
Tru64 UNIX
ULTRIX to Tru64 UNIX Migration

Part Number: AA-PS3EE-TE

December 1997

Product Version: Tru64 UNIX

This manual describes how to migrate from an ULTRIX and UWS system
to a Compaq Tru64 UNIX (formerly DIGITAL UNIX) system. The manual
covers the migration to Tru64 UNIX Versions 3.0 to 3.2 from ULTRIX and
UWS Versions 4.2 to 4.4 and to Tru64 UNIX Version 4.0B from ULTRIX
and UWS Version 4.5.

The manual discusses migration issues for ULTRIX users, system and
network administrators, and programmers.

Compaq Computer Corporation
Houston, Texas

© 1997 Compaq Computer Corporation

COMPAQ, the Compaq logo, and the Digital logo are registered in the U.S. Patent and Trademark Office.
Alpha, AlphaServer, NonStop, TruCluster, and Tru64 are trademarks of Compaq Computer Corporation.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation. Intel, Pentium, and Intel
Inside are registered trademarks of Intel Corporation. UNIX is a registered trademark and The Open
Group is a trademark of The Open Group in the United States and other countries. Other product names
mentioned herein may be the trademarks of their respective companies.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Compaq Computer Corporation or an authorized sublicensor.

Compaq Computer Corporation shall not be liable for technical or editorial errors or omissions contained
herein. The information in this document is subject to change without notice.

Contents

About this Manual

Part 1 Introduction

1 Introduction to Migrating from ULTRIX to Tru64 UNIX Systems
1.1 Tru64 UNIX Features Unavailable on ULTRIX Systems 1–1
1.1.1 OSF/1 Kernel 1–2
1.1.2 Real-Time Kernel 1–2
1.1.3 Standards Compliance 1–3
1.1.4 Shared Libraries 1–3
1.1.5 Per-Process Open File Descriptors 1–3
1.1.6 Logical Storage Manager 1–4
1.1.7 Streams Kernel Mechanism 1–4
1.1.8 Memory-Mapped Files 1–4
1.1.9 Sixty-Four Bit Data Types and Addresses 1–4
1.1.10 Security Integration Architecture 1–4
1.2 Features Common to ULTRIX and Tru64 UNIX Systems 1–5
1.2.1 User Applications, Commands, and Shells 1–5
1.2.2 Development Tools 1–6
1.2.3 File Systems 1–6
1.2.4 System and Network Administration Tools 1–7
1.2.5 Data Interoperability 1–8
1.2.6 Symmetric Multiprocessing 1–8
1.3 ULTRIX Features Unavailable on Tru64 UNIX Systems 1–8
1.4 Migrating from ULTRIX to Tru64 UNIX Systems 1–9
1.4.1 Migrating as a User 1–9
1.4.2 Migrating Your System and Network Administration

Environment 1–10
1.4.3 Migrating Your Application 1–10
1.4.3.1 Migrating Source Code 1–10
1.4.3.2 Migrating Executables 1–11

Part 2 Migrating Your User Environment

Contents iii

2 Overview of the Tru64 UNIX User Environment
2.1 Differences in the Tru64 UNIX DECwindows Interface 2–1
2.2 Differences in the Tru64 UNIX Directory Structure 2–2
2.3 Differences in User Applications and Commands 2–3
2.4 Differences in Shells 2–7
2.4.1 Differences in the C Shell 2–7
2.4.2 Differences in the Korn Shell 2–8
2.4.3 Differences in the Bourne Shell 2–8
2.5 Differences in Security Features 2–9

3 Migrating Your ULTRIX User Environment to a Tru64 UNIX System
3.1 Setting Environment Variables 3–1
3.1.1 Setting the C Shell filec and PATH Environment

Variables 3–2
3.1.2 Setting the Bourne Shell PATH Environment Variable 3–2
3.1.3 Setting International Environment Variables 3–2
3.1.3.1 Setting the Environment Variable for Messages 3–3
3.1.3.2 Setting the Environment Variables for Data Handling 3–3
3.2 Migrating Shell Scripts 3–4
3.2.1 Modifying Commands Used in Scripts 3–4
3.2.2 Migrating Korn Shell Scripts 3–5
3.2.3 Migrating C Shell Scripts 3–5
3.2.4 Migrating sh Shell Scripts 3–5
3.2.5 Migrating sh5 Shell Scripts 3–6

Part 3 Migrating Your System and Network Administration
Environment

4 Overview of Tru64 UNIX System and Network Administration
4.1 Installation and System Setup 4–1
4.2 Available System Setup Scripts 4–2
4.3 System Customization Files 4–3
4.4 System Configuration 4–4
4.5 System Security Features 4–5
4.6 Print Services 4–5
4.7 Terminal Capability Handling 4–8
4.8 Disk and File System Maintenance Features 4–9
4.8.1 Tru64 UNIX Directory Structure 4–9
4.8.2 Differences in Creating a UNIX File System 4–11

iv Contents

4.8.3 Differences in Checking a UNIX File System 4–11
4.8.4 Differences in Mounting and Unmounting a File System . 4–12
4.8.5 Differences in Monitoring File System Use 4–12
4.8.6 Specifying Disk Quotas 4–13
4.8.7 Differences in Setting Up and Maintaining NFS Software 4–13
4.8.8 Differences in Partitioning Disks 4–15
4.9 Event-Logging Features 4–15
4.10 Disk Shadowing Facilities 4–16
4.10.1 Logical Storage Manager 4–16
4.10.2 Logical Volume Manager 4–17
4.11 Networking Support 4–18
4.11.1 TCP/IP Network Management Commands 4–18
4.11.2 Simple Network Management Protocol Agent 4–20
4.12 Local Area Transport 4–21
4.13 Diskless Management Services 4–22
4.14 Remote Installation Services 4–22
4.15 Distributed System Services 4–22
4.15.1 Berkeley Internet Domain Service 4–23
4.15.2 Network Information Services 4–24
4.15.3 Time Services 4–25
4.16 The sendmail Utility 4–26
4.17 The uucp Utility 4–26
4.18 The tip and cu Utilities 4–29

5 Migrating Your ULTRIX System and Network Environment
5.1 Mounting an ULTRIX File System on a Tru64 UNIX System . 5–1
5.2 Migrating Shadowed Data 5–3
5.2.1 Migration Summary 5–4
5.2.2 Migration Example 5–4
5.3 Using the tar and pxtar Commands 5–7
5.4 Configuring Small Computer System Interconnect Devices .. . 5–8
5.5 Configuring Tru64 UNIX Shared Memory 5–8
5.6 Setting Up Internationalization Databases 5–9
5.7 Configuring the inetd Daemon for ULTRIX Compatibility 5–10
5.8 Configuring the mountd Daemon for ULTRIX Compatibility . . 5–11

Part 4 Migrating Your Applications

6 Overview of the Tru64 UNIX Programming Environment
6.1 Alpha Architecture 6–1

Contents v

6.1.1 Data Representation 6–2
6.1.2 Data Access 6–2
6.1.3 Data Alignment 6–3
6.1.4 File Systems 6–3
6.2 Graphical Programming Environment 6–3
6.3 Software Development Tools 6–5
6.3.1 The C Preprocessor 6–6
6.3.2 The C Compiler 6–6
6.3.3 The Linker 6–7
6.3.4 The Debugger 6–8
6.3.5 Other Programming Tools 6–9
6.4 Source File Control 6–11
6.5 Product Installation Tools 6–11
6.6 Shared Libraries 6–12
6.6.1 Using Shared Libraries 6–13
6.6.2 Changing from Archive Libraries to Shared Libraries 6–14
6.7 Standard Application Programming Interfaces 6–15
6.8 Network Programming Software 6–16
6.8.1 X/Open Transport Interface 6–17
6.8.2 Data Link Interface 6–17
6.8.3 Sockets Interface 6–17
6.8.4 SNMP Compatibility 6–17
6.9 Distributed Services Programming Software 6–17
6.9.1 Remote Procedure Calling 6–18
6.9.2 Network Authentication 6–18
6.9.3 Naming Services 6–18
6.10 Internationalization Features 6–19
6.10.1 Message Catalog System 6–19
6.10.1.1 Message Extraction Tools (extract, strextract, and

strmerge) 6–19
6.10.1.2 Tool for Translating Messages (trans) 6–20
6.10.1.3 Tools for Creating a Message Catalog (mkcatdefs and

gencat) 6–20
6.10.1.4 Routines for Accessing a Message Catalog (catopen,

catgets, and catclose) 6–20
6.10.2 Program Localization 6–21
6.10.2.1 Announcement Mechanism 6–21
6.10.2.2 The setlocale Routine 6–22
6.10.3 Creating Locale-Specific Information 6–22
6.10.4 The iconv Command 6–23
6.11 Event-Logging Software 6–23
6.12 Security 6–23

vi Contents

6.13 Curses Libraries 6–23

7 Migrating Your ULTRIX Application to a Tru64 UNIX System
7.1 Modifying Your Makefile 7–1
7.2 Migrating References to Header Files 7–2
7.3 Migrating to a 64-Bit Environment 7–5
7.3.1 Pointers 7–6
7.3.1.1 Controlling Pointer Size and Allocation 7–6
7.3.1.2 Correcting the Pointer-to-int Assignment Problem 7–7
7.3.1.3 Use and Effects of the −taso Option 7–8
7.3.1.4 Limits on the Effects of the −taso Option 7–10
7.3.2 Constants 7–11
7.3.2.1 Integer and Long Constants—Assignment and

Argument Passing 7–12
7.3.2.2 Integer and Long Constants—Shift Operations 7–13
7.3.3 Structures 7–13
7.3.3.1 Size 7–13
7.3.3.2 Member Alignment 7–14
7.3.3.3 Alignment 7–14
7.3.3.4 Bit Fields 7–15
7.3.4 Variables 7–15
7.3.4.1 Declarations 7–16
7.3.4.2 Assignments and Function Arguments 7–16
7.3.4.3 The sizeof Operator 7–18
7.3.4.4 Pointer Subtraction 7–18
7.3.4.5 Functions with a Variable Number of Arguments 7–18
7.3.5 Library Calls 7–19
7.3.5.1 The printf and scanf Functions 7–19
7.3.5.2 The malloc and calloc Functions 7–19
7.3.5.3 The lseek System Call 7–19
7.3.5.4 The fsetpos and fgetpos Functions 7–20
7.4 Correcting C Syntax Errors 7–20
7.4.1 Differences Between Tru64 UNIX and ULTRIX Predefined

Symbols 7–20
7.4.2 Differences Between Tru64 UNIX C and ULTRIX C on

RISC Systems 7–22
7.4.2.1 Differences that Apply to All Modes 7–23
7.4.2.2 Differences that Apply to the Default Mode 7–25
7.4.2.3 Differences that Apply to Strict ANSI Mode 7–26
7.4.3 Differences Between Tru64 UNIX C and DEC C 7–27

Contents vii

7.4.4 Differences Between Tru64 UNIX C and C on VAX
Systems 7–29

7.4.5 Differences Between Tru64 UNIX C and VAX C (vcc)
Software 7–31

7.5 Running lint to Find Other Errors 7–34
7.6 Linking Your Program 7–34
7.6.1 Changes in Libraries 7–35
7.6.2 ULTRIX BSD Compatibility Library 7–36
7.6.3 System V Compatibility Library 7–38
7.7 Porting Terminal-Dependent Applications 7–39
7.8 Differences in Standard Interfaces 7–40
7.9 Running Your Program 7–44

8 Postmigration Programming Features
8.1 Using Shared Libraries 8–1
8.1.1 Linking with Shared Libraries 8–1
8.1.2 Symbol Resolution and Shared Libraries 8–2
8.1.2.1 How Libraries Are Searched 8–2
8.1.2.2 When Symbols Are Defined More than Once 8–4
8.1.3 Using Your Makefile with Shared Libraries 8–4
8.1.4 Creating Shared Libraries from Object Files 8–4
8.1.5 Creating Shared Libraries from Archive Libraries 8–5
8.1.6 Optimizing Application Startup when Using Shared

Libraries 8–5
8.2 Using Semaphores 8–7
8.3 Using File Descriptors 8–7

Part 5 Appendixes

A Differences Between Tru64 UNIX and ULTRIX Commands

B Differences in ULTRIX and Tru64 UNIX Header Files and Library
Routines

B.1 Changes in the acct.h File B–1
B.2 Changes in the disktab.h File B–1
B.3 Changes in the dli_var.h File B–2
B.4 Changes in the errno.h File B–2
B.5 Changes in the fcntl.h File B–3
B.6 Changes in the fstab.h File B–3
B.7 Changes in the in.h File B–3

viii Contents

B.8 Changes in the ioctl.h and ioctl_compat.h Files B–3
B.9 Changes in the langinfo.h File B–4
B.10 Changes in the limits.h File B–4
B.11 Changes in the math.h File B–5
B.12 Changes in the resource.h File B–5
B.13 Changes in the stddef.h File B–6
B.14 Changes in the stdio.h File B–6
B.15 Changes in the stdlib.h File B–6
B.16 Changes in the syslog.h File B–6
B.17 Changes in the termio.h and termios.h Files B–7
B.18 Nonexistent Header Files B–8

C Differences Between Tru64 UNIX and ULTRIX System Calls

D Differences Between Tru64 UNIX and ULTRIX Terminal Modem
Control

E Summary of XUI and Motif Differences
E.1 Terminology E–1
E.2 Windows and Window Managers E–2
E.3 Menus and Menu Items E–3
E.3.1 Menu Bar and Standard Menus E–4
E.3.2 File Menu Items E–5
E.3.3 Edit Menu Items E–6
E.3.4 Help Menu Items E–7
E.4 Mouse Button Behavior E–7
E.5 Standard Message Boxes E–8
E.6 Keyboard Behavior E–8

F DECwindows Motif Component Names
F.1 Widget Classes F–1
F.2 Function Names F–2
F.3 Resource Names F–4
F.4 Enumeration Literal Names F–7
F.5 Callback Reason Names F–8
F.6 Compound Strings F–9
F.7 Fontlist Names F–10
F.8 Clipboard Names F–10
F.9 Resource Manager Names F–11

Contents ix

G Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B
G.1 New Features and Changes in ULTRIX and UWS Version 4.5 G–1
G.2 New Features and Changes in Tru64 UNIX Version 4.0B G–2
G.3 Common Desktop Environment G–2
G.3.1 CDE Video Tour G–3
G.3.2 CDE Screen Savers G–3
G.3.3 ULTRIX Migration Issues G–3
G.4 X/Open-Compliant Curses G–3
G.4.1 ULTRIX Migration Issues G–4
G.5 X11R6 G–4
G.5.1 X Keyboard Extension for X11R6 (XKB) G–4
G.5.2 ULTRIX Migration Issues G–5
G.6 Commands and Utilities G–5
G.6.1 Changes to Mtools G–5
G.6.1.1 ULTRIX Migration Issues G–5
G.6.2 sendmail Utility Supports Configurable GECOS Fuzzy

Matching G–5
G.6.2.1 ULTRIX Migration Issues G–5
G.6.3 df Supports Large File Systems G–6
G.6.3.1 ULTRIX Migration Issues G–6
G.6.4 Compressed Reference Pages G–6
G.6.4.1 ULTRIX Migration Issues G–6
G.6.5 Enhancements to terminfo G–6
G.6.5.1 ULTRIX Migration Issues G–6
G.6.6 GNU Emacs Version 19.28 G–7
G.6.6.1 ULTRIX Migration Issues G–7
G.6.7 Performance Manager G–7
G.6.7.1 ULTRIX Migration Issues G–7
G.6.8 Bootable Tape G–7
G.6.8.1 ULTRIX Migration Issues G–8
G.6.9 Partition Overlap Checks Added to Disk Utilities G–8
G.6.9.1 ULTRIX Migration Issues G–8
G.6.10 scsimgr Utility for Creating Device Special Files G–8
G.6.10.1 ULTRIX Migration Issues G–8
G.7 Standards G–9
G.7.1 Realtime is Compliant with Final POSIX 1003.1b

Standard Interfaces G–9
G.7.1.1 ULTRIX Migration Issues G–9
G.7.2 DECthreads is Compliant with Final POSIX 1003.1c

Standard Interfaces G–9
G.7.2.1 ULTRIX Migration Issues G–9
G.8 Development Environment G–9

x Contents

G.8.1 Tcl/Tk Availability G–9
G.8.1.1 ULTRIX Migration Issues G–10
G.8.2 DEC C++ G–10
G.8.2.1 ULTRIX Migration Issues G–11
G.8.3 Software Development Environment Repackaging G–11
G.8.3.1 ULTRIX Migration Issues G–12
G.8.4 init Execution Order Modified for Static Executable Files G–12
G.8.4.1 ULTRIX Migration Issues G–12
G.8.5 PC-Sample Mode of prof Command G–12
G.8.5.1 ULTRIX Migration Issues G–13
G.8.6 atom and prof Commands and Threads G–13
G.8.6.1 ULTRIX Migration Issues G–13
G.8.7 Thread Independent Services Interface G–13
G.8.7.1 ULTRIX Migration Issues G–14
G.8.8 High-Resolution Clock G–14
G.8.8.1 ULTRIX Migration Issues G–14
G.8.9 POSIX 1003.1b Realtime Signals G–14
G.8.9.1 ULTRIX Migration Issues G–14
G.8.10 POSIX 1003.1b Synchronized I/O G–15
G.8.10.1 ULTRIX Migration Issues G–15
G.8.11 POSIX 1003.1b _POSIX_C_SOURCE Symbol G–15
G.8.11.1 ULTRIX Migration Issues G–15
G.8.12 Porting Assistant G–15
G.8.12.1 ULTRIX Migration Issues G–16
G.9 Networking G–16
G.9.1 New Version of the gated Daemon G–16
G.9.1.1 ULTRIX Migration Issues G–16
G.9.2 Dynamic Host Configuration Protocol G–17
G.9.2.1 ULTRIX Migration Issues G–17
G.9.3 Point-to-Point Protocol G–17
G.9.3.1 ULTRIX Migration Issues G–17
G.9.4 Extensible Simple Network Management Protocol G–17
G.9.4.1 ULTRIX Migration Issues G–18
G.9.5 SNMP MIB Support G–18
G.9.5.1 ULTRIX Migration Issues G–18
G.10 Enhanced Security G–18
G.10.1 ULTRIX Migration Issues G–18
G.11 File Systems G–18
G.11.1 Advanced File System G–19
G.11.1.1 New Tuning Parameters for AdvFS G–19
G.11.1.2 AdvFS Now Supports Directory Truncation G–19
G.11.1.3 ULTRIX Migration Issues G–19
G.11.2 File System Access Control Lists G–19

Contents xi

G.11.2.1 ULTRIX Migration Issues G–20
G.11.3 Logical Storage Manager G–20
G.11.3.1 ULTRIX Migration Issues G–21
G.11.4 Overlap Partition Checking G–21
G.11.4.1 ULTRIX Migration Issues G–21
G.12 Internationalization and Language Support G–22
G.12.1 Internationalization Configuration Utility for CDE G–22
G.12.2 Unicode Support G–22
G.12.3 The Worldwide Mail Handler No Longer Exists G–22
G.12.4 Multilingual Emacs (mule) G–22
G.12.5 Support for Catalan, Lithuanian, and Slovene G–23
G.12.6 man Command Supports Codeset Conversion G–23
G.13 Dynamic Device Recognition for SCSI Devices G–23
G.13.1 ULTRIX Migration Issues G–24
G.14 Interfaces Retired from Tru64 UNIX G–24
G.15 Features Scheduled for Retirement G–25

Index

Examples
3–1 Shell Script to Convert sh5 Scripts into sh Scripts 3–7
D–1 Modem Control for Outgoing Calls (ULTRIX) D–1
D–2 Modem Control for Outgoing Calls (Tru64 UNIX) D–2
D–3 Modem Control for Incoming Calls (Tru64 UNIX) D–3

Figures
2–1 Tru64 UNIX Directory Structure for General Users 2–2
4–1 Tru64 UNIX Directory Structure for System Administrators . 4–10
7–1 Layout of Memory Under the -taso Option 7–9

Tables
4–1 Setup Scripts Available on Tru64 UNIX Systems 4–2
4–2 Differences in Disk Shadowing Facilities 4–17
6–1 C Language Data Types 6–2
7–1 Locations of Standard Tru64 UNIX Header Files 7–3
7–2 Comparison of Tru64 UNIX and ULTRIX Predefined Symbols

for the cc Command 7–22
7–3 Compilation Options that Are Compatible with ULTRIX C on

RISC Systems 7–23
7–4 Compilation Options that Are Compatible with DEC C 7–28

xii Contents

7–5 Compilation Option that Is Compatible with C on VAX
Systems 7–29

7–6 Compilation Option for Compatibility with VAX C Software . . 7–32
7–7 Routines in the ULTRIX BSD Compatibility Library 7–37
7–8 Routines in the System V Compatibility Library 7–39
7–9 Terminal Capability Differences 7–40
B–1 Differences in System Limits B–4
B–2 ULTRIX Header Files Not Present on Tru64 UNIX Systems . . B–8
E–1 Terminology Differences Between XUI and Motif Interfaces . . E–1
E–2 Differences Between XUI and Motif Windows and Window

Managers E–3
E–3 Motif Window Menu Items and Functions E–3
E–4 Differences Between the XUI and Motif Menus in the Menu

Bar E–4
E–5 Differences Between the XUI and Motif File Menu Items E–5
E–6 Differences Between XUI and Motif Edit Menu Items E–6
E–7 Differences Between the XUI and Motif Help Menu Items E–7
E–8 Differences in the XUI and Motif Mouse Buttons E–8
E–9 Differences in the XUI and Motif Keyboard Mappings E–8
F–1 Widget Class Name Changes F–1
F–2 Function Name Changes F–2
F–3 Resource Name Changes F–4
F–4 Enumeration Literal Name Changes F–7
F–5 Callback Reason Names F–9
F–6 Compound String Names F–9
F–7 Fontlist Names F–10
F–8 Clipboard Names F–10
F–9 Resource Manager Names F–11

Contents xiii

About this Manual

This manual compares the Compaq Tru64 UNIX (formerly DIGITAL
UNIX) operating system to the ULTRIX operating system by describing the
differences between the two systems. This manual also contains information
about software components of the Tru64 UNIX product.

______________________ Note _______________________

This manual does not contain information about software
components or products that you purchase separately from the
Tru64 UNIX product.

Audience

This manual is written for ULTRIX users, system and network
administrators, and programmers who need information about migrating
to the Tru64 UNIX system:

• Users should read this manual to determine what differences exist
between using an ULTRIX system and using a Tru64 UNIX system.

• System and network administrators should read this manual to
determine what differences exist between administering an ULTRIX
system and network and a Tru64 UNIX system and network.

• Programmers should read this manual to determine what differences
between the ULTRIX programming environment and the Tru64 UNIX
programming environment affect the migration of applications.

Organization

This manual discusses the following topics:

Part I Introduction

Chapter 1 Is an overview of migration from the ULTRIX operating
system to the Tru64 UNIX operating system.

Part II Migrating Your User Environment

Chapter 2 Is an overview of the Tru64 UNIX user environment that
describes differences from the ULTRIX environment.

About this Manual xv

Chapter 3 Describes how to set up your Tru64 UNIX user environment
so that it is similar to your ULTRIX user environment.
Also, it describes how to migrate shell scripts from an
ULTRIX system to a Tru64 UNIX system.

Part III Migrating Your System and Network Admin-
istration Environment

Chapter 4 Is an overview of the Tru64 UNIX system and network
administration environment that describes differences
from the ULTRIX environment.

Chapter 5 Describes how to set up a Tru64 UNIX system for maximum
compatibility with ULTRIX systems.

Part IV Migrating Your Applications

Chapter 6 Is an overview of the Tru64 UNIX programming environment
that describes differences from the ULTRIX environment.

Chapter 7 Describes the steps involved in migrating source applications
from ULTRIX systems to Tru64 UNIX systems.

Chapter 8 Describes how to use certain features of Tru64 UNIX,
such as shared libraries.

Part V Appendixes

Appendix A Describes differences between Tru64 UNIX and ULTRIX
commands, including how to get the behavior of ULTRIX
commands on Tru64 UNIX systems, where applicable.

Appendix B Describes differences between Tru64 UNIX and ULTRIX
header files and routines, including how these header file
differences affect program portability.

Appendix C Describes differences between Tru64 UNIX and ULTRIX system
calls, including how to get the behavior of ULTRIX system
calls on Tru64 UNIX systems, where applicable.

Appendix D Contains three sample programs that show modem control.

Appendix E Summarizes the differences between XUI and OSF/Motif
terminology, windows and window managers, menus and menu
items, standard message boxes, and mouse button bindings.

Appendix F Summarizes the differences between XUI and OSF/Mo-
tif component names.

Appendix G Summarizes issues when migrating from ULTRIX Version
4.5 to Tru64 UNIX Version 4.0B.

Related Documents

In addition to this manual, you should read the following Tru64 UNIX
manuals as you move to a Tru64 UNIX system:

• General users

xvi About this Manual

– Technical Overview

• System and network administrators

– Installation Guide

– System Administration

– Network Administration

– Security

– Sharing Software on a Local Area Network

• Programmers

– Programmer’s Guide

– Programming Support Tools

– Writing Software for the International Market

– Network Programmer’s Guide

– Guide to Realtime Programming

– Guide to DECthreads

Icons on Tru64 UNIX Printed Books

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books that
meet their needs. (You can order the printed documentation from Compaq.)
The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers

D Books for device driver writers

R Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

About this Manual xvii

Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-2698

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send problem
reports to Compaq.

xviii About this Manual

Conventions
%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

About this Manual xix

Part 1
Introduction

1
Introduction to Migrating from ULTRIX to

Tru64 UNIX Systems

This chapter is an overview of migrating from the ULTRIX and ULTRIX
Worksystem Software (UWS) operating system, Version 4.2 and higher, to
the Tru64 UNIX operating system, Version 3.0 and higher. It begins by
describing some Tru64 UNIX features that are unavailable on ULTRIX
systems. Then, it gives brief information about features that are common to
both systems, followed by a list of ULTRIX features that are unavailable on
Tru64 UNIX systems.

This chapter also mentions each of the migration issues that can affect you
as you move to a Tru64 UNIX system. You can use this information to assess
the effort involved in migration. Detailed information about migration from
ULTRIX to Tru64 UNIX systems is provided in the rest of this manual.

1.1 Tru64 UNIX Features Unavailable on ULTRIX Systems

The following Tru64 UNIX system features are unavailable on ULTRIX
systems:

• OSF/1 kernel

• Real-time kernel

• Improved standards conformance

• Shared libraries

• Increased number of per-process open file descriptors

• Logical storage management

• Streams

• Memory-mapped files

• Sixty-four bit data types and addresses

• Security integration architecture (SIA)

• Increased number of pseudoterminals (ptys)

• Debugging support for multithreading

• Increased file system sizes

Introduction to Migrating from ULTRIX to Tru64 UNIX Systems 1–1

The following sections describe these Tru64 UNIX features in more detail.

1.1.1 OSF/1 Kernel

The OSF/1 kernel is based on the Mach kernel developed at Carnegie-Mellon
University. This kernel consists of a compact, extensible system kernel
designed to support distributed and parallel computing services for single
and multiprocessor systems. The OSF/1 kernel provides the basic operating
system services, including virtual memory management and interprocess
communications.

Additional code implements UNIX services as extensions to the kernel.
These extensions to the kernel are designed as kernel subsystems. File
systems, network protocol families and pseudodevice drivers, and STREAMS
drivers are some of the supported subsystems. Each subsystem is configured
into the kernel by an existing kernel-supported framework, which provides
the mechanism for registering the driver entry routines. For example, the
operating system supports the virtual file system framework, the network
framework, the device switch framework, the interrupt dispatch framework,
and the STREAMS framework.

1.1.2 Real-Time Kernel

The Tru64 UNIX real-time kernel and environment provides you with the
capability of developing and running portable applications in a POSIX
environment. POSIX 1003.4 Draft 11 is a set of functions and calls that can
be used in the design and creation of real-time applications.

The Tru64 UNIX real-time environment offers the following POSIX features:

• Process synchronization. Processes can be synchronized by using the
following methods:

– Real-time clocks and timers

– Priority scheduling

– Semaphores

• Shared memory

• Process memory locking

• Asynchronous I/O

For more information on real-time programming, see the Guide to Realtime
Programming.

1–2 Introduction to Migrating from ULTRIX to Tru64 UNIX Systems

1.1.3 Standards Compliance

Using programming standards enhances the portability of your application.
Standard-compliant code is independent of the hardware or even the
operating system on which the application runs.

Both the ULTRIX and UWS system and the Tru64 UNIX system have
programming environments that allow you to develop applications that
conform to the major industry standards.

The Software Product Description (SPD) for the ULTRIX product, the
UWS product, and the Tru64 UNIX product each contain detailed lists of
the standards they support. Refer to the SPDs for this information. For
information about specific migration issues, see Chapter 7.

The Tru64 UNIX system provides programming interfaces that are defined
in the OSF Application Environment Specification (AES) standard. Although
the AES is not a formal standard, using AES-conformant library routines
helps ensure the portability of your program between products based on
the OSF/1 operating system. The Application Environment Specification
Operating System Programming Interfaces Volume (AES/OS) specifies
programming interfaces for the operating system portion of the OSF
applications environment.

1.1.4 Shared Libraries

The Tru64 UNIX system includes dynamic, shared libraries as part of
the programming environment. That is, the libraries contain no fixed
base addresses. When you link your application with a shared library, the
executable application does not contain the library; instead, it contains the
information needed to load the shared library at startup time and to access
the shared routines at execution time.

Because shared libraries allow several applications to use a single copy of
a library routine, they can help save disk space and memory, and improve
system performance.

For more information about shared libraries, see Section 6.6 and Section 8.1.

1.1.5 Per-Process Open File Descriptors

Both the ULTRIX and UWS and the Tru64 UNIX systems allow you to
configure the number of open file descriptors a process can use. By default,
the number for ULTRIX and UWS systems is 64, for Tru64 UNIX systems,
4096. For information about how to configure this feature, see the System
Administration manual. For information about modifying an application to
use a different number of open file descriptors, see Section 8.3.

Introduction to Migrating from ULTRIX to Tru64 UNIX Systems 1–3

1.1.6 Logical Storage Manager

The Logical Storage Manager (LSM) subsystem is a replacement for the
Logical Volume Manager of previous Tru64 UNIX systems. See Chapter 4
for more information.

1.1.7 Streams Kernel Mechanism

System V Release 3.2 STREAMS is included in the Tru64 UNIX system.
STREAMS is a kernel mechanism that supports development of network
services and data communications drivers. The STREAMS mechanism
consists of a set of system calls, kernel resources, and kernel routines that
can create, use, and dismantle a stream. A stream is a full-duplex processing
and data transfer path between a driver in kernel space and a process in
user space.

1.1.8 Memory-Mapped Files

The Tru64 UNIX system includes the Berkeley mmap function, which allows
an application to access files with memory operations rather than file I/O
operations. See mmap(2) for more information.

1.1.9 Sixty-Four Bit Data Types and Addresses

The Alpha architecture is based on a 64-bit microprocessor. As such, it
introduces a number of extended capabilities beyond 32-bit architectures.
For example, 64-bit addressing allows the Tru64 UNIX system to support
file system sizes greater than 2 gigabytes (GB). Most applications only
require a recompilation in order to run on a Tru64 UNIX system. However,
if you want your application to be portable (run on both 32-bit and 64-bit
systems) and to interoperate with programs on other systems, you must
check the C coding techniques. Chapter 7 describes specific aspects of the C
language and explains certain programming techniques that will help both
new program development and the migration of existing programs from
ULTRIX to Tru64 UNIX systems.

1.1.10 Security Integration Architecture

The Tru64 UNIX system includes the security integration architecture (SIA).
SIA is a framework that can support multiple, layered security mechanisms
on a system.

SIA can be employed in base or enhanced security modes. By using the
SIA routines, the security commands access a matrix.conf file. Which
matrix.conf file is accessed depends on the security mode employed (basic
or enhanced) and the security mechanisms that are enabled through SIA.
This information is contained in the Security manual.

1–4 Introduction to Migrating from ULTRIX to Tru64 UNIX Systems

In the Tru64 UNIX system, SIA routines, through the appropriate
matrix.conf file, also control the access and manipulation of both passwd
and group entries, employing several of the security-related programming
routines. See the Security manual for more information.

The Tru64 UNIX login, su, and passwd commands, and xdm (the
workstation login box) use the SIA interfaces. The passwd and group
entries in the /etc/svc.conf file are provided in the Tru64 UNIX system
for archival library (like those in the ULTRIX system) compatibility.

SIA log information is written to the /var/adm/sialog file, whenever the
sialog file is present and enabled.

If you want to manipulate password or group information, contact your
Compaq Computer Corporation representative for information on obtaining
SIA interface information.

1.2 Features Common to ULTRIX and Tru64 UNIX Systems

The Tru64 UNIX system includes most features that are available on typical
UNIX systems, such as the ULTRIX system. In many cases, you use the
Tru64 UNIX system in the same way that you use the ULTRIX system.
This section briefly describes the Tru64 UNIX system features. Differences
between how Tru64 UNIX features operate and how the ULTRIX equivalent
features operate are described in other chapters of this manual.

1.2.1 User Applications, Commands, and Shells

The Tru64 UNIX system has most of the user commands, such as grep, who,
man, and more, that are available on the ULTRIX system. In most cases,
you use the same command options and arguments on ULTRIX and Tru64
UNIX systems. The Tru64 UNIX system also provides the vi and ex text
editors, among others (such as Emacs). The interfaces to the editors are the
same, so you need not learn new editing commands to edit files on a Tru64
UNIX system. Workstation applications that you use on the ULTRIX system
are also available on the Tru64 UNIX system; for example, the Tru64 UNIX
system provides the Bookreader software, the Calendar and Clock software,
and the visual differences program, dxdiff. For complete information about
user applications and commands, see Section 2.3 and Appendix A.

The Tru64 UNIX system provides three shells: the C shell (csh), the Bourne
shell (sh), and the Korn shell (ksh). For information about how these shells
compare to the ULTRIX equivalent shells, see Section 2.4. For information
about migrating shell scripts, see Section 3.2.

Introduction to Migrating from ULTRIX to Tru64 UNIX Systems 1–5

1.2.2 Development Tools

The Tru64 UNIX development environment is similar to the ULTRIX
development environment. Both the Tru64 UNIX system and the ULTRIX
system (for RISC users) offer an ANSI C compliant compiler. In addition
to compiling ANSI C programs, the compiler includes a compilation mode
that allows you to compile programs written in traditional Kernighan and
Ritchie (K&R) C.

The programming tools that are available on the Tru64 UNIX system are
traditional UNIX programming tools and new tools. You can use the dbx
debugger on Tru64 UNIX systems to find errors in your program. The
system includes the make utility for building your application and the sccs
utility for storing your application’s source files. You can purchase the DEC
FUSE software for use on the Tru64 UNIX system; DEC FUSE includes a
computer-aided software engineering (CASE) environment for developing
software.

Using the Tru64 UNIX programming software, you can write programs that
communicate over a network, that provide windowing user interfaces, that
are portable to multiple systems, and that are adaptable to multiple locales.

Once your application is fully developed, you can use the setld utility to
package the application as a kit for installation on Tru64 UNIX systems. For
more information about the Tru64 UNIX development environment, see
Chapter 6. For information on building installable software kits, see the
Programming Support Tools manual.

1.2.3 File Systems

The Tru64 UNIX system supports the following file systems:

• Advanced File System (AdvFS)

• UNIX File System (UFS)

• Network File System (NFS)

1–6 Introduction to Migrating from ULTRIX to Tru64 UNIX Systems

• CD-ROM (compact disc read-only memory) File System (CDFS)

Conforms to the ISO 9660 standard. See cdfs(4) for more information.

• Virtual File System (VFS) interface and framework

The VFS interface enables transparent access to UFS and NFS file
systems and allows both file systems to run in parallel. Transparent
access is accomplished by retaining the traditional operating system
interfaces on top of the VFS layer. Therefore, the file system types are
not apparent to the user.

• The /proc File System

A debugging file system that is compatible with the System V, Release
4 specification. This file system is a development tool that allows any
process to control and monitor the execution of another unrelated
process. See proc(4) for more information.

You set up, check, and maintain Tru64 UNIX file systems in much the same
way that you perform these tasks on ULTRIX systems. For information
about administering file systems, see Section 4.8.

1.2.4 System and Network Administration Tools

System and network administration tasks on a Tru64 UNIX system are
comparable to those on an ULTRIX system.

You can set up your system so that users can print files on local and
remote printers. Users can also print PostScript files on local or remote
PostScript printers. The remote printing occurs over a Transmission Control
Protocol/Internet Protocol (TCP/IP) network.

The Tru64 UNIX system includes TCP/IP for use on a local area network
(LAN) or wide area network (WAN). You manage the network components by
using many of the same commands that you use on an ULTRIX system, such
as the arp, ifconfig, and hostid commands. The system also includes
the Simple Network Management Protocol (SNMP) Agent, which gives
information to an SNMP network management station.

The Tru64 UNIX system includes many of the distributed system services
available on ULTRIX. In particular, it includes the Berkeley Internet Name
Domain (BIND) service and the Network Information Service (NIS, formerly
called YP). For time synchronization, the Tru64 UNIX system includes the
Network Time Protocol (NTP).

Like the ULTRIX system, the Tru64 UNIX system uses the sendmail utility
as the general-purpose internet mail router. The system also includes the
uucp utility. You can use uucp to copy files between UNIX systems and to
execute commands on remote UNIX systems.

Introduction to Migrating from ULTRIX to Tru64 UNIX Systems 1–7

For more information about how the Tru64 UNIX system and network
management environment compares to the same environment on ULTRIX
systems, see Chapter 4.

1.2.5 Data Interoperability

In many cases, you can exchange data easily between Tru64 UNIX and
ULTRIX systems. For example, you can mount an ULTRIX file system on
a Tru64 UNIX system. (For information about performing this task, see
Section 5.1.) In addition, you can use Tru64 UNIX commands to read tapes
you create with the ULTRIX tar and pxtar commands. (For information
about using these commands on a Tru64 UNIX system, see Section 5.3.) You
can also use the cpio and ltf commands to read and write tape archives.
You can use the dump command on an ULTRIX system and the restore
command to restore the dump on a Tru64 UNIX system. In addition, you can
use TCP/IP network copying facilities.

Users on an ULTRIX system can also exchange data with a Tru64 UNIX
system provided that files are less than 2 gigabytes (GB) in size.

1.2.6 Symmetric Multiprocessing

The Tru64 UNIX system supports Symmetric Multiprocessing (SMP). SMP
is a modification to the kernel that allows multiple processors to execute
the kernel code simultaneously. SMP activity is accomplished safely by
means of locks, which are used to control the concurrent access of shared
data structures within the kernel.

The SMP software on Tru64 UNIX systems has a high degree of commonality
with the ULTRIX SMP software. You can migrate your ULTRIX SMP
applications to Tru64 UNIX systems as long as you ensure that the
applications conform to the migration information in this manual. There are
no specific SMP migration considerations for users or system managers, and
the only programming considerations are:

• ULTRIX SMP applications can use two system calls, startcpu and
stopcpu, which have no equivalent calls on Tru64 UNIX systems.

• ULTRIX SMP applications employ the cpustat command to display
information about the use and state of each CPU in a SMP system. The
Tru64 UNIX system employs the kdbx debugger for the same purposes.
See kdbx(8) for more information.

1.3 ULTRIX Features Unavailable on Tru64 UNIX Systems
The Tru64 UNIX system provides many ULTRIX features, but it omits some
ULTRIX features. The following list shows features that are available on
ULTRIX systems but not on Tru64 UNIX systems:

1–8 Introduction to Migrating from ULTRIX to Tru64 UNIX Systems

• Support for VAX hardware

• Support for the MIPS RISC hardware

• Support for most terminals or printers not manufactured by Compaq

• N-buffered I/O services

• Diskless Management Services (DMS) (although there is some support
for a dataless environment in Tru64 UNIX systems)

• DECwindows debugger, dxdb (although the DEC FUSE programming
environment is supported)

• Hesiod software (although BIND software is supported)

• Kerberos software (see Section 6.9.2)

• The Remote Procedure Calling package, DEC RPC (see Section 6.9.1)

• Extended SNMP features

• ULTRIX disk partitioning ioctl functions

• XUI graphical user interface (GUI)

1.4 Migrating from ULTRIX to Tru64 UNIX Systems

Migrating from an ULTRIX system to a Tru64 UNIX system involves:

• Migrating a user from an ULTRIX to a Tru64 UNIX system

• Migrating an ULTRIX system and network management environment
to a Tru64 UNIX system

• Migrating an application from an ULTRIX to a Tru64 UNIX system

You might be involved in one or more of these types of migration.

This section gives a brief overview of the three migration paths, including
brief descriptions of the issues involved in migration.

1.4.1 Migrating as a User

As a user of the Tru64 UNIX system, you will notice few differences between
the Tru64 UNIX system and the ULTRIX system. Most commands and
tools are the same or similar on the two systems. For information about
the differences that do exist between the Tru64 UNIX and ULTRIX user
environments, see Chapter 2.

The following list describes the major tasks involved in migrating from an
ULTRIX to a Tru64 UNIX system:

• Using commands

Introduction to Migrating from ULTRIX to Tru64 UNIX Systems 1–9

Most commands are similar on the Tru64 UNIX and ULTRIX systems.
For a list of specific differences between commands, see Appendix A.

• Using shells

You should notice few differences in how the shell you use operates. You
might need to modify shell scripts to use them on a Tru64 UNIX system.
For information about porting shell scripts, see Section 3.2.

• Setting environment variables

You might need to set the PATH, filec, or international environment
variables on your Tru64 UNIX system. For information about setting
these environment variables, see Section 3.1.

1.4.2 Migrating Your System and Network Administration
Environment

The system and network administration tasks on both systems are similar.
Many of the commands, setup scripts, and utilities you use on an ULTRIX
system are available on a Tru64 UNIX system. The following list describes
some of the tasks you might need to perform on a Tru64 UNIX system as you
migrate from an ULTRIX system:

• Mount ULTRIX file systems on a Tru64 UNIX system (as described in
Section 5.1).

• Read information from tape archives by using the Tru64 UNIX tar
command (as described in Section 5.3).

• Add devices to your system after you configure the system (as described
in Section 5.4).

• Configure daemons for ULTRIX compatibility (as described in Section 5.7
and Section 5.8).

1.4.3 Migrating Your Application

You can migrate an application from an ULTRIX to a Tru64 UNIX system
in one of two ways: either as source code (recommended) or as executable
code, as described in the following sections. If the source code is unavailable
or you need an operating version of the program while you are migrating
source code, you can migrate an executable.

1.4.3.1 Migrating Source Code

To migrate source code from an ULTRIX to a Tru64 UNIX system, follow
these steps:

1. Copy your program source files (and make files, if any) to the Tru64
UNIX system.

1–10 Introduction to Migrating from ULTRIX to Tru64 UNIX Systems

2. If you require additional development environment tools to build your
application, migrate those tools to the Tru64 UNIX system.

3. Modify your make files, if necessary, so that they work on the Tru64
UNIX system.

4. Select the appropriate compilation mode and correct any C syntax
errors.

5. Evaluate changes in symbols (undefined symbols, multiply defined
symbols) and modify the source code appropriately.

6. Evaluate your header files (missing header files, changed header file
names) and modify the source code appropriately.

7. Evaluate differences between a 32-bit and 64-bit programming
environment and modify the source code appropriately.

8. Run lint, if possible, to identify other errors. Correct the errors as
you find them.

9. Evaluate and modify references to libraries and library routines that
are provided on ULTRIX systems but not on Tru64 UNIX systems.

10. Run your program and correct semantic errors.

11. Test your program thoroughly on the Tru64 UNIX system.

For more information about the work needed to complete these tasks, see
Chapter 7.

1.4.3.2 Migrating Executables

You can migrate a MIPS ULTRIX executable by using the DECmigrate for
DEC OSF/1 Alpha product. This product is made up of the mx translator
and the mxr run-time system.

The mx translator translates only user mode programs. It does not:

• Translate kernel code.

• Support applications that read system memory by using /dev/kmem or
/dev/mem.

• Support applications that depend on exact memory layout or file formats
of system-provided files.

• Translate ULTRIX executables older than ULTRIX Version 4.0.

• Translate MIPS executables other than ULTRIX and Tru64 UNIX
Version 1.0 executables.

• Translate big endian MIPS programs.

• Provide precise exception behavior.

Introduction to Migrating from ULTRIX to Tru64 UNIX Systems 1–11

• Emulate MIPS instruction atomicity.

• Translate MIPS II or MIPS III programs (no R4000 processor support).

• Enable translated programs to use the Tru64 UNIX shared libraries.

For more information on the mx translator and the mxr run-time
environment, see the DECmigrate for DEC OSF/1 V1.2: Translating
Executables manual.

1–12 Introduction to Migrating from ULTRIX to Tru64 UNIX Systems

Part 2
Migrating Your User Environment

This part gives an overview of the Tru64 UNIX user environment and
describes specific differences between Tru64 UNIX and ULTRIX systems
that affect users.

2
Overview of the Tru64 UNIX User

Environment

Using a Tru64 UNIX operating system is similar to using an ULTRIX
and UWS operating system. Like an ULTRIX and UWS system, a Tru64
UNIX system offers both a windowing graphical user interface (GUI) for
workstations and a terminal interface.

Also like ULTRIX and UWS, the Tru64 UNIX workstation interface is
DECwindows, based on the industry standard OSF/Motif. As a result, there
are no significant differences between the workstation interfaces of both
systems. ULTRIX and UWS does offer, in addition, an XUI version of the
DECwindows interface, based on a DIGITAL proprietary graphical user
interface.

In addition to the windowing interface, you can use the Tru64 UNIX system
from a terminal or from a workstation window that emulates a terminal.
With few exceptions, the commands and tools you use on an ULTRIX system
are on the Tru64 UNIX system. Tru64 UNIX command and file names are
case sensitive, just as they are on the ULTRIX system. You can use pipes,
command input and output redirection, and background jobs in the same
way that you use these features on an ULTRIX system.

This chapter gives an overview of the Tru64 UNIX user environment,
including differences in the workstation environment, differences in the
Tru64 UNIX directory structure, and differences in supported tools and
shells, and differences in the security environment.

______________________ Note _______________________

For details about using a Tru64 UNIX system, see the
DECwindows User’s Guide and the Command and Shell User’s
Guide.

2.1 Differences in the Tru64 UNIX DECwindows Interface
The Tru64 UNIX DECwindows interface is based on OSF/Motif Version
1.2.3. By contrast, ULTRIX and UWS gives you a choice of two DECwindows
interfaces: OSF/Motif and XUI. The OSF/Motif interface is almost identical
to the Tru64 UNIX system interface, because the ULTRIX and UWS

Overview of the Tru64 UNIX User Environment 2–1

implementation is based on OSF/Motif Version 1.2.2. The ULTRIX and UWS
XUI interface is based on the DIGITAL developed graphical user interface.

2.2 Differences in the Tru64 UNIX Directory Structure
The directory structure on your Tru64 UNIX system is different from the
directory structure on an ULTRIX system. Figure 2–1 shows most of the
directories in the root (/) file system.

Figure 2–1: Tru64 UNIX Directory Structure for General Users

/bin

ZK−0428U−R

1

/ccs /sbin

/

/etc /home /lib /lost + found /sbin /sys /tmp /usr /var/bin
2 3 4

As the figure shows, the directory structure on Tru64 UNIX is identical to
the ULTRIX directory structure in many ways. (This figure does not show
the complete directory structure; for example, the /opt, /dev, and /mnt
directories, which are typically not used by general users, are omitted. See
also Section 4.8.1.) The following list describes important differences:

1 Some commands that are in /bin on an ULTRIX system are in the
/usr/bin or /usr/sbin directory on a Tru64 UNIX system. This
change should not affect you because your PATH environment variable
causes the Tru64 UNIX system to search the appropriate directories for
commands. As a start, you can use the same definition for the PATH
environment variable as you used on the ULTRIX system. However,
you should remove /bin from your path definition and add /usr/bin
and /usr/sbin.

If you need to determine the location of a particular command that is
not in your path, you can use the whereis command, which looks for
commands in a set of standard locations. If a given command file is in
more than one directory, whereis reports all locations of the command.

2 The Tru64 UNIX directory structure contains the /home directory. On
Tru64 UNIX systems, this directory is intended to be used to contain
the home directories for users. For example, the home directory for a

2–2 Overview of the Tru64 UNIX User Environment

user named Ross might be /home/ross. See your system administrator
for the actual location of your home directory.

3 The Tru64 UNIX directory structure contains the /sbin and
/usr/sbin directories. The /sbin directory contains commands that
system administrators use when the system is in single-user mode;
/usr/sbin contains commands administrators use in multiuser mode.

4 The Tru64 UNIX directory structure does not contain the /usr/etc or
/usr/ucb directories. Most commands that reside in these directories
on an ULTRIX system are, on the Tru64 UNIX system, in the /usr/bin
directory. This change should not affect you, but you should remove
/usr/ucb and /usr/etc from your path definition and add /usr/bin.

Other than these differences, you should notice no difference between the
directory structures on the ULTRIX and Tru64 UNIX systems during daily
use.

2.3 Differences in User Applications and Commands
The following list describes the user applications that are packaged on the
Tru64 UNIX system:

• Bookreader

The Bookreader program for Tru64 UNIX workstations has a user
interface based on Motif, and is similar to the Bookreader program on
ULTRIX workstations. For information about using Bookreader, see
dxbook(1X) or start the Bookreader program and read its online help
information.

• Calculators

The bc and dc calculators are the same on the Tru64 UNIX system as
they are on the ULTRIX system. The Tru64 UNIX system does not supply
the DECwindows Calculator program dxcalc. Use the xcalc program
instead; a link from dxcalc to xcalc is provided. For information about
using these calculator programs, see bc(1), dc(1), and xcalc(1X).

• Calendar

The Calendar program for Tru64 UNIX workstations has a user interface
based on Motif, and is similar to the one on ULTRIX workstations. For
information about using the Calendar program, see dxcalendar(1X) or
start the Calendar program and read its online help information.

