conversion
specifiers that let you format messages in a way that is locale
dependent. You can also use this command in scripts, along with the

3–24 Creating and Using Message Catalogs

locale command, to interpret “yes/no” responses in the user’s native
language. For example:

if printf "%s\n" "$response" | grep -Eq "‘locale yesexpr‘"
then

<processing for an affirmative response goes here>
else

<processing for a response other than affirmative goes here>
fi

Refer to dspcat (1), dspmsg (1), locale (1), and printf (1) for more
information on the preceding commands.

3.6 Accessing Message Catalogs in Programs

Programs call the following functions to work with a message catalog:

• catopen() to open the file

• catclose() to close the file

• catgets() to retrieve messages

Message catalogs are usually located through the setting of the NLSPATH
environment variable. The following sections discuss this variable and the
calls in the preceding list.

3.6.1 Opening Message Catalogs

Programs call the catopen() function to open a message catalog. For
example:

#include <locale.h>
#include <nl_types.h>
...
nl_catd MsgCat;
...
setlocale(LC_ALL, "");
...
MsgCat = catopen("new_application.cat", NL_CAT_LOCALE);

In this example, if successful, the catopen() function returns a message
catalog descriptor to the MsgCat variable. The variable that contains the
descriptor is declared as type nl_catd . The catopen() function and the
nl_catd type are defined in the /usr/include/nl_types.h header file,
which the program must include. A call to catopen() requires two
arguments:

• The name of the catalog

Creating and Using Message Catalogs 3–25

The catalog name is customarily specified as filename .cat (or a
program variable whose value is filename .cat) without the preceding
directory path. At run time, the catopen() function determines the
full pathname of the catalog by integrating the name argument into
pathname formats defined by the NLSPATHenvironment variable. If you
specify any slash (/) characters in the catalog name argument, the
catopen() function assumes that the specified catalog name
represents a full pathname and does not refer to the value of the
NLSPATHvariable at run time.

• An oflag argument

This argument is either the NL_CAT_LOCALEconstant (defined in
/usr/include/nl_types.h) or zero (0). If you specify
NL_CAT_LOCALE, catopen() searches for a message catalog that
supports the locale set for the LC_MESSAGESenvironment variable. If
you specify 0, catopen() searches for a message catalog that supports
the locale set for the LANGenvironment variable. A 0 argument is
supported for compatibility with XPG3. The NL_CAT_LOCALEargument
conforms to The Open Group’s current UNIX CAE specifications and is
recommended. Although the LC_MESSAGESsetting is usually inherited
from the LANGsetting rather than set explicitly, there are
circumstances when programs or users set LC_MESSAGESto a different
locale than set for LANG.

The names and locations of message catalogs are not standard from one
system to another. The Open Group’s UNIX standard therefore specifies
the NLSPATHenvironment variable to define the search paths and
pathname format for message catalogs on the system where the program
runs. The catopen() function refers to the variable setting at run time to
find the catalog being opened by the program. If you do not install your
application’s message catalogs in customary locations on the user’s system,
your application’s startup procedure will need to prepend an appropriate
pathname format to the current search path for NLSPATH.

The syntax for setting the NLSPATHenvironment variable is as follows:

NLSPATH= [[[:]] [/directory] [[[/]]| [substitution-field]| [literal]] ...
[[:] alternate_pathname] ...]

A leading colon (:) or two adjacent colons (::) indicate the current directory;
subsequent colons act solely as separators between different pathnames.
Each pathname in the search path is assembled from the following
components:

• /directory to indicate the full directory path to the catalog

You can also specify ./ directory to indicate a relative path.

• substitution-field, which can be one of the following directives:

3–26 Creating and Using Message Catalogs

– %N

The value of the first argument to catopen() , for example,
xpg4demo.cat in the following call:

catopen("xpg4demo.cat", NL_CAT_LOCALE);

– %L

The locale set for:

LC_MESSAGES, if the second argument to catopen() is the
NL_CAT_LOCALEconstant

LANG, if the second argument to catopen() is zero (0)

This substitution field represents an entire locale name, such as
fr_FR.ISO8859-1 .

– %l

The language component of the locale set for either the
LC_MESSAGESor LANGvariable (as determined by the same
conditions specified for %L)

Given the locale name fr_FR.ISO8859-1 , this substitution field
represents the component fr .

– %t

The territory component of the locale set for either the
LC_MESSAGESor LANGvariable (as determined by the same
conditions specified for %L)

Given the locale name fr_FR.ISO8859-1 , this substitution field
represents the component FR.

– %c

The codeset component of the locale set for either the LC_MESSAGES
or LANGvariable (as determined by the same conditions specified for
%L)

Given the locale name fr_FR.ISO8859-1 , this substitution field
represents the component ISO8859-1 .

– %%

A single %character

• literal to indicate:

– Directory or file names that cannot be specified using substitution
fields

– Field separators, for example, an underscore (_) or period (.)
between the language, territory, and codeset substitution fields or a
slash (/) between the %Land %Nsubstitution fields

Creating and Using Message Catalogs 3–27

To clarify how the LC_MESSAGESsetting, NLSPATHsetting, and the
catopen() function interact, consider the following set of conditions:

• The locale set for LC_MESSAGESis fr_FR.ISO8859-1 . (Unless
explicitly set by the user or program, the locale set for LC_MESSAGESis
derived from the locale set for LANG.)

• The NLSPATHvariable is set to the following value:

:%l_%t/%N:/usr/kits/xpg4demo/msg/%l_%t/%N:\
/usr/lib/nls/msg/%L/%N

• The program initializes the locale with the following call:

...
setlocale(LC_ALL, "");
...

• The program opens a message catalog with the following call:

...
MsgCat = catopen("xpg4demo.cat", NL_CAT_LOCALE);
...

Given the preceding conditions, the catopen() function looks for catalogs
at run time in the following pathname order:

1. xpg4demo.cat

2. ./fr_FR/xpg4demo.cat

3. /usr/kits/xpg4demo/msg/fr_FR/xpg4demo.cat

4. /usr/lib/nls/msg/fr_FR.ISO8859-1/xpg4demo.cat

When troubleshooting run-time problems, it is worthwhile to consider how
catopen() behaves when certain variables are not set.

If LC_MESSAGESis not set (directly or through the LANGvariable), the %L
and %l fields contain the value C (the default locale for LC_MESSAGES) and
the %t and %c substitution fields are omitted from the search path. In this
case, catopen() searches for:

1. xpg4demo.cat

2. ./C_/xpg4demo.cat

3. /usr/kits/xpg4demo/msg/C/xpg4demo.cat

4. /usr/lib/nls/msg/C/xpg4demo.cat

If LC_MESSAGESis set but the NLSPATHvariable is not set, the catopen()
function searches for the catalog by using a default search path that is

3–28 Creating and Using Message Catalogs

vendor defined. On Tru64 UNIX systems, the default search path is
/usr/lib/nls/msg/%L/%N: . For the sample set of conditions under
discussion now, this default would result in catopen() searching for:

1. /usr/lib/nls/msg/fr_FR.ISO8859-1/xpg4demo.cat

2. xpg4demo.cat

Finally, if neither LC_MESSAGESnor NLSPATHis set, catopen() would
search for:

1. /usr/lib/nls/msg/xpg4demo.cat

2. ./xpg4demo.cat

If catopen() fails to find a message catalog that matches the locale, the
function next checks for an appropriate
/usr/share/.msg_conv- locale-name file. This file, if it exists, specifies
another locale for which a message catalog is available and from which
messages can be converted. If this file is found, the available message
catalog is opened and the appropriate codeset converter is invoked to
convert messages to the codeset of the LC_MESSAGESsetting. For example,
the .msg_conv-fr_FR.UTF-8 file specifies that, if catalog_name exists
for French in ISO8859–1 format, that catalog can be opened and its
messages converted to UTF-8 format.

The catopen() function does not return an error status when a message
catalog cannot be opened. To improve program performance, the catalog is
not actually opened until execution of the first catgets() call that refers
to the catalog. If you need to detect the open file failure at the point in your
program where the catopen() call executes, you must include a call to
catgets() immediately following catopen() . You can then design your
program to exit on an error returned by the catgets() call. Including an
early call to catgets() may be important to do in programs that perform
a good deal of work before they retrieve any messages from the message
catalog. However, informing the user of this particular error is a problem,
given that you cannot retrieve an error message in the user’s native
language unless the catalog is opened successfully.

For additional information on the catopen() function, including its
error-handling behavior and support for codeset conversion, refer to
catopen (3).

_______________________ Note _______________________

When running in a process whose effective user ID is root, the
catopen() function ignores the NLSPATHsetting and searches
for message catalogs by using the /usr/lib/nls/msg/%L/%N

Creating and Using Message Catalogs 3–29

path. If a program runs with an effective user ID of root, you
must therefore do one of the following:

• Install all message catalogs used by the program in locale
directories identified as /usr/lib/nls/msg/%L .

• Install message catalogs used by the program in another
directory and create links in the /usr/lib/nls/msg/%L
directories to those catalog files.

This restriction does not apply to a program when it is run by a
user who is logged in as root. The restriction applies only to a
program that executes the setuid(\|) call to spawn a
subprocess whose effective user ID is root.

3.6.2 Closing Message Catalogs

The catclose() function closes a message catalog. This function has one
argument, which is the catalog descriptor returned by the catopen()
function. For example:

(void) catclose(MsgCat);

The exit() function also closes open message catalogs when a process
terminates.

3.6.3 Reading Program Messages

The catgets() function reads messages into the program. This function
takes four arguments:

• The message catalog descriptor returned by the catopen() call

• The symbolic or numeric identifier of the message set

Use the NL_SETDconstant when retrieving messages from message
catalogs that do not contain user-defined message sets.

• The symbolic or numeric identifier of the message

• The default message string

The program uses this string when the program cannot retrieve the
specified message from a catalog, usually because the catalog was not
found or opened.

You ordinarily use the catgets() function in conjunction with another
routine, either directly or as part of a program-defined macro. The following
code from the xpg4demo program defines a macro to access a specific
message set, then uses the macro as an argument to the printf routine:

3–30 Creating and Using Message Catalogs

.

.

.
#define GetMsg(id, defmsg)\

catgets(MsgCat, MSGInfo, id, defmsg)
.
.
.
printf(GetMsg(I_COM_DISP_LIST_FMT,

"%6ld %20S %-30S %3S %10s\n"),
emp->badge_num,
emp->first_name,
emp->surname,
emp->cost_center,
buf);

.

.

.

Refer to catgets (3) for more information about the catgets() function.

_______________________ Note _______________________

The gettxt() function also reads messages from message
catalogs. This function is included in the System V Interface
Definition (SVID) but is not recognized by the X/Open UNIX
standard. For information about this function, refer to gettxt (3).

Creating and Using Message Catalogs 3–31

4
Handling Wide-Character Data with

curses Routines

The curses library provides functions for developing user interfaces on
character-cell terminals. This chapter discusses enhancements made to the
curses library to support wide-character format, which accommodates
multibyte characters. The recommended functions for handling multibyte
characters in wide-character or complex-character format conform to
Version 4.2 of the X/Open Curses CAE specification and supercede those
specified by the System V Multi-National Language Supplement (MNLS).

This chapter summarizes the curses functions and macros that process
characters and character strings from the screen or keyboard. Tables in
each section note if there is more than one curses interface available to
perform the same operation, but only one handles wide-character or
complex-character format and conforms to the X/Open Curses CAE
specification. In such cases, make sure your application uses the curses
interface listed in the Recommended Routine column of the table. The
Section 3 reference pages provide syntax and detailed information for each
interface. Use this chapter to determine the interface needed for the
operation you want to perform; then use the man command to display the
reference page for the chosen interface. For an overview of all the functions
in the curses library, see curses (3).

_______________________ Note _______________________

Some curses routines overwrite existing characters on the
curses window. Only the routines that use the wchar_t or
cchar_t data type ensure that overwriting does not leave
partial characters on the screen. When the display width of an
overwritten character is greater than one column, as may be the
case for multibyte characters, these routines write extra blank
characters to remove partial characters. For example, if the
English character a overwrites the first column of a 2-column
Chinese character, the second column of the Chinese character is
overwritten with a blank.

Behavior is undefined when you overwrite multibyte characters
with curses routines that have not been internationalized.

Handling Wide-Character Data with curses Routines 4–1

4.1 Writing a Wide Character to a curses Window

The following sections discuss different categories of routines that add or
insert individual wide characters on a curses window. These routines
perform one of the following operations if a character already exists at the
target position:

• Overwrite the existing character and then advance the cursor.

• Insert the new character before the existing one and do not advance the
cursor.

4.1.1 Add Wide Character (Overwrite) and Advance Cursor

The functions and macros in the following table add a wide character, along
with its attributes, to a window on the screen and advance the cursor. If a
character already exists at the target position, the character is overwritten
by the one being added.

Your choice of routine depends on whether you need to:

• Add the character to the default or a specified window

• Add the character at the current or specified coordinates

• Refresh the screen

Use the const cchar_t data type to pass a wide character with its
attributes to these routines.

Recommended
Routine

Used in Place of: Behavior with Respect to:

add_wch addch , addwch Window: default
Position: current
Screen refresh: no

wadd_wch waddch , waddwch Window: specified
Position: current
Screen refresh: no

mvadd_wch mvaddch , mvaddwch Window: default
Position: specified
Screen refresh: no

mvwadd_wch mvwaddch,
mvwaddwch

Window: specified
Position: specified
Screen refresh: no

4–2 Handling Wide-Character Data with curses Routines

Recommended
Routine

Used in Place of: Behavior with Respect to:

echo_wchar echowchar Window: default
Position: current
Screen refresh: yes

wecho_wchar wechowchar Window: specified
Position: current
Screen refresh: yes

4.1.2 Insert Wide Character (no Overwrite) and Do Not Advance
Cursor

The following functions and macros insert a wide character in a window at
the current or specified coordinates and do not change the position of the
cursor after the write operation. The wide character is inserted before an
existing character at the target position, so these routines do not overwrite
characters that already exist on the line. Existing characters at and to the
right of the target position are moved further to the right and the character
in the rightmost position is truncated. Your choice of interface in this
category depends on whether you want to:

• Write to the default or a specified window

• Write at the current or specified coordinates

Recommended
Routine

Used in Place of: Behavior with Respect to:

ins_wch insch , inswch Window: default
Position: current

wins_wch winsch , winswch Window: specified
Position: current

mvins_wch mvinsch , mvinswch Window: default
Position: specified

mvwins_wch mvwinsch ,
mvwinswch

Window: specified
Position: specified

4.2 Writing a Wide-Character String to a curses Window

The following sections discuss routines that add or insert wide-character
strings in curses windows.

Handling Wide-Character Data with curses Routines 4–3

4.2.1 Add Wide-Character String (Overwrite) and Do Not Advance
Cursor

The functions and macros in the following table add a wide-character
string, along with character attributes, to a window. These routines:

• Do not advance the position of the cursor

• Do not check the string for special characters (such as newline, tab, and
backspace) that usually affect cursor position

• Truncate the string rather than wrapping it around to the next line

Characters in the string that these routines add overwrite characters that
already exist at the target position. Your choice of interface in this category
depends on whether you need to:

• Write all or some of the characters in the string

• Write the characters to the default or a specified window

• Write the characters at the current or specified coordinates

Recommended
Routine

Used in Place of: Behavior with Respect to:

add_wchstr addwchstr Number of characters: all
Window: default
Position: current

add_wchnstr addwchnstr Number of characters: specified
Window: default
Position: current

wadd_wchstr waddwchstr Number of characters: all
Window: specified
Position: current

wadd_wchnstr waddwchnstr Number of characters: specified
Window: specified
Position: current

mvadd_wchstr mvaddwchstr Number of characters: all
Window: default
Position: specified

mvadd_wchnstr mvaddwchnstr Number of characters: specified
Window: default
Position: specified

4–4 Handling Wide-Character Data with curses Routines

Recommended
Routine

Used in Place of: Behavior with Respect to:

mvwadd_wchstr mvwaddwchstr Number of characters: all
Window: specified
Position: specified

mvwadd_wchnstr mvwaddwchnstr Number of characters: specified
Window: specified
Position: specified

4.2.2 Add Wide-Character String (Overwrite) and Advance Cursor

Like the functions and macros discussed in the preceding section, the
routines in the following table also add a wide-character string (but
without video-character attributes) to a window and overwrite existing
characters. However, these routines also:

• Advance the position of the cursor

• Check the string for special characters (such as newline, tab, and
backspace) that can also affect the position of characters

• Wrap strings to the next line rather than truncating them

Your choice of interface in this category depends on whether you want to:

• Write all or a specified number of characters in the string

• Write the characters to the default or a specified window

• Write the characters at the current or specified coordinates

Recommended
Routine

Used in Place of: Behavior with Respect to:

addwstr addstr Number of characters: all
Window: default
Position: current

addnwstr – Number of characters: specified
Window: default
Position: current

waddwstr waddstr Number of characters: all
Window: specified
Position: current

waddnwstr – Number of characters: specified
Window: specified
Position: current

Handling Wide-Character Data with curses Routines 4–5

Recommended
Routine

Used in Place of: Behavior with Respect to:

mvaddwstr mvaddstr Number of characters: all
Window: default
Position: specified

mvaddnwstr – Number of characters: specified
Window: default
Position: specified

mvwaddwstr mvwaddstr Number of characters: all
Window: specified
Position: specified

mvwaddnwstr – Number of characters: specified
Window: specified
Position: specified

4.2.3 Insert Wide-Character String (no Overwrite) and Do Not
Advance Cursor

The functions and macros discussed in this section insert a wide-character
string before a target position in a curses window. These routines:

• Move further to the right any existing characters at and to the right of
the target position

Existing characters are not overwritten, but rightmost characters may
be truncated at the end of the line.

• Check the string for special characters (such as newline, tab, and
backspace) that can affect character and cursor placement

• Do not advance the cursor after the write operation

Your choice of interface in this category depends on whether you need to:

• Write all or some of the characters in the string

• Write the characters to the default or a specified window

• Write the characters at the current or specified coordinates

4–6 Handling Wide-Character Data with curses Routines

Recommended
Routine

Used in Place of: Behavior with Respect to:

ins_wstr inswstr Number of characters: all
Window: default
Position: current

ins_nwstr insnwstr Number of characters: specified
Window: default
Position: current

wins_wstr winswstr Number of characters: all
Window: specified
Position: current

wins_nwstr winsnwstr Number of characters: specified
Window: specified
Position: current

mvins_wstr mvinswstr Number of characters: all
Window: default
Position: specified

mvins_nwstr mvinsnwstr Number of characters: specified
Window: default
Position: specified

mvwins_wstr mvwinswstr Number of characters: all
Window: specified
Position: specified

mvwins_nwstr mvwinsnwstr Number of characters: specified
Window: specified
Position: specified

4.3 Removing a Wide Character from a curses Window

The function and macros in the following table delete a wide character at
the target position in a curses window. Characters that follow the deleted
character on the line shift one character to the left. These routines existed
in the curses library before multibyte characters were supported and have
been redefined for correct handling of wide-character format.

Your choice of interface in this category depends on whether you need to:

• Delete a wide character in the default or a specified window

• Delete a wide character at the current or specified coordinates

Handling Wide-Character Data with curses Routines 4–7

Recommended
Routine

Used in Place of: Behavior with Respect to:

delch same Window: default
Position: current

wdelch same Window: specified
Position: current

mvdelch same Window: default
Position: specified

mvwdelch same Window: specified
Position: specified

4.4 Reading a Wide Character from a curses Window

The function and macros in this section read a wide character, along with
its video attributes, from a curses window. The data returned to the
program is of data type cchar_t , so that both the wide character and its
attributes are stored.

Your choice of interface in this category depends on whether the character
being read is:

• In the default or a specified window

• At the current or specified coordinates

Recommended
Routine

Used in Place of: Behavior with Respect to:

in_wch inch , inwch Window: default
Position: current

win_wch winch , winwch Window: specified
Position: current

mvin_wch mvinch , mvinwch Window: default
Position: specified

mvwin_wch mvwinch , mvwinwch Window: specified
Position: specified

4.5 Reading a Wide-Character String from a curses
Window

There are two sets of routines that allow you to read a wide-character
string from a curses window. Routines in one set retrieve strings that

4–8 Handling Wide-Character Data with curses Routines

include wide characters with their video attributes. Routines in the other
set strip attributes from the characters in the string.

4.5.1 Reading Wide-Character Strings with Attributes

The function and macros in the following table read a wide-character
string, along with character attributes, from a curses window. The string
returned by the recommended routines is of the data type cchar_t .

Your choice of interface in this category depends on whether you want to:

• Read all or up to a specified number of wide characters in the string

• Read characters from the default or a specified window

• Read characters that are at the current or specified coordinates

Recommended
Routine

Used in Place of: Behavior with Respect to:

in_wchstr inwchstr Number of characters: all
Window: default
Position: current

in_wchnstr inwchnstr Number of characters: specified
Window: default
Position: current

win_wchstr winwchstr Number of characters: all
Window: specified
Position: current

win_wchnstr winwchnstr Number of characters: specified
Window: specified
Position: current

mvin_wchstr mvinwchstr Number of characters: all
Window: default
Position: specified

mvin_wchnstr mvinwchnstr Number of characters: specified
Window: default
Position: specified

Handling Wide-Character Data with curses Routines 4–9

Recommended
Routine

Used in Place of: Behavior with Respect to:

mvwin_wchstr mvwinwchstr Number of characters: all
Window: specified
Position: specified

mvwin_wchnstr mvwinwchnstr Number of characters: specified
Window: specified
Position: specified

4.5.2 Reading Wide-Character Strings Without Attributes

The function and macros in the following table read a wide-character string
from a curses window and store a string of data type wchar_t in a
program variable. Video attributes are stripped from the characters
included in the string.

Your choice of interface in this category depends on whether you want to:

• Read all or up to a specified number of characters in the string

• Read characters from the default or a specified window

• Read characters that are at the current or specified coordinates of the
window

Recommended
Routine

Used in Place of: Behavior with Respect to:

inwstr – Number of characters: all
Window: default
Position: current

innwstr – Number of characters: specified
Window: default
Position: current

winwstr – Number of characters: all
Window: specified
Position: current

winnwstr – Number of characters: specified
Window: specified
Position: current

mvinwstr – Number of characters: all
Window: default
Position: specified

4–10 Handling Wide-Character Data with curses Routines

Recommended
Routine

Used in Place of: Behavior with Respect to:

mvinnwstr – Number of characters: specified
Window: default
Position: specified

mvwinwstr – Number of characters: all
Window: specified
Position: specified

mvwinnwstr – Number of characters: specified
Window: specified
Position: specified

4.6 Reading a String of Characters from a Terminal

The function and macros in the following table get strings of characters
from the terminal associated with a curses window and store the
characters in a program buffer.

Your choice of interface in this category depends on whether you want to:

• Read all or up to a specified number of characters in a string

• Read characters for use in the default or a specified window

• Read characters for use at the current or specified coordinates on the
window

Recommended
Routine

Used in Place of: Behavior with Respect to:

get_wstr getstr , getwstr Number of characters: all
Window: default
Position: current

getn_wstr getnwstr Number of characters: specified
Window: default
Position: current

wget_wstr wgetstr , wgetwstr Number of characters: all
Window: specified
Position: current

wgetn_wstr wgetnwstr Number of characters: specified
Window: specified
Position: current

Handling Wide-Character Data with curses Routines 4–11

Recommended
Routine

Used in Place of: Behavior with Respect to:

mvget_wstr mvgetstr ,
mvgetwstr

Number of characters: all
Window: default
Position: specified

mvgetn_wstr mvgetnwstr Number of characters: specified
Window: default
Position: specified

mvwget_wstr mvwgetstr ,
mvwgetwstr

Number of characters: all
Window: specified
Position: specified

mvwgetn_wstr mvwgetnwstr Number of characters: specified
Window: specified
Position: specified

4.7 Reading or Queuing a Wide Character from the
Keyboard

Most functions or macros in the following table get a single-byte or
multibyte character from the terminal keyboard associated with a curses
window, convert the character to wide-character format, and return the
character to the program. Unless curses input mode is set to noecho ,
these routines also echo each character back to the screen.

The unget_wch interface places the wide character at the head of the
input queue. In this case, the next call to wget_wch returns the character
from the input queue to the program.

Your choice of interface in this category depends on whether you get the
character for:

• Use with the default or a specified window

• Use at the current or specified position of the window

• Immediate or delayed use

Recommended
Routine

Used in Place of: Behavior with Respect to:

get_wch getch , getwch Window: uses default
Position: uses current

wget_wch wgetch , wgetwch Window: uses specified
Position: uses current

4–12 Handling Wide-Character Data with curses Routines

Recommended
Routine

Used in Place of: Behavior with Respect to:

mvget_wch mvgetch , mvgetwch Window: uses default
Position: uses specified

mvwget_wch mvwgetch ,
mvwgetwch

Window: uses specified
Position: uses specified

unget_wch ungetch , ungetwch Window: not applicable
Position: not applicable
Input queue: queues character

4.8 Converting Formatted Text in a curses Window

The following functions read wide characters from a curses window and
convert them. These functions existed in the curses library before it was
internationalized and have been enhanced to handle wide-character data.
In all cases, these functions call wgetstr to read a wide-character string
from a window and then interpret and convert characters according to
scanf function rules. Refer to scanf (3) for more information.

Your choice of interface in this category depends on whether you:

• Convert a string in the default or a specified window

• Convert a string starting at the current or specified coordinates

• Need to include a list of variables as one of the arguments in the call

Recommended
Routine

Used in Place of: Behavior with Respect to:

scanw same Window: default
Position: current
Number of arguments: fixed

wscanw same Window: specified
Position: current
Number of arguments: fixed

mvscanw same Window: default
Position: specified
Number of arguments: fixed

Handling Wide-Character Data with curses Routines 4–13

Recommended
Routine

Used in Place of: Behavior with Respect to:

mvwscanw same Window: specified
Position: specified
Number of arguments: fixed

vw_scanw vwscanw Window: specified
Position: current
Number of arguments: variable

4.9 Printing Formatted Text on a curses Window

The functions in the following table format a string and then print it on a
curses window. The functions existed in the curses library before it was
internationalized and have been redefined to process data in
wide-character format. These functions are analogous to printf (or
vprintf) formatting the string and then addstr (or waddstr) writing it.
Refer to printf (3) for formatting information.

Your choice of interface in this category depends on whether you need to:

• Print on the default or a specified window

• Print at the current or a specified position

• Include a list of variables as one of the call arguments

Recommended
Routine

Used in Place of: Behavior with Respect to:

printw same Window: default
Position: current
Number of arguments: fixed

wprintw same Window: specified
Position: current
Number of arguments: fixed

mvprintw same Window: default
Position: specified
Number of arguments: fixed

mvwprintw same Window: specified
Position: specified
Number of arguments: fixed

vw_printw vwprintw Window: specified
Position: current
Number of arguments: variable

4–14 Handling Wide-Character Data with curses Routines

5
Creating Internationalized X, Xt, and

Motif Applications

This chapter discusses some of the internationalization features that are
available for creating a graphical user interface. More specifically, this
chapter addresses the following components:

• The Toolkit Intrinsics Library available with Release 6 of the X Window
System (libXt)

• The libraries available with Version 1.2 of OSF/Motif (libXm)

• The features provided as DECwindows Extensions to the OSF/Motif
Toolkit (libDXm)

• The X Library available with Release 6 of the X Window System
(libX11)

This chapter assumes that you are already familiar with these components.
For more complete information on them, refer to the following documents:

• X Window System Environment

• OSF/Motif Programmer’s Guide

• DECwindows Motif Guide to Application Programming

• DECwindows Extensions to Motif

• Programmer’s Supplement for Release 5 of the X Window System,
Version 11

This book is published by O’Reilly and Associates, Inc.

In addition to these documents, you can refer to reference pages for
individual functions.

This chapter does not discuss internationalization features specific to the
Common Desktop Environment. Refer to the Common Desktop
Environment: Internationalization Programmer’s Guide for information
about using these features.

Creating Internationalized X, Xt, and Motif Applications 5–1

5.1 Using Internationalization Features in the X Toolkit
Intrinsics

The X Toolkit Intrinsics includes internationalization features related to
the initialization process and resource management. The following sections
describe these features. For complete information on using routines from
the X Toolkit Intrinsics Library (libXt) in your applications, refer to the
reference pages for individual components.

5.1.1 Establishing a Locale with Xt Functions

An internationalized X Toolkit application must parse resources in a
locale-dependent manner. Therefore, an application must establish its
locale before initializing the resource database. But it is also true that the
application’s locale can be specified by resources. To solve this paradox,
Release 5 of the X Toolkit introduced the language procedure, which is
registered before initializing X Toolkit and then called during initialization
at the appropriate time to set locale. The XtSetLanguageProc() function
registers the language procedure for setting the locale. By default, this
function first calls the Standard C Library function setlocale() to set
the locale and then calls the X Library functions XSupportsLocale() and
XSetLocaleModifiers() to initialize the locale. An application that uses
the X Toolkit routines must call XtSetLanguageProc() , even if the
application uses the system default language procedure; otherwise, the
locale is not set and other Xt routines do not behave in a locale-dependent
manner. One of the most common ways to set locale is for applications to
make the following call before calling XtAppInitialize() :

XtSetLanguageProc(NULL,NULL,NULL);

After calling XtSetLanguageProc() , your application can then call one of
the following Xt initialization functions:

• XtInitialize()

• XtAppInitialize()

• XtOpenDisplay()

These functions call XtDisplayInitialize() , which obtains the value of
the xnlLanguage resource by parsing the command line and the
RESOURCE_MANAGERproperty. The XtDisplayInitialize() function
then calls the language procedure registered by the call to
XtSetLanguageProc() , passing it the xnlLanguage value as an
argument. After that, XtDisplayInitialize() parses resources in the
locale returned by the language procedure.

5–2 Creating Internationalized X, Xt, and Motif Applications

5.1.2 Using Font Set Resources with Xt Functions

The Xt routines support the XFontSet structure in place of the
XFontStruct structure in any internationalized widgets that draw
native-language text. The following resource attributes exist to support
XFontSet :

• XtNFontSet (the resource name)

• XtCFontSet (the resource class)

• XtRFontSet (the resource representation type)

The X Toolkit includes a converter that changes a preregistered string,
such as -*-*-*-R-*-*-*-120-75-75-*-*-*-* , to a list of font sets in
the structure (XFontSet). The converter should establish a default font set
list so that, if the string cannot be converted to a valid font set list, there is
a fallback to a valid font set.

5.1.3 Filtering Events During Text Input with Xt Functions

Starting with Release 5 of the X Toolkit Intrinsics, the
XtDispatchEvent() function was changed to call XFilterEvent() .
This change allows an input method to intercept registered X events before
being processed by an application that uses Xt routines.

5.1.4 Including the Codeset Component of Locales with Xt
Functions

Starting with Release 5 of the X Toolkit Intrinsics, an integral locale entity
supports the codeset component, in addition to the language and territory
components supported by earlier releases.

5.2 Using Internationalization Features of the OSF/Motif
and DECwindows Motif Toolkits

The chapter on internationalization features in the OSF/Motif
Programmer’s Guide discusses how you internationalize Motif applications.
The following sections are a supplement to information in that chapter.

5.2.1 Setting Language in a Motif Application

Most of the internationalization features in the OSF/Motif Toolkit (libXm)
and the DECwindows Extensions to the OSF/Motif Toolkit (libDXm) are
supported through features first introduced in Release 5 of the X Library
(libX) and the X Toolkit (libXt). Motif internationalization features are

Creating Internationalized X, Xt, and Motif Applications 5–3

also supported the same way when Release 6 or Release 6.3 of the X
Library and X Toolkit are installed. For example, to establish the locale of
your Motif application, you use the same set of functions and guidelines as
described for an Xt application. (See Section 5.1.1.) If your application fails
to call XtSetLanguageProc() before initializing X Toolkit to register the
language procedure, the Motif widgets do not support the
internationalization features discussed in subsequent sections; in other
words, the widgets revert to behavior expected in releases earlier than X
Toolkit Release 5 and OSF/Motif Release 1.2.

The language for an application can be specified by:

• The value of the argv argument on the call to XtAppInitialize() ,
XtOpenDisplay() , XtDisplayInitialize() , or
XtOpenApplication()

• The setting of the language resource in the RESOURCE_MANAGER
property of the root window for the specified display

• The setting of the xnlLanguage resource in the user’s .Xdefaults file

• The setting of the LANGenvironment variable

Elements higher on the preceding list take precedence over lower elements.
Note the following points:

• After an application opens its first display, Motif routines use the
established language setting until the application terminates.

• If the RESOURCE_MANAGERproperty exists in the root window, Motif
routines do not use the .Xdefaults file, even if the language resource
is not defined in the RESOURCE_MANAGERproperty.

5.2.2 Using Compound Strings and the XmText, XmTextField, and
DXmCSText Widgets

The OSF/Motif XmText and XmTextField widgets provide
internationalization features based on the X and X Toolkit Libraries. The
widgets use the codeset of the current locale to encode text information
that users enter and display. To display the data in the correct fonts, the
widgets use the following search pattern to locate the fonts:

• Search the font list for an entry that is a font set and has the font list
element tag XmFONTLIST_DEFAULT_TAG

• Search the font list for an entry that specifies a font set and use the
first one found

• Use the first font in the font list

5–4 Creating Internationalized X, Xt, and Motif Applications

Items in the preceding list are in precedence order from highest to lowest;
the widgets stop the search when an item higher on the list determines the
font set.

The internationalization features available through the text widgets have
changed from earlier OSF/Motif releases on the following two dimensions:

• The segments of a compound string can contain data from multiple
character sets. This ability is enabled through the font set construct
and support for a locale’s codeset rather than a single character set per
language. (Codesets other than Latin ones usually support multiple
character sets.) To take advantage of this change, your application must
ensure that:

– The font list structure defines the appropriate font set as the list
element used to display segments of the compound string.

– The compound string includes a tag that will match the correct font
set rather than a single font.

• For input methods, the XmText , XmTextField , and DXmCSText
widgets support the on-the-spot interaction style, as well as off-the-spot,
over-the-spot, and root-window styles supported through Release 1.2 of
OSF/Motif.

You can specify interaction styles as a priority list for the
XmNpreeditType resource when creating locale-dependent resource
files for your application.

_______________________ Note _______________________

When users select the off-the-spot input style, an application
window is enlarged to make room for the input status and
preedit area (usually at the bottom of the window). Therefore,
the off-the-spot input style requires that auto-resizing be
enabled for any application in which that input style is used.

If you are writing an X or Motif application that will be used in
Asian countries, do not use toolkit functions to disable
auto-resize for your application.

You can use the following functions to create a compound string for
codesets that include multiple character sets:

• XmStringCreate() , which creates a compound string composed of
text and a font list element tag

• XmStringCreateLocalized() , which creates a compound string that
uses the encoding of the current locale

Creating Internationalized X, Xt, and Motif Applications 5–5

_______________________ Note _______________________

Right-to-left display of language text, which is appropriate for
languages such as Hebrew, is supported through the DXmCSText
widget. The XmText and XmTextField widgets support only
left-to-right displays.

5.2.3 Internationalization Features of Widget Classes

The following widget classes support native-language input and display
capabilities through the XmText and XmTextField widgets (see
Section 5.2.2):

• Command

• FileSelectionBox

• Label

• List

• MessageBox

• SelectionBox

5.3 Using Internationalization Features in the X Library

Starting with Release 5 of the libX11 library, the X Consortium defined
new specifications for developing X clients that handle data for different
locales. The new specifications are based on the ANSI C locale model,
which configures the Standard C Library to process data in different native
languages. These specifications provide interfaces for:

• Requesting user input in different native languages

• Drawing fonts used for native-language text

• Obtaining language-specific resource values

• Interclient communication that supports native-language text through
codeset conversion

The following sections, which describe how to write an internationalized
application with the X Library, cover the following topics:

• Managing locales

• Drawing and measuring native-language text

• Handling interclient communication

• Localizing X resource databases

5–6 Creating Internationalized X, Xt, and Motif Applications

• Handling text input and output

To illustrate programming techniques, particularly those pertaining to text
input, sections that discuss the preceding topics include excerpts from an
application named ximdemo . The complete source file and an Imakefile
for this application are provided on line in the
$I18NPATH/usr/examples/ximdemo directory. You can read the source
file, and build and run the application to understand more fully how to
apply the programming techniques being discussed.

5.3.1 Using the X Library to Manage Locales

An internationalized X client uses the same locale announcement
mechanism, the setlocale function in the Standard C Library, as other
kinds of applications use. The X Library includes two additional functions
to determine the locale and configure locale modifiers:
XSupportsLocale() and XSetLocaleModifiers() . Table 5–1 briefly
describes these functions. They are more fully described in
XSupportsLocale (3X11) and XSetLocaleModifiers (3X11).

Creating Internationalized X, Xt, and Motif Applications 5–7

Table 5–1: Locale Announcement Functions in the X Library

Function Description

XSupportsLocale() Determines if the X Library supports the current
locale.

XSetLocaleModifiers() Specifies a list of X modifiers for the current locale
setting.
This list is a null-terminated string where list
elements use the format @category =value . The
only standard category currently defined as a locale
modifier is im , which identifies the input method.
However, several im entries can appear on a
modifier list when a locale supports more than one
input method.
To provide default values on the local host system,
the value defined for the XMODIFIERSenvironment
variable is appended to the list of any modifiers
supplied by the function call. For example, on Tru64
UNIX systems, the default value for the input
method is DEC. The following command explicitly
sets the XMODIFIERSvariable to this value:

% setenv XMODIFIERS @im=DEC

In this example, the value @im=DECwould be
appended to the modifier list specified on the call to
XSetLocaleModifiers() .

X Library functions operate according to current locale and locale-modifier
settings or according to locale and locale modifier settings attached to
objects that are supplied to the functions. There are five types of objects
related to locale settings:

• XIM and XIC , which are related to text input

• XFontSet , which is related to text drawing and measurement

• XOMand XOC, which are related to text output

These objects were introduced in the Version 6 implementation of
XrmDatabase , which is associated with application resource files.

The locale and locale modifiers of these objects depend on the locale setting
when the objects were created. Therefore, you can create objects for various
languages and use them simultaneously to process data from different
locales. This capability lets you develop multilingual X window applications.
Adhere to the following rules when developing your application:

• Identify the locale that applies to data and handle that data with the
appropriate locale-specific object.

5–8 Creating Internationalized X, Xt, and Motif Applications

Results are unpredictable when the data’s locale does not match the
object’s locale.

• When passing text to WPI interfaces (such as printf()) in the
Standard C Library, ensure that the current locale setting for the
process matches the locale of the data being passed.

Example 5–1 shows how an X application sets or determines locale.

Example 5–1: Setting Locale in an X Windows Application

#include <stdio.h>
#include <X11/Xlocale.h>
#include <X11/Xlib.h>
.
.
.
#define DEFAULT_LOCALE "zh_TW.dechanyu" 1
.
.
.
main(argc, argv)
int argc;
char *argv[];
{
.
.
.

immodifier[0] = ’\0’;
for(i=1; i<argc; i++) {

if(!strcmp(argv[i], "-Root")) {
best_style = XIMPreeditNothing;

}
.
.
.

else if (!strcmp(argv[i], "-locale")) 2
locale = argv[++i];

else if (!strcmp(argv[i], "-immodifier")) {
strcpy(immodifier, "@im=");
strcat(immodifier, argv[++i]);

}
}

.

.

.
if(locale == NULL)

locale = DEFAULT_LOCALE; 3
if(setlocale(LC_CTYPE, locale) == NULL) {

fprintf(stderr, "Error : setlocale() !\n");
exit(0);
}

if (!XSupportsLocale()) {
fprintf(stderr, "X does not support this locale");
exit(1);

}
if (XSetLocaleModifiers(immodifier) == NULL) {

(void) fprintf(stderr, "%s: Warning : cannot set locale \
modifiers. \n", argv[0]);

}
.
.
.

1 Defines a constant to contain the setting for the default locale

Creating Internationalized X, Xt, and Motif Applications 5–9

In this example, the constant’s value is explicitly set to
zh_TW.dechanyu .

2 Determines if a locale was specified on the application command line

The user can override the default locale by using the -locale option
on the command line that runs this application.

3 Sets the locale to the value of the DEFAULT_LOCALEconstant if the
locale was not specified on the application command line

If this constant were set to the NULL string ("") rather than
zh_TW.dechanyu , the default locale would be determined by the
setting of the LANGenvironment variable for the process in which the
application is run.

5.3.2 Displaying Text for Different Locales

Codesets for some locales, particularly those for Asian languages, require
more than one X window font to display all the characters defined. To
handle these codesets, the X Library supports the concept of a font set,
which allows you to use more than one font to draw and measure text. The
font set concept is implemented by the XFontSet structure, which replaces
the XFontStruct structure that was supported by X Library releases
earlier than Release 5.

A font set is bound to the locale with which it was created. The functions
that draw and measure text interpret the text according to the locale of the
font set and therefore map characters to their font glyphs correctly.

The implementation of functions that draw and measure text allows you to
use fonts with different encodings to display native-language text.

5.3.2.1 Creating and Manipulating Font Sets

Table 5–2 summarizes the functions that create and use font sets. For
complete information on a function, refer to its reference page.

Table 5–2: X Library Functions That Create and Manipulate Font Sets

Function Description

XCreateFontSet() Creates a font set for a specified display.
This function determines the codesets
required for the current locale and loads a
set of fonts to support those codesets.

XFreeFontSet() Frees a specified font set and any
associated components, such as the base
font name list, the font name list, the
XFontStruct list, and XFontSetExtents .

5–10 Creating Internationalized X, Xt, and Motif Applications

Table 5–2: X Library Functions That Create and Manipulate Font Sets
(cont.)

Function Description

XFontsOfFontSet() Returns a list of XFontStruct structures
and font names for the given font set.

XBaseFontNameListOfFontSet() Returns the original base font name list
supplied by the client when the font set
was created.

XLocaleOfFontSet() Returns the name of the locale bound to
the specified font set.

Example 5–2 shows the functions that create and use font sets.

Example 5–2: Creating and Using Font Sets in an X Windows Application

.

.

.
#define DEFAULT_FONT_NAME "-*-SCREEN-*-*-R-Normal--*-*, -*" 1
.
.
.

char *base_font_name = NULL;
.
.
.

XFontSet font_set;
.
.
.

char **missing_list;
int missing_count;
char *def_string;

.

.

.
if (base_font_name == NULL)

base_font_name = DEFAULT_FONT_NAME; 2
font_set = XCreateFontSet(display, base_font_name, &missing_list,

&missing_count, &def_string);
.
.
.

/*
* if there are charsets for which no fonts can be found,
* print a warning message.
*/

if (missing_count > 0) {
fprintf(stderr, "The following charsets are \

missing: \n");
for (i=0; i<missing_count; i++)

fprintf(stderr, "%s \n", missing_list[i]);
XFreeStringList(missing_list);

}
.
.
.

1 Defines the constant, DEFAULT_FONT_NAME, to contain the value of the
the default base font name list

Creating Internationalized X, Xt, and Motif Applications 5–11

In this example, the default base font name list is set to
-*-SCREEN-*-*-R-Normal--*-*, -* . For a default base font name
list, you should specify a generic name (using wildcard fields as shown
in the example) rather than a fully specified list of fonts. A fully
specified font list works only for a particular locale, whereas a generic
name can be the default for multiple locales.

2 Determines whether the default base font name list was supplied on
the command line

The user can override the default base font name list by using the -fs
option on the application command line.

5.3.2.2 Obtaining Metrics for Font Sets

Table 5–3 summarizes the X Library functions that can query font set
metrics and measure text.

Table 5–3: X Library Functions That Measure Text

Function Description

XExtentsOfFontSet() Returns an XFontSetExtents structure,
which contains information about the bounding
box of the fonts in the specified font sets.

XmbTextEscapement() ,
XwcTextEscapement()

Calculate the escapement (in pixels) required
to draw a given string by using the specified
font set.

XmbTextExtents() ,
XwcTextExtents()

Calculate the overall bounding box of the
string’s image and a logical bounding box for
spacing purposes. These functions also return
the value returned by XmbTextEscapement()
and XwcTextEscapement() , respectively.

XmbTextPerCharExtents() ,
XwcTextPerCharExtents()

Return the text dimensions of each character of
the specified text according to the fonts loaded
for the specified font set.

5.3.2.3 Drawing Text with Font Sets

Table 5–4 summarizes functions provided specifically for drawing text in
different native languages. Unlike other X Library functions that draw
text, the internationalized functions do the following:

• Work with font sets rather than single fonts

• Handle text drawing according to the locale of the font set

These functions free applications from handling text encoding directly.

5–12 Creating Internationalized X, Xt, and Motif Applications

Table 5–4: X Library Functions That Draw Text

Function Description

XmbDrawText() ,
XwcDrawText()

Draw text, using multiple font sets, and allow
complex spacing and font set shifts between text
strings.
Use these functions in place of their single-font
counterparts, XDrawText() and XDrawText16() .

XmbDrawString() ,
XwcDrawString()

Using one font set, draw only the specified text
with the foreground pixel.
Use these functions in place of their single-font
counterparts, XDrawString and XDrawString16 .

XmbDrawImageString() ,
XwcDrawImageString()

Fill a destination rectangle with the background
pixel; then draw the specified image text, using one
font set, and paint that text with the foreground
pixel.
Use these functions in place of their single-font
counterparts, XDrawImageString() and
XDrawImageString16() .

Example 5–3 shows how internationalized functions draw text.

Example 5–3: Drawing Text in an X Windows Application

GC Jxgc_on, Jxgc_off;
int Jxcx, Jxcy;
int Jxcx_offset=2, Jxcy_offset=2;
int Jxsfont_w, Jxwfont_w, Jxfont_height;
XRectangle *Jxfont_rect;
int Jxw_width, Jxw_height;
#define Jxmax_line 10
int Jxsize[Jxmax_line];
char Jxbuff[Jxmax_line][128];
int Jxline_no;
int Jxline_height;
...
static int
JxWriteText(display, client, font_set, len, string)

Display *display;
Window client;
XFontSet font_set;
int len;
char *string;
{
int fy;
XFillRectangle(display, client, Jxgc_off, Jxcx, Jxcy,

Jxsfont_w, Jxfont_height); 1

Creating Internationalized X, Xt, and Motif Applications 5–13

Example 5–3: Drawing Text in an X Windows Application (cont.)

if(len == 1 &&
(string[0] == LF || string[0] == TAB

|| string[0] == CR)) {
_JxNextLine();
XFillRectangle(display, client, Jxgc_off, 0, Jxcy,

Jxw_width, Jxfont_height);
}

else {
if(Jxcx >= (Jxw_width - Jxwfont_w)
|| (Jxsize[Jxline_no] + len) >= 256) {

_JxNextLine();
XFillRectangle(display, client, Jxgc_off, 0, Jxcy,

Jxw_width, Jxfont_height);
}
strncpy(&Jxbuff[Jxline_no][Jxsize[Jxline_no]], string,

len);
Jxsize[Jxline_no] += len;
fy = -Jxfont_rect->y + Jxcy;
XmbDrawImageString(display, client, font_set,

Jxgc_on, Jxcx, fy, string, len); 2
Jxcx += XmbTextEscapement(font_set, string, len); 3
if(Jxcx >= Jxw_width) {

_JxNextLine();
XFillRectangle(display, client, Jxgc_off, 0, Jxcy, \

Jxw_width, Jxfont_height);
}

}
XFillRectangle(display, client, Jxgc_on, Jxcx, Jxcy, \

Jxsfont_w, Jxfont_height);
}

1 Displays a block-type cursor by using XFillRectangle()

2 Displays a native-language string by using XmbDrawImageString()

The string may contain both single-byte and multibyte characters.

3 Calculates the position for drawing the next string with
XmbTextEscapement()

5.3.2.4 Handling Text with the X Output Method

The concept of a font set, as described in the preceding sections, was
introduced in Version 5 of the X library. Version 6 of the X library
implements the more generalized concepts of output methods and output
contexts. Output methods and output contexts handle multiple fonts and

5–14 Creating Internationalized X, Xt, and Motif Applications

context dependencies to enable bidirectional text and context-sensitive text
display.

To draw locale-dependent text, the application needs to know which fonts
are required for that text, how the text can be separated into its
components, and which font is required for each of those components.
Version 6 of the X library therefore incorporates the following objects to
address this problem:

• X Output Method (XOM)

XOM is an opaque data structure that the application can use to
communicate with an output method.

• X Output Context (XOC)

XOC is compatible with XFontSet in terms of its program interface but
is a more generalized abstraction.

The following table summarizes the X library functions related to XOM and
XOC. For more information on these functions, refer to their reference
pages.

Table 5–5: X Library Functions for Output Method and Context

Function Description

XOpenOM() Opens an output method to match the
specification of the current locale and
modifiers. The function returns an XOM
object to which the current locale and
modifiers are bound.

XCloseOM() Closes the specified output method.

XSetOMValues() Sets an output method’s attributes.

XGetOMValues() Gets the properties or features of the
specified output method.

XDisplayOfOM() Returns the display associated with the
specified output method.

XLocaleOfOM() Returns the locale associated with the
specified output method.

XCreateOC() Creates an output context within the
specified output method.

XOMOfOC() Returns the output method associated
with the specified output context.

XSetOCValues() Sets the values of the XOC object.

Creating Internationalized X, Xt, and Motif Applications 5–15

Table 5–5: X Library Functions for Output Method and Context (cont.)

