COMPAQ

Object File / Symbol Table Format Specification

Version 5.0 or higher, July 1998

© Digital Equipment Corporation 1998, 1999. All rights reserved.

This manual describes the organization and usage of object files and images that are built on
Compagq's Tru64 UNIX systems.

COMPAQ, the Compag logo, and the Digital logo are registered in the U.S. Patent and Trademark Office. The
following are trademarks of Digital Equipment Corporation: ALL—IN-1, Alpha AXP, AlphaGeneration, AlphaServer,
AltaVista, ATMworks, AXP, Bookreader, CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet,
DECstation, DECsystem, DECterm, DECUS, DECwindows, DTIF, Massbus, MicroVAX, OpenVMS,
POLYCENTER, Q-bus, StorageWorks, TruCluster, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem
Software, UNIBUS, VAX, VAXstation, VMS, XUI. Other product names mentioned herein may be the trademarks of
their respective companies.

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc.
MIPS is a trademark of MIPS Computer Systems, Inc. Adobe, Acrobat Reader, PostScript, and Display PostScript are
registered trademarks of Adobe Systems Incorporated. UNIX is a registered trademark and The Open Group is a
trademark of The Open Group in the US and other countries. X/Open is a trademark of X/Open Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii).

Compaq Computer Corporation makes no representations that the use of its products in the manner described in this
publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written
license from Compag or an authorized sublicensor.

Compag conducts its business in a manner that conserves the environment and protects the safety and health of its
employees, customers, and the community.

Table Of Contents

ABOUT THIS MANUAL ...ttt ettt e e e e e e e ab bbb e e e e e e e s s aabb b b e e e e ae e e s e annebeees 21
1 Lo 1T oo = PR 21
N [Tt T 21
(O] (o= 0 V421 1Te] o IO PPPPUPUPPPPPPPPRPIN 21
Y= PV (=T oo U 0 =T o] £ 21
REAUEI'S COMIMENTS ...ttt et e e e et e e e e e et e e e e eett e e eeeaaa s e e e eeten e eaeeesnseeeennnnnnaaanees 22
(@] 1Y/ o1 0] 1S PR 22
1. INTRODUCTION ...ttt ettt e e e e e s s bbb e e e e e e e e e annbbbe e e e e e e e e s nnneneeas 24
1.1. 9= 111 o] P 24
1.2 History and APPICADIlITYiiii 27
1.3. Producers and CONSUMIEIS.cieuuuuieeeeiiieeeteeit e e e e eetti s e e eeeaa s s eeaeate e eeeeannaaeeeesteneeeeesnnnn 27.....
1.3.1. L070] 101 0 11T £ J SO 27
1.3.2. ASSEIMDIRIS . .. e a e — 27..
1.3.3. LMK S ettt —— 28
1.3.4. o720 (=) £SO PP PPUUPPPPRRRRTTIRIN 28
1.3.5. (DT oW Lo o =] TP 28
1.3.6. Object INStrumentation TOOIS.........ooiiuiii i 8. 2
1.3.6.1. POSE-LINK OPLMIZEIS ...ttt e e e e eees 28.........
1.3.6.2. Profiling TOOISeueee ettt eeeeaans 28...
1.3.7. ATCNIVEIS ettt e e e e e ettt e e e bbb s 29
1.3.8. Miscellaneous ObJECE TOOIS........ii i 9. 2
1.3.8.1. (@] o] [Tl ol DU]] o 1=] £ TP 29........

1.3.8.2. ODbject ManiPUIALOIS. et 29........

1.4. ODJECT FIlE OVEIVIEW ...ttt e ettt e e e e e et e e e e etba e eenmnan 29

1.4.1. Main Components Of ODJECT FIlES........coooiii e 29
1.4.1.1. ODbjJeCt File HEAUEIS. et 29.......
1.41.2. INSErUCLIONS AN DALAcoiiiiieiiiiiiie e 30.........
1.4.1.3. Object File Relocation INfOrmMationc.uuuiiiieiiiiii e 30
1.4.1.4. SYMDBOI TADIE ... e 30......
1.4.1.5. Dynamic Loading INfOrMationooiiiiiniiii e e 30
1.4.1.6. COMMENT SECLION ...t e e et e e e e e e e eeeeees 30..........

1.4.2. KiNdS Of ODJECE FIlESt 30.....

1.4.3. ODbject File COMPIrESSIONcceeeiiieiiiiii et e e et aeeaeaa s 31.........

1.4.4. ODbJECE ATCRIVESuieiii i et e e e e e e e 32...

1.4.5. ODbjJECE FIlE VEISIONING. .. uuiiiiieeeiiiieeeeiiee ettt e e e e e e e e e e e et e e e e e e e e s s 33.....

1.4.6. Object File ADSIract Dat@ TYPES ..uiiiieeeiiiiieeeeiiie et e e e e e e e e e e e aeeas 33

1.5. SOUICE LanQUage SUPPOIT ...ttt e et e e e e et e e et e e e ab e e et e eeenaeen 35.....

1.6. SYSIEM DEPENUENCIES ...ttt e e s 35...

1.7. Architectural DEPENUENCIESuuuiiiiiii e e e e e et eeeeaeas 36....

1.8. Relevant Header FlES............oi i eeeeees 36

2. HEADERS ...ttt e e e — et e e e e e e e h b e e e e e e e e e e aabbrreaaaa as 38

2.1. New or Changed Header FEALUIESi i 38
2.2. Structures, Fields, and Values for HEAUErS.uuuiiiiiiiieeeiiieeeeeee e 38

2.2.1. File Headeffilehdr.h SO 38

2.2.2. a.out HeadeBQUINAI.N) ... 40

2.2.3. Section Headersanhdr.n) ... 42

2.3. [(ST 1o [G U LT Vo [PSPPI 48

2.3.1. ODJECt RECOGNITION ...t e ettt e e e e e eaa e e eenas 48.....

2.3.2. IMAGE LAYOUL ...ttt e et e e e e et e e e e e e e e e e et e enanns 48...
2.3.2.1. OIMAGIC ..ttt a e e e aean 49.....
2.3.2.2. NIMAGIC . ettt e et e e et e e et e e et e eba e enan 50.....
2.3.2.3. ZIMAGIC .. e ea s 52....

2.3.3. AAAIrESS SPACE ...ttt ettt e e b e e e ab s 5.
2.3.3.1. AAreSS SEIECHION ..ottt e e e e e eean 55........
2.3.3.2. TASO AQUrESS SPACE. ... iieie ettt e et e ettt e e e e et a e e e ebba e aaeenanns 56

2.3.4. GP (Global POINEI) RANGES.ciiiiiiiieieei ettt e e e e e e eeenas T 5

2.3.5. ALIGNIMENT .. ettt e ettt e e ettt e e e e eaa e e e e enemmnnan 58

2.3.6. Y=o 1o g T Y] = U 59...

2.3.7. SPECIAI SYMBOIS ...uuiiiii e s— 59.....

P N 0 R Yo ot Y= | o o [SRS 62...
2.4. Language-Specific Header FEAUIES.couiiiu e 63
3. INSTRUCTIONS AND DAT A ..ttt e e et eeeba e aeeeas 64
3.1 New or Changed Instructions and Data FEatUres.............ovi i 65
3.2 Structures, Fields, and Values for Instructions and Data...............ccoeeeeeiiiiiiiiiiiiiiiii e 65
3.2.1. Code Range DescCriptor (PASC.N) ...uuuueiiiii e 65
3.2.2. Run-time Procedure Descriptor (PASC.N)oovvvviiieiii e 65
3.3. INStructions and Data USAQEuuuiiiiiiiieeeeeiii ettt e e e e e et e e e s 68.....

3.3.1. MINIMAl OBDJECES ... e e et a e e e e e e e e e eeesannnes 68...

3.3.2. Position-Independent Code (PIC)..........ooiiiiiiiiiiiiiiie e 68

3.3.3. [VA Yl S RS (1 o S 69....

3.3.4. CONSLANT DALAL.......uiiiiiirie e 10...

3.3.5. INIT/FINI DFIVEr ROULINES ...ttt ettt e e e e e e e aeeeeeas 1. 7
3.3.5.1L [T 0] 20T T USSR 73
3.35.2. EXECULION OFUEN ...ttt et e e et e e e e e e e e e e e s aman 74......

3.3.5.2.1. Dynamic EXECUADIESo i 74

3.3.5.2.2. Static EXeCUAbIEScooiiiiiiiiiiiii e d D
3.3.5.2.3. Ordering Within ODJECLS......... ittt e et aeeea e aeaes 76
3.3.5.2.4. Subsystem Control of INIT/FINI OFAercooiiiiiiiiiiiiiiii e 76
3.3.6. Initialized Data and Zero-Initialized Data (DSS)cccuvuuiaiiiiiiiiie e 76
3.3.7. PermissionS/ProteCHIONScoviiiiiiiiiii ettt 78........
3.3.8. Exception HandliNg Data..........ccouuuiiiiiiiiie et 79.........
3.3.9. Thread Local Storage (TLS) Dataoieieeiiiiiaiiiiiie et e et e e e e e e eees 80
3.3.10. User Text and User Data SECHONSccuuutiriiiiiiie ettt e e 82
3.4. Language-Specific Instructions and Data Featurescoviiieiiiiiiiiiiiiiie e 82
4. RELOCATION ..ttt ettt ettt e ettt e e e et b e e e e et e et e bt e e e e eba e e eeebaaeaennns 84
4.1. New or Changed ReloCatioNS FEAIUINES.c..uu it e e s 85
4.2. Structures, Fields, and Values for RElOCAtIONS.coeeiiiiiiiiiiiiiiiee e 85
4.2.1. Relocation ENtry (Fel0C.N)... .o ee 85.......
4.2.2. Compact Relocation Subsection.@@mment SECLION)c..uiiiiiiiiiiiiiieiiiieeeeeiieeees 90
4.2.3. SECHON HEAUET ...t e e e e e s s 90....
4.3. REIOCAIONS USAGEciiiiiieiiieiiiei ettt e et e e e e e 91
4.3.1. Relocatable ODJECESuuuiiiii e 91......
4.3.2. RelOCAtiON PrOCESSING. . .ccettiieiiiiii ettt e e et eeeeea s Q2.......
4.3.2.1. Local and EXIErnal ENIESccouiiiiiiiiiiiie e 92
4.3.2.2. Relocation ENry OFAEINGeuuviiiiiiiieeeeeee ettt s e e e e e e e e e eeaaeetn s s s e e e e e eeeeeassennnnnnnns 96
4.3.2.3. Shared Object TransSforMation..........ooiiii e e 97
4.3.3. Kinds Of REIOCALIONSooiiiiiiii e ee e 97......
4.3.3.1. DireCt REIOCALIONSoeeiiiiieeiiei ettt 97.......
4.3.3.2. GP-Relative REIOCALIONScciiiiiiiiii it ee e 98

4.3.3.3. Self-Relative (PC-Relative) REIOCALIONSiiiiiieeiiiiiiiieieiiie e 98

4.3.3.4.

4.3.3.5.

4.3.3.6.

4.3.3.7.

4.3.4.

4.3.4.1.

4.3.4.2.

4.3.4.3.

4.3.4.4.

4.3.4.5.

4.3.4.6.

4.3.4.7.

4.3.4.8.

4.3.4.9.

4.3.4.10.

4.3.4.11.

4.3.4.12.

4.3.4.13.

4.3.4.14.

4.3.4.15.

4.3.4.16.

4.3.4.17.

4.3.4.18.

4.3.4.19.

4.3.4.20.

4.3.4.21.

4.3.4.22.

4.3.4.23.

Literal REIOCATIONSveieeiit ittt ettt e et e e e e et r st s e e eneennnn 98......

Relocation Stack EXPreSSIONS.ot e 99
Immediate REIOCALIONS........ccoiiiiiiiiiii e 9. 9
TLS REIOCALIONS ...ttt 10Q.......
REIOCAtION ENTIY TYPES vttt ettt e e et eeeaa e Q0....... 1
R A B S L e e e e e 101
ROREFLONG ... ettt e e e e e e 2....... 10
ROREFQUAD. ..ottt ettt et ettt ettt ettt et et 3.....10
R UGPRELSBZ... e et 105.......
RLITERAL . ettt e e et e e et e e e e e e e eeanns 107......
ROLITUSE: R LU BASE ..ot evet ettt ettt ettt ettt ettt 108
RULITUSE: R LU ISR .. eceteeet oottt ettt ettt ettt ettt 110
R UGPDISP . 111......
R _BRADDR. ..t aaas 12....... 1
[| PP TUPP P TPPR 114
REUSRELLG ...ttt ea e aae 115.....
R S RE LS e e e aae 116.....
REUSRELBA ... e e e aae 117.....
RUOP_PUSH ...ttt et ettt ettt ettt ettt 118........
RUOP_STORE ... ettt ettt ee ettt ettt ettt ettt e e eee e 19........ 1
RLOP_PSUB ...ttt ettt ettt ettt ettt ettt e e ee e, 119........
R OP P RSHIF T ..t e e e e 0........ 12
RUGPVALUE ettt e e e e e e e 21...... 1
R_GPRELHIGH ... et ea e e 122
RUGPRELLOWV ...ttt e et et e et e e et e e ea e eeanas 123
R_IMMED: GPLB.... .ottt e e e e et eeeas 124
ROIMMED: GP_HIB2... et e e e e e 125

R_IMMED: SCN_HIBZ ... 126

4.3.4.24. R_IMMED: BR_HIBZ....oen e 126

4.3.4.25. R_IMMED: LOS2 ...ttt ettt e et e e et e e e e e e aeeas 127
4.3.4.26. R_TLS _LITERAL ...ce ettt et e e e e e et e e e ab e e eean e 127
4.3.4.27. R_TLS_HIGH ... et e e e eens 29....... 1
4.3.4.28. R_TLS_LOW ..ottt ettt e e e et eeea e eeans 29....... 1
4.4. CoMPACT REIOCATIONS ...ttt ettt e e e ab e e e eeeanas 131.
4.4.1. OWVBIVIBW. ..ttt ettt e e e e e e e et e et e e e bbb s s e e e e e e e e e s oo 131
4.4.2. FIlE FOMMAL ...t e ettt e e e e e e e s s 131.
4.4.2.1. Compact RelOCAtIONS VEISIONuuuiiiiiiiii ettt e et e e e 132
4.4.2.2. Compact Relocations File HEader............oi e 132
4.4.2.3. Compact Relocations Section HEAUENc.uuuuiiiiiiiii e 133
4.4.2.4. Compact Relocations Table..........oovuuuiiiiiiiii e 134
4.4.2.5. Stack Relocation TabIeeeiiiiiiiii e 136
4.4.2.6. GP Value TabIESo 136........
4.4.3. Detailed Algorithm for Compact Relocations Productioncccccceevvvvviiiiiviiiiiiiinnnnnn, 137
4.4.4, Detailed Algorithm for Compact Relocations ConsSumption................uvveiiiiiiiineeeeeeeeennnnn. 138
4.5. Language-Specific ReloCatioNS FEALUIES...........u it 139
5. SYMBOL TABLE (V3.13) .ttt ettt e e e e e e e et e e e e e e e eeneaaan s 140
5.1. New or Changed Symbol Table FEatUresS...........oi i 142
5.2. Structures, Fields and Values for Symbol Tables ... 143
5.2.1. Symbolic Header (HDRR)ccoiiiiiiiiieeiiiiee ettt e e e e e e e e e e e e e e e e e e 143
5.2.2. File Descriptor ENrY (FDR)ciiie i ettt a e e e e e e e e n e e aa et aeaaaeeeas 146
5.2.3. Procedure Descriptor ENtry (PDR)uuuuuiiiiieeiieieieeiiiiiiiis s se e e e e e e e eeeeaasttin s s s aaeaeaaeesessannees 150
5.2.4. Line Number ENtry (LINERY)coooiiiiiieeie et e e et e e e e e 152
5.2.5. Local Symbol ENtry (SYMR)....cceuiiiiiiiiiiiieeeee ettt s e e e e e e e e eeeaaaata s s s s e e eaaaaeeeeesssnnees 153

5.2.6. External Symbol ENtry (EXTR) ...ccooiiiiiiiiiiii e e et e e e e 156

5.2.7. Relative File Descriptor ENtry (RFDT)oouuuiiiiiiiii et e 157

5.2.8. Auxiliary Symbol Table Entry (AUXU)iiiiiiieeeee e 158
5.2.8.1. Type Information ReCOrd (TIR)......c.uuiiiiii e 159
5.2.8.2. Relative Symbol Record (RNDXR).......uiiiiiiiiiiaiiii et 162

5.2.9. SHING TADIE. .. et eannan 163

5.2.10. Optimization Symbol Entry (PPODHDR)ccuuuiiiiiiii e e 163

5.2.11. Symbol Type and Class (St/sc) CoOmMbINAtIONS...........oiiiiiiiiiiee e 164

5.3. SYymDOl TabIe USAQE ... e s 178..

5.3.1. Levels of Symbolic INfOrMation..........c..uii i 178
5.3.1.1. Compilation LEVEIScoiiiiiii et B 1
5.3.1.2. Locally Stripped IMAGES.oeeeei e eeeaa s 179
5.3.1.3. (Fully) SEripPed IMAGES.ceeeeeiiiiiie it e e e e e e e Q....... 18

5.3.2. SOUrCE INFOrMALION......coii it e e e aeeeas 180.....
5.3.2.1. SOUICE FlES ...t e e e e e e e e e s 180....
5.3.2.2. Line NUMDbBEr INFOrMALIONuuuiiiiiiiiiiiiiii e 182

5.3.2.2.1. The Line NUMDEr Table..........uuuiiiiiiiiiiiiiiiiii e 182
5.3.2.2.2. Extended Source Location Information (ESLI)..........ccccoeviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeiiians 187

5.3.3. Optimization SYMDBOISooiiiiiii e 93....... 1

5.3.4. RUN-TIMe INfOrM@ation..........oooiiiiii e 95....... 1
5.3.4.1. STACK FramMES ... e e e 195......
5.3.4.2. Procedure AQOrESSEScooii ittt e e e e e e e e e e e e aeeeeees B......... 19
5.3.4.3. o Tor- IS}] o o] Ao [0 =TSSR 197
5.3.4.4. UPIEVEI LINKS ...t e e e e e et n s e e e e e e e e e eeeaaes 197....
5.3.4.5. Finding Thread Local Storage (TLS) SYMDBOIS..........oovviiiiiiiiiiiiieee e 200

5.3.5. Profile FEedback Dataccouiiiiiiiiiiiii e 200........

5.3.6. STl] 011 J PP 201

5.3.6.1. ProCEAUNE SCOPEvvviiiiieiiiee ettt e e e e e e e e e eeaeeas 202.........

5.3.6.2. Bl S COPE . . et e mnnas 203..

5.3.6.3. BIOCK SCOPE.....euieeeeeit ettt e e e e 204....
5.3.6.4. NAMESPACES (CH) it e et eeeen e e eerin e e eeees B, 20
5.3.6.4.1. NamMeSPaCE COMPONENTS. .. .cuuuiiitiiieit ettt e e et e et e e et e e et e eetaaennnaaes 206
5.3.6.4.2. NaAMESPACE AlIGSES. ... ittt e e e e e e et e e e e et e e e e eaa e aee 206
5.3.6.4.3. UNNAmMeEd NAMESPACEccieuuuiaeiiiii et e et e et e e e e et e e e e et e e e e eeba e e aeeaaanans 206
5.3.6.4.4. USAge Of NAMESPACES ccieitiiiaeiiiti ettt e et ettt e e e e et e e e e eaba e e aeenanns 207
5.3.6.5. Exception Handling BIOCKS (CA).....iiiiiiiiieiiiii e 207
5.3.6.6. CommoN BIOCKS (FOIIran)........oooeeiiiieieei et e e e e 208
5.3.6.7. Alternate ENtry POINTS.....ccoiiiiiiiiiiie e 09....... 2
5.3.7. Data Types in the Symbol Tableuuuiiiiiii e e eeeeens 210
5.3.7.1. 27 TS o 1Y, 1= SR 210....
B5.3.7.2. TYPE QUANTIEIS ...cciieiiiiiiiie et e e e e e e e e e e e e eeaen s 211.....
5.3.7.3. Interpreting Type Descriptions in the Auxiliary Table..............ccovvviiiiiiiii e, 211
5.3.8. Individual TYype REPreSENTALIONS.......cccviiiiiiiiiiiiiiiie e e e e e e et e e e e e e e e eeaaearane s 222
5.3.8.1. LT[0] =T N Y/ o1 SRR 222....
5.3.8.2. F 4 =\ Y o[PS 222...
5.3.8.3. Structure, Union, and ENumMerated TYPES.......uuuuuuiiiiiiieeeiiieiiiiiiiiiiee e e e e e eeeevaeseannnnnns 224
LR S S Y/ o 1=To [T 1Y/ o 1TSS 227.....
5.3.8.5. FUNCLION POINTEE TYPE..eiiiiiiiiiiiiiieeeee ettt s e e e e e e e e e e e e ettt s s e aaeeaeeeeeeeessnnnes VAT 22
5.3.8.6. (O P TR Y oL (O o PSSR 228.......
5.3.8.6.1. EMPpty Class Or StrUCIUre (CH+) . .cciiiiiiiiiiiiiiiiiiiieeeeeeeeeeeiiiis e e e e e e e eeeaeeanan s 229
5.3.8.6.2. Base and Derived ClassSes (CH+)....iiiiiiiiiiiiieiiiiiiiiiiiiiseeeeeeeeeeeevsiiiiin s ssseeeeeeeeeeesnsnnn 230
5.3.8.7. Template TYPE (CHt) ittt e e e e e e et a e e e e e aaaaes 231
5.3.8.8. Array Descriptor Type (FOrtran90)............uuuuuurriiiiieeeeiiieeeiiiiiiinnnneeeeeseeeesssnsnnnn 231
5.3.8.9. Conformant Array TYPE (PaSCal)......uuuuiiiiiiiieieiiiiieeee e 233
5.3.8.10. Variant Record Type (Pascal and Ada)ccoeiiiiieeiiiiiiiiiiiiiiiins e e e 234

5.3.8.11. Subrange Type (Pascal and Ada)............oouuuuiuiiiiiiiiiiie e 236

5.3.8.12. Set TYPE (PASCAI) ...ceeiiii it 238......

5.3.9. Special Debug SYMDOIS ... 9. 23

5.3.10. SYMDBOI RESOIULION ...ttt eeees 24Q.....
5.3.10.1. Library SEarcCh ... e 24Q....
5.3.10.2. Resolution of Symbols with Common Storage Class............cooeuuiiiiiiiiiiiiiieeeie e, 240
5.3.10.3. Mangling and DemangliNngc.uuu i 241
5.3.10.4. Mixed Language RESOIULION.........ccoouuiuiiiiiiii e 241
5.3.10.5. TLS SYMDOIS ... ittt e et e e e e e e e eaaas 242.....

5.4. Language-Specific Symbol Table Featuresoo i 243
5.4.1. Fortran77 and FOrtran............oooiieeiiiiiiii e 243
5.4.2. o e e et e et e et et et e et e — 243
5.4.3. PaSCal AN AQ@......coiiiiiiiiie e 243....

6. DYNAMIC LOADING INFORMATIONuuiiiiiii ittt e e e e 245

6.1. New or Changed Dynamic Loading Information Features............coooiiviiiiiiiiiiiiiiieiiiii e 246

6.2. Structures, Fields, and Values for Dynamic Loading Information...............ccccceeeiiiiiiiininnnes 246

6.2.1. Dynamic Header ENTrYiiiiiiieei ettt e e e e e e 6........ 24
6.2.2. Dynamic SYMBOL ENTNY ..uueeiiiiei it e e e e e e ettt s n e e e e e e eaeeeeesanes 251
6.2.3. DyNamic REIOCAION ENIY.......uuuuiiiiiieeeiiiiiiiiiiiees s e e et s e e e e e e e e e ee et e e e eaeees 254
6.2.4. MSYM TaBIE ENIIY..coeiiiiiiiiiiii e e e 254......
6.2.5. LIBrary LISt ENErY ... e e et n e e e e e e e e e e e e e s s 255..
6.2.6. (00)) {1 Te1 A =1 0 1Y/ SRR 256
6.2.7. LCTO I = 011 Y TP PP OP PP 256..
6.2.8. HASh Table ENIrY.......iiiii et e e e e e e e s e 256....
6.2.9. Dynamic String Table........ooviiiiii e 257.......

6.3. Dynamic Loading INformation USAQEccuuiiiiaiiiiiiiiiii ittt 258

6.3.1. Shared Object IdentifiCationuuuuriiiiiiii e 8....... 25

6.3.2. Shared Library DEPEeNUENCIEScooiuuiiiiieiiii et e e e e e eeees 258
6.3.2.1. 1IdeNtIfICALIONceeiiiieeee e 259..
6.3.2.2. SBANCNING . .. e et 260...
6.3.2.3. AV Z= Lo =1 1o o TP PSPPI 262.

6.3.2.3.1. Backward CompatibDility.............oiiiieiiiiii e 262
6.3.2.4. (o= To 1o Vo PSP 264..
6.3.2.4.1. Dynamic Loading and Unloadingceuuuiiiiiiiiiiiiieii e 265

6.3.3. Dynamic SYmbol INfOrmMation..........o.uue i 265
6.3.3.1. SYMDBOI LOOK-UP e e 6....... 26
6.3.3.2. Scope and BiNAiNGccooiviiiiiiiiiiie e a e 66........ 2
6.3.3.3. Multiple GOT REPIrESENTALIONccvvvviiiiiiiiiieeeeeeee et e e e e e e e e e e e e e e aeeaees 267
6.3.3.4. MSYM TABIE... .o e e 268.....
6.3.3.5. HASH TabIE ..o 269.....

6.3.4. Dynamic SYMDOI RESOIULIONuuuiiiiieeiiiiieeeee e 270
6.3.4.1. Symbol Preemption and Namespace PollUtion..............cccceeviiiiiiiiiiiiiiiiiiciiee e 271
6.3.4.2. Weak SYMDBOIS.......ccooiiiiie e 273.......
6.3.4.3. SEAICH OFUEN ... ittt et e e e e e e e e e e e e aan 215.....
6.3.4.4. PrECEUIEBNCE. ...ttt bttt et e 276
6.3.4.5. Lazy TeXt RESOIULION ...uuuuiiiiii it e e e e e e B....... 27
6.3.4.6. LeVels Of RESOIULIONueiiiiiiiiiiiieiee ettt 77....... 2

6.3.5. DYyNamiC REIOCALIONvvviiiiiiiie et e ettt e e e e e e e e eeaaeeanns 277.......

6.3.6. QUICKSTAIT ..ottt e e e et e e e e et e e e e e staa e e e s memmnne 218
6.3.6.1. QUICKSEArt LEVEISeeeeeee e e 278......
6.3.6.2. CONFlICE TADIE ... e e e e 279...
6.3.6.3. Repairing QUICKSIAIovviiiiiiiiiie e e e aaQ....... 2

7. COMMENT SECTION. ...ttt e et e et e e e ea e e e e ra e e eeeaanas 282

7.1.

New and Changed Comment SECION FEALUINEScooiiieeiiiiiiiiiiiiiiee et 282

7.2. Structures, Fields, and Values of the Comment SECHONcouvveiiiiiieeeee e 282

7.2.1. SUDSECHION HEAAEIS ... 282.......
7.2.2. Tag DeSCIIPLOr ENTIY ...ttt e e e e eae 283......
7.2.2.1. ComMMENE SECHION FIAGS ..vuniiiiiii et e et eeeeaanas 284
7.3. CoMMENT SECHON USAQEceuii ittt e et e e et e e e eetb e e e aeeaan e aae 286.....
7.3.1. Comment Section Formatting REqUIFEMENTScoouuiiiiiiiiiiiii et 286
7.3.2. CommeNt SECHION CONMENTS.uuiriiiiie ettt ettt e e e e e e e e eesrrn s 287
7.3.3. ComMMENt SECHION PrOCESSING.....uuiiiiiit ettt e et e et e e et e e e eabb e e e e eeaa s e eaeebaaaaaees 287
7.3.4. Special CommENt SUDSECHIONScoouuiiiiieiii e e e 288
7.3.4.1. Tag Descriptor€M_TAGDESC. ... 288
7.3.4.2. Tool Version Information (CM_TOOLVER).......ccoouuiiiiiiiiii e 289
8. ARCHIVES ... 201
8.1. Structures, Fields, and Values for ArChivES.............uueiiiiiiiiieieeeee e 291
8.1.1. ATCNIVE MAGIC STHNG wevvvviiiii et e e s 291......
8.1.2. ATCNIVE HEAUEY ... et e e e e e e eeeees 291.
8.1.3. Hash Table (ranlib) STrUCIUIE..........cooiiiiiiiiii e 3 29
8.2. Archive Implementation............. i et 294.
8.2.1. AFChIVE File FOMMAL ... 29.....
8.2.2. Symdef File IMplemENtation.............uuiiiiiiiee e e e e e e e e e eeeeeaeree 295
8.3. AFCRIVE USBQE ...ttt e e et e e e e et e e eeeeemmanan 297
8.3.1. ROIE AS LIDFAIIES ...ttt e e e e e e e e e e e e e e 2917....
8.3.2. POrtability ..o 297
0. EXAM P LES bbb n e 298
9.1 e e e e ettt e e e e e ettt e et s ennnnmmmmmmne e 298

9.1.1. UNNAMEA SETUCKUIE.....eeeeeeie ittt e et e et e et e e e e st e et e eaesaneeaneeeneennns 298

9.2. L8 PP UU PR 298
9.2.1. Base and Derived CIASSESuuuuuuiiiiiieeieiiiiiiiiiie ettt e e e e e eeeeeenae 8. 29
9.2.2. Virtual Function Tables and INterludes............cooooiiiiiiiiiii e 302
9.2.3. Namespace DefinitioNS and USESccoouuuiiiiiiiiie e 306
9.2.4. UNNAMEd NAMESPACESeuuieieitti ettt e ettt e e e e et e e et e et e e e eebb e e aeeeba e e aeeraannas 308
9.2.5. NAMESPACE AlTASES ... ettt e e et e e ebb e e e 308.......
9.2.6. EXCeption-HandliNg........... i 2310......

9.3. FOMIAIN. .. ettt r e e e 314
9.3.1. COMMON DALAccieiiiieiiiii e e 314......
9.3.2. Alternate ENtry POINTS ... et 316......
9.3.3. ATAY DESCIIPLONS ..ottt et e ettt e e ettt e e e e e et e e e e e ebb e e eeeean e eeems 319....

9.4. PASCAL ... et e mmmmmnna— s 321
9.4.1. ST PR 321
9.4.2. Y0 o] = 0T [T PSP 322.

9.4.3.

VaTTANT RECONS. ... ieeietei ettt et e e e et e e e e et e e e e e e et e et e eaneean s emnnn 323...

Table of Figures

Figure 1-1 Object File Producers and CONSUMEIS.......cc.uuuiaiiiiiiaeeeiiia et eeeeie e e eeaa e e e eeees 27........
Figure 1-2 Object File CONTENTS.....c..uiiiiiii e e et e e et e e e s emmmmmmeeenanes 29
Figure 1-3 Object File COMPIESSIONiiiiiiiieeieii et e et e e e et e e e e e et e e e ¢ 32

FIGUFE 14 LEB 128 BYLE ...ttt ettt n et e e s e 34
Figure 1-5 LEB 128 MUItI-BYLE Data..........cceeuuuiieiiiiiiie ettt e e e et eeemeaaes 35

Figure 1-6 Little Endian Byte OrderiNg...........ceiieeuuiiaeiiiiie et e ettt e ettt e e e eebi e e e e e e b immmmmeeeas 36

FIQUIE 2-TOMAGICLAYOULeieeeti e ee ettt e e ettt e e e ettt e e e e ettt e e e e e st e e aeeeba e eaeebbanaeaeessnnaaaaenes 49
FIQUIE 2-2NMAGICLAYOUL ...ttt ettt e ettt e e et e et e e e e e abb e e e e e st e e e e eetan s e e aeabban e eaeessnnaaaaeees 51
Figure 2-3ZMAGICLayout for Shared ODJECT.........ciiii it aa e eeees 52
Figure 2-4ZMAGICLayout for Static Executable ODJECtS............ i 53
Figure 2-5 Address SPaCE LAYOULcoiiiiiiiiieii ettt e e e e e e b b eeeeaae 54
Figure 2-6 TASO Address SPacCe LAYOULuuiiiiiiiiiaai ettt e e e e e s 56....
Figure 2-7 GP (Global POINEr) RANGES.ioieiiiie it e e e aeaaeeennas 57

Figure 3-1 Raw Data Sections of an ODJeCt File........cc.uui i 64....
Figure 3-2 INIT/FINI Routines in Shared ODJECESccoeuuuiiiiiiiie e 2.
Figure 3-3 INIT/FINI Recognition in Archive Libraries............cooeiiiiiiiiiiiiiiiiiiiieeeeiiiieeeeeeee a3
Figure 3-4 INIT/FINI EXaMPIE (1) ...ttt a e e e 74
Figure 3-5 INIT/FINI EXQMPIE (I1)c..enneeiie et e et e e et e e e e e e e e eebba s 74
Figure 3-6 INIT/FINI EXaMPIE (TIL)......uneeeie ettt e e e et e a e e et e e aeeeaans 75
Figure 3-7 INIT/FINI EXaMPIe (IV) c.euniiiei et eeeet e mmceeeeeed D
Figure 3-8 Data and Bss Segment Layout (1)ooceeuruuieaiieiniiaeeeiiiieeeeeeiieeeeeeiiieeeeeeenn e eeemeeeee ol
Figure 3-9 Data and Bss Segment LayOUL. (11).......c..u it eaa e e e 78
Figure 3-10 Exception-Handling Data StrUCLUEBTScc.uuuiiiiiiiiaeeiiii e eeeas 80......
Figure 3-11 Thread Local Storage Data StrUCLUIEScoeeuuuiiaiiiiii et 81.......
Figure 4-1 Kinds of REIOCALIONScoeeuiiiiiiiii et e e e e e e eeees 84
Figure 4-2 Section Relocation Information in an Object File ... 85.........
Figure 4-3 RelOCAtION ENLIY......oiiiiiieeee et e et e e e e eeeeemmmmaee s 92

Figure 4-4 External ReloCation ENtrY..........oooooiieiiiiii e e e s 93

Figure 4-5 Processing an External Relocation ENtry...........oooiiiiiiiiiiiii e s 94.......