• Cardfiler

The Cardfiler program for Tru64 UNIX workstations has a user interface
based on Motif, and is similar to the one on ULTRIX workstations. For
information about using the Cardfiler program, see dxcardfiler(1X) or
start the Cardfiler program and read its online help information.

Overview of the Tru64 UNIX User Environment 2–3

• CDA Viewer

The CDA Viewer program on Tru64 UNIX workstations has a user
interface based on Motif, and is similar to the one on ULTRIX
workstations. For information about using the CDA Viewer, see
dxvdoc(1X). You can also start the CDA Viewer and read its online help
information.

• DECterm

The DECterm terminal emulator program for Tru64 UNIX workstations
has a user interface based on Motif, and is similar to the one on ULTRIX
workstations. For information about using DECterm, see dxterm(1X) or
start a DECterm window and read the online help information.

• Editors and other pattern-scanning tools

The ed, ex, sed, vi, and GNU Emacs editors are the same as the editors
of the same names on the ULTRIX system. For information on using
these editors, see ed(1), ex(1), sed(1), and vi(1). The GNU Emacs editor
features an operational xmenu interface, and is described in the GNU
Emacs Manual. If the Emacs editor is installed on your system, this
manual is contained in the following PostScript file:
/usr/lib/emacs/doc/emacs.ps

The Tru64 UNIX distribution media also includes the Emacs source
code as an optional item.

The awk program is essentially the same as the ULTRIX awk program.
For information on awk, see awk(1). The sed editor and the awk program
are also discussed in Programming Support Tools. The gawk program is
essentially the same as the ULTRIX nawk program. For information on
gawk, see gawk(1). The DECwindows Notepad program, which is also an
editor, is described later in this list.

• Examples

The Tru64 UNIX system includes a full suite of demos and sample
programs in the /usr/examples/motif library, including the xcd
and periodic programs. The xcd program allows you to play music
compact discs in a RRD42 CD−ROM drive attached to your system. The
periodic program displays a periodic chart of Motif widgets.

• General-purpose commands

Commands for searching files (such as grep), listing directory contents
and moving between directories (ls, cd, and pwd), displaying the date
and time (date), and so on are, in most cases, the same as the ULTRIX
equivalent commands. Differences are noted in Appendix A. The ps
command functions in either of the following two ways:

– If you omit the minus sign before the option keywords (for example,
ps x), the command functions like the BSD ps command.

2–4 Overview of the Tru64 UNIX User Environment

– If you include the minus sign (for example, ps -x), the command
functions like the System V ps command.

The two versions have different lists of options; see ps(1).

• Mail

Tru64 UNIX mail commands are the same as their ULTRIX equivalents
except that the command names are different. The mail command on an
ULTRIX system invokes /usr/ucb/mail (the Mail user agent). To use
this mail handler on a Tru64 UNIX system, enter the Mail or the mailx
command. The Tru64 UNIX user interface for the mailx user agent is
slightly different from that of the ULTRIX version. The mail command
on a Tru64 UNIX system invokes the /bin/mail program (the binmail
user agent). You can use the Message Handler Utility (MH) just as you
use MH on an ULTRIX system, with the exception that the Tru64 UNIX
MH utility does not support bulletin boards. For information about using
the binmail and mailx commands and the MH utility, see binmail(1),
mailx(1), and mh(1).

The DECwindows Mail program on Tru64 UNIX workstations has a
user interface based on Motif, and is similar to the DECwindows Mail
program on ULTRIX workstations. For information on other differences
and on using DECwindows Mail, see dxmail(1X).

• Notepad

The Notepad program on Tru64 UNIX workstations has a user interface
based on Motif, and is similar to the one on ULTRIX workstations. For
information about using the Notepad program, see dxnotepad(1X) or
start the Notepad program and read its online help information.

• Paint

The Paint program on Tru64 UNIX workstations has a user interface
based on Motif, and is similar to the one on ULTRIX workstations.

Overview of the Tru64 UNIX User Environment 2–5

• Reference pages

Reference pages that describe the various Tru64 UNIX commands
are on line. You can read the references pages on line by using the
man command, just as on an ULTRIX system. For example, enter the
following command at your system prompt:

% man man

This command displays the man command’s reference page.

The section numbers for some reference pages have changed. For
example, on ULTRIX systems, Section 4 describes special files. On
Tru64 UNIX systems, Section 4 describes file formats. The following list
describes the sections that compose the Tru64 UNIX reference pages:

– Section 1 describes user commands.

– Section 2 describes system calls.

– Section 3 describes library routines.

– Section 4 describes file formats.

– Section 5 describes macro packages and conventions.

– Section 6 describes games and unsupported programs. As supplied
by DIGITAL, this section is empty.

– Section 7 describes special files.

– Section 8 describes system and network administration commands.

Also, the reference pages are stored under the /usr/share/man
directory on Tru64 UNIX systems. On ULTRIX systems, the reference
pages are stored in the /usr/man directory.

• Remote system commands

The rdate, rlogin, rsh, rwho, and ruptime remote login commands
are the same as the ULTRIX equivalent commands. You can use
these commands to communicate with remote Tru64 UNIX systems,
ULTRIX systems, and other systems that offer BSD network support.
For information about using these commands, see rdate(1), rlogin(1),
rsh(1), rwho(1), and ruptime(1).

• Remote file transfer commands

The ftp, tftp, and rcp commands are the same as the ULTRIX
equivalent commands. You can use these commands to transfer files
between Tru64 UNIX and ULTRIX systems, and between Tru64
UNIX and other systems that offer Internet networking support. For
information about using these commands, see ftp(1), tftp(1), and
rcp(1).

2–6 Overview of the Tru64 UNIX User Environment

The uucp command on Tru64 UNIX systems differs from the uucp
command on ULTRIX systems. The Tru64 UNIX uucp command has
some features that the ULTRIX uucp command does not have. The
Tru64 UNIX uucp command does not support the −W option. For more
information about using the Tru64 UNIX uucp command, see uucp(1).

• talk command

The talk command is the same as the ULTRIX talk command. For
information about using the talk command, see talk(1).

• telnet command

The telnet command is the same as the ULTRIX telnet command.
For information about using telnet, see telnet(1).

• Text formatting commands

The deroff, neqn, nroff, and tbl commands are similar to the
equivalent commands from the VAX ULTRIX system. Some of these
commands have different options, and VAX ULTRIX nroff drivers
can be ported to a Tru64 UNIX system. (RISC ULTRIX nroff drivers
cannot be ported.) The default device for Tru64 UNIX nroff is −Tlp;
the ULTRIX default is −T37 (Teletype Model 37). For more information
about these commands, see deroff(1), neqn(1), nroff(1), and tbl(1).

• User information commands

Commands such as finger, w, and who are the same as the ULTRIX
equivalent commands. For more information about these commands, see
finger(1), w(1), and who(1).

• Visual differences program

The dxdiff DECwindows visual differences program is the same as
the ULTRIX dxdiff program. For information about dxdiff, see
dxdiff(1X).

2.4 Differences in Shells

The Tru64 UNIX system supports three shells: the C shell (csh), the Korn
shell (ksh), and the Bourne shell (sh). This section gives a brief overview
of each shell’s features and syntax, highlighting differences between it and
the equivalent ULTRIX shell.

2.4.1 Differences in the C Shell

The C shell is an interactive command interpreter and a command
programming language that uses a syntax similar to the C programming
language. The shell carries out commands either from a shell script or
interactively from a terminal keyboard.

Overview of the Tru64 UNIX User Environment 2–7

In most respects, the Tru64 UNIX C shell is the same as the ULTRIX C
shell. In the Tru64 UNIX C shell, you must set an environment variable to
enable file name completion on a Tru64 UNIX system and an environment
variable to enable command-line editing. (For information about enabling
file name completion, see Section 3.1.1. For information about enabling
command-line editing, see Section 3.1.)

The Tru64 UNIX C shell does not support the hashstat built-in command
for debugging the shell. The hashstat command displays statistics that
indicate how effective the internal hash table has been at locating commands.

Other than these differences, the Tru64 UNIX C shell is the same as
the ULTRIX C shell. For information about porting C shell scripts, see
Section 3.2.3.

For more information about the Tru64 UNIX C shell, see csh(1).

2.4.2 Differences in the Korn Shell

The Korn shell is an interactive command interpreter and a command
programming language. The shell carries out commands either interactively
or from a shell script. The Korn shell contains many of the features of the
Bourne shell, as well as some C shell features.

The Tru64 UNIX Korn shell is the same as the ULTRIX Korn shell. If you
use the ULTRIX Korn shell interactively, you should notice no difference
when you use the Tru64 UNIX Korn shell interactively. Shell scripts written
for the ULTRIX Korn shell should run without modification using the Tru64
UNIX Korn shell.

For more information about the Tru64 UNIX Korn shell, see ksh(1).

2.4.3 Differences in the Bourne Shell

The Bourne shell is an interactive command interpreter and a command
programming language. The shell carries out commands either interactively
or from a shell script. The Bourne shell is the default system shell on a
Tru64 UNIX system.

The ULTRIX system has two versions of the Bourne shell, sh and sh5. The
Bourne shell on the Tru64 UNIX system is most similar to sh5.

If you use the sh shell on an ULTRIX system, you might notice the following
differences when you use sh on a Tru64 UNIX system:

• The shell determines whether the argument you specify to the built-in
cd command is a subdirectory of any of the directories specified in the
definition of the CDPATH environment variable. If the shell finds a
subdirectory that matches the argument you specify, it changes your

2–8 Overview of the Tru64 UNIX User Environment

current directory to that subdirectory. The ULTRIX sh shell does not
have this feature.

• The default search path for the Tru64 UNIX sh shell is /usr/bin. On
the ULTRIX system, the default search path is :/bin:/usr/bin. On the
Tru64 UNIX system, /bin is a link to /usr/bin; you do not need to add
/bin to the definition of your Tru64 UNIX PATH environment variable.

• The Bourne shell on ULTRIX has one variant of the shell command, set
− , that does not exist on Tru64 UNIX systems.

• The Tru64 UNIX Bourne shell contains a built-in echo command. The
ULTRIX Bourne shell does not contain an echo command.

These differences might affect the portability of your sh shell scripts. For
information about porting sh shell scripts, see Section 3.2.

The Tru64 UNIX Bourne shell (sh) is almost identical to the ULTRIX
sh5 shell; however, its name is different, and there are a few other minor
differences. The difference in name does not affect how you use the Bourne
shell interactively; however, it might affect the portability of your sh5 shell
scripts. Other differences are very minor but can cause subtle failures
of ported scripts. For information about porting sh5 shell scripts, see
Section 3.2.

2.5 Differences in Security Features

Like the ULTRIX operating system, the Tru64 UNIX system includes
features that allow you to control access to your account, files, and
workstation. For information on using the Tru64 UNIX security features,
see the Security manual.

The Tru64 UNIX system omits the following security features that are found
on ULTRIX systems: trusted path, audit, and enhanced identification and
authentication features (including the shadow password file). For example,
the Tru64 UNIX system does not support the equivalent of the ULTRIX
authenticate_user programming interface. Additionally, a Tru64 UNIX
system’s system administrator cannot define a Secure Attention Key that
you press before you log in to the system.

Overview of the Tru64 UNIX User Environment 2–9

3
Migrating Your ULTRIX User Environment

to a Tru64 UNIX System

This chapter describes how to set up your Tru64 UNIX user environment
so that it is similar to your ULTRIX user environment. This chapter also
describes how to port shell scripts from an ULTRIX system to a Tru64 UNIX
system.

3.1 Setting Environment Variables

In most cases, you can set environment variables on your Tru64 UNIX
system the same as you set them on your ULTRIX system. You might need to
set the following environment variables differently on a Tru64 UNIX system:

• editmode

• filec

• PATH

• LANG

• LC_COLLATE

• LC_CTYPE

• LC_MESSAGES

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

This section describes how you set these environment variables. Note that
the CSHEDIT environment variable is not supported on the Tru64 UNIX
system. To enable command-line editing, enter the following command:

% set editmode {emacs|vi}

You can include this command in your .login file to have the editmode
variable set each time you log in or in your .cshrc file to set the variable
in all subshells.

Migrating Your ULTRIX User Environment to a Tru64 UNIX System 3–1

3.1.1 Setting the C Shell filec and PATH Environment Variables

The Tru64 UNIX system C shell contains most features of the ULTRIX C
shell. One difference between the two shells is that the ULTRIX C shell
includes file name completion by default. On Tru64 UNIX systems, you must
set the filec environment variable to enable file name completion.

To set the filec environment variable, enter the following command:

% set filec

You can include this command in your .login file to have the filec
variable set each time you log in or in your .cshrc file to set the variable
in all subshells. Once you set the variable, you can press the Escape key to
request that the shell complete file names on the command line.

On Tru64 UNIX systems, the default search path for the csh shell
is .:/usr/bin. On ULTRIX systems, the default search path is
.:/usr/bin:/bin. On the Tru64 UNIX system, the /usr/ucb directory is
a link to the /usr/bin directory. For information about the Tru64 UNIX C
shell, see csh(1).

3.1.2 Setting the Bourne Shell PATH Environment Variable

On Tru64 UNIX systems, the default search path for the sh shell
is :/usr/bin. On ULTRIX systems, the default search path is
:/usr/bin:/bin. On the Tru64 UNIX system, the /bin directory is a link
to /usr/bin, so there is no need to add /bin to your path. However, there
are commands in /usr/sbin that you might want to access. To enable the
shell to access commands in /usr/sbin, add that directory to the sh search
path. The following example shows the line to include in your .profile file
to add the /bin directory to the default search path:

PATH=:/usr/bin:/usr/sbin; export PATH

Including this command in your .profile file adds the /usr/sbin
directory to the default sh search path each time you log in to the system.

3.1.3 Setting International Environment Variables

The Tru64 UNIX system has environment variables that control some
aspects of how you interact with programs. The environment variables
control how international programs display messages, accept input, and
display data. International programs use Tru64 UNIX features to display
messages in your native language, collate strings as you expect, format
monetary and numeric data as you expect, and so on. The following sections
describe how to set these environment variables.

3–2 Migrating Your ULTRIX User Environment to a Tru64 UNIX System

3.1.3.1 Setting the Environment Variable for Messages

To display a message in your native language, a program reads the
message from a message catalog. By default, your program searches the
/usr/lib/nls/msg/%L /%N path for message catalogs. In the preceding
pathname, %L represents the locale name specified by the LANG environment
variable, and %N represents the name of the message catalog, which is
usually similar to program_name.cat.

If the message catalog your program needs is not stored in one of the default
directories, you must set the NLSPATH environment variable, as you did on
ULTRIX systems. The NLSPATH environment variable tells the program
where to find the message catalogs.

3.1.3.2 Setting the Environment Variables for Data Handling

You can set a number of environment variables that control how programs
accept input, display data, and manipulate data. The international
environment variables on a Tru64 UNIX system are LANG, LC_ALL,
LC_COLLATE, LC_CTYPE, LC_NUMERIC, LC_MONETARY, LC_TIME, and
LC_MESSAGES. For a description of these environment variables, see
Section 6.10.2.1.

To define these international environment variables, you specify a string,
called the locale name, that tells the system what language, territory, and
codeset to use in your environment. You may also be able to specify a
modifier that allows you to further refine program display and data input.

The Tru64 UNIX system uses a naming convention for locales different from
the ULTRIX system. On ULTRIX systems, the language specifier is three
characters long and uppercase. On Tru64 UNIX systems, the language
specifier is two characters long and lowercase. In addition, the format of the
codeset names differ between the ULTRIX and Tru64 UNIX systems. For
example, to choose an environment that supports French as it is spoken in
France, enter the following command on a Tru64 UNIX system:

% setenv LANG fr_FR.ISO8859-1

On ULTRIX systems, international environment variables have little effect
on the commands on the system. For example, setting the LC_TIME variable
to a French locale name does not cause the date command to display dates
as you expect them to be displayed in France. However, on Tru64 UNIX
systems, the setting of the LC_TIME variable does affect the operation of the
date command, as well as other commands.

The Tru64 UNIX system supports more locales than the ULTRIX system.
However, the ULTRIX ISO 646 and DEC Multinational character set
codesets are not supported on Tru64 UNIX systems. Therefore, the following
locales are unavailable on Tru64 UNIX systems:

Migrating Your ULTRIX User Environment to a Tru64 UNIX System 3–3

• ENG_GB.MCS

• ENG_GB.646

• FRE_FR.MCS

• FRE_FR.646

• GER_DE.MCS

• GER_DE.646

On Tru64 UNIX systems, locales are installed in the /usr/lib/nls/loc
directory. For a list of available locales, see the Technical Overview.

3.2 Migrating Shell Scripts

In most cases, your shell scripts will port from ULTRIX to Tru64 UNIX
with few modifications. You might need to modify your shell script because
of differences between Tru64 UNIX and ULTRIX commands or because of
differences between the shells on Tru64 UNIX and ULTRIX systems.

3.2.1 Modifying Commands Used in Scripts

A number of commands are different between Tru64 UNIX and ULTRIX
systems. Most differences are in the options or arguments for a given
command. Some commands operate differently on Tru64 UNIX systems, and
some ULTRIX commands are unavailable on Tru64 UNIX systems.

For example, the Tru64 UNIX test command works differently from the
ULTRIX test command. On a Tru64 UNIX system, the −f option makes the
test command determine whether a file exists and is a regular file; that
is, the file is not a directory, a character-special file, a block-special file,
or a named pipe. On an ULTRIX system, the −f option makes the test
command determine whether a file exists and is not a directory. Because
of this difference, the test -f command can return unexpected results
on a Tru64 UNIX system. You can get the effect of the ULTRIX test -f
command on a Tru64 UNIX system by replacing the test -f command
with the following command:

(test -f file) -o (test -c file) -o (test -b file) -o (test -p file)

By sequentially testing for a regular file (−f), a character-special file (−c), a
block-special file (−b), or a named pipe (−p), this command tests one file to
be sure it is not a directory. The command returns status in the same way
as the ULTRIX test -f command.

If your scripts contain explicit path references to commands that are in
different directories on the Tru64 UNIX system, you must change these
references to reflect the Tru64 UNIX locations.

3–4 Migrating Your ULTRIX User Environment to a Tru64 UNIX System

For more information about command differences that could affect porting
your shell script from ULTRIX to Tru64 UNIX, see Appendix A.

3.2.2 Migrating Korn Shell Scripts

The Korn shell (ksh) is the same on Tru64 UNIX and ULTRIX systems. You
need not modify your shell scripts.

3.2.3 Migrating C Shell Scripts

The C shell on Tru64 UNIX systems is the same as the C shell on ULTRIX
systems, with one exception. Because the C shell on Tru64 UNIX systems
does not support the hashstat built-in command, you must remove it
from the ULTRIX C shell script before you move the script to a Tru64
UNIX system. The Tru64 UNIX system does not have an equivalent for
this command.

3.2.4 Migrating sh Shell Scripts

The Bourne shell on Tru64 UNIX systems is largely the same as the Bourne
shell on ULTRIX systems. Some differences between the two shells do exist.
The following list describes changes you should make to your ULTRIX sh
scripts or your user environment to port sh scripts to a Tru64 UNIX system:

• Check any cd commands.

The Tru64 UNIX cd command might change your current directory to
one that you do not expect. To avoid this problem, specify only absolute
pathnames as arguments to the cd command.

On Tru64 UNIX systems, the shell determines whether the argument
you specify to the cd command is a subdirectory of any of the directories
specified in the definition of the CDPATH environment variable. If the
shell finds a subdirectory that matches the argument you specify, it
changes your current directory to that subdirectory. The ULTRIX sh
command does not have this feature.

• Remove the set − command from shell scripts.

The Tru64 UNIX system does not have the set − command or any
equivalent.

• Modify references to the echo command so that they invoke the
/bin/echo command.

The Tru64 UNIX shell contains a built-in echo command. References
to the echo command in a shell script that you run on a Tru64 UNIX
system invoke the built-in echo command. The ULTRIX Bourne shell
contains no built-in echo command. References to the echo command in
your ULTRIX shell script invoke the /bin/echo command.

Migrating Your ULTRIX User Environment to a Tru64 UNIX System 3–5

The Tru64 UNIX built-in echo command differs from the /bin/echo
command. For example, the built-in echo command does not support the
−n option. If you use the echo −n command in a shell script, the output
from the command includes the −n, as shown:

% echo -n hello
-n hello

Modify your shell script so that it invokes the /bin/echo command, as
shown in the following example:

/bin/echo -n hello

(See the information about the sh shell in Appendix A for more
differences between the /bin/echo command and the built-in echo
command.)

The /bin/echo command is the same on ULTRIX and Tru64 UNIX
systems.

3.2.5 Migrating sh5 Shell Scripts

The first two bytes of an executable program, called a magic number, tell
the system what kind of program it is. The first line of most shell scripts
is a magic number consisting of the combination of a number sign and an
exclamation point (#!). This magic number tells the system to execute the
rest of the line as if it were a normal shell command. Most shell scripts
invoke the shell for which they are written to ensure that the script is
executed by the appropriate shell. The first line of most scripts written
for the ULTRIX sh5 shell is:

#! /bin/sh5

Because the Tru64 UNIX system uses a different name for the Bourne shell,
these scripts fail. You must modify the first line to invoke the sh shell on a
Tru64 UNIX system, as shown:

#! /bin/sh

If a script must run when the system is in single-user mode, specify
/sbin/sh instead of /bin/shto get the statically linked version of the shell.

One significant difference between the ULTRIX sh5 shell and the Tru64
UNIX sh shell is in their treatment of positional parameters when a function
is called. The Tru64 UNIX sh shell sets the positional parameters to the
function call’s arguments as does the ULTRIX sh5 shell. However, the
Tru64 UNIX sh shell also saves the values the positional parameters held
before the function was called. Upon return from the function, the shell sets
the positional parameters to the saved values. The ULTRIX sh5 shell does
not restore the positional parameters in this way; it leaves them set to the
values they hold when the function returns. If your scripts do not rely on the
ULTRIX behavior, this difference is transparent.

3–6 Migrating Your ULTRIX User Environment to a Tru64 UNIX System

The most efficient way to modify the first line in a number of sh5 scripts
is to write a shell script. Example 3–1 shows a shell script that changes
the first line in sh5 scripts.

Example 3–1: Shell Script to Convert sh5 Scripts into sh Scripts

#! /bin/sh

trap ’rm -f /tmp/conv$$; exit ’ 0 1 2 1

for i 2
do

sed ’ls/bin\/sh5/bin\/sh/’ $i > /tmp/conv$$ 3
[-f /tmp/conv$$] && { 4

mv /tmp/conv$$ $i 5
}
done

1 The trap command makes the shell recognize the 0, 1, or 2 signals. If
the shell receives one of these signals, it removes the file /tmp/conv$$,
where $$ is the process number of the current process. The shell script
uses this file during its processing.

Once the /tmp/conv$$ file is removed, the shell script exits.

2 The for command starts a loop that continues as long as there are
arguments on the shell script command line. Therefore, if you invoke
this shell script with three arguments, the loop executes three times.
The loop executes the commands between do and done.

3 The sed command modifies the first line of its input. The command
searches for the string bin/sh5 and replaces it with the string bin/sh.
The sed command writes its output to the /tmp/conv$$ file.

4 The command in brackets ([]) tests to see that the /tmp/conv$$ file
exists and has a size greater than zero.

The brackets are an alias for the /usr/bin/test command.

The && separator specifies that the command in braces ({}) is executed
only if the test is true.

5 The mv command moves the /tmp/conv$$ file to the location of the
original input file. In effect, this command writes the converted shell
script over the input file.

The shell script in Example 3–1 modifies only the first line in its input.
You cannot use it to replace any sh5 invocation commands that appear on
lines other than the first line of a shell script. You must either modify those

Migrating Your ULTRIX User Environment to a Tru64 UNIX System 3–7

invocation commands by hand or modify this shell script so that it replaces
all sh5 invocation commands.

To use the shell script in Example 3–1, use the vi editor or some other editor
to create a file on your Tru64 UNIX system that contains the script. Then,
use the chmod command to set the file permissions on the script so that
you can execute it. For example, if you name the script convert, enter the
following chmod command:

% chmod u+x convert

Invoke the shell script by typing its name, followed by the names of sh5
scripts you want to convert. You can name as many shell scripts as you want
on the command line, up to the maximum command-line length.

For example, suppose you want to convert three shell scripts: setup,
modify, and remove. To convert the three shell scripts, enter the following
command:

% convert setup modify remove

The convert script reads each file, one at a time, and changes its first line,
if necessary. The converted shell script is stored in the same file as the
input shell script; in this case, the converted shell scripts are named setup,
modify, and remove.

Be sure to test the converted shell scripts for other possible incompatibilities
before placing them into daily use.

3–8 Migrating Your ULTRIX User Environment to a Tru64 UNIX System

Part 3
Migrating Your System and Network

Administration Environment

This part gives an overview of the Tru64 UNIX system and network
administration environment, and describes specific differences between
Tru64 UNIX and ULTRIX systems that affect system and network
administrators.

4
Overview of Tru64 UNIX System and

Network Administration

The Tru64 UNIX system and network administration environment is
similar to the ULTRIX administration environment. You can use most
administration tools on a Tru64 UNIX system in the same way as on
an ULTRIX system. However, some differences do exist. This chapter
is an overview of the Tru64 UNIX system and network administration
environment, describing the differences from the ULTRIX environment.

This chapter does not give detailed information about administering
a Tru64 UNIX system or using Tru64 UNIX system administration
tools. Administering a Tru64 UNIX system is described in the System
Administration manual and the Network Administration manual.

4.1 Installation and System Setup

Installation and system setup are similar on Tru64 UNIX and ULTRIX
systems. The Tru64 UNIX installation procedure, like the ULTRIX
installation procedure, can use both the setld software and Remote
Installation Services (RIS) software to install a bootable system from media.
Both systems have setup scripts that you use in similar ways to set up
systems after an installation.

The Tru64 UNIX installation supports configuring a system after
installation. This feature allows you to install software on several system
disks at one machine. You can then move each system disk to its own
machine and configure it for use there. Take note of cabling inconsistencies
and possible logical unit address changes (which affect the /etc/fstab file)
when moving disk devices between systems.

Unlike an ULTRIX and UWS system, where you choose whether to install
UWS, when you install a Tru64 UNIX system, the mandatory windowing
software is automatically installed. The Installation Guide lists the subset
names. If you do not need the windowing software, you can use the
setld −d command to remove its subsets after the installation is complete.

Like the ULTRIX system, the Tru64 UNIX system is organized into software
subsets. Some subsets are required at installation time, while others are
optional. The contents of various Tru64 UNIX subsets might be different

Overview of Tru64 UNIX System and Network Administration 4–1

from ULTRIX subsets. For information about the Tru64 UNIX subsets,
see the Installation Guide.

The Tru64 UNIX installation procedure creates log files that record the result
of the installation. These log files are created in the /var/adm/smlogs
directory. On ULTRIX systems, the log files are created in the /var/adm
directory.

4.2 Available System Setup Scripts

Like the ULTRIX system, the Tru64 UNIX system includes setup scripts
that you can use to complete the installation and configuration of your
system’s environment. You should use these setup scripts to set up various
Tru64 UNIX utilities. The scripts are similar to the ULTRIX scripts that
have the same name, but some differences might exist. For information
about using the setup scripts, see the Network Administration manual.

Table 4–1 lists the scripts available on a Tru64 UNIX system.

Table 4–1: Setup Scripts Available on Tru64 UNIX Systems
Setup Script Purpose

addgroup Adding groups to your system

adduser Adding users and creating users’ home directories

bindsetup Setting up the Berkeley Internet Name Domain (BIND) service

latsetup Setting up the local area transport (LAT) service

lprsetup Adding local and remote printers to your system

mailsetup Setting up mail

MAKEDEV Installing device-special files

netsetup Establishing and adding nodes to a local area network (LAN)

nfssetup Setting up a Network File System (NFS) file system

nissetup Setting up the Network Information Services
(NIS, formerly called YP)

ntpsetup Configuring the Network Time Protocol (NTP) daemon

snmpsetup Setting up the Simple Network Management
Protocol (SNMP) Agent

strsetup Configuring STREAMS special device files

svcsetup Modifying the name service configuration file, /etc/svc.conf

uucpsetup Configuring your system for uucp connections

4–2 Overview of Tru64 UNIX System and Network Administration

4.3 System Customization Files

Both the Tru64 UNIX and ULTRIX systems have files that you use to
customize your system. You can use some of your ULTRIX customization
files on your Tru64 UNIX system with little or no modification. Typically, the
only changes you must make are to remove references to ULTRIX specific
features. The following are some of these files:

• From the root directory (/, the superuser’s home directory):

– .cshrc

– .login

– .mailrc

– .profile

– .rhosts

– .Xdefaults

– .X11Startup

• From the /etc directory:

– acucap

– automount.master

– exports

– hosts

– hosts.equiv

– phones

– remote

– resolv.conf

– svcorder

In addition, a number of configuration files are the same on ULTRIX and
Tru64 UNIX systems, except that the Tru64 UNIX system does not support
the Hesiod naming service. Once you remove references to Hesiod from the
following files, you can use them on your Tru64 UNIX system:

• netgroup

• networks

• protocols

• rpc

• services

Overview of Tru64 UNIX System and Network Administration 4–3

Other configuration files are different on ULTRIX and Tru64 UNIX
systems. For example, the Tru64 UNIX system does not have the following
configuration files:

• crontab

Instead of using an /etc/crontab file, the directory
/usr/var/spool/cron/crontabs contains a number of files that the
cron daemon uses to start facilities. For more information, see cron(8).

• rc.local

On a Tru64 UNIX system, the system initialization functions performed
by the ULTRIX /etc/rc.local file are provided by the /etc/inittab
file and the shell scripts in the /sbin/init.d directory. For more
information about system initialization, see the System Administration
manual.

• gettytab

The /etc/gettytab file is obsolete and has been replaced by
/etc/gettydefs. To allow communication with systems using
nonstandard parameters, copy one of the existing gettydefs entries
and edit the copy as required to provide the parameters you need. See
gettydefs(4) for specific file format information.

• ttys

The function of the /etc/ttys file is changed. Tru64 UNIX systems
use the /etc/ttys file to control root access by marking which lines
are secure. The /etc/inittab file is used to configure terminal lines.
You might want to save your ULTRIX /etc/ttys file for information
on the configurations of specific terminal lines, but the format of the
/etc/inittab file is very different. See inittab(4) for specific file
format information.

Information about the differences between most other ULTRIX and Tru64
UNIX customization files is in this chapter. For information about creating
and modifying those files, see the Network Administration manual and the
System Administration manual.

4.4 System Configuration

When you install the Tru64 UNIX system, the distribution software includes
the files that the system needs to create and build the core kernel and the
kernel subsystems. You might need to reconfigure your system, on occasion,
to align and tune it to meet the changing conditions of your site.

The Tru64 UNIX configuration procedure is similar in many ways to the
ULTRIX procedure. The procedure consists of the Berkeley Standard
Distribution Version 4.3 (BSD 4.3) configuration scheme, which includes the

4–4 Overview of Tru64 UNIX System and Network Administration

mechanism for configuring a kernel according to the definitions found in
the static system configuration file, /sys/conf/NAME, where NAME is the
name of your system, in uppercase letters. The kernel calls the autoconfig
routine at startup time to configure physical devices that are defined in
the configuration file and are connected to the system. Devices that are
defined in the configuration file, but are not connected to the system, are not
configured and cannot be used. Other subsystems (file systems and network
protocol families, for example) are initialized and configured if they are
defined in the /sys/conf/NAME file, and if the corresponding subsystem
framework is present and activated.

Like the ULTRIX configuration file, the Tru64 UNIX configuration file
contains a number of parameters that you can use to tune your system. The
parameters on the Tru64 UNIX system differ from the ULTRIX parameters.
For information about using the Tru64 UNIX parameters, see the System
Administration manual.

As with ULTRIX, you build a new kernel on the Tru64 UNIX system
automatically by using the doconfig program. You can also build a new
kernel manually by using the config program. The only difference is that
the config program on Tru64 UNIX systems is in the /sys/bin directory.
On ULTRIX systems, the program is in the /etc directory. When you build
a kernel on the Tru64 UNIX system, the doconfig or config program
places the newly built kernel in the directory /sys/NAME, where NAME is
your system name. For more information about building a new kernel, see
the System Administration manual.

4.5 System Security Features
The Tru64 UNIX system has elementary features that allow you to control
access to your system. For example, you can create and remove accounts and
set permissions for files and directories. These system security features
included in the Tru64 UNIX system are the traditional UNIX security
features. For information about using these security features, see the
System Administration manual.

The Tru64 UNIX system also contains more sophisticated security features.
These features are described in the Security manual.

4.6 Print Services
The Tru64 UNIX system includes the traditional BSD UNIX capabilities for
printing files. The system supports a print spooler for queuing print jobs
to one or more printers. The /etc/printcap file describes the printers
available, including their characteristics. You can print files on a remote
Tru64 UNIX system over the TCP/IP network, just as you can on an ULTRIX
system. You can print files on a local or remote PostScript printer, files on

Overview of Tru64 UNIX System and Network Administration 4–5

a printer connected to a LAT port, and files that contain the appropriate
PostScript prologue print without modification.

Although the Tru64 UNIX system supports basic print capabilities, it does
not support the PrintServer for ULTRIX software to print files on the
Compaq family of PrintServer network laser printers. Compaq offers an
optional software package for supporting PrintServer printers on Tru64
UNIX systems; licenses for this software are bundled with the printers
themselves, and the software is available separately. Contact your local
Compaq salesperson for further information about PrintServer support. See
the System Administration manual and Network Administration manual for
information on setting up printers.

The following list compares the basic printing capabilities of the Tru64 UNIX
system and the same capabilities on an ULTRIX system:

• The print management and use commands are the same.

The lprsetup utility is available and performs the same tasks on a
Tru64 UNIX system as on an ULTRIX system; namely, creating entries
in the /etc/printcap database, creating spool directories, creating
accounting files, and so on. Other commands, such as lpq, lprm, lpc,
lp, and pac are the same as the equivalent commands on an ULTRIX
system.

• The line printer daemon has moved to a new directory.

The print services on Tru64 UNIX and ULTRIX systems are controlled
by the line printer daemon (lpd). On Tru64 UNIX systems, lpd is stored
in the /usr/lbin/lpd directory by default. On ULTRIX systems, lpd is
stored in the /usr/lib directory.

• The script that starts lpd has moved to a new directory.

When you reboot a Tru64 UNIX system, the system runs the
/sbin/rc3.d/S65lpd script file to start lpd. On an ULTRIX system,
lpd is started by the /etc/rc file at boot time.

• The name of the spooling directory has changed.

On a Tru64 UNIX system, files to be printed are stored
in a spooling directory. By default, the directory is named
/var/spool/lpd/printername, where printername is the name of
the printer. You can change the default spooling directory on a Tru64
UNIX system by using the lprsetup utility.

• Most ULTRIX print filters are available on Tru64 UNIX systems.

On ULTRIX systems, print filters are stored in the /usr/lib/lpdfil-
ters directory. On Tru64 UNIX systems, they are stored in the
/usr/lbin directory. The Tru64 UNIX system supports the following
print filters:

4–6 Overview of Tru64 UNIX System and Network Administration

la75of LA75 dot matrix printer filter

lg02of LG02 matrix line printer filter (serial only)

lg031f LG31 matrix line printer filter

lg06of LG06 matrix line printer filter (serial only)

lj250of LF250 companion color printer filter

ln03of LN03 (S) laser printer filter

ln03rof LN03R ASCII to PostScript translation filter

ln03rof_isolatin1 LN03R ASCII to PostScript translation filter
with ISO Latin/1 encoding vectors

ln03rof_decmcs LN03R ASCII to PostScript translation
filter with the DEC Multinational character
set encoding vectors

ln05of LN05 (S) laser printer filter

ln05rof LN05R ASCII to PostScript translation filter

ln05rof_isolatin1 LN05R ASCII to PostScript translation filter
with ISO Latin/1 encoding vectors

ln05rof_decmcs LN05R ASCII to PostScript translation
filter with the DEC Multinational character
set encoding vectors

ln06of LN06 (S) laser printer filter

ln06rof LN06R ASCII to PostScript translation filter

ln06rof_isolatin1 LN06R ASCII to PostScript translation filter
with ISO Latin/1 encoding vectors

ln06rof_decmcs LN06R ASCII to PostScript translation
filter with the DEC Multinational character
set encoding vectors

ln07of LN07 (S) laser printer filter

ln07rof LN07R ASCII to PostScript translation filter

ln07rof_isolatin1 LN07R ASCII to PostScript translation filter
with ISO Latin/1 encoding vectors

ln07rof_decmcs LN07R ASCII to PostScript translation
filter with the DEC Multinational character
set encoding vectors

ln08of LN08 (S) laser printer filter

ln08rof LN08R ASCII to PostScript translation filter

ln08rof_isolatin1 LN08R ASCII to PostScript translation filter
with ISO Latin/1 encoding vectors

Overview of Tru64 UNIX System and Network Administration 4–7

ln08rof_decmcs LN08R ASCII to PostScript translation
filter with the DEC Multinational character
set encoding vectors

lpf General-purpose line printer filter for the LA75,
LA100, LA120, and LA210 printers

lqf Letter-quality printer filter

• The following printcap options are available in ULTRIX and UWS, but
are not available on Tru64 UNIX:

– ps, printer type

– Tr, Postscript trailer page

• The following DEClaser PostScript printer options are available on
ULTRIX and UWS, but are not available on Tru64 UNIX:

– −N, number up

– −X, number of copies

– −Z, print selected pages

• The following DEClaser non-PostScript printer options are available on
ULTRIX and UWS, but are not available on Tru64 UNIX:

– −X, number of copies

– −Z, print selected pages

4.7 Terminal Capability Handling
The Tru64 UNIX system supports the termcap and terminfo mechanisms
for describing terminal capabilities in essentially the same manner as on the
ULTRIX system. These generic terminal-handling mechanisms are broken
down into the following two parts:

• A database that describes the capabilities of each supported terminal

• A subroutine library that allows programs to query that database and
make use of the capability values it contains

This section describes database capabilities. Section 7.7 discusses using
the curses and termcap libraries.

The termcap capabilities in Tru64 UNIX are comparable to those in
BSD 4.3-5. The terminfo capabilities are comparable to those in System V
Release 3.0 (SVID 2). Tru64 UNIX termcap and terminfo databases
support the following terminals:

VT52 VT220 VT330

VT100 VT240 VT340

4–8 Overview of Tru64 UNIX System and Network Administration

VT102 VT241 VT400

VT125 VT300 VT420

VT200 VT320 Xterm

In addition, these databases support a number of common generic devices,
including:

ansi lpr plugboard

arpanet network pmconsole*

bussiplexer minansi* printer

dialup mransi* switch

dumb patchboard unknown

ethernet

All entries contain only 7-bit control codes. Names marked with an asterisk
(*) are in the terminfo database only.

The termcap file is located in the /usr/share/lib directory; the
/etc/termcap file is a link included for ULTRIX compatibility. The
terminfo database is located in the /usr/share/lib/terminfo directory
instead of in /usr/lib/terminfo as on ULTRIX systems.

The terminfo database sources are also located in /usr/share/lib/ter-
minfo instead of in /usr/src/usr.lib/terminfo.

4.8 Disk and File System Maintenance Features

Basic maintenance of disks is similar on a Tru64 UNIX system and an
ULTRIX system. Both systems support the UNIX File System (UFS) and the
Network File System (NFS). For information about configuring your type of
file system (UFS or NFS), see the System Administration manual.

Most commands you use to manage disks are the same on a Tru64 UNIX
system as they are on an ULTRIX system. This section compares disk and
file system maintenance on the two systems, and points out differences.

4.8.1 Tru64 UNIX Directory Structure

The directory hierarchy on a Tru64 UNIX system is different from that on
an ULTRIX system. Figure 4–1 shows many of the directories in the Tru64
UNIX directory structure.

Overview of Tru64 UNIX System and Network Administration 4–9

Figure 4–1: Tru64 UNIX Directory Structure for System Administrators

ZK−0463U−R

/bin /lib /sbin /sys /ucb
7 8

1

2 3 5

/

/etc /home /lib /sbin /sys /tmp /usr /var/bin /dev/mnt /opt

/ccs /include /shlib/lbin/share

64

9

As Figure 4–1 shows, many of the directories in the Tru64 UNIX file system
structure are identical to the ULTRIX file system structure. The following
list points out important differences:

1 On Tru64 UNIX systems, the /bin directory is a link to the /usr/bin
directory.

2 Many system administration commands have moved out of the /etc
directory and into either the /sbin or /usr/sbin directory.

The /etc/ifconfig command is linked symbolically to
../sbin/ifconfig.

3 The Tru64 UNIX directory structure contains the /home directory,
intended as a root for users’ home directories. However, on Tru64 UNIX
systems, the home directories for most users are subdirectories of the
/usr/users directory, which is the default location for adding a user
(typically, with the adduser command). The actual location of user
subdirectories is at the discretion of the system administrator.

4 The /lib directory is a link to the /usr/lib directory. In addition,
the /usr/lib directory contains links to libraries stored in the
/usr/ccs/lib directory.

5 The /sbin directory contains the set of executables required to boot
and initialize the system successfully in single-user mode. When you
are in single-user mode, you can use only the commands in the /sbin

4–10 Overview of Tru64 UNIX System and Network Administration

directory because shared libraries are unavailable. The commands in
the /sbin directory are not linked with shared libraries.

____________________ Note _____________________

The /sbin directory contains only a subset of the commands
that are available on an ULTRIX single-user mode system.
You can do less on a Tru64 UNIX system from single-user
mode than you can on an ULTRIX system.

6 The /sys directory is a link to the /usr/sys directory.

7 The /usr/bin directory contains binaries and links to binaries in other
directories, such as /usr/ccs/bin.

8 The /usr/sbin directory contains commonly used system
administration commands. The commands in this directory are linked
with shared libraries. When the system is in multiuser mode, you
should use the commands in /usr/sbin directory, rather than the
commands in the /sbin directory.

9 The /usr/ucb directory is a link to the /usr/bin directory on Tru64
UNIX systems.

4.8.2 Differences in Creating a UNIX File System

To create a UNIX File System (UFS) on a Tru64 UNIX system, you use the
newfs command. This command builds a new file system on a specific
device, using information in the disk label as its default values. If there
is no disk label, newfs uses information from the /etc/disktab file.
Compaq recommends that you create disk labels with the disklabel
command before running the newfs command. (See disklabel(8) for more
information.) You can specify options to redefine the standard sizes for the
disk geometry.

The newfs command is similar on Tru64 UNIX and ULTRIX systems. The
Tru64 UNIX command omits the −v option. For more information about
newfs, see newfs(8).

4.8.3 Differences in Checking a UNIX File System

To check the integrity of a UNIX File System (UFS), use the fsck command.
The fsck command checks the integrity of UFS file systems. This command
can determine the type of a particular file system by using information in
the /etc/fstab file. Alternatively, you can specify options on the fsck
command line to indicate what type of file system you are checking. The
following table describes differences between the ULTRIX and Tru64 UNIX
fsck command:

Overview of Tru64 UNIX System and Network Administration 4–11

ULTRIX fsck Command Tru64 UNIX fsck Command

Repeats the checking operation if it
makes repairs to the file system.

Does not perform this rescanning
operation.

Has file system clean byte aging, which
forces the file system to be checked
with fsck periodically.

Does not have clean byte aging; you
should run fsck on all file systems
periodically, even though fsck says
the file system is clean. Use fsck −o
to force checking.

For more information about fsck, see fsck(8).

4.8.4 Differences in Mounting and Unmounting a File System

You mount and unmount file systems on a Tru64 UNIX system by using the
mount and umount commands. Like the ULTRIX mount command, the
Tru64 UNIX mount command mounts the file system you specify or file
systems described in the fstab file. The mount and umount commands
are similar on Tru64 UNIX systems and ULTRIX systems. For more
information, see mount(8). You can mount an ULTRIX file system on a Tru64
UNIX system as described in Section 5.1.

______________________ Note _______________________

You cannot mount a file system with a 4 kB block size on a Tru64
UNIX system. If you have any data that you need to access and
the data is on auxiliary disks in a file system with a 4 kB block
size, you must dump the disk to tape or to a disk that has a file
system created with an 8 kB block size.

The format of the Tru64 UNIX fstab file is different from the format of the
ULTRIX file. Like the ULTRIX fstab file, information about each Tru64
UNIX file system is contained on a separate line in the fstab file. The
contents and field ordering of the line are different between Tru64 UNIX
and ULTRIX systems. On Tru64 UNIX systems, you separate fields on a line
with spaces or tabs. On ULTRIX systems, you separate fields by using a
colon. See fstab(4) for more information.

4.8.5 Differences in Monitoring File System Use

Use the df and du commands to monitor file systems use. The Tru64 UNIX
df command is similar to the ULTRIX df command, except that by default
the Tru64 UNIX command displays statistics in 512-byte blocks while the
ULTRIX command displays them in units of 1024 bytes. Use the −k option to
display statistics in 1024-byte units. The Tru64 UNIX command supports
options that are unavailable on an ULTRIX system, including a −t option

4–12 Overview of Tru64 UNIX System and Network Administration

that allows you to specify that statistics be displayed for a particular file
system type. The Tru64 UNIX du command is the same as the ULTRIX du
command, except that the Tru64 UNIX command supports options that
are unavailable on ULTRIX systems. For more information about these
commands, see df(1) and du(1).

4.8.6 Specifying Disk Quotas

You can specify file system disk quotas on a Tru64 UNIX system. The steps
you take to activate file system disk quotas on a Tru64 UNIX system are
similar to those on an ULTRIX system. For information about activating
disk quotas, see the System Administration manual.

4.8.7 Differences in Setting Up and Maintaining NFS Software

The Tru64 UNIX Network File System (NFS) software is a facility for
sharing files in a heterogeneous environment of processors, operating
systems, and networks. The NFS software on a Tru64 UNIX system is
similar to the NFS software on an ULTRIX system.

Sharing on a Tru64 UNIX system is accomplished by mounting a remote file
system or directory on a local system and then reading or writing the files as
though they are local. You can use the Tru64 UNIX NFS software to mount
remote ULTRIX file systems. You can also use NFS software to mount Tru64
UNIX file systems on an ULTRIX system. However, if there are files greater
than 2 gigabytes (GB) in size, the ULTRIX users will be able to perform file
operations only on the first 2 GB.

The Tru64 UNIX NFS software supports two versions of the NFS protocol:
Version 2 and Version 3. NFS Version 2 protocol limits remote file access to
2 GB, because of the 32-bit file size and offset fields in the protocol. NFS
Version 3 protocol does not have this file access limitation. NFS Version 3
protocol supports 64-bit remote file access. Therefore, the maximum file
offset that can be accessed by Version 3 clients is 16 exabytes (2**64-1 bytes).

Whether NFS Version 3 or Version 2 protocol is used is transparent to the
client: no action needs to be taken. When a Tru64 UNIX Version 3.0 client
mounts a file system from a server, it will use the Version 3 protocol if the
server supports it. However, the client will use the Version 2 protocol when
it mounts a file system from a Tru64 UNIX Version 2.0 (or earlier) server, or
is mounting an ULTRIX file system.

To set up the NFS software, you use the nfssetup command. This command
operates the same on Tru64 UNIX systems as it does on ULTRIX systems.

Like an ULTRIX system, you list the files that you want to export to remote
systems in the /etc/exports file. This file has the same general format on
a Tru64 UNIX system as it does on an ULTRIX system, with some changes

Overview of Tru64 UNIX System and Network Administration 4–13

in the export options. However, the old ULTRIX export options are accepted.
See exports(4) for more information.

If you want to have certain NFS file systems mounted automatically when
you boot your Tru64 UNIX system, list those file systems in the /etc/fstab
file. The format of the Tru64 UNIX fstab file is slightly different from
the format of the ULTRIX file. As in the ULTRIX fstab file, information
about each Tru64 UNIX file system is contained on a separate line in the
fstab file. The contents and order of the line are the same on Tru64 UNIX
and ULTRIX systems. The difference is that on Tru64 UNIX systems you
separate fields on a line with spaces or tabs. On ULTRIX systems, you
separate fields by using a colon.

To mount an NFS file system, you enter the Tru64 UNIX mount command.
You also use this command to display the list of file systems that are
currently mounted on the local system. This command is the same as the
ULTRIX mount command. For more information about this command, see
mount(8).

You can display information about NFS servers by using the showmount
command. This command lists all mount points on the remote server,
displays the remote hosts current export list, and so on. This command is
the same on Tru64 UNIX and ULTRIX systems. For more information about
the command, see showmount(8).

To get the status of NFS activity, use the nfsstat command as you do on an
ULTRIX system. For more information about this command, see nfsstat(8).

As on ULTRIX systems, the following four daemons implement the Tru64
UNIX NFS service:

• portmap

The portmap daemon maps the remote procedure call (RPC) program
numbers of network services to their Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP) port numbers. This daemon is
similar on Tru64 UNIX and ULTRIX systems.

Like the ULTRIX portmap daemon, the Tru64 UNIX portmap daemon
supports port checking. Port checking ensures that file access requests
were generated by an authorized client kernel, rather than by an
unauthorized application program.

• mountd

The mountd daemon checks the access permission of the client and
returns a pointer to the file system or directory that is to be mounted.
The mountd daemon is similar between Tru64 UNIX and ULTRIX
systems. The difference is that, by default, on a Tru64 UNIX system, the
daemon services requests only from the superuser of a remote system.

4–14 Overview of Tru64 UNIX System and Network Administration

The ULTRIX mountd daemon services requests from any user on the
remote system.

Section 5.8 describes how to configure the mountd daemon so that it runs
like the ULTRIX daemon.

• nfsd

The nfsd daemon allows access to the NFS mounted file system. This
daemon is the same on Tru64 UNIX and ULTRIX systems.

• nfsiod

The nfsiod daemon allows clients to read ahead and write behind to
NFS mounted file systems. This daemon is the same as the ULTRIX
biod daemon.