Function Description

XGetOCValues() Gets the values of the XOC object.

XDestroyOC() Destroys the specified output context.

5.3.2.5 Converting Between Different Font Set Encodings

X fonts may be available in different encodings for the following reasons:

• More than one encoding for a character set may be in common use.

For example, character sets for Japanese (JIS X0208), Chinese (GB
2312), and Korean (KS C 5601) are available in GL or GR encoding.

• More than one character set may be supported in a particular country.

• Different vendors have adopted different font encoding schemes in their
products.

Font-encoding divergence from one system to another causes problems for
applications that you run on different kinds of systems. Therefore, the
implementation of the functions for text drawing and measurement
incorporates a mechanism to convert between different font encodings. For
conversion to take place, you must design your application so that it can
determine the base font name list appropriate for the run-time
environment. The application can obtain the base font name list from a
resource file or through an option the user specifies on the command line.
For example, in the command line to run the ximdemo application, the user
can include the -fs option to specify a base font name list.

The conversion mechanism for font encoding is available only when your
application uses the internationalized text drawing functions in the X
Library. The conversion mechanism is not available with the primitive text
drawing functions, such as XDrawText() and XDrawString() .

5.3.3 Handling Interclient Communication

When designing applications for use with different languages and in
different countries, you cannot assume that only Latin-1 or ASCII text
strings are used for interclient communication. The X Library therefore
contains functions that can handle text strings from any language for
interclient communication. Table 5–6 summarizes these functions.

5–16 Creating Internationalized X, Xt, and Motif Applications

Table 5–6: X Library Functions for Interclient Communication

Function Description

XmbSetWMProperties() Provides a single programming interface for
setting essential window properties.
Your application uses these properties to
communicate with other clients, particularly
window and session managers. For example,
the functions have arguments for window
and icon names and these names can contain
multibyte characters in some locales.

XmbTextListToTextProperty() ,
XwcTextListToTextProperty()

Convert text encoded in the current locale to
text properties of type STRING or
COMPOUND_TEXT.

XmbTextPropertyToTextList() ,
XwcTextPropertyToTextList()

Convert text properties of type STRING or
COMPOUND_TEXTto a list of
multibyte-character or wide-character
strings.

XwcFreeStringList() Frees the memory allocated by
XwcTextPropertyToTextList() .

XDefaultString() Queries the default string that is substituted
when a character cannot be converted.
When conversion routines encounter a string
with a character that cannot be converted,
they substitute a locale-dependent default
string. The XDefaultString() function
queries that default string.

Example 5–4 shows interclient communication in an X application.

Example 5–4: Communicating with Other Clients in an X Windows
Application

...
if (!strcmp(locale,"zh_TW.dechanyu")) {

strcpy(title, "XIM F|n/");
} else if (!strcmp(locale, "zh_CN.dechanzi")) {

strcpy(title, "XIM J>76");
} else if (!strncmp(locale, "ja_JP", 5)) {

strcpy(title, "XIM %G%b");
} else if (!strcmp(locale, "ko_KR.deckorean")) {

strcpy(title, "XIM 5%8p");
} else if (!strcmp(locale, "th_TH.TACTIS")) {

strcpy(title, "XIM !RCJR8T5");
} else {

strcpy(title, "XIM Demo") 1

Creating Internationalized X, Xt, and Motif Applications 5–17

Example 5–4: Communicating with Other Clients in an X Windows
Application (cont.)

}
XmbSetWMProperties(display, window, title, title, NULL, \

0, NULL, NULL, NULL); 2
...

1 Inserts native-language text in quoted arguments to the strcmp()
and strcpy() functions

In this example, the text is for a window title. Text strings are
explicitly specified in the function calls for the sake of simplicity. In
practice, X or Motif applications extract such text strings from
locale-specific resource or User-Interface Language (UIL) files.

2 Passes the text to the XmbSetWMProperties() function to parse the
title, using the locale, and to set the window manager’s property
accordingly

5.3.4 Handling Localized Resource Databases

As is also true for font sets, the locale of an X resource file depends on the
locale setting when the file was created. Therefore, when a resource file or
string is loaded to create a resource database, the file or string is parsed in
the current locale. Table 5–7 summarizes the X Library functions that
handle localized resource databases.

Table 5–7: X Library Functions That Handle Localized Resource Databases

Function Description

XrmLocaleOfDatabase() Returns the name of the locale bound to the specified
database.

XrmGetFileDatabase() Opens the specified file, creates a new resource
database, and loads it with the specifications read
from the file.
The file is parsed in the current locale.

XrmGetStringDatabase() Creates a new resource database and stores the
resources that are specified in a null-terminated
string.
The string is parsed in the current locale.

5–18 Creating Internationalized X, Xt, and Motif Applications

Table 5–7: X Library Functions That Handle Localized Resource Databases (cont.)

Function Description

XrmPutLineResource() Adds a single resource entry to the specified
database.
The entry string is parsed in the locale of the
database.

XrmPutFileDatabase() Stores a copy of the specified database in the
specified file.
The file is written in the locale of the database.

XResourceManagerString() Converts the RESOURCE_MANAGERproperty encoded
in type STRING to the multibyte string encoded in
the current locale.
This function converts encoding in the same way
encoding is converted by the
XmbTextPropertyToTextList() function.

5.3.5 Handling Text Input with the X Input Method

When developing internationalized X applications, programmers must be
able to request data input in different locales from the same keyboard. The
X Library incorporates two abstractions, or objects, that address this
problem:

• X Input Method (XIM)

XIM is an opaque data structure that an application can use to
communicate with an input method.

• X Input Context (XIC)

XIC represents the state of a text entry field in the context of a
multithreaded approach to user input. An application can provide
multiple text entry fields for users to input text data and allow users to
switch between fields. To obtain data input, the application calls
XmbLookupString() or XwcLookupString() with an input context.
The strings returned are always encoded in the locale associated with
the XIM/XIC objects. The following sections provide more information
about using input-method objects.

5.3.5.1 Opening and Closing an Input Method

To use an input method, an application must first call XOpenIM() . This
function establishes a connection to the input method for the current locale
and locale modifiers. The function returns an XIM object to which the
current locale and locale modifiers are bound. The binding of the locale and

Creating Internationalized X, Xt, and Motif Applications 5–19

modifiers to the XIM object occurs when the call executes and cannot be
changed dynamically.

When the input method is no longer required, the application closes the
XIM object with a call to XCloseIM() .

Two other functions are available to obtain information about an XIM
object:

• XDisplayOfIM()

This function returns the display associated with the specified XIM
object.

• XLocaleOfIM()

This function returns the locale associated with the specified XIM object.

The input method opened by the XOpenIM() function is determined from
the following (in order of highest to lowest priority):

• The value for the im modifier specified in the call to
XSetLocaleModifiers()

• The input method specified for the XMODIFIERSenvironment variable

• The default input method, whose name is DEC

If XOpenIM() cannot obtain the input method from the preceding sources,
the fallback is to support only ISO Latin-1 input. The XOpenIM() call fails
under the following conditions:

• The server for the specified input method is not running.

• The im modifier is specified incorrectly.

• The specified input method does not support the current locale.

Example 5–5 shows how to open and close an input method.

5–20 Creating Internationalized X, Xt, and Motif Applications

Example 5–5: Opening and Closing an Input Method in an X Windows
Application

main(argc, argv)
int argc;
char *argv[];

{
Display *display;

.

.

.
XIM im;

.

.

.
char *res_file = NULL;

.

.

.
XrmDatabase rdb = NULL;

.

.

.
preedcb_cd.win = client;
if(res_file) {

printf("Set Database : file name = %s\n", res_file);
rdb = XrmGetFileDatabase(res_file); 1
}

if((im = XOpenIM(display, rdb, NULL, NULL)) == NULL) {
printf("Error : XOpenIM() !\n"); 2
exit(0);
}

.

.

.
XCloseIM(im); 3

.

.

.

1 Passes the resource database rdb to XOpenIM() for looking up
resources that are private to an input method

You can specify resource databases created in the application by the
internationalized Xt functions.

2 Checks if the input method has been opened successfully
3 Closes the input method

5.3.5.2 Querying Input Method Values

Behavior of input methods in some areas is vendor-defined. For example,
different implementations of an input method may support different
combinations of user interaction styles. To help you develop portable
applications, the X Library includes the XGetIMValues() function to
determine the attributes of an input method. The XNQueryInputStyle
attribute specifies the user interaction styles supported by an input method.

Example 5–6 shows how to use the XGetIMValues() function with the
XNQueryInputStyle attribute to obtain information for an input method.

Creating Internationalized X, Xt, and Motif Applications 5–21

Example 5–6: Obtaining the User Interaction Styles for an Input Method

main(argc, argv)
int argc;
char *argv[];

{
Display *display;

.

.

.
int i, n;

.

.

.
XIMStyles *im_styles;
XIMStyle xim_mode=0;
XIMStyle best_style = XIMPreeditCallbacks;
XIM im;

.

.

.
XIMStyle app_supported_styles;

.

.

.
for(i=1; i<argc; i++) {

if(!strcmp(argv[i], "-Root")) {
best_style = XIMPreeditNothing;
}

else if (!strcmp(argv[i], "-Cb")) {
best_style = XIMPreeditCallbacks; 1
}

.

.

.
/* set flags for the styles our application can support */
app_supported_styles = XIMPreeditNone | XIMPreeditNothing |

XIMPreeditCallbacks; 2
app_supported_styles |= XIMStatusNone | XIMStatusNothing;
XGetIMValues(im, XNQueryInputStyle, &im_styles, NULL);
n = 1; 3
if(im_styles != (XIMStyles *)NULL) {

for(i=0; i<im_styles->count_styles; i++) {
xim_mode = im_styles->supported_styles[i];
if((xim_mode & app_supported_styles) ==

xim_mode) { /* if we can handle it */
n = 0;

if (xim_mode & best_style) /* pick user
selected style */

break; 4
}

}
}
if(n) {

printf("warning : Unsupport InputStyle. or No
IMserver.\n");

exit (0);
}

.

.

.

1 Determines if the user specified a preferred interaction style on the
application command line

In the ximdemo application, users can use the -Root and -Cb options
to specify the interaction styles. These options represent the only two

5–22 Creating Internationalized X, Xt, and Motif Applications

styles supported by this particular application. The -Root option
specifies the style to be Root Window; this style requires minimal
interaction between the client and the input server. The -Cb option
specifies a style where preediting is handled by callbacks. This style
enables on-the-spot preediting.

2 Defines the app_supported_styles bitmask to specify the two
interaction styles that the application can support

3 Calls XGetIMValues() to query interaction styles

The call returns the interaction styles to the im_styles parameter.

4 Selects the interaction style that the input method supports and the
application can handle properly

The interaction style specified by the user takes precedence; otherwise,
the application selects the last interaction style in the returned style
list.

Supported interaction styles for an input method can vary from one locale
to another. Refer to the technical reference guides (available in HTML
format only on the Tru64 UNIX documentation CD-ROM) to find out what
interaction styles are supported for a particular input method.

5.3.5.3 Creating and Using Contexts for an Input Method

Just as the X Server can maintain multiple windows for a display, an
application can create multiple contexts for an input method. The X
Library contains the XCreateIC() function to create an object for input
context (XIC). The XIC object maintains a number of attributes that you
can set and obtain through other functions. Among these attributes are:

• The interaction style for the input context

• The font set with which preediting and status text is drawn

• The callbacks for handling on-the-spot preediting

To destroy an XIC object, call the XDestroyIC() function.

Example 5–7 shows how to use the XCreateIC() and XDestroyIC()
functions.

Example 5–7: Creating and Destroying an Input Method Context in an X
Windows Application

.

.

.
Display *display;

.

.

.
Window root, window, client;

Creating Internationalized X, Xt, and Motif Applications 5–23

Example 5–7: Creating and Destroying an Input Method Context in an X
Windows Application (cont.)

.

.

.
XIMStyle xim_mode=0;

.

.

.
XIM im;
XIC ic;

.

.

.
XVaNestedList preedit_attr, status_attr;
XIMCallback ximapicb[10];
char immodifier[100];
preedcb_data preedcb_cd;

.

.

.
window = XCreateSimpleWindow(display, root, 0, 0,

W_WIDTH, W_HEIGHT, 2, bpixel, fpixel);
.
.
.

client = JxCreateTextWindow(display, window, 0, 0,
W_WIDTH-2, W_HEIGHT-2, 1, bpixel, fpixel,
font_set, &font_height);

.

.

.
if (xim_mode & XIMPreeditCallbacks) {

ximapicb[0].client_data = (XPointer)NULL;
ximapicb[0].callback = (XIMProc)api_preedit_start_cb;
ximapicb[1].client_data = (XPointer)(&preedcb_cd);
ximapicb[1].callback = (XIMProc)api_preedit_done_cb;
ximapicb[2].client_data = (XPointer)(&preedcb_cd);
ximapicb[2].callback = (XIMProc)api_preedit_draw_cb;
ximapicb[3].client_data = (XPointer)NULL;
ximapicb[3].callback = (XIMProc)api_preedit_caret_cb;
nestlist = XVaCreateNestedList(10,

XNPreeditStartCallback, &ximapicb[0],
XNPreeditDoneCallback, &ximapicb[1],
XNPreeditDrawCallback, &ximapicb[2],
XNPreeditCaretCallback, &ximapicb[3],
NULL); 1

}
if (xim_mode & XIMPreeditCallbacks) { 2

ic = XCreateIC(im,
XNInputStyle, xim_mode,
XNClientWindow, window,
XNFocusWindow, client,
XNPreeditAttributes, nestlist,
NULL); 3

} else { /* preedit nothing */
ic = XCreateIC(im,

XNInputStyle, xim_mode,
XNClientWindow, window,
XNFocusWindow, client,
NULL); 4

}
if(ic == NULL) { 5

printf("Error : XCreateIC() !\n");
XCloseIM(im);
exit(0);
}

5–24 Creating Internationalized X, Xt, and Motif Applications

Example 5–7: Creating and Destroying an Input Method Context in an X
Windows Application (cont.)

.

.

.
exit:

XDestroyIC(ic); 6

1 Calls the XVaCreateNestedList() function to create a nested
argument list for preediting and status attributes

The XNPreeditAttributes and XNStatusAttributes attributes
contain a list of subordinate attributes. Your application must create a
nested list to contain the subordinate attributes before setting or
querying them.

2 Specifies XIC attributes

Your application must always specify some XIC attributes when
creating an XIC object. The XNInputStyle attribute is mandatory;
requirements for other attributes depend on the interaction style.

3 Registers callbacks for on-the-spot interaction style

When the interaction style is on the spot, your application must
register all callbacks when creating the XIC object.

Your application does not have to set the XNClientWindow attribute
when creating the XIC, but must set this attribute before using the
XIC. If the XIC is used before XNClientWindow is set, results are
unpredictable.

4 Sets the interaction style, client window, and focus window attributes
for the root-window style

These are the only attributes your application needs to set at XIC
creation time when the interaction style is root window.

5 Specifies actions when XIC creation fails

The call to XCreateIC() fails (returns NULL) under the following
conditions:

• A required attribute is not set

• A read-only attribute (for example, XNFilterEvents) is set

• An attribute name is not recognized

6 Closes the XIC

Table 5–8 lists and summarizes the functions available for managing an
XIC object.

Creating Internationalized X, Xt, and Motif Applications 5–25

Table 5–8: X Library Functions That Manage Input Context (XIC)

Function Description

XSetICFocus() Enables keyboard events to be directed to the input
method.
You must call this function when the focus window of
an XIC receives input focus; otherwise, keyboard
events are not directed to the input method.

XUnsetICFocus() Prevents keyboard events from being directed to the
input method.
Call this function when the focus window of an XIC
loses focus.

XmbResetIC() ,
XwcResetIC()

Reset the XIC to its initial state.
Any input pending on that XIC is deleted. These
functions return either the current preedit string or
NULL, depending on the implementation of the input
server.

XIMOfIC() Returns the XIM associated with the specified XIC.

XSetICValues() Sets attributes to a specified XIC.

XGetICValues() Queries attributes from a specified XIC.

5.3.5.4 Providing Preediting Callbacks for the On-the-Spot Input Style

If your application supports the on-the-spot interaction style, you have to
provide a set of preediting callbacks. There are a number of callbacks
associated with XIC. Example 5–8 shows these callbacks.

Example 5–8: Using Preediting Callbacks in an X Windows Application

.

.

.
int Jxsize[Jxmax_line];
char Jxbuff[Jxmax_line][128];
int Jxline_no;
int Jxline_height;
int sav_cx, sav_cy;
int sav_w_width, w_height;
int sav_size[Jxmax_line];
int sav_line_no;
char preedit_buffer[12];
void
save_value()
{

int i;
sav_cx = Jxcx;
sav_cy = Jxcy;
sav_line_no = Jxline_no;
for (i=0; i< Jxmax_line; i++)

sav_size[i] = Jxsize[i];
}

5–26 Creating Internationalized X, Xt, and Motif Applications

Example 5–8: Using Preediting Callbacks in an X Windows Application
(cont.)

void
restore_value()
{

int i;
Jxcx = sav_cx;
Jxcy = sav_cy;
Jxline_no = sav_line_no;
for (i=0; i< Jxmax_line; i++)

Jxsize[i] = sav_size[i];
}
int
api_preedit_start_cb(ic, clientdata, calldata)
XIC ic;
XPointer clientdata;
XPointer calldata;
{

int len;
len = 12;

/* save up the values */
save_value(); 1
return(len); 2

}
void
api_preedit_done_cb(ic, clientdata, calldata)
XIC ic;
XPointer clientdata;
XPointer calldata;
{

preedcb_data *cd = (preedcb_data *)clientdata;
/* restore up the values */

restore_value(); 3
/* convenient handling */

JxRedisplayText(cd->dpy, cd->win, cd->fset);
return;

}
void
api_preedit_draw_cb(ic, clientdata, calldata)
XIC ic;
XPointer clientdata;
XIMPreeditDrawCallbackStruct *calldata;
{

preedcb_data *cd = (preedcb_data *)clientdata;
int count;
char *reset_str;
if (calldata->text) {

if (calldata->text->encoding_is_wchar) 4
{
} else {

count = strlen(calldata->text->string.multi_byte);
if (count > 12) {

/* preedit string > max preedit buffer */
reset_str = XmbResetIC(ic); 5
XFillRectangle(cd->dpy, cd->win, Jxgc_off, Jxcx, Jxcy,

Jxw_width*13, Jxfont_height); /* clear the preedit area */
restore_value();
if (reset_str)

XFree(reset_str);
return;

}

Creating Internationalized X, Xt, and Motif Applications 5–27

Example 5–8: Using Preediting Callbacks in an X Windows Application
(cont.)

if (!calldata->chg_length) { /* insert character */
if (!calldata->chg_first) { /* insert in first character

in preedit buffer */
strncpy(&preedit_buffer[0],calldata->text->string.multi_byte, count);

restore_value();
} else {

/* Not Yet Implemented */
}

} else { /* replace character */
if (!calldata->chg_first) { /* replace from first

character in pre-edit buffer */
strncpy(&preedit_buffer[0],calldata->text->string.multi_byte, count);

restore_value();
} else {

/* Not Yet Implemented */
}

}
XFillRectangle(cd->dpy, cd->win, Jxgc_off, Jxcx, Jxcy,

Jxw_width*13, Jxfont_height); /* clear the preedit area */
JxWriteText(cd->dpy, cd->win, cd->fset, count, preedit_buffer);

}
} else { /* should delete preedit buffer */

/* Not yet implemented */
}
return;

}
void
api_preedit_caret_cb(ic, clientdata, calldata)
XIC ic;
XPointer clientdata;
XIMPreeditCaretCallbackStruct *calldata;
{

/* Not yet implemented */
return;

}
.
.
.

1 Saves the current drawing position

As part of the operation of drawing preediting strings, this application
saves the current drawing position as the value of the
PreeditStartCallback attribute. Once the preediting is complete,
the application erases the preediting string and restores the original
drawing position.

2 Returns the length of the preediting string

The value of 12 bytes is an arbitrary number to limit the length of the
string. The value should match the size of the preediting buffer. This
application declares the preediting buffer (preedit_buffer) to be a
12-byte character array.

3 Restores the drawing position and redraws the text buffer

5–28 Creating Internationalized X, Xt, and Motif Applications

4 Handles wide-character encoding

This example assumes that the preediting string is in multibyte
encoding. However, your application should handle both multibyte and
wide-character encoding. Wide-character encoding is preferable
because information, such as character position, is returned in the
XIMPreeditDrawCallbackStruct structure as the number of
characters rather than the number of bytes.

5 Clears the preediting string when its size exceeds 12 bytes

The size of the string is obtained from the PreeditDrawCallback
attribute. Without processing the string returned on the call to
XmbResetIC() , the application frees the string with a call to
Xfree() .

5.3.5.5 Filtering Events for an Input Method

An input method has to receive events before the events are processed by
the application. The application has to pass to the input method not only
KeyPress/KeyRelease events but other events as well. The X Library
contains the XfilterEvent() function to pass events to an input method.
Use this function, along with related functions, as follows:

1. Obtain a mask for the events to be passed to the input method by
calling the XGetICValues() function with the XNFilterEvents
argument.

2. Register the event types with the XSelectInput() function.

3. In the main loop of the program, usually right after the call to
XNextEvent() , call XFilterEvent() to pass the event to the input
method.

A return status of True indicates that the input method has filtered
the event and it needs no further processing by the application.

Example 5–9 shows the preceding process.

Example 5–9: Filtering Events for an Input Method in an X Windows
Application

.

.

. long im_event_mask;

.

.

.
XGetICValues(ic, XNFilterEvents, &im_event_mask, NULL);
mask = StructureNotifyMask | FocusChangeMask | ExposureMask;
XSelectInput(display, window, mask);
mask = ExposureMask | KeyPressMask | FocusChangeMask |

im_event_mask;

Creating Internationalized X, Xt, and Motif Applications 5–29

Example 5–9: Filtering Events for an Input Method in an X Windows
Application (cont.)

XSelectInput(display, client, mask);
.
.
.

for(;;) {
XNextEvent(display, &event);
if(XFilterEvent(&event, NULL) == True)

continue; 1
switch(event.type) {
/* dispatch event */

.

.

.
}

}
.
.
.

1 Filters the event

Note that the XtDispatchEvent() function calls XFilterEvent() .
Therefore, you could replace the for loop as shown in this example
with a call to XtAppMainLoop() .

5.3.5.6 Obtaining Composed Strings from the Keyboard

You use the XmbLookupString() or XwcLookupString() function in
your X application to obtain native-language characters and key symbols.
Your application has to take into account the complexity of some input
methods, which require several keystrokes to compose a single character.
Therefore, expect that a composed character or string may not be returned
on every call to one of these functions.

Example 5–10 shows how to get keyboard input in an X application.

Example 5–10: Obtaining Keyboard Input in an X Windows Application

.

.

.
XEvent event;

.

.

.
int len = 128;
char string[128];
KeySym keysym;
int count;

.

.

.
for(;;) {

XNextEvent(display, &event);
if(XFilterEvent(&event, NULL) == True)

continue;
switch(event.type) {

5–30 Creating Internationalized X, Xt, and Motif Applications

Example 5–10: Obtaining Keyboard Input in an X Windows Application
(cont.)

case FocusIn : 1
if(event.xany.window == window)

XSetInputFocus(display, client,
RevertToParent, CurrentTime);

else if(event.xany.window == client) {
XSetICFocus(ic);
}

break; case FocusOut : 1
if(event.xany.window == client) {

XUnsetICFocus(ic);
}

break;
case Expose :

if(event.xany.window == client)
JxRedisplayText(display, client,

font_set);
break;

case KeyPress : 2
count = XmbLookupString(ic, (XKeyPressedEvent
*)&event, string, len, &keysym, NULL);
if(count == 1 && string[0] == (0x1F&’c’)) {

/* exit */
goto exit;
}

if(count > 0) { 3
JxWriteText(display, client,

font_set, count, string);
}
break;

case MappingNotify :
XRefreshKeyboardMapping((XMappingEvent *)&event);
break;

case DestroyNotify :
printf("Error : DestroyEvent !\n");
break;
}

}

1 Handles FocusIn and FocusOut events

In this example, one XIC is associated with a focus window. Some
input servers require focus change information to update the status
area. Therefore, each FocusIn event calls XSetICFocus() and each
FocusOut event calls XUnsetICFocus() .

Your application can also use one XIC for several focus windows. In this
case, you do not need to call XSetICFocus() for every focus change
event, but you do have to set the XNFocusWindow attribute of the XIC.

2 Handles KeyPress events

Make sure that your application passes only KeyPress events to
XmbLookupString() or XwcLookupString() . Results are undefined
if you pass KeyRelease events to these functions.

Creating Internationalized X, Xt, and Motif Applications 5–31

For simplicity in this example, the status field in the call to
XmbLookupString() is NULL. Your own application should check for
the status return and respond appropriately. For example, if the status
return is XBufferOverflow , your application might try to allocate
more memory for the buffer.

3 Processes the string when one is returned

XmbLookupString() returns the size of the composed string (in
bytes).

5.3.5.7 Handling Failure of the Input Method Server

The XNDestroyCallback resources for an input method and an input
method context were introduced in X11R6. These resources, which are
triggered by failure of the input method server, close the XIM and XIC
objects for a client application. If a client application continues to run
without detecting server failure and then closes the XIC and XIM objects,
results are unpredictable.

Example 5–11 shows how to register the XNDestroyCallback resource for
the XIM object and how to close the XIM in the event of server failure.

Example 5–11: Handling Failure of the Input Method Server

static void _imDestroyCallback(); 1
.
.
.

Bool IMS_Connected = False;
XIMCallback cb; 2

.

.

.
if((im = XOpenIM(display, rdb, NULL, NULL)) == NULL) {

printf("Error : XOpenIM() !\n");
exit(0);
}

else {
IMS_Connected = True;
cb.client_data = (XPointer) &IMS_Connected;
cb.callback = (XIMProc) _imDestroyCallback;
XSetIMValues(im, XNDestroyCallback, &cb, NULL); 3

}
.
.
.

case KeyPress :
if (IMS_Connected) count = XmbLookupString(ic,

(XKeyPressedEvent *)&event, string, len, &keysym, NULL);
else count =

XLookupString((XKeyPressedEvent *)&event, string, len, &keysym, NULL); 4
.
.
.
static void
_imDestroyCallback(im, client_data, call_data)

XIM im;
XPointer client_data;
XPointer call_data;

{

5–32 Creating Internationalized X, Xt, and Motif Applications

Example 5–11: Handling Failure of the Input Method Server (cont.)

Bool *Connected = (Bool *)client_data;
*Connected =3D False; 5

}

1 Declares the function that closes the XIM if the input method server
(IMS) fails for any reason

2 Declares the IMS_Connected variable to specify whether the input
method server is still connected and the cb structure to contain client
information needed for resource registration

3 If the call to open the XIM fails, prints an error message and exits

Otherwise, sets the IMS_Connected variable to True , fills the cb
structure with appropriate client data, and calls the XSetIMValues()
function to register the XNDestroyCallback resource for the XIM

4 If the input method server is running, uses the XmbLookupString()
function to process user input

Otherwise, uses the XLookupString() function
5 Specifies the prototype for the function that closes the XIM in the

event that the input method server fails

Note that the ximdemo program is very simple and uses only one input
method context. In this case, there is no need to explicitly close the XIC
when the input method server fails. The following example shows the
prototype for a callback function that would close an XIC:

static void icDestroyCallback(ic, client_data, call_data)
XIC ic;
XPointer client_data;
XPointer call_data;

5.3.6 Using X Library Features: A Summary

The following list of steps for processing native-language input summarizes
the information presented in preceding sections on the X Library. For your
convenience, the step description also notes when programming with X
Toolkit Intrinsics (Xt) functions differs from programming with X Library
functions. Refer to Section 5.1 for discussion of internationalization
features of the X Toolkit Intrinsics.

1. Call setlocale() to bind to the current locale.

You can accomplish the same result by registering an initialization
callback function with XtSetLanguageProc() .

Creating Internationalized X, Xt, and Motif Applications 5–33

2. Call XSupportsLocale() to verify that X supports the current locale.

3. Either call XSetLocaleModifiers() or set the XMODIFIERS
environment variable to define the input method being used.

4. Call XOpenIM() to connect to the selected input method.

If you are writing a widget, you can skip this step and assume that a
valid XIM will be passed to the widget as a resource.

5. Call XGetIMValues() to query the interaction styles supported by
the input method.

When writing a widget, do this step in the initialization method.

6. Create a window to associate with an XIC.

When using Xt functions, create a widget.

7. Call XCreateFontSet() to create a font set for this window. In
X11R6, you can use XOpenOM() instead.

If you are using Xt functions and have created a widget, use the value
set for XtDefaultFontSet .

8. Choose an interaction style from the supported values obtained by the
application and pass this value as an argument to XCreateIC() .

If you are using XIMPreeditCallbacks , you must write the callback
routines and register them on the call to XCreateIC() .

9. Call XGetICValues() to query the XNFilterEvents attribute and
register the event that the input method needs from the focus window.

10. Call XFilterEvent() in the main event loop before dispatching an
event.

If the call returns True , you can discard the event.

If programming with routines from the X Intrinsics (Xt) Library, use
XtDispatchEvent() .

11. In the main event loop, set and unset input focus when the focus
window receives FocusIn and FocusOut events.

If programming with routines from the X Intrinsics (Xt) Library, use
an event handler or a translation/action table to track focus events.

12. For unfiltered KeyPress events, call XmbLookupString() or
XwcLookupString() to obtain key symbols and the composed string.

You can draw the string with the internationalized functions for text
drawing.

5–34 Creating Internationalized X, Xt, and Motif Applications

6
Using Internationalized Software

This chapter explains how setup tasks and software features vary among
language environments other than English. The chapter is aimed at
programmers who are familiar with Tru64 UNIX in an English-language
environment and who need to work with other languages, particularly
those that use multibyte characters, to run and test their applications.

6.1 Working in a Multilanguage Environment: Introduction

To enable input and display in any language other than English, you must
always set the locale in which your process runs. Depending on the
language, you may need to perform additional tasks, for example, to:

• Select keyboard type

• Define search paths for specialized data and executable files that are
language specific

• Set terminal code, application code, and other characteristics of the
terminal driver to be appropriate for the codeset or codesets where a
language’s characters are defined

• Load the fonts required to display the characters in a particular
language

• Enable one or more of the data input and editing methods used to
define and enter characters, words, and phrases

• Apply printer-control characters, filters, and fonts that are appropriate
for local-language printers

This chapter discusses these topics as they apply to particular languages or
groups of languages. The chapter also describes some command and
desktop environment features that English-language speakers do not
normally use and that allow you to display, enter, print, and mail text in
languages other than English. For complete information about using
internationalization features of applications that run in the Common
Desktop Environment (CDE), see the CDE Companion.

Language-specific user guides provide additional information about
customization and use of software provided for a particular language. The
following user guides are available only in HTML format:

Using Internationalized Software 6–1

• Technical Reference for Using Chinese Features

• Technical Reference for Using Japanese Features

• Technical Reference for Using Korean Features

• Technical Reference for Using Thai Features

Non-English characters are embedded in the text of the user guides for
Chinese, Japanese, and Korean. To view these characters with your web
browser, the appropriate language support subsets must be installed on
your system and your locale must be set to one that includes the local
language characters used in the book.

Tru64 UNIX documentation also provides introductory reference pages on
the topics of internationalization (i18n_intro (5)) and localization
(l10n_intro (5)), along with reference pages for all supported languages
and codesets.

6.2 Setting Locale and Language

System software that supports different language environments may
provide translated message files, application resource files, help files, or
some combination of these. If translations are available for message files,
you can vary the language of software messages and other text by selecting
a locale.

For system software, you set locale by defining the LANGenvironment
variable. For example:

% setenv LANG en_US.ISO8859-1

Refer to the discussion of internationalization in the System
Administration book and in the Command and Shell User’s Guide for more
detailed information on using locales and defining the associated variables
for system and user setup. You can also refer to the i18n_intro (5)
reference page for a discussion of locale variables such as LANG. If these
locale variables are not defined, internationalized applications assume the
POSIX (C) locale, which supports only English. For names of locales that
are available with the operating system, see l10n_intro (5).

_______________________ Note _______________________

Locales often have multiple variants. These variants have the
same name as the base locale but include a file name suffix that
begins with the at sign (@). Locale variants for support of
codesets, such as UCS-4 and cp850, that are not native to UNIX,
can be assigned to LANGor LC_ALL. However, locale variants
that differ from the base locale in only one locale category should

6–2 Using Internationalized Software

be assigned only to the appropriate locale category. For example,
a locale variant designed to support a specific collation sequence,
such as @radical would be assigned to LC_COLLATE. A locale
variant designed to support the euro monetary sign (@euro)
would be assigned only to LC_MONETARY. Use the base locale
name, not these variants, in assignments to the LANG
environment variable. Furthermore, in cases where a base locale
name is not being assigned to all locale categories, avoid using
the LC_ALL environment variable, whose assigned value
overrides settings for both LANGand the environment variables
for specific locale categories.

Many locale-specific files reside in directories whose names are
constructed from the language, territory, and codeset portions of
a locale name. Commands and other system applications insert
the setting of the LANGvariable into search paths that contain
%Las one of the directory nodes. This makes it possible for
software programs to find the correct set of files, such as fonts,
resource files, user-defined character files, and translated
reference pages, that should be used with the current locale. An
@suffix related to collation, if included in an assignment to the
LANGvariable, may result in applications being unable to find
certain locale-specific files.

For graphical applications, you need to select a language to take advantage
of text translations and local-language features available with Common
Desktop Environment (CDE) and other kinds of Motif applications. For
Asian languages, the correct language selection is particularly important
because it enables:

• Support for the appropriate input method in these applications

• Entry of file names and other parameters that use ideographic
characters

• Cursor positioning on correct character and word boundaries

• Line wrapping at correct word boundaries

See the CDE Companion for general information about setting language in
CDE.

CDE assumes that all applications run during a session operate in the
language that was set at the start of the session. On Tru64 UNIX systems,
you can work around this restriction.

1. In a dtterm window, set the LANGor LC_ALL environment variable to
the locale in which you want to run the new application. For example:

Using Internationalized Software 6–3

% setenv LANG ko_KR.deckorean

2. If the setting is for a Japanese, Chinese, or Korean locale, use the
system command line to start the appropriate input method server
before invoking the application. For example:

% /usr/bin/X11/dxhangulim &

See Section 6.4 for information about Asian input method servers.

3. In the same window, use the system command line to invoke the
application you want to run in the new locale. For example:

% /usr/dt/bin/dtterm &

4. If you need to change your keyboard setting to work in the new locale,
do so before starting to work in the new application’s window. See
Section 6.3 for information about setting keyboard type.

6.3 Selecting Keyboard Type

To enter English text, a standard keyboard provides a sufficient number of
keys (combined with shift states) to enter all uppercase and lowercase
letters, numerals, and punctuation marks. For many other languages, the
default keyboard does not provide enough keys and shift states to enter all
characters.

Terminal users must use a localized keyboard or, if their keyboard includes
a Compose key, use Compose-key sequences to enter non-English
characters from single-byte codesets. Some terminals also provide software
emulation of a number of keyboard layouts for languages that are based on
single-byte codesets. The user guide for each terminal explains how you can
use its keyboard to enter non-English characters. Entry of multibyte
characters in Asian languages requires special terminal hardware.

Workstation users can set keyboard type to be appropriate for languages
for which there are standard keyboard types when appropriate support files
are installed on the system. You need to set keyboard type for Western and
Eastern European languages, Japanese, Thai, and Hebrew. Keyboard
setting is not required for Chinese and Korean languages.

In CDE, use Keyboard Options (one of the Desktop Applications) to change
your keyboard type. Refer to the CDE Companion for more information
about changing keyboard type. From the system command line, this
application is invoked by using the dxkeyboard command.

Unlike the language setting, the keyboard setting is a global attribute that
applies to all windows. Therefore, if you are working in windows that were
created with different language settings, you may need to change the
keyboard setting as you move from one window to another. Keep in mind

6–4 Using Internationalized Software

that no matter what setting is made by using CDE applications, that
setting does not change the setting that applies when you log on the
system. The keyboard setting when you log on the system is always the
system-default keyboard. See keyboard (5) for information about changing
the system-default keyboard.

6.3.1 Determining Keyboard Layout

If you change your keyboard from the one whose characters are printed on
the hardware keys, you need to know how characters are mapped to keys
and whether any characters must be entered by using a mode-switch key or
mode-switch key sequence. For some languages, such as Czech, up to four
different characters can be mapped to the same key. In such cases, you use
the key defined as the mode switch to toggle among different sets of
characters mapped to the same key. Note that mode switching is a
character entry mechanism that is different from Compose sequences. A
particular keyboard setting may support Compose sequences (which
require one key to be defined as a multikey), mode switching (which
requires at least one key to be defined as a mode-switch key), both, or
neither of these input mechanisms.

You can access a keyboard layout for your current keyboard setting by
using a command similar to the following to create a PostScript file that
you can print:

% /usr/bin/X11/xkbprint -label symbols -o mykeyboard.ps :0

Refer to xkbprint (1X) for more information about the xkbprint command.

6.4 Determining Input Method

For some languages, such as Japanese, Chinese, and Korean, you use an
input method to enter characters, phrases, or both. An input method lets
you input a character by taking multiple editing actions on entry data. The
data entered at intermediate stages of character entry is called the
preediting string. The X Input Method specification defines four user input
styles:

• On-the-spot

Data being edited is displayed directly in the application window.
Application data is moved to allow the preediting string to display at
the point of character insertion.

• Over-the-spot

The preediting string is displayed in a window that is positioned over
the point of insertion.

Using Internationalized Software 6–5

• Off-the-spot

The preediting string is displayed in a window that is within the
application window but not over the point of insertion. Often, the
window for the preediting string appears at the bottom of the
application window. In this case, the preediting window may occlude
the last line of text in the application window. You can resize the
application window to make this last line visible.

• Root-window

The preediting string is displayed in a child window of the application
RootWindow.

For some of the input styles selected in an application, the preediting and
status windows are not redrawn correctly if the application window is
occluded by other windows. To correct this problem, click on or refocus on
the application window.

Input methods for different locales typically support more than one user
input style but not all of them. If you work in languages that are supported
by an input method, you can specify styles in priority order through the
VendorShell resource XmNpreeditType . By default, this resource is defined
to be:

OnTheSpot,OverTheSpot,OffTheSpot,Root

The preceding value means that on-the-spot input style is used if the input
method supports it, else the over-the-spot is used if the input method
supports it, and so forth.

There are several ways to supply the XmNpreeditType resource value to
an application:

• In CDE, use the Input Methods application. See the CDE Companion
for information on using this application.

• In an application-specific resource file.

• On the command line that invokes an application.

For example:

% app-name -xrm ’*preeditType: offthespot,onthespot’ &

Input styles are supported by specialized input method servers. An input
method server runs as an independent process and communicates with an
application to handle input operations. An input method server does not
have to be running on the same system as the application but must be
running and made accessible to the application before the application
starts. Following are the input method servers available in the operating
system, along with the input styles that each server supports:

6–6 Using Internationalized Software

• dxhangulim , the Korean input server, which supports all four input
styles (over the spot, off the spot, root window, and on the spot)

• dxhanyuim , the Traditional Chinese input server, which supports the
off-the-spot and root-window input styles

• dxhanziim , the Simplified Chinese input server, which supports the
off-the-spot and root-window input styles

• dxjim , the Japanese input server, which supports the on-the-spot,
over-the-spot, and root-window input styles

Each of these servers has a corresponding reference page.

The applications that you run may support more, fewer, or none of the
input styles supported by a particular input server. The preedit option
“None” applies when an input server rejects all input styles supported by
the application.

In the CDE, the appropriate input server automatically starts when you
select the session language. However, see Section 6.15.4 for restrictions
that may require you to start an input server manually.

6.5 Determining the Input Mode Switch State

The keyboard layout for an Asian language provides keys for only a small
number of characters. For Asian languages, you also use an input
methodology (incorporating control-key sequences, keypad-key sequences,
or options in a windows application) to convert one or more characters that
you can input directly from the keyboard to other kinds of characters.
Section 6.4 and the language-specific technical reference guides discuss
input methods for Asian languages.

If your keyboard has a mode-switch LED (light emitting diode), it is turned
on or off, depending on whether you last toggled the special input mode on
or off.

If you are using a workstation and your language is set to an Asian
language, you can show the mode-switch LED on the screen by invoking
the Keyboard Indicator application with the -map option, as follows:

% /usr/bin/X11/kb_indicator -map &

The -map option starts a Motif application that emulates a mode-switch
LED. The application window contains one button, which is displayed as on
or off, corresponding to the input mode state. You can click on this button
to toggle in and out of input mode. The window is insensitive if input mode
switching is not supported for your current language setting.

Using Internationalized Software 6–7

You can have only one Keyboard Indicator application running during your
session. To stop the application, press Ctrl-c in the window from which you
started the application or enter the following kill command with the
application’s process id:

kill -INT process_id

If Keyboard Indicator is stopped by any other means, you must enter the
following command before restarting the application:

% /usr/bin/X11/kb_indicator -clear

The preceding command erases the server status for the application so that
it can be restarted cleanly.

If your language is set to Hebrew, the Keyboard Manager application
(/usr/bin/X11/decwkm) provides the same function as the Keyboard
Indicator window provides for Asian languages.

6.6 Defining the Search Path for Specialized Components

European languages are supported by data and executable files installed at
system default locations. Asian-language support for some commands and
programming libraries requires files that are subordinate to the
/usr/i18n directory. These files supplement or replace files in system
default locations. When you install one or more of the Asian language
subsets, the installation procedure makes the following adjustments to
variable settings on a systemwide basis:

• I18NPATH

The I18NPATH variable defines the location of files that provide
Asian-language support and that are not in system default locations.
This variable is set to:

/usr/i18n

Your system administrator can choose to install files for Asian-language
support at a location different from /usr/i18n ; however, there must be
a link to the other location in the /usr/i18n directory.

• PATH

The PATHvariable points to the location of commands and is set to:

$I18NPATH/usr/bin:$PATH

The /etc/i18n_profile file includes the preceding variable assignments
on a systemwide basis for Bourne and Korn shell users. For C shell users,
the installation process includes the /etc/i18n_login file in the
/etc/csh.login file to correctly set search paths for Hebrew and Asian

6–8 Using Internationalized Software

languages. Unless specifically noted in descriptions of particular commands
or utilities, individual users do not need to change process-specific search
paths to find localized binaries and utilities.

6.7 Using Terminal Interface Features for Asian Languages

The Tru64 UNIX Asian terminal driver (atty) and Thai terminal driver
(ttty) support input and output of English and other language characters
over asynchronous terminal lines. When one or both of these drivers are
installed, you can set terminal line characteristics to be appropriate for the
language you are using. The driver’s local-language capabilities are
supported in the following terminal configurations:

• Terminal connected directly to the host machine via a serial line

• Terminal connected through LAT to the host system

• Terminal connected through TCP/IP to the host system

Refer to atty (7) and ttty (7) for more information about these terminal
drivers.

The stty command can enable support for multibyte codesets and special
character manipulation capabilities, such as the following:

• Automatic codeset conversion between terminal and application

• Line editing of multibyte characters

• Japanese input method (Kana-Kanji conversion)

• User-defined character (UDC) databases and on-demand loading (ODL)
of associated fonts

• Chinese phrase input method

This section provides general information about using the stty command
to enable features added to the terminal subsystem for Asian languages.

The stty utility sets or reports on terminal input/output characteristics of
the device that is the utility’s standard input. Table 6–1 shows the stty
options that set line discipline for Asian languages.

Using Internationalized Software 6–9

Table 6–1: The stty Command Options for Controlling Terminal Line
Discipline

stty Option Description

adec Sets the terminal line discipline to handle multibyte data and
the processing environment appropriate for simplified Chinese
(Hanzi), traditional Chinese (Hanyu), and Korean codesets. This
option is supported for both the STREAMS and BSD terminal
drivers.

jdec Sets the terminal line discipline to handle multibyte data and
the processing environment appropriate for Japanese codesets.
This option sets terminal code to dec and application code to
eucJP . The jdec option is supported for both the STREAMS
and BSD terminal drivers.

tdec Sets the terminal line discipline to handle Thai characters and
the processing environment appropriate for the Thai codeset.
This option is supported for only the BSD terminal driver.

dec Sets the terminal line discipline back to the default, or
standard, tty line discipline and clears characteristics that
preceding stty commands may have set for application and
terminal code. This option is supported for both the STREAMS
and BSD terminal drivers.

_______________________ Note _______________________

Do not set the terminal line discipline to jdec or adec from a
console set up for kernel debugging (running the KDEBUGdriver).
Doing so may cause the console to hang.

The stty command requires an appropriate locale setting to be in effect
before changing the terminal line discipline to support that locale. For
example, to set your terminal line discipline to handle Korean, enter:

% setenv LANG ko_KR.deckorean
% stty adec

To set your terminal line discipline back to the tty default, enter:

% stty dec

_______________________ Note _______________________

When your terminal line discipline is not set to the tty default
and you want to switch to another nondefault option (to switch
from jdec to adec , for example), first enter the stty dec
command to clear any application or terminal characteristics
that may not be appropriate for the new setting. The following

6–10 Using Internationalized Software

example shows how to switch a terminal line discipline from its
current setting of adec to jdec :

% stty dec
% stty jdec

The stty command entered with the −a option or all argument displays
all settings for the current terminal line discipline:

% stty adec
% stty all
atty disc;speed 9600 baud; 24 rows; 80 columns
erase = ^?; werase = ^W; kill = ^U; intr = ^C; quit = ^\; susp = ^Z
dsusp = ^Y; eof = ^D; eol <undef>; eol2 <undef>; stop = ^S; start = ^Q
lnext = ^V; discard = ^O; reprint = ^R; status <undef>; time = 0
min = 1
-parenb -parodd cs8 -cstopb hupcl cread -clocal
-ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl -iuclc
ixon -ixany -ixoff imaxbel
isig icanon -xcase echo echoe echok -echonl -noflsh -mdmbuf -nohang
-tostop echoctl -echoprt echoke -altwerase iexten -nokerninfo
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel tabs -onoeot
-odl lru size=256
-sim key= class=
tcode=dec acode=deckanji

6.7.1 Converting Between Application and Terminal Codesets

Many terminals support only one codeset, which is a problem when you
work on one terminal and need to run applications in locales (particularly
Asian locales) that are based on a variety of codesets. Therefore, the atty
driver provides a mechanism for converting between the codeset that an
application uses and the codeset that a terminal supports. You control
codeset conversion by using options on the stty command line.

Note that the adec , jdec , and dec options of the stty command set
terminal code and application code appropriately for Compaq terminals and
workstations. You need to explicitly use the tcode option, for example, if
you are logging in from a Japanese terminal that does not support the
same codeset as Compaq terminals and workstations.

Table 6–2 specifies stty options that explicitly set terminal and
application code.

Using Internationalized Software 6–11

Table 6–2: The stty Options to Explicitly Set Application and Terminal
Code

stty Option Description

acode codeset Sets application code to codeset

tcode codeset Sets terminal code to codeset

code codeset Sets both terminal code and application
code to codeset

The following command lets you run an application that uses DEC Kanji on
a terminal that supports only Shifted JIS (a codeset prevalent in the
Japanese personal computer market):

% stty acode deckanji tcode sjis

The technical reference guides for the Asian language features provide
additional details about supported application codesets and terminal
codesets.

6.7.2 Command Line Editing That Supports Multibyte Characters

This section discusses how you enable and use command-line editing when
Asian-language support is installed on your system.

When the terminal line discipline and terminal codeset characteristics are
set appropriately for multibyte codesets, the atty driver handles
command-line editing appropriately for languages supported by those
codesets. For example, when you enter the control sequence to delete a
character (assuming you have defined the control sequence), the entire
character is deleted, regardless of how many bytes it occupies. The
character being erased can be either a single-byte English character or a
multibyte Asian character when both occur on the same command line.

Word deletion is also supported, even when words combine single-byte and
multibyte characters. The atty driver accepts single-byte space characters,
two-byte space characters (if applicable to the terminal code setting), or tab
characters as word delimiters.

The erase and werase options of the stty command line let you define
the control sequence for character and word deletion. For example:

% stty erase Ctrl-h
% stty werase Ctrl-j

This example specifies that Ctrl-h deletes the character preceding the
cursor and Ctrl-j deletes the word preceding the cursor.

6–12 Using Internationalized Software

History mode is a mode of command-line editing that allows you to recall
and optionally modify a command entered previously. The history mode
implementation discussed here is one that is customized for Asian-language
input and supported only for the BSD terminal driver. Table 6–3 specifies
the stty options that enable or disable history mode editing.

Table 6–3: The stty Options to Enable/Disable History Mode

stty Option Description

history key Sets the toggle key for the history mechanism and
enables it.

−history Disables the history mechanism.

The atty driver can maintain a history of up to 32 commands, each with a
maximum length of 127 characters. Table 6–4 describes the commands you
can use to edit command lines after entering the history key .

Table 6–4: Command Line Editing in History Mode

Command/Key Description

Ctrl-a Move to the beginning of the line

Ctrl-d Delete the character under the cursor

Ctrl-e Move to the end of the line

Up-arrow Recall the previous command line in the history list

Down-arrow Recall the next command in the history list

Left-arrow Move the cursor left by one character

Right-arrow Move the cursor right by one character

erase_sequence Delete the character preceding the cursor

werase_sequence Delete the word preceding the cursor

In the preceding table erase_sequence and werase_sequence indicate
the control sequences defined by the stty options erase and werase ,
respectively.