Figure 4-6 Local RelOoCation ENIYooiiiiiiiieieiiie ettt e et e e e e et e e s mmemmmmmmnees 95
Figure 4-7 Processing a Local Relocation ENtry.............i i eeeee 95....
Figure 4-8 Relocation Entry Ordering ReqUIr€MENTS..........coviuuiiiiiiiiii e 96........
Figure 5-1 Symbol Table SECHONSiiiiiii e e e eeeeenmmnan 140
Figure 5-2 Symbol Table HIerarChy...........ooo e 141
Figure 5-3 st/sc CombDINAtioN IMALIIXc.uuiiiiiiie e e et e e e e ee e s 165
Figure 5-4 Relative File Descriptor Table EXampPle..... ... 181.....
Figure 5-5 Line NUMDEr Tableo e 182
Figure 5-6 Line NUMDEr BYte FOIMAL........ccouuuuiiiiiiii e 184
Figure 5-7 Line Number 3-Byte Extended FOrMaLuiiiiiiiiiiiiiiiiiii e 84........ 1
Figure 5-8 ESLI Data MO BYLES........uuu e eee e 188
Figure 5-9 ESLI ComMMANG BYLE......ccoouuiiiiiiiii et e e e e eee e 188
Figure 5-10 Optimization SYMbDOIS SECHON............ii i e e 194...
Figure 5-11 Fixed-Size Stack Frame ..o et ee e e e 195
Figure 5-12 Variable-Size Stack Frame...........oooouuiiiiiiii e 196
Figure 5-13 Representation of Uplevel Reference ..o e 198.......
FIQUIE 5-14 BASIC SCOPES .. .ieetuunaeiettt e ettt e e ettt e et ettt e e e ettt e e e ettt e e e e eetan e eaesbban e aaaeennaaeaaaes 201
Figure 5-15 Procedure RepreSENTatioNccouuuuiiiiiiiieee et e et eetb e e e eeaaeeeeees 202.
Figure 5-16 Procedure With NO TeXE......oiiiiiieiiiii ettt e e et e e e et oo 203
Figure 5-17 File RePreSENTAtiON.cccutui ittt e e e et e e e e eee s oo eeennae 203
Figure 5-18 BIOCK REPIreSENTAtION.uuiiiiiiiii et e et e e e e cmeeemmmnan 204
Figure 5-19 C++ Namespace REPreSENTAtiONccuuuuiaiiiiiiiiaaeiiiie et e e et eeeea e e e 205........
Figure 5-20 C++ Exception Handler Representationccovieeiiiiiiiieiiiiiinieeeeeiieeeeeeiie e § 08......... 2
Figure 5-21 Fortran Common Block Representationo 9........ 20
Figure 5-22 Alternate Entry Point REPreSentationc.uuuiiiiiiiiiiiiieieiiie e 210.....
Figure 5-23 Auxiliary Table INterpretation............... oo 215
Figure 5-24 Auxiliary Table "ti" INterpretation ... e 216
Figure 5-25 Auxiliary Table "bt vals" Interpretation..............ooooeuuiiiiiiiii e 211..

Figure 5-26 Auxiliary Table "arrays" INterpretationoooo i 218...

Figure 5-27 Auxiliary Table "range"” INterpretation ... 219...

Figure 5-28 Auxiliary Table "rndx" INterpretation........... .o 220..
Figure 5-29 Pointer REPreSENTALION..........iiiiiii et e e et eeeebe s seeeeeenmnas 222
Figure 5-30 Array RePreSENTAtiONui ittt e et e et e e e e tae s e 223
Figure 5-31 64-Bit Array RepreSENTatioNii ittt eeeab e e e eenmmnae 224
Figure 5-32 Structure RepreSENTatioN..........ccuuui it ea e e 225
Figure 5-33 Recursive Structure Representation..............oooieeuiiii e eees 226.....
Figure 5-34 Nested Structure REpPreSeNtationooceeuuuiiiiiiiii e eebb e 226....
Figure 5-35 Typedef RePreSentationi ittt e e e e e e e emmmmaas 227
Figure 5-36 Function Pointer REPreSentationoi it 228...
Figure 5-37 Class REPreSENTALION it et e e s e 229
Figure 5-38 Empty Class OF StrUCIUIE (CH) ...ttt e e e e 230...
Figure 5-39 Base Class RePreSENtatioNccuuuui ittt e e s 231.
Figure 5-40 Array Descriptor Representation (1)oooeeuui it e 232...
Figure 5-41 Array Descriptor Representation.(11)...........oooiii e 233
Figure 5-42 Variant Record RepreSentationii oo 235....
Figure 5-43 Variant Record Representation (Pre-V3.13) ...cceuuiiiiiiiiieeiei e 6. 23
Figure 5-44 Subrange RepreSentationc.u.ii i e et aeeeeeeas 237.
Figure 5-45 64-bit Range RepresSentationcccuuuiiiiiiiiiee e oo 231..
Figure 5-46 Set RePreSENTALIONccuuuu ittt e e et e e e e e e e s 238
Figure 6-1 Dynamic ODbject File SECHONS.i i e emeemeee 245
Figure 6-2 Shared Library DEPenUENCIESoiiiiiiiiiiieii ettt s 259...
Figure 6-3 Valid Shared Library with Multiple Versions............cc.ooiiiiiiiiiiiiicee e 63......2
Figure 6-4 Invalid Shared Library with Multiple Versions..............coooiiiiiiiiiie e 64......2
Figure 6-5 Dynamic Symbol Table and MUltiple-GOToo i e 267
FIQUre 6-6 MSYIM TabI@o et e e et et e e e e eeenemmmman e 268
Figure 6-7 Hash Table... ... et emmmmmmm e e 269
Figure 6-8 Hashing EXamPIEuuu ittt s—— 270
Figure 6-9 Namespace POHULIONcooouuiieei et e e e b eeeeamaaan 272

Figure 6-10 Weak Symbol ReSOIULION (1)....cceeuunieiiiiiieeeie e 273.

Figure 6-11 Weak Symbol ReSOIULION (I1)cooeuiiiieiiii e 214..

Figure 6-12 Symbol Resolution Search OFder.......... oo e 275
Figure 6-13 Conflict ENtry EXamMPIeooueiiiii e et s 280
Figure 7-1 Comment Section Data Organizationccoeeuuuiiiieiiie et eer e eeen 286.
Figure 8-1 Archive File OrganizZationo...iiiiiiiii et e 294

Figure 8-2 Symdef File Hash Tablecoo e st 296

Table of Tables

Table 1-1 COFF BaSiC ADSITACE TYPES .. .ceutiiiiiiiii ettt e e et e e e e e e e eenaans 34.

Table 2-1 File Header Magic NUMDEIS oo e s 39..
Table 2-2 File Header FIags.u ettt e e et e e £ 40

Table 2-3a.0ut Header MagiC NUMDEIScoo ettt e e e et eeeeba s 42
Table 2-4 Section Header Constants for Section NamMeSuuuviiiiiiiiiieiiiiicee e 44............
Table 2-5 Section Flags (flags — field)..........oooeiiiiiii e 46
Table 2-6 Special SYMDBOIS ... e 60

Table 3-1 Segment ACCESS PEIMISSIONScccuuuiieiiiiti ettt e e e e et e e e e eaa e e e e s i 79....
Table 4-1 Section Numbers for Local Relocation ENtriesuueiiiiiiiiieiiiiiiiiii e 87
Table 4-2 REIOCALION TYPES ...ttt e ettt e e e e e et e e e e et e s—— 88

Table 4-3 LIteral USAQgE TYPES ... ceuu ittt ettt e et e ettt e ettt e e e e et e e e e ettt e e e e e s o 89

Table 4-4 Immediate RelOCAtION TYPES.... .ot eeeeans 89.

Table 5-1 Source Language (1ang) CONSTANTSooeuuuiiiiiiii et e e et e 149.....
Table 5-2 Symbol Type (St) CONSIANTSoiieiiii e eeea s 154

Table 5-3 Storage ClassSt() CONSIANTSuuuuuiiiiiiiiee ettt e e e e e et e e e e e e e e e e eearr e aeaeaes 155
Table 5-4 BasiC TYPEI) CONSTANTS ...ttt e ettt e e e et e e e ettt e e e e eaa e e aeeeeeas 160
Table 5-5 Type QUuAalifielt]) CONSIANTSciiiie e e et e e e e et eeeeeba e aees 162
Table 5-6 Optimization Tag VAIUEScouuuiiiei et eeeeeas 164

Table 5-7 Valid Placement for st/SC COMDINAtIONSccooiiiiiiiiiiiiiii e 176......
Table 5-8 Symbol Table Sections Produced at Various Compilation Levels............cccoceeiieiieiiiiiiiiieiiinnnnn. 178
Table 5-9 Line NUmMber EXamPIe..........u it eeeemmmnan 186

Table 5-10 ESLI COMMENTSuiiiieeiiiiiiieeie ettt e e e e e e et et e e e ab b s s 189

Table 5-11 ESLI EXAMPIE ...ttt e ettt e e e e eaa e eaeees 192

Table 5-12 Symbol Table Entries with Associated Auxiliary Table Type Descriptionscccccceeeeeeeee. 211
Table 6-1 Dynamic Array TAGSE(TAG)...ureuuuiieeeeeeeiiiiieiii et e e e e e e e e e e 247
Table 6-2 DT_FLAGS FIAGS - .cetuuiiiiiiiiie ettt e e e et e e e e e aaaeeeeeenas 250

Table 6-3 Dynamic Symbol Typst(iNfo) CONSANTS........ccceiiiiiiiiiiiiii e eeenens 253

Table 6-4 Dynamic Symbol Bindingt(info) CONSIANTSooiiiiiiiiiiiii e 253

Table 6-5 Dynamic Section Indegt(Shndx) CONSLANTSccoeuiiiiiiiiiii e

Table 6-6 LiDrary LISt FIagSot eeeem o eee e s 256
Table 6-7 Dynamic SYMBDOI Cat@QOrIES.ccuuuuiiiiiiiiii ettt e e e e et e e e eeeaaees 271..
Table 7-1 Comment Section Tag ValUES.........ooouuiiiiiii e e 283...
TabIE 7-2 SUPD FIaGS - ettt e et e e e e et e e e eeea e aaaeae 284
Table 7-3 COMDINE FIAGS - .cceeiiieieii ettt e e et ¢ c—— 285
Table 7-4 MOAIfY FIAGS ...ttt e e e et e e e ettt s e o 285
Table 7-5 Default System Tag FIagScc.uuu e 289

Table 8-1 Archive MagiC STINGS .. .ceeeie ittt e et e e e et e e e e ettt 292

About this Manual

This book describes the organization and usage of object files and images that are built on Tru64 UNIX
systems.

Audience

This manual is targeted for compiler and debugger writers and other developers wheoceassba
manipulate object files. A familiarity with basic program development and symbol table concepts is
assumed.

Necessity

This is a new manual designed to fill a need for technical information for back-end developers working on
the Tru64 UNIX operating system. It supplements or replaces information that has been previously
available in théAssembly Language Programmer's Guide

Organization

This manual is organized as follows:

Provides background information on the development environment and descripes the

Chapter 1 high-level organization and usage of object files.

Chapter 2 | Describes the header sections of the object file.

Chapter 3 | Describes the contents of the "raw data" sections of the object file.

Chapter 4 | Describes the relocation process and related structures stored in the object f{e.

Chapter 5 | Describes the symboal table.

Chapter 6 | Describes the object file sections containing dynamic loading information.

Chapter 7 | Describes the format and usage of the object file comment sectiomént).

Chapter 8 | Describes the archive file format.

Chapter 9 | Provides examples that illustrate symbol table representations.

Related Documents

This manual discusses the object file format from the perspectives of tools that produce or use object files.
Understanding the purpose of these tools is a prerequisite, but this info is touched upon briefly in this
document. The primary source for information on system programs in the development environment is the
Programmer's GuideThe default debugger on Tru64 UNIX is the ladebug debugger, which is treated
separately in theadebug Debugger Manual

The contents of object files are also tied to the Alpha architectural implementatiohsSembly
Language Programmer's Guigheovides an architectural overview that focuses on assembly-level
instructions and directives. Architectural documentation is also available Atpth& Architecture
Reference Manual

TheCalling Standard for Alpha Systeralso contains material related to this manual. The calling standard
defines the interface and other requirements for procedure calls on Alpha platforms.

TheDocumentation Overview, Glossary, and Master Ingiewvides information on all of the books in the
Tru64 UNIX documentation set.

Reader's Comments

Compaq welcomes any comments and suggestions you have on this and other Tru64 UNIX manuals.
You can send your comments in the following ways:

* Fax: 603-884-0120 Attn: UBPG Publications, ZK03-3/Y32

¢ Internet electronic maiteaders_comment@zk3.dec.com

A Reader's Comment form is located on your system in the following location:
/usr/doc/readers_comment.txt

e Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZK03-3/Y32

110 Spit Brook Road

Nashua, NH 03062-9987

A Reader's Comment form is located in the back of each printed manual. The form is postage paid if
you mail it in the United States.

Please include the following information along with your comments:

e The full title of the book and the order number. (The order number is printed on the title page of this
book and on its back cover.)

* The section numbers and page numbers of the information on which you are commenting.

e The version of Tru64 UNIX that you are using.

e If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or technical support inquiries.
Please address technical questions to your local system vendor or to the appropriate Compag technical

support office. Information provided with the software media explains how to send problem reports to
Compag.

Conventions

This document uses the following typographic and symbol conventions:

%

A percent sign represents the C shell system prompt. A dollar sign represents the system prompt for the
Bourne and Korn shells.

A number sign represents the superuser prompt.
%cat

Boldface type in interactive examples indicates typed user input.
file

Italic (slanted) type indicates variable values, placeholders, and function argument names.

~—r—
e

In syntax definitions, brackets indicate items that are optional and braces indicate items that are
required. Vertical bars separating items inside brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates that tleequing item can be repeated one or more
times.

cat (1)

A cross-reference to a reference page includes the appropriate section number in parentheses. For
examplegcat (1) indicates that you can find information on da¢ command in Section 1 of the
reference pages.

24

1. Introduction

The Tru64 UNIX Object File/Symbol Table Format Specification is the official definition of the object file
and symbol table formats used for Tru64 UNIX object files. It also describes the legal uses of the formats
and their interpretation.

This document treats in detail the file formats for object files and archive files. These files are described as
follows:

Object File
An object file is a binary file produced by a compiler, assembler, and/or linker from high-level-
language source files or other object files. Object files can be executable programs, shared libraries, or
relocatable object files. One or more relocatable object files can be linked together to form executable
programs or shared libraries.

Symbol Table

A symbol table is contained within an object file. It is used to convey linking and debugging
information describing the contents of the object file.

Archive File
An archive file is a single file which contains many object or text files that are managed as a group.
Archive files can serve as libraries that are searched by the linker. A special symbol table is included in
the archive file for this purpose. The archivar({)) is the tool used to create and update archive
files.

Tools that create, use, or otherwise interact with object or archive files should conform to the formatting
and usage conventions outlined in this specification.

1.1. Definitions

This section defines terms that are used throughout this document.
address

If not otherwise specified, an address is a location in virtual memory.
alignment

The positioning of data items or object file sections in memory so that the starting address is evenly
divisible by a given factor.

absolute file offset
See file offset.
API
Application Programming Interface.

application

25

A user-level program.
base address

The lowest-numbered location of an object file mapped in virtual memory.
byte boundary

The alignment factor.
common storage class symbol

A global symbol that can be legally multiply defined. Storage space for common storage class symbols
is typically allocated when relocatable object files are linked.

constant
A variable or value that cannot be overwritten.
dynamic executable

A call-shared application or program. A dynamic executable is linked with shared libraries and loaded
by the dynamic loader.

dynamic loader

A system program that maps dynamic executables and shared libraries into virtual memory so that they
can be executed.

entry point
The first instruction that is executed in a program or procedure.
executable

An object file that can be executed. Also referred to as a program, image, or executable object.
Executables can be static or dynamic.

file offset

The distance in bytes from the beginning of an on-disk file to an item within the file. Also referred to
as an absolute file offset.

hashing
A search technique typically used in performance-sensitive programs.
image

A program mapped in memory for execution. A shared process image includes mappings of shared
libraries used by the program.

linker

The system utilityd . This utility is the primary producer of executable object files and shared

26

libraries.
literal
A value represented directly.
locally stripped
Stripped of local symbol information.
namespace
A scope within which symbol names should all be unique.
preemption

A mechanism by which all references to a multiply defined symbol are resolved to the same instance
of the symbol.

relative file offset

The distance in bytes from a given position in an on-disk file to another item within the file.
relative index

An index represented as an offset from a base index.
relocatable object

An object file that includes the information required to link it with other object files.
section

The primary unit of an object file.
segment

A portion of an object file that consists of one or more sections and can be loaded into virtual memory.
shared library

An object file that provides routines and data used by one or more dynamic executables.
shared object

A dynamic executable or shared library.
static executable

An object file that contains all of the executable code and data required to create a runnable program
image.

27

1.2. History and Applicability

The object file format described in this specification originated from the System V COFF (Common Object
File Format). Implementation-dependent varieties of the COFF format are used on many UNIX systems.
Tru64 UNIX has altered and extended the object file format to serve as the basis for program development
on Alpha systems. This extended version of COFF is referred to in this document as eCOFF.

All systems based on the Alpha architecture and running Tru64 UNIX employ the eCOFF object file
format.

1.3. Producers and Consumers

Many tools interact with objects and archives in the development environment. Object file producers create
object files, and object file consumers read object files. A tool may be both a producer and a consumer.
Figure 1-1provides one view of the program development process from source files through executable
object file production.

Figure 1-1 Object File Producers and Consumers

Source Files Compilers Asgsembler Linker, Archiver Instrumen

Cname.s
C'name.c %@ C'hame.o @—) libname.a

Fname.o

a.out

A summary of the functions of relevant system utilities and their relationship to objects and archives
follows. Detailed information is available in reference pages.

1.3.1. Compilers

Frame.f
\ Fna:me 5 Sname\of_? /
SName.s _J‘bname 50

Towo!

Con
— &

Compilers are programs that translate source code into either intermediate code that can be processed by an

assembler or an object file that can be processed by the linker (or executed directly). Accordingly,
compilers may be direct or indirect producers of object files, depending on the compilation system. The
compiler creates the initial symbol table.

1.3.2. Assemblers

Assemblers also produce object files. An assembler converts a compiler's output from assembly language
(the intermediate form) into binary machine language. The result is traditionally a non-executable object
file (.0 file). The assembler lays out the sections of the object file and assigns data elements and code to
the various sections. It also lays the groundwork for the relocation process performed by linkers.

28

1.3.3. Linkers

A linker (or link-editor) accepts one or more object files as input and produces another object file, which
may be an executable program. The linker performs relocation fixups and symbol resolution. It merges
symbolic information and searches for referenced symbols in shared libraries and archive libraries. Linkers
are producers and consumers of object files, and consumers of archive files.

The selection of command-line options determines what type of object the linker produces. A final link
produces an executable object file or shared library. A partial link produces a relocatable object that can be
included in a future link.

1.3.4. Loaders

Loaders (sometimes referred to as dynamic linkers) load executable object files and shared libraries into
system memory for execution. A loader may perform dynamic relocation and dynamic symbol resolution.
It may also provide run-time support for loading and unloading shared objects and on-the-fly symbol
resolution. The loader is a consumer of executable object files and shared libraries.

1.3.5. Debuggers

Debuggers are utilities designed to assist programmers in pinpointing errors in their programs. Debuggers
are object file consumers, and they rely heavily on the debug symbol table information contained in object
files.

1.3.6. Object Instrumentation Tools

Object instrumentation tools are both consumers and producers of object files. Their input is an executable
object and, possibly, the shared libraries used by that executable object. Their output is the instrumented
version of the executable program. Instrumentation involves modifying the application by adding calls to
analysis procedures at basic block, procedure, or instruction boundaries. Depending on the tool, the aim
may be to optimize the program or gather data to enable future optimizations.

1.3.6.1. Post-Link Optimizers

Theomobject maodification tool is an object transformation tool that performs post-link optimizations such
as removal of unneeded instructions and dats input is a specially linked object file produced by the
linker, and its output is a modified executable object file.

Thecord tool is a post-link tool that rearranges procedures in an executable file to facilitate improved
cache mapping.

These tools are object file consumers and producers.

1.3.6.2. Profiling Tools

UNIX profiling tools (such as Compaq's programmable profiling and program analysiAttoal, are

object file producers and consumers. These tools examine an executable object and the shared libraries it
uses and report information such as basic block counts and procedure calling hierarchies. They may also
restructure the program to improve performance. Output includes files that store profiling data generated
during execution of the instrumented application.

29

1.3.7. Archivers

An archiver is a tool that produces and maintains archive files. It is a producer and a consumer of archive
files and a consumer of object files.

1.3.8. Miscellaneous Object Tools

1.3.8.1. Object Dumpers

Tools are available that read object files and dump (print) their contents in human-readable form. Examples
arenm, odump, stdump , anddis . These tools are object file consumers.

1.3.8.2. Object Manipulators

The toolsostrip andstrip reduce the size of an object file by removing certain portions of the file.
Themcs tool modifies the comment section only. These tools are both consumers and producers of object
files.

1.4. Object File Overview

1.4.1. Main Components of Object Files

This document is organized to correspond to a conceptual breakdown of an object file's contents. The main
components of an object file are described briefly in the remainder of this section.

A high-level view of the eCOFF object file contents is depictdégure 1-2

Figure 1-2 Object File Contents

File Header
a.out Header
Section Headers
Raw Data Sections
Relocations
Symbol Table
Comment Section

1.4.1.1. Object File Headers

Header structures serve as a roadmap for navigating portions of the object file. They provide information
about the size, location, and status of various sections and about the object as a wiGheptSeéfor
more information.

30

1.4.1.2. Instructions and Data

Instructions and data are located in loadable segments of the object file. Instructions consist of all
executable code. Data consists of uninitialized and initialized data, constants, and literals. Instructions and
data are laid out in sections that are arranged into segments. The segments are then loaded to form part of
the program'’s final image in memory. Sdsapter or more information.

1.4.1.3. Object File Relocation Information

The purpose of relocation is to defer writing the address-dependent contents of an object file until link time.
Relocation entries are created by the compiler and assembler, and the necessary address adjustments are
calculated by the linker. Information relevant to relocation is stored in section relocation entries and in the
symbol table. In some instances, the loader subsequently performs dynamic relocatiohapfeedand

Chapter Gor more details.

1.4.1.4. Symbol Table

The symbol table contains information that describes the contents of an object file. Linkers rely on symbol
table information to resolve references between object files. Debuggers use symbol table information to
provide users with a source language view of a program's execution and its execution im&i@peed

for more details.

1.4.1.5. Dynamic Loading Information

Dynamic sections are utilized by the loader to create a process image for an executable object. These
sections are present in shared object files only. Information is included to enable dynamic symbol
resolution, dynamic relocation, and quickstarting of programs.CBapter Gor more details.

1.4.1.6. Comment Section

The comment section is a non-loadable section of the object file that is divided into subsections, each
containing a different kind of information. This section is designed to be a flexible and expandable
repository for supplemental object file data. Seeapter 7#or more information.

1.4.2. Kinds of Object Files

There are four principal types of object files:

* Relocatable objects
Relocatable objects are object files that contain full relocation information. They are usually not
executable. Pre-link producers- generally compilers and assemblers- always generate relocatable
objects. The linker can also generate relocatable objects, but does not do so by defahtipteet
for more details.

« Static (non-shared) executables

An object file is executable if it has no undefined symbol references. Executable objects can be static
or dynamic.

Static executables are object files that are linketh_shared . They use archive libraries only.
They are fully resolved at link time and are loaded by the kernel's program execution facility.

* Dynamic (call-shared) executables

31

Dynamic executables are object files that are linkedl_shared . They may use shared libraries,
archive libraries or both. A dynamic executable is the compilation system's default output. The system
loader performs dynamic linking, dynamic symbol resolution, and memory mapping for dynamic
executables and the shared libraries they use.

¢ Shared libraries

Shared libraries are object files that provide collections of routines that can be used by dynamic
executables. Although it contains executable code, a shared library by itself is not usually executable.
Advantages of shared libraries include the ability to use updated libraries without relinking and a
reduction in disk requirements. The reduction in disk requirements is achieved by providing a single
copy of routines and data that might otherwise be duplicated in many executable object files.

Object file types can often be differentiated by their file name extension. Typically, relocatable objects
have ao file extension and shared libraries havea file extension. The default name for an executable
object file isa.out . User-named executable files often do not have an extension.

It is important to be aware of which type of file is under discussion because the usage, content, and format
of each kind of object file can vary significantly.

1.4.3. Object File Compression

File compression is used widely on all kinds of files to save disk space. Similarly, object files can be
compressed to save space. However, not all objects are candidates for compression and not all tools that
handle objects also support compressed object files.

Decompressed data can be, at most, eight times the size of the compressed data. This rate of compression is
the best case possible. At worst case, a compressed object will actually be larger than the decompressed
version. Typically, however, a reduction of 50% to 75% in size is achieved.

When an object is compressed, the file header in uncompressed form precedes the compressed object file.
The uncompressed file header's magic number indicates whether the remainder of the file contains a
compressed object.

32

Figure 1-3 Object File Compression

File Header File Header uncompressed
b objZ — Size
{rest of Pad
object o d
file) (entire fila) COMpresse
uncompressed compressed
object object
(ALPHAMAGIC) (AL PHAMAGICZ)

The value of "size" is the size of the uncompressed object. The archiver uses the "pad” value to indicate the
amount of padding it inserted.

The most commonly compressed objects are archive members. Both the archiver and the linker support
compressed objects used as archive members.

Executable objects and shared libraries cannot be compressed because the dynamic loader does not support
compressed objects. To decompress an image, the loader would need to allocate space where it could write
the decompressed image. Serious system penalties would be incurred because no part of the image would
be shareable. However, a compressed object file can subsequently be decompressed and then loaded; this
might be a way to temporarily save disk space in some circumstances.

The toolobjZ is a Tru64 UNIX compression utility designed for object files. Seelji¥(1) man page
for details.

1.4.4. Object Archives

Archiving is a method used to enable manipulation of a large number of files as a single group, which may
ease the task of file management. Any file can be archived. However, the archive files of primary interest in
program development are archived object files that are used as libraries for static executables.

Object archives provide a means of working with a collection of objects simultaneously. System libraries
such as "libc.a" and "libm.a" are object archives. Each library collects a set of related objects which provide
a service in the form of callable APIs. Benefits of using archives in this fashion include the grouping of
related functions and shorter build commands.

Another benefit of archive libraries is selective linking, whereby the linker extracts only needed objects
from a library, instead of mapping the entire library with the image. For example, suppose the library
libEx.a contained the objeciso, y.o, andz.o . If the executabla.out depended or.0 to

define a referenced symbol, but not on the other objects in the archivg,amnlyould become part of the
final executable object.

33

Another typical use for object archives is to subdivide large builds into subsystems, each of which is
implemented as an archive that is eventually included in the final link.

Most tools that read objects will also read object archives. The linker applies special semantics in its
handling of object archives, while other utilities treat an object archive as simply a list of object files.

Object archive members can also be compressed. In this case, each object that is an archive member is
compressed as shown3ection 1.4.3The archive file's administrative information is not compressed.
Also, an archive file may contain both compressed and uncompressed file members.

More information on archives can be foundGhapter 8

1.4.5. Object File Versioning

The object file and symbol table formats are versioned. This versioning scheme is independent of the
operating system or hardware versions. It is not designed to be visible to end-users.

The object file and symbol table versions are each stored as a two-byte version stamp, with major and
minor components of one byte each. The object file version is storeddrotite header'sstamp field,

and the symbol table version is stored in the symbolic head&isp field. The minor version is
incremented when new features or compatible structure changes are introduced. The major version is
incremented when an incompatible or semantically very significant change is made.

The object file version stamp covers the following structures:

¢ File headerf{lehdr.h)

e a.out headerdouthdr.h)

e Section heades¢nhdr.h)

¢ Relocationsrgloc.h)

e .comment datasgtncomment.h)

e Dynamic loading information structuresoff_dyn.h)

The symbol table version covers all symbol table structures and values defined in the heagen.files
andsymconst.h

The object file and symbol table versions can differ.
This document covers V3.13 of the object file and V3.13 of the symbol table.

Tool-specific version information for object file consumers may also be stored in the on-disk object file. If
present, this information is stored in the comment sectionCBagter 7#or details.

1.4.6. Object File Abstract Data Types

A consistent set of basic abstract data types are used to build object file, symbol table, and dynamic loading
structures. These names are defined in the headepfildype.h

34

The use of abstract types for all elements of these structures facilitates cross-platform builds. To build a
tool to run on another platform, redefine the COFF basic abstract types for the new platform. This is done
by inserting the new definitions antidefine ALTERNATE_COFF_BASIC_TYPES" prior to any

object file or symbol table header files.

Table 1-1 COFF Basic Abstract Types

Name Size Alignment Purpose

coff_addr 8 8 Unsigned program address
coff_off 8 8 Unsigned file offset
coff_ulong 8 8 Unsigned long word
coff_long 8 8 Signed long word
coff_uint 4 4 Unsigned word
coff_int 4 4 Signed word
coff_ushort 2 2 Unsigned half word
coff_short 2 2 Signed half word
coff_ubyte 1 1 Unsigned byte
coff_byte 1 1 Signed byte

Another data representation that is currently used exclusively in the optimization symbol table is LEB
(Little Endian Byte) 128 format. This is a variable-length format for numeric data. The low-order seven

bits of each LEB byte are interpreted as an integer value. The high bit, if set, indicates a continuation to the
next byte. An LEB byte is illustrated Figure 1-4 This format takes advantage of the likelihood that most
numbers will be small. To form a large number, concatenate the 7-bit segments of the LEB128 bytes, as
shown inFigure 1-5

Figure 1-4 LEB 128 Byte

Bit:
7 0

I | '
Continue Numeric Value
{may be signed or unsigned)

35

Figure 1-5 LEB 128 Multi-Byte Data

SLEB
Sign Bit
7 0 7 | 0
L{ojo|Oojo|ofl]1 Ol1(0o]1f1]0]1]0O
| |
Continue Stop
10110100000011b
or
-4861

A value represented in LEB 128 format may be signed (SLEB) or unsigned (LEB). The second-highest bit
in the final byte of an SLEB value is the sign bit. This means that the signed value has to be propagated
only within one byte.

1.5. Source Language Support

Object files originate from source files that may be coded in any of several high-level languages. The
Tru64 UNIX eCOFF object file format supports the programming languages C, C++, Fortran, Bliss,
Fortran90, Pascal, Cobol, Ada, PL1, and assembly. The choice of source language primarily impacts the
symbol table, which includes the type and scope information used by the debug&actRee5.3.Zor

more information.

The UNIX system is closely tied to the C programming language, and many tools that work with objects do
not fully support non-C languages. Reference the specific tool's documentation for details.

1.6. System Dependencies

Certain characteristics of the object file format are dependent on the Tru64 UNIX operating system. This
section highlights those features and provides references to more detailed information.

The address space and image layout information covel@aaipter 2are dependent on the operating
system's virtual memory organization.

The kernel's virtual memory manager ensures that multiple processes can share all text and data pages. As
soon as a process writes to one of those pages, it receives its own copy of that page. Because text pages are
always mapped read-only, they are always shared for the lifetime of the process.

The virtual memory manager uses additional shareable pages, known as Page Table pages, to record the
memory layout of a process. The linker's default address selection and the system library addresses are
designed to maximize sharing of page table pages, which are implemented as "wired" memory, a limited
system resource.

36

As part of this implementation, the text and data segments of shared libraries are usually separated in the
address space. This separation allows many shared library text segments to be mapped in one area of
memory. The Page Table pages used to describe an area of memory containing only text segments are
shared by all processes that map one or more of those text segments into their address space. This sharing
can result in significant savings in wired memory used by the system.

The GP-relative addressing technique is unique to Tru64 UNIXS&g®n 3.3.2

The operation of the system dynamic loader as descritfgdapter s system-dependent. Other loaders
may behave differently.

The discussion of system shared library implementation using weak symbols is unique to Tru64 UNIX. See
Section 6.3.4.1

1.7. Architectural Dependencies

The 64-bit Alpha architecture defaults to using the little-endian byte-ordering scheme. In little-endian
systems, the address of a multibyte data element is the address of its least significant byte, and the sign bit
is located in the most significant bit. Bytes are numbered beginning at byte O for the lowest address byte, as
shown inFigure 1-6

Figure 1-6 Little Endian Byte Ordering

Quadword
Byte: 7 & 5 4 32 2 1 0O

most byte address
significant bits of quadword

As discussed iBection 2.3.5hardware constraints dictate text and data alignment. Unaligned references
can cause fatal errors or negatively impact performance. For instance, on Alpha systems, dereferencing a
pointer to a longword- or quadword-aligned object is more efficient than dereferencing a pointer to a byte-
or word-aligned object. Special instructions exist for unaligned data memory accesses. The default
assumption is that data is aligned.

TASQ the Truncated Address Space Option, is a migration path for applications with 32-bit assumptions
onto 64-bit Alpha platforms. This topic is discusse&éttion 2.3.3.2

Relocation entries are heavily dependent on the Alpha instruction form&hSpter 4or details.