4.8.8 Differences in Partitioning Disks

Like ULTRIX disks, Tru64 UNIX disks are divided into partitions. Disk
partitions are logical divisions of a disk that allow you to put files of the
same type into separate areas of varying sizes. Partitions have default sizes
that depend on the type of disk; the installation process uses these default
sizes unless it finds an ULTRIX partition table on the disk. To specify
alternative partition sizes as part of the installation, you must boot the
system into standalone mode and use the disklabel command to create a
partition table before running the normal installation procedure. After the
system is installed, you can change partition sizes with the Tru64 UNIX
disklabel command.

The disklabel command reads and writes the disk pack label. The disk
pack label contains the partition table for the disk and information about the
geometry of the disk. The disk label is located on one of the first sectors of
the disk, usually in block 0.

You use the disklabel command to create, modify, and display the label
on a disk. This command is the equivalent of the chpt command on
ULTRIX systems. For more information about the disklabel command,
see disklabel(8).

4.9 Event-Logging Features

The Tru64 UNIX system event-logging and binary event-logging facilities
both record information about system events. On Tru64 UNIX systems,
the system event-logging facility uses the syslogd daemon to collect the
information logged and distribute it; the binary event-logging facility uses
the binlogd daemon to collect information. (On ULTRIX systems, the
system log daemon is syslogd daemon and the error-logging daemon is the

Overview of Tru64 UNIX System and Network Administration 4–15

elcsd daemon.) The syslogd daemon can collect and report the messages
logged by the various kernel, command, utility, and application programs.

The system logs messages as specified in the /etc/syslog.conf file.
This file is different from the ULTRIX error-logging configuration file,
/etc/elcsd.conf. You use the Tru64 UNIX /etc/syslog.conf file
to specify the parts of the system, or facilities, for which event logging is
enabled. Examples of facilities are the kernel, a user process, and the Mail
system. The file also specifies the event message severity level, and the
location of the log file to which messages are written.

On the Tru64 UNIX system, the system event-logging facility writes its
output to a number of log files, often one file for each facility being logged.
You can specify that the system event-logging system create the log file
on the local system or a remote system. In most cases, the remote system
can be any system that runs the syslogd daemon, including an ULTRIX
system. However, the log file for the binary event-logging facility, which logs
binary errors, must reside on a local or remote Tru64 UNIX system. Also,
you cannot log errors from an ULTRIX system on a Tru64 UNIX system.

For more information about error logging, see the System Administration
manual.

4.10 Disk Shadowing Facilities

Although the ULTRIX system has no mechanism for replicating data,
Compaq offers a separately licensed ULTRIX product that replicates data,
called ULTRIX Disk Shadowing. The ULTRIX Disk Shadowing product is
not available on Tru64 UNIX systems. To replicate data on a Tru64 UNIX
system, use the Logical Storage Manager (LSM) subsystem.

4.10.1 Logical Storage Manager

The Tru64 UNIX Logical Storage Manager (LSM) is an integrated,
host-based disk storage management tool that protects against data loss and
improves disk I/O performance. System administrators use LSM to perform
disk management functions including disk concatenation, data mirroring
or shadowing, and striping.

LSM builds virtual disks, called volumes, on top of UNIX system disks.
LSM permits dynamic reconfiguration of its disk volumes, making it easy
to adapt to changes in I/O load and application needs, and to maximize
system availability. LSM features a high degree of flexibility in the way
volumes can be mapped to disk and partition devices. This flexibility
allows you to optimize performance, change volume size, add mirrors, and
perform backups or other administrative tasks without interrupting system
applications and users.

4–16 Overview of Tru64 UNIX System and Network Administration

LSM includes a command-line interface, a menu interface, and a
windows-based interface that a system administrator can use to
transparently optimize I/O performance, change volume size, add plexes,
and perform backups or other administrative tasks.

Migration information is contained in the Logical Storage Manager manual.

4.10.2 Logical Volume Manager

To replicate data on earlier versions of Tru64 UNIX systems, the Logical
Volume Manager (LVM) subsystem was used. This subsystem has been
retired in favor of the LSM subsystem.

______________________ Note _______________________

The LVM subsystem and the ULTRIX Disk Shadowing product
use incompatible on-disk metadata formats. Consequently, you
cannot mount an existing ULTRIX shadowed file system on an
LVM mirrored logical device without converting.

Table 4–2 shows some of the differences between the ULTRIX Disk
Shadowing product and the LVM subsystem.

Table 4–2: Differences in Disk Shadowing Facilities
ULTRIX Disk Shadowing LVM

Description A layered product that enables
you to replicate data on
disk partitions.

A kernel subsystem that enables
you to create and manage
logical volumes. Additionally,
you can replicate data and
create logical volumes that
span multiple disks.

Partitions Supports root, swap, and
data partitions

Supports data partitions, but
does not support root and
swap partitions

Metadata Size 4kB 70kB−4MB

Terminology Disk shadowing Data mirroring

Shadow device Logical volume

Disk partition Physical volume

Metadata Metadata

Shadow set Set of physical volumes used in
a mirrored logical volume

Two-member shadow set Single mirrored data

Overview of Tru64 UNIX System and Network Administration 4–17

Table 4–2: Differences in Disk Shadowing Facilities (cont.)

ULTRIX Disk Shadowing LVM

Three-member shadow set Double mirrored data

None Physical extent (contiguous
disk region)

None Logical extent (contiguous
logical region that maps to 1,
2, or 3 physical extents)

None Volume group (set of physical
and logical volumes)

For information on migrating shadowed data from an ULTRIX system to a
Tru64 UNIX system, see Section 5.2.

4.11 Networking Support
The Tru64 UNIX system includes the following networking support:

• Transmission Control Protocol/Internet Protocol (TCP/IP) software and
associated applications, such as telnet, Berkeley remote commands
and utilities, and Simple Network Management Protocol (SNMP) Agent
software

• DECnet software

You can install and use the DECnet software and any of its related
software on a Tru64 UNIX system.

• Socket interface (both BSD 4.3 and BSD 4.4) and X/Open Transport
Interface (XTI) to TCP/IP

• STREAMS mechanism to support development of network services and
data communications drivers

The Tru64 UNIX system does not support the packet filter pseudodevice
driver.

The following section gives an overview of the Tru64 UNIX Internet network
environment by describing similarities and differences from the ULTRIX
environment.

4.11.1 TCP/IP Network Management Commands

When you manage a TCP/IP host, you use a number of commands to set up,
determine the status of, and modify network parameters. This section gives
an overview of some of the commonly used commands and explains how the
commands differ from their ULTRIX equivalent commands. For a list of all
command differences between ULTRIX and Tru64 UNIX, see Appendix A.

4–18 Overview of Tru64 UNIX System and Network Administration

The following list describes commonly used network management commands:

• arp

The arp command displays and modifies Address Resolution Protocol
tables.

This command is the same on Tru64 UNIX and ULTRIX systems, except
that on a Tru64 UNIX system the arp command does not support the
reading of a core file.

• ifconfig

The ifconfig command displays and configures network interface
parameters.

This command is the same on Tru64 UNIX and ULTRIX systems.

• hostid

The hostid command displays the identifier of the local host.

This command is the same on Tru64 UNIX and ULTRIX systems.

• MAKEHOSTS

The MAKEHOSTS command is unavailable on Tru64 UNIX systems.

• netsetup

You use the netsetup command to add your system to a local area
network (LAN).

This command is the same as the ULTRIX netsetup command, except
that on a Tru64 UNIX system, the netsetup command has additional
features and a different interface.

• netstat

The netstat command displays network statistics, such as interface
counters, protocol counters, and routing information.

• netx

This command is unavailable on Tru64 UNIX systems. The Tru64 UNIX
system does not supply network exerciser software.

• ping

The ping command sends Internet Control Message Protocol (ICMP)
ECHO_REQUEST packets to network hosts.

The ping command is the same on Tru64 UNIX and ULTRIX systems,
except that on a Tru64 UNIX system, the −l option causes the command
to send a specified number of packets. On an ULTRIX system, this option
causes the ping command to display long output. The Tru64 UNIX ping
command displays long output by default (verbose mode is on).

Overview of Tru64 UNIX System and Network Administration 4–19

You can use the ping command on a Tru64 UNIX system to get
information about an ULTRIX system; also, you can enter the command
on an ULTRIX system to get information about a Tru64 UNIX system.

• .rhosts and /etc/hosts.equiv

The Tru64 UNIX system does not support −host, +@group, or −@group
syntax.

• rdate

The rdate command sets the current system date and time to the
network date and time.

The rdate command is the same on Tru64 UNIX and ULTRIX
systems. (You can also use the Network Time Protocol (NTP) and Time
Synchronization Protocol (TSP) to synchronize your system time. For
information about NTP and TSP, see Section 4.15.3.)

• screend

The screend daemon is the same on Tru64 UNIX and ULTRIX systems.
This daemon instructs the kernel to accept or reject IP packets during
forwarding, depending on how it is configured.

• screenmode

The screenmode command is the same on Tru64 UNIX and ULTRIX
systems. This command enables or disables packet screening by the
kernel.

• screenstat

The screenstat command is the same on Tru64 UNIX and ULTRIX
systems. This command displays statistics about kernel packet
screening.

4.11.2 Simple Network Management Protocol Agent

The Tru64 UNIX system employs the snmpd daemon as a Simple Network
Management Protocol (SNMP) Agent. Like an ULTRIX system, the Tru64
UNIX system can be managed by a Network Management Station (NMS)
using SNMP. No changes are required for the NMS software to manage a
Tru64 UNIX system.

The Tru64 UNIX system does not include the ULTRIX Extended SNMP
Agent. Because this software is unavailable, you cannot define a private
Management Information Base (MIB) on a Tru64 UNIX system.

In addition, the MIB on the Tru64 UNIX system is an extended version of
the MIB on an ULTRIX system. The MIB contains all the variables that are
defined on an ULTRIX system and some new variables. The Tru64 UNIX

4–20 Overview of Tru64 UNIX System and Network Administration

MIB implements the Internet MIB-II standard and the proposed Fiber
Distributed Data Interface (FDDI) MIB Version 1.1 standard.

You set up SNMP on a Tru64 UNIX system by using the snmpsetup
command, just as you do on an ULTRIX system. This command creates
the snmpd.conf and the inet_momd.conf files. The contents of these
files differ between Tru64 UNIX and ULTRIX systems. The Tru64 UNIX
/etc/netman/snmpd.conf file contains only community information.
SNMP reads other information, such as interface speed and interface type,
from the Tru64 UNIX kernel. The /etc/netman/inet_momd.conf file is a
new file that contains the system location and system contact variables for
the Internet MIB-II standard.

4.12 Local Area Transport

Like an ULTRIX system, the Tru64 UNIX system uses the local area
transport (LAT) protocol.

The following list compares the LAT on the Tru64 UNIX system and LAT on
an ULTRIX system:

Overview of Tru64 UNIX System and Network Administration 4–21

• The configuration file entry has changed.

On Tru64 UNIX systems, the following is the configuration file entry for
LAT: options LAT.

• A setup script is available.

You set up LAT on a Tru64 UNIX system by using the latsetup
command. This command creates the LAT terminal devices, adds entries
into the /etc/inittab file, and starts LAT on your system. For more
information on setting up LAT, see the Network Administration manual.

• The name of the control program has changed.

On Tru64 UNIX systems, the control program is named latcp. In
addition to the functions of the ULTRIX control program, latcp allows
you to delete a service definition or an application port mapping; to
specify a static rating, and switch between static and dynamic; to specify
different display options; to specify specific adapters for LAT; and to
initialize counter information to zero.

• The script that starts LAT has moved to a new directory.

On Tru64 UNIX systems, the script that starts LAT is in the
/sbin/init.d directory. For more information, see lat(8).

4.13 Diskless Management Services

The Tru64 UNIX system does not include the Diskless Management Services
(DMS) software. You cannot configure a diskless Tru64 UNIX system.
However, dataless clients are supported starting with Tru64 UNIX Version
3.0 systems. See the Tru64 UNIX Software Product Description for more
information.

4.14 Remote Installation Services

Like an ULTRIX system, the Tru64 UNIX system includes the Remote
Installation Services (RIS) software. However, the RIS software on the
Tru64 UNIX system uses the bootp protocol instead of the Maintenance
Operations Protocol (MOP). This means that Tru64 UNIX systems can only
be servers for other Tru64 UNIX systems, but ULTRIX systems can be
servers for ULTRIX systems and Tru64 UNIX systems. See the Sharing
Software on a Local Area Network manual for more information.

4.15 Distributed System Services

The Tru64 UNIX system has many of the distributed system services you
are used to using with your ULTRIX TCP/IP network. In particular, the
system supports the Berkeley Internet Name Domain (BIND) service, the

4–22 Overview of Tru64 UNIX System and Network Administration

Network Information Service (NIS), and the Network Time Protocol (NTP)
Time Synchronization Protocol (TSP) time services.

The Tru64 UNIX system does not support the Kerberos authentication
service. You cannot use Kerberos for password security, data encryption, or
authentication services. It also does not support the Hesiod naming service.

This section gives an overview of the BIND, NIS, and NTP services available
on Tru64 UNIX systems.

As does the ULTRIX system, the Tru64 UNIX system has an /etc/svc.conf
file that determines how your system uses the BIND and NIS services to
find host information. You can use the svcsetup command to maintain the
svc.conf file. Because the Tru64 UNIX system does not include the Hesiod
name server, you can specify bind only in the hosts database entry.

4.15.1 Berkeley Internet Domain Service

Like an ULTRIX system, the Tru64 UNIX system has the Berkeley Internet
Name Domain (BIND) service. However, the BIND service on Tru64 UNIX
does not include the Hesiod name server. Because Tru64 UNIX systems do
not support the Hesiod naming service, you cannot use the BIND service to
distribute the following databases on a Tru64 UNIX system:

• aliases

• group

• networks

• passwd

• protocols

• rpc

• services

You can use the Network Information Service (NIS) to distribute these
databases. See Section 4.15.2 for information about NIS.

Like the ULTRIX BIND service, the Tru64 UNIX BIND service is based
on a server/client model. Servers maintain databases of host names and
addresses. When client systems require information about a host, they
query the resolver file, resolv.conf, for the IP address of a BIND server to
service their request. The BIND server runs a daemon, named, that services
the client’s requests.

The Tru64 UNIX system has the bindsetup command, which allows you to
configure your system as a BIND client or server.

Overview of Tru64 UNIX System and Network Administration 4–23

The Tru64 UNIX system has the nslookup and nsquery commands to
allow you to get host information from BIND. For information about these
commands, see nslookup(8) and nsquery(8).

4.15.2 Network Information Services

The Network Informtion Service (NIS) is a distributed database lookup
service for sharing information between systems on a network. The Tru64
UNIX NIS supports the network distribution of the following databases:

• aliases

• group

• hosts

• netgroup

• networks

• passwd

• protocols

• rpc (from ONC RPC)

• services

These databases have the same format on a Tru64 UNIX system as they do
on an ULTRIX system, with one exception. On a Tru64 UNIX system, only
the root account is allowed to have a user identification (UID) of 0. On
ULTRIX, other accounts can also have a UID of 0.

You can use the nissetup command on a Tru64 UNIX system to set up NIS
interactively. On ULTRIX systems, you used the ypsetup command. This
command operates the same on Tru64 UNIX systems as it does on ULTRIX
systems, but it has some additional features. You can also set up NIS by
manually using the following commands:

• domainname, which sets the name of the current NIS domain

• makedbm, which creates a NIS servers map

• ypxfr, which transfers an NIS map from a server to a local host

You must also start the NIS daemons, such as the ypserv, ypbind, and
yppasswdd daemons. The steps you take, daemons you start, and commands
you use to set up NIS manually are different on a Tru64 UNIX system. For
example, on the Tru64 UNIX system, you edit the /etc/rc.config file by
using the /usr/sbin/rcmgr utility to automatically start the NIS daemons
when the system boots. On ULTRIX systems, this is done by editing the
/etc/rc.local file.

4–24 Overview of Tru64 UNIX System and Network Administration

The Tru64 UNIX system also has commands, such as ypcat, ypmatch,
and ypwhich, that allow you to get information from NIS. In addition, the
system has commands, such as yppasswd and yppush, that allow you to
maintain your NIS databases. These commands are the same on Tru64
UNIX systems as they are on ULTRIX systems.

Like an ULTRIX system, the Tru64 UNIX system has a /etc/svc.conf file
that determines how your system uses NIS to find information. You can use
the svcsetup command to maintain the svc.conf file.

See the Network Administration manual for more information on NIS
configuration.

4.15.3 Time Services

The Tru64 UNIX system includes the Network Time Protocol (NTP) and
Time Synchronization Protocol (TSP) for time synchronization.

NTP allows accurate, dependable, and synchronized time for hosts on both
wide area networks (WANs) (like the Internet) and local area networks
(LANs). In particular, NTP provides synchronization traceable to clocks
of high absolute accuracy, and avoids synchronization of clocks keeping
incorrect time.

The time daemon for the Tru64 UNIX NTP is xntpd. This daemon is an
implementation of the NTP Version 2 standard as defined by the Internet
Request For Comment (RFC) 1119, omitting authentication. The daemon is
compatible with Version 1 servers, including the ntpd daemon available on
ULTRIX systems. For more information about the daemon, see xntpd(8).

You normally use two commands to set and monitor time for the xntpd
daemon. The ntpdate command sets the locale date and time by polling the
NTP server you specify to determine the correct time. The ntpq command
monitors NTP servers that are running the xntpd daemon. For more
information about these commands, see ntpdate(8) and ntpq(8).

The Tru64 UNIX system has the ntpsetup command to help you configure
and run the xnptd daemon on a Tru64 UNIX system. For information about
setting up NTP, see the Network Administration manual.

The Tru64 UNIX system also includes the ntp and ntpdc commands to
allow you to monitor ULTRIX systems that run the ntpd daemon. For more
information, see ntp(8) and ntpdc(8.)

TSP is the protocol used by the /usr/sbin/timed daemon. In its simplest
application, the TSP servers on a broadcast network (for example, an
Ethernet) periodically broadcast TSP packets. The hosts on the network
elect one of the hosts on the network running TSP as a master. The master
then controls further operation until it fails and a new master is elected.

Overview of Tru64 UNIX System and Network Administration 4–25

The master collects time values from the other hosts and computes an
average. Each host then synchronizes its clock with the master host.

TSP quickly synchronizes all participating hosts, but it does not trace time
back to its sources to determine how accurate the time is. Therefore, the
time distributed by a TSP host can be incorrect.

The Tru64 UNIX /usr/sbin/timed daemon is the same as the ULTRIX
/etc/timed daemon, with one exception. The Tru64 UNIX daemon does
not support the −E option. On ULTRIX systems, this option allows you to
force the master time server to distribute its local time to the network, while
the network time is controlled by an outside agent, such as NTP.

4.16 The sendmail Utility
The sendmail utility is a general-purpose internetwork mail router. It
enables you to send mail to other users on the system and to users on other
systems. In most cases, the mail, mailx, and mh commands rely on the
sendmail utility to parse mail addresses and to resolve system aliases. The
Tru64 UNIX sendmail utility is the same as the ULTRIX sendmail utility,
except for the following differences:

• The location of the local aliases file has changed.

You can specify local aliases on a Tru64 UNIX system, just as you did
on an ULTRIX system. The aliases file on a Tru64 UNIX system is
/var/adm/aliases; on an ULTRIX system it is in /etc/aliases.

You can copy your ULTRIX aliases file to a Tru64 UNIX system. For
example, enter a command like the following on a Tru64 UNIX system to
copy an ULTRIX aliases file:

rcp ultsys:/etc/aliases /var/adm/sendmail/aliases

Once you copy the aliases file to the Tru64 UNIX system, enter the
newalises command as shown:

newaliases

This command builds a new copy of the alias database.

4.17 The uucp Utility
The Tru64 UNIX system has the uucp utility for copying between UNIX
systems. The uucp utility allows you to transfer data from one system to
another, and to execute commands on a remote system. Connections using
the uucp utility can handle data communication over a wider geographic area
than a LAN and usually transmit the data through telephone connections.

The uucp utility on Tru64 UNIX systems is different in some ways from the
uucp on ULTRIX systems. On Tru64 UNIX systems, the uucp utility is the

4–26 Overview of Tru64 UNIX System and Network Administration

HoneyDanBer uucp. (The name HoneyDanBer is derived from the names
of the authors of this version of uucp, Peter Honeyman, David A. Nowitz,
and Brian E. Redman.) Also, uucp communications is supported over the
TCP/IP protocol.

On both systems, you use the uucpsetup command to set up the uucp
utility. The Tru64 UNIX command is similar to the ULTRIX command,
except that it has been modified to be consistent with the Tru64 UNIX
version of uucp. For information about using the uucpsetup utility, see
the Network Administration manual.

The files that store uucp information and the scripts that control uucp on
a Tru64 UNIX system are in different locations and, in some cases, have
a different format from the files and scripts on an ULTRIX system. The
following list details the differences:

• System information file

Information about which systems uucp calls out to is stored in the
/usr/lib/uucp/Systems file on Tru64 UNIX systems, rather than the
/usr/lib/uucp/L.sys file. The format of the Tru64 UNIX Systems
file is different from the L.sys file on ULTRIX systems.

• Device information file

On Tru64 UNIX systems, the file that stores device information is the
/usr/lib/uucp/Devices file. On ULTRIX systems, device information
is stored in the /usr/lib/uucp/L-devices file. The format of the
Devices file is somewhat different from the format of the L-devices
file.

• Security information file

On Tru64 UNIX systems, the /usr/lib/uucp/Permissions file stores
information about which systems can access the local system and about
which commands can be executed locally. The Permissions file allows
you greater control (than you had on an ULTRIX system) over how
individual systems can access the local system.

On an ULTRIX system, information about systems that can access
the local system is stored in the /usr/lib/uucp/USERFILE file, and
information about which commands can be executed remotely is stored
in the /usr/lib/uucp/L.cmds file.

• System polling script

The Tru64 UNIX system has the Poll file, a script that polls named
systems at certain intervals. This file is similar to the LIST.DAY,
LIST.HOUR, LIST.LONGHALL, LIST.NIGHT, and LIST.NOON files in the
/usr/lib/uucp directory on an ULTRIX system.

• Daemon startup script

Overview of Tru64 UNIX System and Network Administration 4–27

The Tru64 UNIX system has the /var/spool/cron/crontabs/uucp
file to start up uucp daemons. This file starts the uudemon.admin,
uudemon.cleanu, uudemon.hour, and uudemon.poll daemons.

On ULTRIX systems, uucp daemons are started by the /etc/crontab
file.

• Log files

The Tru64 UNIX system has the /usr/spool/uucp/.Admin/errors
file, which is equivalent to the /usr/var/spool/uucp/ERRLOG file
on ULTRIX systems.

The Tru64 UNIX system has log files for the uucp, uucico, uux, and
uuxqt utilities. Each utility maintains a separate log for each system
with which you communicate. The file names are:

– /usr/spool/uucp/.Log/uucp/system_name

– /usr/spool/uucp/.Log/uucico/system_name

– /usr/spool/uucp/.Log/uux/system_name

– /usr/spool/uucp/.Log/uuxqt/system_name

The log files are equivalent to the /usr/var/spool/uucp/LOGFILE
file on ULTRIX systems.

The Tru64 UNIX system has the /usr/spool/uucp/.Admin/xfer-
stats file, which is equivalent to the /usr/var/spool/uucp/SYSLOG
file on ULTRIX systems.

• Directories

The Tru64 UNIX system has the /usr/spool/uucp/.Xqtdir directory,
which is equivalent to the /usr/var/spool/uucp/.XQTDIR directory
on ULTRIX systems.

The Tru64 UNIX system has the /usr/spool/uucp/.Sta-
tus/system_name directory, which is equivalent to the
/usr/var/spool/uucp/STST directory on ULTRIX systems.

The Tru64 UNIX system has the /usr/spool/uucp/.Workplace
directory, which is equivalent to the /usr/var/spool/uucp/TM
directory on ULTRIX systems.

The Tru64 UNIX system has the /usr/spool/uucp/system_name
directory, which is equivalent to the /usr/var/spool/uucp/sys
directory on ULTRIX systems.

For information about managing the uucp utility on Tru64 UNIX systems,
see the Network Administration manual. Also, see Appendix A for a list of
commands not supported by the Tru64 UNIX system.

4–28 Overview of Tru64 UNIX System and Network Administration

4.18 The tip and cu Utilities

In the Tru64 UNIX system, tip and cu are separate utilities, using separate
configuration files. In ULTRIX systems, cu is a front end to the tip utility.

The tip utility enables you to connect to a remote system. This allows you
to work on the remote system as if you logged in directly. In addition, you
can transfer files by using the tip utility. To configure the tip utility, you
modify the /etc/remote, /etc/phones, and /etc/acucap files. The cu
utility enables you to connect directly or indirectly to a remote system. This
gives you capabilities similar to the tip utility, including the ability to
transfer files. To configure the cu utility, you modify the uucp configuration
files in the /usr/lib/uucp directory.

Overview of Tru64 UNIX System and Network Administration 4–29

5
Migrating Your ULTRIX System and

Network Environment

This chapter describes how to set up a Tru64 UNIX system for maximum
compatibility with ULTRIX systems, and how to migrate file systems from
an ULTRIX system to a Tru64 UNIX system. This chapter also discusses
the following topics:

• Using the tar and pxtar commands

• Configuring Small Computer System Interconnect (SCSI) devices

• Setting up internationalization databases

• Configuring the inetd daemon for ULTRIX compatibility

• Configuring the mountd daemon for ULTRIX compatibility

______________________ Note _______________________

For information on migrating shadowed data from an ULTRIX
system to a Tru64 UNIX Version 3.0 or later system, see the
Logical Storage Manager manual.

5.1 Mounting an ULTRIX File System on a Tru64 UNIX
System

You can mount an ULTRIX File System (UFS) on a Tru64 UNIX system,
provided the file system is created with an 8 kB block size and there are
partition tables on the disk. The Tru64 UNIX system can read the partition
table created by the ULTRIX chpt command. Once you mount the ULTRIX
file system, you can use it as you normally would. Using an ULTRIX file
system on a Tru64 UNIX system does not affect its usability on an ULTRIX
system.

To move an ULTRIX file system to a Tru64 UNIX system, follow these steps:

1. If the file system was created with a 4 kB block size, you must dump
the disk to tape or to a disk that has a file system created with an 8
kB block size.

Migrating Your ULTRIX System and Network Environment 5–1

2. Install the disk containing the ULTRIX file system onto the Tru64
UNIX system.

3. Check the ULTRIX file system by using the fsck command:

/usr/sbin/fsck /dev/rrz0h
** /dev/rz0h
** Last Mounted On
IMPOSSIBLE INTERLEAVE = 0 IN SUPERBLOCK
SET TO DEFAULT ?

The IMPOSSIBLE INTERLEAVE message indicates that the Tru64 UNIX
system cannot use certain information on the ULTRIX disk. Answer the
SET TO DEFAULT prompt by typing yes, as shown:

SET TO DEFAULT ? yes
IMPOSSIBLE NPSECT = 0 IN SUPERBLOCK
SET TO DEFAULT ?

The IMPOSSIBLE NPSECT message indicates that the Tru64 UNIX
system cannot use certain information on the ULTRIX disk. Answer the
SET TO DEFAULT prompt by typing yes, as shown:

SET TO DEFAULT ? yes
** Phase 1 -- Check Blocks and Sizes
** Phase 2 -- Check Pathnames

...

#

The fsck command continues.

____________________ Note _____________________

You receive these messages from the Tru64 UNIX fsck
command the first time you use the command on an ULTRIX
disk. If you use the fsck command to check the disk later,
these messages do not appear.

4. Create a directory on which to mount the ULTRIX data. The following
command creates a directory named ultrixdata:

mkdir /ultrixdata

5. Mount the file system:

mount /dev/rz0h /ultrixdata

Each time you move an ULTRIX disk from an ULTRIX system to a Tru64
UNIX system or from a Tru64 UNIX system to an ULTRIX system, run the
fsck command. Then, mount the disk. For mounting UFS CD−ROM discs,
use the −d option to the mount command. See mount(8) for more information.

5–2 Migrating Your ULTRIX System and Network Environment

5.2 Migrating Shadowed Data

This section describes migration from the ULTRIX Disk Shadowing product
to the Tru64 UNIX Logical Volume Manager (LVM) software.

______________________ Note _______________________

This section does not discuss migration to the Logical Storage
Manager (LSM) software on Tru64 UNIX systems. For migration
information about LSM, see the Logical Storage Manager manual.

Before migrating ULTRIX shadowed data to a Tru64 UNIX system, review
the following guidelines:

• The LVM subsystem has a broader management scope than the ULTRIX
Disk Shadowing product. Nevertheless, the migration strategy presented
in this section only focuses on the disk mirroring aspects of the LVM
subsystem. For a complete description of the LVM subsystem, see the
System Administration manual.

• You must have root privilege on the Tru64 UNIX system to mirror data
using the LVM subsystem.

• Creating physical volumes, which is an LVM concept, on a raw partition
overwrites the existing data on that partition.

• An ULTRIX shadow device can only consist of corresponding partitions
on physical disks of the same type. Logical volumes do not have this
restriction.

• You cannot migrate shadowed root and swap partitions to the LVM
subsystem.

• Consider the user data size and the metadata size when allocating
partitions for LVM physical volumes:

– User data

If the existing ULTRIX shadowed partition is nearly full, migrate the
data to a larger partition.

– Metadata

A Tru64 UNIX system requires more physical space to replicate data
than an ULTRIX system requires because the LVM metadata uses
more disk space. Use the default LVM parameters for maximum
logical volumes, maximum physical volumes, and maximum physical
extents in a volume group, which requires approximately 4 MB of
additional disk space.

Migrating Your ULTRIX System and Network Environment 5–3

5.2.1 Migration Summary

The following steps summarize the procedure for migrating shadowed data
from an ULTRIX system to a Tru64 UNIX system:

1. Dump the ULTRIX shadowed file system to tape. (This is the only step
performed on an ULTRIX system.)

2. Label the disks that you intend to use for disk mirroring. If you plan
to migrate the shadowed disks, install the disks on the Tru64 UNIX
system before labeling.

3. Create and extend a nonmirrored logical volume.

4. Mirror the logical volume.

5. Create a Tru64 UNIX file system on the mirrored logical device.

6. Mount the Tru64 UNIX file system and restore the ULTRIX file system
from tape.

Repeat this procedure for each ULTRIX shadowed file system.

5.2.2 Migration Example

The following example demonstrates how to migrate an ULTRIX shadowed
file system to corresponding partitions on a Tru64 UNIX system. The
resulting migration automatically mirrors data on the Tru64 UNIX system
in the same manner that data was shadowed on the ULTRIX system. The
elements of this example include:

ULTRIX Disk Shadowing example elements before migration:

File system: /fs
Shadow device: /dev/shd14g
Disk partitions: /dev/rz1g and /dev/rz2g
Shadow set: two-member
Disk type: rz56

LVM example elements after migration:

File system: /fs
Logical volume: logvolmir
Volume group: /dev/vg01
Physical volumes: /dev/rz1g and /dev/rz2g
Mirror capacity: single mirrored
Disk type: rz56

5–4 Migrating Your ULTRIX System and Network Environment

Use the following example as a guide for migrating your ULTRIX shadowed
data:

1. Dump the ULTRIX shadowed file system to tape by entering the
following command on your ULTRIX system:

dump 0uf /dev/rmt0h /fs

This command copies the entire contents of the /fs file system to the
/dev/rmt0h tape. The command also records the date of the dump in
the file /etc/dumpdates when the dump is successful.

2. On the Tru64 UNIX system, create a label on the disks you will use
for mirroring:

disklabel -r -w rz1 rz56
disklabel -r -w rz2 rz56

These commands install the standard label on the designated drive.
(For more information about initializing disks, see the System
Administration manual.)

You can omit this step if you have already installed a label on your disks.

3. On the Tru64 UNIX system, create and extend a nonmirrored logical
volume using the following steps:

a. Create the physical volumes you will use for disk mirroring by
entering the LVM pvcreate command:

pvcreate /dev/rrz1g
Physical volume /dev/rrz1g has been successfully created.
pvcreate /dev/rrz2g
Physical volume /dev/rrz2g has been successfully created.

This command initializes your direct access storage device for use
as a physical volume in a volume group.

b. Create a volume group directory in the /dev directory:

mkdir /dev/vg01

Volumes that are mirrored must be in the same volume group. This
command creates the directory that identifies the volume group
vg01 for the LVM subsystem.

c. Create the volume group device file:

mknod /dev/vg01/group c 16 0

This command creates the volume group special device file, which is
a direct connection between the volume group and the LVM driver
code. The volume group special device file must be a character (c)
device; it must use one of three predefined major device numbers,
in this case 16; and it must have a minor device number of 0.

Migrating Your ULTRIX System and Network Environment 5–5

d. Create the volume group and populate it with the physical volumes
you created with the pvcreate commands:

vgcreate /dev/vg01 /dev/rz1g /dev/rz2g
Creating /etc/lvmtab.
Volume group /dev/vg01 has been successfully created.

This command creates the /dev/vg01 volume group that has the
members /dev/rz1g and /dev/rz2g. The /etc/lvmtab file
contains information that allows the LVM software to access the
physical volumes that compose its volume groups after a system
reboot.

e. Create the logical volume:
lvcreate -s y -n logvolmir /dev/vg01
A logical volume with name "logvolmir" will be created.
Logical volume "/dev/vg01/logvolmir" has been successfully
created with minor number 1.

The lvcreate command creates a logical volume name,
logvolmir.

f. Extend the logical volume to encompass all the physical extents
of one physical volume. In this example, 63 is the total number
of physical extents in the physical volume /dev/rz1g. The
vgdisplay command lists the number of physical extents available
on each volume.

Specify a logical extent for the logical volume by using the
lvextend command:

lvextend -l 63 /dev/vg01/logvolmir /dev/rz1g
Logical volume "/dev/vg01/logvolmir" has been
successfully extended.

The -l option extends the logical volume so that it encompasses
63 physical extents. The first argument to the command,
/dev/vg01/logvolmir, names the logical volume. The second
argument, /dev/rz1g, specifies that the logical extents are
assigned to the physical extents on the /dev/rz1g physical device.

4. Mirror the logical volume on the /dev/rz2g device:

lvextend -m 1 /dev/vg01/logvolmir /dev/rz2g
The newly allocated mirror is now being synchronized.
This operation will take some time.
Please wait...
Logical volume "/dev/vg01/logvolmir" has been
successfully extended.

The -m option specifies that the system maintains one mirror of the data
in logical volume /dev/vg01/logvolmir. The /dev/rz2g argument
specifies that the system maintain the mirror using physical extents on
the /dev/rz2g physical device.

5–6 Migrating Your ULTRIX System and Network Environment

5. Create a file system on the logvolmir volume by using the newfs
command:

newfs /dev/vg01/logvolmir rz56

6. Mount the ULTRIX file system on the LVM mirrored logical device and
restore the file system from tape:

mount /dev/vg01/logvolmir /fs
cd /fs
restore -r

The mount command mounts the /dev/vg01/logvolmir logical
volume on the /fs directory. The cd command changes the current
directory to /fs, and the restore -r command restores the ULTRIX
data from tape to the current working directory.

The /fs file system is now converted to Tru64 UNIX LVM disk mirroring.

5.3 Using the tar and pxtar Commands

The ULTRIX system supports two commands for maintaining tape archives:
pxtar and tar. The pxtar command is POSIX-compliant; the tar
command is not.

The Tru64 UNIX system has one tape archive command, tar. The Tru64
UNIX tar command is POSIX-compliant.

If you use the ULTRIX pxtar command to create a tape archive, you can
read that tape archive by using the Tru64 UNIX tar command. In addition,
if you use the ULTRIX tar command to create archives that fit on a single
volume, you can read those single-volume archives with the Tru64 UNIX
tar command.

However, the ULTRIX tar command allows you to create and read an
archive that can span multiple tapes. The ULTRIX tar command writes a
file header at the start of each continuation tape. By default, the Tru64
UNIX tar command does not expect the ULTRIX header information. The
header information is treated as data, resulting in an incorrectly extracted
file and the Tru64 UNIX tar command reporting a checksum error. To read
an ULTRIX tar archive spanning multiple tapes using the Tru64 UNIX
tar command, use the −U option on the Tru64 UNIX system. This option
allows the Tru64 UNIX tar command to read tapes and to ignore the header
information specific to ULTRIX.

Migrating Your ULTRIX System and Network Environment 5–7

5.4 Configuring Small Computer System Interconnect
Devices

During the doconfig portion of the installation, the sizer program
determines what hardware (such as disks and tapes) is attached to your
system and reports its findings in the system configuration file.

On ULTRIX systems, sizer automatically places 16 Small Computer
System Interface (SCSI) device entries (rz0-rz7 for disks and tz0-tz7 for
tapes) in the system configuration file. This behavior enables you to attach
additional SCSI devices at any time without having to rebuild your kernel.

On Tru64 UNIX systems, sizer finds only the SCSI devices physically
attached to your system at the time of installation and specifies those
devices in the system configuration file. For example, if you have an RZ56
as unit 0, a TLZ04 as unit 1, and an RZ24 as unit 2 on your system, sizer
places only these three devices in your configuration file, as rz0, tz1, and
rz2, respectively. If you later add new devices to your system, you must edit
the configuration file to include the new devices and rebuild the kernel.

You can save yourself the need to repeat this process by using the
/sys/conf/GENERIC file as a guide to edit the configuration file to add all
possible rzn and tzn devices the first time you rebuild the kernel. If you
are performing an advanced installation, you can edit the configuration
file before the first kernel is built. For information about editing the
Tru64 UNIX configuration file and rebuilding the kernel, see the System
Administration manual.

The RZ57 SCSI disk and TZK10 SCSI tape units are not supported on a
Tru64 UNIX system.

5.5 Configuring Tru64 UNIX Shared Memory

Some applications can require you to configure shared memory. Configuring
shared memory on a Tru64 UNIX system is done in the same way as on an
ULTRIX system, by editing the configuration file and rebuilding the kernel.
However, the configuration parameters are slightly different, as shown in
the following table:

5–8 Migrating Your ULTRIX System and Network Environment

Parameter on
ULTRIX

Parameter on Tru64
UNIX

Remarks

smmax shmmax Defines the maximum number of bytes
of virtual memory at which a shared
memory segment can be sized. The
default value is 4 MB on Tru64 UNIX
systems. This value is expressed in pages
on ULTRIX systems, and expressed in
bytes on Tru64 UNIX systems.

smmin shmmin Defines the minimum number of bytes
of virtual memory at which a shared
memory segment might be sized. The
default value is 1 MB on Tru64 UNIX
systems. This value is expressed in pages
on ULTRIX systems, and expressed in
bytes on Tru64 UNIX systems.

smseg shmseg Defines the maximum number
of shared memory segments per
process. The default value is 32 on
Tru64 UNIX systems.

These Tru64 UNIX defaults are set to values that are common to most
layered products. See the System Administration manual for information
about modifying the configuration file and rebuilding the kernel.

5.6 Setting Up Internationalization Databases

The Tru64 UNIX internationalization features allow you to receive messages
and give input in your native language, even when you are in single-user
mode. For this feature to operate correctly, you must store message catalogs
and locale databases for the /sbin commands in the /etc directory. You
must also be sure that the LANG environment variable is defined correctly.

To store message catalogs and locale databases for the /sbin commands in
the /etc directory, follow these steps:

1. Translate the message catalogs to the appropriate language, if necessary.

The message catalogs are stored in the
/usr/lib/nls/msg/en_US.88591 directory. Other
message catalogs might also be available in subdirectories of the
/usr/lib/nls/msg directory if someone has, for example, translated
the system catalogs.

Migrating Your ULTRIX System and Network Environment 5–9

2. Create subdirectories in the /etc/nls directory.

Programs search for the message catalogs in the /etc/nls/msg/%L
directory, where %L represents the currently defined locale. You must
create the msg/%L subdirectories. For example, suppose you want to
use message catalogs for French as it is spoken in Canada. Enter the
following commands to create subdirectories:

% cd /etc/nls
% mkdir -p msg/fr_CA.88591

3. Copy to the /etc directory the message catalogs and locale databases
for the language and commands you want to use.

For example, suppose you want to use French as it is spoken in Canada
when you are in single-user mode. Suppose that someone has translated
the system-supplied message catalogs and has stored them in the
/usr/lib/nls/msg/fr_CA.88591 directory. In this case, you would
enter the following cp commands:

% cp /usr/lib/nls/loc/fr_CA.88591 /etc/nls/loc/fr_CA.88591
% cp /usr/lib/nls/loc/fr_CA.88591.en \
/etc/nls/loc/fr_CA.88591.en
% cp /usr/lib/nls/msg/fr_CA.8859/* /etc/nls/msg/fr_CA.8859/.

The first cp command copies the French-Canadian character database,
the second command copies the environment database, and the third
command copies the message catalogs. Delete any message catalogs
from the /etc/nls/msg/fr_CA.8859 directory that do not correspond
to an /sbin command. This frees up space in the root partition.

4. Announce to the system that you want to use the French-Canadian
locale when you are in single-user mode. To do this, define the LANG
environment variable as follows:

% setenv LANG fr_CA.88591

You can also set the LANG variable in root’s .profile file or shell
resource file.

5.7 Configuring the inetd Daemon for ULTRIX Compatibility

Both Tru64 UNIX and ULTRIX systems include the /etc/inetd.conf file,
which contains information for the inetd daemon. The inetd daemon is
the Internet service daemon.

The Tru64 UNIX inetd.conf file contains a new field. The following list
describes the fields in the Tru64 UNIX inetd.conf file:

• ServiceName, which names one of the services in the /etc/services
file.

• SocketType, which is either a stream value or a datagram value.

5–10 Migrating Your ULTRIX System and Network Environment

• ProtocolName, which is one of the protocols in the /etc/protocols
file.

• Wait/NoWait, which determines whether the inetd daemon waits for
a datagram server to release the socket. (Stream sockets are always
NoWait.)

• UserName, which specifies the user name that the inetd daemon should
use to start the server.

• ServerPath, which specifies the full pathname of the server the inetd
daemon should execute.

• ServerArguments, which are the command-line arguments passed to
the server.

The new UserName field allows you to specify what user name inetd
should assign to a server when it starts. On ULTRIX systems, servers were
automatically started with the root user name. For compatibility, specify
root in this field for each service. However, if your server does not need root
privileges, consider specifying another user name in this field. As long as
your server does not need root privileges, you should not notice a difference
between the operation of an ULTRIX server and the operation of a Tru64
UNIX server that is started under a user name other than root.

5.8 Configuring the mountd Daemon for ULTRIX
Compatibility

The mountd daemon works with other daemons to provide the NFS service.
This daemon checks the access permission of the client and returns a pointer
to the file system or directory that is to be mounted by the NFS service.

By default, the mountd daemon on Tru64 UNIX systems accepts requests
only from the superuser of a remote system. By contrast, the ULTRIX
daemon accepts mount requests from any user.

You can configure the mountd daemon on a Tru64 UNIX system to accept
requests from users other than the superuser. To do so, start the daemon
with the -n option, as shown:

/usr/sbin/mountd -n

This command starts the daemon so that it operates the same as the
ULTRIX mountd daemon.

Migrating Your ULTRIX System and Network Environment 5–11

Part 4
Migrating Your Applications

This part gives an overview of the Tru64 UNIX programming environment
and describes specific differences between Tru64 UNIX and ULTRIX systems
that affect the ways application programs are migrated to a Tru64 UNIX
system. This part also gives an overview of how to use shared libraries on a
Tru64 UNIX system.

6
Overview of the Tru64 UNIX Programming

Environment

The Tru64 UNIX and ULTRIX programming environments are similar and
most of the tools in the Tru64 UNIX programming environment are the
same as the ULTRIX equivalent tools. However, some differences exist. This
chapter is an overview of those differences, in the following categories:

• Alpha architecture

• Graphical programming environment

• Software development tools

• Other programming tools

• Source file control

• Product installation tools

• Shared libraries

• Standard application programming interfaces (APIs)

• Network programming software

• Distributed services programming software

• Internationalization features

• Event-logging software

• Security

• Curses libraries

6.1 Alpha Architecture

To take advantage of the Alpha architecture, the Tru64 UNIX programming
environment differs from ULTRIX in the following areas:

• Data representation

• Data access

• Data alignment

• File system

Overview of the Tru64 UNIX Programming Environment 6–1

These changes, described in the following sections, can affect how a program
accesses and manipulates data.

6.1.1 Data Representation

The Tru64 UNIX C data types have been modified and extended to include
a 64-bit type. Table 6–1 shows the differences in data types between the
ULTRIX and Tru64 UNIX environments.

Table 6–1: C Language Data Types
Data Type 32-Bit MIPS or VAX System

(Size in Bits)
64-Bit Tru64 UNIX System
(Size in Bits)

char 8 8

short 16 16

int 32 32

long 32 64

long long Not available 64

float 32 (MIPS: IEEE single precision)(VAX:
F_floating)

32 (IEEE single precision)

double 64 (MIPS: IEEE double
precision)(VAX: G_floating or
D_floating)

64 (IEEE double precision)

pointer 32 64

The major differences are that long is defined to be 64 bits; pointer
is defined to be 64 bits, extending the address space; and long long,
a new data type, is defined to be 64 bits. The long long data type
offers the unique name for a 64-bit data type that might give additional
interoperability between 32-bit and 64-bit systems.

Like the VAX and MIPS systems, the Tru64 UNIX system uses right-to-left
byte ordering (little endian) for integer types.

6.1.2 Data Access

Unlike the VAX and MIPS architectures, which allowed byte and word
memory accesses, the Alpha architecture supports only memory accesses
of longword (32 bits) or quadword (64 bits). Byte and word accesses are
accomplished by multiple instructions, which load a longword or quadword,
mask, and shift to get the desired entity. The lack of a single operation for
byte and word access might produce incorrect results in cases where you are
accessing adjacent byte or word entities in shared memory segments.

6–2 Overview of the Tru64 UNIX Programming Environment

For instance, a multithreaded application or multiple processes that
have access to adjacent byte data through shared memory or shared
memory-mapped files will have to use thread mutual exclusion locking
functions or semaphore locks, respectively, to avoid conflicts with accesses to
adjacent byte or word data items.

Also, the order in which write operations occur can be different from what
the programmer intended. If it is important to guarantee the order in which
data is written to memory, use memory barrier instructions.

6.1.3 Data Alignment

On both MIPS and Alpha systems the data alignment is implied by the
data type. For instance, an int (32 bits) is aligned on a 4-byte boundary.
On MIPS systems, a long (32 bits) is also aligned on a 4-byte boundary.
But on Alpha systems, a long (64 bits) is aligned on 8-byte boundaries. If
you are using assembly language, you will need to understand and code
according to these alignment restrictions. If you are using a high-level
language, such as C, the compiler will take care of this alignment for you.
However, you need to understand these alignment differences when using
long and pointer types in structure definitions that are shared between
32-bit and 64-bit systems.

6.1.4 File Systems

On the 32-bit MIPS and VAX systems, the maximum size of files and file
systems was 2 gigabytes (GB). This limit was imposed by the programming
interface and file system, which used a 32-bit integer to represent the file
offset in bytes (off_t) when navigating within a file or file system.

On a 64-bit Alpha system, you can now build much larger files and file
systems. The off_t file offset is defined to be a long on Alpha systems,
which is 64 bits in length. Given this extended capability, it is possible to
build files and file systems that cannot be fully accessed by 32-bit systems.
You need to keep this in mind when working in a distributed environment
where file systems are shared between 32- and 64-bit systems.

6.2 Graphical Programming Environment

The Tru64 UNIX DECwindows Motif windowing environment is based on
the industry-standard OSF/Motif Version 1.2.3 graphical user interface,
featuring three-dimensional visuals and consistent operation and style.
The ULTRIX and UWS OSF/Motif graphical interface is based on Version
1.2.2 of OSF/MOtif. Because OSF/Motif Version 1.2.3 does not include new
features, there should be no migration issues between the ULTRIX and
UWS and Tru64 UNIX system programming environments. However, the

Overview of the Tru64 UNIX Programming Environment 6–3

DECwindows XUI interface available on ULTRIX systems is different from
the Tru64 UNIX interface. The following sections discuss these differences.

The DECwindows Motif programming environment provides libraries and
tools for developing graphical applications for workstations. This graphical
programming environment includes:

• Xlib

This is the Compaq implementation of the Massachusetts Institute
of Technology’s X Window System, Version 11, Release 5, library
provides low-level routines for performing basic windowing functions
such as display; graphics; event handling; and text, font, and cursor
manipulation. Compaq has extended Xlib to provide routines for the
Display PostScript System. This extension allows applications to display
images by calling functions that send PostScript code.

For more information on programming with Xlib, see the book X Window
System, published by Digital Press. The Display PostScript System
documents are contained in the /usr/share/doclib directory.

• X Toolkit (also called the Intrinsics)

A library of routines that creates and manipulates interface objects
called widgets.

For more information on programming with the X Toolkit, see the book
X Window System, published by Digital Press.

• Motif Toolkit

A collection of widgets and gadgets for building Motif applications;
similar to the XUI Toolkit for building XUI applications on ULTRIX
systems. Includes the User Interface Language (UIL), a presentation
description language that simplifies the creation and customization of
an applications’s user interface. Compaq extends the Motif Toolkit by
providing additional widgets for help, color mixing, printing, compound
strings, and structural visual navigation.

For more information about programming with the Motif Toolkit, see the
OSF/Motif Programmer’s Guide manual and the DECwindows Motif
Guide to Application Programming manual. For more information about
Compaq extensions to the Motif Toolkit, see the DECwindows Extensions
to Motif manual.

Creating graphical applications for the DECwindows Motif environment is
similar to creating applications for the XUI environment. Programmers who
are experienced in developing XUI applications or who are porting existing
XUI applications to Motif should note the following differences:

• Name changes—For widget classes, functions, resources, enumeration
literals, callback reasons, compound strings, and fontlists.

6–4 Overview of the Tru64 UNIX Programming Environment

See Appendix F for a list of the names for these components.

