
Digital UNIX
Ladebug Debugger Manual
Order Number: AA–PZ7EE–TE

March 1996

This manual describes how to use the Ladebug debugger (both the graphical
user interface and the command-line interface) to debug applications
written in the programming languages Ada, C, C++, COBOL, Fortran 77,
and Fortran 90, on the Digital UNIX operating system.

The Ladebug debugger was formerly called DECladebug.

Revision/Update Information: This is a revised manual.

Product Version: Digital UNIX Version 4.0
and higher
Ladebug Version 4.0

Digital Equipment Corporation
Maynard, Massachusetts

March 1996

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1996. All Rights Reserved.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AlphaGeneration,
AXP, DEC, DEC Fortran, DEC FUSE, DECladebug, DECladebug Debugger, DECset, DECterm,
DECthreads, DECwindows, Digital, OpenVMS, VAX, VAX DOCUMENT, VMS, and the
DIGITAL logo.

The following are third-party trademarks:

Internet is a registered trademark of Internet, Inc.

OSF, Open Software Foundation, and OSF/1 are registered trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6450

This document is available on CD–ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xxiii

1 Introduction to Debugging

1.1 Overview of Debugging Concepts . 1–1
1.2 Key Features of the Ladebug Debugger . 1–2
1.3 Basic Debugging Technique . 1–3
1.4 Preparation for Debugging: Compiling and Linking a

Program . 1–3
1.5 Overview of the Two Debugger Interfaces 1–4

Part I Graphical User Interface

2 Introduction to the Ladebug Debugger: Graphical User
Interface

2.1 Convenience Features . 2–1
2.2 Debugger Windows and Menus . 2–5
2.2.1 Default Main Window Configuration 2–6
2.2.1.1 Menus on the Main Window . 2–6
2.2.1.2 Source View . 2–9
2.2.1.3 Source View Context Panel . 2–9
2.2.1.4 Push-Button Panel . 2–10
2.2.1.5 Command Message View . 2–11
2.2.2 Optional Views Window . 2–11
2.2.2.1 Menus on Optional Views Window 2–15
2.2.2.2 Menus on Instruction View . 2–17
2.3 Using Context-Sensitive Pop-Up Menus . 2–19
2.3.1 Source View Pop-Up Menu . 2–19
2.3.2 Annotation Area Pop-Up Menu . 2–20
2.3.3 Command Message View Pop-Up Menu 2–21
2.3.4 Browse Source Pop-Up Menu . 2–21

iii

2.3.5 Breakpoint View Pop-Up Menu . 2–22
2.3.6 Monitor View and Local Variables View Pop-Up Menu 2–22
2.3.7 Register View Pop-Up Menu . 2–23
2.3.8 Instruction View Pop-Up Menu . 2–23
2.4 Entering Commands at the Prompt . 2–24
2.5 Displaying Online Help About the Debugger 2–25
2.5.1 Displaying Context-Sensitive Help . 2–25
2.5.2 Displaying Command-Oriented Help 2–25

3 Starting and Ending a Debugging Session: Graphical User
Interface

3.1 Starting the Debugger from Within CDE 3–1
3.2 Starting the Debugger from a Command-Line Prompt 3–6
3.3 When Your Program Completes Execution 3–6
3.4 Rerunning the Same Program from the Current Debugging

Session . 3–7
3.5 Running Another Program from the Current Debugging Session

. 3–7
3.6 Interrupting Program Execution and Aborting Debugger

Operations . 3–8
3.7 Ending a Debugging Session . 3–8

4 Using the Debugger: Graphical User Interface

4.1 Displaying the Source Code of Your Program 4–1
4.1.1 Displaying Source Code Contained in Another Module 4–3
4.1.2 Making Source Code Available for Display 4–4
4.1.3 Specifying the Location of Source Files 4–4
4.2 Editing Your Program . 4–5
4.3 Executing Your Program . 4–6
4.3.1 Determining Where Execution Is Currently Paused 4–6
4.3.2 Starting or Resuming Program Execution 4–7
4.3.3 Executing Your Program One Source Line at a Time 4–8
4.3.4 Stepping into a Called Routine . 4–8
4.3.5 Returning from a Called Routine . 4–9
4.4 Suspending Execution by Setting Breakpoints 4–9
4.4.1 Setting Breakpoints on Source Lines 4–9
4.4.2 Setting Breakpoints on Routines with Source Browser 4–11
4.4.3 Identifying the Currently Set Breakpoints 4–12
4.4.4 Deactivating, Activating, and Deleting Breakpoints 4–13
4.4.5 Setting and Modifying a Conditional Breakpoint 4–14
4.4.6 Setting and Modifying an Action Breakpoint 4–15

iv

4.5 Examining and Manipulating Variables . 4–17
4.5.1 Available Options . 4–17
4.5.2 Selecting Variable Names from Windows 4–19
4.5.3 Displaying the Current Value of a Variable 4–20
4.5.3.1 Using the Local Variables View . 4–20
4.5.3.2 Using the Print Button . 4–21
4.5.3.3 Using the Monitor View . 4–21
4.5.3.3.1 Monitoring an Aggregate (Array, Structure) Variable

. 4–22
4.5.3.3.2 Monitoring a Pointer (Access) Variable 4–23
4.5.3.4 Using the Print Dialog Box . 4–23
4.5.4 Changing the Current Value of a Variable 4–24
4.5.4.1 Clicking on a Monitored Value Within the Local Variables

View or Monitor View . 4–24
4.5.4.2 Changing the Value of a Variable with the Assign Dialog

Box . 4–26
4.6 Accessing Program Variables . 4–26
4.6.1 Setting the Current Scope Relative to the Call Stack 4–27
4.6.2 How the Debugger Searches for Variables and Other Symbols

. 4–29
4.7 Displaying and Modifying Values Stored in Registers 4–30
4.8 Displaying the Decoded Instruction Stream of Your Program . . . 4–31
4.9 Customizing the Debugger’s Window Interface 4–32
4.9.1 Defining the Startup Configuration for Debugger Windows

and Views . 4–33
4.9.2 Displaying or Hiding Line Numbers by Default 4–34
4.9.3 Modifying, Adding, Removing, and Resequencing Push

Buttons . 4–34
4.9.3.1 Changing a Button’s Label or Associated Command 4–35
4.9.3.2 Adding a New Button and Associated Command 4–36
4.9.3.3 Removing a Button . 4–37
4.9.3.4 Resequencing a Button . 4–38
4.9.4 Customizing the Debugger Resource File 4–38

5 Advanced Debugging Techniques

5.1 Displaying and Selecting Available Processes and Threads 5–1
5.2 Attaching and Detaching a Process . 5–2
5.3 Debugging a Multithreaded Application . 5–3
5.3.1 Setting the Thread Mode . 5–3
5.3.2 Steps for Debugging a Multithreaded Application 5–3
5.4 Debugging a Multiprocess Application . 5–4

v

6 Using Ladebug Within the DEC FUSE Environment

6.1 Starting and Configuring the Debugger Within the DEC FUSE
Environment . 6–2

6.2 Differences in the DEC FUSE Debugger Main Window 6–2
6.3 Editing Your Program . 6–3

Part II Command Interface

7 Introduction to the Ladebug Debugger: Command Interface

7.1 Invoking Ladebug and Bringing a Program Under Debugger
Control . 7–1

7.1.1 Invoking Ladebug from the Shell . 7–2
7.1.2 Bringing a Program Under Debugger Control from the

Ladebug Prompt . 7–2
7.2 Entering Multiple Commands on a Single Line 7–3
7.3 Customizing the Debugger Environment: Debugger Variables . . 7–3
7.4 Using Command Abbreviations: Aliases 7–5
7.5 Repeating Previously Used Commands: History 7–7
7.6 Executing System Commands from the Debugger 7–9
7.7 Using Command-Line Editing . 7–11
7.8 Sample Debugging Session . 7–11
7.8.1 Compiling and Executing the Sample Program 7–12
7.8.2 Listing Source Code . 7–13
7.8.3 Setting a Breakpoint . 7–14
7.8.4 Running Your Program . 7–15
7.8.5 Examining the Program State . 7–15
7.8.6 Stepping Through Program Execution 7–16
7.8.7 Displaying a Stack Trace . 7–17
7.8.8 Tracing a Variable: the trace Command 7–19
7.8.9 Attaching to a Running Process . 7–22
7.8.10 Detaching from a Process . 7–24
7.8.11 Terminating Processes . 7–24

8 Examining Program Information

8.1 Listing Source Code: the list Command . 8–1
8.2 Displaying a Stack Trace: the where Command 8–4
8.3 The Current Context . 8–5
8.3.1 The Current Function Scope: the func, up, and down

Commands . 8–6
8.3.2 The Current File Scope: the file Command 8–7

vi

8.3.3 The Current Language Context: the $lang Debugger
Variable . 8–8

8.4 Examining and Modifying Program Symbols 8–8
8.4.1 Evaluating Expressions: the print and whatis Commands . . 8–8
8.4.2 Dereferencing Pointers: the * Operator 8–11
8.4.3 Listing Variables: the dump Command 8–11
8.4.4 Displaying a Variable’s Scope: the which and whereis

Commands . 8–12
8.4.5 Changing the Value of an Expression: the assign and patch

Commands . 8–13

9 Controlling Program Execution

9.1 Starting Program Execution: the run and rerun Commands 9–1
9.2 Terminating Program Execution: the kill Command 9–2
9.3 Stepping Through Functions . 9–2
9.3.1 The step Command . 9–3
9.3.2 The next Command . 9–3
9.4 Resuming Program Execution . 9–4
9.5 Branching to a Specified Line: the goto Command 9–4
9.6 Setting Breakpoints . 9–5
9.6.1 Breakpoints That Suspend Program Execution 9–6
9.6.1.1 The stop at Command . 9–7
9.6.1.2 The stopi at Command . 9–7
9.6.1.3 The stop in Command . 9–8
9.6.1.4 The stop and stopi Commands . 9–9
9.6.1.5 The stop if and stopi if Commands 9–10
9.6.1.6 Combining Optional Conditions to Customize Breakpoint

Command . 9–11
9.6.2 Breakpoints That Execute Debugger Commands: the when

Commands . 9–11
9.7 Setting Tracepoints: the trace commands 9–13
9.7.1 Tracepoints That Notify You of Function Entry and Exit 9–13
9.7.2 Tracepoints That Notify You of a Variable Value Change 9–14
9.8 Displaying, Deleting, Disabling, and Enabling Breakpoints and

Tracepoints . 9–16
9.8.1 Deleting Breakpoints and Tracepoints: the delete

Commands . 9–16
9.8.2 Disabling Breakpoints and Tracepoints: the disable

Commands . 9–17
9.8.3 Enabling Breakpoints and Tracepoints: the enable

Commands . 9–18
9.9 Returning from a Function: the return Command 9–19

vii

9.10 Calling Functions: the call Command . 9–20
9.11 Unaligned Data Accesses: the catch and ignore Commands 9–23
9.12 Using the pop Command . 9–24
9.13 Controlling the Debugging of Attached Processes: the attach and

detach Commands . 9–25
9.14 Debugging Programs with Stripped Images 9–26
9.15 Using Environment Variables Within the Debugger 9–26

Part III Language-Specific Topics

10 Debugging DEC C++ Programs

10.1 Significant Supported Features . 10–1
10.2 DEC C++ Flags for Debugging . 10–2
10.3 Calling Overloaded Functions . 10–3
10.4 Setting the Class Scope . 10–3
10.5 Displaying Class Information . 10–4
10.6 Displaying Object Information . 10–6
10.7 Displaying Virtual and Inherited Class Information 10–7
10.8 Member Functions on the Stack Trace . 10–8
10.9 Resolving Ambiguous References to Overloaded Functions 10–9
10.10 Setting Breakpoints . 10–11
10.10.1 Setting Breakpoints in Member Functions 10–11
10.10.2 Setting Breakpoints in Overloaded Functions 10–14
10.10.3 Setting Breakpoints in Constructors and Destructors 10–15
10.11 Class Templates and Function Templates 10–16
10.12 Debugging C++ Exception Handlers . 10–19
10.12.1 Setting Breakpoints in Exception Handlers 10–19
10.12.2 Examining and Modifying Variables in Exception

Handlers . 10–20
10.13 Advanced Program Information: Verbose Mode 10–20
10.14 Limitations on Ladebug Support for C++ 10–22

11 Debugging DEC Fortran and DEC Fortran 90 Programs

11.1 Significant Supported Features . 11–1
11.2 Fortran Flags for Debugging . 11–2
11.3 Displaying Fortran Variables . 11–4
11.3.1 Fortran Common Block Variables . 11–5
11.3.2 Fortran Derived-Type Variables . 11–5
11.3.3 Fortran Record Variables . 11–6

viii

11.3.4 Fortran Array Variables . 11–7
11.3.4.1 Array Sections . 11–7
11.3.4.2 Assignment to Arrays . 11–8
11.3.5 DEC Fortran 90 Module Variables . 11–8
11.3.6 DEC Fortran 90 Pointer Variables . 11–8
11.3.7 Complex Variable Support . 11–11
11.4 Limitations on Ladebug Support for Fortran 11–12
11.5 Use of Alternate Entry Points . 11–13
11.6 Debugging Mixed-Language Programs . 11–14
11.7 Debugging a Program That Generates an Exception 11–15
11.8 Debugging Optimized Programs . 11–16

12 Debugging DEC Ada Programs

12.1 Significant Supported Features . 12–1
12.2 Compiling and Linking for Debugging . 12–1
12.3 Debugging Multilanguage Programs . 12–2
12.4 Using Case-Insensitive Commands and Variable Names 12–2
12.5 Printing ISO Latin-1 Characters . 12–3
12.6 Displaying the Source Code of Generic Units 12–3
12.7 Debugging Multiple Units in One Source File 12–4
12.8 Debugging Ada Elaboration Code . 12–5
12.9 Accessing Unconstrained Array Types . 12–5
12.10 Accessing Incomplete Types Completed in Another Compilation

Unit . 12–6
12.11 Limitations on Ladebug Support for DEC Ada 12–6
12.11.1 Limitations for Expressions in Ladebug Commands 12–7
12.11.2 Limitations in Data Types . 12–8
12.11.3 Limitations for Tasking Programs . 12–9
12.12 Debugging Programs That Generates an Exception 12–10
12.13 Debugging Optimized Programs . 12–11

13 Debugging DEC COBOL Programs

13.1 Significant Supported Features . 13–1
13.2 DEC COBOL Flags for Debugging . 13–2
13.3 Support for COBOL Identifiers . 13–3
13.4 Debugging Mixed-Language Programs . 13–10
13.5 Limitations on Assignment . 13–10
13.6 Other Limitations . 13–11

ix

Part IV Advanced Topics

14 Debugging Core Files

14.1 Invoking the Debugger on a Core File . 14–1
14.2 Core File Debugging Technique . 14–1
14.3 Core Thread Debugging of Native Threads 14–3

15 Using Debugger Scripts

15.1 The Debugger Initialization File . 15–1
15.2 Recording Debugger Sessions . 15–2
15.3 Playing Back a Command Script . 15–4

16 Debugging Shared Libraries

16.1 Controlling the Reading of Symbols for Shared Libraries 16–1
16.2 Listing the Shared Library Source Code 16–3
16.3 Setting Breakpoints in a Shared Library 16–4
16.4 Printing and Modifying Shared Library Variable Values 16–4
16.5 Stepping into Shared Library Functions 16–5
16.6 Calling a Shared Library . 16–5
16.7 Accessing Shared Libraries on the Stack Trace 16–7
16.8 Disassembling a Memory Address in a Shared Library 16–7

17 Working with Limited Debugging Information

17.1 How Ladebug Works with Limited Debugging Information 17–1
17.2 Example Debugging Sessions . 17–2
17.2.1 Example C++ Program Linked with -x 17–3
17.2.1.1 Setting Breakpoints . 17–3
17.2.1.2 Listing the Source Code . 17–5
17.2.1.3 Displaying the Stack Trace . 17–6
17.2.2 Example C Program Linked with -x . 17–7
17.2.2.1 Setting Breakpoints on Routines 17–8
17.2.2.2 Listing the Source Code . 17–9
17.2.2.3 Displaying the Stack Trace . 17–11
17.2.3 Example C++ Program Linked with -x -r 17–12
17.2.3.1 Setting Breakpoints on Static and Global Routines 17–13
17.2.3.2 Listing the Source Code . 17–15
17.2.3.3 Displaying the Stack Trace . 17–15
17.2.3.4 Printing Static and Local Variables 17–17

x

17.2.4 Example C++ Program Linked with Various -x and -r
Options . 17–19

17.2.4.1 Setting Breakpoints on Static and Global Routines 17–19
17.2.4.2 Listing the Source Code . 17–20
17.2.4.3 Displaying the Stack Trace . 17–21
17.2.4.4 Setting a Breakpoint on an Unknown Routine 17–22

18 Machine-Level Debugging

18.1 Examining Memory Addresses . 18–1
18.1.1 Using the <examine address> Command 18–1
18.1.2 Using Pointer Arithmetic . 18–3
18.2 Examining Machine-Level Registers . 18–3
18.3 Stepping at the Machine Level . 18–4

19 Debugging Multithreaded Applications

19.1 Thread Levels (DECthreads and Native Threads) 19–1
19.2 Thread Identification . 19–2
19.3 Thread Commands . 19–2
19.3.1 Thread Context Commands . 19–2
19.3.2 Thread Control Commands . 19–3
19.3.2.1 Setting Breakpoints in Multithreaded Applications 19–3
19.3.2.2 Setting Tracepoints in Multithreaded Applications 19–3
19.3.2.3 Stepping Individual Threads . 19–3
19.3.2.4 Resuming Thread Execution . 19–4
19.3.3 Thread Information Commands . 19–4
19.3.3.1 Thread Queries . 19–4
19.3.3.2 Condition Variable Queries (DECthreads Only) 19–6
19.3.3.3 Mutex Queries for DECthreads . 19–7
19.4 An Example of Debugging a Multithreaded Program 19–8

20 Debugging Multiprocess Applications

20.1 Bringing a Process Under Debugger Control 20–1
20.2 Displaying a List of Processes . 20–2
20.3 Setting the Current Process . 20–2
20.4 Loading Image and Core Files . 20–2
20.5 Removing Process Information from the Debugger 20–3
20.6 Sample Multiprocess Debugging Session 20–3
20.7 Debugging Programs That Fork and/or Exec 20–6
20.7.1 Predefined Debugger Variables for Fork/Exec Debugging 20–6

xi

20.7.2 Debugging Programs That Fork Child Processes 20–6
20.7.2.1 Setting the Predefined Variables 20–7
20.7.2.2 Scenario for Debugging a Forked Process with the Parent

Process Running . 20–7
20.7.2.3 Scenario for Debugging a Forked Process with the Parent

Process Stopped . 20–11
20.7.3 Debugging a Process That Execs . 20–14

21 Remote Debugging

21.1 Remote Debugging Environment . 21–1
21.2 Reasons for Remote Debugging . 21–2
21.3 Client/Server Model for Remote Debugging 21–2
21.4 Tasks for Remote Debugging . 21–5
21.4.1 Starting the Server Daemon . 21–5
21.4.2 Starting Ladebug . 21–6
21.4.3 Debugging the User Program . 21–7
21.4.4 Exiting the Debugger and Disconnecting from the Server . . . 21–8
21.5 Command-Line Options for Remote Debugging 21–8
21.6 Example Remote Debugger Session Using the Evaluation Board

Server . 21–10
21.6.1 Building an Executable File . 21–10
21.6.2 Loading the Executable File and Starting the Server 21–10
21.6.3 Starting Ladebug on the Host System 21–11
21.6.4 Special Conditions . 21–11

22 Kernel Debugging

22.1 Local Kernel Debugging . 22–3
22.2 Crash Dump Analysis . 22–7
22.3 Remote Kernel Debugging with the kdebug Debugger 22–14
22.3.1 Analyzing a Crash Dump . 22–19
22.4 Debugging Loadable Drivers . 22–20

Part V Command Reference

ladebug . REF–1

xii

A Using Ladebug Within emacs

A.1 Loading Ladebug-Specific emacs Lisp Code A–1
A.2 Invoking Ladebug Within emacs . A–1
A.3 emacs Debugging Buffers . A–2

B Writing a Remote Debugger Server

B.1 Reasons for Using a Remote Debugger . B–1
B.2 Alternatives to Using a Remote Debugger B–2
B.3 The Structure of a Remote Debugger . B–2
B.4 Types of Targets . B–3
B.5 Ladebug as a Remote Debugger . B–3
B.5.1 Target and Programming System Requirements B–3
B.5.2 The Protocol . B–4
B.5.3 Starting a Remote Debugger Session B–5
B.5.4 Ending a Remote Debugger Session . B–6
B.6 Example Servers . B–7
B.6.1 The Digital UNIX Server . B–7
B.6.2 Evaluation Board Server . B–7
B.6.3 Structure of the Servers . B–8
B.6.4 Creating a Server for a New Target . B–9
B.7 The Communicators . B–9
B.7.1 Communicator Interface Functions . B–10
B.7.2 Digital UNIX Communicator . B–10
B.7.3 Evaluation Board Monitor . B–11
B.7.4 Porting the Communicators to Other Systems B–14
B.8 The Protocol Handler: Interface Functions and Implementation

. B–14
B.9 The Debugger Kernels . B–16
B.9.1 The Debugger Kernel Interface Functions B–16
B.9.2 Digital UNIX Server Debugger Kernel B–18
B.9.3 Evaluation Board Server . B–20
B.9.3.1 Initialization . B–21
B.9.3.2 Setting Breakpoints . B–21
B.9.3.3 Hitting a Breakpoint or an Exception B–22
B.9.3.4 Receiving and Processing Commands B–23
B.9.3.5 Continuing from a Breakpoint or Exception B–24
B.9.3.6 Interrupt Handling . B–25
B.9.4 Porting the Debugger Kernels to Other Systems B–26
B.10 The Breakpoint Table Handler: Interface Functions and

Implementation . B–27
B.11 Ladebug Remote Debugger Protocol . B–28

xiii

B.11.1 Messages and Message Formats . B–29
B.11.1.1 Message Headers . B–29
B.11.1.2 Message Values . B–30
B.11.1.3 Load Process Request and Response B–30
B.11.1.4 Responses to the Load Process Request B–32
B.11.1.5 Connect to Process Request and Response B–32
B.11.1.6 Connect to Process Insist Request and Response B–33
B.11.1.7 Probe Process Request and Response B–33
B.11.1.8 Disconnect from Process Request and Response B–34
B.11.1.9 Stop Process Request and Response B–34
B.11.1.10 Kill Process Request and Response B–35
B.11.1.11 Continue Process Request and Response B–35
B.11.1.12 Step Request and Response . B–35
B.11.1.13 Set Breakpoint Request and Response B–36
B.11.1.14 Clear Breakpoint Request and Response B–37
B.11.1.15 Get Next Breakpoint Request and Response B–37
B.11.1.16 Get Registers Request and Response B–38
B.11.1.17 Set Registers Request and Response B–39
B.11.1.18 Read Request and Response . B–39
B.11.1.19 Write Request and Response . B–40
B.11.2 Order of Messages . B–41
B.11.3 Recovering from Packet Loss . B–42
B.12 Transport Layer . B–43

C Support for International Users

C.1 Support for Input of Local Language Characters in User
Commands . C–1

C.2 Support for Output of Local Language Characters C–1
C.3 Support for Wide Character Type (wchar_t) in C and C++

Programs . C–2

Index

xiv

Examples

7–1 Entering Multiple Commands on a Single Line 7–3
7–2 Displaying and Redefining Debugger Variables 7–4
7–3 Creating an Alias . 7–6
7–4 Defining an Alias with a Parameter . 7–6
7–5 Nesting Aliases . 7–6
7–6 Reentering Commands on the History List 7–8
7–7 Executing an Operating System Command 7–10
7–8 Displaying an Identifier Using an Operating System

Command . 7–10
7–9 Sample C Program, sample.c . 7–12
7–10 Compiling and Executing the Sample C Program 7–13
7–11 Invoking the Debugger on Your Program 7–13
7–12 Listing a Program . 7–14
7–13 Setting a Breakpoint . 7–15
7–14 Running Your Program Under Debugger Control 7–15
7–15 Printing a Variable’s Value . 7–16
7–16 Stepping Through Program Execution 7–17
7–17 Stepping and Displaying a Stack Trace 7–18
7–18 Stepping Through the Sample Program 7–19
7–19 Deleting a Breakpoint . 7–20
7–20 Tracing a Program Variable . 7–21
7–21 Attaching to a Running Process . 7–23
8–1 Listing Source Code in a Number Range 8–2
8–2 Listing Source Code By Counting from a Starting Line 8–2
8–3 Displaying the Stack Trace in a COBOL Program 8–5
8–4 Using the func Command . 8–6
8–5 Using the file Command . 8–7
8–6 Examining Data Items in a COBOL program 8–9
8–7 Determining the Type of a Variable . 8–9
8–8 Printing Values of an Array . 8–10
8–9 Printing Individual Values of an Array 8–10
8–10 Dereferencing a Pointer . 8–11
8–11 Displaying Information on Each Activation Level 8–12
8–12 Displaying a Variable’s Scope . 8–12
8–13 Determining Overloaded Identifiers . 8–13

xv

8–14 Depositing a Value in an Expression 8–14
8–15 Assigning Values to a Variable and an Expression 8–14
9–1 Using run and rerun to Begin Program Execution 9–2
9–2 Stepping Through Program Execution 9–3
9–3 Continuing Program Execution . 9–4
9–4 Branching to a Specified Line . 9–5
9–5 Setting a Breakpoint at a Line in C Source Code 9–7
9–6 Setting a Breakpoint at an Address in the Source Code 9–8
9–7 Setting a Breakpoint in a Function . 9–8
9–8 Setting a Breakpoint at the Start of an Ada Procedure 9–9
9–9 Setting a Breakpoint on a Variable . 9–10
9–10 Setting a Conditional Breakpoint . 9–11
9–11 Setting a Conditional Breakpoint in a Function 9–11
9–12 Setting a Breakpoint That Executes a Stack Trace 9–12
9–13 Setting a Breakpoint That Executes Multiple Commands . . . 9–13
9–14 Setting a Tracepoint . 9–14
9–15 Setting a Conditional Tracepoint . 9–14
9–16 Tracing Variables . 9–15
9–17 Using status to Display Breakpoints 9–16
9–18 Deleting Breakpoints . 9–17
9–19 Disabling Breakpoints . 9–18
9–20 Enabling Breakpoints . 9–19
9–21 Using the return Command . 9–20
9–22 Calling a Function from the Debugger Prompt 9–21
9–23 Embedding a Function Call in an Expression 9–21
9–24 Nesting Function Calls . 9–21
9–25 Catching Unaligned Access . 9–23
10–1 Setting the Class Scope . 10–4
10–2 Displaying Class Information . 10–6
10–3 Displaying Object Information . 10–7
10–4 Resolving References to Objects of Multiple Inherited

Classes . 10–8
10–5 Resolving Overloaded Functions by Selection Menu 10–10
10–6 Resolving Overloaded Functions by Type Signature 10–10
10–7 Setting Breakpoints in Member Functions 10–11
10–8 Setting Breakpoints in Virtual Member Functions 10–12

xvi

10–9 Setting Breakpoints in Member Functions for a Specific
Object . 10–13

10–10 Setting Breakpoints in Specific Overloaded Functions 10–14
10–11 Setting Breakpoints in All Versions of an Overloaded

Function . 10–14
10–12 Setting Breakpoints in Overloaded Functions by Line

Number . 10–15
10–13 Setting Breakpoints in Constructors 10–15
10–14 Setting Breakpoints in Destructors . 10–16
10–15 Example of a Function Template . 10–17
10–16 Setting a Breakpoint in the Template Function 10–17
10–17 Displaying an Instantiated Class Template 10–18
10–18 Setting Current Class Scope to an Instantiated Class 10–18
10–19 Setting Breakpoints in Exception Handlers 10–19
10–20 Printing a Class Description in Verbose Mode 10–21
13–1 Sample COBOL Program . 13–5
13–2 Sample COBOL Debugging Session . 13–7
14–1 Debugging a Core File . 14–2
14–2 Debugging a Multithreaded Kernel Core File 14–4
15–1 A Sample .dbxinit File . 15–1
15–2 Debugger Startup Using a .dbxinit File 15–2
15–3 Recording a Debugger Script . 15–3
15–4 Executing a Debugger Script . 15–4
16–1 Listing the Shared Library Source Code 16–3
16–2 Setting Breakpoints in a Shared Library 16–4
16–3 Printing and Modifying Shared Library Variable Values 16–4
16–4 Stepping into Shared Library Functions 16–5
16–5 Calling a Shared Library . 16–6
16–6 Nesting Calls to Shared Libraries . 16–6
16–7 Calling a System Library Function . 16–6
16–8 Accessing Shared Libraries on the Stack Trace 16–7
16–9 Disassembling a Memory Address in a Shared Library 16–7
17–1 Setting Breakpoints in a C++ Program Compiled and Linked

with -g2 . 17–4
17–2 Setting Breakpoints in a C++ Program Compiled with -g2

and Linked with -x . 17–5
17–3 Listing the Source Code of a C++ Program Compiled and

Linked with -g2 . 17–6

xvii

17–4 Displaying the Stack Trace of a C++ Program Compiled and
Linked with -g2 . 17–7

17–5 Displaying the Stack Trace of a C++ Program Compiled with
-g2 and Linked with -x . 17–7

17–6 Setting Breakpoints on Routines in a C Program Compiled
and Linked with -g2 . 17–8

17–7 Setting Breakpoints on Routines in a C Program Compiled
with -g2 and Linked with -x . 17–9

17–8 Listing the Source Code of a C Program Compiled and
Linked with -g2 . 17–10

17–9 Listing the Source Code of a C Program Compiled with -g2
and Linked with -x . 17–10

17–10 Displaying the Stack Trace of a C Program Compiled and
Linked with -g2 . 17–11

17–11 Displaying the Stack Trace of a C Program Compiled with
-g2 and Linked with -x . 17–12

17–12 Setting Breakpoints on Static and Global Routines in a C++
Program Compiled and Linked with -g2 17–13

17–13 Setting Breakpoints on Static and Global Routines in a C++
Program Compiled with -g2 and Linked with -x -r 17–14

17–14 Listing the Source Code of a C++ Program 17–15
17–15 Displaying the Stack Trace of a C++ Program Compiled and

Linked with -g2 . 17–16
17–16 Displaying the Stack Trace of a C++ Program Compiled with

-g2 and Linked with -x -r . 17–17
17–17 Printing Variables of a C++ Program Compiled and Linked

with -g2 . 17–18
17–18 Printing Variables of a C++ Program Compiled with -g2 and

Linked with -x -r . 17–19
17–19 Setting Breakpoints on Static and Global Routines in a C++

Program with Various -x and -r flags 17–20
17–20 Listing the Source Code of a C++ Program with Various -x

and -r Flags . 17–21
17–21 Displaying the Stack Trace of a C++ Program with Various -x

and -r Flags . 17–21
17–22 Setting a Breakpoint on an Unknown Routine in a C++

Program with Various -x and -r Flags 17–22
18–1 Disassembling Values Contained in a Range of Addresses . . . 18–2
18–2 Using Pointer Arithmetic to Display and Change Values in

Memory . 18–3

xviii

18–3 Printing Machine Registers on the Digital UNIX Alpha
Platform . 18–4

18–4 Stepping Through Program Execution One Machine
Instruction at a Time . 18–5

19–1 Displaying Condition Variable Information 19–7
19–2 Displaying Mutex Information . 19–8
20–1 Debugging a Multiprocess Application - Loading an Image

File and Showing Processes . 20–4
20–2 Debugging a Multiprocess Application - Switching Between

Processes . 20–5
20–3 Default Settings for Predefined Variables 20–7
20–4 Debugging a Forked Process - Showing the Child Process . . . 20–8
20–5 Debugging a Forked Process - Changing the Process

Context . 20–9
20–6 Debugging a Forked Process - Rerunning the Program 20–10
20–7 Debugging a Forked Process with Parent and Child

Processes Stopped . 20–12
20–8 Debugging a Forked Process - Switching to the Parent

Process . 20–13
20–9 Debugging a Process That Execs . 20–15
20–10 Debugging a Process That Execs - Setting Breakpoints 20–16

Figures

2–1 Default Main Window Configuration 2–2
2–2 Menus on the Main Window . 2–7
2–3 Menu Buttons on Source View Context Panel 2–10
2–4 Default Buttons in the Push-Button Panel 2–10
2–5 Breakpoint View . 2–12
2–6 Monitor View . 2–13
2–7 Register View . 2–13
2–8 Instruction View . 2–14
2–9 Local Variables View . 2–14
2–10 Menus on Optional Views Window . 2–15
2–11 Menus on Instruction View . 2–18
2–12 Command Prompt . 2–24
3–1 CDE Application Manager Icon . 3–2
3–2 CDE Developer’s Toolkit Icon . 3–2

xix

3–3 CDE Ladebug Icon . 3–2
3–4 Debugger Window at Startup . 3–3
3–5 Running a Program by Specifying a Program File 3–4
3–6 Rerunning the Same Program . 3–7
4–1 Source Display . 4–2
4–2 Displaying Source Code in Another Routine 4–4
4–3 Editor Window . 4–5
4–4 Setting a Breakpoint on a Source Line 4–10
4–5 Setting a Breakpoint on a Routine . 4–12
4–6 Breakpoint View with Action and Condition 4–13
4–7 Setting a Conditional Breakpoint . 4–15
4–8 Setting an Action Breakpoint . 4–16
4–9 Local Variables View . 4–20
4–10 Monitoring a Variable . 4–22
4–11 Expanded Aggregate Variable (Array) in Monitor View 4–22
4–12 Pointer Variable and Referenced Object in Monitor View 4–23
4–13 Typecasting the Value of a Variable . 4–24
4–14 Changing the Value of a Monitored Variable 4–25
4–15 Changing the Value of a Component of an Aggregate Variable

. 4–25
4–16 Changing the Value of a Variable . 4–26
4–17 Current Scope Set to a Calling Routine 4–28
4–18 Changing a Value in the Register View 4–30
4–19 Instruction View . 4–32
4–20 Changing the Step Button Label to an Icon 4–36
4–21 Adding a Button for the up Command 4–37
5–1 Process Selection Dialog Box . 5–2
5–2 Multiprocess Application . 5–5
8–1 Sample Stack Trace . 8–4
10–1 A Stack Trace Displaying a Member Function 10–9
17–1 Example C++ Program Linked with -x -r 17–13
21–1 Client/Server Model with a Single or a Shared File

System . 21–3
21–2 Client/Server Model with Separate File Systems 21–4

xx

Tables

1 Conventions Used in This Manual . xxx
2–1 Menus on the Main Window . 2–8
2–2 Source View Context Panel . 2–10
2–3 Default Buttons in the Push-Button Panel 2–10
2–4 Optional Views . 2–12
2–5 Menus in Optional Views Window . 2–16
2–6 Menus on Instruction View . 2–18
2–7 Source View Pop-Up Menu . 2–19
2–8 Annotation Area Pop-Up Menu . 2–20
2–9 Message Region Pop-Up Menu . 2–21
2–10 Source Browser Pop-Up Menu . 2–21
2–11 Breakpoint View Pop-Up Menu . 2–22
2–12 Monitor View and Local Variables View Pop-Up Menu 2–22
2–13 Register View Pop-Up Menu . 2–23
2–14 Instruction View Pop-Up Menu . 2–23
2–15 Instruction View Annotation Area Pop-Up Menu 2–23
4–1 Available Options for Selecting and Changing Variables and

Values . 4–18
4–2 Customization Methods . 4–33
9–1 Commands for Setting Breakpoints . 9–6
11–1 Summary of Symbol Table Flags . 11–3
12–1 Ada Expressions and Debugger Equivalents 12–7
13–1 Summary of Symbol Table Flags . 13–2
18–1 Valid Memory Display Modes . 18–2
21–1 Client/Server Concepts for Remote Debugging 21–5
21–2 Command Line Options for Remote Debugging 21–9
REF–1 Functionally Related Sets of Ladebug Commands REF–4
REF–2 Ladebug Commands: Individual Summary REF–6
B–1 Remote Debugger Protocol Client Requests B–5
B–2 kernel Functions . B–23
B–3 Header Format . B–29
B–4 Message Table . B–30
B–5 Fields of the Load Process Request Message B–31

xxi

Preface

This manual contains information for debugging programs with the Digital
Ladebug debugger. Ladebug is a debugger on the Digital UNIX® operating
system. Digital has changed the name of its UNIX operating system from DEC
OSF/1 to Digital UNIX. The new name reflects Digital’s commitment to UNIX
and its conformance to UNIX standards.

The terms graphical user interface and window interface, as used in this
manual, are synonymous. They refer to the window environment available in
Digital UNIX.

Intended Audience
This manual is intended for programmers with a basic understanding of one
of the programming languages that Ladebug supports (C, C++, Ada, COBOL,
Fortran, and machine code), and the Digital UNIX operating system.

Structure of this Document
This manual is organized as follows:

– Chapter 1 briefly introduces debugging concepts and Ladebug features,
and tells how to prepare for debugging.

• Part I describes the debugger’s window interface. Part I includes the
following chapters:

– Chapter 2 introduces the debugger’s window interface.

– Chapter 3 explains how to start and end a debugging session.

– Chapter 4, which is organized by task, explains how to use the
debugger.

– Chapter 5 discusses how (from the window interface) to debug
programs containing multiple processes and threads.

® UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Ltd.

xxiii

– Chapter 6 describes how to use the Ladebug debugger from within the
DEC FUSE environment.

• Part II describes the debugger’s command interface. Part II includes the
following chapters:

– Chapter 7 describes basic debugging techniques with the command
interface. This chapter and Chapter 9 also have information on
debugging C programs.

– Chapter 8 explains how to examine information in your programs.

– Chapter 9 describes how to control program execution.

• Part III presents language-specific topics and includes the following
chapters:

– Chapter 10 describes the debugger support for C++.

– Chapter 11 describes the debugger support for Fortran.

– Chapter 12 describes the debugger support for Ada.

– Chapter 13 describes the debugger support for COBOL.

• Part IV describes advanced topics and includes the following chapters:

– Chapter 14 describes some techniques for debugging core files.

– Chapter 15 explains how to use debugger scripts.

– Chapter 16 explains how to debug programs with shared libraries.

– Chapter 17 explains how to debug programs with limited symbolic
information.

– Chapter 18 describes machine-level debugging.

– Chapter 19 explains how to debug multithreaded applications.

– Chapter 20 explains how to debug multiprocess applications.

– Chapter 21 describes client/server remote debugging.

– Chapter 22 describes kernel debugging.

• Part V, the Command Reference, presents the debugger commands
alphabetically and fully describes them, along with the commands and
options for invoking the debugger. Part V is similar to the ladebug(1)
reference page.

• The appendixes are as follows:

– Appendix A describes debugging within the emacs editing environment.

xxiv

– Appendix B explains how to write a remote debugger server.

– Appendix C describes Ladebug’s support for international users.

Programming Languages
This manual emphasizes debugger usage that is common to all or most
supported languages. For more information specific to a particular language,
see:

• The debugger’s online help system

• The documentation supplied with that language, particularly regarding
compiling and linking the program for debugging

Related Documents
The following documents contain related information:

• Digital UNIX Programmer’s Guide

• Digital UNIX Motif User’s Guide

• CDE User’s Guide

• Developing Ada Programs on Digital UNIX Systems

• The Annotated C++ Reference Manual (Ellis and Stroustrup, 1990,
Addison-Wesley)

• DEC COBOL User Manual

• DEC Fortran 90 User Manual for DEC OSF/1 Systems

• Release Notes for Ladebug Version 4.0

• DEC Fuse Handbook

• Reference pages:

ladebug(1) , similar to Part V in this manual
cxx(1) for C++
cc(1) for C
ada(1) for Ada
cobol(1) for DEC COBOL
f77(1) for DEC Fortran 77
f90(1) for DEC Fortran 90

xxv

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You can
order the printed documentation from Digital.) This color coding is reinforced
with the use of an icon on the spines of books. The following list describes this
convention:

Audience Icon Color Code

General users G Blue

System and network administrators S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also
used by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides information
on all of the books in the Digital UNIX documentation set.

Reader’s Comments
Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals. You can send your comments in the following ways:

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on line in the following location:

/usr/doc/readers_comment.txt

• Mail:
Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-2698

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

xxvi

• The section numbers and page numbers of the information on which you
are commenting.

• The version of Digital UNIX that you are using, for example, Digital UNIX
Version 4.0.

• If known, the type of processor that is running the Digital UNIX software,
for example, AlphaServer 2000.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries.

Reporting Software Problems
Information provided with the software media explains how to send problem
reports to Digital. If you need to report a software problem with the Ladebug
debugger, contact your local Digital Customer Support Center. Please include
as much information as possible to help diagnosis and resolution of the
problem. Useful information includes the following:

• The Ladebug version number as reported in the "Welcome" banner

• The source code of a sample program or an executable binary

• The system configuration

• The exact steps used to reproduce the problem

• The .i or .ixx file (if the executable program is compiled with a compiler
that supports the "-P" option)

• The core file if available

New and Changed Features
This manual has been revised to document all of the Ladebug changes that are
part of the current release (Version 4.0). They are described in the following
sections.

Multiprocess Application Debugging
You can now have multiple processes (zero or more processes) under debugger
control. You can keep track of the processes using the show process command
and switch between them using the process command, and debug nonrelated
processes simultaneously.

xxvii

Multithreaded Debugging
Ladebug supports the debugging of DECthreads and native threads (for
example, Digital UNIX kernel (machine) level threads). You specify whether
you are working with DECthreads or native threads with the debugger
command set $threadlevel , as follows:

(ladebug) set $threadlevel="decthreads"
(ladebug) set $threadlevel="native"

The thread command lets you identify or set the current thread context. The
show thread command lists all threads known to the debugger.

Other commands with enhanced syntax for multithread debugging include:

stop
trace
when
step (and stepi)
next (and nexti)
cont

See the information on each of these commands. See also information about
the where, show condition, and show mutex commands.

Load/Unload a Process
The load command lets you load an image file or core file for debugging. The
unload command removes the symbol table information that the debugger had
associated with the process being debugged.

Kernel Debugging
Ladebug supports kernel debugging. The functionality is equivalent to kernel
debugging using dbx.

When you have a problem with a process, you can debug the running kernel
or examine the values assigned to system parameters. (It is generally
recommended that you avoid modifying the value of the parameters, which
can cause problems with the kernel.) Kernel debugging requires superuser
privilege.

To debug a kernel locally, invoke the debugger with the following command:

ladebug -k

The -k flag maps virtual to physical addresses to enable local kernel
debugging. The /vmunix and /dev/mem parameters cause the debugger to
operate on the running kernel. Use Ladebug commands to display the current
process identification numbers (pid) and trace the execution of processes.

xxviii

To debug a remote kernel, invoke the debugger with the following command:

ladebug -remote /testdir/vmunix

Refer to Chapter 22 for more information about kernel debugging.

Multilanguage Support
Ladebug Version 4.0 enhances language support as follows:

• C/C++ — Ladebug fully supports debugging ACC and DEC C programs,
and DEC C++ programs; DEC C++ now supports cfront compatibility
and the GEM compiler backend. Ladebug’s support for C++ includes C++
names and expressions, including template instantiations and exception
handling; and setting breakpoints in member functions, overloaded
functions, constructors and destructors, template instantiations, and
exception handlers. You can change the current class scope to set
breakpoints and examine members of a class that are not currently in
scope. You can debug mixed-language programs.

• Fortran — Ladebug lets you debug DEC Fortran 77 and DEC Fortran 90
programs. You can specify identifiers, program names, subroutine names,
and array sections to Ladebug with Fortran language syntax, including
case insensitivity. You can display values of variables in a Fortran common
block; access Fortran derived-type, record, array, and complex variables;
examine Fortran 77 and Fortran 90 data types (with some limitations); and
debug mixed-language programs.

Window Interface
Ladebug’s window interface supports the major Ladebug command-line
functionality. Other features can be accessed within the window interface from
a command window. The window interface includes a main window covering
the basic debugging and convenience features; optional views windows, various
pop-up menus and dialog boxes, and a command-entry prompt.

Ladebug’s window interface is documented in this revised manual. Earlier
versions of this manual documented only the command interface.

Support for International Users
User programs may set different locales in order to interpret text according to
different language/culture-related criteria. In addition, locales may be switched
inside a user program.

Ladebug can follow the debugged program so that its interpretation of program
data is identical to that of the debugged user program.

xxix

Your Digital UNIX system needs to have the worldwide (WW) subsets installed.
This is standard procedure and the WW subsets are available on the base
system CD-ROM. You can then set your locale to a special locale (such as a
Japanese locale) and input characters which are multibytes. These characters
can come from a script or entered from a VT terminal using compose sequences.

Wide characters (type wchar_t) and wide strings (type wchar_t *) are used in
international applications as run-time representation of multibyte character
data. Ladebug supports input of multibyte characters that are regarded
as components of symbol literals, string literals or wide character literals.
Ladebug’s basic support for wide characters (wchars) and wide strings
(wstrings) is as follows:

• Accept input of wide character literals and wide string literals (for C and
C++ programs).

• Print out wide character/string data as the real characters they represent.

Environment-Manipulation Commands
Ladebug provides commands for manipulating the environment of subsequent
debuggees with environment variables. With the setenv, export, printenv,
and unsetenv commands, used within the debugger, you can set the value
of an environment variable, display the values of environment variables, and
remove environment variables. See Chapter 9 for more information.

The pop Command
The pop command removes execution frames from the call stack. It is useful
when execution has passed an error that needs to be corrected. See Chapter 9
for more information.

Conventions
Table 1 lists the conventions used in this manual.

Table 1 Conventions Used in This Manual

Convention Meaning

A pound sign (#) is the default superuser prompt.

Return In examples, a boxed symbol indicates that you must press the
named key on the keyboard.

(continued on next page)

xxx

Table 1 (Cont.) Conventions Used in This Manual

Convention Meaning

Ctrl/C This symbol indicates that you must press the Ctrl key while
you simultaneously press another key (in this case, C).

user input In interactive examples, this typeface indicates input entered
by the user.

filesystem In text, this typeface indicates the exact name of a command,
routine, partition, pathname, directory, or file. This typeface is
also used in interactive examples and other screen displays.

UPPERCASE
lowercase

The Digital UNIX operating system differentiates between
lowercase and uppercase characters. On the operating system
level, examples, syntax descriptions, function definitions, and
literal strings that appear in text must be typed exactly as
shown.

setld(8) Cross-references to online reference pages include the
appropriate section number in parentheses. For example,
setld(8) indicates that you can find the material on the
setld command in Section 8 of the reference pages.

[y] In a prompt, square brackets indicate that the enclosed item
is the default response. For example, [y] means the default
response is Yes.

file Italic type indicates variable values, placeholders, function
argument names, and names in examples.

Actions:Create
Group...

Indicates an item on a menu. In this example, you would
choose the Create Group... item on the Actions menu.

[|]
{ | }

In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

. . . In syntax definitions, an ellipsis indicates that the preceding
item can be repeated one or more times.

Meta+x This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows the plus
sign.

xxxi

1
Introduction to Debugging

This chapter introduces some fundamental debugging concepts, briefly
describes key Ladebug features, explains how to compile and link a program
for debugging, and introduces the two Ladebug interfaces (window and
command).

1.1 Overview of Debugging Concepts
The debugger helps you locate run-time programming or logic errors, also
known as bugs. You use the debugger with a program that has been compiled
and linked successfully, but does not run correctly. For example, the program
might give incorrect output, go into an infinite loop, or terminate prematurely.

You locate errors with the debugger by observing and manipulating your
program interactively as it executes. The debugger lets you:

• Display your program’s source code and browse through the code to locate
points of interest where you might test for certain conditions

• Set breakpoints to suspend program execution or enter command sequences
at such points and set tracepoints that notify you of certain conditions

• Execute your program, including stepping through one source line or
machine instruction at a time and restarting from the beginning of the
program

• Display, monitor, and change the values of program variables and data
structures and examine their types

• Examine and manipulate the currently active routines on the call stack

• Examine and manipulate processes and threads in the program

• Disassemble and examine machine code; examine and modify machine-
register values

• Customize the debugging environment

• Intercept software signals sent to the program by the operating system

Introduction to Debugging 1–1

As you use the debugger and its documentation, you will discover variations on
the basic techniques. You can also customize the debugger to meet your own
needs.

Because the debugger is a symbolic debugger, you can specify variable names,
routine names, and so on, precisely as they appear in your source code. You do
not need to specify memory addresses or registers when referring to program
locations, but you can if you want.

You can use the debugger with programs written in any of the supported
languages:

C
C++
Fortran 77
Fortran 90
Ada
COBOL
Machine code

See your compiler documentation for information about the current extent of
support for your language.

1.2 Key Features of the Ladebug Debugger
Key features of the debugger allow you to:

• Perform source-level debugging

• Debug programs written in the supported languages

• Attach to a running process

• Debug programs with shared libraries

• Debug multithreaded applications

• Debug more than one program at a time (multiprocess applications)

• Perform remote client/server debugging

• Perform kernel debugging

• Use local language characters (for international users)

You can customize the debugger environment or a debugger session by using:

• Scripts containing debugger commands

• Aliases for frequently used debugger command sequences

1–2 Introduction to Debugging

• Variables to store information

1.3 Basic Debugging Technique
Programmers use debuggers most often to extract important pieces of
information during program execution. A simple debugging procedure might
include these steps:

1. Compile and link the program. (See Section 1.4.) Your program must
compile and link without any errors; the debugger only operates on
programs that successfully compile into executable files.

2. Invoke the debugger on your program.

3. Set a breakpoint at the line number or function suspected to be at fault.

4. Run the program from the debugger prompt.

5. Examine the values of program variables.

When program execution suspends at the specified breakpoint, examine the
values of program variables. If the variables do not provide you with any
clues, try setting other breakpoints, executing program statements line by
line, or tracing a variable’s value during program execution.

1.4 Preparation for Debugging: Compiling and Linking a
Program

Direct the compiler (normally with the -g flag; use the appropriate flag
for your compiler) to produce an executable file that includes full symbolic
debugging information.

Some systems provide variants of the flag (-g1 , -g2 , and so on). These give
different levels of symbol information and optimization.

Some compilers optimize the object code to reduce the size of the program or
to make it run faster. For example, some optimization techniques eliminate
certain variables. In addition to building symbolic information, the -g flag
disables optimization of your program so that you an debug it more easily.
For detailed information on compiling and linking, see the chapter on your
language or your compiler documentation.

Ladebug can debug programs with less than complete symbolic information.
(See Chapter 17 for details.)

Introduction to Debugging 1–3

The following example shows how to compile and link a C program named
eightqueens before using the debugger. The compiler is invoked from the
C shell (%). In the following example, the file eightqueens.c contains the
program’s source code.

% cc -g eightqueens.c -o eightqueens

The cc command invokes both the compiler and the linker. (For more
information about compiling that is specific to a particular language, see the
documentation furnished with that language.)

The -g flag directs the compiler to write the symbolic information associated
with eightqueens.c into the program file eightqueens (in addition to the
code and data for the program). This symbol information allows you to use
the names of variables and other symbols declared in eightqueens.c when
using the debugger. If your program’s source code is in several files, you must
compile each file whose symbols you want to reference with the -g flag.

1.5 Overview of the Two Debugger Interfaces
The debugger has the following user interface options to accommodate different
needs and debugging styles:

• The debugger has a window interface for workstations. This window
interface can be accessed from CDE (Common Desktop Environment) or
from Motif. See the CDE User’s Guide for more information about CDE.
When using this interface, you interact with the debugger by using a mouse
and pointer to choose items from menus, click on buttons, select names
in windows, and so on. The window interface provides the debugging and
convenience features that you will need most of the time.

The window interface has a command-entry prompt (in the Command
Message View of the main window) that enables you to enter debugger
commands for the following purposes:

As an alternative to using the window interface for certain operations

To do debugging tasks not available through the window interface

You can customize the window interface with many of the special features
of the debugger by modifying the push buttons and their associated
debugger commands or by adding new push buttons.

Choose Help:On Commands for online help on debugger commands or type
help at the command line.

1–4 Introduction to Debugging

• The debugger also has a command interface. With the command interface,
you accomplish your debugging tasks by typing commands at the debugger
prompt.

Introduction to Debugging 1–5

Part I
Graphical User Interface

This part describes the debugger’s window interface.

2
Introduction to the Ladebug Debugger:

Graphical User Interface

This chapter introduces the Ladebug debugger graphical user interface and
provides the following information:

• An orientation to the debugger’s screen features, such as windows, menus,
and so on (Section 2.2)

• Instructions for using context-sensitive pop-up menus (Section 2.3)

• Instructions for entering debugger commands at the command-entry
prompt (Section 2.4)

• Instructions for accessing online help (Section 2.5)

For information about starting a debugger session, see Chapter 3. For
information about using the debugger, see Chapter 4. For information about
advanced debugging techniques, see Chapter 5.

2.1 Convenience Features
This section highlights some of the convenience features of the debugger’s
window interface. Figure 2–1 gives visual details of the Main Window.

Introduction to the Ladebug Debugger: Graphical User Interface 2–1

Figure 2–1 Default Main Window Configuration

Command Message
View

Banner

Menu Bar

Source View

Push−Button
Panel

Source View
Context Panel

Call Stack
Menu

Source View
The Source View is used for examining the source code of an object. The
source-code display in the Source View is automatically updated to show where
program execution is currently paused. The Source View has a line number
area for setting breakpoints. You can enable and disable the display of line
numbers.

A source browser feature lists the images, modules, and routines of your
program and lets you display source code in arbitrary modules or routines
and set breakpoints on routines. By double clicking on image and module
names, you can list the underlying hierarchy of modules and routines. See
Section 4.1.1 for more information about the source browser.

2–2 Introduction to the Ladebug Debugger: Graphical User Interface

Source View Context Panel
The Source View Context Panel has pull-down menu buttons that allow the
user to select a process or thread to be displayed in the Source View or to
replace the currently displayed process or thread with a different process or
thread.

The Source View Context Panel has three option menu buttons:

• The Process menu lists the available processes (processes the debugger
knows about)

• The Thread menu lists the threads within the current process. If the
current process has only one thread, the thread menu button is blank.

• The Call Stack menu lists the sequence of routine calls currently on the
Call Stack.

See Chapter 5 for more information about using the current process and
thread.

Command Message View
The Command Message View, located directly under the push-button panel in
the Main Window, displays user commands and debugger output.

Breakpoints
A breakpoint is a location in your program at which you want execution
to stop so that you can perform actions such as checking the current value
of a variable or stepping into a routine. You set, deactivate, and activate
breakpoints by clicking on buttons next to the source lines in the main window
or the instruction window.

Optionally you can set, deactivate, or activate breakpoints by selecting items
in window pull-down menus, context-sensitive menus, or dialog boxes. You can
set conditional breakpoints or action breakpoints. See Section 4.4 for more
information about breakpoints.

Push-Button Panel
Push buttons in the push-button panel control common operations: by clicking
on a button, you can start execution, step to the next source line, display the
value of a variable selected in a window, interrupt execution, and so on.

You can modify, add, remove, and resequence buttons and the associated
debugger commands. See Section 4.9.3 for more information about customizing
the push-button panel.

Introduction to the Ladebug Debugger: Graphical User Interface 2–3

Context-Sensitive Pop-Up Menus
Context-sensitive pop-up menus in debugger windows and views list common
operations associated with your location: when you click on MB3, the menu
lists actions for the text you have selected, the source line at which you are
pointing, or the window pane in which you are working. For more information
about using context-sensitive pop-up menus (see Section 2.3).

Displaying and Manipulating Data
To display the value of a variable or expression, you select text from the main
window and click on the Print button. If you choose, you can display values in
different type or radix formats.

Run/Rerun Program
You can rerun the same program or run another program from the same
debugging session without exiting the debugger. When rerunning a program,
you can choose to save the current state (activated or deactivated) of
breakpoints.

Optional Views
Optional Views include several context-related views. The Optional View
Window also contains process and thread visual cues (indicators), which show
the currently active process or thread (see Chapter 5).

Optional Views include:

• Breakpoint

• Instruction

• Register

• Monitor

• Local Variables

These views are described in more detail in Section 2.2.2.

Debugger I/O Window
The Debugger I/O Window displays user input and program output for
interactive programs. This isolates program I/O from debugger I/O, which
appears in the Command Message View.

A Debugger I/O Window displays by default if you invoke the debugger in any
of the following ways:

• If you invoke the debugger within DEC FUSE.

• If you invoke the debugger from the command line using the -iow option.

\

2–4 Introduction to the Ladebug Debugger: Graphical User Interface

If you invoke the debugger within CDE, by default a terminal window opens to
display I/O.

Integration with Command Interface
The debugger’s window interface is layered on, and closely integrated with, the
command-driven debugger as follows:

• When you use the window interface, the resulting commands are echoed in
the Command Message View so that you can correlate input to and output
from the debugger.

• When you enter commands at the prompt, they update the window views
accordingly.

Integration with the Source-Level Editor
After you locate an error in your source code, you do not need to exit the
debugger to edit your source code. You can display the source code in an editor
window, search and replace text, or add additional text.

Customization
You can modify the following and other aspects of the debugger’s window
interface and save the current settings in a resource file to customize your
debugger startup environment:

• Configuration of windows and views (for example, size, screen location,
order)

• Push-button labels and associated debugger commands, including adding
and removing buttons and commands

Online Help
You can get context-sensitive online help for the debugger’s window interface.
You can also display reference pages for debugger commands. For more
information about getting online help, see Section 2.5.

2.2 Debugger Windows and Menus
The following sections describe the debugger windows, menus, views, and other
screen features.

Introduction to the Ladebug Debugger: Graphical User Interface 2–5

2.2.1 Default Main Window Configuration
By default at startup, the debugger displays a Main Window which consists of:

• Banner

• Menu Bar (see Section 2.2.1.1)

• Source View (see Section 2.2.1.2)

• Source View Context Panel (see Section 2.2.1.3)

Process menu

Thread menu

Call Stack menu

• Push-button panel (see Section 2.2.1.4)

• Command Message View (see Section 2.2.1.5)

The Main Window is shown in Figure 2–1.

When you start the debugger as explained in Section 3.1, the Source View is
initially empty. Figure 2–1 shows the Source View after a program has been
brought under debugger control (by directing the debugger to run a specific
image, in this example, eightqueens).

You can customize the startup configuration to your preference as described in
Section 4.9.1.

2.2.1.1 Menus on the Main Window
Figure 2–2 and Table 2–1 show and describe the menus on the Main Window.

2–6 Introduction to the Ladebug Debugger: Graphical User Interface

Figure 2–2 Menus on the Main Window

Introduction to the Ladebug Debugger: Graphical User Interface 2–7

Table 2–1 Menus on the Main Window

Menu Item Description

File Run New
Program...

Brings a program under debugger control by
specifying an executable image.

Rerun Same
Program...

Reruns the previous program under debugger
control.

Browse Source... Displays the source code in any module of your
program. You may set breakpoints on routines.

Display Line
Numbers

Displays or hides line numbers in the source display.

Exit Debugger Ends the debugging session, terminating the
debugger.

Edit Cut Cuts selected text from the window and copies it to
the clipboard.

Copy Copies selected text from the window to the
clipboard without removing it from the window.

Paste Pastes text from the clipboard to a text-entry field
or region.

Views Manage Views... Displays a dialog box which you can use to manage
all the views.

Breakpoint View Toggles the Breakpoint View.

Instruction View Toggles the Instruction View.

Register View Toggles the Register View.

Monitor View Toggles the Monitor View.

Local Variables
View

Toggles the Local Variables View.

Commands Print... Prints the current value of a variable or expression.

Assign... Changes the value of a variable.

Edit File Opens the editable source file with the current file
displayed.

Attach to Process... Replace the currently active process with a selected
process, leaving the previous process under
debugger control.

Detach from
Process...

Allows you to detach from a previously attached
process.

(continued on next page)

2–8 Introduction to the Ladebug Debugger: Graphical User Interface

Table 2–1 (Cont.) Menus on the Main Window

Menu Item Description

Options Customize... Modifies, adds, removes, or resequences a button in
the push-button pane and the associated debugger
command.

Save Options Saves the customizations that you have made for
use in subsequent debugger sessions.

Help On Context Provides context-sensitive help.

On Window Provides information about the main window.

On Help Provides information about the online help system.

On Version Provides the current version of the debugger.

On Commands Provides information about debugger commands.

2.2.1.2 Source View
The Source View in the Main Window shows the following:

• Source display of the code you are debugging and, optionally, the line
numbers to the left of the code. (To choose not to display line numbers,
select File:Display Line Numbers.

• Breakpoint toggles allow you to activate or deactivate breakpoints on
specific source lines or routines in your program.

• Current location pointer to the left of the breakpoint toggles, which points
to the line of source code that will be executed when program execution
resumes.

The portion of the source display pane containing the breakpoint toggles and
current location pointer is referrred to as the annotation area.

For more information about displaying source code, see Section 2.2.1.1 and
Section 4.1.

2.2.1.3 Source View Context Panel
Figure 2–3 and Table 2–2 show and describe the menu buttons on the Source
View Context Panel of the Main Window.

Introduction to the Ladebug Debugger: Graphical User Interface 2–9

Figure 2–3 Menu Buttons on Source View Context Panel

Table 2–2 Source View Context Panel

Button Function

Process Allows the user to detach the Source View from the current process
and to attach it to a different process (see Chapter 5).

Thread Allows the user to detach the Source View from the current thread
and to attach it to a different thread (see Chapter 5).

Call Stack Identifies the routine where execution is stopped. This menu lists
the sequence of routine calls currently on the stack and lets you set
the scope for source display and symbol searches to any routine on
the stack (see Section 4.6.1).

2.2.1.4 Push-Button Panel
Figure 2–4 and Table 2–3 show and describe the default push buttons in the
push-button panel. You can modify, add, remove, and resequence buttons and
their associated commands as explained in Section 4.9.3.

Figure 2–4 Default Buttons in the Push-Button Panel

Table 2–3 Default Buttons in the Push-Button Panel

Button Description

Interrupt Interrupts program execution or a debugger operation without ending
the debugging session.

(continued on next page)

2–10 Introduction to the Ladebug Debugger: Graphical User Interface

Table 2–3 (Cont.) Default Buttons in the Push-Button Panel

Button Description

Monitor In the Monitor View, displays the name and current value of a variable
that you have selected in a window. Whenever the debugger regains
control from your program, it automatically checks the variable and
updates the displayed value accordingly.

Print In the Command Message View, displays the current value of a variable
whose name you have selected in a window.

Next Executes the program one step unit of execution. By default, this is one
executable line of source code.

Step When execution is suspended at a routine call statement, moves
execution into the called routine just past the start of the routine. If
not at a routine call statement, this push button has the same behavior
as the Next push button.

Return Executes the program directly to the end of the current routine.

Continue Starts or resumes execution from the current program location.

2.2.1.5 Command Message View
The Command Message View, located directly under the push-button panel in
the main window, displays any debugger output. Examples of such output are:

• The result of a debugger operation.

• Diagnostic messages.

• Command echo. The debugger translates your window input into
commands. The command echo enables you to correlate your input with
the corresponding command line that the debugger processes.

The Command Message View has a command-entry prompt (ladebug) that
enables you to enter commands as explained in Section 2.4.

2.2.2 Optional Views Window
Table 2–4 lists the optional views. They are accessible from either the Views
menu on the Main or the Optional Views Window.

Introduction to the Ladebug Debugger: Graphical User Interface 2–11

Table 2–4 Optional Views

View Description

Breakpoint Lists all breakpoints that are currently set and identifies those which
are activated, deactivated, or qualified as conditional breakpoints. The
Breakpoint View also allows you to modify the state of each breakpoint
(see Section 4.4).

Monitor Lists variables whose values you want to monitor as your program
executes. The debugger updates the values whenever it regains control
from your program (for example, after a step or at a breakpoint). If you
choose, you can also change the values of variables (see Section 4.5.3.3).

Local
Variables

Lists local variables and parameters passed to a routine. If you change
the Call Stack level, this view is updated to show the variables at the
routine in the given stack. When a new routine is detected at the top
of the stack, all variables for the previous routine are removed and
variables for the new routine are displayed, (see Section 4.5.4.1).

Register Displays the current contents of all machine registers. The debugger
updates the values whenever it regains control from your program. The
Register View also enables you to change the values in registers (see
Section 4.7).

Instruction Displays the decoded instruction stream of your program and allows
you to set breakpoints on instructions. By default, the debugger
displays the corresponding source-code line numbers to the left of
the instructions. You can choose to suppress these, if you wish (see
Section 4.8).

All views by default are not displayed at startup.

You can move and resize all windows. You can also save a particular
configuration of the windows and views so that it is set up automatically
when you restart the debugger (see Section 4.9.1).

Figure 2–5 shows the Breakpoint View.

Figure 2–5 Breakpoint View

2–12 Introduction to the Ladebug Debugger: Graphical User Interface

Figure 2–6 shows the Monitor View.

Figure 2–6 Monitor View

Figure 2–7 shows the Register View.

Figure 2–7 Register View

Introduction to the Ladebug Debugger: Graphical User Interface 2–13

Figure 2–8 shows the Instruction View.

Figure 2–8 Instruction View

Figure 2–9 shows the Local Variables View.

Figure 2–9 Local Variables View

2–14 Introduction to the Ladebug Debugger: Graphical User Interface

2.2.2.1 Menus on Optional Views Window
Figure 2–10 shows the menus in the Optional Views Window.

Figure 2–10 Menus on Optional Views Window

Introduction to the Ladebug Debugger: Graphical User Interface 2–15

Table 2–5 describes the menus in the Optional Views Window.

Table 2–5 Menus in Optional Views Window

Menu Item Description

File Exit Debugger Ends the debugging session, terminating the debugger.

Views Manage Views... Allows you to manage all views.

Breakpoint View Toggles the Breakpoint View.

Instruction View Toggles the Instruction View.

Register View Toggles the Register View.

Monitor View Toggles the Monitor View.

Local Variables
View

Toggles the Local Variables View.

Break Activate All Activates any previously deactivated breakpoints (see
Section 4.4.4).

Deactivate All Deactivates any previously activated breakpoints (see
Section 4.4.4).

Delete All... Removes all breakpoints from the debugger’s
breakpoint list and from the Breakpoint View (see
Section 4.4.4).

Toggle Toggles a breakpoint (see Section 4.4.4).

Set/Modify... Sets a new breakpoint, optionally associated with a
particular condition or action, at a specified location.
(See Section 4.4.5 and Section 4.4.6).

Delete Deletes an individual breakpoint (see Section 4.4.4).

Monitor Assign... Changes the value of a monitored element.

Typecast Uses the submenu to typecast output for a selected
variable to int, long, short, or char*.

Change Radix Uses the submenu to change the output radix for a
selected variable to hex, octal, or decimal.

Change All Radix Uses the submenu to change the output radix for
all subsequent monitored elements to hex, octal, or
decimal.

Remove Removes an element from the Monitor View.

Register Modify... Changes the value of a selected register (see
Section 4.7).

(continued on next page)

2–16 Introduction to the Ladebug Debugger: Graphical User Interface

Table 2–5 (Cont.) Menus in Optional Views Window

Menu Item Description

Change Radix Uses the submenu to change current and previous
output for selected register to hex, octal, or decimal.

Change All Radix Uses the submenu to change current and previous
output for all registers to hex, octal, or decimal.

Options Customize... Modifies, adds, removes, or resequences a button in
the push-button panel and the associated debugger
command (see Section 4.9.1).

Save Options... Saves the current settings of all window features of
the debugger that you can customize interactively, such
as the configuration of the windows and views, button
definitions, and so on. These settings are observed
when you subsequently start up the debugger (see
Section 4.9.1).

Help On Context Provides context-sensitive help (see Section 2.5).

On Window Provides information about the Optional Views Window.

On Help Provides information about the online help system.

On Version Provides the current version of the debugger.

On Commands Provides information about debugger commands.

2.2.2.2 Menus on Instruction View
Figure 2–11 shows the menus in the Instruction View.

Introduction to the Ladebug Debugger: Graphical User Interface 2–17

Figure 2–11 Menus on Instruction View

Table 2–6 describes the menus on the Instruction View.

Table 2–6 Menus on Instruction View

Menu Item Description

File Show Instruction
Addresses

Displays the address associated with each instruction
listed in the Instruction View.

Display Line
Numbers

Displays the line number of your source-code program
associated with each instruction or set of instructions
listed in the Instruction View.

Edit Copy Copies text you have selected in the window to the
clipboard without removing it from the window. To
paste your text from the clipboard to a text-entry field
or region, choose Edit:Paste item on the main window.

(continued on next page)

2–18 Introduction to the Ladebug Debugger: Graphical User Interface

Table 2–6 (Cont.) Menus on Instruction View

Menu Item Description

Break Activate All Activates any previously set breakpoints.

Deactivate All Deactivates any previously set breakpoints.

Delete All... Removes all breakpoints from the debugger’s
breakpoint list and from the Instruction View.

Set... Sets an individual breakpoint (see Section 4.4.5 and
Section 4.4.6.)

Help On Context Provides context-sensitive help (see Section 2.5).

On Window Provides information about the Instruction View.

On Help Provides information about the online help system.

On Version Provides the current version of the debugger.

On Commands Provides information about debugger commands.

2.3 Using Context-Sensitive Pop-Up Menus
Context-sensitive pop-up menus in debugger windows and views list common
operations associated with your location: when you click MB3, the menu
lists actions for the text you have selected, the source line at which you are
pointing, or the window pane in which you are working.

2.3.1 Source View Pop-Up Menu
To use pop-up menus in the source view, select text or position your mouse
pointer in the source display, and press MB3. A pop-up menu appears with the
items in Table 2–7. The debugger inserts the selected text or line number in
the menu items of the pop-up menu.

Table 2–7 Source View Pop-Up Menu

Menu Item Description

Print [selection] Evaluates the selected expression and prints its
value in the Command Message View.

Monitor [selection] Inserts the selected expression in the monitor list of
the Monitor View.

Assign [selection] Provides the Assign dialog box.

(continued on next page)

Introduction to the Ladebug Debugger: Graphical User Interface 2–19

Table 2–7 (Cont.) Source View Pop-Up Menu

Menu Item Description

Stop in Routine [selection] Sets a breakpoint on a selected routine name.

Toggle Breakpoint at Line
[line number]

Activates/deactivates a breakpoint at the mouse
pointer.

Temporary Breakpoint at Line
[line number]

Sets a temporary breakpoint at the mouse pointer.

Go until Line [line number] Sets a breakpoint and executes until [line number]
is reached.

Go to Line [line number] Branches to a specified line without executing
source code between the line at which execution is
suspended and the specified line.

Next Steps to the next line by stepping over routine calls.

Continue Resumes execution of the program.

2.3.2 Annotation Area Pop-Up Menu
The annotation area is at the left side of the source pane and contains the
breakpoint toggles and current location pointer. If you press MB3 while your
mouse pointer rests in the annotation area of the source pane, a pop-up menu
with the items in Table 2–8 appears.

Table 2–8 Annotation Area Pop-Up Menu

Menu Item Description

Set/Modify Breakpoints... Displays a dialog box you can use to activate or
deactivate a breakpoint and modify the breakpoint
attributes (location, condition, or action).

Toggle Breakpoint at Line
[line number]

Activates/deactivates a breakpoint at the mouse
pointer.

Temporary Breakpoint at Line
[line number]

Sets a temporary breakpoint at the mouse pointer.

Go until Line [line number] Sets a temporary breakpoint and executes until
[line number] is reached.

Go to Line [line number] Branches to a specified line without executing
source code between the line at which execution is
suspended and the specified line.

(continued on next page)

2–20 Introduction to the Ladebug Debugger: Graphical User Interface

Table 2–8 (Cont.) Annotation Area Pop-Up Menu

Menu Item Description

Next Steps to the next line by stepping over routine calls.

Continue Resumes execution of the program.

2.3.3 Command Message View Pop-Up Menu
If you press MB3 while your mouse pointer rests in the Command Message
View, a pop-up menu with the items in Table 2–9 appears.

Table 2–9 Message Region Pop-Up Menu

Menu Item Description

Repeat Command [last
command]

Reenters your last command.

Clear Command Line Clears the command line.

Next Steps to the next line by stepping over routine calls.

Continue Resumes execution of the program.

2.3.4 Browse Source Pop-Up Menu
If you press MB3 while your mouse pointer rests in the Browse Source dialog
box, a pop-up menu with the items in Table 2–10 appears.

Table 2–10 Source Browser Pop-Up Menu

Menu Item Description

Expand Expands the selected image or module to include
its component modules or functions in the Source
Browser display.

Collapse Collapses an expanded image, module, or function
display.

Set Breakpoint Sets a breakpoint on the selected function.

Next Steps to the next line by stepping over routine calls.

Continue Resumes execution of the program.

Introduction to the Ladebug Debugger: Graphical User Interface 2–21

2.3.5 Breakpoint View Pop-Up Menu
If you position your mouse pointer in the breakpoint list or annotation area
of the Breakpoint View and press MB3, a pop-up menu with the items in
Table 2–11 appears.

Table 2–11 Breakpoint View Pop-Up Menu

Menu Item Description

Toggle Toggles a selected breakpoint.

Set/Modify... Provides the Set/Modify Breakpoint dialog box,
which contains information about a selected
breakpoint.

Delete Deletes a selected breakpoint.

Next Steps to the next line by stepping over routine calls.

Continue Resumes execution of the program.

2.3.6 Monitor View and Local Variables View Pop-Up Menu
If you position your mouse pointer in the Monitor View or Local Variables View
and press MB3, a pop-up menu with the items in Table 2–12 appears.

Table 2–12 Monitor View and Local Variables View Pop-Up Menu

Menu Item Description

Monitor When selected from the Monitor View, this menu
item has no effect. When selected from the Local
Variables View, inserts the selected expression in
the monitor list of the Monitor View.

Expand Expands a monitored aggregate to show its
members.

Collapse Collapses an expanded aggregate.