When editing a command line in history mode, you insert characters as
follows:

1. Press the arrow keys to move the cursor to the position immediately to
the right of the point where you want to insert characters.

2. Enter the characters you want to insert.

Using Internationalized Software 6–13

If you enter the control characters that represent “kill,” “interrupt,” or
“suspend,” the tty driver breaks out of history mode and cancels the
command line being edited.

6.7.3 Kana-Kanji Conversion: Customization of Japanese Input
Options

In the Japanese language, a particular language element, such as a vowel,
can be represented by more than one character. These characters can have
both phonetic and ideographic variants; furthermore, the phonetic
character variants can print in either two-column or single-column width.
The different classes of characters, listed in the following table, require
different input schemes:

Character Class Description

Kanji Ideographic

Hiragana Phonetic

Katakana Phonetic Katakana characters exist in full
width (two-column) and half width
(single-column) formats. The single-column
format of Katakana is referred to as
Hankaku.

During a single session, a Japanese user can work with Kanji, Hiragana,
and Katakana characters in various combinations. The user therefore must
be able to customize terminal input mode to suit the character being
entered. When the input device is a JIS terminal rather than a
workstation, the user must adjust line discipline and terminal code settings
in the software to match hardware capabilities (for example, whether the
terminal uses 7-bit or 8-bit encoding).

The tty driver supports a mechanism known as Kana-Kanji conversion.
This term refers to the conversion between phonetic and ideographic
character encoding and the support for keyboard entry sequences that
make Japanese character selection more efficient for the user. You use the
stty command to enable or disable the Kana-Kanji conversion method and
other aspects of Japanese input support. The stty options that support
Japanese input are described in Table 6–5 and, unless noted otherwise, are
used in conjunction with the jdec option. For example, the following
command sets the terminal line discipline to support Japanese character
encoding and also enables Kana-Kanji conversion:

% stty jdec ikk

6–14 Using Internationalized Software

Table 6–5: The stty Options to Enable and Customize Japanese Input

stty Option Description

clause mode Sets the character attribute for marking a
clause that results from Kana-Kanji
conversion.
The mode argument can be bold ,
underline , reverse , or none .

esc.alw Changes the terminal state to “shift out”
whenever a newline character is output.
This option applies only when the tcode
(terminal code) stty option is set to jis7 or
jis8 .

−esc.alw Does not change the current terminal state
when a newline character is output.
This option applies only when the tcode
(terminal code) option is set to jis7 or jis8 .

henkan mode Sets the character attribute for marking a
Henkan, or conversion, region that results
from Kana-Kanji conversion.
The mode argument can be bold ,
underline , reverse , or none .

Using Internationalized Software 6–15

Table 6–5: The stty Options to Enable and Customize Japanese Input (cont.)

stty Option Description

ikk Enables the Japanese input method and
spawns the Kana-Kanji conversion daemon,
kkcd , if it does not already exist. With the
BSD terminal driver in cbreak mode, you
must use the jx option before using the ikk
option to enable the input method. With the
STREAMS terminal driver, you must use the
jinkey option before using the ikk option.
By default, key map information is taken
from (in highest to lowest priority order):

• The file specified for the kkseq option of
the stty command

• The file defined for the JSYKKSEQ
environment variable

• The $HOME/.jsykkseq file

System default key map files for the
Japanese input method reside in the
/usr/i18n/skel/ja_JP directory.
Dictionaries used with the Japanese input
method are taken from (in highest to lowest
priority order):

• The files defined for the JSYTANGO,
JSYKOJIN, and JSYLEARNenvironment
variables

• The /usr/i18n/jsy/jsytango.dic ,
$HOME/jsykojin.dic , and
$HOME/jsylearn.dic dictionary files

−ikk Disables the Japanese input method and kills
the kkcd daemon.

jinkey sequence Defines the escape sequence to activate the
extended Japanese input method used with
the STREAMS terminal driver. The
parameter for this option can be more than
one character.

6–16 Using Internationalized Software

Table 6–5: The stty Options to Enable and Customize Japanese Input (cont.)

stty Option Description

imode mode Sets the mode for handling 8-bit code or
Hankaku (single-column) Kana code when
the terminal line discipline is set to dec . The
mode argument can be one of the following
keywords:

• kanji , where the 8-bit code is treated as
encoding for Kanji

• hiragana , where the 8-bit code is
converted to 2-column Hiragana format

• katakana , where the 8-bit code is
converted to 2-column Katakana format

• hankaku , where the 8-bit code is handled
in Hankaku (1-column) Katakana format

jx character Sets the toggle character for entering the
extended, or cbreak , Kana-Kanji conversion
mode used with the BSD terminal driver.
Users need to enter cbreak mode when
working in utilities, such as dbx , that do not
support the full range of Japanese input
options.

−jx Undefines the toggle character for entering
the extended Kana-Kanji conversion mode.

kin esc_sequence Sets the JIS Kanji “shift in” escape sequence
for the JIS terminal.

kkmap Displays the current key map for Kana-Kanji
conversion. The display is a traversal tree
with a maximum of 15 characters for each
key sequence.

kkseq file Sets the Kana-Kanji conversion key map file
for the terminal (see also the table entry for
the ikk option).

knj.bsl Uses only one backspace to erase one Kanji
character.

−knj.bsl Uses two backspaces to erase one Kanji
character.

knj.sp Uses one 2-byte (zenkaku) space to blank out
one Kanji character.

Using Internationalized Software 6–17

Table 6–5: The stty Options to Enable and Customize Japanese Input (cont.)

stty Option Description

−knj.sp Uses two ASCII spaces to blank out one
Kanji character.

kout esc_sequence Sets the JIS Kanji “shift out” escape sequence
for the JIS terminal.

6.8 Supporting User-Defined Characters and Phrase Input
The national character sets for Japan, Taiwan, and China do not include
some of the characters that can appear in Asian place and personal names.
Such characters are defined by users and reside in site-specific databases.
These databases are called user-defined character (UDC) or
character-attribute databases. When users define ideographic characters,
they must also define font glyphs, collating files, and other support files for
the characters. Appendix B provides details on how you set up and use
UDC databases.

In Korea, Taiwan, and China, users can input a complete phrase by typing
a keyword, abbreviation, or acronym. This capability is supported by a
phrase database and an input mechanism. Appendix C provides details on
how you set up and use a Chinese phrase database.

The /var/i18n/conf/cp_dirs configuration file allows software services
or hardware to locate the databases that support UDC and phrase input.

Example 6–1 shows the default entries in the cp_dirs file. You can edit
these entries to change the default locations.

Example 6–1: Default cp_dirs File

#
Attribute directory configuration file
#
System location User location
=============== =============
udc - /var/i18n/udc ~/.udc
odl - /var/i18n/odl ~/.odl
sim - /var/i18n/sim ~/.sim
cdb /usr/i18n/.cdb /var/i18n/cdb ~/.cdb
iks - /var/i18n/iks ~/.iks
pre - /var/i18n/fonts ~/.fonts
bdf - /var/i18n/fonts ~/.fonts
pcf - /var/i18n/fonts ~/.fonts

Each line in the cp_dirs file represents one entry and has the following
format:

6–18 Using Internationalized Software

[service_name standard_path system_path user_path]

The service_name can be one of the following:

• bdf (for font files in BDF format)

• cdb (for collating value databases used with the asort command)

• iks (for input key sequence files)

• odl (for databases of fonts and input key sequences that the SoftODL
service uses)

• pcf (for font files in PCF format)

These files, depending on their font resolution, reside in either the
75dpi or 100dpi subdirectory.

• pre (for font files in preload format created by the cgen utility)

These are raw font files used to preload multibyte-character terminals.

• sim (for phrase databases)

• udc (for UDC databases)

The cp_dirs file can contain only one entry for each service named.
Remaining fields in the entry line consist of the following:

• standard_path specifies the location of the collating values database
for the standard character sets (applies only to the cdb entry)

• system_path specifies the location of systemwide databases

• user_path specifies the location of users’ private databases

The preceding locations are specified as one of the following:

• An absolute pathname, starting with a slash (/)

• A pathname, starting with tilde slash (~/), that is relative to a user’s
home directory

• A minus sign or hyphen (−) to indicate that the entry is not used

For example, you can specify - to be user_path for all services related
to user-defined characters if you want these characters supported only
through systemwide databases.

Comment lines in the cp_dirs file begin with the number sign (#).

6.9 Using Printer Interface Features That Support Local
Languages

When you install Tru64 UNIX and include language variant subsets, your
printing subsystem is enhanced with the following features:

Using Internationalized Software 6–19

• Two generic internationalized print filters, pcfof and wwpsof , that
work with Compaq and third-party printers

• A set of print filters that support escape sequences used by
local-language printers

• Entries in the /etc/printcap file to support printer code conversion
and on-demand loading of font files

• An lprsetup command that lets you add entries for local-language
printers to the /etc/printcap file

• lp , lpr , lpc , lpq , lprm , and lpstat commands that support
additional options for printing and printer control

• Support for on-demand loading in the lpd printer daemon

• PostScript outline fonts that can be used by the wwpsof filter and other
software

• Software, such as the pfsetup , ffd , and wwlpspr commands. These
commands support the DEClaser 1152, the DEClaser 5100, and
Printserver 17 products that are no longer offered for sale but are still
being used by customers. See i18n_printing (5) for more information.

The following sections discuss all but the last of the listed features.

6.9.1 Generic Internationalized Print Filters

The pcfof and wwpsof print filters enable use of Compaq printers,
particularly those for which no other printer-specific solution is described
in this chapter. You also need to use these filters if your printer is from
another vendor. Both of these filters rely on a printer customization file
(.pcf file) to supply certain device-specific information. Operating system
software includes a basic set of .pcf files. System administrators can add
more .pcf files to describe the capabilities of additional printers used at
your site.

6.9.1.1 pcfof Print Filter

The pcfof filter handles both PostScript printers and text printers, such
as the HP PCL printer. For PostScript files, the filter requires that the
appropriate local language PostScript fonts be available on the printer.
This restriction limits the filter’s usefulness on many Compaq printers,
particularly for printing PostScript files that require Japanese fonts. This
filter can be set up to do codeset conversion when the printer locale differs
from the one required for a text file print job. The filter also has .pcf files
that are appropriate to use for a number of third-party text printers. Refer
to pcfof (8) and the System Administration manual for details on using
this print filter.

6–20 Using Internationalized Software

6.9.1.2 wwpsof Print Filter

The wwpsof filter is used only with PostScript printers. The main
advantage of this filter is that it does not require PostScript fonts to be
printer resident because the filter can embed the required fonts in the print
job. The PostScript fonts can be either outline fonts installed on the system
or bitmap fonts made available to the filter through an X font server. The
filter prints multilanguage text files by first converting each character in
the text file to a matching character in a UNIX codeset for which fonts are
available and then converting the file to PostScript. The filter can also
print PostScript files that have been generated by a CDE application. Refer
to wwpsof (8) and the System Administration manual for details on using
this print filter.

6.9.2 Print Filters for Specific Local Language Printers

A print filter processes text data for a particular model of printer. The filter
handles the device dependencies of the printer and performs device
accounting functions. When each print job is complete, the print filter
writes an accounting record to the file specified by the af field of the
printer’s entry in the /etc/printcap file.

The print filters for local-language text printers can handle text files that
contain ASCII and local-language characters, or output files created by the
nroff command. When processing nroff output, the filter removes
multibyte characters that extend beyond the page boundary and translates
nroff control sequences for underlining, superscripting, and subscripting
to control sequences appropriate for the printer. However, the filter does
not support multiple nroff control sequences on the same character.

The PostScript print filters can print PostScript files in addition to text and
nroff output files.

A local-language print filter can be the specified filter in both the of and
if fields in the /etc/printcap file. For general information on
/etc/printcap entries, refer to the System Administration manual and to
printcap (4). Supplementary information is provided in i18n_printing (5).
A reference page for a specific language (for example, Japanese (5)) lists
the names of print filters that support printing characters in that language.

The following print filters process text data for Asian languages:

Language Filter Printer

Japanese la84of LA84-J

Japanese la86of LA86-J

Using Internationalized Software 6–21

Language Filter Printer

Japanese la90of LA90-J

Japanese la280of LA280-J

Japanese la380of LA380-J

Japanese ln03jaof LN03-J

Japanese ln05jaof LN05-J

Simplified Chinese la88cof LA88-C

Simplified Chinese la380cbof LA380-CB

Korean la380kof LA380-K

Korean dl510kaof DL510-KA

Traditional Chinese cp382dof CP382-D

Thai thailpof EP1050+

The following print filters process PostScript and text data for Asian
languages and for some of the languages supported by locales using the
ISO8859-2, ISO8859-5, ISO8859-7, and ISO8859-9 codesets:

Language Filter Printer

Japanese ln82rof LN82R

Czech, Traditional
Chinese, Simplified
Chinese, Hungarian,
Greek, Korean, Polish,
Russian, Slovak, Slovene,
and Turkish

dl1152wrof DEClaser 1152

Thai dl1152trof ,
dl1152ttmrof

DEClaser 1152

Czech, Traditional
Chinese, Simplified
Chinese, Hungarian,
Greek, Korean, Polish,
Russian, Slovak, Slovene,
and Turkish

dl5100wrof DEClaser 5100

Thai dl5100trof ,
dl5100ttmrof

DEClaser 5100

See the reference page for a specific language (for example, Japanese (5)) to
find the names of print filters that support printing characters in that
language. See i18n_printing (5) for information about the DEClaser 1152
and DEClaser 5100 printers.

6–22 Using Internationalized Software

6.9.3 Support for Local Language Printers in /etc/printcap

The /etc/printcap file describes characteristics of each printer on the
system. Printer characteristics are specified by symbol/value pairs, where
each symbol is a 2-character mnemonic. Each time a user submits a print
job, the lpd printer daemon and printer spooling system uses information
in the /etc/printcap file to determine how that job is handled.

Table 6–6 lists and describes /etc/printcap symbols that are specific to
support for local-language printers. Refer to printcap (4) for descriptions of
other symbols used in the /etc/printcap file. Refer to Section 6.9.4 for
an example of using the lprsetup command to add several of these
options to the /etc/printcap for a local-language printer.

Table 6–6: Symbols in /etc/printcap File for Local Language Printers

Symbol Type Default Description

ya str None Double-quoted list of keyword value assignments. This
assignment list specifies most of the printer options related
to country-specific support. The option keywords, which are
explained following this table, include flocale , font ,
line , odldb , odlstyle , onehalf , plocale , spcom,
tacdata , and tm .

yd str None Secondary tty line or channel for font faulting
Specify this entry for the DEClaser 1152 printer to support
the font-faulting mechanism. The font-faulting mechanism,
which is enabled by the alpc and ffserver commands,
allows the printer to use fonts that are installed but not
downloaded. Font faulting is required to support Chinese,
Korean, and some other fonts. The font-faulting daemon
(ffd) uses the secondary tty line to send font information to
the printer.

yj str NULL If on (the default) is specified as a value, restarts the filter
specified for the of symbol for every print job. You need to
define this symbol only for printers that are not
country-specific and only if non-ASCII characters need to be
printed on the flag page of printed output.

yp str NULL Printer ID that conforms to the WoToTo Standard (for Thai
printers).

Using Internationalized Software 6–23

Table 6–6: Symbols in /etc/printcap File for Local Language Printers (cont.)

Symbol Type Default Description

ys num NULL Size of the SoftODL character cache
The ys entry is applied to text print filters. It must be
present and its value must be greater than zero to enable
on-demand loading of font files. These font files are the
ODL support files created by the cgen utility for
user-defined characters. The location of the SoftODL
support files is identified by the path for systemwide ODL
files in the database location configuration file
/usr/var/i18n/conf/cp_dirs . ODL files for private
UDC databases are not downloaded to printers.
For optimal performance, the cache value specified for the
ys field should match the printer cache size. To find out the
cache size for a particular printer, refer to the printer’s
manual.

yt str fifo The SoftODL character replacement method
The yt entry applies to text print filters. The value for this
entry can be either fifo (first-in-first-out) or lru (least
recently used). You can type either uppercase or lowercase
letters for these values. To find out which value is
appropriate for a particular printer, refer to the printer’s
manual.

The ya symbol is defined for printing languages whose characters are not
included in the Latin-1 character set. The value assigned to the ya symbol
is a quoted string that can include one or more of the following keywords:

• flocale= locale_name

Specifies the locale for interpretation of file text. The print filter uses
this locale to validate characters in the text. For an Asian language
that is supported by more than one codeset, a difference between the
flocale and plocale values determines whether codeset conversion
is done before the file is printed. If flocale is not specified, the filter
interprets the file in the current locale.

• font= font_name

Specifies the name of the outline font for printing PostScript files. This
font must be appropriate for the specified plocale value.

• line= number_of_lines

Specifies the number of lines per page. When used in combination with
the -w flag of the lpr command, the line number can control the font
size and orientation of printed output.

• odldb= odl_database_path

6–24 Using Internationalized Software

Specifies the pathname of the SoftODL database. By default, the
printer uses the systemwide database as specified in the cp_dirs file.

• odlstyle= style - NxN

Specifies the SoftODL font style and size to use, for example
normal-24x24 . If odlstyle is not specified, the default style and size
set for the systemwide database is used.

• onehalf

For the Thai language, specifies that characters be printed on one and a
half lines, rather than three lines, to produce more compressed and
natural looking output. The onehalf option is valid only for the
thailpof print filter.

• plocale= locale_name

Specifies the printer locale. Some printers, such as the LA380–CB
printer, are country-specific and have built-in fonts that are encoded in
a particular codeset. For these printers, the codeset part of
locale_name should match the codeset of the built-in fonts. Other
printers, such as the DEClaser 5100, are generic and suitable for
printing files in a variety of languages. For these printers, the codeset
part of locale_name should match the codeset of the font needed to
print files in a particular language (or set of languages). Remember
that to use the same generic printer for printing files in different
languages, you must define a separate print queue and spool directory
for each language (codeset) in which print jobs will be submitted.

• spcom

Enables space-compensation mode for languages, such as Thai, that
contain nonspacing characters. These characters can combine with
other characters for display and therefore do not occupy space. Many of
the existing tools that align text do not handle nonspacing characters
correctly. If you want to print the Thai output that these tools generate,
you should specify the spcom option to ensure proper text alignment in
the printed file. This option is valid only when used with a Thai print
filter or the th_TH.TACTIS plocale value.

• tacdata= tac_data_path

Specifies the location of the character code tables used with the
thailpof print filter. By default, tac_data_path is
/usr/lbin/tac_data .

• tm

Enables text morphing for printing Thai characters. Text morphing
replaces some characters with others to produce better printed output.
Refer to Thai (5) for information on text morphing.

Using Internationalized Software 6–25

6.9.4 Enhancements to Printer Configuration Software

The CDE Printer Configuration application is the desktop application that
helps you add, delete, or change the characteristics of the printers on your
system. The lprsetup utility is an alternative way to do these operations
if your system is not running windows software. In both cases, the software
performs necessary tasks, such as creating the printer spooling directory,
linking the appropriate filter to the printer, and writing the entry for the
printer in the /etc/printcap file. See lprsetup.dat (4) for information
about mapping the product names of supported printers to their system
identifiers. Refer to the System Administration manual for detailed
information and examples for printer setup.

Example 6–2 shows how you use the lprsetup command to set up a
local-language printer, in this case ln05ja .

Example 6–2: Setting Up a Local Language Printer with lprsetup

/usr/sbin/lprsetup 1
Printer Setup Program

Command < add modify delete exit view quit help >: add

Adding printer entry, type ’?’ for help.

Enter printer name to add [0] : ln05 2

For more information on the specific printer types Enter
‘printer?’

Enter the FULL name of one of the following printer
types:

cp382d dl1152w dl5100w dl510ka ep1050+ fx1050
fx80 hp4mplus hp4mplus_a4 hpsimx hpsimx_a4 hp680c
hp680c_a4 hpIII hpIIIP hpIIP hpIV ibmpro
la280 la30 la30n_a4 la30w la30w_a4 la324
la380 la380cb la380k la400 la424 la50
la600 la70 la75 la84 la86 la88
la88c la90 lf01r lg02 lg04plus lg06
lg08 lg12 lg12plus lg31 lg104plus lg108plus
lj250 ln03 ln03ja ln03r ln03s ln05
ln05ja ln05r ln06 ln06r ln07 ln07r
ln08 ln08r ln09 ln10ja ln14 ln17
ln17_a4 ln17p ln17ps_a4 ln82r nec290 ps_level1
ps_level2 remote wwpsof xf unknown
generic_ansi generic_ansi_a4 generic_text generic_text_a4
or press RETURN for [unknown] : ln05ja 3
.
.
.
Enter the name of the printcap symbol you wish to modify.
Other valid entries are:

’q’ to quit (no more changes)
’p’ to print the symbols you have specified so far.
’l’ to list all of the possible symbols and defaults.

The names of the printcap symbols are:

6–26 Using Internationalized Software

Example 6–2: Setting Up a Local Language Printer with lprsetup (cont.)

af br cf ct df dn du fc ff fo fs gf ic if lf lo
lp mc mx nc nf of op os pl pp ps pw px py rf rm
rp rs rw sb sc sd sf sh st tf tr ts uv vf xc xf
xs ya yd yj yp ys yt Da Dl It Lf Lu Ml Nu Or Ot
Ps Sd Si Ss Ul Xf

Enter symbol name: ya 4

Enter a new value for symbol ’ya’? ["plocale=ja_JP.sdeckanji"]

Do you want to enable ODL? [n] y 5

Enter symbol name: yt 6

Enter a new value for symbol ’yt’? [fifo]

Enter symbol name: q 7
.
.
.

1 Invokes the lprsetup program.
2 Selects a name for the printer (see Table 6–7).
3 Selects the printer type.
4 Specifies the printer locale.
5 Enables on-demand loading (ODL) of printer fonts for user-defined

characters. An affirmative response also sets the cache size that the
SoftODL service uses. This value, by default the appropriate cache size
for the printer, is stored as value of the ys symbol in the
/etc/printcap file.

6 Specifies the character replacement method that the SoftODL service
uses.

7 Quits the program to indicate no more changes are needed to the
/etc/printcap file.

Table 6–7 lists Asian languages and the associated printer choices as
displayed by the lprsetup script.

Table 6–7: Local Language Printers Supported by the lprsetup Command

Language Printer

Japanese (text only) la84j , la86j , la90j , la280j , la380j , ln03ja ,
ln05ja ,

Japanese (PostScript) ln83r

Traditional Chinese (text
only)

cp382d

Using Internationalized Software 6–27

Table 6–7: Local Language Printers Supported by the lprsetup Command
(cont.)

Language Printer

Simplified Chinese (text
only)

la88c , la380c

Korean (text only) la380k , dl510k

Czech, Traditional
Chinese, Simplified
Chinese, Hungarian,
Greek, Korean, Polish,
Russian, Slovak, Slovene,
and Turkish (PostScript)

dl1152w , dl5100w , wwpsof , lps17 a

Thai (text only) dp1050+

Thai (PostScript) dl1152t , dl1152ttm , dl5100t , dl5100ttm
aThe lps17 choice does not appear unless PrintServer software is configured on the system.

6.9.5 Print Commands and the Printer Daemon

The lp , lpc , lpd , lpq , lpr , lprm , and lpstat commands handle the
features added to the print subsystem for Asian and other languages not in
the Latin-1 group. For example, the lpr command includes the -A option
and additional values for the -O option to give users access to such
features. See lpr (1) for details about local-language options and values.

6.9.6 Choosing PostScript Fonts for Different Locales

The fonts for the Chinese and Korean languages do not fit in the memory of
most PostScript printers. Fonts for the Thai language and some European
languages do fit in memory, but are large enough that they do not fit in
printer memory along with fonts for other languages. For PostScript
printers that are currently available and for which fonts supporting certain
languages are not printer-resident, the wwpsof print filter (see
Section 6.9.1.2) provides a solution. In this case, you may need to specify in
a printer’s configuration file the names of the PostScript fonts you want to
use for different languages. Tru64 UNIX also provides a mechanism for
selectively downloading fonts to certain older PostScript printer products
as described in i18n_printing (5). In this case, you have to choose among
fonts to be downloaded to the printer.

The following list associates languages and codesets with the appropriate
set of PostScript fonts:

• Hungarian, Czech, Slovak, Slovene (*.ISO8859-2)

6–28 Using Internationalized Software

Arial-Bold-ISOLatin2
Arial-BoldItalic-ISOLatin2
Arial-Italic-ISOLatin2
Arial-ISOLatin2
ArialNarrow-Bold-ISOLatin2
ArialNarrow-BoldItalic-ISOLatin2
ArialNarrow-Italic-ISOLatin2
ArialNarrow-ISOLatin2
BookAntiqua-Bold-ISOLatin2
BookAntiqua-BoldItalic-ISOLatin2
BookAntiqua-Italic-ISOLatin2
BookAntiqua-ISOLatin2
BookmanOldStyle-Bold-ISOLatin2
BookmanOldStyle-BoldItalic-ISOLatin2
BookmanOldStyle-Italic-ISOLatin2
BookmanOldStyle-ISOLatin2
CenturyGothic-Bold-ISOLatin2
CenturyGothic-BoldItalic-ISOLatin2
CenturyGothic-Italic-ISOLatin2
CenturyGothic-ISOLatin2
CenturySchoolbook-Bold-ISOLatin2
CenturySchoolbook-BoldItalic-ISOLatin2
CenturySchoolbook-Italic-ISOLatin2
CenturySchoolbook-Italic-ISOLatin2
CenturySchoolbook-ISOLatin2
Courier-Bold-ISOLatin2
Courier-BoldItalic-ISOLatin2
Courier-Italic-ISOLatin2
Courier-ISOLatin2
MonotypeCorsiva-ISOLatin2
TimesNewRoman-Bold-ISOLatin2
TimesNewRoman-BoldItalic-ISOLatin2
TimesNewRoman-Italic-ISOLatin2
TimesNewRoman-ISOLatin2

• Russian (*.ISO8859-5)

Arial-Bold-ISOLatinCyrillic
Arial-BoldInclined-ISOLatinCyrillic
Arial-Inclined-ISOLatinCyrillic
Arial-ISOLatinCyrillic
Courier-Bold-ISOLatinCyrillic
Courier-BoldInclined-ISOLatinCyrillic
Courier-Inclined-ISOLatinCyrillic
Courier-ISOLatinCyrillic
Nimrod-Bold-ISOLatinCyrillic
Nimrod-BoldInclined-ISOLatinCyrillic
Nimrod-Inclined-ISOLatinCyrillic
Nimrod-ISOLatinCyrillic
Plantin-Bold-ISOLatinCyrillic
Plantin-BoldInclined-ISOLatinCyrillic

Using Internationalized Software 6–29

Plantin-Inclined-ISOLatinCyrillic
Plantin-ISOLatinCyrillic
TimesNewRoman-Bold-ISOLatinCyrillic
TimesNewRoman-BoldInclined-ISOLatinCyrillic
TimesNewRoman-Inclined-ISOLatinCyrillic
TimesNewRoman-ISOLatinCyrillic

• Greek (*.ISO8859-7)

Arial-Bold-ISOLatinGreek
Arial-BoldInclined-ISOLatinGreek
Arial-Inclined-ISOLatinGreek
Arial-ISOLatinGreek
Courier-Bold-ISOLatinGreek
Courier-BoldInclined-ISOLatinGreek
Courier-Inclined-ISOLatinGreek
Courier-ISOLatinGreek
TimesNewRoman-Bold-ISOLatinGreek
TimesNewRoman-BoldInclined-ISOLatinGreek
TimesNewRoman-Inclined-ISOLatinGreek
TimesNewRoman-ISOLatinGreek

• Hebrew (*.ISO8859-8)

David-Bold-ISOLatinHebrew
David-BoldOblique-ISOLatinHebrew
David-ISOLatinHebrew
David-Oblique-ISOLatinHebrew
FrankRuhl-Bold-ISOLatinHebrew
FrankRuhl-BoldOblique-ISOLatinHebrew
FrankRuhl-ISOLatinHebrew
FrankRuhl-Oblique-ISOLatinHebrew
Miriam-Bold-ISOLatinHebrew
Miriam-BoldOblique-ISOLatinHebrew
Miriam-ISOLatinHebrew
Miriam-Oblique-ISOLatinHebrew
MiriamFixed-Bold-ISOLatinHebrew
MiriamFixed-BoldOblique-ISOLatinHebrew
MiriamFixed-ISOLatinHebrew
MiriamFixed-Oblique-ISOLatinHebrew
NarkissTam-Bold-ISOLatinHebrew
NarkissTam-BoldOblique-ISOLatinHebrew
NarkissTam-ISOLatinHebrew
NarkissTam-Oblique-ISOLatinHebrew

• Turkish (*.ISO8859-9)

Arial-Bold-ISOLatin5
Arial-BoldItalic-ISOLatin5
Arial-Italic-ISOLatin5
Arial-ISOLatin5
ArialNarrow-Bold-ISOLatin5

6–30 Using Internationalized Software

ArialNarrow-BoldItalic-ISOLatin5
ArialNarrow-Italic-ISOLatin5
ArialNarrow-ISOLatin5
BookAntiqua-Bold-ISOLatin5
BookAntiqua-BoldItalic-ISOLatin5
BookAntiqua-Italic-ISOLatin5
BookAntiqua-ISOLatin5
BookmanOldStyle-Bold-ISOLatin5
BookmanOldStyle-BoldItalic-ISOLatin5
BookmanOldStyle-Italic-ISOLatin5
BookmanOldStyle-ISOLatin5
CenturyGothic-Bold-ISOLatin5
CenturyGothic-BoldItalic-ISOLatin5
CenturyGothic-Italic-ISOLatin5
CenturyGothic-ISOLatin5
CenturySchoolbook-Bold-ISOLatin5
CenturySchoolbook-BoldItalic-ISOLatin5
CenturySchoolbook-Italic-ISOLatin5
CenturySchoolbook-ISOLatin5
Courier-Bold-ISOLatin5
Courier-BoldItalic-ISOLatin5
Courier-Italic-ISOLatin5
Courier-ISOLatin5
MonotypeCorsiva-ISOLatin5
TimesNewRoman-Bold-ISOLatin5
TimesNewRoman-BoldItalic-ISOLatin5
TimesNewRoman-Italic-ISOLatin5
TimesNewRoman-ISOLatin5

• Traditional Chinese (*.dechanyu)

Sung-Light-CNS11643
Hei-Light-CNS11643

• Simplified Chinese (*.dechanzi)

XiSong-GB2312-80
Hei-GB2312-80

• Korean (*.deckorean)

Munjo

• Japanese (*.deckanji)

None (uses printer built-in fonts)

• Thai (*.TACTIS)

AngsanaUPC-Bold
AngsanaUPC-BoldItalic
AngsanaUPC-Italic
AngsanaUPC-Light
CordiaUPC-Bold

Using Internationalized Software 6–31

CordiaUPC-BoldItalic
CordiaUPC-Italic
CordiaUPC-Light
EucrosiaUPC-Bold
EucrosiaUPC-BoldItalic
EucrosiaUPC-Italic
EucrosiaUPC-Light
FreesiaUPC-Bold
FreesiaUPC-BoldItalic
FreesiaUPC-Italic
FreesiaUPC-Light
IrisUPC-Bold
IrisUPC-BoldItalic
IrisUPC-Italic
IrisUPC-Light
JasmineUPC-Bold
JasmineUPC-BoldItalic
JasmineUPC-Italic
JasmineUPC-Light
KodchiangUPC-Bold
KodchiangUPC-BoldItalic
KodchiangUPC-Italic
KodchiangUPC-Light
LilyUPC-Bold
LilyUPC-BoldItalic
LilyUPC-Italic
LilyUPC-Light
WaterlilyUPC-Bold
WaterlilyUPC-BoldItalic
WaterlilyUPC-Italic
WaterlilyUPC-Light
YuccaUPC-Bold
YuccaUPC-BoldItalic
YuccaUPC-Italic
YuccaUPC-Light

6.10 Using Mail in a Multilanguage Environment

Tru64 UNIX provides enhanced versions of the following commands and
utilities to handle languages based on multibyte-character codesets:

• sendmail

• mailx

• MH (mail handler)

The following sections discuss enhancements to these components, along
with a discussion of codeset conversion done by the comsat server. Refer to

6–32 Using Internationalized Software

sendmail (8), mailx (1), mh(1), comsat (8) for more complete software
descriptions.

6.10.1 The sendmail Utility

The sendmail utility, which is a back end to several user commands, is
configured by default to support 8–bit data. The configuration that supports
8–bit data is required for multibyte character support. Refer to
sendmail (8) for restrictions that apply to the 8–bit configuration.

6.10.2 The mailx Command and MH Commands

The mailx command and all applicable commands in the MH system
support the conversion of mail messages between the mail interchange
codeset (used to transfer messages to some hosts) and a user’s application
codeset. For example, if the mail interchange codeset is ISO-2022-JP and
the application codeset is eucJP, the mailx or MH command converts
incoming messages to the Japanese EUC codeset before displaying them.

To prevent data loss, when incoming messages are stored in mail folders,
the messages are encoded in the codeset in which they are received.
Codeset conversion takes place when users extract or display the messages.

To communicate mail interchange code information to other systems,
outgoing messages include two additional header lines like the following:

Mime-Version: 1.0

Content-Type: TEXT/PLAIN; charset=ISO-2022-JP

The charset field in the preceding example specifies the mail interchange
codeset, in this case, ISO-2022-JP. This codeset is an ISO 7-bit
state-dependent codeset for Japanese characters. Codesets other than those
that are part of the ISO standard, are identified by the prefix X- in the
codeset name. For example, when DEC Hanyu is the codeset used for mail
interchange, the following header lines are included in outgoing mail
messages:

Mime-Version: 1.0

Content-Type: TEXT/PLAIN; charset=X-dechanyu

The mailx command and MH commands use the following values (listed in
order of highest to lowest priority) to determine or set the mail interchange
and application codesets for a particular message:

Using Internationalized Software 6–33

• The mail interchange codeset applied to incoming messages is
determined from:

1. The charset field in the mail header, if additional header lines are
present in the message

2. The codeset specified as the systemwide mail interchange default
in the /usr/lib/mail-codesets file

If you create this file, it contains a single entry, which is the name
of a locale.

If neither of the preceding values is available, codeset conversion does
not occur.

• The mail interchange codeset applied to outgoing messages is
determined from:

1. The setting of the EXCODEenvironment variable

2. The setting of the excode component as defined in the
$HOME/.mailrc file (for mailx users) or the $HOME/.mh_profile
file (for users of MH commands)

3. The content of the /usr/lib/mail-codesets file

If a codeset is not determined for outgoing mail interchange, the mail is
sent with no codeset identifier.

• The application codeset is determined from:

1. The setting of the LANGenvironment variable

2. The value of the lang component in the $HOME/.mailrc file (for
the mailx command) or the $HOME/.mh_profile file (for MH
commands)

6.10.3 The comsat Server

The comsat server, which notifies users of incoming mail messages, always
attempts to convert incoming mail messages from the mail interchange
codeset to the user’s application codeset. The comsat server uses the
following values (in order of highest to lowest priority) to determine the
codesets that apply to a message:

• For the mail interchange codeset:

1. The charset field, if included in the mail message header

2. The codeset specified as the systemwide mail interchange default
in the /usr/lib/mail-codesets file

6–34 Using Internationalized Software

If neither of the preceding values is available, codeset conversion
does not occur.

• For the application codeset:

1. The application codeset defined for the atty driver of the user’s
system

2. The codeset name in the$HOME/.codeset_ device_name file,
where device_name is the name of the terminal device for the
current session

6.11 Applying Sort Orders to Non-English Characters

The sort command sorts characters according to the collation sequence
defined for the current locale. A particular locale can apply one set of
collation rules to the associated character set. Multiple locale names do
exist, however, for the same combination of language, territory, and
character set. Most often, these variations exist to offer users the choice of
more than one collating sequence.

When more than one locale is available for a given combination of language,
territory, and codeset, some of the locale names include a suffix with the
format @variant . To avoid problems with pathnames constructed using the
%Lspecifier, you should assign a locale name with a suffix that is category
specific only to the appropriate locale category variable (or variables). In
the following example, the locale assigned to LC_COLLATEdiffers from the
locale assigned to LANGonly with respect to collating sequence:

% setenv LANG zh_TW.eucTW
% setenv LC_COLLATE zh_TW.eucTW@radical

Supporting different collation orders through one or more locales is
adequate for most languages. However, collation orders for Asian languages
require additional support for the following reasons:

• Asian languages include user-defined characters, which are not
specified in a locale. These characters can be defined with a collation
weight. In this case, the collation weight needs to be applied when the
user-defined characters are encountered in the strings being sorted.

• Ideographic characters can be sorted on more than one dimension
(radical, stroke, phonetic, and internal code). Some users need to
combine these dimensions during sort operations. In one operation the
user may need to sort characters first by radical and then according to
the number of strokes. For another operation, the user may need to put
characters first in phonetic order, then according to the number of
strokes, and so on. Sorting by combinations of dimensions requires

Using Internationalized Software 6–35

breadth-first sorting, rather than the depth-first sorting implemented
through locales.

For the preceding reasons, the asort command was developed and is
available when you install language variant subsets that support Asian
languages. The asort command uses, by default, the collating order
defined for the LC_COLLATEvariable and supports all the options
supported by the sort command. In addition, the asort command
includes the following options:

• −C

This option indicates that the sort operation should use special system
sort tables, along with sort tables produced by the cgen utility to
support user-defined characters. This option overrides the sort sequence
defined in the locale specified by the LC_COLLATEvariable.

• −v

This option, which you can use only with the −C option, implements
breadth-first sorting.

Refer to asort (1) for more information about using this command.

6.12 Processing Reference Pages in Languages Other
Than English
Programmers who supply software applications for UNIX systems
frequently supply online reference pages (manpages) to document the
application and its components. UNIX text-processing commands and
utilities must be able to process translated versions of these reference
pages for applications sold to the international market. Enhanced versions
of the nroff , tbl , and man commands are included in Tru64 UNIX to
support this requirement.

6.12.1 The nroff Command

The nroff command includes the following capabilities to support locales:

• Formats reference page source files written in any language whose
locale is installed on the system

• Supports characters of any supported languages in the string
arguments of macros and requests

• Supports character mapping of characters for any supported language
through the .tr request in reference page source files

• Allows you to set the escape character (\), command control character
(.), and nobreak control character (’) to local language, as well as ASCII,
characters

6–36 Using Internationalized Software

• Maps each 2-byte space character, which is defined in most codesets for
Asian languages, to two ASCII spaces in output

When formatting reference pages that contain ideographic characters, the
nroff command treats each character as a single word. A string of
ideographic characters, including 2-byte letters and punctuation characters,
can be wrapped to the next line subject to the following constraints:

• The last character on the text line cannot be defined as a no-last
character by either the standard or private list of no-last characters.

• The first character on the text line cannot be defined as a no-first
character by either the standard or private list of no-first characters.

The standard no-first, no-last character lists are defined in nroff catalog
files. For lists of these characters, refer to the language-specific technical
reference guides that are available on the documentation CD−ROM.

The no-first and no-last constraints exist to prevent nroff from placing a
punctuation mark or right parenthesis at the beginning of a text line or
placing a left parenthesis at the end of a text line. You can turn the
standard constraints on and off in source files with the .ki and .ko
commands, respectively.

You can also define a private set of no-first and no-last characters with the
following command:

.kl ’ no-first-list ’ no-last-list ’

The parameters no-first-list and no-last-list are strings of
characters you should include in the no-first and no-last categories. You
cancel a private no-first and no-last list by entering a .kl command with
null strings as the parameters. For example:

.kl ’’’

_______________________ Note _______________________

The characters specified in the .kl command override, rather
than supplement, the characters in the standard set of no-first
and no-last characters. Therefore, you cannot use the standard
set of no-first and no-last characters together with a private set.

Using the command .kl ’’’ restores use of the standard set of
no-first and no-last characters for the current locale.

The nroff command can format text so that it is justified or not justified
to the right margin. When text is justified to the right margin, nroff
inserts spaces between words in the line. Ideographic characters, although

Using Internationalized Software 6–37

treated as words in most stages of the formatting process, differ in terms of
whether they can be delimited by spaces.The characters that can be
preceded by a space, followed by a space, or both are listed in the
language-specific user guides that are available on line when you install
language variant subsets of Tru64 UNIX. When right-justifying text, the
nroff command inserts spaces only at the following places:

• Where 1-byte or 2-byte spaces already occur

• Between English and ideographic characters

• Before characters defined as can-space-before

• After characters defined as can-space-after

In other cases, no space is inserted between consecutive ideographic
characters. Therefore, if a text line contains only ideographic characters, it
may not be justified to the right margin.

6.12.2 The tbl Command

The tbl command preprocesses table formatting commands within blocks
delimited by the .TS and .TE macros. The tbl command handles multibyte
characters that can occur in text of languages other than English.

The tbl command is frequently used along with the neqn equation
formatting preprocessor to filter input passed to the nroff command. In
such cases, specify tbl first to minimize the volume of data passed through
the pipes. For example:

% cd /usr/usr/share/ja_JP.deckanji/man/man1
% tbl od.1 | neqn | nroff -Tlpr -man -h | \
lpr -Pmyprinter

When printing Asian language text, you must use printer hardware that
supports the language.

6.12.3 The man Command

The man command can handle multibyte characters in reference page files.
By default, the man command automatically searches for reference pages in
the/usr/share/ locale_name /man directory before searching the
/usr/share/man and /usr/local/man directories. Therefore, if the LANG
environment variable is set to an installed locale and if reference page
translations are available for that locale, the man command automatically
displays reference pages in the appropriate language.

In addition, the man command automatically applies codeset conversion
(assuming the availability of appropriate converters) when reference page

6–38 Using Internationalized Software

translations for a particular language are encoded in a codeset that does
not match the codeset of the user’s locale. Refer to man(1) for information
about redefining the man command search path and for more details about
codeset conversion.

6.13 Converting Data Files from One Codeset to Another

Each locale is based on a specific codeset. Therefore, when an application
uses a file whose data is coded in one codeset and runs in a locale based on
another codeset, character interpretation may be meaningless. For
example, assume that a fictional language includes a character named
“quo”, which is encoded as \031 in one codeset and \042 in another codeset.
If the “quo” character is stored in a data file as \031, the application that
reads data from that file should be running in the locale based on the same
codeset. Otherwise, \031 identifies a character other than “quo”.

Users, the applications they run, or both may need to set the process
environment to a particular locale and use a data file created with a
codeset different from the one on which the locale is based. The data file in
question might be appropriate for a given language and in a codeset
different from the user’s locale for one of the following reasons:

• The data file might have been created on another vendor’s system by
using a locale based on a vendor-specific codeset. For example, the
integration of PCs into the enterprise computing environment increases
the likelihood that UNIX users need to process files for which the data
encoding is in MS-DOS code page format.

• The locale could be one of several UNIX locales that support the same
Asian language, such as Japanese. Asian languages are typically
supported by a variety of locales, each based on a different codeset.

• The data file could be in Unicode (UCS-2), UCS-4, or UTF-8 format. If
characters in this file are to be printed or displayed on the screen, they
might need to be converted to encodings for which fonts are available
on a Tru64 UNIX system.

You can convert a data file from one codeset to another by using the iconv
command or the iconv_open , iconv , and iconv_close functions. For
example, the following command reads data in the accounts_local file,
which is encoded in the SJIS codeset; converts the data to the eucJP
codeset; and appends the results to the accounts_central file:

% iconv -f SJIS -t eucJP accounts_local \
>> accounts_central

Many commands and utilities, such as the man command and
internationalized print filters, use the iconv functions and associated
converters to perform codeset conversion on the user’s behalf.

Using Internationalized Software 6–39

The iconv command and associated functions can use either an algorithmic
converter or a table converter to convert data. Algorithmic converters, if
installed on your system, reside in the /usr/lib/nls/loc/iconv
directory; this directory is the one searched first for a converter. This
directory also contains an alias file (iconv.alias) that maps different
name strings for the same converter to the converter as named on the
system. Table converters, if installed on your system, reside in the
/usr/lib/nls/loc/iconvTable directory. The value of the LOCPATH
variable, if defined, overrides the command’s default search path.

The iconv command assumes that a converter name adheres to the
following format:

from-codeset _ to-codeset

For the preceding example, the iconv command would search for and use
the /usr/lib/nls/loc/iconv/SJIS_eucJP converter.

Table 6–8 specifies the codeset conversions that Tru64 UNIX supports for
English data. The user guides for the language variant subsets include
tables with codeset conversions supported for Asian languages.

For detailed information about the iconv command, refer to iconv (1) and
iconv_intro (5). For information on functions that programs can use to
perform codeset conversion, refer to iconv_open (3), iconv (3), and
iconv_close (3). You can find a list of all the codeset converters available
for a particular language in the reference page for that language.

Table 6–8: Supported Codeset Conversions for English

Codeset ASCII-GR ISO8859-1 ISO8859-1-GL ISO8859-1-GR

ASCII-GR − Yes No No

ISO8859-1 Yes − Yes Yes

ISO8859-1-GL No Yes − No

ISO8859-1-GR No Yes No −

6.14 Miscellaneous Information for Base System
Commands

The following list includes information about features and restrictions that
apply when using traditional UNIX commands in local-language
environments:

• rlogin

6–40 Using Internationalized Software

When using the rlogin command to log on to a Tru64 UNIX system
from an ULTRIX system, be sure to specify the -8 flag to pass 8–bit
data without stripping. Otherwise, you will have problems entering
non-ASCII characters from your terminal.

If you view a large data file while logged on to the remote system, use a
pager command, such as pg , and not the Hold Screen key to view a
large data file. The -8 option sets the terminal mode of the original
host to RAW, disabling flow control. So, if data is sent to the terminal a
rate faster than the terminal can handle it, some data is lost when you
use the Hold Screen key.

This rlogin restriction applies not only when logging in from an
ULTRIX system, but when logging in from any UNIX system whose
software does not fully support 8–bit data format.

• Emacs editor

The operating system includes the multilingual Emacs software from
the Free Software Foundation. Before using this editor, you must add
the /usr/i18n/mule/bin directory to your process-specific search
path. You can then invoke this editor by using the mule command.

• vi and more

The vi and more commands discard text that follows an invalid
multibyte character. If you encounter this problem, it is likely that your
locale setting is not correct for the text being viewed or edited. In this
case, reset your locale to one that matches the text and invoke the
command again.

When used with Thai characters, vi may wrap lines before the right
boundary of the screen. This happens because Thai text includes
nonspacing characters, which contribute to the character count but not
to the display width. The editor wraps lines based on character count.
For example, vi may wrap a line after entry of 80 characters, even
though these characters do not occupy 80 columns on the screen.

• Using local-language user names and file names

It is a limitation of UNIX file systems that you cannot use a multibyte
character whose second or subsequent byte is an ASCII slash (/) in
names of files, users, or other objects. For portability reasons, avoid
using multibyte characters in these names.

6.15 Using Language Support Enhancements for Motif
Applications

In the Motif environments, such as CDE, you use versions of fonts,
codesets, servers, and applications that support features discussed in

Using Internationalized Software 6–41

earlier sections of this chapter. This section provides more detail on using
features that help support Asian languages. Topics include:

• Tuning the cache and unit size of the X Display Server for languages
with ideographic characters

• Using font renderers for multibyte PostScript fonts

• Customizing a window for local languages

6.15.1 Tuning the X Server for Ideographic Languages

Asian languages have large ideographic character sets, so all characters
needed for display are not loaded into memory at the same time. Instead,
only as many characters as will fit in the memory cache are simultaneously
loaded. When characters needed for display are not currently cached in
memory, the least recently used font glyphs are removed from the cache to
make room. The font-cache mechanism allows you to display ideographic
text in multiple typefaces, font sizes, and font styles without increasing the
amount of memory that systems must have to support ideographic
languages.

The X Server font-cache mechanism allows you to change the number of
cache units and the size of these units to best accommodate the character
sets used in displays. You will probably need to change the default values
set for cache parameters to achieve the best performance from your system
if it will display Asian-language text. Consider the following criteria when
deciding on the optimal values for font caching:

• The number of ideographic languages that you want to display

If you intend to work with several ideographic languages during the
same CDE session, you need larger values for acceptable performance.

• The number of fonts that will be used simultaneously

Variation in font number and size depends partly on the kinds of
applications you run. A desktop publishing application typically
requires more fonts than other types of applications whereas a software
development tool requires fewer.

• The number of frequently used characters in the languages you want to
display

In Asian languages, only a subset of characters are used frequently. The
size of this subset varies from one language to another. For example,
approximately 20,000 standard characters are supported for Taiwan but
only 5,000 of those characters are used frequently. Estimates for the
number of frequently used characters for other Asian countries is as
follows: People’s Republic of China (3000), Korea (2000), and Japan

6–42 Using Internationalized Software

(2000). Font-cache parameters are tuned to accommodate the subset of
frequently used characters.

To change the cache size (which is the number of cache units) and the size
of each cache unit, you must modify the X Server configuration file
/usr/lib/X11/xdm/Xservers . This file contains a line, similar to the
following one, that starts the X Server:

:0 local /usr/bin/X11/X

You can modify this line to add definitions for cache size and unit size. For
example:

:0 local /usr/bin/X11/X -cs cache_size -cu unit_size

Table 6–9 describes the options that tune the font-cache mechanism.