• Window managers—Motif uses the Motif Window Manager (mwm); XUI
uses the DECwindows Window Manager (dxwm). The window manager
provides functions for moving and resizing windows on the workspace.
The Motif Window Manager works with the toolkit to manage the
operations of windows on the screen.

Terminology differences exist between XUI and Motif. Window functions
such as changing the size, shape, or location of a window can be done as
Window menu items in Motif. In XUI, these functions are activated by
clicking on window manager buttons or borders.

For a summary of terminology and windowing differences, see
Appendix E.

• Style changes—Menu items that appear in the File, Edit, and Help
menus are different in the Motif interface. Motif also provides
accelerators for each menu item and provides different default mouse
button bindings.

For a summary of these differences, see Appendix E.

For information about how to design Motif compliant applications, see the
OSF/Motif Style Guide manual and the DECwindows Companion to the
OSF/Motif Style Guide manual.

For more complete information about porting XUI applications to Motif, see
the Porting XUI Applications to Motif manual.

6.3 Software Development Tools

Like ULTRIX systems, Tru64 UNIX systems have a variety of software
development tools. You can use these tools as you port applications to a
Tru64 UNIX system, as well as when you develop new applications on a
Tru64 UNIX system.

This section gives an overview of the following Tru64 UNIX software
development tools, highlighting differences from the ULTRIX software
development tools:

• C preprocessor

• C compiler

• Linker

• Debugging tools

• Other programming tools, including ar, cflow, ctags, cxref, dis,
file, lex, lint, make, nm, odump, pixie, prof, pixstats, size,
stdump, strip, and yacc

Overview of the Tru64 UNIX Programming Environment 6–5

This section gives an overview of only the Tru64 UNIX C preprocessor and
C compiler, because they are part of the Tru64 UNIX product. In addition,
other compilers, such as Fortran and Pascal, are available for use on the
Tru64 UNIX system.

______________________ Note _______________________

The ULTRIX RISC programming environment for Version 4.3A
and higher systems use the MIPS Version 3.0 compilation system,
as does the Tru64 UNIX system. Earlier versions of ULTRIX
RISC programming environments were based on the MIPS
Version 2.10 compiler.

6.3.1 The C Preprocessor

The C preprocessor (cpp) on Tru64 UNIX systems is similar to the
preprocessor (cpp) on ULTRIX systems. Like the ULTRIX preprocessor,
the Tru64 UNIX preprocessor interprets directives, such as #include and
#define. The syntax for specifying directives is the same as the syntax
on ULTRIX systems.

The Tru64 UNIX system defines a number of preprocessor symbols. Some
of these symbols are different from the equivalent symbol on an ULTRIX
system. For information about Tru64 UNIX predefined symbols, see
Section 7.4.1.

6.3.2 The C Compiler

Like the ULTRIX C compiler driver, the Tru64 UNIX C driver performs
several tasks. You can enter the cc command to run the C preprocessor, the
C compiler, or the linker. Normally, you use the cc command to run all
three tools and to compile and link your application. Like most ULTRIX C
compilers, the Tru64 UNIX C compiler supports optimizing code. In addition,
the compiler supports Tru64 UNIX features, such as linking with shared
libraries and creating function prototypes. (For more information about the
features and general use of the compiler, see the Programmer’s Guide.)

For compatibility with ULTRIX compilers, the Tru64 UNIX compiler
supports several modes for compiling applications. You choose which mode
the compiler operates in by using one of the following command-line options:

6–6 Overview of the Tru64 UNIX Programming Environment

Option Description

−std0 Invokes a mode that compiles C applications as defined by Kernighan
and Ritchie (K&R), with some ANSI extensions such as function
prototypes. This mode is the default mode.

−std Invokes a mode that compiles applications according to the
ANSI standard. The mode allows certain extensions to the
ANSI standard, such as C++ style comments and casting of
the left-hand side of an assignment operator.

−std1 Invokes a mode that compiles applications in strict
accordance with the ANSI standard.

For information about using these options to compile ULTRIX programs on
Tru64 UNIX systems, see Section 7.4.

Many applications written for the ULTRIX programming environment will
compile with no changes. However, there are certain behaviors that are
present in the ULTRIX system that are not in the default Tru64 UNIX
system. Most of these behaviors will not be caught at compile time but will
instead cause an application to fail when it is run.

The Tru64 UNIX system is written using a hierarchy of interfaces and
definitions. Using the default interface, −D_OSF_SOURCE, applications will
be able to make use of all the features specified by the OSF Application
Environment Specification (AES). If other specific operating system
environments are needed, you can use the following symbols:

• -D_OSF_SOURCE

• -D_AES_SOURCE

• -D_XOPEN_SOURCE

• -D_POSIX_SOURCE (for maximum portability of your application)

• -D_ANSI_C_SOURCE

• -D_BSD

For example, applications needing a fully POSIX-conforming environment
should be compiled with the -D_POSIX_SOURCE compiler switch.
Applications needing a strict ANSI-conforming environment should be
compiled with the -D_ANSI_SOURCE and -stdl compiler switches.

6.3.3 The Linker

In most instances, you can use the compiler to link separate application
object files into a single executable application.

As part of the compilation process, compiler drivers call the linker, ld,
to combine one or more object files into a single application object file.

Overview of the Tru64 UNIX Programming Environment 6–7

The linker’s operation is essentially similar on the two systems; the most
important difference is that by default the Tru64 UNIX linker links with
shared libraries; the ULTRIX system does not support shared libraries. The
Tru64 UNIX linker resolves external references, searches libraries, and
performs all other processing required to create object files that are ready for
execution. The resulting object module can either be executed or can serve
as input to a separate ld command. (You can invoke the linker separately
from the compiler by entering the ld command.)

The Tru64 UNIX linker also supports C++ automatic constructors and
destructors, and new options.

On Tru64 UNIX systems, you normally use the linker to create shared
libraries. For information about using and creating shared libraries,
see Chapter 8. To link your application with shared libraries, use the
appropriate compiler driver. To inhibit linking with shared libraries, use
the driver’s -non_shared option.

Because the Tru64 UNIX environment is a 64-bit environment, the linker,
by default, loads the program text and data in the high 64-bit virtual
address space of the process (between 0xFFFFFFFFFFFFFFFF and
0x0000000100000000). As a result, there are no addresses accessible with
a 32-bit address. If your source code contains any unintended pointer
truncations, they will trap into the kernel and cause a run-time error. You
can change this default behavior by using the −T or −D options to change the
text and data segment origin, respectively.

6.3.4 The Debugger

The primary debugging tool on Tru64 UNIX systems is dbx, which is a
source-level debugger. This debugger is the same tool that is available on
ULTRIX systems, and you can use it the same as you used the ULTRIX dbx.
The differences between the Tru64 UNIX and ULTRIX versions of dbx are
that the Tru64 UNIX debugger has been enhanced to support debugging
applications that are linked with shared libraries.

The ULTRIX window interface to dbx, which is dxdb, is not supplied on
Tru64 UNIX systems. If you develop software in a window environment, you
can purchase and install the DEC FUSE product. DEC FUSE is a software
development, analysis, and maintenance environment for programmers.
DEC FUSE offers a set of tools with a DEC OSF/Motif user interface and
graphics options in an integrated setting. DEC FUSE tools include an editor,
a code manager, a program builder, a debugger, a cross-referencer, and
a call graph browser.

Tru64 UNIX systems also include another debugging tool, kdbx. The kdbx
utility is an interactive, crash analysis and kernel debugging tool that

6–8 Overview of the Tru64 UNIX Programming Environment

replaces the ULTRIX crash program. As a kernel debugging tool, kdbx
serves as a front end to the dbx debugger, and enables you to examine the
running kernel or dump files created by savecore. The kdbx utility is also
insensitive to version numbers, and can be customized and extended. For
more information on the kdbx utility, see the Kernel Debugging manual.

6.3.5 Other Programming Tools

Tru64 UNIX systems have other programming tools that are available on
ULTRIX. These tools have been modified to support the ANSI C language
dialect, shared libraries, and 64-bit data types. Otherwise, their use is the
same as their ULTRIX equivalents.

The following list gives a brief description of each tool. (For more information
about the tools, see the reference page for each individual tool.)

• ar

Creates and maintains archive libraries. (You cannot use the ar
command to create shared libraries. To create shared libraries, use the
ld command as described in Section 8.1.4 and Section 8.1.5.)

• cflow

Analyzes C application files (as well as yacc, lex, and assembler files)
and builds a graph that charts the external references made in the
application.

• ctags

Creates a tags file that you can use with the ex editor. The tags file
specifies the location of functions and typedef declarations in the
specified set of C application files.

• cxref

Analyzes a set of C application files and builds a cross-reference table.
The table lists all the symbols used in the application.

• dis

Disassembles object files into machine instructions.

Overview of the Tru64 UNIX Programming Environment 6–9

• file

Reads one or more files as input, performs a series of tests on the files,
and determines their types.

• lex

Generates a C language source file that matches patterns for simple
lexical analysis of an input stream.

• lint

Checks C application files for coding that is inefficient, not portable,
or might cause errors. For example, this command finds unreachable
statements, automatic variables that are declared and not used, and
logical expressions that have a constant value.

• make

Builds up-to-date versions of application programs. The make command
updates the application program depending on whether the files used
to build the program have changed. The make command updates the
program only if the files used to build it have changed.

Tru64 UNIX also includes the ULTRIX make command. See Section 7.1
for information on using the ULTRIX make command.

• nm

Displays symbol table information for object files and archive files.

• odump

Displays information about an object file, archive file, or executable file.
For example, you can use odump options to display an object file’s header,
defined symbols, or program regions.

• pixie and prof and pixstats

The pixie command reads applications, partitions them into basic
blocks, and counts the execution of the basic blocks. Use the prof
command with the -pixie option to display pixie data. The pixstats
command analyzes the output from pixie. These profiling tools are
only supported with archive libraries. They cannot be used with shared
libraries. Note that the pixstats command produces incorrect results
on Tru64 UNIX systems.

• size

Displays the number of bytes required by each section of an object file, as
well as the total number of bytes required by the object file.

• stdump

Displays detailed symbol table information for an application or object.

• strip

6–10 Overview of the Tru64 UNIX Programming Environment

Strips the symbolic debugger information from an executable file.

• yacc

Converts a context-free grammar specification into a set of tables that
can be used by a simple parsing program.

6.4 Source File Control

Like the ULTRIX system, the Tru64 UNIX system supports the Source
Code Control System (SCCS). The Tru64 UNIX system also supports the
Revision Control System (RCS), which is an unsupported subset on the
ULTRIX system. The SCCS and RCS utilities allow you to store application
modules in a directory, track changes made to those module files, and
monitor access to the files. The SCCS and RCS utilities on Tru64 UNIX
systems are the same as the SCCS and RCS you use on ULTRIX systems.
For more information about SCCS and RCS, see the Programming Support
Tools manual.

6.5 Product Installation Tools

Once you port your application to Tru64 UNIX, you might want to create
a software package for it, for distribution to other users. Like ULTRIX
systems, the Tru64 UNIX system has utilities that you can use to install,
remove, combine, validate, and configure applications.

To create a software package, you use the following utilities:

• newinv

Processes a master inventory input file. The output of the newinv utility
is a file that contains a list of all the files that compose your application.
The file also contains information about the subset in which each file
belongs. The newinv utility operates the same on Tru64 UNIX systems
as it does on ULTRIX systems.

• gentapes

Produces magnetic tape distribution media (MT9 or TK50). This utility
has the same features on Tru64 UNIX and ULTRIX systems. The
location of this utility has changed from /usr/sys/dist to /usr/bin
on Tru64 UNIX systems.

• gendisk

Produces disk distribution media. On ULTRIX systems, the name of
this utility is genra. The features of these utilities are the same. The
location of the utility has changed from /usr/sys/dist to /usr/bin.

• kits

Overview of the Tru64 UNIX Programming Environment 6–11

Produces subset images, inventories, and control files from the input
files that have been transferred from your source directory. The utility
also generates data files that make up the media master in the output
directory. This utility is the same on Tru64 UNIX and ULTRIX systems.

• setld

Installs software on the user’s system. The setld command can install
software from the following distribution media:

– Data disks, including CD−ROM optical discs

– TK50 tapes

– MT9 tapes

On a Tru64 UNIX system, the setld command resides in the /usr/sbin
directory. On an ULTRIX system, the command is in the /etc directory.

Unlike the ULTRIX setld command, the Tru64 UNIX setld command does
not install software into a Diskless Management Services (DMS) area. The
DMS software is not provided on Tru64 UNIX systems.

See the Programming Support Tools manual for descriptions of the program
installation tools and the process of building setld-compatible kits.

6.6 Shared Libraries

The Tru64 UNIX system provides shared libraries as part of the
programming environment. Shared libraries are libraries linked in a file
organized like a demand-paged executable program. Like other programs,
the libraries contain data and text sections and export entry points or data
objects. Multiple processes can use the entry points simultaneously or use
the data objects (each process has a private copy of the data objects).

Unlike most programs, shared libraries contain no fixed-base address.
Shared libraries contain symbol and relocation information. When you
link your application with a shared library, the executable application
does not contain the library routines; instead, the application contains the
information it needs to load the shared library at startup time and to access
the shared routines and private data at execution time.

The following shared libraries are elements of all Tru64 UNIX systems:

libDXm.so libc.so libids.so

libMrm.so libc_r.so libids_nox.so

libX11.so libchf.so libimg.so

libXaw.so libcda.so libips.so

libXext.so libdnet_stub.so liblkwdxm.so

6–12 Overview of the Tru64 UNIX Programming Environment

libXie.so libdl.so libm.so

libXm.so libdps.so libmach.so

libXmu.so libdpstk.so libpsres.so

libXt.so libdvr.so libpthreads.so

libbkr.so libdvs.so libsys5.so

The following shared libraries are also elements of all systems, but were not
documented earlier in this manual:

libXimp.so libXv.so libaud.so

libcdrom.so libcmalib.so libcurses.so

libiconv.so libmxr.so libproplist.so

libsecurity.so libtli.so libxti.so

Starting with Tru64 UNIX Version 3.0, the following shared libraries are
elements of all systems:

libDXterm.so libXIE.so libXi.so

These libraries are located in the /usr/shlib directory.

In addition to shared libraries, the Tru64 UNIX system provides archive
libraries. Archive libraries are traditional ULTRIX libraries. When you
link your application with them, the image for library routines you call is
included in your application image. You can link Tru64 UNIX applications to
either the new shared libraries or the traditional archive libraries. To help
you decide which libraries to use, this section describes some advantages of
using shared libraries and some restrictions on using them.

For information on how to link your application with Tru64 UNIX shared
libraries and how to create shared libraries, see Chapter 8.

6.6.1 Using Shared Libraries

The following list details the advantages of using shared libraries on Tru64
UNIX systems:

• Disk space savings

When multiple applications use a shared library, you save disk space. If
five applications use the same library image, the library image occurs
only once on the disk. By contrast, if you link each process statically with
a set of library routines, the image of the library routines occurs five
separate times on the disk.

• System memory savings

Overview of the Tru64 UNIX Programming Environment 6–13

When multiple processes run applications that are linked with a shared
library, you save physical memory. As with disk space, you see the
memory savings when multiple applications use the same shared library.

• Reduced paging

Like other routines, a shared library routine is read into memory the
first time a process needs it. Because more than one process can use the
image of the shared library routine, the second process that calls it might
find the routine already in memory. If several processes are using the
same routine, that routine tends to remain in memory. Thus, processes
that use shared libraries often require less paging than processes that
use archive libraries.

• Better application and system performance

Using shared libraries improves the performance of your application
when multiple applications use the same shared library routines. This
situation often occurs on a typical multiuser system when multiple
applications are using shared libraries. In addition to improving the
performance of individual applications, this situation improves the
overall performance of your system.

However, benchmark applications linked with shared libraries might
show a degradation in performance when compared to the same
application linked with archive libraries. Benchmark applications
normally run on an unloaded system, so your benchmark loses the
opportunity to benefit from sharing library routines with other
applications. In addition, on an unloaded system, the startup time for
an application linked with shared libraries is somewhat slower than the
startup time for an application linked with archive libraries. Run-time
performance of your benchmark might be slower because references to
symbols exported from a shared library are made indirectly. References
to symbols in an archive library are made directly. Indirect references
are somewhat slower than direct references.

6.6.2 Changing from Archive Libraries to Shared Libraries

Normally, you can use shared libraries in any application and create
any library as a shared library. In most cases, the effect of using shared
libraries instead of archive libraries should be transparent; however, a few
restrictions on using and creating shared libraries do exist. The following
list describes these restrictions:

• The /usr directory must be mounted when you run an application that
is linked with shared libraries.

If your application is designed to run when the /usr directory is not
mounted, do not use shared libraries. When you link your application
with shared libraries, your application executable does not include the

6–14 Overview of the Tru64 UNIX Programming Environment

shared library; it includes only information it needs to load the shared
library. If the shared libraries are unavailable when you run your
application, it fails.

• You cannot use -O3 or -O4 optimization options when you link your C
application with shared libraries or when you create shared libraries.

If you want to optimize your C application by using one of these options,
you must link with archive libraries. (You might be able to optimize
applications written in other languages that you link with shared
libraries. For more information about linking applications written in
languages other than C with shared libraries, see the documentation
for the language you are using.)

• All code must be position-independent code when you create a shared
library.

You must recompile and link your code with a Tru64 UNIX compiler in
order to have position-independent code. Assembler code must also be
written to be position-independent code, using the rules mentioned in
the Calling Standard for Alpha Systems manual.

• Do not use profiling with shared libraries.

The pixie and pixstats commands are supported only with archive
libraries.

• Do not link shared libraries with archive libraries.

Shared libraries should only depend on other shared libraries. Linking a
shared library with an archive library could create conflicting references
at run time, causing unpredictable program behavior.

• Applications might need to be modified when linking with shared
libraries if they depend on specifics of the ULTRIX call frame or on
run-time stack tracing of libraries.

See the Calling Standard for Alpha Systems for specific information
on changes.

• The stack version of the alloca() function is currently unusable in
shared libraries.

6.7 Standard Application Programming Interfaces

In addition to making your source code portable with respect to applicable
language standards, you must make your applications conform to specific
application programming interfaces (APIs) in order to link correctly and
produce correct results. The Tru64 UNIX system supports the following
APIs:

• Application Environment Specification (AES)

Overview of the Tru64 UNIX Programming Environment 6–15

AES is the specification to which OSF/1 Version 1.0 was built.
Applications that use only the interfaces specified by the AES will
compile and run successfully on all implementations of OSF/1 Version 1.0
and all compliant platforms.

• POSIX

POSIX (IEEE Std 1003.1-1990; ISO/IEC 9945-1:1990(E)) describes
run-time behavior and provides definitions for programming interfaces.
It provides applications with the maximum portability across OSF/1
and other platforms. The Tru64 UNIX system also meets the National
Institute of Standards and Technology (NIST), Federal Information
Processing Standards (FIPS) 151-1.

• XPG3 Base

X/Open’s XPG3 Base describes the definitions and run-time behavior for
a set of interfaces. This standard extends beyond the POSIX standard to
cover additional features in the X/Open environment.

• ANSI C

The ANSI C language standard (ANSI X3.159-1989; ISO/IEC
9899:1990(E)), in addition to specifying a definition for the C
programming language, contains definitions for the standard library
functions.

• System V and BSD

System V Release 3 (based on the System V Interface Definition (SVID)
2), System V Release 2, and BSD represent implementation standards
and are available for applications that depend upon specific behavior
unique to the System V and BSD environments.

There are areas in which these implementation standard APIs conflict
with the more formal standard APIs described earlier. You can resolve
these conflicts by using the compiler and linker options described in
Section 7.6.2 and Section 7.6.3.

6.8 Network Programming Software

The networking programming facilities available in the Tru64 UNIX system
provide a high degree of commonality and interoperability with the ULTRIX
system. Both systems provide APIs, including X/Open Transport Interface
(XTI), Data Link Interface (DLI), and sockets, as described in the following
sections. In addition, Tru64 UNIX provides support for STREAMS, which is
compatible with System V Release 3.2 STREAMS.

6–16 Overview of the Tru64 UNIX Programming Environment

6.8.1 X/Open Transport Interface

The X/Open Transport Interface (XTI) defines a transport interface for
networking applications that is independent of any specific transport
provider. The XTI design and implementation on Tru64 UNIX are new. XTI
applications are interoperable between ULTRIX and Tru64 UNIX systems.
XTI is similar to, and backward compatible with, the System V Transport
Layer Interface (TLI). Libraries for both XTI (-lxti) and TLI (-ltli) are
provided. See Section 7.8 and the Network Programmer’s Guide for more
information.

6.8.2 Data Link Interface

The Data Link Interface (DLI) defines a transport interface for networking
applications on Ethernet and Fiber Distributed Data Interface (FDDI)
networks. DLI applications are interoperable between ULTRIX and Tru64
UNIX systems. On Tru64 UNIX systems, the location of the dli_var.h
library is /usr/include/dli/dli_var.h. In addition, the sockaddr_dl
structure has a new field, dli_len, in the first byte. See the Network
Programmer’s Guide for more information.

6.8.3 Sockets Interface

Sockets are the end points of communication channels and are used much
the same way as file descriptors are used. The socket interface provided
by Tru64 UNIX is compatible with the ULTRIX socket interface. See the
Network Programmer’s Guide for more information.

6.8.4 SNMP Compatibility

Tru64 UNIX and ULTRIX both support the Simple Network Management
Protocol (SNMP) Agent. The Tru64 UNIX system does not support
the ULTRIX Extended SNMP Agent for defining private Management
Information Base (MIB) objects through a set of library routines. See
Section 7.6.1 for more information.

6.9 Distributed Services Programming Software

This section discusses the following distributed services programming
facilities:

• Remote procedure calling (RPC)

• Kerberos authentication service

• Berkeley Internet Name Domain (BIND) service

• Network Information Service (NIS, formerly YP)

Overview of the Tru64 UNIX Programming Environment 6–17

• Hesiod naming service

6.9.1 Remote Procedure Calling

The ULTRIX system provides a general RPC mechanism, DEC RPC
Version 1.0, which is based on and is compatible with the RPC component of
the Hewlett-Packard/Apollo Network Computing System (NCS), Version 1.5.
Tru64 UNIX systems do not provide a development or run-time environment
for DEC RPC Version 1.0. Specifically, the DEC RPC Version 1.0 components,
which include the Network Interface Definition Language (NIDL) compiler,
the Location Brokers (Local Location Broker and Global Location Broker),
and the RPC run-time library, are unavailable.

Tru64 UNIX and ULTRIX systems both provide the capabilities to
interoperate with the Sun Microsystems ONC (Open Network Computing
environment). Tru64 UNIX systems also enable ONC RPC application
development by providing a high-level set of operations that can be used
to execute procedures on remote systems across a network. See the
Programming with ONC RPC manual for more information on using ONC
RPC.

As part of the Distributed Computing Environment (DCE), OSF has defined
an RPC mechanism that integrates with the other DCE components (for
example, Cell Directory Service and Global Naming − X.500). Components to
support this mechanism are not part of the base Tru64 UNIX product. See
the Compaq DCE Starter Kit for these features.

6.9.2 Network Authentication

Kerberos is an authentication service that validates the identity of a user
or service, preventing fraudulent requests. It provides a programming
interface for authentication by applications communicating across a TCP/IP
network with a socket interface. The ULTRIX system supports a version
of Kerberos that is derived from MIT/Athena’s Kerberos Version 4. No
Kerberos programming interfaces are available on the Tru64 UNIX system.
Many binaries that were built with Kerberos on an ULTRIX system will
run on Tru64 UNIX systems when using an ULTRIX server, as long as the
ULTRIX system is Version 4.2 or higher. See Section 7.6.1 and Section B.18
for more information.

6.9.3 Naming Services

The Tru64 UNIX system supports both the Berkeley Internet Name Domain
(BIND) service and the Network Information Services (NIS, formerly YP)
service. Both of these services are interoperable between ULTRIX and Tru64
UNIX systems. By itself, the BIND name service allows you to distribute
a host naming database. The NIS service can distribute several different

6–18 Overview of the Tru64 UNIX Programming Environment

databases. BIND and NIS support equivalent functions in the run-time
library.

The Hesiod service, available on ULTRIX systems, is not supported by the
Tru64 UNIX system. No Hesiod programming interfaces exist on Tru64
UNIX systems. See Section B.18 for more information.

6.10 Internationalization Features

An internationalized application allows users to interact with that
application in their native language. The application is also designed to
reflect the culture of the user’s region. For example, data such as dates and
monetary values are displayed or read as input in the style of that region.

The Tru64 UNIX internationalization features are compatible with the
ANSI C, POSIX, and XPG4 specifications for an international programming
environment.

In addition to the ULTRIX internationalization features, the Tru64 UNIX
internationalization features provide the following:

• Support for more locales

• Support for the LC_MESSAGES environment variable

• Internationalized library routines and system commands

Some differences exist between the ULTRIX and Tru64 UNIX
internationalization features. The following sections give an overview
of the differences. For more information about the Tru64 UNIX
internationalization features, see Writing Software for the International
Market and the i18n_intro command.

6.10.1 Message Catalog System

The message catalog system isolates program messages from the body of
your program. This isolation makes it easier for you to translate messages
into other languages. The message catalog system consists of message
extraction tools, tools for translating messages, a tool for generating message
catalogs, and routines for accessing message catalogs.

6.10.1.1 Message Extraction Tools (extract, strextract, and strmerge)

Like the ULTRIX system, the Tru64 UNIX system provides the extract,
strextract, and strmerge commands that extract message text from
your program and store it in a message text source file. In most ways, these
commands are the same as their ULTRIX equivalent. This section describes
the two ways the commands differ between the Tru64 UNIX and ULTRIX
systems.

Overview of the Tru64 UNIX Programming Environment 6–19

The output file name for the strextract command, and therefore the input
file name for the strmerge command, is different. On Tru64 UNIX systems
the intermediate file that strextract creates is named filename.str.
On ULTRIX systems, this file is named filename.msg.

The other difference is the name of the internationalization directory. On
Tru64 UNIX systems, related internationalization files are stored in the
/usr/lib/nls directory. On ULTRIX systems, these files are stored in the
/usr/lib/intln directory. This change affects the following:

• The location of the systemwide patterns file, which on Tru64 UNIX
systems is /usr/lib/nls/patterns.

• The location of the help file for the extract command, which on Tru64
UNIX systems is /usr/lib/nls/help.

• The search path for user-specified patterns and ignore files. On Tru64
UNIX systems, the extract, strextract, and strmerge commands
search for patterns and ignore files in the current directory, your home
directory, and then /usr/lib/nls.

6.10.1.2 Tool for Translating Messages (trans)

You can use the Tru64 UNIX trans command to help you translate message
text source files from one native language to another. This command is the
same as the ULTRIX trans command.

6.10.1.3 Tools for Creating a Message Catalog (mkcatdefs and gencat)

The Tru64 UNIX system provides the mkcatdefs and gencat commands,
which work together to generate a formatted message catalog. Some system
limits that affect the gencat command have increased on Tru64 UNIX
systems. See Table B–1 for complete information. Other than the difference
in the system limits, the Tru64 UNIX gencat command is the same as the
ULTRIX gencat command. The mkcatdefs command is the same on both
systems.

6.10.1.4 Routines for Accessing a Message Catalog (catopen, catgets, and
catclose)

You use the Tru64 UNIX catopen, catgets, and catclose library routines
to open, read messages from, and close message catalogs. These routines are
the same as the ULTRIX routines of the same names.

By default, these routines search the /usr/lib/nls/msg/%L /%N path for
a message catalog. In the preceding pathname, %L represents the locale
name specified by the LANG environment variable, and %N represents the
name of the message catalog passed to the catopen function. Typically, the
name of the message catalog is messages.cat.

6–20 Overview of the Tru64 UNIX Programming Environment

The Tru64 UNIX catopen routine differs from the ULTRIX catopen
routine in two ways. First, the Tru64 UNIX catopen routine does not
search the current directory for message catalogs. The ULTRIX catopen
routine searches the current directory for message catalogs it does not find in
either the /usr/lib/nls/msg/%L /%N directory or the directories specified
by the NLSPATH environment variable. Second, the Tru64 UNIX catopen
routine ignores the NLSPATH environment variable when it attempts to
find a message catalog for the root user. The routine searches only the
/usr/lib/nls/msg/%L /%N directory. This difference affects applications
that use the setuid system call to become the root user.

6.10.2 Program Localization

Writing an international application involves more than isolating and
translating program messages. The application must also reflect the culture
of the user by displaying dates and times, monetary values, numbers,
alphabetic lists, and so on in the style that the user expects. On Tru64 UNIX
systems (as on ULTRIX systems), the application behavior in these areas is
controlled by the program’s locale.

6.10.2.1 Announcement Mechanism

You control which locale an application runs in by defining environment
variables. The environment variables announce to the system what local
data the application should use.

The Tru64 UNIX system provides the same environment variables as the
ULTRIX system, with the addition of LC_ALL and LC_MESSAGES. The
following list describes these environment variables:

• LANG controls all categories of an application’s locale. However, you can
override the setting of LANG by defining one of the environment variables
that control a specific category (LC_COLLATE, LC_CTYPE, and so on).

• LC_ALL controls all categories of an application’s locale. Unlike LANG,
you cannot override the setting of LC_ALL by defining one of the
environment variables that control a specific category.

• LC_COLLATE controls the collation category of the application’s locale.
The collation category affects the operation of the strcoll and strxfrm
library routines.

• LC_CTYPE controls the character classification category of the
application’s locale. This variable affects the operation of the isdigit
and isalpha library routines, among others.

• LC_NUMERIC affects the radix and thousands separator character as it is
used by the printf and scanf library routines.

• LC_TIME affects the behavior of the strftime library routine.

Overview of the Tru64 UNIX Programming Environment 6–21

• LC_MONETARY affects what the strmon library routine returns as the
format for monetary values.

• LC_MESSAGES affects the format of application messages and the string
the user can specify to answer a yes or no question.

The only difference between these environment variables on a Tru64 UNIX
system and on an ULTRIX system is the naming convention used for the
locales. For information about defining these environment variables, see
Section 3.1.3.

6.10.2.2 The setlocale Routine

To determine what locale has been set, you call the setlocale routine in
your program. This routine has the following format:

setlocale (category, locale)

The category argument specifies the category for which you are requesting
locale information, that is, LANG, LC_COLLATE, LC_CTYPE, and so on.
The locale argument is usually an empty string ("") that causes the
setlocale routine to determine the setting of a category by reading the
corresponding environment variable. However, you can specify a locale
name in this argument. If you do, be aware that the naming convention for
the Tru64 UNIX locales is different from the ULTRIX naming convention.
For information about the names of Tru64 UNIX locales, see the Technical
Overview.

By default, setlocale expects the locale-specific data to be in the language
support databases contained in the /usr/lib/nls/loc directory (the
/usr/lib/intln directory on ULTRIX systems).

On ULTRIX systems, you can store the locale-specific data in a directory
that is not in the default search path. You specify where the locale-specific
data is by defining the INTLINFO variable. On Tru64 UNIX systems you
specify where the locale-specific data is by defining the LOCPATH variable.

Except for these differences, the setlocale routine is the same on Tru64
UNIX and ULTRIX systems.

6.10.3 Creating Locale-Specific Information

On Tru64 UNIX systems, you can create your own locale-specific information.
Use the localedef command to process locale and character map files and
produce a locale database. This command replaces the ULTRIX ic command.
For information about using the localedef command, see localedef(1).

6–22 Overview of the Tru64 UNIX Programming Environment

6.10.4 The iconv Command

Like the ULTRIX iconv command, the Tru64 UNIX iconv command
converts the encoding of characters in one codeset to another codeset.
On Tru64 UNIX systems, you can use iconv to convert between a
number of character sets. The system provides conversion tables in the
/usr/lib/nls/loc/iconv directory. For information about using iconv
to convert codesets, see iconv(1).

6.11 Event-Logging Software

On Tru64 UNIX systems, system events are recorded using two facilities:

• A systemwide event-logging facility, which logs events in ASCII format.

• A binary event-logging facility, which logs hardware and software events
in the kernel in binary format records.

The binary event logging is like the binary error logging provided on ULTRIX
systems. There are differences between the system logging facilities on
ULTRIX and Tru64 UNIX systems. Both the ULTRIX and Tru64 UNIX
systems provide a set of application interfaces for syslog. See Section B.16
for more information.

6.12 Security

The Security manual contains information about migrating a programming
interface from ULTRIX to Tru64 UNIX, including basic migration issues and
ways to move ULTRIX authentication files to a Tru64 UNIX system.

The Tru64 UNIX system does not support the functions for getting and
setting authorization entries in the auth database. See the discussion of
secauthmigrate in the Security manual for more information. Additionally,
Section B.18 contains a list of security-related header files that exist in
ULTRIX but do not exist on a Tru64 UNIX system.

6.13 Curses Libraries

The curses package is a set of cursor optimization routines for writing
screen-management programs. ULTRIX and Tru64 UNIX systems both
support X/Open and BSD curses library routines. The capabilities in both
of these libraries have been extended beyond what is available with Version
4.2 and Version 4.3 of the ULTRIX system. For example, the Tru64 UNIX
curses package provides multibyte character support.

ULTRIX applications will need to change references to header files and
libraries. See Section 7.2, Section 7.7, and Section 4.7 for more information.

Overview of the Tru64 UNIX Programming Environment 6–23

7
Migrating Your ULTRIX Application to a

Tru64 UNIX System

The best way to move your application from an ULTRIX system to a Tru64
UNIX system is to migrate your source code to the Tru64 UNIX system.
When you port source code, the result is a native Tru64 UNIX application
that is easy to move to new versions of Tru64 UNIX and new platforms. In
addition, you can take advantage of Tru64 UNIX features, such as 64-bit
data types and addressing and shared libraries.

This chapter describes the tasks you perform to migrate source code from
an ULTRIX to a Tru64 UNIX system after you have transported the source
files to the Tru64 UNIX system by using rcp, ftp, or uucp commands, tar
archives, Network File System (NFS) mounting, or any other appropriate
method. This chapter also gives information about ULTRIX header files
that are not supplied on a Tru64 UNIX system, differences in using the C
compiler on an ULTRIX and a Tru64 UNIX system, and ULTRIX function
libraries that are not supplied on a Tru64 UNIX system.

7.1 Modifying Your Makefile

To allow you to conveniently build your application on a Tru64 UNIX
system, modify your makefile so that it works on the Tru64 UNIX system.
The following list describes differences between Tru64 UNIX and ULTRIX
systems that could affect your makefile:

• The s5make command is unsupported on the Tru64 UNIX system.
Remove references to that command and replace them with the make
command.

• The Tru64 UNIX directory structure is different from the ULTRIX
directory structure. This difference might require you to modify
pathnames in your makefile.

• Changes in command options could require changes to your makefile.
For information about differences between ULTRIX and Tru64 UNIX
command options, see Appendix A.

• Differences in how system libraries are organized could require changes
to your makefile. For information about differences, see Section 7.6.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–1

• Differences between ULTRIX and Tru64 UNIX header files and routine
definitions could require changes to your makefile. For information
about these differences, see Section 7.2 and Appendix B.

• By default, the Tru64 UNIX compiler links your application with shared
libraries. If you want to link your application with static libraries, specify
the −non_shared option on the cc or ld command lines in the makefile.

• The make command on Tru64 UNIX systems does not support retrieving
source files automatically from a Source Code Control System (SCCS)
archive.

For information about using make on a Tru64 UNIX system, see make(1).

The ULTRIX make command is also in the /usr/opt/ultrix/usr/bin
directory. To use the ULTRIX make command, edit the .login file and add
the following line to the end of the file:

source /etc/ultrix_login

This entry modifies your PATH variable to allow access to the ULTRIX make
command. For information about using the ULTRIX make command on a
Tru64 UNIX system, see make(1u).

7.2 Migrating References to Header Files

The set of header files on a Tru64 UNIX system is slightly different from the
set of header files on an ULTRIX system.

The contents of some Tru64 UNIX header files differ from the contents of the
equivalent ULTRIX header files. These differences can appear in a number
of ways. For example, the interface to a service might be slightly different,
structure definitions might be located in different header files, values might
have changed to reflect the 64-bit Alpha architecture, or nearly identical
structures or constants might have different names. For a list of differences
in /usr/include header files, see Appendix B.

Some of the ULTRIX header files are unavailable. These header files are
primarily:

• Header files corresponding to features that are unsupported in the
Tru64 UNIX system; for example, /usr/include/hesiod.h, which
is not present because the Tru64 UNIX system does not support the
Hesiod service

• Header files used by specific ULTRIX system facilities but which are not
needed by Tru64 UNIX utilities

For a list of the unavailable /usr/include header files, see Table B–2.

7–2 Migrating Your ULTRIX Application to a Tru64 UNIX System

The Tru64 UNIX header files are kept in a directory hierarchy descending
from the /usr/include directory. Table 7–1 lists most of the directories
containing standard header files.

Table 7–1: Locations of Standard Tru64 UNIX Header Files
Directory Description

/usr/include General C header files

DPS Display PostScript System C header files

DXm Compaq extensions to Motif C header files

Mrm Motif resource manager C header files

X11 X Toolkit header files

Xm Motif C header files

dec Compaq specific interface header files

lvm C header files for Logical Volume Manager (LVM)

mach Mach-specific C include files

net Miscellaneous network C header files

netimp C header files for IMP protocols

netinet C header files for Internet standard protocols

netns C header files for XNS standard protocols

nfs C header files for Network File System (NFS)

protocols C header files for Berkeley service protocols

rpc C header files for remote procedure calls (RPCs)

servers C header files for servers

sys System C header files (kernel data structures)

tli C header files for Transport Layer Interface (TLI)

ufs C header files for UNIX File System (UFS)

The compiler can help you migrate your application by finding
inconsistencies in the application’s use of a symbol, function, or declarations
in a header file. The Tru64 UNIX C compiler issues error messages for the
following conditions:

• Header file not found:

cfe: Error: file.c: 1: Cannot open file cursesX.h for #include

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–3

• Undefined symbol (a symbol that is not defined before its use)

This message helps you to find references to header-file symbols that
have moved or are no longer available:

cfe: Error: file.c, line 8: ’ENOSYSTEM’ undefined,
reoccurrences will not not be reported

• Multiply defined symbol (a local definition that conflicts with a
header-file definition):

cfe: Warning: file.c:4: Tried to redefine the macro EDEADLK,
this macro keeps the old definition in std/std1 mode,
otherwise the macro is redefined.

• Redeclared function (a local function declaration that conflicts with
a header-file declaration):

cfe: Error: t.c, line 7: redeclaration of ’openlog’; previous
declaration at line 120 in file ’/usr/include/syslog.h’
int openlog(char*, int);
----^

• Mismatched function use and prototype (failure of a function usage to
supply the number of arguments declared by the prototype declaration):

cfe: Error: file.c, line 12: Number of arguments doesn’t
agree with number in declaration

• Incompatible function arguments (an attempt to supply incompatible
arguments to a function) :

cfe: Warning: file.c, line 12: Incompatible pointer type
assignment

Because function declarations or prototypes are not required by the C
language before a function call, the compiler cannot detect misuse of
functions that did not have a preceding prototype declared. You might need
to find differences in these cases by first determining which header files
your application depends on, generating a list of the function declarations
these header files contain, and then using this list of functions to generate a
cross-reference for the needed header files on a Tru64 UNIX system. Then
you can cross-check the actual declarations for changes in the function
interfaces and modify your source code where necessary. Doing this may
require that you build short shell scripts to help search for the appropriate
definitions in the list of header files. The compiler has features that might
be of some use in these tasks:

• To produce a complete list of pathnames for include files a program
depends on, use the following command on the ULTRIX system:

% cc -M file_name.c

Be sure to use the same define (−D), undefine (−U), and include (-I)
command directives that you would typically use to compile this program.

7–4 Migrating Your ULTRIX Application to a Tru64 UNIX System

• To generate a list of functions that your application needs, and to compile
without allowing any library definitions on the command line when
building your ULTRIX application, use the following command:

% cc file_name.c -L

Do not include any additional system -ldirectory options. The −L
option inhibits ld from searching the standard directories for libraries.
The ld command will issue messages identifying any unresolved
symbols. The following short scripts can help you locate the files
containing objects that the compiler fails to resolve:

– Use the following command line to locate references to a particular
string (what to find in the following example) in all files contained
in the working directory or in subdirectories of the working directory:
% find . -type f -print | xargs grep "what to find" > logfile

Typically, this command is used from the /usr/include directory to
locate information in header files.

– The following script searches every library archive (*.a) on the
system for the object named as its first command-line argument:

#! /bin/sh
for i in /lib/*.a /usr/lib/*.a; do

ar t $i | grep $1 && echo "$1 found in $i"
done

Use this script (called arfind in this example) as follows:

% arfind object-to-find

See Section 7.6.1 for more information on libraries.

7.3 Migrating to a 64-Bit Environment
The 64-bit Tru64 UNIX system is different from the 32-bit ULTRIX system
in the size of addresses, the availability of 64-bit integer types, the data type
alignment restrictions, byte and word accessibility, and interoperability
between 32-bit and 64-bit systems. These differences affect the following
areas in your programs:

• Pointers

• Constants

• Structures

• Variables

• Library calls

The following sections discuss each of these areas and the changes you must
make to your program to take full advantage of the 64-bit environment, and
to permit interoperability with 32-bit systems.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–5

7.3.1 Pointers

This section describes migration problems that some applications will
encounter because they make assignments based on the assumption that
pointers are the same length as int variables. This section also contains
information on how to overcome problems with pointer-to-int assignments
with little or no recoding. (Information about other types of pointer
assignments that may require recoding is provided in Section 7.3.4.2.)

The following table shows the lengths of the data types that are used to hold
addresses and that can, in some usage situations, cause problems when
migrating an application to a Tru64 UNIX system:

ULTRIX Tru64 UNIX

Pointer 32 bits 64 bits

int 32 bits 32 bits

long 32 bits 64 bits

Many C programs, especially older C programs that do not conform to
currently accepted programming practices, assign pointers to int variables.
Such assignments are not recommended, but they do produce correct results
on systems in which pointers and int variables are the same size. However,
on a Tru64 UNIX system, this practice can produce incorrect results because
the high-order 32 bits of a Tru64 UNIX address are lost when a 64-bit
pointer is assigned to a 32-bit int variable. The following code fragment
shows this problem using Tru64 UNIX:
{
char *x; /* 64-bit pointer */
int z; /* 32-bit int variable */
.
.
.

x = malloc(1024); /* get memory and store address in 64 bits */
z = x; /* assign low-order 32 bits of 64-bit pointer to

32-bit int variable */
}

Similar problems with the length of pointers occur in applications that
consist of a mix of C and FORTRAN programs in which a pointer in a C
program is declared as an INTEGER*4 variable in a FORTRAN program,
leaving the conversion implicit and causing the loss of the 32 high-order
bits in the pointer.

7.3.1.1 Controlling Pointer Size and Allocation

The Tru64 UNIX system has a set of compiler options and pragmas you
can use to control pointer size and allocation, thereby allowing ULTRIX
applications that may make assumptions about pointers being 32 bits to
more easily migrate to a Tru64 UNIX environment.

7–6 Migrating Your ULTRIX Application to a Tru64 UNIX System

The set of options for the cc command is known as the xtaso option.
Combined with the −taso linker option (which is required when the
xtaso option is used), the xtaso option can prevent problems with
invalid addressing and pointer truncation that could occur when migrating
applications with 32-bit pointers to the Tru64 UNIX system. There are
limits to the use of the xtaso option. First, the option should only be used
in end-user application programs, and not in library programs. Second, the
end-user application should be known to have 32-bit dependencies.

This option is most useful for applications that have already been migrated
to the Tru64 UNIX system, but exhibit performance problems due to either
memory limitations or the heavy use of dynamic memory allocation.

The elements of the xtaso option are:

• #pragma pointer_size specifier

A C language pragma for controlling pointer size allocation that is
recognized by the compiler, but only acted on when the −xtaso option is
specified. This pragma is defined in the Programmer’s Guide manual.

• The −xtaso and −xtaso_short options to the cc command

The −xtaso option causes the compiler to respond to the pragmas that
control pointer size allocation. The −xtaso_short option forces the
compiler to allocate 32-bit pointers by default.

For more information about these compiler options, see cc(1).

• −taso linker option

The linker option that enables correct −xtaso support. The −xtaso
option allows you to create pointers that are only 32 bits. Because 32-bit
pointers cannot represent the entire range of addresses that are possible
in the Tru64 UNIX system environment, you must make sure that any
programs you compile are linked using the −taso option.

For more information, see the following sections.

7.3.1.2 Correcting the Pointer-to-int Assignment Problem

The most portable way to fix the problem presented by pointer-to-int
assignments in existing source code is to modify the code to eliminate this
type of assignment. However, in the case of large applications, this can be
time consuming. (To find pointer-to-int assignments in existing source
code, use the lint −Q command.)

Another way to overcome this problem is to use the Truncated Address
Support Option (−taso option). The −taso option makes it unnecessary
for the pointer-to-int assignments to be modified. It does this by causing
a program’s address space to be arranged so that all locations within the
program when it starts execution can be expressed within the 31 low-order

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–7

bits of a 64-bit address, including the addresses of routines and data coming
from shared libraries.

The −taso option does not affect the sizes used for any of the data types
supported by a Tru64 UNIX system. Its only effect on any of the data types is
to limit addresses in pointers to 31 bits (that is, the size of pointers remains
at 64 bits but addresses use only the low-order 31 bits).

The 31-bit address limit is used to avoid the possibility of setting the sign
bit (bit 31) in 32-bit int variables when pointer-to-int assignments are
made. Allowing the sign bit to be set in an int variable by a pointer-to-int
assignment would create a potential problem with sign extension. For
example:

{
char *x; /* 64-bit pointer */
int z; /* 32-bit int variable */
.
.
.

/* address of named_obj = 0x0000 0000 8000 0000 */
x = &named_obj; /* 0x0000 0000 8000 0000 = original pointer

value */
z = x; /* 0x8000 0000 = value created by pointer-to-int

assignment */
x = z; /* 0xffff ffff 8000 0000 = value created by pointer-

to-int-to-pointer or pointer-to-int-to-long
assignment (32 high-order bits set to ones by
sign extension) */

}

7.3.1.3 Use and Effects of the −taso Option

You can specify the −taso option on the cc or ld command lines used to
create an application’s object modules. (If you specifiy it on the cc command
line, the option is passed to the ld linker.) The −taso option directs the
linker to set a flag in object modules and this flag directs the loader to load
the modules into 31-bit address space.

The −taso option ensures that text and data segments of an application are
loaded into memory that can be reached by a 31-bit address. Thus, whenever
a pointer is assigned to an int variable, the values of the 64-bit pointer
and the 32-bit int variable will always be identical (except in the special
situations described in Section 7.3.1.4).

Figure 7–1 is an example of a memory diagram of programs that use the
−taso and −call_shared options (and do not use threads). (If you invoke
the linker (ld) through the cc command, the default is −call_shared. If
you invoke ld directly, the default is −non_shared.)

7–8 Migrating Your ULTRIX Application to a Tru64 UNIX System

Figure 7–1: Layout of Memory Under the -taso Option

Not accessible

Mappable by program

Heap (grows up)

Stack (grows towards zero)

Mappable by program

Not accessible (by convention)

0xffff ffff ffff ffff

0xffff fc00 0000 0000
0xffff fbff ffff ffff

$sp

0x0000 0000 0001 0000
0x0000 0000 0000 ffff

0x0000 0000 0000 0000

Reserved for kernel

Reserved for dynamic loader

Reserved for shared libraries

0x0000 0000 11ff ffff
0x0000 0000 1200 0000

0x0000 0000 8000 0000
0x0000 0000 7fff ffff

0x0000 03ff 8000 0000
0x0000 03ff 7fff ffff

ZK−0876U−R

Data

Text

0x0000 0000 1400 0000

Not mappable using 31−bit addresses

Note that stack and heap addresses will also fit into 31 bits. The stack grows
downward from the bottom of the text segment, and the heap grows upward
from the top of the data segment.

The −T and −D options (linker options that are used to set text and data
segment addresses, respectively) can also be used to ensure that the text and
data segments of an application are loaded into low memory. The −taso
option, however, in addition to setting default addresses for text and data
segments, also causes shared libraries linked outside the 31-bit address
space to be appropriately relocated by the loader.

The default addresses used for the text and data segments are determined
by the options that you specify on the cc command line:

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–9

• Specifying the −non_shared or −call_shared option with the −taso
option results in the following defaults:

0x0000 0000 1200 0000 (text segment’s starting address)
0x0000 0000 1400 0000 (data segment’s starting address)

• Specifying the −shared option with the −taso option results in the
following defaults:

0x0000 0000 7000 0000 (text segment’s starting address)
0x0000 0000 8000 0000 (data segment’s ending address)

Using these default values produces sufficient amounts of space for text
and data segments for most applications (see the Assembly Language
Programmer’s Guide for details on the contents of text and data segments).
The default values also allow an application to allocate a large amount of
mmap space.

If you specify the −taso option and also specify text and data segment
address values with −T and −D, the values specified override the −taso
default addresses.

You can use the odump utility to check whether a program was built
successfully within a 31-bit address space. To display the start addresses of
the text, data, and bss segments, enter the following command:

% odump -ov obj_file_x.o

None of the addresses should have any bits set in bits 31 to 63; only bits
0 to 30 should ever be set.

Shared objects built with the −taso option cannot be linked with shared
objects that were not built with the −taso option. If you attempt to link
shared objects that way, the following error message is displayed:

Cannot mix 32 and 64 bit shared objects without the -taso
option.

7.3.1.4 Limits on the Effects of the −taso Option

The −taso option does not prevent a program from mapping addresses
outside the 31-bit limit, and it does not issue warning messages if this is
done. Such addresses could be established using any one of the following
mechanisms:

• −T and −D options

As previously noted, if the −T and −D options are used with the −taso
option, the values that you specify for them will override the −taso
option’s default values. Therefore, to avoid defeating the purpose of the

7–10 Migrating Your ULTRIX Application to a Tru64 UNIX System

−taso option, you must select addresses for the −T and −D options that
are within the address range observed by the −taso option.