Typecast–> Provides the list of type choices for modifying
values.

Change Radix–> Provides the list of radix choices for modifying
values.

Next Steps to the next line by stepping over routine calls.

2–22 Introduction to the Ladebug Debugger: Graphical User Interface

2.3.7 Register View Pop-Up Menu
If you position your mouse pointer in the Register View and press MB3, a
pop-up menu with the items in Table 2–13 appears.

Table 2–13 Register View Pop-Up Menu

Menu Item Description

Change Radix–> Provides a list of radix choices for modifying values.

Next Steps to the next line by stepping over routine calls.

Continue Resumes execution of the program.

2.3.8 Instruction View Pop-Up Menu
If you position your mouse pointer in the Instruction View and press MB3, a
pop-up menu with the items in Table 2–14 appears.

Table 2–14 Instruction View Pop-Up Menu

Menu Item Description

Print [selection] Evaluates the selected text and prints its value in
the Command Message View.

Toggle Breakpoint [line number] Toggles the breakpoint at your mouse pointer
location.

Next Steps to the next line by stepping over routine calls.

Continue Resumes execution of the program.

The annotation area of the Instruction View contains the breakpoint toggles.
If you press MB3 while your mouse pointer rests in the annotation area of the
Instruction View, a pop-up menu with the items in Table 2–15 appears.

Table 2–15 Instruction View Annotation Area Pop-Up Menu

Menu Item Description

Toggle Breakpoint [address
number]

Toggles the breakpoint at your mouse pointer
location.

Next Steps to the next line by stepping over routine calls.

(continued on next page)

Introduction to the Ladebug Debugger: Graphical User Interface 2–23

Table 2–15 (Cont.) Instruction View Annotation Area Pop-Up Menu

Menu Item Description

Continue Resumes execution of the program.

2.4 Entering Commands at the Prompt
The debugger command-entry prompt, (ladebug) is located in the Command
Message View. The command-entry prompt:

• Echoes the command equivalent for each mouse action you make in the
window interface.

• Accepts debugger command or internal commands that you choose to enter
for the following purposes:

As an alternative to using the window interface

Because command functionality has no window interface equivalent

Figure 2–12 shows an example of the run command entered at the prompt.

Figure 2–12 Command Prompt

For more information about bringing a program under debugger control from
the prompt, see Section 7.1.2.

When you use the window interface, it translates your input into debugger
commands. These commands are echoed in the Command Message View,
at the prompt, so that you can correlate your input with the corresponding
command line that the debugger processes. Echoed commands are visually
indistinguishable from commands that you enter explicitly.

Choose Help:On Commands for online help on debugger commands or type
help at the command line. For more information about displaying online help,
see Section 2.5.

In addition to entering debugger commands interactively at the prompt, you
can:

• Recall previously entered commands, using the Up and Down arrow keys.

2–24 Introduction to the Ladebug Debugger: Graphical User Interface

• Execute commands in debugger initialization files and command files for
noninteractive execution.

• Assign commands to new push buttons you define for the debugger’s
push-button panel. This option allows you to add debugger features of your
choice to the window interface.

See Part V, Command Reference for information about Ladebug engine
commands with no exact mouse action equivalent.

2.5 Displaying Online Help About the Debugger
The following types of online help about the debugger and debugging are
available during a debugging session:

• Context-sensitive help—information about an area or object in a window or
dialog box (Section 2.5.1)

• Command-oriented help–information on debugger commands (Section 2.5.2)

2.5.1 Displaying Context-Sensitive Help
Context-sensitive help is information about an area or object in a window or a
dialog box.

To display context-sensitive help:

1. Choose Help:On Context in a debugger window. The pointer shape changes
to a question mark (?).

2. Place the question mark on an object or area in a debugger window or
dialog box.

3. Click on MB1. Help for that area or object is displayed in a Help window.

To display context-sensitive help for a dialog box, you can also click on the Help
button in the dialog box.

2.5.2 Displaying Command-Oriented Help
You can display help about debugger commands using the following methods:

• Choose Help:On Commands on the main or optional views window.

• Enter help at the command-entry prompt to display common Ladebug
commands.

Introduction to the Ladebug Debugger: Graphical User Interface 2–25

3
Starting and Ending a Debugging Session:

Graphical User Interface

The sections in this chapter are:

• Starting the debugger from within CDE (Section 3.1)

• Starting the debugger from a command-line prompt. (Section 3.2)

• When your program completes execution (Section 3.3)

• Rerunning the same program from the current debugging session
(Section 3.4)

• Running another program from the current debugging session (Section 3.5)

• Interrupting program execution and aborting debugger operations
(Section 3.6)

• Ending a debugging session (Section 3.7)

3.1 Starting the Debugger from Within CDE
The debugger is integrated with the common UNIX desktop user environment,
CDE (Common Desktop Environment). For more information about using
CDE, see the CDE User’s Guide. This section explains the most common ways
to start the debugger from within this environment. Section 3.2 explains
optional ways to start the debugger.

To start the debugger and bring your program under debugger control:

1. From the CDE Front Panel, click on the Application Manager icon
(Figure 3–1).

Starting and Ending a Debugging Session: Graphical User Interface 3–1

Figure 3–1 CDE Application Manager Icon

2. From the CDE Application Manager group window, double click on the
Developer’s Toolkit icon (Figure 3–2) to open the Developer’s Toolkit group.

You can move icons from the Developer’s Toolkit group into another group
or to the front of the Control Panel depending on your preference. See the
CDE User’s Guide for more information.

Figure 3–2 CDE Developer’s Toolkit Icon

DT

3. From the Developer’s Toolkit group, double click on the Ladebug icon
(Figure 3–3).

Figure 3–3 CDE Ladebug Icon

To access the Ladebug release notes, double click on the README.Ladebug
icon.

3–2 Starting and Ending a Debugging Session: Graphical User Interface

4. When you double click on the Ladebug icon, a dialog box appears in which
you can enter the name of the executable file you want to debug. You can
drag an executable file from the CDE File Manager into the dialog box
space for file name.

Alternatively, you can drag an executable file from the CDE File Manager
onto the Ladebug icon in the Developer’s Toolkit group to start the
debugger using that executable.

If you do not specify a file to debug, click on OK and the debugger starts up
as shown in Figure 3–4. The Main Window remains empty until you bring
a program under debugger control (see step 6). Upon startup, the debugger
executes any user-defined initialization file.

Figure 3–4 Debugger Window at Startup

5. Bring a specified program under debugger control by using the following
steps:

a. Choose File:Run New Program... on the Main Window. The Run New
Program dialog box appears, listing the files in your working directory

Starting and Ending a Debugging Session: Graphical User Interface 3–3

(see Figure 3–5). Figure 3–5 shows the Run New Program dialog box
as it appears if the debugger is not invoked from within CDE. If you
invoke the debugger from within CDE, this dialog box displays "Enter
path or folder name" in place of "Filter", and an additional window
section entitled "Folders".

Figure 3–5 Running a Program by Specifying a Program File

b. Click on Filter to display the programs available in the subdirectory. In
Programs, click on the name of the program file to be debugged. The
program field now shows the program file name.

c. Enter any debugger options in Debugger Options: field. For more
information, see the online help about Command Options or the
ladebug (1) reference page.

d. Enter any program arguments in the Program Arguments: field.

e. Enter the name of the program core dump file in the Core File: field. If
such a core file exists in the current directory, you can use the debugger
to look at the state of the program when it failed.

3–4 Starting and Ending a Debugging Session: Graphical User Interface

f. Toggle the Set Initial Breakpoint and Run button, if necessary.

The default position for the Set Initial Breakpoint and Run toggle is
on. If the toggle is on, the debugger:

• Loads the program.

• Sets the initial breakpoint on the program’s main entry point.

• Issues the run command to execute the program to that
breakpoint.

If the toggle is off:

• The debugger loads the program. A breakpoint at the program’s
entry point is not set and execution of the program does not
commence.

• If you linked your program with the ald command or the amake
command, both of which are specific to Ada programs, the command
line will be initially case insensitive.

• You must enter a run command or press the Continue button at the
prompt to execute the program. This will cause the program to run
to completion, if you have not set any breakpoints.

The off toggle selection is useful for the following tasks:

Type of Debugger User Task

All debugger users Examine a core file.

Expert debugger users Set initial breakpoints in the command-line
or window interface.

Ada debugger users Debug Ada package elaboration routines.

g. Click on OK.

When the program is under debugger control and the Set Initial Breakpoint
and Run toggle is on, the debugger:

• Displays a terminal window if the debugger was invoked from within CDE
or a Debugger I/O Window if you specified the -iow option.

• Displays the program’s source code in the Source View, as shown in
Figure 4–1.

• Suspends execution at the program’s entry point (the start of the main
program in most languages). The current-location pointer, to the left of the
source code, shows the line whose code will be executed next.

Starting and Ending a Debugging Session: Graphical User Interface 3–5

You can now debug your program, (see Chapter 4).

3.2 Starting the Debugger from a Command-Line Prompt
You can start the debugger by specifying the program to be debugged with the
shell command. For example, you can invoke the debugger from a terminal
window and debug a program named eightqueens , by entering the following:

% dxladebug eightqueens

To display a separate Debugger I/O Window, specify the -iow option.

The source code is displayed if the module was compiled with -g .

By default, the debugger starts up as shown in Figure 4–1, executing any
user-defined initialization file. The debugger inserts a breakpoint on the
program’s entry point and runs to that point, displaying the program’s source
code in the main window. The current-location pointer (to the left of the source
code) shows the line whose code will be executed next.

You can now debug your program.

For more information about debugger startup, see Section 3.1.

3.3 When Your Program Completes Execution
When your program completes execution normally during a debugging session,
the debugger issues the following message:

Process has exited with status...

You then have the following options:

• You can rerun the same program from the same debugging session (see
Section 3.4).

• You can run another program from the same debugging session (see
Section 3.5).

• You can end the debugging session (see Section 3.7).

3–6 Starting and Ending a Debugging Session: Graphical User Interface

3.4 Rerunning the Same Program from the Current
Debugging Session

You can rerun the program currently under debugger control at any time
during a debugging session. If you modified the program (created a new
binary) during the debugging session, choosing File:Rerun Same Program will
bring the new binary under debugger control. The Rerun Same Program dialog
box appears (Figure 3–6).

Figure 3–6 Rerunning the Same Program

Enter any arguments to be passed to the program in the Arguments: field.
Choose whether to keep or not to keep the user-set breakpoints that you
previously set, activated, or deactivated (see Section 4.4). Click on OK. An
initial breakpoint will be set unless you previously turned the Set Initial
Breakpoint and Run button off in the Run New Program dialog box.

When you rerun a program, it is in the same initial state as when you first
brought it under debugger control. Any breakpoints that were set in the
program remain set. The source display and current location pointer are
updated accordingly.

After you revise the program and create a new version of the program file with
a new name, choose File:Run New Program... in the main window to bring the
new version under debugger control.

3.5 Running Another Program from the Current Debugging
Session

You can bring another program under debugger control at any time during
a debugging session, if you started the debugger as explained in Section 3.1.
Follow the procedure in that section to bring another program under debugger
control.

Starting and Ending a Debugging Session: Graphical User Interface 3–7

3.6 Interrupting Program Execution and Aborting Debugger
Operations

To interrupt program execution or to abort a debugger operation during a
debugging session, click on the Interrupt button on the push-button panel (see
Figure 2–4). This is useful if, for example, the program is in an infinite loop.

Clicking on Interrupt does not end the debugging session. Clicking on
Interrupt has no effect when the program is not running nor does it have any
affect when the debugger is not performing an operation. Click on Continue to
resume program execution.

3.7 Ending a Debugging Session
To end a debugging session and terminate the debugger, choose File:Exit
Debugger on the main window or enter quit from the command prompt. This
returns control to system level.

To run another program from the current debugging session, see Section 3.5.

3–8 Starting and Ending a Debugging Session: Graphical User Interface

4
Using the Debugger: Graphical User

Interface

This chapter explains how to:

• Display the source code of your program (Section 4.1)

• Edit your program under debugger control (Section 4.2)

• Execute your program under debugger control (Section 4.3)

• Suspend execution with breakpoints (Section 4.4)

• Examine and manipulate program variables (Section 4.5)

• Access program variables (Section 4.6)

• Display and modify values stored in registers (Section 4.7)

• Display the decoded instruction stream of your program (Section 4.8)

• Customize the debugger’s window interface (Section 4.9)

The chapter describes window actions and window menu choices, but you
can perform most common debugger operations by choosing items from
context-sensitive pop-up menus. To access these menus, click on MB3 while
the mouse pointer is in the window area.

You can also enter commands at the command-entry prompt. For information
about entering debugger commands, see Section 2.4.

4.1 Displaying the Source Code of Your Program
By default, the debugger’s Main Window displays the source code of your
program (see Figure 4–1).

Using the Debugger: Graphical User Interface 4–1

Figure 4–1 Source Display

Whenever execution is suspended (at a breakpoint for example), the debugger
updates the source display by displaying the code that surrounds the point at
which execution is paused. The current-location pointer to the left of the source
code marks the line whose code will execute next. (A source line corresponds
to one or more programming-language statements, depending on the language
and coding style.)

By default, the debugger displays line numbers to the left of the source code.
These numbers help you identify breakpoints that are listed in the Breakpoint
View (see Section 4.4.3). You can choose not to display line numbers. To
hide or display line numbers, choose File:Display Line Numbers on the Main
Window.

The current-location pointer is normally filled in as shown in Figure 4–1.
The current-location pointer is cleared if the displayed code is not that of the
routine in which execution is paused.

4–2 Using the Debugger: Graphical User Interface

You can use the scroll bars to show more of the source code. However, you can
scroll vertically through only one module of your program at a time.

The following sections explain how to display source code for other parts of
your program so that you can set breakpoints in various modules. Section 4.1.2
explains what to do if the debugger cannot find source code for display.
Section 4.6.1 explains how to display the source code associated with routines
that are currently active on the call stack.

After you navigate the Main Window, you can redisplay the location at which
execution is paused by clicking on the top item in the Call Stack menu.

If your program was optimized during compilation, the source code displayed
might not reflect the actual contents of some program locations.

4.1.1 Displaying Source Code Contained in Another Module
To display source code contained in another module or source file:

1. Choose File:Browse Source... on the Main Window. The Browse Source
dialog box appears listing your program file. See Figure 4–2.

2. Double click on the image to get a list of modules.

3. Double click on the name of the module or source file containing the routine
of interest. The names of the program’s modules are displayed (indented)
under the file name, and the Display Source button is now highlighted.

4. Click on the name of the module whose source code you want to display.

5. Click on Display Source. The source display in the Main Window now
displays the module’s source code.

Section 4.6.1 describes an alternative way to display routine source code for
routines currently active on the call stack using the Call Stack menu.

The Browse Source dialog box displays information in a hierarchical form
about all the binary files in your application. For each binary file, it displays
information about the modules contained in the binary. For each module, a list
of routines in that module can be displayed.

You can manipulate the Browse Source display by clicking on menu items in
the Browse Source pop-up menus.

Using the Debugger: Graphical User Interface 4–3

Figure 4–2 Displaying Source Code in Another Routine

4.1.2 Making Source Code Available for Display
In certain cases, the debugger cannot display source code. Possible causes are:

• The source file has not been compiled with the -g compiler option.

• Execution might be paused within a system or library routine for which
no symbolic information is intended to be available. In such cases you
can quickly return execution to the calling routine by clicking one or
more times on the Return push button on the push-button panel (see
Section 4.3.5).

• The source file might have been moved to a different directory after it was
compiled. Section 4.1.3 explains how to tell the debugger where to look for
source files.

If the debugger cannot find source code for a display, it tries to display the
source code for the next routine on the call stack for which source code is
available. If the debugger can display source code for such a routine, the
current-location pointer is cleared. The pointer then marks the source line to
which execution returns in the calling routine.

4.1.3 Specifying the Location of Source Files
Information about the characteristics and the location of source files is
embedded in the debug symbol table of your program. If a source file has been
moved to a different directory since compile time, the debugger might not find
the file. To direct the debugger to your source files, enter the use [directory]
command at the command-entry prompt.

4–4 Using the Debugger: Graphical User Interface

4.2 Editing Your Program
The debugger provides a simple text editor you can use to edit your source files
while debugging your program (Figure 4–3).

Figure 4–3 Editor Window

eightqueens.c

To invoke the editor, choose Commands:Edit File on the Main Window.
By default, the editor window displays an empty text buffer, called
dbg_editor_main . However, if you are debugging a program when you
invoke the editor, the editor window displays this program, names the filled
text buffer with its file specification, and places dbg_editor_main on the buffer
menu at the upper right corner as an alternative text buffer.

The editor allows you to create any number of text buffers by choosing
File:New (for empty text buffers) or File:Open (for existing files). The name of
each text buffer appears in the buffer menu. You can cut, copy, and paste text
across buffers by choosing items from the Edit menu and selecting buffers from
the buffer menu.

You can perform forward and backward search and replace operations by
entering strings in the Find text and Replace with entry boxes and clicking on
a directional arrow.

Using the Debugger: Graphical User Interface 4–5

If you continue to click on a directional arrow, or if you continue to press
the Return key, a repeated search for the string occurs in the direction you
indicate.

You can also continue a search by choosing the Edit:Find/Replace Next or
Edit:Find/Replace Previous.

When you complete your edits, save these to your file by choosing the File:Save
or File:Save As. Then recompile and relink your source file so the changes will
take effect.

4.3 Executing Your Program
This section explains how to:

• Determine where execution is currently paused within your program
(Section 4.3.1)

• Start or resume program execution (Section 4.3.2)

• Execute the program one source line at a time, step by step (Section 4.3.3)

• Step into a called routine (Section 4.3.4)

• Return from a called routine (Section 4.3.5

For information about rerunning your program or running another program
from the current debugging session, see Section 3.4 and Section 3.5.

4.3.1 Determining Where Execution Is Currently Paused
To determine where execution is currently paused within your program:

1. To list the sequence of routine calls that are currently active on the call
stack, click on the Call Stack menu. Level 0 denotes the routine in which
execution is paused, level 1 denotes the calling routine, and so on.

2. If the current-location pointer is not visible in the Source View, select the
top item in the Call Stack menu. This will reset the Source View to the
location of the pointer.

3. Look at the current-location pointer:

• If the pointer is filled in, it marks the source line whose code will
execute next (see Section 4.1). The Call Stack menu always shows the
routine at level 0 (where execution is paused) when the pointer is filled
in.

4–6 Using the Debugger: Graphical User Interface

• If the pointer is cleared, the source code displayed is that of a calling
routine, and the pointer marks the source line to which execution
returns in that routine as follows:

If the Call Stack menu shows level 0 and no routine name is
displayed, source code is not available for display for the routine in
which execution is paused (see Section 4.1.2).

If the Call Stack menu shows a level other than 0, you are
displaying the source code for a calling routine (see Section 4.6.1).

4.3.2 Starting or Resuming Program Execution
To start program execution or resume execution from the current location,
click on the Continue button on the push-button panel (see Figure 2–4) or the
Continue item in the pop-up menu on the window or view of your choice.

Once started, program execution continues until one of the following occurs:

• The program completes execution.

• A breakpoint is reached.

• A signal is caught.

• You click on the Interrupt button on the push-button panel on the Main
Window.

Whenever the debugger suspends execution of the program, the source display
display is updated and the current-location pointer marks the line whose code
will execute next.

Letting your program run freely without debugger intervention is useful in
situations such as the following:

• To test for an infinite loop.

If your program does not terminate and you suspect that it is looping,
click on the Interrupt button. The source display will show where you
interrupted program execution, and the Call Stack menu will identify the
sequence of routine calls at that point (see Section 4.3.1).

Using the Debugger: Graphical User Interface 4–7

4.3.3 Executing Your Program One Source Line at a Time
To execute one source line of your program, click on the Next button on the
push-button panel or the Next pop-up menu item in the window or view of your
choice. Note that the Next button executes a routine call, but does not step
into it.

After the line executes, the source display is updated and the current-location
pointer marks the line whose code will execute next.

Executable lines have a toggle button to their left in the source pane.

Nonexecutable lines do not have a toggle button to their left in the source
pane.

Keep in mind that if you optimized your code at compilation time, the source
code displayed might not reflect the code that is actually executing (see
Section 1.4).

4.3.4 Stepping into a Called Routine
When program execution is paused at a routine call statement, clicking on
the Next push button executes the called routine in one step. The debugger
suspends execution at the next source line in the calling routine (assuming no
breakpoint was set within the called routine). "Stepping over" called routines
lets you move through the code quickly without having to trace execution. Use
the Next button to step over routines.

To "step into" a called routine so that you can execute it one line at a time:

1. Suspend execution at the routine call statement by setting a breakpoint
(see Section 4.4) and then clicking on the Continue push button on the
push-button panel.

2. When execution is paused at the breakpoint, click on the Step push button
on the push-button panel. This moves execution just past the start of the
called routine.

Once execution is within the called routine, click on the Next push button to
execute the routine line by line.

Clicking on the Step button when execution is not paused at a routine call
statement is the same as clicking on the Next push button.

4–8 Using the Debugger: Graphical User Interface

4.3.5 Returning from a Called Routine
When execution is suspended within a called routine, you can execute your
program directly to the end of that routine by clicking on the Return button
on the push-button panel on the Main Window, returning you to the calling
routine.

The Return button is particularly useful if you have inadvertently stepped into
a routine that is out of the scope of the bug you are tracking.

4.4 Suspending Execution by Setting Breakpoints
A breakpoint is a location in your program at which you want execution to stop
so that you can perform some action such as checking the current value of a
variable, stepping into a routine, etc. When using the window interface, you
can set breakpoints on:

• Specific source lines

• Specific routines (for example, functions, subprograms)

• Specific instructions (displayed in the Instruction View–see Section 4.8)

A breakpoint with no condition associated with it can be set by using the Break
menu, but it is often simpler to click on the toggle push button in the source
display.

You can also qualify breakpoints as follows:

• You can set a conditional breakpoint which triggers only when a specified
relational expression is evaluated as true.

• You can set an action breakpoint which executes one or more specified
system-specific commands when the breakpoint triggers.

You can set a breakpoint that is both a conditional and an action breakpoint.
The following sections explain these breakpoint options.

4.4.1 Setting Breakpoints on Source Lines
You can set a breakpoint on any source line that has a toggle button to its left
in the source pane. These are the lines for which the compiler has generated
executable code (for example, routine declarations, assignment statements).

To set a breakpoint on a source line:

1. Find the source line on which you want to set a breakpoint (see
Section 4.1).

Using the Debugger: Graphical User Interface 4–9

2. To set the breakpoint, do one of the following:

• Click on the toggle button to the left of that line.

• Select the Toggle Breakpoint at line [line number] item in the pop-up
menu in the annotation area or source display.

• Select the Temporary Breakpoint at line [line number] item in the
pop-up menu in the annotation area or source display.

• Select the Toggle pop-up menu item in the Breakpoint View to activate
or deactivate a selected breakpoint.

• Enter the stop at or stop in commands at the command prompt.

• Use the Source Browser.

The breakpoint is set when the button is filled in. The breakpoint is set at
the start of the source line—that is, on the first machine-code instruction
associated with that line.

Figure 4–4 shows that a breakpoint has been set on the start of line 14.

Figure 4–4 Setting a Breakpoint on a Source Line

To set a breakpoint in the Instruction View:

1. In the Instruction View, find the instruction on which you want to set a
breakpoint.

2. Click on the toggle button to the left of that line. (The breakpoint is set
when the toggle button is filled in.)

4–10 Using the Debugger: Graphical User Interface

4.4.2 Setting Breakpoints on Routines with Source Browser
The Browse Source dialog box displays hierarchical information about all the
binary files in your application. For each binary file, it displays information
about the modules contained in the binary. For each module, you can display a
list of routines in that module.

Setting a breakpoint on a routine enables you to move execution directly to the
routine and inspect the local environment.

To set a breakpoint on a routine:

1. Choose File:Browse Source... on the Main Window (see Figure 2–2). The
Browse Source dialog box appears, listing your program file.

2. Double click on the name of your program file. The names of any additional
source files required for compilation are displayed (indented) under the
program name.

3. Double click on the name of the file where you want to set a breakpoint.
The names of the routines in that file are displayed in the Routine column
(see Figure 4–5).

4. Do one of the following:

• Double click on the name of the routine on which you want to set a
breakpoint.

• Click on the name of the routine and then on the Set Breakpoint
button.

Either of these actions sets a breakpoint at the start of the routine
(directly after any prolog code).

In the source pane, the toggle button to the left of the source line that contains
the start of the routine is now filled in, confirming that the breakpoint is set.
(If the Instruction Window is open, the breakpoint will also display for the
corresponding instruction.)

Using the Debugger: Graphical User Interface 4–11

Figure 4–5 Setting a Breakpoint on a Routine

4.4.3 Identifying the Currently Set Breakpoints
There are two ways to determine which breakpoints are currently set:

• Choose Views:Manage Views... on the Main or Optional View Window.
The Manage Views dialog box appears with toggles for all the views. You
can either toggle Breakpoint View or you can select Breakpoint View
directly from the Views menu. Breakpoints are listed in the Breakpoint
View display. A filled-in button in the State column indicates that the
breakpoint is set and active. A cleared button indicates that the breakpoint
is deactivated.

Double clicking on an entry in the Breakpoint View expands the one-
line entry into a description of the action and condition (if any) that are
currently associated with the breakpoint, whether or not the breakpoint is
active or deactivated (see Figure 4–6).

• Scroll through your source or instruction code and note the lines whose
breakpoint button is filled in. This method can be time consuming and
also does not show which breakpoints were set and then deactivated (see
Section 4.4.4).

4–12 Using the Debugger: Graphical User Interface

Figure 4–6 Breakpoint View with Action and Condition

4.4.4 Deactivating, Activating, and Deleting Breakpoints
After a breakpoint is set, you can deactivate, activate, or delete it.

Deactivating a breakpoint causes the debugger to ignore the breakpoint during
program execution. However, the debugger keeps the breakpoint listed in
the Breakpoint View so that you can activate it at a later time, for example,
when you rerun the program (see Section 3.4). The following are procedures to
deactivate or activate breakpoints:

• To deactivate or activate a specific breakpoint, toggle the button for that
breakpoint in the source display, the instruction code display, or in the
Breakpoint View.

In the Breakpoint View, you can also choose Break:Toggle or press MB3, if
the breakpoint is currently activated.

• To deactivate or activate all breakpoints, choose Break:Deactivate All or
Break: Activate All on the Main, Instruction, or Optional Views Window.

When you delete a breakpoint, it is no longer listed in the Breakpoint View so
that later you cannot activate it from that list. You would have to reset the
breakpoint as explained in Section 4.4.1 and Section 4.4.2. The following are
procedures to delete breakpoints:

• To delete a specific breakpoint, choose Break:Delete on the Optional Views
Window or press MB3 from the Breakpoint pop-up menu.

• To delete all breakpoints, choose Break:Delete All... on the Main,
Instruction, or Optional Views Window.

Using the Debugger: Graphical User Interface 4–13

4.4.5 Setting and Modifying a Conditional Breakpoint
A conditional breakpoint suspends execution only when a specified expression
is evaluated as true. For example, you can specify that a breakpoint take effect
when the value of a variable in your program is 4. The breakpoint is ignored if
the value is other than 4.

The debugger evaluates the conditional expression when the breakpoint
triggers during execution of your program.

To set a conditional breakpoint:

1. Display the source or instruction line on which you want to set the
conditional breakpoint (see Section 4.1).

2. Display the Set/Modify Breakpoint dialog box in one of the following ways:

• Press Ctrl/MB1 on the button to the left of the source line, an
instruction line, or a breakpoint entry in the Breakpoint View or press
MB3 in the annotation area. This causes the Set/Modify Breakpoint
dialog box to appear, which shows the source line you selected in the
Location: field (see Figure 4–7).

• Select a breakpoint entry in the Breakpoint View on the Optional Views
window. Press MB3 to access the Breakpoint pop-up menu and choose
Set/Modify. The Set/Modify Breakpoint dialog box appears with the
location of the source line showing in the Location field.

• Choose Break:Set... (Instruction Window) or Break:Set/Modify
(Optional Views Window). When the Set/Modify dialog box appears,
enter the location in the Location field, as shown in the following
examples:

at line 10 in factorial.c
in routine seven
at address 0x01024b

3. Enter a relational expression in the Condition: field of the dialog box. The
expression must be valid in the source language. For example, a[3] = = 0 is
a valid relational expression in the C language.

4. Click on OK. The conditional breakpoint is now set. The debugger indicates
that a breakpoint is conditional by changing the shape of the breakpoint’s
button from a square to a diamond.

4–14 Using the Debugger: Graphical User Interface

Figure 4–7 Setting a Conditional Breakpoint

The following procedure modifies a conditional breakpoint; it can be used
to change the location or condition associated with an existing conditional
breakpoint, or to change an unqualified breakpoint into a conditional
breakpoint:

1. Press Ctrl/MB1 on the button to the left of a source line, an instruction
code line, or a breakpoint entry in the Breakpoint View.

2. Click on a breakpoint entry in the Breakpoint View, and choose the
Set/Modify item from the Break menu.

3. Enter a relational expression in the Condition: field of the dialog box. The
expression must be valid in the source language. For example, a[3] = = 0 is
a valid relational expression in the C language.

4. Click on OK. The conditional breakpoint is now set. The debugger indicates
that a breakpoint is conditional by changing the shape of the breakpoint’s
button from a square to a diamond.

5. Press MB3 over the breakpoint item in the Breakpoint View.

4.4.6 Setting and Modifying an Action Breakpoint
When an action breakpoint triggers, the debugger suspends execution and then
executes a specified list of commands.

To set an action breakpoint:

1. Display the source or instruction line on which you want to set the action
breakpoint (see Section 4.1).

Using the Debugger: Graphical User Interface 4–15

2. Display the Set/Modify Breakpoint dialog box in one of the following ways:

• Press Ctrl/MB1 on the button to the left of the source line, an
instruction line, or a breakpoint entry in the Breakpoint View or press
MB3 in the annotation area. This causes the Set/Modify Breakpoint
dialog box to appear, showing the source line you selected in the
Location: field (see Figure 4–7).

• Select a breakpoint entry in the Breakpoint View on the Optional Views
window. Press MB3 to access the Breakpoint pop-up menu, and choose
the Set/Modify menu item. The Set/Modify Breakpoint dialog box
appears with the location of the source line showing in the Location:
field.

• Choose the Break:Set/Modify (Optional View Window). When the
Set/Modify Breakpoint dialog box appears, enter the location in the
Location: field, as shown in the following examples:

at line 10 in factorial.c
in routine seven
at address 0x01024b

3. Enter one or more debugger commands in the Action: field of the dialog
box. For example: assign x[j]=3; step; print a;

4. Click on OK. The action breakpoint is now set (see Figure 4–8).

Figure 4–8 Setting an Action Breakpoint

4–16 Using the Debugger: Graphical User Interface

The following procedure modifies an action breakpoint; that is, it can be used
to change the command associated with an existing action breakpoint, or to
change an unqualified breakpoint into an action breakpoint:

1. Do one of the following:

• Press Ctrl/MB1 on the button to the left of a source line, an instruction
code line, or a breakpoint entry in the Breakpoint View or press MB3
in the annotation area.

• Click on a breakpoint entry in the Breakpoint View, press MB3 and
choose the Set/Modify menu item from the Breakpoint pop-up menu.

• Click on a breakpoint entry in the Breakpoint View, and choose the
Break:Set/Modify.

• Choose Break:Set/Modify from the debugger Optional View Window.
Press MB3 over the breakpoint item in the Breakpoint View.

2. Enter one or more debugger commands in the Action: field of the dialog
box. For example: assign x[j]=3; step; print a;

3. Click on OK. The action breakpoint is now modified.

4.5 Examining and Manipulating Variables
This section explains how to:

• Use available options to examine and manipulate variables (Section 4.5.1)

• Select variable names from windows (Section 4.5.2)

• Display the value of a variable (Section 4.5.3)

• Change the value of a variable (Section 4.5.4)

4.5.1 Available Options
Table 4–1 describes options available for selecting and changing variables and
values.

Using the Debugger: Graphical User Interface 4–17

Table 4–1 Available Options for Selecting and Changing Variables and Values

Option Attributes

Local Variables View

• Local variables monitored automatically by debugger. You
do not have to select names as with the Print button or
Monitor View.

• Cannot monitor global variables.

• Can expand aggregates into their components.

• Can assign new values directly in the Local Variables View.

Print button

• Must select a variable name.

• Can display values of global names or local variables.

• Must select name and press the Print button each time you
want to see the updated value.

• Shows output of the debugger in the Command Message
View.

Monitor View

• Must select a variable name.

• Can monitor global or local variables (when selected local
variables are active).

• Shows output in the Monitor View.

• Can expand aggregates into their components.

• Can assign new values directly in the Monitor View.

Print Dialog Box Allows for typecasting.

Assign Dialog Box Allows for typecasting.

4–18 Using the Debugger: Graphical User Interface

4.5.2 Selecting Variable Names from Windows
Use the following techniques to select variable names from windows.

When selecting names, follow the syntax of the source programming language:

• To specify a scalar (nonaggregate) variable, such as an integer, real,
Boolean, or enumeration type, select the variable’s name.

• To specify an entire aggregate, such as array or structure (record), select
the variable’s name.

• To specify a single element of an aggregate variable, select the entity using
the language syntax. For example:

The string arr2[7] specifies element 7 of array arr2 in the C
language.

• To specify the object designated by a pointer variable, select the entity
following the language syntax. For example, the string *int_point
specifies the object designated by pointer int_point in the C language.

Select character strings from windows in one of the following ways:

• To select a string delimited by blank spaces, use the standard window
interface word-selection technique in any window: position the pointer on
that string and then double click on MB1.

• To select an arbitrary character string, use the standard window interface
text-selection technique in any window: position the pointer on the first
character, press and hold MB1 while dragging the pointer over the string,
and then release MB1.

• You also have the option of using language-sensitive text selection in
the debugger source display. To select a string delimited by language-
dependent identifier boundaries, position the pointer on that string and
press Ctrl/MB1.

For example, suppose the source display contains the character string
arr2[m] , then:

To select arr2 , position the pointer on arr2 and press Ctrl/MB1.

To select m, position the pointer on mand press Ctrl/MB1.

Using the Debugger: Graphical User Interface 4–19

4.5.3 Displaying the Current Value of a Variable
You can display the current value of a variable or expression as described in
Table 4–1.

The following sections describe these methods.

4.5.3.1 Using the Local Variables View
In the Local Variables View, you can monitor the values of all local variables
and parameters passed to a routine, as shown in Figure 4–9.

Figure 4–9 Local Variables View

The debugger automatically displays these values. It checks and updates them
whenever the debugger regains control from your program (for example, after a
step or at a breakpoint).

To monitor a local variable or parameter using the Local Variables View, select
Views:Local Variables View or select Views:Manage Views and toggle the Local
Variables View button on the Main or Optional Views Window.

The debugger automatically lists all local variable and parameter names (in the
Monitor Expression column) and current values (in the Value/Assign column).

You cannot add or remove an entry to the local variables and parameters list.
The debugger automatically removes previous entries and adds new entries
when a new routine appears at the top of the Call Stack.

To monitor a global variable, use the Monitor View (see Section 4.5.3.3).
Section 4.5.3.3 also explains how to monitor an aggregate variable and a
pointer variable. The technique is the same whether you use the Monitor View
or the Local Variables View.

4–20 Using the Debugger: Graphical User Interface

4.5.3.2 Using the Print Button
To display the current value of a variable using the Print button:

1. Find and select the variable name or expression in a window, as explained
in Section 4.5.2.

2. Click on the Print button on the push-button panel of the Main Window.
The debugger displays the variable or expression and its current value
in the Command Message View. (This is the value of the variable or
expression in the current scope, which might not be the same as the source
location where you selected the variable name or expression.)

4.5.3.3 Using the Monitor View
When you monitor a variable, the debugger displays the value in the Monitor
View and automatically checks and updates the displayed value whenever the
debugger regains control from your program (for example, after a step or at a
breakpoint).

To monitor a variable or expression with the Monitor View:

1. Choose Views:Monitor View or Views:Manage Views... and toggle the
Monitor View button. The Monitor View appears in the Optional Views
Window (see Figure 4–10).

2. Find and select the variable name in a window, as explained in
Section 4.5.2.

3. Click on the Monitor push button on the push-button panel of the Main
Window. The debugger does the following:

a. Puts the selected variable name or expression in the Monitor
Expression column

b. Puts the current value of the variable in the Value/Assign column
or, if the variable is an aggregate, displays the full type name of the
aggregate.

Using the Debugger: Graphical User Interface 4–21

Figure 4–10 Monitoring a Variable

4.5.3.3.1 Monitoring an Aggregate (Array, Structure) Variable If you select
the name of an aggregate variable such as an array or structure (record) and
click on the Monitor push button, the debugger displays the full type name of
the aggregate in the Value/Assign column of the Monitor View. To display the
values of all elements (components) of an aggregate variable, double click on
the variable name in the Monitor Expression column.

The displayed element names are indented relative to the parent name (see
Figure 4–11). If an element is also an aggregate, you can double click on its
name to display its elements.

Figure 4–11 Expanded Aggregate Variable (Array) in Monitor View

To collapse an expanded display so that only the aggregate parent name is
shown in the Monitor View, double click on the name in the Monitor Expression
column.

If you have selected a component of an aggregate variable, and the component
expression is itself a variable, the debugger monitors the component that
was active when you made the selection. For example, if you select the array
component arr[i] and the current value of i is 9, the debugger monitors
arr[9] even if the value of i subsequently changes to 10.

4–22 Using the Debugger: Graphical User Interface

If the aggregate is a local variable, you can also use the Local Variables View
to monitor the aggregate.

4.5.3.3.2 Monitoring a Pointer (Access) Variable If you select the name of
a pointer (access) variable and click on the Monitor push button, the debugger
displays the address and value of the referenced object in the Value/Assign
column of the Monitor View (see Figure 4–12).

If a referenced object is an aggregate, you can double click on its name to
display its elements.

If the pointer is local, you can also use the Local Variables View to monitor the
pointer.

Figure 4–12 Pointer Variable and Referenced Object in Monitor View

4.5.3.4 Using the Print Dialog Box
The Print dialog box allows you to request typecasting or an altered output
radix in the displayed result.

To display the current value with the Print dialog box, select the variable or
expression using the method described in Section 4.5.2 and click on Print or:

1. Choose Commands:Print... on the Main Window. The Print dialog box
appears.

2. Enter the variable name or expression in the Variable/Expression entry
box.

3. If you are changing the output type, pull down the menu in the Typecast
entry box and click on the desired data type.

4. If you are changing the output radix, pull down the menu in the Output
Radix entry box and click on the desired radix.

5. Click on OK.

The debugger displays the variable or expression and its current value in the
Command Message View.

Using the Debugger: Graphical User Interface 4–23

Your echoed command and the current value appear in the Command Message
View.

Figure 4–13 shows a typecast to int for the variable length .

Figure 4–13 Typecasting the Value of a Variable

The debugger displays your echoed command and the variable or expression
and its current value in the Command Message View.

4.5.4 Changing the Current Value of a Variable
You can change the value of a variable with either of the following methods:

• Clicking on a monitored value within the Local Variables View or Monitor
View (see Section 4.5.4.1)

• Using the Assign dialog box, accessed from the Commands menu on the
Main window or from the source display pop-up menu (see Section 4.5.4.2)

4.5.4.1 Clicking on a Monitored Value Within the Local Variables View or Monitor
View
To change a value monitored within the Local Variables View or Monitor View
(see Figure 4–14):

1. Select the variable as explained in Section 4.5.2.

2. Click on the variable’s value in the Value/Assign column of the Local
Variable View or Monitor View. A small text edit box appears over that
value, which you can now edit.

3. Enter the new value in the text edit box.

4–24 Using the Debugger: Graphical User Interface

4. Click on the check mark (OK) in the text edit box. The text edit box is
removed and replaced by the new value, which indicates that the variable
now has that value. The debugger notifies you if you try to enter a value
that is incompatible with the variable’s type and range.

Figure 4–14 Changing the Value of a Monitored Variable

To cancel a text entry and dismiss the text edit box, click on X (Cancel).

You can change the value of only one component of an aggregate variable at
a time (such as an array or structure). To change the value of an aggregate
variable component (see Figure 4–15):

1. Display the value of the component as explained in Section 4.5.3.3.1.

2. Follow the procedure for changing the value of a scalar variable.

Figure 4–15 Changing the Value of a Component of an Aggregate Variable

Using the Debugger: Graphical User Interface 4–25

4.5.4.2 Changing the Value of a Variable with the Assign Dialog Box
To change the value of a variable with the Assign dialog box:

1. Select the variable as explained in Section 4.5.2.

2. Choose Commands:Assign... on the Main window. The Assign dialog box
appears.

3. Enter the variable name and new value in the Variable and Value entry
boxes.

4. If you are changing the input radix, pull down the menu in the Input Radix
entry box and click on the desired radix.

5. Click on OK.

Figure 4–16 shows a new value and input radix for the variable prime .

You can also display the Assign dialog box by clicking MB3 in the source pane
and selecting Assign from the pop-up menu.

Figure 4–16 Changing the Value of a Variable

4.6 Accessing Program Variables
This section provides some general information about accessing program
variables while debugging.

If your program was optimized during compilation, you might not have
access to certain variables while debugging. When you compile a program for
debugging, it is best to disable optimization if possible (see Section 1.4).

Before you check on the value of a variable, always execute the program
beyond the point where the variable is declared and initialized. The value
contained in any uninitialized variable should be considered invalid.

4–26 Using the Debugger: Graphical User Interface

In most cases, the debugger resolves symbol ambiguities automatically, using
the scope and visibility rules of the source programming language. For more
information about resolving symbol ambiguities, see Chapter 8.

4.6.1 Setting the Current Scope Relative to the Call Stack
While debugging a routine in your program, you might want to set the current
scope to a calling routine (a routine down the stack from the routine in which
execution is currently paused). This enables you to:

• Determine where the current routine call originated

• Determine the value of a variable declared in a calling routine

• Determine the value of a variable during a particular invocation of a
routine that is called recursively

• Change the value of a variable in the context of a routine call

The Call Stack menu, shown in Figure 4–17 lists the names of the routines
of your program that are currently active on the stack, up to the maximum
number of lines that can be displayed on your screen.

Using the Debugger: Graphical User Interface 4–27

Figure 4–17 Current Scope Set to a Calling Routine

The numbers on the left side of the menu indicate the level of each routine on
the stack relative to level 0, which denotes the routine in which execution is
paused.

To set the current scope to a particular routine on the stack, choose
the routine’s name from the Call Stack menu; for example, 1:trycol in
Figure 4–17. This causes the following to occur:

• The Call Stack menu, when released, shows the name and relative level of
the routine that is now the current scope.

• The source display shows that routine’s source code.

• The Instruction View (if displayed) shows that routine’s decoded
instructions.

• The Register View (if displayed) shows the register values associated with
that routine call.

4–28 Using the Debugger: Graphical User Interface

• If the scope is set to a calling routine (a Call Stack level other than 0), the
debugger grays the current-location pointer.

• The debugger sets the scope for symbol searches to the chosen routine, so
that you can examine factors such as variables, within the context of that
scope.

When you set the scope to a calling routine, the current-location pointer (which
is cleared) marks the source line to which execution will return in that routine.
Depending on the source language and coding style used, this might be the line
that contains the call statement or some subsequent line.

4.6.2 How the Debugger Searches for Variables and Other Symbols
Symbol ambiguities can occur when a symbol is defined in more than one
routine or other program unit.

In most cases, the debugger automatically resolves symbol ambiguities. First,
it uses the scope and visibility rules of the currently set language. The
debugger uses the ordering of routine calls on the call stack to resolve symbol
ambiguities.

In some cases, however, the debugger might respond as follows when you
specify a symbol that is defined multiple times:

• It might issue a " symbol not unique" message because it is not able to
determine the particular declaration of the symbol that you intended.

• It might reference the symbol declaration that is visible in the current
scope, instead of the declaration you want.

To resolve such problems, you must specify a scope where the debugger
searches for the declaration of the symbol you want:

• If the different declarations of the symbol are within routines that are
currently active on the call stack, use the Call Stack menu on the Main
window to reset the current scope (see Section 4.6.1).

• Otherwise, enter the appropriate command at the command prompt
(examine or monitor , for example), specifying a pathname prefix with the
symbol. For example, if the variable x is defined in two routines named
counter and swap, the following command uses the path name swap\x to
specify the declaration of x that is in routine swap:

(ladebug) examine swap\x

Using the Debugger: Graphical User Interface 4–29

4.7 Displaying and Modifying Values Stored in Registers
The Register View displays the current contents of all machine registers (see
Figure 2–7).

To display the Register View, choose Views:Register View or Views:Manage
Views... and toggle the Register View button. The Register View appears in
the Optional Views Window.

By default, the Register View automatically displays the register values
associated with the routine in which execution is currently paused. Any values
that change as your program executes are highlighted whenever the debugger
regains control from your program.

To display the register values associated with any routine on the call
stack, choose its name from the Call Stack menu on the Main Window
(see Section 4.6.1).

To change the value stored in a register:

1. Click on the register value in the Register View. A text edit box appears
over the current value, which you can now edit.

2. Enter the new value in the text edit box.

3. Click on the check mark (OK) in the text edit box, as shown in Figure 4–18.

Figure 4–18 Changing a Value in the Register View

The text edit box is removed and replaced by the new value, indicating that
the register now contains that value.

To cancel a text entry and dismiss the text edit box, click on X (Cancel).

4–30 Using the Debugger: Graphical User Interface

You can also change the radix for modifying values stored in a register as
follows:

1. Position your mouse pointer in the Register View and press MB3. A pop-up
menu appears.

2. Select Change Radix-> and choose from a list of radix choices for modifying
values.

4.8 Displaying the Decoded Instruction Stream of Your
Program

The Instruction View displays the decoded instruction stream of your program:
the code that is actually executing (see Figure 4–19). This is useful if the
program you are debugging has been optimized by the compiler. This means
that the information in the Main Window does not exactly reflect the code that
is executing (see Section 1.4).

To display the Instruction View, choose Views:Instruction View or
Views:Manage Views... and toggle the Instruction View button on the Main or
Optional Views Window.

By default, the Instruction View automatically displays the decoded instruction
stream of the routine in which execution is currently paused. The current
location pointer (to the left of the instructions) marks the instruction that will
execute next.

By default, the debugger displays line numbers to the left of the instructions
with which they are associated. You can choose not to display these line
numbers so that more space is devoted to showing instructions. To hide
or display line numbers, choose File:Show Instruction Addresses on the
Instruction View.

To copy memory addresses or instructions into a command you are entering at
the command-entry prompt, select text and choose Edit:Copy in the Instruction
View. Then position your mouse pointer at the command you have entered and
choose Edit:Paste on the Main Window. (You can also select instruction text to
be used with a push-button command you click in the push-button panel of the
Main Window.)

To set breakpoints from the Instruction View, toggle the breakpoint button
next to the instruction of interest. The breakpoint is set in the source display,
instruction display (if the Instruction View is open), and Breakpoint View (if
the Breakpoint View is open). Information on the breakpoint is continuously
updated in the source display, and in the Instruction View and Breakpoint
View if they are open.

Using the Debugger: Graphical User Interface 4–31

You can also set breakpoints and change breakpoint status by pulling down the
Break menu from the Optional Views Window.

After navigating through the Instruction View, to redisplay the location at
which execution is paused, click on the Call Stack menu.

To display the instruction stream of any routine on the call stack, choose
the routine’s name from the Call Stack menu on the Main Window (see
Section 4.6.1).

Figure 4–19 Instruction View

4.9 Customizing the Debugger’s Window Interface
You can customize the debugger’s window interface in two ways:

• Using the debugger Customize dialog box (see Section 4.9.3)

• Editing the ladebugresource resource file (see Section 4.9.4)

Table 4–2 shows the methods you use to customize parameters.

4–32 Using the Debugger: Graphical User Interface

Table 4–2 Customization Methods

Use This Method To Change These Parameters

Customize... dialog box

• Modify, add, remove, or resequence push buttons and
the associated debugger command.

Edit debugger (lade-
bugresource) resource
file • Define the key sequence to display the dialog box for

conditional and action breakpoints.

• Define the key sequence to make text selection
language-sensitive in the Main Window.

• Define the character font for text displayed in specific
windows and views.

• Define or redefine the commands bound to individual
keys on your computer’s keypad.

• Shut off the Exit Confirmation dialog box.

• Shut off debugger command echo in the Command
Message View for commands being sent to the engine.

• Set the initial breakpoint toggle in the Run New
Program dialog box to off.

The following sections discuss using these methods to customize the debugger
window interface.

4.9.1 Defining the Startup Configuration for Debugger Windows and
Views

To define the startup configuration of the debugger windows and views:

1. While using the debugger, set up the desired configuration of the windows
and views.

2. Choose Options:Save Options on the Main or Optional Views Window. This
creates a new version of the debugger resource file with the new settings.

When you later start the debugger, the new configuration appears
automatically. Adding views to the startup configuration increases the startup
time accordingly.

Using the Debugger: Graphical User Interface 4–33

4.9.2 Displaying or Hiding Line Numbers by Default
The source pane displays source line numbers by default at debugger startup.
To hide (or display) line numbers at debugger startup:

1. While using the debugger, choose File:Display Line Numbers on the Main
Window. Line numbers are displayed when a filled-in button appears next
to that menu item.

2. Choose Options:Save Options. This creates a new version of the debugger
resource file with the new settings.

When you later start the debugger, line numbers are either displayed or hidden
accordingly.

4.9.3 Modifying, Adding, Removing, and Resequencing Push Buttons
The push buttons on the push-button panel are associated with debugger
commands. You can:

• Change a push button’s label or the command associated with a push
button

• Add a new push button and assign a command to that push button

• Remove a push button

• Resequence a push button

Note

You cannot modify or remove the Interrupt push button.

To save these modifications for subsequent debugger sessions, choose
Options:Save Options on the Main Window or an optional view. This creates a
new version of the debugger resource file with the new definitions.

The following sections explain how to customize push buttons interactively
through the window interface. You can also customize push buttons by editing
the resource file (see Section 4.9.4).

4–34 Using the Debugger: Graphical User Interface

4.9.3.1 Changing a Button’s Label or Associated Command
To change a button’s label or the debugger command associated with a push
button:

1. Choose Options:Customize... on the Main or Optional View Window. The
Customize dialog box appears.

2. Select the Pushbuttons menu option. The Pushbuttons dialog box appears.

3. Click on the push button in the control panel of the dialog box.

4. If changing the push-button label, enter a new label in the Label field or
choose a predefined icon from the Icon menu. (If changing the button label,
verify that the Icon menu is set to None.)

5. If changing the command associated with the push button, enter the new
command in the Command field. For online help about the commands, see
Section 2.5.2.

If the command is to operate on a name or language expression selected
in a window, include %s in the command name. For example, the following
command displays the current value of the variable that is currently
selected:

print %s

If the command is to operate on a name that has a percent sign (%) as the
first character, specify two percent signs.

6. Click on Modify. The push button is modified in the dialog box push-button
display.

7. Click on Apply. The push button is modified in the push-button panel of
the Main Window (see Figure 4–20).

Using the Debugger: Graphical User Interface 4–35

Figure 4–20 Changing the Step Button Label to an Icon

4.9.3.2 Adding a New Button and Associated Command
To add a new button to the push-button panel and assign a debugger command
to that push button:

1. Choose Options:Customize... on the Main Window. The Customize dialog
box appears (see Figure 4–21).

2. Select the Pushbuttons menu option and the Pushbuttons dialog box
appears.

3. Enter the debugger command for that push button in the Command
field (see Section 4.9.3.1). The command up was chosen. This command
interprets an entity selected in a window as a zero-terminated ASCII
string.

4. Enter a label for that push button in the Label field or choose a predefined
icon from the Icon menu. The uparrow_pixmap label was chosen.

5. Click on Add. The push button is added to the control panel within the
dialog box.

4–36 Using the Debugger: Graphical User Interface

6. Click on OK. The push button is added to the push-button panel in the
Main Window (see Figure 4–21).

Figure 4–21 Adding a Button for the up Command

4.9.3.3 Removing a Button
To remove a push button:

1. Choose Options:Customize... on the Main Window. The Customize dialog
box appears.

2. Select the Pushbuttons menu option and the Pushbuttons dialog box
appears.

3. Click on the push button in the control panel of the Customize dialog box.

4. Click on Remove. The push button is removed from the control panel
within the dialog box.

5. Click on OK. The push button is removed from the push-button panel in
the Main Window.

Using the Debugger: Graphical User Interface 4–37

4.9.3.4 Resequencing a Button
To resequence a button:

1. Choose Options:Customize... on the Main Window. The Customize dialog
box appears.

2. Select the Pushbuttons menu option and the Pushbuttons dialog box
appears.

3. Click on the button you are resequencing. This fills the Command and
Label fields with the parameters for that button.

4. Click on the left or right arrow to move the button one position to the left
or right. Continue to click until the button has moved, one position at a
time, to its final position.

5. Click on OK to transfer this position to the push-button panel in the Main
Window.

4.9.4 Customizing the Debugger Resource File
The debugger is installed on your system with a debugger resource file
(ladebugresource) that defines startup defaults.

When you first choose Options:Save Options on the Main or Optional Views
Window, the debugger creates your own local debugger resource file in your
home directory.

When you subsequently start the debugger, it uses the settings defined in your
local resource file (such as window configuration) and uses the system default
resource file for the other settings (such as character fonts). Whenever you
choose Save Window Configuration, a new version of your local resource file is
created.

Using the system default file as reference, you can add customized resource
settings to your own local file. When you subsequently choose Options:Save
Options, the debugger automatically copies these added settings to the new
version of your local file.

4–38 Using the Debugger: Graphical User Interface

5
Advanced Debugging Techniques

Ladebug provides advanced debugging techniques for debugging your
multiprocess and multithread applications.

This chapter explains how to:

• Display and select available processes and threads

• Attach and detach a process

• Debug a multithreaded application

• Debug a multiprocess application, including an example that forks a child
process and execs a program

For more information about multithreaded application debugging, see
Chapter 19. For more information on multiprocess application debugging, see
Chapter 20.

5.1 Displaying and Selecting Available Processes and
Threads

The Source View Context Panel contains menu buttons that list processes and
threads. It allows you to change the process or thread context by selecting any
process or thread on the menu and bringing it under debugger control.

To select a process or thread, pull down the Process or Thread menu button
and select the process or thread you want. The contents of the Source View
and the Call Stack and any displayed optional views are updated to reflect the
current context.

For multithreaded applications, when you select a particular process, the
thread option menu button then displays the thread list of the current process.

Advanced Debugging Techniques 5–1

5.2 Attaching and Detaching a Process
To attach to a process not currently under debugger control, choose
Command:Attach to Process in the Main Window. This displays a Process
Selection dialog box that shows you the list of active processes to which you
have access (Figure 5–1).

Figure 5–1 Process Selection Dialog Box

Select the process you want to attach to. The Source View reflects the new
process. If you have optional views displayed, they will be updated to reflect
the new process.

If no breakpoint is set in the process to which you are attaching, the process
will run to completion. However, you can set the $stoponattach variable to
stop the process right after the debugger attaches to it by default. For more
information, see Part V, Command Reference.

The Source View will not reflect the new process if the debugger cannot find
the path to the actual source file. See Section 4.1.3 for information about
specifying the location of source files.

You can also attach to a process using the load command at the command
prompt. The views are not updated until the run command is executed. If a
break is not set, the process will run to completion. Use the stop in or stop at
command to set a break. For more information, see Section 9.13.

5–2 Advanced Debugging Techniques

To detach a process, choose Commands:Detach Process in the Main Window.
This displays a dialog box showing all the current processes under debugger
control.

Click on the desired process to remove it from debugger control. If the process
is current (displayed in the Source View and optional views), the process will
run to completion and the views are reinitialized (blanked out). If the process
you detach is not current, it will run to completion and the current process will
continue to display in the Source View.

The views do not close automatically. To close the views, use the Views menu
or exit the debugger.

5.3 Debugging a Multithreaded Application
This section describes how to select among several threads in a DECthreads
multithreaded application and change the current thread context.

5.3.1 Setting the Thread Mode
The debugger thread display defaults to DECthreads if the application is
multithreaded and uses DECthreads. Otherwise, the $threadlevel is set to
native .

For more information on identifying and setting the thread mode, see
Chapter 19.

5.3.2 Steps for Debugging a Multithreaded Application
This section shows how to debug a single process multithreaded application.

The general steps for debugging a multithreaded application are as follows:

1. Start the application as described in Chapter 3.

2. Pull down the Thread menu. The Thread menu displays the current
thread on top. If the application contains native threads, the location
for each thread displays next to each thread. If the application contains
DECthreads, only the thread number displays.

3. Select a different thread by clicking on the thread you want to debug. (The
Source View and the Call Stack are updated.)

Ladebug displays the current thread in the Source View.

The Register and Instruction Views show information pertaining to the
selected thread. The Breakpoint View does not change when the thread is
changed because it displays breakpoints for all processes.

Advanced Debugging Techniques 5–3

5.4 Debugging a Multiprocess Application
This section describes how to use the debugger window interface to debug a
multiprocess application. It presents an example application that forks a child
process and execs a program.

Ladebug provides predefined debugger variables that you can set in order
to debug multiprocess applications that fork and/or exec. In the example
in Figure 5–2, the debugger variables $catchforks , $catchexecs , and
$stopparentonfork have been set from the prompt as follows:

(ladebug) set $catchforks=1
(ladebug) set $catchexecs=1
(ladebug) set $stopparentonfork=1

Setting $catchforks to 1 instructs Ladebug to notify the user when a program
forks a child process. Setting $catchexecs to 1 instructs Ladebug to notify the
user when a program execs. Setting $stopparentonfork to 1 stops the parent
process when a program forks a child process.

For more information on debugger variables, see Section 20.7.1. For
different scenarios in which these variables are used, see Section 20.7.2
and Section 20.7.3.

The general steps for debugging a multiprocess application are as follows:

1. Start the application as described in Chapter 3.

2. Pull down the Process menu. The Process menu displays the current
process on top. The image name for each process displays next to each
process.

3. Select a different process by clicking on the process you want to debug.
(The Source View and the Call Stack are updated.)

5–4 Advanced Debugging Techniques

Figure 5–2 Multiprocess Application

1

2

3

4

1 In Figure 5–2, a parent process (200) forks a child process (201).

2 When the parent process forks, the Source View shows that the parent
process has stopped.

3 The child process is selected from the process menu pulldown (process 201).

4 Entering the cont command continues running the child process which
execs the program factorial .

Advanced Debugging Techniques 5–5

You can continue debugging the child process or return to the parent process
by selecting it in the process menu pulldown. When the process has finished
executing, a message displays that process has exited and the Source View
reinitializes (blanks out).

5–6 Advanced Debugging Techniques

6
Using Ladebug Within the DEC FUSE

Environment

This chapter introduces you to some of the features and differences of the
Ladebug Debugger when run as part of the DEC FUSE environment. FUSE
is Digital’s software development environment (IDE) for UNIX workstations
and servers. It integrates industry-standard UNIX tools with Digital tools and
other industry-leading CASE tools.

Features include:

• Support for the compile-edit-debug cycle of software development in an
entry-level CASE 3GL tool environment.

• A user interface based on OSF/Motif.

• Support for application development in C, C++, FORTRAN, COBOL, and
DEC Ada.

• Integration with the Common Desktop Environment (CDE).

Because FUSE works with source code from any supported language, it is
a highly effective tool for maintenance or re-engineering, as well as new
development. The software visualization provided by FUSE reduces the time
needed to understand complex applications, which results in cost savings and
fewer code errors.

For detailed information on FUSE, including prerequisite software and
ordering information, see the DEC FUSE Software Product Description (SPD)
and the DEC FUSE Handbook.

Using Ladebug Within the DEC FUSE Environment 6–1

6.1 Starting and Configuring the Debugger Within the DEC
FUSE Environment

Assuming you have DEC FUSE installed, there are three possible ways you
can choose to start the debugger as part of the DEC FUSE environment:

• Use the command line.

You can start the debugger from the command line using the following
command:

% fusedebug [-Xt-Options] [filepath]

If DEC FUSE is not running, it starts automatically as a minimized icon.

See the DEC FUSE Handbook and the specific reference pages for
descriptions of the command syntax and options.

• If you have CDE installed, directly manipulate the DEC FUSE icons.

DEC FUSE provides a DEC FUSE application group icon and icons for the
individual tools that make up the DEC FUSE environment. To invoke the
debugger:

1. Double click on the Application Manager icon in the CDE Front Panel
to display the application group icons.

2. Double click on the DEC FUSE application group icon to display the
icons in the DEC FUSE application group.

3. Double click on the debugger icon to start the tool.

• Use the DEC FUSE Control Panel once DEC FUSE is running.

To start the debugger from the DEC FUSE Control Panel (assumes DEC
FUSE is already running), select Ladebug Debugger from the Tools menu
in the Control Panel.

DEC FUSE first lists the tool in the Control Panel display area. Then, the
tool main window appears.

6.2 Differences in the DEC FUSE Debugger Main Window
The DEC FUSE debugger Main Window is essentially the same as it appears
in Ladebug with the exception of the following:

• Tools menu

The Tools menu lets you start the other tools that are integrated within the
DEC FUSE environment. You can also use this menu to configure and exit
the debugger.

6–2 Using Ladebug Within the DEC FUSE Environment

• Help menu differences

DEC FUSE help is based on Bristol HyperHelp while Ladebug help is
based on the OSF/Motif help widget.

• Quick help pane

The quick help pane provides brief descriptions of menu items at the
bottom of the DEC FUSE debugger Main Window.

• File:Exit Debugger was removed from the menu pulldown because you can
use Exit Tool from the Tools menu.

6.3 Editing Your Program
When you start up the debugger, you specify an executable target. The
debugger displays the source file for that target.

The debugger Source View is read-only. To edit a source file, you can access the
editor either directly from the debugger or from the Tools menu.

If you want to edit the source file whose code is currently being displayed
by the debugger, the quickest way is to choose Edit File from the Commands
menu. This invokes your default DEC FUSE editor (FUSE Editor, Emacs, or
vi). The editor displays the target’s source code in its own window. As in the
debugger Main Window, the source code in the editor window is centered where
execution is currently paused.

When you then execute the program with the debugger, the Source View is
updated in both the debugger and the editor.

You can use the DEC FUSE Editor and Emacs to set breakpoints. For further
information, see the DEC FUSE Handbook.

Using Ladebug Within the DEC FUSE Environment 6–3

Part II
Command Interface

This part describes the debugger’s command interface, and explains the
debugger’s basic functions as accessed through the command interface.

7
Introduction to the Ladebug Debugger:

Command Interface

This chapter introduces the features and functions of the Ladebug command
interface. It describes how to:

• Invoke Ladebug and bringing a program under debugger control

• Enter multiple commands on a line

• Use debugger variables and aliases

• Repeat commands

• Execute system commands from the debugger

• Perform command-line editing

This chapter also presents an example debugging session from the command
interface.

For an introduction to the Ladebug window interface, see Chapter 2.

7.1 Invoking Ladebug and Bringing a Program Under
Debugger Control

There are several ways to invoke Ladebug from the command interface and
bring your program under debugger control. For example, you can invoke
Ladebug from the command interface and specify:

• Core files

• Local and remote kernel files

• Remote applications

Once you have invoked Ladebug, you can bring a process or program under
debugger control from the Ladebug prompt by attaching to a process or loading
a program. For applications that fork and/or exec, you can also control whether
to bring the child process under debugger control.

Introduction to the Ladebug Debugger: Command Interface 7–1

7.1.1 Invoking Ladebug from the Shell
To bring a program or process under debugger control from the shell, choose
the appropriate syntax for invoking Ladebug from among the following:

• Invoke Ladebug on a single program:

$ ladebug executable_file

• Invoke Ladebug on a core file:

$ ladebug executable_file core_file

• Invoke ladebug and attach to a running process:

$ ladebug -pid process_id executable_file

• Invoke Ladebug on the local kernel:

$ ladebug -k /umunix

• Invoke Ladebug on a remote kernel:

$ ladebug -remote

• Invoke Ladebug on the remote server:

$ ladebug -rn node_or_address [, udp_port]

7.1.2 Bringing a Program Under Debugger Control from the Ladebug
Prompt

For information on using the Ladebug prompt from within the window
interface, see Section 2.4.

You can bring a program or process under debugger control after invoking
Ladebug from the command interface or window interface. From the Ladebug
prompt, you can:

• Load a new process:

(ladebug) load image_file [core_file]

• Attach to a running process:

(ladebug) attach process-id image_file

For information about attaching to a process, see Section 7.8.9 and
Section 9.13. For information about loading a program, see Section 20.4.

7–2 Introduction to the Ladebug Debugger: Command Interface

7.2 Entering Multiple Commands on a Single Line
You can enter several commands on a single line by separating the commands
with a semicolon (;). The commands are executed in the order in which you
enter them. Example 7–1 shows how to enter multiple commands on a single
line.

Example 7–1 Entering Multiple Commands on a Single Line

(ladebug) stop in main;run
[#1: stop in main]
[1] stopped at [main:4 0x120000a40]

4 for (i=1 ; i<3 ; i++) {
(ladebug) where
>0 0x120000a40 in main() sample.c:4
(ladebug)

You can enter multiline commands by using a backslash (\) at the end of a line
to be continued.

7.3 Customizing the Debugger Environment: Debugger
Variables

The debugger predefines a set of debugger variables. You can display and
modify these variables to alter debugger settings. You can also create new
debugger variables to use within other commands, or as placeholders of
important information.

All debugger variable names start with a dollar sign ($). The set command,
used alone, causes the display of all the debugger variables with their current
values. The set command also lets you set the value of a debugger variable.
Using this command, you can redefine an existing debugger variable or create
a new debugger variable. The syntax for defining a debugger variable with this
command is as follows:

set variable = value

If the value of the variable is a text string, enclose the string in quotes.
Example 7–2 shows how to use the set command to display and redefine
debugger variables. In this example, all the predefined variables are displayed
by the set command. Then the $lang and $historylines variables are
changed and displayed. (The $lang variable determines the language syntax
and visibility rules the debugger uses; the value for the $lang variable is a

Introduction to the Ladebug Debugger: Command Interface 7–3

string enclosed in quotation marks. The $historylines variable determines
the number of lines listed by the history command.)

Example 7–2 Displaying and Redefining Debugger Variables

(ladebug) set
$ascii = 1
$beep = 1
$catchexecs = 0
$catchforks = 0
$curevent = 0
$curfile = (null)
$curline = 0
$curpc = 0
$cursrcline = 0
$curthread = 0
$decints = 0
$editline = 1
$eventecho = 1
$hasmeta = 0
$hexints = 0
$historylines = 20
$indent = 1
$lang = "C"
$listwindow = 20
$main = "main"
$maxstrlen = 128
$octints = 0
$overloadmenu = 1
$pimode = 0
$prompt = "(ladebug) "
$repeatmode = 1
$stackargs = 1
$stepg0 = 0
$stoponattach = 0
$stopparentonfork = 0
$threadlevel = "decthreads"
$verbose = 0
(ladebug) set $lang = "C++"
(ladebug) set $historylines = 40
(ladebug) print $lang
"C++"
(ladebug) print $historylines
40
(ladebug)

7–4 Introduction to the Ladebug Debugger: Command Interface

For more information on these debugger variables, see Part V, Command
Reference.

Use the unset command to delete a debugger variable that you created, or
to return a debugger variable to its default value. The syntax for the unset
command is as follows:

unset variable

7.4 Using Command Abbreviations: Aliases
The debugger lets you use abbreviations for frequently used commands. These
abbreviations are called aliases. You can list all available aliases by entering
alias at the debugger prompt. To view the definition of a single alias, enter
alias followed by the alias name.

To delete an alias, enter unalias followed by the alias name.

Several aliases are predefined by the debugger. The predefined aliases
substitute one or two letters for whole commands. For example, l is the alias
for list and q is the alias for quit. A complete list of predefined aliases is
in the description of the alias command in Part V, Command Reference, and
is also displayed by the debugger in response to the alias command with no
arguments.

You can also create your own aliases. The alias command syntax for creating
your own alias is as follows:

alias aliasname "string"

After you define the alias, entering aliasname is identical to entering string.
Example 7–3 creates an alias that sets a breakpoint, runs your program, and
performs a stack trace.

Aliases may also contain parameters. In Example 7–4, the alias defined in
Example 7–3 is modified to specify the breakpoint’s line number when you
enter the abbreviated alias command.

Aliases may have multiple parameters. The alias command syntax for
creating an alias with more than one parameter is as follows:

alias aliasname (arg1, arg2, [, . . .]) "string"

Introduction to the Ladebug Debugger: Command Interface 7–5

Example 7–3 Creating an Alias

(ladebug) alias cs
alias cs is not defined
(ladebug) alias cs "stop at 5; run; where"
(ladebug) alias cs
cs stop at 5; run; where
(ladebug) cs
.oS
[#1: stop at "sample.c":5]
[1] stopped at [main:5 0x120000b1c]

5 f = factorial(i);
>0 0x120000b1c in main() sample.c:5
(ladebug)

Example 7–4 Defining an Alias with a Parameter

(ladebug) alias cs(x) "stop at x; run; where"
(ladebug) alias cs
cs(x) stop at x; run; where
(ladebug) cs(5)
[#1: stop at "sample.c":5]
[1] stopped at [main:5 0x120000b1c]

5 f = factorial(i);
>0 0x120000b1c in main() sample.c:5
(ladebug)

Example 7–5 Nesting Aliases

(ladebug) alias begin "bp main; run"
(ladebug) alias sp(x,v) ""begin; stop at x; p v""
(ladebug) alias sp
sp(x, v) begin; stop at x; print v
(ladebug) sp(10,i)
[#4: stop in main]
[4] stopped at [main:4 0x120001180]

4 for (i=1 ; i<=3 ; i++) {
0
(ladebug)

You can nest aliases. You can define one alias and use that alias in the
definition of another alias. In Example 7–5, such an alias is defined and then
used in the definition of another alias.

Your definition of an alias can include a quoted string. See the alias
command in Part V, Command Reference for an example.

7–6 Introduction to the Ladebug Debugger: Command Interface

7.5 Repeating Previously Used Commands: History
The debugger maintains a list of the commands you enter. Using an
abbreviated command sequence, you can reenter a command without
retyping the entire command (a history feature). Pressing the Return key
at the debugger prompt repeats the last command, provided the $repeatmode
variable is set to 1, which is the default. Entering two exclamation points
(!!) at the debugger prompt also repeats the last command (regardless of the
setting of the $repeatmode variable).

You can examine the list of recently entered commands by entering the
history command at the debugger prompt. The last command entered is
at the bottom of the numbered list. The number of commands listed by the
history command is determined by the value of the $historylines debugger
variable.

To enter a command on the list, type an exclamation point followed by the
number of the command on the history list. You can also specify a command
by indicating how recently the command was last entered; for example, !-3
reenters the third-to-last command you entered.

You can also reenter a command by entering an exclamation point followed by
the beginning of the command string. For example, to reenter the command
deactivate 3, enter the command !dea. Example 7–6 uses the history
mechanism to reenter commands. You can also use the arrow keys to reenter
commands if $editline is set to 1, which is the default.

Introduction to the Ladebug Debugger: Command Interface 7–7

Example 7–6 Reentering Commands on the History List

(ladebug) stop in main
[#1: stop in main]
(ladebug) run
[1] stopped at [main:4 0x120001180]

4 for (i=1 ; i<3 ; i++) {
(ladebug) next
stopped at [main:5 0x120001188]

5 f = factorial(i);
(ladebug) print i
1
(ladebug) next
stopped at [main:6 0x1200011a0]

6 printf("%d! = %d\en",i,f);
(ladebug) print f
1
(ladebug) print factorial(f)
1
(ladebug) delete all
(ladebug) stop in factorial
[#2: stop in factorial]
(ladebug) rerun
[2] stopped at [factorial:13 0x120001224]

13 if (i<=1)
(ladebug) step
stopped at [factorial:14 0x120001230]

14 return (1);
(ladebug) Return

stopped at [factorial:17 0x120001264]
17 }

(ladebug) Return

stopped at [main:5 0x120001194]
5 f = factorial(i);

(ladebug) print f
0
(ladebug) list $curline - 5: 10

1 #include <stdio.h>
2 main() {
3 int i,f;
4 for (i=1 ; i<3 ; i++) {

> 5 f = factorial(i);
6 printf("%d! = %d\en",i,f);
7 fflush(stdout);
8 }
9 }

10 factorial(i)
(ladebug) cont
1! = 1
[2] stopped at [factorial:13 0x120001224]

13 if (i<=1)

(continued on next page)
7–8 Introduction to the Ladebug Debugger: Command Interface

Example 7–6 (Cont.) Reentering Commands on the History List
(ladebug) where
>0 0x120001224 in factorial(i=2) sample.c:13
#1 0x120001194 in main() sample.c:5
(ladebug) cont
[2] stopped at [factorial:13 0x120001224]

13 if (i<=1)
(ladebug) where
>0 0x120001224 in factorial(i=1) sample.c:13
#1 0x12000124c in factorial(i=2) sample.c:16
#2 0x120001194 in main() sample.c:5
(ladebug) history
10: print f
11: print factorial(f)
12: delete all
13: stop in factorial
14: rerun
15: step
16: step
17: step
18: print f
19: list $curline-5:10
20: cont
21: where
22: cont
23: where
24: history
(ladebug) !12
delete all

7.6 Executing System Commands from the Debugger
The sh command allows you to execute Bourne shell commands without
exiting the debugger. The syntax for the sh command is as follows:

sh command

The command argument is a valid operating system command expression.

Introduction to the Ladebug Debugger: Command Interface 7–9

Do not enclose the command in quotes, even if it consists of multiple words
separated by spaces.

After the command finishes, a debugger prompt appears and you can continue
with your debugging session.

Example 7–7 uses the shell command sh to list information about a file.