Table 6–9: X Server Options for Tuning the Font-Cache Mechanism

stty Option Description

-cs cache_size Defines the number of cache units.
The minimum (and also default) value for this
parameter is 1024. If you specify a cache size
smaller than 1024, font caching is disabled. For
one ideographic language, the recommended
value is the lowest multiple of 1024 that
accommodates the number of frequently used
characters in that language.
If a workstation displays multiple ideographic
languages simultaneously, you must add together
the values required for each language to get the
minimum cache size. Specify an even larger value
if you intend to run applications, such as desktop
publishing software, that require multiple font
styles and sizes for each ideographic character.

-cu unit_size Defines the size of each cache unit.
The minimum value for unit size is 31 bytes and
the default value is 128 bytes. If you specify a
value smaller than 31 bytes, the value has no
effect. If a particular font requires more memory
space than 128 bytes, the font-cache mechanism
automatically allocates one or more additional
units to store its glyphs.

_______________________ Note _______________________

Font caching applies only to uncompressed fonts in pcf format.
Font caching is not applied to any compressed fonts or to fonts

Using Internationalized Software 6–43

in bdf format. Because font caching cannot be used with
compressed fonts, the 2–byte fonts for Asian languages are not
installed in compressed format.

You can calculate cache unit size with the following formula:

unit_size =
((floor(ceil((double)WIDTH / 8.0) /4.0)) + 1.0) * 4.0 * (double)HEIGHT

Consider the following calculation for a typical font size of 24x24:

unit_size in bytes
= ((floor(ceil((double) 24 / 8.0 / 4.0)) + 1.0) * 4.0 * (double) 24
= 96

For 34x34 fonts, the unit size calculation would yield 272 bytes.

Given that 96 bytes are needed to cache a 24x24 font glyph and 272 bytes
is needed to cache a 34x34 font glyph, the default unit size of 128 has the
following implications:

• For 24x24 fonts, each character needs one cache unit. If cache size is
set to 4096, the cache can accommodate 4096 characters.

• For 34x34 fonts, each character needs three cache units. If cache size is
set to 4096, the cache can accommodate 1365 characters.

Small fonts (whose characters require a single, 128-byte unit) are used to
display ideographic characters. Therefore, you usually have to change only
the cache size to achieve acceptable performance in text displays of
languages with ideographic characters.

6.15.2 Using Font Renderers for Multibyte PostScript Fonts

The operating sytem includes font renderers that allow any X application
to use the PostScript fonts available for the Chinese and Korean languages.
The system administrator can set up font renderers for the following kinds
of fonts for use through the X Server or the font server:

• Double-byte PostScript outline fonts

• UDC fonts

By installing the IOSWWXFR**subset, you automatically enable font
rendering for the PostScript outline fonts.

6.15.2.1 Setting Up the Font Renderer for Double-Byte PostScript Fonts

You can set up the font renderer for Chinese and Korean PostScript fonts
for use either through the X Server or the font server by editing the
appropriate configuration file:

6–44 Using Internationalized Software

• For the X Server, the font renderer is automatically added at
installation time to the font_renderers list in the X Server’s
configuration file.

• For a font server, you must manually add the following entry to the
renderers list in the font server’s configuration file:

renderers = other_renderer, other_renderer,...
libfr_DECpscf.so;DECpscfRegisterFontFileFunctions

In addition, you must specify the paths for the PostScript font files in
the catalogue list in the same configuration file. Double-byte
PostScript fonts for the Asian languages are available in the following
directories:

/usr/i18n/lib/X11/fonts/KoreanPS
/usr/i18n/lib/X11/fonts/SChinesePS
/usr/i18n/lib/X11/fonts/TChinesePS

Each font in these directories has the following components:

– A Type1 font header with the .pfa2 file name extension

This header file is the only file that must be listed in the
fonts.dir file in the font directory.

– A data file with the .csdata file name extension

– A binary metrics file with the .xafm file name extension

The renderer for Asian double-byte PostScript fonts uses its own
configuration file that specifies the following information:

• Cache size (number of cache units)

• Cache unit size

• File handler (names associated with font-rendering software)

• Default character (character that is printed in place of any character for
which there is no glyph)

The default pathname for this configuration file is
/var/X11/renderer/DECpscf_config ; however, you can change this
path by setting the DECPSCF_CONFIG_PATHenvironment variable.

6.15.2.2 Setting Up the Font Renderer for UDC Fonts

The UDC font renderer accesses the UDC database directly to obtain font
glyphs. Therefore, X applications that use this renderer do not need to use
.pcf files generated by the cgen utility.

You can set up the UDC font renderer for use either through the X Server
or the font server as follows:

Using Internationalized Software 6–45

• For the X Server, the font renderer is automatically added at
installation time to the font_renderers list in the X Server’s
configuration file.

• For a font server, you must manually add the following entry to the
renderers list in the font server’s configuration file:

renderers = other_renderer, other_renderer,...
libfr_UDC.so;UDCRegisterFontFileFunctions

In addition, you must specify the path to the UDC database in the
catalogue list of the same configuration file. This path should be set
to the top directory for the UDC database. For example,
/var/i18n/udc is the correct path for a systemwide UDC database if
the database was set up in the default directory.

To process UDC characters in a particular language, the font renderer
also requires entries in the fonts.dir file in the appropriate
PostScript font directory from the following list:

/usr/i18n/lib/X11/fonts/SChinesePS
/usr/i18n/lib/X11/fonts/TChinesePS

Edit the fonts.dir file to specify virtual file names in the format
locale_name .udc followed by the corresponding XLFD names
registered for the codesets. Table 6–10 shows the XLFD entry that
corresponds to different Asian codesets.

Table 6–10: XLFD Registry Names for UDC Characters

Codeset XLFD Registry Name

dechanyu , eucTW DEC.CNS11643.1986-UDC

big5 BIG5-UDC

dechanzi GB2312.1980-UDC

deckanji , sdeckanji , eucJP JISX.UDC-1

The following example entry is appropriate for the fonts.dir file in
the /usr/i18n/lib/X11/fonts/TChinesePS directory:

2
zh_TW.dechanyu.udc -system-decwin-normal-r--24-240-75-75-m-24-DEC.CNS11643.1986-UDC
zh_TW.big5.udc -system-decwin-normal-r--24-240-75-75-m-24-BIG5-UDC

6.15.3 Setting Fonts for Display of Local Languages

The system on which you install language variant subsets is automatically
updated with fonts required to display text in the supported languages.

In CDE, applications access local language fonts through a font alias
mechanism. The

6–46 Using Internationalized Software

/usr/dt/config/xfonts/i18n/{75,100}dpi/fonts.alias files
rather than files installed in the
/usr/dt/config/xfonts/ locale-name / areas are most critical for
resolution of which fonts an application uses. This arrangement supports
both a consistent session language and the ability to run an individual
application in a language different from the session language.

6.15.3.1 Accessing Local-Language Fonts for Remote Displays

The system where Asian-language subsets are installed may function as a
client in a client-server display environment. In this case, the
local-language fonts must also be available to the window managers for all
the server systems where native language text is displayed. You need to
install fonts for other locales either on individual systems used for remote
login to the system where language variant subsets are installed or make
the fonts known to the other systems through a font server. Table 6–11,
Table 6–12, Table 6–13, Table 6–14, Table 6–15, Table 6–16, and
Table 6–17 describe the fonts used to display text in various local
languages. You can use the /usr/bin/X11/xlsfonts command to
determine which fonts are currently installed on a system.

Table 6–11: Bitmap Fonts for Asian Locales

Language Typeface Style Sizes 75dpi 100dpi

Japanese Gothic (ISO Latin-1) Normal 8, 10, 12, 14, 18,
24

x x

Gothic (Kanji) Normal 8, 10, 12, 14, 18,
24

x x

Gothic (Roman Kana) Normal 8, 10, 12, 14, 18,
24

x x

kmenu (ISO Latin-1) Normal 12 x x

kmenu (Roman Kana) Normal 12 x x

Mincho (ISO Latin-1) Normal 8, 10, 12, 14, 18,
24

x x

Mincho (Kanji) Normal 8, 10, 12, 14, 18,
24

x x

Mincho (Roman Kana) Normal 8, 10, 12, 14, 18,
24

x x

Screen (DECsuppl) Normal 14, 18, 24 x

Screen (DECtech) Normal 14, 18, 24 x

Screen (ISO Latin-1) Normal 14, 18, 24 x

Using Internationalized Software 6–47

Table 6–11: Bitmap Fonts for Asian Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Screen (Kanji00) Normal 10, 14, 16, 18, 24 x

Screen (Kanji11) Normal 10, 14, 18, 24 x

Screen (Roman Kana) Normal 10, 14, 18, 24 x

Korean Gotic Normal 16, 24 x

Myungcho Normal 16, 24, 32 x

Screen Normal 18, 24 x

KS Roman Normal 18, 24 x

Simplified
Chinese

FangSongTi Normal 24, 34 x

HeiTi Normal 16, 24, 34 x

KaiTi Normal 24, 34 x

Screen Normal 18, 24 x

SongTi Normal 16, 24, 34 x

Traditional
Chinese

Hei (CNS11643) Normal 16, 24 x

Hei (DTSCS) Normal 16, 24 x

Screen (CNS11643) Normal 18, 24 x

Screen (DTSCS) Normal 18, 24 x

Sung (CNS11643) Normal 24, 32 x

Sung (DTSCS) Normal 24, 32 x

Thai Screen Normal 14, 18, 24 x

Asia (Misc.) Screen (DEC Ctrl) Normal 14, 18, 24 x

Screen (DRCS) Normal 18, 24 x

6–48 Using Internationalized Software

Table 6–12: Bitmap Fonts for *.ISO8859-2 Locales

Language Typeface Style Sizes 75dpi 100dpi

Czech,
Hungarian,
Polish,
Slovak,
Slovene

Arial Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Arial Narrow Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Book Antiqua Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Bookman Old Style Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Century Gothic Normal 10, 12, 14,
18, 24, 36

x x

Using Internationalized Software 6–49

Table 6–12: Bitmap Fonts for *.ISO8859-2 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Century Schoolbook Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Courier Normal 8, 10, 12,
14, 18,
24, 36

x x

Italic 8, 10, 12,
14, 18,
24, 36

x x

Bold 8, 10, 12,
14, 18,
24, 36

x x

Bold-Italic 8, 10, 12,
14, 18,
24, 36

x x

Monotype Corsiva Normal 10, 12, 14,
18, 24, 36

x x

Times New Roman Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Terminal Normal 14, 18 x x

Double-Width 14, 18 x x

6–50 Using Internationalized Software

Table 6–12: Bitmap Fonts for *.ISO8859-2 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Double-Width,
Double-
Height

28, 36 x x

Narrow 14, 18 x x

Double-Width,
Narrow

14, 18 x x

Double-Width,
Double-
Height,
Narrow

28, 36 x x

Bold 14, 18 x x

Double-Width,
Bold

14, 18 x x

Double-Width,
Double-
Height, Bold

28, 36 x x

Narrow, Bold 14, 18 x x

Double-Width,
Narrow, Bold

14, 18 x x

Double-Width,
Double-
Height,
Narrow, Bold

28, 36 x x

Table 6–13: Bitmap Fonts for *.ISO8859-4 Locales

Language Typeface Style Sizes 75dpi 100dpi

Lithuanian Arial Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Arial Narrow Normal 10, 12, 14,
18, 24, 36

x x

Using Internationalized Software 6–51

Table 6–13: Bitmap Fonts for *.ISO8859-4 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Book Antiqua Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Bookman Old Style Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Century Gothic Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Century Schoolbook Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

6–52 Using Internationalized Software

Table 6–13: Bitmap Fonts for *.ISO8859-4 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Courier Normal 8, 10, 12,
14, 18,
24, 36

x x

Italic 8, 10, 12,
14, 18,
24, 36

x x

Bold 8, 10, 12,
14, 18,
24, 36

x x

Bold-Italic 8, 10, 12,
14, 18,
24, 36

x x

Monotype Corsiva Normal 10, 12, 14,
18, 24, 36

x x

Times New Roman Normal 10, 12, 14,
18, 24, 36

x x

Italic 10, 12, 14,
18, 24, 36

x x

Bold 10, 12, 14,
18, 24, 36

x x

Bold-Italic 10, 12, 14,
18, 24, 36

x x

Terminal Normal 14, 18 x x

Double-Width 14, 18 x x

Double-Width,
Double-
Height

28, 36 x x

Narrow 14, 18 x x

Double-Width,
Narrow

14, 18 x x

Double-Width,
Double-
Height,
Narrow

28, 36 x x

Bold 14, 18 x x

Using Internationalized Software 6–53

Table 6–13: Bitmap Fonts for *.ISO8859-4 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Double-Width,
Bold

14, 18 x x

Double-Width,
Double-
Height, Bold

28, 36 x x

Narrow, Bold 14, 18 x x

Double-Width,
Narrow, Bold

14, 18 x x

Double-Width,
Double-
Height,
Narrow, Bold

28, 36 x x

Table 6–14: Bitmap Fonts for *.ISO8859-5 Locales

Language Typeface Style Sizes 75dpi 100dpi

Russian Arial Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Courier Normal 8, 10, 12, 14, 18,
24, 36

x x

Italic 8, 10, 12, 14, 18,
24, 36

x x

Bold 8, 10, 12, 14, 18,
24, 36

x x

Bold-Italic 8, 10, 12, 14, 18,
24, 36

x x

Nimrod Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

6–54 Using Internationalized Software

Table 6–14: Bitmap Fonts for *.ISO8859-5 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Plantin Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Times New Roman Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Terminal Normal 14, 18 x x

Double-Width 14, 18 x x

Double-Width,
Double-
Height

28, 36 x x

Narrow 14, 18 x x

Double-Width,
Narrow

14, 18 x x

Double-Width,
Double-
Height,
Narrow

28, 36 x x

Bold 14, 18 x x

Double-Width,
Bold

14, 18 x x

Using Internationalized Software 6–55

Table 6–14: Bitmap Fonts for *.ISO8859-5 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Double-Width,
Double-
Height, Bold

28, 36 x x

Narrow, Bold 14, 18 x x

Double-Width,
Narrow, Bold

14, 18 x x

Double-Width,
Double-
Height,
Narrow, Bold

28, 36 x x

Table 6–15: Bitmap Fonts for *.ISO8859-7 Locales

Language Typeface Style Sizes 75dpi 100dpi

Greek Arial Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Courier Normal 8, 10, 12, 14, 18,
24, 36

x x

Italic 8, 10, 12, 14, 18,
24, 36

x x

Bold 8, 10, 12, 14, 18,
24, 36

x x

Bold-Italic 8, 10, 12, 14, 18,
24, 36

x x

Times New Roman Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

6–56 Using Internationalized Software

Table 6–15: Bitmap Fonts for *.ISO8859-7 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Terminal Normal 14, 18 x x

Double-Width 14, 18 x x

Double-Width,
Double-
Height

28, 36 x x

Narrow 14, 18 x x

Double-Width,
Narrow

14, 18 x x

Double-Width,
Double-
Height,
Narrow

28, 36 x x

Bold 14, 18 x x

Double-Width,
Bold

14, 18 x x

Double-Width,
Double-
Height, Bold

28, 36 x x

Narrow, Bold 14, 18 x x

Double-Width,
Narrow, Bold

14, 18 x x

Double-Width,
Double-
Height,
Narrow, Bold

28, 36 x x

Using Internationalized Software 6–57

Table 6–16: Bitmap Fonts for *.ISO8859-8 Locales

Language Typeface Style Sizes 75dpi 100dpi

Hebrew David Normal 8, 10, 12, 14,
18, 24

x x

Italic 8, 10, 12, 14,
18, 24

x x

Bold 8, 10, 12, 14,
18, 24

x x

Bold-Italic 8, 10, 12, 14,
18, 24

x x

Frankruhl Normal 8, 10, 12, 14,
18, 24

x x

Italic 8, 10, 12, 14,
18, 24

x x

Bold 8, 10, 12, 14,
18, 24

x x

Bold-Italic 8, 10, 12, 14,
18, 24

x x

Gam Normal 8, 10, 12, 14,
18, 24

x x

Italic 8, 10, 12, 14,
18, 24

x x

Bold 8, 10, 12, 14,
18, 24

x x

Bold-Italic 8, 10, 12, 14,
18, 24

x x

menu Normal 10, 12 x x

Miriam Normal 8, 10, 12, 14,
18, 24

x x

Italic 8, 10, 12, 14,
18, 24

x x

Bold 8, 10, 12, 14,
18, 24

x x

Bold-Italic 8, 10, 12, 14,
18, 24

x x

Miriam Fixed Normal 8, 10, 12, 14,
18, 24

x x

Italic 8, 10, 12, 14,
18, 24

x x

6–58 Using Internationalized Software

Table 6–16: Bitmap Fonts for *.ISO8859-8 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Bold 8, 10, 12, 14,
18, 24

x x

Bold-Italic 8, 10, 12, 14,
18, 24

x x

Narkiss Tam Normal 8, 10, 12, 14,
18, 24

x x

Italic 8, 10, 12, 14,
18, 24

x x

Bold 8, 10, 12, 14,
18, 24

x x

Bold-Italic 8, 10, 12, 14,
18, 24

x x

Terminal Normal 14, 18 x x

Double-Width 14, 18 x x

Double-Width,
Double-
Height

28, 36 x x

Narrow 14, 18 x x

Double-Width,
Narrow

14, 18 x x

Double-Width,
Double-
Height,
Narrow

28, 36 x x

Bold 14, 18 x x

Double-Width,
Bold

14, 18 x x

Double-Width,
Double-
Height, Bold

28, 36 x x

Narrow, Bold 14, 18 x x

Using Internationalized Software 6–59

Table 6–16: Bitmap Fonts for *.ISO8859-8 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Double-Width,
Narrow, Bold

14, 18 x x

Double-Width,
Double-
Height,
Narrow, Bold

28, 36 x x

Table 6–17: Bitmap Fonts for *.ISO8859-9 Locales

Language Typeface Style Sizes 75dpi 100dpi

Turkish Arial Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Arial Narrow Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Book Antiqua Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Bookman Old Style Normal 10, 12, 14, 18,
24, 36

x x

6–60 Using Internationalized Software

Table 6–17: Bitmap Fonts for *.ISO8859-9 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Century Gothic Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Century Schoolbook Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Courier Normal 8, 10, 12, 14,
18, 24, 36

x x

Italic 8, 10, 12, 14,
18, 24, 36

x x

Bold 8, 10, 12, 14,
18, 24, 36

x x

Bold-Italic 8, 10, 12, 14,
18, 24, 36

x x

Monotype Corsiva Normal 10, 12, 14, 18,
24, 36

x x

Times New Roman Normal 10, 12, 14, 18,
24, 36

x x

Italic 10, 12, 14, 18,
24, 36

x x

Using Internationalized Software 6–61

Table 6–17: Bitmap Fonts for *.ISO8859-9 Locales (cont.)

Language Typeface Style Sizes 75dpi 100dpi

Bold 10, 12, 14, 18,
24, 36

x x

Bold-Italic 10, 12, 14, 18,
24, 36

x x

Terminal Normal 14, 18 x x

Double-Width 14, 18 x x

Double-Width,
Double-
Height

28, 36 x x

Narrow 14, 18 x x

Double-Width,
Narrow

14, 18 x x

Double-Width,
Double-
Height,
Narrow

28, 36 x x

Bold 14, 18 x x

Double-Width,
Bold

14, 18 x x

Double-Width,
Double-
Height, Bold

28, 36 x x

Narrow, Bold 14, 18 x x

Double-Width,
Narrow, Bold

14, 18 x x

Double-Width,
Double-
Height,
Narrow, Bold

28, 36 x x

6.15.4 Customizing a Terminal Emulation Window for Asian
Languages

The following features and restrictions apply to terminal windows that you
create when an Asian language is specified for the language setting:

• Depending on the language setting, additional menu items, push
buttons, toggle switches, and text entry fields may be available to you
for customizing terminal window features.

6–62 Using Internationalized Software

• Terminal emulation always follows the selected language for your
session if the terminal is invoked from the CDE Personal Applications
menu. If a terminal window is invoked from another terminal window
where the LANGor LC_ALL variable has been set to the locale for
another language, then the language of the new window changes.
Setting locale in the parent window does not change the language of the
parent window, only of child windows invoked from the parent window.

• For a language supported by an input method server, you must be sure
the input server is connected to the terminal window where you input
characters in that language. Otherwise, you cannot use the input
method for character entry. The connection between a terminal window
and an input server does not exist if:

– The terminal window was started before the input server started

At the start of a CDE session, the input server starts automatically
when the session language is selected. For example, if Chinese is
your session language, the input server for Chinese is automatically
attached to terminal windows by default. However, if Chinese is
your session language and you want to create a window to work in
Korean, you must manually start the input server for Korean (in
addition to setting a Korean locale) before invoking the new
terminal window.

– The input method server was killed for some reason

If the connection between a terminal window and the input method
server was broken, you can start the input method server and then
create another terminal window where you can use the input
method.

Using Internationalized Software 6–63

7
Creating Locales

This chapter explains how to develop a locale, which provides information
appropriate for a particular combination of language, territory, and codeset.
You use the localedef command to create locales from the following files:

• A character map source file (charmap)

The charmap (4) reference page explains the format and rules for this
file. This chapter includes a charmap example that conforms to binary
character encodings specified for the ISO Latin-1 codeset, which defines
all characters as single 8-bit bytes. The chapter also includes an
example that shows part of a charmap file for the SJIS codeset, which
defines both single-byte and multibyte characters.

• A locale source file

The locale (4) reference page explains the rules and format for this file.
This chapter develops a locale named de_DE.ISO8859-1@example
that supports the language and customs of Germany.

• A methods file with associated shareable library

These files are required when the charmap file defines multibyte
characters; otherwise, the files are optional. The methods file specifies
the shareable library that contains redefinitions of the C Library
interfaces that convert data to and from internal process
(wide-character) encoding.

7.1 Creating a Character Map Source File for a Locale

A charmap file defines symbols for character binary encodings. The
localedef command uses this file to map character symbols in a locale
source file to the character encodings. Example 7–1 shows a fragment of
the source file, ISO8859-1.cmap , used for the
de_DE.ISO8859-1@example locale being developed in this chapter.
Appendix E contains this file in its entirety.

Example 7–1: The charmap File for a Sample Locale

Map file providing symbols for characters whose binary 1
encodings are specified in the ISO Latin-1 codeset. 1
<code_set_name> "ISO8859-1" 2

Creating Locales 7–1

Example 7–1: The charmap File for a Sample Locale (cont.)

<mb_cur_max>1 2
<mb_cur_min> 1 2
<escape_char> \ 2
<comment_char> # 2

CHARMAP 3
<NU> \d000 4
<SH> \d001
<SX> \d002
<EX> \d003
<ET> \d004
<EQ> \d005
<AK> \d006
<BL> \d007
<BS> \d008
...
<0> \d048 4
<1> \d049
<2> \d050
<3> \d051
...
<A> \d065 4
 \d066
<C> \d067
<D> \d068
<E> \d069
...
<X> \d088 4
<Y> \d089
<Z> \d090
<<(> \d091
<//> \d092
<)\>> \d093
<’\>> \d094
<_> \d095
<’!> \d096
<a> \d097
 \d098
<c> \d099
<d> \d100
<e> \d101
...
<x>\d120 4
<y> \d121
<z> \d122

7–2 Creating Locales

Example 7–1: The charmap File for a Sample Locale (cont.)

<(!> \d123
<!!> \d124
<!)> \d125
<’?> \d126
<DT> \d127
...
<O:> \d214 4
<U:> \d220
...
<ss> \d223 4
...
<o:> \d246 4
...
<u:> \d252 4
...
<backspace> \d008 5
<tab> \d009
<newline> \d010
<vertical-tab> \d011
<form-feed> \d012
<carriage-return> \d013
...
<space> \d032 5
<exclamation-mark> \d033
<quotation-mark> \d063
<number-sign> \d035
<dollar-sign> \d036
END CHARMAP 6

1 Comment line

By default, the comment character is the number sign (#). You can
override this default with a <comment_char> definition (see 2).

2 Keyword declarations

This example provides entries for all valid declarations and specifies
default values for all but <code_set_name> . Usually, you specify a
declaration only when you want to override its default value. In this
example, the declarations for <comment_char> and <escape_char>
specify the default values for the comment character and escape
character, respectively. The value for <mb_cur_max> , the maximum
length (in bytes) of a character, is 1 for this particular locale. The
value for <mb_cur_min> , the minimum length (in bytes) of a

Creating Locales 7–3

character, must be 1 in all locales. (All locales include characters in the
Portable Character Set, which defines single-byte characters.)

The <code_set_name> value will be the value returned on the
nl_langinfo(CODESET) call made by applications that bind to the
locale at run time.

3 Header marking start of character maps

4 Symbol-to-coding maps for characters

Each character map consists of a symbolic name and encoding. The
name and encoding are separated by one or more spaces

A symbolic name begins with the left angle bracket (<) and ends with
the right angle bracket (>). The characters between the angle brackets
can be any characters from the Portable Character Set, except for
control and space characters. If the name includes more than one right
angle bracket (>), all but the last one must be preceded by the value of
<escape_character> . A symbolic name cannot exceed 128 bytes in
length.

An encoding can be one or more decimal, octal, or hexadecimal
constants. (Multiple constants apply to multibyte encodings.) The
constants have the following formats:

• decimal

\d nnn or \d nn , where n is a decimal digit

• hexadecimal

\x nn , where n is a hexadecimal digit

• octal

\ nnn or \ nn , where n is an octal digit

5 Additional maps for characters

You can create multiple symbolic names for the same character
(encoding). In this source file, for example, the backspace character
(value \d008) has two symbolic names, <BS> and <backspace> . When
more than one symbolic name exists for a character, you can specify
any of them in locale definition source files to refer to the character.

6 Trailer marking end of character maps

The source files for codesets with multibyte characters have more complex
character maps. Example 7–2 shows a subset of character map entries from
a source file for the Japanese SJIS codeset. This source file specifies entries
from several character sets that must be supported within the same codeset.

7–4 Creating Locales

Example 7–2: Fragment from a charmap File for a Multibyte Codeset

SJIS charmap
#
<code_set_name> "SJIS" 1
<mb_cur_min> 1 2
<mb_cur_max>2 3
CHARMAP
#
CS0: ASCII
#
...
<commercial-at> \x40 4
<A> \x41 4
 \x42 4
...
#
CS1: JIS X0208-1983 for ShiftJIS.
#
<zenkaku-space> \x81\x40 5
<j0101>...<j0163> \x81\x40 5
<j0164>...<j0194> \x81\x80 5
...
#
UDC Area in JIS X0208 plane
#
<u8501>...<u8563> \xeb\x40 6
<u8564>...<u8594> \xeb\x80 6
<u8601>...<u8663> \xeb\x9f 6
...
#
CS2: JIS X0201 (so-called Hankaku-Kana)
#
<kana-fullstop> \xa1 7
...
<kana-conjunctive> \xa5 7
<kana-WO> \xa6 7
<kana-a> \xa7 7
...
END CHARMAP

1 Codeset name

2 Minimum number of bytes per character

This value must be 1.

Creating Locales 7–5

3 Maximum number of bytes per character

In SJIS, the largest multibyte character is 2 bytes in length.
4 Symbols and encodings for ASCII characters
5 Symbols and encodings for SJIS characters

Note how character symbols are specified as a range and how two
hexadecimal values determine the encoding for a 2-byte character.

When symbols are specified as a range of symbol values, the specified
character encoding applies to the first symbol in the range. The
localedef command automatically increments both the symbol value
and the encoding value to create symbols and encodings for all
characters in the range.

6 Maps for user-defined characters within the SJIS codeset

These maps establish ranges of encodings for which users can later
define characters.

7 Maps for the single-byte characters of the Hankaku-Kana character set

Refer to charmap (4) for a complete list of rules that apply to character map
source files.

_______________________ Note _______________________

The symbolic names for characters in character map source files
are in the process of becoming standardized. A future revision of
the X/Open UNIX standard will likely specify both long and
short symbolic names for characters.

The symbolic names for characters shown in this example are
not necessarily the names being proposed for adoption by any
standards group.

7.2 Creating Locale Definition Source Files

A locale definition source file defines data that is specific to a particular
language and territory. The source file is organized into sections, one for
each category of locale data being defined. Example 7–3 shows the
structure of a locale definition source file in pseudocode. The sections for
locale categories are discussed in more detail following the example.

Example 7–3: Structure of Locale Source Definition File

comment-line 1

7–6 Creating Locales

Example 7–3: Structure of Locale Source Definition File (cont.)

comment_char <char_symbol1> 2
escape_char <char_symbol2> 3

CATEGORY_NAME 4

category_definition-statement 5
category_definition-statement 5
...
END CATEGORY_NAME 6
...
7

1 Comment line

The number sign (#) is the default comment character. You can specify
comments as entire lines by entering the comment character in the
first column of the line. You cannot specify comments on the same lines
as definition statements in locale source files. In this respect, locale
source files differ from character map source files.

2 Redefinition of comment character

You can override the default comment character with an entry line
that begins with the comment_char keyword, followed by the symbol
for the desired character. The character symbol is defined in the
character map (charmap) source file for the locale.

3 Redefinition of escape character

The escape character, by default the backslash (\), is used in decimal,
hexadecimal, and octal constants and to indicate when definition
statements are continued to the next line of the source file. You can
override the default escape character with an entry line that begins
with the escape_char keyword, followed by one or more blank
characters, then the symbol for the desired character. The character
symbol is defined in the character map source file for the locale.

4 Header for locale category section

Section headers correspond to category names, which are LC_CTYPE,
LC_COLLATE, LC_NUMERIC, LC_MONETARY, LC_MESSAGES, and
LC_TIME.

5 Definition statement for the category

The format of these statements varies from one category to the next.
In general, a statement begins with a keyword, followed by one or
more spaces or tabs, then the definition itself.

Creating Locales 7–7

6 Trailer for locale category section

Section trailers start with the ENDkeyword, followed by the category
name.

7 You can include sections for all locale categories or only a subset of
categories. If you omit a section for a locale category from the source
file, the definition for the omitted category is the same as defined for
the POSIX, or C, locale.

7.2.1 Defining the LC_CTYPE Locale Category

The LC_CTYPEsection of a locale source file defines character classes and
character attributes used in operations such as case conversion.
Example 7–4 shows the definition for this section.

Example 7–4: LC_CTYPE Category Definition

LC_CTYPE 1

upper <A>;<A:>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;<N>;<O>;\
<O:>;<P>;<Q>;<R>;<S>;<T>;<U>;<U:>;<V>;<W>;<X>;<Y>;<Z> 2

lower <a>;<a:>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;<n>;<o>;\
<o:>;<p>;<q>;<r>;<s>;<ss>;<t>;<u>;<u:>;<v>;<w>;<x>;<y>;<z> 2

alpha <A>;<A:>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;<N>;<O>;\
<O:>;<P>;<Q>;<R>;<S>;<T>;<U>;<U:>;<V>;<W>;<X>;<Y>;<Z>;<a>;<a:>;;\
<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;<n>;<o>;<o:>;<p>;<q>;<r>;\
<s>;<ss>;<t>;<u>;<u:>;<v>;<w>;<x>;<y>;<z> 2

space <tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;<space>;\
<NS> 2

cntrl <NUL>;...;<IS1>;;...;<AC> 2
.
.
.
toupper (<a>,<A>);(<a:>,<A:>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);(<k>,<K>);\
(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);(<o:>,<O:>);(<p>,<P>);\
(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);(<u>,<U>);(<u:>,<U:>);\
(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>) 3

.

.

.
END LC_CTYPE 4

1 Section header

2 Definition of character class

These definitions start with a keyword that stands for the character
class (also referred to as a property), followed by one or more blank
characters, then a list of symbols for all characters in that class. You
can substitute the character’s encoding for its symbol; however,
specifying characters by their encodings diminishes the readability of

7–8 Creating Locales

the locale source file and makes it impossible to use the file with more
than one codeset.

As shown in the definition of the cntrl class, you can specify a
horizontal elipsis (...) to represent a range of characters. In the
string <NUL>;...;<IS1> , for example, the ellipsis represents all
characters whose encodings are between the character whose symbol is
<NUL> and the character whose symbol is <IS1> . The symbols and
their encodings are specified in the charmap file for the locale.

Character classes as defined by the X/Open UNIX standard are
represented by the following keywords:

• upper (uppercase letter characters)

• lower (lowercase letter characters)

• alpha (all letter characters)

• space (white-space characters)

• cntrl (control characters)

• punct (punctuation characters)

• digit (numeric digits)

• xdigit (hexadecimal digits)

• blank (blank characters)

• graph (printable characters, excluding the space character)

• print (printable characters, including the space character)

From the application standpoint, there is also the class alnum . This
class is not defined in a locale; it is by definition a combination of
characters in the alpha and digit classes.

Unicode (*(.UTF-8) locales include character classes as defined by the
Unicode standard. See locale (4) for details about character
classification for Unicode.

Certain locales, such as those for Asian languages like Japanese, may
define nonstandard character classes.

3 Definitions of case conversion for letter characters

These definitions, which begin with the keywords toupper and
tolower , list symbols in pairs rather than individually. In the
toupper definition shown here, the first symbol in the pair is the
symbol for a lowercase letter and the second symbol is the symbol for
that letter’s uppercase equivalent. This definition determines what a
letter is converted to when functions, like towupper() and
towlower() , perform case conversion on text data.

Creating Locales 7–9

Locales that define nonstandard character classes may define other
property conversion definitions that are used by the wctrans() and
towctrans() functions.

4 Section trailer

The preceding example does not completely illustrate all the options you
can use when defining the LC_CTYPEcategory. You can:

• Use a copy statement to include the entire category definition from
another locale

When you use a copy statement, it must be the only entry between the
section trailer and header.

• Omit any of the standard character classes or define different character
classes

Character classification is language specific. Therefore, the standard
character classes may not apply to all languages. Define for a locale
only the standard character classes that are appropriate for the locale’s
language. Depending on the language, it may be necessary to define
nonstandardized classes.

A definition for a nonstandardized character class must be preceded by
the charclass statement to define a keyword for the class, followed by
the class definition. For example:

charclass vowel
vowel <a>;<e>;<i>;<o>;<u>;<y>

Applications can use the wctype() and iswctype() functions to
determine and test all character classes (including user-defined ones).
Applications can use class-specific functions, such as iswalpha and
iswpunct to test the standard character classes.

Refer to locale (4) for additional rules and restrictions that apply to the
LC_CTYPEcategory definition.

7.2.2 Defining the LC_COLLATE Locale Category

The LC_COLLATEsection of a locale source file specifies how characters and
strings are collated. Example 7–5 shows part of an LC_COLLATEsection.

Example 7–5: LC_COLLATE Category Definition

LC_COLLATE 1
order_start forward;forward;backward 2
...

<o> <o>;<o>;<o> 3

7–10 Creating Locales

Example 7–5: LC_COLLATE Category Definition (cont.)

...
<o:> <o>;<o>;<o:> 3

...
<O> <o>;<O>;<O> 3

...
<O:> <o>;<O>;<O:> 3

...
<Z> <z>;<Z>;<Z> 3

...
UNDEFINED IGNORE;IGNORE;IGNORE 4

order_end 5
END LC_COLLATE 6

1 Section header

2 An order_start keyword that marks the beginning of a section with
statements that assign collating weights to elements

Following the order_start keyword on the same line are sort
directives, separated by semicolons (;) that apply to each order. Sort
directives can include the following keywords.

• forward , which specifies that the comparison operation proceeds
from the start of the string towards the end of the string

• backward , which specifies that the comparison operation proceeds
from the end of the string towards the start of the string

• position , which specifies that the comparison operation considers
the relative position of characters in the string that are not subject
to the collating weight IGNORE(in other words, ensures that
nonignored characters that are the shortest distance from the start
(forward,position) or end (backward,position) of the string
collate first)

When a sort directive includes two keywords, the position
keyword combined with either forward or backward , the two
keywords are separated by a comma (,). The position keyword by
itself is equivalent to the directive forward,position .

The number of sort directives corresponds to the number of weights
each collating element is assigned in subsequent statements.

Each sort directive and its associated set of weights specify information
for one pass, or level, of string comparison. The first directive applies

Creating Locales 7–11

when the string comparison operation applies the primary weight, the
second when the string comparison operation applies the secondary
weight, and so on. The number of levels required to collate strings
correctly depends on language and cultural requirements and therefore
varies from one locale to another. There is also a level number
maximum, associated with the COLL_WEIGHTS_MAXsetting in the
limits.h and sys/localedef.h files. On Tru64 UNIX systems, you
are limited to six collation levels (sort directives).

The backward directive is used for many languages to ensure that
accented characters sort after unaccented characters only if the
compared strings are otherwise equivalent.

The position directive is frequently used to handle characters, such
as the hyphen (-) in Western European languages, whose significance
can be relative to word position. For example, assume you wanted the
word “o-ring” to collate in a word list before the word “or-ing”, but do
not want the hyphen to be considered until after strings are sorted by
letters alone. You would need two sort directives and associated sets of
weight specifiers to implement this order. For the first comparison
operation, you specify forward as the sort directive, letters as the first
weights for all letter characters, and IGNOREas the weight for the
hyphen character. For the second, or a later, comparison operation, you
specify forward position as the sort directive, IGNOREas the
weight for all letter characters, and the hyphen as the weight for the
hyphen character.

If you do not specify a sort directive, the default is forward .

3 Collation order statements for elements

These statements specify a character symbol, followed by one or more
blank characters (spaces or tabs), then the symbols for characters that
have the same weight at each stage of the sort. For example, the
lowercase character o, lowercase character o umlaut, uppercase
character O, and uppercase character O umlaut, whose symbols are
<o>, <o:> , <O>, and <O:> , respectively, are grouped together (have the
same weight) at the first sort level. At the secondary sort level,
lowercase o is grouped with lowercase o umlaut and uppercase O is
grouped with uppercase O umlaut. The four characters have distinct
weights at the tertiary sort level.

4 Collation order statement for undefined characters

The UNDEFINEDkeyword begins a collation order statement to be
applied to all characters that are defined in the locale’s charmap file
but not specified in other collation order statements. This statement
indicates that such characters are to be ignored during collation for all
weight comparisons.

7–12 Creating Locales

You should include a collation order statement that begins with the
UNDEFINEDkeyword. If this statement is absent, the localedef
command includes undefined characters at the end of the collating
order and issues a warning.

Furthermore, if you place an UNDEFINEDstatement as the last
collation order statement, the localedef command can sometimes
compress all undefined characters into one entry. This action can
reduce the size of the locale.

5 Trailer to indicate the end of collation order statements

6 Trailer to indicate the end of the LC_COLLATEsection

The preceding example shows only a few of the options that you can specify
when defining the LC_COLLATEcategory. You can also use:

• A copy statement to include the entire category definition from another
locale

A copy statement can be the only entry between the section trailer and
header.

• Collating order statements that specify a string of characters, rather
than single characters, as the collating elements

In such cases, you first specify collating-element statements before
the order_start statement to define symbols for the strings. You can
then specify those symbols in collating order statements. For example:

collating-element <ch> from "<c><h>"
...
order_start forward;forward;backward
...

<ch> <Ch>;<ch>;<ch>
...

• Symbolic names, such as <UPPERCASE>, to use as weight specifiers in
collation order statements

You must define each symbolic name by using the collating-symbol
statement in the source file before the order_start statement. You
then include the symbol in the appropriate position in the list of
collation order statements for collating elements. For example, if you
wanted the symbol <LOW>to represent the lowest position in the
collating order, <LOW>would be the line entry immediately following
the order_start statement. A symbol such as <UPPERCASE>would be
positioned on the line immediately preceding the section of collating
order statements for uppercase letters.

Creating Locales 7–13

A symbol must occur before the first collation order statement in which
it is used. Therefore, you cannot define a symbol for the highest position
in the collating order.

After symbols are defined and positioned, you can use them as weights
in collating order statements. For example:

collating-symbol <LOWERCASE>
collating-symbol <UNACCENTED>
...
order_start forward;backward;forward;forward
...
<UNACCENTED>
...
<LOWERCASE>
<a> <a>;<UNACCENTED>;<LOWERCASE>;IGNORE
...

Refer to locale (4) for more detailed information on the LC_COLLATE
category definition.

7.2.3 Defining the LC_MESSAGES Locale Category

The LC_MESSAGESsection of a locale source file defines strings that are
valid for affirmative and negative responses from users. Example 7–6
shows an LC_MESSAGESsection.

Example 7–6: LC_MESSAGES Category Definition

LC_MESSAGES 1
yesexpr "^[<j><J>][[:alpha:]]*" 2
noexpr "^[<n><N>][[:alpha:]]*" 3
yesstr "<j>" 4
nostr "<n>" 5
END LC_MESSAGES 6

1 Section header
2 Definition of an expression for a valid “yes” response

This entry consists of the yesexpr keyword, followed by one or more
spaces or tabs, and an extended regular expression that is delimited by
double quotation marks.

In German, an affirmative responses is “ja.” The expression specified
for yesexpr defines a valid response as being j or J or a string that
begins with j or J and is followed by any number of letter characters.

7–14 Creating Locales

Note that the regular expression for yesexpr specifies individual
characters by their symbols as defined in the locale’s charmap file.

3 Definition of an expression for a valid “no” response

This entry consists of the noexpr keyword, followed by one or more
spaces or tabs, and an extended regular expression that is delimited by
double quotation marks.

In German, “nein” is the negative response. The definition of noexpr
is similar to the one for yesexpr , except that the only or initial
character of the user’s response must be the letter n or N.

4 Definition of a string for a valid “yes” response

This entry consists of the yesstr keyword, followed one or more spaces
or tabs, and a string that is delimited by double quotation marks.

The yesstr entry is marked for removal from the X/Open UNIX
standard; however, some applications and systems software might still
use yesstr rather than yesexpr . To ensure that your locale works
correctly with such software, it is a good idea to define yesstr in your
locale.

5 Definition of a string for a valid “no” response

This entry consists of the nostr keyword, followed one or more spaces
or tabs, and a string that is delimited by double quotation marks.

The nostr entry is marked for removal from the X/Open UNIX
standard; however, some applications and systems software might still
use nostr rather than noexpr . To ensure that your locale works
correctly with such software, it is a good idea to define nostr in your
locale.

6 Section trailer

As an alternative to specifying symbol definitions, you can use the copy
statement between the section header and trailer to duplicate an existing
locale’s definition of the LC_MESSAGEScategory. The copy statement
represents a complete definition of the category and cannot be used along
with explicit symbol definitions.

7.2.4 Defining the LC_MONETARY Locale Category

The LC_MONETARYsection of the locale source file defines the rules and
symbols used to format monetary values. Application developers use the
localeconv() and nl_langinfo() functions to determine the
information defined in this section and apply formatting rules through the
strfmon() function. Example 7–7 shows an LC_MONETARYsection.

Creating Locales 7–15

Example 7–7: LC_MONETARY Category Definition

LC_MONETARY 1
int_curr_symbol "<D><M>" 2
currency_symbol "<D><M>" 2
mon_decimal_point "<,>" 2
mon_thousands_sep "<.>" 2
mon_grouping 3 2
positive_sign "" 2
negative_sign "<->" 2
...
END LC_MONETARY 3

1 Section header
2 Symbol definitions

The entries in the example specify the following:

• The international and local currency symbols are the string DM(for
Deutsch Mark).

• The decimal point is the comma (,).

• The separator grouping digits to the left of the decimal point is the
period (.).

• The number of digits in groups separated by periods is 3.

• The positive sign is null.

• The negative sign is the minus (−) character.
3 Section trailer

The following list describes the symbol names you can define in the
LC_MONETARYsection:

• int_curr_symbol

The international currency symbol

• currency_symbol

The local currency symbol

• mon_decimal_point

The radix character, or decimal point, used in monetary formats

• mon_thousands_sep

The character used to separate groups of digits to the left of the radix
character

7–16 Creating Locales

• mon_grouping

The size of each group of digits to the left of the radix character

• positive_sign

The string indicating that a monetary value is nonnegative

• negative_sign

The string indicating that a monetary value is negative

• int_frac_digits

The number of digits to be written to the right of the radix character
when int_curr_symbol appears in the format

• frac_digits

The number of digits to be written to the right of the radix character
when currency_symbol appears in the format

• p_cs_precedes

An integer that determines if the international or local currency symbol
precedes a nonnegative value

• p_sep_by_space

An integer that determines whether a space separates the international
or local currency symbol from other parts of a formatted, nonnegative
value

• n_cs_precedes

An integer that determines if the international or local currency symbol
precedes a negative value

• n_sep_by_space

An integer that determines whether a space separates the international
or local currency symbol from other parts of a formatted, negative value

• p_sign_posn

An integer that indicates if or how the positive sign string is positioned
in a nonnegative, formatted value

• n_sign_posn

An integer that indicates how the negative sign string is positioned in a
negative, formatted value

As an alternative to specifying symbol definitions, you can use the copy
statement between the section header and trailer to duplicate an existing
locale’s definition of LC_MONETARY. The copy statement represents a
complete definition of the category and cannot be used along with explicit
symbol definitions.

Creating Locales 7–17

Refer to locale (4) for complete information about specifying LC_MONETARY
symbol definitions.

7.2.5 Defining the LC_NUMERIC Locale Category

The LC_NUMERICsection of the locale source file defines the rules and
symbols used to format numeric data. You can use the localeconv() and
nl_langinfo() functions to access this formatting information.
Example 7–8 shows an LC_NUMERICsection.

Example 7–8: LC_NUMERIC Category Definition

LC_NUMERIC 1
decimal_point "<,>" 2
thousands_sep "<.>" 3
grouping 3 4
END LC_NUMERIC 5

1 Category header
2 Definition of radix character (decimal point)
3 Definition of character used to separate groups of digits to the left of

the radix character
4 The size of each group of digits to the left of the radix character
5 Category trailer

The preceding example shows all of the symbols you can define in the
LC_NUMERICsection. In place of any symbol definitions, you can specify a
copy statement between the section header and trailer to include this
section from another locale.

Refer to locale (4) for detailed rules about symbol definitions.

7.2.6 Defining the LC_TIME Locale Category

The LC_TIME section of a locale source file defines the interpretation of
field descriptors supported by the date command. This section also affects
the behavior of the strftime() , wcsftime() , strptime() , and
nl_langinfo() functions. Example 7–9 shows some of the symbols
defined for the sample German locale.

Example 7–9: LC_TIME Category Definition

LC_TIME 1

7–18 Creating Locales

Example 7–9: LC_TIME Category Definition (cont.)

abday "<S><o>";"<M><o>";"<D><i>";"<M><i>";"<D><o>";\
"<F><r>";"<S><a>" 2

day "<S><o><n><n><t><a><g>";"<M><o><n><t><a><g>";\
"<D><i><e><n><s><t><a><g>";\
"<M><i><t><t><w><o><c><h>";\
"<D><o><n><n><e><r><s><t><a><g>";\
"<F><r><e><i><t><a><g>";"<S><a><m><s><t><a><g>" 3

abmon "<J><a><n>";"<F><e>";"<M><a:><r>";\
"<A><p><r>";"<M><a><i>";"<J><u><n>";\
"<J><u><l>";"<A><u><g>";"<S><e><p>";\
"<O><k><t>";"<N><o><v>";"<D><e><z>" 4

mon "<J><a><n><u><a><r>";"<F><e><r><u><a><r>";\
"<M><a:><r><z>";"<A><p><r><i><l>";"<M><a><i>";\
"<J><u><n><i>";"<J><u><l><i>";\
"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><e><r>";\
"<O><k><t><o><e><r>";\
"<N><o><v><e><m><e><r>";\
"<D><e><z><e><m><e><r>" 5

d_t_fmt "%d.%B %Y %H:%M:%S" 6
...
END LC_TIME 7

1 Section header
2 Abbreviated names for days of the week

Use the %aconversion specifier to include this string in formats.
3 Full names for days of the week

Use the %Aconversion specifier to include this string in formats.
4 Abbreviated names for months of the year

Use the %bconversion specifier to include this string in formats.
5 Full names for months of the year

Use the %Bconversion specifier to include this string in formats.
6 Format for combined date and time information

Use this format to combine field descriptors (whose first character is
the percent sign (%)) and symbols for characters. You can specify

Creating Locales 7–19

characters from the Portable Character Set (PCS), such as the period
(.) and ASCII space, explicitly as characters rather than implicitly
through symbols; however, use symbols to specify all other characters.

The specified format includes the field descriptors for the day of the
month (%d), the full name of the month (%B), the full representation of
the year (%Y), the number of hours in a 24-hour period (%H), the
number of minutes (%M), and the number of seconds (%S). If the date
were December 12, 1993, and the time 29 seconds after 12 o’clock in
the afternoon, the format specified in this example would cause the
date command to display 12.Dezember 1993 12:00:29 .