• malloc() function

To avoid problems with addressing when you use malloc in a taso
application that does not use threads, you must ensure that the
combination of the default data-size resource limit and the starting
address of the data segment do not exceed the maximum 31-bit address
(0x7fff ffff). Applications that use threads are unlikely to encounter this
problem because memory allocations for thread applications start in a
much lower address space than that used for nonthread applications.

The data-size resource limit is the maximum amount of data space that
can be used by a process. This limit can be adjusted using the limit (C
shell) or ulimit (Korn shell) commands. As previously noted, you can
adjust the starting address of the data segment by using the −D option
on the cc command.

• mmap system call

Applications that use the mmap system call must use a jacket routine to
mmap to ensure that mapping addresses do not exceed a 31-bit range.
This entails taking the following steps:

1. To prevent mmap from allocating space outside 31-bit address space,
specify the following compilation option on the cc command line for
all modules (or at least all modules that refer to mmap):
-Dmmap=_mmap_32_

This option equates the name of the mmap function with the name
of a jacket routine (_mmap_32_). As a result, the jacket routine
is invoked whenever references are made to the mmap function in
the source program.

2. If the mmap function is invoked in only one of the source
modules, either include the jacket routine in that module or
create an mmap_32c.o object module and specify it on the cc
command line. (The file specification for the jacket routine is
/usr/opt/alt/usr/lib/support/mmap_32.c.)

If the mmap function is invoked from more than one source file, you
must use the method of creating an mmap_32c.o object module and
specifying it on a cc command line because including the jacket
routine in more than one module would generate linker errors.

7.3.2 Constants

Check the use of constants in your program, particularly if you are going to
exchange data between 32-bit and 64-bit systems. Some constants might
have different values between 32-bit and 64-bit systems, which might

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–11

change the behavior of some operators. For example, hexadecimal constants
are more likely to become long on Tru64 UNIX systems. The following table
lists some constants and their values:

C Constant Value Value (32-Bit) Value (64-Bit)

0xFFFFFFFF 232 −1 −1 4,294,967,295

4294967296 232 0 4,294,967,296

0x100000000 232 0 4,294,967,296

0xFFFFFFFFFFFFFFFF 264 −1 −1 −1

7.3.2.1 Integer and Long Constants—Assignment and Argument Passing

In C, an integer constant is specified as 543210. To specify a long int
constant, use the letter suffix L or l. To specify an unsigned long, you use
the UL or ul suffix. (L is preferred since lowercase l is easily confused with
the number one.) Note the example where three different constants are
passed to the function, labs():

labs(543210)
labs(543210L)
labs(543210UL)

On an Alpha system, 543210 is treated as a 4-byte constant, and 543210L (or
543210UL) is treated as an 8-byte constant. If the labs() function expects a
long argument, each of these invocations would work as expected since the
int constants would be converted to long. If the labs() function expects
type int, the long constant would be truncated to an integer constant. This
truncation would result in the loss of significant digits if the constant was
greater than the maximum integer constant (INT_MAX) of +2147483647, or
less than the minimum integer constant (INT_MIN) of −2147483648, or for
unsigned constants greater than the maximum unsigned integer constant
(UINT_MAX) of 4294967295. This problem would also be present in an
assignment expression where a long integer constant was assigned to a
variable of type int. In these cases, explicitly use the L or UL suffix and
make sure the function arguments or variables being assigned to are of
the appropriate long type.

When you need to pass zero to a pointer argument and no function prototype
is visible, always use NULL (defined in the stdio.h file). Using zero will
result in using a 4-byte zero instead of a 8-byte zero (0L). In a comparison,
an assignment, or a function call where the correct function prototype is in
scope, standard C promotion rules will be in effect and the correct value
will be assigned.

To minimize assignment and argument errors in your code, use function
prototypes because the number and type arguments are checked.

7–12 Migrating Your ULTRIX Application to a Tru64 UNIX System

7.3.2.2 Integer and Long Constants—Shift Operations

A bit shift operation on an integer constant will yield a 32-bit constant. If
you need a result of type long, then you need to use the L or UL suffix
for long integer constants. The following example results in value being
assigned a 32-bit constant:

long value;

value = 10 << 2;

The top 32 bits of value will depend on the type of the value shifted. Signed
values are sign extended; unsigned values are zero extended. If you want
a 64-bit constant, be sure to use the L or the UL suffix. (Note that only
the left operand of a shift operator determines the result type. The type of
shift count operand is irrelevant.)

7.3.3 Structures

The 64-bit data size of the long and pointer types affects the size, member
alignment, alignment, and bit fields of structures.

7.3.3.1 Size

The size of structures and unions on Tru64 UNIX systems can be different
from those on 32-bit systems. For example, the following structure,
TextNode, doubles in size on a 64-bit system because the pointer types are
double in size (from 4 bytes to 8 bytes):

struct TextNode{
char *text;
struct TextNode *left;
struct TextNode *right;
};

If you are sharing data defined in structures between 32-bit and 64-bit
systems, be careful about using the long and pointer data types as
members in shared structures. These data types introduce sizes that are not
available on 32-bit systems.

To increase your application’s portability, do the following in your application:

• Use typedef types in structures and set up the types as appropriate
for the system. You can automatically do this by using information in
the limits.h header file.

• Be careful when building unions between the int and pointer data
types, because they are not the same size.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–13

7.3.3.2 Member Alignment

Members of structures and unions are said to be aligned on their natural
boundaries. That is, char is aligned on a byte boundary, short on a word
boundary, int on a longword boundary, and long and pointer on quadword
boundaries.

This means that additional space can be used for padding member alignment
in structures and unions. For example, on 32-bit systems the size of the
following structure is 16 bytes. On 64-bit systems, the size of the structure is
32 bytes: 8 bytes for each pointer and 4 bytes of padding after the member,
size, for the alignment of the pointer, left.

struct TextCountNode {
char *text;
int size,
struct TextCountNode *left;
struct TextCountNode *right;

};

7.3.3.3 Alignment

In the 64-bit environment, structures are aligned according to the strictest
aligned member. This aids in aligning other structure members on their
required boundaries. Structures are also padded to ensure proper alignment.
Padding can be added within the structure or at the end of the structure,
to terminate the structure on the same alignment boundary on which
it started. Therefore, observe the following alignment guidelines when
working with structures in a 64-bit environment:

• Always use the sizeof operator to determine the size of a structure. Do
not assume the size of a structure is the accumulated size of all of the
objects defined in it. Additional space might be needed for padding the
member alignment.

• Minimize the amount of padding needed in a structure by reordering
the members.

In the following example, the size of CountedString is 16 bytes (*text =
8 bytes, count = 4 bytes, tail padding = 4 bytes). This structure is aligned
on a quadword boundary because the pointer requires quadword alignment.
No additional padding (beyond 4 bytes of tail padding) is necessary because
CountedString will naturally align on a quadword boundary.

struct {
char *text;
int count;
}CountedString;

7–14 Migrating Your ULTRIX Application to a Tru64 UNIX System

In the following example, the inclusion of CountedString as a member in
the definition forces the alignment of the beginning of the structure to be on
a quadword boundary. Additional padding might be introduced (depending
upon the value of MAX_LINE) to ensure proper quadword alignment for the
structure member, string. Additional padding might also be introduced at
the end of the structure, to ensure proper structure alignment for arrays of
these structures.

CountedString CsArray[10]
struct {

char line[MAX_LINE];
struct CountedString string;

}TextAndString;

In the following example, the structure has a size of 24 bytes:

struct s{
int count;
struct s *next;
int total;

}

If this structure is reordered, the structure now has a size of 16 bytes.:

struct s{
struct s *next;
int count;
int total;

}

7.3.3.4 Bit Fields

Bit fields are allowed on any integral type on Alpha systems. (ANSI C
only requires bit fields with int, signed int, and unsigned int types.) In
a C declaration, if one bit field immediately follows another in a structure
declaration, the second bit field will be packed into adjacent bits of the
former unit. Since long is 64 bits in length on Alpha systems, adjacent
declarations of bit fields of type long might contain multiple bit field
definitions in cases that previously did not on RISC or VAX systems. This
change might cause different results in operations on these bit fields.

To ensure the same behavior in operations on bit fields, change bit field
definitions of type long to int.

7.3.4 Variables

The 64-bit Tru64 UNIX environment also changes assumptions about how
you declare your variables, and how you use them in assignments and in
function arguments.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–15

7.3.4.1 Declarations

To enable your application to work on both 32-bit and 64-bit systems, check
your int and long declarations. If you have specific variables that need to
be 32 bits in size on both ULTRIX MIPS and Alpha systems, define the type
to be int. If the variable should be 32 bits on ULTRIX MIPS systems and 64
bits on Alpha systems, define the variable to be long. Remember, if the type
specifier is missing from a declaration, it defaults to int type. For example,
here are six declarations that declare the variables to be of size int and the
function to be returning type int:

extern e;
register n;
static x;
unsigned i;
const c;
function ();

7.3.4.2 Assignments and Function Arguments

Since pointer, int, and long are no longer the same size in the 64-bit Tru64
UNIX environment, problems may arise depending on how the variables are
assigned and used in your application. Use the following guidelines:

• Do not use int and long interchangeably because of the possible
truncation of significant digits. For example, avoid assignments similar
to the following:

int i;
long l;
i = l;

Use the lint −Q command to help you find these potential problems.
See Section 7.5 and lint(1) for more information on the lint command.

• Do not pass arguments of type long to functions expecting type int. For
example, avoid assignments similar to the following:

int toascii(int);
int i;
long l;
i= toascii(l)

• Do not freely exchange pointers and integers. Assigning a pointer to an
int, assigning back to a pointer, and dereferencing the pointer may
result in a segmentation fault. For example, avoid assignments similar
to the following:

int i ;
char *buffer;

buffer = (char *)malloc(MAX_LINE)

7–16 Migrating Your ULTRIX Application to a Tru64 UNIX System

i = (int)buffer;
buffer = (char*)i;

Use the lint −Q command to find these pointer-to-int assignments.

If special steps are taken, pointer-to-int assignments can be retained
without causing addressing problems. See Section 7.3.1 for information
on how this is done.

• Do not pass a pointer to a function expecting an int as this will result
in lost information. For example, avoid assignments similar to the
following:

void f();
char *cp;
f(cp);

This nonportable function declaration will produce a compiler warning if
you use ANSI C prototypes such as the following:

void f(int);
char *cp;

f(cp);

Use the lint -Q command to find these pointer-to-int assignments.

• Use void *type if you need to use a generic pointer type. This is
preferable to converting a pointer to a type long.

• Beware of the use of aliasing (different multiple definitions of the same
object). For example, the following two structures refer to the same
object in different ways:

struct node {
int src_addr,dst_addr;
char *name;

} ;

struct node {
struct node *src, *dst;
char *name;

}

Replace this coding with a union declaration. Be thorough
when migrating this type of code to a 64-bit system, because the
interdependencies and incompatibilities between these two structures
might be difficult to find.

• Examine all assignments of a long to a double as this can result in a
loss in accuracy.

On a 32-bit system, code can assume that a double contains an exact
representation of any value stored in a long (or a pointer). By default, a
long is 32 bits and a double is 64 bits with 48 bits of mantissa.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–17

On a 64-bit Tru64 UNIX system, this is no longer a valid assumption.
For example, the following code executes differently on a 32-bit and
64-bit machine:

#include <stdio.h>

long l = 7777777777777777777L;
long l2;
double d;

main()
{

d = l;
l2 = d;
if(l == l2)

printf("On a 32-bit machine\n");
else

printf("On a 64-bit machine\n");

return(0);
}

7.3.4.3 The sizeof Operator

The result of the sizeof operator is of type size_t, which is an unsigned
long on Alpha systems.

7.3.4.4 Pointer Subtraction

The length of the integer required to hold the difference between two
pointers to members of the same array, ptrdiff_t (stddef.h), is a
signed long on Alpha systems.

7.3.4.5 Functions with a Variable Number of Arguments

When writing a routine that receives a variable (context-dependent)
number of arguments, you must use the stdargs (stdarg.h) or varargs
(varargs.h) mechanism. See varargs(3) for more information on the use
of these macros.

Programs written using varargs that expect the va_list type to be a
pointer, or that make assumptions about the stack layout of a routine’s
arguments, are nonportable. Such programs must be modified to correctly
use the varargs(3) mechanism. Failure to do so will give compile-time
errors, or incorrect run-time results.

See varargs(3) for more information.

7–18 Migrating Your ULTRIX Application to a Tru64 UNIX System

7.3.5 Library Calls

The 64-bit data types also affect the following library calls:

• printf and scanf functions

• malloc and calloc functions

• lseek system call

• fsetpos and fgetpos functions

The following sections describe how these functions are affected.

7.3.5.1 The printf and scanf Functions

When using the printf function for long types, you use the length modifier
l (lowercase letter L) with the d, u, o, and x conversion characters to specify
assignment of type long or unsigned long. For example, when printing
a long as a signed decimal, use %ld instead of %d. When printing a long
as a unsigned decimal, use %lu instead of %u. If the length modifier is not
used, the type is assumed to be int, or unsigned int, depending upon the
conversion character. In this case, the long types will be converted to the
smaller int types and information might be lost.

When printing a pointer, use %p. If you want to print the pointer as a
specific representation, the pointer should be cast to an appropriate integer
type long before using the desired format specifier. For example, to print a
pointer as a long unsigned decimal number, use %lu:

char *p;

printf ("%p %lu\n", (void *)p, (long)p);

As a rule, to print an integer of arbitrary size, cast the integer to long or
unsigned long, and use the %ld (unsigned long) conversion character.
For example:

printf ("%ld\n", (long) num));

7.3.5.2 The malloc and calloc Functions

Memory allocation library functions such as malloc() guarantee to return
data aligned to the maximum alignment of any object. In the 64-bit Tru64
UNIX environment, malloc() returns a pointer to memory that is at least
quadword aligned.

7.3.5.3 The lseek System Call

When calling the lseek() system call to set the current position in a file,
use the off_t type defined in types.h for the file offset. Passing an int or

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–19

long constant might work, but it is not portable and is not guaranteed to
continue to work. The following example shows correct uses of lseek():

lseek function:

#include <unistd.h>

off_t offset, pos;
pos = lseek(fd, offset, SEEK_SET);
pos = lseek(fd, (off_t)0, SEEK_CUR);

7.3.5.4 The fsetpos and fgetpos Functions

When setting or getting the file postions for a file with the ANSI C functions
of fsetpos() or fgetpos(), respectively, the file position is specified by
a value of type fpos_t. This type is defined as a long in the 64-bit Tru64
UNIX environment.

7.4 Correcting C Syntax Errors

The C compiler on the Tru64 UNIX system is different from the C compilers
on the ULTRIX system. Because of differences in the compilers, you
might encounter C syntax errors on Tru64 UNIX systems that you did not
encounter on ULTRIX systems. This section contains information to help
you find and correct these errors. In particular, it includes a list of the
Tru64 UNIX predefined symbol names and their meanings. This section
also provides information about using Tru64 UNIX compiler options to get
maximum compatibility with ULTRIX compilers, and information about
differences between Tru64 UNIX and ULTRIX C syntax for each of the
ULTRIX compilers.

7.4.1 Differences Between Tru64 UNIX and ULTRIX Predefined
Symbols

Both the Tru64 UNIX and ULTRIX systems supply predefined symbols
for the cc command. You use these symbols to write conditional code for
different hardware platforms, different operating systems, and different
programming environments. On Tru64 UNIX systems, the _ _STDC_ _
symbol is defined as follows:

• When you use the −std0 option, the _ _STDC_ _ symbol is undefined.
(The −std0 option compiles code as defined by Kernighan and Ritchie
(K&R) C.)

• When you use the −std option, the _ _STDC_ _ symbol is 0. (The std
option compiles code as specified by the ANSI C standard. This option
also allows some extensions to the ANSI C standard.)

7–20 Migrating Your ULTRIX Application to a Tru64 UNIX System

• When you use the −std1 option, the _ _STDC_ _ symbol is 1. (The −std1
option compiles code strictly according to the ANSI C standard.)

The predefined symbols on Tru64 UNIX systems have different names
from their equivalents on ULTRIX systems. Table 7–2 compares the Tru64
UNIX and ULTRIX predefined symbols. If you use these symbols in your
application, you must modify the symbol name in your source file before you
recompile your application.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–21

Table 7–2: Comparison of Tru64 UNIX and ULTRIX Predefined Symbols
for the cc Command
Name for −std and
−std1 Modes

Name for −std0
Mode

Name for ULTRIX
on RISC Systems

Name for ULTRIX
on VAX Systems

String containing the host hardware name:

__alpha _ _alpha _ _host_mips_ _ vax

String containing the target hardware name:

__alpha _ _alpha mips vax

String containing the operating system name:

__osf_ _ _ _osf_ _ unix unix

__unix_ _ _ _unix_ _ ultrix ultrix

unix bsd4_2 bsd4_2

String indicating that the host is a BSD system:

_SYSTYPE_BSD _SYSTYPE_BSD SYSTYPE_BSD Not applicable

SYSTYPE_BSD

String indicating that the application is written in C:

__LANGUAGE_C_ _ _ _LANGUAGE_C_ _ LANGUAGE_C Not applicable

LANGUAGE_C

String indicating that double floating-point format is used:

Not applicable Not applicable Not applicable GFLOAT

7.4.2 Differences Between Tru64 UNIX C and ULTRIX C on RISC
Systems

______________________ Note _______________________

This section describes the behavior of ULTRIX C on Versions
4.3 and earlier RISC ULTRIX systems, and not the behavior of
ULTRIX C on Versions 4.3A or later systems. The reason is that
Versions 4.3A and later systems employ the MIPS Version 3.0
compiler environment, which is more completely similar to the
Tru64 UNIX C compiler environment than the MIPS Version 2.10
compiler environment on earlier ULTRIX RISC systems, which
is described here.

When you compile your ULTRIX application on a Tru64 UNIX system, you
may notice some differences in how the compilers operate. For example, the
Tru64 UNIX compiler might issue errors or warnings in cases for which the

7–22 Migrating Your ULTRIX Application to a Tru64 UNIX System

ULTRIX compiler does not. To minimize the effect of these differences, use
the Tru64 UNIX compiler option that provides the most compatibility, as
shown in Table 7–3.

Table 7–3: Compilation Options that Are Compatible with ULTRIX C on
RISC Systems
If You Use This ULTRIX
Option

Use This Tru64 UNIX Option

Default — K&R C with
ANSI extensions.

Default (−std0)—K&R C with ANSI extensions.
Some ANSI extensions are implemented differently.

−std −std (Issues a warning message for certain
non-ANSI syntax. This mode is stricter on a
Tru64 UNIX system, so you receive more warnings
than you do on an ULTRIX system.)

Although the Tru64 UNIX compiler options offer compatibility with the
ULTRIX C for RISC compiler, some differences between the two compilers
exist. The ULTRIX and Tru64 UNIX compilers operate differently in some
respects regardless of which Tru64 UNIX compiler mode you use. Other
differences occur only when you use the −std0 or the −std1 option. The rest
of this section describes these differences.

7.4.2.1 Differences that Apply to All Modes

The following list describes compilation differences between ULTRIX C on
RISC systems and Tru64 UNIX C. You might notice the following differences
regardless of the compilation mode you use:

• The Tru64 UNIX C compiler issues a warning if constants are longer
than the maximum allowed by ULONG_MAX. A similar warning occurs
if octal and hexadecimal character escape sequences exceed the value
of UCHAR_MAX. The ULTRIX C compiler issues no warnings in these
situations.

• If a signed multicharacter constant is converted to an integer, the value
of the integer might differ between Tru64 UNIX systems and ULTRIX
systems. This situation is true if the constant contains a negative value.

• As required by the ANSI C standard, the Tru64 UNIX C compiler
strips a backslash (\) followed by a carriage return (^M) during the
preprocessing stage. On ULTRIX systems, these characters are stripped
during the later translation phase. Programs containing such constructs
might not work properly when input to the Tru64 UNIX C compiler.

• The Tru64 UNIX C compiler does not allow you to modify a type
you create with the typedef statement. For example, the following
statement is invalid on Tru64 UNIX systems:

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–23

typedef int account;
...

account monthly;
unsigned account display_account;

To achieve this effect on Tru64 UNIX systems, you must create both a
signed and unsigned type, as shown:

typedef int account;
typedef unsigned int display_variable;

...

account monthly;
display_variable display_account;

• On Tru64 UNIX systems, you cannot declare or define a type within a
function prototype. The ULTRIX compiler allows this, although doing so
causes the parameter to be incompatible with any other type.

For example, suppose the structure S shown in the following declaration
has not been declared previously. Any further type matching of the
parameter list results in an error. At the end of the prototype, the scope
ends, which means that S is no longer available:

int convert_array (struct S *p);

On Tru64 UNIX systems, you must declare the structure S outside of
the function prototype, as shown:

struct S *p;

int convert_array(struct S);

• If you include a directory specification as an option to the #line
directive, the Tru64 UNIX C preprocessor uses the directory as the
local directory for all subsequent #include directives. The ULTRIX C
preprocessor did not process the #line directives in this manner. To
force the compiler to search locally instead of using the #line directive
information, use the −I option to the cc command and specify the local
directory (the period character), as follows:

cc −g −O0 −I. −c sample_module.c

Since various C code generators (for example, lex and yacc) insert a
#line directive into the generated C code, you might encounter this
error inadvertently.

• The Tru64 UNIX C compiler does not allow you to specify #if directives
within a macro call. Move #if directives outside of macro calls.

• The Tru64 UNIX C compiler requires you to use braces ({ }) in
initializers more precisely than the ULTRIX C compiler.

7–24 Migrating Your ULTRIX Application to a Tru64 UNIX System

For example, the following initialization is valid on ULTRIX systems:

struct S {char i[10]; int j} y = {{"aeiou", 1}};

The Tru64 UNIX C compiler issues an error message in response to
the preceding initialization. To achieve the same effect on Tru64 UNIX
systems, use the following initialization statement:

struct S {char i[10]; int j} y = {"aeiou", 1};

In this example, the initialization of y contains only one set of braces.

• On Tru64 UNIX systems, you cannot declare a single type name (using
typedef) more than once except within an inner block.

• The Tru64 UNIX C compiler allows you to specify hexadecimal escape
sequences in character strings and constants. On ULTRIX systems,
the escape sequence is translated; for example, \x is interpreted as x
on ULTRIX systems.

7.4.2.2 Differences that Apply to the Default Mode

The default Tru64 UNIX C compilation mode (specified by the −std0 option)
differs from ULTRIX C in the following ways that can affect migrating C
source code from ULTRIX C:

• To comply with the ANSI C standard, the Tru64 UNIX C compiler
replaces comments with one space character during preprocessing.
Therefore, you cannot use a comment as a concatenation character on
Tru64 UNIX systems.

On ULTRIX systems, comments within C statements are deleted with
no spaces. This action allows you to use a comment as a concatenation
character.

On Tru64 UNIX systems, replace a comment that you use as a
concatenation character with the ANSI-defined concatenation characters
(##).

• The Tru64 UNIX compiler uses the ANSI definition of a string for C
programs. ANSI defines a string in the C language as a contiguous
sequence of characters terminated by, and including, the first null
character. As a result, a partial string is not a valid processing token,
so you cannot use a partial string in the replacement list of a macro
definition.

The ULTRIX compiler allows you to use a partial string in a macro
definition, as shown:

#define abc "123

You can use this definition in a printf statement, as follows:

printf(abc 456");

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–25

The output from this printf statement is the following:

123 456

To get the same effect on a Tru64 UNIX system, use the following
definition and printf statement:

#define abc "123"

printf(abc " 456");

• On Tru64 UNIX systems, you can use recursive macro definitions when
you specify the −std0 option. On ULTRIX systems, you cannot define
macros recursively.

7.4.2.3 Differences that Apply to Strict ANSI Mode

The strict ANSI C Tru64 UNIX compilation mode (specified by the −std1
option) differs from ULTRIX C in the following ways that can affect
migrating C source code from ULTRIX C:

• On Tru64 UNIX systems, declaring a local and external variable of the
same name causes an error. You must use unique identifier names for
each scope.

On ULTRIX systems, you can declare a local variable of the same name
as an external variable. The local variable has precedence.

• On Tru64 UNIX systems, you must not use a trailing comma in an
enumerator list. ULTRIX systems allow the trailing comma as shown:

enum protocols { TCP, SNMP, OSI, };

The trailing comma causes an error on Tru64 UNIX systems, so you
must remove it.

• On Tru64 UNIX systems, you cannot specify an empty declaration such
as the following one:

main
{
;

...

}

Remove all empty declarations from your program.

• You cannot cast the left-hand side of an assignment statement on Tru64
UNIX systems. You must remove any such casts.

On ULTRIX systems, you can cast the left-hand side of an assignment
statement, so long as the result of the left-hand side is the same size as
the result of the right-hand side.

7–26 Migrating Your ULTRIX Application to a Tru64 UNIX System

• On Tru64 UNIX systems, each identifier declaration must contain either
a type or a storage class. On ULTRIX systems, you can declare an
identifier without specifying a storage class or a type, as shown:

account;
float profit;

In the preceding example, the ULTRIX C compiler assumes that the
account identifier is of type extern int.

• The Tru64 UNIX C compiler issues a warning message if you omit the
ending semicolon in a structure declaration list, as shown:

struct {int a,b} a;

The following shows the correct syntax to use for a structure declaration
list on Tru64 UNIX:

struct {int a,b;} a;

• The Tru64 UNIX C compiler allows you to use a special struct
declaration to declare two structures that reference each other.

On ULTRIX systems, to declare two structures that reference each other
within a block, you use a declaration similar to the following:

struct x { struct y *p; /* ... */ };
struct y { struct x *q; /* ... */ };

If struct y is declared in an outer block, the first field of struct x
refers to the declaration of struct y in the outer block.

In some cases, you might want the first field of struct x to refer to the
declaration of struct y that follows struct x. To allow this type of
declaration, the Tru64 UNIX C compiler defines the following special
declaration:

struct y;

struct x { struct y *p; /* ... */ };
struct y { struct x *q; /* ... */ };

The partial declaration, struct y; supersedes the declaration of
struct y in the outer block. The compiler uses the next declaration of
struct y it encounters to define the first field of struct x.

7.4.3 Differences Between Tru64 UNIX C and DEC C

When you compile an application on a Tru64 UNIX system that is compiled
with DEC C on an ULTRIX system, you should notice few differences in
how the program is compiled. Both compilers comply with the ANSI C
language definition. However, you might notice some differences that result
from implementation-specific features, standards-compatible extensions, or
differences in interpretations of the ANSI standard.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–27

To minimize the effect of any differences, use the Tru64 UNIX C compiler
option that offers the most compatibility, as shown in Table 7–4.

Table 7–4: Compilation Options that Are Compatible with DEC C
If You Use This ULTRIX Option Use This Tru64 UNIX Option

Default (ANSI C with a few
compatible extensions)

−std (ANSI C with a few compatible extensions.
Some differences exist between this mode
and the c89 default mode.)

−std (Strict ANSI) −std1 (Strict ANSI.)

−common (K&R C) Default (−std0, which is K&R C with a
few ANSI extensions.)

−vaxc No equivalent.a
a For information about migrating applications written in the VAX C programming language on ULTRIX,
see Section 7.4.5.

The following list describes some differences you might notice between the
Tru64 UNIX C compiler and the DEC C compiler:

• The Tru64 UNIX C compiler supports function inlining when you use the
−O3 option. Function inlining eliminates the overhead associated with
calling a procedure and allows the compiler to apply general optimization
methods across functions.

The DEC C compiler also supports function inlining; however, that
compiler uses a heuristic approach to performing the inline expansion of
function calls.

Because of this implementation difference, the −noinline option has a
different effect on Tru64 UNIX and ULTRIX systems. The option has
no meaning on a Tru64 UNIX system, unless you also specify the −O3
option. With DEC C, the option applies any time you use it.

• The Tru64 UNIX C compiler does not support using #pragma directives
to control function inlining; that is, the compiler does not support the
following DEC C syntax:

#pragma inline (function_name [[, function_name...]])

#pragma noinline (function_name [[, function_name...]])

• The Tru64 UNIX C compiler supports only predefined macros that begin
with two underscore characters (_ _) when you use the −std option.
Macro names that do not begin with two underscore characters are valid
when you use the default compilation mode of the DEC C compiler.

• The Tru64 UNIX C compiler does not support the VAX C (vcc)
compatibility mode keywords, language interpretations, or extensions.
See Section 7.4.5 for information about differences between the (vcc)
compiler and the Tru64 UNIX cc compiler.

7–28 Migrating Your ULTRIX Application to a Tru64 UNIX System

• The Tru64 UNIX C compiler does not support the −check option for
checking code similar to the way the lint command checks it. To check
your Tru64 UNIX C code, use the lint command as described in lint(1).

• The Tru64 UNIX C compiler does not support the −source_listing
or −show options for displaying source code listing and intermediate
and final macro expansions.

7.4.4 Differences Between Tru64 UNIX C and C on VAX Systems

If you compile an application you wrote for the cc compiler on VAX ULTRIX
systems with the Tru64 UNIX C compiler, you might notice some differences
in the language definitions the compilers accept. Some of these differences
are hardware specific, others are differences in how the compilers are
implemented.

To minimize the effect of these differences, use the Tru64 UNIX C compiler
option that offers the most compatibility, as shown in Table 7–5.

Table 7–5: Compilation Option that Is Compatible with C on VAX Systems
If You Use This ULTRIX Option Use This Tru64 UNIX Option

Default (K&R C) Default (−std0)—K&R C with ANSI extensions.
Some differences exist due to differences
between VAX and RISC systems and differences
between the compilers.

The following list details the differences between the Tru64 UNIX C compiler
when you use the −std0 option and the cc command on a VAX machine:

• The pointers on RISC systems are unsigned; on VAX systems they are
signed.

• On RISC systems, you cannot dereference NULL pointers, including
arguments to the strlen function.

• The varargs function on RISC systems is different from that function
on VAX systems. Your application will fail if it walks an argument list by
incrementing the address of an argument, particularly if the arguments
are double-precision values. Use the macros in varargs.h when you use
functions that have a variable number of arguments. Compiling with
the −varargs option on RISC systems causes the compiler to detect
nonportable code.

• The setjmp/longjmp buffer is larger on RISC systems than on
VAX systems. Applications with a hard-coded, 10-word buffer fail;
applications that include setjmp.h and declare a variable of type
jmp_buf work correctly.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–29

• RISC systems define a macro (for example, LANGUAGE_C) for the
preprocessor that makes it possible to write multilingual include files.

• The −Md or −Mg option is not needed when on RISC systems. The
software supports only one double-precision format.

• The Tru64 UNIX C compiler does not allow the following obsolete form
of initialization:

int i 0;

The preceding example works on a VAX system, but the VAX cc compiler
issues a warning. The Tru64 UNIX C compiler issues an error message.

• The Tru64 UNIX C compiler has boundary alignment rules. The
only effect this difference should have on your application is that its
performance might be slower than on a VAX system. This performance
change could occur because the kernel corrects alignment errors.
Where possible, align double words, words, and half words on natural
boundaries.

• The Tru64 UNIX C compiler does not allow you to use a global data item
as if it is a code location. For example, the compiler does not allow you
to use a data structure that has the same name as a system call. If you
use a global data item as a code location, the Tru64 UNIX C compiler
displays an error message similar to the following one at load time:

/lib/libc.a(gethostent.o): jump relocation out-of-range,
bad object file produced, can’t jump from 0x4197a0
to 0x10008198 (stat)

If you see this message, change the name of the data structure. (In this
example, it was named stat.)

• The Tru64 UNIX C compiler does not allow the same .c or .o file to
be listed twice in a command line. The compiler generates errors that
indicate that symbols are defined more than once. The cc compiler on
VAX systems allows you to specify the same source or object file twice.

• By default, the Tru64 UNIX C compiler links your application with
shared libraries, instead of archive libraries. If you want your application
to be linked with archive libraries, use the −non_shared option. For
more information, see Section 8.1.

• The Tru64 UNIX cc command uses a different syntax for the asm
pseudofunction call.

• On Tru64 UNIX systems, the −L option to the cc command operates
only on the −l options that follow it. On VAX systems, the cc −L option
affects all −l options. If you want the −L option to affect all −l options
on the command line when you use the Tru64 UNIX C compiler, specify
the −L option first.

7–30 Migrating Your ULTRIX Application to a Tru64 UNIX System

• The Tru64 UNIX C compiler does not support the −R option (read-only
text).

• The Tru64 UNIX Version 2.0 and earlier systems support two levels
of profiling that you use by running the postprocessor pixie utility.
Profiling on VAX systems has two levels that you select with the −p and
−pg options. The Tru64 UNIX Version 3.0 system supports these levels of
profiling, as well as the pixie utility.

• The Tru64 UNIX C compiler supports five levels of optimization, which
are controlled using the −O option. The C compiler on VAX systems
supports only one level of optimization, which is disabled by default
and enabled with the −O option.

By default, the Tru64 UNIX C compiler optimizes as if you specified the
−O1 option. The optimization that the compiler performs is similar to
the optimizations performed by the cc command on a VAX system. You
disable optimizations by specifying the −O0 option when you use the
Tru64 UNIX C compiler.

• The Tru64 UNIX C compiler offers four levels for debugging information
(controlled by the −g option). The C compiler on VAX systems has only
two (on and off).

• Both the Tru64 UNIX C compiler and VAX cc command support the −t
and −B options for specifying passes and paths. However, the Tru64
UNIX C compiler has more pass names. In addition, the Tru64 UNIX C
compiler option −h is equivalent to the VAX cc compiler option −B. The −B
option to the Tru64 UNIX C compiler specifies a suffix for the pass name.

7.4.5 Differences Between Tru64 UNIX C and VAX C (vcc) Software

If you compile an application you wrote for the cc compiler on VAX ULTRIX
systems with the Tru64 UNIX C compiler, you might notice some differences
in how the compilers operate. Some of these differences are hardware
specific, others are differences in how the compilers are implemented.

To minimize the effect of these differences, use the Tru64 UNIX C compiler
option that offers the most compatibility, as shown in Table 7–6.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–31

Table 7–6: Compilation Option for Compatibility with VAX C Software
If You Use This ULTRIX Option Use This Tru64 UNIX Option

Default (VAX C on ULTRIX) Default (−std0)—K&R C with ANSI extensions.
Some differences exist due to differences
between VAX and RISC systems and differences
between the compilers.

The following list details the differences between the Tru64 UNIX C compiler
when you use the −std0 option and the vcc command:

• The pointers on RISC systems are unsigned; on VAX systems they are
signed.

• On RISC systems, you cannot dereference NULL pointers, including
arguments to the strlen function.

• The varargs function on RISC systems is different from that function
on VAX systems. Your application will fail if it walks an argument list by
incrementing the address of an argument, particularly if the arguments
are double-precision values. Use the macros in varargs.h when you use
functions that have a variable number of arguments. Compiling with
the −varargs option on RISC systems causes the compiler to detect
nonportable code.

• The setjmp/longjmp buffer is larger on RISC systems than on VAX
systems. Programs with a hard-coded, 10-word buffer fail; applications
that include setjmp.h and declare a variable of type jmp_buf work
correctly.

• RISC systems define a macro (for example, LANGUAGE_C) for the
preprocessor that makes it possible to write multilingual include files.

• The −Md or −Mg option is not needed when on RISC systems. The
software supports only one double-precision format.

• The Tru64 UNIX C compiler does not support the following VAX C
keywords:

– _align

– globaldef

– globalvalue

– noshare

– readonly

– variant_struct

– variant_union

7–32 Migrating Your ULTRIX Application to a Tru64 UNIX System

• The Tru64 UNIX C compiler does not support the main_program option.
On VAX ULTRIX systems, this option allows you to give the main
function a different name.

• To be compatible, Tru64 UNIX C structure and union types must
be identical. The vcc compiler treats structure and union types as
compatible if they are the same size in bytes. The types need not be
identical to be compatible.

• The Tru64 UNIX C compiler does not support applying the unary &
(address-of) operator to a constant in the argument list of a function call.
The vcc compiler supports this use of the & operator.

• The Tru64 UNIX C compiler replaces comments that separate tokens
in a macro definition with one space character during preprocessing.
Therefore, you cannot use a comment as a concatenation character on
Tru64 UNIX systems.

On VAX ULTRIX systems, comments that separate tokens within a
macro definition are deleted with no spaces. This action allows you to
use a comment as a concatenation character.

On Tru64 UNIX systems, replace a comment that you use as a
concatenation character with the ANSI-defined concatenation characters
(##).

• On Tru64 UNIX systems, you can redefine a macro only if the token you
use in the new macro definition is identical to the token you used in
the existing macro definition. The vcc compiler allows you to redefine
macros.

• The Tru64 UNIX C and vcc compilers use a different algorithm for
substituting macro definitions. These different algorithms might cause
you to notice differences in how your macros are processed on a Tru64
UNIX system.

• By default, the Tru64 UNIX C compiler links your application with
shared libraries, instead of archive libraries. If you want your application
to be linked with archive libraries, use the −non_shared option. For
more information, see Section 8.1.

• The Tru64 UNIX Version 2.0 and earlier systems support two levels of
profiling that you use by running the postprocessor pixie utility.

Profiling on VAX systems has two levels that you select with the −p and
−pg options. The Tru64 UNIX Version 3.0 system supports these two
levels of profiling as well as the pixie utility.

• The Tru64 UNIX C compiler supports five levels of optimization, which
are controlled by using the −O option. The vcc compiler supports only
one level of optimization, which is disabled by default and enabled with
the −O option.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–33

By default, the Tru64 UNIX C compiler optimizes as if you specified the
−O1 option. The optimization the compiler performs is similar to the
optimizations performed by the vcc command. You disable optimizations
by specifying the −O0 option when you use the Tru64 UNIX C compiler.

• The Tru64 UNIX C compiler offers four levels for debugging information
(controlled by the −g option). The vcc compiler has only two (on and off).

• Both the Tru64 UNIX C compiler and the ULTRIX vcc command support
the −t and −B options for specifying passes and paths. However, the
Tru64 UNIX C compiler has more pass names. In addition, the Tru64
UNIX C compiler option −h is equivalent to the vcc compiler option
−B. The −B option to the Tru64 UNIX C compiler specifies a suffix for
the pass name.

• The Tru64 UNIX C compiler does not produce a listing that contains the
source code, symbol table, machine code, and cross-reference information.

7.5 Running lint to Find Other Errors

After you create object files for your application, use the lint command
to find other problems. The lint command gives you information about
whether you use data types correctly in your application, whether you use
routines and variables correctly, whether there are any 64-bit migration
problems, and so on.

The −Q option is included as support for migrating ULTRIX applications
to the Tru64 UNIX system by identifying those programming techniques
that might cause problems on a 64-bit Tru64 UNIX system. The techniques
identified include: pointer alignment; pointer and integer data type
combinations; assignments that cause a truncation of long data types;
assignments of long data types to another type; structure and pointer
combinations; type castings; and format control strings in scanf and
printf calls.

Be aware that if you never used lint on your ULTRIX application, it might
give you quite a bit of information about your Tru64 UNIX application, some
of which will not be pertinent to the problems with porting your application.

For more information about using lint, see lint(1).

7.6 Linking Your Program

Use the cc compiler to link your application. The linker reports errors
caused by routines that do not exist on a Tru64 UNIX system or by global
symbols that are undefined. In some cases, these errors occur because the
Tru64 UNIX system does not provide a routine or a global symbol definition.
In other cases, the name of the routine or global symbol has changed.

7–34 Migrating Your ULTRIX Application to a Tru64 UNIX System

To determine whether a routine exists, see the Tru64 UNIX documentation.
Check the documentation carefully because the Tru64 UNIX system has
some routines or symbols that use names different from those on the
ULTRIX system. If a Tru64 UNIX routine or symbol exists that performs
the task that the ULTRIX routine or symbol performs, modify your program.
Replace each reference to the ULTRIX routine or symbol name with the
appropriate Tru64 UNIX routine or symbol name. As you make this change,
check each call to ensure that it passes the correct number of parameters in
the correct order and that the parameters have the appropriate data type.

If no routine exists on the Tru64 UNIX system, remove the routine from your
application and make appropriate modifications to your applications.

Some ULTRIX libraries are unavailable on Tru64 UNIX systems. In some
cases, the routines that are in the ULTRIX libraries are available in a
different Tru64 UNIX library. In other cases, the ULTRIX library routines
are unavailable on the Tru64 UNIX system. Section 7.6.1 describes ULTRIX
libraries that are unavailable on Tru64 UNIX systems.

The Tru64 UNIX system provides two libraries for compatibility with
ULTRIX systems:

• The libbsd.a library contains routines that are compatible with the
ULTRIX BSD programming environment. (Section 7.6.2 describes this
library.)

• The libsys5.a library contains routines that are compatible with the
ULTRIX System V programming environment and other System V
programming environments. (Section 7.6.3 describes this library.)

You might need to link your application with one of these libraries if it
depends on the behavior of a BSD or System V library routine.

7.6.1 Changes in Libraries

The following list summarizes differences between ULTRIX and Tru64
UNIX system libraries:

• Merger of libraries into the libc library

Unlike ULTRIX systems, the internationalization library, libi.a, the
POSIX library, libcP.a, and the System V library, libcV.a, are part of
the standard C library, libc, except where conflicts between System V
and other standards exist.

Remove references to these libraries from your cc or make command line.

• Separation of libraries from the libc library

Unlike ULTRIX systems, the libmld library is not part of the standard
C library, libc.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–35

Add a reference to this library in your cc or make command line if you
want to include these functions.

• Movement of functions between libraries

On ULTRIX Version 4.3A and earlier systems, the DXmHelpSystemOpen,
DXmHelpSystemDisplay, and DXmHelpSystemClose functions were
contained in the libDXm. On Tru64 UNIX systems, these functions are
contained in libbkr. (This difference does not apply to ULTRIX Version
4.4 systems.)

• Libraries supporting unavailable features

A number of libraries are not included in the Tru64 UNIX system due
to differences in features between ULTRIX and Tru64 UNIX systems.
These include:

– Extended SNMP Agent: libsnmp.a

– Kerberos library routines: libkrb.a, libknet.a, libdes.a, and
libacl.a

– Authorization library: libauth.a

– ULTRIX/SQL library: libsql.a

– Graphics and plotting libraries (located in /usr/lib on ULTRIX
systems): plot, plotaed, plotbg, plotdumb, plotgigi, plotgrn,
plot2648, plot7221, plotimagen, 300, 300s, 450, 4013, 4014,
and lvp16

You must remove calls to routines in these libraries from your application
if you want to compile it on a Tru64 UNIX system. Also, be sure to omit
references to these libraries from the command line you use to build
the application.

7.6.2 ULTRIX BSD Compatibility Library

The Tru64 UNIX system provides the libbsd.a library to allow you
to use library routines that are compatible with ULTRIX BSD library
routines. Table 7–7 lists the routines in the library and describes the BSD
compatibility they offer. The most significant behavior of the routines in this
library are siginterrupt() and signal(), which restart system calls
that are interrupted by signals. (The default, in compliance with the POSIX
standard, is not to restart system calls that are interrupted by signals.)

To use the BSD functions, use the −D_BSD and −lbsd options on the
compilation line.

7–36 Migrating Your ULTRIX Application to a Tru64 UNIX System

Table 7–7: Routines in the ULTRIX BSD Compatibility Library
Routine Name Compatibility

int ftime(struct timeb *) Allows your application to continue
to use the ftime function, which
is not otherwise provided on Tru64
UNIX systems. This feature
has been made obsolete by the
gettimeofday() function.

char *mktemp(char *) Constructs a unique file name; expects
a string of at least six characters with
trailing ’X’ characters, and overwrites the
’X’ characters with a unique encoding of
the process’s process identification (PID)
and a pseudorandom number. Unlike
the standard Tru64 UNIX mktemp(),
this routine is not thread safe.

int nice(int) Returns a value in the range from −20
to 20. By default, the Tru64 UNIX
system defines process priorities in
the range from 0 to 39. This is the
same range defined on System V
systems. Additionally, if the libc
version of nice() fails, errno may
be set to the same values as by the
setpriority() function.

int rand()
void srand(u_int seed)

The rand() routine returns a number
in the range of 0 to 231 −1. The
srand() routine provides a seed for
the random number generator.

char *re_comp(char *) Converts a string into an internal
form suitable for pattern matching.
Returns 0 if the string was compiled
successfully; otherwise, returns a
pointer to an error message.

int re_exec(char *) Compares the string parameter with
the last string passed to the re_comp()
function. Returns 1 if the string matches
the last compiled regular expression.
(The default returns 1 when the string
fails to match the regular expression.)
Returns 0 if the string fails to match the
last compiled regular expression. (The
default returns 0 if the string does match
the regular expression.) Returns −1 if the
compiled regular expression is invalid
(indicating an internal error).

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–37

Table 7–7: Routines in the ULTRIX BSD Compatibility Library (cont.)

Routine Name Compatibility

int siginterrupt(int, int) Allows you to set the signal state so that
system calls are restarted if they are
interrupted by the specified signal and
no data has been transferred.

sig_t signal(int, sig_t) Causes the system to preserve the
value of the SA_RESTART flag if
your process explicitly enables or
disables system call restart by using
the siginterrupt() call.

char *timezone(int, int) The arguments are the number of
minutes of time you are westward from
Greenwich and whether daylight saving
time (DST) is in effect. Returns a string
giving the name of the local time zone.
Provided for compatibility only.

char * valloc(size_t) Allocates bytes aligned on a page
boundary. Provided for compatibility only.

int vtimes(struct vtimes*,
struct vtimes*)

Returns accounting information
for the current process and for
the terminated child processes of
the current process. Provided for
compatibility only; superseded by the
getrusage() function.

MINT * xtom(char *key)
char * mtox(MINT *key)
void mfree(MINT *a)

Provided for BSD compatibility for
performing arithmetic on integers
of arbitrary length.

int wait(union wait *) Provides a wait call whose
status_location parameter is of
type union wait *.

7.6.3 System V Compatibility Library

The Tru64 UNIX system provides the libsys5.a library to allow you to
use library routines that are compatible with System V library routines.
Table 7–8 lists the routines in the library and describes the System V
compatibility they offer. This library contains routines for those libc
routines whose behavior is incompatible with POSIX or X/Open standards.
The ULTRIX system also provides a System V compatibility library,
libcV.a, which supplies a number of features similar to those that
libsys5.a provides. The most significant behavior of the routines in this
library is the compatibility with System V nonblocked signals.

For more information about the System V (SVID-2) features in Tru64 UNIX
systems, see the System V Compatibility User’s Guide.

7–38 Migrating Your ULTRIX Application to a Tru64 UNIX System

Table 7–8: Routines in the System V Compatibility Library
Routine Name Compatibility

int mknod(char *, int , int) Supports passing of mode and dev as an int,
instead of mode_t and dev_t, respectively.

char * mktemp(char *) Uses getpid() to generate a unique file
name. Is not thread safe.

int mount(char *, char *, int,
char *, char *, int)

Does not support specifying the type of file
system, mount flags, such as M_RDONLY and
M_NOEXEC, or mount data. Allows you to
specify whether the file system is a read-only
or read/write system. Also provides SVID-2
compatibility via the MS_DATA flag.

int ptrace(int, int, int, int) Supports passing of pid as an int type
rather than pid_t.

int rmdir(const char *) Sets the value of the global variable errno to
EEXIST if the directory to be removed contains
entries other than dot (.) and double dot (..).

int setjmp(jmp_buf) void
longjmp(jmp_buf, int)

Do not save and restore the signal state.

pid_t setpgrp(void) If this call is successful, it returns the new
process identification (PID).

void (*signal(int, int(*func()))) The specified signal is not blocked from
delivery when the handler is entered, and the
disposition of the signal reverts to SIG_DFL
when the signal is delivered.

int unlink(const char *) An attempt to unlink nonempty directories
will cause the unlink call to fail and set
errno to ENOTEMPTY, even if the process
has superuser privileges.

int umount(char *) Does not support the MNT_NOFORCE, MNT_WAIT,
MNT_FORCE, or MNT_NOWAIT flags.

7.7 Porting Terminal-Dependent Applications
The Tru64 UNIX system supports two versions of the termcap library and
two versions of the curses library. To use the default termcap library
(similar to the BSD 4.3 termcap library), use the −ltermcap option in the
compilation line. To use the BSD 4.3-5 termcap curses functions (similar
to ULTRIX Version 4.2), use the −D_BSD and −lcurses options in the
compilation line. The ULTRIX system supports one version of the termcap
library and two versions of the curses library:

• The X/Open curses functions, which are part of the cursesX library

• The BSD 4.2 curses functions, which are part of the curses library

Table 7–9 helps to clarify how to port ULTRIX specific applications to the
Tru64 UNIX system.

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–39

Table 7–9: Terminal Capability Differences
If You Use this ULTRIX
Option

Use this Tru64 UNIX
Option

Library Used by C Compiler

−ltermcap or
−ltermlib

-D_BSD −ltermcap
or -D_BSD−ltermlib

BSD 4.2 termcap library (IBM AIX
library on a Tru64 UNIX system;
similar to BSD 4.3 library)

-D_BSD -lcurses
−ltermcap
or -lcurses
−ltermlib

−D_BSD −lcurses
-ltermlib

BSD 4.2 termcap and curses
libraries (BSD 4.3-5 curses
and termcap functions on a
Tru64 UNIX system)

−lcursesX −lcurses X/Open curses library (System V
Release 3 curses and terminfo
functions on a Tru64 UNIX system)

−lcurses −D_BSD −lcurses BSD 4.2 curses library (BSD 4.3-5
curses functions on a Tru64
UNIX system)

In addition, the /usr/include/cursesX.h header file is replaced by
/usr/include/curses.h, so that you must change all pertinent cursesX
references in your source files and makefile.

7.8 Differences in Standard Interfaces

As described earlier, there are different versions of some library calls
included for compatibility with the ULTRIX system. There are a few areas
where ULTRIX specific library behavior is not in the Tru64 UNIX system.
The following list describes the known differences in library behavior that
are not reflected by changes in the call interface or header file. These
differences require that you change your source code.