Example 7–7 Executing an Operating System Command

(ladebug) sh ls -l sample.c
-rw-r----- 1 Ladebug 259 May 15 13:08 sample.c
(ladebug)

In Example 7–8 the grep shell command displays the lines containing PROGRAM
in the Fortran source file data2.f90.

Example 7–8 Displaying an Identifier Using an Operating System Command

(ladebug) sh grep PROGRAM data2.f90
PROGRAM DATA

END PROGRAM DATA

You can also spawn the Bourne shell from the debugger by issuing:

(ladebug) sh sh

7–10 Introduction to the Ladebug Debugger: Command Interface

7.7 Using Command-Line Editing
Ladebug supports simple emacs style bindings for CTRL keys and arrow keys
to edit a command line, as follows:

CTRL-A Move to the beginning of the line.

CTRL-E Move to the end of the line.

CTRL-D Delete a character in place.

CTRL-K Kill (cut) from the cursor to the end of line,
into the cut buffer.

CTRL-Y Yank (paste) from the cut buffer, at the
position of the cursor.

CTRL-P or up arrow Access items in the history, backward.

CTRL-N or down arrow Access items in the history, forward.

CTRL-F or right arrow Move the cursor to the right.

CTRL-B or left arrow Move the cursor to the left.

The debugger variable $editline enables these key bindings. By default, this
variable is set to 1, and they are enabled. (For backward compatibility, you can
set $editline to 0. The $editline is also set to 0 when you use emacs with
Ladebug.)

The debugger variable $beep controls whether a beep sounds when a user tries
to perform an illegal action; for example, moving the cursor past the end of a
line, or ‘‘yanking’’ from an empty cut buffer. By default, the $beep variable is
set to 1, enabling the beep to sound.

For more information on using the set and unset commands with debugger
variables, see Section 7.3.

Command-line editing features that are not supported in the current release
include multiple editing modes (emacs and vi), multi-line editing, and binding
arbitrary keys to actions.

7.8 Sample Debugging Session
This section describes the steps necessary to compile and debug a short C
program. If you are new to source-level debugging, edit a file called sample.c,
type in the sample program, and follow the instructions for the sample
debugging session.

The sample debugging session shows you how to:

• Compile and execute your program.

• List source code.

Introduction to the Ladebug Debugger: Command Interface 7–11

• Set a breakpoint.

• Run the program.

• Examine the program state.

• Step through program execution.

• Perform a stack trace.

• Trace a variable.

• Terminate a process.

• Attach to a running process.

• Detach a process.

For information about basic debugging techniques, see Section 1.3. For
information about the Ladebug commands used in this sample session, see
Part V, Command Reference.

7.8.1 Compiling and Executing the Sample Program
The sample program in Example 7–9 uses only C constructs. The program is
intended to print the factorials of 1, 2, and 3 and then exit.

Example 7–9 Sample C Program, sample.c

#include <stdio.h>
main() {

int i,f;
for (i=1 ; i<3 ; i++) {

f = factorial(i);
printf("%d! = %d\n",i,f);
fflush(stdout);
}

}
factorial(i)
int i;
{

if (i<=1)
return (1);

else
return (i * factorial(i-1));

}

Example 7–10 demonstrates the steps required to compile, link, and execute
the sample program. These instructions assume that the sample program
is named sample.c and that you are using the C compiler cc to build your
executable file:

7–12 Introduction to the Ladebug Debugger: Command Interface

• Use the -g option on the compiler command line to instruct the compiler
to include in the executable file symbol-table information useful to the
debugger.

• Use the -o option to instruct the compiler to place the executable image in
a file named sample.

Example 7–10 Compiling and Executing the Sample C Program

% cc -g sample.c -o sample
% sample
1! = 1
2! = 2

Something is wrong; the program compiles and runs without an error message
but does not print the factorial of 3. You can use the Ladebug debugger to
determine the problem.

Example 7–11 demonstrates how to invoke the debugger on the program
by using the ladebug command. When invoked, the debugger displays a
startup banner and some information about the program being debugged. The
debugger prompt, (ladebug) , is displayed when the debugger is waiting for
your next command.

Example 7–11 Invoking the Debugger on Your Program

(%) ladebug sample
Welcome to the Ladebug Debugger Version 4.0

object file name: sample
Reading symbolic information ...done
(ladebug)

At this point, you can examine the program being debugged, set breakpoints or
tracepoints, or run the program under debugger control.

7.8.2 Listing Source Code
To look at the source code lines, enter the list command using the following
syntax:

list line_number

Introduction to the Ladebug Debugger: Command Interface 7–13

The debugger displays the compiler-generated number for each line in the
target program. Many debugger commands (including the list command) and
messages refer to these line numbers. Example 7–12 shows how to use the
list command to view the program source file.

Example 7–12 Listing a Program

(ladebug) list 1
1 #include <stdio.h>
2 main() {
3 int i,f;
4 for (i=1 ; i<3 ; i++) {
5 f = factorial(i);
6 printf("%d! = %d\n",i,f);
7 fflush(stdout);
8 }
9 }

10 factorial(i)
11 int i;
12 {
13 if (i<=1)
14 return (1);
15 else
16 return (i * factorial(i-1));
17 }

(ladebug)

By default, the debugger lists 20 lines of source code at a time. The list 1
command in this example specifies that the listing is to begin with the first line
of the program. The program is less than 20 lines, so a listing beginning with
line 1 displays the entire program.

7.8.3 Setting a Breakpoint
If you have a rough idea of where the error is occurring in your program,
you can set a breakpoint and run the program under debugger control. A
breakpoint set at a line number causes the debugger to suspend program
execution each time that line is encountered. To set the breakpoint at a
particular line number, enter the stop at command using the following
syntax:

stop at line_number

You can also set a breakpoint in a function so that the debugger suspends
program execution when it enters the specified function. Using the following
syntax, the stop in command lets you set a breakpoint at a function:

stop in function_name

7–14 Introduction to the Ladebug Debugger: Command Interface

According to the sample program listing in Example 7–12, the call to the
function factorial is on line 5. The breakpoint command in Example 7–13
shows how to set a breakpoint on line 4.

Example 7–13 Setting a Breakpoint

(ladebug) stop at 4
[#1: stop at "sample.c":4]
(ladebug)

The debugger confirms the breakpoint by assigning the breakpoint a reference
number and reiterating the breakpoint command. In this example, the
reference number is 1.

7.8.4 Running Your Program
Use the run or rerun command to instruct the debugger to execute your
program. During execution, you can examine your program’s variables, trace
the stack, or step through the program line by line.

When the debugger reaches a breakpoint, the debugger displays the breakpoint
that suspended execution and the line of code that will be executed next, if
normal program execution is continued. In Example 7–14, program execution
is suspended because of the breakpoint. The next line of code that will be
executed if line-by-line execution is continued is line 4.

Example 7–14 Running Your Program Under Debugger Control

(ladebug) run
[1] stopped at [main:4 0x120001180]

4 for (i=1 ; i<3 ; i++) {
(ladebug)

7.8.5 Examining the Program State
Use the print command to examine the program state. The syntax for the
print command is as follows:

print expression

The expression argument is any expression containing one or more variables,
constants, and operators that is valid in the current context. In Example 7–15
a variable is evaluated and the debugger prints the result.

Introduction to the Ladebug Debugger: Command Interface 7–15

Example 7–15 Printing a Variable’s Value

(ladebug) print i
0
(ladebug)

The output shows that the value of the variable i is 0.

7.8.6 Stepping Through Program Execution
When program execution is suspended, you can continue execution on a line-
by-line basis by using the step and next commands, or you can inspect the
program state. After a line executes, the debugger prompt returns. Pressing
the Return key repeats the previous command.

The step command executes the next line of code in the program. If that line
of code calls another function, and if there is debugging information about
that function available to the debugger, the step command executes the called
function line by line. This is called stepping into a function. If debugging
information is not available to the debugger, as is the case with the printf
and fflush library routines, the debugger will execute the called function and
stop at the next line of code in the function that initiated the call.

The next command also executes the next line of code in the program. If that
line of code calls another function, the next command executes that function
and stops at the next line of code in the function that initiated the call. This is
called stepping over a function. The next command steps over called functions;
the step command steps into called functions.

Example 7–16:

• Steps through the function main

• Verifies that the value of i changes to 1

• Steps over the called function factorial

After the debugger executes the function factorial, the debugger returns to
the function main and steps over the library routines printf and fflush.

7–16 Introduction to the Ladebug Debugger: Command Interface

Example 7–16 Stepping Through Program Execution

(ladebug) step
stopped at [main:5 0x120000b1c]

5 f = factorial(i);
(ladebug) print i
1
(ladebug) next
stopped at [main:6 0x120000b38]

6 printf("%d! = %d\n",i,f);
(ladebug) step
1! = 1
stopped at [main:7 0x120000a7c]

7 fflush(stdout);
(ladebug) step
stopped at [main:8 0x120000a48]

8 }
(ladebug)

7.8.7 Displaying a Stack Trace
The stack trace lets you follow the dynamic call chain from function to function.
The where command displays the stack trace. The stack trace displays the
most recently called function on the top of the stack. Each function is followed
by its calling function, until all active functions are displayed.

Each function on the stack is placed on a separate line, and is associated with
a number that corresponds to an activation level relative to the top of the
stack. The most recently called function is on level 0, at the top of the stack.

Example 7–17 continues to step through the sample program. As the program
computes 2!, control passes from main to factorial and back in a predictable
fashion. A stack trace taken while stepping through the function factorial()
for the second time (when i equals 2) contains an entry for function main and
two entries for the recursive function factorial.

Introduction to the Ladebug Debugger: Command Interface 7–17

Example 7–17 Stepping and Displaying a Stack Trace

(ladebug) step
stopped at [factorial:13 0x120001224]

13 if (i<=1)
(ladebug) Return

stopped at [factorial:16 0x12000123c]
16 return (i * factorial(i-1));

(ladebug) Return

stopped at [factorial:13 0x120001224]
13 if (i<=1)

(ladebug) where
>0 0x120001224 in factorial(i=1) sample.c:13
#1 0x12000124c in factorial(i=2) sample.c:16
#2 0x120001194 in main() sample.c:5
(ladebug) step
stopped at [factorial:14 0x120001230]

14 return (1);
(ladebug) Return

stopped at [factorial:17 0x120001264]
17 }

(ladebug) Return

stopped at [factorial:16 0x12000123c]
16 return (i * factorial(i-1));

(ladebug) Return

stopped at [factorial:17 0x120001264]
17 }

(ladebug) Return

stopped at [main:5 0x120001194]
5 f = factorial(i);

(ladebug) Return

stopped at [main:6 0x1200011a0]
6 printf("%d! = %d\n",i,f);

(ladebug) Return

2! = 2
stopped at [main:7 0x1200011c0]

7 fflush(stdout);

When you continue stepping through the program, control does not pass back
to factorial() to compute the factorial of 3 (see Example 7–18). Instead,
the next line that is executed is the last line of main() . The cont command
instructs the debugger to resume running the program. The program finishes
executing without printing the factorial of 3.

7–18 Introduction to the Ladebug Debugger: Command Interface

Example 7–18 Stepping Through the Sample Program

(ladebug) step
stopped at [main:9 0x120000b84]

9 }
(ladebug) cont
Thread has finished executing
(ladebug)

The problem in Example 7–9 may lie in the bounds of the for construct:

for (i=1 ; i<3 ; i++) {

Careful examination confirms this hypothesis. When the variable i is
incremented to 3, the statement i <3 is false and a loop exits. To fix the
problem, change the statement as follows:

for (i=1 ; i<=3 ; i++) {

To make the change, edit the for construct in the source file and recompile the
program.

To edit the source file, choose one of the following:

• If you are using a workstation or terminal that supports multiple windows,
you can edit and recompile the program in a different window. When you
enter the run or rerun command, the debugger will use the new program.
Previously set breakpoints and traces will still be active.

• Use the quit command to leave the debugger then edit the source file,
recompile the program, and test the program. If you want to retest the
program under debugger control, invoke the debugger again. After you
quit the debugger, all breakpoints, tracepoints, and other program-specific
settings are lost.

7.8.8 Tracing a Variable: the trace Command
Another way to troubleshoot the problem in Example 7–9 is to trace the value
of variable i as the program executes. If you have not yet exited the debugger,
the breakpoint at line 4 is still active. You can enter the delete command
to delete the breakpoint at line 4. In Example 7–19, the status command is
used to list the breakpoints or tracepoints that are currently active and the
delete command is used to remove the breakpoint at line 4.

Introduction to the Ladebug Debugger: Command Interface 7–19

Example 7–19 Deleting a Breakpoint

(ladebug) status
#1 PC==0x120001180 in main "sample.c":4 { break }
(ladebug) delete 1
(ladebug) status
(ladebug)

You can use the trace command to monitor program variables and to monitor
when functions are entered and exited. With this command, you can set a
tracepoint on a variable that is visible from the current context at the time you
set the breakpoint. The syntax is as follows:

trace variable

When you run your program under debugger control, the debugger will print
a message when the variable changes value. The trace command works at
the function level; when a traced variable is evaluated, and the subsequent
message is printed when program execution begins each function, not at the
line of code that caused the variable value to change.

In Example 7–20:

• Set a breakpoint at the beginning of the function main

• Execute the program under debugger control until the beginning of the
function main using the run command

• Set the desired tracepoint using the trace command and resume program
execution using the cont command

7–20 Introduction to the Ladebug Debugger: Command Interface

Example 7–20 Tracing a Program Variable

(ladebug) stop in main
[#2: stop in main]
(ladebug) run
[2] stopped at [main:4 0x120000a40]

4 for (i=1 ; i<3 ; i++) {
(ladebug) trace i
[#3: trace i]
(ladebug) cont
[3] Value of i changed before "sample.c":13

Old value = 0
New value = 1

1! = 1
[3] Value of i changed before "sample.c":13

Old value = 1
New value = 2

2! = 2
[3] Value of i changed before "../exit.c":12

Old value = 2
New value = 3

Thread has finished executing
(ladebug) "

Tracing variable i reveals that the loop did not execute when i was equal to
3. This was the same conclusion reached earlier by stepping through program
execution.

In this example, the trace command works well, even though traces are
computationally intensive and can dramatically slow down program execution.
For this reason, using traces may not be appropriate in every situation. Each
debugging problem is different, and you may need to try several different
methods on a program before you uncover the problem.

Introduction to the Ladebug Debugger: Command Interface 7–21

7.8.9 Attaching to a Running Process
Ladebug allows you to attach to a running process that is not under debugger
control and debug the process.

Use the attach command to connect to a running process by specifying the
process ID and the associated image file. Ladebug allows you to switch to
debugging another process in the same session by attaching to it or by loading
it (see Section 20.4 for information about loading a program). After you attach
to a running process, you debug the process as you would any process that is
loaded by the debugger. For common user scenarios for debugging attached
processes, see Section 9.13.

You cannot issue the run or rerun command on an attached process.

There are two ways to attach to a process. From the command line, the syntax
is as follows:

$ ladebug -pid process_id

From the Ladebug prompt:

(ladebug) attach process_id image_file

The sample program in Example 7–9 has been modified slightly to show how to
attach to (and detach from) a running process.

#include <stdio.h>
#include <unistd.h>
main() {

int i,f;
sleep (20);
for (i=1; i<3; i++) {

f = factorial(i);
printf("%d! = %d\n",i,f);
fflush(stdout);

}
}
factorial(i)
int i;
{

if (i<=1)
return (1);

else
return (i * factorial(i-1));

}

7–22 Introduction to the Ladebug Debugger: Command Interface

Ladebug does not stop the running process when attaching to it. You must
type Ctrl/C to stop the process. You can also set the debugger variable
$stoponattach to 1 to cause Ladebug to stop the attached process after
attaching to it.

Example 7–21 shows how to attach to a process in a debugging session.

Example 7–21 Attaching to a Running Process

$ factorial &
[1] 32625 1
$ ladebug -pid 32625 factorial 2
Welcome to the Ladebug Debugger Version 4.0-10

object file name: factorial
Reading symbolic information ...done 3

Attached to process id 32625 4

^CThread received signal INT 5
stopped at [<opaque> __usleep_thread(): ??? 0x3ff800ec850]

(ladebug) stop in factorial 6
[#1: stop in int factorial(int)]

(ladebug) detach 7

1 Program "factorial" is running on process 32625.

2 Invoke Ladebug and ask to attach to process 32625.

3 Ladebug reads the process symbol table.

4 Ladebug is now attached to the running process. Ladebug will not stop
until the user hits Ctrl/C.

5 Upon Ctrl/C, the process stops. Ladebug shows where the program has
stopped.

6 Ladebug detaches from the process and lets it run freely again. All
breakpoints are removed from the user program.

Introduction to the Ladebug Debugger: Command Interface 7–23

7.8.10 Detaching from a Process
The detach command lets you detach the debugger from the previously
attached process, based on the process ID you specify from the process ID list.
(See Example 7–21 for an example of attaching and detaching a process.)

The syntax for the detach command is as follows:

detach [process_id]

The process_id parameter indicates the process to which the debugger is
attached. If you do not specify the process_id parameter, Ladebug detaches
from the current process.

Detaching from a process removes the process information from the debugger,
and disables your ability to debug the process.

Ladebug removes all user-specified breakpoints from the detached process. The
process continues its program execution.

If other processes are attached to the process being debugged, the detach
command will not change the process’s state.

7.8.11 Terminating Processes
The kill command terminates the process that executes the program. If
the process you terminate has child processes associated with it, they are
terminated also.

When a process is terminated, its process objects are not deleted and Ladebug
retains the symbolic debugging information. You can issue run and rerun
commands on that application again.

Use the kill command to terminate a one or more processes. The syntax of
the kill command does not take an argument.

The quit command will kill a process that was started by Ladebug.

While displaying a process, you can stop it at any time by typing Ctrl/C.

7–24 Introduction to the Ladebug Debugger: Command Interface

8
Examining Program Information

This chapter describes the methods for examining information in your program
with the Ladebug debugger command interface.

8.1 Listing Source Code: the list Command
The list command displays source-code lines starting with one of the
following:

• The source line corresponding to the position of the program counter

• The last line listed if multiple list commands are entered

• The line number specified as the first argument to the list command

When the list command is entered without an argument, the number of lines
listed is determined by the value of the $listwindow debugger environment
variable. The default value of the $listwindow variable is 20. Entering list
(or pressing Return) lists the next 20 lines of code. Repeated list commands
display your program’s source code in 20-line segments.

To display a range of lines, enter a list command with the following syntax:

list begin_line_number, end_line_number

The begin_line_number argument specifies the number associated with the
starting source-code line. The end_line_number argument specifies the number
associated with the last line of source code you want listed.

Example 8–1 uses the list command to display the lines of a COBOL program
source file numbered 43 through 50.

Examining Program Information 8–1

Example 8–1 Listing Source Code in a Number Range

(ladebug) list 43,50
43 PERFORM LOOK-BACK VARYING SUB-1 FROM 20 BY -1
44 UNTIL TEMP-CHAR (SUB-1) NOT = SPACE.
45 MOVE SUB-1 TO CHARCT.
46 PERFORM MOVE-IT VARYING SUB-2 FROM 1 BY 1 UNTIL SUB-1 = 0.
47 MOVE HOLD-WORD TO TEMP-WORD.
48 MOVE-IT.
49 MOVE TEMP-CHAR (SUB-1) TO HOLD-CHAR (SUB-2).
50 SUBTRACT 1 FROM SUB-1.

(ladebug)

To display a specific number of lines, beginning with a particular line, enter
the list command with the following syntax:

list begin_line_number:count

The count argument specifies the number of lines to list.

Example 8–2 uses the list command to display the first 25 lines of an Ada
program.

Example 8–2 Listing Source Code By Counting from a Starting Line

(ladebug) list 1:25
1 with TEXT_IO; use TEXT_IO;
2 with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
3 with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
4 procedure TEST is
5
6 procedure P (I : INTEGER);
7 procedure P (F : FLOAT);
8
9 procedure P (I : INTEGER) is

10 TWO : constant := 2;
11 begin
12 PUT (I * TWO);
13 NEW_LINE;
14 end;
15
16 procedure P (F : FLOAT) is
17 begin
18 PUT(F);
19 NEW_LINE;
20 end;

(continued on next page)

8–2 Examining Program Information

Example 8–2 (Cont.) Listing Source Code By Counting from a Starting Line

21
22 begin
23 P(5);
24 P(6.0);
25 end;

(ladebug)

To display the source code for a particular function, enter the name of the
function as an argument to the list command. The syntax is as follows:

list function

The debugger prints an error message if it cannot find the source file
corresponding to the current function.

If the source file is not in the current directory, you can enter a use command
to add directories to the list of directories the debugger will search. The syntax
is as follows:

use [directory]

You can enter multiple use commands to ensure that the debugger finds all
source files associated with your program.

The unuse command sets the search list to any of the following:

• The default

• The home directory

• The current directory

• The directory containing the executable file

Include the name of a directory to remove it from the search list or an asterisk
(*) to remove all directories from the search list. The syntax is as follows:

unuse [directory]

unuse *

You can also specify search directories as command-line arguments to the
ladebug command with the -I option. (See the ladebug(1) reference page
for more information about the options to the ladebug command.)

Examining Program Information 8–3

8.2 Displaying a Stack Trace: the where Command
As explained in Chapter 7, the stack trace lists the active functions in the
program you are debugging. Figure 8–1 shows the elements of a stack trace
that the debugger displays when you enter a where command.

Figure 8–1 Sample Stack Trace

ZK−6050A−GE

Line number

Function parameters

Function name

(ladebug)where
>0 0x120001224 in factorial(i=1) sample.c:13
#1 0x12000124c in factorial(i=2) sample.c:16
#2 0x12000124c in factorial(i=3) sample.c:16

File name

#3 0x120001194 in main() sample.c:5

Memory address

Stack level

The stack trace provides the following information for each activation level:

Stack level The number used to refer to an activation level on the stack.
The function entered most recently is on activation level 0.

Function name The name of the function active at this activation level of the
stack. The values of any variables passed to this function are
also listed.

Function
parameters

The list of parameter names and values from previous function
calls.

Memory address The address of the next instruction to be executed in the named
function.

File name The name of the file containing the source code for the function.

Line number The number of the last executed source line in the function.

Example 8–3 uses the where command to display the stack trace of a COBOL
program.

8–4 Examining Program Information

Example 8–3 Displaying the Stack Trace in a COBOL Program

(ladebug) where
>0 0x3ff81808744 in cob_acc_display() cob_accdis.c:349
#1 0x120001fbc in testa() testa.cob:20
#2 0x3ff8181f054 in main() cob_main.c:253

8.3 The Current Context
The debugger recognizes the scoping rules of the symbols in the target program
by maintaining a current context and accessing program symbols based on this
context. The context is determined by:

• The file scope

• The function scope

• The class scope

And, if applicable, by:

• The C++ class scope

• The process scope

• The thread scope

The context is automatically set to the current point of execution when
the debugger is given control (for example, when the debugger stops at a
breakpoint).

The debugger extends symbol accessibility beyond that allowed by the language
rules when you change the current context or qualify a symbol name with full
scope information.

If you do not qualify the symbol name with full scope information, the debugger
looks for the symbol in the current context (including process context or thread
context, if applicable). The current context is determined by the point at which
execution is paused or by the context set when you change the function, file, or
class scope.

If the symbol is not found, the debugger searches the calling function, and
then its caller, and so on. Within each context, the debugger uses the visibility
rules of the language to locate a symbol. If the symbol is still not found, the
debugger searches the global symbol table.

Examining Program Information 8–5

8.3.1 The Current Function Scope: the func, up, and down Commands
When the debugger encounters a breakpoint and suspends program execution,
the current function is at activation level 0. The stack trace marks the current
function scope with an angle bracket (>). All other levels on the stack are
marked with a pound sign (#). If you want to examine a function other than
the current function, use the func, up, or down command to change the
current function scope.

Changing the current function scope does not change the current point of
program execution. When you continue program execution, the program begins
where it left off, regardless of the current function scope.

Change the function scope to examine the value of program symbols or data
structures that are not visible in the current scope.

The func command lets you specify a new current function scope by function
name. In Example 8–4 the current function scope is changed to function main
so that a variable in main() can be displayed.

Example 8–4 Using the func Command

(ladebug) stop at 13
[#1: stop at "sample.c":13]
(ladebug) run
[1] stopped at [factorial:13 0x120000ad4]

13 if (i<=1)
(ladebug) cont
1! = 1
[1] stopped at [factorial:13 0x120000ad4]

13 if (i<=1)
(ladebug) print f
Symbol f not visible in current scope.
Error: no value for f
(ladebug) where
>0 0x120000ad4 in factorial(i=2) sample.c:13
#1 0x120000a54 in main() sample.c:5
(ladebug) func main
main in sample.c line No. 5:

5 f = factorial(i);

8–6 Examining Program Information

(ladebug) where
#0 0x120000ad4 in factorial(i=2) sample.c:13
>1 0x120000a54 in main() sample.c:5
(ladebug) print f
1
(ladebug)

The up and down commands let you specify a new current function scope
by moving up or down a specified number of levels on the stack trace. If you
enter the up or down commands without an argument, you move the current
function pointer up or down one level.

In the previous example, instead of entering func main you can enter up 1.
Note that the final stack trace in this example lists function main as the
current function scope (denoted by the > character).

8.3.2 The Current File Scope: the file Command
The current file scope is automatically set to the name of the file containing the
source code of the function you are debugging. When the function scope
changes, the current file scope is updated automatically. Use the file
command to display and change the current file scope. You can enter this
command with no arguments to display the current file scope.

To change the file scope, enter the file command with the following syntax:

file filename

Enter the name of the file exactly as it was entered on the compile command
line. Use a preceding directory path if necessary.

Changing the current file scope lets you list a function in the new file or set
a breakpoint on a line in the function. After loading the file with the file
command, you can enter the list command to examine it.

Example 8–5 uses the file command to set the debugger file scope back to the
main COBOL program, and then stops at line number 20 in that file.

Example 8–5 Using the file Command

(ladebug) file testa.cob
(ladebug) stop at 20
[#6: stop at "testa.cob":20]

When you change the current file scope, the function scope is reset. Running
or continuing your program nullifies the file command and reloads the source
code corresponding to the program you are debugging.

Examining Program Information 8–7

8.3.3 The Current Language Context: the $lang Debugger Variable
The debugger automatically identifies the language of the current function
or code segment based on information embedded in the executable file. For
example, if program execution is suspended in a C function, the current
language is C. If the program executes a C++ function, the current language
becomes C++. The current language determines the valid expression syntax for
the debugger.

The debugger sets the $lang variable to the language of the current function
or code segment. If the program is not running, $lang is set to the language of
the module in which the main entry point resides.

By manually setting the $lang debugger variable, you can force the debugger
to interpret expressions used in commands by the rules and semantics of a
particular language. For example, you check the current setting of $lang and
change it as follows:

(ladebug) print $lang
"C++"
(ladebug) set $lang = "C"

8.4 Examining and Modifying Program Symbols
You can access program symbols when program execution is suspended in
the function that defines the symbol or in any function called by the defining
function. Before you can access a symbol, you must execute the program
beyond the point where the symbol is declared. If you examine an expression
before the variables used in the expression are initialized, the expression value
may not be valid.

8.4.1 Evaluating Expressions: the print and whatis Commands
Use the print command to display the value of specific variables or
expressions in functions active on the stack. You can also use the print
command to evaluate complex expressions involving typecasts, pointer
dereferences, multiple variables, constants, and any legal operators allowed by
the language of the program you are debugging.

You cannot print a program symbol until you have started executing the
program using the run or rerun command. You can use the set command to
view the values of debugger variables before starting execution.

The syntax for the print command is as follows:

print expression

8–8 Examining Program Information

The debugger formats expression values according to the type defined for
them in the program. You can print an expression’s type using the whatis
command. The syntax for the whatis command is as follows:

whatis expression

Example 8–6 uses the whatis command to examine the contexts of the data
item SUB-1 in the COBOL program TESTA.

Example 8–6 Examining Data Items in a COBOL program

(ladebug) whatis sub-1
unsigned short SUB-1

(ladebug) print sub-1
0
(ladebug)

Consider the following declarations in an Ada program:

type DAY is (MON,TUES,WED,THURS,FRI,SAT,SUN);
MY_DAY : DAY := MON;

Example 8–7 uses the whatis command to determine the storage
representation for the variable MY_DAY.

Example 8–7 Determining the Type of a Variable

(ladebug) whatis MY_DAY
enum DAY { MON, TUES, WED, THURS, FRI, SAT, SUN } MY_DAY;
(ladebug) print MY_DAY
MON

For an array, the debugger prints every cell in the array if you do not specify a
specific cell.

Consider the following declarations in an Ada program:
type CAR is (BUICK,FORD,HONDA);
type CAR_ARRAYis array (CAR) of INTEGER;

CAR_NUM : CAR_ARRAY := (1,2,3);

Example 8–8 uses the print command to display a nonstring array.

Examining Program Information 8–9

Example 8–8 Printing Values of an Array

(ladebug) print CAR_NUM
[0] = 1,[1] = 2,[2] = 3

Example 8–9 shows how to print individual values of an array.

Example 8–9 Printing Individual Values of an Array

(ladebug) list 1, 4
1 main() {
2 int c[5],d;
3 for (d=0 ; d<=5 ; d++) {
4 c[d] = d;

(ladebug) stop in main
[#1: stop in main]
(ladebug) run
[1] stopped at [main:3 0x1200010b4]

3 for (d=0 ; d<=5 ; d++) {
(ladebug) whatis c
array [subrange 0 ... 4 of int] of int c
(ladebug) print c
[0] = 0,[1] = 0,[2] = -2147474264,[3] = 1023,[4] = 0
(ladebug) step
stopped at [main:4 0x120001068]

4 c[d]=d;
(ladebug) Return

stopped at [main:6 0x1200010dc]
6 }

(ladebug) print c
[0] = 0,[1] = 1,[2] = 2,[3] = 3,[4] = 4
(ladebug) print c[4]
4
(ladebug)

Expressions containing labels are not supported. Variables involving static
anonymous unions and enumerated types cannot be printed. Printing a
structure that is declared but not defined in a compilation unit generates an
error message indicating that the structure is opaque.

8–10 Examining Program Information

8.4.2 Dereferencing Pointers: the * Operator
Variables containing addresses are called pointers. By dereferencing a
pointer, you can print the value at the address pointed to by the pointer.
In C programs, variables containing a pointer are dereferenced using the *
operator. Example 8–10 shows how to dereference a pointer in C programs.

Example 8–10 Dereferencing a Pointer

(ladebug) list 1
1 main()
2 {
3 int x, *c;
4
5 c = &x;
6 x = 2;
7 *c = 0;
8 }

(ladebug) stop in main
[#1: stop in main]
(ladebug) run
[1] stopped at [main:5 0x12000045c]

5 c = &x;
(ladebug) whatis c
int * c

(ladebug) print c
0x11ffffe4c
(ladebug) print *c
2
(ladebug)

8.4.3 Listing Variables: the dump Command
The dump command lists an active function’s local variables and parameters.
You can specify a dump of a specific function by naming the function as an
argument to the command. You can show all the variables and parameters in
all currently active functions by entering a period after the dump command.
In Example 8–11, you obtain a dump of all active functions from the sample
program in Example 7–9.

Examining Program Information 8–11

Example 8–11 Displaying Information on Each Activation Level

(ladebug) dump
>0 0x120001224 in factorial(i=1) sample.c:13
i=1
f=0
(ladebug)

The function factorial has the parameter i but it has no local variables.
The function main has two local variables, i and f.

8.4.4 Displaying a Variable’s Scope: the which and whereis Commands
Your program may declare a particular symbol more than once. For example,
in the program sample.c the symbol i is declared in the function main and
again in the function factorial.

Because the debugger extends the visibility and scope rules of the
programming language, the debugger may have access to more than one
declaration of a symbol name. You can use the which command to determine
which declaration exists in the current context. The which command displays
the variable with its scope information fully qualified.

The whereis command lists all declarations of a variable together with each
declaration’s scope information fully qualified. Example 8–12 shows how to use
the whereis and which commands to determine a variable’s scope.

Example 8–12 Displaying a Variable’s Scope

(ladebug) where
>0 0x120001230 in factorial(i=1) sample.c:14
#1 0x12000124c in factorial(i=2) sample.c:16
#2 0x120001194 in main() sample.c:5
(ladebug) print i
1
(ladebug) which i
"sample.c"‘factorial.i
(ladebug) whereis i
"sample.c"‘factorial.i
"sample.c"‘main.i
(ladebug) func main
main in sample.c line No. 5:

5 f = factorial(i);

(continued on next page)

8–12 Examining Program Information

Example 8–12 (Cont.) Displaying a Variable’s Scope

(ladebug) print i
2
(ladebug) which i
"sample.c"‘main.i
(ladebug)

The whereis command is useful for obtaining information needed to
differentiate overloaded identifiers that are in different units, or within
different routines in the same unit.

Example 8–13 shows how to set breakpoints in two Ada program routines, both
named DO_PRINT.

Example 8–13 Determining Overloaded Identifiers

(ladebug) whereis do_print
"overload.ada"‘OVERLOAD‘DO_PRINT
"overload.ada"‘OVERLOAD‘INNER‘DO_PRINT
(ladebug) stop in "overload.ada"‘OVERLOAD‘DO_PRINT
[#1: stop in DO_PRINT]
(ladebug) stop in "overload.ada"‘OVERLOAD‘INNER‘DO_PRINT
[#2: stop in DO_PRINT]
(ladebug)

8.4.5 Changing the Value of an Expression: the assign and patch
Commands

Use the assign command to change the value associated with an expression
in the debugger session. The new value is associated with the variable until
the value is changed by the program during execution, or until you specifically
change the value. The syntax for the assign command is as follows:

assign expression = expression

The expression argument can be any expression that is valid in the current
context and language.

Example 8–14 shows how to deposit the value -42 into the data item SUB-2 of
a COBOL program named TESTA.

Examining Program Information 8–13

Example 8–14 Depositing a Value in an Expression

(ladebug) assign sub-2=-42
(ladebug) print sub-2
-42

Example 8–15 shows how to change the value associated with a variable and
the value associated with an expression.

Example 8–15 Assigning Values to a Variable and an Expression

(ladebug) assign i = 5
(ladebug) print i
5
(ladebug) assign f = factorial(8) 1
(ladebug) print f
40320
(ladebug) assign i = f
(ladebug) print i
40320
(ladebug)

1 This command calls the function factorial.

Use the patch command to change the value associated with an expression
in the object file on the disk as well as the debugger process you are running.
The syntax is as follows:

patch expression1 = expression2

The expression argument can be any expression that is valid in the current
context and language.

The patch command patches executable disk files to correct bad data or
instructions. The text, initialized data, or read-only data areas can be patched.
The bss segment cannot be patched because it does not exist in disk files.

For more information, see Chapter 22 and Part V, Command Reference.

8–14 Examining Program Information

9
Controlling Program Execution

This chapter descibes how to use Ladebug from the command interface to
execute a program under debugger control and debug the program. Your
source language may be C, C++, COBOL, Ada, or Fortran. Your program may
have one or more processes or threads.

This chapter describes how to:

• Run a program using command-line arguments; terminate the program.

• Resume program execution after reaching a breakpoint.

• Resume program execution until a particular function finishes.

• Step through program execution one source instruction at a time.

• Execute program functions from the debugger prompt.

• Use the pop command.

• Control the debugging of attached processes.

• Debug programs with stripped images.

• Use environment variables.

This chapter describes basic program control and debugging of single-process
applications. For more information on debugging multiprocess applications,
see Chapter 20. For information on debugging multithreaded applications, see
Chapter 19.

9.1 Starting Program Execution: the run and rerun
Commands

Use the run and rerun commands to start execution of a program under
debugger control. Ladebug picks up any new image on the disk and reloads
the latest symbolic debugging information.

Controlling Program Execution 9–1

You can run the program with command-line arguments by entering them
immediately after the run command. Command-line arguments can include
flags and options recognized by the program as well as input and output
redirections.

The rerun command runs the program with the arguments last used with
the run command. Example 9–1 shows how to use the run and rerun
commands.

Example 9–1 Using run and rerun to Begin Program Execution

(ladebug) run -s > prog.output
Thread has finished executing
(ladebug) stop in main
[#1: stop in main]
(ladebug) rerun
[1] stopped at [main:4 0x1200011c0]

4 for (i=1 ; i<3 ; i++) {
(ladebug)

If you enter any command-line arguments with the rerun command, the
debugger discards the previous set of arguments and uses the new arguments.

9.2 Terminating Program Execution: the kill Command
You can terminate program execution by using the quit or kill commands.
The quit command terminates both the debugger and the debugged process
and returns you to the shell.

The kill command terminates the debugged process but leaves the debugger
running. Any breakpoints and traces previously set will still be set. You can
rerun the program after it has been killed.

9.3 Stepping Through Functions
After program execution suspends at a breakpoint or due to a signal, you can
direct the debugger to execute only the next line or to continue execution until
the current function or a named function exits.

The step and next commands let you execute your source code line by line in
the debugger, which gives you the opportunity to examine variables and data
structures. If the source-code line contains a function call, and the debugging
information about the function is available to the debugger, the step and next
commands behave differently.

9–2 Controlling Program Execution

9.3.1 The step Command
The step command steps through your program one line at a time following
the flow of control exactly. It steps into the function call and returns to the
debugger prompt with the program counter pointing at the first line in the
function that was called.

In Example 9–2, two step commands continue executing a Fortran program
into lines 10 and 11 after program execution has paused at line 9.

Example 9–2 Stepping Through Program Execution

(ladebug) stop at 9
[#2: stop at "squares.f90":9]
(ladebug) run
[2] stopped at [squares_:4 0x1200016dc]

9 DO 10 I = 1, N
(ladebug) step
stopped at [squares_:10 0x120001710]

10 IF(INARR(I) .NE. 0) THEN
(ladebug) step
stopped at [squares_:11 0x12000172c]

11 OUTARR(K) = INARR(I)**2

9.3.2 The next Command
The next command executes the called function to completion and returns to
the debugger prompt with the program counter pointing at the source-code line
immediately after the line containing the function call.

If the debugging information for the function is not available to the debugger,
then the debugger will step over the function regardless of whether the step
or the next command was used.

When you call a routine with limited symbolic information, you may not want
to step into it. The debugger is under the control of the debugger variable
$stepg0 , which determines whether Ladebug will step into or bypass the
routine. When $stepg0 is set to 0 (the default), the debugger steps over calls
to routines compiled without the option that includes full symbolic debugging
information. This means the debugger behaves as if a next command were
entered, instead of a step command.

Setting $stepg0 to 1 causes the debugger to step into these calls, rather than
over them.

Controlling Program Execution 9–3

9.4 Resuming Program Execution
Use the cont command to resume program execution that has been suspended
by a breakpoint or signal. Execution then continues until the next breakpoint
or signal, or until the end of the program.

By entering a signal parameter value with the cont command, you can direct
the debugger to send a signal to the program resuming program execution.
This feature allows you to test your program’s signal handling characteristics.

The signal parameter values can be either a signal number or a string name
(for example, SIGSEGV). If you do not specify a parameter value, the default is
0, which allows the program to continue execution without the signal.

In Example 9–3, a cont command resumes program execution after program
execution is suspended by a breakpoint.

Example 9–3 Continuing Program Execution

(ladebug) stop in main
[#1: stop in main]
(ladebug) run
[1] stopped at [main:4 0x120000b14]

4 for (i=1 ; i<3 ; i++) {
(ladebug) cont
1! = 1
2! = 2
Thread has finished executing
(ladebug)

9.5 Branching to a Specified Line: the goto Command
Use the goto command to branch to a specified line after execution is
suspended. The source code between the line at which execution suspended
and the line you specify is not executed.

To branch to a source code line, use the following syntax:

goto line_number

The line_number argument must be a line of source code located in the same
function in which execution is suspended.

Example 9–4 shows an example that uses the goto command.

9–4 Controlling Program Execution

Example 9–4 Branching to a Specified Line

(ladebug) list 1:9
1 #include <stdio.h>
2 main() {
3 int i,f;

> 4 for (i=1 ; i<3 ; i++) {
5 f = factorial(i);
6 printf("%d! = %d\n",i,f);
7 fflush(stdout);
8 }
9 }

(ladebug) goto 6
(ladebug) step
stopped at [main:7 0x1200011c0]

7 fflush(stdout);
(ladebug)

9.6 Setting Breakpoints
The debugger lets you place breakpoints in your program. When program
execution reaches one of these breakpoints, the debugger can either perform
predefined actions and continue program execution or suspend program
execution and return control to you. Breakpoints can:

• Suspend program execution (defined using the stop and stopi commands)

• Execute a set of debugger commands (defined using the when and wheni
commands)

Note

The stopi and wheni commands are specifically used for machine-
level debugging. As such, breakpoints are set based on machine
instruction addresses rather than line numbers. For more information
on machine-level debugging, see Chapter 18.

Any breakpoints you define remain active until you exit the debugger, disable
them using the disable command, or delete them using the delete command.

Controlling Program Execution 9–5

Table 9–1 lists the commands used for setting breakpoints.

Table 9–1 Commands for Setting Breakpoints

Command Description

stop Without a variable argument, suspends program execution
and returns to the prompt. With a variable argument,
suspends program execution when a variable changes.

stop if Suspends execution when an expression evaluates to true.

stop at Suspends execution when a specific line number is
encountered.

stopi, stopi if,
stopi at

For machine-level debugging; suspends program execution
when the specified variable value changes, when an
expression evaluates to true, or when a specified address is
encountered.

stop in For C++ programming; see the Command Reference for
specific forms of this command.

9.6.1 Breakpoints That Suspend Program Execution
Use the stop and stopi commands to set a breakpoint that suspends program
execution. When specified conditions are met, the debugger:

• Suspends program execution

• Prints the first line of source code that will be executed when program
execution continues

• Issues the debugger prompt

You can then use debugger commands to examine the program state, change
program variable values, and continue program execution from the breakpoint.

To determine if program execution should halt, you can base the breakpoint on
one or more of the following conditions:

• When program execution reaches an instruction corresponding to a
particular line in the source code

• When program execution reaches a memory address

• When program execution reaches a particular function

• When a program variable changes value

• When a set of conditions you specify evaluate to true

9–6 Controlling Program Execution

To set a breakpoint that suspends program execution when an instruction
corresponding to a line in the source code is reached, use the appropriate stop
at command syntax.

9.6.1.1 The stop at Command

stop at line_number

stop at "file_name":line_number

The line_number argument specifies the line number in the source code of the
current source file.

If the source code for your program spans multiple files, make sure that the file
context is set to the correct file before you set your breakpoint. For example:

file file_name

You must use quotation marks around the file_name argument as shown in the
second form. For example, if the file name is sample.c and the line number is
4, you type

(ladebug) stop at "sample.c":4

After you enter a breakpoint command, the debugger confirms the breakpoint
by displaying it and its reference number. Example 9–5 sets a breakpoint at
line number 13 of the current source file.

Example 9–5 Setting a Breakpoint at a Line in C Source Code

(ladebug) stop at 13
[#1: stop at "sample.c":13]
(ladebug) run
[1] stopped at [factorial:13 0x120001224]

13 if (i<=1)
(ladebug)

To set a breakpoint that suspends program execution when a memory address
is reached, use the stopi at command.

9.6.1.2 The stopi at Command

stopi at address

When program execution reaches the specified address, execution is suspended
and the debugger prints the source instruction corresponding to the specified
address. To specify the address in hexadecimal format, add the prefix 0x to
the hexadecimal number. The debugger converts the address to decimal when

Controlling Program Execution 9–7

it confirms the breakpoint command. Example 9–6 sets a breakpoint at the
address of a particular line in the sample program.

Example 9–6 Setting a Breakpoint at an Address in the Source Code

(ladebug) stopi at 0x120000b14
[#1: stopi at 4831841044]
(ladebug) run
[1] stopped at [main:4 0x120000b14]

4 for (i=1 ; i<3 ; i++) {
(ladebug)

To set a breakpoint that suspends execution at the first instruction in a
program function, procedure, or statement, use the (stop in command.

9.6.1.3 The stop in Command

stop in function

Note

With Version 4.0 (or higher) of the debugger, the stopi in command is
no longer valid, and results in an error message. Replace stopi in in
your code with stopi at for an address or stop in for a routine.

Example 9–7 shows how to set a breakpoint in a function.

Example 9–7 Setting a Breakpoint in a Function

(ladebug) stop in factorial
[#1: stop in factorial]
(ladebug) run
[1] stopped at [factorial:13 0x120001224]

13 if (i<=1)
(ladebug)

Functions and procedures in your executable file are usually each preceded by
a prolog that contains information about the function or procedure but which
is not of interest to most programmers while debugging their programs. The
stop in command halts program execution after the prolog, at the first real
sourcecode statement.

9–8 Controlling Program Execution

In Example 9–8 the stop in command sets a breakpoint at the beginning of
an Ada program procedure named ADD_INTEGERS.

Example 9–8 Setting a Breakpoint at the Start of an Ada Procedure

(ladebug) stop in add_integers
[2] stop in add_integers
(ladebug) run
[2] stopped at [add_integers:3 +0x20002a69,0x120002a68]

procedure add_integers is

9.6.1.4 The stop and stopi Commands
To set a breakpoint that stops program execution when the value of a program
variable changes, use one of the following commands:

stop variable

stopi variable

The stop command checks the value of the specified variable every time
program execution enters a function. The stopi command checks the value
of the specified variable after every instruction. The stopi command enables
you to determine precisely where a variable changes value, but slows program
execution.

When you enter a trace, when, or stop command with a variable as an
argument (but not in a conditional statement), the debugger records the
address of the variable. Instead of looking up the variable name when checking
the variable’s value, the debugger dereferences the variable’s absolute address.
This ensures that the correct version of the variable is used regardless of the
current context.

If the argument contains a variable as part of a larger expression that cannot
be converted into an address and dereferenced, then the debugger must look
up the variable name rather than dereference the variable’s address. In this
case, the debugger does the variable lookup in the current context, which may
not be the context active at the time the trace, when, or stop command was
entered.

Example 9–9 shows how to set a breakpoint on a variable.

Controlling Program Execution 9–9

Example 9–9 Setting a Breakpoint on a Variable

(ladebug) stop i
[#2: stop if i changes]
(ladebug) run
[1] stopped at [main:4 0x120000b14]

4 for (i=1 ; i<3 ; i++) {
(ladebug) print i
0
(ladebug) cont
Value of i changed before "sample.c":13

Old value = 0
New value = 1

[2] stopped at [factorial:13 0x120000bb8]
13 if (i<=1)

(ladebug) print i
1
(ladebug)

9.6.1.5 The stop if and stopi if Commands
To set a breakpoint that suspends program execution when the specified
conditional expression evaluates to true, use one of the following commands:

stop if (expression)

stopi if (expression)

The debugger accepts any valid conditional expression in the language of the
program you are debugging. Breakpoints that contain conditional expressions
are sometimes called conditional breakpoints.

The stop if command checks each time a function is entered to see if the
expression evaluates to true. The stopi if command checks after each
machine instruction is executed to see if the expression evaluates to true. The
stopi if version slows program execution considerably.

A variable included in a conditional expression may be undefined in the current
scope at some time during program execution. If this is the case, the debugger
prints an error message and suspends program execution as if the condition
evaluated to true. Global variables work best in conditional statements.

Example 9–10 shows how to set a breakpoint with a user-defined expression.

9–10 Controlling Program Execution

Example 9–10 Setting a Conditional Breakpoint

(ladebug) stop if (iter==2)
[#1: stop if iter==2]
(ladebug) run
[1] stopped at [doit:20 0x120000e14]

20 ++iter;
(ladebug) print iter
2
(ladebug)

In this example, the breakpoint is activated only when the program variable
iter equals 2.

9.6.1.6 Combining Optional Conditions to Customize Breakpoint Command
You can combine the optional conditions to further customize a breakpoint
command. By combining the line number or function syntax with a conditional
expression, you can create a breakpoint that halts program execution only if a
line number or function is reached and an expression evaluates to true. Use
one of the following commands to set this type of a breakpoint:

stop at line_number if (expression)

stop in function if (expression)

stopi at line_number if (expression)

Example 9–11 creates a breakpoint that stops only if the program is executing
the factorial function and the program variable i is equal to 2.

Example 9–11 Setting a Conditional Breakpoint in a Function

(ladebug) stop in factorial if (i==2)
[#1: stop in factorial if i==2]
(ladebug) run
1! = 1
[1] stopped at [factorial:13 0x120000bb8]

13 if (i<=1)
(ladebug) print
2
(ladebug)

9.6.2 Breakpoints That Execute Debugger Commands: the when
Commands

The when and wheni commands let you set breakpoints that execute debugger
commands, (rather than suspend program execution) when the specified

Controlling Program Execution 9–11

conditions are satisfied. To describe the conditions of the breakpoint, use the
same condition syntaxes described in Section 9.6.1.

The syntax for the command that executes a set of debugger commands when
a particular address or line number is reached is as follows:

when [variable] at line_number {command [; . . .] }

Use the following syntax for an address-oriented command:

wheni [variable] at address {command [; . . .] }

The commands in the argument must be enclosed in braces and separated by
semicolons. These commands cause the statements in the command list to
be executed immediately after the statements at the line number or address
specified.

Example 9–12 creates a breakpoint that prints a stack trace when line 16 is
reached.

Example 9–12 Setting a Breakpoint That Executes a Stack Trace

(ladebug) when at 16 {where}
[#1: when at "sample.c":16 { where }]
(ladebug) run
1! = 1
[1] when [factorial:16 0x12000123c]
>0 0x12000123c in factorial(i=2) sample.c:16
#1 0x120001194 in main() sample.c:5
2! = 2
Thread has finished executing
(ladebug)

Example 9–13 creates a breakpoint that displays the contents of the expression
HOLD-CHARS and SUB-1 in a COBOL program when line 50 is reached and
then resumes execution.

9–12 Controlling Program Execution

Example 9–13 Setting a Breakpoint That Executes Multiple Commands

(ladebug) when at 50 {print chars of hold-chars; print SUB-1; cont;}
[#3 when at "testa.cob":50 (print CHARS of HOLD-CHARS; print SUB-1; ; cont ; }]

You can use the when and wheni commands to set breakpoints at function
entry points, as shown in these syntax lines:

when [variable] in function {command [; . . .] }

wheni [variable] in function {command [; . . .] }

9.7 Setting Tracepoints: the trace commands
Tracepoints instruct the debugger to print a message when certain events occur
during program execution. You can use tracepoints to notify you when program
execution enters and exits program functions or when program variables
change value. Tracepoints do not halt program execution but they do slow it
down.

The debugger lets you set the following kinds of tracepoints:

• Tracepoints that print a message when functions are entered and exited

• Tracepoints that print a message when a specified variable changes value

You can base a tracepoint on the following conditions:

• Trace only when program execution is within a specified function

• Trace only when program execution corresponds to a specified line of source
code

• Trace only when a set of specified conditions evaluates to true

9.7.1 Tracepoints That Notify You of Function Entry and Exit
To set an entry/exit tracepoint unconditionally, enter either the trace or
tracei command at the debugger prompt. An unconditional tracepoint is
useful for following the execution flow of a program. If you use the tracei
command, the debugger notifies you when each function’s prolog (rather than
the function itself) is entered. You can also specify conditions so tracing occurs
only if program execution is:

• On a certain line number

• In a certain function

• If a set of conditions you specify evaluates to true

Controlling Program Execution 9–13

Use one of the following command syntaxes to establish a conditional
tracepoint:

trace at line_number [if (expression)]

tracei at address [if (expression)]

The expression argument can be any valid conditional expression in the
language of the program being debugged. The expression can contain debugger
variables, program variables, and constants.

Example 9–14 sets a tracepoint at line number 15 of the COBOL program
TESTA.

Example 9–14 Setting a Tracepoint

(ladebug) trace at 15
[#3: trace at "testa.cob":15]

Example 9–15 shows a tracepoint that traces only if the program variable i is
equal to 2 and execution is on line 5. When program execution reaches line 5,
and i is equal to 2, the trace is activated and the debugger prints the current
source line (line 5).

Example 9–15 Setting a Conditional Tracepoint

(ladebug) trace at 5 if (i==2)
[#1: trace at "sample.c":5 if i==2]
(ladebug) run
1! = 1
[1] trace [main:5 0x120000b1c]
> 5 f = factorial(i);
2! = 2
Thread has finished executing
(ladebug)

9.7.2 Tracepoints That Notify You of a Variable Value Change
You can set a tracepoint that prints a message if the value of a variable
changes. Use one of the following commands to establish a variable tracepoint:

trace variable

tracei variable

9–14 Controlling Program Execution

When you use the trace command, the debugger evaluates the variable when
execution enters a function. The debugger prints a message if the value of
the variable is different than the value associated with that variable when the
previously executed function was entered.

When you use the tracei command, the debugger evaluates the variable
after each instruction is executed, and prints a message after the statement in
which the value changed. Example 9–16 shows the difference between these
two commands.

Example 9–16 Tracing Variables

(ladebug) trace i
[#2: trace i]
(ladebug) tracei i
[#3: tracei i]
(ladebug) step
[3] Value of i changed before "sample.c":5

Old value = 0
New value = 1

stopped at [main:5 0x120001188]
5 f = factorial(i);

(ladebug) step
[2] Value of i changed before "sample.c":13

Old value = 0
New value = 1

stopped at [factorial:13 0x120001224]
13 if (i<=1)

(ladebug)

You can also set a conditional tracepoint that notifies you of variable value
changes, only if program execution is:

• Within a specified function

• On a certain source-code line

• At a certain memory address

• If a set of conditions you specify evaluates to true

Use one of the following commands to establish a conditional variable
tracepoint:

trace variable [at line_number | in function] [if (expression)]

tracei variable [at address | in function] [if (expression)]

Controlling Program Execution 9–15

9.8 Displaying, Deleting, Disabling, and Enabling
Breakpoints and Tracepoints

This section describes the commands used to display, delete, disable, and
enable breakpoints and tracepoints. It is written in terms of breakpoints but
all of these commands are also applicable to tracepoints.

To list all the breakpoints known to the debugger, enter the status command.

To delete, disable, or enable a breakpoint, identify the breakpoint by its
reference number. When breakpoints are created, they are associated with a
reference number. This reference number is shown when:

• The debugger confirms the creation of a new breakpoint

• The breakpoint is encountered

• You list all of the breakpoints with the status command

Example 9–17 uses the status command to display active breakpoints in a
COBOL program.

Example 9–17 Using status to Display Breakpoints

(ladebug) status
#1 PC==0x120001e14 in testa "testa.cob":2 {break}
#2 PC==0x120001ba4 in TESTB "testa.cob":47 {break}
#3 PC==0x120001c1c in TESTB "testa.cob":50

{print CHARS of HOLD-CHARS; print SUB-1; ; cont ; ; }

9.8.1 Deleting Breakpoints and Tracepoints: the delete Commands
When a breakpoint is no longer needed, use the delete command to remove
the breakpoint. To delete a single breakpoint, specify the reference number
using the following syntax:

delete number

To delete more than one breakpoint, separate the reference numbers with
commas using the following syntax:

delete number [, . . .]

Example 9–18 shows breakpoints being deleted and the breakpoint status after
each deletion.

9–16 Controlling Program Execution

Example 9–18 Deleting Breakpoints

(ladebug) status
#1 PC==0x120001180 in main "sample.c":4 { break }
#2 (at Proc entry and if $trace0!=*0x11fffe48){trace-expr i;set $trace0=}
#3 if $trace1!=*0x11ffffe48 { trace-expr i; set $trace1 = *0x11ffffe48; }
(ladebug) delete 1
(ladebug) status
#2 (at Proc entry and if $trace0!=*0x11ffe48) {trace-expr i;set $trace0=}
#3 if $trace1!=*0x11ffffe48 { trace-expr i; set $trace1 = *0x11ffffe48; }
(ladebug) delete 2,3
(ladebug) status
(ladebug)

To delete all breakpoints known to the debugger, use one of the following
commands:

delete all

delete *

9.8.2 Disabling Breakpoints and Tracepoints: the disable Commands
When you disable a breakpoint, the debugger ignores the breakpoint during
program execution. A disabled breakpoint does not cause the program to
suspend execution.

You can use the following disable commands to disable breakpoints:

disable number

disable all

disable *

The disable * command has the same effect as disable all. It disables all
breakpoints and all traces.

The disabled breakpoint is still displayed by the status command, but it is
listed as disabled. Example 9–19 shows breakpoints being disabled.

Controlling Program Execution 9–17

Example 9–19 Disabling Breakpoints

(ladebug) status
#1 PC==0x120000b14 in main "sample.c":4 { break }
#2 PC==0x120000bb8 in factorial "sample.c":13 { break }
#3 PC==0x120000b14 in main "sample.c":4 { break }
(ladebug) disable 1
(ladebug) status
#1 PC==0x120000b14 in main "sample.c":4 { break } Disabled
#2 PC==0x120000bb8 in factorial "sample.c":13 { break }
#3 PC==0x120000b14 in main "sample.c":4 { break }
(ladebug) disable 2,3
(ladebug) status
#1 PC==0x120000b14 in main "sample.c":4 { break } Disabled
#2 PC==0x120000bb8 in factorial "sample.c":13 { break } Disabled
#3 PC==0x120000b14 in main "sample.c":4 { break } Disabled
(ladebug)

9.8.3 Enabling Breakpoints and Tracepoints: the enable Commands
Disabled breakpoints remain deactivated until you enter the enable command
to reactivate the breakpoint. You can use the following enable commands to
enable disabled breakpoints:

enable number

enable all

enable *

Example 9–20 shows the breakpoints that were disabled earlier and then
reactivated with the enable command.

9–18 Controlling Program Execution

Example 9–20 Enabling Breakpoints

(ladebug) status
#1 PC==0x4001b8 in main "sample.c":4 { break } Disabled
#2 PC==0x400250 in factorial "sample.c":13 { break } Disabled
#3 PC==0x4001b8 in main "sample.c":4 { break } Disabled
(ladebug) enable 2
(ladebug) status
#1 PC==0x4001b8 in main "sample.c":4 { break } Disabled
#2 PC==0x400250 in factorial "sample.c":13 { break }
#3 PC==0x4001b8 in main "sample.c":4 { break } Disabled
(ladebug) enable all
(ladebug) status
#1 PC==0x4001b8 in main "sample.c":4 { break }
#2 PC==0x400250 in factorial "sample.c":13 { break }
#3 PC==0x4001b8 in main "sample.c":4 { break }
(ladebug)

A breakpoint that has been reactivated with the enable command appears as
an active breakpoint in the status list. Note that the last status list in this
example is the same as the first status list in the preceding example (except
for the PC values), showing three active breakpoints.

9.9 Returning from a Function: the return Command
The return command directs the debugger to continue program execution.
The command syntax is as follows:

return [function]

The return command without any arguments directs the debugger to continue
program execution until the current function exits. If you enter this command
with an argument, the debugger continues program execution until the
specified function returns.

The return command is also useful for finishing execution of a function you
inadvertently stepped into with the step command.

In Example 9–21, the step command is used to step through program
execution. When program execution enters the factorial function, the
return command is used to finish the called function and return control to the
program being debugged.

Controlling Program Execution 9–19

Example 9–21 Using the return Command

(ladebug) step
stopped at [main:5 0x120001188]

5 f = factorial(i);
(ladebug) Return

stopped at [factorial:13 0x120001224]
13 if (i<=1)

(ladebug) return
stopped at [main:5 0x120001194]

5 f = factorial(i);
(ladebug)

9.10 Calling Functions: the call Command
After a breakpoint or a signal suspends program execution, you can execute a
single function in your program by using the call command, or by including
a function call in the expression argument of a debugger command. Calling a
function lets you test the function’s operation with a specific set of parameters.

When the function you call completes normally, the debugger restores the stack
and current context that existed before the function was called.

While the program counter is saved and restored, calling a function does not
shield the program state from alteration if the function you call allocates
memory or alters global variables. If the function affects global program
variables, for instance, those variables will be permanently changed. Functions
compiled without the debugger option to include debugging information may
lack important parameter information and are less likely to yield consistent
results when called.

The syntax for the call command is as follows:

call function ([parameter[, . . .]])

Specify the function as if you were calling the function from within your
program. You can use both constants and locally visible variables as calling
parameters. If the function you are calling has no parameters, specify empty
parentheses.

The call command executes the specified function with the parameters
you supply and then returns control to you (at the debugger prompt) when
the function returns. The call command discards the return value of the
function. If you embed the function call in the expression argument of a print
command, the debugger prints the return value after the function returns.

9–20 Controlling Program Execution

Example 9–22 shows both methods of calling a function.

Example 9–22 Calling a Function from the Debugger Prompt

(ladebug) call factorial(5)
(ladebug) print factorial(5)
120
(ladebug)

In this example, the call command results in the return value being discarded
while the embedded call passes the return value of the function to the print
command, which in turn prints the value. You can also embed the call within
a more involved expression, as shown in Example 9–23.

Example 9–23 Embedding a Function Call in an Expression

(ladebug) print 341 + factorial(6) / 2
701
(ladebug)

All breakpoints or tracepoints defined during the session are active when
executing a called function. When program execution halts during function
execution, you can examine program information, execute one line or
instruction, continue execution of the function, or call another function.

When you call a function when execution is suspended in a called function, you
are nesting function calls, as shown in Example 9–24.

Example 9–24 Nesting Function Calls

(ladebug) status
#1 PC==0x120001180 in main "sample.c":4 { break }
#2 PC==0x12000123c in factorial "sample.c":16 { break }

(ladebug) call factorial(5)
[2] stopped at [factorial:16 0x12000123c]

16 return (i * factorial(i-1));

(continued on next page)

Controlling Program Execution 9–21

Example 9–24 (Cont.) Nesting Function Calls

(ladebug) where
>0 0x12000123c in factorial(i=5) sample.c:16
(ladebug) print i
5
(ladebug) s
stopped at [factorial:13 0x120001224]

13 if (i<=1)
(ladebug) call factorial(15)
[2] stopped at [factorial:16 0x12000123c]

16 return (i * factorial(i-1));
(ladebug) where
>0 0x12000123c in factorial(i=15) sample.c:16
(ladebug) disable 2
(ladebug) return
Called Procedure Returned
stopped at [factorial:13 0x120001224]

13 if (i<=1)
(ladebug) where
>0 0x120001224 in factorial(i=4) sample.c:13
#1 0x12000124c in factorial(i=5) sample.c:16
(ladebug) cont
Called Procedure Returned
stopped at [main:4 0x120001180]

4 for (i=1 ; i<=3 ; i++) {
(ladebug) where
>0 0x120001180 in main() sample.c:4
(ladebug)

The Ladebug debugger supports function calls and expression evaluations that
call functions, with the following limitations:

• The debugger does not support passing and returning structures by value.

• The debugger does not implicitly construct temporary objects for call
parameters.

• Optimization can prevent the debugger from knowing the type of a function
return. Therefore, the debugger assumes returns are of the type int if the
functions are optimized. If the returns are a different type, try using casts
when calling the optimized functions.

9–22 Controlling Program Execution

9.11 Unaligned Data Accesses: the catch and ignore
Commands

Unaligned data can slow program execution. You can use thecatch command
to cause Ladebug to stop on each unaligned data access or the ignore
command so the debugger does not stop.

catch unaligned

Enter the catch unaligned command to instruct the debugger to stop when
unaligned access occurs in the debuggee process. The debugger:

• Stops at the instruction immediately following the instruction where the
unaligned access occurs

• Issues a message

Example 9–25 shows this:

Example 9–25 Catching Unaligned Access

(ladebug) catch unaligned
(ladebug) run

Unaligned access pid=12538 <unaligned_test> va=140002901
pc=120001168 ra=12000114c type=stl
Thread received signal BUS
stopped at [main:8 0x12000116c]

8 temp = *j; /* unaligned access */

You can distinguish between the SIGBUS of unaligned access and a normal
SIGBUS because of the "unaligned access" message (issued by the kernel).

ignore unaligned

Enter the ignore unaligned command to instruct the debugger not to stop
when unaligned access occurs. This is the default.

The unalignment functionality is implemented through the setsysinfo system
call and SIGBUS. Ladebug makes the setsysinfo system call in the debuggee
process so that unaligned accesses for attached processes are also caught.

Ladebug will preserve the previous user settings when these commands are
issued.

If the user program executes a setsysinfo or uac (unaligned access control
flag) that is inconsistent with the catch unaligned or ignore unaligned
command, however, then the behavior of these commands will be affected.

Controlling Program Execution 9–23

If SIGBUS is ignored and then the catch unaligned command is issued:

(ladebug) ignore sigbus
(ladebug) catch unaligned

Warning: SIGBUS is currently being ignored -
SIGBUS is being caught to catch Unaligned accesses.

If Ladebug is catching unaligned accesses and then SIGBUS is ignored:

(ladebug) catch unaligned
(ladebug) ignore sigbus

Warning: SIGBUS is currently being ignored -
Cannot catch Unaligned accesses.

9.12 Using the pop Command
The pop command removes one or more execution frames from the call stack.
The pop command undoes the work already done by the removed execution
frames. It does not, however, reverse side effects such as changes to global
variables. You may need to use the assign command to restore the values of
global variables.

The pop command is useful when execution has already passed an error that
needs to be corrected.

The syntax of the command is as follows:

pop [number_of_frames]

The optional argument is the number of execution frames to remove from
the call stack. If you do not specify the argument, one frame is removed. If
specified, the number must be a positive integer less than or equal to the
number of frames currently on the call stack.

It is an error to issue the pop command when there is no running program.

The following fragment of a debugger session shows the use of the pop
command:

9–24 Controlling Program Execution

Reading symbolic information ...done
(ladebug) bp factorial
[#1: stop in int factorial(int)]
(ladebug) r
Factorial time has begun.
[1] stopped at [factorial:30 0x120001524]

30 printf("entered factorial\n");
(ladebug) where
>0 0x120001524 in factorial(ii=1) c_listfunc_factorial.c:30
#1 0x12000140c in main() c_listfunc.c:41
(ladebug) pop
[1] stopped at [main:41 0x120001410]

41 f = factorial(i);
(ladebug) c
[1] stopped at [factorial:30 0x120001524]

30 printf("entered factorial\n");

9.13 Controlling the Debugging of Attached Processes: the
attach and detach Commands

To attach to a running process, first invoke Ladebug with a process ID
number and the matching image file from the command line or from within
Ladebug using the attach command followed by the process ID and image
file. For information on invoking Ladebug to attach to a running process, see
Section 7.8.9.

After Ladebug attaches to a process, control is returned to the debugger when
the process stops (for example, after having received a signal). You can also
manually return control to the debugger by pressing Ctrl/C or by setting the
debugger variable $stoponattach to 1 to stop the attached process.

Use the detach command to detach the debugger from the previously attached
process, based on the process ID you specify. Ladebug only detaches the
specified process and removes all the user-specified breakpoints from that
process.

The following restrictions apply when you debug an attached process:

• In the context of an attached process, the run and rerun commands are
disabled.

• The quit command will terminate any process Ladebug created when
invoking the debugger with an image file or when using the load image_file
command. If it is attached to any process, Ladebug will detach itself from
the process.

Controlling Program Execution 9–25

9.14 Debugging Programs with Stripped Images
The strip command removes the symbol table and relocation information
ordinarily attached to the output of the assembler and loader. If you are
debugging a binary image that has been stripped, only machine-level
debugging is supported. For information on machine-level debugging, see
Chapter 18.

9.15 Using Environment Variables Within the Debugger
Ladebug provides commands for manipulating the environment of subsequent
debuggees with environment variables. From within the debugger, you can use
the following commands:

setenv [env_variable [value]]
export [env_variable [= value]]

Sets the value of the specified environment variable. If no variable is
specified, the command displays the values of all environment variables. If
a variable is specified but no value is specified, then the variable is set to
NULL.

setenv and export are synonyms.

printenv [env_variable]

Displays the value of the specified environment variable. If none is
specified, the command displays the value of all environment variables.

unsetenv [env_variable]

Removes the specified environment variable. If no variable is specified, all
environment variables are removed.

Manipulation of Subsequent Environments Without Affecting the Current
Environment
The environment-manipulation commands apply to any subsequent debuggee
environment but not to the current environment. For example:

% ladebug a.out
(ladebug) bpmain; run
Stopped in main
(ladebug) setenv LD_LIBRARY_PATH /usr/proj/libraries

At this point, the setting of the environment variable LD_LIBRARY_PATH is
not in effect; it does not apply to the current execution of the file a.out, which
was started by the run command. The environment variable will be applied
after you create a new debuggee by means of one of the following:

• run command

9–26 Controlling Program Execution

• rerun command

• fork(2)

This functionality is useful because it allows you to have different environ-
ments: it allows an environment for processes created by Ladebug that is
different from Ladebug’s environment, and also different from the environment
of the shell from which Ladebug was invoked.

Note

The environment-manipulation commands have no effect on other
environments. For example, the debuggee program cannot affect
the output of the Ladebug command setenv. Nor can the Ladebug
command setenv affect subsequent debuggee calls to getenv(3),
which, like putenv(3) and clearenv(3) , is an environment
manipulation routine in libc.a.

Differences in Prior Versions
For Ladebug prior to Version 4.0, the only way to set environment variables
was to set them in the shell, before invoking the debugger, using one of the
following commands:

• export, for the Bourne shell and the Korn shell

• setenv, for the C shell

The environment thus created in the shell applies to the debugger and also is
inherited by any debuggees subsequently created.

Two notable disadvantages of this method are as follows:

• The debugger and debuggee environments have to be the same and cannot
be independently manipulated.

• A change to the environment variable LD_LIBRARY_PATH can prevent future
debugger calls to dlopen(3) from operating correctly.

Differences from dbx Debugger Functionality
If you are familiar with the dbx debugger, it is important to be aware of the
following differences:

• The dbx debugger also has a setenv command, which works differently. In
dbx, unlike Ladebug, the setenv command changes the debugger’s current
environment. The current environment is inherited by any subsequently
created debuggee processes.

Controlling Program Execution 9–27

• In dbx, you can use the setenv command to change the behavior of
subsequent commands passed to the shell with sh. For example,

(dbx) setenv FOO=value
(dbx) sh command-using-FOO

In Ladebug, by contrast, the setenv command does not change the current
debugger environment, and so the command does not affect a shell invoked
by the sh command. In Ladebug, you accomplish the same thing in the
following way:

1. Invoke the shell.

2. Define the environment variable FOO.

3. In the shell, execute a command using FOO.

For example,

(ladebug) sh FOO=value; command-using-FOO

9–28 Controlling Program Execution

Part III
Language-Specific Topics

This part describes topics specific to the programming languages Ada, C++,
COBOL, Fortran, and Fortran 90.

10
Debugging DEC C++ Programs

10.1 Significant Supported Features
The Digital Ladebug debugger debugs programs compiled with the DEC C++
compiler on the Digital UNIX operating system. The following features are
supported:

• C++ names and expressions, including:

Explicit and implicit this pointer to refer to class members

Scope resolution operator (::)

Member access operators: period (.) and right arrow (->)

Reference types

Template instantiations

C++ exception handling

• Setting breakpoints in:

Member functions, including static and virtual functions

A member function in a particular object

Overloaded functions

Constructors and destructors

Template instantiations

Exception handlers

• Changing the current class scope to set breakpoints and examine static
members of a class that are not currently in scope

• Calling overloaded functions

• Debugging programs containing a mixture of C++ code and code in other
languages

Debugging DEC C++ Programs 10–1

Some of these features are discussed further in this chapter. This chapter also
explains the limitations on Ladebug support for the C++ language.

10.2 DEC C++ Flags for Debugging
To prepare to use the Ladebug debugger on a C++ program, invoke the
compiler with the appropriate debugging flag: -g, -g2, or -g3. For example:

% cxx -g sample.cxx -o sample

The -g flag on the compiler command instructs the compiler to write the
program’s debugger symbol table into the executable image. This flag also
turns off the default optimization, which could cause a confusing debugging
session.

Refer to the cxx(1) reference page or other compiler documentation for
information about the various -g n flags and their relationship to optimization.

Traceback information and symbol table information are both necessary for
debugging. They:

• Enable the debugger to translate virtual addresses into source program
routine names and compiler-generated line numbers.

• Provide symbol definitions for user-defined variables, arrays (including
dimension information), structures, and labels of executable statements.

Traceback and symbol table information result in a larger object file. When you
have finished debugging your program, you can remove traceback information
with the the strip command (see strip(1)). To remove symbol table
information, you can compile and link again with -g0 or -g1 to create a new
executable program.

Typical uses of the debugging flags at the various stages of program
development are as follows:

• During the early stages of program development, use the -g (or -g2)
flag. You can specify -O0 (which is the default with the -g or -g2 flag) to
enable debugging and to create unoptimized code. This flag also might be
chosen later to debug reported problems from later stages.

• During the later stages of program development, use -g0 or -g1 to reduce
the size of the object file† (and therefore the memory needed for program
execution), usually with optimized code.

† g1 results in a larger object file than -g0 but smaller than the other gn flags.

10–2 Debugging DEC C++ Programs

10.3 Calling Overloaded Functions
To call overloaded functions from the debugger, you must set $overloadmenu
to 1 (the default), as follows:

(ladebug) set $overloadmenu = 1

Then, use the following call command syntax:

call function ([parameter[, . . .]])

For example:

(ladebug) call foo(15)

The debugger will call the function that you select from the menu of overloaded
names.

10.4 Setting the Class Scope
The debugger maintains the concept of a current context in which to perform
lookup of program variable names. The current context includes a file scope
and either a function scope or a class scope. The debugger automatically
updates the current context when program execution suspends.

The class command lets you set the scope to a class in the program you are
debugging. The syntax for the class command is as follows:

class class_name

Explicitly setting the debugger’s current context to a class allows for visibility
into a class to:

• Set a breakpoint in a member function.

• Print static data members.

• Examine any data member’s type.

After the class scope is set, you can set breakpoints in the class’s member
functions and examine data without explicitly mentioning the class name. If
you do not want to affect the current context, you can use the scope resolution
operator (::) to access a class whose members are not currently visible.

To display the current class scope (if one exists), enter the class command
with no argument.

Example 10–1 shows the use of the class command to set the class scope to
S in order to make member function foo visible so a breakpoint can be set in
foo.