7 Section trailer

The preceding example includes only some of the symbol definitions that
are standard for the LC_TIME category. The following definitions are also
standard:

• d_fmt

Format for the date alone; corresponds to the %xfield descriptor

• t_fmt

Format for the time alone; corresponds to the %Xfield descriptor

• am_pm

Format for the ante meridiem and post meridiem time strings;
corresponds to the %pfield descriptor

For example, the definition for English would be:

am_pm "<A><M>";"<P><M>"

• t_fmt_ampm

Format for the time according to the 12-hour clock; corresponds to the
%r field descriptor

• era

Definition of how years are counted and displayed for each era (an
Asian date construct) in the locale

• era_d_fmt

Format of the date alone in era notation; corresponds to the %Exfield
descriptor

• era_t_fmt

Format of the time alone in era notation; corresponds to the %EXfield
descriptor

• era_d_t_fmt

7–20 Creating Locales

Format of both date and time in era notation; corresponds to the %Ec
field descriptor

• alt_digits

Definition of alternative symbols for digits (used in Asian locales);
corresponds to the %Ofield descriptor

As is true for other category sections, you can specify a copy statement to
include all LC_TIME definitions from another locale. Note that Tru64 UNIX
supports symbols and field descriptors in addition to those described here.
Refer to locale (4) for more complete information.

7.3 Building Libraries to Convert Multibyte/Wide-Character
Encodings

C library routines rely on a set of special interfaces to convert characters to
and from data file encoding and wide-character encoding (internal process
code). By default, the C library routines use interfaces that handle only
single-byte characters. However, many are defined with entry points that
permit use of alternative interfaces for handling multibyte-characters. The
interfaces that can be tailored to a locale’s codeset are called methods.

Only locales with multibyte codesets must use methods. When a locale uses
methods, there are some methods that the locale must supply and other
methods that it can optionally supply. A method is required when the
corresponding interface is converting characters between data formats and
needs codeset-specific logic to do that operation correctly. A method is
optional when the corresponding interface is working with data after it has
been converted to wide-character format and can apply logic that is valid
for both single-byte and multibyte characters.

Methods must be available on the system in a shareable library. This
library and the functions that implement each method in the library are
made known to the localedef command through a methods file. When
the localedef command processes the methods file along with the
charmap and locale source files, the resulting locale includes pointers to
all methods that are supplied with the locale, along with pointers to default
implementations for optional methods that are not supplied with the locale.
When you set the LANGvariable to the newly built locale and run a
command or application, methods are used wherever they have been
enabled in the system software.

Creating Locales 7–21

7.3.1 Required Methods

If your locale uses methods, it must supply the following methods, without
which it is impossible for C Library functions to convert data between
multibyte and wide-character formats:

• _ _mbstopcs

• _ _mbtopc

• _ _pcstombs

• _ _pctomb

• mblen

• mbstowcs

• mbtowc

• wcstombs

• wctomb

• wcswidth

• wcwidth

7.3.1.1 Writing the _ _mbstopcs Method for the fgetws Function

The fgetws() function uses the _ _mbstopcs method to convert the bytes
in the standard I/O (stdio) buffer to a wide-character string. The function
that implements this method must return the number of wide characters
converted by the call.

This method is similar to the one for mbstowcs (see Section 7.3.1.6) but
contains additional parameters to meet the needs of fgetws() . By
convention, a C source file for this method has the file name
_ _mbstopcs_ codeset .c , where codeset identifies the codeset for which
the method is tailored. Example 7–10 shows the file
_ _mbstopcs_sdeckanji.c that defines the _ _mbstopcs method used
with the ja_JP.sdeckanji locale.

Example 7–10: The _ _mbstopcs_sdeckanji Method for the
ja_JP.sdeckanji Locale

#include <stdlib.h> 1
#include <wchar.h> 1
#include <sys/localedef.h> 1

int _ _mbstopcs_sdeckanji(
wchar_t *pwcs, 2
size_t pwcs_len, 3
const char *s, 4
size_t s_len, 5

7–22 Creating Locales

Example 7–10: The _ _mbstopcs_sdeckanji Method for the
ja_JP.sdeckanji Locale (cont.)

int stopchr, 6
char **endptr, 7
int *err, 8
_LC_charmap_t *handle) 9

{
int cnt = 0; 10
int pwcs_cnt = 0; 10
int s_cnt = 0; 10

*err = 0; 11

while (1) { 12
if (pwcs_cnt >= pwcs_len || s_cnt >= s_len) {

*endptr = (char *)&(s[s_cnt]);
break;

} 13
if ((cnt = _ _mbtopc_sdeckanji(&(pwcs[pwcs_cnt]),

&(s[s_cnt]), (s_len - s_cnt), err)) == 0) {
*endptr = (char *)&(s[s_cnt]);
break;

} 14
pwcs_cnt++; 15
if (s[s_cnt] == (char) stopchr) {

*endptr = (char *)&(s[s_cnt+1]);
break;

} 16
s_cnt += cnt; 17

} 18
return (pwcs_cnt); 19

}

1 Include header files that contain constants and structures required for
this method.

2 Points, through pwcs , to a buffer that stores the wide-character string.

3 Defines a variable, pwcs_len , to store the size of the pwcs buffer.

4 Points, through s , to a buffer that stores the multibyte-character
string being converted.

5 Defines a variable, s_len , to store the number of bytes of data in the s
buffer.

This parameter is needed because the fgetws() function reads from
the standard I/O buffer, which does not contain null-terminated strings.

6 Defines a variable, stopchr , to contain a byte value that would force
conversion to stop.

This value, typically \n , is passed to the method on the call from the
fgetws() function, which handles only one line of input per call.

Creating Locales 7–23

7 Defines a variable, endptr , that points to the byte following the last
byte converted.

This pointer is needed to specify the starting character in the standard
I/O buffer for the next call to fgetws() .

8 Points, through err , to a variable that stores execution status for the
call made by this method to the mbtopc method.

9 Points, through hdl , to a structure that points to the methods that
parse character maps for this locale.

The localedef command creates and stores values in the
_LC_charmap_t structure.

10 Initialize variables that indicate the number of bytes that a character
uses in multibyte format (supplied by the mbtopc method) and the
byte or character position in buffers that the fgetws() function uses.

11 Sets err to zero (0) to indicate success.

12 Starts the while loop that converts the multibyte string.

13 Sets endptr and breaks out of the loop when there is either no more
space in the buffer that stores wide-character data or no more data in
the buffer that stores multibyte data.

14 Calls the mbtopc method to convert a character from multibyte format
to wide-character format; breaks out of the loop and sets endptr to
the first byte of the character that could not be converted if the
mbtopc method fails to convert a character and returns an error.

The err variable contains the return status of the call to the mbtopc
method:

• 0 indicates success.

• −1 indicates an invalid character.

• A value greater than 0 indicates that too few bytes remain in the
multibyte-character buffer to form a valid character.

In this case, the return is the number of bytes required to form a
valid character. The fgetws() function can then refill the buffer
and try again.

15 Increments the character position in the buffer that stores the
wide-character data.

16 Sets endptr to the character following the character stored in stopchr
if the stopchr character is encountered in the multibyte data.

17 Increments the byte position in the buffer that contains multibyte data.

18 Ends the while loop.

7–24 Creating Locales

19 Returns the number of characters in the buffer that contains
wide-character data.

7.3.1.2 Writing the _ _mbtopc Method for the getwc() Function

The getwc() or fgetwc() function calls the _ _mbtopc method to convert
a multibyte character to a wide character. The method returns the number
of bytes in the multibyte character that is converted. This method is
similar to the one for mbtowc (see Section 7.3.1.7) but contains an
additional parameter that getwc() needs. By convention, a C source file
for this method has the file name _ _mbtopc_ codeset .c , where codeset
identifies the codeset for which this method is tailored. Example 7–11
shows the _ _mbtopc_sdeckanji.c file, which defines the _ _mbtopc
method used with the ja_JP.sdeckanji locale.

Example 7–11: The _ _mbtopc_sdeckanji Method for the ja_JP.sdeckanji
Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <sys/localedef.h>

/*
The algorithm for this conversion is:
s[0] < 0x9f: PC = s[0]
s[0] = 0x8e: PC = s[1] + 0x5f;
s[0] = 0x8f PC = (((s[1] - 0xa1) << 7) | (s[2] - 0xa1)) + 0x303c
s[0] > 0xa1:0xa1 < s[1] < 0xfe

PC = (((s[0] - 0xa1) << 7) | (s[1] - 0xa1)) + 0x15e
0x21 < s[1] < 0x7e

PC = (((s[0] - 0xa1) << 7) | (s[1] - 0x21)) + 0x5f1a
+-----------------+-----------+-----------+-----------+
| process code | s[0] | s[1] | s[2] |
+-----------------+-----------+-----------+-----------+
| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - 0x00ff | -- | -- | -- |
| 0x0100 - 0x015d | 0x8e | 0xa1-0xfe | -- | JIS X0201 RH
| 0x015e - 0x303b | 0xa1-0xfe | 0xa1-0xfe | -- | JIS X0208
| 0x303c - 0x5f19 | 0x8f | 0xa1-0xfe | 0xa1-0xfe | JIS X0212
| 0x5f1a - 0x8df7 | 0xa1-0xfe | 0x21-0xfe | -- | UDC
+-----------------+-----------+-----------+-----------+
*/ 2
int _ _mbtopc_sdeckanji(

wchar_t *pwc, 3
char *ts, 4
size_t maxlen, 5
int *err, 6
_LC_charmap_t *handle) 7

{
wchar_t dummy; 8
unsigned char *s = (unsigned char *)ts; 9
if (s == NULL)

return(0); 10
if (pwc == (wchar_t *)NULL)

pwc = &dummy; 11

Creating Locales 7–25

Example 7–11: The _ _mbtopc_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

*err = 0; 12
if (s[0] <= 0x8d) {

if (maxlen < 1) {
*err = 1;
return(0);

}
else {

*pwc = (wchar_t) s[0];
return(1);

}
} 13
else if (s[0] == 0x8e) {

if (maxlen >= 2) {
if (s[1] >=0xa1 && s[1] <=0xfe) {

*pwc = (wchar_t) (s[1] + 0x5f);
return(2);

}
}
else {

*err = 2;
return(0);

}
} 14
else if (s[0] == 0x8f) {

if (maxlen >= 3) {
if ((s[1] >=0xa1 && s[1] <=0xfe) &&

(s[2] >=0xa1 && s[2] <= 0xfe)) {
*pwc = (wchar_t) (((s[1] - 0xa1) << 7) |

(wchar_t) (s[2] - 0xa1)) + 0x303c;
return(3);

}
}
else {

*err = 3;
return(0);

}
} 15

else if (s[0] <= 0x9f) {
if (maxlen < 1) {

*err = 1;
return(0);

}
else {

*pwc = (wchar_t) s[0];
return(1);

}

} 16
else if (s[0] >= 0xa1 && s[0] <= 0xfe) {

if (maxlen >= 2) {
if (s[1] >=0xa1 && s[1] <= 0xfe) {

*pwc = (wchar_t) (((s[0] - 0xa1) << 7) |
(wchar_t) (s[1] - 0xa1)) + 0x15e;

return(2);
} else if (s[1] >=0x21 && s[1] <= 0x7e) {

*pwc = (wchar_t) (((s[0] - 0xa1) << 7) |
(wchar_t) (s[1] - 0x21)) + 0x5f1a;

return(2);

7–26 Creating Locales

Example 7–11: The _ _mbtopc_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

}
}
else {

*err = 2;
return(0);

}

} 17
*err = -1;
return(0); 18

}

1 Include header files that contain constants and structures required for
this method

2 Describes the algorithm used to determine the number of bytes and
valid byte combinations for the different character sets that the
codeset supports

The codeset supports several character sets and each set contains
characters of only one length. The value in the first byte indicates the
character set and therefore the character length. For character sets
with multibyte characters, one or more additional bytes must be
examined to determine whether the value sequence identifies a
character or is invalid.

3 Points, through pwc, to a buffer that stores the wide character

4 Points, through ts , to a buffer that stores the bytes that are passed to
the method from the calling function

5 Declares a variable, maxlen , that stores the maximum number of
bytes in the multibyte data

This value is passed by the calling function.

6 Points, through err , to a buffer that stores execution status

7 Points, through handle , to a structure that contains pointers to the
methods that parse the character maps for this locale

8 Declares a variable, dummy, to which pwc can be set to ensure a valid
address

9 Casts ts (an array of signed characters) to s (an array of unsigned
characters)

This operation prevents problems when integer values are stored in
the array and then referenced by index. Compilers apply sign

Creating Locales 7–27

extension to values when comparing a small signed data type, such as
int , to a large signed data type, such as char . Sign extension means
that the high bit of the value in the small data type is used to fill in
bits that remain when the value is converted to the larger data type
for comparison. For example, if s[0] is the value 0x8e, sign extension
would cause it to be treated as 0xffffff8e. In this case, a condition like
the following is evaluated as true when you expect it to be false:

if (s[0] <= 0x8d

10 Returns zero (0) if the s buffer contains or points to NULL

11 Stores the contents of dummyin the wide-character buffer if the ts
buffer contains or points to NULL

This operation ensures that *pwc always points to a valid address;
otherwise, an application could produce a segmentation fault by
referring to this pointer when a wide character has not been stored in
pwc.

12 Initializes err to zero (0) to indicate success

13 Determines if the character is one of the single-byte characters that
the codeset defines for values equal to or less than 0x8d

If s contains no characters, returns zero (0) to indicate that no bytes
were converted and sets err to 1 to indicate that 1 byte is needed to
form a valid character.

If the byte value is in the range being tested, moves the associated
process code value to pwc and returns 1 to indicate the number of
bytes converted.

14 Determines if the character is one of the double-byte characters that
the codeset defines for the value 0x8e (first byte) and the value range
0xa1 to 0xfe (second byte)

If yes, moves the associated process code value to the pwc buffer and
returns 2 to indicate the number of bytes converted; otherwise, returns
0 to indicate that no conversion took place and sets err to 2 to specify
that at least 2 bytes are needed to form a valid character.

15 Determines if the character is one of the triple-byte characters that the
codeset defines for the value 0x8f (first byte), the range 0xa1 to 0xfe
(second byte), and the range 0xa1 to 0xfe (third byte)

If yes, moves the associated process code value to pwc and returns 3 to
indicate the number of bytes converted; otherwise, sets err to 3 to
indicate that at least 3 bytes are needed and returns zero (0) to
indicate that no character was converted.

16 Determines if the character is one of the single-byte characters that
the codeset defines for the range 0x90 to 0x9f

7–28 Creating Locales

If there are no bytes in the standard I/O buffer, returns zero (0) to
indicate that no bytes were converted and sets err to 1 to indicate
that at least 1 byte is needed to form a valid character.

If the byte value is in the defined range, moves the associated process
code value to pwc and returns 1 to indicate the number of bytes
converted.

17 Determines if the character is one of the double-byte characters that
the codeset defines for the range 0xa1 to 0xfe (first byte) and 0x21 to
0x7e (second byte)

If yes, moves the associated process code value to pwc buffer and
returns 2 to indicate the number of bytes converted; otherwise, sets
err to 2 to indicate that at least 2 bytes are needed to form a valid
character and returns zero (0) to indicate that no bytes were converted.

18 Sets err to −1 to indicate that an invalid multibyte sequence was
encountered and returns zero (0) to indicate that no bytes were
converted

These statements execute if the multibyte data in s satisfies none of
the preceding if conditions.

7.3.1.3 Writing the _ _pcstombs Method for the fputws() Function

The fputws() function first calls the _ _pcstombs method to convert a
string of characters from process (wide-character) code to multibyte code. If
this method returns −1 to indicate no support by the locale, fputws()
then calls putwc() for each wide character in the string being converted.
By convention, a C source file for this method has the file name
_ _pcstombs_ codeset .c , where codeset identifies the codeset for which
this method is tailored. Example 7–12 shows the file
_ _pcstombs_sdeckanji.c that defines the _ _pcstombs method used
with the ja_JP.sdeckanji locale.

Example 7–12: The _ _pcstombs_sdeckanji Method for the
ja_JP.sdeckanji Locale

int _ _pcstombs_sdeckanji()
{

return -1; 1
}

1 Returns −1 to indicate that the locale does not support the method.

This return causes the fputws() function to use multiple calls to
putwc() to convert wide characters in the string.

Creating Locales 7–29

If you choose to implement this method fully rather than writing it to
return −1, your function implementation returns the number of wide
characters converted and must include header files and parameters as
shown in the following example:

#include <stdlib.h>
#include <wchar.h>
#include <sys/localedef.h>

int _ _pcstombs_newcodeset(
wchar_t *pcsbuf, 1
size_t pcsbuf_len, 2
char *mbsbuf, 3
size_t mbsbuf_len, 4
char **endptr, 5
int *err, 6
_LC_charmap_t *handle) 7

1 Specifies a pointer to a buffer that contains the wide-character string

2 Specifies a variable with the length of the wide-character buffer

This value is passed to the method on the call from fputws() .

3 Specifies a pointer to a buffer that contains the multibyte-character
string

4 Specifies a variable with the length of the multibyte-character buffer

This value is passed to the method on the call from fputws() .

5 Points, through endptr , to a pointer to the byte position in the
multibyte-character buffer where the next character would begin if
multiple calls to fputws() are required to convert all the
wide-character data

6 Specifies a pointer to the execution status return

If this method calls the wctomb method to perform the character
conversion, the wctomb method sets this status. Otherwise, this
method must incorporate the logic to perform wide-character to
multibyte-character conversion and set the status directly.

In any event, the fputws() function expects the following values:

• 0 for success

• −1 to indicate that the wide-character value is invalid and
therefore cannot be converted

• A positive value to indicate that the multibyte-character buffer
contains too few bytes after the last character to store the next
character

7–30 Creating Locales

In this case, the value is the number of bytes required to store the
next character. The fputws() function can then empty the
multibyte-character buffer and try again.

7 Specifies a pointer to the _LC_charmap_t structure that stores
pointers to the methods used with this locale

The _ _pcstombs method performs the reverse of the operation that the
_ _mbstopcs method described in Section 7.3.1.3 performs. Because of the
direction of the data conversion, the _ _pcstombs method:

• Does not require a variable for a stop conversion character, such as \n

• Calls (or implements the operation performed by the) wctomb method
rather than calling the mbtowc method to convert each character and
determine the number of bytes it needs in the multibyte-character
buffer

7.3.1.4 Writing a _ _pctomb Method

C Library functions currently do not use the _ _pctomb interface. The
putwc() function, for example, calls the wctomb method to convert a
character from wide-character to multibyte-character format. Nonetheless,
the localedef command requires a method for this function when your
locale supplies methods. By convention, a C source file for this method has
the file name_ _pctomb_ codeset .c , where codeset identifies the
codeset for which this method is tailored. Example 7–13 shows the
_ _pctomb_sdeckanji.c file that defines the _ _pctomb method used
with the ja_JP.sdeckanji locale.

Example 7–13: The _ _pctomb_sdeckanji Method for the ja_JP.sdeckanji
Locale

int _ _pctomb_sdeckanji()
{

return -1; 1
}

1 Returns −1 to indicate that the locale does not support this method

7.3.1.5 Writing a Method for the mblen() Function

The mblen() function uses the mblen method to return the number of
bytes in a multibyte character. By convention, a C source file for this
method has the file name _ _mblen_ codeset .c , where codeset identifies
the codeset for which this method is tailored. Example 7–14 shows the

Creating Locales 7–31

_ _mblen_sdeckanji.c file that defines the mblen method used with the
ja_JP.sdeckanji locale.

Example 7–14: The _ _mblen_sdeckanji Method for the ja_JP.sdeckanji
Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <sys/errno.h>
#include <sys/localedef.h>

/*
The algorithm for this conversion is:

s[0] < 0x9f: 1 byte
s[0] = 0x8e: 2 bytes
s[0] = 0x8f 3 bytes
s[0] > 0xa1 2 bytes

| process code | s[0] | s[1] | s[2] |
+-----------------+-----------+-----------+-----------+
| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - 0x00ff | -- | -- | -- |
| 0x0100 - 0x015d | 0x8e | 0xa1-0xfe | -- | JIS X0201 RH
| 0x015e - 0x303b | 0xa1-0xfe | 0xa1-0xfe | -- | JIS X0208
| 0x303c - 0x5f19 | 0x8f | 0xa1-0xfe | 0xa1-0xfe | JIS X0212
| 0x5f1a - 0x8df7 | 0xa1-0xfe | 0x21-0xfe | -- | UDC
+-----------------+-----------+-----------+-----------+
*/ 2

int _ _mblen_sdeckanji(
char *fs, 3
size_t maxlen, 4
_LC_charmap_t *handle) 5

{
const unsigned char *s = (void *) fs; 6 if (s == NULL || *s == ’\0’)

return(0); 7

if (maxlen < 1) {
_Seterrno(EILSEQ);
return((size_t)-1);

} 8 if (s[0] <= 0x8d)
return(1); 9

else if (s[0] == 0x8e) {
if (maxlen >= 2 && s[1] >=0xa1 && s[1] <=0xfe)

return(2);
} 10

else if (s[0] == 0x8f) {
if(maxlen >=3 && (s[1] >=0xa1 && s[1] <=0xfe) &&

(s[2] >=0xa1 && s[2] <= 0xfe))
return(3);

} 11

else if (s[0] <= 0x9f)
return(1); 12

else if (s[0] >= 0xa1) {
if (maxlen >=2 && (s[0] <= 0xfe))

if ((s[1] >=0xa1 && s[1] <= 0xfe) ||
(s[1] >=0x21 && s[1] <= 0x7e))

7–32 Creating Locales

Example 7–14: The _ _mblen_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

return(2);
} 13

_Seterrno(EILSEQ);
return((size_t)-1); 14

}

1 Includes header files that contain constants and structures required by
this method

2 Describes the algorithm used to determine the number of bytes in the
character and whether it is a valid byte sequence

The codeset supports several character sets and each set contains
characters of only one length. The value in the first byte indicates the
character set and therefore the character length. For character sets
with multibyte characters, one or more additional bytes must be
examined to determine whether the value sequence identifies a
character or is invalid.

3 Points, through fs , to a buffer that stores the byte string to be
examined

4 Defines a variable, maxlen , that stores the maximum length of a
multibyte character

This value is passed to the method by the mblen() function.

5 Points, through handle , to a structure that stores pointers to the
methods that parse character maps for this locale

6 Casts fs (an array of signed characters) to s (an array of unsigned
characters).

This operation prevents problems when integer values are stored in
the array and then referenced by index. Compilers apply sign
extension to values when comparing a small signed data type, such as
int , to a large signed data type, such as char . Sign extension means
that the high bit of the value in the small data type is used to fill in
bits that remain when the value is converted to the larger data type
for comparison. For example, if s[0] is the value 0x8e, sign extension
would cause it to be treated as 0xffffff8e. In this case, a condition like
the following is evaluated as true when you expect it to be false:

if (s[0] <= 0x8d

Creating Locales 7–33

7 Returns zero (0) to indicate that the character length is zero (0) bytes
if s contains or points to NULL

8 Returns −1 and sets errno to [EILSEQ] (invalid character sequence) if
maxlen (the maximum number of bytes to consider) is 0 or a negative
number

To set errno in a way that works correctly with multithreaded
applications, use _Seterrno rather than an assignment statement.

9 Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x8d

If yes, returns 1 to indicate that the character length is 1 byte.

10 Determines if the first byte identifies a double-byte character whose
first byte contains the value 0x8e and second byte contains a value in
the range 0xa1 to 0xfe

If yes, returns 2 to indicate that the character length is 2 bytes.

11 Determines if the first byte identifies a triple-byte character whose
first byte contains the value 0x8f and whose second and third bytes
contain a value in the range 0xa1 to 0xfe

If yes, returns 3 to indicate that the character length is 3 bytes.

12 Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x9f

If yes, returns 1 to indicate that the character length is 1 byte.

13 Determines if the first byte identifies a double-byte character whose
first byte contains a value in the range 0xa1 to 0xfe and whose second
byte contains a value in the range 0x21 to 0x7e

If yes, returns 2 to indicate that the character length is 2 bytes.

14 Returns −1 and sets errno to [EILSEQ] to indicate an invalid
multibyte sequence

These statements execute if the multibyte data in the standard I/O
buffer satisfies none of the preceding if conditions.

7.3.1.6 Writing a Method for the mbstowcs() Function

The mbstowcs() function uses the mbstowcs method to convert a
multibyte character string to process wide-character code and to return the
number of resultant wide characters. By convention, a C source file for this
method has the file name _ _mbstowcs_ codeset .c , where codeset
identifies the codeset for which this method is tailored. Example 7–15
shows the _ _mbstowcs_sdeckanji.c file that defines the mbstowcs
method used with the ja_JP.sdeckanji locale.

7–34 Creating Locales

Example 7–15: The _ _mbstowcs_sdeckanji Method for the
ja_JP.sdeckanji Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <sys/localedef.h>

size_t _ _mbstowcs_sdeckanji(
wchar_t *pwcs, 2
const char *s, 3
size_t n, 4
_LC_charmap_t *handle) 5

{
int len = n; 6
int rc; 7
int cnt; 8
wchar_t *pwcs0 = pwcs; 9
int mb_cur_max; 10

if (s == NULL)
return (0); 11

mb_cur_max = MB_CUR_MAX; 12

if (pwcs == (wchar_t *)NULL) {
cnt = 0;
while (*s != ’\0’) {

if ((rc = _ _mblen_sdeckanji(s, mb_cur_max, handle)) == -1)
return(-1);

cnt++ ;
s += rc;

}
return(cnt);

} 13

while (len-- > 0) {
if (*s == ’\0’) {

*pwcs = (wchar_t) ’\0’;
return (pwcs - pwcs0);

}
if ((cnt = _ _mbtowc_sdeckanji(pwcs, s, mb_cur_max, handle)) < 0)

return(-1);
s += cnt;
++pwcs;

} 14

return (n); 15
}

1 Includes header files that contain constants and structures required
for this method

2 Points, through pwcs , to a buffer that contains the wide-character
string

3 Points, through s , to a buffer that contains the multibyte-character
string

4 Defines a variable, n, that contains the number of wide characters in
pwcs

Creating Locales 7–35

5 Points, through handle , to a structure that stores pointers to the
methods that parse character maps for this locale

6 Assigns the number of wide characters in the pwcs buffer (the n value
supplied by the calling function) to len

7 Defines a variable, rc , that stores the return count from a call this
method makes to the mblen function

8 Defines a variable, cnt , that counts the bytes used by characters in
the s buffer

9 Saves the start of the wide-character string passed by the calling
function in the pwcs0 variable

10 Defines a variable, mb_cur_max , that is later set to MB_CUR_MAXand
used in a call to the mblen method

11 Returns zero (0) if s is null

A method should return zero (0) if the locale’s character encoding is
stateless and a nonzero value if the locales’s character encoding is
stateful.

12 Assigns the value defined for MB_CUR_MAXto mb_cur_max for use on
the following call to the mblen method

13 Checks to see if a null pointer was passed from the calling function
and, if yes, calls the mblen method to calculate the size of the
wide-character string

The programmer can request the size of the pwcs buffer (for memory
allocation purposes) by passing a null wide character as the pwcs
parameter in the call to mbstowcs() . The programmer can then use
the return value to efficiently allocate memory space for the
application’s wide-character buffer before calling mbstowcs() again to
actually convert the multibyte string.

14 Converts bytes in the multibyte-character buffer by calling the
_ _mbtowc method until a null character (end-of-string) is encountered

Stops processing and returns the number of wide characters in the
pwcs buffer if a NULL character is encountered; increments the byte
position in the multibyte character buffer by an appropriate number
each time a character is successfully converted

This while loop uses the condition len-- > 0 to ensure that
processing stops when the pwcs buffer is full. The first if condition in
the loop makes sure that, if the multibyte string in the s buffer is null
terminated, the associated null terminator in the pwcs buffer is not
included in the wide-character count that the mbtowcs() function
returns to the application.

7–36 Creating Locales

15 Returns the value in n to indicate the resultant number of wide
characters in the pwcs buffer

This statement executes if the pwcs buffer runs out of space before a
NULL is encountered in the s buffer.

7.3.1.7 Writing a Method for the mbtowc() Function

The mbtowc() function uses the mbtowc method to convert a multibyte
character to a wide character and to return the number of bytes in the
multibyte character that was converted. By convention, a C source file for
this method has the file name _ _mbtowc_ codeset .c , where codeset
identifies the codeset for which this method is tailored. Example 7–16
shows the _ _mbtowc_sdeckanji.c file that defines the mbtowc method
used with the ja_JP.sdeckanji locale.

Example 7–16: The _ _mbtowc_sdeckanji Method for the ja_JP.sdeckanji
Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <sys/errno.h>
#include <sys/localedef.h>

/*
The algorithm for this conversion is:

s[0] < 0x9f: PC = s[0]
s[0] = 0x8e: PC = s[1] + 0x5f;
s[0] = 0x8f PC = (((s[1] - 0xa1) << 7) | (s[2] - 0xa1)) + 0x303c
s[0] > 0xa1:0xa1 < s[1] < 0xfe

PC = (((s[0] - 0xa1) << 7) | (s[1] - 0xa1)) + 0x15e
0x21 < s[1] < 0x7e

PC = (((s[0] - 0xa1) << 7) | (s[1] - 0x21)) + 0x5f1a

+-----------------+-----------+-----------+-----------+
| process code | s[0] | s[1] | s[2] |
+-----------------+-----------+-----------+-----------+
| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - 0x00ff | -- | -- | -- |
| 0x0100 - 0x015d | 0x8e | 0xa1-0xfe | -- | JIS X0201 RH
| 0x015e - 0x303b | 0xa1-0xfe | 0xa1-0xfe | -- | JIS X0208
| 0x303c - 0x5f19 | 0x8f | 0xa1-0xfe | 0xa1-0xfe | JIS X0212
| 0x5f1a - 0x8df7 | 0xa1-0xfe | 0x21-0xfe | -- | UDC
+-----------------+-----------+-----------+-----------+
*/ 2
int _ _mbtowc_sdeckanji(

wchar_t *pwc, 3
const char *ts, 4
size_t maxlen, 5
_LC_charmap_t *handle) 6

{
unsigned char *s = (unsigned char *)ts; 7
wchar_t dummy; 8

if (s == NULL)

Creating Locales 7–37

Example 7–16: The _ _mbtowc_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

return(0); 9

if (maxlen < 1) {
_Seterrno(EILSEQ);
return((size_t)-1);

} 10

if (pwc == (wchar_t *)NULL)
pwc = &dummy; 11

if (s[0] <= 0x8d) {
*pwc = (wchar_t) s[0];
if (s[0] != ’\0’)

return(1);
else

return(0);
} 12

else if (s[0] == 0x8e) {
if ((maxlen >= 2) && ((s[1] >=0xa1) && (s[1] <=0xfe))) {

pwc = (wchar_t) (s[1] + 0x5f); / 0x100 - 0xa1 */
return(2);

}
} 13

else if (s[0] == 0x8f) {
if((maxlen >= 3) && (((s[1] >=0xa1) && (s[1] <=0xfe))

&& ((s[2] >=0xa1) && (s[2] <= 0xfe)))) {
*pwc = (wchar_t) (((s[1] - 0xa1) << 7) |

(wchar_t) (s[2] - 0xa1)) + 0x303c;
return(3);

}
} 14

else if (s[0] <= 0x9f) {
*pwc = (wchar_t) s[0];
if (s[0] != ’\0’)

return(1);
else

return(0);
} 15

else if (((s[0] >= 0xa1) && (s[0] <= 0xfe)) && (maxlen >= 2)){
if (((s[1] >=0xa1) && (s[1] <= 0xfe))){

*pwc = (wchar_t) (((s[0] - 0xa1) << 7) |
(wchar_t)(s[1] - 0xa1)) + 0x15e;

return(2);
} else if (((s[1] >=0x21) && (s[1] <= 0x7e))){

*pwc = (wchar_t) (((s[0] - 0xa1) << 7) |
(wchar_t)(s[1] - 0x21)) + 0x5f1a;

return(2);
}

} 16

7–38 Creating Locales

Example 7–16: The _ _mbtowc_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

_Seterrno(EILSEQ);
return(-1); 17

}

1 Includes header files that contain constants and structures required
for this method

2 Describes the algorithm used to determine the number of bytes in the
character and whether it is a valid byte sequence

The codeset supports several character sets and each set contains
characters of only one length. The value in the first byte indicates the
character set and therefore the character length. For character sets
with multibyte characters, one or more additional bytes must be
examined to determine whether the value sequence identifies a
character or is invalid.

3 Points, through pwc, to a buffer that contains the wide character

4 Points, through ts , to a buffer that contains values in
multibyte-character format

5 Defines a variable, maxlen , that stores the maximum length of a
multibyte character

This value is passed from the calling function; the value will have been
set to MB_CUR_MAXon the original call made by the application
programmer.

6 Points, through handle , to a structure that stores pointers to the
methods that parse character maps for this locale

7 Casts ts (an array of signed characters) to s (an array of unsigned
characters)

This operation prevents problems when integer values are stored in
the array and then referenced by index. Compilers apply sign
extension to values when comparing a small signed data type, such as
int , to a large signed data type, such as char . Sign extension means
that the high bit of the value in the small data type is used to fill in
bits that remain when the value is converted to the larger data type
for comparison. For example, if s[0] is the value 0x8e, sign extension
would cause it to be treated as 0xffffff8e. In this case, a condition like
the following one would be evaluated as true when you would expect it
to be false:

if (s[0] <= 0x8d

Creating Locales 7–39

8 Defines a variable, dummy, that can be assigned to pwc to ensure pwc
points to a valid address

9 Returns zero (0) to indicate that the locale’s character encoding is
stateless if s contains or points to NULL

If passed a null pointer, this method should return a value to indicate
whether the locale’s character encoding is stateful or stateless. Return
a nonzero value if your locale’s character encoding is stateful.

10 Returns −1 cast to size_t and sets errno to [EILSEQ] (invalid byte
sequence) if the multibyte data buffer is less than 1 byte in length

11 Stores the contents of dummyin the wide-character buffer if the ts
buffer contains or points to NULL

This operation ensures that pwc always points to a valid address;
otherwise, an application could produce a segmentation fault by
referring to this pointer when a wide character has not been stored in
pwc.

12 Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x8d

If yes, stores the associated process code value in the pwc buffer and
returns 1 to indicate that the character length is 1 byte

13 Determines if the first byte identifies a double-byte character whose
first byte contains the value 0x8e and second byte contains a value in
the range 0xa1 to 0xfe

If yes, stores the associated process code value in the pwc buffer and
returns 2 to indicate that the character length is 2 bytes

14 Determines if the first byte identifies a triple-byte character whose
first byte contains the value 0x8f and whose second and third bytes
contain a value in the range 0xa1 to 0xfe

If yes, stores the associated process code value in the pwc buffer and
returns 3 to indicate that the character length is 3 bytes

15 Determines if the first byte identifies a single-byte character whose
value is equal to or less than 0x9f

If yes, stores the associated process code value in the pwc buffer and
returns 1 to indicate that the character length is 1 byte

16 Determines if the first byte identifies a double-byte character whose
first byte contains a value in the range x0a1 to x0fe and whose second
byte contains a value in the range 0x21 to 0x7e

If yes, stores the associated process code value in the pwc buffer and
returns 2 to indicate that the character length is 2 bytes

7–40 Creating Locales

17 Returns −1 and sets errno to [EILSEQ] to indicate that an invalid
multibyte sequence was encountered

These statements execute if the multibyte data in the s buffer satisfies
none of the preceding if conditions.

7.3.1.8 Writing a Method for the wcstombs() Function

The wcstombs() function calls the wcstombs method to convert a
wide-character string to a multibyte-character string and to return the
number of bytes in the resultant multibyte-character string. By convention,
a C source file for this method has the file name _ _wcstombs_ codeset
.c , where codeset identifies the codeset for which this method is tailored.
Example 7–17 shows the _ _wcstombs_sdeckanji.c file that defines the
wcstombs method used with the ja_JP.sdeckanji locale.

Example 7–17: The _ _wcstombs_sdeckanji Method for the
ja_JP.sdeckanji Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <limits.h>
#include <sys/localedef.h>

size_t _ _wcstombs_sdeckanji(
char *s, 2
const wchar_t *pwcs, 3
size_t n, 4
_LC_charmap_t *handle) 5

{
int cnt=0; 6
int len=0; 7
int i=0; 8
char tmps[MB_LEN_MAX+1]; 9

if (s == (char *)NULL) {
cnt = 0;
while (*pwcs != (wchar_t)’\0’) {

if ((len = _ _wctomb_sdeckanji(tmps, *pwcs)) == -1)
return(-1);

cnt += len;
pwcs++;

}
return(cnt);

} 10

if (*pwcs == (wchar_t)’\0’) {
*s = ’\0’;
return(0);

} 11

while (1) { 12

if ((len = _ _wctomb_sdeckanji(tmps, *pwcs)) == -1)
return(-1); 13

Creating Locales 7–41

Example 7–17: The _ _wcstombs_sdeckanji Method for the
ja_JP.sdeckanji Locale (cont.)

else if (cnt+len > n) {
*s = ’\0’;
break;

} 14

if (tmps[0] == ’\0’) {
*s = ’\0’;
break;

} 15

for (i=0; i<len; i++) {
*s = tmps[i];
s++;

} 16

cnt += len; 17

if (cnt == n)
break; 18

pwcs++; 19
} 20

if (cnt == 0)
cnt = len; 21

return (cnt); 22
}

1 Includes header files that contain constants and structures required
for this method

2 Points, through s , to a buffer that stores the multibyte-character
string that this method passes to the calling function

3 Points, through pwcs , to a buffer that stores the wide-character string
that is being converted

4 Defines a variable, n, that stores the number of maximum number of
bytes in the multibyte-character string buffer

This value is supplied by the calling function.

5 Points, through handle, to a structure that points to the methods
that parse character maps for this locale

6 Initializes a variable, cnt , that is incremented by the number of bytes
(len) of each converted character

7 Initializes a variable, len , that stores the length of each converted
character

8 Initializes a variable, i , that is used to index the bytes in each
multibyte character when moving a converted character from
temporary storage to s

7–42 Creating Locales

9 Defines a temporary buffer, tmps , that stores the multibyte character
returned to this method from a call to the wctomb method

10 Checks to see if a NULL was passed from the calling function in the s
buffer

If yes, calls the wctomb method to calculate the number of bytes
required for converted characters (excluding the null terminator) in
the multibyte-character buffer

The programmer can request the size of the s buffer (for memory
allocation purposes) by passing a null byte as the data in the s
parameter on the call to wcstombs() . The programmer can then use
the return value to efficiently allocate memory space for the
application’s wide-character buffer before calling wcstombs() again to
actually convert the wide-character string.

11 Returns zero (0) to indicate that no multibyte characters resulted and
sets s to NULL if pwcs points to NULL

12 Starts a while loop to process characters in the wide-character string
13 Converts characters in the wide-character buffer by calling the wctomb

method; returns −1 to indicate an invalid character if wctomb returns
−1

14 Terminates s with NULL and breaks out of the while loop if there is
no room in s for the character just converted by wctomb

15 Moves a null terminator to s and breaks out of the while loop when a
NULL is encountered in s

16 Appends each byte in tmps to s if the current wide character is not a
null

17 Increments cnt by the number of bytes (len) occupied by this
character in multibyte format

18 Breaks out of the while loop without adding a null terminator if the
number of bytes processed equals n (the maximum number of bytes in
s)

19 Increments pwcs to point to the next wide character to be converted
20 Ends the while loop that converts each wide character
21 Ensures that zero (0) is returned if s does not contain enough space for

even one character
22 Returns the number of bytes in the resultant multibyte-character

string

7.3.1.9 Writing a Method for the wctomb() Function

The wctomb() function calls the wctomb method to convert a wide
character to a multibyte character and to return the number of bytes in the

Creating Locales 7–43

resultant multibyte character. By convention, a C source file for this
method has the file name _ _wctomb_ codeset .c , where codeset
identifies the codeset for which this method is tailored. Example 7–18
shows the _ _wctomb_sdeckanji.c file that defines the wctomb method
for the ja_JP.sdeckanji locale.

Example 7–18: The _ _wctomb_sdeckanji Method for the ja_JP.sdeckanji
Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <sys/errno.h>
#include <sys/localedef.h>

/*
The algorithm for this conversion is:

PC <= 0x009f: s[0] = PC
PC >= 0x0100 and PC <=0x015d: s[0] = 0x8e

s[1] = PC - 0x005f
PC >= 0x015e and PC <=0x303b: s[0] = ((PC - 0x015e) >> 7) + 0x00a1

s[1] = ((PC - 0x015e) & 0x007f) + 0x00a1
PC >= 0x303c and PC <=0x5f19: s[0] = 0x8f

s[1] = ((PC - 0x303c) >> 7) + 0x00a1
s[2] = ((PC - 0x303c) & 0x007f) + 0x00a1

PC >= 0x5f1a and PC <=0x8df7 s[0] = ((PC - 0x5f1a) >> 7) + 0x00a1
s[1] = ((PC - 0x5f1a) & 0x007f) + 0x0021

+-----------------+-----------+-----------+-----------+
| process code | s[0] | s[1] | s[2] |
+-----------------+-----------+-----------+-----------+
| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - 0x00ff | -- | -- | -- |
| 0x0100 - 0x015d | 0x8e | 0xa1-0xfe | -- | JIS X0201 RH
| 0x015e - 0x303b | 0xa1-0xfe | 0xa1-0xfe | -- | JIS X0208
| 0x303c - 0x5f19 | 0x8f | 0xa1-0xfe | 0xa1-0xfe | JIS X0212
| 0x5f1a - 0x8df7 | 0xa1-0xfe | 0x21-0xfe | -- | UDC
+-----------------+-----------+-----------+-----------+
*/ 2

int _ _wctomb_sdeckanji(
char *s, 3
wchar_t wc, 4
_LC_charmap_t *handle) 5

{
if (s == (char *)NULL)

return(0); 6

if (wc <= 0x9f) {
s[0] = (char) wc;
return(1);

} 7

else if ((wc >= 0x0100) && (wc <= 0x015d)) {
s[0] = 0x8e;
s[1] = wc - 0x5f;
return(2);

} 8

else if ((wc >=0x015e) && (wc <= 0x303b)) {
s[0] = (char) (((wc - 0x015e) >> 7) + 0x00a1);

7–44 Creating Locales

Example 7–18: The _ _wctomb_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

s[1] = (char) (((wc - 0x015e) & 0x007f) + 0x00a1);
return(2);

} 9

else if ((wc >=0x303c) && (wc <= 0x5f19)) {
s[0] = 0x8f;
s[1] = (char) (((wc - 0x303c) >> 7) + 0x00a1);
s[2] = (char) (((wc - 0x303c) & 0x007f) + 0x00a1);
return(3);

} 10

else if ((wc >=0x5f1a) && (wc <= 0x8df7)) {
s[0] = (char) (((wc - 0x5f1a) >> 7) + 0x00a1);
s[1] = (char) (((wc - 0x5f1a) & 0x007f) + 0x0021);
return(2);

} 11

_Seterrno(EILSEQ);
return(-1); 12

}

1 Includes header files that contain constants and structures required
for this method

2 Describes the conversion algorithm that this method uses

Each character set supported by the codeset corresponds to a unique
range of wide-character (process code) values and, within each
character set, multibyte characters are of uniform length (1, 2, or 3
bytes). Therefore, the range in which each wide-character value falls
indicates the number of bytes required for the character in multibyte
format; the wide-character value itself determines the specific byte
value or values for the character in multibyte format.

3 Points, through s , to a buffer that stores the multibyte character
4 Defines the wc variable that stores the wide character
5 Points, through handle , to a structure that stores pointers to the

methods that parse the character maps for this locale
6 Returns zero (0) to indicate that no characters were converted if s

points to NULL
7 If the wide-character value is equal to or less than 0x9f, moves that

value into the first byte of the s array and returns 1 to indicate that
the converted character is 1 byte in length

8 If the wide-character value is in the range 0x0100 to 0x015d, moves
the value 0x8e to the first byte and a calculated value to the second
byte of the s array; returns 2 to indicate that the converted character
is 2 bytes in length

Creating Locales 7–45

9 If the wide-character value is in the range 0x015e to 0x303b, moves
calculated values to the first and second bytes of the s array and
returns 2 to indicate that the converted character is 2 bytes in length

10 If the wide-character value is in the range 0x303c to 0x5f19, moves
0x8f to the first byte and calculated values to the second and third
bytes of the s array; returns 3 to indicate that the converted character
is 3 bytes in length

11 If the wide-character value is in the range 0x5f1a to 0x8df7, moves
calculated values to the first and second bytes of the s array, and
returns 2 to indicate that the converted character is 2 bytes in length

12 Sets errno to [EILSEQ] and returns −1 to indicate that the
wide-character value is invalid

These statements execute if the wide-character values satisfy none of
the preceding conditions.

7.3.1.10 Writing a Method for the wcswidth() Function

The wcswidth() function uses the wcswidth method to determine the
number of columns required to display a wide-character string. By
convention, a C source file for this method has the file name
_ _wcswidth_ codeset .c , where codeset identifies the codeset for which
this method is tailored. Example 7–19 shows the
_ _wcswidth_sdeckanji.c file that defines the wcswidth method used
for the ja_JP.sdeckanji locale.

Example 7–19: The _ _wcswidth_sdeckanji Method for the ja_JP.sdeckanji
Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <sys/localedef.h>

/*
The algorithm for this conversion is:

PC <= 0x009f: s[0] = PC
PC >= 0x0100 and PC <=0x015d: s[0] = 0x8e

s[1] = PC - 0x005f
PC >= 0x015e and PC <=0x303b: s[0] = ((PC - 0x015e) >> 7) + 0x00a1

s[1] = ((PC - 0x015e) & 0x007f) + 0x00a1
PC >= 0x303c and PC <=0x5f19: s[0] = 0x8f

s[1] = ((PC - 0x303c) >> 7) + 0x00a1
s[2] = ((PC - 0x303c) & 0x007f) + 0x00a1

PC >= 0x5f1a and PC <=0x8df7 s[0] = ((PC - 0x5f1a) >> 7) + 0x00a1
s[1] = ((PC - 0x5f1a) & 0x007f) + 0x0021

+-----------------+-----------+-----------+-----------+
| process code | s[0] | s[1] | s[2] |
+-----------------+-----------+-----------+-----------+

7–46 Creating Locales

Example 7–19: The _ _wcswidth_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - 0x00ff | -- | -- | -- |
| 0x0100 - 0x015d | 0x8e | 0xa1-0xfe | -- | JIS X0201 RH
| 0x015e - 0x303b | 0xa1-0xfe | 0xa1-0xfe | -- | JIS X0208
| 0x303c - 0x5f19 | 0x8f | 0xa1-0xfe | 0xa1-0xfe | JIS X0212
| 0x5f1a - 0x8df7 | 0xa1-0xfe | 0x21-0xfe | -- | UDC
+-----------------+-----------+-----------+-----------+
*/ 2

int _ _wcswidth_sdeckanji(
const wchar_t *wcs, 3
size_t n, 4
_LC_charmap_t *hdl) 5

{
int len; 6
int i; 7

if (wcs == (wchar_t *)NULL || *wcs == (wchar_t)NULL)
return(0); 8

len = 0; 9
for (i=0; wcs[i] != (wchar_t)NULL && i<n; i++) { 10

if (wcs[i] <= 0x9f)
len += 1; 11

else if ((wcs[i] >= 0x0100) && (wcs[i] <= 0x015d))
len += 1; 12

else if ((wcs[i] >=0x015e) && (wcs[i] <= 0x303b))
len += 2; 13

else if ((wcs[i] >=0x303c) && (wcs[i] <= 0x5f19))
len += 2; 14

else if ((wcs[i] >=0x5f1a) && (wcs[i] <= 0x8df7))
len += 2; 15

else
return(-1); 16

} 17

return(len); 18
}

1 Includes header files that contain constants and structures required
for this method

2 Describes the algorithm used to determine the required display width

Note that each character’s display width is either 1 or 2 columns,
depending on the character set to which a character belongs. Display
width is different from the size of the character in multibyte format;

Creating Locales 7–47

for example, triple-byte characters require 2 display columns and
double-byte characters can require either 1 or 2 display columns.

3 Points, through wcs, to a buffer that stores the wide-character string
for which display width information is requested

4 Defines a variable, n, that stores the maximum size of the wcs buffer

5 Points, through hdl , to a structure that stores pointers to the methods
that parse character maps for this locale

6 Defines a variable, len , that stores the display width in bytes/columns

7 Defines a variable, i , that functions as a loop counter

8 Returns zero (0) if wcs contains or points to NULL

9 Initializes len to zero (0)

10 Begins a for loop that processes each wide character in the wcs buffer
and increments the wide-character pointer

11 Increments len by 1 if the value of the current wide character is less
than or equal to 0x9f

12 Increments len by 1 if the value of the current wide character is in
the range 0x0100 to 0x015d

13 Increments len by 2 if the value of the current wide character is in
the range 0x015e to 0x303b

14 Increments len by 2 if the value of the current wide character is in
the range 0x303c to 0x5f19

15 Increments len by 2 if the value of the current wide character is in
the range 0x5f1a to 0x8df7

16 Returns −1 to indicate that the string contains an invalid wide
character

This statement executes if a value that satisfies none of the preceding
conditions is encountered in the string. The calling function,
wcswidth() , also returns −1 if the wide character is nonprintable;
however, this condition is evaluated at the level of the calling function
and does not need to be evaluated by the method.

17 Ends the for loop that processes wide characters in the wcs buffer

18 Returns len to indicate the number of columns required to display the
wide-character string

7.3.1.11 Writing a Method for the wcwidth() Function

The wcwidth() function uses the wcwidth method to determine the
number of columns required to display a wide character. By convention, a C
source file for this method has the file name _ _wcwidth_ codeset .c ,
where codeset identifies the codeset for which this method is tailored.