See thAssembly Language Programmer's GuiielAlpha Architecture Handbodior additional
information about the Alpha Architecture.

1.8. Relevant Header Files
Object and archive file structure declarations and value definitions are contained in the following header
files in the/usr/include directory:

aouthdr.h
ar.h

37

coff_type.h
coff_dyn.h
cmplrs/cmrlc.h
cmplrs/stsupport.h
filehdr.h
pdsc.h

reloc.h
scnhdr.h
sym.h
symconst.h
scncomment.h
stamp.h

To access object file structures, it is preferable to use defined APIs. APIs provide a constant interface to an
underlying structure which will evolve over time. Seelthst_intro(3) manpage for reference.

38

2. Headers

Headers serve as a cover page and table of contents for the object file. They contain size descriptions,
magic numbers, and pointers to other sections.

The object file components covered in this chapter are the file heaaldr, header, and section headers:

« The file header identifies the object file and indicates its type.

« Thea.out header provides the size, location, and addresses of the object's segments.

e Section headers store the name, size, and mapped address of their sections and contain the locations of
the section's raw data and relocation entries. Each object file section that is not part of the symbol table
has a section header.

An object file may contain other header sections that are used to navigate the symbol table and dynamic

loading information. The symbolic header and dynamic header are discugdebier SandChapter
respectively.

2.1. New or Changed Header Features
2.2. Structures, Fields, and Values for Headers

2.2.1. File Header (filehdr.n)
struct filehdr {

coff _ushort f_magic;

coff_ushort f_nscns;

coff_int f timdat;
coff_off f_symptr;
coff_int f_nsyms;
coff_ushort f_opthdr;
coff_ushort f_flags;

k
SIZE - 24 bytes, ALIGNMENT - 8 bytes

File Header Fields
f_magic
File magic number (se€kable 2-). Used for identification.
f nscns
Number of section headers in the object file.
f timdat
Time and date stamp. This field is implemented as a signed 32-bit quantity that acts as a forward or

backward offset in seconds from midnight on January 1, 1970. The resulting date range is
approximately 1902-2038.

39

f_symptr

File offset to symbolic header. This field is set to zero in a stripped object.
f_nsyms

Size of symbolic header (in bytes). This field is set to zero in a stripped object.
f_opthdr

Size ofa.out header (in bytes).
f flags

Flags (sefable 2-2 that describe the object file. Note that the file header flags cannot be treated as a
bit vector because some values are overloaded.

Table 2-1File Header Magic Numbers

Symbol Value Description
ALPHAMAGIC 0603 Object file.
ALPHAMAGICZ 0610 Compressed object file.

Ucode obiject file.

ALPHAUMAGIC 0617 Obsolete.

40

Table 2-2 File Header Flags

Symbol Value Description

F_RELFLG X000 | o actual relooations only, o compact relosatiors
F EXEC 0x0002 |File is executable (has no unresolved external referencep).
F_LNNO 0x0004 |Line numbers are stripped from file.

F_LSYMS 0x0008 |Local symbols are stripped from file.

F NO SHARED 0x0010|Currently unused.

Object file cannot be used to createal shared

F_NO_CALL_SHARED 0x0020 . _
- - - (dynamic) executable file.

Allows a static executable file to be loaded at an addresg less
F_LOMAP 0x0040 {thanVM_MIN_ADDRES®x10000). This flag cannot be
used by dynamic executables.

F_SHARABLE 0x2000 [Shared library.

F CALL_SHARED 0x3000 |Dynamic executable file.

F NO_REORG 0x4000| Tells object consumer not to reorder sections.
F NO_REMOVE 0x8000C| Tells object consumer not to remdN©R.

2.2.2. a.out Header (aouthdr.h)

Thea.out header is also referred to as the "optional header". Note that "optional” is a misnomer because
the header is actually mandatory.

typedef struct aouthdr {
coff_ushort magic;
coff_ushort vstamp;
coff_ushort bldrev;
coff_ushort padcell;
coff_long tsize;
coff_long dsize;
coff_long size;
coff_addr entry;
coff_addr text_start;
coff_addr data_start;
coff_addr bss_start;
coff_uint gprmask;
coff_word fprmask;
coff_long gp_value;

} AOUTHDR,;

41

SIZE - 80 bytes, ALIGNMENT - 8 bytes
a.out Header Fields
magic

Object-file magic numbers (sd@able 2-3.
vstamp

Object file version stamp. This value consists of a major version number and a minor version number,
as defined in thetamp.h header file:

MAJ_SYM_STAMP |3 High byte

MIN_SYM_STAMP 13 Low byte

This version stamp covers all parts of the object file exclusive of the symbol table, which is covered by
an independent version stamp stored in the symbolic header

SeeSection 2.1Section3.1, Sectiond.1, Section6.1, andSection7.1 for a description of object file
features introduced with version V3.13.

bldrev

Revision of system build tools. This value is definedgtamp.h and is updated for each major
release of the operating system. The values for Tru64 UNIX releases to date are shown below. This
field is not meaningful to users.

Build Revision Constants

Release | 1.2 1.3 2.0 3.0 3.2 4.0 5.0

bldrev - 2 4 6 8 10 12

tsize
Text segment size (in bytes) padded to 16-byte boundary; set to zero if there is no text segment.

For ZMAGICobject files, this value includes the size of the header sections (file heeader,
header, and all section headers). Seetion 2.3.2or more information.

dsize

Data segment size (in bytes) padded to 16-byte boundary; set to zero if there is no data segment..

42

bsize

Bss segment size (in bytes) padded to 16-byte boundary; set to zero if there is no bss segment.

entry

Virtual address of program entry point. This field is meaningful primarily for executable objects. For
shared libraries, it contains the starting address of the first procedure. For pre-link objects, it is
typically set to zero.

text_start, data_start, bss_start

Base address of text, data, and bss segments, respectively, for this file. Alignment requirements are
discussed irbection 2.3.2

gprmask
Unused.

fprmask
Unused.

gp_value
The initial GP (Global Pointer) value used for this object. The kernel loads this value into the GP
register ($gp) when a program is executed. The program entry point identifieddmgrthe field will
load its GP value into the GP register, which may or may not be different than the value in this field for
objects with multiple GP ranges. Sgection 2.3.4 This value is also used by the linker as a basis for

relocation adjustments in objects. Setion 4.3.3.2

Table 2-3a.out Header Magic Numbers

Symbol |Value | Description

Impure format. The text segment is not write-protected or shareable; the date
OMAGIC |0407 segment is contiguous with the text segmentOMAGIClile can be a relocatable
object or an executable.

NMAGIC 0410 Shared text formatx_lMA(_BICflles are static executables. This layout is rarely usjed
but supported for historical reasons.

Demand-paged format. The text and data segments are separated and the text
ZMAGIC 0413 segment is write-protected and shareable. The object can be a dynamic or sigatic
executable, or a shared library. All shared objects dAGIClayout.

2.2.3. Section Headers (scnhdr.h)

struct scnhdr {

char s_namej[8];
coff _addr S_paddr;
coff_addr S_vaddr;

coff_long S_size;

43

coff_off S_scnptr;
coff_off s_relptr;
coff_ulong s_lnnoptr;
coff _ushort s_nreloc;
coff_ushort s_ninno;
coff_uint s_flags;

k
SIZE - 64 bytes, ALIGNMENT - 8 bytes

Section Header Fields
S_name

Section hame (s€eable 2-4; null-terminated unless exactly 8 bytes. Unused bytes are zero filled.
S_paddr

Base virtual address of section in the image. Although this field contains the same gahsdas ,
normallys_vaddr is used and_paddr is ignored.

S_vaddr
Base virtual address of a loadable section in the image.
This field is set to zero for nonloadable sections suchoasment .

For the sectiondlsdata and.tlsbss , this field contains an offset from the beginning of the
object's dynamically allocated TLS region.

S_size
Section size padded to 16-byte boundary.
S_scnptr

File offset to beginning of raw data for the section. The raw data pointed to by this field, and described
by thes_size field, is mapped a&_vaddr (if non-zero) in the process image.

For sections with no raw data, suchlass , this field is set to zero.
s_relptr

File offset to relocations for the section; set to zero if the section has no relocations.
s_Innoptr

In .lita section header, indicates number of GP ranges used for the object:

Value Meaning

0 Object has one GP range.

1 Invalid value.

44

2 or higher

Object has this number of GP ranges.

For sections with GP relative relocations, this field contains the numBerGPVALUEelocation

entries for that section. lpdata

this field contains the number of runtime procedure descriptors.

For other sections, the field is reserved.

s_nreloc

Number of relocation entrie®xffff if number of entries overflows size of this field (Jeble 2-5.

s_ninno

Reserved for future use.

The high-order byte of this field is reserved and must be zero.

s_flags

Flags identifying the section (s@able 2-5. Not all of these flag values are single bit masks. See
Section 2.3.60or information on testing section flags.

Table 2-4 Section Header Constants for Section Names

Symbol Field Contents | Description

_TEXT text Text section

_INIT Jnit Initialization text section
_FINI fini Termination (clean-up) text section
_RCONST .rconst Read-only constant section
_RDATA .rdata Read-only data section
_DATA .data Large data section

_LITA lita Literal address pool section
_LIT8 [it8 8-byte literal pool section
_LIT4 lit4 4-byte literal pool section
_SDATA .sdata Small data section

_BSS .bss Large bss section

_SBSS .Sbss Small bss section

45

_UCODE .ucode Ucode section (obsolete)

_GOT .got Global offset table

_DYNAMIC .dynamic Dynamic linking information
_DYNSYM .dynsym Dynamic linking symbol table
_REL_DYN .rel.dyn Relocation information

_DYNSTR .dynstr Dynamic linking strings

_HASH .hash Dynamic symbol hash table

_MSYM .msym Additional dynamic linking symbol table
_LIBLIST ! Jiblist Shared library dependency list
_CONFLICT .conflict Additional dynamic linking information
_XDATK .Xdata Exception scope table

_PDATK .pdata Exception procedure table
_TLS_DATA tlsdata Initialized TLS data

_TLS_BSS tlsbss Uninitialized TLS data

_TLS_INIT Alsinit Initialization for TLS data
_COMMENT .comment Comment section

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are used during dynamic
linking. SeeChapter Gor detalils.

2. The xdata and.pdata sections respectively contain the run-time procedure descriptors and code
range descriptors that enable exception-handling. Seestting Standard for Alpha Systeritg
details. Other sections are describe@lrapter 3

46

Table 2-5 Section Flagsq_flags field)

Symbol Value Description

STYP_REG 0x00000000 E:gsufévseef;iign S:ez:l:r?;z.ited, relocated, loaded. User secti
STYP_TEXT 0x00000020 Text only

STYP_DATA 0x00000040 Data only

STYP_BSS 0x00000080 Bss only

STYP_RDATA 0x00000100 Read-only data only

STYP_SDATA 0x00000200 Small data only

STYP_SBSS 0x00000400 Small bss only

STYP_UCODE 0x00000800 Obsolete

STYP_GOY 0x00001000 Global offset table

STYP_DYNAMIE 0x00002000 Dynamic linking information
STYP_DYNSYM 0x00004000 Dynamic linking symbol table
STYP_REL_DYN 0x00008000 Dynamic relocation information
STYP_DYNSTR 0x00010000 Dynamic linking symbol table
STYP_HASH 0x00020000 Dynamic symbol hash table
STYP_DSOLIST 0x00040000 Shared library dependency list
STYP_MSYM 0x00080000 Additional dynamic linking symbol table
STYP_CONFLICF |0x00100000 Additional dynamic linking information
STYP_FINI Dx01000000 Termination text only
STYP_COMMENT 0x02000000 |Comment section

STYP_RCONST 0x02200000 Read-only constants

STYP_XDATA 0x02400000 Exception scope table
STYP_TLSDATA 0x02500000 Initialized TLS data

47

STYP_TLSBSS 0x02600000 Uninitialized TLS data
STYP_TLSINIT Dx02700000 Initialization for TLS data
STYP_PDATA 0x02800000 Exception procedure table
STYP_LITA 0x04000000 Address literals only
STYP_LIT8 Dx08000000 8-byte literals only

STYP_EXTMASK 0x0ff00000 Identifies bits used for multiple bit flag values.

STYP_LIT4 Dx10000000 4-byte literals only

S _NRELOC _OVFL |0x20000000 Indicates that section header fisldhreloc overflowed
STYP_INIT Dx80000000 Initialization text only

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are used during dynamic
linking. SeeChapter Gor details.

2. TheS_NRELOC_OVFHag is used when the number of relocation entries in a section overflows the
s_nreloc field in the section header. In this casenreloc contains the valuéxffff — and the
s_flags field has the&s NRELOC_OVFHag set. The actual relocation count is in the first
relocation entry for the section.

General Notes:

The system linker uses teeflags field instead o6_name to determine the section type. User-defined
sections (se8ection 3.3.1Pconstitute an exception; they are identified exclusively by section name.

Each section header must be unique within the object file. For system-defined sections, both the section
name and flags must be unique. For user-defined sections, the name must be unique.

48

2.3. Header Usage

2.3.1. Object Recognition

Object file consumers use the file header to recognize an input file as an object file. Other tools that do not
support objects may use the file header to determine that they cannot process theffite. Ttoml can
also identify an object by means of the file anaut headers.

A file is identified as an object in its first 16 bits. These bits correspond to the magic number field in the
file header. Objects built for the Alpha architecture are identified by the magic nAIKBEIAMAGIC

equivalent compressed objects are identifiedby HAMAGICZForeign objects, which are objects built

for other architectures, may also be positively identified. However, once a foreign object is recognized, it is
not considered to be a linkable or executable object file on the Alpha system.

In addition to providing basic identification, the file header also provides a high-level description of the
object file through itdlags field. File header flags store the following information: whether the object is
executable, whether symbol table sections have been stripped, whether the file is suitable for creation of a
shared library, and more. S€able 2-2for a list of all flags.

Thea.out header magic numbers also contribute important information about the file format. The magic
numbers signify different organizations of object file sections and indicate where the image will be mapped
into memory (se&ection 2.3.p

2.3.2. Image Layout

Thea.out header stores run-time information about the object. Its magic number field indicates how the
file is to be organized in virtual memory. Note that the contents and ordering of the sections of the image
can be affected by compilation options and program contents in additionMé& @Gk classification.

The possible image formats are:
¢ Impure FormatQMAGIQ

OMAGIfiles are typically relocatable object files. They are referred to as "impure” because the text
segment is writable.

¢ Shared Text FormaNMAGIQ

NMAGICfiles are static executables that use a different organization from the df@@IClayout.
TheNMAGICformat is historical and offers no special advantages. This format can be selected by
using the linker optioan or-nN in conjunction with-non_shared . In anNMAGICfile, the text
segment is shared.

 Demand Paged Forma&NAGIQ

ZMAGICfiles are executable files or shared libraries. This format is referred to as demand-paged
because its segments are blocked on page boundaries, allowing the operating system to page in text
and data as needed by the running process. By default, the linkerZ&iiaICsegments on 64K
boundaries, the maximum possible page size on Alpha systems.

The ordering of sections within segments is flexible. Diagrams in this section depict the default ordering as
laid out by the linker.

49

The default segment ordering, which places the text segment before the data segment, is flexible. However,
the bss segment is required to contiguously follow the data segment, wherever the data segment is located.

All three formats are constrained by the following restrictions:
* Segments must not overlap.

 Thebss segment must follow the data segment.

« All text addresses in the object file must be within two gigabybe#ff8000) of all data addresses
in the file.

2.3.2.1. OMAGIC

The OMAGICiormat typically has the following layout and characteristics:

Figure 2-1 OMAGICLayout

pdata]
Jext
Anit
Jfini
JToonst
rdata
e
1itE segment
Jditd
user text _
dat
could be several / A data
: xdata segment
user sections
\ sdata
user data |
Sbas T bss
D53 segment
tledata tledata tlsdata TL=3
tlsbss tlsbss tlshss segment
thread 1 thread 2 thread I

+ Segments must not overlap.

e The bss segment must follow the data segment.

50

« All text addresses in the object file must be within two gigabye#fff8000) of all data addresses
in the file.

e Starting section addresses are aligned on a 16-byte boundary.

¢ Pre-linkOMAGICobjects are zero-based, with the data segment contiguous to the text segment. The
default text segment address for partially linked objed@g19000000 , and the data segment
follows the text segment.

¢ May contain relocation information.

e Cannot be a shared object.

Starting addresses can be specified for the text and data segment$ ummyD options. These
addresses can be anywhere in the virtual address space but must be aligned on a 16-byte boundary.

OMAGIdayout is most commonly used for pre-link object files produced by compilers. PoSINIAKIC
files tend to be used for special purposes such as loadable device drivers or om input objects.

Loadable device drivers must be buill@MIAGICiles because the kernel loaddoadsry relies upon
relocation information in order to link objects into the kernel image.

OMAGIfiles can also be executable. An important example @MAGICexecutable file is the kernel,

/vmunix . A programmer might also choose to us€anAGICiormat for self-modifying programs or for
any other application that has a reason to write to the text segment.

2.3.2.2. NMAGIC

TheNMAGICfile format is of historical interest only.

TheNMAGICformat typically has the following layout and characteristics:

51

Figure 2-2 NMAGICLayout

JToonst
rdata
Jdita
JAitg
Jditd
tlsinit text
pdata segment
Jext
.init
gind
user text]

could be several / data

user sections xdata data

\ adata segment
user data]
.3bas 1 tag
.53 _| segment
tlsdata tlsdata tlsdata TLS
tlsbss tlsbss tlsbss segment
thread 1 thread 2 thread I

* Segments must not overlap.
e The bss segment must follow the data segment.

« All text addresses in the object file must be within two gigabye#ff8000) of all data addresses
in the file.

* Text and data segment addresses fall on page-size boundaries. The bss segment is aligned on a 16-byte
boundary.

* By default, the starting address of the text segmé®d6000000 and the starting address of the
data segment 8x40000000 .

* Cannot contain relocation information.
e Cannot be a shared object.

Addresses can be specified for the start of the text and data segment3 umsimtgD options. These
addresses may be anywhere in the virtual address space but must be a multiple of the page size.

2.3.2.8.

ZMAGIC

52

TheZMAGICformat typically has the following layout and characteristics:

Figure 2-3ZMAGICLayout for Shared Object

could be in
data segment

conld he 1n

data segmernt

could be several /

user sections

Dynamic Layout

headers

dynamic

ldiblist

rel.dyn

conflict

atyaenl

dynstr

dynsym

hash

text

feotist

rdata

segment

1it8

Aitd

tl=init

pdata

text

Anit

fini

user text

data

placement of
rdata and

At

uset data

gdata

adata

got

shss

bss

tsinit if 1n
data data segment

gegment

bas segment

tledata

tledata

tlsdata

tlshes

tlshes

tlshss segment

thread 1

thread 2

thread 17

53
Figure 2-4ZMAGICLayout for Static Executable Objects

Static Layout

headers B

rconst

rdata

Jlita

1it8

Aitd

tlsinit text

.pdata segment

dext

init

fini

user text |

could be several / data
user sections xdata data
\ Sdata segment

uzer data

sbss —

o B bas segment
tlsdata tlsdata tladata TL=
tlsbss tlsbss tlsbss segment

thread 1 thread 2 thread I
The.rdata and.tlsinit sections are shown as part of the text segment. However, it is possible that

one or both of those sections might be in the data segment. They are placed in the data segment only if they
contain dynamic relocations.

* Segments must not overlap.
e The bss segment must follow the data segment.

« All text addresses in the object file must be within two gigabybe#ff8000) of all data addresses
in the file.

« Text and data segments are blocked; the blocking factor is the page size.

« By default the starting address of the text segmedi20000000 and the starting address of the
data segment @x140000000 . The bss segment follows the data segment.

e Can be either a shared or nonshared object.

« Cannot contain relocation information, but shared objects may contain dynamic relocation information.

54

Addresses can be specified for the start of the text and data segment3 ummyD options. Those
addresses can be anywhere in the virtual address space but must be a multiple of the page size.
2.3.3. Address Space

At load time, an executable object is mapped into the system's virtual memory using one of the formats
detailed inSection 2.3.2The user can choose where the object, transformed into the program image, will
be loaded, but system-specific constraints exist. This section discusses the general layout of the address
space and the various considerations involved in choosing memory locations for object file segments.

Figure 2-5shows the default memory scheme for a dynamic image.

Figure 2-5 Address Space Layout

| PROCESS VIRTUAL ADDRESS SPACE |

Stack
Program text

Ox1.20000000

Ox1.40000000

ProgramData & Bss
Program Heap

Ox3ff. 80000000

Isbinfloader Text
O3 80080000

Shared Library Text

Ox3tt.c0000000 Isbinfloader Data & Bss

Isbinfloader Heap

Ox31f.c0080000 ™52 e d Library Data & Bss

The stack is used for storing local variables. It grows toward zero. The stack pointer (stored in register
$sp) points to the top of the stack at all times. In generated code, items on the stack are often referenced
relative to the stack pointer.

The program heap is reserved for system memory-allocation lwed($ (andsbrk()). TLS sections are
allocated from the heap. The heap begins where the bss segment of the program ends, and the special
symbol_end indicates the start of the heap. The heap's placement can also be calculated using the starting
addresses and sizes of segments imthet header. The mapping of shared libraries may impose an

upper bound on the heap's size. Some programs do not have a heap.

55

The dynamic loader and shared libraries reside in memory during program executigact®ee6.3. Zor
details.

User programs can request additional memory space that is dynamically allocated. One way to request
space is through an anonymauamap() call. This system call creates a new memory region belonging to
the process. The user can attempt to specify the address where the region will be placed. However, if it is
not possible to accomodate that placement, the system will rely on environment variables to dictate
placement. See thmmap(2) man page for details.

The usable address range for user mode addre$»%-i9x800000000000 . Attempts to map object
file segments outside this range will fail, and the defaults will be invoked or execution aborted.

2.3.3.1. Address Selection

Several mechanisms permit the user to select addresses for loadable objects or assist the user in choosing
viable addresses. Unless there is a good reason to do otherwise, it is preferable to rely on system defaults,
which are designed to enhance performance and reduce conflicts.

The linker'sT and-D options may be used to specify the starting addresses for the text and data segments
of an executable, respectively. Use of these options may be appropriate for large applications with
dependencies on many shared libraries that need to explicitly manage their address space. Programs relying
in any way on fixed addresses may also need to control the segment placement.

Another use of the address selection options is to place an application in the lowest 31 bits of the address
space. To restrict an application to this part of the address spa€k,dhd-D switches may be used in
conjunction with thetaso option (se€ection 2.3.3.Por separately.

The default placement of the text and data segmeft120000000 and0x140000000 for

executables means the default maximum size of the text segriz20300000 bytes, or approximately
500MB. If this space is insufficient, thB option can be used to enlarge it by specifying a higher starting
address for the data segment.

The-T and-D options can also be used to change the segment ordering. Some applications, such as those
ported from other platforms onto the Alpha platform, may rely upon the data segment being mapped in
lower addresses than the text segment.

If only -T or only-D is specified on the link line, system defaults are used for the nonspecified address. If

a given address is not properly aligned, the linker rounds the value to the applicable boundary. If
inappropriate addresses are chosen, such as addresses for the text and data segments that are too far apart,
linking may fail. Alternatively, linking may succeed, but execution can abnormally terminate if addresses

are incompatible with the system memory configuration.

The linker optionB , which specifies a placement for the bss segment, is available for partial links only.
For executable objects, the bss segment should be contiguous with the data segment, which is the system
default. As a general rule, thB option should not be used.

Another mechanism permits address selection for shared libraries. A registry file, by default named
so_locations , stores shared library segment addresses and sizeso Tiheations directives,
described in th®rogrammer's Guidecan be used to control the linker's address selection for shared
libraries.

56

2.3.3.2. TASO Address Space

The TASO (Truncated Address Space Option) address space is a 32-bit address-space emulation that is
useful for porting 32-bit applications to 64-bit Alpha systems. Selection efab® linker option causes
object file segments to be loaded into the lower 31 bits of the memory space. This can also be
accomplished, in part, by usin§ and-D. If the-taso option is used in conjunction with thRE or -D

options, the addresses specified wikhand-D take precedence.

Use of thetaso option also causes shared libraries linked outside the 31-bit address space to be
appropriately relocated by the loader. All executable objects and shared libraries will be mapped to the
address rang@x0 - Ox7fffffff

The default segment addresses for a TASO executallxB2800000 for the text segment and
0x14000000 for the data segment, with the bss segment directly following the data segmefTt. i
-D options can be used to alter the segment placement if necessary.

Figure 2-6is a diagram of the TASO address space layout.

Figure 2-6 TASO Address Space Layout

TASD
ADDRESS

~PACE

Stack
Program text

0x 1200 0000

0x 1400 0000

ProgramData & Bss
Program Heap

0x 7000 0000 Shared Library Text
dx 8000 0000 Shared Library Data & Bss

A TASO shared object is marked as such withRr#_USE_31BIT_ADDRESSES8ag in the
DT_FLAGSentry in the dynamic header. The loader recognizes dynamic executable objects marked with
the TASO flag and maps their shared library dependencies to the TASO address space. A TASO static
executable is not explicitly identified.

57

2.3.4. GP (Global Pointer) Ranges

Programs running on Tru64 UNIX obtain the addresses of procedures and global data by means of a GP
(Global Pointer) and an address table. Address ranges and address-table deationsutd.got) are
described further iBection 3.3.2andSection6.3.3 However, several important pieces of information
concerning GP-relative addressing are contained in the headers.

During program execution, the global pointer regiskgp(contains the active GP value. This value is

used to access run-time addresses stored in the image's address-table section. Addresses are specified in
generated code as an offset to the GP.

There are several reasons for using this GP-relative addressing technique:

* Alpha instructions support only 16-bit relative addressing, but the generated code must be able to
quickly and efficiently access arbitary 64-bit addresses.

* The generated code must be position independent.
e The addressing method must support symbol preemptioiséstien 6.3.1

A GP range is the set of addresses reachable from a given GP. The size of this range is approximately
64KB, or 8K 64-bit addresses.

Although only one GP value is active at any time, a program can use several GP values. A program's text
can be divided into ranges of addresses with a different GP value for each range. The linker will start a
new GP range at a boundary between two input object file's section contributions. As a result, a GP range

will rarely be filled before a new GP range is started. Regardless of how much of a GP range is actually
used, the linker always sets the GP value associated with that range as follows:

GP value = GP range start address + 32752
Figure 2-7is a depiction of the use of GP values and ranges.

Figure 2-7 GP (Global Pointer) Ranges

Text GOT {or lita)
GF Range O
% 3P
wal O (GOTON
obi2
, . P GF Range 1
obj3 §| val 1 (GOT[L])

obijd

objl

. GF Range 2
objo (GOT[2])

-

Objects can share a GP range, as showigitre 2-7 or use more than one GP range, depending on the
amount of program data. However, thalling Standard for Alpha Systersgecifies that a single

58

procedure can use only one GP value. loait header'gp_value field contains either the GP value
of the object (if there is only one) or the first one the program should use (if there are multiple GP ranges).

How the number of GP ranges is represented in an object depends on the object's type:

» For objects with adita section, the section header figldnlnnoptr indicates the number of GP
ranges, as explained 8ection 2.2.3

¢ In arelocatable objecOMAGICile), a new GP range is signalled biraGPVALUEelocation entry.
SeeSection 4.3.4.18or details.

* In shared objects, multiple GP ranges are indicated by entries in the dynamic header section
(.dynamic), which are described Bection 6.2.1

2.3.5. Alignment

Alignment is an architectural issue that must be dealt with in the object file at several levels: object file
segments, object file sections, and program variables all have alignment requirements.

Data alignment refers to the rounding that must be applied to a data item's address. For natural alignment, a
data item's address must be a multiple of its size. For example, the natural alignment of a character variable
is one byte, and the natural alignment of a double-precision floating-point variable is 8 bytes.

On Alpha systems, all data should be aligned on proper boundaries. Unaligned references can result in
substantially slower access times or cause fatal errors. The compiler and the user have some control over
the alignments through the use of assembler directives and compilation flags Begtasmmer's Guide
andAssembly Language Programmer's Glid&hen designing alignment attributes, however, the
architectural cost of loading unaligned values should be considered.

Object file segments are, by default, aligned as indicat8ddtion 2.3.2Segment alignment can be
impacted by section alignment. The segment alignment must be evenly divisible by the highest sectional
alignment factor for sections contained in that segment.

Object file sections may have a power-of-two alignment factor specified in their section headers (see
Section 2.2.8 The default sectional alignment is 16 bytes.

The default alignment boundary for raw data is 16 bytes. Smaller alignments can be applied to invidual
data items allocated in raw section data. If a data item must be aligned with greater than 16 byte alignment,
the section in which it is allocated must be aligned with a power-of-two alignment factor that is greater than
or equal to the data item's required alignment.

Individual data items should meet the following minimum requirements. Structure members and array
elements are aligned according to the minimum requirements in order to minimize pad bytes between
members. Other data items are typically aligned with 8 or 16 byte rounding due to alignment requirements
imposed by the generated code used to access data addresses.

* Atomic data items are aligned using natural alignment.

e Structures are aligned based on the size of their largest member.

« Arrays are aligned according to the alignment requirements of the array element.

59

* Procedures are aligned on a 16-byte (quadruple instruction word) boundary. This preserves the
integrity of multiple-instruction issue established by the instruction scheduling phase of code
generation.

« Common storage class symbols must be aligned when they are allocatedlughefield for a
common storage class symbol indicates its size and determines which section it will be allocated in
(.bss or.sbss). All common storage class symbols with a size of 16-bytes or greater are aligned to
octaword (16-byte) boundaries. All other common storage class symbols are aligned to quadword (8-
byte) boundaries.

Sections are padded wherever necessary to maintain proper alignment. Padding is done with zero bytes in
the data and bss sections. In the text segment, each routine is paddéd@mitktructions to a 16-byte
boundary. The section sizes reported in the section headers and the segment sizes repatedtin the

header reflect this padding.

2.3.6. Section Types

The primary unit of an object file is a section, and the sections in an object are identified, located, and
broadly characterized by means of the section headers. Object files are organized into sections primarily to
enable the linker to combine multiple input objects into an executable image. At link time, sections of the
same type are concatenated or merged. The sectional breakdown also provides the linker flexibility in
segment mapping; the linker has a choice in assigning sections to segments for memory-mapping and
loading.

Section headers include flags that describe the section type. These flags identify the section type and
attributes. Segable 2-5for a complete listing of section flags. Note thatsh#tags field cannot be

treated as a simple bit vector when testing or accessing section types because some of the flag values are
overloaded. The algorithm below illustrates how to test for a particular section type usinfiathe

field.

if (type & STYP_EXTMASK)

FOUND = ((SHDR.s_flags & STYP_EXTMASK) == type)
else

FOUND = (SHDR.s_flags & type)

Sections can be mapped or unmapped. A mapped section is one that is part of the process image as well as
the object file. An unmapped section is present only in the on-disk object file.

Raw data, organized by section and segment, is part of the process imagéMiA@I&file, all header
sections in the object are also mapped into memory as part of the text segment. Howazanntieat
section is never loaded with a program.

2.3.7. Special Symbols

Some special symbol names are reserved for use by the linker or loader. The majority of these special
symbols correspond to locations in the image layout.

Table 2-6describes the special symbols and indicates whether they are reserved for the linker or the loader.
Additional special symbols for debug information are describ&éation 5.3.9

Table 2-6 Special Symbols

60

Linker Reserved Symbols

Symbol

Description

| BASE_ADDRESS

Base address of text segment.

|_cobol_main

First COBOL main symbol; undefined if not a COBOL program.

| DYNAMIC

Starting address oflynamic section if present; otherwise, zero.

| DYNAMIC_LINK

Value is 1 if a dynamic executable file; otherwise, zero.

==

| ebss End of bss segment.

| _edata End of data segment.

edata * \Weak symbol for end of data segment.

| end End of bss segment.

end* \Weak symbol for end of bss segment.

| etext End of text segment.

etext ! \Weak symbol for end of text segment.

| fbss First location of bss segment.

| fdata First location of data segment.

| fpdata Start of.pdata section.
Number of entries inpdata . The exception-handling object file

| fpdata_size sections (pdata and.xdata) are included in the output object |
this symbol is referenced.

| fstart Start of.fini section.

| ftext First location of text section.

| ftlsinit The address of thdsinit section.

GOT_OFFSET Starting address ofjot section if present; otherwise, zero.

| gp GP value stored in.out header.

|_gpinfo Table of GP ranges used exclusively by exception handling cod

D

61

| _istart Start of.init section.

| _procedure_string_table String table for run-time procedures

|_procedure_table 2 Run-time procedure table.

|_procedure_table_size 2 Number of entries in run-time procedure table.

| tlsbsize Size of thetlsbss section.

| tlsdsize Size of thetlsdata section.

| tiskey The value of this symbol is the address of the GOlitar entry

of thetlsoffset symbol.

Offset in the TSD array of the TLS pointer for a particular object| For
| tlsoffset static executables, this value is set at link time. For shared obje(ts, the
value is set to 0 at link time and filled in at run time.

The number of TLS regions (TSD entries) that are used by an

tlsregions .
— 9 executable or library.

Loader Reserved Symbols

| |dr_process_context Points to loader's data structures.

Idr_process_context Weak symbol pointing to loader's data structures.

| rld_new_interface The generic loader entry point servicing all loader function calls.

Table Notes:

1. These symbols are not defined under strict ANSI standards. They are weak symbols that are retained
for backward compatibility. Se®ection 6.3.4.%or further discussion of weak aliasing to strong
symbols.

2. These symbols relate to the run-time procedure table, which is a t&O&Sstuctures (their
declaration is in the header fdggm.h). The table is a subset of the procedure descriptor table portion
of the symbol table with one additional fiekkception_info . When the procedure table entry is
for an external procedure and an external symbol table exists, the linkerdisaiption_info
with the address of the external symbol. Otherwise, it filexizeption_info with zeros.