Debugging DEC C++ Programs 10–3

Example 10–1 Setting the Class Scope

(ladebug) stop in main; run
[#1: stop in main]
[1] stopped at [int main(void):26 0x120000744]

26 int result = s.bar();
(ladebug) stop in foo
Symbol foo not visible in current scope.
foo has no valid breakpoint address
Warning: Breakpoint not set
(ladebug) class S
class S {

int i;
int j;
S (void);
~S (void);
int foo (void);
virtual int bar (void);

}
(ladebug) stop in foo
[#2: stop in foo (void)]
(ladebug)

10.5 Displaying Class Information
The whatis and print commands display information on a class. Use the
whatis command to display static information about the classes. Use the
print command to view dynamic information about class objects.

The whatis command displays the class type declaration, including:

Data members
Member functions
Constructors
Destructors
Static data members
Static member functions

For classes that are derived from other classes, the data members and member
functions inherited from the base class are not displayed. Any member
functions that are redefined from the base class are displayed.

The whatis command used on a class name displays all class information,
including constructors. To use this command on a constructor only, use the
following syntax:

whatis class_name::class_name

10–4 Debugging DEC C++ Programs

Constructors and destructors of nested classes must be accessed with the class
command. The following syntax is for a constructor:

class class_name::(type signature)

The following syntax is for a destructor:

class class_name~::(type signature)

The print command lets you display the value of data members and static
members. Information regarding the public, private, or protected status of
class members is not provided, since the debugger relaxes the related status
rules to be more helpful to users.

The type signatures of member functions, constructors, and destructors are
displayed in a form that is appropriate for later use in resolving references to
overloaded functions.

Example 10–2 shows the whatis and print commands in conjunction with a
class.

Debugging DEC C++ Programs 10–5

Example 10–2 Displaying Class Information

(ladebug) list 1, 9
1 class S {
2 public:
3 int i;
4 int j;
5 S() { i = 1; j = 2; }
6 ~S() { }
7 int foo ();
8 virtual int bar();
9 };

(ladebug) whatis S
class S {

int i;
int j;
S (void);
~S (void);
int foo (void);
virtual int bar (void);

} S
(ladebug) whatis S :: bar
int bar (void)
(ladebug) stop in S :: foo
[#2: stop in S :: foo]
(ladebug) run
[2] stopped at [int S::foo(void):13 0x120000648]

13 return i;
(ladebug) print S :: i
1
(ladebug)

10.6 Displaying Object Information
The print and whatis commands display information on instances of classes
(objects). Use the whatis command to display the class type of an object. Use
the print command to display the current value of an object. You can print an
object’s contents all at one time by using the following print command syntax:

print object

You can also display individual object members using the member access
operators, period (.) and right arrow (->), in a print command.

You can use the scope resolution operator (::) to reference global variables, to
reference hidden members in base classes, to explicitly reference a member
that is inherited, or otherwise to name a member hidden by the current
context.

10–6 Debugging DEC C++ Programs

When you are in the context of a nested class, you must use the scope
resolution operator to access members of the enclosing class.

Example 10–3 shows how to use the print and whatis commands to display
object information.

Example 10–3 Displaying Object Information

(ladebug) whatis s
class S {

int i;
int j;
S (void);
~S (void);
int foo (void);
virtual int bar (void);

} s
(ladebug) stop in S::foo; run
[#1: stop in s.foo]
[1] stopped at [int S::foo(void):13 0x120000638]

35 return i;
(ladebug) print *this
class {

i = 1;
j = 2;

}
(ladebug) print i, j
1 2
(ladebug) print this->i, this->j
1 2
(ladebug)

10.7 Displaying Virtual and Inherited Class Information
When you use the print command to display information on an instance of
a derived class, Ladebug displays both the new class members as well as the
members inherited from a base class. Base class member information is nested
within the inherited class information. Ladebug displays members that are
inherited from a base class, using the following notation:

baseclass:{var1:value1,var2:value2, . . . varN:valueN}

Pointers to members of a class are not supported.

Debugging DEC C++ Programs 10–7

If you have two members in an object with the same name but different base
class types (multiple inheritance), you can refer to the members using the
following syntax:

object.class::member

This syntax is more effective than using the object.member and
object->member syntaxes, which can be ambiguous. In all cases, the Digital
Ladebug debugger uses the C++ language rules as defined in The Annotated
C++ Reference Manual to determine which member you are specifying.

Example 10–4 shows a case where the expanded syntax is necessary.

Example 10–4 Resolving References to Objects of Multiple Inherited Classes

(ladebug) print dinst.ambig
Ambiguous reference
Selecting ’ambig’ failed!
Error: no value for dinst.ambig
(ladebug) print dinst.B::ambig
2
(ladebug)

Trying to examine an inlined member function that is not called results in the
following error:

Member function has been inlined.

Ladebug will report this error regardless of the setting of the -noinline_auto
compilation flag. As a workaround, include a call to the given member function
somewhere in your program. (The call does not need to be executed.)

If a program is not compiled with the -g flag, a breakpoint set on an inline
member function may confuse the debugger.

10.8 Member Functions on the Stack Trace
The implicit this pointer, which is a part of all nonstatic member functions, is
displayed as the address on the stack trace. The class type of the object is also
given.

Sometimes the debugger does not see class type names with internal linkage.
When this happens, the debugger issues the following error message:

Name is overloaded.

10–8 Debugging DEC C++ Programs

The stack trace in Figure 10–1 displays a member function foo of an object
declared with class type S.

Figure 10–1 A Stack Trace Displaying a Member Function

ZK−6051A−GE

Class type of "this"
Address of "this"

Function name

Function parameters

(ladebug)stop in S::foo; run
[#1: stop in int S::foo(void)]
[1] stopped at [int S::foo(void):13 0x120000638]
 13 return i;
(ladebug)where
>0 0x120000638 in ((S*)0x140000000)−>foo() c++ex.C:13
#1 0x120000788 in main() c++ex.C:28

10.9 Resolving Ambiguous References to Overloaded
Functions

In most cases, the debugger works with one specific function at a time. In the
case of overloaded function names, you must specify the desired overloaded
function. There are two ways to resolve references to overloaded function
names, both under the the control of the $overloadmenu debugger variable
(the default setting of this debugger variable is 1):

• Choose the correct reference from a selection menu.

If you had changed the default value for the $overloadmenu variable, to
enable menu selection of overloaded names, set the $overloadmenu to 1
as shown in Example 10–5. Using this method, whenever you specify a
function name that is overloaded, a menu will appear with all the possible
functions; you must select from this menu. In Example 10–5, a breakpoint
is set in foo, which is overloaded.

Debugging DEC C++ Programs 10–9

Example 10–5 Resolving Overloaded Functions by Selection Menu

(ladebug) set $overloadmenu = 1
(ladebug) stop in foo
Enter the number of the overloaded function you want
--

1 int foo (void)
2 void foo (const char *)
3 void foo (char *)
4 void foo (double)
5 int foo (const double *)
6 None of the above

--
5
[#1: stop in int S::foo(const double*)]
(ladebug)

• Enter the function name with its full type signature.

If you prefer this method, set the $overloadmenu variable to 0. To see the
possible type signatures for the overloaded function, first display all the
declarations of an overloaded function by using one of the following whatis
commands:

whatis function

whatis class_name::function

You cannot select a version of an overloaded function that has a type
signature containing ellipsis points (...). Pointers to functions with type
signatures that contain the list parameter or ellipsis arguments are not
supported.

Use one of the displayed function type signatures to refer to the desired
version of the overloaded function. If a function has no parameter, include
the void parameter as the function’s type signature. In Example 10–6, the
function context is set to foo() , which is overloaded.

Example 10–6 Resolving Overloaded Functions by Type Signature

(ladebug) func foo
Error: foo is overloaded
(ladebug) func foo(double)
S::foo(double) in c++over.C line No. 156:

156 printf ("void S::foo (double d = %f)\en", d);
(ladebug)

10–10 Debugging DEC C++ Programs

10.10 Setting Breakpoints
When you set a breakpoint in a C function, the debugger confirms it by echoing
the breakpoint command along with the status number for the breakpoint.
When you set a breakpoint in a C++ function, the debugger also prints the type
signature of the function in which the breakpoint was set.

The following sections describe setting breakpoints in member functions, in
overloaded functions, and in constructors and destructors. See Section 10.12.1
for information on setting breakpoints in exception handlers.

10.10.1 Setting Breakpoints in Member Functions
To set a breakpoint that stops in a member function, use one of the following
stop in commands:

stop in function

stop in class_name::function

These forms of specifying a breakpoint in a function use the static class
type information to determine the address of the function at which to set
the breakpoint, and presume that no run-time information from an object is
needed.

In Example 10–7, a breakpoint is set for the bar member function of class S.

Example 10–7 Setting Breakpoints in Member Functions

(ladebug) stop in S :: bar
[#1: stop in S::bar(void)]
(ladebug) status
#1 PC==0x120000658 in S::bar(void) "c++ex.C":18 { break }
(ladebug) run
[1] stopped at [S::bar(void):18 0x120000658]

18 return j;

Debugging DEC C++ Programs 10–11

(ladebug) where
>0 0x120000658 in ((S*)0x120000658)->bar() c++ex.C:18
#1 0x120000750 in main() c++ex.C:26
(ladebug)

If you need run-time information from the object to determine the correct
virtual function at which to set a breakpoint, qualify the function name with
the object, using one of the following stop in commands:

stop in object.function

stop in objectpointer->function

These forms of setting the breakpoint cause the debugger to stop at the
member function in all objects declared with the same class type as the
specified object. In Example 10–8, objects s and t are both declared to be of
class type S. A breakpoint is set for the bar member function. The first time
the debugger stops at bar() is for object s. The second time the debugger
stops in bar() is for object t.

Example 10–8 Setting Breakpoints in Virtual Member Functions

(ladebug) stop in main
[#1: stop in main(void)]
(ladebug) run
[1] stopped at [main(void):26 0x120000744]

26 int result = s.bar();
(ladebug) stop in s.bar
[#2: stop in S::bar(void)]
(ladebug) status
#1 PC==0x120000744 in main(void) "c++ex.C":26 { break }
#2 PC==0x120000658 in S::bar(void) "c++ex.C":18 { break }
(ladebug) print &s
0x140000000
(ladebug) print &t
0x140000008
(ladebug) cont
[2] stopped at [S::bar(void):18 0x120000658]

18 return j;
(ladebug) where
>0 0x120000658 in ((S*)0x140000000)->bar() c++ex.C:18
#1 0x120000750 in main() c++ex.C:26
(ladebug) cont
[2] stopped at [S::bar(void):18 0x120000658]

18 return j;

(continued on next page)

10–12 Debugging DEC C++ Programs

Example 10–8 (Cont.) Setting Breakpoints in Virtual Member Functions

(ladebug) where
>0 0x120000658 in ((S*)0x140000008)->bar() c++ex.C:18
#1 0x12000076c in main() c++ex.C:27
(ladebug)

To set a breakpoint that stops only in the member function for this specific
object and not all instances of the same class type, you must specify this
as an additional conditional clause to the stop command. Use one of the
following stop in commands:

stop in object.function if & object = = this

stop in objectpointer->function if & objectpointer = = this

These forms of the stop in command instruct the debugger to stop in the
function only for the object specified by the this pointer. In Example 10–9,
which is running the same program as Example 10–8, the breakpoint is
set for the member function for object s only. After stopping in bar() for
object s, further execution of the program results in the program running to
completion.

Example 10–9 Setting Breakpoints in Member Functions for a Specific
Object

(ladebug) stop in s.bar if &s==this
[#2: stop in s.bar if &s==this]
(ladebug) status
#1 PC==0x120000744 in main(void) "c++ex.C":26 { break }
#2 (PC==0x120000658 in S::bar(void) "c++ex.C":18 and if &s==this) {break}
(ladebug) print &s
0x140000000
(ladebug) cont
[2] stopped at [S::bar(void):18 0x120000658]

18 return j;
(ladebug) where
>0 0x120000658 in ((S*)0x10000010)->bar() c++ex.C:18
#1 0x120000750 in main() c++ex.C:26
(ladebug) cont
Thread has finished executing
(ladebug)

Debugging DEC C++ Programs 10–13

10.10.2 Setting Breakpoints in Overloaded Functions
To set a breakpoint in an overloaded function, you must provide the full type
signature of the function. Use one of the following stop in commands:

stop in function (type_signature)

stop in class_name::function (type_signature)

If the desired version of the function has no parameters, you must enter void
for the type signature. In Example 10–10, the breakpoint is set for specific
versions of the overloaded function foo.

Example 10–10 Setting Breakpoints in Specific Overloaded Functions

(ladebug) stop in foo(double)
[#1: stop in void S::foo(double)]
(ladebug) stop in foo(void)
[#2: stop in int S::foo(void)]
(ladebug) status
#1 PC==0x120001508 in void S::foo(double) "c++over.C":156 { break }
#2 PC==0x120000ef4 in int S::foo(void) "c++over.C":59 { break }
(ladebug)

To set a breakpoint that stops in all versions of an overloaded function, use one
of the following stop in all commands:

stop in all function

stop in all class_name::function

In Example 10–11, the breakpoint is set for all versions of the overloaded
function foo.

Example 10–11 Setting Breakpoints in All Versions of an Overloaded
Function

(ladebug) stop in all foo
[#1: stop in all foo]
(ladebug)

You can also set a breakpoint in an overloaded function by setting a breakpoint
at the line number where the function begins. Be sure the current file context
points to the file containing the function’s source code before you set the
breakpoint. In Example 10–12, the breakpoint is set for the overloaded
functions by line number.

10–14 Debugging DEC C++ Programs

Example 10–12 Setting Breakpoints in Overloaded Functions by Line
Number

(ladebug) stop at 59
[#1: stop at "c++over.C":59]
(ladebug) stop at 156
[#2: stop at "c++over.C":156]
(ladebug) status
#1 PC==0x120000ef4 in S::foo(void) "c++over.C":59 { break }
#2 PC==0x120001508 in S::foo(double) "c++over.C":156 { break }
(ladebug)

10.10.3 Setting Breakpoints in Constructors and Destructors
To set a breakpoint in a constructor, use one of the following stop in
commands:

stop in class_name::class_name [(type_signature)]

stop in class_name [(type_signature)]

The type signature is only necessary to resolve an ambiguous reference to a
constructor that is overloaded. In Example 10–13, a breakpoint is set in a
constructor.

Example 10–13 Setting Breakpoints in Constructors

(ladebug) class S
class S {

int i;
int j;
S (void);
~S (void);
int foo (void);
virtual int bar (void);

}
(ladebug) stop in S
[#1: stop in S::NS(void)]

Debugging DEC C++ Programs 10–15

(ladebug) status
#1 PC==0x1200005b8 in S::S(void) "c++ex.C":5 { break }
(ladebug)

You can similarly set a breakpoint in a destructor using the following stop in
command syntax:

stop in ~class_name

In Example 10–14, the breakpoint is set for the destructor.

Example 10–14 Setting Breakpoints in Destructors

(ladebug) stop in ~S
[#1: stop in ~S::S(void)]
(ladebug) status
#1 PC==0x1200005f8 in S::~S(void) "c++ex.C":6 { break }
(ladebug)

As with any function’s type signature specification, constructors and
destructors that have no parameters must be referenced with a type signature
of void.

10.11 Class Templates and Function Templates
The debugger provides support for debugging class templates and function
templates in much the same way as other classes and functions in C++, with
the limitations described in Section 10.14.

You can use the whatis command on an instantiation of the function template
as shown in Example 10–15.

10–16 Debugging DEC C++ Programs

Example 10–15 Example of a Function Template

(ladebug) list 1
1 // remember to compile with -define_templates
2 template<class T> int compare(T t1, T t2)
3 {
4 if (t1 < t2) return 0;
5 else return 1;
6 }
7
8 main()
9 {

> 10 int i = compare(1,2);
11 }

(ladebug) whatis compare
int compare (int, int)
(ladebug)

You can set a breakpoint in a template function as shown in Example 10–16.

Example 10–16 Setting a Breakpoint in the Template Function

(ladebug) stop in compare
[#2: stop in compare(int, int)]
(ladebug) run
[2] stopped at [compare(int, int):4 0x120000560]

4 if (t1 < t2) return 0;
(ladebug) stop in S.pop
[#1: stop in stack<int,100>::pop(void)]
(ladebug) run
stopped at [stack<int,100>::pop(void):17 0x120001e0c]

17 return s[--top];
(ladebug) func
stack<int,100>::pop(void) in c++classtemp.C line No. 17:

17 return s[--top];
(ladebug) print top
2
(ladebug)

Example 10–17 displays the class definition of a particular instantiation of a
parameterized stack.

Debugging DEC C++ Programs 10–17

Example 10–17 Displaying an Instantiated Class Template

(ladebug) whatis stack<int,100>
class stack<int,100> {

array [subrange 0 ... 99 of int] of int s;
int top;
stack<int,100> (void);
void push (int);
int pop (void);

} stack<int,100>
(ladebug)

You can explicitly set your current class scope to a particular instantiation of a
class template if you are not in the proper class scope. See Example 10–18.

Example 10–18 Setting Current Class Scope to an Instantiated Class

(ladebug) stop in push
Symbol push not visible in current scope.
push has no valid breakpoint address
Warning: Breakpoint not set
(ladebug) class
Current context is not a class
(ladebug) class S
class stack<int,100> {

array [subrange 0 ... 99 of int] of int s;
int top;
stack<int,100> (void);
~stack<int,100> (void);
void push (int);
int pop (void);

}
(ladebug) stop in push
[#4: stop in stack<int,100>::push(int)]
(ladebug) run
[4] stopped at [stack<int,100>::push(int):10 0x120001cd0]

10 s[top++] = item;
(ladebug)

As an alternative, you can use the following syntax:

(ladebug) class stack<int,100>

10–18 Debugging DEC C++ Programs

10.12 Debugging C++ Exception Handlers
You can debug C++ exception handlers in programs by setting breakpoints in
the exception handler or in the predefined C++ functions that are used when
exceptions occur. You can also examine and modify variables that are used in
exception handlers.

10.12.1 Setting Breakpoints in Exception Handlers
As shown in Example 10–19, you can set a breakpoint for an exception handler
at the line number where the code for the exception handler begins. You can
then step through the exception handler, examine or modify variables, or
continue executing the program. You can also set breakpoints in C++ functions
used to handle exceptions as follows:

terminate Gains control when any unhandled exception occurs and terminates
the progrm

unexpected Gains control when a function containing an exception specification
tries to throw an exception that is not in the exception specification

Example 10–19 Setting Breakpoints in Exception Handlers

(ladebug) list 24
24 try
25 {
26 foo();
27 }
28 catch(char * str) { printf("Caught %s.\n",str); }
29 catch(...) { printf("Caught something.\n"); }
30
31 return 0;
32 }

(ladebug) stop at 24
[#1: stop at "except.C":26]
(ladebug) stop in unexpected
[#2: stop in unexpected]
(ladebug) run
[1] stopped at [int main(void):26 0x400370]

26 foo();
(ladebug) cont
[2] stopped at [unexpected:631 0x4010a8]
(Cannot find source file cxx_exc.c)

(continued on next page)

Debugging DEC C++ Programs 10–19

Example 10–19 (Cont.) Setting Breakpoints in Exception Handlers

(ladebug) cont
In my_unexpected().
Caught HELP.
Thread has finished executing
(ladebug)

10.12.2 Examining and Modifying Variables in Exception Handlers
After you set a breakpoint to stop the execution in the exception handler, you
can access the variables used in the exception handler the same way you would
examine and modify other program variables. See Section 8.3.

10.13 Advanced Program Information: Verbose Mode
By default, the debugger gives no information on virtual base class pointers for
the following:

• Derived classes

• Virtual pointer tables for virtual functions

• Compiler-generated function members

• Compiler-generated temporary variables

• Implicit parameters in member functions

By setting the $verbose debugger variable to 1, you can request that this
information be printed in subsequent debugger responses.

When the $verbose debugger variable is set to 1 and you display the contents
of a class using the whatis command, several of the class members listed are
not in the source code of the original class definition. The following line shows
sample output from the whatis command:

array [subrange 0 ... 0 of int] of vtable * _\|_vptr;

The vtable variable contains the addresses of all virtual functions associated
with the class. Several other class members are generated by the compiler for
internal use.

The compiler generates additional parameters for nonstatic member functions.
When the $verbose debugger variable is set to 1, these extra parameters
are displayed as part of each member function’s type signature. If you specify
a version of an overloaded function by entering its type signature and the
variable is set to 1, you must include these parameters. Do not include these
parameters if the variable is set to 0.

10–20 Debugging DEC C++ Programs

When the $verbose variable is set to 1, the output of the dump command
includes not only standard program variables but also compiler-generated
temporary variables.

Example 10–20 prints class information using the whatis command when the
$verbose variable is set to 1.

Example 10–20 Printing a Class Description in Verbose Mode

(ladebug) print $verbose
0
(ladebug) whatis S
class S {

int i;
int j;
S (void);
~S (void);
int foo (void);
virtual int bar (void);

} S
(ladebug) set $verbose = 1
(ladebug) print $verbose
1
(ladebug) whatis S
class S {

int i;
int j;
array [subrange 0 ... 0 of int] of vtbl * _\|_vptr;
S (S* const);
S (S* const, const S&);
~S (S* const, int);
int foo (S* const);
S& operator = (S* const, const S&);
virtual int bar (S* const);

} S
(ladebug)

When displaying information on virtual base classes, the debugger prints
pointers to the table describing the base class for each virtual base class object
member. This pointer is known as the bptr base pointer. This pointer is
printed after the class member information.

Debugging DEC C++ Programs 10–21

10.14 Limitations on Ladebug Support for C++
Ladebug interprets C++ names and expressions using the language rules
described in The Annotated C++ Reference Manual (Ellis and Stroustrup, 1990,
Addison-Wesley). C++ is a distinct language, rather than a superset of C.
Where the semantics of C and C++ differ, Ladebug provides the interpretation
appropriate for the language of the program being debugged.

To make Ladebug more useful, it relaxes some standard C++ name visibility
rules. For example, you can reference both public and private class members.

The following limitations apply when you debug a C++ program:

• If a program is not compiled with the -g flag, do not set a breakpoint on
an inline member function; it may confuse the debugger.

• When you use the debugger to display virtual and inherited class
information, the debugger does not support pointers to members of a
class.

• The debugger does not support calling the C++ constructs new and delete.
As alternatives, use the malloc() and free() routines from C.

• Sometimes the debugger does not see class type names with internal
linkage, and it issues an error message stating that the name is overloaded.

• You cannot select a version of an overloaded function that has a type
signature containing ellipsis points (...). Pointers to functions with type
signatures that contain parameter list or ellipsis arguments are not
supported.

Limitations for debugging templates include:

• You cannot specify a template by name in a debugger command. You must
use the name of the instantiation of the template.

• In C++, expressions in the instantiated template name can be full
constant expressions, such as stack<double,f*10>. This form is not yet
supported in the Digital Ladebug debugger; you must enter the value of
the expression (for example, if f is 10 in the stack example, you must
enter 100).

• Setting a breakpoint at a line number that is inside a template function
will not necessarily stop at all instantiations of the function within the
given file, but only a randomly chosen few. This limitation is due to the
limited symbol information generated by the compiler for templates.

10–22 Debugging DEC C++ Programs

11
Debugging DEC Fortran and DEC Fortran

90 Programs

11.1 Significant Supported Features
You can use Ladebug to debug Fortran programs on the Digital UNIX
operating system. The following features are supported:

• Much of the Fortran language syntax is built into the Ladebug debugger.
You can specify the following language elements to the debugger using
Fortran language syntax, including case insensitivity:

Type names

Identifiers

Program names

Subroutine names

Array sections

Relational operators

Logical operators

It is an error to specify a trailing underscore, as Ladebug removes trailing
underscores when reading a Fortran symbol table.

• You can control the execution of individual source lines in a program.

• You can set stops (breakpoints) at specific source lines, routine names, or
under various conditions.

• You can refer to program locations by their symbolic names, using
the debugger’s knowledge of the DEC Fortran language to determine
the proper scoping rules and how the values should be evaluated and
displayed.

Debugging DEC Fortran and DEC Fortran 90 Programs 11–1

• You can examine and print the values of variables and set a trace
(tracepoint) to notify you when the value of a variable changes. You can
change the value of variables within the debugging environment.

• You can perform other functions, such as examining core files, examining
the call stack, or displaying registers.

• You can debug programs with alternate entry points (see Section 11.5).

• You can debug mixed-language programs (see Section 11.6).

• You can debug programs with optimized code (see Section 11.8).

This chapter also discusses flags used with the Fortran compiler commands,†
Fortran data types in Ladebug, limitations on Ladebug support for Fortran,
debugging a Fortran program that generates an exception, and locating
unaligned data.

11.2 Fortran Flags for Debugging
To prepare to use the Ladebug debugger on a Fortran program, invoke the
compiler with the appropriate debugging flag: -g, -g2, or -g3 and, for DEC
Fortran 90 only, -ladebug. For example, for DEC Fortran 90:

% f90 -g -ladebug -o squares squares.f90

For DEC Fortran:

% f77 -g -o squares squares.for

This f77 command compiles and links the program squares.for without
optimization but with symbol table information needed for symbolic debugging
with Ladebug. The executable file is named squares instead of a.out.

The -g n flags control the amount of information placed in the object file for
debugging.

For Digital UNIX Version 3.2 systems, Table 11–1 summarizes the information
provided by the debugger-related flags and their relationship to the -On flags,
which control optimization. Refer to your language compiler documentation
for the latest information on compiler flags used on Digital UNIX Version 4.0
systems.

† f77 is the DEC Fortran compile command, and f90 is the DEC Fortran 90 compile
command. In this chapter, Fortran refers to both DEC Fortran and DEC Fortran 90.

11–2 Debugging DEC Fortran and DEC Fortran 90 Programs

Note

Ladebug cannot distinguish between a Fortran-77 and a Fortran-90
compilation unit because the respective compilers do not make such
distinctions. The value of $lang is always "Fortran" in both cases.

Table 11–1 Summary of Symbol Table Flags

Flag
Traceback
Information

Debugging
Symbol
Table
Information Effect on -O n Flags

-g0 No No Default is -O4 (full optimiza-
tion).

-g1 (default) Yes No Default is -O4 (full optimiza-
tion).

-g2 or -g Yes Yes. For
unoptimized
code only.

Changes default to -O0 (no
optimization).

-g3 Yes Yes Default is -O4 .

-ladebug (f90
only)

Yes Describes
Fortran-90
arrays in a
manner that
Ladebug
understands.

No effect.

Traceback information and symbol table information are both necessary for
debugging. They enable the debugger to:

• Translate virtual addresses into source program routine names and
compiler-generated line numbers

• Provide symbol definitions for:

User-defined variables

Arrays (including dimension information)

Structures

Labels of executable statements

Debugging DEC Fortran and DEC Fortran 90 Programs 11–3

Typical uses of the debugging flags at the various stages of program
development are as follows:

• During the early stages of program development, use the -g (or -g2) flag,
perhaps specifying -O0 (which is the default with the -g or -g2 flag) to
enable debugging and to create unoptimized code.

• During the later stages of program development, use -g0 or -g1 to
minimize the object file size† and, as a result, the memory needed for
program execution, usually with optimized code.

If further debugging is needed, compile and link using -g to create an
unoptimized debugging version of the same application for debugging
purposes.

• During the later stages of program development, if you need to debug
optimized code, use -g3 .

Traceback and symbol table information result in a larger object file. When you
have finished debugging your program, you can remove traceback information
with the the strip command (see strip(1)). To remove symbol table
information, you can compile and link again with -g0 or -g1 to create a new
executable program.

If your program generates an exception, recompile using the -fpe n flag (see
Section 11.7).

For more information on program development and run-time environments, see
the DEC Fortran or DEC Fortran 90 user manual.

11.3 Displaying Fortran Variables
When the $lang debugger variable is set to Fortran, command names and
program identifiers are case insensitive. For more information about the $lang
debugger variable, see Section 11.6.

To refer to a variable named J, use either the uppercase letter J or its
lowercase equivalent, j.

You can also enter Ladebug command names in uppercase or lowercase. For
example, the following two commands are equivalent:

(ladebug) PRINT J

(ladebug) print j

† -g1 results in a larger object file than -g0 but smaller than the other gn flags

11–4 Debugging DEC Fortran and DEC Fortran 90 Programs

11.3.1 Fortran Common Block Variables
You can display the values of variables in a Fortran common block using
Ladebug commands such as print or whatis.

To display the entire common block, use the common block name. For example:

(ladebug) list 1,11
1 PROGRAM EXAMPLE
2
3 INTEGER*4 INT4
4 CHARACTER*1 CHR
5 COMMON /COM_STRA/ INT4, CHR
6
7 CHR = ’L’
8

> 9 PRINT *, INT4, CHR
10
11 END

(ladebug) print com_stra
COMMON

INT4 = 0
CHR = "L"

To display a specific variable in the common block, use only the field name. For
example:

(ladebug) PRINT CHR
"L"

If your program contains a common block and a member of the same name, the
common block will be occluded by the member.

11.3.2 Fortran Derived-Type Variables
Variables in a Fortran 90 derived-type (TYPE statement) are represented in
Ladebug commands, such as print or whatis , using Fortran 90 syntax form.

For derived-type structures, use:

• The derived-type variable name

• A percent sign (%)

• The member name

Debugging DEC Fortran and DEC Fortran 90 Programs 11–5

For example:

(ladebug) list 3,11
3 TYPE X
4 INTEGER A(5)
5 END TYPE X
6
7 TYPE(X) Z
8
9 Z%A = 1

10
> 11 PRINT*, Z%A
(ladebug) print Z%A
(1) 1
(2) 1
(3) 1
(4) 1
(5) 1

11.3.3 Fortran Record Variables
Variables in a Fortran record structure (STRUCTURE statement) are
represented in a fashion similar to derived-type.

For record structures, use:

• The record name

• A percent sign (%) or a period (.)

• The field name

For example:

(ladebug) l 3,13
3 STRUCTURE /STRA/
4 INTEGER*4 INT4
5 CHARACTER*1 CHR
6 END STRUCTURE
7
8 RECORD /STRA/ REC
9

10 REC.CHR = ’L’
11 REC.INT4 = 6
12

> 13 PRINT *, REC.CHR, REC.INT4
(ladebug) print rec%int4
6
(ladebug) print rec.int4
6

To view all fields in the record structure, type the name of the record structure,
such as rec (instead of rec%int4 or rec.int4 in the previous example).

11–6 Debugging DEC Fortran and DEC Fortran 90 Programs

11.3.4 Fortran Array Variables
For array variables, put subscripts within parentheses, as with Fortran source
statements. For example:

(ladebug) assign arrayc(1)=1

You can print out all elements of an array using its name. For example:

(ladebug) print arrayc

(1) 1
(2) 0
(3) 0

Avoid displaying all elements of a large array. Instead, display specific array
elements or array sections. For example, to print array element arrayc(2):

(ladebug) print arrayc(2)

(2) 0

11.3.4.1 Array Sections
Fortran provides an array notation known as an array section. Array sections
consist of a three parts, a starting element, an ending element, and a stride.
For more information on arrays, see the DEC Fortran or DEC Fortran 90 user
manual.

Consider the following array declarations:

INTEGER, DIMENSION(0:99) :: arr
INTEGER, DIMENSION(0:9,0:9) :: TenByTen

Assume that each array has been initialized to have the value of the index in
each position, for example, TenByTen(5,5) = 55, arr(43) = 43. The following
expressions will be accepted by the debugger:

(ladebug) print arr(2)

2
(ladebug) print arr(0:9:2)

(0) = 0
(2) = 2
(4) = 4
(6) = 6
(8) = 8
(ladebug) print TenByTen(:,3)

Debugging DEC Fortran and DEC Fortran 90 Programs 11–7

(0,3) = 3
(1,3) = 13
(2,3) = 23
(3,3) = 33
(4,3) = 43
(5,3) = 53
(6,3) = 63
(7,3) = 73
(8,3) = 83
(9,3) = 93

The only operations permissible on array sections are whatis and print .

Ladebug supports the array section notation for both Fortran-90 and Fortran-
77 programs.

11.3.4.2 Assignment to Arrays
Ladebug does not support assignments to whole arrays, only single array
elements.

11.3.5 DEC Fortran 90 Module Variables
To refer to a variable defined in a module, insert a dollar sign ($), the module
name, and another dollar sign ($) before the variable name. For example, with
a variable named J defined in a module named modfile (statement MODULE
MODFILE), enter the following command to display its value:

(ladebug) list 5,7
5 USE MODFILE
6 INTEGER*4 J
7 CHARACTER*1 CHR

11.3.6 DEC Fortran 90 Pointer Variables
DEC Fortran 90 supports two types of pointers:

• Fortran 90 pointers (standard-conforming)

• DEC Fortran CRAY-style pointers (extension to the Fortran 90 standard)

The following example shows Fortran 90 pointers displayed in their
corresponding source form with a whatis command. In the following example,
the -ladebug switch is used to allow display of pointers to arrays. Only the
display of pointers is currently supported; it is not currently possible to change
the location to which the pointer points:

11–8 Debugging DEC Fortran and DEC Fortran 90 Programs

% f90 -g -ladebug ptr.f90
% ladebug ./a.out
Welcome to the Ladebug Debugger Version x.y-zz

object file name: ./a.out
Reading symbolic information ...done
(ladebug) stop in ptr
[#1: stop in ptr]
(ladebug) list 1:13

1 program ptr
2
3 integer, target :: x(3)
4 integer, pointer :: xp(:)
5
6 x = (/ 1, 2, 3/)
7 xp => x
8
9 print *, "x = ", x

10 print *, "xp = ", xp
11
12 end

(ladebug) run
[1] stopped at [ptr:6 0x120001838]

6 x = (/ 1, 2, 3/)
(ladebug) whatis x
integer*4 x (1:3)

Since xp has not been assigned to point to anything yet, it is still a generic
pointer:

(ladebug) whatis xp
integer*4 (:) xp
(ladebug) S
stopped at [ptr:7 0x120001880]

7 xp => x
(ladebug)
stopped at [ptr:9 0x120001954]

9 print *, "x = ", x
(ladebug)

x = 1 2 3
stopped at [ptr:10 0x1200019c8]

10 print *, "xp = ", xp
(ladebug)

xp = 1 2 3
stopped at [ptr:12 0x120001ad8]

12 end

Debugging DEC Fortran and DEC Fortran 90 Programs 11–9

Now that xp points to x, it takes on the size, shape and values of x:

(ladebug) whatis xp
integer*4 xp (1:3)
(ladebug) print xp
(1) 1
(2) 2
(3) 3

(ladebug) quit
%

The following example shows DEC Fortran CRAY-style pointers displayed in
their corresponding source form with a whatis command:

% f90 -g -ladebug cray.f90
% ladebug ./a.out
Welcome to the Ladebug Debugger Version x.y-zz

object file name: ./a.out
Reading symbolic information ...done
(ladebug) stop at 14
[#1: stop at "cray.f90":14]
(ladebug) run
[1] stopped at [cray:14 0x1200017e4]

14 end
(ladebug) whatis p
real*4 (1:10) pointer p
(ladebug) print p
0x140002c00 = (1) 10
(2) 20
(3) 30
(4) 40
(5) 50
(6) 60
(7) 70
(8) 80
(9) 90
(10) 100

11–10 Debugging DEC Fortran and DEC Fortran 90 Programs

(ladebug) l 1:14
1 program cray
2
3 real i(10)
4 pointer (p,i)
5
6 n = 5
7
8 p = malloc(sizeof(i(1))*n)
9

10 do j = 1,10
11 i(j) = 10*j
12 end do
13

> 14 end
(ladebug) quit

11.3.7 Complex Variable Support
Ladebug supports COMPLEX, COMPLEX*8, and COMPLEX*16 variables and
constants in expressions.

Consider the following Fortran program:

PROGRAM complextest
COMPLEX*8 C8 /(2.0,8.0)/
COMPLEX*16 C16 /(1.23,-4.56)/
REAL*4 R4 /2.0/
REAL*8 R8 /2.0/
REAL*16 R16 /2.0/
integer*2 i2 /2/
integer*4 i4 /2/
integer*8 i8 /2/

TYPE *, "C8=", C8
TYPE *, "C16=", C16

end

Ladebug supports basic arithmetic operators, display and assignment on
variables and constants of the COMPLEX type. For example:

Debugging DEC Fortran and DEC Fortran 90 Programs 11–11

Welcome to the Ladebug Debugger Version x.y-zz

object file name: complex
Reading symbolic information ...done
(ladebug) stop in complextest
[#1: stop in complextest]
(ladebug) run
[1] stopped at [complextest:15 0x1200017b4]

15 TYPE *, "C8=", C8
(ladebug) whatis c8
complex c8
(ladebug) whatis c16
double complex c16
(ladebug) print c8
(2, 8)
(ladebug) print c16
(1.23, -4.56)
(ladebug) whatis (-5,6.78E+12)
double complex
(ladebug) print (c8*c16)/(c16*c8)
(1, 0)
(ladebug) a c16=(-2.3E+10,4.5e-2)
(ladebug) print c16
(-23000000512, 0.04500000178813934)
(ladebug)

11.4 Limitations on Ladebug Support for Fortran
Ladebug and the Digital UNIX operating system support the Fortran language
with certain limitations, that are described in the following sections.

Be aware of the following data-type limitations when you debug a Fortran
program:

• Ladebug does not set breakpoints correctly on alternate entry points for
DEC Fortran 90 Version 1.2 or earlier, or for DEC Fortran versions prior to
Version 3.5 (see Section 11.5).

• Ladebug does not allow setting a breakpoint on a program routine named
MAIN.

• Variables that have spellings that match C language type names must
be entered in uppercase to distinguish them from the C language built in
types.

• Substring notation is not supported.

The following limitations apply only to DEC Fortran 90:

• DEC Fortran 90 array constructors, structure constructors, adjustable
arrays, and vector subscripts are not yet supported.

11–12 Debugging DEC Fortran and DEC Fortran 90 Programs

• DEC Fortran 90 user-defined (derived) operators are not yet supported.

• Ladebug does not handle variables of STR16 data types.

• A main program routine, without the program statement, will not have its
line number information interpreted correctly. A breakpoint set on such a
main program will get set one line later than is expected. For example:

% cat noprog.f90
i = 5
end

A breakpoint at main$noprog will get set at line 2, rather than line 1.

11.5 Use of Alternate Entry Points
If a subprogram uses alternate entry points (ENTRY statement within
the subprogram), Ladebug handles alternate entry points as a separate
subprogram, including:

• Use of the ENTRY statement name as a breakpoint (stop in command).

• Use of the where command at an alternate entry point breakpoint location.

For example, the following is a fragment of a Fortran program and a debugging
session:

program aep

call foo(1,2,3,4)
call bar(4,5,6)
end

subroutine foo(I,J,K,I1)
INTEGER*4 I,J,K,L,I1

write (6,*) ’Entered via foo: ’, i, j, k, I1
write (6,*) ’*****************************’
goto 1000

entry bar(J,K,L)

write (6,*) ’Entered via bar: ’, j, k, l
write (6,*) ’*****************************’

1000 write (6,*) ’Exiting foo & bar’
return
end

Debugging DEC Fortran and DEC Fortran 90 Programs 11–13

Welcome to the Ladebug Debugger Version x.y-zz

object file name: aep
Reading symbolic information ...done
(ladebug) stop in foo
[#1: stop in foo]
(ladebug) stop in bar
[#2: stop in bar]
(ladebug) status
#1 PC==0x120001868 in foo "aep.f":10 { break }
#2 PC==0x1200019ac in bar "aep.f":16 { break }
(ladebug) run
[1] stopped at [foo:10 0x120001868]

10 write (6,*) ’Entered via foo: ’, i, j, k, I1
(ladebug) where
>0 0x120001868 in foo(I=1, J=2, K=3, I1=4) aep.f:10
#1 0x120001814 in aep() aep.f:3
#2 0x1200017b0 in main() for_main.c:203
(ladebug) c
Entered via foo: 1 2 3 4

Exiting foo & bar
[2] stopped at [bar:16 0x1200019ac]

16 write (6,*) ’Entered via bar: ’, j, k, l
(ladebug) where
>0 0x1200019ac in bar(J=4, K=5, L=6) aep.f:16
#1 0x12000182c in aep() aep.f:4
#2 0x1200017b0 in main() for_main.c:203
(ladebug) c
Entered via bar: 4 5 6

Exiting foo & bar
Thread has finished executing
(ladebug) quit

11.6 Debugging Mixed-Language Programs
The Ladebug debugger lets you debug mixed-language programs. Program flow
of control across subprograms written in different languages is transparent.

The debugger automatically identifies the language of the current subprogram
or code segment on the basis of information embedded in the executable file.
For example, if program execution is suspended in a subprogram in Fortran,
the current language is Fortran. If the debugger stops the program in a C
function, the current language becomes C. The current language determines for
the debugger the valid expression syntax and the semantics used to evaluate
an expression.

11–14 Debugging DEC Fortran and DEC Fortran 90 Programs

The debugger sets the $lang variable to the language of the current
subprogram or code segment. By manually setting the $lang debugger
variable, you can force the debugger to interpret expressions used in commands
by the rules and semantics of a particular language. For example, you can
check the current setting of $lang and change it as follows:

(ladebug) print $lang
"C++"
(ladebug) set $lang = "Fortran"

When the debugger reaches the end of your program, the $lang variable is set
to the language of the main program.

11.7 Debugging a Program That Generates an Exception
If your program encounters an exception at run time, to make it easier to
debug the program, recompile and relink with the following f90 flags or f77
flags before debugging the cause of the exception:

• Use the -fpe n flag to control the handling of exceptions (see f77(1) or
f90(1)).

• As with other debugging tasks, use the -g flag to generate sufficient
symbol table information and debug unoptimized code (see Section 11.2).

Use the Ladebug commands catch and ignore to control whether Ladebug
displays and handles exceptions (catches them), or ignores exceptions so that
they are handled by the Fortran run-time library.

To obtain the appropriate Fortran run-time error message when debugging a
program that generates an exception, you may need to use the appropriate
ignore command before running the program. For instance, use the following
command to tell Ladebug to ignore floating-point exceptions and pass them
through to the Fortran run-time library:

(ladebug) ignore fpe

Because the where command works only if the debugger is catching the signal,
the ignore command prevents the where command from working. You may
want to use the where command when an exception occurs to locate the part of
the program causing the error. You need to consider this factor when you use
the ignore command.

Debugging DEC Fortran and DEC Fortran 90 Programs 11–15

11.8 Debugging Optimized Programs
The Fortran compiler performs code optimizations (-O4) by default unless you
specify -g2 (or -g) . See the DEC Fortran or DEC Fortran 90 user manual for
a discussion of compiler optimizations.

Debugging optimized code is recommended only under special circumstances
(such as a problem that shows up in an optimized program may disappear
when you specify the -O0 flag). Before you attempt to debug optimized code,
read Section 11.2.

One aid to debugging optimized code is the -show code flag. This flag
generates a listing file that shows the compiled code produced for your
program. By referring to a listing of the generated code, you can see exactly
how the compiler optimizations affected your code. This lets you determine the
debugging commands you need in order to isolate the problem.

Another aid is a set of messages displayed by Ladebug when you try to perform
a Ladebug operation on a language construct that has been optimized. For
example, if the Fortran compiler can determine that an entire Fortran 90
statement is not needed for correct operation of the program (such as an
unnecessary CONTINUE statement), that statement is not represented in the
object code. As a result, Ladebug will use the next available line.

For more information on optimizations, see the DEC Fortran or DEC Fortran
90 user manual.

11–16 Debugging DEC Fortran and DEC Fortran 90 Programs

12
Debugging DEC Ada Programs

12.1 Significant Supported Features
You can use Ladebug to debug Ada programs on the Digital UNIX operating
system. Supported features include the following:

• Debugging multilanguage programs

• Using case-insensitive commands and variable names

• Printing ISO Latin-1 characters

• Displaying the source code of generic units

• Debugging multiple units in one source file

• Debugging elaboration code

• Accessing unconstrained array types

• Accessing incomplete types completed in another compilation unit

Some of these features are further discussed in this chapter. The chapter also
explains Ada compiler options, debugging limitations, and specific debugging
tasks.

12.2 Compiling and Linking for Debugging
To compile units for debugging, specify the -g compiler option on the ada
command, as follows:

% ada -g reservations_.ada reservations.ada hotel.ada

The -g option automatically suppresses code optimization. Nonoptimized
code is easier to debug (although it is possible to debug optimized code).
Nonoptimized code more closely resembles your program as you wrote it.

Debugging DEC Ada Programs 12–1

Alternatively, if your program has been compiled once and then modified, you
can recompile the program by entering the amake command, as follows:

% amake -C’ -g’ hotel

To link units for debugging, enter the ald command, as follows:

% ald -o hotel hotel

The ald command automatically copies debugging information into the
executable file.

For information the amake and ald commands, see manpages amake(1) and
ald(1) .

12.3 Debugging Multilanguage Programs
The debugger allows you to debug mixed-language programs. Program flow of
control across functions written in different languages is transparent.

The debugger automatically identifies the language of the current function or
code segment based on information embedded in the executable file. If program
execution is suspended in an Ada function, the current language is Ada. If the
program executes a C function, the current language becomes C.

The current language determines the valid expression syntax for the debugger.
It also affects the semantics used to evaluate an expression.

The debugger sets the $lang variable to the language of the current function
or code segment. By manually setting the debugger variable $lang, you can
force the debugger to interpret expresssions used in commands by the rules
and semantics of a particular language.

Note

C language syntax is used when $lang is set to Ada; and no thread-
related commands are available.

12.4 Using Case-Insensitive Commands and Variable Names
When the $lang debugger variable is set to Ada, command names and
program identifiers are case-insensitive.

12–2 Debugging DEC Ada Programs

The $lang variable is set to "Ada" at Ladebug startup if your program has
been linked using the ald linker. In this case, the main routine appears in a
pseudo-file with a file name of the following form:

ald_mmmmmmmm_nnnnnnnnnn.ada

Otherwise, $lang reflects the the language of the main routine. When the
$lang debugger variable is set to a language other than Ada (which may occur
if most, but not all, of your routines are written in languages other than Ada),
command names and program identifiers follow the case conventions of the
$lang setting.

12.5 Printing ISO Latin-1 Characters
The $ascii debugger variable allows you to print ASCII characters in the
7-bit ASCII character set or in the 8-bit Latin-1 character set (a superset of
the 7-bit ASCII character set). The ISO Latin-1 standard calls for character
representation in 8 bits (256 values), rather than 7 bits, so the extended
character set can include additional characters, such as those commonly found
in Western European languages. (This character set is not coextensive with
the DEC Multinational Character Set, but is very similar.)

To choose a character set, define $ascii as follows:

• When $ascii is set to 1, Ladebug prints the 7-bit ASCII character set
characters. All other alphanumerics appear in octal notation. (This is the
default.)

• When $ascii is set to 0, Ladebug prints the Latin-1 character set
characters. All other alphanumerics appear in octal notation.

The Ada CHARACTER data type can contain any of the Latin-1 characters.

12.6 Displaying the Source Code of Generic Units
The instantiation of a generic unit is the code corresponding to the generic
unit itself. Ladebug displays the correct source code for the instantiation of a
generic unit by recognizing the unique, argumented file names that the DEC
Ada compiler records for generic units. For example:

generic -- declaration of generic unit
type T is range <>; --

procedure init (X: out T); -- formal parameter within declaration

procedure init (X: out T) is
begin

X := 0;
end;

Debugging DEC Ada Programs 12–3

with init;
procedure test is

procedure int_init is new init(integer);
-- Ada instantiation of generic unit

I: integer;
begin

int_init(I);
end;

In this example, when you step into int_init, you will see the source code
that corresponds to the generic procedure init:

X := 0;

You will not see source code corresponding to the procedure call:

int_init(I);

12.7 Debugging Multiple Units in One Source File
In Ada, unlike some other languages, the basic compilation unit need not
correspond to a source file. For example:

generic -- first compilation unit in file
type T is range <>; --

procedure init (X: out T); --

procedure init (X: out T) is -- second compilation unit in file
begin --

X := 0; --
end; --

with init;
procedure test is -- third compilation unit in file

procedure int_init is new init(integer);
I: integer; --

begin --
int_init(I); --

end; --

In earlier versions of Ladebug, each compilation unit yielded a separate object
file and debug symbol table, while referring to the same source file. However,
new naming conventions now provide for the renaming of the source files for
better correlation with object files and debug symbol tables, as follows:

• First compilation unit: program-name.ada

• N compilation units: program-name.ada~nnn~decada_XXXXXXXX

You can expect to see these augmented file names when you enter commands
that result in file-name output (for example, file, whereis, where). This
naming convention is a temporary solution and may change in future releases.

12–4 Debugging DEC Ada Programs

12.8 Debugging Ada Elaboration Code
In Ada, as in other languages, the initial entry point is the procedure main,
but unlike other languages, main in Ada is not the top-level application
procedure. Instead, the elaboration code, which contains initialization routines
for Ada-specific constructs such as packages, is called from a fabricated main
routine before the top-level application is called.

If you wish to debug elaboration code, you can set a breakpoint on main, step
to elaboration code initialization routine calls, and step into these routines. To
ignore elaboration code, you can set a breakpoint in the Ada subprogram.

12.9 Accessing Unconstrained Array Types
Accesses to unconstrained arrays are implemented as pointers to structures
known as descriptors or dope vectors. For example:

procedure Dbg_30 is
type A1 is access String;
X1 : A1 := new String’("123");

begin
null;

end;

When you enter the print command, the debugger displays the pointer
address (the address of the first (lo1) component) and the values of the first
and last components. For example:

(ladebug) p *X1
struct {

pointer = 0x14000c620;
lo1 = 1;
hi1 = 3;

}

To examine individual components, use the dereferencing operator (->) as
follows:

(ladebug) p X1->pointer[0]; p X1->pointer[2]
struct {

value = ’1’;
}
struct {

value = ’3’;
}

Debugging DEC Ada Programs 12–5

12.10 Accessing Incomplete Types Completed in Another
Compilation Unit
The full type often appears in a different compilation unit than the access type,
which makes values of these types difficult to examine. Except in cases where
the full type is an array type, you can examine values by carefully setting
scopes and explicit type conversion. For example:

package Tmp_Pkg is
type A_T is private;
X : A_T;

private
type T;
type A_T is access T;

end Tmp_Pkg;

package body Tmp_Pkg is
type T is record C1, C2 : Integer; end record;

begin
X := new T’(71,72);

end Tmp_Pkg;

with Tmp_Pkg;
procedure Tmp is
begin

null;
--
-- (ladebug) whereis X
-- "tmp_pkg_.ada"‘X
--
-- (ladebug) p "/c/project/aosf_ft2/tmp_pkg_.ada"‘X
-- 0x14000c600
--
-- (ladebug) file tmp_pkg.ada
--
-- (ladebug) p * ((T*) (0x14000c600))
-- struct {
-- C1 = 71;
-- C2 = 72;
-- }
--

end;

12.11 Limitations on Ladebug Support for DEC Ada
Ladebug and the Digital UNIX operating system support the DEC Ada
language with certain limitations, which are described in the following
sections.

12–6 Debugging DEC Ada Programs

12.11.1 Limitations for Expressions in Ladebug Commands
Expressions in Ladebug commands use C source language syntax for operators
and expressions. Data is printed as the equivalent C data type.

Table 12–1 shows Ada expressions and the debugger equivalents.

Table 12–1 Ada Expressions and Debugger Equivalents

Ada Expression Debugger Equivalent

Name See Section 12.4.

Binary operations and unary
operations

Only integer, floating, and Boolean expressions are
easily expressed.

a+b,-,* a+b,-,*

a/b a/b

a = b /= < <= > >= a = = b != < <= > >=

a and b a&&b

a or b a | | b

a rem b a%b

not (a=b) !(a= =b)

–a –a

Qualified expressions None. There is no easy way of evaluating subtype
bounds.

Type conversions Only simple numeric conversions are supported,
and the bounds checking cannot be done.
Furthermore, float -> integer truncates rather
than rounds.

integer -> float

(ladebug) print (float) (2147483647)
2147483648.0
(ladebug) print (double) (2147483647)
2147483647.0

Attributes None, but if E is an enumeration type with default
representations for the values then
E’PRED(X) is the same as x-1.
E’SUCC(X) is the same as x+1

(continued on next page)

Debugging DEC Ada Programs 12–7

Table 12–1 (Cont.) Ada Expressions and Debugger Equivalents

Ada Expression Debugger Equivalent

p.all *p (pointer reference)

p.m p -> m (member of an "access record" type)

12.11.2 Limitations in Data Types
This section lists the limitation notes by data type. For more information
on these types, with examples, see the Developing Ada Programs on Digital
UNIX Systems manual. Also see the the DEC Ada release notes for detailed
information on debugging.

All Types
The debugger, unlike the Ada language, allows out-of-bounds assignments to
be performed.

Integer Types
If integer types of different sizes are mixed (for example, byte-integer and
word-integer), the one with the smaller size is converted to the larger size.

Floating-Point Types
If integer and floating-point types are mixed in an expression, the debugger
converts the integer type to a floating-point type.

The debugger displays floating-point values that are exact integers in integer
literal format.

Fixed-Point Types
The debugger displays fixed-point values as real-type literals or as structures.
The structure contains values for the sign and the mantissa. To display the
structure’s value, multiply the sign and mantissa values. For example:

procedure Tmp3 is
type F is delta 0.1 range -3.0 .. 9.0;
X : F := 1.0;

begin
X := X+1.0;

end;

(ladebug) s
stopped at [Tmp3:5 0x1200023dc]

5 X := X+1.0;

12–8 Debugging DEC Ada Programs

(ladebug) print X
struct {

fixed_point, small = 0.625E-1 * mantissa = 32;
}

Enumeration Types
The debugger displays enumeration values as the actual enumeral or its
position.

Enumeration values must be manually converted to ’pos values before you
can use them as array indices.

Array Types
The debugger displays string array values in horizontal ASCII format, enclosed
in quotation ("x") marks. A single component (character) is displayed within
single quotation (’x’) marks.

The debugger allows you to assign a component value to a single component;
you cannot assign using an entire array or array aggregate.

Arrays whose components are neither a single bit nor a multiple of bytes are
described to the debugger as structures; a print command displays only the
first component of such arrays.

Records
The debugger cannot display record components whose offsets from the start of
the record are not known at compile time.

For variant records, however, the debugger can display the entire record object
that has been declared with the default variant value. The debugger allows
you to print or assign a value to a component of a record variant that is not
active.

Access Types
The debugger does not support allocators, so you cannot create new access
objects with the debugger. When you specify the name of an access object, the
debugger displays the memory location of the object it designates. You can
examine the memory location value.

12.11.3 Limitations for Tasking Programs
When you debug Ada tasking programs, you use the debugger and the DEC
Ada ada_debug routine.

Debugging DEC Ada Programs 12–9

12.12 Debugging Programs That Generates an Exception
Ada exceptions can be raised in the following cases:

• By explicit raise exception-name; statements in program code

• By implicit language checks on, for example, range, bounds, and so on

When an exception occurs, you need to determine the following:

1. Where the exception is being raised

2. How the exception is being raised (by the raise statement or by language
check)

3. Why the exception occurred, by either:

• Examining the conditions of the raise statement.

• Examining the local environment to further pinpoint the language
check generation.

The following sections give more detail.

Determining Where the Exception Is Being Raised
There are two ways to determine where an exception is being raised:

• Finding the value of the Program Counter (PC) for an instruction near
where the exception was raised

This method is not always helpful, especially if the code has been
optimized. The raising of an exception terminates the current sequence
of instructions, and the raising of some exceptions (for example, arithmetic
traps) is delayed, so that the PC rests on an instruction just before or just
after the instruction causing the exception.

• Using breakpoints to intercept the exception at the point where it is being
raised

You can intercept all exceptions being raised by your program by using
the Ladebug command stop in exc_dispatch_exception. This sets a
breakpoint in the fundamental run-time system routine that raises all
exceptions.

When Ladebug stops in this routine, a where command will show you the
place where the exception was raised.

(ladebug) where
>0 0x120007f0c in Dbg_24a$ELAB(=0x14000e400, =0x14000e3c8) dbg_24a.ada:13

12–10 Debugging DEC Ada Programs

You can examine more of the adjacent instructions by using the
<expression>/i command.

(ladebug) 0x120007f0c-4 /2i
[Dbg_24a$ELAB:13, 0x120007f08] ornot zero, zero, t1
*[Dbg_24a$ELAB:13, 0x120007f0c] srl t1, 0x21, t1

If you intercept an exception other than the one you intended to catch,
you can continue the program’s execution and catch the next one. If there
are many exceptions before the one you wish to catch, you need to set
a breakpoint closer to the raising of the exception, then get to it before
starting to intercept exceptions.

Determining How the Exception Is Being Raised
Having determined where the exception is occurring, examine your program
code to see whether an explicit raise statement has caused the exception. If
a raise statement does not appear, then the exception is the result of an Ada
language check.

Determining Why the Exception Is Being Raised
If the exception is raised by an explicit raise statement, examine your code to
determine why the raise statement was executed.

If the exception is raised by a language check, see Developing Ada Programs
on Digital UNIX Systems for tips on pinpointing the error.

12.13 Debugging Optimized Programs
The DEC Ada compiler performs code optimizations by default, unless you
specify the -g flag. Debugging optimized code is recommended only if
unoptimized code is unavailable. It is extremely difficult to understand your
program by examining the workings of its optimized form.

If you must debug optimized code, then note the following changes that
optimization may make in your source code:

• The instructions for a source line may be interspersed with those for other
source lines from distant locations.

• Some of the instructions for several source lines may have been merged.

• Variables may be assigned multiple different storage locations or registers.

• Variables may have some or all of their fetches and stores moved or
eliminated.

Debugging DEC Ada Programs 12–11

• Subprogram calls may have been replaced with inlined instructions, so
setting a breakpoint in them may not catch all calls in the source. The
inlined subprograms will not show up in the call stack.

You may wish to make use of the following aids when debugging optimized
code:

• Compiled-in debugging support, such as dump subprograms, assertions,
and Text_IO.Put. These entities print correct values, and examining their
output is easier than examining variables within optimized code.

• The volatile pragma. This pragma suppresses some of the optimization
associated with a particular variable, forcing its location or its associated
fetch and store instructions to be more predictable.

12–12 Debugging DEC Ada Programs

13
Debugging DEC COBOL Programs

13.1 Significant Supported Features
To help you debug DEC COBOL programs on the Digital UNIX operating
system, Ladebug supports:

• Much of the COBOL language syntax is built into the Ladebug debugger.
You can specify the following language elements to the debugger with
COBOL language syntax:

Identifiers, including subscripting and qualification with some
limitations (see Section 13.6)

Numeric and nonnumeric literals

Arithmetic expressions

• You can examine the values of all COBOL data types with the debugger’s
print command.

• You can assign new values to all data types with the debugger’s assign
command, including numeric literals and other program items. However,
there are some limitations to assignment (see Section 13.5).

• Simple arithmetic operations are supported, but full COBOL expression
evaluation is not (see Section 13.6). For example, the following simple
addition can be done:

(ladebug) print itema + itemb

The following features are also supported for DEC COBOL debugging:

• Scoping and symbol lookup

• Numeric edited items (with limitations; see Section 13.5)

• Scaled binary (COMP) items

• All decimal types

• Both signed and unsigned items

Debugging DEC COBOL Programs 13–1

• COBOL-specific initial debugger context

• Multiple groups

• COBOL-specific group/table examination of data items with the print
command

• Mixed-language programs (see Section 13.4)

Some of the features are further described in this chapter. This chapter also:

• Explains the flags you use on the DEC COBOL compiler command line to
enable debugging.

• Describes the debugger’s support for DEC COBOL identifiers.

• Lists limitations on debugging DEC COBOL programs.

13.2 DEC COBOL Flags for Debugging
To use the Ladebug debugger on a COBOL program, invoke the COBOL
compiler with the appropriate debugging flag: -g, -g2, or -g3. For example:

% cobol -g -o sample sample.cob

The -g flag on the compiler command instructs the compiler to write the
program’s debugger symbol table into the executable image. This flag also
turns off optimization; optimization (which is the default for nondebugger
compilations) could cause a confusing debugging session.

For Digital UNIX Vesion 3.2 systems, Table 13–1 summarizes the information
provided by the -g n flags and their relationship to the -On flags, which control
optimization. Refer to your language compiler documentation for information
about compiler flag defaults for Digital UNIX Version 4.0.

Table 13–1 Summary of Symbol Table Flags

Flag
Traceback
Information

Debugging Symbol
Table Information Effect on -O n Flags

-g0 No No Default is -O4 (full
optimization).

-g1 (default) Yes No Default is -O4 (full
optimization).

-g2 or -g Yes Yes. For unoptimized code
only.

Changes default to
-O0 (no optimization).

-g3 Yes Yes. Use with optimized code.
Inaccuracies may result.

Default is -O4 (full
optimization).

13–2 Debugging DEC COBOL Programs

If you specify -g, -g2, or -g3, the compiler provides symbol table information
for symbolic debugging. The symbol table allows the debugger to translate
virtual addresses into source program routine names and compiler-generated
line numbers.

Later, to remove this symbol table information, you can compile and link it
again (without the -g flag) to create a new executable program or use the
strip command (see strip(1)) on the existing executable program.

The -g2 or -g flag provides symbol table information for symbolic debugging
unoptimized code. If you use the -g2 or -g flag and do not specify an -On flag,
the default optimization level changes to -O0 (in all other cases, the default
optimization level is -O4) . If you use this flag and specify an -On flag other
than -O0, a warning message is displayed. For example:

% cobol -g -O sample sample.cob
cobol: Warning: file not optimized; use -g3 for debug with optimize
%

The -g3 flag is for symbolic debugging with optimized code.

Typical uses of the debugging flags at the various stages of program
development are as follows:

• During early stages of program development, use the -g (or -g2) flag,
perhaps specifying -O0 (which is the default with -g or -g2) to enable
debugging and create unoptimized code. This flag also might be chosen
later to debug reported problems from later stages.

• During the middle stages of program development, use optimized code with
-g3. This flag might also be used during later stages to debug reported
problems. (Certain problems may be reproducible only when the code is
optimized, but be aware that debugging inaccuracies can result from the
optimization.)

• During the later and postrelease stages of program development, use -g0
to minimize the object file size and, as a result, the memory needed for
program execution, with fully optimized code for best performance.

13.3 Support for COBOL Identifiers
Ladebug supports the case insensitivity of COBOL identifiers and the
hyphen-underscore exchanges made by the DEC COBOL compiler.

Debugging DEC COBOL Programs 13–3

In case-insensitive languages (such as COBOL, Fortran, and Ada), you can
enter identifiers in either uppercase or lowercase, or a combination of both.
For example, the following are all legal and equivalent identifiers:

Identifier IDENTIFIER identifier IdEnTiFiEr

Ladebug and the DEC COBOL compiler treat all forms of identifers as
references to the same object.

The DEC COBOL compiler performs transformations on identifiers with regard
to both case and occurrences of hyphens and underscores. These transformed
identifiers are visible in the listing file and in the symbol table of an image
compiled with the -g flag. The rules for transformations are as follows:

• For an externally visible name (one that is explicitly declared as
EXTERNAL), except for program IDs, the following transformations
occur:

– All lowercase letters are replaced by their uppercase equivalents.

– All occurrences of the hyphen (-) are replaced by an underscore (_).

• For a locally visible name:

All lowercase letters are replaced by their uppercase equivalents.

All occurrences of the underscore (_) are replaced by hyphen (-).

• For any program ID:

All uppercase letters are replaced by their lowercase equivalents.

All occurrences of the hyphen (-) are replaced by underscore (_).

Ladebug transforms all identifiers according to rule 2. When such a
transformation causes a namespace conflict, an identifier is considered
overloaded. When overloading occurs, it is necessary that you qualify an
identifier to make it unique, as shown in Example 13–1, which demonstrates
the application of the rules for transformation. Example 13–2 shows how
Ladebug handles the COBOL identifiers.

13–4 Debugging DEC COBOL Programs

Example 13–1 Sample COBOL Program

example.cob:
* Ladebug Version 4.0
*
* Demonstrates usage of COBOL expressions with Ladebug
*
* There are three procedures in this file, namely cobol_example,
* overloaded_name and b-2.
*
* (Rule #1)
* In cobol_example, note the symbols B-2 and C_3: these two are given as
* external and appear in the symbol table as B_2 and C_3 respectively.
* C-3 and C_3 are equivalent as are D-3 and D_3
*
* (Rule #2)
* In the procedure COBOL_EXAMPLE is the symbol overloaded-name, which appears
* in the symbol table as OVERLOADED-NAME
*
* (Rule #3)
* The procedure OverLoaded-NAME appears in the symbol table as
* overloaded_name.

* The procedure b-2 appears in the symbol table as b_2
*
* Note that there are three names referred to as B-2:
*
* "example.cob"‘cobol_example‘B_2 -- PIC X external
* "example.cob"‘overloaded_name‘B-2 -- PIX 99
* "example.cob"‘b_2 -- program id
*

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL_EXAMPLE. 1

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A_1 PIC X VALUE IS "1".
01 B-2 PIC X external. 2
01 C_3 PIC X external.
01 D-4 PIC X VALUE IS "4".
01 overloaded-name pic 99. 3

(continued on next page)

Debugging DEC COBOL Programs 13–5

Example 13–1 (Cont.) Sample COBOL Program
PROCEDURE DIVISION.
P0-lab.

DISPLAY "*** Ladebug COBOL Example ***".
MOVE "2" TO B_2.
MOVE "3" TO C-3.
DISPLAY "A_1 = " A_1.
DISPLAY "B-2 = " B-2.
DISPLAY "C_3 = " C_3. 4
DISPLAY "C-3 = " C-3.

P0_lab.
DISPLAY "D-4 = " D-4. 5
DISPLAY "D_4 = " D_4.
CALL "Overloaded-Name". 6
CALL "B-2".
DISPLAY "***END Ladebug COBOL Example***".
STOP RUN.

end program cobol-example.

identification division.
program-id. OverLoaded-NAME. 6

data division.
working-storage section.
01 b_2 pic 99 value is 12. 7
procedure division.
beg1.

display "*** Overloaded-Name ***".
display "b_2 = " b-2. 7
display "*** end of Overloaded-Name ***".

end program overloaded-name.

identification division.
program-id. b-2. 8

data division.
working-storage section.
procedure division.
beg1.

(continued on next page)

13–6 Debugging DEC COBOL Programs

Example 13–1 (Cont.) Sample COBOL Program

display "*** b_2 ***".
display "*** end of b_2 ***".

end program b-2.

1 The program ID COBOL_EXAMPLEis implicitly external and is emitted as
cobol_example.

2 The use of external causes B-2 to be emitted as B_2 and C_3 to be
emitted as C_3.

3 This is the first occurrence of overloaded-name. Because it is a local
symbol, it is emitted as OVERLOADED-NAME.

4 Both C_3 and C-3 refer to the same object, which is C_3 in 2 .

5 Both D-4 and D_4 refer to the local symbol emitted as D-4.

6 This is the second occurrence of overloaded-name. Since it is a program
ID, it is implicitly external and is emitted as overloaded_name.

7 This is the second occurrence of b_2. Because it is a local symbol, it is
emitted as B-2.

8 This is the third occurrence of b-2. Since it is a program ID, it is implicitly
external and is emitted as b_2.

The sample debugging session in Example 13–2 demonstrates how Ladebug
handles the symbols from the sample COBOL program in Example 13–1.

Example 13–2 Sample COBOL Debugging Session

Welcome to the Ladebug Debugger Version 4.0

object file name: example
Reading symbolic information ...done

(ladebug) stop at 51
[#1: stop at "example.cob":51]
(ladebug) run

(continued on next page)

Debugging DEC COBOL Programs 13–7

Example 13–2 (Cont.) Sample COBOL Debugging Session
*** Ladebug COBOL Example ***
A_1 = 1
B-2 = 2
C_3 = 3
C-3 = 3
D-4 = 4
D_4 = 4
[1] stopped at [cobol_example:51 0x12000cd14]

51 CALL "Overloaded-Name".
(ladebug) whatis d-4 1
array [subrange 1 ... 1 of int] of char d-4
(ladebug) whatis D_4 1
array [subrange 1 ... 1 of int] of char D_4
(ladebug) print d_4 1
"4"
(ladebug) whereis d-4 1
"example.cob"‘cobol_example‘D-4

(ladebug) whereis b-2 2
"B_2"
B_2
"example.cob"‘cobol_example‘B_2
"example.cob"‘overloaded_name‘B-2
"example.cob"‘b_2
(ladebug) which b-2 3
"example.cob"‘cobol_example‘B_2
(ladebug) print b-2 4
2
(ladebug) step
stopped at [overloaded_name:61 0x12000ce04]

61 program-id. OverLoaded-NAME.
(ladebug) stop at 78
[2] stopped at [cobol_example:78 0x12000cf20]

(ladebug) next
stopped at [overloaded_name:69 0x12000ce30]

69 display "*** Overloaded-Name ***".
(ladebug) which b-2 5
"example.cob"‘overloaded_name‘B-2
(ladebug) whatis b-2

pic 99 usage display b-2
(ladebug) print b-2
12

(continued on next page)

13–8 Debugging DEC COBOL Programs

Example 13–2 (Cont.) Sample COBOL Debugging Session

(ladebug) return
*** Overloaded-Name ***
b_2 = 12
*** end of Overloaded-Name ***
stopped at [cobol_example:51 0x12000cd58]

51 CALL "Overloaded-Name".
(ladebug) n
stopped at [cobol_example:52 0x12000cd68]

52 CALL "B-2".
(ladebug) s
stopped at [b_2:78 0x12000cef4]

78 program-id. b-2.
(ladebug) which b-2
"c_example6-2.cob"‘b_2
(ladebug) whatis c_example6-2.cob‘b_2
void b_2(void)

(ladebug) cont
*** b_2 ***
*** end of b_2 ***
END Ladebug COBOL Example
Thread has finished executing
(ladebug) q

1 Since there is only one object named D-4, all four spellings are resolved to
the same address. The whereis command displays only one instance of
d-4, namely "example.cob"‘cobol_example‘D-4.

2 There are three different instances of b-2 in this example. The whereis
command lists all three.

"example.cob"‘cobol_example‘B_2 -- PIC X external
"example.cob"‘overloaded_name‘B-2 -- PIX 99
"example.cob"‘b_2 -- program id

3 Based on the current context, the B_2 PIC X external instance of b-2 is
the one visibile in the current scope.

4 Based on callout 3 , b-2 refers to "example.cob"‘cobol_example‘B_2 ,
which has a value of 2.

5 Since the current context is in the procedure Overloaded-name, the which
command refers to the B-2 local to Overloaded-name
("example.cob"‘overloaded_name‘B-2‘) .

For another example of debugging a COBOL program with Ladebug, see the
appendix on tools in the DEC COBOL User Manual.

Debugging DEC COBOL Programs 13–9

13.4 Debugging Mixed-Language Programs
The Ladebug debugger lets you debug mixed-language programs. The flow
of control across programs written in different languages in your executable
image is transparent.

The debugger automatically identifies the language of the current program or
code segment on the basis of information embedded in the executable file. For
example, if program execution is suspended in a code segment in COBOL, the
current language is COBOL. If the program executes a C function, the current
language becomes C. The current language determines for the debugger the
valid expression syntax and the semantics used to evaluate an expression.

The debugger sets the $lang variable to the language of the current program
or code segment. By manually setting the $lang debugger variable, you can
force the debugger to interpret expressions used in commands by the rules and
semantics of a particular language. For example, you can check the current
setting of $lang and change it as follows:

(ladebug) print $lang
"C++"
(ladebug) set $lang = "Cobol"

When the debugger reaches the end of your program, the $lang variable is not
set to the language of the _exit routine, which is written in machine code.

13.5 Limitations on Assignment
The following limitations apply to assignment in COBOL debugging:

• You cannot assign new values to character string items (PIC X or PIC A).

• The scales of the items in an assignment must match. Consider the
following declarations:

01 itema pic 9(9)v99.
01 itemb pic 9999v99.
01 bigitem pic 9(13)v9(5).

The debugger allows assignment of the values 1.23 or 8765.22 to itema,
but does not allow assignment of the value 1.2 to itema. The following
debugger commands are supported because the quantities on both sides of
the assignment operator (=) have the same scale:

(ladebug) assign itema = 1.23
(ladebug) assign itema = 8765.22
(ladebug) assign itema = itemb

13–10 Debugging DEC COBOL Programs

The following debugger commands are not supported because the quantities
involved are of different scales:

(ladebug) assign itema = 1.2
(ladebug) assign bigitem = itema

• You cannot assign a value of greater precision to an item. Given the
declarations, the following debugger command is not supported, because
itema has greater precision than itemb:

(ladebug) assign itemb = itema

• With numeric edited items, the precisions of the quantities on both sides of
the assignment must be the same.

• A numeric edited item cannot be assigned to other numeric items.

13.6 Other Limitations
Other limitations when you debug COBOL programs include:

• Subordinate items must be fully qualified for the debugger to find them,
and also must be specified in uppercase. Consider the following example:

01 A.
03 B.

05 C pic 9.

For this group, the debugger cannot find C unless you fully qualify it, as
follows:

C of B of a

• Qualification involving more than one intervening level produces a
debugger error if the intervening level is an OCCURS item. For example, C
of B of a for the group is supported, but not if B is an OCCURS item.

For the transformation rules, see Section 13.3.

• Some Ladebug command usage is affected by COBOL language syntax
when execution is stopped within a COBOL procedure. One effect is that
expressions typed on the debugger command line must include spaces
around arithmetic operators like "+" and "-".

• Another effect of COBOL language syntax is in the debugger memory-
examine command. For example, to look at the next 10 program
instructions, you would normally use:

Debugging DEC COBOL Programs 13–11

(ladebug) ./10i

This debugger command says "from the current program location" (signified
by the dot), examine the next 10 program locations (10 being the count) in
instruction mode (signified by the "i").