7–48 Creating Locales

Example 7–20 shows the _ _wcwidth_sdeckanji.c file that defines the
wcwidth method used with the ja_JP.sdeckanji locale.

Example 7–20: The _ _wcwidth_sdeckanji Method for the ja_JP.sdeckanji
Locale

#include <stdlib.h> 1
#include <wchar.h>
#include <sys/localedef.h>

/*
The algorithm for this conversion is:

PC <= 0x009f: s[0] = PC
PC >= 0x0100 and PC <=0x015d: s[0] = 0x8e

s[1] = PC - 0x005f
PC >= 0x015e and PC <=0x303b: s[0] = ((PC - 0x015e) >> 7) + 0x00a1

s[1] = ((PC - 0x015e) & 0x007f) + 0x00a1
PC >= 0x303c and PC <=0x5f19: s[0] = 0x8f

s[1] = ((PC - 0x303c) >> 7) + 0x00a1
s[2] = ((PC - 0x303c) & 0x007f) + 0x00a1

PC >= 0x5f1a and PC <=0x8df7 s[0] = ((PC - 0x5f1a) >> 7) + 0x00a1
s[1] = ((PC - 0x5f1a) & 0x007f) + 0x0021

+-----------------+-----------+-----------+-----------+
| process code | s[0] | s[1] | s[2] |
+-----------------+-----------+-----------+-----------+
| 0x0000 - 0x009f | 0x00-0x9f | -- | -- |
| 0x00a0 - 0x00ff | -- | -- | -- |
| 0x0100 - 0x015d | 0x8e | 0xa1-0xfe | -- | JIS X0201 RH
| 0x015e - 0x303b | 0xa1-0xfe | 0xa1-0xfe | -- | JIS X0208
| 0x303c - 0x5f19 | 0x8f | 0xa1-0xfe | 0xa1-0xfe | JIS X0212
| 0x5f1a - 0x8df7 | 0xa1-0xfe | 0x21-0xfe | -- | UDC
+-----------------+-----------+-----------+-----------+
*/ 2

int _ _wcwidth_sdeckanji(
wint_t wc, 3
_LC_charmap_t *hdl) 4

{

if (wc == 0)
return(0); 5

if (wc <= 0x9f)
return(1); 6

else if ((wc >= 0x0100) && (wc <= 0x015d))
return(1); 7

else if ((wc >=0x015e) && (wc <= 0x303b))
return(2); 8

else if ((wc >=0x303c) && (wc <= 0x5f19))
return(2); 9

else if ((wc >=0x5f1a) && (wc <= 0x8df7))
return(2); 10

Creating Locales 7–49

Example 7–20: The _ _wcwidth_sdeckanji Method for the ja_JP.sdeckanji
Locale (cont.)

return(-1); 11
}

1 Includes header files that contain constants and structures required
for this method

2 Describes the algorithm used to determine the required display width

Note that a character’s display width is either 1 or 2 columns,
depending on the character set to which a character belongs. Display
width is different from the size of the character in multibyte format;
for example, triple-byte characters require 2 display columns and
double-byte characters can require either 1 or 2 display columns.

3 Defines the wc variable that stores the wide character for which
display width information is requested

4 Points, through hdl , to a structure that stores pointers to the methods
that parse character maps for this locale

5 Returns zero (0) if the wide-character buffer is empty

6 Returns 1 if the wide-character value is less than or equal to 0x009f

7 Returns 1 if the wide-character value is in the range 0x0100 to 0x015d

8 Returns 2 if the wide-character value is in the range 0x015e to 0x303b

9 Returns 2 if the wide-character value is in the range 0x303c to 0x5f19

10 Returns 2 if the wide-character value is in the range 0x5f1a to 0x8df7

11 Returns −1 if the wide-character value is invalid

The calling function, wcwidth() , also returns −1 if the wide character
is nonprintable; however, this condition is evaluated at the level of the
calling function and does not need to be evaluated by the method.

7.3.2 Optional Methods

A locale can include methods in addition to those discussed in Section 7.3.1.
If your locale uses methods but does not supply any for the functions
associated with particular locale categories or some other locale-related
functions, the localedef command applies default methods that handle
process code for both single-byte and multibyte characters. The following
list names the optional methods:

• LC_CTYPEcategory

7–50 Creating Locales

– towupper

– towlower

– wctype

– iswctype

• LC_COLLATEcategory

– fnmatch

– strcoll

– strxfrm

– wcscoll

– wcsxfrm

– regcomp

– regexec

– regfree

– regerror

• LC_MONETARY, LC_NUMERIC, or both categories

– localeconv

– strfmon

• LC_TIME category

– strftime

– strptime

– wcsftime

• LC_MESSAGES

– rpmatch

• Miscellaneous use

– nl_langinfo

Writing optional methods requires detailed information about the internal
interfaces to C library routines. This information is vendor proprietary and
may be subject to change. In the rare cases where your locale must include
an optional method, contact your technical support representative to
request information.

Creating Locales 7–51

7.3.3 Building a Shareable Library to Use with a Locale

Example 7–21 shows the compiler and linker command lines that are
required to build the method source files into a shareable library that is
used with the ja_JP.sdeckanji locale.

Example 7–21: Building a Library of Methods Used with the
ja_JP.sdeckanji Locale

cc -std0 -c \
_ _mblen_sdeckanji.c _ _mbstopcs_sdeckanji.c \
_ _mbstowcs_sdeckanji.c _ _mbtopc_sdeckanji.c \
_ _mbtowc_sdeckanji.c _ _pcstombs_sdeckanji.c \
_ _pctomb_sdeckanji.c _ _wcstombs_sdeckanji.c \
_ _wcswidth_sdeckanji.c _ _wctomb_sdeckanji.c \
_ _wcwidth_sdeckanji.c

ld -shared -set_version osf.1 -soname libsdeckanji.so -shared \
-no_archive -o libsdeckanji.so \
_ _mblen_sdeckanji.o _ _mbstopcs_sdeckanji.o \
_ _mbstowcs_sdeckanji.o _ _mbtopc_sdeckanji.o \
_ _mbtowc_sdeckanji.o _ _pcstombs_sdeckanji.o _ _pctomb_sdeckanji.o \
_ _wcstombs_sdeckanji.o _ _wcswidth_sdeckanji.o _ _wctomb_sdeckanji.o \
_ _wcwidth_sdeckanji.o \
-lc

Refer to cc (1) and ld (1) for more information about the cc and ld
commands and how you build shared libraries.

7.3.4 Creating a methods File for a Locale

The methods file contains an entry for each function that is defined in the
methods shared library for use with the locale. The operation performed by
the function is identified by a method keyword, followed by quoted strings
with the name of the function and the path to the shared library that
contains the function.

Example 7–22 shows the section of a methods file for the methods used
with the ja_JP.sdeckanji locale. Because there is a mandatory list of
methods that you must define if you want to override any C library
interfaces, your methods file must always specify an entry for each of the
required methods as shown in this example. The ja_JP.sdeckanji locale
relies on default implementations for all optional methods, so
Example 7–22 does not contain entries for any of the optional methods.

Example 7–22: The methods File for the ja_JP.sdeckanji Locale

sdeckanji.m 1
<method_keyword> "<entry>" "<package>" "<library_path>" 1

7–52 Creating Locales

Example 7–22: The methods File for the ja_JP.sdeckanji Locale (cont.)

METHODS 2

_ _mbstopcs "_ _mbstopcs_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
_ _mbtopc "_ _mbtopc_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
_ _pcstombs "_ _pcstombs_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
_ _pctomb "_ _pctomb_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
mblen "_ _mblen_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
mbstowcs "_ _mbstowcs_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
mbtowc "_ _mbtowc_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
wcstombs "_ _wcstombs_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
wcswidth "_ _wcswidth_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
wctomb "_ _wctomb_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3
wcwidth "_ _wcwidth_sdeckanji" "libsdeckanji.so" \
"/usr/shlib/libsdeckanji.so" 3

END METHODS 4

1 Comment lines

These lines specify the name of the methods file and the format of
method entries. Note that the field identified in the format as
<package> is ignored, but you must specify some string for this field
in order to specify a library path.

2 Header to mark start of method entries

3 Entries for required methods

4 Trailer to mark end of method entries

Refer to localedef (1) for detailed information about methods file entries.

7.4 Building and Testing the Locale

Use the localedef command to build a locale from its source files.
Example 7–23 shows the command line needed to build the German locale
used in most examples in this chapter. Assume for this example that all
source files reside in the user’s default directory and that the resulting
locale is also created in that directory.

Creating Locales 7–53

Example 7–23: Building the de_DE.ISO8859-1@example Locale

% localedef -f ISO8859-1.cmap \ 1
-i de_DE.ISO8859-1.lscr \ 2
de_DE.ISO8859-1@example 3

1 The−f option specifies the character map source file.

2 The−i option specifies the locale definition source file.

3 The final argument to the command is the name of the locale.

When you are testing locales, particularly ones that are similar to standard
locales installed on the system, you should add an extension to the locale
name. Varying names with the at (@) extension allows you to specify the
standard strings for language, territory, and codeset and still be sure that
the test locale is uniquely identified. This is important if you later decide to
move the locale to the /usr/lib/nls/loc directory where other locales
reside.

Example 7–23 shows only one form and a few options for the localedef
command. The localedef (1) reference page is a complete description of the
command. The following is a summary of some important rules and options:

• If you defined methods for your locale, you must specify the methods
file with the -m option. For example, the command line that builds the
ja_JP.sdeckanji locale would include −m sdeckanji.m to identify
the file shown in Example 7–22.

• You can use the -v option to run the command in verbose mode for
debugging purposes. This option, when used with the -c option, creates
a .c file that contains useful information about the locale.

• Use the -w option if you want the command to display warnings when
it encounters duplicate definitions.

By default, locales must reside in the /usr/lib/nls/loc directory to be
found. If you want to test your locale before moving it to the
/usr/lib/nls/loc directory, you can define the LOCPATHvariable to
specify the directory where your locale is located. You can then define the
LANGenvironment variable to be your new locale and interactively test the
locale with commands and applications.

Example 7–24 uses the date command to test the date/time format.

7–54 Creating Locales

Example 7–24: Setting the LOCPATH Variable and Testing a Locale

% setenv LOCPATH ~harry/locales
% setenv LANG de_DE.ISO8859-1@example
% date
12.Dezember 1993 09:18:11

_______________________ Note _______________________

The LOCPATHvariable is an extension to specifications in the
X/Open UNIX standard and therefore may not be recognized on
all systems that conform to this standard.

Some programs have support files that are installed in system directories
with names that exactly match the names of standard locales. In such
cases, application software, system software, or both might use the value of
the LANGenvironment variable to determine the locale-specific directory in
which the support files reside. If assigned directly to the LANGor LC_ALL
environment variable, locale file names with an at (@) suffix may result in
invalid search paths for some applications. The following example shows
how you can work around this problem by assigning the standard locale
name to the LANGvariable and the name of your variant locale to the locale
category variables. You need to make assignments only to those category
variables that represent areas where your locale differs from the locale on
which it is based.

% setenv LANG de_DE.ISO8859-1
% setenv LC_CTYPE de_DE.ISO8859-1@example
% setenv LC_COLLATE de_DE.ISO8859-1@example
...
% setenv LC_TIME de_DE.ISO8859-1@example

Creating Locales 7–55

A
Summary Tables of Worldwide

Portability Interfaces

This appendix lists and summarizes worldwide portability interfaces (WPI)
that are defined by Version 5 of the X/Open CAE specification for system
interfaces and headers (XSH). All these interfaces support the
wide-character data type. Tables in this appendix also list ISO C
equivalents that are not recommended, if there are any, for each WPI
interface. The reference pages (manpages) provide detailed information for
each interface. Refer to standards (5) for information about compiling a
program in the appropriate definition environment for XSH Version 5.

A.1 Locale Announcement
Programs call the following function to use the appropriate locale
(language, territory, and codeset) at run time:

WPI Function Description

setlocale() Establishes localization data at run time.

A.2 Character Classification
The following character classification functions classify wide-character
values according to the codeset defined in the locale category LC_CTYPE.

WPI Function Equivalent in ISO C Description

iswalnum() isalnum() Tests if a character is alphanumeric.

iswalpha() isalpha() Tests if a character is alphabetic.

iswcntrl() iscntrl() Tests if a character is a control character.

iswdigit() isdigit() Tests if a character is a decimal digit in
the portable character set.

iswgraph() isgraph() Tests if a character is a graphic character.

iswlower() islower() Tests if a character is lowercase.

iswprint() isprint() Tests if a character is a printing
character.

Summary Tables of Worldwide Portability Interfaces A–1

WPI Function Equivalent in ISO C Description

iswpunct() ispunct() Tests if a character is a punctuation
mark.

iswspace() isspace() Tests if a character determines white
space in displayed text.

iswupper() isupper() Tests if a character is uppercase.

iswxdigit() isxdigit() Tests if a character is a hexadecimal
digit in the portable character set.

In addition to the functions for each character classification, the WPI
includes two functions that provide a common interface to all classification
categories:

• wctype()

Returns a value that corresponds to a character classification

• iswctype()

Tests if a wide character has a certain property

The 11 WPI functions listed in the preceding table can be replaced by calls
to the wctype() and iswctype() functions as shown in the following
table:

Call Using Classification
Function

Equivalent Call Using wctype() and iswctype()

iswalnum(wc) iswctype(wc , wctype("alnum"))

iswalpha(wc) iswctype(wc , wctype("alpha"))

iswcntrl(wc) iswctype(wc , wctype("cntrl"))

iswdigit(wc) iswctype(wc , wctype("digit"))

iswgraph(wc) iswctype(wc , wctype("graph"))

iswlower(wc) iswctype(wc , wctype("lower"))

iswprint(wc) iswctype(wc , wctype("print"))

iswpunct(wc) iswctype(wc , wctype("punct"))

iswspace(wc) iswctype(wc , wctype("space"))

iswupper(wc) iswctype(wc , wctype("upper"))

iswxdigit(wc) iswctype(wc , wctype("xdigit"))

In this table, the quoted literals in the call to wctype are the character
classes defined in the X/Open UNIX standard for Western European and
many Eastern European languages; however, a locale can define other
character classes. The Unicode standard defines character classes that do

A–2 Summary Tables of Worldwide Portability Interfaces

not have class-specific functions, and a locale for an Asian language might
define additional character classes to distinguish ideographic from phonetic
characters. You must use the wctype() and iswctype() functions to test
if a character belongs to a class when no class-specific function exists for
the test. See locale (4) for details about character classes and testing
equivalence between classes defined in the XSH and the Unicode standards.

_______________________ Note _______________________

The calls in the second column of the preceding table illustrate
only functional equivalence to the calls shown in the first column
of the table. In most programming applications, iswctype()
needs to execute multiple times for each execution of wctype() .
In such cases, you would code calls in the second column of the
table as follows to achieve performance equivalence to
corresponding calls in the first column:

wctype_t property_handle;
wint_t wc;
int yes_or_no;

.

.

.
property_handle=wctype("alnum");

.

.

.
while (...) {

.

.

.
yes_or_no=iswctype(wc, property_handle);

.

.

.
}

A.3 Case and Generic Property Conversion

The following case conversion functions let you switch the case of a wide
character according to the codeset defined in the locale category LC_CTYPE:

WPI Function Equivalent in ISO C Description

towlower() tolower() Converts a character to lowercase.

towupper() toupper() Converts a character to uppercase.

The WPI also includes the following functions to map and convert a wide
character according to properties defined in the current locale:

Summary Tables of Worldwide Portability Interfaces A–3

• wctrans()

Maps a wide character to a property defined in the current locale

• towctrans()

Converts a wide character according to a property defined in the
current locale

Currently, the only properties defined in Tru64 UNIX locales are toupper
and tolower . The following example of using wctrans() and
towctrans() performs the same conversion as towupper() :

wint_t from_wc, to_wc;
wctrans_t conv_handle;
.
.
.

conv_handle=wctrans("toupper");
.
.
.

while (...) {
.
.
.

to_wc=towctrans(from_wc,conv_handle);
.
.
.

}

A.4 Character Collation

The following WPI function sorts wide-character strings according to rules
specified in the locale defined for the LC_COLLATEcategory:

WPI Function Equivalent in ISO C Description

wcscoll() strcoll() Collates character strings.

You can also use the wcsxfrm() and wcscmp() functions, summarized in
Section A.11, to transform and then compare wide-character strings.

A.5 Access to Data That Varies According to Language
and Custom

The following WPI functions allow programs to retrieve, according to locale
setting, data that is language specific or country specific:

A–4 Summary Tables of Worldwide Portability Interfaces

WPI Function Description

nl_langinfo() A general-purpose function that retrieves language and
cultural data according to the locale setting.

strfmon() Formats a monetary value according to the locale setting.

localeconv() Returns information used to format numeric values according
to the locale setting.

A.6 Conversion and Format of Date/Time Values

The ctime() and asctime() functions do not have the flexibility needed
for language independence. The WPI therefore includes the following
interfaces to format date and time strings according to information
provided by the locale:

WPI Function Description

strftime() Formats a date and time string based on the specified format
string and according to the locale setting.

wcsftime() Formats a date and time string based on a specified format
string and according to the locale setting, then returns the
result in a wide-character array.

strptime() Converts a character string to a time value according to a
specified format string; reverses the operation performed by
strftime() .

A.7 Printing and Scanning Text

The WPI extends definitions of the following ISO C functions to support
internationalization requirements. The WPI extensions are described after
the table that lists the functions.

WPI/ISO C
Function

Description

fprintf() Prints formatted output to a file by using a vararg parameter
list.

fwprintf() Prints formatted wide characters to the specified output
stream by using a vararg parameter list.

printf() Prints formatted output to the standard output stream by
using a vararg parameter list.

sprintf() Formats one or more values and writes the output to a
character string by using a vararg parameter list.

Summary Tables of Worldwide Portability Interfaces A–5

WPI/ISO C
Function

Description

swprintf() Prints formatted wide characters to the specified address by
using a vararg parameter list.

vfprintf() Prints formatted output to a file by using a stdarg parameter
list.

vfwprintf() Prints formatted wide characters to the specified output
stream by using a stdarg parameter list.

vprintf() Prints formatted output to the standard output stream by
using a stdarg parameter list.

vsprintf() Formats a stdarg parameter list and writes the output to a
character string.

vswprintf() Prints formatted output to the specified address by using a
stdarg parameter list.

vwprintf() Prints formatted wide characters to the standard output by
using a stdarg parameter list.

wprintf() Prints formatted wide characters to the standard output by
using a vararg parameter list.

fscanf() Converts formatted input from a file.

fwscanf() Converts formatted wide characters from the specified output
stream.

scanf() Converts formatted input from the standard input stream.

sscanf() Converts formatted data from a character string.

swscanf() Converts formatted wide characters from the specified address.

wscanf() Converts formatted wide characters from the standard input.

The WPI extensions to the preceding functions include:

• %digit $ conversion specifier, which allows variation in the ordinal
position of the argument being printed; such variation is frequently
necessary when text is translated into different languages.

• Use of the decimal-point character as specified by the locale. This
feature affects e, E, f , g, and G conversions.

• Use of the thousands-grouping character specified by the locale.

• The C and S conversion characters, which let you convert wide
characters and wide-character strings, respectively.

A–6 Summary Tables of Worldwide Portability Interfaces

A.8 Number Conversion

The WPI adds the following functions to convert wide-character strings to
various numeric formats:

WPI Function Equivalent in ISO C Description

wcstod() strtod() Converts the initial portion of a
wide-character string to a
double-precision floating-point number.

wcstol() strtol() Converts the initial portion of a
wide-character string to a long integer
number.

wcstoul() strtoul() Converts the initial portion of a
wide-character string to an unsigned
long integer number.

A.9 Conversion of Multibyte and Wide-Character Values

To allow an application to get data from or write data to external files (as
multibyte data) and process it internally (as wide-character data), the WPI
defines various functions to convert between multibyte data and
wide-character data.

WPI Function Description

btowc() Converts a single byte from multibyte-character format to
wide-character format.

mblen() Determines the number of bytes in a character according to the
locale setting. You should modify all string manipulation
statements, which assume the size of a character is always 1
byte, to call this function. The following statement updates a
pointer to the next character, cp :

cp++;

The following example incorporates the mblen() function to
ensure language-independent operation at run time; the
MB_CUR_MAXvariable is defined by the locale to be the
maximum number of bytes that any character can occupy:

cp += mblen(cp, MB_CUR_MAX);

mbrlen() Performs the same operation as mblen() but can be restarted
for use with locales that include shift-state encoding. a

mbrtowc() Performs the same operation as mbtowc() but can be restarted
for use with locales that include shift-state encoding. a

Summary Tables of Worldwide Portability Interfaces A–7

WPI Function Description

mbsrtowcs() Performs the same operation as mbstowcs() but can be
restarted for use with locales that include shift-state encoding. a

mbstowcs() Converts a multibyte-character string to a wide-character
string.

mbtowc() Converts a multibyte character to a wide character.

wcstombs() Converts a wide-character string to a multibyte-character
string.

wcrtomb() Performs the same operation as wctomb() but can be restarted
for use with locales that include shift-state encoding. a

wcsrtombs() Performs the same operation as wcstombs() but can be
restarted for use with locales that include shift-state encoding. a

wctob() Converts a wide character to a single byte in
multibyte-character format, if possible.

wctomb() Converts a wide character to a multibyte character.
aAt the time this book was published, the operating system did not provide locales that use shift-state
encoding.

_______________________ Note _______________________

You do not always need to explicitly handle the conversion to
and from file code (multibyte data). Functions for printing and
scanning text (discussed in Section A.7) include the %Sand %C
format specifiers that automatically handle multibyte to
wide-character conversion. The WPI alternatives for older ISO C
input/output functions (see Section A.10) also perform
multibyte/wide-character conversions automatically.

A–8 Summary Tables of Worldwide Portability Interfaces

A.10 Input and Output

The WPI functions listed in the following table automatically convert
between file code (usually multibyte encoding) and process code
(wide-character encoding) for text input and output operations:

WPI Function Equivalent in ISO C Description

fgetwc() fgetc() Gets a character from the input stream
and converts it to a wide character.

fgetws() fgets() Gets a character string from the input
stream and converts it to a
wide-character string.

fputwc() fputc() Converts a wide character to a multibyte
character and writes the result to an
output stream.

fputws() fputs() Converts a wide-character string to a
multibyte character string and writes
the result to an output stream.

fwide() None Sets stream orientation to byte or wide
character. This function is not useful
within current locale environments. a

getwc() getc() Gets a character from the input stream,
which is passed to the function as an
argument, and converts it to a wide
character.

getwchar() getchar() Gets a character from the standard
input stream and converts it to a wide
character.

None gets() Use fgetws() .

mbsinit() None Determines, for locales that use
shift-state encoding, whether a multibyte
string is in the initial conversion state. a

putwc() putc() Converts a wide character to a multibyte
character and writes the result to an
output stream, which is passed to the
function as an argument.

putwchar() getchar() Converts a wide character to a multibyte
character and writes the result to the
standard output stream.

None puts() Use fputws() .

ungetwc() ungetc() Pushes a wide character back onto the
input stream.

aAt the time this book was published, the operating system did not include locales that use shift-state
encoding.

Summary Tables of Worldwide Portability Interfaces A–9

A.11 String Handling

The WPI defines alternatives and additions to ISO C string-handling
functions to support manipulation of wide-character strings. The WPI
functions support both single-byte and multibyte characters.

String Concatenation:

WPI Function Equivalent in ISO C Description

wcscat() strcat() Appends a copy of a string to the end of
another string.

wcsncat() strncat() Similar to wcscat() except that the
number of characters to be appended is
limited by the n parameter.

String Searching:

WPI Function Equivalent in ISO C Description

wcschr() strchr() Locates the first occurrence of a wide
character in a wide-character string.

wcsrchr() strrchr() Locates the last occurrence of a wide
character in a wide-character string.

wcspbrk() strpbrk() Locates the first occurrence of any wide
characters from one wide-character
string in another wide-character string.

wcsstr() strstr() Finds a wide-character substring. Note
that the wcsstr() function also
supercedes the wcswcs() function
included in versions of the XSH
specification earlier than Issue 5.

wcscspn() strcspn() Returns the number of initial elements
of one wide-character string that are all
wide characters not included in the
second wide-character string.

wcsspn() strspn() Returns the number of initial elements
of one wide-character string that are all
characters included in the second
wide-character string.

A–10 Summary Tables of Worldwide Portability Interfaces

String Copying:

WPI Function Equivalent in ISO C Description

wcscpy() strcpy() Copies a wide-character string.

wcsncpy() strncpy() Similar to wcscpy() except that the
number of wide characters to be copied
is limited by the n parameter.

String Comparison:

WPI Function Equivalent in ISO C Description

wcscmp() strcmp() Compares two wide-character strings.

wcsncmp() strncmp() Similar to wcscmp() except that the
number of wide characters to be
compared is limited by the n parameter.

String Length Determination:

WPI Function Equivalent in ISO C Description

wcslen() strlen() Determines the number of wide
characters in a wide-character string.

String Decomposition:

WPI Function Equivalent in ISO C Description

wcstok() strtok() Decomposes a wide-character string
into a series of tokens, each delimited
by a wide character from another
wide-character string.

Printing Position Determination:

WPI Function Equivalent in ISO C Description

wcswidth() None Determines the number of printing
positions required for a number of wide
characters in a wide-character string.

wcwidth() None Determines the number of printing
positions required for a wide character.

Summary Tables of Worldwide Portability Interfaces A–11

Performing Memory Operations on Wide-Character Strings:

WPI Function Equivalent in ISO C Description

wmemcpy() memcpy() Copies wide characters from one buffer
to another.

wmemchr() memchr() Searches a buffer for the specified wide
character.

wmemcmp() memcmp() Compares the specified number of wide
characters in two buffers.

wmemmove() memmove() Copies wide characters from one buffer
to another in a nondestructive manner.

wmemset() memset() Copies the specified wide character into
the specified number of locations in a
destination buffer.

A.12 Codeset Conversion

The WPI provides codeset conversion capabilities through a set of functions
for program use or the iconv command for interactive use. You specify for
these interfaces the source and target codesets and the name of a language
text file to be converted. The codesets define a conversion stream through
which the language text is passed.

The following table summarizes the three functions you use for codeset
conversion. These functions reside in the libiconv.a library.

WPI Function Equivalent in ISO C Description

iconv_open() None Initializes a conversion stream by
identifying the source and the target
codesets.

iconv_close() None Closes the conversion stream.

iconv() None Converts an input string encoded in the
source codeset to an output string
encoded in the target codeset.

Refer to Section 6.13 for a description of the iconv command and the types
of conversions that are supported.

A–12 Summary Tables of Worldwide Portability Interfaces

B
Setting Up and Using User-Defined

Character Databases

Japanese, Chinese, and Korean can include user-defined characters (UDCs)
that supplement the characters defined in the standard character sets for
Asian languages. This appendix explains how to create UDCs and the other
kinds of files that support UDC input and display.

You create user-defined characters with the cedit application, discussed in
Section B.1. You use the cgen utility, discussed in Section B.2, to create
font, collation, and other support files for user-defined characters. X
applications can also obtain fonts for user-defined characters directly from
a UDC database by using font renderers. Refer to Section 6.15.2 for
information about font renderers.

_______________________ Note _______________________

The system default sort command does not access the collation
files created for user-defined characters. Refer to Section 6.11 for
information on sorting strings that may contain these characters.

There are setup operations that you need to complete before terminals or
workstation monitors can display user-defined characters.

The atty driver includes a mechanism to allow on-demand loading of files
associated with user-defined characters. You enable this mechanism and
can change some of its default parameter values with the stty command.
Table B–1 describes the stty options that you use with on-demand loading.

Table B–1: The stty Options for On-Demand Loading of UDC Support Files

stty Option Description

odl Enables the software on-demand loading (SoftODL)
service.

−odl Disables the software on-demand loading (SoftODL)
service.

odlsize size Sets the maximum size of the ODL buffer. This size
should be the same as a terminal’s font-cache size. By
default, size is 256 characters.

Setting Up and Using User-Defined Character Databases B–1

Table B–1: The stty Options for On-Demand Loading of UDC Support
Files (cont.)

stty Option Description

odltype type Sets the ODL buffer replacement strategy. Valid values
for type are: fifo (first-in-first-out) and lru (least
recently used)

odldb path Sets the path to the database and other files that
support user-defined characters.
If this path is not specified, either the system default
files are used or, if users are allowed to create personal
UDC databases, the process default files are used.
Default pathnames for various databases are specified
in the /var/i18n/conf/cp_dirs file, which is
described in Section 6.8. The cp_dirs file specifies, for
example, that the systemwide defaults are
/var/i18n/udc and /var/i18n/odl , and that the
process defaults are $HOME/.udc and $HOME/.odl .
Use the odldb option when you want to change the
default odl file.

odlreset Resets the ODL service and clears the internal ODL
buffers.

odlall Displays the current settings for the ODL service.

Figure B–1 shows the relationship among components mentioned in
Table B–1 and the SoftODL service.

B–2 Setting Up and Using User-Defined Character Databases

Figure B–1: Components That Support User-Defined Characters

ODL
db

cedit cgenUDC
Database

tty

ZK-0930U-AI

SoftODL

B.1 Creating User-Defined Characters

The user-defined character editor (cedit) is a curses application for
managing attributes of user-defined characters. The character attributes
that you usually manipulate with the cedit application include:

• Styles and sizes (16x18, 24x24, 32x32, and 40x40) for bitmap fonts

• Codeset values

• Collating values

• Input key sequences

Each user-defined character has a character attribute record, which is
stored in a character attribute, or UDC, database. A UDC database can be
systemwide or private. There can be only one systemwide database that all
users share; however, any user can have a private database as well. The
following command invokes the user-defined character editor:

% cedit

With no options, the cedit command uses the default database. If you are
superuser, the default database is /var/i18n/udc . If you are an
unprivileged user, the default database is $HOME/.udc . There are a
number of problems you can encounter when using user-defined characters
that are maintained in private databases; therefore, it is best for a
privileged user to maintain all user-defined characters in a systemwide

Setting Up and Using User-Defined Character Databases B–3

database. The cedit command has a number of options and an argument,
which are described in Table B–2.

Table B–2: The cedit Command Options

cedit Options and
Arguments

Description

−c old_db Converts a Japanese ULTRIX fedit font file or an Asian
ULTRIX character attribute database file to the format
used by cedit .

cur_db Specifies the path of a character attribute database (to
override the default path).

−h Displays cedit syntax.

−r ref_db Specifies the path of the reference character attribute
database (to override the default path).
This database provides a model for the UDC database on
which you are working with the cedit utility.
The Reference Database item on the cedit File menu is an
alternative to specifying the −r option on the cedit
command line.

The following command displays the cedit syntax:

% cedit -h
Usage : cedit [-h] [-c <old_db>] [-r <ref_db>] [<cur_db>]

The cedit command returns an error message if your locale setting is not
supported for creation of user-defined characters. Locales supported for
user-defined characters include those for the Chinese and Japanese
languages. After you invoke cedit , you can use the Options menu on the
cedit user interface screen to change the language of user interface
messages and help text back to English.

The following sections discuss the screens, menu items, editing modes, and
function keys of the cedit utility.

B.1.1 Working on the cedit User Interface Screen

When the LANGvariable is set to a supported locale, such as zh_TW.big5 ,
the cedit command displays the user interface screen shown in
Figure B–2.

B–4 Setting Up and Using User-Defined Character Databases

Figure B–2: The cedit User Interface Screen

ZK−0924U−R

The user interface screen is divided into three areas:

• Menu area

This area contains a menu bar. When you select and activate a
particular menu, its items appear in the portion of the menu area below
the menu bar.

• Status area

Below the menu area is the status area, which displays the current
language and codeset.

• Input and message area

The bottom two lines of the screen accept user input and display
warning or informational messages.

You can use the four arrow keys to select a menu and then press either
Return or the space bar to see items on that menu. You can accomplish the
same goal more directly by pressing the key for the letter that is
underlined in the title of the menu.

Menu items are displayed in one of the following states:

• Active

Setting Up and Using User-Defined Character Databases B–5

An active item is one that you can select. Active items appear with one
letter highlighted and underlined. You can press the key for that letter
to start the function represented by the item.

• Inactive

You cannot select inactive items. Inactive items do not contain
underlined and highlighted letters.

• Selected

If you press the down arrow key rather than the key for a highlighted
letter, you can select items without starting the functions they
represent. The currently selected item is shown in reverse video.

• Activated

You activate an item when you press the key for a highlighted letter or
when you press Return or the space bar after selecting the item with
the down arrow key. Activating an item usually displays a pop-up
menu, causes a particular function to start, or both. Activating an item
that is followed by the characters >> displays a cascade menu.

In the text that follows, when you are told to choose an item, you
should activate it.

To return to a higher menu level without activating items, press Ctrl-x.

Menus on the user interface screen provide the following options for
managing user-defined characters and their attributes:

• File

Use the File menu to:

– Save changes made to the character you are currently working on

– Cancel changes made to the current character

– Change the reference character attribute database

– Exit from or quit the cedit program

• Edit

Use the Edit menu to select a character and create or change its font
glyph, codeset value, collating value, input key sequence, class, or name.

Section B.1.2 discusses editing a character’s font glyph.

• Delete

Use the Delete menu to delete a character or some of its attributes.

• Show

B–6 Setting Up and Using User-Defined Character Databases

Use the Show menu to display attributes of the character you are
working on or the status of databases (current character attribute
database or reference character attribute database).

The cedit utility keeps track of a character through its attribute
record. This record contains fields to identify the following attributes:

– Character number (unique for each character in the UDC database)

– Codeset values (one for each codeset supported by a particular
language/territory combination)

– Font styles and sizes

– Collation values (one for each collation sequence supported by the
language)

– Input key sequences (one for each input method supported by the
language)

– Class identifiers (reserved for future use)

– Character mnemonic (reserved for future use)

There is some variation among Asian codesets in terms of support for
UDC attributes. For example, you cannot define an input key sequence
through cedit for a Japanese user-defined character. For Chinese, you
can define an input key sequence for use only with the DEC Hanyu
codeset and TsangChi and QuickTsangChi input modes.

• Commands

Use the Commands menu to:

– Copy character records from the reference character attribute
database to the current character attribute database or, within the
current character attribute database, copy records from one range of
characters to another

You can implement the copy operation blindly (No Confirm), confirm
the copy operation for each character in the range (Confirm All), or
confirm the copy operation only for characters that will overwrite
other characters (Confirm Conflict).

– List all characters currently defined in the current character
attribute database for the current language and codeset setting.

– Scale the character’s font from one size to another

After you define a character in one font size, you can use this option
to make the character available in other sizes. The scaling
algorithm is a simple one, so you might need to do some manual
editing to refine font glyphs after they are scaled.

• Options

Setting Up and Using User-Defined Character Databases B–7

Use the Options menu to change the current setting for language and
codeset that is applied to your work on user-defined characters. You can
also independently set the language of messages and help text in the
cedit user interface. By default, the language of the cedit user
interface is the same as the locale setting in effect when you invoked
cedit .

• Help

Use the Help menu to display introductory text for cedit functions.
Help is also available for menu items through the Help key when this
key is provided on your keyboard or, for workstation users, enabled by
your terminal setting. In other words, you can first select a menu item
with the arrow keys and then press the Help key for a short description
of the selected item.

B.1.2 Editing Font Glyphs

To create or change the font glyph of a user-defined character, you must
invoke the font editing screen of cedit as follows:

1. Select a character by choosing the Character item from the Edit menu.

The cedit program prompts you to enter the hexadecimal code value
(without the \x prefix) for the character to be edited. The range of valid
codes for UDC characters is defined in a set of configuration files. When
more than one codeset is supported for the language and territory of
your current locale, cedit attempts to supply values for the additional
codesets so the character can be used with all the associated locales.

If cedit cannot determine the character’s value in other codesets, you
can change the codeset setting through the Options menu and then
explicitly specify the character’s encoding in the additional codeset. In
general, it is a good idea to define user-defined characters to have
values that can be mapped to other codesets supported for the
language. For more information on codes for user-defined characters in
specific Asian languages, refer to the language-specific technical
reference guides available on the Tru64 UNIX documentation
CD-ROM.

The cedit utility first searches your current UDC database for the
code that you enter. If a character with that code is not found in the
UDC database, the utility searches the current reference character
database.

2. Choose the Font item from the Edit menu to see options for font
style/size.

3. Choose one of the font style/size options.

B–8 Setting Up and Using User-Defined Character Databases

If you are creating a font glyph for use in a Motif application, the
available size options may not be appropriate for the window area
where you intend to use the font. In this case, choose the smallest size
option that will accommodate both dimensions of your font.

The cedit program then displays the full-screen font editor interface as
shown in Figure B–3.

Figure B–3: The cedit Font Editing Screen

ZK−0925U−R

The cedit font editing screen has several windows:

• The large window on the right side of the screen is where you edit the
UDC font glyph. To edit, use the cursor movements and editing
functions that cedit supports.

Each dot on the editing window represents one pixel.

• The three small windows immediately under the Reference title display
other font glyphs that you can refer to while editing the current one.
You use the cedit Refer function to control which font glyphs appear
in these windows.

• The small window under the three reference windows is called the
display window. The display window shows the font glyph you are
editing in its actual size. The display window does not automatically
reflect changes you make in the editing window. You must press the KP.
key to update the font glyph in the display window.

Setting Up and Using User-Defined Character Databases B–9

_______________________ Note _______________________

There are some hardware restrictions regarding font glyph
displays in the small windows.

Font glyph displays in the reference and display windows are
enabled only on local-language terminals that support the
Dynamic Replacement Character Set (DRCS) function.

On terminal emulation windows, the font glyph in the Display
window does not appear in its actual size.

Fonts created in the editing window for use with system software are
processed to occupy the size dimensions you selected before the editor
interface screen appeared.

You can also create a font for use with Motif applications and whose
dimensions are smaller than those selected. In this case, you confine your
editing operations to a rectangle that originates at the upper-left corner of
the editing window and has dimensions smaller than the available editing
space (see Figure B–4). The UDC font converter that supports a Motif
application considers the upper-left corner of the editing window as the
font origin, generates dimensions needed to encompass the glyph based on
this origin, and discards unused space outside these dimensions. This
utility also allows you to explicitly specify the size dimensions for the
compiled font glyphs.

Figure B–4: Interpretation of Font Editing Screen for Sizing a Font

cedit
Workspace

ZK-0932U-AI

Origin

Required
Font Area

Width

Unused
Area

H
e
i
g
h
t

All functions in cedit are bound to keys; in other words, you press a key
to invoke a function. Press either the PF2 or the Help key to see a diagram

B–10 Setting Up and Using User-Defined Character Databases

of how keys are bound to editing functions. Note that your online diagram
may vary from the one shown here due to differences in keypad design on
some systems. There are four kinds of editing modes for the cedit editing
screen:

• Cursor modes

Using the arrow keys to move the cursor does not affect the pixel state.
However, when you use keypad keys to move the cursor, the following
list describes how Cursor modes affect the pixel state:

– On: Turns on the pixel under the cursor.

– Off: Sets the pixel under the cursor off.

– On/Off: Toggles the pixel under the cursor.

You can also toggle the pixel under the cursor with any movement
by pressing the KP5 key.

– Move: Moves the cursor without changing the pixel state.

• Paste modes

Paste modes control the pixel operation when you perform the paste
function.

– Overlay: Sets a pixel on if it or its corresponding pixel in the paste
buffer is on.

– Overwrite: Sets the pixel to the state of the corresponding pixel in
the paste buffer.

• Type modes

Type modes determine whether the margin of one pixel width is
maintained around the character.

– Body: Allows you to edit the entire font glyph area.

– Letter: Prevents you from editing the pixel value of the boundary
area.

Letter mode means that you cannot set pixels to the on state when
at the boundary of the editing window.

• Wrap modes

Wrap modes enable or disable cursor wrapping.

– On: Causes the cursor to wrap to the leftmost pixel when you move
the cursor beyond the rightmost pixel in the editing area.

Similar wrapping behavior occurs when you move the cursor beyond
the leftmost, uppermost, and lowermost pixels in the editing area.

Setting Up and Using User-Defined Character Databases B–11

– Off: Causes the bell to ring and stops cursor movement on attempts
to move the cursor beyond the leftmost, rightmost, uppermost, and
lowermost pixels in the editing area.

The cedit font editor uses four buffers to store bitmap data. Some of these
buffers are used by editing functions, which are discussed following the
buffer descriptions.

• Edit buffer

This is the buffer whose contents normally appear in the editing
window.

• Use buffer

This buffer is associated with the Use function and contains a font glyph
you retrieved from a UDC database or one of the reference windows.

• Cut-and-Paste buffer

Use this buffer when pasting bitmap data in the editing window. The
bitmap data being pasted is copied either from a Use buffer or the Edit
buffer (if you are copying something from one section of the editing
window to another).

• Undo buffer

This buffer contains the changes made during the last edit operation
and is used by the cedit Undo function to delete those changes.

When you are working on windows in the font-editing screen, you invoke
editing functions by using keystrokes or, in some cases, through a pop-up
menu that appears when you press the Do key. The following functions are
available on the pop-up menu:

• Scale

This function lets you scale the current font glyph to another size
supported by the system. The SCALE function does not have a
keystroke alternative and is available only on the pop-up menu.

• Use

This function retrieves a font glyph from a UDC database or from one
of the reference windows.

• Refer

This function saves a font glyph copied from a UDC database into one
of the reference windows.

Figure B–5 shows the keypad keymaps for invoking different editing
functions. The keypad functions, along with the letter keys used for
drawing, are described in the following tables.

B–12 Setting Up and Using User-Defined Character Databases

Figure B–5: Keymap for cedit Functions

ZK−0926U−R

Table B–3: Keys for Miscellaneous Font Editing Functions

Key Description

Help or PF2 Shows you which keys are bound to which editing
functions. Press Help along with another key in the
diagram for more information on a particular key’s editing
function.

PF1 Toggles the GOLD state. Some keypad keys represent
more than one function; in this case, one of those functions
is invoked by pressing PF1 and then the other keypad key.

KP. Displays the font glyph in actual size on the display
window.

GOLD KP. Clears the font glyph displayed in the editing window.

U or u Undoes the previous operation.

Ctrl-L Redraws the screen.

Ctrl-z Suspends the cedit program.

Do Displays the pop-up menu for invoking SCALE, USE, and
REFER functions.

Setting Up and Using User-Defined Character Databases B–13

Table B–3: Keys for Miscellaneous Font Editing Functions (cont.)

Key Description

Enter Saves changes and exits from the font editor.

GOLD Enter Quits the font editor without saving changes.

Table B–4: Keys for cedit Mode Switching

Key Description

PF3 Toggles Cursor mode.

PF4 Toggles Paste mode.

KP- Toggles Type mode.

KP. Toggles Wrap mode.

Table B–5: Keys for Fine Control of Cursor Movement

Key Description

Up-arrow Moves the cursor up.

Down-arrow Moves the cursor down.

Left-arrow Moves the cursor left.

Right-arrow Moves the cursor right.

KP7 Depending on Cursor mode, moves the cursor up and left.

KP8 Depending on Cursor mode, moves the cursor up.

KP9 Depending on Cursor mode, moves the cursor up and right.

KP4 Depending on Cursor mode, moves the cursor left.

KP6 Depending on Cursor mode, moves the cursor right.

KP1 Depending on Cursor mode, moves the cursor down and left.

KP2 Depending on Cursor mode, moves the cursor down.

KP3 Depending on Cursor mode, moves the cursor down and right.

KP5 Toggles the pixel under the cursor without moving the cursor.

B–14 Setting Up and Using User-Defined Character Databases

Table B–6: Keys for Moving Cursor to Window Areas

Key Description

GOLD KP7 Moves the cursor to the upper-left corner.

GOLD KP8 Moves the cursor to the top row.

GOLD KP9 Moves the cursor to the upper-right corner.

GOLD KP4 Moves the cursor to the leftmost column.

GOLD KP5 Moves the cursor to the center of the window.

GOLD KP6 Moves the cursor to the rightmost column.

GOLD KP1 Moves the cursor to the lower-left corner.

GOLD KP2 Moves the cursor to the bottom row.

GOLD KP3 Moves the cursor to the lower-right corner.

Table B–7: Keys for Drawing Font Glyphs

Key Description

L or l Draws a line connecting two selected points.

C or c Draws a circle centered at a selected point.

r Draws an open rectangle in a selected area.

R Draws a solid rectangle in a selected area.

e Draws an open ellipse in a selected area.

E Draws a solid ellipse in a selected area.

X or x Mirrors the font glyph along the horizontal axis (X-axis).

Y or y Mirrors the font glyph along the vertical axis (Y-axis).

/ Mirrors the font glyph along the 45-degree diagonal axis.

\ Mirrors the font glyph along the 135-degree diagonal axis.

F or f Depending on cursor mode, fills an area.

T or t Inverts the state of all pixels.

Setting Up and Using User-Defined Character Databases B–15

Table B–8: Keys for Editing Font Glyphs

Key Description

KP0 Changes the display in the Edit window from the font glyph in
the Edit buffer to the font glyph in the Use buffer.

GOLD KP. Displays font glyphs in the reference windows.

GOLD KP0 Changes the display in the Edit window from the font glyph in
the Use buffer to the font glyph in the Edit buffer.

Select Starts or cancels a selected area.

Insert Inserts the contents of the CUT-AND-PASTE buffer.

Remove Cuts a selected area to the CUT-AND-PASTE buffer.

GOLD Remove Copies a selected area to the CUT-AND-PASTE buffer.

GOLD Up-arrow Shifts the font glyph up by one line.

GOLD
Down-arrow

Shifts the font glyph down by one line.

GOLD
Left-arrow

Shifts the font glyph left by one column.

GOLD
Right-arrow

Shifts the font glyph right by one column.

There is often more than one way to perform the same editing operation.
The following summary discusses one method to accomplish various
operations:

• Drawing the glyph

Use the KP1 to KP9 keys to draw and navigate in the editing window.
These keys are bound to cursor movement. With the exception of KP5,
you can think of these keys as points on a compass; each point
represents the direction in which drawing occurs. Drawing is affected
by cursor mode, which is controlled using the KP3 key. When cursor
mode is set to Move, the drawing keys move the cursor without drawing
anything.

Use the KP5 key (in the middle of the compass) to toggle the pixel state
on or off.

Cursor movement is affected by Type and Wrap modes, which are
bound to the KP- and KP, keys, respectively.

• Editing the glyph

Use the drawing keys to change pixels one at a time. Several operations
(cut, paste, and copy) affect pixels as a block. Use the Select function to
define a select area. Then use Cut or Copy to move the block of pixels to
a paste buffer. You can then move the cursor to another position and

B–16 Setting Up and Using User-Defined Character Databases

use the Paste function to move the pixels in the paste buffer to the new
position. The paste operation is affected by the Paste mode setting.

To move the entire glyph in a particular direction, you can press the
GOLD or PF1 key and the appropriate arrow key.

To undo the last editing operation, press the U key.

• Displaying the glyph in actual size

If you are working on an Asian terminal rather than in a terminal
emulation window, you can press the KP. key to display the glyph in
actual size. This operation is not supported in a desktop windows
environment.

• Creating multiple prototypes of a glyph

You can create several versions of a glyph, storing earlier versions in
reference windows, and later choose the one you like best. Press the KP.
key to move a glyph from the editing window to a reference window.
The three reference windows are used in round-robin fashion, from left
to right.

Note that the Refer function available from the pop-up menu allows you
to move an existing glyph from the current or reference database to a
reference window.

• Replacing the glyph in the editing window with another glyph

The Use function moves a glyph into the editing window. The Use
function bound to the keypad copies a glyph from another codepoint in
the current or reference database. The Use function accessed from the
pop-up menu moves a glyph from one of the reference windows into the
editing window.

The Use function saves a copy of the current glyph in the editing
window to the Use buffer. You can retrieve the glyph from this buffer by
pressing the KP0 key. Unlike the contents of the Undo buffer, the glyph
in the Use buffer is available across editing operations.

• Creating multiple sizes of glyphs

The Scale option on the cedit main menu creates multiple sizes of all
glyphs in the database with the currently selected size. The Scale option
available for the font-editing screen creates multiple sizes of only the
character currently being edited. If you are working with an existing
UDC database, use the Scale option from the font-editing screen rather
than the cedit main menu. When scaling is implemented from the
cedit main menu and affects an entire database, the operation undoes
any manual refinements that may have been made to fonts after scaling.

• Quitting the font-editing screen

Setting Up and Using User-Defined Character Databases B–17

Press the Enter key to save your edits and to exit from the font editing
screen.

Press the GOLD or PF2 and Enter keys to quit without saving your
edits.

After you create a font glyph, you need to specify its name, input key
sequence, collating value, and, optionally, the name of the class to which
the character belongs. Use the Edit menu items on the cedit user
interface screen to specify these attributes.

B.2 Creating UDC Support Files That System Software
Uses

The character attributes stored in the UDC database must be directed to
specific kinds of files to meet the needs of different kinds of system
software. Terminal driver software and the asort utility, for example,
must recognize user-defined character attributes but cannot directly access
information in UDC databases. Therefore, after you create or change
character attributes in a UDC database, you use the cgen command to
create the following support files:

• Font files that the SoftODL (software on-demand loading) service uses

• Font files that can be directly loaded to the device

• Collating value tables for sorting characters

• Files of input key sequences for user-defined characters

• Font files that X and Motif applications use

The following command creates some of these files for the UDC database
~wang/.udc :

% cgen -odl -pre -col -iks ~wang/.udc

If you enter the cgen command without specifying options, statistical
information about the specified database is displayed. If you enter the
command without specifying a UDC database, the private user database is
used for a nonprivileged user and the system database for the superuser. In
other words, the database specification in the preceding example would not
be needed if the user who entered the command was logged on as wang.