The linker defines special symbols only if they are referenced.

The majority of these symbols have local binding in a shared object's dynamic symbol table. Consequently,
a shared object can only reference its own definition of these symbols. However, several special symbols
have global scope. The linker-defined symleoid, _end, __istart , and_cobol_main are global,

which implies that each has a unique value process-wide. The syarubland its weak counterpagnd

are used biibc.so to identify the start of the heap in memory. The symloobol_main gives a

COBOL program's main entry point.

62

Special symbols in addition to those listed able 2-1are defined by the linker to represent object file
section addresses:

.bss
.comment
.data
fini
.init
it4
it8
lita
.pdata
.rconst
.rdata
.sbss
.sdata
text
Xdata

The value of the symbol is the starting address of the corresponding section. These symbols generally are
not referenced by user code. For shared objects, they may appear in the dynamic symbol table.

2.3.7.1. Accessing

A user program can reference, but not define, reserved symbols. An error message is generated if a user
program attempts to define a symbol reserved for system use.

A special symbol is a label, and thus its value is its address. Interpreting a label's contents as its value may
lead to an access violation, particularly for those linker-defined symbols that are not address locations
within the image (for example DYNAMIC_LINK or _procedure_table_size).

The following example shows how linker-defined labels are referenced in code:

$ cat proctab.c
#include <stdio.h>

extern _procedure_table_size;
extern _procedure_string_table;

main(){
int i
void *tempsize=&_procedure_table_size;
void *tempstring=&_procedure_string_table;
long size=(long) tempsize
char *string=(char *) tempstring;

printf("\n Procedure Table Size=%d\n\n",size);
for (i=0;i < size;i++){

printf("%d: %s\n",i+1,string);
string+=strlen(string)+1;

$ a.out

63

Procedure Table Size=11

: static procedure (no name)
: main

:_ start

exit

_mcount

__eprol

: eprol

: printf

: strlen

10: __exc_add pc_range_table
11: exc_add gp_range

$

This example prints out the names stored in the run-time procedure string table. The string table consists of
character strings of varying lengths separated by null characters.

2.4. Language-Specific Header Features

The linker-defined symbolcobol_main is set to the symbol value of the first external symbol
encountered by the linker with itebol_main flag set. COBOL programs use this symbol to determine
the program entry point.

64

3. Instructions and Data

Instructions and data are the portions of the object file that are logically copied into the final process image.
Instructions include all executable machine code. Data includes initialized and zero-initialized data,
constant data, exception-handling data structures, and thread local storage (TLS) data. The breakdown of
the instructions and data into object file sections is showigure 3-1

Object file sections are organized into three loadable segments: text, data, and bss. Multiple TLS regions
may also be loaded. The mapping of sections into segments is principally determined by segment access
permissions and object fil€igure 3-lillustrates the layout of a typical dynamic executable file. See

Section 2.3.%or details.

Figure 3-1 Raw Data Sections of an Object File

if shared Drwynarnic
ohject Load Info
mections

Toctst

: rdata | litasf
File Header 1ita nonshared

a.out Header 1itd textt

Section Headers -t;?aﬁ segment

Raw Data Sections bt
Relocations Jinit

Symbol Table Lini

user-text
Comment Section dara
user-data
gdata
Sdata
got

data
segment

if shared
object \

shss T bas

bss segment

tlsdata
tlshiss

TL3 Region

The object file sections containing dynamic load information are covered separ&bbpier 6Chapter
7 describes theecomment section data. This chapter covers all other raw data sections.

65

3.1. New or Changed Instructions and Data Features

Version 3.13 of the object file format does not introduce any new features for the instructions or data
contained within the object file.

Version 5.0 of Tru64 UNIX supports a new name-recognition mechanism for ordering subsystem-
generated initialization and termination routines. Sedion 3.3.5.2.4or details.

3.2. Structures, Fields, and Values for Instructions and Data

Section 3.2..landSection3.2.2contain structure declarations for the exception-handling data structures as
stored in thexdata and.pdata object file sections. These are the only two sections covered in this
chapter that contain structured data. Text sections containing machine instructions use the Alpha instruction
formats and other sections contain binary and character data.

3.2.1. Code Range Descriptor (pdsc.h)

The.pdata section contains a table of code range descriptors ordered by address.

typedef unsigned int pdsc_mask;
typedef unsigned int pdsc_space;
typedef int pdsc_offset;

union pdsc_crd {
struct {
pdsc_offset begin_address;
pdsc_offset rpd_offset;

} words;

struct {
pdsc_space reservedl 2;
pdsc_offset shifted_begin_address :30;
pdsc_mask no_prolog :1;

pdsc_mask memory_speculation :1;
pdsc_offset shifted_rpd_offset :30;
} fields;

}

SIZE - 8 bytes, ALIGNMENT - 4 bytes

See theCalling Standard for Alpha Systerfos a full description.

3.2.2. Run-time Procedure Descriptor (pdsc.h)

The.xdata section contains a table of run-time procedure descriptors. This table is not necessarily sorted.
In addition to this table, th@data section may contain other exception-handling data.

typedef unsigned char pdsc_uchar_offset;
typedef unsigned short pdsc_ushort_offset;
typedef unsigned int pdsc_count;

typedef unsigned int pdsc_register;
typedef unsigned long pdsc_address;

typedef union pdsc_rpd {

struct pdsc_short_stack_rpd {

66

pdsc_mask flags:8;
pdsc_uchar_offset rsa_offset;
pdsc_mask fmask:8;
pdsc_mask imask:8;
pdsc_count frame_size:16;
pdsc_count sp_set:8;
pdsc_count entry_length:8;

} short_stack_rpd;

struct pdsc_short_reg_rpd {
pdsc_mask flags:8;
pdsc_space reservedl:3;
pdsc_register entry ra:5;
pdsc_register save_ra:5;

pdsc_space reserved2:11;
pdsc_count frame_size:16;
pdsc_count sp_set:8;

pdsc_count entry_length:8;

} short_reg_rpd;

struct pdsc_long_stack_rpd {
pdsc_mask flags:11;
pdsc_register entry ra:5;
pdsc_ushort_offset rsa_offset;

pdsc_count sp_set:16;
pdsc_count entry length:16;
pdsc_count frame_size;
pdsc_space reserved,;
pdsc_mask imask;
pdsc_mask fmask;

} long_stack_rpd;

struct pdsc_long_reg_rpd {
pdsc_mask flags:11;
pdsc_register entry_ra:5;
pdsc_register save_ra:5;

pdsc_space reservedl:11;
pdsc_count sSp_set:16;
pdsc_count entry length:16;
pdsc_count frame_size;
pdsc_space reserved?;
pdsc_mask imask;
pdsc_mask fmask;

} long_reg_rpd;

struct pdsc_short_with_handler {
union {
struct pdsc_short_stack_rpd short_stack_rpd;
struct pdsc_short_reg_rpd short_reg_rpd;
} stack_or_reg;
pdsc_address handler;
pdsc_address handler_data;
} short_with_handler;

struct pdsc_long_with_handler {
union {
struct pdsc_long_stack rpd long_stack_rpd;

67

struct pdsc_long_reg_rpd long_reg_rpd;
} stack_or_reg;
pdsc_address handler;
pdsc_address handler_data;
} long_with_handler;

} pdsc_rpd;
SIZE - 40 bytes, ALIGNMENT - 8 bytes

See theCalling Standard for Alpha Systeriwg a full description.

68

3.3. Instructions and Data Usage

3.3.1. Minimal Objects

Many sections may be missing from a still-viable object file. Sections may not be present due to the type of
the object file or to the contents of a particular program.

The.init and.fini sections of the text segment are typically not present in relocatable objects. They
contain code generated during final link.

The allocation of data in the "small" and "large" writable data sectisdata, .data, .sbss,
.bss) can be controlled by the user in some situationsS8eon 3.3.6or more details.

The.lit4 and.lit8 sections, which hold 4- and 8-byte literal values respectively, may be omitted from
an object file. Compilers may choose not to emit these sections.

The.xdata and.pdata sections, which contain exception-handling information, may not be present.

All pre-link objects with a non-empty text segment contain these sections because compilers are expected
to provide exception-handling information for their code. Statically linked executables will only contain
these sections if they include code which handles exceptions. The linker identifies exception handling code
by looking for references to thdpdata_size symbol. By default, shared objects will contain these
sections. Thexdata and.pdata sections are required if a shared object includes exception handling
code or if it is used in conjunction with another shared object that includes exception handling code.

Although most objects contain both text and data segments, only one loadable segment is required for an
object to be loadable. A minimal pre-link object file may contain no sections.

3.3.2. Position-Independent Code (PIC)

Position-independent code is generated code that is not constrained to any particular location in the virtual
address space. Eventually, code must be assigned to a portion of the address space where it can execute.
However, on Tru64 UNIX, code is kept position-independent as long as possible.

The implementation of position-independent code in eCOFF relies upon address tables to store full virtual
addresses for procedures and data locations invoked or referenced in the text segment. Programs refer to
these addresses using a technique called GP-relative addressing.

Most eCOFF objects have address tables that hold 64-bit addresses. Address tables in shared objects are
called Global Offset Tables (GOTs) and are found indgbe section. Address tables for relocatable and
static objects are called literal address pools and are found.litethe section.

Address table entries are accessed in code by adding a signed 16-bit offset to the currently active GP value,
which is stored in th&gp register:

Idg t12,-31656(gp)

Multiple GP ranges can be associated with a program, each corresponding to a different portion of the
address table. S&ection 2.3.4or details.

In some cases, special instruction sequences may be required to update the contebup okthister. In
particular, the GP value used by a procedure may or may not be the same as the value used by the calling
code. Under most circumstances, the called procedure's GP value is calculated when a procedure is

69

invoked. Upon completion of the procedure's execution, the calling code's GP value must be reestablished.
Refer to theCalling Standard for Alpha Systerfts details.

Different kinds of objects use address tables in different ways:

¢ Relocatable Objects

Pre-link objects usually havelga section with associated section relocation information. The
literal address pool contains addresses that must be adjusted at link time.

* Static Executables

Addresses in static executables are fixed at link time. The image must be loaded and executed at
addresses the linker has chosen. Library addresses as well as segment base addresses are known at
link time.

Static executables store addresses.iitea section that encompasses one or more GP ranges.
The contents of the address table are accessed by means of the GP value or values, which are also
fixed at link time.

e Shared Objects

Each.lita entryin the input object files is relocated by the linker to form the GOT in the output
object. The loader may need to update the GOT entries when mapping the process image. The
addresses are then absolute and may be extracted at run time to obtain the final locations of
referenced items.

The loader may also update GOT entries at run time, such as when it replaces lazy text stubs with resolved
procedure addresses or dynamically loads new objects.

The GOT may contain entries for nonsymbolic text and data addresses. These are known as local GOT
entries. The GOT may also contain entries for unresolvable symbols; which are either set to NULL or to the
address of a lazy text stub routine.

Special semantics are associated with multiple GP ranges in shared objeSectioeet.3.3.3or details
on multiple GOT representation and usage.

Code can be only partially position independent. For example, shared libraries can be mapped anywhere in
the address space that is not in conflict with previously mapped objects, but executable objects must be
mapped at their link-time base addresses. Dynamic executables are thus partly PIC because their own
segment addresses are fixed, but the addresses of shared libraries they use are not.

Code may also be position dependent, or nonPIC. The linkemargknerate nonPIC code. On Alpha
systems, relocatable objects must always be PIC.

3.3.3. Lazy-Text Stubs

This section applies to shared objects only. Smeion 6.3.4.%or related information.

Final addresses may be unknown at link time for subroutines that are defined in shared libraries and called
by dynamic executables. Instructions reference these routines in an address-independent manner, and the
dynamic loader uses run-time resolution, or "lazy binding", to locate the procedure's absolute location the
first time it is invoked.

70

Stubs are specially constructed code fragments used for this run-time symbol resolution. They serve as
placeholders for the definitions of functions that cannot be resolved at static link time. The linker builds the
stub for each called function and allocates GOT table entries that point to the stubs. The stubs themselves
are inserted in thaext section of the shared object file by the linker.

A stub looks like this:

stub_xyz:
Idg t12, got_index(gp) /Nload register with .got entry
/I of lazy text resolver
I[da $at, dynsym_index_low(zero) //load register with external
Idah $at, dynsym_index_high($at) // symbol's .dynsym index
jmp t12, (t12) /ljump to lazy text resolver

The first time the procedure is called, its stub is invoked. The stub, in turn, calls the loader to resolve the
associated symbol. The dynamic loader then replaces the stub address with the correct function address,
which is used for subsequent calls.

The calling standard requires that when control actually reaches the procedure's entry point, register $27
must contain the procedure value of the newly loaded routine—as if no intermediate processing had
occurred.

3.3.4. Constant Data

Constant data is data that cannot be changed over the course of program execution. It can include constants
appearing in the source program, constants that are generated during the compilation process (usually
addresses), and literal values (also referred to as immediate values).

Constant data may appear in any data section. It is likely to appearlitathe, .lit4 , .lit8
.rconst , and.rdata sections. Compilers and other object file producers may make varying choices
concerning data placement in object file sections.

The literal sections contain only literal values sorted by sizes. 4-byte literals are storetitth the

section, 8-byte literals in th&t8 section, and 8-byte (64-bit) addresses inlite section. However,

these sections do not necessarily contain all literals in the program. String literals, for example, are assigned
to the.data section (orrconst section when thaead_only_strings compiler option is

specified).

There are compile-time, link-time, and run-time constants. Examples of compile-time constants include
numeric constant data such as floating-point constants and literals appearing in the source file. Examples of
link-time constants include addresses that are fully resolved at link time. Examples of run-time constants
include addresses established by the dynamic loader.

The linker places thgconst section and all three literal sections with the text segment because they
contain nonwritable data. The advantage of mapping constant data with a program's read-only segment is
that it allows the data to be shared among processes.

The.rdata section contains constant data with values that may not be known until run time (such as
global symbol addresses). For shared objectsrdaga section is mapped with the data segment so the
loader can perform relocations for that section without affecting the shareability of text or page table pages.
If there are no dynamic relocations, thdata section may be mapped with the text segment.

71

3.3.5. INIT/FINI Driver Routines

Every compilation unit in an executable or shared library has the opportunity to contribute initialization or
termination code to be run at startup and exit, respectively. INIT routines perform initialization actions and
are run automatically at load time or by the routdtapen() . FINI routines are termination functions

that are executed ljclose() or at program termination axit()

The.init and.fini sections consist of a series of calls to the initialization and termination routines.
These calls, or drivers, are generated by the linker. They are not present in pre-link objedtst The

driver is invoked by a call from startup coddustr/lib/cmplrs/cc/crt0.o , which must be linked

into every executable object file.

The driver code in thenit ~ and.fini sections has the following characteristics:

* No associated symbolic information

* No associated call frame information

* Use of self-relative code for jumping to the routines; therefore, no use of the GOT table or GP value

The initialization and termination routines themselves are irtéke section and have the following
characteristics:

* No arguments
e Noreturn value
« Defined in one of the objects or archives being linked

Figure 3-2presents a graphical overview of the INIT/FINI mechanism for shared objects:

72

Figure 3-2 INIT/FINI Routines in Shared Objects

a.out
Tend
—>| _ start:
call rld_run_inits
call main
call et
Init
__istart: —
call al IMIT routines
(in this object)
fini
_ fstart:
call all FIRI routines
(in this object)

fsbinfloader

rld_run_inits: |l'
for each shared library
call init routine
call a.out's _istart
fd_run_finis: cqll g.out's fstart
for each shared library
call finl routine

Jusrishlibflibc.so

__lstart: k
call al IMIT routines
(in this object)

et

3

call ld_run_finis

For static executables, the first call is to the main objecisfart symbol instead afld_run_init
The dynamic loader is not involved.

System tools can generate initialization and termination routines. For example, global constructor and
destructor routines for static objects are implemented as INIT/FINI routines by the C++ compiler.

73

The INIT/FINI mechanism is used for allocation and deallocation of thread-specific data. Every object
using TLS has its own INIT routine to take care of the TLS data associated with that object. The purpose of
this INIT routine is to allocate a TSD key that will be used for the object's TLS for the duration of the

object mapping. Se®ection 3.3.9or more information on TLS data.

3.3.5.1. Linking

INIT and FINI routines can be included implicitly, by prefix recognition, or explicitly, by option
processing. With either linking method, as the routine's symbols are identified, a list determining the
execution order is built. When the list is complete, code to invoke the routines is generated by the linker
and placed in thenit and.fini sections.

To link explicitly, the-init ~ and-fini linker options are used with a symbol parameter. The symbol
should meet the criteria listed above for INIT and FINI routines.

To link implicitly, it is necessary to conform to naming and usage conventions. A symbol is recognized as
an initialization or termination symbol if:

* Automatic recognition of special symbols is not disabled.
e The symbol is defined in an object included in the link.

e The symbol bears the correct prefix (nit_ or__fini_).
e The symbol is a procedure.

Library archives may contain aptly named routines that are not implicitly linked into an object as INIT or
FINI routines. The reason this situation can occur is that prefix recognition alone is not sufficient cause to
extract a module from an archive.

Figure 3-3 INIT/FINI Recognition in Archive Libraries

main.o libfubar.a
main{) { foo.o
fool); fool) {}
) | _init_fool) {3
l bar.o
bart] {}
__init_bar(}{}

__init_bar) not in a.out

On the other hand, if the archived object is already linked into the object, prefix recognition will apply to
routines contained in that module. Explicit inclusion can be used to ensure an archived routine is included
as an initialization or termination routine in all cases. Se@ithgrammer's Guidéor more information on
linking with archive libraries.

74

The linker's-no_prefix_recognition option disables implicit linking of INIT and FINI routines.

3.3.5.2. Execution Order

This section describes the execution order of initialization and termination routines in dynamic and static
executables. It also covers the determining factors used by the linker and loader to establish this order.
3.3.5.2.1. Dynamic Executables

The INIT driver routine for each shared object is executed after INIT drivers for all of its dependencies.
Dependencies are processed in a post-order traversal of the dependency graph. The dependency graphs
shown in this section are based on link-line ordering (a left "sibling" appears first on the link line) as well
as the shared library dependency information.

FINI drivers are executed in precisely the reverse order of INIT drivers.

Figure 3-4 INIT/FINI Example (1)

a.out

N

libA so libB . so

libc so

INIT order: libc.so libB.so libA.so a.out
FINI order: a.out libA.so libB.so libc.so

Cyclic dependencies are handled using a first-seen approach, while still conforming to the preceding rules.
For example:

Figure 3-5 INIT/FINI Example (11)

a.out

LN\
libA.so —)I libB.so

75

INIT order: libA.so libB.so a.out

Initialization and termination routines may also be executed when shared objects are loaded and unloaded
dynamically during run timedlopen() runs INIT routines for any shared objects that it loads.
diclose() runs FINI routines for each shared object that it unloads.

Figure 3-6 INIT/FINI Example (ll1)

a.out

l

libc.so

INIT order beforedlopen call: libc.so a.out

Figure 3-7 INIT/FINI Example (IV)

a.out [—*dlopen() libfoo so

|

libc.so I(libm so

INIT order afterdlopen call: libm.so libfoo.so
FINI order afterdlopen call: libfoo.so libm.so a.out libc.so

3.3.5.2.2. Static Executables

For static executables, the execution order for initialization and termination routines is determined at link
time. The linker establishes the the execution order for INIT routines by the order in which they are
encountered within an object's external symbol table and by the ordering of objects on the command line. It
also takes into account the ordering of archive libraries on the command line. The INIT routines from each
archive are executed in the reverse order of their occurrence on the command line. For example:

$ld x.0 y.0 z.0 libm.a libfoo.a

INIT order. libfoo.a libm.a x.0 y.0 z.o0

76

FINI order. z.0 y.o x.0 libm.a libfoo.a

3.3.5.2.3. Ordering Within Objects

It is also possible to have multiple INIT or FINI routines within an object. The number of initialization or
termination functions that can be included from a single object is unlimited. When multiple routines are
encountered in an input object, they are placed as a group within the overall ordering.

If both methods of linking are used, explicitly linked initialization routines are executed prior to the
implicitly linked routines for that object. Because Il order is always the opposite of the INIT order,
any explicitly linked termination routines are executed last.

If the linker's range-table generating routines are present, they execute first and last, respectively in
INIT/FINI ordering on a per-object basis. These initialization routines set up a PC-range table that enables
exception-handling. They execute first so that range information is added before other INIT routines are
executed. These termination routines run last so that all others are run before range information is removed.
These precautions allow other INIT and FINI routines to utilize exception handling.

3.3.5.2.4. Subsystem Control of INIT/FINI Order

Compilers may need to generate initialization and termination routines and to control the order in which
they execute. For this reason, subsystem-generated INIT and FINI routines are distinguished from user
INIT and FINI routines.

The linker recognizes a subsystem-generated routine by the prefikd$ __and _FINI _. Routines
recognized with the INIT _ prefix always run prior to any routines recognized with theit __ prefix
within the same executable or shared library. FINI routines recognized withRid __ prefix always run
after any routines recognized with thdini__ prefix. Subsystem INIT and FINI routines also run,
respectively, before and after any routines added by a user using the linker'sand fini switches.

All routines with the _INIT _ prefix execute in alphabetic order, and all routines with tléNI _ prefix

execute in reverse alphabetic order. For a name of the fdiiT __ ALPHANAME, the ALPHANAME

portion should be encoded as a variable-length hexadecimal string. The string will contain one or more hex
digits followed by an underscore.

INIT routines generated by the linker for exception-handling, speculative execution, and thread-local
storage run prior to all other INIT routines. The associated FINI routines run last.

3.3.6. Initialized Data and Zero-Initialized Data (bss)

Writable user-program data is divided between data (initialized data) and bss (zero-initialized data)
sections, which may then be subdivided according to data element size. Zero-initialized data consists of
program variables whose values are not specified at compile time. Initialized data includes all variables that
are explicitly initialized in declaration statements.

One example of zero-initialized data is Fortran commons. Another is uninitialized C data, such as the
global variable "count” declared:

int count;

77

Note that a C-global or C-static data item explicitly initialized to zero (that ¢c®unt = 0;) may be
placed in an initialized data section, even though its value is the same as if it were part of bss.

The primary advantage of separating initialized and uninitialized data is to save space in the object file. All
bss data elements are set to the same value (zero). The only information required in the object file is a
description of the run-time size and location of the bss sections. This description is fountss thend

.Ssbss section headers.

Zero-filled memory is allocated for the bss segment when an object is mapped into memory. Because the
.bss and.sbss raw data sections do not require space in the object file, their section header size field
reports the size of the section in the process image instead of in the object file.

To take advantage of all available space, zero-initialized data immediately follows initialized data in the
image. An object can have bss sections but no bss segment. If the data in the bss sections does not exceed
the size of the leftover space in the last page of the data segment, the bss segment will be empty. This
situation is illustrated ifrigure 3-8

Figure 3-8 Data and Bss Segment Layout (1)

data
segment

bss
serment

TR T TR T
R R i R R LA L
ST ST T

Last Page of Data Segment

For the same reason, some bss data can potentially be present in the data segment, even if a separate bss
segment exists. This situation is illustratedigure 3-9

78

Figure 3-9 Data and Bss Segment Layout (l1)

6\

data
segment
bss
segment
bss
segment
Last Page of First Page of
Data Segment Bss Segment

When part or all of the bss segment is contained in the last page of a data segment, that portion of the data
page must be initialized to zero in the corresponding raw data area of the object file.

The division of initialized and uninitialized data by size may split writable data into "snsaldité§ ,

.sbss) and "large" (data , .bss) sections. It may be possible to exploit this division by grouping

frequently used data together in a section. This strategy may enhance performance by reducing page faults.
The size division may also allow post-link tools, suclerasto generate more efficient code sequences for
accessing data items.

The default maximum value for an item allocated in a "small" section is eight bytes. Some compilers accept
a-G option with a parameter to specify the maximum size of a "small" data item. However, the default
compilers on Tru64 UNIX do not.

When speaking of item size, note that an aggregate data item is considered as a whole. For example, a
string of ten characters has a size of ten bytes.
3.3.7. Permissions/Protections

When a process image is created for a program, loadable segments are assigned access permissions. These
are determined by the fildAGICnumber and the segment type.

Table 3-1 Segment Access Permissions

79

Image Segment Access Permissions
OMAGIC text, data, bss Read, Write, Execute
NMAGIC text Read, Execute
NMAGIC data Read, Write

NMAGIC bss Read, Write, Execute
ZMAGIC text Read, Execute
ZMAGIC data Read, Write

ZMAGIC bss Read, Write, Execute

3.3.8. Exception Handling Data

Exception handling is provided on the system to cope with unusual conditions. The object file contains two
sections for storing exception-handling data structures. The declaration of these structures is shown in
Section 3.2

The object file sectionxdata and.pdata work together to provide exception-handling support. The
.xdata section contains the run-time procedure descriptor table angb@ section contains code

range descriptors. Exception information is produced for all pre-link object files. The linker produces
exception information for shared executables and shared libraries because they will potentially be utilized
in conjunction with other shared executables or shared libraries that rely on exception handling. The linker
also produces exception information for nonshared executables that refdpefata_size | a linker-

defined symbol which represents the number of entries ipta¢a section.

A code range descriptor associates a contiguous sequence of addresses with a run-time procedure
descriptor. Thepdata code range descriptors are ordered by run-time address. The ranges never overlap.
The lastpdata entry is an end marker, which may be followed by padding.

The code range descriptor points into both the text segment and the run-time procedure descriptors, as
shown inFigure 3-10The relationship between code range descriptors and procedure descriptors can be a
many-to-one relationship. Also note that a code range descriptor may not have an associated procedure
descriptor.

80

Figure 3-10 Exception-Handling Data Structuers

Run-time Procedure
Descriptors (.xdata)

Code Range
Descriptors (.pdata)

begin address f

rpd_offset

begin_address
rpd_offset

begin_address
rpd_offset

Text

begin_address
rpd_offset

The virtual address space containing the text section of the object file is portioned into code ranges. Each
code range descriptor has only one address, which indicates the beginning of the range. The range is
implicitly ended just prior to the beginning address of the subsequent range. The final code range descriptor
serves to end the range begun by the next-to-last descriptor, not to start a new range.

TheProgrammer's Guidand theCalling Standard for Alpha Systemovide detailed explanations of the
exception-handling mechanisms supported by Tru64 UNIX. Related man pages pdst(4s and
exception_intro(3) are also available for quick reference.

C++ uses its own unigue exception mechanism. An example illustrating the symbol table representation of
C++ exception information can be founddection 9.2.6

3.3.9. Thread Local Storage (TLS) Data

Threads are available on Tru64 UNIX as a way to increase processor utilization and overall application
performance. Thread Local Storage (TLS) provides a way for an application writer to declare data that has
multiple instances, one per thread. The object file has specific structures designed to store and manage
TLS. These structures and the impact of TLS on the object file and symbol table are described here. For
general information about threads programming, se&thée to DECthreads

81

Three object file sections are devoted to TLS dsmlata , .tlsbss , and.tIsinit . The TLS
region consists of thélsdata and.tlshss sections. Thdlsinit section,which may be mapped
with the object file's text or data segments, contains initialization informatiotisfimta . Objects
containing TLS data are distinguished by the presence of these sections.

Structures outside the object file are used to reference TLS data. The Thread Environment Block (TEB) is
an architected structure provided by system libraries. One of the fields in the TEB is the address of the
Thread Specific Data (TSD) array, which contains pointers into the TLS region. Each object containing
TLS will be allocated one or more TSD entries. In each thread, the TSD entries will contain the address of
the start of a region of that thread's TLS area.

Figure 3-11 Thread Local Storage Data Structures

TEB
TED
T t/: o TLE Region
GOT/ lita
nj:tls

Because the TLS region is allocated dynamically and is unique per-thread, no address information can be
recorded in the object file. All other attributes of the TLS region can be determined at link time and are
recorded in the object file in the TLS data and TLS bss section headers.

The TLS data and bss sections occupy no space in the object file and do not have associated section
relocation information.

The TLSINIT section contains the data which will be used to initialize each thread's instance of the TLS
data section at run time. The TLS INIT section can contain relocation informationrROREFQUARN
R_REFLONGelocations are allowed, and the relocations must reference nonTLS symbols or sections.

82

The TLS region for a shared object consists of the initialized and zero-initialized TLS data defined by that
object. The TLS region is composed of two sections: the TLS data section containing initialized TLS data
(.tisdata) and the TLS bss sectiorllgbss) containing zero-initialized TLS data.

If a shared object contains TLS data, an entry in the GOT (for the special syrtiboffset)

contains the offset into the TSD array to the array element that points to the TLS area. If this is a multiple-
GOT shared object, the entry may be duplicated in each GOT. The value of the GOT entry is filled in at
load time when the TLS initialization routine calls the loader with the allocated TSD key value.

If a non-shared object contains TLS data, the addresslsbffset will normally be accessed through
a.lita entry that contains the value 2048, the offset to TSD key 256.

Special symbol types and relocation types are specific to TLEIsgger SandChapter4 for more
information.

3.3.10. User Text and User Data Sections

The linker contains provisions for creating and relocating user-defined object file sections. This feature was
implemented for a specific customer at the customer's request. It is very rarely used and minimally
supported. This section is designed to provide only a general overview.

Any number of user sections can be added to an object fil&&stien 2.3.2or the placement of the user
sections in the various object file layouts.

The section header for a user section has the same semantics as those used for other object file sections.
The section flags are set$3 YP_REGThe user creating the section chooses the section name. User text
sections are distinguished from user data sections by their addresses. User text sections have text segment
addresses, and user data sections have data segment addresses.

For user sections, the linker synthesizes special symbols for the start and end addresses of each section.
These symbols take the form:

_fuser_section<section_name>
_euser_section<section_name>

where<section_name> is the name in the section header. These linker-defined symbols are always
strong symbols.

The linker also combines like-named user sections in multiple input files to form a single section in the
output file.

User sections can only have external relocation records.

Namespace issues can arise due to the user's naming of these sections. It is the responsibility of the user to
protect against and recognize errors caused by namespace issues.

3.4. Language-Specific Instructions and Data Features

Procedures with alternate entry points require multiple run-time procedure descriptors.Gaknipe
Standard for Alpha Systerfts details.

C++ has exception handling facilities in addition to those discussed in this chapter.

83

C++ global constructors and destructors are implemented as initialization and termination routines invoked
by driver code stored in thmit and.fini sections.

84

4. Relocation

The purpose of relocation is to identify and update storage locations that need to be adjusted when an
executable image is created from input object files at link time. Relocation information enables the linker to
patch addresses where necessary by providing the location of those addresses and indicating the type of
adjustments to be performed. Relocation entries in the section relocation information are created by the
assembler, compiler, or other object producer, and the address adjustments are performed by the linker.

The linker performs relocation fixups after determining the linked object's memory layout and selecting
starting addresses for its segments. During partial links, relocation information is updated and preserved for
subsequent links. Relocation updates for partial links include converting external relocation entries to local
relocation entries and retargeting relocation entries to new section addres§estioeed.3.2. for detalils.

Relocation information contained in an object file can have three distinct representations:

* Relocation entries identified in section headers. These are the relocation entries referred to in this
document as "normal” or "actual”.

« Compact relocation records, produced by the linker and consumed by profiling tools. Compact
relocations are stored in tt@mment section.

« Dynamic relocations, which are present only in shared objects. Dynamic relocation may be performed
for shared objects at load time.

The first two forms of relocation information are discussed in this chapter. Note that the discussion of the
second form is limited t8ection 4.4The third form is covered iBhapter6. Figure 41 summarizes
which kinds of objects contain which kinds of relocation information.

Figure 4-1 Kinds of Relocations

actual
relocations
\' compact
—_ Linker relocations
actual
relocation
records @ compact &
dynamic
H relocations

Actual relocation entries are organized by raw data section. Not all object file sections necessarily have
relocation entries associated with them. For example, bss sections do not have relocation entries because
they do not have raw data to relocate. Section headers for sections with relocation entries contain pointers
to the appropriate section relocation information, as showigimre 4-2

Objects
with

85

Figure 4-2 Section Relocation Information in an Object File

File Header

a.out Header
Section Header 1 |—
Section Header 2

Section Header N
Raw Data Section 1
Raw Data Section 2

™

Fy

Section Relocation 1|*¥—
Section Relocation 2[*

Symbol Table
Comment Section

Note that the ordering of section headers does not necessarily correspond to the ordering of raw data and
section relocation information. Consumers should rely on the section header to access this information.

4.1. New or Changed Relocations Features

Version 3.13 of the object file format does not introduce any new relocations features.

4.2. Structures, Fields, and Values for Relocations

4.2.1. Relocation Entry (reloc.h)

struct reloc {
coff addr r_vaddr;
coff_uint r_symndx;
coff_uint r_type :8;
coff uint r_extern: 1;
coff_uint r_offset:6;
coff uint r_reserved:11,;
coff_uint r_size:6;

k
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Relocation Entry Fields

86

r_vaddr
Virtual address of an item to be relocated.
r_symndx

For an external relocation entrysymndx is an index into external symbols. For a local relocation
entry,r_symndx is the number of the section containing the synibable 4-1lists the section
numbering.

There are exceptions to this interpretation:

« Ifthes nreloc field in the section header overflows, this field contains the number of
relocation entries for the section. This possibility applies only to the first entry in a section's
relocation information. Se®ection 4.2.3or more information.

e For entries of typ& LITUSE, this field contains a subtype. SEgble 4-3
r_type
Relocation type codeTable 4-2lists all possible values.

r_extern

Set to 1 for an external relocation entry.
Set to O for a local relocation entry.

r _offset

For an entry of typ® OP_STORE_offset s the bit offset of a field within a quadword. For
other relocation types, the field is unused and must be zero.

r reserved

Must be zero.

r _size

For an entry of typ® OP_STORE_size is the bit size of a field. F&®_IMMED_*entries, it is a
subtype. Se&able 4-4 For other relocation types, the field is unused and must be zero.