• The ULTRIX sprintf routine returns its first argument for success and
end-of-file (EOF) for failure. The Tru64 UNIX sprintf routine returns
the number of displayable characters in the output (not necessarily
the number of bytes) for success and a negative number for failure.
The number returned for success does not include the terminating \0
character.

• The printf, sprintf, and fprintf routines do not support the use of
the %D parameter. If applications use the %D parameter to display a long
number in decimal format, the routines print the character D instead of
the number. Instead, use the %d or %ld parameter in your print routines.

• On ULTRIX systems, if you call malloc for a zero length buffer, a pointer
to the buffer is returned. The Tru64 UNIX malloc call returns a NULL
pointer and sets errno to EINVAL.

• On ULTRIX systems, the default definition of the getpgrp system call is:

7–40 Migrating Your ULTRIX Application to a Tru64 UNIX System

int getpgrp(pid_t, pid_t)

The POSIX-conformant definition of getpgrp on Tru64 UNIX systems
states that getpgrp is called without arguments and returns the process
group of the current process:

pid_t = getpgrp();

The ULTRIX system’s mechanism for setting a process’s group ID is:

void = setpgrp(int, int);

This system call is supported on Tru64 UNIX systems for compatibility
only. In new applications, use the POSIX-standard setgpid call:

pid_t = setpgid(pid_t, pid_t);

• On ULTRIX systems, read operations on directories are supported by
the following statements:

#include <sys/dir.h>
struct direct *readdir(dirp);
DIR *dirp;

On Tru64 UNIX systems, read operations on directories are supported by
the following statements:

#include <sys/dirent.h>
struct dirent *readdir(DIR *dirp);

See opendir(3) for more information.

• On Tru64 UNIX systems, the setsysinfo and getsysinfo system
calls have been expanded to provide unaligned access control similar
to that found on ULTRIX systems. In addition, SSI_UACPROC and
SSI_UACPARNT options accept three other options as arguments:

– UAC_NOPRINT

Suppresses the printing of the unaligned error message to the user.

– UAC_NOFIX

Instructs the operating system not to fix the unaligned access fault.

– UAC_SIGBUS

Forces a SIGBUS signal to be delivered to the thread.

These options are defined in sys/proc.h, and can be specified in any
combination on a per task basis.

UAC settings are inherited by children, so forked processes will have
the same UAC characteristics as their parent. The SSI_UACSYS option
only accepts the UAC_NOPRINT option and suppresses unaligned fixup
messages regardless of the users’ setting. Only the superuser is allowed
to use this option.

The following example shows the setsysinfo call usage in an
application:

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–41

#include <sys/sysinfo.h>
#include <sys/proc.h>

...

int buf[2], val, arg;
...

/* Do not print the warning to the user */
buf[0] = SSIN_UACPROC;
buf[1] = UAC_NOPRINT;
error = setsysinfo(SSI_NVPAIRS, buf, 1, 0, 0);

...

/* Do not print the warning and deliver a SIGBUS signal */
buf[0] = SSIN_UACPROC;
buf[1] = UAC_NOPRINT | UAC_SIGBUS;
error = setsysinfo(SSI_NVPAIRS, buf, 1, 0, 0);

...

• On ULTRIX systems, the catopen routine opens a message catalog
and returns a catalog descriptor if successful. On Tru64 UNIX systems,
the catopen routine does not open the message catalog. Instead, it is
the catgets routine that opens a message catalog. Therefore, if your
application checks whether a message catalog was successfully opened,
you must change your program to reflect this change. For example, the
following ULTRIX code will not work on a Tru64 UNIX system:

catd = catopen("example.cat", 0);
if (catd == (nl_catd) -1)

/* message catalog was not opened */
else

/* message catalog was opened */

The following code shows how the previous code is modified to use the
catgets routine:

catd = catopen("example.cat", 0);
if (catgets(catd, 1, 1, NULL) == NULL)

/* message catalog was not opened */
else

/* message catalog was opened */

• The manner for establishing controlling terminals is an
implementation-defined process that is different for Tru64 UNIX and
ULTRIX systems. On the Tru64 UNIX system (and according to the
POSIX standard), a process must be a session leader to establish a
controlling terminal. The Tru64 UNIX system defines allocation of a

7–42 Migrating Your ULTRIX Application to a Tru64 UNIX System

control terminal with an explicit call to ioctl(). When porting source
code, you need to obtain a controlling terminal in the following way:

(void) setsid();
fd = open("/dev/tty01", O_RDWR);
(void) ioctl(fd, TIOCSCTTY, 0);

• The manner for establishing and controlling modem connections is
different for Tru64 UNIX and ULTRIX systems. The Tru64 UNIX system
uses POSIX conventions for modem control. Information about a serial
line can be inspected and altered in the POSIX termios structure,
using the tcgetattr() and tcsetattr() library routines. On
ULTRIX systems, modem control was accomplished using the TIOCCAR,
TIOCNAR, and TIOCWONLINE requests to the ioctl() system call.
These requests are not supported on a Tru64 UNIX system. When
porting source code, open a serial line in the following manner:

fd = open(ttyname,O_RDWR | O_NONBLOCK);

The O_NONBLOCK flag enables you to complete a read request, in case
the CLOCAL flag is not set and you are monitoring the modem status
lines.

Get the current line attributes; set the CLOCAL flag, in case it is not
already set; and turn off the O_NONBLOCK flag in the following
manner:

tcgetattr(fd,&tty_termios); /* get current line attributes */
if ((tty_termios.c_cflag & CLOCAL) == 0) {

tty_termios.c_cflag |= CLOCAL;
tcsetattr(fd,TCSANOW,&tty_termios);

}
flags = fcntl(fd, F_GETFL)

fcntl(fd, F_SETFL, flags & ~O_NONBLOCK)

You can now use your implementation-defined process for dialing the
phone number and negotiating with the modem. After this, monitor the
modem signals by doing the following:

tty_termios.c_cflag &= ~CLOCAL;
tcsetattr(fd,&tty_termios); /* watch for modem signals now */
alarm(40); /* set a timer; do not wait forever */
read(fd,buffer,count); /* this read() blocks, pending the

appearance of modem signals */
alarm(0); /* turn off timer */

See Appendix D for a comparison of an ULTRIX application using
modem control and a Tru64 UNIX application using modem control. The
comparison is for an outgoing call. In addition, Appendix D also contains
a sample application for an incoming call.

• The Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP) transport providers are supported by both ULTRIX and Tru64

Migrating Your ULTRIX Application to a Tru64 UNIX System 7–43

UNIX X/Open Transport Interface (XTI). However, when creating a
transport end point with the t_open call, ULTRIX does not need device
information to specify a transport provider. In the Tru64 UNIX system,
this information must be present because XTI is implemented using
the xtiso pseudostreams driver.

You must change all your t_open calls to reflect this change for both TCP
and UDP transport providers or change your application to determine
the end point at run time. For example:

#ifdef _ _osf_ _
t_open ("/dev/streams/xtiso/tcp", ...)

#else
t_open ("tcp", ...)

#endif

• On ULTRIX systems, XTI is layered on sockets. If you call select for
an incoming asynchronous XTI connection, the socket becomes writable.
On Tru64 UNIX systems, XTI is layered on streams. If you call select,
the socket becomes readable. You can either modify your application to
work with the Tru64 UNIX select call or substitute the poll call for
the select call and modify your application to use this call. See the
Network Programmer’s Guide for more information on XTI.

• The ULTRIX ccmn_ccbwait() function is replaced by the Tru64 UNIX
ccmn_send_ccb_wait() function. The Tru64 UNIX function sends a
CAM Control Block (CCB) to the transport (XPT) layer and sleeps on the
address of the CCB at the passed priority level, waiting for the CCB to
complete. For more information, see the Writing Device Drivers for the
SCSI/CAM Architecture Interfaces manual.

• On ULTRIX systems, if you call open with a null pathname, it defaults
to the current directory. On Tru64 UNIX systems, if you call open with a
null pathname, it returns an error.

7.9 Running Your Program

After your application links successfully, you are ready to run and test it.
Correct run-time errors by using the dbx debugger as an aid.

After you correct the semantic errors, your application is ported to the Tru64
UNIX system. In some cases, it might still not work properly. One possible
problem area is differences in the way certain routines on Tru64 UNIX
systems are called or the return values. See Section 7.8 and Appendix B
for more information.

7–44 Migrating Your ULTRIX Application to a Tru64 UNIX System

8
Postmigration Programming Features

After you migrate your source code from an ULTRIX to a Tru64 UNIX
system, you might want to enhance it by using features of the Tru64 UNIX
system. This chapter gives an overview of using three Tru64 UNIX features:
shared libraries, semaphores, and the number of open file descriptors.

For complete information on using Tru64 UNIX features, see the
Programmer’s Guide.

8.1 Using Shared Libraries
Shared libraries allow several applications to use a single copy of a library
routine at run time. Shared libraries help save disk space and memory, and
they can improve the performance of your application and system.

Using Tru64 UNIX shared libraries is similar to using archive libraries.

To link your application with a shared library, you must have compiled it on
a Tru64 UNIX system. Therefore, you must recompile and relink ULTRIX
applications if you want them to use shared libraries.

This section describes how to use the cc command to link with a shared
library. It also describes how to create shared libraries.

For complete information about using shared libraries, see the Programmer’s
Guide.

8.1.1 Linking with Shared Libraries

On Tru64 UNIX systems, the cc command links your application with
shared libraries by default. The following example shows the command you
enter to link with the shared version of libc:

% cc -o hello hello.c

This command creates an executable file named a.out, which you run.

You can also link your application with a shared library that you create. For
example, suppose you create a shared library named libspecial_math.so
and store that library in the directory /usr/person. To link with that
library, use the −l and −L options, as shown:

% cc -o hello hello.c -L/usr/person -lspecial_math

Postmigration Programming Features 8–1

To link the application that does not use shared libraries, you must specify
the −non_shared option in the cc command line, as shown:
% cc -non_shared -o hello hello.c -L/usr/person -lspecial_math

Although shared libraries are the default for most applications, the following
applications cannot use them:

• Applications that need to run in single-user mode cannot be linked to
shared libraries because the /usr/shlib directory must be mounted to
allow access to the shared libraries.

• Applications whose primary purpose is single-user benchmarks should
not be linked with shared libraries because position-independent code is
less efficient than position-dependent code. Also, there is no benefit to
sharing memory when only one application is running.

• Real-time applications using memory-locking features should not be
linked to shared libraries. Memory-locking functions will lock the entire
shared library into memory.

8.1.2 Symbol Resolution and Shared Libraries

If you link your application with shared libraries instead of archive libraries,
you might notice some differences in the way symbols are resolved. This
section describes these differences.

8.1.2.1 How Libraries Are Searched

The shared libraries supplied with Tru64 UNIX systems are stored in the
/usr/shlib directory. Place all system shared libraries in this directory to
avoid confusion. When the linker searches for files that have been specified
using the −l option, it searches the following directories, in order:

• /usr/shlib

• /usr/ccs/lib

• /usr/lib/cmplrs/cc

• /usr/lib

• /usr/local/lib

The linker searches all of the directories for a shared library (an .so file). If
it does not find a shared library with the specified name, the linker searches
all of the directories a second time for a static (an archive) library (an .a file).

When you develop applications, you might work with private shared libraries
that are contained in directories other than the /usr/shlib directory. In
this case, use the −L option to specify these directories. Before you execute
the program, set the LD_LIBRARY_PATH environment variable to point to
the directory containing the private shared libraries. When the program is

8–2 Postmigration Programming Features

executed, the run-time loader, /sbin/loader, examines this environment
variable and searches the path, if defined, before searching the default list of
directories.

Set the LD_LIBRARY_PATH variable in the following ways:

• Enter the setenv command at the system prompt, followed by a
colon-separated path. The following example sets the path as current
directory, $HOME/testdir directory (if defined), and the default shared
library directory. For example:

% setenv LD_LIBRARY_PATH .:$HOME/testdir:/usr/shlib

• Add the variable definition to your login or shell startup files. For
example, you might add the following line to your .login or .cshrc file,
if you work in the C shell:

setenv LD_LIBRARY_PATH .:$HOME/testdir:/usr/shlib

In the following examples, the /usr/person directory contains two versions
of the special math library: libspecial_math.so is a shared library and
libspecial_math.a is an archive library.

When you link with a shared library, symbols must be referenced before the
linker searches the shared library. Otherwise, the linker does not find the
symbol in the shared library and lists the symbol as undefined.

For example, suppose your library object file, libspecial_math.o,
defines two functions, getvalue and setvalue. Suppose that you
create a shared library, libspecial_math.so, and an archive library,
libspecial_math.a, from the object file. You call the getvalue routine
in the program1 module of your application, and you call the setvalue
routine in the program2 module of your application.

Suppose you link your application using the archive library, as follows:

% cc -non_shared program1.o -lspecial_math program2.o

The application module program1 references the getvalue routine, which
the libspecial_math archive library defines. That library also defines
the setvalue routine, and the linker is able to define setvalue when it
encounters that symbol in the program2 module.

Now, suppose you enter the same command, but use the shared library
instead of the archive library:

% cc program1.o -lspecial_math program2.o

This command succeeds, but prints a warning message indicating that the
symbol is undefined.

To correctly link this application, enter the following command:

Postmigration Programming Features 8–3

% cc program1.o program2.o -lspecial_math

In general, always specify the −l option last in the command line.

8.1.2.2 When Symbols Are Defined More than Once

Symbol name resolution when using shared libraries is similar to name
resolution when using static libraries. Symbol names are resolved according
to the order in which the object file or shared object containing the symbols
appears on the command line. The linker typically takes the leftmost
definition for any symbol that must be resolved.

The sequence in which names are resolved proceeds as if the link command
line were stored in the executable. When the program runs, all referenced
symbols must be resolved. The program aborts if any undefined symbols are
referenced.

When you link your application with shared libraries, do not define the same
symbol twice. For example, you cannot use the following cc command to link
an application that contains a shared library:
% cc program1.o libspecial_math.so program2.o libspecial_math.a

This command succeeds, but prints warning messages indicating that a
symbol is defined multiple times.

8.1.3 Using Your Makefile with Shared Libraries

If you use the make command to build your ULTRIX application, you can use
it to build a Tru64 UNIX application that uses shared libraries. You need not
modify your makefile file to use it with shared libraries. Unlike ULTRIX
systems, linking with shared libraries is the default on Tru64 UNIX systems.

The following example shows a Makefile file that links with shared
libraries on a Tru64 UNIX system:

Makefile for the Math Program
all: math.h program1.o program2.o
cc program1.o program2.o -L/usr/person -lspecial_math

program1.o: project.h
cc -c program1.c

8.1.4 Creating Shared Libraries from Object Files

To create a shared library:

1. Create one or more source files that define the routines you want to
include in the library.

2. Compile the source file into an object file, as shown:

8–4 Postmigration Programming Features

% cc -c special_math.c

3. Create the library by using the ld command. (You cannot use the cc
command to create a shared library. You must invoke the ld command
directly.) The following shows a sample ld command:

% ld -shared -no_archive -o libspecial_math.so
special_math.o -lc

In this example, the −shared option specifies creating a shared (rather
than an archive) library. The −no_archive option tells the linker to
resolve all symbols from shared libraries only. The −o option specifies
the name of the shared library.

For this command to succeed without printing warning messages, all
symbols in the special_math.o object must be resolved. In this case,
the special_math.o object references symbols that are defined in
libc. The −lc option specifies that ld search libc to resolve those
symbols. The ld linker searches the /usr/shlib directory for libc,
by default.

If the shared library you are creating references symbols defined in
another shared library, you must name the other shared library in the
ld command line. Name the shared library last in the command line to
ensure that the linker encounters the reference to the symbol before it
encounters the definition of the symbol.

For more information on using ld to create shared libraries, see ld(1).

8.1.5 Creating Shared Libraries from Archive Libraries

You can also create a shared library from an existing static (archive) library
by using the ld command. The following example converts the static library,
old.a, into the shared library, libold.so:

% ld -shared -no_archive -o libold.so -all old.a -none -lc

In this example, the −all option tells the linker to link all objects from the
old.a archive library. The −none option tells the linker to turn off the −all
option. The −no_archive option applies to the resolution of the −lc option,
but not to old.a, since it is explicitly mentioned.

8.1.6 Optimizing Application Startup when Using Shared Libraries

Your application starts more efficiently if your shared libraries can be loaded
at a preassigned starting address in virtual memory. To allow this efficiency,
the ld linker preassigns a starting address to each shared library you create.

At application startup time, a shared library’s preassigned starting address
may already be in use. In this case, the system assigns a new starting

Postmigration Programming Features 8–5

address to the library and the advantage of the preassigned starting address
is lost.

To make it more likely that a shared library can use its preassigned starting
address, you can cause the ld linker to assign a unique starting address
to each shared library you create.

If you create a shared library that only you will use, use the
−check_registry option in the ld command line. This option causes ld
to search the file you specify to determine what starting addresses are
assigned to shared libraries. The linker then assigns an unused starting
address to your shared library. The following example shows how to use the
−check_registry option:

% ld -shared -no_archive -check_registry \
/usr/shlib/so_locations \
libspecial_math.so special_math.o -lc

If the shared library you create will be used by other programmers on your
system, use the −update_registry option. This option causes the ld
linker to search the file you specify to determine what starting addresses
are assigned to shared libraries. The linker then assigns an unused
starting address to your shared library. The linker then adds to the file
the information that your shared library has been assigned that starting
address. Because that information is stored in the file, the linker can
determine that the address is already assigned when it assigns a starting
address to other shared libraries.

If no -check_registry or -update_registry option is specified when
building a shared library, the linker defaults to the -update_registry
option and the ./so_locations file.

The following list describes the procedure you follow to use the
−update_registry option with the system’s /usr/shlib/so_locations
file:

1. Copy the system’s so_locations file to your local area:

% cp /usr/shlib/so_locations .

2. Give yourself write access to the file:

% chmod +w so_locations

3. Create the shared library and use the −update_registry option:

% ld -shared -no_archive -update_registry \
./so_locations -o libspecial_math.so \
special_math.o -lc

4. Move the so_locations file back to the /usr/shlib directory:

% mv /home/smith/so_locations /usr/shlib/so_locations

8–6 Postmigration Programming Features

You must have write privileges to the /usr/shlib directory to move
the so_locations file into it. If you cannot write to the directory, ask
your system administrator to move the file.

8.2 Using Semaphores

On an ULTRIX system, you use semaphores through the atomic_op call.
This call allows you to test and set a user-space address that you specify. The
Tru64 UNIX system contains the atomic_op call; however, the system also
includes library routines that perform semaphore operations.

Modify your source code to use the Tru64 UNIX library routines rather than
the atomic_op system call. The library routines are more portable than the
atomic_op system call, which might not be included in all Tru64 UNIX
systems. The library routines are also more powerful than the atomic_op
system call.

The Tru64 UNIX library routines are as follows:

• msem_init, which initializes a semaphore

• msem_lock, which locks a semaphore

• msem_unlock, which unlocks a semaphore

• msem_remove, which removes a semaphore

For more information about these routines, see msem_init(3), msem_lock(3),
msem_unlock(3), and msem_remove(3).

8.3 Using File Descriptors

On both the ULTRIX and UWS and the Tru64 UNIX systems, the number
of open file descriptors a process can use is configurable. By default, the
number for Tru64 UNIX systems is 4096; on ULTRIX systems the default
is 64. Your system administrator configures the number of open file
descriptors. For information about configuring this number, see the System
Administration manual.

Because the system administrator can configure the maximum number of
open file descriptors your processes can use, you might want to modify your
program before you recompile it on a Tru64 UNIX system. The following
list describes the changes needed:

• Use the getdtablesize call to determine the maximum number of
open file descriptors configured on the system.

The following example shows a call to getdtablesize to get the
maximum number of open file descriptors:

Postmigration Programming Features 8–7

int maxfds;

maxfds = getdtablesize():

Use the maxfds variable in other calls, such as the select call, that
require you to pass the number of open file descriptors of interest. For
more information, see getdtablesize(2).

• Use a short integer or longer data type to store file descriptors.

On ULTRIX systems, you might have used a character data type to store
file descriptors. Because file descriptor values on Tru64 UNIX systems
can be greater than 128, you must use at least a short integer to store
file descriptors.

• Use the fd_set data type and its associated macros as defined in the
/usr/include/sys/types.h file to declare parameters to the select
call.

Using the fd_set data type ensures that the parameters are large
enough to accommodate up to 4096 file descriptors. The fd_set data
type is large enough for 64 file descriptors in ULTRIX. For more
information, see select(2).

8–8 Postmigration Programming Features

Part 5
Appendixes

This part contains appendixes that describe:

• The differences between specific Tru64 UNIX and ULTRIX commands
(Appendix A)

• The differences between specific Tru64 UNIX and ULTRIX header files
and routines (Appendix B)

• The differences between specific Tru64 UNIX and ULTRIX system calls
(Appendix C)

• The differences between ULTRIX and Tru64 UNIX system terminal
modem control (Appendix D)

• The differences between the Motif and XUI graphical user interfaces
(GUIs) (Appendix E)

• The DECwindows Motif component names (Appendix F)

• Migration issues between ULTRIX Version 4.5 and Tru64 UNIX Version
4.0 (Appendix G)

A
Differences Between Tru64 UNIX and

ULTRIX Commands

This appendix describes the differences between Tru64 UNIX commands
and ULTRIX commands. In some cases, the difference is that an ULTRIX
command does not exist on a Tru64 UNIX system. Other differences are
caused by the options provided for a command being different or by some
difference in the arguments to a command. For example, the Tru64 UNIX
command might expect a different name for a particular argument than the
ULTRIX command. Some commands operate differently on Tru64 UNIX
systems than they do on ULTRIX systems.

To use the table in this appendix, look for the name of an ULTRIX command
in the left-hand column of the table. Read the second column of the table
to determine what difference exists between the Tru64 UNIX and ULTRIX
commands. Read the right-hand column to determine how to get the effect of
the ULTRIX command on a Tru64 UNIX system.

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

2780d Not supported. No Tru64 UNIX equivalent.

2780e Not supported. No Tru64 UNIX equivalent.

3780d Not supported. No Tru64 UNIX equivalent.

adb Not supported. Use the dbx debugger.

addnode Not supported. Supported in the DECnet/OSI
for Tru64 UNIX product.

ansi_ps Not supported. No Tru64 UNIX equivalent.

arff Not supported. No Tru64 UNIX equivalent.

audgen Not supported. Auditing not supported.

auditd Not supported. Auditing not supported.

auditmask Not supported. Auditing not supported.

audit_tool Not supported. Auditing not supported.

backup Not supported. No Tru64 UNIX equivalent.

bad144 Not supported. No Tru64 UNIX equivalent.

Differences Between Tru64 UNIX and ULTRIX Commands A–1

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

biod Not supported. Use the nfsiod command.

bootparamd Not supported. No Tru64 UNIX equivalent.

catman The catman command
automatically processes source
reference pages by using tbl,
neqn, and nroff −Tlp −h. It
does not process through col.
The catman command formats
reference pages for the generic
man/catman device −Tlp,
which defaults to formatting for
VT100 terminals rather than for
the Teletype Model 37 terminal,
which is not supported.

Do not preprocess sources
through tbl or neqn
before placing them in
/usr/share/man/...
directories. Postprocessing
with col can be necessary for
non-Compaq devices.

Reference pages are formatted
for online viewing rather
than for printing, and are
not paginated. These online
formatted reference pages do
not print correctly on hardcopy
printers. No support is provided
for non-Compaq devices except
for generic dumb printers.

To create paginated reference
pages, process the source
reference pages using the
−man.page macro package. See
man(1) for instructions on how
to format for printing.

catpw Not supported. Use the printpw command.

ccat Not supported. No Tru64 UNIX equivalent.

ccr Not supported. No Tru64 UNIX equivalent.

chpt Not supported. Use the disklabel command.

col The −h option outputs tabs
instead of spaces.

Use the −x option to output
spaces.

compact Not supported. Use the compress command.

cpio No −k option. No Tru64 UNIX equivalent.

The -C option specifies a
record size for input and
output instead of providing a
compatibility mode.

No Tru64 UNIX equivalent.

crash Not supported. Use the kdbx command.

crontab When both day of week and
day of month arguments are
specified, the command is
executed when both match.

The command is executed
when either of these specified
arguments match.

A–2 Differences Between Tru64 UNIX and ULTRIX Commands

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

csh No hashstat built-in
command.

No Tru64 UNIX equivalent.

No CSHEDIT environment
variable.

Use the editmode variable.

ctrace Not supported. Use the dbx debugger.

dms Not supported. No Tru64 UNIX equivalent.

drtest Not supported. No Tru64 UNIX equivalent.

dupterm Not supported. No Tru64 UNIX equivalent.

edauth Not supported. Auditing not supported.

elcsd Not supported. Use the syslogd daemon.

eli Not supported. No Tru64 UNIX equivalent.

enroll Not supported. Secret mail not supported.

ex The ULTRIX ex editor uses
the termcap database.

The Tru64 UNIX ex editor uses
the terminfo database.

ext_srvtab Not supported. Kerberos not supported.

eyacc Not supported. Use the yacc command.

flcopy Not supported. No Tru64 UNIX equivalent.

format Not supported. No Tru64 UNIX equivalent.

from No -f option. Use the mailx −f −H
mailbox command.

fsirand Not supported. No Tru64 UNIX equivalent.

gencat Message catalog limits
increased.

No usage difference.

genra Not supported. Use the gendisk command.

gcore Not supported. No Tru64 UNIX equivalent.

getauth Not supported. Auditing not supported.

hesupd Not supported. No Tru64 UNIX equivalent.

iconv Does not accept user-defined
conversion tables as input.

Use iconv to convert only
between pc850 (IBM personal
computer code) and ISO 8859-1
(Latin/1) character sets.

ifconfig No copyall and -copyall
parameters.

No Tru64 UNIX equivalents.

No dstaddr parameter. Use the dest_address
parameter.

Differences Between Tru64 UNIX and ULTRIX Commands A–3

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

install Derived from System V Version
3 install program.

For an installation program
that has the BSD install
program behavior, use the
installbsd command.

ipcs No -C option. No Tru64 UNIX equivalent.

No -N option. No Tru64 UNIX equivalent.

kdb_destroy Not supported. Kerberos not supported.

kdb_edit Not supported. Kerberos not supported.

kdb_init Not supported. Kerberos not supported.

kdb_util Not supported. Kerberos not supported.

kdestroy Not supported. Kerberos not supported.

kgconv Not supported. Kerberos not supported.

kinit Not supported. Kerberos not supported.

klist Not supported. Kerberos not supported.

kprop Not supported. Kerberos not supported.

kpropd Not supported. Kerberos not supported.

kstash Not supported. Kerberos not supported.

lb_admin Not supported. No Tru64 UNIX equivalent.

lcp Not supported. Use the latcp command.

ld The -l option links with shared
libraries by default.

Use the -non_shared option
to link with static libraries.

lk Not supported. Use the ld command.

llbd Not supported. No Tru64 UNIX equivalent.

load Not supported. No Tru64 UNIX equivalent.

login No -C, -e, or -P options. No Tru64 UNIX equivalents.

No -r option. The Tru64 UNIX system
automatically initializes the
rlogin protocol in the rlogind
daemon prior to executing the
login utility.

lpr No -z option. No Tru64 UNIX equivalent.

No Ddatatype option. No Tru64 UNIX equivalent.

A–4 Differences Between Tru64 UNIX and ULTRIX Commands

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

Translating ASCII, ReGIS,
or TEKTRONIX data into
PostScript data is not supported.
Displaying messages from a
PostScript printer is not
supported.

Embed PostScript commands
in the PostScript file to allow
data translation or to display
messages from a printer.

lpx Not supported. No Tru64 UNIX equivalent.

ls The −l option displays the
group by default.

Use the −o option in place of the
ULTRIX −l option. Use the −l
option in place of the ULTRIX
−lg option combination.

mail If the /usr/ucb directory
was searched before the
/bin directory, you used the
/usr/ucb/mail program.

Use the mailx command to
use a similar program.

If the /bin directory was
searched before the /usr/ucb
directory, you used the
/usr/bin/mail program.

Use the binmail command to
use a similar program.

MAKEHOSTS Not supported. No Tru64 UNIX equivalent.

man Does not reformat a reference
page every time standard out is
redirected to a pipe or file.

Reformat the reference page
manually. See man(1).

Reference pages are displayed
by more −svf instead of
page −s.

Use more −svf or page −svf
when viewing formatted
reference pages directly.

Does not recognize the sections
local, new, old, or public.

Specify sections l, n, o, and p.

Multicharacter subsection
names are no longer hard coded.

See the catman command.

mdtar Not supported. Use the tar command.

miscd Not supported. Use the inetd daemon in
place of miscd.

mkconsole Not supported. No Tru64 UNIX equivalent.

mkfs Not supported. Use the newfs command.

mktemp Not supported. No Tru64 UNIX equivalent.

mop_mom Not supported. Supported in the DECnet/OSI
for Tru64 UNIX product.

Differences Between Tru64 UNIX and ULTRIX Commands A–5

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

more Does not pass Escape sequences
by default.

Specify the −v option.

The default number of lines
displayed is k−1 instead of k−2.

Use the −n option to override
the default.

Does not allow hyphens in the
MORE environment variable.

Remove all hyphens and spaces
from the MORE environment
variable.

See the ex command.

mountd By default, the Tru64 UNIX
command requires you to
be superuser.

Specify the -n option when you
are not the superuser.

nawk Not supported. Use the gawk command.

netx Not supported. No Tru64 UNIX equivalent.

nfssetlock Not supported. No Tru64 UNIX equivalent.

nrglbd Not supported. No Tru64 UNIX equivalent.

nroff Instead of the Teletype Model
37 terminal, the default output
device for nroff is a generic
dumb printer with no reverse
line capabilities.

No Tru64 UNIX support for the
Teletype Model 37 terminal.

Converts bold font data
to char<BS> same_char
sequences if the device does
not have a bold font. This
overstriking is invisible except
on line printers.

Pipe the output through the
ul(1) command if bold text is
not visible, and use more −svf
to view the result.

RISC ULTRIX nroff drivers
are not compatible.

Convert RISC ULTRIX nroff
drivers to C code and recompile
them. See term(4).

ntalkd Not supported. Use the talkd daemon for
remote use of the talk
command.

ntpd Not supported. Use the xntpd daemon.

opser Not supported. No Tru64 UNIX equivalent.

otalk Not supported. No Tru64 UNIX equivalent.

page The default number of lines
displayed is k instead of k−1.

Use the −n option to override
the default.

passwd No -a option. No Tru64 UNIX equivalent.

A–6 Differences Between Tru64 UNIX and ULTRIX Commands

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

pc Not supported. No Tru64 UNIX equivalent.
However, you can purchase a
Pascal compiler separately from
the Tru64 UNIX system.

pdx Not supported. Use the dbx debugger.

pg See ex.

ping The -l option causes ping
to send a specified number of
packets, rather than causing
ping to display long output.

Use the ping command
without the -q option to
receive long output.

pixie The −dwops, −idtrace,
−itrace, −dtrace, and
−idtrace_file, options are
not supported.

No Tru64 UNIX equivalents.

plot Not supported. No Tru64 UNIX equivalent.

pmerge Not supported. No Tru64 UNIX equivalent.

print Not supported. Use the lpr command.

prmail Not supported. Use the binmail −p command.

pstat Not supported. No Tru64 UNIX equivalent.

pxp Not supported. No Tru64 UNIX equivalent.

pxref Not supported. No Tru64 UNIX equivalent.

pxtar Not supported. Use the tar command.

rc Not supported. The rc2 and rc3 commands
are run to bring the system
to multiuser mode. These
commands are invoked by the
inittab procedure.

rc.local Not supported. The rc2 and rc3 commands
are run to bring the system
to multiuser mode. These
commands are invoked by the
inittab procedure.

regis_ps Not supported. No Tru64 UNIX equivalent.

remnode Not supported. Supported in the DECnet/OSI
for Tru64 UNIX product.

rmauth Not supported. Auditing not supported.

routed No Simple Network
Management Protocol
(SNMP) support.

Use the gated routing daemon.

Differences Between Tru64 UNIX and ULTRIX Commands A–7

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

rsh5 Not supported. Use the Rsh shell.

No -n option. No Tru64 UNIX equivalent.

No -d option. No Tru64 UNIX equivalent.

No -r option reverses the sort
order of the display, rather
than displaying only hosts
that are running.

rwho No -h option. No Tru64 UNIX equivalent.

rxformat Not supported. No Tru64 UNIX equivalent.

rzdisk Not supported. Use the scu program.

s5make Not supported. Use the make command.

scamp Not supported. No Tru64 UNIX equivalent.

secsetup Not supported. No Tru64 UNIX equivalent.

setauth Not supported. Auditing not supported.

sh The sh command is like the
ULTRIX sh5 command, not the
ULTRIX sh command.

No Tru64 UNIX equivalent
for ULTRIX sh.

No -n option for the echo
command. The echo command
interprets escape sequences,
such as \c, \n, or \t.

To suppress the newline
character, specify \c at the
end of a string argument to
the echo command instead
of the -n option. To make
echo display the characters in
the escape sequence, enclose
arguments to echo in quotation
marks and specify extra
backslashes. For example, to
cause echo to display \c, enter
\\\c as an argument.

No set - command. No Tru64 UNIX equivalent.

A–8 Differences Between Tru64 UNIX and ULTRIX Commands

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

sh5 Not supported. Use the sh shell.
Additionally, the UNIX sh
command determines whether
the argument to the built-in cd
command is a subdirectory of
any of the directories specified
in the CDPATH environment
variable. The shell changes
your current directory to the
first subdirectory that matches
the argument.

shexp Not supported. No Tru64 UNIX equivalent.

snapcopy Not supported. No Tru64 UNIX equivalent.

sort5 Not supported. Use the sort command.

spline Not supported. No Tru64 UNIX equivalent.

startcpu Not supported. No Tru64 UNIX equivalent.

stcode Not supported. No Tru64 UNIX equivalent.

sticky Not supported. No Tru64 UNIX equivalent.

stopcpu Not supported. No Tru64 UNIX equivalent.

su To become superuser, a user
must be a member of the system
group (GID 0) if GID 0 exists.

Delete the group with GID
0 from the group access list
or add user names for all
users that should have root
access to the group. The group
access list is stored in the
/etc/group database.

symorder Not supported. No Tru64 UNIX equivalent.

syscript Not supported. No Tru64 UNIX equivalent.

tapex No -N option. No N-buffered I/O support.

tar The ULTRIX header format
for multivolume tapes is
unsupported.

Use the −U option.

No −d, −D, −H, −M, −N, −O,
−R, or −V option.

No Tru64 UNIX equivalents.

The −s option tells tar to
strip off leading slashes from
pathnames instead of specifying
the number of 512-byte blocks.

Use the −S option to specify the
number of 512-byte blocks.

tek4014_ps Not supported. No Tru64 UNIX equivalent.

Differences Between Tru64 UNIX and ULTRIX Commands A–9

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

test The -f option determines
whether a file exists and
is a regular file.

Use other options to emulate
the ULTRIX test command as
described in Section 3.2.1.

timed No -E option. No Tru64 UNIX equivalent.

trace Not supported. Use the dbx debugger.

trigger Not supported. No Tru64 UNIX equivalent.

uac Not supported. No Tru64 UNIX equivalent.

uerf No -A option. No Tru64 UNIX equivalent.

Not all type codes for the -O
and -r options are available.

See uerf(8) for a list of
supported type codes.

ul The ULTRIX ex editor uses
the termcap database.

The Tru64 UNIX ex editor uses
the terminfo database.

uncompact Not supported. Use the compress command
to compress files and the
uncompress command to
expand the files.

uuclean Not supported. Use the Tru64 UNIX
uucleanup command.

uucompact Not supported. No Tru64 UNIX equivalent.

uucp Significant differences. For information about using the
Tru64 UNIX uucp command,
see uucp(1).

uuid_gen Not supported. No Tru64 UNIX equivalent.

uulog No -uuser option. Use the Tru64 UNIX uustat
-uuser command.

uumkspool Not supported. No Tru64 UNIX equivalent.

uupoll Not supported. Use the Tru64 UNIX uutry
command.

uurespool Not supported. No Tru64 UNIX equivalent.

uusub Not supported. No Tru64 UNIX equivalent.

vc Not supported. No Tru64 UNIX equivalent.

vcc Not supported. Use the cc command.

vi The ULTRIX ex editor uses
the termcap database.

The UNIX ex editor uses the
terminfo database.

wait Not supported. Use the /bin/sh built-in
wait command.

A–10 Differences Between Tru64 UNIX and ULTRIX Commands

ULTRIX
Command

Differences on a Tru64
UNIX System

Use this Instead

xget Not supported. Secret mail not supported.

xlator_call Not supported. No Tru64 UNIX equivalent.

xsend Not supported. Secret mail not supported.

zic Not supported. No Tru64 UNIX equivalent.

Differences Between Tru64 UNIX and ULTRIX Commands A–11

B
Differences in ULTRIX and Tru64 UNIX

Header Files and Library Routines

A number of system header files are different between the Tru64 UNIX and
ULTRIX systems. In some cases, an ULTRIX header file is unavailable on
Tru64 UNIX systems. Some differences between Tru64 UNIX and ULTRIX
header files are in the definitions of constants. Some constants that are
defined on ULTRIX systems are undefined on Tru64 UNIX systems; other
constants have different values on Tru64 UNIX and ULTRIX systems. Other
differences are in the definitions of functions. Some ULTRIX functions are
not defined on Tru64 UNIX systems; others have different parameters or
return values. These differences might affect the binary or source portability
of your application.

The header files for the system are so numerous that it is difficult to compile
a complete list. The following sections describe known differences in
/usr/include that may cause problems when porting binary or source code
and describes the effects the differences have on program portability.

B.1 Changes in the acct.h File

The /usr/include/sys/acct.h header file defines data types and
structures for use by programs that perform accounting. The following
definitions are different between ULTRIX and Tru64 UNIX systems:

Definition Type on ULTRIX Type on Tru64 UNIX

ac_uid short uid_t (4 bytes)

ac_gid short gid_t (4 bytes)

ac_tty short dev_t (4 bytes)

B.2 Changes in the disktab.h File

The disktab.h header file defines structures, symbols, and routines that
work with disk geometries and disk partition characteristics. On Tru64
UNIX systems, the file omits the following definition:

struct disktab *creatediskbyname();

Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines B–1

The Tru64 UNIX system does not provide the creatediskbyname routine.
You must remove references to that routine from your application.

B.3 Changes in the dli_var.h File
The dli_var.h header file defines constants and structures used
by Data Link Interface (DLI) applications. The file is named
/usr/include/dli/dli_var.h on Tru64 UNIX systems. In addition,
the sockaddr_dl structure contains the following new field, beginning
in the first byte:

u_char dli_len;

B.4 Changes in the errno.h File
The errno.h header file defines constants that system calls store in the
global errno variable when an error occurs.

The following definitions are not available and will have an impact on your
ability to port source code:

• EACTIVE

• EALIGN

• ENOACTIVE

• ENORESOURCES

• ENOSYSTEM

• ENODUST

• EDUPNOCONN

• EDUMPNODISCONN

• EDUPNOTCNTD

• EDUPNOTIDLE

• EDUPNOTWAIT

• EDUPNOTRUN

• EDUPBADOPCODE

• EDUPINTRANSIT

• EDUPTOOMANYCPUS

Most of these definitions are used with DIGITAL Storage Architecture (DSA)
mass storage controllers, such as the CI bus and HSC controller, which are
not supported by the Tru64 UNIX system.

See intro(2) for a list of Tru64 UNIX errno definitions.

B–2 Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines

B.5 Changes in the fcntl.h File

The /usr/include/fcntl.h file on ULTRIX systems includes the
/usr/include/sys/file.h file. On Tru64 UNIX systems, the
included file is named /usr/include/sys/fcntl.h, and it contains a
different set of definitions. If your application needs the definitions in
/usr/include/sys/file.h, you must include that file explicitly.

B.6 Changes in the fstab.h File

The fstab.h header file defines information about the known file system.
On Tru64 UNIX systems, the file omits the following definition:

struct fstab *getfstype();

In addition, the last two members of the fstab structure have been renamed
from fsname to fs_vfstype and from fs_opts to fs_mntops.

B.7 Changes in the in.h File

The /usr/include/netinet/in.h file defines constants and structures
defined by the internet system. On Tru64 UNIX systems, the file has
changed the definition of the in_addr structure.

On ULTRIX systems:

struct in_addr {
union {

struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
struct { u_short s_w1,s_w2; } S_un_w;
u_long S_addr;

} S_un;
};

On Tru64 UNIX systems:

struct in_addr {
u_int s_addr;

};

B.8 Changes in the ioctl.h and ioctl_compat.h Files

The ioctl.h and the ioctl_compat.h header files define requests and
structures that you use with the ioctl system call.

The following definitions are not available and will have an impact on your
ability to port source code:

• TIOCCAR

• TIOCNAR

Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines B–3

• TIOCWONLINE

Tru64 UNIX systems use POSIX library routines to provide greater
application portability. See Appendix D for examples of ULTRIX and Tru64
UNIX modem control applications.

B.9 Changes in the langinfo.h File

The langinfo.h header file defines constants that you use to get
internationalization information with the nl_langinfo routine. Two of the
constants that you could use as arguments to the ULTRIX nl_langinfo
routine are not defined in the Tru64 UNIX langinfo.h file. The EXPL_STR
constant, which on the ULTRIX system returns a lowercase letter that you
can use for an exponent character, is not defined on Tru64 UNIX systems.
The EXPU_STR constant, which on ULTRIX returns an uppercase character
that you can use for an exponent character, is also not defined on Tru64
UNIX systems.

The ic compiler ignores these constants if you use them.

B.10 Changes in the limits.h File

On Tru64 UNIX systems, the limits.h file defines certain system limits,
such as the maximum number of bytes that you can use to specify a
pathname or the maximum message set number that you can use in an
internationalization message catalog. Some limits have changed between
ULTRIX and Tru64 UNIX systems. Table B–1 describes the differences.

Table B–1: Differences in System Limits
Macro Name Description ULTRIX Limit Tru64 UNIX Limit

LONG_BIT Maximum number of bits
in a type

32 64

LONG_MAX Maximum value of a
long type

2,147,483,647 9,223,372,036,854,775,807

LONG_MIN Minimum value of a
long type

−2,147,483,648 −9,223,372,036,854,775,808

MB_LEN_MAX Maximum number of bytes
in a multibyte character

1 2

NL_LANGMAX Maximum length, in bytes,
of a string that can be stored
in the LANG environment
variable

32 14

NL_LBLMAX Maximum number of labels
that can be specified in
an internationalization
message catalog

32,767 Undefined

B–4 Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines

Table B–1: Differences in System Limits (cont.)

Macro Name Description ULTRIX Limit Tru64 UNIX Limit

NL_MSGMAX Maximum number that can
be assigned to a message
in an internationalization
message catalog

32,767 65,535

NL_NMAX Maximum n-to-1 bytes in
mapping character

2 10

NL_SETMAX Maximum message set
number that can be used
in an internationalization
message catalog

255 65,535

NL_TEXTMAX Maximum number of bytes
that can be in a single
program message specified
in an internationalization
message catalog

2048 4096

ULONG_MAX Maximum value of an
unsigned long type

4,294,967,295 18,446,744,073,709,551,615

B.11 Changes in the math.h File

The math.h header file declares the functions in the math library, as well
as various functions in the C library that return floating-point values. The
Tru64 UNIX math.h file omits the declaration of the atof routine. This
routine is declared in the stdlib.h file on the Tru64 UNIX system.

If you use the atof routine on a Tru64 UNIX system, be sure your source
file includes the stdlib.h file.

B.12 Changes in the resource.h File

The resource.h file defines a structure named rusage. This structure has
fewer fields on a Tru64 UNIX system than it does on an ULTRIX system.
The definition on the ULTRIX system contains a field for the integral shared
text size. The Tru64 UNIX definition omits this field.

You must modify your application if it depends upon the ULTRIX definition
of the rusage structure.

On Tru64 UNIX systems, the two members of the rlimit structure,
rlim_cur and rlim_max are defined as unsigned long instead of as int
on ULTRIX systems. You must modify your application if it depends on this
structure. Otherwise, the getrlimit and setrlimit calls will fail because
of a register sign extension.

Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines B–5

B.13 Changes in the stddef.h File

On ULTRIX systems, the wchar_t variable that is defined in stddef.h is
declared to be an unsigned integer (32 bits). On Tru64 UNIX systems, the
variable is declared to be an unsigned short integer (16 bits).

On ULTRIX systems, the size_t variable that is defined in stddef.h is
declared to be an unsigned integer (32 bits). On Tru64 UNIX systems, the
variable is declared to be an unsigned long integer (64 bits).

B.14 Changes in the stdio.h File

The stdlib.h header file defines constants and functions I/O services. The
following constant values have been changed in the Tru64 UNIX stdio.h
file:

Constant ULTRIX Value Tru64 UNIX Value

BUFSIZ 1024 8192

FILENAME_MAX 1024 255

TMP_MAX 17,576 16,384

B.15 Changes in the stdlib.h File

The stdlib.h header file defines constants and functions for ANSI
compatibility. Two constants are defined to a different value on Tru64 UNIX
and ULTRIX systems. On Tru64 UNIX systems, the RAND_MAX value
is defined as 2,147483,647. On ULTRIX systems, this constant is defined
to be 32,767. On Tru64 UNIX systems, MB_CUR_MAX is defined as the
function _ _getmbcurmax(). This function returns the maximum number
of bytes allowed in a multibyte character in the current locale. That number
is 1 for all the Tru64 UNIX locales. On ULTRIX systems, MB_CUR_MAX
is defined as 4.

B.16 Changes in the syslog.h File

The syslog.h header file defines constants that are used in the system log.
This header file also defines the routines that control the system log. The
definition for the openlog routine is different on Tru64 UNIX systems. On a
Tru64 UNIX system, the definition is as follows:

int openlog (const char *, int, int);

This definition adds an extra parameter to the openlog call. For information
about using the Tru64 UNIX openlog call, see openlog(3).

B–6 Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines

B.17 Changes in the termio.h and termios.h Files

The termio.h and termios.h header files define structures and flags used
to control terminals. The definition of the structures termio and termios
differs between Tru64 UNIX and ULTRIX systems. For termios, the Tru64
UNIX system defines additional members to control input and output speeds
and does not contain the ULTRIX c_line member for defining the line
discipline. ULTRIX systems define line speed in the low-order 4 bits of the
c_cflag member.

A number of flags that have been defined for both termios.h and termio.h
are common between ULTRIX and Tru64 UNIX systems; however, their
actual definitions can be different across systems. Additionally, several of
the definitions in /usr/include/termio.h on the ULTRIX system are
located in the Tru64 UNIX /usr/include/termios.h file. This change
should be transparent because the ULTRIX termios.h file includes
termio.h for these definitions.

ULTRIX and Tru64 UNIX systems have different implementations of some
of the processing options that are extensions to the POSIX and X/Open
standards, as shown in the following table:

termios Member ULTRIX Name Tru64 UNIX Name

Special control characters defined
by the array c_cc

None VSTATUS

Bit fields defined by c_iflag for basic
terminal input control

None
PPENDIN
TCBREAK

IMAXBEL
None
None

Bit fields defined by c_oflag for
system treatment of output

None
None
PTILDE
PFLUSHO
PLITOUT
PNL2

OXTABS
ONOEOT
None
None
None
None

Bit fields defined by c_lflag for control
of various terminal functions

None
None
None
None
None
None
None
None
PRAW
PPRTERA
PCRTBS
PCRTERA
PCRTKIL

ECHOKE
ECHOPRT
ALTWERASE
MDMBUF
FLUSHO
NOHANG
PENDIN
NOKERNINFO
None
None
None
None
None

Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines B–7

B.18 Nonexistent Header Files

Several header files that are part of the ULTRIX system are not included in
the Tru64 UNIX system. Table B–2 lists these files and describes the effects
of removing references to them from your source code.

Table B–2: ULTRIX Header Files Not Present on Tru64 UNIX Systems
Header File Description

ansi_compat.h Defines ANSI-style predefined macros. On Tru64 UNIX
systems, these definitions are provided either by the
C preprocessor or the standards.h file. Removing
references to this file has no effect.

auth.h Defines symbols for the authorization library routines,
which are unavailable on Tru64 UNIX systems. You must
also remove references to the getauthuid, endauthent,
storeauthent, and setauthfile routines.

cat.h Contains no definitions on an ULTRIX system. Removing
the #include directive for this file has no effect.

cursesX.h Defines symbols used by the curses terminal-handling
routines. Replaced by the curses.h file; change
references accordingly.

des.h
krb.h

These files define symbols used by the Kerberos
library routines, which are unavailable on Tru64
UNIX systems. You must remove references to these
files and to any Kerberos routines.

dial.h Contains definitions used by the dial() and
undial() routines.

elcsd.h
elwindow.h

These files define symbols used by the ULTRIX error
logger routines. They are not used by user applications.

execargs.h Contains no definitions on an ULTRIX system. Removing
the #include directive for this file has no effect.

fpi.h Contains definitions used by the floating-point
mathematical routines.

hesiod.h Defines symbols for the Hesiod name service, which is
unavailable on Tru64 UNIX systems. You must remove
references to this file and to the hes_init, hes_to_bind,
hes_error, and hes_resolve routines.

ieeefp.h Contains definitions for handling Not_a_Numbers
(NaN). For standards conformance, these definitions
are now in the /usr/include/math.h and
/usr/include/nan.hm files.

B–8 Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines

Table B–2: ULTRIX Header Files Not Present on Tru64 UNIX Systems (cont.)