When debugging COBOL programs, you need to enter this command as
follows:

(ladebug) ./10 i

Add a space between the count (10) and the mode indicator (i) .

• Reference modification is not supported.

• The OF qualifier keyword is supported, but the IN keyword is not
supported.

• Tables (OCCURS items) with variable upper bounds are not supported.

• Breakpoints on labels are not supported.

• Subscripting is supported, but only for tables of one dimension.

• Stopping program execution at a program label (paragraph or section
name) is not supported.

• The debugger does not correctly evaluate all COBOL condition expressions.

• The debugger supports only simple arithmetic operations in COBOL. It
does not support full expression evaluation, including exponentiation,
reference modification, and arithmetic operations with operands of different
scales.

13–12 Debugging DEC COBOL Programs

Part IV
Advanced Topics

This part describes advanced debugging topics:

• Core files

• Shared libraries

• Programs with limited symbolic information

• Machine-level debugging

• Multithreaded applications

• Multiprocessing

• Remote debugging

• Kernel debugging

14
Debugging Core Files

When the operating system encounters an irrecoverable error running a
program, the system creates a file named core and places it in the current
directory. The core file is not an executable file; it is a snapshot of the state
of your program at the time the error occurred. It allows you to analyze the
program at the point it crashed. This chapter describes a technique you can
use to debug core files using the Digital Ladebug debugger.

Kernel debugging can be very helpful in analyzing kernel crash dumps. For
information on kernel debugging, see Chapter 22.

14.1 Invoking the Debugger on a Core File
You can use the debugger to examine the program information in a core file.
Use the following ladebug command syntax to invoke the debugger on a core
file:

ladebug executable_file core_file

Specify the name of the executable file (the program that was running at the
time the core file was generated) in addition to the core file.

14.2 Core File Debugging Technique
When debugging a core file, use the debugger to obtain a stack trace and the
values of a few variables.

The stack trace lists the functions in your program that were active when the
dump occurred. By examining the values of a few program variables along
with the stack trace, you should be able to pinpoint the program state and the
cause of the core dump. (Core files cannot be executed, and so a rerun, step,
cont, etc. will not work until a run is issued.)

In addition, if the program is multithreaded, you can examine the native
(that is, kernel-level) thread information with the show thread and thread
commands. You can examine the stack trace for a particular thread or

Debugging Core Files 14–1

all threadswith the where thread command. (See Section 14.3. Also see
Chapter 19.)

The program shown in Example 14–1 is almost identical to the program used
in Chapter 7 but adds a null pointer reference in the factorial function. This
reference causes the program to abort and dump the core when it is executed.
The dump command prints the value of the x variable as a null, and the print
*x command reveals that you cannot dereference a null pointer.

Example 14–1 Debugging a Core File

% cat testProgram.c
main() {

int i,f;
for (i=1 ; i<3 ; i++) {

f = factorial(i);
printf("%d! = %d\en",i,f);

}
}
factorial(i)
int i;
{
int *x;

x = 0;
printf("%d",*x);
if (i<=1)

return (1);
else

return (i * factorial(i-1));
}
% cc -o testProgram -g testProgram.c
% testProgram
Memory fault - core dumped.
% ladebug testProgram core
Welcome to the Ladebug Debugger Version 4.0

object file name: testProgram
core file name: core
Reading symbolic information ...done
Core file produced from executable testProgram
Thread terminated at PC 0x120000dc4 by signal SEGV
(ladebug) where
>0 0x120000dc4 in factorial(i=1) testProgram.c:13
#1 0x120000d44 in main() testProgram.c:4

(continued on next page)

14–2 Debugging Core Files

Example 14–1 (Cont.) Debugging a Core File
(ladebug) dump
>0 0x120000dc4 in factorial(i=1) testProgram.c:13
printf("%d",*x);
(ladebug) print *x
Cannot dereference 0x0
Error: no value for *x
(ladebug)

14.3 Core Thread Debugging of Native Threads
Ladebug can debug core files generated by multithreaded applications. For this
kind of core file debugging, Ladebug sets the $threadlevel variable to native
in the following initializations:

• When Ladebug is invoked for core file debugging.

• When a load command is issued for core file debugging.

• When the process command is used for core file debugging.

Note

Ladebug will not set the $threadlevel variable correctly in the
following case: Process A, not a core file, is attached with the
$threadlevel set to native. Switching to Process B and then back to
Process A resets the variable to decthreads rather than native.

Example 14–2 presents an example of core file kernel thread debugging.

Debugging Core Files 14–3

Example 14–2 Debugging a Multithreaded Kernel Core File

Welcome to the Ladebug Debugger Version 4.0-10

object file name: ../bin/c_threadcore
Reading symbolic information ...done
(ladebug) record io out
(ladebug) unload
(ladebug) load ../bin/c_threadcore ../bin/c_threadcore_core
Reading symbolic information ...done
Core file produced from executable c_threadcore
Thread 0xffffffff836934d0 terminated at PC 0x3ff805065c8 by signal SEGV
1
(ladebug) print $threadlevel 2
"native"
(ladebug) show thread 3

Thread # Id State
> 1 0xffffffff836934d0 dead

2 0xffffffff83596120 dead
(ladebug) thread 4
Thread 0x1
(ladebug) where 5
>0 0x3ff805065c8 in __kill(0xb, 0x2, 0x3, 0x47c18, 0x4, 0x6)

../../../../../src/usr/ccs/lib/libc/alpha/kill.s:41
#1 0x3ff8055c560 in exc_raise(0x3ffc01e7e78, 0x0, 0x1, 0x0, 0x309a9a07,

0xb97c60) ../../../../../src/usr/ccs/lib/DECthreads/COMMON/
exc_handling.c:649

#2 0x3ff8055c764 in exc_pop_ctx(0x3ffc01e7bd0, 0x0, 0x0, 0x3ff80567b40,
0x0, 0x0) ../../../../../src/usr/ccs/lib/DECthreads/COMMON/
exc_handling.c:805

#3 0x3ff8056e374 in cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0,
0x1200136e0) ../../../../../src/usr/ccs/lib/DECthreads/COMMON/
cma_thread.c:1623

(ladebug) thread 2 6
Thread 0x2
(ladebug) where 7
>0 0x3ff8051df04 in msg_receive_trap(0xe56b0, 0x0, 0x3ff804b500c,

0x100000000000, 0x3ff804b5058, 0x18157f0d0d) /usr/sde/osf1/build/
goldminos.bld/export/alpha/usr/include/mach/syscall_sw.h:74

#1 0x3ff80514764 in msg_receive(0xe0df0, 0x0, 0x0, 0x240000000000000,
0x61746164702e, 0x3ff800b9fe0) ../../../../../src/usr/ccs/lib/libmach
/msg.c:95

#2 0x3ff80574b00 in cma__vp_sleep(0x2801000000, 0x3ff00000001, 0x6,
0x3ffc00841a0, 0x3ff00000000, 0x3ffc00960c0) ../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_vp.c:1588

#3 0x3ff8055ae7c in cma__dispatch(0x6, 0x3ffc00841a0, 0x3ff00000000,
0x3ffc00960c0, 0x3ff80554354, 0x3ffc0080468) ../../../../../src/usr/ccs/

(continued on next page)

14–4 Debugging Core Files

Example 14–2 (Cont.) Debugging a Multithreaded Kernel Core File
lib/DECthreads/COMMON/cma_dispatch.c:998

#4 0x3ff80554354 in cma__int_wait(0x11ffff428, 0x4ac18, 0x3ffc01de9f8,
0x70000003, 0x3ff80485192, 0x3ff80089931) ../../../../../src/usr/ccs/
lib/DECthreads/COMMON/cma_condition.c:2651

#5 0x3ff8056d704 in cma_thread_join(0x11ffff848, 0x11ffffbf0,
0x11ffffbe8, 0x3ff8056e110, 0x0, 0x3ffc01e3de0) ../../../../../src/
usr/ccs/lib/DECthreads/COMMON/cma_thread.c:955

#6 0x3ff80563a2c in pthread_join(0x47c18, 0x400000000000002,
0x11ffffc68, 0x3ffc01de9f8, 0x120013d18, 0x5) ../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_pthread.c:2270

#7 0x120013d70 in main() thread_core.c:92
(ladebug) where thread all 8
Stack trace for thread 1
#0 0x3ff805065c8 in __kill(0xb, 0x2, 0x3, 0x47c18, 0x4, 0x6) ../../../../

../src/usr/ccs/lib/libc/alpha/kill.s:41
#1 0x3ff8055c560 in exc_raise(0x3ffc01e7e78, 0x0, 0x1, 0x0, 0x309a9a07,

0xb97c60)
../../../../../src/usr/ccs/lib/DECthreads/COMMON/exc_handling.c:649
#2 0x3ff8055c764 in exc_pop_ctx(0x3ffc01e7bd0, 0x0, 0x0, 0x3ff80567b40,

0x0, 0x0) ../../../../../src/usr/ccs/lib/DECthreads/COMMON/
exc_handling.c:805

#3 0x3ff8056e374 in cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0,
0x1200136e0) ../../../../../src/usr/ccs/lib/DECthreads/
COMMON/cma_thread.c:1623

Stack trace for thread 2
>0 0x3ff8051df04 in msg_receive_trap(0xe56b0, 0x0, 0x3ff804b500c,

0x100000000000, 0x3ff804b5058, 0x18157f0d0d) /usr/sde/osf1/build/
goldminos.bld/export/alpha/usr/include/mach/syscall_sw.h:74

#1 0x3ff80514764 in msg_receive(0xe0df0, 0x0, 0x0, 0x240000000000000,
0x61746164702e, 0x3ff800b9fe0) ../../../../../src/usr/ccs/lib/libmach/
msg.c:95

#2 0x3ff80574b00 in cma__vp_sleep(0x2801000000, 0x3ff00000001, 0x6,
0x3ffc00841a0, 0x3ff00000000, 0x3ffc00960c0) ../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_vp.c:1588

#3 0x3ff8055ae7c in cma__dispatch(0x6, 0x3ffc00841a0, 0x3ff00000000,
0x3ffc00960c0, 0x3ff80554354, 0x3ffc0080468) ../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_dispatch.c:998

#4 0x3ff80554354 in cma__int_wait(0x11ffff428, 0x4ac18, 0x3ffc01de9f8,
0x70000003, 0x3ff80485192, 0x3ff80089931) ../../../../../src/usr/ccs/
lib/DECthreads/COMMON/cma_condition.c:2651

#5 0x3ff8056d704 in cma_thread_join(0x11ffff848, 0x11ffffbf0,
0x11ffffbe8, 0x3ff8056e110, 0x0, 0x3ffc01e3de0)

../../../../../src/usr/ccs/lib
#6 0x3ff80563a2c in pthread_join(0x47c18, 0x400000000000002,

0x11ffffc68, 0x3ffc01de9f8, 0x120013d18, 0x5) ../../../../../src/usr/
#7 0x120013d70 in main() thread_core.c:92

(continued on next page)

Debugging Core Files 14–5

Example 14–2 (Cont.) Debugging a Multithreaded Kernel Core File

(ladebug) thread 1 9
Thread 0x1
(ladebug) printregs 1 0
$r0 [$v0] = 0 $r1 [$t0] = 0
$r2 [$t1] = 4396974517024 $r3 [$t2] = 320024
$r4 [$t3] = 4396974517024 $r5 [$t4] = 0
$r6 [$t5] = 0 $r7 [$t6] = 130
$r8 [$t7] = 0 $r9 [$s0] = 2
$r10 [$s1] = 2 $r11 [$s2] = 0
$r12 [$s3] = 0 $r13 [$s4] = 0
$r14 [$s5] = 0 $r15 [$s6] = 0
$r16 [$a0] = 28613 $r17 [$a1] = 11
$r18 [$a2] = 4396974766704 $r19 [$a3] = 0
$r20 [$a4] = 0 $r21 [$a5] = 4
$r22 [$t8] = 3 $r23 [$t9] = 0
$r24 [$t10] = 3 $r25 [$t11] = 0
$r26 [$ra] = 4395904648544 $r27 [$t12] = 4395904749552
$r28 [$at] = -1 $r29 [$gp] = 4396974751200
$r30 [$sp] = 4396974766800 $r31 [$zero]= 0
$f0 = 0 $f1 = 0
$f2 = 0 $f3 = 0
$f4 = 0 $f5 = 0
$f6 = 0 $f7 = 0
$f8 = 0 $f9 = 0
$f10 = 0 $f11 = 0
$f12 = 0 $f13 = 0
$f14 = 0 $f15 = 0
$f16 = 0 $f17 = 0
$f18 = 0 $f19 = 0
$f20 = 0 $f21 = 0
$f22 = 0 $f23 = 0
$f24 = 0 $f25 = 0
$f26 = 0 $f27 = 0
$f28 = 0 $f29 = 0
$f30 = 0 $f31 = 0
$pc = 0x3ff805065c8
(ladebug) thread 2
Thread 0x2
(ladebug) printregs
$r0 [$v0] = -207 $r1 [$t0] = 0
$r2 [$t1] = 0 $r3 [$t2] = 0
$r4 [$t3] = 0 $r5 [$t4] = 0
$r6 [$t5] = 1 $r7 [$t6] = 1
$r8 [$t7] = 0 $r9 [$s0] = 4831834496
$r10 [$s1] = 0 $r11 [$s2] = 4396974730048
$r12 [$s3] = 0 $r13 [$s4] = 0

(continued on next page)

14–6 Debugging Core Files

Example 14–2 (Cont.) Debugging a Multithreaded Kernel Core File
$r14 [$s5] = 162129586585337856 $r15 [$s6] = 0
$r16 [$a0] = 4831834496 $r17 [$a1] = 0
$r18 [$a2] = 40 $r19 [$a3] = 6
$r20 [$a4] = 0 $r21 [$a5] = 6
$r22 [$t8] = 4 $r23 [$t9] = 2
$r24 [$t10] = 1 $r25 [$t11] = 0
$r26 [$ra] = 4395904354148 $r27 [$t12] = 4395904050272
$r28 [$at] = 293938 $r29 [$gp] = 4396974651024
$r30 [$sp] = 4831834336 $r31 [$zero]= 0
$f0 = 0 $f1 = 0
$f2 = 0 $f3 = 0
$f4 = 0 $f5 = 0
$f6 = 0 $f7 = 0
$f8 = 0 $f9 = 0
$f10 = 3.237908616585193e-319 $f11 = 65536
$f12 = 0 $f13 = 0
$f14 = 1.016984725399622e-319 $f15 = 20584
$f16 = 0 $f17 = 0
$f18 = 0 $f19 = 0
$f20 = 0 $f21 = 0
$f22 = 3.237908616585193e-319 $f23 = 65536
$f24 = 0 $f25 = 0
$f26 = 0 $f27 = 0
$f28 = 0 $f29 = 0
$f30 = 0 $f31 = 0
$pc = 0x3ff8051df04
(ladebug)

1 When debugging a multithreaded core file, Ladebug shows the kernel
thread ID of the of the thread that incurred the fault.

Note

For a single thread core file, Ladebug will not show the kernel thread
ID.

2 The $threadlevel is set to native and you can begin core file kernel
thread debugging.

3 Ladebug provides a list of threads.

4 Ladebug displays the current thread context.

5 Ladebug provides a stack trace of the current thread.

6 Ladebug sets the thread context to thread #2.

Debugging Core Files 14–7

7 Ladebug provides the stack trace of the new current thread.

8 When specifying the where thread all , Ladebug shows the stack trace for
all threads. Notice that it labels the stack trace for each thread.

9 When specifying the thread command with the thread ID, Ladebug
changes the thread context to that thread (in this case, thread 1).

1 0 The printregs command asks Ladebug to show the register contents
within the current thread context.

14–8 Debugging Core Files

15
Using Debugger Scripts

This chapter describes the scripting features of the Digital Ladebug debugger.
Using debugger script commands, you can specify a file to input as debugger
commands, send debugger output to a file, or send a transcript of an entire
debugging session to a file.

15.1 The Debugger Initialization File
When you start the debugger, it first searches for a file named .dbxinit in
the current directory; if it is not there, it then searches for it in your home
directory. If a .dbxinit file exists in either directory, the debugger interprets
the contents of the file as a string of debugger commands. You can customize
your debugger environment by adding commands to your .dbxinit file that
set debugger aliases (using the alias command), debugger variables (using
the set command), and source-code search paths (using the use command).

Ladebug processes the .dbxinit file using the language of the main program
being debugged. Depending on the language of that program, there are some
situations where the behavior of some .dbxinit commands may vary. If this is
an issue, you can put a set $lang command in the file to ensure the expected
behavior.

Example 15–1 shows a sample .dbxinit file.

Example 15–1 A Sample .dbxinit File

set $listwindow = 45
alias ls "sh ls -l"
stop in main; run

Using Debugger Scripts 15–1

Example 15–2 Debugger Startup Using a .dbxinit File

% ladebug sample
Welcome to the Ladebug Debugger Version 4.0

object file name: sample
Reading symbolic information ...done
[#1: stop in main]
[1] stopped at [main:4 0x1200001180]

4 for (i=1 ; i<3 ; i++) {
(ladebug)

When you invoke the debugger, it executes the commands in the .dbxinit file
without echoing the commands to the screen. Example 15–2 shows this process
for the sample .dbxinit file.

15.2 Recording Debugger Sessions
You can record both your debugger commands as well as the debugger’s
responses into a single file by using the record io command. The syntax for
this command is as follows:

record io filename

The debugger records all input and output starting with the command
following the record io command.

Note

The record io command does not record the output from the program
you are debugging.

To stop recording, you must exit the debugger. If a file already exists with the
file name you specify, the debugger appends to the file.

You can record debugger responses to your commands using the record output
command. The syntax for this command is as follows:

record output filename

Use the record input command to create a file containing the commands you
enter at the debugger prompt. The syntax for this command is as follows:

record input filename

15–2 Using Debugger Scripts

Use the record input command to create a debugger script. After creating a
file containing a list of debugger commands, you can request that the debugger
execute the commands in the file using the source command. You can also
use an editor (such as vi or emacs) to edit the commands listed in the file.
Example 15–3 shows how to use the record input command to record a series
of debugger commands in a file named myscript.

Example 15–3 Recording a Debugger Script

(ladebug) record input myscript
(ladebug) stop in main
[#1: stop in main]
(ladebug) run
[1] stopped at [main:4 0x120000b14]

4 for (i=1 ; i<3 ; i++) {
(ladebug) next
stopped at [main:5 0x120000b1c]

5 f = factorial(i);
(ladebug) step
stopped at [factorial:13 0x120000bb8]

13 if (i<=1)
(ladebug) where
>0 0x120000bb8 in factorial(i=1) sample.c:13
#1 0x120000b28 in main() sample.c:5
(ladebug) cont
1! = 1
2! = 2
Thread has finished executing
(ladebug) quit
% cat myscript
stop in main
run
next
step
where
cont
quit
%

Using Debugger Scripts 15–3

15.3 Playing Back a Command Script
With the source or playback input commands, you can read in and execute a
file containing debugger commands. You can create such a file manually using
an editor or automatically using the record input command. The syntax of
the command to read in a file of debugger commands is as follows:

source filename

playback input filename

The file corresponding to the filename argument must be in the current
directory or be preceded by a path specification. When the debugger executes a
script file, the $pimode debugger variable determines whether the commands
are echoed to the display as they are executed, as follows:

• If $pimode is set to 0 (the default), commands read in from a script file are
not echoed to the display.

• If $pimode is set to 1, the commands are echoed.

Example 15–4 shows how to execute a debugger script. Because $pimode is
set to 0, only the command output, and not the commands themselves, echoes
to the display.

Example 15–4 Executing a Debugger Script

(ladebug) source myscript
[#1: stop in main]
[1] stopped at [main:4 0x120000b14]

4 for (i=1 ; i<3 ; i++) {
stopped at [main:5 0x4001d4]

5 f = factorial(i);
stopped at [factorial:13 0x120000b1c]

13 if (i<=1)
>0 0x120000bb8 in factorial(i=1) sample.c:13
#1 0x120000b28 in main() sample.c:5
1! = 1
2! = 2
Thread has finished executing
%

15–4 Using Debugger Scripts

16
Debugging Shared Libraries

You can debug shared libraries if the library was compiled and linked with
the option that makes symbol table information available to the debugger.
For more information about shared libraries and linking programs to shared
libraries, and compiling and linking programs and libraries for debugging, see
your compiler documentation.

Loadable drivers can be considered a form of shared libraries, and can be
debugged. For information, see Chapter 22 on kernel debugging.

You can debug shared libraries using the same techniques you use to debug
any program function. The scope and visibility rules for debugging programs
apply to debugging shared libraries.

You can call functions in shared libraries that do not have debugging
information available.

16.1 Controlling the Reading of Symbols for Shared Libraries
In general, build your images with symbol tables. You cannot set symbolic
breakpoints to stop execution in or see the source code of shared libraries that
do not have symbol table information available for the debugger.

By default, symbol table information is read into the debugger for all the
shared libraries that are loaded, whether loaded at startup of the application
or loaded dynamically by the application at run time.

For less bulky images, you can strip out symbol table information with the
UNIX command ostrip (for information, see the ostrip(1) reference page).
You can also use debugger commands to control symbols, as follows:

-nosharedobjs

Debugging Shared Libraries 16–1

The -nosharedobjs flag, used on the ladebug command, directs the debugger
not to read symbol table information for any of the shared objects. (Later, you
can use the the readsharedobj command at the (ladebug) prompt to read in
the symbol table information for a specified shared object.)

listobj

The listobj command lists all the objects (the main image and all shared
libraries) that are currently used by the debuggee process. For each object, it
lists the full object name (with pathname), the starting address for the text,
the size of the text region, and whether the symbol table information for this
object is read by the debugger.

The pathnames listed are the ones actually used by the run-time loader when
loading the shared libraries.

readsharedobj objectname

The readsharedobj command directs the debugger to read in the symbol table
information for objectname, which must be a shared library. The command
can only be used when a debuggee program is specified (that is, either Ladebug
was invoked with it or the debuggee was loaded by the load command).

The symbol table information of objectname will be read into the debugger,
provided that objectname is specified as either of the following:

• An absolute pathname that matches exactly one of the object file names
listed in the listobj command

• A simple name that matches exactly one and only one of the simple names
listed in the listobj command

If no match is found, no symbol table information is read into the debugger.
If no unique match (for a simple name) is found, no symbol table information
is read, and an error message is issued. If the symbols for the specified object
have already been read, no symbol table information is read.

The readsharedobj command currently only reads in the symbol table
information of a shared object that has already been dynamically loaded when
the program executes.

delsharedobj objectname

The delsharedobj command directs the debugger to remove the symbols for
objectname, which must be a shared object.

If objectname is a complete file specification, for example, /usr/shlib/libc.so,
then the specified name is used as provided.

16–2 Debugging Shared Libraries

The symbol table information of objectname will be removed from the
debugger, provided that objectname is specified as either of the following:

• An absolute pathname that matches exactly one of the object file names
listed in the listobj command

• A simple name that matches exactly one and only one of the simple names
listed in the listobj command

If no match is found, no symbol table information is removed from the
debugger. If no unique match (for a simple name) is found, no symbol table
information is removed, and an error message is issued.

If the last modification time and/or size of the binary file or any of the
shared objects used by the binary file has changed since the last run or
rerun command was issued, Ladebug automatically rereads the symbol table
information when you execute the program again.

16.2 Listing the Shared Library Source Code
Provided your library was compiled with -g , to list the source code for the
shared library, set the file context to the file containing the source and enter
the list command. See Example 16–1.

Example 16–1 Listing the Shared Library Source Code

(ladebug) file func.c
(ladebug) list 10

10
11 int funcD(i) {
12
13 int a;

> 14 a = i;
15 return a;
16 }

Debugging Shared Libraries 16–3

16.3 Setting Breakpoints in a Shared Library
Provided your library was compiled with -g , set breakpoints or tracepoints
in a shared library by setting a breakpoint on a specific line of source code or
function contained in the library, as shown in Example 16–2.

Example 16–2 Setting Breakpoints in a Shared Library

(ladebug) stop in main;r
[#1: stop in main]
[1] stopped at [main:28 0x120001280]

28 a = 1;
(ladebug) stop in funcC
[#2: stop in funcC]
(ladebug) file func.c
(ladebug) stop at 14
[#3: stop at "func.c":14]
(ladebug) status
#1 PC==0x120001280 in main "file.c":28 { break }
#2 PC==0x3ffbf800b98 in funcC "func.c":6 { break }
#3 PC==0x3ffbf800bd8 in funcD "func.c":14 { break }
(ladebug) c
having fun yet?!
[2] stopped at [funcC:6 0x3ffbf800b98]

6 a = m = n = 100;
(ladebug) c
[3] stopped at [funcD:14 0x3ffbf800bd8]

14 a = i;
(ladebug)

16.4 Printing and Modifying Shared Library Variable Values
Provided your library was compiled with -g , you can access variables in shared
libraries if the variable is visible and in scope according to the rules of the
program language. Print and modify the variable the same way you print or
modify any program variable, as shown in Example 16–3.

Example 16–3 Printing and Modifying Shared Library Variable Values

(ladebug) print a
1
(ladebug) which a
"func.c"‘funcD.a
(ladebug) assign a = 2

(continued on next page)

16–4 Debugging Shared Libraries

Example 16–3 (Cont.) Printing and Modifying Shared Library Variable Values

(ladebug) print a
2
(ladebug)

16.5 Stepping into Shared Library Functions
When you are executing the program using the step command, the debugger
will step into a function in the shared library the same way the debugger steps
into any other program function, as shown in Example 16–4.

Example 16–4 Stepping into Shared Library Functions

(ladebug) list
29 b = 2;
30 c = 3;
31
32 printf ("having fun yet?!\en");
33 printf ("%d %d %d %d\en", funcA(a), funcB(a), funcC(a), funcD(a));
34 printf ("NOT\en");
35 }
36
37

(ladebug) step
stopped at [main:32 0x120001298]

32 printf ("having fun yet?!\en");
(ladebug) step
having fun yet?!
stopped at [main:33 0x1200012b0]

33 printf ("%d %d %d %d\en", funcA(a), funcB(a), funcC(a), funcD(a));
(ladebug) step
stopped at [funcA:11 0x120001200]

11 x = 1;
(ladebug) step
stopped at [funcA:12 0x120001208]

12 a = i + g1 + x;
(ladebug)

16.6 Calling a Shared Library
Call a shared library function explicitly using the call command. You can
also embed a call to a function contained in a shared library as shown in
Example 16–5.

Debugging Shared Libraries 16–5

Example 16–5 Calling a Shared Library

(ladebug) call funcB(2)
(ladebug) print funcB(2)
2
(ladebug)

You can also nest calls to functions in shared libraries as shown in
Example 16–6.

Example 16–6 Nesting Calls to Shared Libraries

(ladebug) rerun
[1] stopped at [main:28 0x120001280]

28 a = 1;
(ladebug) call funcD(3)
[3] stopped at [funcD:14 0x3ffbf800bd8]

14 a = i;
(ladebug) where
>0 0x3ffbf800bd8 in funcD(i=3) func.c:14
#1 0x1200011d0 in _mcount()
(ladebug) print funcB(3)
3
(ladebug)

Although it is very time-consuming and tedious to debug shared libraries
that do not have symbolic information available for the debugger, you can
call functions in the shared libraries. Example 16–7 shows, for example,
that if your program links the stdio shared library, you can call the strlen
function.

Example 16–7 Calling a System Library Function

(ladebug) list 1:5
1
2 #include <stdio.h>
3
4 int gfi = 100;
5

(ladebug) print strlen("abc")
3
(ladebug)

16–6 Debugging Shared Libraries

16.7 Accessing Shared Libraries on the Stack Trace
If a shared library is active on the stack trace when you enter the where
command, the shared library will be displayed. You can use the up, down, and
func commands to change the func context, as shown in Example 16–8.

Example 16–8 Accessing Shared Libraries on the Stack Trace

(ladebug) where
>0 0x3ffbf800b98 in funcC(i=1) func.c:6
#1 0x1200012ec in main() file.c:33
(ladebug) up
>0 0x1200012ec in main() file.c:33

33 printf ("%d %d %d %d\en", funcA(a), funcB(a), funcC(a), funcD(a));
(ladebug) where
#0 0x3ffbf800b98 in funcC(i=1) func.c:6
>1 0x1200012ec in main() file.c:33
(ladebug) func funcC
funcC in func.c line No. 6:

6 a = m = n = 100;
(ladebug) where
>0 0x3ffbf800b98 in funcC(i=1) func.c:6
#1 0x1200012ec in main() file.c:33
(ladebug)

16.8 Disassembling a Memory Address in a Shared Library
Disassemble and modify shared library values contained in memory the same
way you disassemble other program function values. In Example 16–9, a range
of addresses is disassembled.

Example 16–9 Disassembling a Memory Address in a Shared Library

(ladebug) 0x3ffbf800b98 /2i
*[funcC:6, 0x3ffbf800b98] addq zero, 0x64, t0

[funcC:6, 0x3ffbf800b9c] stl t0, 8(sp)

(ladebug)

Debugging Shared Libraries 16–7

17
Working with Limited Debugging

Information

Depending on the options you use when compiling and linking your program,
the debugging information available in your program’s executable file may
range from full to nonexistent. Programs that include shared libraries or other
code modules may contain limited debugging information regardless of the
compile options you use. Ladebug supports the debugging of programs that do
not contain complete debugging information.

This chapter describes how to use Ladebug to debug a program containing
limited debugging information. It provides examples and discusses some of
the limitations you may experience. There are many scenarios under which a
program can be compiled and linked—discussing each is beyond the scope of
this chapter.

17.1 How Ladebug Works with Limited Debugging
Information

Some compilers provide variants of the debug flag that provide different levels
of debugging information and optimization. Depending on the options you use
when compiling and linking your program, the debugging information available
in the program’s executable file may range from full to nonexistent. Programs
that include shared libraries or other code modules may contain limited
debugging information regardless of the compile options you use. Ladebug uses
whatever information is available during a debugging session.

For example, with full debugging information, Ladebug can set breakpoints on
procedures and functions; it recognizes routine names and knows parameters
and values; it can display source code, knows the source file name, and can
provide line numbers.

When encountering limited debugging information, Ladebug attempts to set
breakpoints by making assumptions from the available information. See
Section 17.2 for sample sessions in which you debug programs with limited
information.

Working with Limited Debugging Information 17–1

If no debugging information is available in the program’s executable file,
Ladebug allows for machine-level debugging. (See Chapter 18 for information
on machine-level debugging.)

The following are some examples of compile and link options that are likely to
produce limited debugging information:

• Compiled with no -g flag

• Compiled with -g0, -g1, or -g

• Linked with the -x flag. (The -r linker flag is usually used with the -x
flag, except in the final link.)

• Linked with the -s flag

• Linked with a combination of flags on compiles or previous links

• Partially or fully stripped by the ostrip command

• Stripped using the strip command

Note

For the most up-to-date information on compiler and linker options and
defaults, see the manual reference page for your particular language
compiler and operating system release.

17.2 Example Debugging Sessions
The following sections compare Ladebug’s ability to debug programs containing
full or limited debugging information in the program’s symbol table. Each
example is provided in two forms:

1. Compiled and linked with -g2 (full debugging information)

2. Compiled and linked in such a way to produce limited debugging
information

As a sample program is analyzed, you will first see the output based on full
debugging information, which is then compared to the output where some of
the debugging information is missing.

The examples provided are for illustration only and do not cover all of the
conditions you may encounter. Use these example to help understand what
may be happening when you debug your own programs and modules that
contain less than full debugging information.

17–2 Working with Limited Debugging Information

Note

If you encounter difficulty debugging your program, the best solution is
to recompile and relink with the -g2 flag.

Sample sessions are presented as follows:

• Section 17.2.1 presents a C++ program linked with -x . The operating
system is Digital UNIX 4.0.

• Section 17.2.2 presents a C program linked with -x . The operating system
is Digital UNIX 3.2.

• Section 17.2.3 presents a C++ program containing two files, one of which
has been linked with -x -r . The operating system is Digital UNIX 3.2.

• Section 17.2.4 presents the same program as in Section 17.2.3, except that
it was linked with a different series of -x and -r flags over both files.

17.2.1 Example C++ Program Linked with -x
This section presents a sample debugging session on a C++ program containing
full symbolic debugging information, then the same program compiled with -g2
and linked with -x . In the second form of the example program, -x strips all
symbolic debugging information except for procedure and file information. The
operating system is Digital UNIX 4.0.

17.2.1.1 Setting Breakpoints
If your executable file contains full symbolic debugging information, Ladebug
can set a breakpoint at various levels, as shown in Example 17–1.

Working with Limited Debugging Information 17–3

Example 17–1 Setting Breakpoints in a C++ Program Compiled and Linked
with -g2

(ladebug) stop in Thing::Thing
Select an overloaded function 1
--

1 Thing::Thing(char* const)
2 Thing::Thing(const int)
3 Thing::Thing(void)
4 None of the above

--
3
[#1: stop in Thing::Thing(void)]
(ladebug) stop in Thing::Thing(const int)
[#2: stop in Thing::Thing(const int)]

(ladebug) stop in dump
Symbol dump not visible in current scope.
dump has no valid breakpoint address
Warning: Breakpoint not set
(ladebug) stop in Thing::dump
[#3: stop in void Thing::dump(const char* const)] 2

1 Ladebug can display all the constructors. Note also the need for the
Thing:: scope qualification; Thing:: is part of the name of the routine.

2 Thing:: is part of the name for the function dump .

If your executable file contains limited symbolic debugging information,
Ladebug lacks information to set breakpoints as shown in Example 17–2.

17–4 Working with Limited Debugging Information

Example 17–2 Setting Breakpoints in a C++ Program Compiled with -g2 and
Linked with -x

(ladebug) stop in Thing::Thing
Thing is not a valid breakpoint address
Warning: Breakpoint not set 1
(ladebug) stop in Thing 2
Thing is not a valid breakpoint address
Warning: Breakpoint not set
(ladebug) stop in Thing::~Thing
stop in Thing::~Thing
Unable to parse input as legal command or C++ expression.
(ladebug) stop in ~Thing
stop in ~Thing
Unable to parse input as legal command or C++ expression.
(ladebug) stop in dump
[#1: stop in dump] 3

1 Even after resetting the language, Ladebug still cannot set the breakpoint.

2 Repeated attempts to set breakpoints in constructors fail.

3 Ladebug can still set a breakpoint on this function because dump is unique
and not dependent upon the classname Thing:: to distinguish it.

17.2.1.2 Listing the Source Code
Example 17–3 shows how Ladebug can list the source code corresponding to the
position of the program counter if your executable file contains full debugging
information.

Working with Limited Debugging Information 17–5

Example 17–3 Listing the Source Code of a C++ Program Compiled and
Linked with -g2

(ladebug) run
[1] stopped at [Thing::Thing(void):58 0x120002170]
(Cannot find source file classdefinition.C)
(ladebug) use ./src
Directory search path for source files:

. ./bin /usr/users/debug/ladebug ./src
(ladebug) list

59 dump ("Thing constructor, no arguments");
60 }
61
62
63 Thing::Thing (const Thing1 t1)
64 : thisThing1 (t1),
65 thisThing2 (bogusThing2),
66 thisSideEffect (1)
67 {
68 sideEffect++;
69 dump ("Thing constructor, Thing1 argument");
70 }
71
72 #ifndef CHANGE_ORDER
73 Thing::Thing (const Thing2 t2)
74 : thisThing1 (bogusThing1),
75 thisThing2 (t2),
76 thisSideEffect (1)
77 {
78 sideEffect++;
79 dump ("Thing constructor, Thing2 argument");

Without full symbolic debugging information, Ladebug does not know name of
the source file. It can display some information for the routine dump because it
is unique and not dependent upon the Thing:: class.

17.2.1.3 Displaying the Stack Trace
If your executable file contains full debugging information, Ladebug can
display the stack trace of currently active functions. In Example 17–4, note the
detailed call stack with class types and values in them.

17–6 Working with Limited Debugging Information

Example 17–4 Displaying the Stack Trace of a C++ Program Compiled and
Linked with -g2

(ladebug) where
>0 0x120002170 in ((Thing*)0x11ffff7c8)->Thing() classdefinition.C:58
#1 0x120002574 in main() classdefinition.C:106

(ladebug) cont
[3] stopped at [void Thing::dump(const char* const):93 0x1200023f0]

93 sideEffect++;

(ladebug) where
>0 0x1200023f0 in ((Thing*)0x11ffff7c8)->dump(header=0x120001b80="Thing
constructor, no arguments") classdefinition.C:93
#1 0x120002198 in ((Thing*)0x11ffff7c8)->Thing() classdefinition.C:59
#2 0x120002574 in main() classdefinition.C:106
(ladebug) quit

If your executable file contains limited symbolic debugging information,
Ladebug can show that you are in a routine called Thing but can’t differentiate
which one. Example 17–5 illustrates this.

Example 17–5 Displaying the Stack Trace of a C++ Program Compiled with
-g2 and Linked with -x

(ladebug) where
>0 0x1200023e8 in dump(0x3ff80894608, 0x12000294f, 0x11ffff7c8, 0xc70,

0x3ff808941cc, 0x120002950) DebugInformationStrippedFromFile0:???
#1 0x120002198 in Thing(0x11ffff7c8, 0xc70, 0x3ff808941cc, 0x120002950,

0xd10, 0x3ffc0819100) DebugInformationStrippedFromFile0:???
#2 0x120002574 in main(0x3ffc0002078, 0xffffffff, 0x120001b70, 0x1,

0x140000060, 0x0) DebugInformationStrippedFromFile0:???
(ladebug) quit

17.2.2 Example C Program Linked with -x
This section presents a sample debugging session on a C program, first
containing full symbolic debugging information, then compiled in the same way
but linked with the -x flag. The operating system is Digital UNIX 3.2.

In the second form of the program, -x strips all symbolic debugging information
except for procedure and file information.

Working with Limited Debugging Information 17–7

17.2.2.1 Setting Breakpoints on Routines
Example 17–6 invokes the user program with full debugging information
and sets breakpoints on three routines: main, buildLocalList, and
createNewElement .

Example 17–6 Setting Breakpoints on Routines in a C Program Compiled
and Linked with -g2

csh> $LADEBUG ../bin/c_gflags001-g
Welcome to the Ladebug Debugger Version 4.0-9

object file name: ../bin/c_gflags001-g
Reading symbolic information ...done
(ladebug) stop in main
[#1: stop in main]
(ladebug) stop in buildLocalList
[#2: stop in buildLocalList]
(ladebug) stop in createNewElement
[#3: stop in createNewElement]
(ladebug) run
[1] stopped at [void main(void):157 0x1200014b8] 1

157 mainList = buildLocalList (5);
(ladebug)

1 With full debugging information, when you stop at a breakpoint, Ladebug
can determine the routine name, the line number, and the address for the
routine.

Example 17–7 shows a program compiled with -g2 and linked with -x . In
this case, the user program has all symbolic debugging information stripped,
except for procedure and file information. The local (nonglobal) symbols are
not preserved in the debugging information and Ladebug has no information to
work with.

17–8 Working with Limited Debugging Information

Example 17–7 Setting Breakpoints on Routines in a C Program Compiled
with -g2 and Linked with -x

csh> $LADEBUG ../bin/c_gflags001-x
Welcome to the Ladebug Debugger Version 4.0-9

object file name: ../bin/c_gflags001-x
Reading symbolic information ...done
(ladebug) stop in main
[#1: stop in main]
(ladebug) stop in buildLocalList
[#2: stop in buildLocalList]
(ladebug) stop in createNewElement
[#3: stop in createNewElement]
(ladebug) run
[1] stopped at [main:??? 0x1200014b0] 1

1 In this example, there is no line number information and the start address
is slightly different (0x1200014b0).

Ladebug normally starts on the first line of the source code. It skips over
initialization and other bookkeeping information in the prologue when you
enter a routine, so that the stack and parameters are in the expected state. In
this example, the information about the prologue is not available, so Ladebug
does its best to stop in the routine.

17.2.2.2 Listing the Source Code
Example 17–8 shows how Ladebug can list the source code corresponding to
the position of the program counter if your executable contains full debugging
information,

Ladebug knows about the current program counter and displays lines from line
157.

Working with Limited Debugging Information 17–9

Example 17–8 Listing the Source Code o f a C Program Compiled and Linked
with -g2

(ladebug) use ../src
Directory search path for source files:

. ../bin ../src

(ladebug) list
158 dumpLocalList ("Local list");
159
160 buildDuplicateList ();
161 dumpDuplicateList ("Duplicate list");
162
163 return;
164 } /* main */
165

In Example 17–9, the name of the source file has been stripped out
completely from the symbol table. Ladebug makes up a name for this file:
DebugInformationStrippedFromFile0.

Example 17–9 Listing the Source Code of a C Program Compiled with -g2
and Linked with -x

(ladebug) use ../src
Directory search path for source files:

. ../bin ../src

(ladebug) list
(Can’t find file DebugInformationStrippedFromFile0)

The name Ladebug creates is of some value. In some cases, this may be the
only way of discriminating between two different instances of an overloaded
function name. For example, there may be two different functions named
buildList that can only be resolved by using one of these generated source file
names.

The file name "DebugInformationStrippedFromFile0" has the symbol table
file number in it. For more complex programs, you could use odump(1) and
stdump(1) to identify where you are in your code.

17–10 Working with Limited Debugging Information

17.2.2.3 Displaying the Stack Trace
If your executable file contains full debugging information, Ladebug can display
the stack trace of currently active functions with detailed information as shown
in Example 17–10.

Example 17–10 Displaying the Stack Trace o f a C Program Compiled and
Linked with -g2

(ladebug) cont
[2] stopped at [buildLocalList:65 0x1200013ac]

65 firstElement = NULL_LIST; 1
(ladebug) where 2
>0 0x1200013ac in buildLocalList(lengthOfList=5) gflags001a.c:65
#1 0x1200014c4 in main() gflags001a.c:157
(ladebug) c
[3] stopped at [createNewElement:44 0x120001348]

44 newElement = (ListElementHandle) malloc (sizeof (ListElement));
(ladebug) where 3
>0 0x120001348 in createNewElement(dataValue=0, useValue=0)gflags001a.c:44
#1 0x1200013d8 in buildLocalList(lengthOfList=5) gflags001a.c:71
#2 0x1200014c4 in main() gflags001a.c:157
(ladebug) quit

1 Because Ladebug knows the name of the file, it can list the source line.

2 Note the parameter details. Ladebug knows the name of the parameter
(lengthOfList), and its type and value. It also knows that there is only
one parameter for buildLocalList and none for main .

3 More call stack information is available. Ladebug knows the names and
types of parameters and their values.

With limited debugging information, Ladebug must approximate the call stack
information, as in Example 17–11.

Working with Limited Debugging Information 17–11

Example 17–11 Displaying the Stack Trace of a C Program Compiled with
-g2 and Linked with -x

(ladebug) c
[2] stopped at [buildLocalList: ??? 0x120001398] 1
(ladebug) where
>0 0x120001398 in buildLocalList(0x1200012b4, 0x0, 0x0, 0x0, 0x1, 0x11ffffbf8)
DebugInformationStrippedFromFile0:??? 2
#1 0x1200014c4 in main(0x1, 0x20000000, 0x120001278, 0x120001200, 0x1200012b4,
DebugInformationStrippedFromFile0:???
(ladebug) c
[3] stopped at [createNewElement: ??? 0x120001328]
(ladebug) where 3
>0 0x120001328 in createNewElement(0x3ff80016b18, 0x0, 0x1200014c4, 0x0, 0x1,
DebugInformationStrippedFromFile0:???
#1 0x1200013d8 in buildLocalList(0x1200014c4, 0x0, 0x1, 0x0, 0x100000000,0x10
DebugInformationStrippedFromFile0:???
#2 0x1200014c4 in main(0x1, 0x0, 0x100000000, 0x100000005, 0x1200012b4, 0x0)
DebugInformationStrippedFromFile0:???
(ladebug) quit

1 Ladebug does not have line number information. There is also a difference
in the breakpoint location.

2 Note the significant differences in the call stack parameter information.
Because the type and parameter name information has been stripped out,
Ladebug provides the first six register parameters per the compiler calling
convention.

3 Ladebug again approximates the call stack information.

17.2.3 Example C++ Program Linked with -x -r
This example program contains two program files, calldriver.C and
callstack_intermediates.C, that contain various static and global routines.
The static routines are known only within the file while the global (external)
routines are known to both files.

In the first form of this program, both calldriver.C and callstack_intermediates.C
have full symbolic debugging information. The second form of the program
contains limited debugging information; calldriver.C is compiled with -g2 and
linked with the -x -r options, stripping out much of the symbol table, so only
part of this program has reasonable symbols.

17–12 Working with Limited Debugging Information

Figure 17–1 shows the structure of the example program.

Figure 17–1 Example C++ Program Linked with -x -r

.

.

.

int full_local_count

int full_local(const unsigned)

int full_global_count

int full_global(const unsigned)

//static
//global

main (global)

//static
//global

int intermediate_local_count

int intermediate_local(const unsigned)

int intermediate_global_count
//static
//global

int intermediate_global(const unsigned)
//static
//global

.

.

.

.

File 1:
calldriver.C

File 2:
callstack_intermediates.C

ZK−8476A−GE

17.2.3.1 Setting Breakpoints on Static and Global Routines
Example 17–12 invokes the user program with full debugging information and
sets breakpoints on four routines.

Example 17–12 Setting Breakpoints on Static and Global Routines in a C++
Program Compiled and Linked with -g2

csh> $LADEBUG ../bin/x_callstack01-g
Welcome to the Ladebug Debugger Version 4.0-9

object file name: ../bin/x_callstack01-g
Reading symbolic information ...done
Directory search path for source files:

. ../bin /usr/users/debug/ladebug
(ladebug) stop in full_local
[#1: stop in int full_local(const unsigned)] 1
(ladebug) stop in full_global
[#2: stop in int full_global(const unsigned)]
(ladebug) stop in intermediate_global
[#3: stop in int intermediate_global(const unsigned)]
(ladebug) stop in intermediate_local
[#4: stop in int intermediate_local(const unsigned)]
(ladebug) run 2
[3] stopped at [int intermediate_global(const unsigned):41 0x12000206c]
41 intermediate_global_count++; 3

1 Ladebug can set breakpoints on all four routines. In the first breakpoint,
Ladebug knows the name of the routine and the number and types of the
arguments. Be aware that the routines named "..._local" are static and
visible only in their own file.

Working with Limited Debugging Information 17–13

2 When you enter the run command, ladebug can determine the routine
name, the line number, and address for the routine.

3 Ladebug also knows the file name.

When calldriver.C is compiled with -g2 but linked with -x -r , you get the
result shown in Example 17–13 when you run the debugger:

Example 17–13 Setting Breakpoints on Static and Global Routines in a C++
Program Compiled with -g2 and Linked with -x -r

csh> $LADEBUG ../bin/x_callstack01-xr
Welcome to the Ladebug Debugger Version 4.0-9

object file name: ../bin/x_callstack01-xr
Reading symbolic information ...done
Directory search path for source files:

. ../bin /usr/users/debug/ladebug
(ladebug) stop in full_local
Symbol full_local undefined. 1
full_local has no valid breakpoint address
Warning: Breakpoint not set
(ladebug) stop in full_global
[#1: stop in full_global] 2
(ladebug) stop in intermediate_local
[#2: stop in int intermediate_local(const unsigned)] 3
(ladebug) stop in intermediate_global
[#3: stop in int intermediate_global(const unsigned)]
(ladebug) run 4
[3] stopped at [int intermediate_global(const unsigned):41 0x12000206c]
(Cannot find source file callstack_intermediates.C)

1 The static routine in calldriver.C is no longer visible and Ladebug can’t set
a breakpoint.

2 There are no parameters, no types, and no return type of the routine. The
information is missing from the symbollic debugging information.

3 The information about these routines is unchanged, since full debugging
information is available for callstack_intermediates.C.

4 The name of the source file has been stripped out, so Ladebug cre-
ates a new name (DebugInformationStrippedFromFile2). Because
DebugInformationStrippedFromFile2 has the symbol table file number
(2) in it, you can run odump()-Fv ../bin/x_callstack01-xr and look for
more information about this file.

17–14 Working with Limited Debugging Information

17.2.3.2 Listing the Source Code
Example 17–14 shows how Ladebug can list the source code for the file
callstack_intermediates.C if your executable file contains full debugging
information. For this part of the program, Ladebug knows source lines, routine
types, and routine parameters.

Example 17–14 Listing the Source Code of a C++ Program

(ladebug) use ../src
Directory search path for source files:

. ../bin /usr/users/debug/ladebug ../src
(ladebug) list

42
43 #ifdef DO_IO
44 cout << "intermediate_global: called with (" << i
45 << "), count now (" << intermediate_global_count << ")"<<endl;
46 #endif // DO_IO
47
48 const int result = intermediate_local (i);
49 return result;
50 } // intermediate_global
51

When the program is compiled the same way but linked with -x -r , the results
are the same for callstack_intermediates.C. However, you can’t see or list the
source for callstack_driver.C.

17.2.3.3 Displaying the Stack Trace
Example 17–15 shows how Ladebug displays the stack trace of currently active
functions if your executable file contains full debugging information.

Working with Limited Debugging Information 17–15

Example 17–15 Displaying the Stack Trace of a C++ Program Compiled and
Linked with -g2

(ladebug) where 1
>0 0x12000206c in intermediate_global(i=0) callstack_intermediates.C:41
#1 0x120001f6c in main() callstack_driver.C:69
(ladebug) cont 2
[4] stopped at [int intermediate_local(const unsigned):27 0x120001fec]

27 intermediate_local_count++;
(ladebug) cont
[2] stopped at [int full_global(const unsigned):41 0x120001edc]

41 full_global_count++;
(ladebug) cont
[1] stopped at [int full_local(const unsigned):27 0x120001e70]

27 full_local_count++;

(ladebug) where 3
>0 0x120001e70 in full_local(i=0) callstack_driver.C:27
#1 0x120001efc in full_global(i=0) callstack_driver.C:48
#2 0x12000200c in intermediate_local(i=0) callstack_intermediates.C:34
#3 0x12000208c in intermediate_global(i=0) callstack_intermediates.C:48
#4 0x120001f6c in main() callstack_driver.C:69

1 Ladebug is able to show the parameter details: the address, the routine
name, the parameter and its value, the source file name, and line number.

2 When you issue the cont command, Ladebug provides full information
on the next breakpoint. In this case, it shows the static routine
intermediate_local and the number of arguments and its type (const
unsigned).

3 Information is available for static and global routines in both files.

When callstack_driver.C is compiled with -g2 and linked with -x -r , the results
are different, as shown in Example 17–16.

17–16 Working with Limited Debugging Information

Example 17–16 Displaying the Stack Trace of a C++ Program Compiled with
-g2 and Linked with -x -r

(ladebug) where
>0 0x12000206c in intermediate_global(i=0) callstack_intermediates.C:41
#1 0x120001f6c in ../bin/x_callstack01-xr 1
(ladebug) cont
[2] stopped at [int intermediate_local(const unsigned):27 0x120001fec]

27 intermediate_local_count++;
(ladebug) cont
[1] stopped at [full_global: ??? 0x120001ec8] 2
(ladebug) where
>0 0x120001ec8 in full_global(0x0, 0x870, 0x3ff808941cc, 0x1200022d0,
0x8e0, 0x3ffc0819100) DebugInformationStrippedFromFile2:??? 3
#1 0x12000200c in intermediate_local(i=0) callstack_intermediates.C:34
#2 0x12000208c in intermediate_global(i=0) callstack_intermediates.C:48
#3 0x120001f6c in ../bin/x_callstack01-xr 4

1 Ladebug cannot associate the program counter with a routine or a file
but because the program counter is within a known image, it displays the
image name.

2 Ladebug sets a breakpoint on the global routine full_global but cannot
tell in which file or on what line number.

3 Instead, Ladebug creates a file name and associates it with full_global :
DebugInformationStrippedFromFile2. Since it does not know the names or
values of the parameters associated with full_global , it lists the first six
register parameters, according to the compiler calling convention

4 Ladebug again cannot associate the program counter with a routine or a
file but can display the image name.

17.2.3.4 Printing Static and Local Variables
The results are different when you print static and local variables with full or
limited debugging information. Full information produces the results shown in
Example 17–17.

Working with Limited Debugging Information 17–17

Example 17–17 Printing Variables of a C++ Program Compiled and Linked
with -g2

(ladebug) print full_local_count 1
0
(ladebug) print full_global_count 2
1
(ladebug) print intermediate_local_count
Symbol intermediate_local_count not visible in current scope.
Error: no value for intermediate_local_count 3
(ladebug) print intermediate_global_count
1

1 Ladebug can print the static variable located in this file.

2 Ladebug can print the global variable.

3 This is a legitimate message; Ladebug cannot print the value of a static
variable defined in the other file that is not visible.

Example 17–18 shows the results with limited debugging information for
callstack_driver.C.

17–18 Working with Limited Debugging Information

Example 17–18 Printing Variables of a C++ Program Compiled with -g2 and
Linked with -x -r

(ladebug) print full_local_count
Symbol full_local_count undefined. 1
Error: no value for full_local_count
(ladebug) print full_global_count 2
0

1 Ladebug does not recognize the static variable in this file, even though it
would be visible here when compiled under -g2 .

2 Ladebug can print the global variable. If this were a complicated type,
Ladebug would probably show it as an int. Type information is lost in most
cases of limited debugging information. Local variable information is also
lost in most cases.

17.2.4 Example C++ Program Linked with Various -x and -r Options
The sample program in this section is the same as the program used in
Section 17.2.3, except that it was linked with a different series of -x and -r
flags. As a result, different parts of the program have symbolic debugging
information removed. Both files, calldriver.C and callstack_intermediates.C,
contain limited debugging information.

As you go through this example debugging session, compare the results with
output of the programs compiled with -g2 in Section 17.2.3.

17.2.4.1 Setting Breakpoints on Static and Global Routines
When you try to set a breakpoint, Ladebug cannot recognize the names of static
or global routines. The information about the routines in both calldriver.C and
callstack_intermediates.C has been stripped out, as shown in Example 17–19.

Working with Limited Debugging Information 17–19

Example 17–19 Setting Breakpoints on Static and Global Routines in a C++
Program with Various -x and -r flags

csh> $LADEBUG ../bin/x_callstack03-xr
Welcome to the Ladebug Debugger Version 4.0-9

object file name: ../bin/x_callstack03-xr
Reading symbolic information ...done
Directory search path for source files:

. ../bin /usr/users/debug/ladebug
(ladebug) stop in full_local
Symbol full_local undefined.
full_local has no valid breakpoint address 1
Warning: Breakpoint not set
(ladebug) stop in full_global
[#1: stop in full_global] 2
(ladebug) stop in intermediate_local
Symbol intermediate_local undefined.
intermediate_local has no valid breakpoint address 3
Warning: Breakpoint not set
(ladebug) stop in intermediate_global
[#2: stop in intermediate_global] 4
(ladebug) run
[2] stopped at [intermediate_global: ??? 0x1200015a8]

1 The static routine is not visible to Ladebug.

2 Ladebug does not know the return type of the routine, the parameters, or
the types.

3 This static routine is also not visible.

4 Ladebug does not know the return type of the routine, the parameters, or
the types for this global routine in callstack_intermediates.C.

17.2.4.2 Listing the Source Code
With limited debugging information on both files, Ladebug cannot list the
source since it does not have the name of the file. It does provide a name for
the file (DebugInformationStrippedFromFile7), as shown in Example 17–20,
which allows you to distinguish from other information later on.

17–20 Working with Limited Debugging Information

Example 17–20 Listing the Source Code of a C++ Program with Various -x
and -r Flags

(ladebug) use ../src
Directory search path for source files:

. ../bin /usr/users/debug/ladebug ../src
(ladebug) list
(Can’t find file DebugInformationStrippedFromFile7)

17.2.4.3 Displaying the Stack Trace
With limited debugging information, Ladebug displays the stack trace as
shown in Example 17–21.

Example 17–21 Displaying the Stack Trace of a C++ Program with Various -x
and -r Flags

(ladebug) where
>0 0x1200015a8 in intermediate_global(0x1, 0x0, 0x0, 0x0, 0x1, 0x11ffff9a0)
DebugInformationStrippedFromFile7:??? 1
#1 0x1200014bc in ../bin/x_callstack03-xr 2
(ladebug) cont
[1] stopped at [full_global: ??? 0x120001418] 3
(ladebug) where
>0 0x120001418 in full_global(0x0, 0x1400000d8, 0x3ff808941cc,
0x120001810, 0x6d0, 0x3ffc0819100)DebugInformationStrippedFromFile6:??? 4
#1 0x12000155c in UnknownProcedure0FromFile7(0x0, 0x1400000d8, 0x3ff808941cc,
0x120001810, 0x6d0, 0x3ffc0819100) DebugInformationStrippedFromFile7:??? 5
.
.
.

1 In the first (bottom) frame of the stack, Ladebug recognizes the routine
name but cannot associate it with a file. It provides the file name
DebugInformationStrippedFromFile7 so you can discriminate this routine.
It does not know the parameters for the routine so it lists the first six
register parameters according to the compiler calling convention.

2 The filename is not known, so Ladebug displays the image name.

3 Ladebug sets a breakpoint on the global routine full_global but cannot
tell which file or line number.

4 Ladebug creates a new file name for each file in the program. In this case,
it created the name DebugInformationStrippedFromFile6.

Working with Limited Debugging Information 17–21

5 Ladebug recognizes that this is a routine but does not know the name,
which means it is a static routine (-x -r strips out the names of static
routines but retains some routine information). Ladebug creates a routine
name (UnknownProcedure0FromFile7). Because Ladebug recognizes the
routine name "UnknownProcedure0FromFile7", you can figure out the
name of the static routine Ladebug would use by running odump -Pv .

17.2.4.4 Setting a Breakpoint on an Unknown Routine
Ladebug lets you set a breakpoint on the routine name it created in
Example 17–10, even though information is lacking for static routines. It
can display information on global variables. Information about static variables
local to this file is lost, as shown in Example 17–22.

Example 17–22 Setting a Breakpoint on an Unknown Routine in a C++
Program with Various -x and -r Flags

(ladebug) stop in UnknownProcedure0FromFile7
[#3: stop in UnknownProcedure0FromFile7]
(ladebug) print full_local_count
Symbol full_local_count undefined.
Error: no value for full_local_count
(ladebug) print full_global_count
0
(ladebug) print intermediate_local_count
Symbol intermediate_local_count undefined.
Error: no value for intermediate_local_count
(ladebug) print intermediate_global_count
1
(ladebug) quit

17–22 Working with Limited Debugging Information

18
Machine-Level Debugging

The Ladebug debugger lets you debug your programs at the machine-code
level as well as at the source-code level. Using debugger commands, you can
examine and edit values in memory, print the values of all machine registers,
and step through program execution one machine instruction at a time.

Only those users familiar with machine-language programming and
executable-file-code structure will find low-level debugging useful.

18.1 Examining Memory Addresses
You can examine the value contained at an address in memory as follows:

• The <examine address> command prints the value contained at the
address in one of a number of formats (decimal, octal, hexadecimal, and so
on).

• The print command, with the appropriate pointer arithmetic, prints the
value contained at the address in decimal.

18.1.1 Using the <examine address> Command
The <examine address> command has two main syntaxes. The following
syntax prints a range of addresses by specifying the beginning and end of the
range:

start_address, end_address / mode

If a symbol precedes the slash (/) in an address expression, you may need to
enclose the expression in parentheses. For example:

(ladebug) ($pc), ($pc+12) / i

The following command syntax prints a range of addresses by specifying the
beginning address and the total number of memory locations display:

start_address / count mode

Machine-Level Debugging 18–1

You can enter memory addresses in decimal or in hexadecimal by preceding the
number with 0x. The mode variable determines how the values are displayed.
Table 18–1 lists the valid modes.

Table 18–1 Valid Memory Display Modes

Mode Description

d Print a short word in decimal

u Print a short word in unsigned decimal

D Print a long word in decimal

U Print a long word in unsigned decimal

o Print a short word in octal

O Print a long word in octal

x Print a short word in hexadecimal

X Print a long word in hexadecimal

b Print a byte in hexadecimal

c Print a byte as a character

s Print a string of characters (a C-style string that ends in null)

f Print a single-precision real number

g Print a double-precision real number

i Disassemble machine instructions

Example 18–1 shows how to disassemble a range of memory.

Example 18–1 Disassembling Values Contained in a Range of Addresses

(ladebug) 0x120001180, 0x120001185 / i
[main:4, 0x120001180] addq zero, 0x1, t0

[main:4, 0x120001184] stl t0, 24(sp)
(ladebug) 0x120001180 / 2 i

[main:4, 0x120001180] addq zero, 0x1, t0

[main:4, 0x120001184] stl t0, 24(sp)
(ladebug)

In this example, the same range of addresses was accessed using
start_address command in both the end_address syntax and the / count
syntax.

18–2 Machine-Level Debugging

18.1.2 Using Pointer Arithmetic
You can use C and C++ pointer-type conversions to display the contents of a
single address in decimal. Using the print command, the syntax is as follows:

print *(int *) (address)

Using the same pointer arithmetic, you can use the assign command to alter
the contents of a single address. Use the following syntax:

assign *(int *) (address) = value

Example 18–2 shows how to use pointer arithmetic to examine and change the
contents of a single address.

Example 18–2 Using Pointer Arithmetic to Display and Change Values in
Memory

(ladebug) print *(int*)(0x10000000)
4198916
(ladebug) assign *(int*)(0x10000000) = 4194744
(ladebug) print *(int*)(0x10000000)
4194744
(ladebug)

18.2 Examining Machine-Level Registers
The printregs command prints the values of all machine-level registers. The
registers displayed by the debugger are machine dependent. The values are in
decimal or hexadecimal, depending on the value of the $hexints variable (the
default is 0, decimal). The register aliases are shown; for example, $r1 [$t0] .

Example 18–3 shows Digital UNIX Alpha machine-level registers.

Machine-Level Debugging 18–3

Example 18–3 Printing Machine Registers on the Digital UNIX Alpha
Platform

(ladebug) printregs
$r0 [$v0] = 10 $r1 [$t0] = 1
$r2 [$t1] = 4831844048 $r3 [$t2] = 5368719424
$r4 [$t3] = 0 $r5 [$t4] = 0
$r6 [$t5] = 4396972783304 $r7 [$t6] = 2
$r8 [$t7] = 10 $r9 [$s0] = 337129856
$r10 [$s1] = 337127744 $r11 [$s2] = 4396973344608
$r12 [$s3] = 0 $r13 [$s4] = 5368847640
$r14 [$s5] = 5368753616 $r15 [$s6] = 20
$r16 [$a0] = 1 $r17 [$a1] = 4831835496
$r18 [$a2] = 4831835512 $r19 [$a3] = 4831835848
$r20 [$a4] = 4396981193976 $r21 [$a5] = 5
$r22 [$t8] = 9 $r23 [$t9] = 9
$r24 [$t10] = 4831842472 $r25 [$t11] = 1648
$r26 [$ra] = 4831842828 $r27 [$t12] = 4831842912
$r28 [$at] = 4396981208928 $r29 [$gp] = 5368742064
$r30 [$sp] = 4831835408 $r31 [$zero]= 4831842928
$f0 = 0.1 $f1 = 0
$f2 = 0 $f3 = 0
$f4 = 0 $f5 = 0
$f6 = 0 $f7 = 0
$f8 = 0 $f9 = 0
$f10 = 0 $f11 = 0
$f12 = 0 $f13 = 0
$f14 = 2.035550460865936e-320 $f15 = 4120
$f16 = 0 $f17 = 0
$f18 = 0 $f19 = 0
$f20 = 0 $f21 = 0
$f22 = 0 $f23 = 0
$f24 = 0 $f25 = 0
$f26 = 0 $f27 = 0
$f28 = 0 $f29 = 0
$f30 = 0 $f31 = 0
$pc = 0x120001270
(ladebug)

18.3 Stepping at the Machine Level
The stepi and nexti commands let you step through program execution
incrementally, like the step and next commands described in Chapter 9.
The stepi and nexti commands execute one machine instruction at a time,
as opposed to one line of source code. Example 18–4 shows stepping at the
machine-instruction level.

18–4 Machine-Level Debugging

Example 18–4 Stepping Through Program Execution One Machine
Instruction at a Time

(ladebug) stop in main
[#1: stop in main]
(ladebug) run
[1] stopped at [main:4 0x120001180]

4 for (i=1 ; i<3 ; i++) {
(ladebug) stepi
stopped at [main:4 0x120001184] stl t0, 24(sp)
(ladebug) Return

stopped at [main:5 0x120001188] ldl a0, 24(sp)
(ladebug) Return

stopped at [main:5 0x12000118c] ldq t12, -32664(gp)
(ladebug) Return

stopped at [main:5 0x120001190] bsr ra,
(ladebug) Return

stopped at [factorial:12 0x120001210] ldah gp, 8192(t12)

(ladebug)

At the machine-instruction level, you can step into, rather than over, a
function’s prolog. While within a function prolog, you may find that the stack
trace, variable scope, and parameter list are not correct. Stepping out of
the prolog and into the actual function updates the stack trace and variable
information kept by the debugger.

Single-stepping through function prologs that initialize large local variables is
slow. As a workaround, use the next command.

Machine-Level Debugging 18–5

19
Debugging Multithreaded Applications

This chapter explains how to use the Ladebug debugger to debug
multithreaded programs that use DECthreads or kernel threads.

19.1 Thread Levels (DECthreads and Native Threads)
The debugger supports two levels of threads:

• DECthreads

• Native threads (also known as kernel threads and machine-level threads);
these are threads native to the Digital UNIX system where the application
is running

The debugger variable $threadlevel tells the debugger to view (interpret) the
application threads as DECthreads threads or native threads. Depending on
the setting of $threadlevel, only the DECthreads or the native threads are
recognized by the debugger.

(For complete information on using DECthreads, see the DECthreads Reference
Manual.)

By default, the $threadlevel variable is set to decthreads if the debuggee
application is multithreaded and is using DECthreads. Otherwise, the
$threadlevel is set to native. This happens each time an application is
loaded into the debugger via the command line, the load command, or the
attach command.

For core file debugging, the threadlevel is always set to native.

You can switch the threads debugging mode from native to decthreads
(or the reverse) by setting $threadlevel appropriately. Use the debugger
command set $threadlevel, as follows:

set $threadlevel ="decthreads"
set $threadlevel ="native"

Debugging Multithreaded Applications 19–1

19.2 Thread Identification
The valid values of thread identifiers for native threads and DECthreads are
as follows:

• Native threads — a mach port id (an integer value)

• A DECthreads sequence number (an integer value)

The thread identifier is interpreted according to the $threadlevel.

The debugger variable $curthread contains the thread identifier of the current
thread. The $curthread value is updated when program execution stops or
completes.

The current thread context can be modified by setting $curthread to a valid
thread identifier. This is equivalent to issuing the thread thread_identifier
command.

When there is no process or program, $curthread is set to 0.

The debugger variable $tid is the same as $curthread . (See Chapter 22.)

19.3 Thread Commands
The categories of thread commands are as follows:

• Context

• Control

• Information

• Modification

These commands are discussed in the following sections.

19.3.1 Thread Context Commands
You can use the thread command to identify or set the current thread context.
The syntax is as follows:

thread [thread_identifier]

If you supply a thread identifier, the debugger sets the current context to the
thread you specify. If you omit the thread identifier, the debugger displays the
current thread context. See Section 19.2 for a list of valid thread identifier
values.

The debugger interprets the thread identifier as a DECthreads or kernel thread
identifier depending on the value of the debugger variable $threadlevel.

19–2 Debugging Multithreaded Applications

The thread context can also be modified by setting the debugger variables
$curthread or $tid. (See Section 19.2.)

19.3.2 Thread Control Commands
These commands control the execution of one or more threads in a process. You
can stop and resume execution of some or all of the threads in the application.

19.3.2.1 Setting Breakpoints in Multithreaded Applications
Use one of the following stop commands to set breakpoints in specific threads:

l)stop [variable] [thread thread_identifier_list] [at line_number] [if expression]
stop [variable] [thread thread_identifier_list] [in function] [if expression]

The thread_identifier_list parameter identifies one or more threads of the
current debugging level.

A thread identifier is treated as one of the conditions on the breakpoint. When
the $threadlevel mode is changed, this condition may no longer be true.

If you list one or more thread identifiers, the debugger sets a breakpoint only
in those threads that you specify. If you omit the thread identifier specification,
the breakpoint is set at the process level.

19.3.2.2 Setting Tracepoints in Multithreaded Applications
Use one of the following trace or when command syntaxes to set tracepoints
in specific threads:

trace [variable] [thread thread_identifier_list] [at line_number] [if expression]
trace [variable] [thread thread_identifier_list] [in function] [if expression]
when [variable] [thread thread_identifier_list] [at line_number] [if expression] {command [; . . .]}
when [variable] [thread thread_identifier_list] [in function] [if expression] {command [; . . .]}

If you list one or more thread identifiers, the debugger sets a tracepoint only in
those threads that you specify. If you omit the thread identifier specification,
the debugger sets a tracepoint at the process level.

19.3.2.3 Stepping Individual Threads
Use one of the following commands to step while putting all other threads on
hold:

step
stepi
next
nexti

The debugger steps only the current thread.

Debugging Multithreaded Applications 19–3

19.3.2.4 Resuming Thread Execution
You can use the cont command to resume execution of the current thread that
was put on hold (for example, at a breakpoint). As the current thread resumes,
all other threads continue by default. The syntax is as follows:

cont [signal]

If you specify a signal, the program continues execution with that signal. The
signal value can be either a signal number or a string name (for example,
SIGSEGV). The default is 0, which allows the program to continue execution
without specifying a signal.

19.3.3 Thread Information Commands
Thread information commands let you view information available from
the debugger about the threads in your application. The information
displayed may vary depending on whether the $threadlevel variable is
set to decthreads or native.

To obtain the maximum detail, set the $verbose debugger variable to a value
of 1. For more information about $verbose, see Section 10.13.

19.3.3.1 Thread Queries
You can use the show thread command to list all the threads known to the
debugger. The syntax is as follows:

show thread [thread_identifier_list]

If you specify one or more thread identifiers, the debugger displays information
about those threads. If you do not specify any thread identifiers, the debugger
displays information for all known threads. For example:

19–4 Debugging Multithreaded Applications

(ladebug) print $threadlevel
‘‘decthreads’’
(ladebug) show thread
Id State Substate Policy Prior Name

--- ------- ---------- --------- ---- -------------
1 running throughput 19 default thread
3 running throughput 19 <pthread user@0x1400005d8

* 4 stopped throughput 19 <pthread user@0x1400005e8
5 running throughput 19 <pthread user@0x1400005f8
6 running throughput 19 <pthread user@0x140000608
2 terminated exited throughput 19 <pthread user@0x1400005c8

(ladebug) set $threadlevel="native"
(ladebug) print $threadlevel
‘‘native’’
(ladebug) show thread

Id State
----------- ------

> 0xffffffff81ad6f00 running
0xffffffff81ad72c0 running

* 0xffffffff81b3f2c0 stopped at 0x12001410 main(....) : 24
0xffffffff81ad7a40 running
0xffffffff81b16f00 running
0xffffffff81b50000 running

Use the show thread with state command to list threads in a specific state,
such as threads that are currently blocked. The possible states depend on
whether you have DECthreads or native threads.

The following state values apply to DECthreads (see the DECthreads
documentation for the meaning of the states):

ready
blocked
running
terminated
detached

The following state values apply to native threads:

stopped
running
terminated

The syntax is as follows:

show thread [thread_identifier_list] with state = = ready
show thread [thread_identifier_list] with state = = blocked
show thread [thread_identifier_list] with state = = running
show thread [thread_identifier_list] with state = = terminated
show thread [thread_identifier_list] with state = = detached

Debugging Multithreaded Applications 19–5

show thread [thread_identifier_list] with state = = stopped

You can use the where command to display the stack trace of current threads.
You can specify one or more threads or all threads. The syntax is as follows:

where [number] [thread [thread_identifier_list | all | *]]

The where command displays the stack trace of currently active functions, for
the current thread.

The where thread thread_identifier_list command displays the stack
trace(s) of the specified thread(s).

The where thread all and the where thread * commands are equivalent; they
display the stack traces of all threads.

Include the optional number argument to see a specified number of levels from
the top of the stack. (Each active function is designated by a number that can
be used as an argument to the func command. The top level on the stack is 0;
so if you enter the command where 3 , you will see levels 0, 1, and 2.) If you do
not specify the number argument, you will see all levels.

The print command evaluates an optional expression in the context of the
current thread and displays the result. The syntax is as follows:

print expression [. . .]

The call command evalutes an expression in the context of the current thread
and makes the call in the context of the current thread. The syntax is as
follows:

call expression

The printregs command prints the registers for the current thread. The
syntax is as follows:

printregs

19.3.3.2 Condition Variable Queries (DECthreads Only)
If your $threadlevel is decthreads, you can use the show condition
command to list information about currently available condition variables.
The syntax is as follows:

show condition [condition_identifier_list] [with state = = wait]

If you supply one or more condition variable identifiers, the debugger displays
information about those condition variables that you specify, provided that
the list matches the identity of currently available condition variables. If
you omit the condition variable identifier specification, the debugger displays
information about all condition variables currently available.

19–6 Debugging Multithreaded Applications

Example 19–1 shows the output from a simple show condition command.

Example 19–1 Displaying Condition Variable Information

(ladebug) show condition
Condition variable thread 1 join 1 (0x14001dcf0)
Condition variable thread 1 wait 2 (0x14001de40)
Condition variable Last thread CV 3 (0x14001ffb8)
Condition variable thread 2 join 6 (0x140020af0)
Condition variable thread 2 wait 7 (0x140020c40)
Condition variable thread 3 join 9 (0x140021108)
Condition variable thread 3 wait 10 (0x140021258)
(ladebug)

If you specify with state = = wait, the debugger displays information
exclusively for the condition identifiers that have one or more threads waiting
on them.

If $verbose is set to 1, Ladebug also displays the sequence number of the
threads waiting on the condition variables.