87

Table 4-1 Section Numbers for Local Relocation Entries

Symbol Value Description
R_SN_NULL 0 no section
R_SN_TEXT 1 text section
R_SN_RDATA 2 .rdata section
R_SN_DATA 3 .data section
R_SN_SDATA 4 .sdata section
R_SN_SBSS 5 .sbss section
R_SN_BSS 6 .bss section
R_SN_INIT 7 .nit section
R_SN_LIT8 8 it8 section
R_SN _LIT4 9 it4 section
R_SN_XDATA 10 xdata section
R_SN_PDATA 11 .pdata section
R_SN_FINI 12 fini section
R_SN_LITA 13 lita section
R_SN_ABS 14 for R_OP xxxxconstants
R_SN_RCONST 15 .rconst section
R_SN_TLSDATA 16 tlsdata section
R_SN_TLSBSS 17 dlsbss section
R_SN_TLSINIT 18 Alsinit section

Table 4-2 Relocation Types

88

Symbol Value | Description
R_ABS 0x0 Relocation already performed.
R_REFLONG 0x1 Identifies a 32-bit reference to symbol's virtual address.
R_REFQUAD 0x2 Identifies a 64-bit reference to symbol's virtual address.
R_GPREL32 0x3 I(_jentifies a 32-bit displacement from the global pointer to a symbol's
virtual address.
R_LITERAL Oxd Identifies a re_ference to a literal in the literal address pool as an offsejt from
the global pointer.
R_LITUSE! 0x5 Identifies an instance of a literal address previously loaded into a redfister.
R GPDISP Ox6 Identifies anda/ldah _ instruc;ion pair that is used to initialize a
- procedure's global-pointer register.
R_BRADDR 0x7 Identifies a 21-bit branch reference to the symbol's virtual address.
R_HINT 0x8 Identifies a 14-bijsr hint reference to symbol's virtual address.
R_SREL16 0x9 Identifies a 16-bit self-relative reference to symbol's virtual address.
R_SREL32 Oxa Identifies a 32-bit self-relative reference to symbol's virtual address.
R_SREL64 Oxb Identifies a 64-bit self-relative reference to symbol's virtual address.
R OP PUSH OXC Identifies a 64-bit virtual address to push on the relocation expressiof
- - stack.
R OP STORE oxd Identifie_s an address to store the value popped from the relocation
- - expression stack.
R OP PSUB Oxe Identifi_es a symbol_'s virtual address to subtract from value at the top jof the
- - relocation expression stack.
R OP PRSHIFT loxf Identifi_es the numt_)er of bit positions to shift the value at the top of the
- - relocation expression stack.
Specifies a new gp value to be used for the address range starting wjth the
R_GPVALUE 0x10 address specified by tmevaddr field.
R GPRELHIGH Ox11 Identifies'the_ most significant 16 bits of a 32-bit from the global pointgr to
- a symbol's virtual address.
R_GPRELLOW 0x12

Identifies the least significant 16 bits of a 32-bit from the global point«rr to

89

a symbol's virtual address.

R_IMMED 0x13 Indicates an instruction sequence that calculates an address.

R _TLS LITERAL |0x14 Identifies the instruction that loads the TLS key.

Identifies the most significant 16 bits of a 32-bit from the TLS region

R_TLS_HIGH Ox15 pointer to a symbol's virtual address

R TLS LOW 0x16 Ide_ntifies the least Isign_ificant 16 bits of a 32-bit from the TLS region
- - pointer to a symbol's virtual address.

Table Notes

1. Ther_symndx field for the relocation typR_LITUSE is a subtype. The valid entries for this field
and their meanings are summarized able 4-3

2. Ther_size field for the relocation typR®_IMMEDIs a subtype. The valid entries for this field and
their meanings are summarizedliable 4-4

Table 4-3 Literal Usage Types

Symbol Value | Description

The base register of a memory format instruction (exdapt) contains a

R_LU_BASE L literal address.

R LU BYTOFF |2 Should not be used.

R_LU_JSR 3 The target register ofjar instruction contains a literal address.

Table 4-4 Immediate Relocation Types

Symbol Value | Description

R _ IMMED _GP_16 1 16-bit displacement from GP value

R_IMMED _GP_HI32 |2 Most significant 16 bits of 32-bit displacement from GP value

R _IMMED_SCN_HI32|3 Most significant 16 bits of 32-bit displacement from section start

Most significant 16 bits of 32-bit displacement from instruction

R_IMMED_BR_HI32 |4 ;
following branch

Least significant 16 bits of 32-bit displacement specified by last

R_IMMED_LO32 5 R IMMED * HI32

90

4.2.2. Compact Relocation Subsection (of .comment section)

Compact relocation records are written into the free-form data area of the comment section. They are
identified by a tag type &€M_COMPACT_Rli€the comment header. The public versions of compact
relocation interfaces for producers and consumers are located in the heaeplfigcmric.h . See
Section 4.4andChapter7 for more information.

4.2.3. Section Header

The section header contains a file pointer to the section's relocation information and the number of entries.
(SeeSection 2.2.3or the declaration.) The number of relocation entries for a section is contained in the
section header field_nrelocs . If that field overflows, the section header faRgNRELOCS_OVFIs set

and the first relocation entry'ssymndx field stores the actual number of relocation entries for the

section. That relocation entry has a typ&ofABSand all other fields are zero, causing it to be ignored

during relocation.

91

4.3. Relocations Usage

4.3.1. Relocatable Objects

An object is relocatable if it contains enough relocation information for the linker to successfully relocate
it. Relocatable objects can be produced by compiling without linking or by partial linking.

Compilers and assemblers always produce relocatable objects. By default, the relocatable object files
produced are passed to the linker to produce a non-relocatable executable object. Most compilers recognize
a-c option. Thec option suppresses the link operation and writes the object file in its relocatable form.

For example, the following command produces a non-execuDkeGIClile namedpgm.o .

$cc -c pgm.c

By means of partial linking, the linker can also produce a relocatable object. By default, the linker attempts
to produce an executaldAGICfile for which all relocation entries have been processed and removed.

To preserve relocation information, the linker'sswitch should be selected. For example, the following
command produces a non-executdDMAGICfile nameda.out.

$Id -r pgm.o

Selection of ther switch has other effects: common storage class symbol allocation is deferred until final
link and undefined symbol error messages are suppressed.

Relocatable objects have various uses. The most obvious is as input to a subsequent partial or final link
operation. All objects input to the linker are relocatable objects, regardless of how they are produced.
Multiple relocatable objects can be combined during a final link to produce an executable object. The
typical example of this process is when several separately compiled modules are created at different times
and later linked together to produce the final executable program. For example, the following steps produce
an executabl&MAGICfile nameda.out.

$cc -c partl.c
$ce -¢ part2.c
$ce -¢ part3.c
$cc partl.o part2.0 part3.o

Relocatable objects are also used for archives. Although files of any type may be archived, one important
use of archives is for user or system libraries. An example is the systemlif@ary , which is linked

with many C programs. Objects in archive libraries must be relocatable to be linked with other object files
to make executable programs.

Relocatable objects may be used as loadable drivers, which are object files that are dynamically added to a
running kernel. Information is available in t8gstem Administration Guide

Relocatable objects can also be used by the bootlinker, which builds the kernel from object files at boot
time. Information is available in tt&ystem Administration Guide

Some profiling tools require relocatable objects as input because they rebuild the object and require the
capability of rearranging raw data. However, on Tru64 UNIX, these tools rely on compact relocations,
which are an alternate form of relocation information. Compact relocations are descBeeton 4.4

92

4.3.2. Relocation Processing

This section describes the generic process of relocating object files from a high-level viewpoint. It does not
include details of address calculations, nor does it take into account the substantial variations in the
contents of a relocation entry's fields. For specifics Seetion 4.3.4

Relocation involves tracking and updating references as the referenced items move in memory. At a
minimum, one relocation entry is required for each reference made to an item whose address may
potentially change. This address, pointed to by¢hee structure field_vaddr , is the target address of
the relocation. This address is adjusted whenever necessary to prevent it from becoming outdated. The
target address is located in one of the raw data sections of the object file.

The target address points to another item in the raw data. This item can be a data item, procedure, or any
program element that will potentially be mapped to a new memory location when the linker builds the
executable object.

Figure 4-3 Relocation Entry

Raw Data

Relocation Entry

[target address]

r_vaddr —"

r_symndx
r_extern _:I_. _ _
[target item] ,

may move

Note that a many-to-one relationship may exist between relocation entries and target items. A target item
may be addressed multiple times in an object file's raw data, and a single target address reference may be
described by multiple relocation entries.

Taken together, the symndx field andr_extern bit track the position of the target item. If it is moved
to a new location, the target address is updated accordingly.

The value of the relocation is the distance that the tracked item will move in memory.

4.3.2.1. Local and External Entries

Relocation entries are used for several purposes:

93

* Address references to unresolved symbols that will be imported from other objects.

* References to addresses within an object that may change when the object is linked at a different base
address or linked with other object files.

« ldentification of address references that may be optimized at link time.

Relocation entries may be local or external. Local relocation entries are used for references to addresses
within an object. External relocation entries are used for references to any external symbols. In particular,
unresolved symbols references can only be represented by external relocation entries.

Ther_extern flag is set in external relocation entries. This flag determines the interpretation of the
r_symndx field. For external entries, this field provides the external symbol table index of the referenced
symbol.

Figure 4-4shows a sample external relocation entry.

Figure 4-4 External Relocation Entry

Relocation Entry External Symbols

r_vaddr
r_symndx

W

KER T

r_extern=1

Raw Data

»| iFrget 3dar

For an external entry, the value for relocation is the run-time address of the referenced external symbol. In
cases where the symbol is undefined in an input object, it must first be resotued. 4-5depicts this
process.

94

Figure 4-5 Processing an External Relocation Entry

Declaring Object File Defining Object File Executable Object File

text section text section text section ranw
rany clata: ramwy data: data combines all
. input ohjects' text:
call myproc ¥ ~| myproc: do a.b.c

I f}

call myproc

relocation entry: myproc: do a.b.c
r_waddr !
— r_symndx external symbal
I}f}f{f}f}fﬂff}f}f{f}f}fﬂffﬂf}fﬂ takle entgf: S
L1 value= external symbol
external symbol raforatable addr table entry:
takle iantry:ﬂ st=stProc - walue=
value= - refocaied adar
sc=scUndefined sc=scGlobal W
Mote:
Linker Symbal table
matches declaration ;?eagennuttir?e
with definition e cutahle,

A local relocation entry has itsextern flag cleared and tracks references by section.

Figure 4-6shows a sample local entry.

95
Figure 4-6 Local Relocation Entry

Relocation Entry Section k Header

r_vaddr 3
r_symndx
5_vaddr
r_extern=0
Raw Data Section k Data
fracked sy

M f2rgel 3adr

For a local entry, the value for relocation is the difference between a section's address in the input object
and the address of that section's data after linking. The section is identified by a relocation section type in
r_symndx . Figure 4-7depicts this situation.

Figure 4-7 Processing a Local Relocation Entry

Input Object Input Object Input Object Output Object

1

SEEE
pt i, i VI

\

Linker

concatenates and
relocates object file

gections

96

To complete relocation for all entries, the base address for the final process image is required. The linker
can then use that address to patch all relocatable entries.

4.3.2.2. Relocation Entry Ordering

The ordering of relocation entries is sometimes significant. The diagram below shows the optional
relocation entry count and grouping of relocation entries according to GP range.

Figure 4-8 Relocation Entry Ordering Requirements

section Relocations

B _ABS Optional relocation overflow count

L Includes all GP-relative relocations
/ for first GP range

E GPVALUE

\\ Includes all GP-relative relocations
/ for second GP range

If a section requires an optional relocation entry overflow count, it must be in the first relocation entry.
Relocation processing tools require GP-relative relocations to be grouped by GHRradBeVALUE

entries will effectively separate the groups of GP-relative relocation entries for each GP range. For a list of
GP-relative relocation types, sBection 4.3.3.2

Some relocation types can only be used when paired with other relocation types. These relocation
groupings are:

* R_GPRELHIGH, R_GPRELLOW

R_TLSHIGH, R_TLSLOW

R_LITERAL, R_LITUSE

R_OP_PUSH, R_OP_PSUB, R_OP_PRSHIFT, R_OP_STORE
An R_GPRELHIGHentry must be followed by one or méRe GPRELLOWhtries.
An R_TLSHIGHentry must be followed by one or mdRe TLSLOWéntries.

An R_LITERAL entry may be followed by zero or mdRe LITUSE entries.

97

An R_OP_PUSHntry must be followed by exactly oRe OP_STOREnNtry. Zero or mor& _OP_PSUB
andR_OP_PRSHIFTentries may be located between fheDP_PUSHNdR_OP_STORIEntries.

4.3.2.3. Shared Object Transformation

Part of the linker's preparation of loading information for shared objects is to create dynamic relocation
entries from some of the actual relocation entries.

The linker must determine which relocation entries need to be converted to dynamic relocation entries.
Data references}(REFQUARNAR_REFLONGelocation types) must be represented inrtbledyn

section if they are not in thita section. Thelita section is an exception because its contents are
mapped directly into the GOT. All othB REFQUADr R_REFLONntries have an associated dynamic
relocation entry in the shared object file.

Dynamic relocation entries are not permitted for text addresses. The text segment is not mapped with write
permission, so text relocation fixups cannot be performed by the dynamic loader.

4.3.3. Kinds of Relocations

Relocations types can be grouped into the following categories:
« Direct Relocations

e GP-relative Relocations

« Self-relative Relocations

e Literal Relocations

* Relocations Stack Expressions

* Immediate Relocations

e TLS Relocations

The categories often overlap.

4.3.3.1. Direct Relocations

Direct relocations are independent entries; all of the information necessary to process them is self-
contained. The relocation target contains either the address of a relocatable symbol or an offset from that
address. They are used for simple address adjustments; addresses in the literal addtias pool (

section), for example, will have associated direct relocation entries.

R_REFQUARNAR_REFLONGure direct relocation typeR. REFQUAINdicates a 64-bit address and

thus is normally used on Alpha systeiRs REFLONGhdicates a 32-bit address and most often occurs

when thextaso environment is in effect. These types of relocations are processed in the manner described
in Section 4.3.2

The following special requirements exist for direct relocation entries folithe section:

¢ Only entries of typ&® REFQUADr R_REFLONGre permitted.

98

* R_REFLONGntries pertain to the bottom 4 bytes dita entry. The size of the entry is
unchanged, but an error is generated if the result overflows 4 bytes.

« All external entries must correspond to symbols whose value is zero prior to relocation.

4.3.3.2. GP-Relative Relocations

This class of relocations requires use of the GP value as a factor in the calculation. Note that the literal
relocations irSection 4.3.3.4ndSection4.3.3.7also fit this category.

TheR_GPREL32R_GPRELHIGHR_GPRELLOVndR_GPDISPrelocation types are GP-relative.
They typically point to instructions that calculate or load addresses using a GP valRe GPRELHIGH
andR_GPRELLOWelocation types must be used together. Rh&PDISPrelocation type is used for
instruction pairs that load the GP value.

A special-purpose GP-relative relocation entry specifies that a new GP range is in effect. The relocation
type for this entry iR_GPVALUEThe linker insertR_GPVALUEentries at object module boundaries
during a partial linklfl -r) when thelita section it is building would otherwise overflow. Entries of
this type appear in theext section or therdata section. These entries are local entries because they
are not tied to any symbol.

4.3.3.3. Self-Relative (PC-Relative) Relocations

This class of relocations require adjustments based on the current position in the text or data. Self-relative
relocations are also referred to as PC-relative relocations.

TheR_SREL16 R_SREL32 andR_SREL64relocation types apply to 16, 32, and 64 bit target addresses,
respectively.

Two more self-relative relocation types &eBRADDRNAR_HINT. R_BRADDHS used to identify
branching instructions whose targets are known at link ®né&lINT is used to adjust the branch-
prediction hint bits in jump instructions.

4.3.3.4. Literal Relocations

This category of relocations encompasses both literal relocationSR(tydEERAL) and literal-usage
relocations (typ& LITUSE), which work together to describe text references.

A literal relocation (typdR_LITERAL) occurs on a load of an address from.tit® section. Any
associatedR_LITUSE entries always directly follow thiR _LITERAL entry.

The literal-usage entries are used for linker optimizations. Processing for these relocation entries is
optional. The linker and other tools may ignore these relocation entries with no risk of producing an
improperly relocated object file.

The advantage of literal-usage entries is that they enable link-time memory-access optimizations. These
relocation entries identify instructions which use a previously loaded literal. With this knowledge, the
linker is able to determine that certain instructions are unnecessary or can be altered to improve
performance. Optimization is performed only during final link and with an optimization level setting of at
least-O1.

99

4.3.3.5. Relocation Stack Expressions

Relocation stack expressions constitute a sequence of relocation entries that must be evaluated as a group.
The purpose of stack expressions is to provide a way to represent complex relationships between
relocatable addresses and store results with bit field granularity. They are currently used only for exception-
handling sections.

An additional advantage of stack expressions is that they provide the capability to describe a new relocation
type without requiring tool support or code modification to recognize and executeratygsv .

However, the greater flexibility of relocations expressions is offset by the fact that multiple entries are
necessary to describe a single fix-up.

Special relocation types are used to build relocation expressions. The types are:

« R_OP_PUSH

R_OP_STORE

R_OP_PSUB

R_OP_PRSHIFT

An R_OP_PUSHntry marks the beginning of a sequence of relocation stack expressions and an
R_OP_STORHmnarks the end. The types of any intervening relocation entries should be either
R_OP_PRSHIFTto shift the top of stack value right &r OP_PSURo subtract an address from the top of
stack value.

An R_OP_STOREentry pops the value from the top of the expression stack and stores selected bits into a
field in a word in memory. The offset andr_size fields of a relocation entry are used to specify the
target bit field.

It is an error to cause stack underflow or to have values left on the stack when section relocation is
complete.

Currently, these relocation types are used exclusively for relocating the exception-handling data in

xdata and.pdata . The reason this relocation is performed using the stack expression types is the need
to shift the address by two bits. Bit field granularity cannot be specified with other relocation types unless it
is implicit in the relocation type.

4.3.3.6. Immediate Relocations

Immediate relocations are used to describe the linker's optimization of literal pool references. If
optimization options are in effect, the linker will repld&®elLITERAL andR_LITUSE entries with
R_IMMEDentries wherever possible. This information is then used to generate compact relocations that
sufficiently describe all relocatable storage locations.

Immediate relocations can describe instruction sequences that calculate addresses by adding either a 16-bit
or 32-bit immediate displacement to a base addrReddIMEDentries always point to memory-access
instructions. The displacement is obtained from the instruction.

There are five types of immediate relocations. Subcodes mdime field identify them. The types are:

+ R_IMMED_GP_16

100

R_IMMED_GP_32

R_IMMED_SCN_HI32
« R_IMMED_BR_HI32
« R_IMMED_LO32

R_IMMED_GP_16ndR_IMMED_GP_3Zntries identify address calculations performed by adding an
offset to the global pointer. AR_IMMED_SCN_HI32entry is paired with aR_IMMED_LO32entry to
identify a pair of instructions which add a 32 bit displacement to the starting address of a section. An
R_IMMED_BR_HI32entry is paired with aR_IMMED _LO32entry to identify a pair of instructions
which add a 32 bit displacement to the address of an instruction following a branch.

4.3.3.7. TLS Relocations

The typeR_TLS_LITERAL, R_TLS LOWandR_TLS_HIGHare TLS-specific relocation types.

R_TLS_LITERAL is very similar tdR_LITERAL, except it relates to a literal in the TLS data storage

area, the TSD arraR_TLS_LOWAndR_TLS_HIGHentries are used as a pair to identify instructions

which load a TLS data address by adding a 32 bit offset to the TLS region pointer. These relocation types
are identical to th& _GPRELHIGHandR_GPRELLOWélocation types except for the fact that the target
instructions for the TLS relocation entries calculate addresses using the TLS region pointer instead of the
GP value.

4.3.4. Relocation Entry Types

The type of a relocation entry (stored in thgype field) describes the action the linker must perform.
This section discusses the purposes of the different types and provides examples of their use.

Relocation entry fields are interpreted differently based on relocation type. There also may be constraints
on fields' contents depending on the type. Some relocation entries are context sensitive and must be
preceded or followed by a particular entry. Some are size specific and the computed address must fall
within a specified range. Moreover, some types are constrained to be local entries only or are associated
with particular object file sections.

To describe the calculations performed by the linker, the following notation is used in the detailed
descriptions for each relocation type:

* disp

The displacement field of whatever instruction is indicated.
GP

CurrentGPvalue; begins as the contentsolithdr.gp_value for the final object.
new_scn_addr

The address of the tracked section of a local relocation entry, as calculated by the linker.

old GP

101

GP value in the input object; beginssasithdr.gp_value for the input object.
old_scn_addr

The contents af_vaddr in the section header of the input object file for the tracked section of a
local relocation entry.

[r_vaddr]

The contents at the addressaddr ; to be distinguished from the address itself.
SEXT

The constant immediately following is sign-extended.
stack

The relocation expression stack.
this_new_addr

Wherer_vaddr will be after relocation .
this_new_scn_addr

Where the section containimgvaddr will be after relocation, as calculated by the linker.
this_old_scn_addr

The contents af_vaddr in the section header of the input object file for the section containing
r_vaddr.

tos
Top of relocation expression stack.

result

The result of the relocation, which is written back into the relocateztidr in the object file that
the linker is producing.

4.3.4.1. R_ABS

Fields

r_vaddr Number of relocation entriessf nreloc section header field has overflowed. This
number includes itself in the count. Otherwise, unused.

r_symndx Unused.

r_extern Unused.

r_offset Unused.

102

r_size Unused.
Operation

N/A

Restrictions

N/A

Description

This relocation entry is used to indicate a relocation has already been performed or should not be
performed. No calculation is associated with such an entry.

The first entry in a relocation section is of type R_ABS if it contains the number of relocation entries in that
section (which is the case when the section headersfiglceloc overflows). This type can also be used

to pad relocation data or to delete relocation entries in place. In-place deletions of relocation entries are
likely to be performed during a partial link.

Example

An object file produced during a partial link has 99993 relocations associated wigtits section. A
listing of the entries begins with & ABSbecause the total number overflosvsireloc

Vaddr Symndx Type Off Size Extern Name
text:

0x0000000000018699 0 ABS local <null>

4.3.4.2. R_REFLONG
Fields

r_vaddr Points to target address.

r_symnadx External symbol index if_extern is 1; section number if extern is 0.

r_extern Either O or 1.
r_offset Unused.
r_size Unused.
Operation

if (r_extern == 0)

result = (new_scn_addr - old_scn_addr) + (int)[r_vaddr]
else

result = EXTR.asym.value + (int)[r_vaddr]

103

Restrictions

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type describes a simple address adjustment to the 32-bit value pointed to by
r_vaddr .R_REFLONGntries are most likely to occur when the compilation optitaso_short is
specified.

The relocated value may be unaligned.

Example 1

C code fragment:

extern int i;
void *p = (void *)(&i + 1);

Compile as follows:

$ cc -c -xtaso_short pgmname.c

Produces the followin®_REFLONGntry:

RELOCATION INFORMATION*
Vaddr Symndx Type Off Size Extern Name

.Sdata:
0x0000000000000000 0 REFLONG extern |

This relocation entry is necessary because the value of the gouopends on the address of the global
(common storage class) symbglwhose address is yet to be determined. At the location indicated by
s_vaddr , the value 4 is stored, which will be added to the resolved addriesSto¢ "4" represents the 4
bytes to the next integer storage location in memory iafter

Example 2

From assembly code, the following declaration produces the same relocation entry as the previous example.

long I

4.3.4.3. R_REFQUAD
Fields

r_vaddr Points to target address.

r_symnadx External symbol index if_extern is 1; section number if extern is 0.

104

r_extern Either O or 1.
r_offset Unused.
r_size Unused.
Operation

if (r_extern == 0)

result = (new_scn_addr - old_scn_addr) + (long)[r_vaddr]
else

result = EXTR.asym.value + (long)[r_vaddr]

Restrictions

None.

Description

A relocation entry of this type describes a simple address adjustment to the 64-bit value pointed to by
r_vaddr . R_REFQUANtries are most likely to occur in data sections and almost always are used for
relocation of thelita section.

The relocated value may be unaligned.

Example 1

Small program:

#include <stdio.h>
main(){

printf("printing\n");
}

Relocation entries produced for ilisa section:

RELOCATION INFORMATION*
Vaddr Symndx Type Off Size Extern Name

Aita:
0x0000000000000070 1 REFQUAD extern printf
0x0000000000000078 3 REFQUAD local .data

The.lita section consists of two entries, and each is relocated. One entry is external, tracking the routine
nameprintf , and one local, tracking an item in tllata section.

Example 2

A R_REFQUARNtry can also be produced by an assembly language statement such as:

105

.globl y
.data
b: .quady

Relocation entry produced:

RELOCATION INFORMATION
Vaddr Symndx Type Off Size Extern Name

.data:
0x0000000000000000 0 REFQUAD extern y

The variabled is allocated as_vaddr inthe.data section and will be updated by adding the address of
y when the symbo} is resolved.

4.3.4.4. R_GPREL32

Fields

r_vaddr Points to a 32-bit GP-relative value.

r_symnadx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + old_GP - GP +
SEXT((int)[r_vaddr]
else
result = EXTR.asym.value - GP + SEXT((int)[r_vaddr]

Restrictions

Signed result after relocation must not overflow 32 bits.

Description

A relocation entry of this type indicates a 32-bit GP-relative value that must be updated. If it is a local
entry, this value must be biased by the GP value for the input object file. In both cases, the current GP
value is subtracted to produce a result that is an offset from the GP.

Example 1

Local R_GPREL32entries are produced for a many-caséich statement. For example, consider the
following C program:

106

main(){
int i

scanf("%d",&i);

switch(i) {
case 0O:i++; break;
case 1:i--; break;
case 2:i+=2; break;
case 3:i-=2; break;
case 4:i+=3; break;
case 5:i-=3; break;
case 6:i++; break;
default: i=0;

A compiler may implement a switch statement with a "jump table", that is a code sequence containing
labels for each case and a jump statement selecting between them. For each case label, a relocation entry is
produced:

Vaddr Symndx Type Off Size Extern Name
.rconst:
0x00000000000000d0 1 GPREL32 local .text
0x00000000000000d4 1 GPREL32 local .text
0x00000000000000d8 1 GPREL32 local .text
0x00000000000000dc 1 GPREL32 local .text
0x00000000000000€0 1 GPREL32 local .text
0x00000000000000e4 1 GPREL32 local .text
0x00000000000000e8 1 GPREL32 local .text
Example 2

The following assembly code sequence also produBes=PREL32entry:

.globl z
.data
a: .gprel32z

Relocation entry produced:

RELOCATION INFORMATION*
Vaddr Symndx Type Off Size Extern Name

gprel32.0:

.data:
0x0000000000000000 0 GPREL32 extern z

107

4.3.4.5. R_LITERAL
Fields

r_vaddr Points to a load instruction in the text segment. The value to be relocated is the
memory displacement from ti$gp in the instruction.

r_symndx R_SN_LITA

r_extern Must be zero; alR_LITERAL entries are local.
r_offset Unused.

r_size Unused.

Operation

result = (new_scn_addr - old_scn_addr) + (SEXT((short)[r_vaddr]) +
old_GP) - GP

Restrictions

The result after relocation for & LITERAL entry must not overflow 16 bits. .

R_LITERAL entries must be local and relative to fita section.

Description

A relocation entry of this type is produced when an instruction attempts to reference values in the literal-
address poollfta section). The instruction containing the reference accesbis a entry using the

GP value in effect and a signed 16-bit constant. The original address of the item has to be reconstructed and
then adjusted for the new location of the address table. The new address then has to be reconverted into a

GP displacement using the new GP value.

An R_LITERAL entry may or may not be followed by corresponding ITUSE entries. The
R_LITERAL entry is required but thie_LITUSE entries are not.

Example

R_LITERAL entries are used when an address is loaded from the literal address pool:
ldg t12,-32664(gp)
Relocation entry produced:

RELOCATION INFORMATION
Vaddr Symndx Type Off Size Extern Name

text:

0x0000000000000038 13 LITERAL local .lita

108

4.3.46. R_LITUSE:R LU BASE

Fields

r_vaddr Points to memory-format instruction.
r_symndx R_LU_BASE

r_extern Must be zero; alR_LITUSE entries are local.
r_offset Unused.

r_size Unused.

Operation

Check if displacement is within 16 or 32 bits. The displacement is calculated:

new_lit = [relocated literal belonging to correponding R_LITERAL]
disp = new_lit + lituse_disp - GP

Restrictions

A relocation entry of this type must follow either RNLITERAL or anotheR_LITUSE entry with no
other types intervening.

r_vaddr must be aligned on a byte boundary.

Ignored if optimization level is not at lea§1.

Cannot remove the first load instruction unless this is the only correspdRditfUSE entry.
Description

This relocation entry is informational and indicates that the base register of the indicated instruction holds a
literal address. Note thatR LITERAL entry, corresponding to &g instruction, precedes this entry.

Possible optimizations depend on the distance of the memory displacement from the GP value. If the
displacement is less than 16 bits from the GP, a single instruction suffices to describe the location. The
code sequence can be changed as shown:

Idg rx, disp(gp) R_LITERAL
Idg/stq ry, disp2(rx) R_LITUSE(R_LU_BASE)

Ida/stq ry, disp3(gp)

The linker converts thB_LITUSE entry to arR_IMMED_GP16or the transformed instructions.

If the displacement is within 32 bits of the GP, one memory access can be saved by replacing the first load
instruction with the fastddah instruction.

Idg rx, disp(gp) R_LITERAL

109

Idg/stq ry, disp2(rx) R_LITUSE(R_LU_BASE)

Idah rx, disp3(gp)
Idg/stq ry, disp4(rx)

The linker will convert th&k_LITERAL and theR_LITUSE, respectively, to entries of type
R_IMMED_GP_HI32andR_IMMED_GPLOW32

This can currently only be done if exactly dReLITUSE exists for thdR_LITERAL.
Example 1

The following instructions represent a single use of an address literal:

0x100: Idq al,-32656(gp) // R_LITERAL
0x104: lda al, 32(al) /IR_LU_BASE

Relocation entries produced:

RELOCATION INFORMATION*
Vaddr Symndx Type Off Size Extern Name

text:
0x0000000000000100 13 LITERAL local .lita
0x0000000000000104 1 LITUSE local R_LU_BASE

The potential optimization indicated by tiiRs LU_BASESs that the two instructions could possibly be
replaced by a singlelg instruction of the form:

Idg al, <disp>(gp)

Example 2

The following instructions illustrate multipie_LITUSE entries following arR_LITERAL entry:

0x130: Idg 10, -32736(gp) /I R_LITERAL
0x134: ldg t1, O(t0) /IR_LU _BASE
0x138: zap t1,0x2,t1

0x13c: insbl vO, 0x1, vO

0x140: bis t1,v0,tl

0x144: stq t1, O(t0) /IR_LU _BASE

Relocation entries produced are:

RELOCATION INFORMATION
Vaddr Symndx Type Off Size Extern Name

0x0000000000000130 13 LITERAL local .lita
0x0000000000000134 1 LITUSE local R_LU_BASE
0x0000000000000144 1 LITUSE local R_LU_BASE

110

43.47. R_LITUSE:R_LU JSR

Fields
r_vaddr Points to jump instruction (in text segment).

r_symndx R LU JSR

r_extern Must be zero; alR_LITUSE entries are local.
r_offset Unused.

r_size Unused.

Operation

new_lit = [relocated literal belonging to correponding R_LITERAL]
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
branch_disp = prologue_size + new_lit - this_new_addr + 4

result = branch_disp / 4

Restrictions
Must follow either arR_LITERAL or anotheR_LITUSE entry with no other types intervening.

Result after relocation must not overflow 21 bits (size of branch displacement field in the branch
instruction format).

Description

A relocation entry of this type is informational only. It informs the linker that the indicated jump instruction
is jJumping to an address previously loaded out of the literal address pool. The load instruction had an
associatedR_LITERAL entry that precedes this relocation entry.

Under the right circumstances, the linker can optimize this sequence in several ways:

* The procedure prologue can be skipped if it is not needed to load a GP value for the procedure.

e The branch can be calculated and the instruction changed to a branch instruction.

e The precedinddqg can be removed.

The first two actions may be performed but not the last if dh&ITUSE entries correspond to the same
R_LITERAL. These optimization are performed by the linker for optimization level 1 and greater.
Optimization cannot be done for external symbols that are weak symbols in a dynamic executable, hidden
symbols in a shared library, or unresolved.

Example

The following instructions illustrate the use of a literal as the target of a jump instruction:

111

0x8: Idq t12,-32736(gp) // R_LITERAL
Oxc: Ida sp, -16(sp)

0x10: stq ra, O(sp)

0x14: jsr ra, (t12) /I R_LU_JSR

Relocation entries produced:

RELOCATION INFORMATION
Vaddr Symndx Type Off Size Extern Name

text:
0x0000000000000008 13 LITERAL local .lita
0x0000000000000014 3 LITUSE local R_LU_JSR

The instructions identified by tie LITERAL andR_LU_JSRentries in this example can be optimized.

Theldq instruction can be replaced witiN®Pinstruction and thgsr can be replaced withlesr
yielding:

0x1200011a8: Idg_u zero, O(sp) /I NOP
0x1200011lac: Ida sp, -16(sp)
0x120001110: stq ra, O(sp)
0x120001114: bsr ra, 0x1200011d8

4.3.4.8. R_GPDISP

Fields

r_vaddr Points to the first of a pair of instructionda andldah . Either instruction may
occur first.

r_symnadx Contains the unsigned byte offset from the instruction indicatedraddr to
the other instruction used to load the GP value.

r_extern Must be zero; alR_GPDISPentries are local.

r_offset Unused.

r_size Unused.