Header File Description

i_errno.h Defines internationalization error numbers. Not
typically used by user applications. If your application
uses these definitions, create your own file of
definitions and include that file.

nlm_prot.h Contains definitions used by the ONC lock
manager daemon. This header file is not needed
by user applications.

prof.h Contains no definitions on an ULTRIX system. Removing
the #include directive for this file has no effect.

resscan.h Defines symbols used by the ULTRIX Hesiod routines.
This file is not used by user applications.

stand.h Contains definitions for the ULTRIX standalone system.
This header file is not needed on Tru64 UNIX systems.

sysmips.h Defines MIPS specific system calls. All system calls are
defined in the /usr/include/syscall.h file.

ttyio.h Contains terminal (tty) common structures and
definitions. Use the /usr/include/ioctl.h file.

Differences in ULTRIX and Tru64 UNIX Header Files and Library Routines B–9

C
Differences Between Tru64 UNIX and

ULTRIX System Calls

This appendix describes the differences between Tru64 UNIX system calls
and ULTRIX system calls.

To use the table in this appendix, look for the name of an ULTRIX system
call in the left-hand column of the table. Read the second column of the table
to determine what difference exists between the Tru64 UNIX and ULTRIX
system call. Read the right-hand column to determine how to get the effect
of the ULTRIX system call on a Tru64 UNIX system.

ULTRIX
System Call

Difference from ULTRIX Systems Using on Tru64 UNIX Systems

getrusage The structure returned in the
rusage parameter is different on
Tru64 UNIX systems from the
structure returned on ULTRIX
systems. The ULTRIX structure
contains a field (ru_ismrss)
that the Tru64 UNIX structure
does not contain.

Modify your application to use
the Tru64 UNIX structure,
rather than the ULTRIX
structure. (The structure is
defined in the resource.h file.)

open The O_FSYNC flag is not
supported.

Use the O_SYNC flag.

shmctl The SHM_LOCK and
SHM_UNLOCK commands
are not supported.

Use the F_GETLCK and
F_SETLCK requests to the
fcntl call. See fcntl(2)
for more information about
these requests.

setsockopt The optval and optlen
parameters are not optional; that
is, they cannot be specified
as zero (0).

Pass the appropriate parameters
for optval and optlen.

startcpu Not on Tru64 UNIX systems. No equivalent use.

stopcpu Not on Tru64 UNIX systems. No equivalent use.

vfork Makes a copy of the parent’s
address space when the child
process attempts to write to it.

Investigate using DECthreads
software. (See the Guide
to DECthreads.)

Differences Between Tru64 UNIX and ULTRIX System Calls C–1

D
Differences Between Tru64 UNIX and

ULTRIX Terminal Modem Control

This appendix contains three sample programs showing terminal (tty)
modem control: an ULTRIX program showing an outgoing phone call,
a Tru64 UNIX program showing an outgoing phone call, and a Tru64
UNIX program showing an incoming phone call. The ULTRIX system
uses TIOCCAR, TIOCNAR, and TIOCWONLINE requests to the ioctl()
system call. These requests are not supported on a Tru64 UNIX system.
See Section 7.8 for more information.

Example D–1 demonstrates how an ULTRIX application interacts with a
modem for outgoing calls. Error checking of the return values of the system
calls is purposely omitted to simplify the example.

Example D–1: Modem Control for Outgoing Calls (ULTRIX)

fd = open(dcname, O_RDWR|O_NDELAY); 1
ioctl(fd, TIOCMODEM, &temp); 2
ioctl(fd, TIOCNCAR); 3
...

/*
* Dial the phone number and negotiate with auto calling unit.
*/
...

ioctl(fd, TIOCCAR); 4
alarm(40);
ioctl(fd, TIOCWONLINE); 5
alarm(0);

1 Opens the line and does not wait for carrier.

2 Monitors the modem signals.

3 Allows read and write calls to succeed regardless of whether carrier
is present.

4 Allows read and write calls to succeed only if carrier is present.

5 Waits for carrier.

Differences Between Tru64 UNIX and ULTRIX Terminal Modem Control D–1

Example D–2 demonstrates how a Tru64 UNIX application interacts with a
modem for outgoing calls. Error checking of the return values of the system
calls is purposely omitted to simplify the example.

Example D–2: Modem Control for Outgoing Calls (Tru64 UNIX)

int fd, flags;
struct termios tty_termios; 1
fd = open(ttyname,O_RDWR | O_NONBLOCK); 2
tcgetattr(fd,&tty_termios); 3
if ((tty_termios.c_cflag & CLOCAL) == 0) {
tty_termios.c_cflag |= CLOCAL; 4
tcsetattr(fd,TCSANOW,&tty_termios);
}
flags = fcntl(fd, F_GETFL)

fcntl(fd, F_SETFL, flags & ~O_NONBLOCK) 5
...

/*
* dial phone number and negotiate with modem.
*/
...

tty_termios.c_cflag &= ~CLOCAL; 6
tcsetattr(fd,&tty_termios); 7
alarm(40); 8
read(fd,buffer,count); 9
alarm(0); 10

1 Contains information about the serial line that can be inspected and
altered using the POSIX tcgetattr() and tcsetattr() library
routines.

2 Opens the terminal line. The CLOCAL flag is usually set by default,
allowing you to ignore modem status lines. Use O_NONBLOCK in
case CLOCAL is not set.

3 Gets current line attributes.

4 Sets CLOCAL, if it is not set. The line must be in local mode in order to
talk to the modem.

5 Turns off O_NONBLOCK; in local mode the application does not need it.

6 Puts the line into modem mode by turning off CLOCAL. The next I/O
operation to the line will block until carrier is present.

7 Watches for modem signals.

D–2 Differences Between Tru64 UNIX and ULTRIX Terminal Modem Control

8 Sets a timer so the application does not wait forever.

9 This read() call blocks, pending the appearance of modem signals.

10 Turns off timer; the connection with the remote system has been
established.

Example D–3 demonstrates how a Tru64 UNIX application interacts with a
modem for incoming calls. Error checking of the return values of the system
calls is purposely omitted to simplify the example.

Example D–3: Modem Control for Incoming Calls (Tru64 UNIX)

int fd;
int lined;
struct termios tty_termios; 1
fd = open(ttyname,O_RDWR | O_NONBLOCK); 2
flags = fcntl(fd, F_GETFL)

fcntl(fd, F_SETFL, flags & ~O_NONBLOCK) 3
setsid(); 4
ioctl(0, TIOCSCTTY, 0); 5
lined = 0;
ioctl(0, TIOCSETD, &lined); 6
tcgetattr(fd,&tty_termios); 7
tty_termios.c_cflag &= ~CLOCAL; 8
tty_termios.c_cflag &= ~CBAUD;
tty_termios.c_cflag |= B2400; 9
tcsetattr(fd,TCSANOW,&tty_termios); 10
for (;;) {
write(fd,"\r\nlogin: ",9); 11
read(fd,buffer,count); 12
if (valid_login_name(buffer))
execl("/usr/bin/login",buffer); 13
}

1 Contains information about the serial line that can be inspected and
altered using the POSIX tcgetattr() and tcsetattr() library
routines.

2 Opens the terminal line. The CLOCAL flag is usually set by default,
allowing you to ignore modem status lines. Use O_NONBLOCK in
case CLOCAL is not set.

3 Turns off O_NONBLOCK; you do not need it.

4 Creates a new session, becomes session leader for new session, and
becomes process leader for new process group.

5 Sets the controlling terminal.

6 Sets the line discipline to 0 (POSIX).

Differences Between Tru64 UNIX and ULTRIX Terminal Modem Control D–3

7 Gets current line attributes.

8 Turns off CLOCAL for a modem.

9 Clears baud rate bits and sets them to 2400.

10 Sets the line attributes.

11 This write call, containing the login message, blocks until someone dials
in on the modem and all the signals are present.

12 Gets the user’s login name.

13 Executes the login program, if the login name is valid.

D–4 Differences Between Tru64 UNIX and ULTRIX Terminal Modem Control

E
Summary of XUI and Motif Differences

This appendix summarizes the differences between the XUI and Motif
interfaces in the following areas:

• Terminology

• Windows and window managers

• Menus and menu items

• Mouse button bindings

• Standard message boxes

• Keyboard behavior
Appendix F contains a list of widget naming differences.

E.1 Terminology

Table E–1 lists terminology differences between the XUI and Motif
interfaces.

Table E–1: Terminology Differences Between XUI and Motif Interfaces
XUI Interface Motif Interface

Dialog box, modal Dialog box, primary application
modal, application modal, or
system modal

Direct manipulation interface Graphical user interface

End box (in a dialog box) Command line (in a dialog box)

Exit (menu item) Exit (menu item). Unlike XUI
Exit, you are prompted for whether
you want to save the file

Ghost No equivalent

Hierarchical dialog boxes Secondary windows
XUI does not talk about secondary
windows, and OSF does not talk
about hierarchical dialog boxes

Icons Icons or minimized windows

Maximum sliders, minimum sliders Sliders (no distinction)

Summary of XUI and Motif Differences E–1

Table E–1: Terminology Differences Between XUI and Motif Interfaces
(cont.)

XUI Interface Motif Interface

No equivalent Maximize

No equivalent Stepper buttons

No equivalent Sash (window sash)

Option box Option menu

Pointer speed Gain

Push to back Lower

Quit (menu item) Exit (menu item). You are prompted
for whether you want to save the file

Radio icons No equivalent

Scales, scroll bars, sliders Valuators (includes scales, scroll
bars, and sliders)

Shrink to icon Minimize

Stepping arrows Stepper arrows

Submenu Cascading menu

Terminal Screen Workspace

Text Entry Field Entry box

Text insertion character Insertion cursor

Toggle button Check button

Work area Client area

E.2 Windows and Window Managers

Table E–2 lists differences between XUI and Motif windows and window
managers.

E–2 Summary of XUI and Motif Differences

Table E–2: Differences Between XUI and Motif Windows and Window
Managers
XUI Interface Motif Interface

Does not have a root menu. Has a root menu (a menu that pops
up in the root window when you
press the Select button in a blank
area of the root window).

Shrink-to-icon button is in upper left. Shrink-to-icon (minimize) button
is the left-hand button of the two
buttons in the upper right.

Does not have a window menu. Has a window menu (a menu that
pops up in the window when you
press the Menu button).

Has a resize button in the far right. Has a resize border and resize handles.

The default window manager has
an icon box.

The window manager has an icon box, but
by default does not display an icon box.

The text label in the title bar is
left-justified.

The text label in the title bar is centered.

Only has explicit focus policy. Has both explicit (pointer) focus
and implicit focus.

Has a push-to-back button. Has a lower menu item.

E.3 Menus and Menu Items

Table E–3 lists the differences between the XUI and Motif window menu
items.

Table E–3: Motif Window Menu Items and Functions
Function XUI Action or Object Motif Menu Item

Return a window to original
size after it has been shrunk
to an icon or enlarged.

Resize button Restore

Change the location of a window. Press and drag on the
title bar

Move

Change the size of a window. Resize button Size

Shrink a window to an icon. Shrink-to-icon button Miminize

Enlarge a window to cover
the whole screen.

Resize button Maximize

Summary of XUI and Motif Differences E–3

Table E–3: Motif Window Menu Items and Functions (cont.)

Function XUI Action or Object Motif Menu Item

Send a window to the back or
bottom of the window stack.

Push-to-back button Lower

Close a window and remove it
from the workspace.

Not in XUI Close

E.3.1 Menu Bar and Standard Menus

Table E–4 lists the standard menus in each menu bar, and describes the
differences between the XUI and Motif interfaces. The XUI interface uses
dotted lines as separators; the Motif interface uses solid lines.

Table E–4: Differences Between the XUI and Motif Menus in the Menu Bar
XUI Menu Motif Menu Explanation

File File Mainly the same menu items.

Edit Edit Mainly the same menu items.

View Some XUI applications have a View menu.

Customize Options Motif provides no specific menu items; the
menu items are application specific.

Font No equivalent in Motif.

Help Help Menu items have different names, some
similar functions.

E–4 Summary of XUI and Motif Differences

E.3.2 File Menu Items

Table E–5 lists the File menu items and describes the differences between
the XUI and Motif interfaces.

Table E–5: Differences Between the XUI and Motif File Menu Items
Menu Item XUI Interface Motif Interface

New Creates an empty copy of
window; does not affect the
previous window.

Clears the existing window; does
not provide a new window. To
continue to have the XUI “new”
capability, include a check button
in your File Selection box labeled
“Open in New Window.”

Open . . . Generates a dialog box that allows
users to open an existing file.

Same in Motif.

Include Generates a dialog box that
allows users to add the contents
of a specified file.

Not standard in Motif, but use
it if appropriate.

Revert Generates a dialog box that allows
users to erase current work and
revert to last saved version of file.

Not standard in Motif, but use
it if appropriate.

Print Prints the current file using the
current settings of a Print dialog
box without displaying the box.

Exists in Motif; in Motif, Print
covers Print... as well.

Print . . . Generates a Print dialog
box that allows users to set
printing parameters and print
the current file.

Not standard in Motif, but
Motif Print menu item pops
up a dialog box if printing
information is required.

Quit Shuts down application; prompts
for saving if current version
has not been saved.

Does not exist in Motif.

Summary of XUI and Motif Differences E–5

Table E–5: Differences Between the XUI and Motif File Menu Items (cont.)

Menu Item XUI Interface Motif Interface

Close Closes the window, leaving the
other windows in the application.

Removes the primary and
associated secondary windows
from the workspace, in
applications that have more
than one primary window.
Closing the last primary window
of an application causes the
application to exit. If data will
be lost, the application must
prompt users to save changes.
The Close menu item from the
File menu should have the same
effect as the Close menu item
from the Window menu.

Exit Saves file and shuts down
application.

Shuts down application, and
prompts for saving if the current
version has not been saved.

E.3.3 Edit Menu Items

Table E–6 lists the Edit menu items and describes the differences between
the XUI and Motif interfaces.

Table E–6: Differences Between XUI and Motif Edit Menu Items
Menu Item XUI Interface Motif Interface

Undo Reverses the effects of a
previous operation.

Same in Motif.

Redo Redoes an operation after it
has been undone.

Not in Motif, but you can add
it if appropriate.

Cut Transfers currently selected
information to the clipboard
and deletes the information
from the application.

Same in Motif.

Copy Transfers the current selection to
the clipboard without altering the
information in the application.

Same in Motif.

Paste Copies information from the
clipboard into the application
and retains that information
in the clipboard.

Same in Motif.

Clear Deletes the current selection. Same in Motif.

E–6 Summary of XUI and Motif Differences

Table E–6: Differences Between XUI and Motif Edit Menu Items (cont.)

Menu Item XUI Interface Motif Interface

Delete Not in XUI. Removes selected portion of data
from application and compresses
the rest of the data to fill the space
that the deleted data occupied.

Select All Selects all the data in the file. Not in Motif, but you can add
it if appropriate.

E.3.4 Help Menu Items

The XUI and Motif Help Menu Items are shown in Table E–7.

Table E–7: Differences Between the XUI and Motif Help Menu Items
Menu Item XUI Interface Motif Interface

Overview Provides general information
about the window from which
help was requested.

On Window.

About Provides the name and version
of the application.

On Version.

Glossary Provides definitions of terms. On Terms.

On Context Does not exist as a menu item
in XUI. In XUI, users press the
Help key and any mouse button.

Initiates context-sensitive help.

On Help Does not exist in XUI. Provides information on how
to use your application’s
Help facility.

On Keys Does not exist in XUI. Provides information about your
application’s use of function keys,
mnemonics, and accelerators.

Index Does not exist in XUI. Provides an index for all Help
information in your application.

Tutorial Does not exist in XUI. Provides access to your
application’s tutorial.

E.4 Mouse Button Behavior

Table E–8 provides a list of differences between the XUI and Motif mouse
button behavior.

Summary of XUI and Motif Differences E–7

Table E–8: Differences in the XUI and Motif Mouse Buttons
Mouse Button XUI Interface Motif Interface

MB1 Used for selection. Used for selection. Called
the Select button.

MB2 Used to display pop-up menus. Used for direct manipulation
of objects and other
application-specific needs.
Called the Menu button.

MB3 Used for application-specific
needs, and for Copy To and
Copy From operations, if your
application supports them.

Used to display pop-up
menus. Called the
Custom button.

E.5 Standard Message Boxes

Motif message boxes often have a Help push button in the lower right corner.

E.6 Keyboard Behavior

Table E–9 provides a list of differences between the XUI and Motif keyboard
behavior. These changes apply to both mwm and twm.

Table E–9: Differences in the XUI and Motif Keyboard Mappings
Key XUI Interface Motif Interface

Compose Used as Meta key. Used for initiating compose
sequences.

Alt Function Does not exist on an
ULTRIX system.

Used as Meta key.

Use either the xmodmap or dxkeycaps program to customize keyboard
mappings.

E–8 Summary of XUI and Motif Differences

F
DECwindows Motif Component Names

This appendix summarizes name changes for the following DECwindows
Motif components:

• Widget classes

• Function names

• Resource names

• Enumeration literal names

• Callback reason names

• Compound string names

• Fontlist names

• Clipboard names

• Resource manager names

For complete descriptions of the widget classes, see the OSF/Motif
Programmer’s Reference.

F.1 Widget Classes

Table F–1 summarizes the differences between the XUI widget hierarchy
and the OSF/Motif widget hierarchy.

Table F–1: Widget Class Name Changes
XUI Interface Motif Interface

DwtAttachedDB XmForm

DwtCommandWindow XmCommand

DwtCommon No equivalent in Motif. The resources
are in XmPrimitive, XmManager,
and XmGadget.

DwtDialogBox XmBulletinBoard

DwtFileSelection XmFileSelectionBox

DwtHelp DXmhelp

Dwtlabel XmLabel

DECwindows Motif Component Names F–1

Table F–1: Widget Class Name Changes (cont.)

XUI Interface Motif Interface

DwtListBox XmList

DwtMainWindow XmMainWindow

DwtMenu XmRowColumn

DwtMessageBox XmMessageBox

DwtPullDownMenuEntry XmCascadeButton

DwtPushButton XmPushButton

DwtScale XmScale

DwtScrollBar XmScrollBar

DwtScrollWindow XmScrolledWindow

DwtSelection XmSelectionBox

DwtSeparator XmSeparator

DwtSText XmText

DwtToggleButton XmToggleButton

DwtWindow XmDrawingArea

F.2 Function Names

Table F–2 summarizes the differences between the XUI function names
and the OSF/Motif function names.

Table F–2: Function Name Changes
XUI Interface Motif Interface

Dwt*Create XmCreate*a

DwtAttachedDBCreate XmCreateForm

DwtAttachedDBPopupCreate XmCreateFormDialog

DwtCautionBoxCreate XmCreateWarningDialog,

XmCreateMessageDialog,

XmCreateErrorDialog,

or XmCreateQuestionDialog

DwtCommandAppend XmCommandAppendValue

DwtCommandErrorMessage XmCommandError

DwtCommandSet XmCommandSetValue

F–2 DECwindows Motif Component Names

Table F–2: Function Name Changes (cont.)

XUI Interface Motif Interface

DwtCommandWindowCreate XmCreateCommand

DwtDialogBoxCreate XmCreateBulletinBoard

DwtDialogBoxPopupCreate XmCreateBulletinBoardDialog

DwtFileSelectionCreate XmCreateFileSelectionDialog

DwtLabelCreate XmCreateLabel

DwtLabelGadgetCreate XmCreateLabelGadget

DwtListBoxCreate XmCreateList

DwtMainWindowCreate XmCreateMainWindow

DwtMenuBarCreate XmCreateMenuBar

DwtMenuCreate XmCreateRowColumn

DwtMenuPopupCreate XmCreatePopupMenu

DwtMenuPulldownCreate XmCreatePulldownMenu

DwtMessageBoxCreate XmCreateInformationDialogb

DwtOptionMenuCreate XmCreateOptionMenu

DwtPullDownMenuEntryCreate XmCreateCascadeButton

DwtPullDownMenuEntryHilite XmCascadeButtonHighlight

DwtPullEntryGadgetCreate XmCreateCascadeButtonGadget

DwtPushButtonCreate XmCreatePushButton

DwtPushButtonGadgetCreate XmCreatePushButtonGadget

DwtRadioBoxCreate XmCreateRadioBox

DwtScaleCreate XmCreateScale

DwtScaleGetSlider XmScaleGetValue

DwtScaleSetSlider XmScaleSetValue

DwtScrollBarCreate XmCreateScrollBar

DwtScrollBarGetSlider XmScrollBarGetValues

DwtScrollBarSetSlider XmScrollBarSetValues

DwtScrollWindowCreate XmCreateScrolledWindow

DwtSelectionCreate XmCreateSelectionBox

DwtSeparatorCreate XmCreateSeparator

DwtSeparatorGadgetCreate XmCreateSeparatorGadget

DECwindows Motif Component Names F–3

Table F–2: Function Name Changes (cont.)

XUI Interface Motif Interface

DwtSTextCreate XmCreateText

DwtToggleButtonCreate XmCreateToggleButton

DwtToggleButtonGadgetCreate XmCreateToggleButtonGadget

DwtWindowCreate XmCreateDrawingArea

DwtWorkBoxCreate XmCreateWorkingDialogb

a Most of the name changes follow this form. The table lists those function name changes that do not
follow this form.
b Instantiates an XmMessageBox widget inside an XmDialogShell widget. To instantiate only the
XmMessageBox widget, use XmCreateMessageBox.

F.3 Resource Names

Table F–3 summarizes the differences between the XUI resource names and
the OSF/Motif resource names. Some XUI resource names have multiple
Motif resource names. To help you determine which Motif resource name
applies to your widget, the widget class is listed in parentheses after the
Motif name.

Table F–3: Resource Name Changes
XUI Interface Motif Interface

DwtN* XmN*a

DwtNactivateCallback XmNokCallback (XmSelectionBox)

DwtNadb* XmN*a

DwtNapplyLabel XmNapplyLabelString

DwtNautoShowInsertPoint XmNautoShowCursorPosition

DwtNbuttonAccelerator XmNaccelerator

DwtNcancelLabel XmNcancelLabelString

DwtNchildOverlap XmNallowOverlap

DwtNcols XmNcolumns

DwtNconformToText XmNrecomputeSize

DwtNdefaultHorizontalOffset XmNhorizontalSpacing

DwtNdefaultPushbutton XmNdefaultButtonType

DwtNdefaultVerticalOffset XmNverticalSpacing

DwtNdirectionRtoL XmNprocessingDirection

(XmScale, XmScrollBar)

F–4 DECwindows Motif Component Names

Table F–3: Resource Name Changes (cont.)

XUI Interface Motif Interface

DwtNdirectionRtoL XmNstringDirection (XmLabel,

XmBulletinBoard, XmList)

DwtNextendCallback XmNextendedSelectionCallback

DwtNfilterLabel XmNfilterLabelString

DwtNfont XmNfontList (XmLabel, XmList,

XmScale, XmText)

DwtNfont XmN*fontList (XmBulletinBoard)

DwtNhistory XmNhistoryItems

DwtNhorizontal XmNscrollBarDisplayPolicy

DwtNhotSpotPixmap XmNcascadePixmap

DwtNiconPixmap XmNsymbolPixmap

DwtNinc XmNincrement

DwtNindicator XmNindicatorOn

DwtNinsensitivePixmap XmNlabelInsensitivePixmap

DwtNinsensitivePixmapOff XmNlabelInsensitivePixmap

DwtNinsensitivePixmapOn XmNselectInsensitivePixmap

DwtNinsertionPointVisible XmNcursorPositionVisible

DwtNinsertionPosition XmNcursorPosition

DwtNitems XmNlistItems

DwtNitemsCount XmNitemCount (XmList)

DwtNitemsCount XmNlistItemCount (XmSelectionBox)

DwtNlabel XmNlabelString (XmLabel,
XmRowColumn)

DwtNlabel XmNlistLabelString (XmSelectionBox)

DwtNlabel XmNmessageString (XmMessageBox)

DwtNlabelAlignment XmNmessageAlignment

DwtNlines XmNhistoryItemCount

DwtNlostFocusCallback XmNlosingFocusCallback

DwtNmaxValue XmNmaximum

DwtNmenuAlignment XmNisAligned

DwtNmenuEntryClass XmNentryClass

DECwindows Motif Component Names F–5

Table F–3: Resource Name Changes (cont.)

XUI Interface Motif Interface

DwtNmenuExtendLastRow XmNadjustLast

DwtNmenuIsHomogeneous XmNisHomogeneous

DwtNmenuNumColumns XmNnumColumns

DwtNmenuPacking XmNpacking

DwtNmenuRadio XmNradioBehavior

DwtNmenuType XmNrowColumnType

DwtNmergeTextTranslations XmNtextTranslations

DwtNminValue XmNminimum

DwtNokLabel XmNokLabelString

DwtNpageDecCallback XmNpageDecrementCallback

DwtNpageInc XmNpageIncrement

DwtNpageIncCallback XmNpageIncrementCallback

DwtNpixmap XmNlabelPixmap

DwtNpixmapOff XmNlabelPixmap

DwtNpixmapOn XmNselectPixmap

DwtNprompt XmNpromptString

DwtNpullingCallback XmNcascadingCallback

DwtNresize XmNlistSizePolicy (XmList)

DwtNresize XmNresizePolicy (XmBulletinBoard)

DwtNselectedItemsCount XmNselectedItemCount

DwtNselectionLabel XmNselectionLabelString

DwtNshadow XmNshadowThickness

DwtNshape XmNindicatorType

DwtNshown XmNsliderSize

DwtNsingleCallback XmNsingleSelectionCallback

DwtNsingleConfirmCallback XmNdefaultActionCallback

DwtNsingleSelection XmNsingleSelectionPolicy

DwtNspacing XmNlistSpacing

DwtNstyle XmNdialogStyle

DwtNtextCols XmNtextColumns

F–6 DECwindows Motif Component Names

Table F–3: Resource Name Changes (cont.)

XUI Interface Motif Interface

DwtNtitle XmNdialogTitle (XmBulletinBoard)

DwtNtitle XmNtitleString (XmScale)

DwtNunitDecCallback XmNdecrementCallback

DwtNunitIncCallback XmNincrementCallback

DwtNvalue XmNcommand (XmCommand)

DwtNvalue XmNset (XmToggleButton)

DwtNvalue XmNtextString (XmSelectionBox)

DwtNvalueChangedCallback XmNcommandChangedCallback
(XmCommand)

DwtNvisibleItemsCount XmNvisibleItemCount (XmList)

DwtNvisibleItemsCount XmNlistVisibleItemCount (Xm-
SelectionBox)

DwtNyesCallback XmNokCallback

DwtNyesLabel XmNokLabelString
a Most of the name changes follow this form. The table lists those resource name changes that do not
follow this form.

F.4 Enumeration Literal Names

Table F–4 summarizes the differences between the XUI enumeration
literal names and the OSF/Motif enumeration literal names. Some XUI
enumeration literal names have multiple Motif enumeration literal names.
To help you determine which Motif enumeration literal name applies to your
widget, the widget class is listed in parentheses after the Motif name.

Table F–4: Enumeration Literal Name Changes
XUI Interface Motif Interface

Dwt AaaaAaaa Xm AAAA_AAAAa

DwtAttachAdb XmATTACH_FORM

DwtAttachOppAdb XmATTACH_OPPOSITE_FORM

DwtAttachOppWidget XmATTACH_OPPOSITE_WIDGET

DwtCancelButton XmDIALOG_CANCEL_BUTTON

DwtCString XmSTRING

DwtMenuPackingColumn XmPACK_COLUMN

DwtMenuPackingNone XmPACK_NONE

DECwindows Motif Component Names F–7

Table F–4: Enumeration Literal Name Changes (cont.)

XUI Interface Motif Interface

DwtMenuPackingTight XmPACK_TIGHT

DwtMenuWorkArea XmWORK_AREA

DwtModal XmDIALOG_APPLICATION_MODAL

DwtModal XmDIALOG_FULL_APPLICA-
TION_MODAL

DwtModal XmDIALOG_SYSTEM_MODAL

DwtModeless XmDIALOG_MODELESS

DwtOrientationHorizontal XmHORIZONTAL

DwtOrientationVertical XmVERTICAL

DwtOval XmONE_OF_MANY

DwtRectangular XmN_OR_MANY

DwtResizeFixed XmRESIZE_NONE (XmBulletinBoard)

DwtResizeFixed XmCONSTANT (XmList)

DwtResizeGrowOnly XmRESIZE_GROW (XmBulletinBoard)

DwtResizeGrowOnly XmVARIABLE (XmList)

DwtResizeShrinkWrap XmRESIZE_ANY (XmBulletinBoard)

DwtResizeShrinkWrap XmVARIABLE (XmList)

DwtWorkArea XmDIALOG_WORK_AREA

DwtYesButton XmDIALOG_OK_BUTTON
a Most of the name changes follow this form. The table lists those enumeration literal name changes that
do not follow this form.

F.5 Callback Reason Names

Table F–5 summarizes the differences between the XUI callback reason
names and the OSF/Motif callback reason names. Some XUI callback reason
names have multiple Motif callback reason names. To help you determine
which Motif callback reason name applies to your widget, the widget class is
listed in parentheses after the Motif name.

F–8 DECwindows Motif Component Names

Table F–5: Callback Reason Names
XUI Interface Motif Interface

DwtCR AaaaAaaa XmCR_ AAAA_AAAAa

DwtCRActivate XmCR_OK (XmSelectionBox)

DwtCRActivate XmCR_CASCADING (XmCas-
cadeButton)

DwtCRExtend XmCR_EXTENDED_SELECTION

DwtCRHelpRequested XmCR_HELP

DwtCRLostFocus XmCR_LOSING_FOCUS

DwtCRPageDec XmCR_PAGE_DECREMENT

DwtCRPageInc XmCR_PAGE_INCREMENT

DwtCRSingle XmCR_SINGLE_SELECT

DwtCRSingleConfirm XmCR_DEFAULT_ACTION

DwtCRUnitDec XmCR_DECREMENT

DwtCRUnitInc XmCR_INCREMENT

DwtCRValueChanged XmCR_COMMAND_CHANGED
(XmCommand)

DwtCRYes XmCR_OK
a Most of the name changes follow this form. The table lists those callback reason name changes that
do not follow this form.

F.6 Compound Strings
Table F–6 summarizes the differences between the XUI compound string
names and the OSF/Motif compound string names.

Although the compound string names are changed, some functions change
the order and number of arguments. See the OSF/Motif Programmer’s
Reference (available from Prentice Hall); to verify the arguments.

Table F–6: Compound String Names
XUI Interface Motif Interface

DwtCompString XmString

DwtCSbytecmp XmStringByteCompare

DwtCSempty XmStringEmpty

DwtCSString XmStringSegmentCreatea

DwtCStrcat XmStringConcat

DwtCStrcpy XmStringCopy

DECwindows Motif Component Names F–9

Table F–6: Compound String Names (cont.)

XUI Interface Motif Interface

DwtCStrlen XmStringLength

DwtCStrncat XmStringNConcat

DwtCStrncpy XmStringNCopy

DwtDisplayCSMessage No equivalent in Motif.

DwtDisplayVMSMessage No equivalent in Motif.

DwtGetNextSegment XmStringGetNextSegment

DwtInitGetSegment XmStringInitContext

DwtLatin1String XmStringCreateSimplea

DwtString XmStringSegmentCreatea

a Suggested replacement only.

F.7 Fontlist Names
Table F–7 summarizes the differences between the XUI fontlist names and
the OSF/Motif fontlist names.

Table F–7: Fontlist Names
XUI Interface Motif Interface

DwtAddFontList XmFontListAdd

DwtCreateFontList XmFontListCreate

F.8 Clipboard Names
Table F–8 summarizes the differences between the XUI clipboard names
and the OSF/Motif clipboard names.

Table F–8: Clipboard Names
XUI Interface Motif Interface

DwtBeginCopyToClipboard XmClipboardStartCopy

DwtCancelCopyFormat XmClipboardWithdrawFormat

DwtCancelCopyToClipboard XmClipboardCancelCopy

DwtCopyFromClipboard XmClipboardRetrieve

DwtCopyToClipboard XmClipboardCopy

DwtEndCopyFromClipboard XmClipboardEndRetrieve

DwtEndCopyToClipboard XmClipboardEndCopy

F–10 DECwindows Motif Component Names

Table F–8: Clipboard Names (cont.)

XUI Interface Motif Interface

DwtInquireNextPasteCount XmClipboardInquireCount

DwtInquireNextPasteFormat XmClipboardInquireFormat

DwtInquireNextPasteLength XmClipboardInquireLength

DwtListPendingItems XmClipboardInquirePendingItems

DwtReCopyToClipboard XmClipboardCopyByName

DwtStartCopyFromClipboard XmClipboardStartRetrieve

DwtStartCopyToClipboard XmClipboardStartCopy

DwtUndoCopyToClipboard XmClipboardUndoCopy

F.9 Resource Manager Names

Table F–9 summarizes the differences between the XUI resource manager
names and the OSF/Motif resource manager names.

Table F–9: Resource Manager Names
XUI Interface Motif Interface

DwtCloseHierarchy MrmCloseHierarchy

DwtDrmFreeResourceContext No equivalent in Motif. Use
MrmFetchLiteral, MrmFetchIconLiteral,
or MrmFetchColorLiteral.

DwtDrmGetResourceContext No equivalent in Motif. Use
MrmFetchLiteral, MrmFetchIconLiteral,
or MrmFetchColorLiteral.

DwtDrmHGetIndexedLiteral No equivalent in Motif. Use
MrmFetchLiteral, MrmFetchIconLiteral,
or MrmFetchColorLiteral.

DwtDrmRCBuffer No equivalent in Motif. Use
MrmFetchLiteral, MrmFetchIconLiteral,
or MrmFetchColorLiteral.

DwtDrmRCSetType No equivalent in Motif. Use
MrmFetchLiteral, MrmFetchIconLiteral,
or MrmFetchColorLiteral.

DwtDrmRCSize No equivalent in Motif. Use
MrmFetchLiteral, MrmFetchIconLiteral,
or MrmFetchColorLiteral.

DwtDrmRCType No equivalent in Motif. Use
MrmFetchLiteral, MrmFetchIconLiteral,
or MrmFetchColorLiteral.

DECwindows Motif Component Names F–11

Table F–9: Resource Manager Names (cont.)

XUI Interface Motif Interface

DwtFetchColorLiteral MrmFetchColorLiteral

DwtFetchIconLiteral MrmFetchIconLiteral

DwtFetchInterfaceModule MrmFetchInterfaceModule

DwtFetchLiteral MrmFetchLiteral

DwtFetchSetValues MrmFetchSetValues

DwtFetchWidget MrmFetchWidget

DwtFetchWidgetOverride MrmFetchWidgetOverride

DwtInitializeDRM MrmInitialize

DwtOpenHierarchy MrmOpenHierarchy

DwtRegisterClass MrmRegisterClass

DwtRegisterDRMNames MrmRegisterNames

F–12 DECwindows Motif Component Names

G
Migration from ULTRIX Version 4.5 to

Tru64 UNIX Version 4.0B

This appendix contains brief descriptions of features that are new to the
ULTRIX and UWS Version 4.5 operating system, and features that are new
to the Tru64 UNIX Version 4.0B operating system. Each description notes
any migration issues between ULTRIX Version 4.5 and Tru64 UNIX Version
4.0B. Then, this appendix discusses the interfaces that have been retired in
Tru64 UNIX Version 4.0B and whether their retirement affects migration
from ULTRIX Version 4.5.

G.1 New Features and Changes in ULTRIX and UWS
Version 4.5

The following new features and changes are in ULTRIX and UWS Version
4.5: none has an effect on the migration of the operating system to Tru64
UNIX Version 4.0B.

• The candc(8) command is a shell script that examines the core image of
the ULTRIX operating system to extract diagnostic data.

This command has no effect on migration from ULTRIX to Tru64 UNIX.

• An usrsms option to the param.c file has been added for shared memory
management.

This option has no effect on migration from ULTRIX to Tru64 UNIX.

• A new option, -l, has been added to the ypserv(8yp) command to turn
on log messages.

This new option has no effect on migration from ULTRIX to Tru64 UNIX.

• The X11R5 Xws server now supports both MX and PX graphic options.

Support for these graphic options has no effect on migration from
ULTRIX to Tru64 UNIX.

• A new file, /etc/securenets, has been added: it is required for
portmapper operations.

This new file has no effect on migration from ULTRIX to Tru64 UNIX.

• The LinkWorks components have been retired and renamed DEClinks.

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–1

The retirement of the LinkWorks components have no affect on migration
from ULTRIX to Tru64 UNIX.

G.2 New Features and Changes in Tru64 UNIX Version 4.0B

The remainder of this appendix contains the new and changed features in
Tru64 UNIX Version 4.0B. The discussion of each new feature and change
concludes with a summary of its affect on the migration of ULTRIX Version
4.5 capabilities to Tru64 UNIX Version 4.0.

G.3 Common Desktop Environment

The Common Desktop Environment (CDE) is the new default graphical user
interface for Tru64 UNIX. The CDE environment is designed to provide
common services across all UNIX platforms, including a consistent user
interface for end users and a consistent development environment for
application developers across multiple platforms.

CDE on Tru64 UNIX is based on the X Window System Release 6 (X11R6)
and CDE/Motif 1.0 (OSF/Motif 1.2.4), and supplies the following desktop
services and applications:

• Desktop Services:

Window Management Workspace Management Session Management

File Manager Application Manager Windowing dtksh

Help Keyboard Customization

• Desktop Applications:

Calendar Calculator MIME-capable Mail

Text Editor Icon Editor Terminal Emulator

Application Builder Print Queue Manager

CDE is provided in seven software subsets that require a total of 57.81 MB
of free disk space for installation. See the Installation Guide for information
on the subset names, contents, and sizes.

The CDE kit contains the following migration tools:

• mailcv mail conversion. This utility converts your dxmail folders to the
conventional mail format used by CDE dtmail. If you plan to use the
mailcv utility to convert your existing mail folders, back up the folders
before converting them. Do not use the -d option with this version of
the mailcv utility.

G–2 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

• dxcaltodtcm calendar conversion. This utility converts a DECwindows
Calendar, dxcalendar, database for use with CDE Calendar, dtcm.

G.3.1 CDE Video Tour

A brief multimedia tutorial of CDE is located on the Tru64 UNIX Version
4.0B Associated Products Volume 1 CD−ROM. Once the video tour is
installed, you can access it through the application manager in the
Information folder by double clicking on the CDE Video Tour icon.

G.3.2 CDE Screen Savers

The CDE session manager supports X11R6 screen saver extensions and
you can now select animated screen savers instead of a blank screen. This
release also enables the automatic locking of screens after a specified idle
time. You can modifiy or disable both features from the CDE Style Manager
menu. Click on the Screen icon, and select the options you want.

G.3.3 ULTRIX Migration Issues

Because ULTRIX V4.5 uses X11R5 and OSF/Motif 1.1.3, there can be
migration issues when using the migration tools in the CDE kit. These tools
were intended only for migration from earlier versions of Tru64 UNIX to
Tru64 UNIX Version 4.0B.

Although the mail and calendar conversion tools were designed for migrating
from DECwindows on earlier versions of Tru64 UNIX to Tru64 UNIX Version
4.0, these same tools also can be used for converting ULTRIX DECwindows
versions of the applications to Tru64 UNIX Version 4.0B.

DECwindows migration issues are described in the manual CDE Companion
guide.

G.4 X/Open-Compliant Curses

The new Curses implementation in Tru64 UNIX Version 4.0B incorporates
the following sets of programming interfaces:

• X/Open Curses, Issue 4

• System V Multinational Language Supplement (MNLS)

• Minicurses

• BSD Curses

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–3

G.4.1 ULTRIX Migration Issues

Because X/Open Compliant Curses, Issue 4, is backward compatible with
earlier versions of X/Open Curses, there are no ULTRIX migration issues.

G.5 X11R6

This release of Tru64 UNIX supports Release 6 of the X Window System,
Version 11 (X11R6) patchlevel 12. Prior versions of the operating system
supported Release 5 (X11R5) patchlevel 26.

The Tru64 UNIX port of X11R6 supports all the features and functionality of
previous releases of Tru64 UNIX. It also supports all X Consortium standard
features of X11R6.

The following protocol extensions are new features in Tru64 UNIX Version
4.0B:

• BIG-REQUESTS. Gives clients the ability to use requests that are
arbitrarily large, rather than being limited to the size restriction of the
core protocol. This can result in a significant performance improvement
for applications that use large requests.

• DOUBLE-BUFFER. Enables double buffering, using the new X
Consortium standard.

• XIE (updated). Complete implementation of full XIE 5.0 protocol with a
few exceptions.

• XKEYBOARD (XKB).

G.5.1 X Keyboard Extension for X11R6 (XKB)

The XKB (X Keyboard) server extension is new for X11R6 and for Tru64
UNIX. XKB enhances control and customization of the keyboard under the X
Window System by providing the following:

• Support for the ISO9996 standard for keyboard layouts

• Compatibility with the core X keyboard handling (no client modifications
are required)

• Standard methods for handling keyboard LEDs and locking modifiers
such as CapsLock and NumLock

• Support for keyboard geometry
In addition, the X11R5 AccessX server extension for users with physical
impairments has been incorporated into the XKB server extension.
X11R5 applied to versions of Tru64 UNIX that preceded this release.
These accessibility features include StickyKeys, SlowKeys, BounceKeys,
MouseKeys, and ToggleKeys, and control over the autorepeat delay and rate.

G–4 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

Several applications that make use of XKB features are also new with
Tru64 UNIX Version 4.0B. These applications include Xdec, xkbcomp,
xkbprint, xkbdfltmap, dxkbledpanel, dxkeyboard, and accessx. See
the reference pages for more information.

Note that the final revision of the X Keyboard Extension, XKB Version
1.0, will be different from XKB Version 0.65, which is shipping with Tru64
UNIX Version 4.0B. Avoid creating code that directly references the XKB
API and data structures. Any X clients created with direct references must
be recompiled and relinked when XKB Version 1.0 is shipped in a future
release. You may also have to modify your source code.

G.5.2 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.6 Commands and Utilities

The following sections describe new or changed commands and utilities that
are available in Tru64 UNIX Version 4.0 and Version 4.0B.

G.6.1 Changes to Mtools

Mtools software is included in the OSFDOCTOOLS410 subset. In prior
releases, the software was installed by an optional worldwide support subset.

G.6.1.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.6.2 sendmail Utility Supports Configurable GECOS Fuzzy Matching

The sendmail utility now allows the user to configure the fuzzy logic
for mail delivery. Previously, if the recipient’s address did not precisely
match any of the user names on the host, a best-match algorithm was
applied against the GECOS field in the passwd file. If a unique best-match
was found, the mail was delivered to this user. This behavior can now be
configured at run time using the -oG option on the command line. See
sendmail.cf(4) for more information.

G.6.2.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–5

G.6.3 df Supports Large File Systems

The field width for the Iused and Ifree fields in the output of the df
command has been increased to accommodate 12 digits when using the -i
switch. This modification was made to support very large file systems where
the number of inodes could exceed the field width that was previously set
aside for these fields.

G.6.3.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.6.4 Compressed Reference Pages

To economize on disk space, reference pages are now shipped in compressed
format. Compressed files were created with the /usr/bin/gzip utility. The
man and xman utilities automatically uncompress the reference pages.

The catman command has also been enhanced to work with compressed
catman files. All three commands, man, xman and catman, still provide
support for uncompressed manpages. The CDE online help viewer also
automatically uncompresses reference pages when they are accessed via a
hyperlink in a help volume.

For more information, see man(1) and catman(8).

G.6.4.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.6.5 Enhancements to terminfo

Terminal support has been enhanced to support non-Compaq terminals.
Entries have been added to the terminfo databases and the termcap file
to enable this support. New tools have also been added to assist users in
modifying or porting other termcap and terminfo entries to Tru64 UNIX.
These include the following:

• captoinfo−Converts termcap files to terminfo entries.

• infocmp−Uncompiles and, if required, compares terminfo entries.

The tput and tic utilities have also been enhanced.

G.6.5.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G–6 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

G.6.6 GNU Emacs Version 19.28

GNU Emacs has been updated to Version 19.28. This version is not
upwardly compatible with GNU Emacs Version 18.5, the previous version
shipped with Tru64 UNIX. See the appropriate GNU Emacs documentation
in /usr/lib/emacs/etc.

G.6.6.1 ULTRIX Migration Issues

See the GNU Emacs documentation.

G.6.7 Performance Manager

Performance Manager is a real-time performance monitor that allows
users to detect and correct performance problems. Graphs and charts can
show hundreds of different system values, including CPU performance,
memory usage, disk transfers, file-system capacity, and network efficiency.
Thresholds can be set to alert you to correct a problem when it occurs, and
commands can be run on multiple nodes from the graphical user interface.

G.6.7.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.6.8 Bootable Tape

This release introduces the ability to create a standalone bootable tape of
the operating system. You can boot from the bootable tape as easily as you
can boot from CD-ROM or a RIS area, but without the overhead of selecting
or installing subsets. When you restore your system from the bootable
tape, you must reconfigure your system using the System Management
applications. You will need to adjust system parameters, such as the host
name or IP address.

The binaries and shell scripts needed to create and restore a bootable
tape are installed with the base operating system. The files reside in
OSFBINCOM410 and no other subsets are needed. OSFBINCOM410 is the
Kernel Header and Common Files (Kernel Build Environment) subset.

Use the btcreate utility to create a standalone bootable tape. To extract
and restore file systems from tape at the single-user level, you use the
btextract utility.

For more information, see btcreate(8) and btextract(8).

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–7

G.6.8.1 ULTRIX Migration Issues

Bootable tape capabilities do not exist on ULTRIX operating systems: there
are no ULTRIX migration issues.

G.6.9 Partition Overlap Checks Added to Disk Utilities

Partition overlap checks have been enhanced or added to the following
commands:

newfs ufs_fsck mount

The checks ensure that partitions will not be overwritten if they are marked
in use in the fstype field on the disk label. The overlap checks also ensure
that no overlapping partition is marked in use.

If a partition or an overlapping partition has an in-use fstype field in the
disk label, the following commands inquire interactively if a partition can
be overwritten or not:

newfs mkfdmn addvol

swapon voldisk voldisksetup

See the reference pages for more information.

Partition overlap checks have been generalized by creating two library
functions: check_usage and set_usage. Two new fstype values have
been added: FS_RAW and FS_DB. For example, you can use the library
function set_usage with database applications to set the fstype field
of a disk partition that is in use by the database. Similarly, you can use
check_usage to determine the usage of a disk partition or any overlapping
partition.

G.6.9.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.6.10 scsimgr Utility for Creating Device Special Files

The scsimgr utility creates device special files for newly attached disk and
tape devices. This utility is automatically invoked at system boot time. You
can execute the command to add device special files for all disk and tape
devices attached to a specified SCSI bus at any time. See the scsimgr(8)
reference page for further details.

G.6.10.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G–8 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

G.7 Standards

This release complies with many new and changes standards. See
standards(5) for more information.

G.7.1 Realtime is Compliant with Final POSIX 1003.1b Standard
Interfaces

Tru64 UNIX Version 4.0 now completes the implementation of the POSIX
1003.1b standard interface as approved by the IEEE standards board in
September 1993 (IEEE Std 1003.1b-1993, Realtime Extension). The new
features are described in Section G.8.9, Section G.8.10, and Section G.8.11.
See the Guide to Realtime Programming for more information.

G.7.1.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.7.2 DECthreads is Compliant with Final POSIX 1003.1c Standard
Interfaces

The DECthreads library libpthread.so now implements the POSIX
1003.1c standard interface as approved by the IEEE standards board in
June 1995 (IEEE Std 1003.1c-1995, POSIX System Application Program
Interface). The new POSIX (pthread) interface supported with DECthreads
is the most portable, efficient, and powerful programming interface for a
multithreaded environment. These interfaces are defined by pthread.h.
See the Guide to DECthreads for more information.

G.7.2.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8 Development Environment

Tru64 UNIX Version 4.0B includes the enhancements to the development
environment that are discussed in the following sections.

G.8.1 Tcl/Tk Availability

Tcl/Tk is now available as part of the base operating system. Tcl/Tk is a
public domain unencumbered scripting language and graphical tool kit. In
addition to Tcl/Tk, a popular extension package, TclX is also included. TclX
provides many UNIX extensions to the Tcl command language. Tcl version
7.4, Tk version 4.0, and TclX version 7.4 are included in this release. See

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–9

the Installation Guide for information on how to identify and install the
appropriate software subsets.

The available programs are:

• /usr/bin/tcl

A tcl shell with TclX extensions

• /usr/bin/tclsh

A hard link to /usr/bin/tcl

• /usr/bin/wishx

A Tcl/Tk/tclX shell

• /usr/bin/wish

A hard link to /usr/bin/wishx

• /usr/bin/tclhelp

A graphical help browser for Tcl help

G.8.1.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.2 DEC C++

The following changes have been implemented for DEC C++:

• DEC C++ Version 5.3 Class Library is now threadsafe. See the DEC C++
Class Library Reference Manual for details on the threadsafe support,
including a new Mutex Package.

• Complex division catches divide-by-zero errors. The division routines
within the Complex Library now catch divide-by-zero errors instead of
signaling them.

• Iostream assignment operators. For iostream assignment operators,
there is no longer a memory leak when you use the *_withassign
assignment operators to initialize an object for which you have called
xalloc(). Previously, the memory allocated for the object by xalloc()
was lost.

• String extraction operator. The String extraction operator now takes
care of dynamically allocating the String to accommodate the input.

• ios::ate mode. When you open a file specifying ios::ate but not
ios::app to the filebuf open() function, the file is no longer opened
in O_APPEND mode. This incorrect behavior caused all data to be written
to the end of the file, regardless of the current file position.

G–10 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

• Exception handling. Various problems with exception handling have
been fixed. Also, support for exception handling in DEC C++ Version
5.3 has been added.

• Function exp() returns zero for underflow errors .When the Complex
Library exp() function detects an underflow error, the resulting value is
now (0,0) instead of (+/- max-float, +/- max-float).

• Use of clog() and C++ Class Library iostream clog. A single
application is restricted from using both the math library function
clog() and the iostream package’s clog object. This restriction is due
to the fact that libm and libcxx each contain a definition for the global
symbol clog and those definitions are incompatible. Furthermore,
applications which reference one of the clog symbols cannot include both
-lcxx and -lm on their ld command line. An error will be generated by
ld because clog is multiply defined.