If the debuggee application has no DECthreads or the $theadlevel is set to
native, an appropriate message is issued.

19.3.3.3 Mutex Queries for DECthreads
If your $threadlevel is decthreads, you can use the show mutex command
to list information about currently available mutexes. The syntax is as follows:

show mutex [mutex_identifier_list] [with state = = locked]

If you supply one or more mutex identifiers, the debugger displays information
about only those mutexes that you specify, provided that the list matches
the identity of currently available mutexes. If you omit the mutex identifier
specification, the debugger displays information about all mutexes currently
available.

You can specify with state = = locked to display information exclusively for
locked mutexes.

If $verbose is set to 1, Ladebug also displays the sequence number of the
threads locking the mutex.

Debugging Multithreaded Applications 19–7

Example 19–2 shows the output from a simple show mutex command.

Example 19–2 Displaying Mutex Information

(ladebug) show mutex
Mutex thread 1 lock 14 (0x14001dc48), type fast, unlocked
Mutex thread 1 wait 15 (0x14001dd98), type fast, unlocked
Mutex thread 2 lock 69 (0x140020a48), type fast, unlocked
Mutex thread 2 wait 70 (0x140020b98), type fast, unlocked
(ladebug)

If the debuggee application has no DECthreads or the $theadlevel is set to
native, an appropriate message is issued.

19.4 An Example of Debugging a Multithreaded Program
The following example shows the use of Ladebug commands to debug
a multithreaded program. For more information on this test program,
prime_numbers, see the DECthreads Reference Manual.

Welcome to the Ladebug Debugger Version 3.0

object file name: thread_prime_numbers
Reading symbolic information ...done
(ladebug) record io out 1
(ladebug) stop at 43 2
[#1: stop at "thread_prime_numbers.c":43]
(ladebug) run 3
[1] stopped at [prime_search:43 0x120001bb4]

43 while (not_done)
(ladebug) thread 4
Thread 2 (running) "<pthread user@0x140000758>"

Scheduling: throughput policy at priority 19
Stack: 0x3ef80; base is 0x40000, guard area at 0x39fff
General cancelability enabled, asynch cancelability disabled

(ladebug) print my_number 5
0
(ladebug) show thread with state == running 6
Thread 2 (running) "<pthread user@0x140000758>"

Scheduling: throughput policy at priority 19
Stack: 0x3ef80; base is 0x40000, guard area at 0x39fff
General cancelability enabled, asynch cancelability disabled

Thread 3 (running) "<pthread user@0x140000768>"
Scheduling: throughput policy at priority 19
Stack: 0x2e000; base is 0x2e000, guard area at 0x27fff
General cancelability enabled, asynch cancelability disabled

Thread 4 (running) "<pthread user@0x140000778>"
Scheduling: throughput policy at priority 19
Stack: 0x1e000; base is 0x1e000, guard area at 0x17fff

19–8 Debugging Multithreaded Applications

General cancelability enabled, asynch cancelability disabled
Thread 5 (running) "<pthread user@0x140000788>"

Scheduling: throughput policy at priority 19
Stack: 0x8a000; base is 0x8a000, guard area at 0x83fff
General cancelability enabled, asynch cancelability disabled

Thread 6 (running) "<pthread user@0x140000798>"
Scheduling: throughput policy at priority 19
Stack: 0x78000; base is 0x78000, guard area at 0x71fff
General cancelability enabled, asynch cancelability disabled

(ladebug) show thread with state == blocked 7
Thread 1 (blocked) "default thread"

Waiting on condition variable 4 using mutex 81
Scheduling: throughput policy at priority 19
Stack: 0x0 (default stack)
!! Thread is not on stack !!
General cancelability enabled, asynch cancelability disabled

(ladebug) where 8
>0 0x120001bb4 in prime_search(arg=0x0) thread_prime_numbers.c:43
#1 0x3ff80c5cdf0 in cma__thread_base() ../../../../../src/usr/ccs/lib
/DECthreads/COMMON/cma_thread.c:1547
(ladebug) thread 4 9
Thread 4 (running) "<pthread user@0x140000778>"

Scheduling: throughput policy at priority 19
Stack: 0x1e000; base is 0x1e000, guard area at 0x17fff
General cancelability enabled, asynch cancelability disabled

(ladebug) where 1 0
>0 0x3ff80c5cd10 in cma__thread_base() ../../../../../src/usr/ccs/lib
/DECthreads/COMMON/cma_thread.c:1498
(ladebug) thread 1 1 1
Thread 1 (blocked) "default thread"

Waiting on condition variable 4 using mutex 81
Scheduling: throughput policy at priority 19
Stack: 0x0 (default stack)
!! Thread is not on stack !!
General cancelability enabled, asynch cancelability disabled

(ladebug) where 1 2
>0 0x3ff808edf14 in msg_receive_trap() /usr/build/osf1/goldos.bld/export
/alpha/usr/include/mach/syscall_sw.h:74
#1 0x3ff808e4764 in msg_receive() ../../../../../src/usr/ccs/lib/libmach
/msg.c:95
#2 0x3ff80c63d60 in cma__vp_sleep() ../../../../../src/usr/ccs/lib/DECthreads
/COMMON/cma_vp.c:1569
#3 0x3ff80c4c5ec in cma__dispatch() ../../../../../src/usr/ccs/lib/DECthreads
/COMMON/cma_dispatch.c:994
#4 0x3ff80c43e00 in cma__int_wait() ../../../../../src/usr/ccs/lib/DECthreads
/COMMON/cma_condition.c:2531
#5 0x3ff80c5c41c in cma_thread_join() ../../../../../src/usr/ccs/lib
/DECthreads/COMMON/cma_thread.c:926
#6 0x3ff80c5485c in pthread_join() ../../../../../src/usr/ccs/lib/DECthreads
/COMMON/cma_pthread.c:2294
#7 0x120002104 in main() thread_prime_numbers.c:121

Debugging Multithreaded Applications 19–9

(ladebug) thread 2 1 3
Thread 2 (running) "<pthread user@0x140000758>"

Scheduling: throughput policy at priority 19
Stack: 0x3ef80; base is 0x40000, guard area at 0x39fff
General cancelability enabled, asynch cancelability disabled

(ladebug) step 1 4
stopped at [prime_search:45 0x120001bbc]

45 pthread_testcancel();
(ladebug) cont 1 5
[1] stopped at [prime_search:43 0x120001bb4]

43 while (not_done)
(ladebug) thread 1 6
Thread 3 (running) "<pthread user@0x140000768>"

Scheduling: throughput policy at priority 19
Stack: 0x2cf80; base is 0x2e000, guard area at 0x27fff
General cancelability enabled, asynch cancelability disabled

(ladebug) where 1 7
>0 0x120001bb4 in prime_search(arg=0x1) thread_prime_numbers.c:43
#1 0x3ff80c5cdf0 in cma__thread_base() ../../../../../src/usr/ccs/lib
/DECthreads/COMMON/cma_thread.c:1547
(ladebug) show mutex (1, 2, 3) 1 8
Mutex 1 (fast) "default attrs mutex" is not locked
Mutex 2 (fast) "known attr list" is not locked
Mutex 3 (fast) "known mutex list" is not locked
(ladebug) show condition (5, 12, 15) 1 9
Condition variable 5, "thread 2 wait" has no waiters
Condition variable 12, "thread 6 join" has no waiters
(ladebug) delete 1 2 0
(ladebug) cont 2 1
Thread 0 terminated
Thread 1 terminated normally
Thread 2 terminated
Thread 3 terminated
Thread 4 terminated
The list of 110 primes follows:
1, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157,
163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257,
263, 269, 271, 277, 281, 283, 293, 307, 311,

19–10 Debugging Multithreaded Applications

313, 317, 331, 337, 347, 349, 353, 359, 367,
373, 379, 383, 389, 397, 401, 409, 419, 421,
431, 433, 439, 443, 449, 457, 461, 463, 467,
479, 487, 491, 499, 503, 509, 521, 523, 541,
547, 557, 563, 569, 571, 577, 587, 593, 599,
601

Thread has finished executing
(ladebug) quit

1 The record io command saves both debugger input and output to a file
named out in this example.

2 The stop at command suspends program execution at the specified line
(43 in the example) for any thread.

3 The run command starts program execution.

4 The thread command identifies or sets the current thread context.
Because the thread identification is omitted, the debugger displays the
current thread context.

5 The print command displays the value of the object my_number for the
thread that stopped.

6 The show thread with state = = running command displays threads that
are running.

7 Only the blocked threads are displayed.

8 The where command displays the stack trace of currently active functions
for the current thread (2).

9 The thread command sets the current thread context to thread 4.

1 0 The stack trace of thread 4 is displayed.

1 1 The thread command sets the current thread context to 1.

1 2 The stack trace of thread 1 is displayed.

1 3 The thread command sets the current thread context to 2.

1 4 The step command executes one line of source code for thread 2 only.

1 5 The cont command resumes program execution until a breakpoint, signal,
error, or end of the program is encountered.

1 6 The thread command identifies or sets the current thread context.
Because the thread identification is omitted, the debugger determines that
the current thread is 3. Note that it reached line 43 for thread 3.

1 7 The where command displays the stack trace of currently active functions
in thread 3.

Debugging Multithreaded Applications 19–11

1 8 The show mutex (1, 2, 3) command shows that none of the specified
mutexes is locked.

1 9 The show condition (5, 12, 15) command shows that variables 5 and
12 have no threads waiting. Condition 15 does not exist; therefore, no
information is shown.

2 0 The delete 1 command removes the specified breakpoint or trace.

2 1 The cont command resumes program execution. When the program
finishes execution, the threads are terminated and the result is displayed.

19–12 Debugging Multithreaded Applications

20
Debugging Multiprocess Applications

With Ladebug, you can debug more than one program or process. This chapter
explains how to:

• Bring a process under debugger control

• Set the current process context

• Display a list of processes

• Load images and core files

• Remove process information from the debugger

• Debug programs that fork a child process and/or exec a program

In addition, it presents a sample multiprocess debugging session.

For information about multiprocess debugging from the window interface, see
Chapter 5.

20.1 Bringing a Process Under Debugger Control
You can bring a process into debugger control in the following ways:

• From the command line, using various Ladebug command line options and
arguments (for example, specifying a core file for core file debugging or the
-k flag for local kernel debugging).

• From the Ladebug prompt, you can load a program using the load
command or attach to a running process using the attach command.

• When the Ladebug variable $catchforks is set to 1, Ladebug keeps track
of newly forked processes.

For more information on the various ways to invoke Ladebug, see Section 1.4.

Debugging Multiprocess Applications 20–1

20.2 Displaying a List of Processes
Use the show process command to display the currently executing process or
all processes in your application. The syntax is as follows:

show process
show process *
show process all

If you specify the show process command without a qualifier, Ladebug
displays information for the current process only. Using the asterisk (*) or
the all option displays information for all processes. For each process listed,
Ladebug shows the process ID, image file, the number of threads, and state.

20.3 Setting the Current Process
After bringing a process under debugger control, you can switch between
processes using the process command. This sets the current process. The
syntax is as follows:

process
process [process_id | image_file | debugger_variable]

Specify a specific process using the process ID number or the name of the
image. Ladebug sets the current process context to the process ID or the
process that runs the binary image. If there are more than one processes
running the same binary image, Ladebug warns you and leaves the process
context unchanged.

The debugger variables $childprocess and $parentprocess can also
be specified in place of the process ID. (Ladebug automatically sets these
variables when an application forks a child process.)

The process command without any argument displays information for the
current process only.

20.4 Loading Image and Core Files
The load command reads the symbol table information of an image file and a
core file.

To debug a core file, specify the name of the core file with the image file. After
loading a program, specify the run command to start execution. The syntax is
as follows:

load [image_file [core_file]]

20–2 Debugging Multiprocess Applications

20.5 Removing Process Information from the Debugger
Use the unload command to remove the process-related information. The
syntax of the unload command is as follows:

unload [process_id | image_file]

The unload command removes the symbol table information if the debuggee
process isn’t running or stopped. You can specify the detach to release control
of the running process or the kill command to terminate the debugger
process if the process is created by Ladebug.

If you do not specify a process ID or image file, Ladebug unloads the current
process.

20.6 Sample Multiprocess Debugging Session
Example 20–1 demonstrates the use of Ladebug commands to debug a
multiprocess application.

In the first part of the program, the process command shows the current
process. The load lets you load an image or core file. Specifying show process
all displays a list of processes, running or stopped.

Debugging Multiprocess Applications 20–3

Example 20–1 Debugging a Multiprocess Application - Loading an Image
File and Showing Processes

$ ladebug
Welcome to the Ladebug Debugger Version 4.0-9
(ladebug) process
There is no current process.

You may start one by using the ‘load’ or ‘attach’ commands.
(ladebug) load a.out
Reading symbolic information ...done
(ladebug) process 1
Current Process: localhost:18340 (a.out).
(ladebug) show process all 2
>localhost:18340 (a.out) Unstarted.
(ladebug) load file-func
Reading symbolic information ...done
(ladebug) process
Current Process: localhost:18551 (file-func). 3
(ladebug) show process all 4

localhost:18340 (a.out) Unstarted.
>localhost:18551 (file-func) Unstarted.
(ladebug) process 18340 5
(ladebug) process
Current Process: localhost:18340 (a.out).
(ladebug) list 1 6

1
2 int main(int argc, char* argv[])
3 {
4 int a = sizeof(**argv);
5 int b = sizeof(+(**argv));
6 int c = sizeof(-(**argv));
7 return a+b+c;
8 }

1 Ladebug sets the current process.

2 Ladebug shows information for all processes. In this case, there is only one
process.

3 After loading file-func , Ladebug displays a new current process (process
18551).

4 Ladebug now shows two processes. The arrow (>) indicates the current
process.

5 When you specify the process ID, Ladebug switches to that process. In this
case, it switches to process 18340.

20–4 Debugging Multiprocess Applications

6 Process 18340 is now the current process. Ladebug lists the process’ source
code.

Switching between processes sets the current process context, as shown in
Example 20–2.

Example 20–2 Debugging a Multiprocess Application - Switching Between
Processes

(ladebug) process 18551 1
(ladebug) process
Current Process: localhost:18551 (file-func).
(ladebug) list 1 2

1
2
3 #include <stdio.h>
4
5 int gfi = 100;
6
7 int g1 = 10;
8
9 int funcA(i) {

10
11 int a, x;
12 x = 1;
13 a = i + g1 + x;
14 return a;
15 }
16
17 int funcB(i) {
18
19 int a;
20 a = i;
21 return a;

1 Ladebug toggles back to process 18551 and makes it the current process.

2 Ladebug shows the source code for process 18551.

Debugging Multiprocess Applications 20–5

20.7 Debugging Programs That Fork and/or Exec
This section describes Ladebug’s support for debugging programs that fork a
child process and/or execs a program.

20.7.1 Predefined Debugger Variables for Fork/Exec Debugging
Ladebug contains the following predefined variables that you set for debugging
a program that fork and/or execs. By default, the settings are turned off. When
activated, the settings apply to all processes you debug.

• $catchexecs — When set to 1, this variable instructs the debugger to notify
the user and stop the program when a program execs. The default is 0.

• $catchforks — When set to 1, this variable instructs the debugger to notify
the user when a program forks a child process. The child process stops and
is brought under debugger control. By default, the parent process is not
stopped. The default is 0.

• $stopparentonfork —When set to 1, this variable instructs the debugger to
stop the parent process when a program forks a child process. The default
is 0.

When a fork occurs, Ladebug automatically sets the debugger variables
$childprocess and $parentprocess to the new child or parent process ID. All
examples in this section assume these variables are set.

20.7.2 Debugging Programs That Fork Child Processes
Set $catchforks to 1 to instruct Ladebug to to keep track of newly forked
processes when a child process is forked. Ladebug stops the child process
immediately after the fork occurs. The child process inherits all breakpoints
from the parent process. It also inherits the signals list for the catch/ignore
commands from the parent process.

The child process runs the same image file as the parent process and the
process context is unchanged. You can switch to the child process using the
process command.

When the child process finishes, you cannot rerun the child process. By setting
the process context to the parent process, you can rerun the program .

20–6 Debugging Multiprocess Applications

20.7.2.1 Setting the Predefined Variables
Before you debug you application, you can check the setting of the predefined
variables using the set command, as shown in Example 20–3. The default
settings for $catchforks, $catchexecs, and $stoponparentfork are all 0.
In Example 20–3, these variables appear highlighted for illustration.

Example 20–3 Default Settings for Predefined Variables

$ ladebug mp-fork
Welcome to the Ladebug Debugger Version 4.0-10

object file name: mp-fork
Reading symbolic information ...done
(ladebug) set
$ascii = 1
$beep = 1
$catchexecs = 0
$catchforks = 0
$curevent = 0
$curfile = "mp-fork.c"
.
.
.
$stopparentonfork = 0
$threadlevel = "decthreads"
$verbose = 0

If your programs frequently fork or exec, you may want to set these variables
in your .dbxinit initialization file.

20.7.2.2 Scenario for Debugging a Forked Process with the Parent Process Running
To instruct Ladebug to report when the program forks a child process, set the
$catchforks predefined variable to 1, as follows:

(ladebug) set $catchforks=1

Debugging Multiprocess Applications 20–7

In Example 20–4, when you run the program, Ladebug notifies you that the
child process has stopped. The parent process continues to run.

Example 20–4 Debugging a Forked Process - Showing the Child Process

(ladebug) run
Process 200 forked. The child process is 201.
Process 201 stopped on fork. 1
stopped at [void main(void):14 0x120001248] 2

14 if ((pid=fork()) == 0)
Process has exited with status 18 3
(ladebug) show process all 4
>localhost:200 (mp-fork) dead.

_localhost:201 (mp-fork) stopped.
(ladebug)

1 Indicates that the child process has stopped.

2 Tells where the child process stopped.

3 Indicates that the parent process, which was not stopped, has completed
execution.

4 Shows that the child process (process 201) has stopped and the parent
process has completed execution. The parent process (process 200) remains
in the current context, as indicated by the arrow (>).

20–8 Debugging Multiprocess Applications

In Example 20–5, the process context is changed. Listing the source code
shows the source for the child process.

Example 20–5 Debugging a Forked Process - Changing the Process Context

(ladebug) process 201 1
(ladebug) show process all

localhost:200 (mp-fork) dead.
> _localhost:201 (mp-fork) stopped. 2
(ladebug) process
Current Process: localhost:201 (mp-fork).
(ladebug) list 3

15 {
16 printf("about to exec\n");
17 execlp("./c_whatis", "./c_whatis", NULL);
18 perror(" execve failed.");
19 }
20
21 else if (pid != -1)
22 {
23 printf("in parent process\n");
24 }
25
26 else
27 {
28 printf("Error in fork!");
29 exit(0);
30 }
31 }

1 The current process context is changed to the child process (process 201).

2 The arrow now indicates process 201 is the current process.

3 Ladebug lists the source code for the current process. Notice that it began
the listing from the line where the parent process forked.

You can continue to debug the current process (the child process). When the
child process finishes, you cannot rerun the child process. By setting the
process context to the parent process, you can rerun the program, as shown in
Example 20–6.

Debugging Multiprocess Applications 20–9

Example 20–6 Debugging a Forked Process - Rerunning the Program

(ladebug) next
stopped at [void main(void):16 0x12000125c]

16 printf("about to exec\n");
(ladebug) next
about to exec
stopped at [void main(void):17 0x120001274]

17 execlp("./c_whatis", "./c_whatis", NULL);
(ladebug) next
result of foo = 5040
result of foo = 5040
result of baz = 720
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
abcdefghij
abcdefghij
Process has exited with status 0 1
(ladebug) show process all

localhost:200 (mp-fork) dead.
> _localhost:201 (mp-fork) dead.
(ladebug) rerun 2
Error: cannot restart existing process.

(ladebug) process 200 3

(ladebug) rerun 4
Process 200 forked. The child process is 201.
Process 201 stopped on fork.
stopped at [void main(void):14 0x120001248]

14 if ((pid=fork()) == 0)
in parent process
Process has exited with status 18
(ladebug)

1 Indicates that the child process has finished executing.

2 You cannot rerun the child process.

3 Setting back to the parent process (process 200), you can now specify rerun .

4 The program reruns; a new child process is created.

20–10 Debugging Multiprocess Applications

20.7.2.3 Scenario for Debugging a Forked Process with the Parent Process Stopped
In this scenario, you set the predefined variable $catchforks and $stopparen-
tonfork to 1. Setting $catchforks to 1 tells Ladebug to notify the user when
the program forks and stop the child process. By setting $stopparentonfork
to 1, the parent process also stops when the program forks a child process. The
variable $stopparentonfork has no effect when $catchforks is set to 0.

To instruct Ladebug to report when the program forks a child process and
stop the parent and child processes, set the variables $catchforks and
$stopparentonfork to 1, as follows:

(ladebug) set $catchforks=1
(ladebug) set $stopparentonfork=1

In Example 20–7, Ladebug stops the parent process when it forks the child
process. The current context is the parent process. You can change the process
context to the child process using the process command.

Debugging Multiprocess Applications 20–11

Example 20–7 Debugging a Forked Process with Parent and Child
Processes Stopped

(ladebug) run
Process 200 forked. The child process is 201.
Process 201 stopped on fork.
stopped at [void main(void):14 0x120001248]

14 if ((pid=fork()) == 0)
Process 200 stopped on fork.
stopped at [void main(void):14 0x120001248] 1

14 if ((pid=fork()) == 0)
(ladebug) show process all
>localhost:200 (mp-fork) stopped.

_localhost:201 (mp-fork) stopped.
(ladebug) process 201 2
(ladebug) show process all

localhost:200 (mp-fork) stopped.
> _localhost:201 (mp-fork) stopped.
(ladebug) list 3

15 {
16 printf("about to exec\n");
17 execlp("./c_whatis", "./c_whatis", NULL);
18 perror(" execve failed.");
19 }
20
21 else if (pid != -1)
22 {
23 printf("in parent process\n");
24 }
25
26 else
27 {
28 printf("Error in fork!");
29 exit(0);
30 }
31 }

1 Shows that the parent process has stopped at line 14.

2 Changes the current process context to the child process (process 201).

3 Lists the source code for the current process (the child process).

20–12 Debugging Multiprocess Applications

In Example 20–8, you continue to debug the current process (the child process).
When the child process finishes, you can switch to the parent process and
continue debugging.

Example 20–8 Debugging a Forked Process - Switching to the Parent
Process

(ladebug) next 1
stopped at [void main(void):16 0x12000125c]

LDBGD$:[SLOVENKAI.LADEBUG.MANUAL]LADEBUG_CH_MULTIPROC.SDML;19
(ladebug) next
about to exec
sstopped at [void main(void):17 0x120001274]

17 execlp("./c_whatis", "./c_whatis", NULL);
(ladebug) next
result of foo = 5040
result of foo = 5040
result of baz = 720
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
abcdefghij
abcdefghij
Process has exited with status 0 2
(ladebug) show process all

localhost:200 (mp-fork) stopped.
> _localhost:201 (mp-fork) dead.
(ladebug) process 200
(ladebug) list 3

15 {
16 printf("about to exec\n");
17 execlp("./c_whatis", "./c_whatis", NULL);
18 perror(" execve failed.");
19 }
20
21 else if (pid != -1)
22 {
23 printf("in parent process\n");
24 }
25
26 else

(continued on next page)

Debugging Multiprocess Applications 20–13

Example 20–8 (Cont.) Debugging a Forked Process - Switching to the
Parent Process

27 {
28 printf("Error in fork!");
29 exit(0);
30 }
31 }

(ladebug) next
stopped at [void main(void):21 0x1200012b4]

21 else if (pid != -1)
(ladebug) next
stopped at [void main(void):23 0x1200012c0]

23 printf("in parent process\n");
(ladebug) cont
in parent process
Process has exited with status 18 4

1 Continues execution in the child process.

2 The child process has finished execution.

3 After switching to the parent process, you can now list its source code.

4 The parent process terminates.

20.7.3 Debugging a Process That Execs
Set $catchexecs to 1 to instruct Ladebug to notify the user when the program
execs. The program stops before executing any user program code or static
initializations that are passed to the exec system call. You can debug the newly
exec’d program using basic debugging techniques. Ladebug keeps a history of
the progression of the exec’d binary files.

In the following scenario, you set the predefined variable $catchforks and
$catchexecs to 1. Ladebug will notify you when an exec occurs. Because
$catchforks was set, you will be notified of any execs in the child process.

To instruct Ladebug to report when a program execs on the current process
context, set the variables $catchexecs and $catchforks to 1, as follows:

(ladebug) set $catchexecs=1
(ladebug) set $catchforks=1

When you run the program in Example 20–9, Ladebug notifies you that an
exec occurred on the current context and that the child process has stopped on
the runtime-loader entry point.

20–14 Debugging Multiprocess Applications

Example 20–9 Debugging a Process That Execs

(ladebug) run
Process 200 forked. The child process is 201.
Process 201 stopped on fork.
stopped at [void main(void):14 0x120001248]

14 if ((pid=fork()) == 0)
in parent process
Process has exited with status 18
(ladebug) show process all
>localhost:200 (mp-fork) dead.

_localhost:201 (mp-fork) stopped.

(ladebug) process 201 1
(ladebug) list

15 {
16 printf("about to exec\n");
17 execlp("./c_whatis", "./c_whatis", NULL); 2
18 perror(" execve failed.");
19 }
20
21 else if (pid != -1)
22 {
23 printf("in parent process\n");
24 }
25
26 else
27 {
28 printf("Error in fork!");
29 exit(0);
30 }
31 }

(ladebug) next
stopped at [void main(void):16 0x12000125c]

16 printf("about to exec\n");
(ladebug) next
about to exec
stopped at [void main(void):17 0x120001274]

17 execlp("./c_whatis", "./c_whatis", NULL);
(ladebug) next
The process 201 has execed the image ‘./c_whatis’. 3
stopped at [???:62 0x3ff8001c3b8] 4

62 i = 1;

1 Ladebug sets the current process context to the child process.

2 Listing the source code, you can see the process is about to exec on line 17.

3 Ladebug notifies you when the exec executes.

Debugging Multiprocess Applications 20–15

4 The child process is stopped on the runtime-loader entry point. The source
display shows the code in the main routine.

In Example 20–10, you can set breakpoints in the current process (child
process). Ladebug shows the current process and the current executing
program.

Example 20–10 Debugging a Process That Execs - Setting Breakpoints

(ladebug) stop in main 1
[#1: stop in int main(void)]
(ladebug) c
[1] stopped at [int main(void):62 0x1200013a4]

62 i = 1;
(ladebug) list

63 foo();
64 baz(x,3,x+1);
65
66 i = 1;
67 printf("factorial(%d) = %d\n", i, factorial(i));
68 i = 2; printf("factorial(%d) = %d\n", i, factorial(i));
69 i = 3; printf("factorial(%d) = %d\n", i,
70 factorial(
71 i));
72
73 i
74 =
75 4;
76 printf(
77 "factorial(%d) = %d\n",
78 i,
79 factorial(i));
80
81 if (i < 5)
82 i = 5;
83 else

(ladebug) process 2
Current Process: localhost:201 (./c_whatis).
(ladebug) show process all

localhost:200 (mp-fork) dead.
> _localhost:201 (mp-fork->./c_whatis) stopped. 3
(ladebug) next
stopped at [int main(void):63 0x1200013ac]

63 foo();
(ladebug) next
result of foo = 5040

(continued on next page)

20–16 Debugging Multiprocess Applications

Example 20–10 (Cont.) Debugging a Process That Execs - Setting
Breakpoints

stopped at [int main(void):64 0x1200013bc]
64 baz(x,3,x+1);

(ladebug) next
result of foo = 5040
result of baz = 720
stopped at [int main(void):66 0x1200013dc]

66 i = 1;
(ladebug) next
stopped at [int main(void):67 0x1200013e4]

67 printf("factorial(%d) = %d\n", i, factorial(i));
(ladebug) next
factorial(1) = 1
stopped at [int main(void):68 0x12000141c]

68 i = 2; printf("factorial(%d) = %d\n", i, factorial(i));
(ladebug) next
factorial(2) = 2
stopped at [int main(void):69 0x12000145c]

69 i = 3; printf("factorial(%d) = %d\n", i,
(ladebug) step
stopped at [int factorial(int):8 0x1200011e8]

8 switch (n) {
(ladebug) where
>0 0x1200011e8 in factorial(n=3) c_whatis.c:8
#1 0x120001470 in main() c_whatis.c:69
(ladebug) cont
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
abcdefghij
abcdefghij
Process has exited with status 0
(ladebug) show process all

localhost:200 (mp-fork) dead.
> _localhost:201 (mp-fork) dead.
(ladebug)

1 You can set a breakpoint on the current process.

2 Shows the current process and the current executing program.

3 Shows the image file history as a progression of images.

Debugging Multiprocess Applications 20–17

21
Remote Debugging

This chapter describes debugging programs running on remote systems. A
remote debugger consists of a server running on the target system and a client
(the debugger) running on the host system. Once connected to the target
system, you use Ladebug to debug your program in the same way you debug
your programs running locally.

For a detailed description of writing a remote debugger server, see Appendix B.

21.1 Remote Debugging Environment
The remote debugging environment consists the following components that
interact through the remote debugger protocol:

• Ladebug debugger, acting as the debugger client running on the host
system

• A remote debugger server, running on the target system

• The program you want to debug

The functionality available in a remote debugging session depends in part on
which debugger server you are using. For Digital UNIX Version 4.0-6, this
server is the server for the EB64 Alpha Evaluation Board (see Section 21.6) or
Digital UNIX, or a server that you write for your own Alpha environment (see
Appendix B).

The Ladebug server provided with Digital UNIX Version 4.0-6 (or later) is
not compatible with versions of the debugger earlier than Version 4.0-6.
(This incompatibility affects you only if you use remote debugging.) The
incompatibility stems from a security enhancement introduced in Version 4.0-6:
The server checks that a connect request is from a privileged port.

Remote Debugging 21–1

21.2 Reasons for Remote Debugging
There are several cases in which you would use a remote debugger:

1. The target system does not have (or cannot run) a local debugger.

The target system may be an embedded system that cannot support a
debugger. You also may be debugging a part of the target’s software that
has to work before you can support a local debugger. A remote debugger
server (that is, the software) requires less and different support from the
target’s operating system (if one exists) than the support required by a
local debugger.

2. The target system does not have the resources to run a local debugger.

The target system may not be able to run a local debugger and
simultaneously run the program being debugged. The remote debugger
server uses less resources (particularly memory) than a resident Ladebug
debugger.

3. The source files for the program being debugged are not accessible from the
target system.

These sources are accessible from a host system from which you can
remotely debug the target system.

4. The target system’s screen or keyboard cannot be used for debugging.

A screen or keyboard interface may not exist because they are used by the
program being debugged. Another possibility is that the target system’s
physical location is different from the user’s.

5. A local debugger may interfere with window-interface applications.

On many interactive systems, it may be best to run a remote debugger.
Alternatively, you may be able to run a local debugger that directs its
input/output (I/O) to a screen on the remote system.

6. You may want to debug a process running on another machine.

21.3 Client/Server Model for Remote Debugging
Remote debugging with Ladebug uses a client/server model. In this model, the
host system, or client, initiates a connection to the target hardware and server
software, which processes client requests.

21–2 Remote Debugging

Ladebug supports remote debugging in various client/server configurations.
Figure 21–1 shows two configurations that use a single file system.

Figure 21–1 Client/Server Model with a Single or a Shared File System

Client

Server

(User Program)

−−−−−−−−−−

File System

Server

(User Program)

Ladebug
Client

TCP/IP Link

Host Target

Shared
File System

A B

ZK−8600A−GE

In configuration A, the client and server are implemented on a single machine
which connects to a file system.

In configuration B, a host system client is connected to a remote server through
TCP/IP. Both host and target systems share the same file system.

A host system client can also be connected to a remote server in a configuration
that employs separate file systems, as shown in Figure 21–2.

Note

In this case, you must specify the -rfn option with the remote file
name and have a locally accessible binary with debugger information.

Remote Debugging 21–3

Figure 21–2 Client/Server Model with Separate File Systems

File System

C

Server

(User Program)

File System

TCP/IP LinkLadebug
Client

TargetHost

ZK−8601A−GE

In configurations A, B, and C in Figure 21–1 and Figure 21–2, the user
program resides on the target system. The host machine interacts with the
target system in the following way:

1. After starting the server deamon, a remote session is established when the
host system connects to the target system.

2. The Ladebug client on the host system interacts with the server on the
target system to debug the user program. A new server is started for each
user program being debugged.

3. The debugger terminates the remote server when you end the debugging
session.

Table 21–1 describes the client/server concepts for remote debugging.
Section 21.4 describes the tasks for remote debugging.

21–4 Remote Debugging

Table 21–1 Client/Server Concepts for Remote Debugging

Client Server

Is Ladebug debugger. Is remote debugger server.

Runs on host system. Runs on target hardware (for example, EB64
or Digital UNIX Alpha.)

Makes requests to server. Controls the process being debugged.

Is responsible for all access to source files and
symbol table.

Is not responsible.

Uses debug protocol; sends protocol commands to
the server.

Uses debug protocol; receives protocol
commands and sends responses.

Contains information about the process being
debugged.

Contains information about the processes’
environment.

Does not control processes. Server controls a single process; server
deamon controls multiple processes
(messages to the server containing a server
ID).

21.4 Tasks for Remote Debugging
This section describes general tasks to debug programs running on remote
systems. The tasks include:

1. Starting the server daemon

2. Starting the debugger, user program, and connecting to the server

3. Debugging the user program

4. Exiting the debugger and disconnecting from the server

21.4.1 Starting the Server Daemon
The server daemon must be running on the target system before you can
remotely debug programs on that target. You can start the server daemon
either from a system startup file or interactively from the command line.

Note

Under certain conditions, running the server daemon negatively affects
the security of your system. If you are running an old server, there
may be a security problem (see the documentation for that server). An
individual user ID can be protected by prohibiting remote access from a
particular host (or from all hosts) in the .rhosts and the hosts.equiv

Remote Debugging 21–5

files. On Digital UNIX machines, .rhosts must have rw privileges
only for the owner, with no privileges for the group and others.

For example, to start the server daemon interactively and output system
messages to a log file, log in as superuser then start the server daemon as
follows:

$ /usr/bin/ladebug-server > ladebug-server.log &
Ladebug remote debug server deamon starting
/usr/bin/ladebug-server : server is servdb.ptl.dss.com (11.18.49.164)
...

21.4.2 Starting Ladebug
When you start Ladebug you also start the user program and connect to the
server.

Use the -rn command-line option, which specifies the IP name or address
of the machine on which the server deamon is running and on which you
want your user program to run. Specifying this command-line option is the
only difference between starting Ladebug to debug a remote application and
starting Ladebug to debug a local one.

If you start Ladebug without specifying the process ID (-pid) , it starts a
debuggee process in the remote node running the indicated image file. If you
do not specify the user name on the remote node (-ru) , it uses the local user
name.

For example, if you are connecting to the target system servdb to debug the
user program ~/work/test/hello and the file system is shared:

$ ladebug -rn servdb ~/work/test/hello
Welcome to the Ladebug Debugger Version 3.0

object file name: /usr/users/dss/work/test/hello
machine name: servdb
Reading symbolic information ...done

If you start Ladebug and specify a process ID, Ladebug connects to the process
in the remote node running the process. If the specified process ID does not
exist, the server returns an error and refuses connection.

Note

If you are connecting to a server that does not share the same file
system, specify the -rfn option with the -rn option. See Section 21.5

21–6 Remote Debugging

for detailed descriptions of all the remote debugging command-line
options.

21.4.3 Debugging the User Program
You debug a user program running on the target system the same way as you
would a local program. Note the following differences:

• When debugging an already running process, the run and rerun
commands are disabled since you do not need to start the process.

• When you specify the quit command to a remote debugger session, it does
not terminate the process running on the target system. To do this, you
must use the kill command.

• The cont command with a signal number is not supported.

• Ladebug provides less information when a process stops than when a local
process stops.

• Additional messages may be displayed if problems are encountered
communicating with the server.

The following example shows the result of running user program ~/work/test
/hello on remote node servdb:

(ladebug) stop in main; run
[#1: stop in main]
[1] stopped at [main:6 0x120001fa0]

6 (void) printf("Hello, world !\n");
(ladebug) cont
Thread has finished executing
(ladebug)

Note that the output of the program is not displayed after the cont command.
With remote debugging, the program output is displayed on the target system.
You can also redirect the output of the application to a log file.

The same program run locally would look like this:

Remote Debugging 21–7

$ ladebug ~/work/test/hello
Welcome to the Ladebug Debugger Version 3.0

object file name: /usr/users/dss/work/test/hello
Reading symbolic information ...done
(ladebug) stop in main; run
[#1: stop in main]
s[1] stopped at [main:6 0x120001fa0]

6 (void) printf("Hello, world !\n");
(ladebug) cont
Hello, world !
Thread has finished executing
(ladebug)

21.4.4 Exiting the Debugger and Disconnecting from the Server
The Ladebug quit command ends the remote debugger session and
automatically disconnects from the server.

Note

The quit command does not terminate the process running on the
target system. Use the kill command to terminate a running process
and end the remote debugger session.

21.5 Command-Line Options for Remote Debugging
Table 21–2 lists the Ladebug command-line options that support remote
debugging.

21–8 Remote Debugging

Table 21–2 Command Line Options for Remote Debugging

Option/Qualifier Meaning/Conditions

-rn 1 node_or_address
[,udp_port 2]

Specifies the internet node name or IP address of
the machine on which the remote debugger server
is running (that is, the node running the program
to be debugged); optionally specifies the UDP port
on which to connect the server. Either the node
name or IP address is required; there is no default.

-pid process_id Specifies the process ID of the process to be
debugged. When you specify this option, Ladebug
debugs a running process rather than loading a new
process.

-rfn 1 arbitrary_string Specifies the file name (or other identifier) of the
image to be loaded on a remote system. This option
defaults to the local image file name and it is
passed to the remote system uninterpreted. Use
only with -rn ; do not combine with -pid .

-rinsist Connects to a running remote process using the
connect insist protocol message instead of the
connect protocol message. This option functions
as a request to the server to connect to the client,
even if another client is already connected. (The
previously connected client is disconnected.) Use
only with with -rn and -pid .

-ru username Specifies the user name to be used on the remote
system. The default is the local user name.

1Depending on your shell, it may be necessary to enclose this option in quotes to prevent the shell
from interpreting the punctuation characters in the parameter.
2Current remote debugger servers use UDP port 410 (the default); older releases might use UDP
port 21511.

The following examples show how to use the remote debugger command-line
options.

Example 1
$ ladebug -rn 1.2.3.4 -ru brown program1

Connects to the server on the node with IP address 1.2.3.4 and asks the
server to load a process called program1. The local copy of the object file is
also called program1. The user name on the remote node is brown.

Remote Debugging 21–9

Example 2
$ ladebug -rn EB64 -rfn ’**process name A**’ program3

Connects to the server on the node with IP name EB64 and asks it to load the
process called ’**process name A**’. The local object file is called program3.

21.6 Example Remote Debugger Session Using the
Evaluation Board Server

This section describes the steps you need to perform to debug remote processes
running on the Evaluation Board Server 1. The procedures described in
Section 21.6.1 through Section 21.6.3 describe the simplest procedure for using
Ladebug with the Evaluation Board Server. Since Ladebug can be started
at any monitor breakpoint (not only when the program is at its initial entry
point), many variations are possible.

21.6.1 Building an Executable File
To build the executable file for remote debugging:

1. Compile your source files using the -g option to save symbolic information.

2. Link the source files with the -N and -Tx options, where x is the load
address for the executable file.

3. Use the cstrip utility to strip the coff header from the executable file.
Keep the unstripped executable file.

21.6.2 Loading the Executable File and Starting the Server
To load the executable file and start the Ladebug server:

1. Set up the host Digital UNIX Alpha machine as the bootp server for the
Evaluation Board Server (for example, the EB64).

2. Start the server.

3. Use the bootadr command on the monitor to set the boot address to the
load address that was used when linking the executable file.

4. Use the netload command to load the stripped executable file across the
ethernet.

5. Set a breakpoint at the entry point to the program with the stop
command.

6. Start the program with the go command.

1 The server includes the EB64, EB64+, and EB66 evaluation boards.

21–10 Remote Debugging

7. When the program reaches the breakpoint, enter the LADBX command to
start the Ladebug server.

21.6.3 Starting Ladebug on the Host System
After starting the server, to start the Ladebug debugger on the host system:

1. Enter the following command:

ladebug -rn <EB64> -pid 0 <exe>

In this command, <exe> is the file name of the unstripped executable
file and <EB64> is the internet name or address of the Evaluation Board
Server.

2. After you finish debugging or want to return to the monitor’s local
command interface, enter the quit command. The quit command
closes Ladebug and returns the monitor to its command prompt. The state
of the program you are debugging is not affected by this action.

21.6.4 Special Conditions
The following conditions may arise when remote debugging using the
Evaluation Board Server:

• If the program under server control disables interrupts for long periods of
time, Ladebug may lose communication with the Evaluation Board Server.

• The Evaluation Board Server does not support the loading of programs
under Ladebug control. As such, a program must be loaded by the monitor
and then connected to Ladebug, as described in Section 21.6.2.

Remote Debugging 21–11

22
Kernel Debugging

Ladebug supports kernel debugging, which is a task normally performed
by systems engineers or system administrators. A systems engineer might
debug a kernel space program, which is built as part of the kernel and which
references kernel data structures. A systems administrator might debug a
kernel when a process is hung, or kernel parameters need to be examined or
modified, or the operating system hangs, panics, or crashes. Kernel debugging
aids in analyzing crash dumps.

Security
You may need to be the superuser (root login) to examine either the running
system or crash dumps. Whether or not you need to be the superuser depends
on the directory and file protections for the files you attempt to examine.

Compiling a Kernel for Debugging
Compilation of a kernel should be done without full optimization and without
stripping the kernel of its symbol table information. Otherwise, your ability to
debug the kernel is greatly reduced.

By default, compilation does not strip the symbol table information. By default,
optimization is only partial. If you do not change these defaults, there should
not be a problem.

Adding or Deleting Symbol Table Information From within the debugger, you
can selectively add or delete symbol table information for a kernel image, with
the addstb or delstb commands. These commands can be useful because
symbol table information can impact debugger performance and take up
considerable disk space. The syntax is as follows:

addstb kernel_image

delstb kernel_image

Kernel Debugging 22–1

Patching a Disk File
From within the debugger, you can use the patch command to correct bad
data or instructions in an executable disk file. The text, initialized data, or
read-only data areas can be patched. The bss segment cannot be patched
because it does not exist in disk files.

The syntax is as follows:

patch expression1 = expression2

For example,

(ladebug) patch @foo = 20

Setting the Thread Context

The debugger variable $tid contains the thread identifier of the current
thread. The $tid value is updated implicitly by the debugger when program
execution stops or completes.

You can modify the current thread context by setting $tid to a valid thread
identifier.

When there is no process or program, $tid is set to 0.

The debugger variable $tid is the same as $curthread except that $tid is
used for kernel debugging.

Summary and Additional Information
The remainder of this chapter briefly describes the use of Ladebug to

• Perform local kernel debugging

• Analyze crash dumps

• Perform remote kernel debugging with the kdebug debugger

You can find additional information on kernel debugging in

• The kdbx(8) reference page

• The kdebug(8) reference page

• The Digital UNIX Kernel Debugging manual

The kernel debugging functionality supported by Ladebug is very similar to the
functionality described in the above-listed dbx sources, with the substitution of
the term ladebug for the term dbx .

22–2 Kernel Debugging

22.1 Local Kernel Debugging
When you have a problem with a process, you can debug the running kernel
or examine the values assigned to system parameters. (It is generally
recommended that you avoid modifying the value of the parameters, which can
cause problems with the kernel.)

Invoke the debugger with the following command:

ladebug -k /vmunix /dev/mem

The -k flag maps virtual to physical addresses to enable local kernel
debugging. The /vmunix and /dev/mem parameters cause the debugger to
operate on the running kernel.

Now you can use Ladebug commands to display the current process
identification numbers (process IDs), and trace the execution of processes.
The following example shows the use of the command kps (which is the alias
of the show process command) to display the process IDs:

(ladebug) kps

PID COMM
00000 kernel idle
00001 init
00014 kloadsrv
00016 update

.

.

.

The Ladebug commands cont, next, rerun, run, setting registers, step ,
and stop are not available when you do local kernel debugging. (Stopping the
kernel would also stop the debugger.)

If you want to examine the stack of, for example, the kloadsrv daemon, you
set the $pid symbol to its process ID (14) and enter the where command, as
in the following example (the spacing in the example has been altered to fit the
page):

Kernel Debugging 22–3

(ladebug) set $pid = 14
(ladebug) where

> 0 thread_block()
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/kern/sched_prim.c":1623, 0xfffffc000043d77c]

1 mpsleep(0xffffffff92586f00, 0x11a, 0xfffffc0000279cf4, 0x0, 0x0)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/bsd/kern_synch.c":411, 0xfffffc000040adc0]

2 sosleep(0xffffffff92586f00, 0x1, 0xfffffc000000011a, 0x0, 0xffffffff81274210)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/bsd/uipc_socket2.c":654, 0xfffffc0000254ff8]

3 sosbwait(0xffffffff92586f60, 0xffffffff92586f00, 0x0, 0xffffffff92586f00, 0x10180)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/bsd/uipc_socket2.c":630, 0xfffffc0000254f64]

4 soreceive(0x0, 0xffffffff9a64f658, 0xffffffff9a64f680, 0x8000004300000000, 0x0)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/bsd/uipc_socket.c":1297, 0xfffffc0000253338]

5 recvit(0xfffffc0000456fe8, 0xffffffff9a64f718, 0x14000c6d8, 0xffffffff9a64f8b8, 0xfffffc000043d724)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/bsd/uipc_syscalls.c":1002, 0xfffffc00002574f0]

6 recvfrom(0xffffffff81274210, 0xffffffff9a64f8c8, 0xffffffff9a64f8b8, 0xffffffff9a64f8c8,
0xfffffc0000457570) ["/usr/sde/osf1/build/goldos.nightly1/src/kernel/bsd/uipc_syscalls.c":860,
0xfffffc000025712c]

7 orecvfrom(0xffffffff9a64f8b8, 0xffffffff9a64f8c8, 0xfffffc0000457570, 0x1, 0xfffffc0000456fe8)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/bsd/uipc_syscalls.c":825, 0xfffffc000025708c]

8 syscall(0x120024078, 0xffffffffffffffff, 0xffffffffffffffff, 0x21, 0x7d)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/arch/alpha/syscall_trap.c":515, 0xfffffc0000456fe4]

9 _Xsyscall(0x8, 0x12001acb8, 0x14000eed0, 0x4, 0x1400109d0)
["/usr/sde/osf1/build/goldos.nightly1/src/kernel/arch/alpha/locore.s":1046, 0xfffffc00004486e4]

Examining the stack trace may reveal the problem. Then you can modify
parameters, restart daemons, or take other corrective actions.

The kdbx Interface
The kdbx interface is a crash analysis and kernel debugging tool. It serves
as a front end to the Ladebug debugger. The kdbx interface is extensible,
customizable, and insensitive to changes to offsets and sizes of fields in
structures. The only dependencies on kernel header files are for bit definitions
in flag fields.

The kdbx interface has facilities for interpreting various symbols and kernel
data structures. It can format and display these symbols and data structures
in the following ways:

• In a predefined form as specified in the source code modules that currently
accompany the kdbx interface

• As defined in user-written source code modules according to a standardized
format for the contents of the kdbx modules

The Ladebug commands (except signals such as Ctrl/P) are available when
you use the kdbx interface. (Many of these commands have aliases that
match dbx commands, for the convenience of users who are accustomed
to debugging kernels with the dbx debugger.) In general, kdbx assumes
hexadecimal addresses for commands that perform input and output.

The sections that follow explain using kdbx to debug kernel programs.

22–4 Kernel Debugging

Beginning a kdbx Session
Using the kdbx interface, you can examine either the running kernel or dump
files created by the savecore utility. In either case, you examine an object
file and a core file. For running systems, these files are usually /vmunix and
/dev/mem, respectively. The savecore utility saves dump files it creates in the
directory specified by the /sbin/init.d/savecore script. By default, the savecore
utility saves dump files in the /var/adm/crash directory.

To examine a running system, enter the kdbx command with the following
parameters:

kdbx -k /vmunix /dev/mem

When you begin a debugging session, kdbx reads and executes the commands
in the system initialization file /var/kdbx /system.kdbx rc. The initialization file
contains setup commands and alias definitions. (For a list of kdbx aliases, see
the kdbx(8) reference page.) You can further customize the kdbx environment
by adding commands and aliases to one of the following initialization files:

• /var/kdbx /site.kdbx rc, which contains customized commands and alias
definitions for a particular system

• ~/.kdbx rc, which contains customized commands and alias definitions for a
specific user

• ./.kdbx rc, which contains customized commands and alias definitions for a
specific project (this file must reside in the current working directory when
kdbx is invoked)

The kdbx Interface Commands
The kdbx interface provides the following commands:

alias [name] [command-string]

Sets or displays aliases. If you omit all arguments, alias displays all
aliases. If you specify the variable name, alias displays the alias for name,
if one exists. If you specify name and command-string, alias establishes
name as an alias for command-string.

context proc | user

Sets context to the user’s aliases or the extension’s aliases. This command
is used only by the extensions.

coredata start_address end_address

Dumps, in hexadecimal, the contents of the core file starting at start_
address and ending before end_address.

Kernel Debugging 22–5

ladebug command-string

Passes the variable command-string to Ladebug. Specifying Ladebug
is optional; if the command is not recognized by kdbx , it is passed
automatically.

help [-long] [args]

Prints help text.

proc [flags] [extension] [arguments]

Executes an extension and gives it control of the kdbx session until it
quits. The variable extension specifies the named extension file and passes
arguments to it as specified by the variable arguments. Valid flags are as
follows:

-debug

Causes input to and output from the extension to be displayed on
the screen.

-pipe in_pipe out_pipe

Used in conjunction with the dbx debugger for debugging
extensions.

-print_output

Causes the output of the extension to be sent to the invoker of the
extension without interpretation as kdbx commands.

-redirect_output

Used by extensions that execute other extensions to receive the
output from the called extensions. Otherwise, the user receives the
output.

-tty

Causes kdbx to communicate with the subprocess through a
terminal line instead of pipes. If you specify the -pipe flag, proc
ignores it.

print string

Displays string on the terminal. If this command is used by an
extension, the terminal receives no output.

quit

Exits the kdbx interface.

22–6 Kernel Debugging

source [-x] [file(s)]

Reads and interprets files as kdbx commands in the context of the
current aliases. If the you specify the -x flag, the debugger displays
commands as they are executed.

unalias name

Removes the alias, if any, from name.

The kdbx interface contains many predefined aliases, which are defined in
the kdbx startup file /var/kdbx /system.kdbx rc.

Using kdbx Extensions
In addition to its commands, the kdbx interface provides extensions. You
execute extensions using the kdbx command proc . For example, to execute
the arp extension, you enter the following command:

kdbx> proc arp

You can create your own kdbx extensions.

For more information on the extensions, see the Digital UNIX Kernel
Debugging manual.

22.2 Crash Dump Analysis
If your system panics or crashes, you can often find the cause by using either
Ladebug or kdbx to analyze a crash dump.

The operating system can crash in the following ways:

• Hardware trap — A hardware problem often results in the kernel trap()
function being invoked.

• Software panic — A software panic, resulting from a software failure, calls
the kernel panic() function.

• Hung system — When the system hangs, you can force the creation of
dump files.

If the system crashes because of a hardware fault or an unrecoverable software
state, a dump function is invoked. The dump function copies the core memory
into the primary default swap disk area as specified by the /etc/fstab file
structure table and the /sbin/swapdefault file. At system reboot time, the
information is copied into a file, called a crash dump file.

Kernel Debugging 22–7

You can analyze the crash dump file to determine what caused the crash. For
example, if a hardware trap occurred, you can examine variables, such as
savedefp, the program counter (pc), and the stack pointer (sp), to help you
determine why the crash occurred. If a software panic caused the crash, you
can use the Ladebug debugger to examine the crash dump and the uerf utility
to examine the error log. Using these tools, you can determine what function
called the panic() routine.

Crash dump files, such as vmunix.n and vmcore.n, usually reside in the /var
/adm/crash directory. The version number (n in vmunix.n and vmcore.n)
must match for the two files.

For example, you might use the following command to examine dump files:

ladebug -k vmunix.1 vmcore.1

Examining the Exception Frame
When you debug your code by working with a crash dump file, you can examine
the exception frame using Ladebug. The variable savedefp contains the
location of the exception frame. (No exception frames are created when you
force a system to dump.) Refer to the header file /usr/include/machine/reg.h
to determine where registers are stored in the exception frame. The following
example shows an exception frame:

(ladebug) print savedefp/33X

ffffffff9618d940: 0000000000000000 fffffc000046f888
ffffffff9618d950: ffffffff86329ed0 0000000079cd612f

.

.

.
ffffffff9618da30: 0000000000901402 0000000000001001
ffffffff9618da40: 0000000000002000

Extracting the Character Message Buffer
You can use Ladebug to extract the preserved message buffer from a running
system or dump files to display system messages logged by the kernel. For
example:

22–8 Kernel Debugging

(ladebug) print *pmsgbuf

struct {
msg_magic = 405601
msg_bufx = 1181
msg_bufr = 1181
msg_bufc = "Alpha boot: memory from 0x68a000 to 0x6000000

DEC OSF/1 T1.2-2 (Rev. 5); Thu Dec 03 11:20:36 EST 1992
physical memory = 94.00 megabytes.
available memory = 83.63 megabytes.
using 360 buffers containing 2.81 megabytes of memory
tc0 at nexus
scc0 at tc0 slot 7
asc0 at tc0 slot 6
rz1 at asc0 bus 0 target 1 lun 0 (DEC RZ25 (C) DEC 0700)
rz2 at asc0 bus 0 target 2 lun 0 (DEC RZ25 (C) DEC 0700)
rz3 at asc0 bus 0 target 3 lun 0 (DEC RZ26 (C) DEC T384)
rz4 at asc0 bus 0 target 4 lun 0 (DEC RRD42 (C) DEC 4.5d)
tz5 at asc0 bus 0 target 5 lun 0 (DEC TLZ06 (C)DEC 0374)
asc1 at tc0 slot 6
fb0 at tc0 slot 8

1280X1024
ln0: DEC LANCE Module Name: PMAD-BA
ln0 at tc0 slot 7
ln0: DEC LANCE Ethernet Interface, hardware address: 08:00:2b:2c:f6:9f
DEC3000 - M500 system
Firmware revision: 1.1
PALcode: OSF version 1.14
lvm0: configured.
lvm1: configured.
setconf: bootdevice_parser translated ’SCSI 0 6 0 0 300 0 FLAMG-IO’ to ’rz3’ " }
(ladebug)

The crashdc Utility
The crashdc utility collects critical data from operating system crash dump
files or from a running kernel. You can use the data it collects to analyze the
cause of a system crash. The crashdc utility uses existing system tools and
utilities to extract information from crash dumps. The information garnered
from crash dump files or from the running kernel includes the hardware and
software configuration, current processes, the panic string (if any), and swap
information.

The crashdc utility is invoked each time the system is booted. If it finds
a current crash dump, crashdc creates a data collection file with the same
numerical file name extension as the crash dump.

You can also invoke crashdc manually. The syntax of the command for invoking
the data collection script is as follows:

/bin/crashdc vmunix. n /vmcore. n

Kernel Debugging 22–9

See the Digital UNIX Kernel Debugging manual for an example of the output
from the crashdc command.

Managing Crash Dump File Creation
To ensure that you are able to analyze crash dump files following a system
crash, you must understand the crash dump file creation process. This process
requires that you reserve space on the system for crash dump files. The
amount of space you save depends upon your system configuration and the
type of crash dump file you want the system to create.

Saving Dumps to a File System
When the system reboots, it attempts to save a crash dump from the crash
dump partition to a file system. The savecore utility (/sbin/savecore), which is
invoked during system startup before the dump partition is accessed, checks
to see if the system crashed or was rebooted. If the system crashed within the
last three days, the savecore utility performs the following tasks as the system
reboots:

• Checks to see if a dump has been made within the last three days and that
there is enough space to save it.

• Saves the dump file and kernel image into a specified directory. The default
files for the kernel image and the dump file are vmunix.n and vmcore.n,
respectively.

The variable n gives the number of the crash. The number of the crash is
recorded in the bounds file. After the first crash, the bounds file is created
in the crash dump directory and the value one is stored in it. That value is
incremented for each succeeding crash.

• Logs a reboot message using the facility LOG_CRIT, which logs critical
conditions. For more information, refer to the syslog(3) reference page.

• Logs the panic string in both the ASCII and binary error log files, if the
system crashed as a result of a panic.

• Attempts to save the kernel syslog message buffer from the dump files. The
msgbuf.err entry in /etc/syslog.conf file specifies the file name and location
for the msgbuf dump file. The default /etc/syslog.conf file specification is as
follows:

msgbuf.err /var/adm/crash/msgbuf.savecore

If the msgbuf.err entry is not specified in the /etc/syslog.conf file, the
msgbuf dump file is not saved. The msgbuf dump file cannot be forwarded
to any system.

22–10 Kernel Debugging

When the syslogd daemon is later initialized, it checks for the msgbuf
dump file. If a msgbuf dump file is found, syslogd processes the file and
then deletes it.

• Creates the file binlogdumpfile.n in the /var/adm/crash directory. The
variable n is determined by the value of the bounds file.

You can modify the system default for the location of dump files by using the
rcmgr command to specify another directory path for the /sbin/savecore utility:

/usr/sbin/rcmgr set SAVECORE_DIR </newpath>

The /sbin/init.d/savecore script invokes the /sbin/savecore utility.

Crash Dump Files
Crash dump files are either partial (the default) or full. The following sections
describe each type of file and explains allocating the proper amount of space in
the crash dump partition and file system.

Partial Crash Dump Files
Unlike full crash dumps, the size of a partial crash dump file is proportional
to the amount of system activity at the time of the crash: the higher the level
of system activity and the larger the amount of memory in use at the time of
a crash, the larger the partial crash dump files will be. For example, when a
system with 96 megabytes (MB) of memory crashes, it creates a vmcore.n file
with 10 to 96 MB of memory (depending upon system activity) and a vmunix.n
file with approximately six MB of memory.

Note

If you compress a core dump file from a partial crash dump, you must
use care in decompressing it. Using the uncompress command with no
options results in a core file equal to the size of memory. To ensure that
the decompressed core file remains at its partial dump size, you need to
use the uncompress command with the -c option and the dd command
with the conv=sparse option. For example, to decompress a core file
named vmunix.0.Z, enter the following command:

uncompress -c vmcore.0.Z | dd of=vmcore.0 conv=sparse
262144+0 records in
262144+0 records out

Kernel Debugging 22–11

Full Crash Dump Files
Full crash dump files can be very large because the vmunix.n file is a copy
of the running kernel and the size of the vmcore.n file is slightly larger than
the amount of physical memory on the system that crashed. For example,
when a system with 96 MB of memory crashes, it creates a vmcore.n file with
approximately 96 MB of memory and a vmunix.n file with approximately six
MB of memory.

Selecting a Crash Dump Type
The default is to use partial crash dumps. If you want to use full dumps, you
can modify the default behavior in the following ways:

• By specifying the d flag to the boot_osflags console environment variable.

• By modifying the kernel’s partial_dump variable to 0 using the Ladebug
debugger (discussed in Chapter 8) as follows:

(ladebug) a partial_dump = 0

A partial_dump value of 1 indicates that partial dumps are to be generated.

Determining Crash Dump Partition Size
If you intend to save full crash dumps, you need to reserve disk space equal
to the size of memory, plus one additional block for the dump header. For
example, if your system has 128 MB of memory, you need a crash dump
partition of at least 128 MB, plus one block (512 bytes).

If you intend to save partial crash dumps, the size of the disk partition may
vary, depending upon system activity. For example, for a system with 128 MB
of memory, if peak system activity is low (never using more than 60 MB of
memory), the size of the crash dump partition can be 60 MB. If peak system
activity is high (using all of memory), 128 MB of disk space is needed.

If full dumps are turned on and there is not enough disk space to create dump
files for a full dump, partial dumps are automatically invoked.

Determining File System Space for Saving Crash Dumps
The size of the file system needed for saving crash dumps depends on the size
and the number of crash dumps you want to retain. A general guideline is to
reserve, at a minimum, the size of your crash dump partition, plus 10 MB. If
necessary, you can increase this amount later.

If your system cannot save a crash dump due to insufficient disk space, it
returns to single user mode. This return to single user mode prevents system
swapping from corrupting the dump file. Space can then be made available
in the crash dump directory, or the changed directory, before continuing to
multiuser mode. You can override this option using the following command:

22–12 Kernel Debugging

/usr/sbin/rcmgr set SAVECORE_FLAGS M

This command causes the system to always boot to multiuser mode even if it
cannot save a dump.

Procedures for Creating Dumps of a Hung System
If necessary, you can force the system to create dump files when the system
hangs. The method for forcing crash dumps varies according to the hardware
platform. The methods are described in the Digital UNIX Kernel Debugging
manual.

Guidelines for Examining Crash Dump Files
In examining crash dump files, there is no one way to determine the cause
of a system crash. However, the following guidelines should assist you in
identifying the events that led to the crash:

• Gather some facts about the system (for example, operating system type,
version number, revision level, and hardware configuration).

• Look at the panic string, if one exists. This string is contained in the
preserved message buffer, pmsgbuf, and in the panicstr global variable.

• Locate the thread executing at the time of the crash. (Use the where
command.) Most likely, this thread will contain the events that led to the
panic.

• Determine whether you can fix the problem. If the system crashed because
of lack of resources (for example, swap space), you can probably eliminate
the problem by adding more of that resource.

• If the problem is with the software, you may need to file a report with your
local Digital Customer Support Center.

For more information, and for examples, see the Digital UNIX Kernel
Debugging manual. This manual contains detailed information on the following
topics related to crash dump analysis:

• The crashdc utility

• Managing crash dump file creation

• Saving dumps to a file system

• Selecting full or partial crash dump files

• Determining crash dump partition size and file system space

Kernel Debugging 22–13

• Procedures (according to hardware platform) for creating dumps of a hung
system

Note

Crash dump analysis is possible only with local, not remote, kernel
debugging.

22.3 Remote Kernel Debugging with the kdebug Debugger
For remote kernel debugging, Ladebug is used in conjunction with the kdebug
debugger,† which is a tool for executing, testing, and debugging test kernels.
The kdebug code runs inside the kernel to be debugged on a test system, while
Ladebug runs on a remote system and communicates with kdebug over a serial
line or a gateway system.

You use Ladebug commands to start and stop kernel execution, examine
variable and register values, and perform other debugging tasks, just as
you would when debugging user space programs. The kdebug debugger, not
Ladebug, performs the actual reads and writes to registers, memory, and the
image itself (for example, when breakpoints are set).

Connections Needed
The kernel code to be debugged runs on a test system. Ladebug runs on a
remote build system and communicates with the kernel code over a serial
communication line or through a gateway system.

You use a gateway system when you cannot physically connect the test and
build systems. The build system is connected to the gateway system by a
network line. The gateway system is connected to the test system by a serial
communication line.

The following diagram shows the physical connection of the test and build
systems (with no gateway):

Build system Serial line Test system
(with Ladebug) <---------------------> (kernel code here)

† Used alone, kdebug has its own syntax and commands, and allows local nonsymbolic
debugging of a running kernel across a serial line. See the kdebug(8) manpage for
information about kdebug local kernel debugging.

22–14 Kernel Debugging

The following diagram shows the connections when you use a gateway system:

Build system Network Gateway Serial line Test system
(with Ladebug) <-----------> system <---------------------> (kernel code here)

with
kdebug
daemon

System Requirements
The test, build, and (if used) gateway systems must meet the following
requirements for kdebug:

• Test system

Must be running Version 2.0 or higher of the Digital UNIX operating
system, must have the Kernel Debugging Tools subset loaded, and must
have the Kernel Breakpoint Debugger kernel option configured.

• Build system

Must be running Version 3.2 or higher of the Digital UNIX operating
system. Also, this system must contain a copy of the kernel code you are
testing and, preferably, the source used to build that kernel code.

• Gateway system

Must be running Version 2.0 or higher of the Digital UNIX operating
system, and must have the Kernel Debugging Tools subset loaded.

Getting Ready to Use the kdebug Debugger
To use the kdebug debugger, first do the following:

1. Attach the test system and the build system or test system and gateway
system. See your hardware documentation for information about
connecting systems to serial lines and networks.

2. Configure the kernel to be debugged with the configuration file option
OPTIONS KDEBUG. If you are debugging the installed kernel, you can do
this by selecting KERNEL BREAKPOINT DEBUGGING from the kernel
options menu.

3. Recompile kernel files, if necessary. By default, the kernel is compiled
with only partial debugging information, occasionally causing Ladebug to
display erroneous arguments or mismatched source lines. To correct this,
recompile selected source files specifying the CDEBUGOPTS=-g argument.

4. Copy the kernel to be tested to /vmunix on the test system. Retain an
exact copy of this image on the build system.

Kernel Debugging 22–15

5. Install the Product Authorization Key (PAK) for the Developer’s kit (OSF-
DEV), if it is not already installed. For information about installing PAKs,
see the Installation Guide.

6. Determine the debugger variable settings or command-line options you will
use, as follows:

Debugger variables: On the build system, add the following lines to your
.dbxinit file if you need to override the default values (and you choose
not to use the corresponding options, described below). Alternatively, you
can use these lines within the debugger session, at the (ladebug) prompt:

set $kdebug_host="gateway_system"
set $kdebug_line="serial_line"
set $kdebug_dbgtty="tty"

$kdebug_host specifies the node or address of the gateway system. By
default, $kdebug_host is set to localhost, for when a gateway system is
not used.

$kdebug_line specifies the serial line to use as defined in the /etc/remote
file of the build system (or the gateway system, if one is being used). By
default, $kdebug_line is set to kdebug .

$kdebug_dbgtty sets the terminal on the gateway system to display the
communication between the build and test systems, which is useful in
debugging your setup. To determine the terminal name to supply to the
$kdebug_dbgtty variable, enter the tty command in the desired window on
the gateway system. By default, $kdebug_dbgtty is null.

Options: Instead of using debugger variables, you can specify any of the
following options on the ladebug command line:

• The -rn option specifies the node or address of the gateway system,
and can be used instead of $kdebug_host.

• The -line option specifies the serial line, and can be used instead of
$kdebug_line.

• The -tty option specifies the terminal name, and can be used instead
of $kdebug_dbgtty.

The above three options require the -remote option or its alternative, the
-rp kdebug option.

The variables you set in your .dbxinit file will override any options you
use on the ladebug command line. In your debugging session, you can still
override the .dbxinit variable settings by using the set command at the
(ladebug) prompt, prior to issuing the run command.

22–16 Kernel Debugging

7. If you are debugging on an SMP system, set the lockmode system attribute
to four, as shown:

sysconfig -r lockmode = 4

Setting this system attribute makes debugging on an SMP system easier.

Invoking the Debugger
When the setup is complete, start up the debugger as follows:

1. Invoke the Ladebug debugger on the build system, supplying the pathname
of the copy of the test kernel that resides on the build system. Set a
breakpoint and start running Ladebug as follows (assuming that vmunix
resides in the /usr/test directory):

ladebug -remote /usr/test/vmunix

.

.

.

(ladebug) stop in hard_clock
[2] stop in hard_clock
(ladebug) run

Because Ctrl/C cannot be used as an interrupt, you should set at least
one breakpoint if you wish the debugger to gain control of kernel
execution. You can set a breakpoint anytime after the execution of the
kdebug_bootstrap() routine. Setting a breakpoint prior to the execution
of this routine can result in unpredictable behavior.

Note

Pressing Ctrl/C causes the remote debugger to exit, not interrupt as it
does during local debugging.

2. Halt the test system and, at the console prompt, set the boot_osflags
console variable to contain the k option, and then boot the system. For
example:

>>> set boot_osflags k
>>> boot

Alternatively, you can enter:

>>> boot -A k

Kernel Debugging 22–17

Once you boot the kernel, it begins executing. The Ladebug debugger halts
execution at the breakpoint you specified, and you can begin issuing Ladebug
debugging commands. All Ladebug commands are available, except kps ,
attach , and detach . See Part V, Command Reference for information on
Ladebug debugging commands.)

Breakpoint Behavior on SMP Systems
If you set breakpoints in code that is executed on an SMP system, the
breakpoints are handled serially. When a breakpoint is encountered on a
particular CPU, the state of all the other processors in the system is saved and
those processors spin, similarly to how execution stops when a simple lock is
obtained on a particular CPU.

When the breakpoint is dismissed (for example, because you entered a step or
cont command to the debugger), processing resumes on all processors.

Troubleshooting Tips
If you have completed the kdebug setup and it fails to work, refer to the
following list for help:

• Be sure the serial line is attached properly. Use the tip command to test
the connection: Log onto the build system (or the gateway system if one is
being used) as root and enter the following command:

tip kdebug

If the command does not return the message "connected," another process,
such as a print daemon, might be using the serial line port that you
have dedicated to the kdebug debugger. To remedy this condition, do the
following:

Check the /etc/inittab file to see if any processes are using that line.
If so, disable these lines until you finish with the kdebug session. See
the inittab(4) reference page for information on disabling lines.

Use the ps command to see if any processes are using the line. For
example, if you are using the /dev/tty00 serial port for your kdebug
session, check for other processes using the serial line as follows:

ps agxt00

If a process is using tty00, kill that process.

Determine whether any unused kdebugd gateway daemons are running:

ps agx | grep kdebugd

If one is running, kill the process.

22–18 Kernel Debugging

• If the test system boots to single user or beyond, then kdebug has not been
configured into the kernel as specified in the section Getting Ready to Use
the kdebug Debugger. Ensure that the boot_osflags console environment
variable specifies the k flag and try booting the system again:

>>> set boot_osflags k
>>> boot

• Be sure you defined the Ladebug variables in your .dbxinit file correctly,
or specify them correctly on the command line.

Determine which pseudoterminal line you ran tip from by issuing the
/usr/bin/tty command. For example:

/usr/bin/tty
/dev/ttyp2

The example shows that you are using pseudoterminal /dev/ttyp2. Edit
your $HOME/.dbxinit file on the build system as follows:

1. Set the $kdebug_dbgtty variable to /dev/ttyp2 with this command:

set $kdebug_dbgtty="/dev/ttyp2"

2. Set the variable $kdebug_host to the host name of the system from
which you entered the tip command. For example, if the host name is
decosf, the entry in the .dbxinit file should be:

set $kdebug_host="decosf"

3. Remove any settings of the $kdebug_line variable:

set $kdebug_line=""

• Start Ladebug on the build system. You should see informational messages
on the pseudoterminal line, /dev/ttyp2, which kdebug is starting.

• If you are using a gateway system, ensure that the inetd daemon is
running on the gateway system. Also, check the TCP/IP connection
between the build and gateway system using one of the following
commands: rlogin, rsh, or rcp.

22.3.1 Analyzing a Crash Dump
When the operating system crashes, the dump function copies core memory
into swap partitions. Then at system reboot time, this copy of core memory is
copied into the crash dump file, which you can analyze.

When the operating system hangs, you may need to force a crash dump.

Kernel Debugging 22–19

22.4 Debugging Loadable Drivers
The procedure for debugging loadable drivers depends on whether you are
doing local or remote kernel debugging.

Loadable Drivers and Local Kernel Debugging
For local kernel debugging, any loadable drivers already present in the kernel
are automatically loaded into the debugger once when the debugger is started.
Since the kernel is running, additional drivers can be loaded at any time. If
you wish to obtain the most current list of loaded drivers, you can manually
load any new driver information with the following command:

(ladebug) readsharedobj /driver-directory/driver.mod

The list of drivers currently known to ladebug can be displayed as follows:

(ladebug) listobj

ObjectName Start Addr Size Symbols
(bytes) Loaded

--
/vmunix 0xfffffc0000230000 2442992 Yes
/var/subsys/dna_netman.mod

0xffffffff90ce0000 49152 Yes
/var/subsys/dna_dli.mod

0xffffffff90cf0000 57344 Yes
/var/subsys/dna_base.mod

0xffffffff90d04000 393216 Yes
/var/subsys/dna_xti.mod

0xffffffff90b0a000 8192 Yes

Loadable Drivers and Remote Kernel Debugging
For remote kernel debugging, you can debug loadable drivers as follows:

1. On your remote machine, create a directory called (for example)

/usr/opt/TMU100

Put both the source file and the loadable driver’s .mod file into this
directory. Assuming a loadable driver called tmux , get the tmux.mod file,
and make sure you have permission to read, write, and execute the file.

2. Configure your system as follows:

Create a /usr/opt/TMU100/stanza.loadable file:

22–20 Kernel Debugging

tmux:
Subsystem_Description = TMUX device driver
Module_Config_Name = tmux
Module_Config1 = controller tmux0 at *
Module_Type = Dynamic
Module_Path = /usr/opt/TMU100/tmux.mod
Device_Dir = /dev/streams
Device_Char_Major = Any
Device_Char_Minor = 0
Device_Char_Files = tmux0

Run the sysconfigdb and sysconfig utilities:

sysconfigdb -a -f /usr/opt/TMU100/stanza.loadable tmux
sysconfigdb -s
cp /usr/opt/TMU100/tmux.mod /subsys/tmux.mod
cd /subsys
ln -s device.mth tmux.mth

3. Ensure that there is a copy of the driver tmux.mod residing in the same
directory on the local machine, for example, /subsys/tmux.mod.

4. Start up Ladebug with the "-remote" option, and set a breakpoint in the
routine subsys_preconfigure . Issue the run command:

(ladebug) stop in subsys_preconfigure
[#1: stop in void subsys_preconfigure(caddr_t)]
(ladebug) run

subsys_preconfigure is provided to assist developers in debugging
configuration routines. It is needed because the debugger is not notified
when a subsystem is loaded, and a user-defined breakpoint cannot be set
until the load has occurred. subsys_preconfigure is guaranteed to be
called following a subsystem load but prior to a configuration.