Operation

result = (old_GP - GP) + (this_old_scn_addr - this_new_scn_addr)
+ (65536 * high_disp) + low_disp

The result after relocation is written back into the instruction pair.

Ida_disp = result
Idah_disp = (result + 32768) / 65536

112

Restrictions

Must be a local relocation.

Must describe atda/ldah instruction pair.

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type corresponds to two instructions in the code. The fialtr points to

one instruction and the address of the other is computed by adding the vakgrofdx tor_vaddr

This relocation entry occurs for each instruction sequence that loads the gp value. For instance, procedure
entry points typically include instructions which load their effective gp value. They are normally the first
instructions in a procedure's prologue.

Example

A simple example of an occurrence of ReGPDISPentry is the program entry point:

main() {

Instructions generated:

0x0: Idah gp, 1(t12) // R_GPDISP (r_vaddr)
Ox4: Ida gp, -32704(gp) // R_GPDISP (r_vaddr + r_symndx)

Relocation entry produced:

Vaddr Symndx Type Off Size Extern Name

text:
0x0000000000000000 4 GPDISP local

There are situations where a procedure is called bir tPDISPentry is not required. In this case, the
gp_used field of the procedure's descriptor will be zero, anRahU_JSR optimization may cause the
prologue to be skipped. See fBalling Standard for Alpha Systeriws details on when a procedure
requires calculation of a GP value.

4.3.4.9. R_BRADDR

Fields

r_vaddr Points to a branch instruction.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

113

r_size Unused.

Operation

if (r_extern == 0)
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = ((new_scn_addr - old_scn_addr) +
(branch_displacement * 4)
+r_vaddr + 4 - this_new_addr) / 4
else
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (EXTR.asym.value + (branch_displacement * 4)
- this_new_addr) / 4

Restrictions

After relocation the result should be aligned on a 4-byte boundary.

The signed result must not overflow the 21-bit branch displacement field.
Description

A relocation entry of this type identifies a branch instruction in the code. The branch displacement is
treated as a longword (32-bit, or one instruction) offset. The branch target's virtual address is computed:

va <- PC + (4 * branch_displacement)

The branch displacement must be relocated.

TheR_BRADDRelocation can only be used for local or static references because the displacement is fixed
at link time. Updating it at run time would require writing to the text segment, which is not permitted.
Without the ability to update at run time, symbol preemption for shared objects will not function.

Example

An example that will result in production of this type of relocation is a procedure call of a static function:

static bar(){

int g =1;

printf ("the value of q is %d\n", q);
}

main (){
bar();
}

Instruction generated:
Ox4c: bsr ra, Ox8(zero) // R_BRADDR

Relocation entry produced:

114

Vaddr Symndx Type Off Size Extern Name
text:

0x000000000000004c 1 BRADDR local .text

4.3.410. R_HINT

Fields

r_vaddr Points to jump-format instruction.

r_symnadx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = ((new_scn_addr - old_scn_addr) + (jump_disp * 4) +
r_vaddr + 4 - this_new_addr) / 4
else
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (EXTR.asym.value + (jump_displacement * 4) -
this_new_addr) / 4

Restrictions

Result after relocation should be aligned on a 4-byte (instruction-size) boundary.

Description

Jump instructions are memory-format instructions where the 14 bits of the displacement field serve as a
hint for determining the jump target. The hint is PC-relative and must be relocated to remain relevant. Note
that the use of hints is for optimization purposes only and takes advantage of branch-prediction logic built
into the architecture. If the hint values were not relocated, a correct executable program would still be
produced but potential performance improvements would be lost.

A characteristic oR_HINT entry processing is that instead of checking for overflow of the 14-bit result
after relocation, the linker truncates the result and writes it back without issuing an error or warning.

Example

Subroutine calls often cauBe HINT entries.

main() {

115

printf("hello\n™);
}

Instructions generated:

0x14: Idg t12,-32752(gp) // R_LITERAL
0x18: jsr ra, (t12), printf // R_HINT

Relocation entries produced:

Vaddr Symndx Type Off Size Extern Name

text:
0x0000000000000018 3 LITUSE local R_LU_JSR
0x0000000000000018 0 HINT extern printf

Note that the same source line and corresponding instruction produce a second relocation entry of type
R_LITUSE_JSR. This second entry is also informational only. It indicates that the target register of the
jump instruction contains a previously loaded literal address.

4.3.411. R_SREL16

Fields

r_vaddr Points to a 16-bit self-relative value.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (new_scn_addr - old_scn_addr) +
SEXT((short)[r_vaddr]) + r_vaddr - this_new_addr
else
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = EXTR.asym.value - this_new_addr

Restrictions
The result after relocation must not overflow 16 bits.

Description

116

A relocation entry of this type is identical to BnSREL32entry except for the size of the value being
adjusted.

Example

This type is currently not used by the compilation system.

4.3.412. R_SREL32

Fields

r_vaddr Points to a 32-hit self-relative value.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (new_scn_addr - old_scn_addr)
+ SEXT((int)[r_vaddr]) + r_vaddr - this_new_addr
else
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = EXTR.asym.value - this_new_addr

Restrictions
The result after relocation must not overflow 32 bits.
Description

A relocation entry of this type indicates a value that describes a reference as an offset to its own location. In
other words, the target address is computed by adding the contents of the relocation[addieds ()

to the address of the relocatianvaddr). To perform this relocation, the new locatiorr ofaddr

must be computed and subtracted from the new target address to provide the correctly adjusted self-
relative, offset which is then written back into the raw data.

Example
The code range descriptors that are generated for each object contain a 32-bit self-relative offset in the

rpd_offset field. SeeSection 3.2.1Therpd_offset field contains an offset to the associated run-
time procedure descriptor in thedata section. Th&R_SREL32entry identifies this value.

main(){
printf("Printing\n™);

117

}

Relocation entry produced:
Vaddr Symndx Type Off Size Extern Name
.pdata:

0x0000000000000054 10 SREL32 local .xdata

Note that this relationship between thdata and.pdata sections imposes a restriction on the distance
between the text and data segments. The run-time procedures in the .xdata section must be within reach of a
32-bit signed offset from the code range descriptors in .pdata.

4.3.413. R_SREL64

Fields

r_vaddr Points to a 64-bit self-relative value.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (new_scn_addr - old_scn_addr) + (long)[r_vaddr]
+ r_vaddr - this_new_addr
else
this_new_addr =r_vaddr - this_old_scn_addr + this_new_scn_addr
result = EXTR.asym.value - this_new_addr

Restrictions
None.
Description

A relocation entry of this type is identical to BnSREL32entry except for the size of the value being
adjusted.

Example

This type is currently not used by the compilation system.

118

4.3.4.14. R_OP_PUSH

Fields

r_vaddr Oifr_extern is1; an unsigned offset within a section iéxtern is 0.
r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)

stack[++tos] = (new_scn_addr - old_scn_addr) + r_vaddr
else

stack[++tos] = EXTR.asym.value

Restrictions

This relocation entry must be followed by RnOP_STORIENtry, withone or mor®_OP_PSURx
R_OP_PRSHIFTentries in between.

Stack can hold a maximum of 20 entries.
Description

A relocation entry of this type causes a value to be pushed onto the relocation stack. The value is generally
the target address of the relocation, which will be adjusted using subsBq@int PSUBand
R_OP_PRSHIFTrelocation calculations.

Example

A code range descriptor in thgdata section contains a 32-bit fieldegin_address , which is the

offset of the associated code range address from the beginning of the code range descriptor table. See
Section 3.2.1This value is calculated by subtracting two addresses and storing the least significant 32 bits.
A series of three stack relocation entries is used to represent this offset calculation.

main(){
foo();

}

foo(){
printf("Printing\n™);

Relocation entries produced for use in calculatindodggn_address in foo 's code range descriptor:

Vaddr Symndx Type Off Size Extern Name

.pdata:

119

0x0000000000000030 1 PUSH local .text
0x0000000000000000 3 PSUB extern _fpdata
0x0000000000000078 11 STORE O 32 local .pdata

The following series of relocation entries will effectively perform the calculation:

(.pdata+0x78) = (long)(((.text+0x30)-&_fpdata) & Oxffffffff)

4.3.4.15. R _OP_STORE
Fields

r_vaddr Location to store calculated bit field.

r_symndx Section index of containing section.

r_extern Must be 0.

r_offset Bit offset fromr_vaddr .
r_size Number of bits to store.
Operation

bitfield = ((long)[r_vaddr] >> r_offset) & ((2 << r_size) - 1)
bitfield <- stack[tos--]

Restrictions

Stack cannot be empty.

Description

A relocationentry of this type causes the value currently on the top of the relocation stack to be written into
a bit field specified by the entry. The bit field is described using a size (humber of bits) and offset (number
of bits to right shift the bit field into the least significant bits of a 64-bit value).

Example

An example of th&& _OP_STORENtry is given irSection 4.3.4.14

4.3.4.16. R_OP_PSUB

Fields

r_vaddr Oifr_extern is1; an unsigned offset within a section iéxtern is 0.

r_symndx External symbol index if_extern is 1; section number if extern is 0.

120

r_extern Either O or 1.
r_offset Unused.
r_size Unused.
Operation

if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + r_vaddr
stackltos] = stack[tos] - result
else
result = EXTR.asym.value
stackl[tos] = stack[tos] - result

Restrictions

The relocation stack cannot be empty. This entry must fall somewhere betwRe®RNPUSHNtry and
anR_OP_STORIEnNtry.

Description

A relocation entry of this type causes the value at the top of the relocation expression stack to be popped,
adjusted by subtracting the address describeddosgtern andr_symndx , and pushed back on the

stack.

Example

An example of th& _OP_STORENtry is given irSection 4.3.4.14

4.3.417. R_OP_PRSHIFT

Fields

r_vaddr Oifr_extern is1; an unsigned offset within a section iéxtern is 0.
r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + r_vaddr
stackl[tos] = stack[tos] >> result
else
result = EXTR.asym.value
stackl[tos] = stack[tos] >> result

121

Restrictions

The stack cannot be empty. So this entry must fall somewhere betwBei®&n PUSHnd an
R_OP_STORE

Description

A relocation entry of this type causes the value at the top of the relocation expression stack to be popped,
adjusted by right shifting the value by the number of bits describedelRtern andr_symndx , and

pushed back on the stack.

Example

This relocation type is not currently used by the system compiler. A potential use of this relocation type
would be to convert a byte offset into an instruction offset. Right shifting a byte offset by two bits will

produce an instruction offset because Alpha instructions are 4 bytes wide.

The following assembly code will result in Bn HINT entry for the 14-bit instruction offset contained in
the hint field of gsr instruction. Se&ection 4.3.4.1@or a description of thR_HINT entry.

0x3c Idq t12, -32752(gp) /* &printf */
0x40 jsr ra, (t12)

TheR_HINT entry for the instruction &x40 could also be accomplished with a series of stack relocation
options:

text:

0x0000000000000000 2 PUSH extern printf
0x0000000000000044 1 PSUB local .text
0x0000000000000002 14 PRSHIFT local R_SN_ABS

0x0000000000000040 1 STORE 0 14 local .text

4.3.4.18. R_GPVALUE

Fields
r_vaddr Starting virtual address for new GP value.

r_symndx Constant that is added to the GP value iretoeit header to obtain the new GP

value.
r_extern Must be zero; alR_GPVALUEenNtries are local.
r_offset Unused.
r_size Unused.

Operation

new GP = aouthdr.gp_value + r_symndx

122

Restrictions
This type of relocation entry cannot be external.

Description

A relocation entry of this type identifies the position in the code where a new GP value takes effect.

R_GPVALUEentries are inserted by the linker during partial links.

Example

A linked program that references 20,000 external symbols will have at least 3 GOT entries with 3
corresponding GP values. Seection 2.3.4If the program has GP-relative relocation entries in both
text and.rdata sections, twdR_GPVALUEentries would be reported for each of these sections.

Vaddr Symndx Type Off Size Extern Name

text:
0x0000000010084cf0 64000 GPVALUE local
0x00000000100cb190 111984 GPVALUE local
.rdata:
0x000000001000fa00 64000 GPVALUE local
0x000000001001b570 111984 GPVALUE local

4.3.4.19. R_GPRELHIGH

Fields

r_vaddr Points to a memory format instructiddgh).

r_symndx External symbol index if_extern is 1; section number if extern
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

SeeR_GPRELLOWe&location type.

Restrictions
Must be followed by at least ofe GPRELLOW
Relocated result must not overflow unsigned 32-bit range.

Description

is 0.

123

A relocation entry of this type is invalid unless it is followed by at leasRo&@PRELLOWNtry. When an
R_GPRELHIGHentry is encountered, no calculation is performed. The relocation calculation is deferred
until theR_GPRELLOWtry is processed. See ReGPRELLOWescription for more information.
Example

SeeR_GPRELLOW

4.3.420. R_GPRELLOW

Fields

r_vaddr Points to memory format instructioldt or st*).
r_symndx Must matchR_GPRELHIGH

r_extern Must matchR_GPRELHIGH

r_offset Unused.

r_size Unused.

Operation

low_disp = [r_vaddr].displacement

high_disp = [R_GPRELHIGH->r_vaddr].displacement
displacement = high_disp * 65536 + low_disp

if (r_extern = 0)
result = displacement + (new_scn_addr - old_scn_addr) +
(old_GP - GP)
else
result = displacement + EXTR.asym.value + (old_GP - GP)

[R_GPRELHIGH->r_vaddr].displacement = (result+32768) >> 16
[r_vaddr].displacement = result & OxFFFF

Restrictions

TheR_GPRELHIGHR_GPRELLOWlocations must be used as a pair or set. At leas®k 0GERELLOW
entry follows eaclR_GPRELHIGHentry.

After relocation, the result must not overflow 32 bits.

The memory displacement for &l GPRELLOWhtries corresponding to the saReGPRELHIGHnNust
match.

Description

TheR_GPRELHIGHR_GPRELLOWhtry pair is used to describe GP-relative memory accesses. The
R_GPRELHIGHentry indicates atdah instruction. ThdR_GPRELLOWntry (or entries) indicates a load

or store instruction. If multipl& _GPRELLOWhtries are associated with RhnGPRELHIGHthey must all
describe the same memory location. A relocatable address can be formed with the following computation:

124

addr = 65536 * high_disp + SEXT (low_disp)

To relocate this code sequence, the memory displacement fields in each instruction must be adjusted to
reflect changes in the target address they compute and in the GP value.

The reason these entries are treated as a pair is that sign extension of the low instruction's displacement
field can result in an off-by-one error that must be fixed by adding one to the high instruction's
displacement. This situation can only be detected if the instructions are considered together.

These relocation entries describe instructions that are primarily used for computing addresses in kernel
code.. The kernel is built withoutl#a section, and kernel performance is enhanced by code that
calculates addresses directly instead of loading addresses fiitan a memory location. The code size,

on average, is unaffected by the kernel's use of this addressing method.

Example

Use the kernel build optidghWhb,-static" to compile the following sample code.

static int a;

foo(H

a++;

}

Code generated for loading the addres®bf:

0x0: ldah tO, O(gp)
0x4: Ida tO, 16(t0)

Relocation entries produced are:

Vaddr Symndx Type Off Size Extern Name

text:
0x0000000000000000 5 GPHIGH local .sbss
0x0000000000000004 5 GPLOW local .sbss

4.3.4.21. R_IMMED: GP16

Fields

r_vaddr Points to memory-format instruction.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size R_IMMED_GP16

125

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that adds a 16-bit displacement to the GP value,
obtaining an address. Theextern andr_symndx fields specify the external symbol or section to

which the calculated address is relative.

This relocation entry is created by the linker to indicate that an optimization has taken place because the
displacement is within 16-bits of the GP value.

Example

N/A

4.3.4.22. R_IMMED: GP_HI32

Fields

r_vaddr Points to memory-format instruction.
r_symndx Unused.

r_extern Unused.

r_offset Unused.

r_size R_IMMED_GP_HI32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to the GP value. This instruction adds the high portion of the 32-bit displacement. The next
R_IMMED_LO32entry identifies the instruction containing the low portion of the displacement. More than
one subseque®_IMMED_LO32entry can share the saRelMMED_GP_HI32entry.

Example

N/A

126

4.3.4.23. R_IMMED: SCN_HI32

Fields

r_vaddr Points to memory-format instruction.
r_symndx Unused.

r_extern Unused.

r_offset Unused.

r_size R_IMMED_SCNHI32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to the starting address of the current section. This instruction adds the high portion of the
displacement. The neR_IMMED_LO32entry identifies the instruction with the low portion.

Example

N/A

4.3.4.24. R_IMMED: BR_HI32

Fields

¢ vaddr Points to a memory-format instruction following a brartwh, psr , jsr , or
- jmp) instruction.

r_symndx Specifies a byte offset fromvaddr to the branch instruction.

r_extern Unused.

r_offset Unused.

r_size R_IMMED_BRHI32.

Operation

N/A

Restrictions

N/A

127

Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to the address of the instruction following a brdanctbér , jsr , orjmp). The branch

must precede this instruction. Thesymndx field specifies a byte offset fromvaddr to the branch
instruction. The instruction identified by this relocation entry adds the high portion of the displacement.
The nextR_IMMED_LO32entry identifies the instruction with the low portion of the displacement.

Example

N/A

4.3.4.25. R_IMMED: LO32

Fields

r_vaddr Points to a memory-format instruction.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size R_IMMED_LO32

Operation

N/A

Restrictions
N/A
Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to a base address. This instruction adds the low portion of the displacement. This relocation
entry is combined with the previo&s IMMED _GP_HI32 R_IMMED_SCN_HI32 or
R_IMMED_BR_HI32entry. The_extern andr_symndx fields specify the external symbol or section

to which the calculated address is relative.

Example

N/A

4.3.4.26. R_TLS LITERAL
Fields

r_vaddr Points to an instruction that loads the TSD key for initiating a thread local storage
reference — actually, not the key itself but key * 8, which gives the offset of the
TLS pointer in the TSD array.

128

r_symndx R_SN_LITA

r_extern Must be zero; alR_TLS_LITERAL entries are local.
r_offset Unused.

r_size Unused.

Operation

result = (new_scn_addr - old_scn_addr) +
(SEXT((short)[r_vaddr]) +old_GP) - GP

Restrictions

The result after relocation for & TLS_LITERAL entry must not overflow 16 bits.
R_TLS_LITERAL entries must be local and relative to fita section.

Description

A relocation entry of this type is very similar toRnLITERAL entry. AnR_TLS_LITERAL entry

identifies an instruction that uses a GP displacement to load an the address of the sijaulfislet
from the.lita section.

The value of the _tlsoffset symbol is fixed at run time to be the TSD array offset of the TLS pointer.
The symbol can occur anywhere in the GOT or .lita section. The linker-defined synibkéy points
to one of the instances of thetlsoffset symbol.

The linker processes tiie TLS_LITERAL relocation by adjusting the GP offset in the displacement of
the target instruction.

Example

Routines that reference TLS addresses will have at leaf drieS_LITERAL entry for the load of the
__tls_offset value.

__declspec(thread) long foo;
main(){
foo = 2;

}

Code generated will include the instruction:
0x14: Idg at, -32752(gp)

Relocation entry produced:

Vaddr Symndx Type Off Size Extern Name

text:

129

0x0000000000000014 13 TLSLITE local .lita

4.3.4.27. R_TLS_HIGH

Fields

r_vaddr Points to memory-format instruction.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

SeeR_TLS LOWdescription.
Restrictions

Must be followed byR_TLS LOWentry.
Description

SeeR_TLS_LOW

Example

SeeR_TLS_LOW

4.3.4.28. R_TLS LOW

Fields

r_vaddr Points to memory-format instruction.

r_symndx External symbol index if_extern is 1; section number if extern is 0.
r_extern Either O or 1.

r_offset Unused.

r_size Unused.

Operation

low_disp = [r_vaddr].displacement

high_disp = [R_TLS_HIGH->r_vaddr].displacement

130

displacement = high_disp * 65536 + low_disp

if (r_extern = 0)

result = displacement + (new_scn_addr - old_scn_addr)
else

result = displacement + EXTR.asym.value

[R_TLS_HIGH->r_vaddr].displacement = (result+32768) >> 16
[r_vaddr].displacement = result & OxFFFF

Restrictions

External relocation entries of this type are limited to TLS symbols.

Local relocation entries of this type are restricted to the TLS sectisteta and tlsbss
The relocated result must not exceed 32 bits.

Description

The linker must handlB_TLS_HIGHandR_TLS_LOWentries as a pair. The pairs of relocation entries
must be in sequence starting WRhTLS_HIGH The order and location of the instructions associated with
these relocation entries are not restricted.

Example

The load of a TLS symbol's address requireRanLS_HIGH/R_TLS_LOWentry pair.

__declspec(thread) long foo;
main(){
foo = 2;

}
Code generated:

0x0c: call_pal rduniq
0x10: Ildg vO, 96(v0)
0x14: Idg at, -32752(gp)
0x18: addq v0, at, vO
Ox1c: ldg vO, 0(v0)
0x20: Idah vO, 0(v0)
0x24: stq t0, O(v0)

Relocation entries produced:

Vaddr Symndx Type Off Size Extern Name

text:
0x0000000000000020 0 TLSHIGH extern foo
0x0000000000000024 0 TLSLOW extern foo

131

4.4. Compact Relocations

Compact relocations are a highly compressed form of relocation records designed for the use of profiling
tools and object restructuring tools. By default, they are generated by the linker for all fully linked
executable objects and recorded in the objesmit®iment section. The linker produces this information
usinglibmld.a APIs, which implement the reading and writing of compact relocations. Compact
relocations are not produced for images linked with the following linker optionsom, or-ncr . See
Chapter 7or the format of thecomment section.

Compact relocations must provide crucial relocation information in much less space than the space required
for actual relocation entries. This goal is accomplished by employing a heuristic function to predict
relocations. For some sections, this heuristic is highly accurate. Detailing many records in the object file
becomes unnecessary because the algorithm can be used instead to recreate many of the actual relocation
entries.

The current implementation contains only enough relocation information to drive tools that restructure an
executable'sext ,.init ,and.fini sections. It is sufficient for compact relocations to handle text
segment relocations only because the current consumers (Atom-based tools) change only these sections.
There is currently no algorithm to predict data relocations.

The interfaces for compact relocations continue to evolve. These interfaces are defined and described in the

header filecmplrs/cmric.h . This section describes the on-disk file format of compact relocations and
the producer and consumer algorithms.

4.4.1. Overview

The procedure for creation of compact relocations is as follows:
1. Generate a list of predicted relocations using heuristics.

2. Compare the predicted relocations to the actual relocation entries (which are input data to the compact
relocations producer).

3. Wherever a "miss" occurs (that is, the predicted and actual entries do not match) output a compact
relocation record.

The procedure for the use of compact relocation records follows:

1. Generate the list of predicted relocations using the same heuristics as the compact relocations
producer.

2. Compare the expanded compact relocations data with predicted relocations to reconstruct the actual
relocation entries.

SeeSection 4.4.3or more details.

4.4.2. File Format

Compact relocations are stored in a subsection aottdmement section. The linker and other tools do not
need to be aware of the details of the internal structure of the compact relocation subsection. This
knowledge is encapsulated in ttrarlc_* routines found iibmld.a

The on-disk format of the compact relocations data consists of the following components, in order:

132

* Version identifier

e Compact relocations file header

« Compact relocations section headers (for each section)
« Compact relocations tables (for each section)

« Expression stack relocations tables (for each section)
eGP value tables (for each section)

Code may only assume that the version and the file header are contiguous. To access other structures, it is
necessary to rely on the location information in the file header.

4.4.2.1. Compact Relocations Version

The compact relocation section begins with a version identifier, which has the following structure:

struct {
unsigned int version_major;
unsigned int version_minor;

h
SIZE - 8 bytes, ALIGNMENT - 4 bytes

The version identifier allows the format of the compact relocations to change from one release to another
while providing a mechanism for tools to work on binaries with either the old or new formats. The version
identifiers are separate from the header because the format of the header itself may change from release to
release.

The major version identifier is incremented whenever a change in the compact relocation algorithms affects
the external interface. For example, adding support for data-related relocation information would require
the major version identifier to be incremented. Simple bug fixes that correct problems with the external
interface should not cause the major version identifier to be incremented.

The minor version identifier is incremented whenever the compact relocation algorithms change without
affecting the external interface. For example, changing the heuristic to further compact the stored relocation
information would require the minor version identifier to be incremented. If the consumer routines see that
an object has an old minor version number, they can call a matching version of the heuristic to correctly
reconstruct the relocation information.

4.4.2.2. Compact Relocations File Header

The version identifier is followed by a high-level header structure that stores the sizes and locations of the
other tables with compact relocations information:

struct cmrlc_file_header {
/*
* Total number of elements in each sub-table.
*/
unsigned long scn_num; /* section header table */
unsigned long rlc_num; /* compact relocation table */
unsigned long expr_num; /* expression relocation table */
unsigned long gpval_num; /* GP value table */

133

/*
* Relative file offset from start of compact relocation data
* to each sub-table.
*/
unsigned long scn_off;
unsigned long ric_off;
unsigned long expr_off;
unsigned long gpval_off;
h
SIZE - 64 bytes, ALIGNMENT - 8 bytes

Each of thet_num fields indicates the number of entries in the corresponding tables. Eactr obfthe
fields contains a relative file offset from the start of the compact relocatiemsnent subsection to the
start of the corresponding table. If any of the tables are not present for a particular progtanuyrthand
* val fields should be set to zero.

4.4.2.3. Compact Relocations Section Header

One or more compact relocations section headers follow the compact relocations file header. Each section
header has the following structure:

struct cmrlc_file_scnhdr {

char name[8]; /* section name */

/*

* Number of elements for this section in each sub-table.
*/

unsigned long rlc_snum;
unsigned long expr_snum;
unsigned long gpval_snhum;

/*

* Index from start of table to this section's elements.
* (This is an element index, not a byte offset.)

*/

unsigned long rlc_indx;

unsigned long expr_indx;

unsigned long gpval_indx;

/*

* Flag: True if compact relocation table is sorted by
* increasing virtual address.

*/

unsigned long rlc_sorted:1;

unsigned long :63;

h
SIZE - 64 bytes, ALIGNMENT - 8 bytes

One compact relocation section header is created for each eGjé¢t file section for which compact
relocation data is stored. This section header is unrelated to the eCOFF section header structure except for
the name field, which connects the two.

Each of thet_num fields indicates the number of entries in the corresponding table for this object file
section. If thet_num field is non-zero, the correspondifigndx field contains the index of the start of
that section's entries within the table.

Therlc_sorted

by virtual address.

134

field indicates whether the compact relocation table entries for this section are sorted

If an object file section does not have entries in one of the tables for a particular program, the
corresponding fields should be set to zero.

4.4.2.4.

Compact Relocations Table

Compact relocation tables follow the compact relocation section headers. Each compact relocation table
consists of an array of structures:

struct cmrlc_file_rlc {

unsigned

union {

} info;

unsigned
struct {
unsigned
unsigned
} common,;
struct {
unsigned
unsigned
} gpdisp;
struct {
unsigned
unsigned
} expr;
struct {
unsigned
unsigned
unsigned
unsigned
} addrtype;
struct {
unsigned
unsigned
unsigned
} immedhi;
struct {
unsigned
unsigned
unsigned
unsigned
} immedlo;
struct {
unsigned
signed
} vadjust;
struct {
unsigned
unsigned
unsigned
} other;

v_offset;

word;

type:5;
27,

/* GPDISP */
type:5;
Ida_offset:27;

/* EXPRESSION */
type:5;
index:27;

/* REF*, SREL*, GPREL32 */
type:5;
rel_scn:5;
count:12;
:10;

* IMMED: GP_HI32, SCN_HI32, BR_HI32 */
type:5;
subop:6;
br_offset:21;

/* IMMED: all other sub-opcodes */
type:5;
subop:6;
rel_scn:5;
:16;

/* VADJUST */
type:5;
adjust:27;

/* BRADDR, HINT */
type:5;
rel_scn:5;
:22;

135

SIZE - 8 bytes, ALIGNMENT - 4 bytes

/*

* Values for 'type' field.

*/

enum cmrlc_rlctypes {
CMRLC_REFLONG=1, * unpredicted R_REFLONG */
CMRLC_REFQUAD=2, /* unpredicted R_REFQUAD */
CMRLC_GPREL32=3, * unpredicted R_GPREL32 */
CMRLC_GPDISP=4, /* unpredicted R_GPDISP */
CMRLC_BRADDR=5, * unpredicted R_BRADDR */
CMRLC_HINT=6, * unpredicted R_HINT */
CMRLC_SREL16=7, /* unpredicted R_SREL16 */
CMRLC_SREL32=8, /* unpredicted R_SREL32 */
CMRLC_SREL64=9, /* unpredicted R_SREL64 */
CMRLC_EXPRESSION=10, /*unpredicted R_OP_* expression */
CMRLC_IMMEDHI=11, /* unpredicted R_IMMED for high part */
CMRLC_IMMEDLO=12, /* unpredicted R_IMMED for low part */
CMRLC_NO_RELOC=13, /* correct mispredicted relocation */
CMRLC_VADJUST=14, [* adjust base for succeeding 'v_offset's */
CMRLC_TLS_HIGH=15, /* unpredicted R_TLS_HIGH */
CMRLC_TLS_LOW=16 /*unpredicted R_TLS_LOW */

h

/*

* Maximum value for 'count' field in 'addrtype’ relocations.
*/

#define CMRLC_COUNT_MAX ((1<<12)-1)

The number of elements in the array is determined by the correspénding field in the section header.

Thev_offset field specifies the virtual address of each relocation entry as a byte offset from a base
address. Initially, the base is the starting virtual address of the current section. If relocations are required at
addresses that cannot be expressed as a 32-hit offset from the section's starCARIegSsVADIJUST

relocation entries are used to extend the addressing range. However, this feature is not fully supported.

The value of théype field determines how to interpret the remainder of a compact relocation structure.

Thelda_offset field specifies an instruction offset (byte offset divided by 4) from the relocation entrys
virtual address to thida instruction in arR_GPDISPentry'sldah /lda pair. This design does not
supportidah /Ida pairs that are separated by more than 229 bytes.

Therel_scn field indicates the ID of the section to which this relocation is relative. It usés tbid_*
values from the header fiteloc.h

Thecount field is used to specify consecutive relocation entries that are identicatodiie field can

be used in this manner f&r REFLONGR_REFQUAMR_SREL16 R_SREL32 R_SREL64 and
R_GPREL32entries. Two relocation entries are identical if they have the same type and relative section.
Two relocation entries are consecutive if the difference in their virtual addresses is equal to the natural size
for the relocation type (16 bits f&8 SREL16 32 bits forR_REFLONER_SREL32 andR_GPREL32

and 64 bits foR_REFQUARNIR_SREL64. A count value of zero is not allowed. Tleeunt field

reduces the impact of mispredicting the relocations for jump tables.

136

4.4.2.5. Stack Relocation Table

Expression stack relocation information is stored separately. Each stack relocation table entry has the
following structure:

struct cmrlc_file_expr {
unsigned long vaddr;
unsigned type:5;
unsigned rel_scn:5;
unsigned offset:6; /* CMRLC_EXPR_STORE only */
unsigned size:6; /* CMRLC_EXPR_STORE only */
unsigned last:1; /* true for last reloc in expr */
unsigned :9;
unsigned reserved,;

h

SIZE - 16 bytes, ALIGNMENT - 8 bytes

/*

* Values for 'type' field.

*/

enum cmrlc_exprtypes {
CMRLC_EXPR_PUSH=1, /*R_OP_PUSH ¥/
CMRLC_EXPR_PSUB=2, /*R_OP_PSUB */
CMRLC_EXPR_PRSHIFT=3, /*R_OP_PRSHIFT */
CMRLC_EXPR_STORE=4 [*R_OP_STORE */

h

Expression stack compact relocation records are stored in a separate table because each record requires
more space than other types of compact relocation records. Entries in this table are grouped into sequences
of relocation entries that form a single expression. The first entry in each table starts a sequence. The last
entry in each sequence haddst field set to one. A new sequence starts immediately after the end of the
previous sequence.

The start of each sequence is referenced®yIRLC_EXPRESSIOBhtry in the section's compact
relocation table. The index field of that entry points to the first entry in a stack relocation sequence. All
sequences in the stack relocation table should have a correspGiRIdC_ EXPRESSIOBNtry in the
compact relocation table.

4.4.2.6. GP Value Tables

Additional tables called GP value tables are used to store GP range information. GP values are kept in
tables separate from other compact relocations to reduce the processing required to map a virtual address to
the corresponding active GP value.

Each GP value table consists of an array of these structures:

struct {
unsigned long vaddr
unsigned gp_offset
unsigned reserved
h

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Each additional GP range after the first range has an entry in the table. (The first range is described by the
GP value in the file'a.out header.) Therefore, a single-GOT program will have no entries in its GP value
tables.

137

If an executable's sections have different numbers of GP raygyed, num should be set to describe the
section with the largest number of ranges. eCOFF sections with fewer GP ranges must still have GP value
tables withgpval_num entries. Sections with short GP value tables can duplicate their last GP value table
entry until the table is the proper length.

Thevaddr field contains the virtual address where the new range staddr must point within the
section to which this GP value table corresponds. The new GP value is computed bgpdalifsgt
to the GP value in the filessout header.

4.4.3. Detailed Algorithm for Compact Relocations Production

In order to produce compact relocations, a tool must have a set of actual relocation entries and the raw data
to which those relocation entries apply. It should then apply the following algorithm to create a set of
matching compact relocations:

1. Remove any actual relocation entries not needed to descritexhe, .init , or.fini sections.
2. Convert the remaining external relocation entries to local relocation entries.