Table B–9 describes cgen command options.

B–18 Setting Up and Using User-Defined Character Databases

Table B–9: The cgen Command Options

Option Description

−bdf Creates .bdf files needed for X and DECwindows Motif
applications.

−col Creates collating value tables. You must use the asort
command, rather than the sort command, if you want
to apply these tables during sort operations.

−dpi 75|100 Sets resolution to either 75 or 100 when creating .bdf
and .pcf files with the −bdf and −pcf options.

−fprop property Sets the font property when creating .bdf and .pcf
files with the −bdf and −pcf options.

−iks Creates the input key sequence file.

−merge font_pattern Invokes the fontconverter command to merge the
UDC fonts with an existing pcf font file that matches
the specified font_pattern (for example,
’*-140-*jisx0208*’).
If you specify the −merge option, you must also specify
the −pcf and −size options. The output .pcf file is in
the form registry _width _ height .pcf , where
registry is the font registry field of the specified font
file.

−osiz width xheight Specifies the font size for bdf output format.
The font size in bdf format may be different from the
size of the font defined in the UDC database. The font
sizes that the cedit command supports are limited; the
−osiz option lets you override these size restrictions
both in the .bdf file and the .pcf file generated from
the .bdf file.
If the size parameters specified for the −osiz option are
smaller than the size parameters specified for the
−size option, only the upper-left portion of the UDC
font glyph is used. If the size parameters specified for
the −osiz option are larger than the size parameters
specified for the −size option, the lower-right portion of
the resulting font glyph is filled with OFF pixels.

−pcf Invokes the bdftopof command to create the .pcf
files needed for X and Motif applications.
When you use this option, the cgen command also
invokes the mkfontdir and xset commands to make
the fonts known to the font server and available to
applications.

Setting Up and Using User-Defined Character Databases B–19

Table B–9: The cgen Command Options (cont.)

Option Description

−pre Creates preload font files.
Preload font files are files that are directly and
completely loaded to a terminal and some printers.
Preload files are not useful when UDC databases are
large because of the limited memory available on most
devices. On-demand loading (ODL), which uses ODL
font files, is an alternative to using preload font files.

−odl Creates ODL font files.
The terminal driver handles loading of fonts from ODL
font files on an incremental basis, according to need and
available memory.

-win userfont Generates a font file with the name userfont , which
can be copied to a Windows Version 3.1 or Windows NT
Version 3.5 system. You must also specify the -size
flag because only one size can apply to the specified file.
Supported codesets for font files created by this option
are big5 (for Chinese Windows systems), SJIS (for
Japanese Windows systems), and deckorean (for
Korean Windows systems).

B.3 Processing UDC Fonts for Use with X11 or Motif
Applications

The preload font files created with the -pre option of the cgen utility must
be converted to BDF (Bitmap Distribution Format) or PCF (Portable
Compiled Format) for use by X11 or Motif applications. The
fontconverter command performs this conversion and can do one of two
things with the converted output:

• Create independent pcf and bdf font files, which you must then install
on your workstation for use by an application

• Merge the fonts into an existing (pcf) font file

The remainder of this section discusses the fontconverter command and
its options. The cgen command has comparable options; in other words,
you can perform fontconverter operations indirectly by using similar
options on the cgen command line.

B.3.1 Using fontconverter Command Options

The following example shows the simplest form of the fontconverter
command, which produces a default name for the output files. Assume for

B–20 Setting Up and Using User-Defined Character Databases

this example and the following discussion that the locale is set to a
Japanese locale when the command is entered and that 24x24 was specified
in the cedit utility when the font glyphs were created.

% fontconverter \
-font -jdecw-screen-medium-r-normal--24-240-75-75-m-240-jisx0208-kanji11 \
my_font.pre

The preceding command converts fonts in the my_fonts.pre file. By
default, the command creates the JISX.UDC_24_24.pcf and
JISX.UDC_24_24.bdf font files.

The default base name for the output font files varies according to
language, as follows:

• Japanese: JISX.UDC

• Hanyu: DEC.CNS.UDC

• Hanzi: GB.UDC

Font width and height are automatically appended to the base name in the
names of output font files. The base name is also used in the XLFD (X
Logical Font Description) as the registry name. For the fonts to be
available to applications, perform one of the following actions with the
compiled (.pcf) fonts:

• In the directory where the fonts reside, enter the following commands:

% /usr/bin/X11/mkfontdir
% /usr/bin/X11/xset +fp ‘pwd‘
% /usr/bin/X11/xset fp rehash

These commands make the fonts available for testing until a server
restart or system shutdown occurs.

Alternately, you can include the -pcf option on the cgen command line
to execute the fontconverter and mkfontdir commands.

• To make the fonts available on a more permanent basis (that is, after a
server restart or system shutdown), follow these steps:

1. Copy the .pcf fonts to an existing font directory, for example,
/usr/i18n/usr/lib/X11/fonts/decwin/100dpi :

% cp JISX.UDC_24_24.pcf \
/usr/i18n/usr/lib/X11/fonts/decwin/100dpi

2. Change to that directory:

% cd /usr/i18n/usr/lib/X11/fonts/decwin/100dpi

3. Enter the mkfontdir command at that location:

% /usr/bin/X11/mkfontdir

Setting Up and Using User-Defined Character Databases B–21

4. Enter the following command:

% /usr/bin/X11/xset fp rehash

Table B–10 lists and describes options of the fontconverter command.
With the exception of -preload , the options are listed in command-line
order. See Section B.3.2 for examples that use these options.

Table B–10: Options and Arguments of the fontconverter Command

Argument or Option Description

−merge Specifies that command output be merged with
an existing font file.
See also the entry for the −font option.

−w Specifies the font width.
Use this option when the fonts are created with
a width smaller than the one specified for the
cedit font editing window.

−h Specifies the font height.
Use this option when the fonts are created with
a height smaller than the one specified for the
cedit font editing window.

−udc base_name Specifies the base file name of the output UDC
font file.
Use this option when you are creating a
standalone output file (you are not merging
output into an existing file) and you do not want
your output file to have a default base name.

B–22 Setting Up and Using User-Defined Character Databases

Table B–10: Options and Arguments of the fontconverter Command (cont.)

Argument or Option Description

−font reference_font Specifies a reference font. The reference font is
the name of a font that is available on the
current display. Use the xlsfonts command
(see xlsfonts (1X)) to determine which fonts
are available.
If you use the -font option with the −merge
option, reference_font indicates the font with
which converted font glyphs are merged.
If you use the -font option without the −merge
option, the header of reference_font is used
as a reference for generating the header of the
standalone output file. Information in
reference_font is also used to determine
default characters in the standalone output file.
A default character is a glyph (usually a square)
that appears when the font does not contain any
glyphs for a specified code.

−preload preload_font Specifies the input file (created by the cgen
−pre command).
Use this option when you want to specify the
preload_font argument at an arbitrary
position in the fontconverter command line.
You can omit −preload when placing
preload_font at the end of the command line.

B.3.2 Controlling Output File Format

X and Motif applications require loadable fonts in PCF format.

If you do not use the -merge option, the fontconverter command creates
standalone font files in both PCF and BDF format. When you specify the
-merge option, the command merges converted fonts with the standard
PCF font specified by the -font option and creates a standalone file only
in PCF format.

When you merge UDC fonts with standard fonts, you can use the combined
file with all Motif applications.

When you create independent font files, you can use the fonts with
applications that explicitly load the file. If the font registry is one of the
UDC registries for a particular locale, you can also use the files with
standard system applications.

Setting Up and Using User-Defined Character Databases B–23

Note that fontconverter processing time is longer when you merge fonts
into an existing font file as compared to when you create independent files.

The following example:

• Converts preload format fonts in the udc_font.pre file to PCF format

• Merges the converted output with the standard font -jdecw-screen-
medium-r-normal--24-240-75-75-m-240-jisx0208-kanji11

• Generates the JISX0208-Kanji11_24_24.pcf output file, which
combines the standard and new fonts

% fontconverter -merge -font \
-jdecw-screen-medium-r-normal--24-240-75-75-m-240-jisx0208-kanji11 \
udc_font.pre

The following command:

• Creates thedeckanji.udc_24_24.bdf and
deckanji.udc_24_24.pcf files

• Obtains the default characters and most header information for these
files from the standard font -jdecw-screen-medium-r-normal--24-
24-240-75-75-m-240-jisx0208-kanji11

• Sets the font registry field to deckanji.udc

% fontconverter -udc deckanji.udc -font \
-jdecw-screen-medium-r-normal--24-240-75-75-m-240-jisx0208-kanji11 \
udc_font.pre

B–24 Setting Up and Using User-Defined Character Databases

C
Setting Up and Using the Chinese

Phrase Input Method

When entering Chinese text, users have the option of entering individual
characters and words or a string that identifies a phrase. Chinese phrase
input is supported by a phrase database and one of the following:

• The Software Input Method (SIM) service

This service, which is enabled through the -adec option of the stty
command, extends support of phrase input to other Asian terminals in
the VT382 series. The SIM service loads phrases dynamically to the
terminal; therefore, the size of the phrase database is not limited by
memory restrictions of terminal hardware. When using a terminal
supported by the SIM service, you press a user-defined key sequence to
toggle in and out of phrase input mode. Entering phrase input mode
shifts the site of user input to the 26th line of the terminal screen
where you are prompted to enter phrase codes.

• The phrase input mechanism available in the desktop environment

Terminal emulation windows do not implement the 26th line of a
terminal screen, so the SIM service does not work correctly in these
windows. In a windows desktop environment, phrase input, along with
other kinds of input methods, is supported by the input method server
for the Chinese and Korean languages. Therefore, you enter phrases by
invoking the Input Method application and selecting the phrase item.

• The VT382-D Traditional Chinese terminal

A phrase database is loaded in its entirety to this terminal. Memory
limitations restrict the size of the database to 100 phrases. The last line
on the screen (line 26) is reserved for different input methods, phrase
input being one of them, and users are prompted to enter phrase codes
on this line.

The phrase utility allows you to create and maintain a phrase database
and, when using the VT382-D terminal, to load the database to the
terminal.

Table C–1 lists and describes basic terms associated with phrase input.

Setting Up and Using the Chinese Phrase Input Method C–1

Table C–1: Chinese Phrase Input Definitions

Term Description

phrase The string for the phrase that the user wants to retrieve. Each
phrase is a string of any characters in the codeset of the current
locale and can be a maximum of 80 bytes in length.

phrase code The keyword entered by the user to retrieve a phrase. Each
phrase code is a string of up to 8 ASCII alphanumeric
characters.

class A group of logically related phrases. Each class has an identifier
that is a string of up to 8 ASCII characters.

database A set of two files: the phrase data file phrase.dat and the class
data file class.dat . If a phrase database is moved from one
directory to another, the two data files must be moved together.
There are two types of phrase databases: system and user. The
system database is shared by all users on the system and is
maintained by the system administrator. User databases are
defined and maintained by individual users.
Pathnames for the system and user phrase database directories
are set in the /var/i18n/conf/cp_dirs file, which is
described in Section 6.8. By default, this file sets the pathname
for the system phrase database directory to be /var/i18n/sim
and for the user phrase database directory to be $HOME/.sim .
Phrase database files are locale specific and reside in locale
directories subordinate to the default path. For example, an
individual user might create and maintain the following sets of
files to support two different locales:

$HOME/.sim/zh_TW.big5/phrase.dat
$HOME/.sim/zh_TW.big5/class.dat
$HOME/.sim/zh_TW.dechanyu/phrase.dat
$HOME/.sim/zh_TW.dechanyu/class.dat

C.1 Enabling the SIM Service

Table C–2 lists and describes the stty command options that enable and
set certain characteristics for Chinese phrase input through the VT382
series of Asian terminals. These options do not apply to terminal emulation
windows, for which phrase input is supported using mechanisms other
than SIM.

C–2 Setting Up and Using the Chinese Phrase Input Method

Table C–2: The stty Options Used for the SIM Service

stty Option Description

sim Enables the SIM service.

−sim Disables the SIM service.

simkey key Sets the toggle key for entering phrase input
mode.

simclass class Sets the current class name for locating the
appropriate phrase in the phrase database.
Classes identify subsets of information in the
phrase database and are defined by using the
phrase utility.

simdb path Sets the path for the phrase database.

simall Displays current SIM service settings.

C.2 Creating and Maintaining a Chinese Phrase Database

You can create or maintain a phrase database by using the phrase utility.
On workstations, you invoke this utility with the following command:

% phrase

The command assumes that you are using a private phrase database if you
are a nonprivileged user and the systemwide phrase database if you are
superuser. You can change these defaults by using the utility’s menu
interface.

If you are working on a VT382-D traditional Chinese terminal, you can
include one of the options described in Table C–3. These options allow you
to use the hardware phrase input method supported by your terminal.

Table C–3: The phrase Options for the VT382-D Terminal

phrase Option Description

−user class_name Downloads the phrase definitions for the
specified class from your private phrase
database to the terminal.

−system class_name Downloads the phrase definitions for the
specified class from the systemwide phrase
database to the terminal.

On startup, the phrase utility displays a full-screen, menu-driven
interface like the one in Figure C–1.

Setting Up and Using the Chinese Phrase Input Method C–3

Figure C–1: User Interface Screen of the phrase Utility

ZK−0927U−R

Take the following steps to change the language of messages and other text
on the user interface to English:

1. Press the L key.

This action displays items on the LANGUAGE menu.

2. Press the E key.

This action specifies English for the user interface.

The phrase utility is a curses application. To navigate the phrase utility
user interface, use the following guidelines:

• Select a menu and menu items without activating them by using the
arrow keys.

• Press either Return or the space bar to activate the selected menu or
menu item.

• To select and activate in one operation, press the key for the underlined
letter in the name of a menu or menu item, depending on your current
level in the menu hierarchy.

• Press Ctrl-x to return to a higher level of the menu hierarchy without
activating a selection.

C–4 Setting Up and Using the Chinese Phrase Input Method

Pressing Ctrl-x when a menu is not activated causes the phrase utility
to exit.

The phrase user interface screen includes:

• A menu bar (upper-left corner of the screen)

• An area that specifies the current phrase database and class (to the
right of the menu bar)

• Two lines for warning and informational messages (bottom of screen)

• A large area for menu expansion and user dialog (center of screen)

The different menus allow you to perform the following operations:

• FILE menu

– Override the default path for the phrase database with which you
want to work

– Load phrases to a VT382D terminal

– Exit from the phrase utility and save any changes made to the
database

• CLASS menu

– Create a class

– View phrases in the selected class

– Rename a class

– Delete a class

– Select (change) the current class

• PHRASE menu

– Create a phrase within the selected class

If you do not explicitly select a class, class DEFAULT is assumed.

– Modify a phrase

– Delete a phrase

• LANGUAGE menu

– Choose English or Chinese as the language in which screen text and
messages appear

The following guidelines and restrictions apply to the phrase-management
operations that you can perform:

• Creating and maintaining phrases

– Phrases are always manipulated within the context of a phrase
class. If you do not explicitly select a class, the phrase is assumed to

Setting Up and Using the Chinese Phrase Input Method C–5

be in class DEFAULT. Otherwise, the phrase applies to the last
class name you explicitly selected.

– When you choose options that manipulate phrase definitions, a
two-part window appears. The left side displays phrase codes while
the right side displays phrases.

You input phrase names and definitions in an area below the
two-part display window. Choose your phrase name carefully. This
is the code used to invoke the phrase later. You cannot modify the
phrase name without deleting and reentering the entire phrase
definition.

– Phrase names must be unique within a given class, but you can use
the same phrase name in different phrase classes.

– The phrase itself can contain up to 80 bytes of data, which
correspond roughly to 80 columns on the screen. All 80 bytes of data
appear in the user input area; however, the display window provides
fewer than 80 columns to display the phrase. As a result, long
phrase definitions are truncated at the right boundary of the display
window. In such cases, the right angle bracket (>) appears in the
rightmost position to indicate that the phrase definition contains
more data. This truncation is a restriction of the display window
and does not apply to the phrase when it is invoked.

• Creating and maintaining classes

– Classes are created and maintained within the context of a
particular database. If you have not explictly specified a database,
the class operation applies to your default database.

– Class names must be unique within a database.

– Creating a new class causes that class to be the selected class and
then automatically invokes the function to create new phrases for
the class.

– The hardware phrase input method used on the VT382D terminal
can load up to 100 phrases in a class. Keep this limitation in mind if
you use one of these terminals or are maintaining a database
accessed by others who log in through terminals.

There are no restrictions on the number of phrases in a class when
phrases are retrieved through other Asian terminals in the VT382
series or through the Input Method window in the CDE
environment.

• Using multiple phrase databases

– Phrase databases are locale specific. You cannot invoke the phrase
utility without setting the LANGenvironment variable to a locale;

C–6 Setting Up and Using the Chinese Phrase Input Method

however, you can create phrase databases for any locale. Be sure
that the LANGenvironment variable is set to the locale you want to
create phrases for before invoking the phrase utility. Otherwise,
you will be working with (or creating) phrase databases for a locale
different from the one you want.

– You can copy phrase definitions to your private database from the
systemwide database and from databases of other users (assuming
their file protections allow you read access). If you choose to copy
phrases from another user’s database, you are prompted for the
absolute path of the database from which you want to copy. If the
specified database is accessible to you, all its phrase definitions are
listed and you select the ones you want to copy.

– You must own a database to create, delete, or modify classes in that
database. Unprivileged users can perform write operations on their
private databases. Only the superuser can perform write operations
on the systemwide database.

C.3 Using a Chinese Phrase Database
How you use a phrase database depends on whether you are using the
hardware input method or the SIM service. You can use either the
hardware input method or SIM service on a VT382D Traditional Chinese
terminal. For other terminals in the VT382 series of Asian terminals or for
a terminal emulation window on a workstation, you use the SIM service.

If you are using the hardware input method with a VT382D Traditional
Chinese terminal, refer to your terminal user guide for phrase input
instructions.

C.3.1 Phrase Input Supported Through the SIM Service

Before you can use a phrase database, you use the stty command to:

• Enable the SIM service:

% stty sim

To enable the SIM service, make sure your locale is set to one that
supports the Hanzi, Hanyu, or Korean codeset and that your terminal
line discipline is set to adec .

• Define the key sequence for toggling in and out of phrase input mode

The following example sets this key sequence to be Ctrl-b:

% stty simkey Ctrl-b

When you define the key sequence to toggle in and out of phrase mode,
pick one that you do not already use at the command line or in other

Setting Up and Using the Chinese Phrase Input Method C–7

applications. For example, do not define the key sequence to be Ctrl-c
(abort operation) or Ctrl-z (suspend operation).

If you do not want to use phrases from the class DEFAULT or from your
default phrase database, use the stty command to:

• Specify the phrase class that the SIM service or specialized terminal
software will use to interpret phrase codes:

% stty simclass CORP

• Specify the database that specialized terminal software will access

The SIM service always searches your private phrase database first for
a phrase name and, if the name is not found, then searches the
systemwide phrase database. However, terminals that support the
hardware phrase input method can load phrases from only one
database at a time. Therefore, a nonprivileged user using the terminal
hardware input method might enter the following command:

% stty simdb /var/i18n/sim

When the terminal setup is complete, you can perform the following actions
to retrieve a phrase:

1. Press the key sequence specified for the simkey option of the stty
command, for example Ctrl-b.

At the bottom of your screen, you are prompted to enter a phrase code.

2. Type the phrase code and press either Return or the space bar.

The phrase is returned to the screen or, if the phrase code was not
found, an error message is displayed.

When you want to exit from phrase input mode, press the simkey key
sequence again.

While in phrase input mode, the characters that you enter are subject to
the following rules:

• Lowercase alphanumeric characters, which are valid characters for
phrase codes, are converted to uppercase.

• A space or Return character entered when the phrase code buffer is
empty is sent directly to the application from which you entered phrase
input mode.

This behavior means that you do not have to exit from phrase mode to
enter a space or newline between phrases.

• If you enter printable characters other than alphanumeric ones, the bell
rings to signal that they are invalid characters for a phrase code.

C–8 Setting Up and Using the Chinese Phrase Input Method

• Control key sequences other than the one used to toggle in and out of
phrase mode are sent directly to the application from which you entered
phrase input mode.

This behavior means that control sequences such as Ctrl-z and Ctrl-c
are handled as you would expect for the system command line, editor,
or other application where the phrases are being entered.

• Pressing a function or arrow key produces undefined results.

C.3.2 Phrase Input from the Input Options Application

When phrase input is supported by your language setting and the
associated input method server is running, your desktop environment
includes an Input Options window. Click on the Options button in this
window to:

• Select the phrase database (user or system)

• Select the phrase class within the database

• Start phrase input

To start phrase input, select Input Method Customization from the
Input Options menu and, in the pop-up dialog box, select Phrase.

Setting Up and Using the Chinese Phrase Input Method C–9

D
Using DECterm Localization Features in

Programs

This appendix discusses programming features for local language support
that are available in the the DECterm terminal emulator.

D.1 Drawing Ruled Lines in a DECterm Window

Programming guides for video terminals discuss how you use ANSI escape
sequences to perform operations, such as inserting and deleting characters,
inserting and removing blank lines, and requesting character display in
double height and width. Because a DECterm window is a terminal
emulator, these escape sequences also apply to programs that display text
and graphics in a DECterm window.

Operating system enhancements for Asian languages include additional
escape sequences for drawing and removing ruled lines in a specified area
of a DECterm window. These additional escape sequences allow
applications to construct tables and diagrams.

The following sections describe the escape sequences that draw and erase
lines according to pattern and area parameters.

D.1.1 Drawing Ruled Lines in a Pattern

The escape sequence identified by the mnemonic DECDRLBRdraws ruled
lines on the boundaries of a rectangular area according to a specified
pattern. The following table provides format information:

Using DECterm Localization Features in Programs D–1

Mnemonic Description Sequence

DECDRLBR Draws ruled lines on
the boundaries of a
rectangular area

CSI P1; Px; Plx ; Py; Ply ,r

where:
P1 indicates the pattern of drawing
ruled lines. P1 indicates whether lines
are drawn on all sides of the rectangular
area, on the left and right sides only, on
the top and bottom only, and so forth.
Px indicates the absolute position of the
start point in columns.
Plx indicates the width of the area in
columns.
Py indicates the absolute position of the
start point in rows.
Ply indicates the height of the area in
rows.

When the DECDRLBRescape sequence is received from an application,
DECterm software draws ruled lines on one or more of the boundaries of
the area between the coordinates(Px, Py) and(Px+Plx -1, Py+Ply -1)
according to the pattern specified in P1. Consider the following example:

CSI 15 ; 1 ; 5 ; 1 ; 2 , r

The preceding escape sequence causes the DECterm software to draw ruled
lines as shown in Figure D–1.

Figure D–1: Drawing Ruled Lines with the DECDRLBR Sequence

ZK−0928U−R

DECterm software draws ruled lines that are one pixel in width. When the
display scrolls, these lines correctly scroll as if text.

D–2 Using DECterm Localization Features in Programs

Figure D–2 and the table following the figure describe the bit pattern that
the DECDRLBRparameters map to.

Figure D–2: Bit Pattern for DECDRLBR Parameters

ZK-0931U-AI

Bit 7 6 5 4 3 2 1 0

Bottom

Right

Top

Left

Bit Bit Value Description

Bit 0 1 Draws line on the bottom boundary

Bit 1 2 Draws line on the right boundary

Bit 2 4 Draws line on the top boundary

Bit 3 8 Draws line on the left boundary

The DECDRLBRparameters are more completely described in the following
list:

• Pattern of ruled lines(P1)

The pattern is a bitmask that controls how the ruled lines are drawn on
the boundaries of the area. Ruled lines are drawn according to whether
the bits for the boundaries are set on or off. For example, ruled lines
are drawn on all boundaries if P1 is set to 15 and on the top and bottom
boundary if P1 is set to 5:

Boundary : Bottom Right Top Left
P1 = Bit0 + Bit1 + Bit2 + Bit3
P1 = 1 + 2 + 4 + 8 = 15
P1 = 1 + 4 = 5

• Absolute position of the start point(Px, Py)

Px is the starting column position and Py is the starting row position. If
you omit these parameters or explicitly set them to 0 (zero), the
starting position is at column 1 and row 1. In other words, the upper
left corner of the rectangle is at the coordinates (1,1).

Using DECterm Localization Features in Programs D–3

• Size of the area(Plx , Ply)

Plx is the width of the area in columns and Ply is the height of the
area in rows. If you omit these parameters or explicitly set them to 0
(zero), the area is 1 column in width and 1 row in height.

D.1.2 Erasing Ruled Lines in a Pattern

The DECERLBRPescape sequence erases ruled lines on the boundaries of a
rectangular area according to a specified pattern. The following table
provides format information:

Mnemonic Description Sequence

DECERLBRP Erases ruled lines
on the boundaries of
a rectangular area

CSI P1; Px; Plx ; Ply ; Py,s where:
P1 indicates the pattern of drawing ruled
lines. P1 indicates whether lines are drawn
on all sides of the rectangular area, on the
left and right sides only, on the top and
bottom only, and so forth.
Px indicates the absolute position of the
start point in columns.
Plx indicates the width of the area in
columns.
Py indicates the absolute position of the
start point in rows.
Ply indicates the height of the area in
rows.

D.1.3 Erasing All Ruled Lines in an Area

The escape sequence DECERLBRAerases all ruled lines, not just those
drawn on the area boundaries, in a rectangular area. The following table
provides format information:

D–4 Using DECterm Localization Features in Programs

Mnemonic Description Sequence

DECERLBRA Erases ruled lines
within a
rectangular area

CSI P1; Px; Plx ; Py; Ply ,t where:
P1 determines whether the area
encompasses the entire display screen or a
specific section of the screen. When P1 is
the value 1, DECterm software erases all
ruled lines on the screen. In this case, the
Px, Plx , Py, and Ply parameters are
ignored. When P1 is the value 2,
DECterm software erases all ruled lines
within a rectangular area defined by the
Px, Plx , Py, and Ply parameters. When
P1 is omitted or explicitly set to 0 (zero),
DECterm software erases all ruled lines
on the screen (the same result as for the
value 1, which is the default).
Px indicates the absolute position of the
start point in columns.
Plx indicates the width of the area in
columns.
Py indicates the absolute position of the
start point in rows.
Ply indicates the height of the area in
rows.

D.1.4 Interaction of Ruled Lines and Other DECterm Escape
Sequences

Table D–1 describes the effect of using standard DECterm escape
sequences when ruled lines are drawn on the screen.

Table D–1: Behavior of Standard Escape Sequences with Ruled Lines

Mnemonic Description Effect on Ruled Lines

DECDWL,
DECDHLT,
DECDHLB

Display as
double width or
double height

These escape sequences have no effect on ruled lines, whose
width is always one pixel. Furthermore, the parameter units
for the escape sequences controlling ruled line display are
always specified in terms of single width and single height
columns and rows, even when the escape sequences are
used with those that double the height and width of text.

GSM Modify graphic
size

These escape sequences have no effect on ruled lines, whose
width is always one pixel. Comments made in the entry for
DECDWL, DECDHLT, and DECDHLBalso apply to GSM.

Using DECterm Localization Features in Programs D–5

Table D–1: Behavior of Standard Escape Sequences with Ruled Lines (cont.)

Mnemonic Description Effect on Ruled Lines

ED, EL, ECH Erase display,
erase line, and
erase character

These escape sequences do not erase ruled lines, only the
characters within the boundaries of the ruled lines. For
example:

ABCDEF abcdef

123456 123456

DL Delete line This escape sequence erases both lines of characters and
ruled lines at the active position of deletion. The text lines
and accompanying ruled lines that follow the deletion point
scroll up the screen. For example:

ABCDEF abcdef

123456 123456

123456 123456

IL Insert line This escape sequence causes insertion of blank lines at the
active position. It causes both text and accompanying ruled
lines currently at the active position to scroll down the
screen. For example:

ABCDEF abcdef

123456 123456 ABCDEF abcdef

123456 123456

DCH Delete character This escape sequence does not delete ruled lines. The
following example shows the result of deleting four
characters at the third column position:

ABCDEF abcdef

123456 123456

ABabcd ef

123456 123456

ICH Insert character This escape sequence causes blank spaces to be inserted at
the active position but has no effect on ruled lines. The
following example shows the result of inserting four
characters at the third column position:

ABCDEF abcdef

123456 123456

AB CDEFab

123456 123456

cdef

D–6 Using DECterm Localization Features in Programs

Table D–1: Behavior of Standard Escape Sequences with Ruled Lines (cont.)

Mnemonic Description Effect on Ruled Lines

IRM Invoke
insert/replace
mode

Insert/replace mode has no effect on ruled lines. The
following example shows the result of inserting the
characters w, x, y, and z at the third column position and
replacing the character f with s:

ABCDEF abcdef

123456 123456

ABwxyz CDEFab

123456 123456

cdes

DECCOLM Invoke column
mode

Ruled lines are erased with accompanying text when
column mode is in effect.

RIS , DECSTR Reset to initial
state and soft
terminal, invoke
reset SETUP
mode

The RIS sequence erases all ruled lines displayed on the
screen while the DECSTRsequence does not. Note that the
Clear Display option on the DECterm Commands menu
erases all ruled lines whereas the Reset Terminal option
does not.

D.1.5 Determining if the DECterm Device Setting Supports Ruled
Lines

The feature that allows applications to draw ruled lines is enabled only
when a DECterm window is emulating a terminal type that supports this
feature. Your application can check for device support by requesting
primary device attributes from DECterm software.

VT terminals and DECterm software return a primary device attributes
report on request from applications. If the extension value 43 is included in
this report, drawing ruled lines is enabled for the device. This extension is
valid at a level–2 video display or higher. For example, if a DECterm
window is emulating a VT382-J terminal, which is the Japanese version of
a VT382, the primary device attributes are generated as follows:

CSI ? 63 ; 1 ; 2 ; 4 ; 5 ; 6 ; 7 ; 8 ; 10 ; 15 ; 43 c

Applications can send either the CSI c or CSI 0 c escape sequence to a
VT terminal or DECterm software to request a device attributes report.

D.2 DECterm Programming Restrictions

This section discusses DECterm software restrictions with respect to
terminal programming features discussed in hardware manuals.

Using DECterm Localization Features in Programs D–7

D.2.1 Downline Loadable Characters

DECterm software does not support the downline loadable characters that
are used for preloading and on-demand loading of terminals. The software
ignores the escape sequence for these characters.

D.2.2 DRCS Characters

DECterm software supports only the Standard Character Set (SCS)
component of the DIGITAL Replacement Character Set (DRCS). When
DECterm software receives the SCS characters, it searches the X window
server for the fonts with XLFD named as -*-dec-drcs and treats them as
a soft character set. The software ignores the DECDLD control string sent
by the terminal programming application.

D–8 Using DECterm Localization Features in Programs

E
Sample Locale Source Files

This appendix contains complete source files for the sample locale
discussed in Chapter 7.

E.1 Character Map (charmap) Source File
Map file providing symbols for characters whose binary
encodings are specified in the ISO Latin-1 codeset.

CHARMAP
<NU> \d000
<SH> \d001
<SX> \d002
<EX> \d003
<ET> \d004
<EQ> \d005
<AK> \d006
<BL> \d007
<BS> \d008
<HT> \d009
<LF> \d010
<VT> \d011
<FF> \d012
<CR> \d013
<SO> \d014
<SI> \d015
<DL> \d016
<D1> \d017
<D2> \d018
<D3> \d019
<D4> \d020
<NK> \d021
<SY> \d022
<EB> \d023
<CN> \d024
 \d025
<SB> \d026
<EC> \d027
<FS> \d028
<GS> \d029
<RS> \d030
<US> \d031

Sample Locale Source Files E–1

<SP> \d032
<!> \d033
<"> \d034
<Nb> \d035
<DO> \d036
<%> \d037
<&> \d038
<’> \d039
<(> \d040
<)> \d041
<*> \d042
<+> \d043
<,> \d044
<-> \d045
<.> \d046
</> \d047
<0> \d048
<1> \d049
<2> \d050
<3> \d051
<4> \d052
<5> \d053
<6> \d054
<7> \d055
<8> \d056
<9> \d057
<:> \d058
<;> \d059
<<> \d060
<=> \d061
<\>> \d062
<?> \d063
<At> \d064
<A> \d065
 \d066
<C> \d067
<D> \d068
<E> \d069
<F> \d070
<G> \d071
<H> \d072
<I> \d073
<J> \d074
<K> \d075
<L> \d076
<M> \d077
<N> \d078
<O> \d079
<P> \d080
<Q> \d081

E–2 Sample Locale Source Files

<R> \d082
<S> \d083
<T> \d084
<U> \d085
<V> \d086
<W> \d087
<X> \d088
<Y> \d089
<Z> \d090
<<(> \d091
<//> \d092
<)\>> \d093
<’\>> \d094
<_> \d095
<’!> \d096
<a> \d097
 \d098
<c> \d099
<d> \d100
<e> \d101
<f> \d102
<g> \d103
<h> \d104
<i> \d105
<j> \d106
<k> \d107
<l> \d108
<m> \d109
<n> \d110
<o> \d111
<p> \d112
<q> \d113
<r> \d114
<s> \d115
<t> \d116
<u> \d117
<v> \d118
<w> \d119
<x> \d120
<y> \d121
<z> \d122
<(!> \d123
<!!> \d124
<!)> \d125
<’?> \d126
<DT> \d127
<PA> \d128
<HO> \d129
<BH> \d130
<NH> \d131

Sample Locale Source Files E–3

<IN> \d132
<NL> \d133
<SA> \d134
<ES> \d135
<HS> \d136
<HJ> \d137
<VS> \d138
<PD> \d139
<PU> \d140
<RI> \d141
<S2> \d142
<S3> \d143
<DC> \d144
<P1> \d145
<P2> \d146
<TS> \d147
<CC> \d148
<MW> \d149
<SG> \d150
<EG> \d151
<SS> \d152
<GC> \d153
<SC> \d154
<CI> \d155
<ST> \d156
<OC> \d157
<PM> \d158
<AC> \d159
<NS> \d160
<!I> \d161
<Ct> \d162
<Pd> \d163
<Cu> \d164
<Ye> \d165
<BB> \d166
<SE> \d167
<’:> \d168
<Co> \d169
<-a> \d170
<<<> \d171
<NO> \d172
<--> \d173
<Rg> \d174
<’-> \d175
<DG> \d176
<+-> \d177
<2S> \d178
<3S> \d179
<’’> \d180
<My> \d181

E–4 Sample Locale Source Files

<PI> \d182
<.M> \d183
<’,> \d184
<1S> \d185
<-o> \d186
<\>\>> \d187
<14> \d188
<12> \d189
<34> \d190
<?I> \d191
<A!> \d192
<A’> \d193
<A\>> \d194
<A?> \d195
<A:> \d196
<AA> \d197
<AE> \d198
<C,> \d199
<E!> \d200
<E’> \d201
<E\>> \d202
<E:> \d203
<I!> \d204
<I’> \d205
<I\>> \d206
<I:> \d207
<D-> \d208
<N?> \d209
<O!> \d210
<O’> \d211
<O\>> \d212
<O?> \d213
<O:> \d214
<*X> \d215
<O/> \d216
<U!> \d217
<U’> \d218
<U\>> \d219
<U:> \d220
<Y’> \d221
<TH> \d222
<ss> \d223
<a!> \d224
<a’> \d225
<a\>> \d226
<a?> \d227
<a:> \d228
<aa> \d229
<ae> \d230
<c,> \d231

Sample Locale Source Files E–5

<e!> \d232
<e’> \d233
<e\>> \d234
<e:> \d235
<i!> \d236
<i’> \d237
<i\>> \d238
<i:> \d239
<d-> \d240
<n?> \d241
<o!> \d242
<o’> \d243
<o\>> \d244
<o?> \d245
<o:> \d246
<-:> \d247
<o/> \d248
<u!> \d249
<u’> \d250
<u\>> \d251
<u:> \d252
<y’> \d253
<th> \d254
<y:> \d255
<NUL> \d000
<SOH> \d001
<STX> \d002
<ETX> \d003
<EOT> \d004
<ENQ> \d005
<ACK> \d006
<alert> \d007
<BEL> \d007
<backspace> \d008
<tab> \d009
<newline> \d010
<vertical-tab> \d011
<form-feed> \d012
<carriage-return> \d013
<DLE> \d016
<DC1> \d017
<DC2> \d018
<DC3> \d019
<DC4> \d020
<NAK> \d021
<SYN> \d022
<ETB> \d023
<CAN> \d024
<SUB> \d026
<ESC> \d027

E–6 Sample Locale Source Files

<IS4> \d028
<IS3> \d029
<intro> \d029
<IS2> \d030
<IS1> \d031
 \d127
<space> \d032
<exclamation-mark> \d033
<quotation-mark> \d063
<number-sign> \d035
<dollar-sign> \d036
<percent-sign> \d037
<ampersand> \d038
<apostrophe> \d039
<left-parenthesis> \d040
<right-parenthesis> \d041
<asterisk> \d042
<plus-sign> \d043
<comma> \d044
<hyphen> \d045
<period> \d046
<full-stop> \d046
<slash> \d047
<solidus> \d047
<zero> \d048
<one> \d049
<two> \d050
<three> \d051
<four> \d052
<five> \d053
<six> \d054
<seven> \d055
<eight> \d056
<nine> \d057
<colon> \d058
<semicolon> \d059
<less-than-sign> \d060
<equals-sign> \d061
<greater-than-sign> \d062
<question-mark> \d063
<commercial-at> \d064
<left-square-bracket> \d091
<reverse-solidus> \d092
<right-square-bracket> \d093
<circumflex-accent> \d094
<low-line> \d095
<grave-accent> \d096
<left-curly-bracket> \d123
<vertical-line> \d124
<right-curly-bracket> \d125

Sample Locale Source Files E–7

<tilde> \d126
END CHARMAP

E.2 Locale Definition Source File
#
de_DE_ISO8859-1.lsrc
#
This is a locale definition source file for German in Germany.
Character symbols in this file are defined in the charmap
file ISO88591.cmap, which specifies character encodings
according to the ISO Latin-1 codeset.
#

LC_CTYPE

upper <A>;<A:>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;<N>;<O>;\
<O:>;<P>;<Q>;<R>;<S>;<T>;<U>;<U:>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;<a:>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;<n>;<o>;\
<o:>;<p>;<q>;<r>;<s>;<ss>;<t>;<u>;<u:>;<v>;<w>;<x>;<y>;<z>

alpha <A>;<A:>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;<N>;<O>;\
<O:>;<P>;<Q>;<R>;<S>;<T>;<U>;<U:>;<V>;<W>;<X>;<Y>;<Z>;<a>;<a:>;;\
<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;<n>;<o>;<o:>;<p>;<q>;<r>;\
<s>;<ss>;<t>;<u>;<u:>;<v>;<w>;<x>;<y>;<z>

space <tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;<space>;\
<NS>

cntrl <NUL>;...;<IS1>;;...;<AC>

punct <exclamation-mark>;...;<slash>;<colon>;...;<commercial-at>;\
<left-square-bracket>;...;<grave-accent>;<left-curly-bracket>;...;\
<tilde>;<!I>;...;<?I>;<*X>;<-:>

digit <0>;<1>;<2>;<3>;<4>;<5>;<6>;<7>;<8>;<9>

xdigit <0>;<1>;<2>;<3>;<4>;<5>;<6>;<7>;<8>;<9>;<A>;;<C>;<D>;<E>;<F>;<a>;\
;<c>;<d>;<e>;<f>

blank <space>;<tab>;<NS>

graph <A>;<A:>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;<N>;<O>;\
<O:>;<P>;<Q>;<R>;<S>;<T>;<U>;<U:>;<V>;<W>;<X>;<Y>;<Z>;<a>;<a:>;;\
<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;<n>;<o>;<o:>;<p>;<q>;<r>;\
<s>;<ss>;<t>;<u>;<u:>;<v>;<w>;<x>;<y>;<z>;<0>;<1>;<2>;<3>;<4>;<5>;\
<6>;<7>;<8>;<9>;<exclamation-mark>;...;<slash>;<colon>;...;\
<commercial-at>;<left-square-bracket>;...;<grave-accent>;\
<left-curly-bracket>;...;<tilde>;<!I>;...;<?I>;<*X>;<-:>

print <A>;<A:>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;<N>;<O>;\
<O:>;<P>;<Q>;<R>;<S>;<T>;<U>;<U:>;<V>;<W>;<X>;<Y>;<Z>;<a>;<a:>;;\
<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;<n>;<o>;<o:>;<p>;<q>;<r>;\
<s>;<ss>;<t>;<u>;<u:>;<v>;<w>;<x>;<y>;<z>;<0>;<1>;<2>;<3>;<4>;<5>;\
<6>;<7>;<8>;<9>;<exclamation-mark>;...;<slash>;<colon>;...;\
<commercial-at>;<left-square-bracket>;...;<grave-accent>;\
<left-curly-bracket>;...;<tilde>;<!I>;...;<?I>;<*X>;<-:>;<space>

toupper (<a>,<A>);(<a:>,<A:>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);(<k>,<K>);\
(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);(<o:>,<O:>);(<p>,<P>);\

E–8 Sample Locale Source Files

(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);(<u>,<U>);(<u:>,<U:>);\
(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>)

tolower (<A>,<a>);(<A:>,<a:>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);(<K>,<k>);\
(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);(<O:>,<o:>);(<P>,<p>);\
(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);(<U>,<u>);(<U:>,<u:>);\
(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);(<Z>,<z>)

END LC_CTYPE

#

LC_COLLATE

order_start forward;forward;backward
UNDEFINED IGNORE;IGNORE;IGNORE
<0> <0>;<0>;<0>
<1> <1>;<1>;<1>
<2> <2>;<2>;<2>
<3> <3>;<3>;<3>
<4> <4>;<4>;<4>
<5> <5>;<5>;<5>
<6> <6>;<6>;<6>
<7> <7>;<7>;<7>
<8> <8>;<8>;<8>
<9> <9>;<9>;<9>

<a> <a>;<a>;<a>
<a:> <a>;<a>;<a:>
 ;;
<c> <c>;<c>;<c>
<d> <d>;<d>;<d>
<e> <e>;<e>;<e>
<f> <f>;<f>;<f>
<g> <g>;<g>;<g>
<h> <h>;<h>;<h>
<i> <i>;<i>;<i>
<j> <j>;<j>;<j>
<k> <k>;<k>;<k>
<l> <l>;<l>;<l>
<m> <m>;<m>;<m>
<n> <n>;<n>;<n>
<o> <o>;<o>;<o>
<o:> <o>;<o>;<o:>
<p> <p>;<p>;<p>
<q> <q>;<q>;<q>
<r> <r>;<r>;<r>
<s> <s>;<s>;<s>
<ss> <s><s>;<s><s>;<ss>
<t> <t>;<t>;<t>
<u> <u>;<u>;<u>
<u:> <u>;<u>;<u:>
<v> <v>;<v>;<v>
<w> <w>;<w>;<w>
<x> <x>;<x>;<x>
<y> <y>;<y>;<y>
<z> <z>;<z>;<z>

<A> <a>;<A>;<A>
<A:> <a>;<A>;<A:>
 ;;
<C> <c>;<C>;<C>
<D> <d>;<D>;<D>

Sample Locale Source Files E–9

<E> <e>;<E>;<E>
<F> <f>;<F>;<F>
<G> <g>;<G>;<G>
<H> <h>;<H>;<H>
<I> <i>;<I>;<I>
<J> <j>;<J>;<J>
<K> <k>;<K>;<K>
<L> <l>;<L>;<L>
<M> <m>;<M>;<M>
<N> <n>;<N>;<N>
<O> <o>;<O>;<O>
<O:> <o>;<O>;<O:>
<P> <p>;<P>;<P>
<Q> <q>;<Q>;<Q>
<R> <r>;<R>;<R>
<S> <s>;<S>;<S>
<T> <t>;<T>;<T>
<U> <u>;<U>;<U>
<U:> <u>;<U>;<U:>
<V> <v>;<V>;<V>
<W> <w>;<W>;<W>
<X> <x>;<X>;<X>
<Y> <y>;<Y>;<Y>
<Z> <z>;<Z>;<Z>

order_end

END LC_COLLATE

#

LC_MESSAGES

yesexpr "^[<j><J>][[:alpha:]]*"

noexpr "^[<n><N>][[:alpha:]]*"

END LC_MESSAGES

#

LC_MONETARY

int_curr_symbol "<D><M>"

currency_symbol "<D><M>"

mon_decimal_point "<,>"

mon_thousands_sep "<.>"

mon_grouping 3

positive_sign ""

negative_sign "<->"

int_frac_digits 2

frac_digits 2

p_cs_precedes 0

p_sep_by_space 1

E–10 Sample Locale Source Files

n_cs_precedes 0

n_sep_by_space 1

p_sign_posn 1

n_sign_posn 1

END LC_MONETARY

#

LC_NUMERIC

decimal_point "<,>"

thousands_sep "<.>"

grouping 3

END LC_NUMERIC

#

LC_TIME

abday "<S><o>";"<M><o>";"<D><i>";"<M><i>";"<D><o>";\
"<F><r>";"<S><a>"

day "<S><o><n><n><t><a><g>";"<M><o><n><t><a><g>";\
"<D><i><e><n><s><t><a><g>";\
"<M><i><t><t><w><o><c><h>";\
"<D><o><n><n><e><r><s><t><a><g>";\
"<F><r><e><i><t><a><g>";"<S><a><m><s><t><a><g>"

abmon "<J><a><n>";"<F><e>";"<M><a:><r>";\
"<A><p><r>";"<M><a><i>";"<J><u><n>";\
"<J><u><l>";"<A><u><g>";"<S><e><p>";\
"<O><k><t>";"<N><o><v>";"<D><e><z>"

mon "<J><a><n><u><a><r>";"<F><e><r><u><a><r>";\
"<M><a:><r><z>";"<A><p><r><i><l>";"<M><a><i>";\
"<J><u><n><i>";"<J><u><l><i>";\
"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><e><r>";\
"<O><k><t><o><e><r>";\
"<N><o><v><e><m><e><r>";\
"<D><e><z><e><m><e><r>"

d_t_fmt "%d.%B %Y %H:%M:%S"

d_fmt "%d.%m %y"

t_fmt "%H:%M:%S"

am_pm ;

t_fmt_ampm

END LC_TIME

Sample Locale Source Files E–11

Glossary

ASCII
American Standard Code for Information Interchange. ASCII defines 128
characters, including control characters and graphic characters,
represented by 7-bit binary values (see also ISO 646).

See also character set, coded character set, Portable Character Set

character
A sequence of one or more bytes that represents a single graphic symbol or
control code. Unlike the char datatype in C, a character can be
represented by a value that is one byte or multiple bytes. The expression
“multibyte character” is synonymous with the term “character;” that is,
both refer to character values of any length, including single-byte values.

See also wide character

character set
A member of a set of elements used for the organization, control, or
representation of text.

See also ASCII, Portable Character Set, ISO 10646

character string
A contiguous sequence of bytes that is terminated by and includes the null
byte. A string is an array of type char in the C programming language.
The null byte has all bits set to zero (0).

An empty string is a character string whose first element is the null byte.

See also character, wide-character string

code page
See coded character set

coded character set
A set of unambiguous rules that establishes a character set and the
one-to-one relationship between each character of the set and its bit
representation. On UNIX systems, the more common term is codeset. On
MS-DOS and Microsoft Windows systems, the more common term is code
page.

Glossary–1

codeset
See coded character set

collating sequence
The ordering rules applied to characters or groups of characters when they
are sorted.

control character
A character, other than a graphic character, that affects the recording,
processing, transmission, or interpretation of text.

cultural data
The conventions of a geographical area for such things as date, time,
numeric, and currency values.

decomposed character
In Unicode, a character sequence that uses a base character, such as e,
followed by a combining character, such as acute (’), to represent a single
character in a native language.

See also precomposed character

euro
The currency adopted by European countries belonging to the Economic
and Monetary Union (EMU). By the end of the year 2002, this new
currency is scheduled to replace local currencies for EMU member
countries. The euro currency has a monetary sign that looks like an equal
sign (=) superimposed on the capital letter C and is identified by the string
EURin international currency documents.

file code
The encoding format that applies to data outside the program.

See also process code

graphic character
A character, other than a control character, that has a visual
representation when hand-written, printed, or displayed.

I18N
See internationalization

internationalization
The process of developing programs without prior knowledge of the
language, cultural data, or character-encoding schemes that the programs
are expected to handle. An internationalized program uses a set of
interfaces that allows the program to modify its behavior at run time for

Glossary–2

operation in a specific native language environment. I18N is frequently
used as an abbreviation for internationalization.

See also locale, localization

ISO 10646
The ISO Universal Character Set (UCS). The first 65,536 code positions in
this character set are called the Base Multilingual Plane (BMP) , in which
each character is 16 bits in length. This form of ISO 10646 is also known as
UCS-2. ISO 10646 also has a form called UCS-4 in which each character is
32 bits in length.