If your kernel has been built with symbolic information, once stopped in
subsys_preconfigure you can examine the variable subsys to see if this
event corresponds to your driver being loaded:

(ladebug) print subsys
0xfffffc0000620cd4="generic"

Depending on the number of subsystems being automatically loaded,
you may stop in subsys_preconfigure many times. If your driver is
being loaded last, or if you are manually loading your driver (see item
#5, below), you may prefer to employ a more useful breakpoint that gets
you closer to your desired stopping point, one that brings you closer to the
subsys_preconfigure call that takes place immediately prior to your driver
being loaded.

Kernel Debugging 22–21

5. If you are manually loading your driver, you will need to run the remote
kernel to the point where you have the hash (#) single-user prompt. Once
there, configure the driver as follows:

sysconfig -c tmux

6. Once your driver has been loaded into the kernel, the debugger will stop
at your subsys_preconfigure breakpoint. At this time you can issue the
following commands:

(ladebug) print subsys
0xfffffc0000620cd4="tmux"
(ladebug) readsharedobj /subsys/tmux.mod

The readsharedobj command causes ladebug to retrieve the symbolic
information associated with your driver. A lot of information is transferred
over a serial line during this operation, so expect it to take several seconds
to complete.

7. Now Ladebug knows about your driver, so you can proceed with symbolic
debugging as you would with any other program. For example:

(ladebug) stop in tmux_configure
[#2: stop in int tmux_configure(cfg_op_t, caddr_t, ulong, caddr_t, ulong)]
(ladebug) cont
[2] stopped at [int tmux_configure(cfg_op_t, caddr_t, ulong, caddr_t,

ulong):933 0xffffffff89a14028]
933 sa.sa_version = OSF_STREAMS_11;

(ladebug) next
stopped at [int tmux_configure(cfg_op_t, caddr_t, ulong, caddr_t,

ulong):934 0xffffffff89a14034]
934 sa.sa_flags = STR_IS_DEVICE | STR_SYSV4_OPEN;

(ladebug) print sa.sa_version
84107547

Note

If you use sysconfig to unload and then subsequently reload a driver
in a kernel actively being debugged by ladebug, any breakpoints
previously present in that driver will be lost. To reestablish those
breakpoints in the newly loaded subsystem, issue the following ladebug
commands prior to continuing:

(ladebug) disable *
(ladebug) enable *
(ladebug) cont

22–22 Kernel Debugging

Part V
Command Reference

This section explains the individual Ladebug commands.

ladebug

ladebug—dxladebug

Name

ladebug — Invokes the command interface of the debugger.

dxladebug — Invokes the graphical user interface of the debugger.

Syntax (command-line)

ladebug [-I directory] [-c file] [-prompt string] [-nosharedobjs] [-pid process_
id] [-rn node_or_address [,udp_port]] [-rfn remote_executable_file] [-ru remote_
username] [-rinsist] [-k] [-line serial_line] [-remote] [-rp remote_debug_
protocol] [-tty terminal_device] [executable_file [core_file]]

Syntax (window interface)

dxladebug [-iow] [-k | -kernel] [-P program_arguments]

Description

Ladebug is a symbolic source code debugger that debugs programs compiled
by the DEC C, ACC, DEC C++, DEC Ada, DEC COBOL, DEC Fortran 90 and
DEC Fortran 77 compilers. For full source-level debugging, compile the source
code with the compiler option that includes the symbol table information in the
compiled executable file.

Options and Parameters

The following table describes the options and parameters for the Digital
Ladebug debugger command line debugger:

-I Specifies the directory containing the source code for the
target program. Use multiple -I options to specify more
than one directory. The debugger searches directories in
the order in which they were specified on the command
line.

REF–1

ladebug

-c Specifies an initialization command file. The default
initialization file is .dbxinit. By default, Ladebug
searches for this file during startup, first in the current
directory; if it is not there, Ladebug searches your home
directory for the file.

-prompt Specifies a debugger prompt. The default debugger
prompt is (ladebug) . If the prompt argument contains
spaces or special characters, enclose the argument in
quotes (" ").

-nosharedobjs Prevents the reading of symbol table information for
any shared objects that are loaded when the program
executes. Later in the debug session, the user can enter
the readsharedobj command to read in the symbol table
information for a specified object.

-pid Specifies the process ID of the process to be debugged.
Cannot be used with any remote or kernel debugging
flags.

-rn Specifies the host name or Internet address of the
machine on which the remote debugger server is running.
Optionally, specifies the UDP port on which to connect
the server. Depending on your shell, it may be necessary
to use quotation marks to avoid shell command-line
interpretation on the local system. With remote kernel
debugging, the default is localhost.

-rfn Specifies the file name (or other identifier) of the
executable file to be loaded on the remote system. This
option defaults to the local executable file name and is
passed uninterpreted to the remote system. When using
this option, specify the remote executable file using the
syntax of the remote file system; use quotation marks
to avoid shell command-line interpretation on the local
system. Use only with -rn; do not combine with -pid.

-ru Specifies the user name to be used on the remote target
machine. If the -ru option is not specified, the default is
the local user name.

REF–2

ladebug

-rinsist Connects to a running remote process using the insist
protocol message instead of the connect protocol message.
This option functions as a request to the server to
connect to the client, even if another client is already
connected. Use only with -rn and -pid.

-k or -kernel Enables local kernel debugging.
-line For use with remote kernel debugging; specifies the

serial line. If used, -remote or -rp kdebug must also be
used. The default is kdebug.

-remote Enables remote kernel debugging; for use with the
kdebug kernel debugger.

-rp Specifies the remote debug protocol, either lade-
bug_preemptive or kdebug. -rp kdebug enables
remote kernel debugging.

-tty For use with remote kernel debugging; specifies the
terminal device. If used, -remote or -rp kdebug must
also be used.

executable_file Specifies the program executable file. If the file is not in
the current directory, specify the pathname.

core_file Specifies the core file. If the core file is not in the current
directory, specify the pathname.

The following table describes the options and parameters for the dxladebug
command:

-iow Invokes the window interface to the debugger and displays
a separate user program I/O window.

-k Enables local kernel debugging.
-P Specifies the arguments used by the program you are

debugging.

General Instructions for Entering Ladebug Commands

Enter Ladebug commands at the debugger prompt (ladebug) . You can enter
more than one command on the same line by separating each command with
a semicolon (;). Commands are executed in the same order in which they are
entered in the command line.

Continue command input to another line by entering a backslash (\) at the
end of each line. The maximum command-line length is 255 characters.

REF–3

ladebug

In debugger commands, the keywords in the following list must be surrounded
by parentheses in expressions that use them as variables or type names:

thread
in
at
state
if
policy
priority
with

For example, the commands print (thread) and print (thread*)t are
valid. The parentheses enable the debugger to distinguish an identifier from a
keyword.

Command Summary

Table REF–1 lists and describes the Ladebug commands, grouped in
functionally related sets:

Table REF–1 Functionally Related Sets of Ladebug Commands

Enter a comment.
alias, unalias Define, view, or delete a debugger

command alias.
catch, ignore Examine and change the list of operating

system signals trapped by the debugger.
history, ! Repeat and list previously used

commands.
file Set the file scope.
list, use, unuse, /, ? Select and view program source code.
listobj List all loaded objects, including the

main image and shared libraries.
readsharedobj, delsharedobj Read or delete symbol table information

for the specified shared object.
(continued on next page)

REF–4

ladebug

Table REF–1 (Cont.) Functionally Related Sets of Ladebug Commands

load, unload Load an image file and, optionally, a
core file; remove all related symbol table
information associated with the process
being debugged.

stopi, tracei, wheni, nexti,
stepi, printregs

Machine-code level commands.

print, printf, dump, assign,
whatis, which, whereis

Examine program expressions and
change their values.

quit, help Exit and get help about the debugger.
run, rerun, cont, next, step,
return, call, goto, kill

Execute or terminate a program under
debugger control.

sh Execute a Bourne shell command.
set, unset Define, view, or delete a debugger

variable.
source, playback input, record
input, record output, record io

Read in or save a file containing
debugger input data or output data.

stop, when, trace, status,
delete, enable, disable

Set, list, delete, enable, and disable
program breakpoints and tracepoints.

stop thread, when thread, wheni
thread, trace thread, tracei
thread

Control execution of one or more threads
in a process.

thread, show thread, show
condition, show mutex

View information available from
the debugger about threads in your
application.

process, show process Display information for current
process(es) and change the current
process.

where, where thread, up, down,
func

Examine the stack trace and change the
function scope.

setenv, export, printenv,
unsetenv

Manipulate subsequent debuggee
environments with environment
variables .

class Change or display the class scope.
(continued on next page)

REF–5

ladebug

Table REF–1 (Cont.) Functionally Related Sets of Ladebug Commands

kps Used to list all system processes; for
local kernel debugging only.

pop Removes execution frame(s) from call
stack.

Table REF–2 gives a quick summary of the function of each individual Ladebug
command:

Table REF–2 Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

Causes debugger to ignore all input until
end of marked line.

! Without argument, repeats previous
command line (use !! or !-1).
With argument, repeats specified
command line.

/ Invokes forward search in source
program.

? Invokes backward search in source
program.

alias Without argument, displays all aliases
and their definitions.
With argument, displays definition for
specified alias.

assign Yes Changes value of variable, memory
address, or expression.

attach Yes Connects to a running process.
call Executes specified function.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–6

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

catch Without argument, shows which
operating system signals debugger
currently traps.
With argument, traps specified operating
system signal.

catch unaligned Traps program immediately after
unaligned data access occurs.

class For C++ only.
Without argument, displays current class
scope.
With argument, changes class scope.

cont Yes Resumes program execution.
delete Yes Removes specified breakpoint or

tracepoint.
delsharedobj Removes symbol table information for

specified shared object.
detach Yes Detaches from a running process

specified from process ID list.
disable Yes Disables specified breakpoint or

tracepoint.
down Yes Without argument, changes function one

level down stack.
With argument, changes function
specified number of levels down stack.

dump Yes Without argument, lists parameters and
local variables in current function.
With argument, lists parameters and
local variables in specified active
function.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–7

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

enable Yes Enables specified breakpoint or
tracepoint.

export Synonym for setenv.

file Yes Without argument, displays name of
current file scope.
With argument, changes specified file
scope.

func Yes Without argument, displays current
function scope.
With argument, changes function scope
to function currently active on stack.

goto Yes Branches to specified line in function
where execution is suspended.

help Yes Without argument, displays list of
debugger commands.
With argument, displays description of
specified command.

history Without argument, displays default
number of previously executed
commands. (20).
With argument, displays specified
number of previously executed
commands.

ignore With argument, shows which operating
system signals debugger currently
ignores.
With argument, ignores specified
operating system signal.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–8

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

ignore unaligned Instructs debugger not to stop when
unaligned access occurs (default).

kill Terminates program process while
leaving debugger running.

kps Lists all system processes (valid for local
kernel debugging only).

list Yes Depending on argument, displays
source code lines beginning with line
corresponding to any of following:

• Line designating position of program
counter

• Last line listed, if multiple list
commands are entered

• Line number specified as first
argument

listobj Yes Lists all loaded objects, including main
image and shared libraries.

load Yes Loads image file or core file.
next Yes When next line of code to be executed

contains a function call, executes
function and returns to line immediately
after function call.

nexti Yes When machine instruction contains a
function call, executes function being
called.

patch Corrects bad data or instructions in
executable disk files.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–9

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

playback input Executes debugger commands contained
within a file.

pop Without argument, removes removes one
execution frame from the call stack.
With argument, removes the specified
number of execution frames from the call
stack.

print Yes Displays current value of a variable or
expression visible in current context.

printenv Without argument, displays values of all
environment variables.
With argument, displays value of
specified environment variable.

printf Yes Formats and displays a complex
structure.

printregs Yes Displays contents of all machine
registers.

process Yes Without argument, displays current
process.
With argument, switches to specified
process.

quit Yes Ends debugging session and returns to
operating system prompt.

readsharedobj Reads in symbol table information for
specified shared library or loadable
kernel module.

record input Saves all debugger commands to a file.
record io Saves both debugger input and debugger

output to a file.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–10

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

record output Saves debugger output to a file.
rerun Yes Restarts program execution.
return Yes Without argument, continues execution

of current function until control is
returned to caller.
With argument, execution continues until
control is returned to specified function.

run Yes Starts program execution.
set Without argument, examines definitions

of all debugger variables.
With argument, defines specified
debugger variable.

setenv Without argument, displays values of all
environment variables.
With argument, sets value of specified
environment variable.

sh Executes Bourne shell command.
show condition For DECthreads only.

Without argument, displays information
about all condition variables currently
available.
With argument, displays information
about condition variables specified.

show mutex Lists information about currently
available mutexes.

show process Yes Displays information for current process.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–11

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

show thread Yes Without argument, lists all threads
known to debugger.
With argument, displays information
about specified thread.

source Executes debugger commands contained
within a file.

status Yes Lists all breakpoints and tracepoints,
reference number associated with each,
and whether breakpoint is disabled.

step Yes Steps into and executes first line of
function.

stepi Yes Steps into and executes next machine
instruction. If function call, steps into
and executes first instruction in function.

stop Without variable argument, suspends
program execution and returns to
prompt.
With variable argument, suspends
program execution when variable
changes.

stopi Suspends program execution when
specified variable value changes.

thread Yes Identifies or sets current thread context.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–12

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

trace Without argument, causes debugger to
print message when each function is
entered, but does not suspend program
execution.
With argument, causes debugger to print
message when specified variable value
changes, but does not suspend program
execution.

tracei Without argument, prints message but
does not suspend program execution.
With argument, prints message when
any of following occur, but does not
suspend program execution:

• Value of specified variable changes.

• Specified expression evaluates to
true.

• Both.

unalias Deletes specified alias.
unload Removes all related symbol table

information that debugger associates
with process being debugged, specified by
either a process ID or image file.

unset Deletes debugger variable.
unsetenv Without argument, removes all

environment variables.
With argument, removes specified
environment variable.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

(continued on next page)

REF–13

ladebug

Table REF–2 (Cont.) Ladebug Commands: Individual Summary

Command

Directly
Manipulable
in Window
Interface† Function

unuse Without argument, sets search list to
default, home directory, current directory,
or directory containing executable file.
With argument, removes specified
directory from search list.

up Yes Without argument, changes function
scope one level up stack.
With argument, changes function scope
specified number of levels up function
scope.

use Without argument, lists directories
searched for source-code files.
With argument, makes source-code files
in specified directory available.

whatis Yes Prints type of specified expression.
when Yes Executes specified command.
wheni Yes Executes specified command without

suspending program execution.
where Yes Displays stack trace of currently active

functions for current thread.
whereis Shows all declarations of expression.
which Shows fully qualified scope information

when instance of specified expression
occurs within current scope.

†"Yes" denotes commands with an exact mouse action equivalent in the window interface. To use
any other command in the window interface, you must type the command at the command-entry
prompt in the communications pane.

REF–14

ladebug

Command Descriptions

startaddress, endaddress / mode
startaddress / count mode

You can display stored values as character strings, machine instructions,
or decimal, octal, hexadecimal, or real numbers. Specify the address and
the number of words or bytes (count) information in hexadecimal, octal, or
decimal. The display mode must be specified along with the address range.

The modes are:

d Print a short word in decimal
u Print a short word in unsigned decimal
D Print a long word in decimal
U Print a long word in unsigned decimal
o Print a short word in octal
O Print a long word in octal
x Print a short word in hexadecimal
X Print a long word in hexadecimal
b Print a byte in hexadecimal
c Print a byte as a character
s Print a string of characters (a C-style string that ends in null)
f Print a single-precision real number
g Print a double-precision real number
i Disassemble machine instructions

Note that you must enter a space between "count" and "mode" if the language
of the program being debugged is COBOL.

comment

When the debugger encounters the # command, it ignores all inputs until
the end of the line.

!!
! integer
!- integer
! text

To repeat the last command line, enter two exclamation points or press the
Return key. You can also enter !-1.

REF–15

ladebug

To repeat a command line entered during the current debugging session,
enter an exclamation point followed by the integer associated with the
command line. (Use the history command to see a list of commands used.)
For example, to repeat the seventh command used in the current debugging
session, enter !7. Enter !-3 to repeat the third-to-last command.

To repeat the most recent command starting with a string, use the last
form of the command. For example, to repeat a command that started with
bp, enter !bp.

/ string
? string

Use the string search commands / and ? to locate text in the source
code. The / character invokes a forward search; the ? character invokes
a backward search. Enter / or ? without an argument to find the next
location of the previously specified text.

The search begins from the current position of the program counter. If no
program counter exists for the current source file, the search begins after
the last source line displayed by the debugger.

alias [aliasname]
alias aliasname [(argument)] "[aliasname] string"
unalias aliasname

Enter the alias command without an argument to display all aliases and
their definitions. Specify an alias name to display the definition for that
alias.

Use the second form to define a new alias or to redefine an existing alias.
The definition can contain:

• The name of another alias, if the nested alias is the first identifier in
the definition; for example, you can define a nested alias and invoke the
alias as follows:

(ladebug) alias begin "stop in main; run"
(ladebug) alias pv(x) "begin; print(x)"
(ladebug) pv(i)

• A string in quotation marks, specified with backslashes before the
quotation marks, as in the following two examples:

REF–16

ladebug

(ladebug) alias x "set $lang=\"C++\" "
(ladebug) alias x
x set $lang="C++"
(ladebug)

(ladebug) alias ada "ignore sigalrm; ignore sigfpe; set $lang=\"Ada\";"
(ladebug) alias ada
ada ignore sigalrm; ignore sigfpe; set $lang="Ada";
(ladebug)

Note that in the first example there is a space between the last two
quotation marks. In the second example there is a semicolon. The two
quotation marks cannot be together; they must be separated by a space or
character(s).

Invoke the alias by entering the alias name, including an argument if the
alias definition specified an argument.

Use the unalias command to delete an alias.

Alias commands can contain no more than 56 arguments.

The following predefined aliases are included with the debugger:

S next
Si nexti
W list $curline - 10:20
a assign
b stop at
bp stop in
c cont
d delete
e file
f func
g goto
h history
j status
l list
li ($curpc)/10 i; set $curpc = $curpc + 40
n next
ni nexti
p print
pd printf "%ld",
pi playback input
po printf "0%o",
pr printregs
ps printf "%s",
px printf "0x%lx",
q quit
r rerun
ri record input
ro record output
s step

REF–17

ladebug

si stepi
t where
tlist show thread (only defined during kernel debugging)
tset thread (only defined during kernel debugging)
u list $curline - 9:10
w list $curline - 5:10
wi ($curpc - 20)/10 i

assign target = expression

Use the assign command to change the value of a variable, memory
address, or expression that is accessible according to the scope and
visibility rules of the language. The expression can be any expression
that is valid in the current context.

For C++, use this syntax:

assign [classname::]member = ["filename"] ‘expression
assign [object.]member = ["filename"] ‘expression

For C++, use the assign command to modify static and object data
members in a class, and variables declared as reference types, type const,
or type static. The address referred to by a reference type cannot be
changed, but the value at that address can be changed.

attach process_id image_file

Use the attach command to connect to a running process. Supply the
process ID number and image file name.

call function([parameter])

Use the call command to execute a single function. Specify the function
as if you were calling it from within the program. If the function has no
parameters, specify empty parentheses.

You can nest called functions by setting a breakpoint in a function and
executing it using the call command. When execution suspends at the
breakpoint, use this command to execute the nested function.

For multithreaded applications, the call is made in the context of the
current thread.

For C++: When you set the $overloadmenu debugger variable to 1 and call
an overloaded function, the debugger will list the overloaded functions and
call the function you specify.

catch [signal]

Enter the catch command or the ignore command without an argument
to see which operating system signals the debugger currently traps or

REF–18

ladebug

ignores. Use the catch command or the ignore command followed by an
argument to trap or ignore, respectively, that signal.

Only one signal at a time can be added to, or removed from, the list of
trapped or ignored signals.

The catch and ignore commands operate on a per program basis; you
must first load a program (using the load command) or attach to a process
(using the attach command).

catch unaligned

Enter the catch unaligned command to instruct the debugger to stop
when unaligned data access occurs in the debuggee process. The debugger
stops at the instruction following the instruction where the unaligned
access occurs, and issues a message. The default is ignore unaligned.

class [classname]

For C++ only: Use the class command without an argument to display
the current class scope. Specify an argument to change the class scope.
After the class scope is set, refer to members of the class by omitting the
class name prefix.

Setting the class scope nullifies the function scope.

cont [signal]

Use the cont command without a parameter value to resume program
execution until a breakpoint, a signal, an error, or the end of the program
is encountered. Specify a parameter value to send an operating system
signal to the program continuing execution.

For multithreaded applications, use the cont command to resume
execution of the current thread that was put on hold. As the current thread
resumes, the other threads run freely.

The signal parameter value can be either a signal number or a string
name (for example, SIGSEGV). The default is 0, which allows the program
to continue execution without specifying a signal. If you specify a signal
parameter value, the program continues execution with that signal.

delete integer [, . . .]
delete all
delete *

Enter the delete command followed by the number or numbers associated
with a breakpoint or trace (as listed by the status command) to remove
the specified breakpoint or tracepoint.

REF–19

ladebug

Enter the delete all command or the delete * command to remove all
breakpoints and tracepoints.

This command operates on a per program basis; you must first load a
program (using the load command) or attach to a process (using the
attach command).

delsharedobj shared_object

Use the delsharedobj command to remove the symbol table information
for the specified shared object from the debugger.

detach [process_id_list]

Use the detach command to detach from a running process you specify
from the process ID list. Specifying a process ID and detaching from the
process disables your ability to debug the process. If you do not specify a
process ID from the list, Ladebug detaches from the current process.

disable integer [, . . .]
disable all
disable *

Enter the disable command followed by the number or numbers
associated with a breakpoint or trace (as listed by the status command)
to disable the breakpoint or trace. Enter the disable all command or the
disable * command to disable all breakpoints and traces.

The disabled breakpoint is displayed in response to the status command
but it is ignored during execution. Disabled breakpoints remain disabled
until they are explicitly reactivated or deleted.

This command operates on a per program basis; you must first load a
program (using the load command) or attach to a process (using the
attach command).

down [number]

Use the up command or the down command without an argument to
change the function scope to the function located one level up or down
the stack. Enter a number argument to change the function scope to the
function up or down the specified number of levels. If the number of levels
exceeds the number of active functions on the stack, the function scope
moves up or down as many levels as possible and the debugger issues a
warning message.

REF–20

ladebug

When the function scope changes, the debugger displays the source line
corresponding to the last point of execution in that function.

dump [function]
dump.

Use the dump command without an argument to list the parameters and
local variables in the current function. To list the parameters and local
variables in an active function, specify it as an argument.

Enter the dump. command (include the dot) to list the parameters and
local variables for all functions active on the stack.

enable integer [, . . .]
enable all
enable *

Enter the enable command followed by the number or numbers associated
with a breakpoint or trace (as listed by the status command) to enable a
breakpoint or trace.

Enter the enable all command or the enable * command to activate all
previously disabled breakpoints and traces.

This command operates on a per program basis; you must first load a
program (using the load command) or attach to a process (using the
attach command).

export [env_variable [= value]]

Sets the value of the specified environment variable. If no variable is
specified, the command displays the values of all environment variables. If
a variable is specified but no value is specified, then the variable is set to
NULL.

This command is not for the current debuggee’s environment, but for the
environment of any debuggees subsequently created with fork(2) or with
subsequent run or rerun commands.

export and setenv are synonyms.

See Chapter 9 for more information on commands that manipulate the
environment of subsequent debuggees.

file filename

Enter the file command without an argument to display the name of the
current file scope. Include a file name as an argument to change the file
scope. Change the file scope to set a breakpoint in a function not in the file
currently being executed. To see source code for a function not in the file

REF–21

ladebug

currently being executed, use the file command to set the file scope and
the use command to direct the search for the sources of that file.

func [function]
func [integer]

Use the func command without an argument to display the current
function scope. To change the function scope to a function currently
active on the stack, specify either the name of the function or the number
corresponding to the stack activation level. (Enter the where command to
display the stack trace.)

When the function scope is changed, the debugger displays the source line
corresponding to the last point of execution in that function.

goto linenumber

Use the goto command to branch to a line located in the function where
execution is suspended. When you branch to a line, the source code
between the line where execution suspended and the specified line is not
executed.

help [command]

Enter the help command without an argument to display a list of debugger
commands. Include a command argument to display a description of that
command.

history [integer]

Enter the history command without an argument to display previously
executed commands. The debugger displays the number of command lines
defined for the $historylines debugger variable. (The default is 20 lines
of user input.) Include an integer argument to display that number of
previous commands.

ignore [signal]

Enter the catch command or the ignore command without an argument
to see which operating system signals the debugger currently traps or
ignores. Use the catch command or the ignore command followed by an
argument to trap or ignore, respectively, that signal.

Only one signal at a time can be added to, or removed from, the list of
trapped or ignored signals.

REF–22

ladebug

The catch and ignore commands operate on a per program basis; you
must first load a program (using the load command or attach to a process
(using the attach command).

ignore unaligned

Enter the ignore unaligned command, which is the default, to instruct
the debugger not to stop when unaligned access occurs. (Also see the catch
unaligned command.)

kill

Use the kill command to terminate the program process leaving the
debugger running. When a process terminates, any breakpoints and traces
previously set are retained. You can later rerun the program.

kps

Use the kps command to list all system processes. (This command is valid
for local kernel debugging only.)

list startline [,endline]
list startline[:count]
list function

The list command displays source-code lines beginning with the source
line corresponding to the position of the program counter, the last line
listed if multiple list commands are entered, or the line number specified
as the first argument to the list command. Specify the exact range of
source-code lines by including either the endline or the number of lines you
want to display. The arguments can be expressions that evaluate to integer
values.

To display the source code for a particular function, enter the function as
an argument.

listobj

Use the listobj command to list all loaded objects, including the main
image and the shared libraries. For each object, the information listed
consists of the full object name (with pathname), the starting address
for the text, the size of the text region, and whether the symbol table
information has been read by the debugger.

load [image_file [core_file]]
unload process_id_list or image_file

The load command loads an image file and optionally a core file. After
loading an image file, enter the run command to start program execution.

REF–23

ladebug

The unload command removes all related symbol table information that
the debugger associated with the process being debugged, specified by
either a process ID or image file.

next

Use the next and the step commands to execute a line of source code.
When the next line to be executed contains a function call, the next
command executes the function being called and returns to the line
immediately after the function call. The step command steps into the
function and executes only the first line of the function.

For multithreaded applications, use these commands to step the current
thread while putting all other threads on hold.

nexti

Use the stepi command and the nexti command to execute a machine
instruction. When the instruction contains a function call, the stepi
command steps into the function being called, and the nexti command
executes the function being called.

For multithreaded applications, use these commands to step the current
thread while putting all other threads on hold.

patch expression1 = expression2

Use the patch command to correct bad data or instructions in executable
disk files. The text, initialized data, or read-only data areas can be patched.
The bss segment, as well as stack and register locations, cannot be
patched because they do not exist on disk files.

Use this command exclusively when you need to change the ondisk binary.
Use the assign command when you need only to modify debuggee memory.

If the image is executing when you issue the patch command, the
corresponding location in the debuggee address space is updated as
well. (The debuggee is updated regardless of whether the patch to disk
succeeded, as long as the source and destination expressions can be
processed by the assign command.) If the user program is loaded but
not yet started, the patch to disk is performed without the corresponding
assign to memory.

playback input filename

Use the source command or the playback input command to execute
debugger commands contained within a file. (Note that you can also
execute debugger commands when you invoke Ladebug by creating an
initialization file named .dbxinit. By default, Ladebug searches for this
file during startup, first in the current directory; if it is not there, Ladebug

REF–24

ladebug

searches your home directory for the file.) Format the commands as if they
were entered at the debugger prompt.

When a command file is executed the value of the $pimode debugger
variable determines whether the commands are echoed. If the $pimode
variable is set to 1, commands are echoed; if $pimode is set to 0 (the
default), commands are not echoed. The debugger output resulting from
the commands is always echoed.

pop [number_of_frames]

The pop command removes one or more execution frames from the call
stack, undoing the work already done by the removed execution frames.
The optional argument is the number of execution frames to remove from
the call stack. If you do not specify the argument, one frame is removed. If
specified, the number must be a positive integer less than or equal to the
number of frames currently on the call stack.

See Chapter 9 for more information.

print expression [, . . .]
print @expression

The print command displays the current value of a variable or expression
that is visible in the current context, as defined by the scope and visibility
rules of the program language. The expression can be any expression that
is valid in the current context.

The print @line_number command displays the address of the specified
line number. For example, print @10 displays the address of line number
10.

For C++:

print *this
print object
print [object.]member
print *(derived_class *) object

For C++, use the print command to display the value of an object,
including inherited members and the value of data members in an object.
Type casts can be used to interpret a base class object as a derived class
object, or to interpret a derived class object as a base class object. To
interpret a base class type object as the derived type, use the print *
command.

printenv [env_variable]

Displays the value of the specified environment variable. If none is
specified, the command displays the value of all environment variables.

REF–25

ladebug

This command is not for the current debuggee’s environment, but for the
environment of any debuggees subsequently created with fork(2) or with
subsequent run or rerun commands.

See Chapter 9 for more information on commands that manipulate the
environment of subsequent debuggees.

printf [format [,expression , . . .]]

Use the printf command to format and display a complex structure.
The format argument is a string expression of characters and conversion
specifications using the same format specifiers as the printf C function.

printregs

Use the printregs command to display the contents of all machine
registers for the current thread. Register values are displayed in decimal
or hexadecimal, depending on the value of the $hexints variable. The list
of registers displayed by the debugger is machine dependent.

process
process [process_id | image_file | debugger_variable]

Specify a specific process using the process ID number or the name of
the image. Ladebug sets the current process context to the process ID
or the process that runs the binary image. If there is more than one
process running the same binary image, Ladebug warns you and leaves
the process context unchanged. The debugger variables $childprocess
and $parentprocess can also be specified in place of the process ID.
(Ladebug automatically sets these variables when an application forks a
child process.)

quit

Use the quit command to end the debugging session and return to the
operating system prompt.

readsharedobj shared_object

Use the readsharedobj command to read in the symbol table information
for the specified shared object. This object must be a shared library or
loadable kernel module. The command can be used only when a debuggee
program is specified; that is, either Ladebug has been invoked with it, or
the debuggee was loaded by the load command.

REF–26

ladebug

record input filename
record output filename
record io filename

Use the record input command to save all the debugger commands to
a file. The commands in the file can be executed by using the source
command or the playback input command.

The record output command saves all debugger output to a file. The
output is simultaneously echoed to the screen. (The program output is not
saved.)

The record io command saves both input to and output from the
debugger.

To stop recording debugger input or output, exit the debugger.

return [function]

Use the return command without an argument to continue execution
of the current function until it returns to its caller. If you include a
function name, execution continues until control is returned to the specified
function. The function must be active on the call stack.

run [program_arguments] [io_redirection]
rerun [program_arguments] [io_redirections]

Use the run and rerun commands to start program execution. Enter
program flags, options, and input and output redirections as arguments. If
the rerun command is specified without arguments, the arguments entered
with the previous run command are used.

If the last modification time and/or size of the binary file or any of the
shared objects used by the binary file has changed since the last run
command was issued, Ladebug automatically rereads the symbol table
information. If this happens, the old breakpoint settings may no longer be
valid after the new symbol table information is read.

set [variable = definition]
unset variable

To examine the definitions of all debugger variables, enter the set
command without arguments. (Use the print command to display the
definition of a single debugger variable.)

To define a debugger variable, enter the set command followed by a
variable name, an equal sign, and a definition. Enclose string definitions
in quotes. The definition can be any expression allowed by the language of
the program being debugged.

Use the unset command to delete a variable.

REF–27

ladebug

If you want to remove an environment variable, or all environment
variables, use the unsetenv command, not the unset command.

The debugger contains many predefined variables to describe the current
state of the debugger, and to allow you to customize the debugger
environment. You can delete and redefine the predefined debugger
variables in the same way you define your own variables. If you delete a
predefined debugger variable, the debugger uses the default value for that
variable. The settings on the predefined variables apply to all debugging
processes.

The debugger has the following predefined variables:

$ascii With the default value of 1, allows the print
command to print character-type data as ASCII
characters, only when the bit value is that of a
printable 7-bit subset ASCII character. (Other bit
values are printed as octal numbers.) With a value
of 0, this variable causes all printable ISO Latin-1
characters to be printed as characters.

$beep With the default value of 1, causes a beep to sound
when a user attempts to perform an illegal action
while editing the debugger command line (for
example, moving the cursor past the end of the
line, or ‘‘yanking’’—pasting – from an empty cut
buffer).

$childprocess Can be specified in place of the process ID. (Ladebug
automatically sets this variable when an application
forks a child process.)

$catchexecs When set to 1, instructs the debugger to notify the
user and stop the program when a program execs.
The default is 0.

$catchforks When set to 1, instructs the debugger to notify the
user when a program forks a child process. The child
process stops and is brought under debugger control.
(By default, the parent process is not stopped. See
the $stopparentonfork description.) The default is
0.

$curevent Is set to the event number of the current event at
the start of an event, allowing its use within the
expression of an event.

REF–28

ladebug

$curfile Specifies the current source-code file.
$curline Specifies the current line in the source file.
$curpc Specifies the current point of program execution.

This variable is used by the wi and li aliases.
$cursrcline Specifies the line number of the last line of source

code listed plus one.
$curthread Indicates the thread ID of the current thread within

the current process. You can change to a different
thread by setting $curthread.

$decints When set to 1, all integers printed by the debugger
are displayed as decimal numbers. The default is 0.

$editline With the default of 1, enables the command-
line editing features. The command-line editing
features are described in Chapter 7. For backward
compatibility you can set this variable to 0.

$eventecho When set to 1, echoes events (such as breakpoints)
with event numbers when executed. The default is 1.

$hasmeta For international users. When set to 1, causes any
8-bit character to be interpreted as the corresponding
7-bit character plus the Meta character (which is the
ALT key whose MSB bit represents a Meta modifier).
This could be used for binding editing functions to
ALT plus key sequences. The default depends on
several factors, including the locale and whether the
terminal has Meta capability. In the United States,
the default is usually 0.

$hexints When set to 1, all integers will be displayed as
hexadecimal numbers. The default is 0.

$historylines Specifies the number of previously input commands
listed in response to the history command. The
default is 20.

$indent When set to 1, specifies that structures will be
printed with added indentation to render them more
readable. The default value is 1.

REF–29

ladebug

$lang Specifies the programming language used in the
program being debugged. For mixed-language
programs, $lang is set to the language corresponding
to the current frame. The variable is updated when
the program execution stops.

$listwindow Specifies how many lines the list command
displays. The default is 20.

$main Specifies the name of the function that the debugger
enters first. The default is main() , but this can be
set to any function. This variable is useful when
debugging languages whose primary function is
called something other than main() .

$maxstrlen Specifies the maximum number of characters to print
when the value of a string is printed. The default is
128.

$octints When set to 1, the debugger prints all integers as
octal numbers. The default is 0.

$overloadmenu When debugging C++ programs only, if this variable
is set to 1, a menu of overloaded functions is
displayed so you can select the desired function
from the list of type signatures of the function.
When set to 0, no menu is displayed and you must
disambiguate overloaded functions by providing the
full type signature. The default is 1.

$parentprocess Can be specified in place of the process ID. (Ladebug
automatically sets this variable when an application
forks a child process.)

$pid Indicates the process ID of the current process. Only
for use in kernel debugging (either local or remote).

$pimode Specifies whether the playback input command
echoes input. If set to 1, commands from the script
file are echoed. If set to 0, commands are not echoed.
The default is 0.

$prompt Specifies the debugger prompt. The default is
(ladebug).

$repeatmode When set to 1, causes the debugger to repeat the
previous command if you press the Return key at the
(ladebug) prompt. The default is 1.

REF–30

ladebug

$stackargs When set to 1, causes the values of arguments to be
included in the output of the where, up, down , and
dump commands. When large or complex values are
passed by value, the output can be voluminous. You
can set $stackargs to 0 to suppress the output of
argument values. The default is 1.

$stepg0 When set to 0, the debugger steps over calls
to routines that are compiled without symbol
information. When set to 1, the debugger steps
into these calls. The default is 0.

$stoponattach When set to 1, causes the debugger to stop a running
process right after attaching to it. When set to 0,
causes the debugger to allow the process to run to
completion; in this case, to interrupt the process,
enter Ctrl/C. The default is 0.

$stopparentonfork When set to 1, instructs the debugger to stop the
parent process when a program forks a child process.
(Also see the $catchforks description.) The default
is 0.

$threadlevel Enables Ladebug to determine whether you are
working with DECthreads or native threads.
The default is decthreads if the application is
multithreaded and is using DECthreads. Otherwise,
the default is native. You can switch from one
mode to the other by setting $threadlevel. In
kernel mode, $threadlevel is always native.

$tid Indicates the thread ID of the current thread within
the current process. You can change to a different
thread by setting $tid. Only for use in kernel
debugging (either local or remote).

$verbose When set to 1, specifies whether debugger output
should include all possible program information,
including base pointers and virtual function pointers
(for C++ programs only). The default is 0.

setenv [env_variable [value]]

Sets the value of the specified environment variable. If no variable is
specified, the command displays the values of all environment variables. If
a variable is specified but no value is specified, then the variable is set to
NULL.

REF–31

ladebug

This command is not for the current debuggee’s environment, but for the
environment of any debuggees subsequently created with fork(2) or with
subsequent run or rerun commands.

export and setenv are synonyms.

See Chapter 9 for more information on commands that manipulate the
environment of subsequent debuggees.

sh command [argument . . .]

Use the sh command to execute a Bourne shell command. Do not enclose
the shell command and its arguments in quotations.

Example:
(ladebug) sh ls -l sample.c

show condition [condition_identifier_list]
show condition [condition_identifier_list] with state = = wait

For DECthreads only. Use the show condition command to list infor-
mation about currently available DECthreads condition variables. If you
supply one or more condition identifiers, the debugger displays information
about those condition variables that you specify, provided that the list
matches the identity of currently available condition variables. If you omit
the condition variable specification, the debugger displays information
about all condition variables currently available.

Use the show condition with state = = wait command to display
information only for condition variables that have one or more threads
waiting. If $verbose is set to 1, the sequence numbers of the threads
waiting on the condition variables are displayed.

show mutex [mutex_identifier_list]
show mutex [mutex_identifier_list] with state = = locked

For DECthreads only. Use the show mutex command to list information
about currently available mutexes. If you specify one or more mutex
identifiers, the debugger displays information about only those mutexes
that you specify, provided that the list matches the identity of currently
available mutexes. If you omit the mutex identifier specification, the
debugger displays information about all mutexes currently available.

Use the show mutex with state = = locked command to display information
exclusively for locked mutexes. If $verbose is set to 1, the sequence
numbers of the threads locking the mutexes are displayed.

REF–32

ladebug

show process
show process *
show process all

Use the show process command to display information for the current
process. The show process * and show process all commands display
information for all processes.

show thread [thread_identifier_list]
show thread [thread_identifier_list] with state = = ready
show thread [thread_identifier_list] with state = = blocked
show thread [thread_identifier_list] with state = = running
show thread [thread_identifier_list] with state = = terminated
show thread [thread_identifier_list] with state = =detached
show thread [thread_identifier_list] with state = =stopped

Use the show thread command to list all the threads known to the
debugger. If you specify one or more thread identifiers, the debugger
displays information about the threads that you specify, if the thread
matches what you specified in the list. If you omit a thread specification,
the debugger displays information for all threads.

Use the show thread with state command to list only the threads with a
specific state (characteristic).

The valid state values for DECthreads are ready, blocked, running,
terminated, and detached.

The valid state values for native theads are stopped, running, and
terminated.

source filename

Use the source command or the playback input command to execute
debugger commands contained within a file. (Note that you can also
execute debugger commands when you invoke Ladebug by creating an
initialization file named .dbxinit. By default, Ladebug searches for this
file during startup, first in the current directory; if it is not there, Ladebug
searches your home directory for the file.) Format the commands as if they
were entered at the debugger prompt.

When a command file is executed, the value of the $pimode debugger
variable determines whether the commands are echoed. If the $pimode
variable is set to 1, commands are echoed; if $pimode is set to 0 (the
default), commands are not echoed. The debugger output resulting from
the commands is always echoed.

status

REF–33

ladebug

The status command lists all breakpoints and tracepoints, the reference
number associated with each, and whether the breakpoint is disabled. All
breakpoint settings are on a per process basis.

step

Use the next and the step commands to execute a line of source code.
When the next line to be executed contains a function call, the next
command executes the function being called and returns to the line
immediately after the function call. The step command steps into the
function and executes only the first line of the function.

For multithreaded applications, use these commands to step the current
thread while putting all other threads on hold.

stepi

Use the stepi command and the nexti command to execute a machine
instruction. When the instruction contains a function call, the stepi
command steps into the function being called, and the nexti command
executes the function being called.

For multithreaded applications, use these commands to step the current
thread while putting all other threads on hold.

stop variable
stop [variable] if expression
stop [variable] at linenumber [if expression]
stop [variable] "filename":linenumber
stop [variable] in function [if expression]
stop [variable] "filename" ‘function [if expression]
stop [variable] [thread thread_identifier_list] [at linenumber] [if expression]
stop [variable] [thread thread_identifier_list] [in function] [if expression]

Enter the stop command without a variable argument to suspend program
execution and return to the prompt. (All breakpoint settings are on a per
process basis.)

Enter the stop command with a variable argument to suspend program
execution when the variable changes.

Specify if with an expression to suspend execution when the expression
evaluates to true. When you specify both an expression and a variable,
execution suspends only if the specified expression evaluates to true and
the variable has changed.

To suspend execution when a line or function is encountered, use the third,
fourth, or fifth syntax form. If you specify a variable, execution suspends
only if the variable has changed when the line or function is encountered.

REF–34

ladebug

If you specify an expression, execution suspends only if the expression
evaluates to true when the line or function is encountered.

If you specify both a variable and an expression, execution suspends only
if the variable has changed and the expression evaluates to true when the
line or function is encountered.

Specify a filename and function to instruct Ladebug to stop in a particular
function in the specified file, thus eliminating ambiguity.

Use the seventh and eighth forms of the syntax for multithreaded
applications. The thread_identifier_list parameter identifies one or
more threads of the current debugging level (native or DECthreads). If you
specify one or more thread identifiers, the breakpoint is set only in those
threads. If you do not specify any thread identifier, the breakpoint is set on
all threads or at the process level.

The following example shows how to suspend program execution when line
number 10 is encountered and the variable f equals 2:

(ladebug) stop at 10 if f==2

For C++:

stop in [classname::]function
stop in object.function
stop in objectptr->function
stop in object.function if (& object = = this)
stop in [classname::]classname (type_signature)
stop in [classname::]~classname
stop in [classname::] function [(type_signature)] [(void)]
stop in all function

For C++ only.

The first form of the stop command sets a breakpoint in a member
function using the static class type information. This form presumes that
run-time information from an object is needed to determine the address of
the function at which to set the breakpoint.

If you need run-time information to determine the correct virtual function,
use the second or third syntax form to qualify the function name with the
object when you set the breakpoint. This way of setting the breakpoint
causes the debugger to stop at the member function in all objects declared
with the same class type as the specified object.

To set a breakpoint that stops only in the member function for this specific
object and not all instances of the same class type, use the fourth form of
the stop command.

REF–35

ladebug

The fifth and sixth syntax forms set breakpoints in a constructor and
destructor, respectively.

To set a breakpoint in a specific version of an overloaded function, either
set $overloadmenu to 1, enter the command stop in function , and choose
the appropriate function from the menu, or specify the function and the
type signature as arguments to the command. If the overloaded function
has no parameters, void must be explicitly specified.

Use the last form to set a breakpoint in all versions of an overloaded
function.

Example:
(ladebug) stop at 10 if f==2

stopi variable
stopi [variable] if expression
stopi [variable] at address [if expression]

Enter the stopi command with a variable to suspend execution when the
variable value changes.

Specify if with an expression to suspend execution when the expression
evaluates to true. When you specify both a variable and an expression,
execution suspends only if the specified expression evaluates to true and
the variable has changed.

To suspend execution when an address is encountered, use the third syntax
form. If you specify a variable, execution suspends only if the variable has
changed when the address is encountered. If you specify an expression,
execution suspends only if the expression evaluates to true when the
address is encountered. If you specify both a variable and an expression,
execution suspends only if the variable has changed and the expression
evaluates to true when the address is encountered.

The stopi command is different from the stop command because the
debugger checks the breakpoint set with the stopi command after
executing each machine instruction. Thus, the debugger performance is
affected when you use the stopi command.

As of Version 4.0 of the debugger, the stopi in command is no longer valid,
and results in an error message. Replace stopi in in your code with stopi
at for an address or stop in for a routine.

thread [thread_identifier]

Use the thread command to identify or set the current thread context. If
you supply a thread identifier, the debugger sets the current context to the

REF–36

ladebug

thread you specify. If you omit the thread identifier, the debugger displays
the current thread context.

The debugger interprets the thread identifier as a DECthreads or
kernel thread identifier depending on the value of the debugger variable
$threadlevel.

trace variable [if expression]
trace [variable] at line_number [if expression]
trace [variable] in function [if expression]
trace [variable] [thread thread_identifier_list] [at line_number] [if expression]
trace [variable] [thread thread_identifier_list] [in function] [if expression]

When you use the trace command without an argument, the debugger
prints a message but does not suspend program execution when each
function is entered. Specify a variable to print a message when the variable
value changes. Specify if with an expression to print a message when an
expression evaluates to true. When you specify both a variable and an
expression, a message is printed only if the expression evaluates to true
and the variable has changed.

To print a message when a line or function is encountered, use the second
or third syntax form.

If you specify a variable, a message is printed only if the variable has
changed when the line or function is encountered.

If you specify an expression, a message is printed only if the expression
evaluates to true when the line or function is encountered.

If you specify both a variable and an expression, a message is printed only
if the variable has changed and the expression evaluates to true when the
line or function is encountered.

The following example traces the variable f when the program is executing
the function main:

(ladebug) trace f in main

Use the trace thread command to set tracepoints in specific threads. If
you list one or more thread identifiers, the debugger sets a tracepoint only
in those threads you specify. If you omit the thread identifier specification,
the debugger sets a tracepoint in all the threads of the application.

tracei [variable] [if expression]
tracei [variable] at address [if expression]
tracei [variable] in function [if expression]
tracei [variable] [thread thread_identifier_list] [at line_number] [if expression]
tracei [variable] [thread thread_identifier_list] [in function] [if expression]

REF–37

ladebug

When you use the tracei command the debugger prints a message, but
does not suspend program execution. Specify a variable to print a message
when the variable value changes. Specify an expression to print a message
when an expression evaluates to true. When you specify both a variable
and an expression, a message is printed only if the expression evaluates to
true and the variable has changed.

To print a message when an address or function is encountered, use the
second or third syntax form.

If you specify a variable, a message is printed only if the variable has
changed when the address or function is encountered.

If you specify an expression, a message is printed only if the expression
evaluates to true when the address or function is encountered.

If you specify both a variable and an expression, a message is printed only
if the variable has changed and the expression evaluates to true when the
address or function is encountered.

The tracei command differs from the trace command in that the
debugger evaluates the tracepoint set with the tracei command after
the debugger executes each machine instruction. Thus, when you use the
tracei command, the debugger performance is affected.

In the following example, a breakpoint is set to print a message every time
the function factorial is entered:

(ladebug) tracei factorial

Use the tracei thread command to set tracepoints in specific threads. If
you list one or more thread identifiers, the debugger sets a tracepoint only
in those threads you specify. If you omit the thread identifier specification,
the debugger sets a tracepoint in all the threads of the application.

unsetenv [env_variable]

Removes the specified environment variable. If no variable is specified, all
environment variables are removed.

This command is not for the current debuggee’s environment, but for the
environment of any debuggees subsequently created with fork(2) or with
subsequent run or rerun commands.

See Chapter 9 for more information on commands that manipulate the
environment of subsequent debuggees.

up [number]

Use the up command or the down command without an argument to
change the function scope to the function located one level up or down

REF–38

ladebug

the stack. Enter a number argument to change the function scope to the
function up or down the specified number of levels. If the number of levels
exceeds the number of active functions on the stack, the function scope
moves up or down as many levels as possible and the debugger issues a
warning message.

When the function scope changes, the debugger displays the source line
corresponding to the last point of execution in that function.

use [directory]
unuse [directory]
unuse *

Enter the use command without an argument to list the directories the
debugger searches for source-code files. Specify a directory argument to
make source-code files in that directory available to the debugger. (You can
also use the ladebug command -I option to specify search directories.)

Enter the unuse command without an argument to set the search list to
the default, the home directory, the current directory, and the directory
containing the executable file. Include the name of a directory to remove it
from the search list. The asterisk * argument removes all directories from
the search list.

whatis expression

The whatis command prints the type of the specified expression. The
expression can be any expression that follows the syntax, scope, and
visibility rules of the program language.

For C++:

whatis classname
whatis [classname::]member
whatis [classname::]function

The first syntax form of the whatis command for C++ displays the class
type. The second form displays the type of a member function or data
member. To display all versions of an overloaded function, use the third
form.

when {command [, . . .]}
when if expression {command [, . . .]}
when at linenumber [if expression] {command [, . . .]}
when in function [if expression] {command [, . . .]}
when [thread thread_identifier_list] [at line_number] [if expression] {command [; . . .]}
when [thread thread_identifier_list] [in function] [if expression] {command [; . . .]}

REF–39

ladebug

Use the when command to execute the specified command. (The when
command does not suspend program execution.) The debugger command
must be enclosed in braces. Separate multiple commands with semicolons.

To execute a command when an expression evaluates to true, use the
second syntax form. To execute commands when a line or function is
encountered, use the third or fourth syntax form.

If you specify an expression, the command is executed only if the expression
evaluates true when the line or function is encountered.

Example:
(ladebug) when at 5 {list;where}

Use the when thread command to set tracepoints in specific threads. If
you list one or more thread identifiers, the debugger sets a tracepoint only
in those threads you specify. If you omit the thread identifier specification,
the debugger sets a tracepoint in all the threads of the application.

wheni {command [, . . .]}
wheni if expression {command [, . . .]}
wheni at linenumber [if expression] {command [, . . .]}
wheni in function [if expression] {command [, . . .]}
wheni [thread thread_identifier_list] [at line_number] [if expression] {command [; . . .]}
wheni [thread thread_identifier_list] [in function] [if expression] {command [; . . .]}

Use the wheni command to execute the specified command. (The wheni
command does not suspend program execution.) The debugger command
must be enclosed in braces. Separate multiple commands with semicolons.

To execute a command when an expression evaluates to true, use the
second syntax form. To execute a command when an address or function is
encountered, use the third or fourth form.

If you specify an expression, the command is executed only if the expression
evaluates to true when the address or function is encountered.

The wheni command differs from the when command in that the
debugger evaluates the tracepoint set with the wheni command after each
machine instruction is executed. Thus, using the wheni command affects
performance.

For example, the following command stops program execution, lists ten
lines of source code and displays the stack trace when the value of the
variable i is equal to 3 in the function main:

(ladebug) wheni in main if i == 3 {wi;where}

REF–40

ladebug

Use the wheni thread command to set tracepoints in specific threads. If
you list one or more thread identifiers, the debugger sets a tracepoint only
in those threads you specify. If you omit the thread identifier specification,
the debugger sets a tracepoint in all the threads of the application.

where [number]
where [number] thread thread_identifier_list
where [number] thread all
where [number] thread *

The where command displays the stack trace of currently active functions,
for the current thread. The where thread thread_identifier_list
command displays the stack trace(s) of the specified thread(s). The where
thread all and the where thread * commands are equivalent; they
display the stack traces of all threads.

Include the optional number argument to see a specified number of levels
at the top of the stack. (Each active function is designated by a number,
which can be used as an argument to the func command. The top level on
the stack is 0; so if you enter the command where 3 , you will see levels 0, 1,
and 2.) If you do not specify the number argument, you will see all levels.

whereis expression

The whereis command shows all declarations of the expression. Each
declaration is fully qualified with scope information.

which expression

The which command shows the fully qualified scope information for the
instance of the specified expression in the current scope. If available to
the debugger, the name of the source file containing the function in which
the expression is declared, the name of the function, and the name of the
expression are included. The components of the qualification are separated
by period (.) characters.

Restrictions

The maximum command-line length is 255 characters.
Alias commands can contain no more than 56 arguments.

REF–41

ladebug

Related Information

ada(1)
c89(1)
cc(1)
cxx(1)
cobol(1)
f77(1)
f90(1)
printf(1)
signal(3)

REF–42

A
Using Ladebug Within emacs

This chapter describes how to invoke and use the Ladebug debugger within
the emacs editing environment. You can control your debugger process entirely
through the emacs GUD buffer (see Section A.3), which is a variant of Shell
mode. All the Ladebug commands are available, and you can use the Shell
mode history commands to repeat them.

Ladebug Version 3.0 supports GNU Emacs Version 19.22 and above.

The information in the following sections assumes the user is familiar with
emacs and is using the emacs notation for naming keys and key sequences.

A.1 Loading Ladebug-Specific emacs Lisp Code
For each emacs session, before you can invoke Ladebug, you must load the
Ladebug-specific emacs lisp code, as follows:

M-x load-file /usr/lib/emacs/lisp/ladebug.el

You can also place a load-file command in your emacs initialization file
(~/.emacs). For example,

load-file " . . . /ladebug.el"

A.2 Invoking Ladebug Within emacs
To start Ladebug within emacs and specify the name of the target program you
want to debug, enter:

M-x ladebug [target-program]

Using Ladebug Within emacs A–1

A.3 emacs Debugging Buffers
When you start Ladebug, emacs displays the GUD (Grand Unified Debugger)
buffer in which the (ladebug) prompt is displayed. The GUD buffer saves all
of the commands you enter and the program output for you to edit.

When you issue the Ladebug run command in the GUD buffer and hit a
breakpoint, emacs displays the source of your program in a second buffer
(source buffer) and indicates the current execution line with =>.

By default, emacs sets its current working directory to be the directory
containing the target program. Ladebug does not do this when invoked
directly, therefore you may need to change the source code search path when
using Ladebug from within emacs. To set an alternate source code search path,
enter the use command with a directory argument, for example:

(ladebug) use usr/prog/test

All emacs editing functions and GUD key bindings are available. For example:

• You can execute a step command by entering the command in the GUD
buffer.

• You can select a line of code in the current source buffer and enter a
command to set a breakpoint at that position by typing

C-x SPC

For more information on emacs functionality and key bindings, refer to emacs
documentation.

A–2 Using Ladebug Within emacs

B
Writing a Remote Debugger Server

This appendix describes how to write a Ladebug remote debugger server for
an Alpha target (operating system or hardware platform). It describes the
functionality required of the server and explains how this functionality is
implemented in the Digital UNIX server and in the server included in the
debugger monitors for the Alpha server evaluation boards. It also includes
information about writing new Ladebug remote debugger servers.

B.1 Reasons for Using a Remote Debugger
The main reason for using a remote debugger is to debug software on a system
that cannot run a fully functional debugger locally. Examples of when you
might use a remote debugger are:

• When debugging an embedded system that does not include displays or
keyboards.

• When porting an operating system. You cannot usually run a debugger
locally on the target system until a substantial part of the operating system
has been ported.

• When developing software to run on an operating system that does not
support a fully functional local debugger.

Remote debuggers are useful simply for debugging software on systems that
are remote from where you are working, although in this case there are often
other alternatives (for example logging into the system across a network).
Whether it is better to use remote debugging or one of these alternatives will
often depend on the precise characteristics of the network and the debugger
used.

Writing a Remote Debugger Server B–1

B.2 Alternatives to Using a Remote Debugger
In most cases, the alternatives to using a remote debugger are either to put
debugging code, such as print statements, in the software being debugged or to
develop a simple local debugger for the target system.

Adding debugging code to the software increases the complexity of the
software, hence causing additional bugs, and it is often difficult to determine
what information will be needed to debug the software. A further problem is
the debugging code can itself change the behavior of the software and as such
normally has to be removed before the software is released.

Developing a local debugger can itself be a major task. Since such a debugger
is normally a one-off development, you cannot normally justify including
support for high level features (such as source level debugging). Even if this
is possible, attempting to provide such facilities locally the target system will
often not have the resources (memory, for example) required to run a high level
debugger.

B.3 The Structure of a Remote Debugger
All remote debuggers consist of two parts:

• A client that runs on the user’s local system (the host system)

• A server that runs on the system being debugged (the target system)

These communicate through a remote debugger protocol that runs over some
communication mechanism such as a serial line or the Internet.

The client provides the user interface to the debugger and most of the
intelligence of the debugger. For example, the client will normally do all
translation between addresses and variable or function names.

The server makes available low level functions that allow the client to examine
and control software running on the target system. For example, the server
provides functions to read and modify the target system’s memory. The client
requests these functions, and receives responses, using the remote debugger
protocol.

In general, a server is much simpler than a client and will require only
minimal functionality from the target system on which it is running. This
allows servers to be implemented for environments in which the functionality
of a full workstation operating system is not available.

B–2 Writing a Remote Debugger Server

B.4 Types of Targets
Most target systems for remote debugging are of these two types:

• Targets on which the debuggees are applications running on top of an
operating system such as Digital UNIX or VxWorks. A remote debugger
server for such a target will normally communicate with the client using
the operating system’s networking interface (for example, sockets in Digital
UNIX), and will normally use an operating system debugger interface (for
example, the ptrace() function) to implement its debugger functions. The
Digital UNIX server described in Section B.6.1 is an example of a server
for such a target.

• Targets (typically special purpose embedded hardware) on which the
debuggees are either stand alone programs or operating systems directly
using the hardware. On such targets the server is typically incorporated
in a ROM based debugger monitor that drives the network device directly.
Such a server will perform its debugger functions by directly reading and
writing memory. The Evaluation Board Server described in Section B.6.2 is
an example of such a server.

B.5 Ladebug as a Remote Debugger
Ladebug is a debugger running on Digital UNIX systems. It supports a wide
range of languages including Ada, C, C++, COBOL, and Fortran. Besides
providing local debugging on Digital UNIX systems, it supports remote
debugging through the Ladebug remote debugger protocol. The same text and
windows based interfaces are available for use with both local and remote
debugging and almost all the commands that are available for local debugging
are also available for remote debugging.

B.5.1 Target and Programming System Requirements
Ladebug servers must be able to:

• Set and clear breakpoints in the program being debugged (the debuggee).

• Read from and write to the debuggee’s memory and registers.

• Find out when the debuggee reaches a breakpoint and read the debuggee’s
memory and registers when it is at a breakpoint.

Writing a Remote Debugger Server B–3

• Stop a running debuggee when it is not at a breakpoint.

Note

Servers can be implemented on targets without this feature. However,
without this feature, the Ladebug Ctrl/C function (that stops a running
program) will not work.

• Send and receive UDP packets to and from the host system running
Ladebug.

• Respond to messages from the host system without excessive delay even
when the debuggee is running and is not at a breakpoint.

For Ladebug to debug a program there must be symbolic information for the
program available to Ladebug on the host in a form that it understands. At
present, the only form of symbolic information that Ladebug understands for
programs running on Alpha processors is extended COFF (ECOFF) for Digital
UNIX. The program must follow the register usage, function calling, and other
conventions expected of programs that have this form of symbolic information.
For example, a program for which the symbolic information is ECOFF must
use Digital UNIX register usage and function calling conventions.

B.5.2 The Protocol
The Ladebug Remote Debugger Protocol is a request/response protocol running
over UDP. The debugger client (Ladebug) initiates all transactions sending
a request to the server. On receiving the request the server acts upon the
request and sends a response. The server never sends any messages except in
response to requests received from the client. The requests that the client can
send are listed in Table B–1.

B–4 Writing a Remote Debugger Server

Table B–1 Remote Debugger Protocol Client Requests

Request Action

Load Process Loads a new process for debugging.

Connect to Process Connects to an existing process.

Connect to Process Insist Connects to an existing process even if other
debugger sessions are already connected to it.

Probe Process Checks the state of the process being debugged.

Disconnect from Process Disconnects, ending a debugger session.

Kill Process Kills the process; and then disconnects.

Stop Process Stops a running process.

Continue Process Continues running a stopped process.

Step Executes one instruction in the process being
debugged.

Set Breakpoint Sets a breakpoint at an address.

Clear Breakpoint Clears a breakpoint at an address.

Get Next Breakpoint Gets the "next" breakpoint that is known to the
server. Breakpoints are returned in an arbitrary
order but no breakpoint will be returned more than
once in a single scan of the list.

Get Registers Gets the contents of all the registers.

Set Registers Sets the contents of all the registers.

Read Reads memory.

Write Writes to memory.

Section B.11 contains a full description of the protocol.

B.5.3 Starting a Remote Debugger Session
The protocol provides three alternative requests for starting a debugger
session:

• Load Process loads a new process on the target system. The Load Process
request contains a file name and various other data that a server may need
to load the process.

• Connect to Process connects to an existing process running on target
system. It simply sends a 32 bit process ID to the target system to identify
the new debuggee.

Writing a Remote Debugger Server B–5

• Connect to Process Insist is identical in form to Connect to Process. It
is intended to be interpreted as a request to the server to disconnect, if
necessary, any old debugger sessions from the process before connecting the
new debugger session to the process. This is needed because normally only
one debugger session can debug any one process at a time.

All servers should implement either Load Process or Connect to Process but a
server need not implement both of them. A server that implements Connect to
Process can choose any of the following:

• Not to implement Connect to Process Insist

• To implement Connect to Process Insist to mean the same as Connect to
Process

• To implement Connect to Process Insist to do more than Connect to Process

To allow a single target machine to run multiple remote debugger sessions
at the same time, clients always send Connect and Load requests to a fixed
privileged, UDP port on the target. The server is expected to allocate a new
unprivileged UDP port before replying. The new port is used on the target as
the source and destination of all messages for the remainder of the debugger
session.

To allow servers to be run on systems on which security is an issue (for
example typical Digital UNIX systems) the Connect and Load requests contain
the client and server login names. The server can use these login names,
together with the name of the host system, to check that the remote user is
authorized to run programs on the target system, as is done when a user runs
programs through rsh .

B.5.4 Ending a Remote Debugger Session
There are two different requests that end a remote debugger session:

• The Kill Process request ends a debugger session, killing the debuggee at
the same time.

• The Disconnect from Process request ends the remote debugger session
without killing the debuggee.

Although there are explicit Ladebug commands that call up each of these
requests, Ladebug normally kills processes that it has loaded and disconnects
from processes to which it has connected. As such, a server that implements
the Load Process function should at least implement the Kill Processes
function and a server that implements the Connect to Process function should
implement the Disconnect from Process function. The following are optional:

B–6 Writing a Remote Debugger Server

• Implementation of the Kill Process function in servers that only support
connecting to existing processes

• Implementation of the Disconnect from Process function in servers that
only support Load Process

B.6 Example Servers
Two example Ladebug servers are available. The source code of these example
servers is available from Digital Equipment Corporation for unrestricted reuse
on Alpha based platforms (see the copyright notice in the source code for
details).

B.6.1 The Digital UNIX Server
The Digital UNIX server is designed to allow the debugging of user processes
running on remote Digital UNIX systems. The version described in this section
supports loading new processes using the Load Process request but does not
support the Connect to Process or Connect to Process Insist requests.

The server consists of a server daemon and user servers:

• The server daemon receives load messages, checks that they are valid and
creates a user server for each valid load request. It then passes the load
request on to the user server.

• The user server implements the remainder of the protocol and the low level
debugger functions requested by the protocol.

The remote debugger daemon must be run as a root process. It would normally
be started at system start-up. The user server loads the debuggee using Digital
UNIX’s fork() and exec() functions and uses Digital UNIX’s ptrace()
interface to implement the low level debugger facilities required. The load
server and daemon both use Digital UNIX UDP sockets to communicate with
the client.

B.6.2 Evaluation Board Server
The evaluation board server is included in the evaluation board debug monitor
provided with the Alpha evaluation boards (EB64, EB64+, EB66, etc.). It is
designed to provide source level debugging of operating system kernels being
ported to these boards, and of programs running on these boards without
an operating system. The complete monitor (including the remote debugger
server) is designed to be easily ported to other Alpha based hardware.

Writing a Remote Debugger Server B–7

The server only supports starting debugger sessions through the Connect to
Process or Connect to Process Insist requests. This server does not support the
Load Process request. Since the monitor is not a multiprocessing system, the
server ignores the process ID in the Connect requests. It also ignores the login
names in Connect requests.

The user is expected to load the test program using the monitor load facilities
(LOAD, NETLOAD, etc.) before starting the debugger server. The server
interprets all addresses it receives as physical addresses. The server then
performs all debugger functions by directly reading and writing memory.

To set breakpoints, the debugger patches a PAL call into the code being
debugged. To avoid conflict with the use of the breakpoint PAL call by
operating system kernels, this is not the standard breakpoint PAL call
(the BPT PAL call) but a special PAL call (DBGSTOP). DBGSTOP exhibits
identical behaviour but has its own system entry address. It is implemented
in the debugger version of evaluation boards’ PAL code. When this PAL call is
executed, it results in a call back to the monitor at which point the state of the
debuggee is saved and the server is reentered.

The monitor’s ethernet software allows server to register to receive packets
addressed to particular UDP port and to send packets on any UDP port.
The server depends on interrupts to receive packets while the debuggee is
running. Upon receiving any interrupt, the monitor polls the ethernet driver
for messages. The ethernet software passes any appropriate messages to the
server.

A consequence of using interrupts to receive messages is that some care
is needed when debugging programs that do their own interrupt handling.
To allow such programs to be debugged, the Evaluation Board user library
contains a function that polls the ethernet. This function would normally be
called by the application every time it receives an interrupt.

B.6.3 Structure of the Servers
Each server consists of:

• A communicator that receives UDP messages from the clients, checks that
they come from valid clients, and passes them on to the protocol handler.

Once the protocol handler has dealt with a message and built a reply
it passes this reply back to the communicator. The communicator then
sends this reply to the client. The communicator is target dependent. It
makes use of the target’s UDP functions to read and write messages. In
the Digital UNIX server, the communicator also contains the server’s main
program and the code of the daemon. As such, it is responsible for creating
the user servers.

B–8 Writing a Remote Debugger Server

• A protocol handler that interprets the debugger messages received and
builds the replies. The protocol handler calls the breakpoint table
handler and the debugger kernel to perform the functions requested
by the messages. The protocol handler is target independent.

• A target dependent debugger kernel that performs the actual debugger
functions (such as loading a process, setting a breakpoint, or reading
memory). These are performed by the kernel:

Through an operating system interface (for example ptrace() on
Digital UNIX)

In servers for embedded monitors, by directly reading from and writing
to memory

• A breakpoint table handler that creates and controls a table of the
breakpoints that the server has set in the debuggee. This table handler is
target independent.

B.6.4 Creating a Server for a New Target
The simplest way of creating a server for a new target is to base it upon one of
the example servers. Normally, if you are developing the server to be part of a
monitor program, you should base it upon the evaluation board server.

If, however, you are developing it as an operating system utility you should
probably base it upon the Digital UNIX server. You should try to make as
few changes as possible to the example servers, since you are likely to have
no satisfactory way of debugging software (and hence the servers themselves)
until you have successfully ported them to your target system.

B.7 The Communicators
This section describes

• The communicator interface functions (see Section B.7.1)

• The Digital UNIX communicator (see Section B.7.2)

• The evaluation board monitor (see Section B.7.3)

• How to port communicators to other systems (see Section B.7.4)

Writing a Remote Debugger Server B–9

B.7.1 Communicator Interface Functions
The communicator contains the main function to the debugger server, to which
the interface is target-dependent. It also contains some functions that the
other components of the server can call. These functions are as follows:

• int a_client_is_connected(void)—This function returns true if there is a
client already connected to the server, and false otherwise.

• int this_client_is_connected(void)—This function returns true if the
client from whom the communicator last received a message is connected
to the server and false otherwise.

• void set_connected(void)—This function tells the communicator that the
last packet received connected a client to the server.

• void disconnect_client(void)—This function tells the communicator that
there is no client connected to the server.

B.7.2 Digital UNIX Communicator
The Digital UNIX communicator is implemented in the C source file server_
main.c. This file contains the daemon’s entry point (main()), the main
function of the user servers (user_server_main()), and the interface functions
previously described.

When the daemon is started, main() creates a socket and binds it to the
Ladebug remote debugger connect port. It then reads packets from this port
ignoring any packets that are not load requests. When it receives a load
request, it checks that the client user is allowed to run remote debugger
sessions on this machine using the server user name he has requested. This it
does by calling to the Digital UNIX function ruserok() .

If the request is valid, the daemon creates a child process (by forking). The
parent process then simply continues round the packet reading loop. The child
process:

1. Creates a new session.

2. Changes its group ID to the primary group ID of the requested server user.

3. Changes its login name to the server user name.

4. Changes its uid to the server user’s uid.

5. Calls user_server_main() with the client address and the load request
packet as arguments. When user_server_main() returns, the child
process exits.

B–10 Writing a Remote Debugger Server

If, for any reason, the daemon is unable to start the user server, it then sends
a load request response to the client containing an error code.

The user server function user_server_main() starts by creating a UDP socket
for communicating with the client. It then:

1. Finds a free unprivileged UDP and binds the socket to this address.

2. Processes the load packet passed to it (by calling ProcessPacket()) and
sends the response to the client.

3. Enters its main loop; in this loop it reads packets from the client, processes
them, and sends the responses back to the server.

4. Breaks out of this loop and exits from the user server when the client
disconnects from it.

One complication in the code of the communicator is that the daemon has to
be able to handle the receipt of duplicate load messages. The client sends such
duplicate load messages when the server’s load response message is lost or
does not reach the client within the client’s time-out time.

To handle such duplicate load messages, a pipe is created between the daemon
and each user server. When the daemon receives a duplicate load message, it
uses this pipe to pass it on the appropriate user server. The user server treats
this message like any other duplicate message.

B.7.3 Evaluation Board Monitor
The evaluation boards’ Ethernet driver software passes received frames to
other parts of the monitor’s software through call-back functions. A component
of the monitor that wishes to receive frames on a UDP port calls a registration
function provided by the Ethernet driver software.

The registration functions take as an argument the address of the call-back
function to be called when such frames are received. When a component
registers a call-back function, it can do either of the following:

• Register it for a particular port by calling udp_register_well_known_port() .

• Ask the ethernet driver to allocate a port by calling udp_create_port() .
Any component of the monitor can then poll the ethernet at any time, by
calling ethernet_process_one_packet().

If the ethernet hardware has received a packet for any registered UDP port
then the driver will call the appropriate call-back function. The call-back
function called may be in a completely different component of the monitor
from that which called ethernet_process_one_packet() . Once any call-back

Writing a Remote Debugger Server B–11

function has completed its processing, ethernet_process_one_packet() will
return with a result indicating whether any packets were processed.

All packets passed to the ethernet driver must be built in fixed sized buffers
provided by the driver, so that the ethernet driver never has to copy any
data. The ethernet driver allocates these buffers at addresses from which the
ethernet devices can send data and to which they can receive data.

To avoid the need for complex allocation algorithms, and complex error
handling if buffer allocation fails, any component of the monitor can allocate a
number of buffers at start-up. To maintain this buffer count the ethernet send
functions always return to the caller a buffer to replace the buffer containing
the packet to be sent.

On completion, the call-back functions used to receive frames must always
return an ethernet buffer to the ethernet drivers. This can be, but need not be,
the buffer that contained the received frame.

The debugger server does not need its own pool of buffers, since it only sends a
frame immediately following the receipt of a frame. As such it handles received
frames in the following steps:

1. Receive a frame through call-back function.

2. Process the frame.

3. Send a response frame in the received buffer. The send function returns a
buffer (most likely a different one).

4. Exit call-back function returning the buffer returned by the send function.

The server’s communicator is largely implemented in C source file
server_read_loop.c . This contains the following code:

• The interface functions previously described.

• Two call-back functions for receiving frames. The communicator uses one
of these functions to receive frames on the connection port, and the other
to receiving frames on the port assigned when a client has connected. Both
call-back functions pass received packet to the protocol handler and send
the response to the client before returning.

• The function enable_ladbx_msg() . This enables the receipt of connection
messages from the client by registering the connection port. For
compatibility with older versions of Ladebug it also registers a second
connection port with an unprivileged port number.

B–12 Writing a Remote Debugger Server

• The function read_packets() . The server calls this function whenever
it wishes to poll the ethernet for received packets. It simply calls
ethernet_process_one_packet() until there are no more packets to
process.

• The function data_received() . This is a wrapper for read_packets()
that is used when the reason for polling the ethernet is that there has been
an interrupt. It disables interrupts before calling read_packets() and
restores the interrupt state once read_packets() returns.

• The function app_poll() . Applications that have their own interrupt
handlers (and therefore disable the monitor’s interrupt handler) call this
function to poll the ethernet for debugger frames. It stores its return point
as the debuggee’s program counter and then calls data_received() . The
reason for setting the debuggee’s program counter is that this if the server
receives a stop request then it will need to know where to put a breakpoint
to stop the debuggee.

• An initialization function called ladebug_server_init_module() . This
function places a pointer to app_poll() at a standard address in memory
so that an independently linked application can call it.

Note

The evaluation board library contains an assembler function called
ladbx_poll() that calls app_poll() through the pointer at this
address. Applications that do their own interrupt handline should call
ladbx_poll() frequently (for example, every time they receive an
interrupt) to ensure that the debugger server receives all debugger
protocol packets without excessive delay.

In addition, the file kutil.s contains the source of the monitor’s interrupt
function. The monitor only enables interrupts when an application is running.
When the monitor receives any interrupt, it saves the debuggee’s state and
polls the Ethernet for received frames. Since the monitor will normally receive
regular 1ms timer interrupts this will ensure that it receives all the client’s
debugger frames.