3. Run the prediction heuristic function to construct a set of predicted relocation entries from the raw
data.

4. Compare the predicted relocation entries to the remaining actual relocation entries and create a
compact relocation record for any mismatches.

5. Compress any sequences of consecutive, idelRidaEF*, R_SREL* or R_GPREL32entries.
6. Set thelc_sorted field if the compact relocation entries are stored in a sorted order.

The tool should first remove any actual relocation entries that are not needed to desdeke the

anit , or.fini sections. Compact relocation entries describe only these sections, so any others should
be removed to save space. In general, any relocation entry relative to one of these sections must be saved.
Also, any self-relative relocation entry that points inside one of these sections must be saved. Because
R_GPDISPentries point to instructions that are implicitly relative to text addresseR_ablyDISP

entries within thetext ,.init , or.fini sections must also be preserved. Finally, RNIREFLONG
R_REFQUADandR_GPREL32entries in thetext , .init , or.fini sections must be saved because
these relocation entries would indicate the presence of address constants in these sections. Note that
R_LITERAL andR_LITUSE entries describe addresses in.til@ or.got section, so they do not

need to be saved.

A tool must take special care when analyzing expression fa€kR_*), R_IMMED and
R_GPRELHIGH/R_GPRELLOWntries. It is not possible to determine if one of these entries needs to be
saved without analyzing it in the context of its other related relocation entries. For instance, an expression
stack relocation must be saved if any relocation in its expression is relativetexthe, .init , or

fini sections. The same is true for sequenc& 8¥IMEDentries or sequences of
R_GPRELHIGH/R_GPRELLO¥®#htries.

Any R_GPVALUEentries must also be handled specially. These relocation entries must be added to their
section's GP value table. They should then be removed from the list of actual relocation entries used to
create compact relocations.

The second step in the algorithm is to convert any remaining actual relocation entries from external to
local. The compact relocations only exist in fully linked executables with no undefined symbols. Thus,

138

external relocation entries are not needed. An external relocation entry is converted to a local relocation
entry by setting its_extern field to zero and changing itssymndx field to the appropriat®_SN_*
constant.

The third step is to run the prediction heuristic function over the raw data for which these actual relocation
entries apply. This produces a set of predicted relocation entries.

Then compare the predicted relocation entries to the actual relocation entries as follows:

1. If a match exists between a predicted relocation entry and an actual relocation entry at the same virtual
address, do nothing.

2. If a predicted relocation entry and an actual relocation entry at the same virtual address do not match,
write a compact form of the actual relocation entry to the compact relocation data file.

3. If only a predicted relocation entry exists for a particular virtual address, write a compact
CMRLC_NO_RELQ€cord to the data file at this virtual address.

4. If only an actual relocation entry exists for a particular virtual address, write a compact form of the
actual relocation entry to the compact relocation data file.

Creating a compact relocation entry from an actual relocation entry is fairly straightforward except in the
case of an expression stack relocation sequence. First, create entries in the stack relocation table for each
relocation entry in the sequence. Normally, this sequence starts viRthGin_PUSHentry and ends with
anR_OP_STOREnNtry. The last entry should have thst field set to one. Then create an
EXPRESSIONcompact relocation entry whose index field points to the first entry in the stack relocation
table for this expression. (This can only be done for a sequence that describes a complete expression.)

The fifth step is to compress any sequencds R@EF*, R_SREL* orR_GPREL32 entries that are

consecutive and identical . Such a sequence exists if all relocation entries in the sequence have the same
relocation type, are relative to the same rel_scn v&u8N_* constant), and have v_offset fields that

increase by the natural size of the relocation type (for example, 8 byREFQ@UAD2 bytes for

SREL16). Such sequences can be replaced with a single compact relocation entry that has the sequence's
type andrel_scn value. Thes_offset field should be that of the first relocation entry in the sequence,
and the count field should be set to the number of relocation entries in the sequence.

The final step is to set thike_sorted field in the compact relocation section header. If the compact
relocations are stored in order of increasingffset values, this field should be set to one. Otherwise, it
should be set to zero.

4.4.4. Detailed Algorithm for Compact Relocations Consumption

A consumer tool can read back the compact relocation entries if it has the compact relocation information
and the raw data that they describe. The consumer tool can use this information to regenerate the actual
relocation entries by following this algorithm:

1. Expand anyR_REF* R_SREL* orR_GPREL32compact relocation entries whose count field is
greater than one.

2. Run the prediction heuristic function to construct a set of predicted relocation entries from the raw
data.

3. Compare the predicted relocation entries to the compact relocation entries and reconstruct the actual
relocation entries.

139

The first step in this algorithm just undoes the compression step (step five) in the production algorithm.

The second step runs the same prediction heuristic that was used in the production algorithm. To guarantee
that the generated predicted relocation entries are the same as when the compact relocation entries were
produced, it is critical that the heuristic function is the same. It is also critical that the raw data is the same
as when the compact relocation entries were produced.

The final step compares the predicted relocation entries with the stored compact relocation entries as
follows:

1. Ifonly a predicted relocation entry exists for a particular virtual address, report the predicted relocation
entry.

2. IfaCMRLC_NO_RELGH#Dtry exists at the same virtual address as a predicted relocation entry, do not
report a relocation entry at this virtual address.

3. If a compact relocation entry other th@MRLC_NO_RELOSists at the same virtual address as a
predicted relocation entry, report the compact relocation entry.

4. If only a compact relocation entry exists for a particular virtual address, report the compact relocation
entry.

The basic strategy for compact relocations consumption is to step through both the predicted
relocation entries and the stored compact relocation mismatch data for a given section in order to
reconstruct the actual relocation entries for that section.

4.5. Language-Specific Relocations Features

Relocation entries may be generated for language-specific compiler-generated external symbols. For
example, they are often generated in Fortran programs for the prot@mdsed reentrancy and in
C++ programs for exception-handling labels.

140

5. Symbol Table (V3.13)

One of the chief tasks of the compilation process is the production of a symbol table, which is a collection
of data structures whose purpose is to store type, scope, and address information about program data.
Compilers and assemblers create the symbol table. It is read and may be modified by linkers, profiling
tools, and assorted object manipulation tools. It also contains information required for debugging.

For large applications, a single compilation can involve many program components, including source files,
header files, and libraries. Data from all of these files must be described in the symbol table.

The Tru64 UNIX eCOFF symbol table, when present, comprises a large portion of the physical object file
and is often considered a stand-alone entity. It is divided into numerous sections, including a header section
that is used for navigation. The contents of the symbol table are shéiguie 5-1

Figure 5-1 Symbol Table Sections

Symbolic Header
Frocedure Descriptors | %
Local Symbols *
: Auxiliary Symbols %
File Header LocarIyStr:}’ngs *
a.out Header External Strings
Section Headers File Descriptors
Raw Data Sections Relative File Descriptors| *
Relocations | External Symbols
Symbol Table Optimization Symbols | *
Comment Section [™_ Line Numbers *

* one subtable per
source file

The symbol table has a hierarchical design. The sections storing local symbols, local strings, relative file
descriptors, procedure descriptors, line numbers, auxiliary symbols, and optimization symbols are divided
into subtables and organized by file. Local symbols, local strings, and optimization symbols are further
broken down by procedurEBigure 5-2depicts this hierarchy.

141

Figure 5-2 Symbol Table Hierarchy

Symbolic Header

File Descriptors
External Symbuols
External Strings
\ﬁrocedure Desc. (file 1)

rocedure Desc. (file N
| Line Numbers (file 1)

| Line Numbers (file N) L
Local Symbols (file 1)

> | Local Symbols (file N)
Local Strings (file 1)

L 4

}3 Local Strings (file N
Aux. Symbols (file 1)
> | Aux. Symbols (file N)
Rel. File Desc. (file 1)
> Rel. File Desc. (file N)
>
— | Opt. Symbols (file 1)
Opt. S}mbols (file n)

ol

A particular symbol table may not contain all sections, for one of the following reasons:

* Relative file descriptors are present in linked objects only.

e The line number, auxiliary symbol and optimization symbol tables are produced only when debugging
information is requested.

« Symbol table information may be partially or entirely removed by post-processing tools.
« Optimization symbols are not present in older object files (V3.12 and prior)

The function of each symbol table section is summarized below:

e The symbolic header stores the sizes and locations of all other symbol table sections.

e The line number table enables debuggers to map machine instructions to source code lines.

142

The procedure descriptor table contains call-frame information as well as pointers to a procedure's
local symbols, line numbers and optimization entries.

The local symbol table describes procedures, static and local data, and user-defined types.
The external symbol table stores information about global symbols.

The relative file descriptor table contains a post-link file descriptor table index mapping for each file in
the compilation.

The local and external string tables store local and external symbol names, respectively.

The file descriptor table stores the sizes and locations of each subtable produced for contributing
source and include files. It also contains miscellaneous information about each file, such as the source
language and the level of symbolic information.

The auxiliary symbol table contains data type information for local and external symbols.

The optimization symbols section stores procedure relative information, including extended source
location information and optimized debugging information.

Several tools are available to view the contents of the symbol table. Steutim@(1) , odump(l) ,
andnm(1l) man pages.

This chapter covers symbol table organization and usage, concentrating on debugging issues in particular.
The version of the symbol table covered is V3.13. The dynamic symbol table built by the linker is
discussed separately 8ection 6.3.3

5.1. New or Changed Symbol Table Features

Version 3.13 of the symbol table includes the following new or changed features:

64-bit auxiliary support (seBection 5.3.7.8

Parameters with static storage and unallocated parameteBe(diEm 5.2.11
New optimization symbols section (section 5.3.B

Extended Source Location Information (8ztion 5.3.2.p

New representation for procedures with no text &eetion 5.3.6.1

Modified variant record representation (S==tion 5.3.8.10

New function pointer representation (&srtion 5.3.8.6

Block symbol added for alternate entry prologue size $setion 5.3.6.)7
Address of locally stripped FDRs setadressNil (seeSection 5.3.1.p
Uplevel links for referencing local symbols in an outer scope3eeton 5.3.4.%

New profile feedback information (s&ection 5.3.b

143

¢ New representation for C++ namespaces &&tion 5.3.6 4

* Unnamed union or structure representation Sastion 5.3.8.8

5.2. Structures, Fields and Values for Symbol Tables

Unless otherwise specified, all structures described in this section are declared in the hegdehfile
and all constants are defined in the headesfifaconst.h

5.2.1. Symbolic Header (HDRR)

typedef struct {
coff_ushort magic;
coff_ushort vstamp;
coff_int ilineMax;
coff_int idnMax;
coff_int ipdMax;
coff_int isymMax;
coff_int ioptMax;
coff_int iauxMax;
coff_int issMax;
coff_int issExtMax;
coff_int ifdMax;
coff_int crfd;
coff_int iextMax;
coff_long cbLine;
coff off cbLineOffset;
coff off cbDnOffset;
coff off cbPdOffset;
coff_off cbSymOffset;
coff_off cbOptOffset;
coff off cbAuxOffset;
coff off cbSsOffset;
coff off cbSsExtOffset;
coff off cbFdOffset;
coff off cbRfdOffset;
coff off CbExtOffset;

} HDRR, *pHDRR;

SIZE - 144 bytes, ALIGNMENT - 8 bytes

Symbolic Header Fields
magic

To verify validity of the symbol table, this field must contain the constegficSym, defined as
0x1992 .

vstamp

144

Symbol table version stamp. This value consists of a major version number and a minor version
number, as defined in tietamp.h header file:

MAJ_SYM_STAMP |3 High byte

MIN_SYM_STAMP 13 Low byte

SeeSection 5.%or a list of symbol table features introduced with version V3.13.
ilineMax

Number of line number entries (if expanded).
idnMax

Obsolete.
ipdMax

Number of procedure descriptors.
isymMax

Number of local symbols.
ioptMax

Byte size of optimization symbol table.
iauxMax

Number of auxiliary symbols.
issMax

Byte size of local string table.
issExtMax

Byte size of external string table.
ifdMax

Number of file descriptors.
crfd

Number of relative file descriptors.

iextMax

145

Number of external symbols.
cbLine

Byte size of (packed) line number entries.
cbLineOffset

Byte offset to start of (packed) line numbers.
cbDnOffset

Obsolete.
cbPdOffset

Byte offset to start of procedure descriptors.
cbSymOffset

Byte offset to start of local symbols.
cbOptOffset

Byte offset to start of optimization entries.
cbAuxOffset

Byte offset to start of auxiliary symbols.
cbSsOffset

Byte offset to start of local strings.
cbSsExtOffset

Byte offset to start of external strings.
cbFdOffset

Byte offset to start of file descriptors.
cbRfdOffset

Byte offset to start of relative file descriptors.
cbExtOffset

Byte offset to start of external symbols.

General Notes

146

The size and offset fields describing symbol table sections must be set to zero if the section described is not
present.

Thecb*Offset fields are byte offsets from the beginning of the object file.

Thei*Max fields contain the number of entries for a symbol table section. Legal index values for a
symbol table section will range from 0 to the value of the associated i*Max field minus one.

For an explanation of packed and expanded line number entries, see the disc&=itiornrb.3.2.2

5.2.2. File Descriptor Entry (FDR)

typedef struct fdr {
coff_addr adr;
coff_long cbLineOffset;
coff_long cbLine;
coff_long cbSs;
coff_int rss;
coff_int issBase;
coff_int isymBase;
coff_int csym;
coff_int ilineBase;
coff_int cline;
coff_int ioptBase;
coff_int copt;
coff_int ipdFirst;
coff_int cpd;
coff_int iauxBase;
coff_int caux;
coff_int rfdBase;
coff_int crfd,;
coff_uint lang : 5;
coff_uint fMerge : 1;
coff _uint fReadin : 1;
coff_uint fBigendian : 1;
coff_uint glevel : 2;
coff _uint fTrim : 1;
coff _uint reserved: 5;
coff_ushort vstamp;

} FDR, *pFDR;

SIZE - 96 bytes, ALIGNMENT - 8 bytes

SeeSection 5.3.2.for related information.

File Descriptor Table Entry Fields
adr

Address of first instruction generated from this source file, which should be the same value as found in
thePDR.adr field of the first procedure descriptor for this file. If no instructions are associated with
this source file, this field should be seQtdile descriptors that have been merged by source language
in locally-stripped objects will have this field setadressNil ~ (-1)

147

cbLineOffset
Byte offset from start of packed line numbers to start of entries for this file.
cbLine
Byte size of packed line numbers for this file.
cbSs
Byte size of local string table entries for this file.
rss

Byte offset from start of file's local string table entries to source file name;iseNib
indicate the source file name is unknown.

issBase
Start of local strings for this file.
isymBase
Starting index of local symbol entries for this file.
csym
Count of local symbol entries for this file.
ilineBase
Starting index of line number entries (if expanded) for this file.
cline
Count of line number entries (if expanded) for this file.

ioptBase

(-1) to

Byte offset from start of optimization symbol table to optimization symbol entries for this file.

copt

Byte size of optimization symbol entries for this file.
ipdFirst

Starting index of procedure descriptors for this file.
cpd

Count of procedure descriptors for this file.

iauxBase

148

Starting index of auxiliary symbol entries for this file.
caux

Count of auxiliary symbol entries for this file.
rfdBase

Starting index of relative file descriptors for this file.
crfd

Count of relative file descriptors for this file.
lang

Source language for this file (s€able 5-1.
fMerge

Informs linker whether this file can be merged.
fReadin

True if file was read in (as opposed to just created).
fBigendian

Unused.

glevel

Symbolic information level with which this file was compiled. This value is not the same as the user's
idea of debugging levels. The value mapping from the user(lgvecompiler switch value) to the

symbol table value is:

Debug switch -g0 |01 g2 -g3
glevel contents 2 1 0 3
fTrim
Unused.
vstamp

Symbol table version stamplDRR.vstamp) value from the original object module (.o file) that is
recorded by the linker. The linker may combine objects that were compiled at different times and
potentially contain different versions of the symbol table. In post-link objects, this value may or may
not match the version stamp in the symbolic header. For pre-link objects, the values in this field and

the symbolic header stamp should be the same.

149

reserved

Must be zero.

General Notes

Thei*Base fields provide the starting indices of this file's subtables within the symbol table sections. If
the associated count fields are set to 0, the base fields will also be set to zero.

For an explanation of packed and expanded line number entries, see the disc&=itinrnirb.3.2.2

Table 5-1 Source Language (lang) Constants

Name Value Comment
langC 0
langPascal 1
langFortran 2
langAssembler 3
langMachine 4
langNil 5
langAda 6
langPI1 7
langCobol 8
langStdc 9
langMIPSCxx 10 Unused.
langDECCxx 11
langCxx 12
13 Not used by all compilers -
langFortran90 langFortran might be used
instead for both f77 and f90
langBliss 14
langMax 31 anL:iT;IoelreOf language codes

150

5.2.3. Procedure Descriptor Entry (PDR)

struct pdr {

coff _addr adr,;
coff_long cbLineOffset;
coff_int isym;
coff_int iline;
coff_uint regmask;
coff_int regoffset;
coff_int iopt;
coff_uint fregmask;
coff_int fregoffset;
coff_int frameoffset;
coff_int InLow;
coff_int InHigh;
coff_uint gp_prologue : 8;
coff_uint gp_used : 1;
coff_uint reg_frame : 1,
coff_uint prof: 1;
coff_uint reserved : 13;
coff_uint localoff : 8;
coff_ushort framereg;
coff_ushort pcreg;

} PDR, *pPDR,;

SIZE - 64 bytes, ALIGNMENT - 8 bytes

SeeSection 5.3.4or related information.

Procedure Descriptor Table Entry Fields

adr
The start address of this procedure. SetdressNil (-1) for procedures with no text. This
field may not be updated by the linker in symbol table versions prior to V3.13. To determine the
procedure start address in pre-V3.13 symbol tables, use the algorithm desc8éetioim 5.3.4.2
cbLineOffset

Byte offset to the start of this procedure's line numbers from the start of the file descriptor entry
(FDR.cbLineOffset)

isym

Start of local symbols for this procedure. This symbol is the symbol for the procedure (symbol type
stProc). The name of the procedure can be obtained fronsshdield of the symbol table entry.

If the object is stripped of local symbol information, this field contains an external symbol table index
for the procedure symbol's entry.

If this procedure has no symbols associated with it, this field should besenidil (-1) . This

151

situation occurs for a static procedure in an object stripped of local symbol information.
iline

Start of line number entries (if expanded) for this procedure. Sigteiil (-1) to indicate that
this procedure does not have line numbers.

regmask

Saved general register mask.
regoffset

Offset from the virtual frame pointer to the general register save area in the stack frame.
iopt

Start of procedure's optimization symbol entries. SetitNil (-1) to indicate that this procedure
does not have optimization symbol entries.

fregmask

Saved floating-point register mask.
fregoffset

Offset from the virtual frame pointer to the floating-point register save area in the stack frame.
frameoffset

Size of the fixed part of the stack frame. The actual frame size can exceed this value. A routine can
extend its own frame size for frame sizes larger than 2 GB or for dynamic stack allocation requests.

InLow
Lowest source line number within this file for the procedure. This is typically the line number of the
first instruction in the procedure, but not always. Code optimizations can rearrange or remove
instructions making the first instruction map to a different line number.

InHigh

Highest source line number within this file for the procedure. This field contains a valudaf
alternate entry points, which is how an alternate entry point is identified.

gp_prologue

Byte size of gp prologue.
gp_used

Flag set if the procedure uses gp.
reg_frame

True if the procedure is a light-weight or null-weight procedure. See the General Notes section

152

following these definitions for more details on procedure weights.
reserved

Must be zero.
localoff

Bias value for accessing local symbols on the stack datman
framereg

Frame pointer register number.
pcreg

PC (Program Counter) register number.

General Notes
For more information on call frames, seection 5.3.4.1

If the value ofgp_prologue is zero andjp_used is 1, a gp prologue is present but was scheduled into
the procedure prologue.

For an explanation of packed and expanded line number entries, see the disc&=itinnrb.3.2.2

A procedure may be heavy-, light-, or null-weight. The weight of a procedure can be determined from its
descriptor by using the following guidelines:

Weight Indications

Heavy reg_frame is 0 and bit 26 of the register masggmask) is on
Light reg_frame is 1 andegoffset isra_save

Null reg_frame is 1 andegoffset is 26

See theCalling Standard for Alpha Systeritg details on the calling conventions for different weight
procedures. Note that a calling routine does not need to know the weight of the routine being called.

5.2.4. Line Number Entry (LINER)

Line numbers are represented using two formats: packed and expanded. The packed format is a byte stream
that can be interpreted as describe8éation 5.3.2.20 build an expanded table that maps instructions to

source line numbers. TheNER field is used to refer to a single entry in the expanded table. It is declared

as:

153

typedef int LINER, *pLINER,;

A second, newer form of line number information is located in the optimization symbols section. See
Section 5.2.1@ndSection5.3.2.2

5.2.5. Local Symbol Entry (SYMR)

typedef struct {
coff_long value;
coff_int iss;
coff_uint st: 6;
coff_uint sc :5;
coff_uint reserved : 1;
coff_uint index : 20;

} SYMR, *pSYMR;
SIZE - 16 bytes, ALIGNMENT - 8 bytes

SeeSection 5.2.11Section5.3.4 andSection5.3.8for related information.

Local Symbol Table Entry Fields
value

A field that can contain an address, size, offset, or index. Its interpretation is determined by the symbol
type and storage class combination, as explain8édtion 5.2.11

iss
Byte offset from théssBase field of a file descriptor table entry to the name of the symbol. If the
symbol does not have a name, this field is sestdil (-1) . Generally, all user-defined symbols
have names. A symbol without a name is one that has been created by the compilation system for its
own use.

st
Symbol type (se&able 5-2.

sc
Storage class (s@&able 5-3.

reserved
Must be zero.

index
An index into either the local symbol table or auxiliary symbol table, depending on the symbol type

and class. The index is used as an offset fronsymeBase field in the file descriptor entry for an
entry in the local symbol table or an offset from itnexBase field for an entry in the auxiliary

154

symbol table.

The index field may have a valueinflexNil , which is defined as (lon@xfffff . This value is
used to indicate that the index is not a valid reference.

The next two tables contain all defined values forsth@ndsc constants, along with short descriptions.
However, these fields must be considered as pairs that have a limited number of possible pairings as
explained inSection 5.2.11

Table 5-2 Symbol Type (st) Constants

Constant Value | Description

stNil 0 Dummy entry

stGlobal 1 Global variable

stStatic 2 Static variable

stParam 3 Procedure argument

stLocal 4 Local variable

stLabel 5 Label

stProc 6 Global procedure

stBlock 7 Start of block

stEnd 8 End of block, file, or procedure

stMember 9 Member of class, structure, union, or enumeration
stTypedef 10 User-defined type definition

stFile 11 Source file name

stStaticProc 14 Static procedure

stConstant 15 Constant data

stBase 17 Base class (for example, C++)

stVirtBase 18 Virtual base class (for example, C++)

stTag 19 Data structure tag value (for example, C++ class or stijuct)
stinter 20 Interlude (for example, C++)

155

Fortran90 module definition;

stModule 22 not yet implemented

stNamespace 22 Namespace definition (for example, C++)

stModview 23 Mod|f|ers for current view of given module;
not yet implemented

stUsing 23 Namespace use (for example, C++ "using").

stAlias o Defines an alias fpr another symbols. Currently, only ysed
for namespace aliases.

Table 5-3Storage Class¢c) Constants

Constant Value | Description

scNil 0 Dummy entry

scText 1 Symbol allocated in théext section

scData 2 Symbol allocated in thelata section

scBss 3 Symbol allocated in thdosss section

scRegister 4 Symbol allocated in a register

scAbs 5 Symbol value is absolute

scUndefined 6 Symbol referenced but not defined in the current module
scUnallocated 7 Storage not allocated for this symbol

scTIsUndefined 9 Undefined TLS symbol

scinfo 11 Symbol contains debugger information

scSData 13 Symbol allocated in thedata section

scSBss 14 Symbol allocated in thebss section

scRData 15 Symbol allocated in thedata section

scVar 16 Parameter passed by reference (for example, Fortran or Pas
scCommon 17 Common symbol

al)

156

scSCommon 18 Small common symbol

scVarRegister 19 Parameter passed by reference in a register
scVariant 20 Variant record (for example, Pascal or Ada)
scFileDesc 20 File descriptor (for example, COBOL)
scSUndefined 21 Small undefined symbol

scinit 22 Symbol allocated in thénit ~ section
scReportDesc 23 Report descriptor (for example, COBOL)
scXData 24 Symbol allocated in the&data section
scPData 25 Symbol allocated in thpdata section
scFini 26 Symbol allocated in thdini section
scRConst 27 Symbol allocated in thgconst section
scTIsCommon 29 TLS unallocated data

scTIsData 30 Symbol allocated in thglsdata section
scTIsBss 31 Symbol allocated in thglsbss section
scMax 32 Maximum number of storage classes

5.2.6. External Symbol Entry (EXTR)

typedef struct {
SYMR asym;
coff uint jmptbl:1;
coff _uint cobol_main:1;
coff _uint weakext:1;
coff uint reserved:29;
coff int ifd;

} EXTR, *pEXTR;

SIZE - 24 bytes, ALIGNMENT - 8 bytes

External Symbol Table Entry Fields
asym

External symbol table entry. This structure has the same format as a local symbol entry. The field
interpretations differ somewhat:

157

value
Contains the symbol address for most defined symbols S&gmn 5.2.1%or details.
iss

Byte offset in external string table to symbol name. Sestdil (1) if there is no name for

this symbol.
st
Symbol type. Se&able 5-2for possible values.
sc
Storage class. S@able 5-3for possible values.
reserved
Must be zero.
index
Can contain an index into the auxiliary symbol table for a type description or an index into the
local symbol table to pointing to a related symbol.
jmptbl
Unused.
cobol_main

Flag set to indicate that the symbol is a COBOL main procedure.

weakext

Flag set to identify the symbol as a weak external Seeton 6.3.4.2or more details on weak
symbols.

reserved
Must be zero.
ifd

Index of the file descriptor where the symbol is defined. S&ifdl (-1) for undefined symbols
and for some compiler system symbols.

5.2.7. Relative File Descriptor Entry (RFDT)

The relative file descriptor table provides a post-link mapping of file descriptor indices. The purpose of this
table is to minimize work for the linker, which does not update symbol table references to local symbols.
This information is used to obtain the file offset used to bias local symbol indices. Because this table is also
known as the File Indirect Table, two declarations are included sythén header file, as shown here.

158

typedef int RFDT, *pRFDT,;
typedef int FIT, *pFIT,;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

SeeSection 5.3.2.for related information.

5.2.8. Auxiliary Symbol Table Entry (AUXU)

The auxiliary symbol table entry is a 32-bit union. It is either interpreted B® ar RNDXRstructure or as
an integer value. Sé&ection 5.3.7.30r detailed instructions on reading the auxiliary symbols.

typedef union {
TIR ti;
RNDXR rndx;
coff_int dnLow;
coff_int dnHigh;
coff_int isym;
coff_int iss;
coff_int width;
coff_int count;

} AUXU, *pAUXU;
SIZE - 4 bytes, ALIGNMENT - 4 bytes

SeeSection 5.3.7.%or related information.

Auxiliary Symbol Table Entry Fields
ti
Type information recordT{R), as defined irfBection 5.2.8.1
rndx
Relative index into local or auxiliary symboRNDJX, as defined irBection 5.2.8.2
dnLow

Lower bound of range or array dimension. For large structures, two of these fields can be used together
to form one 64-bit number.

dnHigh

Upper bound of range or array dimension. For large structures, two of these fields can be used together
to form one 64-bit number.

isym

For proceduress{Proc or stStaticProc symbols), this field is an index into the local symbols.
Itis also used as an index into the relative file descriptors.

159
iss
Unused.

width

Width of a bit field or array stride in bits. Fortran compilers set the array stride to the array element
size in bits. Two of these fields can be used together to form one 64-bit number.

count

Count of ranges for variant arm. This field name is only used within the type description of a variant
block (stBlock , scVariant).

General Notes:

The fieldsdnLow, dnHigh , orwidth must all use either the 32-bit or 64-bit representation when used
together. For example, an array dimension cannot be specified with adB2-@it and a 64-bitinHigh .

5.2.8.1. Type Information Record (TIR)

typedef struct {
coff_uint fBitfield : 1;
coff_uint continued : 1;
coff_uint bt : 6;
coff_uint tq4d : 4;
coff_uint tq5: 4;
coff_uint tq0 : 4;
coff_uint tql: 4;
coff_uint tq2 : 4;
coff_uint tq3: 4;

}TIR, *pTIR;

SIZE - 4 bytes, ALIGNMENT - 4 bytes
Type Information Record Entry Fields
fBitfield

Flag set if bit width is specified.
continued

Flag set to indicate that the type description is continued in another TIR record. This will happen if the
type is represented with more than six type qualifiers.

bt

Basic type (se&able 5-4andSection5.3.7.).

tq0, tql, tg2, tq3, tg4, tg5

Type qualifiers (se&able 5-5andSection5.3.7.9. The lower-numberett] fields must be used first,
and all unneeded fields must be setigéil (0).

160

Table 5-4Basic Type bt) Constants

Constant Value | Description

btNil 0 Undefined or void

btAdr32 1 Address

btChar 2 Character

btUChar 3 Unsigned character

btShort 4 Short (16 bits)

btUShort 5 Unsigned short (16 bits)

btint 6 Integer (32 bhits)

btUInt 7 Unsigned integer (32 bits)

btLong32 8 Long (32 hits)

btULong32 9 Unsigned long (32 bits)

btFloat 10 Floating point

btDouble 11 Double-precision floating point

btStruct 12 Structure or record

btUnion 13 Union

btEnum 14 Enumeration

btTypedef 15 Defined by means of a user-defined type definition

btRange 16 Range of values (for example, Pascal subrange)

btSet 17 Sets (for example, Pascal)

btComplex 18 Currently unused

btDComplex |19 Currently unused

btindirect 20 Indirect definitiqn; foIIowingrn_dx poin_ts to an entry in the auxiliary symbc
table that contains BIR (type information record)

btFixedBin 21 Fixed binary (for example, COBOL)

161

btDecimal 22 Packed or unpacked decimal (for example, COBOL)
btVoid 26 Void

btPtrMem 27 Currently unused

btScaledBin 27 Scaled binary (for example, COBOL)

btVptr 28 Virtual function table (for example, C++)
btArrayDesc |28 Array descriptor (for example, Fortran, Pascal)
btClass 29 Class (for example, C++)

btLong64 30 Address

btLong 30 Long (64 bits)

btULong64 31 Unsigned long (64 bits)

btULong 31 Unsigned long (64 bits)

btLonglLong 32 Long long (64 bits)

btULongLong |33 Unsigned long long (64 bits)

btAdr64 34 Address (64 bits)

btAdr 34 Address (64 hits)

btint64 35 Integer (64 bits)

btUInt64 36 Unsigned integer (64 bits)

btLDouble 37 Long double floating point (128 bits)

btint8 38 Integer (64 bits)

btUInt8 39 Unsigned integer (64 bits)

btRange 64 |41 64-bit range

btProc 42 Procedure or function

btChecksum |63 Symbol table checksum value stored in auxiliary record
btMax 64 Number of basic type codes

162

Table Notes:
1. btint andbtLong32 are synonymous.

2. btUIint andbtULong32 are synonymous.

3. btLong , btLong64 , btLongLong , btint64 , andbtint8 are synonymous.

4. btULong64 , btULongLong , btUInt64 , andbtUInt8 are synonymous.

Table 5-5Type Qualifier (tq) Constants

Constant Value Description

tqNil 0 No qualifier (placeholder)

tqPtr 1 Pointer

tqProc 2 Procedure or function (obsolete)
tqArray 3 Array

tqFar 4 32-bit pointer; used with th&taso emulation
tqVvol 5 Volatile

tqConst 6 Constant

tqRef 7 Reference

tgArray_64 8 Large array

tqMax 16 Number of type qualifier codes

5.2.8.2. Relative Symbol Record (RNDXR)

typedef struct {
coff_uint rfd : 12;
coff_uint index : 20;

} RNDXR, *pRNDXR;
SIZE - 4, ALIGNMENT - 4

Relative Symbol Record Fields

rfd

Index into relative file descriptor table if it exists; otherwise, index into file descriptor table.

This field may have a value 8fT_RFDESCAPHdefined a®xfff

in the header file

163

cmplrs/stsupport.h . This value is used to indicate that the next auxiliary entry, interpreted as
anisym , contains the index.

index

Symbol index. Used as an offset from eitRBXR.isymbase or FDR.iauxbase , depending on
context.

5.2.9. String Table

The string table is composed of two parts: the local string table and the external string table. In the on-disk
symbol table, the external strings follow the local strings. The local string table is present only for objects
created with full debugging information; it is removed if an object is locally stripped.

The storage format for the string table is a list of null-terminated character strings. It is correctly

considered as one long character array, not an array of strings. Fields in the symbolic header and file
headers represent string table sizes and offsets in bytes.

5.2.10. Optimization Symbol Entry (PPODHDR)

typedef struct {
coff_uint ppode_tag;
coff_uint ppode_len;
coff_ulong ppode_val,

} PPODHDR, *pPPODHDR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

SeeSection 5.3.3or related information.

Optimization Symbol Entry Fields
ppode_tag

Identifies the kind of data described by this entry.
ppode_len

Indicates the size in bytes of the data that is found in the raw data area for this entry. When this field is
zero, the only data is stored in fhygode_val field.

ppode_val
This field is either a pointer to the entry's data or is itself the dapgpotfe_len is nonzero, this

field is a relative file offset from the beginning of the current Per-Procedure Optimization Descriptor
(PPOD) to the applicable data areapdbde_len is zero, this field contains the data for the entry.