See also Unicode

ISO 646
ISO 7-bit codeset for information interchange. The reference version of ISO
646 contains 95 graphic characters, which are identical to the graphic
characters defined in the ASCII codeset.

ISO 6937
ISO 7-bit or 8-bit codeset for text communication using public
communication networks, private communication networks, or interchange
media such as magnetic tapes and disks.

ISO8859–*
ISO 8-bit single-byte codesets. In place of the asterisk (*) is a number that
represents the part of the associated ISO standard. For example, the
ISO8859–1 codeset conforms to ISO 8859 Part 1, Latin Alphabet No. 1,
which defines 191 graphic characters covering the requirements of most
Western European languages.

L10N
See localization

LANG
An environment variable that specifies the locale to use for all locale
categories not set individually. The following environment variables can be
set to override the LANGsetting in specific locale categories:

• LC_COLLATE, for information on how to order characters and strings in
sorting, or collation, operations

• LC_CTYPE, for definitions of classes and attributes of characters used
operations such as case conversion

• LC_MESSAGES, for definitions of strings that are valid for affirmative
and negative responses

• LC_MONETARY, for rules and symbols used to format monetary values

Glossary–3

• LC_NUMERIC, for rules and symbols used to format numeric values

• LC_TIME, for information related to date and time

The LC_ALL environment variable also specifies locale. If set, this variable
overrides all the preceding variables, including LANG.

See also locale

langinfo database
A collection of information associated with the numeric, monetary,
date/time, and messaging parts of a locale.

LC_*
A name for a particular locale category or, in the case of LC_ALL, a
reference to all parts of the locale. Locale categories include LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME.

See also LANG

local language
See native language

locale
A set of data and rules that supports a particular combination of native
(local) language, cultural data, and codeset.

See also coded character set, cultural data, LANG, langinfo database,
localization

localization
The process of providing language- or cultural-specifc information for
computer systems. Some of these requirements are addressed by locales.
Other requirements are addressed by translations of program messages,
provision of appropriate fonts for printers and display devices, and, in some
cases, development of additional software. L10N is sometimes used as an
abbreviation for localization.

See also internationalization, locale

LOCPATH
An environment variable used to specify the search path for locales.

See also locale

message catalog
A file or storage area containing program messages, command prompts,
and responses to prompts for a particular native language, territory, and
codeset.

Glossary–4

multibyte character
See character

native language
A computer user’s spoken or written language, such as English, French,
Japanese, or Thai.

NLSPATH
An environment variable used to indicate the search path for message
catalogs.

Portable Character Set
A character set that is guaranteed to be supported in both compile-time
(source) and run-time (executable) environments for all locales and that
contains:

• The 26 uppercase letters of the English alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• The 26 lowercase letters of the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z

• The 10 decimal digits:

0 1 2 3 4 5 6 7 8 9

• The following 32 graphic characters:

! " # $ % & (`)* + , - . / : ; < = > ? @ [\]^ _ ’{ |
} ~

• The space character, plus control characters that represent the
horizontal tab, vertical tab, and form feed.

• In addition to the preceding characters, the execution version of the
Portable Character Set contains control characters that represent alert,
backspace, carriage return, and new line.

The Portable Character Set as defined for X/Open specifications is similar
to the basic source and basic execution character sets defined in ISO/IEC
9899:1990, except that the X/Open set also includes the dollar sign ($),
commercial at sign (@), and grave accent ()` characters.

See also character set, coded character set, ISO 646

precomposed character
In Unicode, a single code point that represents a character with a diacritic
or other mark. For example, è.

See also decomposed character, Unicode

Glossary–5

process code
The encoding format used for manipulating data inside programs.

See also file code

radix character
The character that separates the integer part of a number from the
fractional part.

string
See character string

UCS
See ISO 10646

Unicode
A coded character set (maintained by the Unicode consortium) that
includes characters in all native languages. Unicode is code-for-code
identical with the UCS-2 form of ISO 10646.

See also coded character set, ISO 10646

Universal Character Set
See ISO 10646

wide character
An integral type that is large enough to hold any member of the extended
execution character set. In program terms, a wide character is an object of
type wchar_t , which is defined in the /usr/include/stddef.h (for
conformance to X/Open specifications) and /usr/include/stdlib.h (for
conformance to the ANSI C standard) header files. Although the file
locations where the wchar_t data type is defined are determined by
standards organizations, its definition is implementation specific. For
example, implementations that support only single-byte codesets might
define wchar_t as a byte value. On Tru64 UNIX systems, wchar_t is a
4–byte (32–bit) value.

The null wide character is a wchar_t value with all bits set to zero (0).

wide-character string
A contiguous sequence of wide characters that is terminated by and
includes the null wide character. A wide-character string is an array of type
wchar_t .

See also character string, wide character

Glossary–6

Index

A
acode option of stty command, 6–11

effect on codeset conversion of
mail messages, 6–35

add_wch function, 4–2
add_wchnstr function, 4–4
add_wchstr function, 4–4
addnwstr macro, 4–5
addwch macro, 4–2
addwchnstr macro, 4–4
addwchstr macro, 4–4
addwstr macro, 4–5
adec option of stty command, 6–9
ASCII codeset, 2–2
asctime function, A–5
Asian language support, 2–4
asort command, 6–35

collating user-defined
characters, B–18

B
backslash character

coding in message strings, 3–4
backspace character

coding in message strings, 3–4
bdf entry in cp_dirs file, 6–19
bdf font format

restrictions when tuning X
server cache, 6–43

-bdf option of cgen command, B–18
bit patterns

coding in message strings, 3–4

C
-C option of cedit command, B–4

can-space-after characters, 6–37
can-space-before characters, 6–37
carriage return

(See return character)
case conversion, 2–11, A–3
catclose function

argument, 3–30
using with nl_catd descriptor

type, 2–17
catgets function

arguments, 3–30
as argument to printf function,

2–18
detecting catalog open failures

with, 3–29
in program-defined macro, 3–30
using with puts function, 2–17

catopen function, 3–25
arguments, 3–25
behavior when effective user ID

is root, 3–29
codeset conversion support, 3–29
failure to return error status,

3–29
performance overhead, 3–21
troubleshooting problems with,

3–28
use of NLSPATH environment

variable, 3–26
using with nl_catd descriptor

type, 2–17
cc command

for compiling locale method
definitions, 7–52e

support for trigraph sequences,
2–9

cdb entry in cp_dirs file, 6–19
cedit command, B–3

Index–1

changing language of user
interface messages, B–8

font-editing screen, B–9
bitmap data buffers, B–12
editing function keys, B–15
editing functions, B–12
editing modes, B–11
function keymap, B–12
keys for drawing, B–15
keys for mode switching, B–14
keys for window areas, B–14
keys to control cursor, B–14
miscellaneous function keys,

B–13
options and arguments for, B–4
user interface screen, B–4

cgen command, B–18
-bdf option

alternative to fontconverter
command, B–21

compared to font renderer, 6–45
options for, B–18
-pcf option

alternative to fontconverter
command, B–21

character classes
defining in a locale, 7–8
testing for

Unicode, A–2
XSH, A–1

character collation functions, A–4
character map files

(See charmap files)
character sets

(See also codesets)
PCS, 1–5
UCS, 1–6

character string, 1–5
empty, 1–5

character-attribute databases
(See UDC databases)

characters
collation of, 2–11
compared with char data type

elements, 1–5

converting case of, 2–11
deleting on command line, 6–12
encoding for locales, 7–4
identifying classes of, 2–10
ideographic

tuning X Server cache for, 6–43
multibyte, 1–5

writing methods to convert,
7–21

user-defined in Asian
languages, 6–18

wide, 1–5
charmap files, 7–1

character encoding in, 7–4
character symbols in, 7–4

standardization of, 7–6
charset field in mail headers, 6–33

use by comsat server, 6–34
Chinese languages

phrase input method, 6–18
class.dat file of phrase database,

C–1
clause option of stty command, 6–14
Clear Display option

effect on ruled lines in
DECterm window, D–5

client-server display environment
font installation requirements,

6–46
code option of stty command, 6–11
code pages, PC, 2–4
codesets, 1–2

(See also code pages, PC)
ASCII, 2–2

using the most significant bit
of a byte, 2–5

conversion of
application codeset to

terminal codeset, 6–11
by catopen function, 3–29
by comsat server, 6–34
by mailx and MH, 6–33
by man command, 6–38
for data files, 6–39
for print jobs, 6–23

Index–2

converting files from one
codeset to another, A–12

creating, 7–1
for mail interchange, 6–33
for support of Asian languages,

2–3
ISO, 2–2

use in locales, 2–2
null characters in, 2–9
problems when using

assuming single-byte
characters, 2–6

case conversion, 2–11
character classification, 2–10
comparing strings, 2–11
data transparency, 2–5
handling multibyte

characters, 2–7
in-code literals, 2–6
referring to octal values, 2–6

setting name of, 7–4
source and execution versions

of, 2–9
state-dependent encoding of

characters in, 2–9
used over networks and

interchange media, 2–3
user application

defining for mailx and MH,
6–34

-col option of cgen command, B–18
COLL_WEIGHTS_MAX variable,

7–12
collating sequence

character order in non-English
languages, 1–3

collating tables
creating for user-defined

characters, B–18
collating value databases

setting default locations of, 6–18
collation

algorithms, 2–11
defining in a locale, 7–10
functions used for, 2–12

maximum number of levels, 7–12
performance issues, 2–12

collation order
defining in locale source file, 7–10

command-line editing, 6–12
commands for, 6–13
history mode, 6–13

comment character
in methods file, 7–53

comments
in charmap file, 7–3
in locale definition source file,

7–7
in message set directives, 3–6

Compose key, 6–4
compound strings

in Motif applications, 5–5
creating, 5–5

comsat server
codeset conversion done by, 6–34

constants
using non-English characters

as, 2–6
cp_dirs file, 6–18

default entries in, 6–18e
-cs option in X Server

configuration file, 6–43
ctime function, A–5
-cu option in X Server

configuration file, 6–43
cultural data, 1–2

currency symbols, 2–13
date formats, 2–12
radix character, 2–12
stored in langinfo database, 2–13
thousands separator, 2–12

currency symbols
defining international, 7–16e
defining local, 7–16e
determining with localeconv

function, 2–15
variation for, 2–13

curses library
enhancements for multibyte

characters, 4–1

Index–3

overwriting multicolumn
characters, 4–1

support for wide-character
data, 4–1

D
D_FMT constant

using with strftime function, 2–14
D_T_FMT constant

using with nl_langinfo function,
2–13

data files
converting

one codeset to another, 6–39
database location configuration file

(See cp_dirs file)
date format

defining in locale source file,
7–18e

era construct, 7–20
dates

differences in formats for, 2–12
formatting, 2–19, A–5
generating strings for, 2–14

DCH escape sequence, D–5
dec option of stty command, 6–9
DECCOLM escape sequence, D–5
DECDHLB escape sequence, D–5
DECDHLT escape sequence, D–5
DECDLD control string, D–8
DECDRLBR escape sequence, D–1
DECDWL escape sequence, D–5
DECERLBRA escape sequence,

D–4
DECERLBRP escape sequence,

D–4
decimal point

(See radix character)
DEClaser 1152 printer

PostScript filters for, 6–22
printcap entries for, 6–23

DEClaser 5100 printer
PostScript filters for, 6–22

DECSTR escape sequence, D–5

DECterm software
drawing ruled lines in window,

D–1
determining support for, D–7

erasing ruled lines in window
in specified area, D–4
in specified pattern, D–4

ruled lines in window
effect of standard escape

sequences, D–5
delch macro, 4–7
delset directive, 3–6

position in message source file,
3–7

digit grouping size
determining with localeconv

function, 2–15
DL escape sequence, D–5
downline loadable characters, D–8
DRCS characters, D–8
dspcat command, 3–23
dspmsg command, 3–23
dxkeyboard utility, 6–4
DXmCSText widget, 5–5

E
ECH escape sequence, D–5
echo_wchar function, 4–2
echowchar macro, 4–2
ED escape sequence, D–5
EL escape sequence, D–5
Emacs editor

multilingual, 6–41
_ _mbstopcs method, 7–22
_ _mbtopc method, 7–25
_ _pcstombs method, 7–29
_ _pctomb method, 7–31
erase option of stty command, 6–12
errno

setting in threadsafe manner,
7–34

esc.alw and -esc.alw options of stty
command, 6–14

escape character

Index–4

coding in message strings, 3–4
setting

for nroff command, 6–36
in charmap file, 7–3
in locale definition source

file, 7–7
examples, online

ximdemo application, 5–7
xpg4demo application, 2–1

excode definition
in .mailrc file, 6–34
in .mh_profile file, 6–34

EXCODE environment variable,
6–34

exit function
effect on open message catalogs,

3–30
extract command, 3–13

F
-f option of localedef command, 7–54
ffd daemon, 6–20
fgetc function, A–9
fgets function, A–9
fgetwc function, A–9
fgetws function, A–9

writing a method for, 7–22
file code, 2–8
file names

multibyte characters in, 6–41
fold_string_w function, 2–4
font renderers, 6–44

Asian PostScript font renderer,
6–44

configuration file, 6–45
UDC font renderer, 6–45

font sets, 5–10
converting encoding in Xt

applications, 5–3
converting encoding of, 5–16
creating and using, 5–10
drawing text with, 5–12
obtaining metrics for, 5–12

-font option of fontconverter
command, B–22

fontconverter command
options and arguments, B–22

fonts
(See also cedit command, cgen

command, fontconverter
command)

bitmap
CDE font alias files, 6–46
displaying installed, 6–47
for Chinese, 6–47
for Czech, 6–48
for Greek, 6–56
for Hebrew, 6–57
for Hungarian, 6–48
for Japanese, 6–47
for Korean, 6–47
for Lithuanian, 6–51
for Polish, 6–48
for Russian, 6–54
for Slovak, 6–48
for Slovene, 6–48
for Thai, 6–47
for Turkish, 6–60

CDE font alias setup, 6–46
compiled

making available to X
applications, B–21

compressed, 6–43
creating UDC files for, B–18
creating user-defined glyphs,

B–8
files for user-defined characters

creating for Motif, B–10
creating for system software,

B–10
setting default location of,

6–18
on systems that use remote

display, 6–46
PostScript

embedding in print job, 6–21
PostScript outline, 6–28

Index–5

restrictions when tuning X
server cache, 6–43

setting style and size for
local-language printer, 6–23

tuning X Server cache for
ideographic, 6–43

form-feed character
coding in message strings, 3–4

format specifiers
in output text strings, 2–18
used with input text strings, 2–19

formatting
date and time

D_T_FMT constant, 2–13
strftime function, 2–14

input text, 2–19
messages, 2–18
monetary values, 2–15
numeric values, 2–15
output text, 2–18

format specifiers for, 2–18
fprintf function, A–5
-fprop option of cgen command, B–18
fputs function, A–9
fputws function, A–9

writing a method for, 7–29
fscanf function, A–5
fwide function, A–9
fwprintf function, A–5
fwscanf function, A–5

G
gencat command, 3–19

defined by X/Open, 2–17
deleting a message set with, 3–7
handling message source

modifications for, 3–20
handling of delset directive by,

3–6
interactive use of, 3–16
lines ignored by, 3–9
processing multiple source files

with, 3–22
use in makefile, 3–17

using with -g option of dspcat
command, 3–23

get_wch funtion, 4–12
get_wstr function, 4–11
getc function, A–9

restricted use of, 2–7
getch function, 4–12
getchar function, A–9

problems with multibyte
characters, 2–6

getn_wstr function, 4–11
getnwstr macro, 4–11
gets function, A–9

restricted use of, 2–7
gettxt function, 3–31
getwc function, A–9

writing a method for, 7–25
getwch function, 4–12
getwchar function, A–9
getwstr macro, 4–11
GSM escape sequence, D–5

H
-h option of cedit command, B–4
-h option of fontconverter

command, B–22
Hankaku characters in the

Japanese language, 6–14
henkan option of stty command,

6–14
Hiragana characters in the

Japanese language, 6–14
history and -history options of stty

command, 6–13
Hold Screen key, 6–41

I
-i option of localedef command, 7–54
I18N

(See internationalization)
I18N mnemonic, 1–1
ICH escape sequence, D–5

Index–6

iconv command, 6–39, A–12
iconv function, A–12
iconv_close function, A–12
iconv_open function, A–12
ignore file, 3–14
ikk and -ikk options of stty

command, 6–14
iks entry in cp_dirs file, 6–19
-iks option of cgen command, B–18
IL escape sequence, D–5
imode option of stty command, 6–14
in_wch function, 4–8
in_wchnstr function, 4–9
in_wchstr function, 4–9
innwstr macro, 4–10
input

handling in X applications, 5–19
input method servers

handling failure of in client
programs, 5–32

when connection to the terminal
window breaks, 6–63

input methods, 6–5
(See also XIC object, XIM

object)
Chinese phrase, C–1
default, 5–7
determining in X applications

precedence order for, 5–20
filtering events for

FocusIn and FocusOut, 5–31
in X applications, 5–29
KeyPress, 5–31
KeyRelease, 5–31

interaction styles for, 5–21
on-the-spot, 5–26
supported by locales, 5–23

off-the-spot
requires auto-resize be

enabled, 5–5
opening and closing in X

application, 5–21e
preediting styles for, 6–5

selecting, 6–6
starting servers for, 6–6

ins_nwstr function, 4–6
ins_wch function, 4–3
ins_wstr function, 4–6
insnwstr macro, 4–6
inswch macro, 4–3
inswstr macro, 4–6
internal process code, 2–8
internationalization, 1–1
inwch macro, 4–8
inwchnstr macro, 4–9
inwchstr macro, 4–9
inwstr macro, 4–10
IRM escape sequence, D–5
iscntrl function, A–1
isdigit function, A–1
isgraph function, A–1
islower function, A–1
ISO codesets, 2–2
ISO-2022-JP, 6–33
ISO/IEC 10646 standard, 2–4
isprint function, A–1
ispunct function, A–1
isspace function, A–1
isupper function, A–1
iswalnum function, A–1
iswalpha function, A–1
iswcntrl function, A–1
iswctype function, A–2
iswdigit function, A–1
iswgraph function, A–1
iswlower function, A–1
iswprint function, A–1
iswpunct function, A–1
iswspace function, A–1
iswupper function, A–1
iswxdigit function, A–1

J
jdec option of stty command, 6–9
jinkey option of stty command, 6–14
JSYKKSEQ environment variable,

6–14
justification of text by nroff, 6–37

Index–7

jx and -jx options of stty command,
6–14

K
Kana-Kanji conversion, 6–14

changing key map for, 6–14
dictionaries used with, 6–14
displaying key map for, 6–14

Kanji characters in the Japanese
language, 6–14

Katakana characters in the
Japanese language, 6–14

kb_indicator command, 6–7
keyboards

determining layout of selected,
6–5

determining mode switch state
of, 6–7

entering basic characters not
supported on, 2–9

Keyboard Indicator utility, 6–7
Keyboard Options, 6–4
obtaining composed strings

from, 5–30
selecting for different

languages, 6–4
.ki command for nroff, 6–37
kin option of stty command, 6–14
kkcd daemon, 6–14
kkmap option of stty command, 6–14
kkseq option of stty command, 6–14
knj.bsl and -knj.bsl options of stty

command, 6–14
knj.sp and -knj.sp options of stty

command, 6–14
.ko command for nroff, 6–37
kout option of stty command, 6–14

L
L10N mnemonic, 1–3
LANG environment variable

effect on man command’s
search path, 6–38

effect on setlocale function, 2–21
including locale file name

suffix, 6–2
interaction with %L in search

paths, 6–2
interaction with NLSPATH

setting, 3–28
use by mailx and MH, 6–34
use when generating message

catalogs, 3–17
.lang_device_name file, 6–35
langinfo database, 1–4

compared to message catalogs,
3–1

information contained in, 2–13
querying, 2–13

language
announcement, 1–4
implications for

internationalized software,
1–1

syntax constructions, 2–18
language variant subsets

documentation for, 6–1
LC_COLLATE category

defining in locale source file, 7–10
LC_CTYPE category

defining in locale source file, 7–8
LC_CTYPE locale category

classes defined for, A–2
LC_MESSAGES category

defining in locale source file, 7–14
LC_MESSAGES variable

interaction with NLSPATH
setting, 3–28

use by setlocale function, 2–17
LC_MONETARY locale category

defining in locale source file, 7–15
LC_NUMERIC locale category

defining in locale source file, 7–18
LC_TIME locale category

defining in locale source file, 7–18
ld command

Index–8

for building a locale methods
library, 7–52e

libiconv library, A–12
line wrapping by nroff, 6–37
locale command, 3–24
localeconv function, A–4

advantages of, 2–15
localedef command, 7–54e

building shareable library with,
7–54

compiling methods files with,
7–54

-cv options, 7–52
-f option, 7–54
-i option, 7–54
-m option, 7–54
running in verbose mode, 7–54
-w option, 7–54

locales
binding program to locales set

by users, 2–21
building, 7–53
categories in, 2–20

defining, 7–6
changing setting for specific

category of, 2–22
changing within program, 2–21
checking for duplicate

definitions, 7–54
compared to message catalogs,

3–1
creating, 7–1
default setting for, 6–2
default system location of, 7–54
displaying information about,

3–24
initializing at run time, 2–20
location of

LOCPATH variable, 7–54
objects in X applications

affected by, 5–8
provided with localized

systems, 2–2
provided with standard system,

2–2

retrieving locale data from
scripts, 3–23

setting, 6–2
in Motif applications, 5–3
in X applications, 5–7, 5–9e
in Xt applications, 5–2

source files for
charmap file, 7–1
locale definition file, 7–6

specifying to setlocale function,
2–20

testing, 7–54
using font sets with in X

applications, 5–10
using locale name extensions in

variable settings, 6–2
using name extensions for, 7–54

localization, 1–2
(See also internationalization)

localtime function
using with strftime function, 2–14

LOCPATH environment variable,
7–54

effect on iconv command, 6–40
login operation

keyboard setting for, 6–4
lowercase characters

testing for, 2–10
lp command

local-language printer support,
6–28

lpc command
local-language printer support,

6–28
lpd printer daemon

local-language printer support,
6–28

lpq command
local-language printer support,

6–28
lpr command

local-language printer support,
6–28

lprm command

Index–9

local-language printer support,
6–28

lprsetup command
Asian printers supported by, 6–27
setting up Asian printers with,

6–26
lpstat command

local-language printer support,
6–28

M
-m option of localedef command,

7–54
mail messages

codeset conversion of, 6–32
notification of incoming, 6–34

mail-codesets file
use by comsat server, 6–34
use by mailx and MH, 6–34

.mailrc file
defining application codeset in,

6–34
defining mail interchange

codeset in, 6–34
mailx command, 6–33
man command, 6–38

and reference page
translations, 6–38

manpages
(See reference pages)

mblen function, A–7
writing a method for, 7–31

mbrlen function, A–7
mbrtowc function, A–7
mbsinit function, A–9
mbsrtowcs function, A–7
mbstowcs function, 2–8, A–7

writing a method for, 7–34
mbtowc function, 2–6, A–7

writing a method for, 7–37
-merge option of cgen command,

B–18
-merge option of fontconverter

command, B–22

message catalogs, 1–4
(See also messages, message

sets)
closing, 3–30
compared to locales, 3–1
converting existing program to

use, 3–13
converting to source format, 3–23
design and maintenance

considerations, 3–20
detecting file open failures, 3–29
determining locale to use with,

2–17
displaying contents of, 3–23
dynamic codeset conversion of,

3–16
file name extension of, 3–19
finding when effective user ID

is root, 3–29
generating for different locales,

3–16
generating from message source

files, 3–16
how interfaces determine

location of, 2–18
installing in nondefault

locations, 3–26
order of message sets in, 3–5
portability of, 3–19
program access to, 3–25
retrieving messages from, 2–17
script access to, 3–23
source files for, 3–1

blank lines in, 3–5
comment lines in, 3–9
editing, 3–15
file name extension of, 3–19
general syntax rules, 3–3
quoting strings in, 3–4
set directives in, 3–5
translating, 3–15

Index–10

translating
date formats, 2–20
passive-verb constructions,

2–18
programmer comments to

help translator, 3–9
trans command, 3–16
word order changes, 2–19

using to define non-English
constants, 2–6

message sets, 3–5
(See also message catalogs,

messages)
default message set, 3–6
deleting, 3–6
specifying identifiers for, 3–5
symbolic identifiers for, 3–18

messages
(See also message catalogs,

message sets)
changing to empty string, 3–8
coding special characters in, 3–4
construction of strings in, 2–18
deleting, 3–8
deleting individual, 3–9
displaying from message

catalog, 3–24
enabling and disabling

quotation delimiter for, 3–9
format in message source file,

3–7
identifiers for, 3–7
language constraints for, 2–16
line continuation in source

entries, 3–5
maximum length of, 3–8
order within sets, 3–7
ordering of elements in, 2–18
preceding and trailing spaces

in, 3–4
reading into program, 3–30
style guidelines for, 3–10
symbolic identifiers for, 3–18

methods, 7–21
arguments expected for, 7–52

building shareable libraries for,
7–52e

_ _mbstopcs, 7–22
_ _mbtopc, 7–25
_ _pcstombs, 7–29
_ _pctomb, 7–31
file to specify library to

localedef command, 7–52
mblen, 7–31
mbstowcs, 7–34
mbtowc, 7–37
optional, 7–50
required, 7–22
specifying to localedef

command, 7–54
wcstombs, 7–41
wcswidth, 7–46
wctomb, 7–43
wcwidth, 7–48

MH (mail handler) system, 6–33
.mh_profile file

defining application codeset in,
6–34

defining mail interchange
codeset in, 6–34

mkcatdefs command, 3–18
automatic delset directives by,

3–8
automatic insertion of delset

directives by, 3–9
deleting messages with, 3–8
handling of delset directive by,

3–6
header file produced by, 3–17
interactive use of, 3–16
lines ignored by, 3–9
processing multiple source files

with, 3–22
use in makefile, 3–17
use restrictions and guidelines,

3–18
mkfontdir command, B–21
MNLS

(See System V Multi-National
Language Supplement)

Index–11

monetary values
(See also currency symbols,

numeric values)
formatting, 2–15

month names
defining in locale source file,

7–18e
more command, 6–41
Motif applications, 5–3

creating UDC fonts for
editing glyphs, B–9
in bdf and pcf format, B–18

handling messages in, 3–1
setting language in, 5–3
support for bidirectional text

display, 5–6
text translation issues, 3–10
using font sets in, 5–4
using text widgets in, 5–4

mule command, 6–41
multibyte characters, 1–5

command-line editing, 6–12
compared to wide characters,

2–8
converting to wide characters,

2–6
converting to wide-character

format, 7–21
in file and user names, 6–41
interfaces for manipulating, 2–7
setting terminal line discipline

for, 6–9
testing for, 2–6

multithreaded applications
setting errno for, 7–34

mvadd_wch function, 4–2
mvadd_wchstr function, 4–4
mvaddnwstr macro, 4–5
mvaddw_wchnstr function, 4–4
mvaddwch macro, 4–2
mvaddwchnstr macro, 4–4
mvaddwchstr macro, 4–4
mvaddwstr macro, 4–5
mvdelch macro, 4–7
mvget_wch function, 4–12

mvget_wstr function, 4–11
mvgetch function, 4–12
mvgetn_wstr function, 4–11
mvgetnwstr macro, 4–11
mvgetwch function, 4–12
mvgetwstr macro, 4–11
mvin_wch function, 4–8
mvin_wchnstr function, 4–9
mvin_wchstr function, 4–9
mvinnwstr macro, 4–10
mvins_nwstr function, 4–6
mvins_wch function, 4–3
mvins_wstr function, 4–6
mvinsnwstr macro, 4–6
mvinswch macro, 4–3
mvinswstr macro, 4–6
mvinwch macro, 4–8
mvinwchnstr macro, 4–9
mvinwchstr macro, 4–9
mvinwstr macro, 4–10
mvprintw function, 4–14
mvscanw function, 4–13
mvw_getwch function, 4–12
mvwadd_wch function, 4–2
mvwadd_wchnstr function, 4–4
mvwadd_wchstr function, 4–4
mvwaddnwstr macro, 4–5
mvwaddwch macro, 4–2
mvwaddwchnstr macro, 4–4
mvwaddwchstr macro, 4–4
mvwaddwstr macro, 4–5
mvwdelch function, 4–7
mvwdelch macro, 4–7
mvwget_wstr function, 4–11
mvwgetch function, 4–12
mvwgetn_wstr function, 4–11
mvwgetnwstr macro, 4–11
mvwgetwch function, 4–12
mvwgetwstr macro, 4–11
mvwin_wch function, 4–8
mvwin_wchnstr function, 4–9
mvwin_wchstr function, 4–9
mvwinnwstr macro, 4–10
mvwins_nwstr function, 4–6
mvwins_wch function, 4–3

Index–12

mvwins_wstr function, 4–6
mvwinsnwstr macro, 4–6
mvwinswch macro, 4–3
mvwinswstr macro, 4–6
mvwinwch macro, 4–8
mvwinwchnstr macro, 4–9
mvwinwchstr macro, 4–9
mvwinwstr macro, 4–10
mvwprintw function, 4–14
mvwscanw function, 4–13

N
negative sign

defining for monetary values,
7–16e

determining with localeconv
function, 2–15

neqn command
using with tbl and nroff, 6–38

newline character
coding in message strings, 3–4

NL_CAT_LOCALE constant, 2–18
nl_catd type, 3–25

declaring and using in program,
2–17

nl_langinfo function, A–4
and langinfo database, 2–13
using as argument to strftime

function, 2–15
value returned for CODESET

parameter, 7–4
NL_MSGMAX constant, 3–7
NL_SETD constant, 3–6
NL_SETMAX constant, 3–5
NL_TEXTMAX constant, 3–8
NLSPATH environment variable,

3–26
interaction with

LC_MESSAGES setting,
3–28

substitution fields in setting of,
3–26

use by catclose function, 2–18

use by catopen function, 2–18,
3–26

when setting is ignored by
catopen function, 3–29

no responses
defining in locale, 7–14

no-first characters, 6–37
defining private set of, 6–37

no-last characters, 6–37
defining private set of, 6–37

noexpr keyword, 7–15
nostr keyword, 7–15
nroff command, 6–36

handling of ideographic
characters, 6–37

output for Asian languages
support in print filters for,

6–21
right-justification rules, 6–37
rules for wrapping lines, 6–37

null characters, 2–9
numeric conversion, A–7
numeric values

customized formatting by
program, 2–15

O
octal values

coding in message strings, 3–4
odl and -odl options of stty

command, B–1
odl entry in cp_dirs file, 6–19
-odl option of cgen command, B–18
odlall option of stty command, B–1
odldb option of stty command, B–1
odlreset option of stty command,

B–1
odlsize option of stty command, B–1
odltype option of stty command,

B–1
off-the-spot input style

requires auto-resize be enabled,
5–5

text widget that supports, 5–5

Index–13

off-the-spot style for input
methods, 6–6

on-demand loading of UDC
databases, B–1

on-the-spot input style, 5–26
text widget that supports, 5–5

on-the-spot style for input
methods, 6–5

-osiz option of cgen command, B–18
output contexts, 5–14
output methods, 5–14
over-the-spot input style

text widget that supports, 5–5
over-the-spot style for input

methods, 6–5

P
parentheses characters

inappropriate line wrapping of,
6–37

patterns file, 3–14
pcf entry in cp_dirs file, 6–19
pcf font format

restrictions when tuning X
server cache, 6–43

-pcf option of cgen command, B–18
pcfof print filter, 6–20
performance tradeoffs

collation, 2–12
pfsetup command, 6–20
phrase databases

classes in, C–1
defining

classes for, C–6
phrases for, C–5

effect of locale setting on, C–6
files in, C–1
guidelines and restrictions for,

C–5
maintaining, C–3
setting default locations of, 6–18
using, C–7

phrase input method, 6–18

customizing for Asian
terminals, C–2

in terminal emulation windows,
C–1

on other VT382 series
terminals, C–1

on VT382-D terminal, C–1
phrase utility

command-line options, C–3
invoking, C–3
screen interface, C–3

menus, C–4
phrase.dat file of phrase database,

C–1
Portable Character Set, 1–5

substituting characters in, 1–6
using characters as literals and

constants, 2–6
positive sign

defining for monetary values,
7–16e

determining with localeconv
function, 2–15

pre entry in cp_dirs file, 6–19
-pre option of cgen command, B–18
preedit strings

attributes for, 5–25
preediting strings

handling in X application, 5–26
-preload option of fontconverter

command, B–22
print filters

for Asian-language text files, 6–21
for local-language printers, 6–21
for PostScript files, 6–20, 6–22
generic internationalized, 6–20

printcap file
symbols for local-language

printers, 6–23
printers

(See also print filters, printcap
file)

setting up, 6–26
support for local languages, 6–19

Index–14

supported for different Asian
languages, 6–27

printf function, A–5
international format specifiers

for, 2–18
restricted use of, 2–7
using catgets function as

argument to, 2–18
printw function, 4–14
profile component

of the .mailrc file, 6–34
of the .mh_profile file, 6–34

punctuation characters
inappropriate line wrapping of,

6–37
putc function, A–9

restricted use of, 2–7
puts function, A–9

restricted use of, 2–7
putwc function, A–9

Q
quote directive, 3–9

R
-r option of cedit command, B–4
radicals, 1–3
radix character

defining
for monetary values, 7–16e
for numeric values, 7–18e

determining with localeconv
function, 2–15

functions that extract from
langinfo database, 2–16

variation for, 2–12
reference character attribute

databases, B–4
reference pages

location of translated files, 6–38
printing, 6–38
processing non-English, 6–36

remote display
font requirements for Asian

languages, 6–46
Reset Terminal option

effect on ruled lines in
DECterm window, D–5

resource databases
handling localized, 5–18

response strings
defining in locale, 7–14

return character
coding in message strings, 3–4

RIS escape sequence, D–5
rlogin command, 6–40
root-window input style

text widget that supports, 5–5
root-window style for input

methods, 6–6
ruled lines in DECterm window

determining if supported, D–7
drawing, D–1

specifying length of, D–4
specifying start point, D–3

effect of Clear Display on, D–5
effect of Reset Terminal on, D–5
effect of standard escape

sequences on, D–5
erasing

in specified area, D–4
in specified pattern, D–4

specifying bitmask pattern for,
D–3

S
scanf function, A–5

international format specifiers
for, 2–19

restricted use of, 2–7
scanw function, 4–13
screen handling

for character-cell terminals, 4–1
scripts

retrieving locale data from, 3–23

Index–15

using message catalogs from,
3–23

sd symbol in /etc/printcap file, 6–23
sendmail utility

configuring for 8-bit data, 6–33
set directive, 3–5

(See also message sets)
setlocale function, A–1

binding to preset locales, 2–21
changing locale setting with, 2–21
changing specific locale

category, 2–22
initializing locale, 2–20

shareable libraries
for locale methods, 7–52
specifying in methods file, 7–52e

shared libraries
to support locale methods, 7–21

shell scripts
(See scripts)

shift states, 2–9
sim and -sim options of stty

command, C–2
sim entry in cp_dirs file, 6–19
sim option of stty command, C–7
SIM service, C–1

enabling, C–2
simall option of stty command, C–2
simclass option of stty command,

C–7, C–2
simdb option of stty command,

C–7, C–2
simkey option of stty command,

C–7, C–2
SoftODL service, B–1, B–18

settings used by
character replacement

method for printer, 6–23
size of cache for printer, 6–23

sort command
(See asort command)

sort directives
maximum number of, 7–12

sort rules
defining in locale source file, 7–10

sorting characters in different
languages, 6–35

sprintf function, A–5
sscanf function, A–5
standards

(See also internationalization
standards)

(See also X/Open standards)
strcat function, A–10
strchr function, A–10
strcmp function, A–11

restrictions of, 2–12
strcoll function, A–4

advantages of, 2–12
restrictions of, 2–12

strcpy function, A–11
strcspn function, A–10
strextract command, 3–13
strfmon function, A–4

advantages of, 2–15
strftime function, A–5

and langinfo database, 2–14
using nl_langinfo function as

argument, 2–15
using with time and localtime

functions, 2–14
string

(See character string)
string comparison, 2–11
string-handling functions, A–10
strings file, 3–14
strlen function, A–11
strmerge command, 3–13
strncat function, A–10
strncmp function, A–11
strncpy function, A–11
strpbrk function, A–10
strptime function, A–5
strrchr function, A–10
strstr function, A–10
strtod function, A–7
strtok function, A–11
strtol function, A–7
strtoul function, A–7
stty command

Index–16

enhancements for Asian
languages, 6–9

options for phrase databases,
C–7, C–2

stty utility
enabling command-line editing,

6–12
enabling the Japanese input

method, 6–14
enhancements for local

languages, 6–9
local-language enhancements

for
codeset conversion, 6–11
terminal line discipline, 6–9

substitution fields for NLSPATH
setting, 3–26

swprintf function, A–5
swscanf function, A–5
System V Multi-National

Language Supplement
curses library enhancements for

the, 4–1
-system option of phrase

command, C–3

T
tab character

coding in message strings, 3–4
tbl command, 6–38
tcode option of stty command, 6–11
tdec option of stty command, 6–9
terminal drivers

user-defined character
recognition, B–18

terminal emulation
escape sequences used in

programs, D–1
features and restrictions for

Asian languages, 6–62
terminal interface features, 6–9
terminal line discipline

displaying current setting for,
6–11

restoring default, 6–10
setting, 6–9

terminals
converting application codeset

to one supported by
terminal, 6–11

text drawing
with font sets in X applications,

5–12
text files

printing Asian language
print filters that support, 6–21

thousands separator
defining

for monetary values, 7–16e
for numeric values, 7–18e

determining with localeconv
function, 2–15

variation for, 2–12
time format

defining in locale source file,
7–18e

time function
using with strftime function, 2–14

time values, formatting, 2–14, A–5
tolower function, A–3
toupper function, A–3
towctrans function, A–3
towlower function, A–3

advantages of, 2–11
towupper function, A–3

advantages of, 2–11
trans command, 3–16
translation

(See also message catalogs)
requirements for messages, 3–10

trigraph sequences supported by C
language compiler, 2–9

tty driver
enhancements for local

languages, 6–9

U
UCS

Index–17

(See Univeral Character Set)
UCS-2, 2–4
UCS-4 codeset, 2–4
UDC databases, 6–18

default path to, B–3
font files for, B–18
font renderer for, 6–45
setting default locations of, 6–18
support files for, B–18

udc entry in cp_dirs file, 6–19
-udc option of fontconverter

command, B–22
ungetc function, A–9
ungetch function, 4–12
ungetwc function, A–9
ungetwch function, 4–12
Unicode

(See also Universal Character
Set (UCS))

Unicode standard, 2–4
Universal Character Set (UCS),

1–6, 2–4
(See also UCS-2; UCS-4;

UTF-8)
uppercase characters

testing for, 2–10
user names

multibyte characters in, 6–41
-user option of phrase command,

C–3
user-defined characters

(See also cedit command, UDC
databases)

attributes of, B–3
conversion from ULTRIX, B–4
creating, B–3

classes for, B–6
codeset values for, B–6
font glyphs for, B–8
input key sequences for, B–6
names for, B–6
selecting font size for, B–8

deleting, B–6
languages supported for, B–4

printer settings that SoftODL
uses, 6–23

scaling fonts for, B–7
UTF-8, 2–4

V
vfprintf function, A–5
vfwprintf function, A–5
vi command, 6–41
vprintf function, A–5
vsprintf function, A–5
vswprintf function, A–5
vw_printw function, 4–14
vw_scanw function, 4–13
vwprintf function, A–5
vwprintw function, 4–14
vwscanw function, 4–13

W
-w option of fontconverter

command, B–22
wadd_wch function, 4–2
wadd_wchnstr function, 4–4
wadd_wchstr function, 4–4
waddnwstr function, 4–5
waddwch function, 4–2
waddwchnstr function, 4–4
waddwchstr macro, 4–4
waddwstr macro, 4–5
wcrtomb function, A–7
wcscat function, A–10
wcschr function, A–10
wcscmp function, A–11

restrictions of, 2–12
wcscoll function, A–4

advantages of, 2–12
wcscpy function, A–11
wcscspn function, A–10
wcsftime function, A–5

and langinfo database, 2–14
wcslen function, A–11
wcsncat function, A–10

Index–18

wcsncmp function, A–11
wcsncpy function, A–11
wcspbrk function, A–10
wcsrchr function, A–10
wcsrtombs function, A–7
wcsstr function, A–10
wcstod function, A–7
wcstok function, A–11
wcstol function, A–7
wcstombs function, A–7

writing a method for, 7–41
wcstoul function, A–7
wcswcs function, A–10
wcswidth function, A–11

writing a method for, 7–46
wcsxfrm function

advantages of, 2–12
wctomb function, A–7

writing a method for, 7–43
wctrans function, A–3
wctype function, A–2
wcwidth function, A–11

writing a method for, 7–48
wecho_wchar function, 4–2
wechowchar macro, 4–2
weekday names

defining in locale source file,
7–18e

werase option of stty command, 6–12
wget_wch function, 4–12
wget_wstr function, 4–11
wgetch function, 4–12
wgetn_wstr function, 4–11
wgetnwstr function, 4–11
wgetwch function, 4–12
wgetwstr macro, 4–11
wide characters, 1–5

compared to multibyte
characters, 2–8

default size of, 2–8
wide-character string, 1–5
-win option of cgen command, B–18
win_wch function, 4–8
win_wchnstr function, 4–9
win_wchstr function, 4–9

winnwstr function, 4–10
wins_nwstr function, 4–6
wins_wch function, 4–3
wins_wstr function, 4–6
winsnwstr function, 4–6
winswch function, 4–3
winswstr macro, 4–6
winwch function, 4–8
winwchnstr function, 4–9
winwchstr macro, 4–9
winwstr macro, 4–10
wmemchr function, A–12
wmemcmp function, A–12
wmemcpy function, A–12
wmemmove function, A–12
wmemset function, A–12
words

deleting on command line, 6–12
Worldwide Portability Interfaces

(WPI), A–1
case conversion functions, A–3
character classification

functions, A–1
character collation functions,

A–4
functions for codeset

conversion, A–12
functions that format date and

time values, A–5
functions that retrieve langinfo

data, A–4
input/output functions, A–9
locale announcement function,

A–1
numeric conversion functions,

A–7
printing functions, A–5
scanning functions, A–5
string-handling functions, A–10
wchar/multibyte conversion, A–7

WPI
(See Worldwide Portability

Interfaces (WPI))
wprintf function, A–5
wprintw function, 4–14

Index–19

wscanf function, A–5
wscanw function, 4–13
wwlpspr command, 6–20
wwpsof print filter, 6–21

X
X applications

creating UDC fonts for, B–18
handling messages in, 3–1
text translation issues, 3–10
use of multibyte PostScript

fonts, 6–44
X libraries

handling text for interclient
communication, 5–16

using internationalization
features in, 5–1

using with input methods, 5–33
X server

tuning cache parameters in
configuration file, 6–43

formula for, 6–44
X Toolkit Intrinsics

(See Xt Library)
X11R6

(See X11 libraries)
XBaseFontNameListOfFontSet

function, 5–10
XCloseIM function, 5–20, 5–21
XCloseOM function, 5–15t
XCreateFontSet function, 5–10
XCreateIC function, 5–23

conditions for failure of, 5–25
XCreateOC function, 5–15t
XDefaultString function, 5–16
XDestroyOC function, 5–15t
XDisplayOfIM function, 5–20
XDisplayOfOM function, 5–15t
XDm library, 5–3
XDrawImageString function, 5–12
XDrawImageString16 function, 5–12
XDrawString function, 5–12
XDrawString16 function, 5–12
XDrawText function, 5–12

XDrawText16 function, 5–12
XExtentsOfFontSet function, 5–12
XFillRectangle function, 5–14
XFilterEvent function, 5–29

called by XtDispatchEvent
function, 5–30

XFontSet object, 5–8
XFontSet structure, 5–10
XFontSetExtents structure, 5–12
XFontsOfFontSet function, 5–10
XFontStruct structure, 5–10
XFreeFontSet function, 5–10
XGetICValues function, 5–25

XNFilterEvents argument, 5–29
XGetIMValues function, 5–21, 5–23
XGetOCValues function, 5–15t
XGetOMValues function, 5–15t
XIC object, 5–8, 5–19

creating and using, 5–23
destroying, 5–23
managing, 5–25
registering preediting callbacks

for, 5–25
specifying attributes for, 5–25

XNClientWindow, 5–25
XNInputStyle, 5–25

XIM object, 5–8, 5–19
closing if IM server fails, 5–32
opening and closing, 5–19

ximdemo online application, 5–7
XIMOfIC function, 5–25
XLocaleOfFontSet function, 5–10
XLocaleOfIM function, 5–20
XLocaleOfOM function, 5–15t
XLookupString function, 5–32
xlsfonts command, 6–47
Xm library, 5–3
XmbDrawImageString function,

5–12, 5–14
XmbDrawString function, 5–12
XmbDrawText function, 5–12
XmbLookupString function, 5–30,

5–32
XmbResetIC function, 5–25

Index–20

XmbSetWMProperties function,
5–16, 5–18

XmbTextEscapement function,
5–12, 5–14

XmbTextExtents function, 5–12
XmbTextListToTextProperty

function, 5–16
XmbTextPerCharExtents function,

5–12
XmbTextPropertyToTextList

function, 5–16
XMODIFIERS environment

variable, 5–7
XmStringCreate function, 5–5
XmStringCreateLocalized

function, 5–5
XmText widget, 5–5
XmTextField widget, 5–5
XNDestroyCallback resource, 5–32
XNQueryInputStyle function, 5–21
XOC object, 5–8, 5–14
XOM object, 5–8, 5–14
XOMOfOC function, 5–15t
XOpenIM function, 5–19, 5–21

conditions for failure of, 5–20
XOpenOM function, 5–15t
xpg4demo online application, 2–1
XResourceManagerString

function, 5–18
XrmDatabase component, 5–8
XrmGetFileDatabase function, 5–18
XrmGetStringDatabase function,

5–18
XrmLocaleOfDatabase function,

5–18
XrmPutFileDatabase function, 5–18
XrmPutLineResource function, 5–18
XSelectInput function, 5–29
Xservers configuration file

tuning font cache in, 6–43
xset command, B–21
XSetICFocus function, 5–25, 5–31
XSetICValues function, 5–25
XSetIMValues function, 5–32

XSetLocaleModifiers function,
5–2, 5–7

XSetOCValues function, 5–15t
XSetOMValues function, 5–15t
XSH CAE specification

functions included in, A–1
XSupportsLocale function, 5–2, 5–7
Xt Library

internationalization features,
5–2

codesets, 5–3
font sets, 5–3
input methods, 5–3
setting locale, 5–2

XtAppInitialize function, 5–2
XtDispatchEvent function, 5–3, 5–30
XtDisplayInitialize function, 5–2
XtInitialize function, 5–2
XtOpenDisplay function, 5–2
XtSetLanguageProc function, 5–2
XUnsetICFocus function, 5–25, 5–31
XVaCreateNestedList function, 5–25
XwcDrawImageString function,

5–12
XwcDrawString function, 5–12
XwcDrawText function, 5–12
XwcFreeStringList function, 5–16
XwcLookupString function, 5–30
XwcResetIC function, 5–25
XwcTextEscapement function, 5–12
XwcTextExtents function, 5–12
XwcTextListToTextProperty

function, 5–16
XwcTextPerCharExtents function,

5–12
XwcTextPropertyToTextList

function, 5–16

Y
ya symbol in /etc/printcap file, 6–23
yd symbol in /etc/printcap file, 6–23
yes responses

defining in locale, 7–14
yesexpr keyword, 7–14

Index–21

yesstr keyword, 7–15
yj symbol in /etc/printcap file, 6–23
yp symbol in /etc/printcap file, 6–23

ys symbol in /etc/printcap file, 6–23
yt symbol in /etc/printcap file, 6–23

Index–22

How to Order Tru64 UNIX Documentation

You can order documentation for the Tru64 UNIX operating system and related
products at the following Web site:

http://www.businesslink.digital.com

If you need help deciding which documentation best meets your needs, see the Tru64
UNIX Documentation Overview or call 800-344-4825 in the United States and
Canada. In Puerto Rico, call 787-781-0505. In other countries, contact your local
Compaq subsidiary.

To place an internal order, go to the following Web site:

http://asmorder.nqo.dec.com

The following table provides the order numbers for the Tru64 UNIX operating
system documentation kits. For additional information about ordering this and
related documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-MT4AA-G8

Tru64 UNIX Documentation Kit QA-MT4AA-GZ

End User Documentation Kit QA-MT4AB-GZ

Startup Documentation Kit QA-MT4AC-GZ

General User Documentation Kit QA-MT4AD-GZ

System and Network Management Documentation Kit QA-MT4AE-GZ

Developer’s Documentation Kit QA-MT5AA-GZ

General Programming Documentation Kit QA-MT5AB-GZ

Windows Programming Documentation Kit QA-MT5AC-GZ

Reference Pages Documentation Kit QA-MT4AG-GZ

Device Driver Kit QA-MT4AV-G8

Reader’s Comments

Tru64 UNIX
Writing Software for the International Market
AA-Q0R4D-TE

Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3 3/Y32
110 SPIT BROOK RD

COMPAQ COMPUTER CORPORATION

NASHUA NH 03062 9987

 Do not cut or tear - fold here and tape

 Do not cut or tear - fold here and tape

C
ut on this line