Writing a Remote Debugger Server B–13

B.7.4 Porting the Communicators to Other Systems
It should be possible to port the Digital UNIX communicator to most other
versions of Digital UNIX and Digital UNIX derivatives with few changes. For
operating systems that are not derived from Digital UNIX, the mechanism for
starting user servers may have to be significantly modified.

In particular, many operating systems have no exact equivalent of fork()
and instead start a new process by running a new executable file. On such a
system, the communicator will have to be split into two separate executable
files (one for the daemon and the other for the server). Also in such systems
the new process typically does not have access to data set up by its parent
before it was created, so some other mechanism will have to be used to transfer
the first packet, and other data, to the user process.

The mechanism for setting the user identifier of the user server will vary
widely between operating systems. Be aware that although the term daemon
is a Digital UNIX term almost all operating systems have some mechanism for
installing and running privileged background processes.

The socket mechanism used to read data from the network is quite widely
available. If this mechanism is not available, then any other mechanism that
allows the communicator to wait for the receipt of UDP packets on particular
ports can be used.

If the operating system does not provide any such mechanism (for example, a
real time kernel that does not include networking support), then one option
is to port part or all of the networking code in the Evaluation Board Monitor
to this environment. In this case, it may be easier to base your communicator
upon the that in the Evaluation Board Server rather than basing it upon that
in the Digital UNIX Server.

For embedded servers, few (if any) changes should be needed to the Evaluation
Board’s communicator. However, for many such systems you will need to
rewrite the network device drivers. These are contained in the ethernet code of
the Evaluation Board Monitor.

B.8 The Protocol Handler: Interface Functions and
Implementation

The protocol handler’s main interface function is ProcessPacket() . The only
argument to this function is a pointer to the packet that it is to process. As
a part of its processing of the packet ProcessPacket() converts the request
packet passed to it into a response packet. The caller must ensure that the
buffer pointed to by the argument is large enough to contain any possible
response packet.

B–14 Writing a Remote Debugger Server

The function DumpPacket() can also be called by the communicator. This
dumps the contents of packets passed to it, if the protocol handler is compiled
with tracing enabled.

The code for the packet handler is identical for the two servers. It should not
need to change for other server implementations. The source code is in the
files packet-handling.c and packet-util.c ; packet-handling.c contains
the function ProcessPackets(). When this function receives a packet, it:

1. Checks whether the packet is a duplicate of the previous packet, by
checking whether the sequence number is the same:

• If the packet is a duplicate, the function copies the last response sent
into the packet buffer, updates the retransmission count in this packet,
and returns.

• If the packet is not a duplicate, it reads the command code. It uses
the value of the command code to check that the request is legal in the
debuggee’s current state (for example a Get Registers request is only
legal when the debuggee is stopped).

• If the request is not legal the function puts an appropriate error code
in the return value field of the packet and returns it as the response.

2. Carries out the action appropriate to the request it has received.

This normally consists of extracting some arguments from the packet
and passing them to the appropriate debugger kernel function. Where
a request changes the state of the connection to the client (for example
the kill command disconnects from the client), it calls the appropriate
communicator interface function to inform the communicator that this has
happened. In some cases, it also retrieves data from kernel functions (for
example, the contents of the registers) and copies them into the packet.

3. Converts the packet into a response packet by setting the top bit of the
packet’s command code.

It also sets the packet’s return value. Before it returns the response packet
to the communicator, it makes a copy of it so that it can be resent if the
next packet duplicates the request packet.

packet-util.c contains utility functions for reading and writing the fields
of packets and for dumping the contents of a packet. To avoid any possible
alignment problems the utility functions read and write packet fields a byte at
a time.

Writing a Remote Debugger Server B–15

B.9 The Debugger Kernels
This section describes:

• The debugger kernel interface functions (see Section B.9.1)

• The Digital UNIX server debugger kernel (see Section B.9.2)

• The evaluation board server (see Section B.9.3)

• Porting the debugger kernels to other systems (see Section B.9.4)

B.9.1 The Debugger Kernel Interface Functions
The debugger kernels provide the following interface functions to the protocol
handler:

• int kload_implemented(void)—Returns TRUE if this server can load
new processes; FALSE otherwise.

• int kload(char * name, char * argv[], char * standardIn, char *
standardOut, char * standardError, address_value loadAddress,
address_value startAddress)—

Loads a new process. The arguments are:

– name—The name of the process to be loaded as a NULL terminated
string. This will normally be the name of an executable file.

– argv—The argument array. Each argument is a NULL terminated
string. The argument array is terminated by an empty string (i.e one
with a NULL as its first character).

– standardIn—The name of the file to which standard input should be
directed as a NULL terminated string. An empty string means do not
redirect standard input.

– standardOut—The name of the file to which standard output should
be directed as a NULL terminated string. An empty string means do
not redirect standard output.

– standardError—The name of the file to which standard error should
be directed as a NULL terminated string. An empty string means do
not redirect standard error.

– loadAddress—The address at which the kernel should load the
executable file (or -1 if unknown).

– startAddress—The address at which the kernel should start executing
the debuggee. It is ignored if the load address is unknown.

B–16 Writing a Remote Debugger Server

The result is TRUE if successful or FALSE if the load fails. If the load is
successful the processes will become the new debuggee and stop at its entry
point.

• int kconnect_implemented(void)—Returns TRUE if this server can
connect to existing processes; FALSE otherwise.

• int kconnect(int pid)—Connects to an existing process with the given
pid. The result is TRUE if the server connects to the process and FALSE if
not. If the server manages to connect to this process, then it becomes the
new debuggee.

• int kkill_possible(void)—Checks whether the kernel can kill the current
debuggee. Returns TRUE if it can and FALSE if it cannot.

• void kkill(void)—Kills the current process.

• int kdetach_possible(void)—Checks whether the kernel can detach
from the current debuggee without killing it. Returns TRUE if it can and
FALSE if it cannot.

• void kdetach(void)—Detaches from the current process.

• int kpid(void)—Returns the pid of the current process.

• void kgo(void)—Tells the debuggee to continue running until it hits a
breakpoint.

• void kstop(void)—Tells the debuggee to stop as soon a possible.

• int kaddressok(address_value address)—Checks whether an address
in the debuggee is readable. Returns TRUE if it is and FALSE if it is not.

• ul kcexamine(address_value address)—Gets the data at address. If
address points at a breakpoint or there is a breakpoint within 8 bytes
of address the data that was at the address before the breakpoint was
inserted is returned.

• int kcdeposit(address_value *address, ul value)— puts value at
address, updating the saved data for breakpoints if necessary.

• void kstep(void)—Steps one instruction.

• address_value kpc(void)—Returns the debuggee’s program counter.

• void ksetpc(address_value address)—Sets the contents of the
debuggee’s program counter.

• register_value kregister(int reg)—Returns the contents of the
debuggee’s register number reg. For Alpha targets the register number of
fixed point register n is n: and that of floating point register n is n+32.

Writing a Remote Debugger Server B–17

• void ksetreg(int reg, register_value value)— sets the contents of
register number reg with value.

• short int kbreak(address_value address)—Sets a breakpoint at
address. Returns the result that should be returned to the client.

• int kremovebreak(address_value address)—Removes the breakpoint
at address. Returns the result that should be returned to the client.

• int kpoll(void)—Returns the state of the debuggee. This is one of:

– PROCESS_STATE_PROCESS_RUNNING—The debuggee is
running.

– PROCESS_STATE_PROCESS_AT_BREAK —The debuggee is
stopped at a breakpoint or after a performing a single step.

– PROCESS_STATE_PROCESS_SUSPENDED —The debuggee is
stopped somewhere else due to a signal, trap or exception.

– PROCESS_STATE_PROCESS_TERMINATED —The debuggee has
exited.

B.9.2 Digital UNIX Server Debugger Kernel
In the Digital UNIX server, the debugger kernel is implemented using the
ptrace() function. This is a Digital UNIX function that allows a parent
process to examine and control its children. Since ptrace() can only be used
to debugger child processes the Digital UNIX debugger kernel only supports
the loading of new processes and not connection to existing processes.

Since this means that the debuggee always runs as a child of the server, and
the server is killed when the client disconnects, the Digital UNIX server does
not support disconnecting from a debuggee without killing it.

When kload() loads a new debuggee, it does so using the Digital UNIX
functions fork() and exec() . kload() creates the new process using the
fork() function. This new child process:

1. Makes a ptrace() call to allow its parent to control it using ptrace()
calls. This also sets up a breakpoint on executing new images.

2. Opens the standard input, output, and error files. If it is unable to open
any of these it terminates.

3. Loads and executes the debuggee by calling exec() . When it reaches the
debuggee’s entry point, it will stop and its parent will receive a SIGCHLD
signal.

B–18 Writing a Remote Debugger Server

The parent process meanwhile waits for a signal from the child. When it
receives a signal it, checks that the debuggee has stopped at a breakpoint
(rather than, for example, having exited). If it has then the kernel checks
whether the debuggee uses shared libraries.

If the debuggee does use shared libraries the server tells it to continue (through
a ptrace() call) and waits for it to stop once more.

Note

This is done because starting a program that uses shared libraries on
Digital UNIX involves executing two new images. The first is a special
program loader and the second is the image of the program itself. The
debuggee cannot be accessed by ptrace() until the child process stops
for the second time.

Once the debuggee has been started the server stores the state of the debuggee
in the variable child_state. The Digital UNIX kernel inserts breakpoints
by using ptrace() to write a breakpoint PAL call to the address of the
breakpoint. On Alpha Digital UNIX ptrace() always reads and writes 8-byte
(2 instruction) quantities, so the kernel has to insert and remove breakpoints
through a read, modify, write sequence.

The kernel implements stop request (function kstop()) by sending a
SIGINT signal to the debuggee. This will stop the debuggee unless it has
disabled receiving SIGINT signals. kkill() uses the same technique to stop
the debuggee before killing it.

When kgo() is called, it first checks whether there is a breakpoint at the
current program counter. If there is a breakpoint there, then the kernel
executes the original instruction at this location using the internal function
kstepoverbreak() . This function temporarily puts the instruction back
into the code and then uses ptrace() with the PT_STEP function code to
execute this instruction. Once it has executed the instruction it restores the
breakpoint.

When kstepoverbreak() returns kgo() calls the internal function
kasyncwait() to set up kstopped() as a signal handler for the SIGCHLD
signal. It then calls ptrace() with the PT_CONTINUE function code. This
tells the debuggee to continue from its current program counter.

Writing a Remote Debugger Server B–19

When a running debuggee stops for any reason, the server will receive a
SIGCHLD signal. This will cause kstopped() to be called. kstopped()
checks why the debuggee has stopped and sets the child_state appropriately.
If the debuggee has stopped as a result of a breakpoint PAL call the
program counter will point to the instruction after the breakpoint. Under
these circumstances, kstopped() will move the program counter back one
instruction to point at the breakpointed address.

When the kernel reads memory, it uses the breakpoint table functions to check
whether there is a breakpoint on either of the longwords it is reading. If there
is such a breakpoint, it reads the data for that longword from the breakpoint
table rather than from the debuggee’s memory. Similarly, when the kernel is
asked to write to memory, it will update breakpoint table entries if necessary
and will not overwrite breakpoint PAL calls.

The mapping of register to register number used by ptrace() is the same
as that used by the kernel interface. This means that kregister() and
ksetreg() translate very directly into ptrace() calls.

B.9.3 Evaluation Board Server
The evaluation board server’s debugger kernel is implemented by directly
reading from and writing to memory. It runs in the same environment as the
debuggee, with the same mapping of virtual to physical addresses.

As such, there is no distinction between its memory and the debuggee’s
memory. This means that it can satisfy requests to read or write the debuggee’s
memory by simply reading or writing its own virtual memory.

The evaluation board kernel implements breakpoints through a special
additional PAL call, DBGSTOP. The monitor’s PAL code provides this
additional PAL call. It functionally is identical to the standard Digital
UNIX breakpoint PAL call except that its system entry address can be set
up independently by passing a different function code value to wrest() .
This allows the monitor to set breakpoints even in applications (for example
operating systems) that do their own breakpoint handling using the standard
breakpoint PAL call.

The evaluation boards’ debugger kernel is implemented in the C source file
kernel.c and the assembler source file kutil.s . The functions in these
files are also used to implement the low level debugger commands provided
by the monitor on its dumb terminal interface. kernel.c contains the main
body of the debugger kernel, including all the interface functions previously
listed. kutil.s contains the system entry points for interrupts, traps and
breakpoints; and functions that provide a C interface to various PAL calls.

B–20 Writing a Remote Debugger Server

B.9.3.1 Initialization
kernel.c contains three functions that are used to initialize the debugger
kernel:

• kstart() is called when the system starts up. It simply initializes some
of kernel.c ’s static variables and ensures that interrupts are disabled.

• kinitpalentry() is called before the monitor runs any application. It
reinitializes the PAL system entry points by calling the assembler function
kutilinitbreaks() . Once a debuggee has been started, and until it
completes, monitor code will only be executed when it is called directly
or indirectly from one of these system entry points. kutilinitbreaks()
defines the system entry point for interrupts to point to the monitor’s
interrupt function, and the system entry point for DBGSTOP point to the
monitor’s low level breakpoint function. All other system entry points are
defined to point to the monitor’s trap function.

• kenableserver() is called to switch to remote debug mode. It is called
when the user issues the ladbx command at the monitor’s dumb terminal.
At this point the user should have already loaded and started the debuggee
using the monitor’s dumb terminal commands, and it should be stopped at
a breakpoint. It sets remote debugger mode, calls enable_ladbx_msg() to
enable the receipt of debugger messages by the server and then waits for
such messages by calling kwaitforcontinue() .

Once the debuggee has been started the state of the debuggee is always in
the variable child_state. kpoll() simply reads this variable.

B.9.3.2 Setting Breakpoints
The kernel sets breakpoints by saving the original instruction in the breakpoint
table and inserted by writing the DBGSTOP instruction to the location at
which a breakpoint is required. To simplify other memory access in the
debugger monitor the kernel does not write DBGSTOP instructions into
memory until just before the program is allowed to run, and replaces them
with the original instructions as soon as the program stops.

The function kinstall_breakpoints() writes DBGSTOP instructions for
all current breakpoints to memory, and the restore_breakpoint_instrs()
internal function restores the original instructions at these locations whenever
the debuggee stops. Because any modification to the debuggee’s memory can
alter its instruction stream, the kernel follows all writes to the debuggee’s
memory with instruction barrier PAL calls.

Writing a Remote Debugger Server B–21

B.9.3.3 Hitting a Breakpoint or an Exception
When the debuggee hits a breakpoint (i.e., executes a DBGSTOP PAL call), the
PAL code calls the monitor’s assembler breakpoint function (dbgentry()) ,
which:

1. Saves processor’s complete register set (including the program counter and
the processor status) in a static area

2. Calls kreenter() , which:

a. Removes any temporary breakpoints (used for single stepping and to
implement stop requests).

b. Calls through a function pointer the kernel’s current breakpoint
continuation function.

Unless the debuggee has just single stepped or processed a stop request this
function will be katbpt() . katbpt() steps the saved program counter back
one instruction so that it:

1. Points at the actual breakpoint (rather than at the instruction following it).

2. Calls kwaitforcontinue() , which:

a. Restores the original instructions at all the breakpoints.

b. Sets a flag to indicate that the debuggee is stopped.

c. Listens for either debugger packets or commands by repeatedly calling
either read_packets() or user_main() .

kwaitforcontinue() will stay in this loop until some other kernel function
clears the stopped flag.

The handling of exceptions is similar to the handling of breakpoints. All the
unused system entry points are initially set up to point to dbgtrap. This sets
a flag (in a register that the PAL code has already saved) to indicate that the
server was reentered as a result of an exception and then jumps to dbgentry2 .

This is an alternative entry point to the function dbgentry() . dbgentry()
saves the processor’s registers, as previously described, but then, instead
of calling kreenter() , calls ktrap() . ktrap() removes any tempo-
rary breakpoints, then sets child_state appropriately and then calls
kwaitforcontinue() .

B–22 Writing a Remote Debugger Server

B.9.3.4 Receiving and Processing Commands
A command can be received as a result of:

• The user typing in a monitor command when the monitor is in local
debugger mode.

• A packet being received by the interrupt routine, or by the ethernet poll
routine called by the debuggee, while the debuggee is running. Be aware
that Ladebug will only send the server stop, disconnect, or poll commands
while the debuggee is running.

• A packet being received (through the read_packets() call) while the monitor
is in its breakpoint loop.

When a command is received, either the command processor or the protocol
handler calls the appropriate kernel function. The functions that can be called
are the previously listed interface functions. Table B–2 explains the behavior.

Table B–2 kernel Functions

kernel Function Action

kload()
kload_implemented()

Always return FALSE

kconnect_implemented() Returns TRUE

kconnect() Always returns TRUE, does nothing else

kkill_possible() Always returns FALSE

kkill() Does nothing

kdisconnect_possible() Always returns TRUE

kdisconnect() Does nothing

kpid() Always returns 0

kgo() Checks whether the debuggee is stopped at a breakpoint.
If it is, it uses ksetstepbreak() to set the temporary
breakpoints so that the debuggee stop again after executing
one instruction. It also sets the breakpoint continuation
function to be ksteppedoverbreak() . If the debuggee is
not at a breakpoint, kgo() places breakpoint instructions
(DBGSTOP PAL calls) at all the breakpoints and sets the
breakpoint continuation function to be katbpt() . Then,
whether or not the debuggee was at a breakpoint, it clears
the stopped flag so that the debuggee will continue the next
time kwaitforcontinue() checks the flag.

(continued on next page)

Writing a Remote Debugger Server B–23

Table B–2 (Cont.) kernel Functions

kernel Function Action

kstop() Checks whether the debuggee is still running or stopped.
If the debuggee is stopped, kstop() does nothing. If the
debuggee is running, it places a temporary breakpoint at the
current instruction.

kaddressok() Returns TRUE if the address is quadword aligned and FALSE
otherwise.

kcexamine() Reads the requested location. It does not need to check the
breakpoint table because it is only called when the debuggee
is stopped.

kcdeposit() Writes to the requested location.

kstep() Uses ksetstepbreak() to set up temporary breakpoints
everywhere the program counter can be after executing the
next instruction. This requires a maximum of two temporary
breakpoints since ksetstepbreak() can work out the
destination of a jump instruction by reading the instruction’s
argument register. It also sets the breakpoint continuation
function to be katbpt and clears the stopped flag.

kpc() Returns the saved program counter.

ksetpc() Modifies the saved program counter.

kregister() Returns the value of the appropriate entry in the saved
register array.

ksetreg() Sets the value of the appropriate entry in the saved register
array.

kbreak() Calls bptinsert() . The kernel does not write to the
debuggee’s memory until the debuggee about to be run or
resumed.

kremovebreak() Calls bptremove() .

kpoll() Returns the value of child_state .

B.9.3.5 Continuing from a Breakpoint or Exception
When kwaitforcontinue() sees that the stopped flag is clear, it returns
(through a number of intermediate functions) to bptentry() . This restores
the processor registers and then calls the PAL RTI function to return to the
debuggee.

If the debuggee was continuing from a (permanent) breakpoint as a
result of a kgo() call, it will hit a new (temporary) breakpoint after
executing one instruction. The state will be saved as it would be with a
permanent breakpoint but the breakpoint continuation function called will be

B–24 Writing a Remote Debugger Server

ksteppedoverbreak() . This backs up the program counter 1 instruction,
places DBGSTOP PAL calls at all the breakpoints in the breakpoint table, and
then once again returns to bptentry() to resume the debuggee.

The debuggee will now run until it is stopped by hitting a further permanent
breakpoint or by an exception, or by a stop command.

B.9.3.6 Interrupt Handling
The assembler source file kutil.s contains the function dbgint() . This is
the monitor’s system entry point for interrupts. On receiving any interrupt
the monitor save the previous state and call data_received() to tell the
communicator that the ethernet device may have received data and that it
should poll the ethernet driver.

The one complication in dbgint() is that if the server receives a Stop Request
packet, then the debugger kernel will need to know the debuggee’s current
program counter. This is not necessarily the program counter saved by the
PAL code because the interrupt routine can itself be interrupted (and therefore
be called recursively).

The global variable containing the saved program counter is checked for a
nonzero value. A value of zero is used to indicate that it is not in use. If it is
already set, it is not reset but data_received() is called.

If the program counter has not already been saved in this global variable, the
value that was saved on the stack by the PAL code is examined. If it is within
dbgint() , then this is a recursive call to dbgint() with the second interrupt
having happened before the first call to dbgint() saved the program counter.
In these circumstances, there is no need to call data_received() since it will
be called by the outer call to dbgint() . Otherwise, this value is saved as the
debuggee’s program counter and data_received() is called.

This procedure requires that the code that saves the value of the program
counter should be in the function dbgint() and not within another function
called by dbgint() .

The kernel also contains a function, knullipl() , that clears an interrupt. On
the EB64 version of the kernel, it simply writes two commands to the 82C59
(the interrupt controller used on the EB64). This function will clearly have to
be rewritten for target systems that use different interrupt controllers.

Writing a Remote Debugger Server B–25

B.9.4 Porting the Debugger Kernels to Other Systems
Few, if any, changes should be needed to port the Digital UNIX debugger
kernel to other Digital UNIX like operating systems. The operating system
functions used in the Digital UNIX debugger kernel seem to be available in all
Digital UNIX dialects.

A problem that may arise is that in some Digital UNIX dialects, when
the debuggee stops at a breakpoint the program counter, it may point to
the actual breakpoint instruction rather than the instruction following the
breakpoint. For some of the newer dialects of Digital UNIX, a server with
greater functionality (in particular the additional ability to connect to existing
processes) could be implemented by rewriting the debugger kernel to use the
/proc debugger interface.

Porting the server to other operating systems will involve replacing the
ptrace(), fork() and exec() calls with the equivalent calls (if they exist)
for the target operating system. Assuming it is possible to read and write a
subprocess’s memory and registers, this should not be difficult.

On operating systems where this is not possible you may have to link some low
level debugger functions into the debuggee and communicate between these
functions and the kernel through shared memory. On such operating systems,
there is also a need for a mechanism for detecting that the debuggee has
stopped at a breakpoint. How this is done will vary widely between operating
systems.

Few changes are likely to be needed to port the Evaluation Board Server to
other embedded systems that use the Digital UNIX PAL code interface. The
changes that will often be needed are as follows:

• If the system uses a different interrupt controller, then knullipl will have
to be rewritten.

• If the system’s PAL code does not implement the DBGSTOP PAL call,
then BPT PAL call should be used in its place. The code, used in the
initialization functions to set up system entry points, will have to be
altered to reflect this change.

If some other PAL code interface is used, then this will probably require
changes in how breakpoints are set and how the server’s entry points are
called when the debuggee hits a breakpoint or receives an interrupt. It may
also alter how much of the debuggee’s state is saved by the PAL code before
the server’s entry points are called from the PAL code, and the value of the
program counter that is passed to the server on reaching a breakpoint.

B–26 Writing a Remote Debugger Server

The most common problems that have arisen when modifying the code of the
debugger kernels are as follows:

• Errors when fixing the program counter when the server is reentered.

• Missing instruction barrier PAL calls. These are often difficult to find since
the problems they cause depend on the state of the processor’s internal
caches. A typical symptom of this problem is that the debuggee does not
stop at a breakpoint.

• Errors when saving or restoring the state of the debuggee. In particular,
errors when working out whether the debuggee is using the kernel or using
the user stack pointer.

B.10 The Breakpoint Table Handler: Interface Functions and
Implementation
The breakpoint table handler provides the following interface functions:

• void bptinitialize(void)—Initializes the breakpoint table.

• int bptinsert(address_value addr, instruction_value * savedinstr)—
Adds a breakpoint to the table. The address is addr and the instruction
to be saved is savedinstr. Returns SUCCESS if successful and a negative
error code otherwise.

• int bptremove(address_value address, instruction_value *
savedinstr)—Removes a breakpoint from the table. If successful, it
returns SUCCESS as its result and returns the saved instruction in
*savedinst . If it fails to remove the breakpoint, it returns a negative
error code as its result.

• int bptgetn(int n, address_value*address, instruction_value *
savedinstr)—Finds a breakpoint by breakpoint number. If it finds the
breakpoint it returns SUCCESS as its result. It also returns the address of
the breakpoint in *address and the saved instruction in *savedinst . If it
fails to find the breakpoint it returns a negative error code as its result.

• int bptgeta(address_value address, instruction_value *
savedinstr)—Finds a breakpoint by address. If it finds the breakpoint,
it returns SUCCESS as its result and returns the saved instruction in
*savedinst . If it fails to find the breakpoint, it returns a negative error
code as its result.

• int bptisbreakat(address_value address)—Returns true if there is a
breakpoint at address.

Writing a Remote Debugger Server B–27

• int bptfull(void)—Returns true if the breakpoint table is full.

The code for the breakpoint table handler is identical for the two servers. It
should not need to change for other server implementations. The source code is
in bptable.c . The table is implemented as 3 arrays of 100 entries each. The
breakpoint number of a breakpoint is used as an index into these arrays. The
three arrays are:

• In-use array

• Breakpoint addresses array

• Saved instructions array

New entries are inserted in the first available entry and entries are found by a
linear search.

B.11 Ladebug Remote Debugger Protocol
The Ladebug Remote Debugger Protocol is a request/response protocol running
over UDP. The debugger client (Ladebug) initiates all transactions sending
a request to the server. On receiving the request, the server acts upon the
request and sends a response.

If the client does not receive a response within a time-out, it repeats the
request (with an indication that the message is a duplicate). The time-out will
vary between a tenth of a second and 10 seconds depending on how long it took
to get responses to previous requests.

If the client does not receive a response, after a number of attempts and with
increasing retry time-outs, it assumes that the communication path to the
server has failed. The server never sends any messages except in response to
messages received from the client.

Section B.11.1.1 through Section B.12 describe more about the Ladebug remote
debugger protocol:

• Messages and formats

• Order of messages

• How to recover from packet loss

• The transport layer

B–28 Writing a Remote Debugger Server

B.11.1 Messages and Message Formats
This section describes the Ladebug Remote Debugger Protocol messages and
the format of each message.

B.11.1.1 Message Headers
Table B–3 shows header names, byte numbers, format, and contents of the
message headers. Section B.11.1.2 shows the possible values of the messages.

Table B–3 Header Format

Name
Byte
Number Format Content

Protocol
Version

0 Integer Should be 2

Retransmit
Count

1 Integer In requests, 0 the first time
a packet is transmitted: each
retransmission of packet
increments by a one.

In responses, The retransmit
count of the request.

Command
code

2 to 3 Integer in
network order,
most significant
byte first1

Identifies the type of request or
response.

Sequence
Number

4 to 7 Integer in
network order

Identifies the message.

Process ID 8 to 11 Integer in target
machine order,
least significant
byte first for
Alpha targets

Identifies the process being
debugged. The value is
not defined in load request
messages.

Return
value

12 to 16 Integer in
network order

Ignored in requests. In replies
tells the client whether the
requested action was successful,
and if not why not

.

1The protocol sends multibyte integer fields whose meaning is independent of the target
architecture in conventional network order (i.e most significant byte first). Examples of such
fields are the command code or byte counts. Multibyte integer fields that can only be interpreted
with knowledge of the target architecture, such as addresses or register values, are sent in target
machine order. For Alpha targets this means that such fields are sent least significant byte first.

Writing a Remote Debugger Server B–29

B.11.1.2 Message Values
Table B–4 explains the values returned by messages.

Table B–4 Message Table

Value Message Explanation

0 OK Request succeeded

1 Bad process ID The process ID of the message is not that of the
debuggee, or, in the case of Connect to Process,
the server could not connect to that process.

2 No resources The server did not have the resources to carry
out the request.

3 Not connected The server is not connected to a debuggee. The
request requires that it should be.

4 Not stopped The debuggee is running. The request can only
be carried out with the debuggee stopped.

5 Bad address The address given in the request is bad. The
precise meaning of this varies between the
different types of responses that can give this
return value.

6 Not implemented The server does not implement this request.

7 Bad load name See Section B.11.1.4

8 Already connected The server is already debugging the requested
debuggee.

9 Cannot disconnect from
process

See Section B.11.1.8

10 Cannot kill process See Section B.11.1.10

11 Cannot step See section Section B.11.1.12

B.11.1.3 Load Process Request and Response
The load process request is a request to the server to load a new process and to
start a new debugger session. They are transmitted in the request in the order
shown with no unused bytes between the fields. Section B.11.1.4 describes the
possible responses to a load process request.

Table B–5 shows the fields of the load process request:

B–30 Writing a Remote Debugger Server

Table B–5 Fields of the Load Process Request Message

Name Length Format Contents

Header 16 bytes See Table B–3 See Table B–3

Client User
Name

Variable Null terminated
character string

Name of the user of the client on
the host. This can be used by the
server to check that the client
is allowed to load the requested
process.

Server User
Name

Variable Null terminated
character string

User name of user to run the
process on the target. This will be
ignored by some servers.

Program Name Variable Null terminated
character string

Name of program to be loaded.
The form and interpretation of
this name will vary between
servers.

Number of
arguments

1 byte Integer Count of program argument fields

Arguments Variable Variable number of null
terminated strings. The
number of arguments
field gives the number of
strings.

Arguments to be passed to the
loaded process. May be ignored by
some servers.

Standard input Variable Null terminated string File name of a file to which
standard input is to be redirected.
An empty string (just a 0 byte)
indicates no redirection: otherwise
the interpretation of the file name
is server dependent.

Standard output Variable Null terminated
character string

Name of file to which standard
output is to be redirected. This file
name is interpreted in the same
way as the standard input file
name.

Standard error Variable Null terminated
character string

Name of file to which standard
error is to be redirected. This file
name is interpreted in the same
way as the standard input file
name.

Writing a Remote Debugger Server B–31

B.11.1.4 Responses to the Load Process Request
The command code for a Load Process request is 1. The server should ignore
the PID received in a Load Process request.

The fields of a Load Process response are:

• The headers described in Table B–5, with the process ID field set to the
process ID of the loaded process.

• A 1-byte processor type. At present the only defined type is 0, meaning an
Alpha processor.

• A 1-byte process type. At present the only defined process types are:

– Kernel process

– User process

• Possible failure reasons are:

– No resources—The server does not have the resources it requires to
create a new process.

– Bad load name—The server did not understand the name of the new
process, or could not load the named process.

– Not implemented—This server does not implement the load request.

The command code of a load response is 0x8001.

B.11.1.5 Connect to Process Request and Response
A connect request message requests that the server should start a debugger
session by connecting to an existing process on the host. The fields of a connect
request are:

• Packet header, as previously described. The process ID field identifies the
process to which the server should connect.

• Client user name, as in load requests.

• Server user name, format as in load requests: but only used to check that
the client has the correct privileges to debug the requested process.

The command code of a connect request is 2.

The format of a connect response is identical to that of a load response.
Possible failure reasons are:

• Bad process ID—The server did not understand the process ID or could not
connect to that process.

B–32 Writing a Remote Debugger Server

• No resources—The server does not have the resources it requires to create
or debug a new process. A server that can only debug one process at a time
will return this error if it is already debugging a process.

• Already connected—There is already a client connected to the same
process.

• Not implemented—This server does not implement the connect request.

The command code of a connect response is 0x8002

B.11.1.6 Connect to Process Insist Request and Response
A connect insist request message requests that the server should take over
debugging a process to which there may already be a server connected.
The formats of connect insist requests and responses are differ from those
of connect requests and responses only in the command codes. A Connect
to Process Insist request has a command code of 3 and its response has a
command code of 0x8003. A server should only return the Already Connected
failure reason if it could not terminate the old debugger session.

B.11.1.7 Probe Process Request and Response
The Probe Process request asks the server what the state of the debuggee is. It
contains no fields other than the standard header. Its command code is 0x81.

The Probe Process response returns the state of the debuggee. Following the
standard header (at byte 16) it contains a 1-byte integer field giving the state
of the debuggee. Possible values are:

• The debuggee is running.

• The debuggee has stopped at a breakpoint or following a single step.

• The debuggee has stopped unexpectedly. This might, for example, be as
a result of it receiving a signal or executing a bad instruction. This value
should also be returned if the debuggee has stopped as a result of a Stop
Process request.

• The debuggee has exited.

Possible failure reasons are:

• Bad process ID

• Not connected

The command code of Probe Process response is 0x8081.

Writing a Remote Debugger Server B–33

B.11.1.8 Disconnect from Process Request and Response
The Disconnect from Process request asks the server to disconnect from both
the current debuggee and the client. It will only succeed if the server can
disconnect from the debuggee without killing it, or if the debuggee is already
dead.

The effect on breakpoints of disconnecting from a process may vary between
servers. In particular, the protocol does not define whether disconnecting from
a stopped process will allow it to run on, or what happens if the processes
reaches a breakpoint after the server has disconnected from it.

The request contains no fields other than the message header. Its command
code is 0x82.

The Disconnect from Process response contains no fields other than the
message header. Possible failure reasons are:

• Bad process ID

• Not connected

• Cannot Disconnect from Process—The server cannot disconnect from the
debuggee without killing it

If the server cannot disconnect from the debuggee it will remain connected to
the client and to the debuggee. The command code of Disconnect from Process
response is 0x8082.

B.11.1.9 Stop Process Request and Response
The Stop Process request asks the server to stop a running debuggee as soon
as possible. It contains no fields other than the message header. Its command
code is 0x83.

The Stop Process response contains no fields other than the message header.
Possible failure reasons are:

• Bad process ID

• Not connected

• Not implemented—The server cannot stop running processes asyn-
chronously

The command code of Stop Process response is 0x8083.

B–34 Writing a Remote Debugger Server

B.11.1.10 Kill Process Request and Response
The Kill Process request asks the server to kill the current debuggee and
disconnect from the client. It will only succeed if the server can kill the
debuggee, or if the debuggee is already dead. The request contains no fields
other than the message header. Its command code is 0x84.

The Kill Process response contains no fields other than the message header.
Possible failure reasons are:

• Bad process ID

• Not connected

• Cannot Kill Process—The server cannot kill the debuggee

If the server cannot kill the debuggee it will remain connected to the client and
to the debuggee. The command code of Kill Process response is 0x8084.

B.11.1.11 Continue Process Request and Response
The Continue Process request asks the server to make the debuggee to run
on until it hits a breakpoint, terminates, is stopped by the server acting on a
Stop Process request, or stops for some other reason (e.g. executing a trap or
exception). It contains no fields other than the message header. Its command
code is 0xA1.

The Continue Process response contains no fields other than the message
header. Possible failure reasons are:

• Bad process ID

• Not connected

• Not stopped

If the debuggee is terminated the request will succeed: but its effect is
undefined. The command code of a Continue Process response is 0x80A1.

B.11.1.12 Step Request and Response
The Step request asks the server to make the debuggee execute one instruction.
It contains no fields other than the message header. Its command code is 0xA2.

The Step response contains no fields other than the message header. Possible
failure reasons are:

• Bad process ID

• Not connected

• Not stopped

Writing a Remote Debugger Server B–35

• Cannot step—The server cannot single step the debuggee at this point.
This might occur if, for example, the server would have to set a temporary
breakpoint on an address to which it cannot write to single step the
debuggee.

If the debuggee is terminated the request may succeed: but its effect is
undefined. The command code of a Step response is 0x80A2.

B.11.1.13 Set Breakpoint Request and Response
The Set Breakpoint request asks the server to set a breakpoint in the code of
the debuggee. Although a server is not required to be able to set a breakpoint
on any particular address to be useful it must be able set breakpoint on a
significant portion of the instructions of the debuggee.

The effect of setting a breakpoint on anything other than an instruction of the
debuggee is not defined. Furthermore, the effect of setting a breakpoint on an
instruction that the debuggee modifies or reads as data is not defined.

The fields of a Set Breakpoint request are:

• Message header

• Address of breakpoint—This is an 8-byte value sent in target machine byte
order

The command code of a Set Breakpoint request is 0xA3.

The Set Breakpoint response contains no fields other than the message header.
Possible failure reasons are:

• Bad process ID

• Not connected

• Not stopped

• Bad address—The server cannot set a breakpoint at the given address. The
server may also return this failure reason if there is already a breakpoint
at that address, although some servers can allow multiple breakpoints at
the same address.

• No resources—The server did not have sufficient resources to add another
breakpoint. The server may, for example, have a fixed sized breakpoint
table that is full.

The command code of a Set Breakpoint response is 0x80A2.

B–36 Writing a Remote Debugger Server

B.11.1.14 Clear Breakpoint Request and Response
The Clear Breakpoint request asks the server to remove a breakpoint from the
debuggee. Its fields are:

• Message header

• Address of breakpoint—This is an 8-byte value sent in target machine byte
order

The command code of a Clear Breakpoint request is 0xA4.

The Clear Breakpoint response contains no fields other than the message
header. Possible failure reasons are:

• Bad process ID

• Not connected

• Not stopped

• Bad address—The address is not the address of a breakpoint

The command code of a Clear Breakpoint response is 0x80A4.

B.11.1.15 Get Next Breakpoint Request and Response
Using Get Next Breakpoint requests the client can get a complete list of the
breakpoints known to the server that affect the current debuggee. In some
servers this will include breakpoints set in the debuggee by previous remote
debugger sessions or through an alternative interface. For example, in the
evaluation board server it includes breakpoints set by previous debugger
sessions and those set through the local debugger interface.

To get a complete list of breakpoints the client should start by sending a
Get Next Breakpoint with a breakpoint address of zero. It should then send
further Get Next Breakpoint requests each containing the address returned
by the previous Get Next Breakpoint response. A server that receives this
sequence of requests with no other requests intervening must return each
breakpoint it knows about precisely once. The protocol does not define the
order in which the server will return the breakpoints it knows about.

The fields of a Get Next Breakpoint request are:

• Message header

• Address of previous breakpoint or zero if this is a request for the first
breakpoint in the list. This is an 8-byte value sent in target machine byte
order.

Writing a Remote Debugger Server B–37

Note

A server must not set a breakpoint on address zero. This is not
regarded as a serious restriction.

The command code of a Get Next Breakpoint request is 0xA5.

The fields of a Get Next Breakpoint response are:

• Message header

• Address of breakpoint or zero if there are no more breakpoints to be
returned. This is an 8-byte value sent in target machine byte order

Possible failure reasons are:

• Bad process ID

• Not connected

• Not stopped

• Bad address—The address in the request is neither zero nor the address of
a breakpoint

The command code of a Get Next Breakpoint response is 0x80A5.

B.11.1.16 Get Registers Request and Response
The Get Registers request asks the server to send the client the contents of all
the debuggee’s registers and pseudo registers. It contains no fields other than
the message header. Its command code 0xA6.

The fields of the Get Registers response are:

• Message header

• Register list—For an Alpha target this is an array of 65 entries. Each
entry is 8 bytes long. The value in each entry is in target machine byte
order:

Entries 0 to 31 respectively contain the contents of fixed point registers
0 to 31.

Entries 32 to 63 respectively contain the contents of floating point
registers 0 to 31.

Entry 65 contains the debuggee’s current program counter.

Possible failure reasons are:

• Bad process ID

B–38 Writing a Remote Debugger Server

• Not connected

• Not stopped

The command code of a Get Registers response is 0x80A6.

B.11.1.17 Set Registers Request and Response
The Set Registers request asks the server to all the debuggee’s registers and
pseudo registers: including the debuggee’s program counter. The request
succeeds even if it is unable to change the values of some of the registers. Its
fields are:

• Message header

• Register list—For an Alpha target this is an array of 65 entries. Each
entry is 8 bytes long. The value in each entry is in target machine byte
order:

Entries 0 to 31 respectively contain the contents of fixed point registers
0 to 31.

Entries 32 to 63 respectively contain the contents of floating point
registers 0 to 31.

Entry 65 contains the debuggee’s current program counter.

The command code of a Set Registers request is 0xA7.

A Set Registers response contains no fields other than the message header.
Possible failure reasons are:

• Bad process ID

• Not connected

• Not stopped

The command code of a Set Registers response is 0x80A7.

B.11.1.18 Read Request and Response
A Read request asks the server to read a portion of the debuggee’s memory. Its
fields are, in order:

• Message header

• Start address—The address of the first byte to read. This is an 8-byte
value sent in target machine byte order.

• Number of bytes to read—This is a 4-byte value in sent network order.

Its command code is 0xA8.

Writing a Remote Debugger Server B–39

The fields of a Read response are, in order:

• Message header

• Start address—The address of the first byte read. This is an 8-byte value
sent in target machine byte order.

• Number of bytes read—This is a 4-byte value in sent network order.

• Data read—This is a sequence of bytes. Its length is given by the previous
field.

Possible failure reasons are:

• Bad process ID

• Not connected

• Not stopped

• Bad address—The server could not read data from the given address range

The command code of a Read response is 0x80A8.

B.11.1.19 Write Request and Response
A Write request asks the server to overwrite a portion of the debuggee’s
memory. Its fields are, in order:

• Message header

• Start address—The address of the first byte to read. This is an 8-byte
value sent in target machine byte order.

• Number of bytes to write—This is a 4-byte value in sent network order.

• Data to write—This is a sequence of bytes. Its length is given by value of
the previous field.

Its command code is 0xA9.

A Write response contains no fields other than the message header. Possible
failure reasons are:

• Bad process ID

• Not connected

• Not stopped

• Bad address—The server could not write data to some address in the given
address range.

The command code of a Write response is 0x80A9.

B–40 Writing a Remote Debugger Server

B.11.2 Order of Messages
A server can be modeled as a single control thread plus a debuggee thread for
each debuggee. Each thread is uniquely identified by its UDP port number.
Once a client has sent a message to a thread, it cannot send further messages
to that thread (other than copies of the original message) until it receives a
response.

A server (control or debuggee) thread can only send responses to the requests
it receives. Servers threads are expected to respond promptly to all requests
they receive. A server thread must never send more than one response to each
message it receives. If it receives a duplicate request it must send a copy of
its original response, with an updated retransmission count, without acting a
second time on the request.

The only messages a client can send to a control thread are Connect to Process,
Connect to Process Insist, and Load Process requests. A positive response to
either of these requests identifies a new debuggee thread that the client should
use for debugging the new debuggee.

Note

None of the previous information suggests that a server must be
implemented as a multithreaded program. A server that can only
debug one process at a time can send replies containing no resource
failure codes to clients that attempt to connect to it when it is already
debugging a process.

A debuggee thread can be in either running or stopped state. Initially a
debuggee thread is in running state. In running state it will accept the
following requests:

• Probe Process

• Stop Process

• Disconnect from Process

• Kill Process

The client must not send any other requests to a debuggee thread when it is in
running state. A debuggee thread will enter stopped state from running state
whenever the debuggee stops. The client can discover the state of a debuggee
thread by sending it a probe request. Any debuggee state other than running
indicates that the debuggee thread is in stopped state. When it is in stopped

Writing a Remote Debugger Server B–41

state, the client can send the debuggee thread any request except Connect to
Process, Connect to Process Insist, or Load Process.

A debuggee thread will return from stopped state to running state when it
receives a Continue or Step request that it can act upon.

A debuggee thread will exit immediately after sending a positive Disconnect
from Process or Kill Process response. It can also exit at any other time, either
through some external cause, or as a result of some other client taking over the
debuggee using a Connect to Process Insist request. Once a debuggee thread
has exited the server will either ignore requests sent to it or send responses
with not connected failure codes.

B.11.3 Recovering from Packet Loss
The standard packet header contains two fields that are used to recover from
packet loss:

• The sequence number

• The retransmission count

The sequence number is used to distinguish between different messages.
The retransmission count is used to distinguish between copies of the same
message. A client should give every message it sends to a particular server
thread a different sequence number.

To avoid confusion between different clients started by the same user on the
same host, it should also attempt to give load and connect requests sequence
numbers that will not be used by other clients. One way to do this would be to
base the sequence number upon the time at which the message is sent.

The first time it sends a message it will give it a retransmission count of 0.
If it does not receive a response to a request within a reasonable time, it will
increment the retransmission count and repeat the message. If after a number
of attempts it has still not received a response with the same sequence number
and retransmission count as the last message it sent it will assume that the
server thread had exited or communications link has failed.

Note

The best values for "reasonable time" and "a number of attempts"
are still being under investigation. At present, Ladebug starts off
by waiting 1.6 seconds. Each time it receives a response within its
time-out it halves its time-out down to a minimum of 1/10 of a second.

B–42 Writing a Remote Debugger Server

Each time it fails to receive a response it doubles its time-out up to
a maximum of 12.8 seconds. It makes a maximum of 8 attempts at
sending any message.

On receiving a duplicate packet, the server should copy the new retransmission
count into its original response and send this updated response to the client.

The server cannot normally detect communication failure and will wait
indefinitely for messages from a client.

B.12 Transport Layer
The Ladebug Remote Debugger Protocol uses UDP running over an IP network
layer as its transport. The client can use any UDP socket as its source but will
always send load and connect requests to UDP socket 410. If the request is
successful, the response will have as its source socket the socket allocated to
the new debuggee thread. The client will send all messages for this debuggee
thread to this socket.

Note

This socket has been allocated to this protocol by the Internet Assigned
Number Authority (IANA).

The server should always send responses to the source socket of the associated
request. The source socket for any message sent by the server should be
either 410 (for responses to rejected load and connect messages) or the socket
allocated to associated debuggee thread (for all other messages).

Writing a Remote Debugger Server B–43

C
Support for International Users

Ladebug’s international support is dependent on the support available in the
underlying system. International support is provided through the global locale
of the debugger, which is set automatically from the external user environment
when you invoke the debugger.

The locale information can be printed using the debugger variable $lc_ctype .
This (read-only) variable specifies the value of the current LC_CTYPE locale
category in the debugger, which is used for all data interpretations.

Ladebug’s international support provides the features described in Section C.1
through Section C.3.

C.1 Support for Input of Local Language Characters in User
Commands

Ladebug supports the input of local language characters in user commands.
It analyzes user input commands to recognize and process locale-based text
(including multibyte characters) in language specific expressions: file names,
function names, variable names and values, debugger variable names and
values, alias names and parameters, and the debugger prompt.

This support is based on the specific capabilities of the programming language
of the debugged unit and of the global debugger locale.

C.2 Support for Output of Local Language Characters
Ladebug prints all character data according to the current global locale set in
the debugger.

Ladebug checks the character to be printed to see if it is a special character
that is printed as an escaped expression (for example, (char)8 is printed as
\\t). Ladebug then checks the XPG4 appropriate functions to find out if the
character is a printable character in the current locale. If it is, the character
is printed as is. Otherwise, the character is printed in octal notation (for
example, (char)1 is printed as \\001).

Support for International Users C–1

C.3 Support for Wide Character Type (wchar_t) in C and C++
Programs

Ladebug prints wcharacters of type wchar_t and wide strings of type wchar_t
* in readable format, similar to their literals L’X’ and L"XYZ" (where X, Y ,Z
are character codes encoded in the current global locale).

Wide character/string input is accomplished by entering literals in the forms
accepted by C and C++ compilers.

The display of these entities is made available through extensions to the
following debugger commands:

• startaddress, endaddress / mode

• startaddress / count mode

Specify C mode (uppercase) to print each sizeof (wchar_t) as a wide character.

Specify S mode (uppercase) to print the contents of memory as a wide string.

Use the following command to print the result of the expression for wide
characters or wide strings:

$ print expression [,...]

Wide characters in C and C++ are interpreted as unsigned integers by the
Digital UNIX compilers and set as such in the symbol tables of object files.
As a result, Ladebug can’t distinguish between an unsigned int data and a
wchar_t in the symbol table. You must specify the debugger variable $wchar_t
to determine the user-preferred output format for unsigned integer expressions
(either as integers or as wide characters/strings). If $wchar_t has a non-zero
value, a wide character is printed in the format of L’X’ in accordance with the
codeset of the current locale. A wide string is printed in an L"XXXX" format.

Using the following form,

$ printf [format [expression,...]]

specify format specifier %C (uppercase) to print a wide character and format
specifier %S (uppercase) to print a wide string.

Non printable wide characters (as determined by XPG4 library iswprint()
function) will be printed as escaped character expressions.

C–2 Support for International Users

Index

-c option to ladebug command, REF–1
-fpe n flag, 11–15
-g0 flag, 11–3, 13–2
-g1 flag, 11–3, 13–2
-g2 or -g flag, 11–3, 13–2
-g3 flag, 11–3, 13–2
-I option to ladebug command, REF–1
-iow option to dxladebug command,

REF–3
-k option to ladebug command, REF–3
-ladebug flag, 11–3
-line option to ladebug command,

REF–3
-nosharedobjs option to ladebug

command, 16–1, REF–2
-On (optimization) flags

relationship with -g n flags, 11–3, 13–2
-pid option to ladebug command, REF–2
-prompt option to ladebug command,

REF–2
-remote option to ladebug command,

REF–3
-rfn option to ladebug command, REF–2
-rinsist option to ladebug command,

REF–2
-rn option to ladebug command, REF–2
-rp option to ladebug command, REF–3
-ru option to ladebug command, REF–2
-tty option to ladebug command, REF–3

A
Abort function, 3–8
Access variable

monitoring, 4–23
Accesses

alignment, 9–23
Activation

breakpoint, 3–7, 4–13
Ada

data types, 12–8
features supported, 12–1
language debugging support, 12–1
limitations, 12–6
symbolic names, 12–2
tasking programs, 12–9

ada command
debugging flags, 12–1

addstb command, 22–1
Aggregates

displaying value of, 4–20
monitoring, 4–22

alias command, 7–5, 15–1, REF–16
defining alias with quoted string,

REF–16
defining nested alias, REF–16

Alias command
maximum number of arguments, REF–41

Aliases
nesting, 7–6
predefined, 7–5, REF–17

Alignment
accesses, 9–23

Index–1

Alternate entry points (Fortran), 11–13
Ambiguous references, resolving, 10–9
Annotation area pop-up menu, 2–20
Arithmetic exception handling

floating-point
ladebug handling, 11–15

signals
ladebug handling, 11–15

Arithmetic exceptions
-fpen flag, 11–15

Array sections
accessing Fortran, 11–7

Array types, 4–20, 4–21, 4–22
Arrays

expression syntax for Ladebug, 11–7
Fortran, 11–8

Arrow key
bindings, 7–11

$ascii debugger variable
setting, 12–3

assign command, 8–13, 18–3, REF–18
attach command, REF–18

processes, 7–22
Attach to process, 5–2

B
$beep variable, 7–11
bptr pointer, 10–21
Breakpoint

setting in Instruction View, 4–10
Breakpoint View, 2–11, 4–12

pop-up menu, 2–22
breakpoints

setting, 7–14
Breakpoints, 9–5

action, 4–15
activating, 3–7, 4–13
canceling, 4–13
conditional, 4–14
deactivating, 4–13
defined, 2–3, 4–9
displaying, 4–12
in overloaded functions, 10–14
instruction, 4–10

Breakpoints (cont’d)
on routine, 4–11
on source line, 4–9
reactivating, 9–18
saving when rerunning program, 3–7
setting, 4–9, 9–5 to 9–13, 10–11
that execute commands, 9–11

Browse Source, 4–3
Buffers

emacs debugging, A–2
Buttons

debugger push-button panel, 2–10
customizing, 4–34

C
C++ language debugging support, 10–1 to

10–22
C++ predefined function

terminate , 10–19
unexpected , 10–19

call command, 9–20, 10–3, 16–5, REF–18
Call stack

and instruction display, 4–28
and register display, 4–28
and source display, 4–27
and symbol search, 4–27
displaying, 4–27

Call Stack
displaying, 4–6

Call Stack menu, 2–9
Case insensitivity

Fortran, 11–4
Case-sensitive

symbolic variable names in the debugger,
12–2

catch command, REF–18
catch unaligned command, 9–23,

REF–19
$catchexecs variable, 5–4
$catchforks variable, 5–4
Catching unaligned accesses, 9–23
CDE

debugger integration, 3–1

Index–2

CDE access, 1–4
class command, 10–3, REF–19
Class scope, setting, 10–3
COBOL

features supported, 13–1
Limitations on debugging, 13–10

cobol command
debugging flags, 13–2

COBOL language debugging support, 13–1
Command customization, 2–5
Command interface, 2–24

debugger
with window, 2–24

integration, 2–5
Command Message View, 2–3, 2–11, 2–24
Command-line editing, 7–11
Commands

See Debugger commands
multiple on one line, 7–3

Comment (#) command, REF–15
Comments, reader’s

sending, xxvi
Common block

accessing variables, 11–5
Compiler command-line options, 7–13
Compiler flags for debugger, 1–4
Compiling

for debugging, 1–3
Complex variables

Fortran, 11–11
Concepts

overview, 1–1
Constructors and Destructors, setting

breakpoints in, 10–15
cont command, 7–18, 9–4, REF–19

with multithreaded applications, 19–4
Context

changing thread, 5–3
Context-sensitive pop-up menus, 2–19
Continue button, 2–10, 4–7
Control key

bindings, 7–11
Convenience features

debugger, 2–1

Core dump analysis, 22–7
Core file debugging

and $threadlevel , 19–1
Core files, debugging, 14–1 to 14–8, 22–7
core_file parameter to ladebug

command, REF–3
Crash dump analysis, 22–7, 22–19
CRAY-style pointer variables, 11–8
Current context

definition of, 8–5
language, 8–8
of function, 8–6

Customization, 4–32
buttons on push-button panel, 4–34
debugger, 2–5

window interface, 4–32
debugger resource file, 4–38
source display of line numbers, 4–34
startup window configuration, 4–33

D
Data members, examining, 10–3
.dbxinit file, 15–1, REF–2, REF–24,

REF–33
Debugger

attach to process, 9–25
attach to process when invoking, 7–22
command interface

with window, 2–24
customizing, 4–32
features, 1–2
Ladebug graphical user interface, 2–1
online help, 2–25
resource file, 4–38
starting, 3–6
terminating, 3–8

Debugger commands, 2–24, REF–3 to
REF–41

alias , 7–5, 15–1, REF–16
alias,

defining alias with quoted string,
REF–16

defining nested alias, REF–16
assign , 8–13, 18–3, REF–18

Index–3

Debugger commands (cont’d)
attach , REF–18
attach

processes, 7–22
backslash as continuation character,

REF–3
call , 9–20, 10–3, 16–5, REF–18
catch , REF–18
catch unaligned , REF–19
catch unaligned , 9–23
class , 10–3, REF–19
comment (#), REF–15
(comment), REF–15
cont , 7–18, 9–4, REF–19
cont

multithreaded applications, 19–4
delete , 7–19, 9–5, 9–16, REF–19
delsharedobj , 16–2, REF–20
detach , REF–20
detach

processes, 7–24
disable , 9–5, 9–17, REF–20
displaying class information, 10–4
down, 8–6, 16–7, REF–20
dump, 8–11, REF–21
enable , 9–18, REF–21
endaddress , REF–15
<examine address> , 18–1
executed from script files, 15–3
export , 9–26, REF–21
file , 8–7, 9–7, REF–21
func , 8–6, 16–7, REF–22
goto , 9–4, REF–22
help , REF–22
history , 7–4, 7–7, REF–22
ignore , REF–22
ignore unaligned , REF–23
ignore unaligned , 9–23
kill , 9–2, REF–23
kill

processes, 7–24
kps , REF–23
ladebug , 14–1
list , 7–13, 8–1, 16–3, REF–23
listobj , 16–2, REF–23

Debugger commands (cont’d)
load , 20–2, REF–23
maximum length, REF–3
next , 7–16, 9–2, REF–24
nexti , 18–4, REF–24
online help, 2–25
patch , REF–24
playback input , 15–4, REF–24
pop , 9–24, REF–25
print , 7–15, 8–8, 18–3, REF–25
printenv , 9–26, REF–25
printf , REF–26
printregs , 18–3, REF–26
process , REF–26
quit , 7–19, 9–2, REF–26
readsharedobj , 16–2, REF–26
recalling previous used, 7–7
record input , 15–2, 15–4, REF–27
record io , 15–2, REF–27
record output , 15–2, REF–27
repeating, 7–7
rerun , 7–15, 9–1, REF–27
return , 9–19, REF–27
run , 7–15, 9–1, REF–27
separating with semicolon, REF–3
set , 7–3, 15–1, REF–27
setenv , 9–26, REF–31
sh , 7–9, REF–32
show condition , 19–6, REF–32
show mutex , 19–7, REF–32
show process , REF–33
show thread , 19–5, REF–33
source , 15–3, 15–4, REF–33
startaddress , REF–15
status , 7–19, 9–16, REF–33
step , 7–16, 9–2, 9–19, 16–5, REF–34
step

multithreaded applications, 19–3
stepi , 18–4, REF–34
stop , 9–6, REF–34

multithreaded applications, 19–3
stop at , 7–14, 9–7, 9–11
stop if , 9–10
stop in , 7–14, 9–8, 9–9, 9–11, 10–11,

10–13, 10–15, REF–35

Index–4

Debugger commands (cont’d)
stopi , 9–6, REF–36
stopi at , 9–7, 9–11
stopi if , 9–10
summary by functional relationships,

REF–4
thread , 19–2, REF–36
trace , 7–20, 9–13 to 9–15, REF–37

multithreaded applications, 19–3
tracei , 9–13 to 9–15, REF–37
unalias , 7–5
unload , 20–3
unset , 7–5, REF–27
unsetenv , 9–26, REF–38
unuse , REF–39
up , 8–6, 16–7, REF–38
use , 8–3, 15–1, REF–39
whatis , 8–9, 10–4, 10–10, 10–16, 10–20,

REF–39
when, 9–11, REF–39

multithreaded applications, 19–3
wheni , 9–11, REF–40
where , 7–17, 8–4, 16–7, REF–41
where thread , REF–41
where thread * , REF–41
where thread all , REF–41
whereis , 8–12, REF–41
which , 8–12, REF–41
with window, 2–24

Debugger environment variable,
$listwindow , 8–1

Debugger environment, customizing, 7–3
Debugger flags, 10–2
Debugger I/O Window, 2–4
Debugger variable

$threadlevel , 19–1
$verbose , 19–4

Debugger variables
$curthread , 19–2
$tid , 19–2, 22–2

Debugger variables, predefined, REF–28
multiprocess, 20–6

Debugging
compiling source code for, 1–3
example session, 7–1

Debugging (cont’d)
programs with stripped images, 9–26
technique, 1–3

Debugging attached processes
restrictions for, 9–25

Debugging buffers
emacs, A–2

Debugging shared libraries, 16–1 to 16–7
DEC Ada

See Ada
DEC COBOL

See COBOL
DEC Fortran

See Fortran
DEC Fortran 90

See Fortran
DECthreads

example debugging, 19–8
DECthreads mode

setting, 5–3
delete command, 7–19, 9–5, 9–16,

REF–19
delsharedobj command, 16–2, REF–20
delstb command, 22–1
Depositing

into register, 4–30
Dereferencing pointers, 8–11
Derived-type

accessing variables, 11–5
detach command, REF–20

processes, 7–24
Detach from process, 5–2
Detach Process dialog box, 5–3
Directories, source file, 8–3
disable command, 9–5, 9–17, REF–20
Disassembling memory addresses, 16–7
Display modes

for examining memory addresses,
REF–15

for stored values, REF–15
Display Source, 4–3
down command, 8–6, 16–7, REF–20
Drivers, loadable, 22–20

Index–5

dump command, 8–11, REF–21

E
Editing

command line, 7–11
source file, 4–5

$editline variable, 7–11
Editor

integration, 2–5
using Ladebug within emacs, A–1

Elaboration code
accessing in Ladebug, 12–5

emacs
using Ladebug within, A–1

enable command, 9–18, REF–21
endaddress command, REF–15
<examine address> command, 18–1
Examining

register, 4–30
variable, 4–21

Example
debugging multithreaded program, 19–8

Exception handler support, 10–19
Exceptions

-fpen flag, 11–15
using Ladebug to locate, 11–15, 12–10

Exceptions, handling, 9–4
Exclamation point

to repeat last command line, REF–15
executable_file parameter to ladebug

command, REF–3
Execution

interrupting
with Interrupt button, 3–8

starting or resuming
with Continue button, 4–7
with Next button, 4–8
with Return button, 4–9
with Step button, 4–8

suspending
with breakpoint, 4–9
with instruction breakpoint, 4–10

Exiting the debugger, 3–8, 7–19
export command, 9–26, REF–21
Expressions, evaluating, 8–9

F
f77 command

debugging flags, 11–2
f77 flags controlling symbol table contents,

11–2
f90 command

debugging flags, 11–2
f90 flags controlling symbol table contents,

11–2
Features

debugger convenience, 2–1
new and changed for V4.0, xxvii
overview, 1–2

file command, 8–7, 9–7, REF–21
File scope, 8–12

specifying, 8–7
Flags

compiler for debugger, 1–4
fork/exec example

multiprocess debugging, 5–4
Fortran

alternate entry points, 11–13
features supported, 11–1
language support, 11–1
limitations, 11–12

func command, 8–6, 16–7, REF–22
Function calls, nesting, 9–21
Function command, 8–6
Functions

alternate entry points in Fortran, 11–13
calling, 9–20
current context, 8–6

G
Generic unit source code

accessing in Ladebug, 12–3
goto command, 9–4, REF–22

Index–6

Graphical user interface
Ladebug, 2–1

GUD buffer
emacs, A–2

H
Help

online, 2–5
online, debugger, 2–25

help command, REF–22
history command, 7–4, 7–7, REF–22
$historylines variable, 7–4, 7–7

I
I/O Window, 2–4
ignore command, 11–15, REF–22
ignore unaligned command, 9–23,

REF–23
Ignoring unaligned accesses, 9–23
Incomplete types

accessing in Ladebug, 12–6
Initialization

debugging session, 3–6
Initialization file, 15–1
Inlined member function, trying to examine,

10–8
Input/output window, 2–4
Instruction

display, 4–31
Window, 4–31

Instruction breakpoints
setting, 4–10

Instruction View
pop-up menu, 2–23

Instructions
display

for routine on call stack, 4–28
optimized code, 4–31

Integer types, 4–20
Interfaces

overview, 1–4

Interrupt button, 2–10, 3–8
Interruption

command execution, 3–8
program execution, 3–8

Invoking debugger, 3–1, 3–6
Invoking Ladebug

from emacs, A–1
Invoking the debugger

attaching to process, 7–22
ISO Latin-1 characters, 12–3

K
kdebug debugger, 22–14
Kernel debugging, 22–1 to 22–20

compiling for, 22–1
crash dump analysis, 22–19
kdbx , 22–4
kdebug debugger, 22–14
local, 22–3
remote, 22–14
security, 22–1

kill command, 9–2, REF–23
processes, 7–24

kps command, REF–23

L
Ladebug

features, 1–2
ladebug command, 14–1
ladebug command line, REF–1
$lang debugger variable

setting, 12–2
$lang variable, 7–4, 8–8
Language

support, 1–2
Language mode, setting, 8–8
Language support

Ada, 12–1
C++, 10–1 to 10–22
COBOL, 13–1
Fortran, 11–1

Index–7

Latin-1 character set
accessing in Ladebug, 12–3

Line numbers
displaying or hiding at startup, 4–34
in source display, 4–1

Linking
for debugging, 1–3

list command, 7–13, 8–1, 16–3, REF–23
Listing active breakpoints, 7–19
listobj command, 16–2, REF–23
$listwindow debugger environment

variable, 8–1
load command, 20–2, REF–23
Loadable drivers, 22–20
Local variable

monitoring, 4–20
Local Variables View

pop-up menu, 2–22

M
Machine code debugging, 18–1 to 18–5

programs with stripped images, 9–26
Machine instructions, stepping through,

18–4
Machine-level registers, 18–3
Main Window

default configuration, 2–6
Member functions

on stack trace, 10–8
setting breakpoints in, 10–11

Memory address
display modes, REF–15

Memory address, content of, 18–3
Memory addresses, 18–1

contained in variables, 8–11
Menus

context-sensitive pop-up, 2–19
Main Window, 2–6
pop-up, 2–4

Message region pop-up menu, 2–21
Mixed-language program debugging, 11–14,

12–2, 13–10

Mode
thread, 5–3

Modes
for displaying memory addresses,

REF–15
Modes for displaying values, REF–15
Module variables

Fortran 90, 11–8
Monitor button, 2–10, 4–21
Monitor View, 2–11, 4–21

pop-up menu, 2–22
Motif access, 1–4
Multiple units in one source file

accessing in Ladebug, 12–4
Multiprocess debugging, 20–1
Multiprocess programs

debugging, 5–4
Multithreaded applications

debugging, 19–1 to 19–12
example debugging, 19–8

N
Native thread mode

setting, 5–3
Nested alias, REF–16
Nesting function calls, 9–21
next command, 7–16, 9–2, REF–24
Next button, 2–10, 4–8
nexti command, 18–4, REF–24

O
Object file

contents, 11–2, 13–2
flags controlling size of, 11–2, 13–2

Online help, 2–5
Operators and expressions

printing in Ladebug, 12–7
Optimization

disabling for debugger, 1–4
effect on debugging (ladebug), 11–16
effect on debugging (Ladebug), 12–11

Index–8

Optimized programs, 11–16
Optional Views, 2–4
Overloaded functions, setting breakpoints,

10–14
$overloadmenu variable, 10–9

P
Panel

push-button, 2–3
Source View Context, 2–3

Parameter
monitoring, 4–20

patch command, 22–2, REF–24
Pathnames

to specify scope, 4–29
$pimode variable, 15–4
playback input command, 15–4, REF–24
Pointer variable

monitoring, 4–23
Pointer variables

Fortran, 11–8
Pointers, 18–3

dereferencing, 8–11
pop command, 9–24, REF–25
Pop-up menus

context-sensitive, 2–4
using, 2–19

Predefined debugger variables, 20–6,
REF–28

print command, 7–15, 8–8, 18–3, REF–25
displaying class information, 10–4

Print button, 2–4, 2–10, 4–21
printenv command, 9–26, REF–25
printf command, REF–26
Printing base pointer information, 10–21
printregs command, 18–3, REF–26
Problem reports, xxvii
Process

attaching, 7–22
detaching, 7–24
loading, 20–2
removing information, 20–3
terminating, 7–24

process command, REF–26
Process menu, 2–9
Process Selection dialog box, 5–2
Processes

debugging multiple, 5–4
Process/thread indicator, 2–4
Program counters (PCs)

scope, 4–29
Program execution, 9–1 to 9–28
Program I/O window, 2–4
Programs

bringing under debugger control, 3–1,
3–7

rerunning under debugger control, 3–7
termination, 3–6

Programs with limited debugging
information, 17–1

Prompts
debugger, 2–24

Push buttons, 2–3
Push-button label customization, 2–5
Push-button panel

customizing buttons on, 4–34

Q
Qualification

of symbol, by file name, 8–12
quit command, 7–19, 9–2, REF–26
Quoted string as part of alias definition,

REF–16

R
Reader’s comments, sending, xxvi
readsharedobj command, 16–2, REF–26
record input command, 15–2, 15–4,

REF–27
record io command, 15–2, REF–27
record output command, 15–2, REF–27
Record structures

accessing variables, 11–6
Record types, 4–21, 4–22

Index–9

Recording sessions, 15–2
References

resolving ambiguous, 10–9
to objects, resolving, multiple inheritance,

10–8
Referencing memory addresses, 8–11
Register usage

optimization effects on debugging, 11–16
Register View, 4–30

pop-up menu, 2–23
Registers

depositing into, 4–30
display, 4–30

for routine on call stack, 4–28
examining, 4–30
view, 4–30

Remote debugging
environment, 21–1
overview of, 21–1

Remote kernel debugging, 22–14
Remote processes, 21–1
Repeating last command line

using exclamation point, REF–15
$repeatmode variable, 7–7
rerun command, 7–15, 9–1, REF–27
Rerunning programs

under debugger control, 3–7
Resource file, debugger

customizing, 4–38
Restrictions

debugging attached processes, 9–25
return command, 9–19, REF–27
Return button, 2–10, 4–9
Routines, 4–3

breakpoint on, 4–11
Call Stack sequence, 4–6
displaying instructions for, on call stack,

4–28
displaying register values for, on call

stack, 4–28
displaying source code for, on call stack,

4–27
returning from, 4–9
stepping into, 4–8

run command, 7–15, 9–1, REF–27
Running programs

under debugger control, 3–1, 3–7
Run/rerun program, 2–4

S
Saving breakpoints, 3–7
Scope

current, 4–27
file, 8–7
for instruction display, 4–28
for register display, 4–28
for source display, 4–27
for symbol search, 4–27, 4–29
of variable or other symbol, 8–12
program counter (PC), 4–29
relation to call stack, 4–27
setting, 4–27

Scopes
search list, 4–29

Script files, 15–1
Search commands / and ?, REF–16
Search directories, 8–3
Search lists

scope, 4–29
set command, 7–3, 15–1, REF–27
setenv command, 9–26, REF–31
Setting breakpoints, 7–14, 9–5 to 9–13,

10–11
in C++ exception handlers, 10–19
in constructors and destructors, 10–15
in member functions, 10–11
in templates, 10–17

Setting language mode, 8–8
sh command, 7–9, REF–32
Shared libraries

debugging, 16–1 to 16–7
disassembling, 16–7
symbol table information, 16–1

Shell command, used to get file information,
7–10

show condition command, 19–6, REF–32

Index–10

show mutex command, 19–7, REF–32
show process command, REF–33
show thread command, 19–5, REF–33
Signals

Ladebug ignore command, 11–15
Signals, sending and testing, 9–4
source command, 15–3, 15–4, REF–33
Source browser pop-up menu, 2–21
Source buffer

emacs, A–2
Source code, listing, 8–1
Source display, 4–1

discrepancies in, 4–3, 4–4
for routine on call stack, 4–27
not available, 4–4
optimized code, 4–3
source browser, 4–3

Source files
location, 4–4
not available, 4–4

Source lines
breakpoint on, 4–9
not available, 4–4

Source View, 2–2, 2–9
Source View Context Panel, 2–3, 2–9
Source View pop-up menu, 2–19
Stack trace, 7–17, 8–4

member functions on, 10–8
startaddress command, REF–15
Starting debugger, 3–1, 3–6
status command, 7–19, 9–16, REF–33
step command, 7–16, 9–2, 9–19, 16–5,

REF–34
with multithreaded applications, 19–3

Step button, 2–10, 4–8
$stepg0 variable, 9–3
stepi command, 18–4, REF–34
Stepping, program execution, 9–2
stop command, 9–6, REF–34

with multithreaded applications, 19–3
stop at command, 7–14, 9–7, 9–11
stop if command, 9–10

stop in command, 7–14, 9–8, 9–9, 9–11,
10–11, 10–13, 10–15, REF–35

stopi command, 9–6, REF–36
stopi at command, 9–7, 9–11
stopi if command, 9–10
stopi in command invalid, REF–36
$stoponattach variable, 5–2
$stopparentonfork variable, 5–4
Stripped images

debugging programs with, 9–26
Subroutines

alternate entry points in Fortran, 11–13
Symbol table

created by compiler, 13–3
flags for, 11–3, 12–1, 13–2
information for shared library, 16–1

Symbolic Information
debugging programs with limited, 17–1

Symbols
not unique, 4–27, 4–29
resolving ambiguities, 4–27, 4–29
scope determination, 8–12
search based on call stack, 4–27, 4–29

System commands
executing from the debugger, 7–9

T
Techniques

advanced debugging, 5–1
Templates

debugging limitations, 10–22
for classes and functions, 10–16

terminate C++ predefined function, 10–19
Terminations

debugging session, 3–8
program, 3–6

Text selection
language-sensitive, 4–19

this pointer, 10–8, 10–13
Thread

selecting, 5–3
thread command, 19–2, REF–36

Index–11

Thread menu, 2–9
Thread mode

displaying, 5–3
$threadlevel variable, 19–1
Threads

debugging multiple, 5–3
example debugging, 19–8

trace command, 7–20, 9–13 to 9–15,
REF–37

with multithreaded applications, 19–3
tracei command, 9–13 to 9–15, REF–37
Tracepoints, 9–13 to 9–15

for variables, 7–20
reactivating, 9–18

Type conversions, 18–3
Type signatures, of member functions, 10–5
Types

array, 4–20, 4–21, 4–22
integer, 4–20
record, 4–21, 4–22
structure, 4–21, 4–22

U
unalias command, 7–5
Unaligned accesses

catching and ignoring, 9–23
Unconstrained array types

accessing in Ladebug, 12–5
unexpected C++ predefined function,

10–19
unload command, 20–3
unset command, 7–5, REF–27
unsetenv command, 9–26, REF–38
unuse command, REF–39
up command, 8–6, 16–7, REF–38
use command, 8–3, 15–1, REF–39
User interface options, 1–4

V
Variable

monitoring pointer, 4–23

Variables
accessing common block, 11–5
accessing derived-type, 11–5
accessing record structures, 11–6
changing value, 8–13
containing memory addresses, 8–11
creating and modifying in the debugger,

7–3
displaying value of, 4–20
evaluated at execution time, 9–10
examining, 4–21
Fortran array, 11–7
Fortran complex, 11–11
Fortran pointer, 11–8
monitoring, 4–21
monitoring local, 4–20
of active function, 8–11
optimized code, 4–26
predefined for the debugger, 20–6,

REF–28
scope determination, 8–12
selecting name from window, 4–19
uninitialized, 4–26

$verbose variable, 10–20, 19–4
Verbose mode debugging, 10–20
Version 4.0 features, xxvii
View

Breakpoint, 2–11, 4–12
Command Message, 2–3
Instruction, 4–31
Monitor, 2–11, 4–21
Register, 4–30
Source, 2–2
startup configuration, 2–6

View customization, 2–5

W
whatis command, 8–9, 10–4, 10–10, 10–16,

10–20, REF–39
displaying class information, 10–4

when command, 9–11, REF–39
with multithreaded applications, 19–3

Index–12

wheni command, 9–11, REF–40
where command, 7–17, 8–4, 16–7, 19–6,

REF–41
where thread command, 19–6, REF–41
where thread * command, REF–41
where thread all command, REF–41
whereis command, 8–12, REF–41

which command, 8–12, REF–41
Window

for debugger command interface, 2–24
for entering debugger commands, 2–24
Instruction, 4–31
Optional Views, 2–11
startup configuration, 4–33

Window customization, 2–5

Index–13