• catch(...)clause. The catch(...) clause now catches C structured
exceptions.

• fstream close() clears the error state. The fstream, ifstream,
and ofstream close() member functions now clear the stream’s error
state when the close succeeds. Call the clear() member function after
the call to close().

G.8.2.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.3 Software Development Environment Repackaging

The Software Development Environment (SDE) has been repackaged to ease
installation, simplify licensing, and create a product identity. The current
SDE components have been repackaged into a single OSFSDE subset, and all
of the pieces outside the SDE have been moved into logical subsets, including:

• OSFINCLUDE for all include files

• OSFLIBA for all static libraries

• OSFPGMR for commands outside the scope of the SDE

Because the compiler is needed at installation time, some SDE components
have remained in the mandatory OSFCMPLRS subset.

The Ladebug debugger subsets have been renamed to the OSF* subset
name prefix and can now be installed during a custom installation of Tru64
UNIX. These changes have been made on the Tru64 UNIX Operating System
Volume 1 CD−ROM. The FUSE Porting Assistant has been added to the
Tru64 UNIX kit on the Tru64 UNIX Associated Products Volume 1 CD−ROM.

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–11

This is a tool to help port code to Tru64 UNIX from a variety of platforms
and operating systems.

The OSFSDECDE subset was also added to the Tru64 UNIX Operating System
Volume 1 CD−ROM. It contains the files necessary to access DECladebug
and the Porting Assistant from CDE.

G.8.3.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.4 init Execution Order Modified for Static Executable Files

The execution order for init routines in static executable files has been
modified to more closely match the execution order for init routines in
dynamic executable files. The init routines loaded from an archive library
will be executed prior to any init routines loaded from objects and archives
occurring earlier on the linker command line. Prior to this change, init
routines were executed in the order they were encountered in processing
the link command from left to right. As a result, init order for static
executable files was much different than the init order for equivalent
shared executable files.

For existing applications that rely on the static init order used in
prior releases of Tru64 UNIX, you can use the new linker option
-old_init_order to restore the strict left-to-right execution order for
static executable files.

G.8.4.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.5 PC-Sample Mode of prof Command

The prof command’s pc-sampling mode now supports profiling the shared
libraries used by a program. Linking a call-shared program with the cc
command’s -p switch causes the resulting program to profile both the
call-shared executable file and all the shared libraries. The following
command displays a combined profile:

prof -all

New -all, -incobj, -excobj, and -stride switches for the PROFFLAGS
environment variable enable you to request per-procedure profiling of the
shared libraries or to select particular libraries to profile.

The related enhancements are:

G–12 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

• Extended application programming interfaces (APIs) to monitor(),
monstartup(), and profil()

• Use of 32-bit pc-sampling counters instead of 16-bit for cc -p and cc -pg
profiling (gprof), except for calls to the traditional monitor() API.

• Improved reliability in profiling multithreaded programs, and reference
page guidelines for use of monitor_signal() with threads.

• prof and gprof checking.

• Profiling report formats are improved.
See prof(1) and monitor(3) for further information.

G.8.5.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.6 atom and prof Commands and Threads

Both of the following atom and prof commands now profile the shared
libraries used by a program:

atom -tool pixie -all

prof -pixie -all

The threads environment for atom also makes the pixie tool thread-safe,
though per-thread counts are not recorded.

Additionally, there are new file formats for .Addrs and .Counts files.

See atom (1), prof (1), and pixie (5) for further information.

G.8.6.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.7 Thread Independent Services Interface

Tru64 UNIX Version 4.0B introduces the Thread Independent Services (TIS)
application programming interface in the C run-time library libc. TIS
provides services that assist in the development of thread-safe libraries.

Thread synchronization may involve significant run-time cost, which is
undesirable in the absence of threads. TIS enables thread-safe libraries to
be built that are both efficient in the nonthreaded environment, yet provide
the necessary synchronization in the threaded environment.

When DECthreads (pthreads) are not active within the process, TIS
executes only the minimum steps necessary. Code running in a nonthreaded
environment does not encounter overhead incurred by the run-time

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–13

synchronization that is necessary when the same code is run in a threaded
environment. When DECthreads are active, the TIS functions provide the
necessary thread-safe synchronization.

G.8.7.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.8 High-Resolution Clock

Tru64 UNIX Version 4.0B has an optional high-resolution clock. To enable
this option, add the following line to the kernel configuration file and rebuild
the kernel:

options MICRO_TIME

The system clock (CLOCK_REALTIME) resolution as returned by
clock_getres will not change. Timer resolution remains the same.
However, time as returned by the clock_gettime routine will now
be extrapolated between the clock ticks. The granularity of the time
returned will now be in microseconds. The time values returned are SMP
safe, monotonically increasing, and have 1 microsecond as the apparent
resolution.

G.8.8.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.9 POSIX 1003.1b Realtime Signals

Realtime signals have been implemented to conform to the POSIX 1003.1b
standard. This new feature includes queued signals with optional data
delivery, and 16 user-definable realtime signals.

The following functions to support realtime signals were implemented:

• sigqueue

• sigtimedwait

• sigwaitinfo

• timer_getoverrun

G.8.9.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G–14 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

G.8.10 POSIX 1003.1b Synchronized I/O

Synchronized I/O (file synchronization) has been implemented to conform to
the POSIX 1003.1b standard. New functions for synchronized I/O under the
UFS and AdvFS file systems include:

• aio_fsync

Asynchronously writes changes in a file to permanent storage

• fdatasync

Writes data changes in a file to permanent storage

The open function now takes the following new flags for synchronized I/O:

• O_DSYNC

Ensures synchronized I/O data integrity of the file accessed

• O_RSYNC

Used for synchronized I/O read operations

G.8.10.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.11 POSIX 1003.1b _POSIX_C_SOURCE Symbol

For applications conforming to POSIX 1003.1b, the _POSIX_4SOURCE macro
is supported for Tru64 UNIX Version 4.0B, but will be retired with the next
release of Tru64 UNIX. The macro _POSIX_4SOURCE is part of an obsolete
draft standard and is supported in this release for compatibility only. When
possible, existing applications that use _POSIX_4SOURCE should be modified
to use _POSIX_C_SOURCE instead.

The _POSIX_C_SOURCE macro is associated with a value, which allows an
application to specify the namespace it requires. However, as a general
rule, avoid explicitly defining standards macros when compiling your
applications. For most applications, the header file unistd.h provides the
standards definitions that are needed.

G.8.11.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.8.12 Porting Assistant

The Porting Assistant is a Motif-based tool to help you port your C, C++,
and Fortran source code to Tru64 UNIX from other UNIX and proprietary

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–15

platforms, including OpenVMS. The Porting Assistant includes the following
features:

• Uncovers 32-bit dependencies

• Checks your makefile commands and options

• Helps find functions that your application needs

• Helps develop code segments specific to Tru64 UNIX

• Provides additional information on porting your application

The Porting Assistant is licensed and provided to you with the Tru64 UNIX
Developers’ Toolkit but requires separate installation.

To install Version 2.0 of the Porting Assistant, install subsets PRTBASE200
and PRTMAN200 (and their dependencies) from the Tru64 UNIX Associated
Products Volume 1 CD-ROM.

G.8.12.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.9 Networking

The following sections describe networking enhancements contained in
Tru64 UNIX Version 4.0B.

G.9.1 New Version of the gated Daemon

This release includes a new version of the gated routing daemon. The
update installation procedure will detect if your system is configured
to run the gated routing daemon. If the Compaq supplied gated is
detected, then the /etc/gated.conf file is moved to /etc/ogated.conf.
Otherwise, if a user-supplied or customized gated is detected, then both
the /etc/gated.conf and the /usr/sbin/gated files are saved with
the .PreUPD suffix.

When the system is installed, the new gated R3.5 is the default version
in /usr/sbin/gated. The old gated Version 1.9 is supplied in
/usr/sbin/ogated. Also, corresponding, older gated reference pages
are saved with an o prefix.

G.9.1.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G–16 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

G.9.2 Dynamic Host Configuration Protocol

This release contains both a client and a server Dynamic Host Configuration
Protocol (DHCP) daemon. For DHCP client configuration, use the
netconfig utility. For configuration of client parameters on the DHCP
server, use the /usr/bin/X11/xjoin utility, which provides a graphical
user interface to the /etc/bootptab file.

For more information on DHCP, see joinc(8) and joind(8).

G.9.2.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.9.3 Point-to-Point Protocol

This release supports Point-to-Point Protocol (PPP), including support for
BSD-style compression of entire packets. This is a negotiated option. If
a foreign peer cannot handle this, it should be gracefully rejected via the
Protocol-Reject of the Link Control Protocol (LCP).

When using PPP with modems doing compression, it may be desirable
to force no BSD-style compression. To do this, put -bsdcomp in either
/etc/ppp/options, or on the pppd command line.

PPP now has a configurable (at boot time) number of interfaces. The
default is 1. To specify a higher value, add the following line to the
/etc/sysconfigtab file and reboot the system:

ppp:nppp=x

PPP documentation is available in pppd(8), pppstats(8), and chat(8), and
in the Network Administration manual.

G.9.3.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.9.4 Extensible Simple Network Management Protocol

A new Simple Network Management Protocol (SNMP) architecture is
present in this release. The SNMP daemon, snmpd, is now an extensible
master agent. End-user programmers can develop subagent programs that
communicate with snmpd to implement their management information
bases (MIBs) on Tru64 UNIX systems.

The base operating system MIB support is implemented in a subagent
program called os_mibs, which is started or stopped automatically with
snmpd.

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–17

G.9.4.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.9.5 SNMP MIB Support

This release supports the Host Resources MIB (RFC 1514). The MIB support
daemon must query the system’s devices to retrieve information required
for this MIB. This query occurs when the daemon starts, and subsequently
whenever a relevant SNMP request arrives.

This device querying is the default behavior, and may be configured off. See
snmpd(8) for more information about configuring the SNMP agent.

G.9.5.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.10 Enhanced Security

This release provides the following new enhanced security features:

• Support for per-user resource limits in user profiles, using setrlimit.

• Nonshadowed passwords are allowed, while using other extended profile
features.

• The system administrator can control whether the ttys database is
updated on logins.

• Wildcard support for ttys has been extended to X displays.

• User profiles and ttys information are stored in database files for faster
access and update (resulting in faster logins).

• The new utilities edauth and convuser are available.

See the Security manual and setrlimit(2), edauth(8), and convuser(8).

G.10.1 ULTRIX Migration Issues

ULTRIX has had enhanced security since 1990; now Tru64 UNIX has it.
Differences that affect migration are discussed in the Security manual, in
an appendix on migration.

G.11 File Systems

The following sections describe file system enhancements have been
implemented in Tru64 UNIX Version 4.0B.

G–18 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

G.11.1 Advanced File System

The following sections describe Advanced File System (AdvFS)
enhancements have been implemented in Tru64 UNIX Version 4.0B.

G.11.1.1 New Tuning Parameters for AdvFS

There is a new mechanism for limiting the amount of kernel memory that
AdvFS uses for its access structures. This may be necessary only for systems
with 64 MB or less memory, and AdvFS as the default file systems. This is
applicable to all hardware configurations.

There are two new kernel parameters relevant to AdvFS that you can
modify using the sysconfig or sysconfigdb commands. They are
AdvfsAccessMaxPercent and AdvfsAccessCleanupPercent.

G.11.1.2 AdvFS Now Supports Directory Truncation

Traditionally, AdvFS directories were never truncated, even though many
of the files in the directory had been deleted. This created a problem if the
directory file became very big. For example, if several hundred thousand
files were added to a directory, then the directory file itself grew very large.
Even though most of the files in that directory were subsequently deleted,
operations that required scanning the directory remained inefficient because
the entire directory file still needed to be read.

AdvFS now truncates directory files when all of the entries at the end of the
directory have been deleted. This truncation is done on 8 KB boundaries, so
the size of a directory is always a multiple of 8192.

One ambiguity of directory truncation is that the truncation is done when
files are created and not when they are deleted. This is done because of the
efficiency of underlying algorithms, and is the same model used by UFS
for directory truncation. For example, after most files in a given directory
are deleted, the size of the directory file itself will not decrease until a new
file is inserted into that directory.

G.11.1.3 ULTRIX Migration Issues

The AdvFS file system does not exist on ULTRIX systems, so there are no
migration issues.

G.11.2 File System Access Control Lists

Access Control Lists (ACLs) on files and directories are a new feature in this
release. They are manipulated with the getacl and setacl commands. See
the Security manual and the reference pages for more information.

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–19

G.11.2.1 ULTRIX Migration Issues

The ULTRIX operating system does not support ACLs or property lists
(ACLs are implemented as a specific type of property list), so there are no
ULTRIX migration issues.

G.11.3 Logical Storage Manager

Tru64 UNIX now provides the following new features for the Logical Storage
Manager (LSM):

• Two new LSM commands, volsave and volrestore, provide an easy
way to back up and restore the LSM configuration database. See the
reference pages for these commands.

• The Basic Operations menu in LSM’s graphical interface, dxlsm, now
provides support for disk operations. For example, how to add a disk
to LSM.

• The LSM limits have increased as follows:

– The maximum number of LSM volumes on a system has increased
from 256 to 4093.

– The maximum number of plexes on a system has increased from
256 to 4096.

– The maximum number of subdisks in a plex has increased from 256
to 4096.

– The maximum number of disks that can be added to LSM has
increased from 128 to 256.

– The maximum size of an LSM volume has increased from 128 GB
to 512 GB.

The functionality and syntax of the LSM commands used for encapsulation,
unencapsulation, and mirroring have changed in this release, as follows:

• The volencap command now supports the following features and
functions. For details, see volencap(8).

– Allows the initialization of LSM and encapsulation of the system disk
in one step. This requires the use of a free partition table entry.

– Can be used to encapsulate all partitions on a disk. This requires
the temporary use of a free partition table entry if the system disk is
being encapsulated.

– Can be used to encapsulate only the root and swap partitions.

– Automatically creates a new disk group if specified.

– Subsumes the functionality of the voladvdomencap command.

G–20 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

– Takes multiple arguments.

– Uses a simple disk instead of a sliced disk for system disk
encapsulation.

– For disk label characteristics, assumes that partition c maps the
entire disk, and that an in-use partition has an fstype field
other than UNUSED. (If a partition’s fstype field is UNUSED, then
volencap may allocate that partition table entry for its use.)

• The volrootmir command now supports the following features and
functions. For details, see volrootmir(8).

– Can be used to mirror all volumes on the system disk by specifying
the -a option. This option requires the target disk to be of the same
type as the source disk.

– Can be used to encapsulate only the root or swap partition by
omitting the -a option. This procedure requires that the target root
and swap partitions are large enough to hold rootvol and swapvol,
but the target and source disks need not be of the same type.

• When used with the -a option, the volunroot command unencapsulates
all LSM volumes on the system disk, not just rootvol and swapvol.
The requirements for unencapsulation are:

– The partition associated with the volume must have been initialized
as a nopriv disk.

– The volume must map directly to the partition (that is, the volume
size must be equivalent to the partition size).

– The volume must not be mirrored.

For details, see volunroot(8).

G.11.3.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

G.11.4 Overlap Partition Checking

Two new functions, check_usage and set_usage, are available for use by
applications. These functions check whether a disk partition is marked for
use and set the fstype of the partition in the disk label. See the reference
pages for these functions for more information.

G.11.4.1 ULTRIX Migration Issues

There are no ULTRIX migration issues.

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–21

G.12 Internationalization and Language Support

The following sections describe the new features implemented in Tru64
UNIX Version 4.0B to support internationalization. There are no ULTRIX
migration issues.

G.12.1 Internationalization Configuration Utility for CDE

The Internationalization (I18N) Configuration Tool, available through the
CDE Application Manager, is one of the SysMan system administration
configuration tools. The I18N Configuration Tool provides a graphical
interface that enables you to configure internationalization-specific settings.
It also provides a convenient way to see which countries, locales, fonts, and
keymaps are currently supported on your system. Use this tool to remove
unused fonts and unrequired country support.

G.12.2 Unicode Support

This release provides a new set of locales and codeset converters that support
the Unicode and ISO 10646 standards. The codeset converter modules enable
an application to convert between other supported codesets and UCS-4.

Tru64 UNIX also provides a function called fold_string_w() that maps
one Unicode string to another, performing the specified Unicode character
transformations. For more information, see fold_string_w(3).

For more information on the Unicode support, see Unicode(5).

G.12.3 The Worldwide Mail Handler No Longer Exists

Worldwide support subsets no longer install internationalized Mail Handler
(MH) software in the /usr/I18N/bin/mh directory. In Tru64 UNIX Version
4.0B, internationalization features have been merged into the default Mail
Handler (MH) whose files are located in /usr/bin/mh. Check the value
for the mhpath resource used to find the DECwindows Mail application. If
necessary, change this value to be /usr/bin/mh.

G.12.4 Multilingual Emacs (mule)

The mule editor is a multilingual version of GNU Emacs and supports the
following kinds of characters:

• ASCII (7-bit)

• ISO Latin-1 (8-bit)

• Japanese, Chinese, and Korean (16-bit) as specified by the ISO 2022
standard and its variants (EUC, Compound Text, and so on)

G–22 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

• Chinese in both GB and Big 5 encodings

• Thai as specified by the TIS 620 standard

The IOSWWMULE400 subset installs Version 2.3 of the GNU mule editor
and associated software. Corresponding sources are available in the
IOSWWMULESRC400 subset.

Tru64 UNIX does not include public domain fonts that you can use with mule.
See the mule-2.3/README.Mule file installed by the IOSWWMULESRC400
subset to find out how you can obtain public domain fonts.

The Tru64 UNIX software is enhanced with lisp libraries that support
the dechanzi codeset for Simplified Chinese and the dechanyu codeset
and tsangchi input method for Traditional Chinese. These libraries
are included in the IOSWWMULE400 subset and installed in the
/usr/i18n/mule/lib/mule/site-lisp directory.

For more information about mule, see mule(1).

G.12.5 Support for Catalan, Lithuanian, and Slovene

Tru64 UNIX Version 4.0B includes support for Catalan, Lithuanian,
and Slovene program localization. See Catalan(5), Lithuanian(5), and
Slovene(5) for information about associated codesets, locales, keyboards,
and fonts.

G.12.6 man Command Supports Codeset Conversion

The man command can automatically invoke the iconv utility to perform
codeset conversion of reference page files. This allows you to install one
set of reference pages to support locales that have the same language and
territory but different codesets, thereby reducing file redundancy on the
system. For more information, see man(1).

G.13 Dynamic Device Recognition for SCSI Devices

Dynamic Device Recognition (DDR) is a framework for describing the
operating parameters and characteristics of SCSI devices to the SCSI CAM
I/O subsystem. You can use DDR to include new and changed SCSI devices
into your environment without having to reboot the operating system. You
do not disrupt user services and processes, as happens with static methods
of device recognition.

Beginning with Tru64 UNIX Version 4.0, DDR is preferred over the current,
static method for recognizing SCSI devices. The current, static method, as
described in System Administration, is to edit SCSI device customizations

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–23

into the /sys/data/cam_data.c data file, reconfigure the kernel, and shut
down and reboot the operating system.

______________________ Note _______________________

Support for the static method of recognizing SCSI devices will be
retired in a future release of Tru64 UNIX.

Tru64 UNIX Version 4.0 and Version 4.0B support both methods of
recognizing SCSI devices. Both methods can be employed on the same
system, with the restriction that the devices described by each method are
exclusive to that method (nothing is doubly defined).

The information DDR provides about SCSI devices is needed by SCSI
drivers. You can supply this information using DDR when you add new
SCSI devices to the system, or you can use the /sys/data/cam_data.c
data file and static configuration methods. The information provided by
DDR and the cam_data.c file have the same objectives. When compared to
the static method of providing SCSI device information, DDR minimizes the
amount of information that is supplied by the device driver or subsystem
to the operating system, and maximizes the amount of information that is
supplied by the device itself or by defaults specified in the DDR databases.

You can also use DDR capabilities to convert customizations in the
cam_data.c file to information in the DDR /etc/ddr.dbase text database.

For more information about DDR, see System Administration,
ddr_config(8), and ddr.dbase(4).

G.13.1 ULTRIX Migration Issues

Because dynamic device recognition does not exist on ULTRIX systems,
it does not affect migration. However, in a future release of Tru64 UNIX,
the name space for SCSI devices will increase, and that change will affect
current versions of both operating systems.

G.14 Interfaces Retired from Tru64 UNIX
With the release of Tru64 UNIX Version 4.0, several features of previous
versions of the operating system were retired. The documentation for
previous versions of Tru64 UNIX announced that these features would be
retired. The retired features and their ULTRIX migration issues (if any) are:

• Support for ULTRIX RIS to Tru64 UNIX client functionality

ULTRIX migration issues: If you have been using ULTRIX systems as
RIS servers for Tru64 UNIX client systems, that capability will not work
for a Tru64 UNIX Version 4.0 client. You will need to serve Tru64 UNIX

G–24 Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B

Version 4.0 clients from Tru64 UNIX RIS servers. ULTRIX systems can
still RIS serve ULTRIX client systems.

• The oawk version of the awk command

There are no migration issues because the owak command does not exist
in ULTRIX.

• Routines that were duplicated in thelibc and libm libraries have been
removed from the libc library.

ULTRIX migration issue: application developers might have to add the
-lm option to their compiler command line.

• The -n option from /usr/bin/echo and /bin/echo

There are no ULTRIX migration issues.

• Ethernet trailer encapsulation

There are no ULTRIX migration issues.

• Linkworks run-time library

There are no ULTRIX migration issues.

• Logical Volume Manager

There are no ULTRIX migration issues.

• Obsolete POSIX real-time interfaces

There are no ULTRIX migration issues.

• XIE V3.0 interface, server support (although run-time support will still
be provided transparently through the client)

There are no ULTRIX migration issues.

• The POLYCENTER Common Agent (extensions to the SNMP V1.0 agent)

There are no ULTRIX migration issues.

G.15 Features Scheduled for Retirement

Read the Tru64 UNIX release notes for information about those features
scheduled for retirement in future releases of the operating system.
Knowledge of these pending changes will help you determine wise migration
tactics.

Migration from ULTRIX Version 4.5 to Tru64 UNIX Version 4.0B G–25

Index

A
acct.h header file, B–1
ACL, G–19
acucap file, 4–3
addgroup command, 4–2
Address Resolution Protocol table

command for modifying, 4–19
adduser command, 4–2
addvol command, G–8
AdvFS

directory truncation, G–19
tuning, G–19

aliases database, 4–24
ANSI C, 6–16
ANSI X3.159-1989, 6–16
API, 6–15
application performance

effect of shared library on, 6–14
application program

optimizing the startup of, 8–5
application programming interface

(See API)
ar command, 6–9
arp command, 4–19
assignment

pointer-to-int assignments, 7–6
assignment and argument passing,

7–12
atomic_op system call, 8–7
authentication, 6–18
authorization

(See libauth library)
automount.master file, 4–3
awk command, 2–4

B
bc command, 2–3
Berkeley Internet Domain service

(See BIND service)
Berkeley Standard Distribution

(See BSD)
/bin directory

differences from the ULTRIX /bin
directory, 4–10

BIND service, 4–23, 6–18
bindsetup command, 4–2, 4–23
binlog.conf file, 4–16
binlogd daemon, 4–15
binmail command, 2–5
biod daemon, 4–15
bit fields, 7–15
Bookreader program, 2–3
bootable tape, G–7
Bourne shell, 2–7

name of, 3–6
porting shell scripts, 3–5

Bourne shell, and migration to Tru64
UNIX, 2–8

BSD, 6–16
bulletin board

for MH utility, 2–5

C
C compiler

differences between Tru64 UNIX
and ULTRIX systems, 7–22

C shell, 2–7
command-line editing, 2–8

Index–1

enabling the file name completion
feature, 3–2

porting shell scripts, 3–5
C shell, and migration to Tru64 UNIX,

2–7
calculator, G–2
Calculator program, 2–3
calendar, G–2
Calendar program, 2–3
callback reason

differences between the XUI and
Motif interfaces, F–8

calloc function, 7–19
CAM driver interface, 7–44
captoinfo, G–6
Cardfiler program, 2–3
Catalan, G–23
catclose function, 6–20
catgets function, 6–20, 7–42
catopen function, 6–20, 7–42
cc command, 6–6

−check_registry option, 8–6
comparison of Tru64 UNIX and

DEC C compilers, 7–27
comparison of Tru64 UNIX and

ULTRIX RISC commands, 7–23
comparison of Tru64 UNIX and VAX

compilers, 7–29
comparison of Tru64 UNIX C

compiler and vcc command on a
VAX system, 7–31

compilation mode options, 6–6
taso option, 7–7
−update_registry option, 8–6
using to link with a shared library,

8–1
xtaso option, 7–6

ccmn_ccbwait function, 7–44
cd command, 3–5
CD-ROM discs

mounting, 5–2
CDA Viewer program, 2–4
CDE, G–2

screen savers, G–3
CDPATH environment variable, 2–8
cflow command, 6–9
changed features

standards, G–9
checking disk partitions, G–21
chpt command, 4–15
clipboard

differences between the XUI and
Motif interfaces, F–10

command-line editing, 3–1
Common Access Method

(See CAM driver interface)
compound string

differences between the XUI and
Motif interfaces, F–9

configuration file
difference in the initial contents

of between ULTRIX and Tru64
UNIX systems, 5–8

constants, 7–11
cpp command, 6–6
cron daemon, 4–4
crontab file, 4–4
csh shell

(See C shell)
CSHEDIT environment variable, 3–1
.cshrc file, 4–3
ctags command, 6–9
cu utility, 4–29
current directory

changing in a shell script, 3–5
curses, 7–39, G–3
customization files, differences on

Tru64 UNIX, 4–4
cxref command, 6–9

D
D option

use with -taso option, 7–10
data access, 6–2
data alignment, 6–3
Data Link Interface

Index–2

(See DLI)
data representations, 6–2
data segment

effects of -taso option, 7–9
date command, 2–4
dbx command, 6–8
dc command, 2–3
DEC C++

clog(), G–11
divide-by-zero, G–10
exception handling, G–11
ios::ate mode, G–10
"iostream assignment ops", G–10
string extraction, G–10
structured exceptions, G–11
threadsafe, G–10
underflow errors, G–10, G–11

DEC FUSE product, 6–8
DEC RPC, 1–9, 6–18
DECmigrate product

migrating executables, 1–11
DECnet software, 4–18
DECterm software, 2–4
DECwindows interface, 2–1
definitions and declarations

bit fields, 7–15
structure alignment, 7–14
structure member alignment, 7–14
structure size, 7–13
variable definitions, 7–16

deroff command, 2–7
desktop environment

(See CDE)
development environment, G–11
development environment

enhancements, G–9
device

adding to the configuration file, 5–8
df command, 4–12, G–6
DHCP, G–17
dir.h header file, 7–41
directory structure

differences from ULTRIX systems,
2–2

dis command, 6–9
disk, 5–3

(See also shadowed disk)
mounting an ULTRIX disk on a

Tru64 UNIX system, 5–1
disk label, 4–11

creating, 5–5
disk partition

creating on Tru64 UNIX system,
4–15

disk partitioning, 1–9
disk quota

Tru64 UNIX system support for,
4–13

disk shadowing, 4–16
disk shadowing facilities

differences between, 4–17
disklabel command, 4–15
Diskless Management Services

software
(See DMS software)

disktab.h header file, B–1
distribution media

supported by Tru64 UNIX systems,
6–12

DLI, 6–17
dli_var.h header file, B–2
DMS software, 1–9, 4–22
doconfig program, 5–8
domainname command, 4–24
du command, 4–12
dxdb command, 6–8
dxdb software, 1–9
dxdiff command, 2–7
dxmail command, 2–5
dxpaint command, 2–5

E
echo command, 3–5

Index–3

ed command, 2–4
Edit menu, E–6
editing, G–2
editmode environment variable, 3–1
editor

(See specific editor commands)
elcsd daemon, 4–15
elcsd.conf file, 4–16
Emacs, G–7
encapsulation, G–20
enhanced security, G–18
enumeration literal

differences between the XUI and
Motif interfaces, F–7

environment variables
codesets unavailable on Tru64

UNIX systems, 3–3
environment variables, and migration

to Tru64 UNIX, 3–1, 6–20
errno.h header file, B–2
error logging

(See event logging)
/etc directory

differences from the ULTRIX /etc
directory, 4–10

/etc/binlog.conf file
(See binlog.conf file)

/etc/elcsd.conf file
(See elcsd.conf file)

/etc/exports file
(See exports file)

/etc/fstab file
(See fstab file)

/etc/hosts file
(See hosts file)

/etc/hosts.equiv file
(See hosts.equiv file)

/etc/lvmtab file
(See lvmtab file)

/etc/printcap file
(See printcap file)

/etc/svc.conf file
(See svc.conf file)

/etc/syslog.conf file

(See syslog.conf file)
Ethernet network, 4–18
event logging, 6–23
ex command, 2–4
EXPL_STR constant, B–4
exports file, 4–3, 4–13
EXPU_STR constant, B–4
Extended SNMP

(See SNMP)
Extensible SNMP, G–17
extract command, 6–19

F
fcntl.h header file, B–3
fgetpos function, 7–20
file, G–2
file command, 6–10
file name completion in the C shell,

2–8
file system

64 bit, sizes of, 6–3
debugging, 1–7
mounting an ULTRIX file system on

a Tru64 UNIX system, 5–1
filec environment variable, 3–2
files,

and
migration, to, 4–16

files, and migration to Tru64 UNIX
log files, 4–16
patterns file, 6–20

finger command, 2–7
fontlist

differences between the XUI and
Motif interfaces, F–10

fsck command, 4–11
using on a Tru64 UNIX system to

check an ULTRIX file system,
5–2

fsetpos function, 7–20
fstab file

format, 4–12
fstab.h header file, B–3

Index–4

ftp command, 2–6
function arguments, 7–16
function names

differences between the XUI and
Motif interfaces, F–2

functions
calloc, 7–19
malloc, 7–19
printf, 7–19
scanf, 7–19

functions with a variable number of
arguments, 7–18

G
gated, G–16
gawk command, 2–4
gencat command, 6–20
gendisk utility, 6–11
genra utility, 6–11
gentapes utility, 6–11
getpgrp system call, 7–40
getrusage system call, C–1
getsysinfo system call, 7–41
gettytab file, 4–4
GNU Emacs, G–7
graph libraries, 7–36
grep command, 2–4
group database, 4–24

H
hashstat command (csh), 2–8, 3–5
header files, nonexistent, B–8
Help menu, E–7
Help push button, E–8
Hesiod naming service, 1–9, 4–23,

6–18
/home directory, 4–10
hostid command, 4–19
hosts database, 4–24

hosts file, 4–3
modifying on a Tru64 UNIX system,

4–20
hosts.equiv file, 4–3

modifying on a Tru64 UNIX system,
4–20

I
I18N

(See internationalization)
iconv command, 6–23, G–23
IEEE Std 1003.1-1990, 6–16
ifconfig command, 4–19
Ifree field, G–6
in.h header file, B–3
industry standards, 6–15

support for, 1–3
inetd daemon

configuring, 5–10
inetd.conf file, 5–10
init routines

execution order,, G–12
inodes, G–6
integer and long constants, 7–12
interfaces

for system administration, 4–16
internationalization

CDE configuration, G–22
configuration, G–22
in applications, 6–19
in single-user mode, 5–9
setting environment variables, 3–2

internationalization, and migration to
Tru64 UNIX, 6–19

Internet network, 4–18
Internet service daemon

(See inetd.conf file)
INTLINFO environment variable,

6–22
Intrinsics

(See X Toolkit)

Index–5

ioctl function, 7–43
ioctl system call

header file, B–3
ISO/IEC 9899:1990(E), 6–16
ISO/IEC 9945-1:1990(E), 6–16
ISO9996, G–4
Iused field, G–6

K
Kerberos, 1–9, 4–23, 6–18, 7–36

(See also libacl library; libdes
library; libknet library; libkrb
library)

kernel
(See operating system kernel)

key mappings, E–8
kits utility, 6–11
Korn shell, 2–7
Korn shell Tru64 UNIX

migration to Tru64 UNIX, 2–8
ksh shell

(See Korn shell)

L
LAN, 4–18
LANG environment variable, 5–10,

6–21
setting on the command line, 3–3

langinfo.h header file, B–4
LAT, 4–21

printer support for, 4–5
latcp, 4–22
latsetup command, 4–2, 4–22
LC_ALL environment variable, 6–21

setting on the command line, 3–3
LC_COLLATE environment variable,

6–21
setting on the command line, 3–3

LC_CTYPE environment variable,
6–21

LC_MESSAGES environment
variable, 6–22
setting on the command line, 3–3

LC_MONETARY environment
variable, 6–22
setting on the command line, 3–3

LC_NUMERIC environment variable,
6–21
setting on the command line, 3–3

LC_TIME environment variable
setting on the command line, 3–3

LC_TYPE environment variable,
6–21
setting on the command line, 3–3

ld command, 6–7
linking taso shared objects, 7–10
specifying -taso option, 7–8
using to create a shared library,

8–4, 8–5
lex command, 6–10
/lib directory

contents, 4–10
libacl library, 7–36
libauth library, 7–36
libbkr library, 7–36
libbsd.a library

contents, 7–36
libc

pthreads, G–13
libdes library, 7–36
libDXm library, 7–36
libi library, 7–35
libknet library, 7–36
libkrb library, 7–36
libmld library, 7–35
libpthread

pthreads, G–9
library calls, 7–19

fgetpos function, 7–20
fsetpos function, 7–20

libsnmp library, 7–36
libsql library, 7–36
libsys5.a library

contents, 7–38

Index–6

limits.h header file, B–4
lint command, 6–10
Lithuanian, G–23
LN01 laser printer, 4–6
local area network

(See LAN)
Local Area Transport

(See LAT)
locale database

storing in the /etc directory, 5–9
locale name

format, 3–3
locale, unavailable

DEC Multinational, 3–3
ULTRIX ISO 646, 3–3

log files
for the event-logging system, 4–16

logical storage manager
(See LSM)

Logical Storage Manager software
(See LSM software)

Logical Storage Manager subsystem
"LSM", 4–16

Logical Volume Manager software
(See LVM software)

.login file, 4–3
LONG_BIT constant, B–4
LONG_MAX constant, B–4
LONG_MIN constant, B–4
longjmp buffer, 7–29, 7–32
longjmp routine, 7–39t
lp command, 4–6
lpc command, 4–6
lpd daemon, 4–6
lpq command, 4–6
lpqrm command, 4–6
lprsetup command, 4–2, 4–6
ls command, 2–4
lseek system call, 7–19
LSM

encapsulation, G–20
mirroring, G–20

volencap, G–20
volrootmir, G–20
volunroot, G–20

LSM interfaces, 4–16
LSM software, 4–16
lvcreate command, 5–6
lvextend command, 5–6
LVM software, 4–16

using to mirror ULTRIX shadowed
data, 5–3

lvmtab file, 5–6

M
mail, G–2

address fuzzy matching, G–5
Mail command, 2–5

(See also sendmail utility)
.mailrc file, 4–3
mailsetup command, 4–2
mailx command, 2–5
make command, 6–10

using with shared libraries, 8–4
makedbm command, 4–24
MAKEDEV command, 4–2
Makefile

modifying to use shared libraries,
8–4

typical modifications, 7–1
MAKEHOSTS command, 4–19
malloc function, 7–19

use with taso, 7–11
malloc system call, 7–40
man command, 2–6, G–23
Management Information Base, 4–20
manpage

(See reference page)
manpage codeset conversion, G–23
math.h header file, B–5
MB_LEN_MAX constant, B–4
Menu

Index–7

Edit, E–6
File, E–5
Help, E–7
Standard, E–4
Window, E–3

Menu bar, E–4
Message box, E–8
message catalog

storing in the /etc directory, 5–9
Message Handler Utility, 2–5
mfree routine, 7–38t
mh command, 2–5
MIB, 4–20, G–18

(See also Host Resources MIB)
migration to Tru64 UNIX

executables and DECmigrate
product, 1–11

features common with ULTRIX,
1–5

features not on ULTRIX systems,
1–1

Tru64 UNIX features, 1–1
ULTRIX SMP applications, 1–8
user envrionment, 2–1

mirroring, G–20
mkfdmn command, G–8
mmap system call

use with taso, 7–11
modem control, 7–43
monitor, G–12
Motif interface, 2–1

(See also OSF/Motif interface)
differences with the XUI interface,

E–1
Motif terminology, E–1
Motif Toolkit, 6–4
Motif widget, F–1
Motif Window Manager, 6–4
mount command, 4–12, G–8
mount routine, 7–39t
mountd daemon, 4–14

configuring for ULTRIX
compatibility, 5–11

mouse button bindings, E–7
msem_init routine, 8–7
msem_lock routine, 8–7
msem_remove routine, 8–7
msem_unlock routine, 8–7
Mtools, G–5
mtox routine, 7–38t
mule

(See multilingual Emacs)
multilingual Emacs, G–22

N
n-buffered I/O, 1–9
name changes

callback reasons, F–8
clipboard, F–10
compound strings, F–9
enumeration literals, F–7
fontlist, F–10
functions, F–2
resource, F–4
resource manager, F–11
widget classes, F–1

named daemon, 4–23
neqn command, 2–7
netgroup database, 4–24
netgroup file, 4–3
netsetup command, 4–2, 4–19
netstat command, 4–19
network

command for setting up, 4–19
network exerciser

(See netx command)
Network File System

(See NFS)
Network Information Service

(See NIS)
network parameter

command for modifying, 4–19
network programming, 6–16
network statistic

command for displaying, 4–19
Network Time Protocol

Index–8

(See NTP)
networks database, 4–24
networks file, 4–3
netx command, 4–19
new features

CDE, G–2
Exstensible SNMP, G–17

newfs command, 4–11, G–8
newinv utility, 6–11
NFS, 4–13
NFS protocol versions, 4–13
NFS Version 2 protocol, 4–13
NFS Version 3 protocol, 4–13
nfsd daemon, 4–15
nfsiod daemon, 4–15
nfssetup command, 4–2, 4–13
nfsstat command, 4–14
nice routine, 7–37t
NIS, 4–24, 6–18
nissetup command, 4–2, 4–24
NL_LANGMAX constant, B–4
NL_MSGMAX constant, B–4
NL_NMAX constant, B–4
NL_SETMAX constant, B–4
NL_TEXTMAX constant, B–4
nm command, 6–10
nonexistent header files, B–8
Notepad program, 2–5
nroff command, 2–7
nslookup command, 4–24
nsquery command, 4–24
NTP, 4–25
ntpsetup command, 4–2

O
odump command, 6–10, 7–10
ONC RPC, 6–18
open call, 7–44
open system call, C–1
operating system kernel, 1–2

realtime, 1–2
OSF/Motif interface, 2–1
OSF/Motif, Version 1.2.2, and

migration, 6–3

P
pac command, 4–6
packet filter pseudodevice driver,

4–18
Paint program, 2–5
partition overlap checks, G–8, G–21

addvol, G–8
mkfdmn, G–8
mount, G–8
newfs, G–8
rmvol, G–8
swapon, G–8
voldisk, G–8
voldisksetup, G–8

passwd command, 2–9
passwd database, 4–24
password

system-generated, 2–9
PATH environment variable

default definition, 2–9
setting for ULTRIX compatibility,

3–2
pathname

null, 7–44
patterns file

location, 6–20
Performance Manager, G–7
periodic command, 2–4
phones file, 4–3
ping command, 4–19
pixie command, 6–10
pixstats command, 6–10
plot libraries, 7–36
point-to-point protocol, G–17

Index–9

pointer size, and migration to Tru64
UNIX, 7–6

pointer subtraction, 7–18
pointer truncations, 6–8
pointers

allocation of, 7–6
pointer-to-int assignments, 7–6
sizing, 7–6
specifying 32-bit, 7–6

port checking, 4–14
porting assistant, G–15
Porting Assistant, G–15
porting software, G–15
portmap daemon, 4–14
POSIX, 6–16
POSIX 1003.1b, G–14, G–15
POSIX 1003.1c, G–9
_POSIX_4SOURCE, G–15
_POSIX_C_SOURCE, G–15
PPP, G–17
preprocessor symbol

predefined, 7–21
print filters

list of supported, 4–6
print services, 4–5
print services, and migration to Tru64

UNIX, 4–5
print system

spooling directory for, 4–6
printcap file, 4–5
printf function, 7–19
printing, G–2
PrintServer for ULTRIX software, 4–6
prof command, 6–10, G–12
.profile file, 4–3
protocols database, 4–24
protocols file, 4–3
ps command, 2–4
pthreads

libc, G–13
libpthread, G–9
thread independent services, G–13

ptrace routine, 7–39t
pvcreate command, 5–5

pxtar command, 5–7

R
rand routine, 7–37t
rc.local file, 4–4
rcp command, 2–6
rdate command, 2–6, 4–20
re_comp routine, 7–37t
re_exec routine, 7–37t
readdir routine, 7–41
realtime, 1–2, G–9, G–15

high-resolution clock, G–14
synchronized I/O, G–15

realtime signals, G–14
reference page

support for, 2–6
reference pages

compressed, G–6
remote file, 4–3
remote file access protocols, 4–13
Remote Installation Services software

(See RIS software)
remote procedure calling, 1–9, 6–18

(See also DEC RPC)
resolv.conf file, 4–3
resource manager

differences between the XUI and
Motif interfaces, F–11

resource names
differences between the XUI and

Motif interfaces, F–4
resource.h header file, B–5
.rhosts file, 4–3
RIS software, 4–22
rlogin command, 2–6
rmdir routine, 7–39t
rmvol command, G–8
RPC, 6–18

(See also remote procedure
calling)

rpc database, 4–24
rpc file, 4–3
rsh command, 2–6

Index–10

ruptime command, 2–6
rwho command, 2–6

S
/sbin directory

contents, 4–10
scanf function, 7–19
sccs command, 6–11
screend command, 4–20
screenmode command, 4–20
screenstat command, 4–20
SCSI/CAM I/O, G–23
scsimgr, G–8
Secure Attention Key, 2–9
security, 1–4, G–19
security integration architecture

(See SIA)
sed command, 2–4
select call, 7–44
sendmail utility, 4–26, G–5
services database, 4–24
services file, 4–3
session, G–2
set command, 3–5
setjmp buffer, 7–29, 7–32
setjmp routine, 7–39t
setld command, 6–11
setlocale function, 6–22
setpgid system call, 7–41
setpgrp routine, 7–39t
setpgrp system call, 7–41
setsockopt system call, C–1
setsysinfo system call, 7–41
setup scripts, and migration to Tru64

UNIX, 4–2
sh shell

(See Bourne shell)
sh5 shell

(See Bourne shell)
shadowed disk

migrating ULTRIX shadowed data
to the Tru64 UNIX system, 5–3

shared library, 6–12
creating from archive libraries, 8–5
creating from object files, 8–4

shared library, and migration to Tru64
UNIX, 6–14

shell
(See Bourne shell, C shell, Korn

shell)
shmctl system call, C–1
shmmax parameter

configuring, 5–8
shmmin parameter

configuring, 5–8
shmseg parameter

configuring, 5–8
showmount command, 4–14
SIA, 1–4
signal routine, 7–39t
Simple Network Management Protocol

(See SNMP)
single-user mode

difference from ULTRIX single-user
mode, 4–11

size command, 6–10
size_t variable, B–6
sizeof operator, 7–18
sizer program, 5–8
Slovene, G–23
SMP, 1–8
SNMP, 1–9, 6–17, 7–36

(See also libsnmp library)
MIB, G–18

snmpd, G–17
snmpd daemon, 4–20
snmpd.conf file, 4–21
snmpsetup command, 4–2, 4–21
so_locations file, 8–6
software subsets, and migration to

Tru64 UNIX, 4–1
spooling directory

Index–11

(See print system)
sprintf routine, 7–40
standards

(See industry standards)
startcpu system call, C–1
statements and expressions

assignment and argument passing,
7–12

integer and long constants, 7–12
pointer subtraction, 7–18
shift operations, int and long

constants, 7–13
sizeof operator, 7–18
variable number of arguments

functions, 7–18
_ _STDC_ _symbol

how defined, 7–20
stddef.h header file, B–6
stdlib.h header file, B–6
stdump command, 6–10
stopcpu system call, C–1
strextract command, 6–19
strip command, 6–10
strmerge command, 6–19
structure alignment, 7–14
structure member alignment, 7–14
structures

size changes, 7–13
Style

help push button, E–8
svc.conf file, 4–23
svcorder file, 4–3
svcsetup command, 4–2, 4–23
swapon command, G–8
symbol

how resolved for a shared library,
8–2

Symmetric Multiprocessing software
(See SMP)

syslog.conf file, 4–16
syslog.h header file, B–6
syslogd daemon, 4–15
system calls

lseek, 7–19

system customization files, and
migration to Tru64 UNIX, 4–3

system events
how recorded, 4–15

system initialization file, 4–4
system monitoring, G–7
system performance, G–7
system security

system administration features for,
4–5

user features for, 2–9
System V software, 6–16

T
T option

use with -taso option, 7–10
t_open call, 7–43
talk command, 2–7
tape archives

ULTRIX
archives, on, 5–7

tar command, 5–7
taso option

affect of -T and -D options, 7–10
cc command, 7–7

tbl command, 2–7
Tcl/Tk software, G–9
TCP/IP, 4–18
telnet command, 2–7
termcap, 4–8, 7–39
terminal emulator, G–2
terminfo, 4–8, 7–39, G–6
termio header file, B–7
termios header file, B–7
text segment

effects of -taso option, 7–9
tftp command, 2–6
thread independent services

pthreads, G–13
tic, G–6
Time Synchronization Protocol

(See TSP)
timezone routine, 7–38t

Index–12

tip utility, 4–29
tput, G–6
trans command, 6–20
Transmission Control

Protocol/Internet Protocol
(See TCP/IP)

truncated address support option, 7–7
TSP, 4–25
ttys file, 4–4

U
UFS, 4–9
UIL compiler, 6–4
ULONG_MAX constant, B–4
ULTRIX RISC programming

environment
MIPS Version 2.10-based, 6–6
MIPS Version 3.0-based, 6–6

ULTRIX/SQL software, 7–36
(See also libsql library)

umount command, 4–12
umount routine, 7–39t
unaligned access, 7–41
Unicode, G–22
unions

size changes, 7–13
UNIX File System

(See UFS)
unlink routine, 7–39t
User Interface Language compiler

(See UIL compiler)
/usr/bin directory

contents, 4–11
/usr/lib/so_locations file

(See so_locations file)
/usr/sbin directory

contents, 4–11
/usr/ucb directory, 4–11
uucp command, 2–7
uucp utility, 4–26
uucpsetup command, 4–2

V
valloc routine, 7–38t
/var/adm log file, 4–2
/var/adm/smlogs directory, 4–2
variable definitions, 7–16
variables

assignments, 7–16
size_t, B–6
wchar_t, B–6

vfork system call, C–1
vgcreate command, 5–6
vi command, 2–4
voldisk command, G–8
voldisksetup command, G–8
volencap, G–20
volrootmir, G–20
volume group

creating, 5–6
volunroot, G–20
vtimes routine, 7–38t

W
w command, 2–7
wchar_t variable, B–6
who command, 2–7
widget class

differences between the XUI and
Motif interfaces, F–1

windowing environment
(See CDE)

worldwide mail handler, G–22

X
X keyboard extension

(See XKB)
X Toolkit, 6–4
X User Interface, 2–1
X Window System, 6–3
X/Open Transport Interface

Index–13

(See XTI)
X11R6, G–2
.X11Startup file, 4–3
xcd command, 2–4
.Xdefaults file, 4–3
XKB, G–4

ISO9996, G–4
Xlib library, 6–4
XPG3, 6–16
xtaso option

cc command, 7–6
XTI, 6–17, 7–43
xtom routine, 7–38t
XUI, 1–9
XUI Graphical User Interface

(See XUI)
XUI interface, 2–1

differences with the Motif interface,
E–1

XUI terminology, E–1

XUI widget, F–1

Y
yacc command, 6–11
Yellow Pages

(See NIS)
YP, 4–24, 6–18

(See also NIS)
ypbind daemon, 4–24
ypcat command, 4–25
ypmatch command, 4–25
yppasswd command, 4–25
yppasswdd daemon, 4–24
yppush command, 4–25
ypserv daemon, 4–24
ypsetup command

(See nissetup command)
ypwhich command, 4–25
ypxfr command, 4–24

Index–14

How to Order Tru64 UNIX Documentation

To order Tru64 UNIX documentation in the United States and Canada, call
800-344-4825. In other countries, contact your local Compaq subsidiary.

If you have access to Compaq’s intranet, you can place an order at the following
Web site:

http://asmorder.nqo.dec.com/

If you need help deciding which documentation best meets your needs, see the Tru64
UNIX Documentation Overview, which describes the structure and organization of
the Tru64 UNIX documentation and provides brief overviews of each document.

The following table provides the order numbers for the Tru64 UNIX operating system
documentation kits. For additional information about ordering this and related
documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-MT4AA-G8

Tru64 UNIX Documentation Kit QA-MT4AA-GZ

End User Documentation Kit QA-MT4AB-GZ

Startup Documentation Kit QA-MT4AC-GZ

General User Documentation Kit QA-MT4AD-GZ

System and Network Management Documentation Kit QA-MT4AE-GZ

Developer’s Documentation Kit QA-MT5AA-GZ

General Programming Documentation Kit QA-MT5AB-GZ

Windows Programming Documentation Kit QA-MT5AC-GZ

Reference Pages Documentation Kit QA-MT4AG-GZ

Device Driver Kit QA-MT4AV-G8

Reader’s Comments

Tru64 UNIX
ULTRIX to Tru64 UNIX Migration
AA-PS3EE-TE

Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number, and
the product name and version.

Please rate this manual:

Excellent Good Fair Poor
Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _______________________

Name, title, department ___
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

 Do Not Cut or Tear - Fold Here

 Do Not Cut or Tear - Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3-3/Y32
110 SPIT BROOK RD

COMPAQ COMPUTER CORPORATION

NASHUA NH 03062-2698

C
ut on T

his L
ine