Table 5-6 Optimization Tag Values

164

ure

Name Value | Description
PPODE_STAMP
- 1 Version number of the PPOD storedpjpode_val
The currenPPOD_VERSIONalue is 1
PPODE_END 2 End of entries for this PPOD
PPODE_EXT_SRC 3 Extended source line information
PPODE_SEM_EVENT 4 Semantic event information. (Reserved for future ug
PPODE_SPLIT o .
- 5 Split lifetime information. (Reserved for future use.)
PPODE_DISCONTIG_SCOPE _ . . .
- - 6 Discontiguous scope information. (Reserved for futt
use.)
PPODE_INLINED_CALL 7 Inlined procedure call information. (Reserved for fut
use.)
PPODE_PROFILE_INFO 8 Profile feedback information.

5.2.11. Symbol Type and Class (st/sc) Combinations

Entries in the symbol table are primarily identified by the combination of their symbolstypearfd
storage classs€) values. Not all combinations are valkigure 5-3indicates which combinations are

currently in use.

165

Figure 5-3 st/sc Combination Matrix

166

S5Ss|ss5s565¢s
CCcCclocCococoo
SSRIVCSWY
ODBED| aoC aa
asalrmorr
t st mmBi
a a omea
nodgn
ot

s s
cc
“F
oD
aa
bt
aa

wom MO m
_‘m'—*m—-lﬂmj:lﬂ"-"-'
L S B
Qm:—-—hmﬁzcnm

—— =0 o
.—n-)'(l,'[l—'ﬂl'.l'.l
om0 00— 0= —n0 o

O~ g OO0 w

m ~ — M0 W
;j(:'.m.—n.—]nm

5 -2 o Doom

o —+ = — [m

T s T). mom —0om
-.—r-—*-:jn—ul,‘_ll'.l'.l
ool owm o Moow
nmmc]ﬁ"ﬁc'ﬁmr':unm
— >3 — Tl m

~w S Qo oW

— o D= Lo m
EDEEDDm'—*._]nm
mmmm'—‘.—]nm

=
u]

[a 1]
o
om0

ow oD o ——"T0O W

A e T =T i =~ s Y B
= N = A e R

PPy T =]
m
- o -~

ctiil
stGlobal XX b4
stStatic XX

stFaram AXAXXX XXX
stLocal XXXXx XXX
stLabel XX X b

*

XXX
x X

Xxx xX x
Xxx|l X

o
L
E g
]

x X
XX

o
X
L
R

stProc
stBlock,
stEnd
sthlember
stTypedet

oo
MM
o

stFile X
stRegReloc
stForward
stStaticFroc x X x
stConstant XX x ¥ XX X

stStaFaram
stBase
styinBase
stTag
stinter

I

staplit
stMarmespace
sthiodule
stlsing ¥
sthodwiewr
stilias x
stotr
sturmber
stExpr
stType

167

A symbol's type and class taken together determines interpretation of other fields in the symbol table entry.
The same combination can be used for different purposes in different contexts. As a result, to understand
the symbol entry, it also may be necessary to access type information in the auxiliary table or the source
language information in the file descriptor.

The contents of thealue andindex fields for each combination, with a brief explanation of the
symbol's use, are described in the following list of combinations. For many combinations, greater detail
can be found irsection 5.3.AndSection5.3.8.

stGlobal,sc(S)Data/(S)Bss/RData/Rconst
e Thevalue field isthe symbol's address.
« Theindex field is an auxiliary table index amdexNil (if the auxiliary table is not present).

« This symbol is a defined global variable.

stGlobal,scTIsData/TIsBss
 Thevalue field is the offset from the base of the object's TLS region.
« Theindex field is an auxiliary table index amdexNil (if the auxiliary table is not present).

e This symbol is a defined global TLS variable.

stGlobal, sc(S)Common/TIsCommon
e Thevalue field isthe symbol's size in bytes.
e Theindex field is an auxiliary table index or indexNil (if the auxiliary table is not present).

e This symbol is a common.

stGlobal, sc(S)Undefined/TIsUndefined
« Thevalue fieldis zero.
« Theindex field isindexNil

e This symbol is an undefined global variable.

stStatic, sc(S)Data/(S)Bss/RData/Rconst
e Thevalue field isthe symbol's address.
e Theindex field is an auxiliary table index.

e This symbol is a defined static variable.

stStatic, scTIsData/TIsBss

e The value field is an offset from the base of the object's TLS region.

168

e The index field is an auxiliary table index.

e This symbol is a defined static TLS variable.

stStatic, scCommon
« Thevalue field is zero.
« Theindex field is an auxiliary table index.

e This symbol is a Fortran common block.

stStatic, scinfo

e Thevalue fieldis zero.

e Theindex field is an auxiliary table index.

e This symbol is a C++ static data member.

stParam, scAbs

e Thevalue fieldis an offset from the virtual frame pointer.
e Theindex field is an auxiliary table index.

e This symbol is a parameter stored on the stack.

stParam, scRegister

e Thevalue field is the number of the register containing the parameter.

e Theindex field is an auxiliary table index.

e This symbol is a parameter stored in a register.

stParam, scVar

e Thevalue field is an offset from the virtual frame pointer to the parameter's address.
e Theindex field is an auxiliary table index.

e This symbol is a parameter stored on the stack. One level of indirection is required to access the
parameter's value.

stParam, scVarRegister
e Thevalue field is the register number containing the address of the parameter.
e Theindex field is an auxiliary table index.

e This symbol is a parameter stored on the stack. One level of indirection is required to access the
parameter's value.

169

stParam, scinfo
« Thevalue fieldis zero.
« Theindex field is an auxiliary table index.

e This symbol is a parameter of a C++ member function, function pointer definition, or procedure with
no code.

stParam, sc(S)Data/(S)Bss/Rconst/Rdata
e Thevalue field isthe address of the parameter.
« Theindex field is an auxiliary table index.

e This symbol is a static parameter.

stParam, scUnallocated
e Thevalue fieldis zero.
e Theindex field is an auxiliary table index.

e Thisis an unallocated parameter.

stLocal, scAbs
e Thevalue fieldis an offset from the virtual frame pointer.
e Theindex field is an auxiliary table index.

* Thisis a local variable stored on the stack.

stLocal, scRegister
e Thevalue field is the number of the register containing the variable.
e Theindex field is an auxiliary table index.

e This symbol is a local variable stored in a register.

stLocal, scVar
e Thevalue fieldis an offset from the virtual frame pointer to the symbol's address.
e Theindex field is an auxiliary table index.

e This symbol is a local variable stored on the stack. One level of indirection is required to access its
value.

stLocal, scVarRegister

« Thevalue field is the register number containing the address of this variable.

170

« Theindex field is an auxiliary table index.

« This symbol is a local variable stored on the stack. One level of indirection is required to access its
value.

stLocal, scUnallocated
« Thevalue field is zero.
« Theindex field is an auxiliary table index.

* Thisis an unallocated local variable.

stLocal, scText/Init/Fini/(S)Data/(S)Bss/Rconst/Rdata/TIsData/TIsBss
e The value field is the address of the section indicated by the storage class.
* The index field igndexNil

e These are special symbols inserted by the compilation system for shared objects. They are found in the
external symbol table and their names are the section names (for extewple,or.init).

stLabel, scText/Init/Fini/(S)Data/(S)Bss/Rconst/Rdata/TIsData/TIsBss
e Thevalue fieldis the label's value (an address).
* Theindex field isindexNil

e This symbol is an allocated label. It can be associated with any raw data section of the object file.

stLabel, scUnallocated
e Thevalue fieldis zero.
« Theindex field isindexNil

e This symbol is an unallocated label.

stProc, scNil
« Thevalue fieldis zero.
« Theindex field isindexNil

e Thisis an external symbol.

stProc, scText
e Thevalue field isthe procedure's address.
e This symbol can occur in the external or local symbol table:

« Inthe local symbol table, thiedex field is an auxiliary table index.

171

In the external symbol table, it is the local symbol index of the corresponding procedure
symbol in the local symbol table, unless the file is stripped of local symbol information. If the
file is locally stripped, thendex field isindexNil

This symbol is a defined procedure.

stProc, scUndefined

Thevalue field is zero.
Theindex field isindexNil

This symbol is an undefined procedure.

stProc, scinfo

Thevalue field contains a value of:

-1 (a procedure with no code)
-2 (afunction prototype or function pointer definition)

A non-negative index into the virtual function table for this function, for a C++ virtual
member function.

Theindex field is an auxiliary table index.

This symbol represents a procedure without code, a function prototype, or a function pointer. The
value field is used to distinguish among these possibilities.

stBlock, scText

Thevalue field depends on context:

If this is the firststBlock,scText symbol following arstProc,scText symbol, the
value is the byte offset from the procedure's address to the address of the first instruction
beyond the end of the procedure's prologue.

For a text block, it is the byte offset from the procedure's address to the starting instruction
address of the block.

Theindex field is the local symbol index of the symbol following the matclsind . If this is the
first stBlock,scText following anstProc,scText for an alternate entry point, the index field
will be set toindexNil because the symbol will not have a matclstiend symbol.

This symbol indicates the start of a block scope.

stBlock, scinfo

Thevalue field depends on context:

Size in bytes for a class, structure, or union

172

« Size of the underlying data type for an enumerated type
e Auxiliary table index for a variant record
« Zero for the block scope of a procedure with no code.
 Theindex field is the local symbol index of the symbol following the matctsitknd .
e This symbol indicates the start of a structure, union, or enumeration definition (in C; the C++

representation differs). It describes a variant arm if it is insidgBiack,scVariant scope.
This symbol is also used to define the block scope of a procedure with no code.

stBlock, scCommon
e Thevalue field is the size of the common block in bytes.
e Theindex field is the local symbol index of the symbol following the matclsititnd .

e This symbol is a scoping symbol for a Fortran common block. It occurs in the context of the
synthesized file used to define a common block.

stBlock, scVariant

e Thevalue fieldis the local symbol index of the structure member whose value determines which
variant range is used.

e Theindex field is a the local symbol index of the symbol following the matchkt&gd .

e This symbol occurs in the context of Pascal and Ada variant records. It indicates the start of the
symbols for one variant.

stBlock, scFileDesc/scReportDesc
* Thevalue fieldis zero.
e Theindex field is a the local symbol index of the symbol following the matchkt&gd .
e This symbol occurs in COBOL only. It indicates the start of the file or report descriptor scope.
stEnd, scText
e Thevalue field depends on the type of scope it is ending. ltis:
e The size in bytes of the procedure's text (for a procedure)

« Byte offset from a procedure's address to the start of the epilogue (for the outermost text block
in a procedure)

« Byte offset from a procedure's address to the first instruction address beyond the end of the
block (for a text block)

e Zero (for a file)

173

« Theindex field is the local symbol index of the matchisiglock

* This symbol ends a file, procedure, or text block scope.

stEnd, scinfo

e Thevalue fieldis zero.

« Theindex field is a the local symbol index of the matchsiBlock or stNamespace .

« If the matching symbol is an stBlock, this symbol ends a structure, union, enumeration, C++ member

function definition, procedure with no code, or the block scope contained by a procedure with no code.
If the matching symbol is astNamespace , this symbol ends a namespace definition.

stEnd, scCommon

* Thevalue fieldis zero.

e Theindex field is the local symbol index of the matchitilock
e This symbol ends a Fortran common definition.

stEnd, scVariant

e Thevalue field isthe same as that of the matchstiglock

e Theindex field is the local symbol index of the matchitilock

e This symbol ends a variant record block.

steEnd, scFileDesc/scReportDesc
* Thevalue fieldis zero.
e Theindex field is the local symbol index of the matchistilock
e This symbol ends a file or report descriptor block.
stMember, scinfo
e Thevalue field depends on the symbol's data type:
e The ordinal value (for an element of an enumerated type)
e Zero (for a namespace or union member)
« Bit offset from the beginning of the structure (for a C structure or C++ class member)
e Theindex field is an auxiliary table index.

e This symbol describes a data structure field or the member of a namespace. It is found inside a block
defining a data structure (for example, class or struct) or a namespace definition block.

174

stMember, scFileDesc/scReportDesc
« Thevalue fieldis zero or one, depending on whether the symbol is local or external, respectively.
« Theindex field is an auxiliary table index.
e This symbol occurs in COBOL only. It is found inside a file descriptor or report descriptor block.
stTypedef, scinfo
 Thevalue field depends on the purpose of this symbol:

e Zero (for a user-defined type definition).

e The auxiliary table index of the next auxiliary entry after the start of the class definition (for a
compiler inserted symbol). In effect, the value is the contents afides field plus one.

e Theindex field is an auxiliary table index.

e This symbol is a user-chosen name for a data type. It also appears as a compiler-inserted symbol
following thestTag , scinfo symbol for an empty C++ class or structure.

stFile, scText
e Thevalue fieldis zero.
e Theindex field is the local symbol index of the symbol following the matclsititnd .

e This symbol denotes the scoping block for a source file.

stStaticProc, scText
e Thevalue field isthe procedure's address.
e Theindex field is an auxiliary table index.

e This symbol is a defined static procedure.

stStaticProc, sclnit/Fini
e Thevalue fieldisthe procedure address.
e Theindex field is an auxiliary table index.

* These combinations are used for the special symbad¢art and__fstart , which are inserted
by the linker.

stConstant, scinfo
 Thevalue field is the value of the constant.

e Theindex field is an auxiliary table index.

175

* This symbol represents a named value (for example, FOIE&RAMETER
stConstant, scAbs

e Thevalue field is the value of the constant.

« Theindex field is an auxiliary table index.

* This symbol represents a named value (for example, FBARAMETER
stConstant, sc(S)Data/(S)Bss/RData/Rconst

e Thevalue field isthe symbol's address.

« Theindex field is an auxiliary table index.

* This symbol represents allocated constant data.

stBase, scinfo

e Thevalue field is the offset of the base class relative to a derived class.
e Theindex field is an auxiliary table index.

e This symbol is a C++ base class.

stVirtBase, scinfo

« Thevalue fieldis an index (starting at 1) of the base class run-time description in the virtual base
class table. Se®ection 5.3.8.6.2

« Theindex field is an auxiliary table index.
e This symboal is a C++ virtual base class.
stTag, scinfo

e Thevalue fieldis zero.

« Theindex field is an auxiliary table index.

« This symbol is a C++ class, structure, or union. Note that the representation for C structures and
unions is different.

stinter, scinfo
« Thevalue field is zero.
« Theindex field is an auxiliary table index.

e This symbol is used in C++ to connect the definition of a member function with its prototype in the
class definition context.

176

stNamespace, scinfo

e Thevalue fieldis zero.

« Theindex field is the local symbol index of the symbol following the matctsittnd .
« This symbol indicates the start of the symbols in a namespace definition.

stUsing, scinfo

e Thevalue fieldis zero.

« Theindex field is an auxiliary table index.

« This symbol specifies a C++ namespace (or portion thereof) that is being imported into another scope.
stAlias, scinfo

* Thevalue fieldis zero.

e Theindex field is an auxiliary table index.

e This symbol defines an alias for a C++ namespace.

Combinations may be valid in the local symbol table, the external symbol table, o bbth.5-7shows
which combinations are valid in which table, based on the symbol type value and also the storage class
value where necessary. Only combinations previously specified as valid apply where the storage class
value is shown as a wildcard value with the character .

Table 5-7 Valid Placement for st/sc Combinations

st/sc Combination External Symbol Local Symbol
Table Table

StNil, * X X

stGlobal, * X

stStatic, * X

stParam, * X

stLocal, scSCN ! X

stLocal, notscSCN*! X

stLabel, * X X

stProc, scinfo X

stProc, scText X X

177

stProc, scUndefined X

stBlock, * X

stEnd, * X

stMember, * X

stTypedef, *

stFile, * X

stStaticProc, X
scText

stStaticProc, X
sclnit/Fini

stConstant, * X X

stBase, * X

stVirtBase, * X

stTag, * X

stinter, * X

stNamespace, * X

stUsing, * X

stAlias, * X

Table Notes:

1. scSCN = scData, scSData, scBss, scSBss, scRConst, scRData, scinit,
scFini, scText, scXData, scPData, scTlsData, scTIsBss, scTlsInit

178

5.3. Symbol Table Usage

5.3.1. Levels of Symbolic Information

Different levels of symbolic information can be stored with an object file. Compilers often provide options
that allow the user to choose the desired level of symbolic information for their program. This choice may
be influenced by size considerations and debugging needs. A trade-off exists between the benefit of saving
space in the object file and the amount of information available to tools that consume symbolic

information.

It is also possible to change the amount of symbolic information present in a program that has already been
compiled and linked. Information can be added or deleted. Two of the most common and useful
operations are locally stripping and fully stripping the symbol tables in executable files. Tools that modify

linked executables, such as instrumentation tools and code optimizers, may rewrite parts of the symbol
table to reflect changes that they made.

5.3.1.1. Compilation Levels

The representation of symbolic information supported by compilers can be broken down into four levels:
1. Minimal- Only information required for linking

2. Limited- Source file and line number information for profiling and limited debugging (stack-tracing)

3. Full- Complete debugging information for non-optimized code

4. Optimized— Debugging information for optimized code

These levels correspond to the system compiler switgfdegminimal),-g1 (limited),-g2 (full), and

-g3 (optimized).Table 5-8shows the symbol table sections that are produced by system compilers at each

compilation level.

Table 5-8 Symbol Table Sections Produced at Various Compilation Levels

Symbol Table Section Compilation Level
Minimal Limited Full Optimized

Symbolic header Yes Yes Yes Yes
File Descriptors Yes Yes Yes Yes
External Symbols Yes Yes Yes Yes
External Strings Yes Yes Yes Yes
Procedure Descriptors Yes Yes Yes Yes
Line Numbers No Yes Yes Yes
Relative File Descriptors No No Yes Yes

179

Optimization Symbols No Partial Yes Yes
Local Symbols No Partial Yes Yes
Local Strings No Partial Yes Yes
Auxiliary Symbols No Partial Yes Yes

The minimal level of symbolic information that may be produced during compilation includes only the
symbol information required for the linker to function properly. This includes external symbol information
that is needed to perform symbol resolution and relocation.

If the limited level of symbolic information is requested, line number entries are generated, but the
auxiliary table will contain only external symbol entries. Again, external symbol and procedure descriptors
are available. In addition, local symbols for procedures (and the corresponding auxiliary symbols,
optimization symbols, and local strings) are present. Limited symbolic information is sufficient to meet the
needs of profiling tools. The information present at this level is a subset of that required for full debugger
support.

If full symbolic information is included, all symbol table section are produced in full. This level enables
full debugging support with complete type descriptions for local and external symbols. Optimization is
disabled.

Optimized symbolic information is designed to balance the aims of performance and debugging
capabilities. This level supplies the same information as the full debugging option, but it also allows all
compiler optimizations. As a result, some of the correlation is lost between the source code and the
executable program.

On Tru64 UNIX systems, users can choose to compile their programs with any one of the four levels of
symbolic information. The optiong0 , -g1 , and-g2 specify increasing levels of symbolic information.
The system compiler's default is to produce the minimal leg@l Y, Currently, debugging of optimized

code (g3) is not fully supported. Seee(1) for more details.

5.3.1.2. Locally Stripped Images

Objects can be produced with only global symbolic information stored in the symbol table. Selection of the
-X option causes the linker to create a locally-stripped object. Reasons for stripping local symbolic
information include reducing file size and limiting the amount of symbolic information available to end
users of an application.

A locally-stripped object is very similar to an object produced with minimal symbolic information (see
Section 5.3.1.)1 The difference is the consolidation of file descriptors, which the linker does only for
locally-stripped objects.

In a locally-stripped image, the file descriptors are included solely for the purpose of identifying source file
languages. One file descriptor is present for each source language involved in the compilation. These file
descriptors will have theadr field set toaddressNil indicating the file descriptors cannot be used to
identify text addresses.

The procedure descriptor table is present in full but is rearranged to group procedures by source language.
All procedure descriptors for procedures written in a particular source language are thus contiguous, and
they reflect the file descriptor's information.

180

External symbols are also present in a locally-stripped image. The file iniflicesi€ld) of the external
symbols are updated to identify the generic file descriptor for the appropriate source language. The index
fields are set to zero to indicate that no type information is available. External symbols with the storage
classscNil are removed. These are debugging symbols that are not normally produced for minimal
symbol tables.

Limited debugging is possible with locally-stripped objects. Because the procedure descriptors are retained,
stack traces are possible. External symbol information can also be viewed, and language-dependent
handling of symbols (for example, C++ name demangling) is preserved.

A linked executable file can be locally stripped at any time after its creation usiostriipe-x

option. The output is the same as described above. This operation may also alter the raw data of the
.comment section. Se€hapter #or details.

5.3.1.3. (Fully) Stripped Images

Executable files may be fully stripped at any time after creation using eitharithe command or the
ostrip -s command. Stripping an executable will result in complete removal of the symbol table,
including the symbolic header. The file header fiéldymptr andf _nsyms are set to zero to indicate
that the file has been stripped.

This operation may also alter the raw data of.teexment section. Se€hapter 7#or details.

5.3.2. Source Information

The final executable image for a program bears little resemblance to the source code files from which it
was created. One of the principal functions of the symbol table is to track the relationship between the two
so that the debugger is able to describe the resulting program in a way that the programmer can recognize.

5.3.2.1. Source Files

Much of the complication of source information stems from the "include" system. When a compilation
involves several source files, there may be duplication of the header files included in each source file, or of
the source files themselves. To avoid repetition of header file information in the linked object, the linker
merges the input objects' included files wherever possible. Compilers mark file descriptors as mergeable or
unmergeable. The linker then examines the input file descriptors and performs the merge whenever
possible.

The linker considers two file descriptors to be mergeabile if all of the following criteria are met:

1) The file descriptofMerge bitis set in both (marked as mergeable by compiler).

2) Files have the same name.

3) Files are written in the same language.

4) Files contain the same number of local and auxiliary symbols.

5) Checksums match.
The checksums match if either:

i) Neither file's first auxiliary record ist@Checksum .

181

i) Both files' first auxiliary record is latChecksum and they are identical.

The role of the relative file descriptor (RFD) tables is to track file-relative information after merging. A
relative file descriptor table entry maps the index of each file at compile time to its index after linking.
Atfter linking, local or auxiliary symbols must be accessed through the RFD table to obigial¢ed file

descriptor index. This mechanism is necessary because the indices in the local symbol table are not updated
when files are merged.

Figure 5-4is an example of the use of the relative file descriptor table.

Figure 5-4 Relative File Descriptor Table Example

Kinclude b_h
¥include a_h

#include a.h
Finclude b h

P PP L P P U

W DU U U W T

LR WP LR TR W W U R

AP WP WP WP P W W L

WP WP LR WP WP W U R

P WP LR LB WP W W L

dat.c tab ¢
Q) dat.c
1)tab.c
File
2)ah Descriptors
3) b.h (merged)
datc —3| p)o
1)2 Relative
2) 3 File
tabc —3| o1 Descriptors
1) 3 (per file)
2) 2

For a symbol reference composed of a file index and symbol index (offset within file), the relative file
descriptor table is used as follows:

1) Tolook up given file index in the RFD table to get updated file index.
2) To look up new file index in the (merged) file descriptor table to get base of symbols for that file.
3) To add symbol index to file's base to access the symbol entry.

SeeSection 5.3.7.3or the representation of relative indices in the auxiliary symbol table.

182

5.3.2.2. Line Number Information

For a debugger to be effective, a connection must be made between high-level-language statements in
source files and the executable machine instructions in object files. Line number entries map executable
instructions to source lines. This mapping allows a debugger to present to a programmer the line of source
code that corresponds to the code being executed. The line number information is produced by the
compiler and should be rewritten if an application such as an instrumentation tool or an optimizer modifies
code.

In V3.13 of the Tru64 UNIX symbol table, line number information is emitted in two forms, one found in
the line number table and one in the optimization symbol taBlectibn5.3.3lescribes the structure of the
optimization symbol table.) The line number information found in the optimization symbol table is
referred to as "extended source location information”. This is a new form of line number information
introduced in V3.13 symbol tables. The new line number information augments the information in the line
number table. If both forms of line number information are present in an object the extended source line
information will only be present for procedures that cannot be described adequately by entries in the line
number table.

5.3.2.2.1. The Line Number Table

Line number information is generated for each source file that contributes executable code to a program.
Within each source file, line numbers are organized by procedure, in the order of appearance in the file.
The line number symbol table section is produced only when a program is compiled with limited or greater
symbolic information (se8ection 5.3.2.2

Figure 5-5illustrates of the organization of the line number table.

Figure 5-5 Line Number Table

File 1
Froc 1
Froc 2

Froc Y
File 2

Froc 1

Froc 2

Froc I
File M
Froc 1

Froc 2
Proc I

The order outlined ifrigure 5-5is not guaranteed to match the ordering of file descriptors or procedure
descriptors in those tables. To determine the bounds of the line number table entries for a specific
procedure, fields in the associated file descriptor and procedure descriptors must be used. The starting
offset for a procedure's line table entries is calculated directly from these fields. The ending offset can only
be determined by finding the starting offset of the next procedure's entries in the line number table. An
algorithm to identify the starting and ending line table offsets for a procedure follows.

183

IPD = index-of-procedure
IFD = index-of-file-containing-procedure

if (FDR[IFD].cbLine == 0 or
(PDR[IPD].iline == ilineNil))
/* No line information for this procedure */

START_FILE_OFFSET = FDRJ[IFD].cbLineOffset
END_FILE_OFFSET = START_FILE_OFFSET + FDRJ[IFD].cbLine

START_PROC_OFFSET = START_FILE_OFFSET + PDR[IPD].cbLineOffset

NEXTIPD = -1
for (1 = 0; | < FDR[IFD].cpd; I++)
IPD2 = FDR[IFD].ipdFirst + |
if IPD2 !=1PD and
PDRJ[IPD2].iline != ilineNil and /* No lines */
PDR[IPD2].InHigh = -1 and [* Alt entry */
PDR[IPD2].cbLineOffset > PDR[IPD].cbLineOffset)

if (NEXTIPD == -1 or
PDR[PID2].cbLineOffset < PDR[NEXTIPD].chLineOffset)

NEXTIPD = IPD2

if (NEXTIPD ==-1)
/* IPD is the last procedure with line numbers in the file */
END_PROC_OFFSET = END_FILE_OFFSET
else
END_PROC_OFFSET = START_FILE_OFFSET + PDR[NEXTIPD].cbLineOffset

Alternate entrypoints have a starting line number, but they have no specific ending line number. Procedure
descriptors for a procedure and each of its associated alternate entrypoints share a common end offset in the
line number table. Segection 5.3.6.7or more information on alternate entrypoints.

The line number table has two forms. The "packed" form is used in the object file. The "expanded" form is
a more useful representation to programmers and can be derived algorithmically (or by API) from the
packed form.

The packed line numbers are stored as bytes. Each packed entry within the single byte value consists of
two parts: count and delta. The count is the number of instructions generated from a source line. The delta
is the number of source lines between the current source line and the previous one that generated
executable instructions.

Figure 5-6shows how these two values are represented.

184

Figure 5-6 Line Number Byte Format

Bit:

k—,\ji__,.k—,v__/
Delta Count

The four-bit count is interpreted as an unsigned value between 1 and 16 (0 means 1, 1 means 2, and so
forth). A zero value would be wasted when no instructions are generated for a source line and, as a result,
no line number entry will exist for that line.

The four-bit delta is interpreted as a signed value in the range -7 to +7. The reason for this is that code
generators may produce instructions that are not in the same order as the corresponding source lines.
Therefore, the offset to the "next" source line may be a forwards or backward jump.

Either of these quantities may fall outside the permissible range. For a delta outside the range, an extended
format exists (as shown Figure 5-7.

Figure 5-7 Line Number 3-Byte Extended Format

Bit:
Ki 0
110|010
'u—,\fi__,.k—,v__/
Constant Count
Bit:
Ki 0
N
e
Upper 8 bits of Delta
Bit:
Ki 0
e
e

Lower & bits of Delta

For a count outside the range, one or more additional entries follow, with the delta set to zero.

If both fields are out of range, the delta is handled first. An extended-format delta representation is
lowed by an entry with the delta bits set to zero and the remainder of the count contained in the count

fol
va

The packed line number format can be expanded to produce the instruction-to-source-line mapping that is
needed for debugging. An algorithm to accomplish this transformation for a given procedure follows. The
panded line number array has a source line number entry for each instruction in the given procedure.
The address of the first entry is the address recorded POReadr field. Subsequent entries correspond

ex

to

185

lue.

contiguous sequential instruction addresses.

START_PROC_OFFSET = offset-of-procedure’s-entries-in-line-table
END_PROC_OFFSET = offset-of-next-procedure's-line-table-entries

PACKED = HDRR.cbLineOffset + START_PROC_OFFSET
CURRENTLINE = PDR.InLow
EXPANDED = ALLOCATE(number-of-instructions-in-procedure)

for (I =

The following source listing of a file namédes.c

as

1
2
3

| < (E}\ID_PROC_OFFSET - START_PROC_OFFSET)/sizeof(*PACKED);
[++)

COUNT = (unsigned)(PACKED[0] & Ox0OF) + 1

DELTA = (signed)(PACKEDI[0] & 0xFQ) >> 4

if (DELTA == (signed)Ox8) /* Extended delta */
DELTA = (signed)((PACKED[2] << 8) | PACKED[1])
PACKED +=2

else
PACKED +=1

if (current-offset-matches-offset-of-alternate-entry)
CURRENTLINE = PDR.InLow of alternate entry

CURRENTLINE += DELTA

while (COUNT-- > 0)
*EXPANDED = CURRENTLINE
EXPANDED++

signs line numbers:

#include <stdio.h>
main()

{

charc;

printf("this program just prints input\n");
for (;;) {
if ((c —fgetc(stdm)) I= EOF) break;
[* this is a greater than 7-line comment
*
2
*3

provides an example that shows how the compiler

13 *4

14 *5

15 *6

16 *7

17 */

18 printf("%c", c);
19 }/*endfor*

20 } /* end main */

The compiler generates line numbers only for the lines 2, 6, 8, 18, and 20; the other lines are either blank or

contain only comments.

Table 5-9shows the packed entries' interpretation for each source line.

Table 5-9 Line Number Example

186

Source Line LINER contents Interpretation

2 03 Delta O, count 4
6 44 Delta 4, count 5
8 29 Delta 2, count 10
181 88 00 Oa Delta 10, count 9
19 10 Delta 1, count 1
20 14 Delta 1, count 5
Table Note:

1. Extended format (delta is greater than 7 lines).

The compiler generates the following instructions for the example program:

[lines.c: 2] 0x0: Idah gp, 1(t12)
[lines.c: 2]0x4: Ida gp, -32592(gp)
[lines.c: 2]0x8: Ida sp, -16(sp)
[lines.c: 2] 0xc: stq ra, O(sp)
[lines.c: 6] 0x10: Idg a0, -32720(gp)
[lines.c: 6] 0x14: Idq t12,-32728(gp)
[lines.c: 6] 0x18: jsr ra, (t12), printf
[lines.c: 6] Oxlc: Idah gp, 1(ra)
[lines.c: 6] 0x20: Ida gp, -32620(gp)
[lines.c: 8] 0x24: Idq a0, -32736(gp)
[lines.c: 8] 0x28: Idq t12,-32744(gp)
[lines.c: 8] 0x2c: jsr ra, (t12), fgetc
[lines.c: 8] 0x30: Idah gp, 1(ra)
[lines.c: 8]0x34: Ida gp, -32640(gp)
[lines.c: 8]0x38: and VO, Oxff, t0
[lines.c: 8]0x3c: stq VO, 8(sp)
[lines.c: 8] 0x40: xor t0, Oxff, t0

187

[lines.c: 8] 0x44: bne t0, 0x6¢
[lines.c: 18] 0x48: Idg t2, 8(sp)
[lines.c: 18] 0x4c: sl t2, 0x38, t2
[lines.c: 18] 0x50: sra t2,0x38, al
[lines.c: 18] 0x54: Idg a0, -32752(gp)
[lines.c: 18] 0x58: Idg t12,-32728(gp)
[lines.c: 18] 0x5c: jsr ra, (t12), printf
[lines.c: 18] 0x60: Idah gp, 1(ra)
[lines.c: 18] 0x64: Ida gp, -32688(gp)
[lines.c: 19]10x68: br zero, 0x24
[lines.c: 20] Ox6c: bis zero, zero, vO
[lines.c: 20] 0x70: Idq ra, O(sp)
[lines.c: 20] 0x74: Ida sp, 16(sp)
[lines.c: 20] 0x78: ret zero, (ra), 1
[lines.c: 20] Ox7c: call_pal halt

After applying the given algorithm, the following instruction-to-source mapping (formatgdction
number. source line numbes obtained:

0. 2 1. 2 2. 2
3. 2 4. 6 5 6
6. 6 7. 6 8. 6
9. 8 10. 8 11. 8
12. 8 13. 8 14. 8

15. 8 16. 8 17. 8
18. 18 19. 18 20. 18
21. 18 22. 18 23. 18
24. 18 25. 18 26. 19
27. 20 28. 20 29. 20
30. 20 31. 20

Header files included in an object have no associated line numbers recorded in the symbol table. Line
number information for included files containing source code is not supported.

5.3.2.2.2. Extended Source Location Information (ESLI)

The line number table does not correctly describe optimized code or programs with untraditional source
files, resulting in images that are difficult to debug. Extended Source Location Information (ESLI) is
intended to provide more information to enable debugging of optimized programs, including PC and line
number changes, file transitions, and line and column ranges. ESLI is essentially a superset of the older
line number table.

ESLI is stored in the optimization symbols section. This information is accessible on a per-procedure basis
from the procedure descriptors. Srtion 5.3.3or more detail on accessing information in the
optimization symbols section.

ESLI is a byte stream that can be interpreted in two modes: data mode or command mode. Currently, two
formats are defined for data mode. These are designated as "Data Mode 1" and "Data Mode 2". Additional
data modes may be defined as needed.

188

Figure 5-8 ESLI Data Mode Bytes

Data Mode 1
Bit:
Fi 0

H—w_,k—v__}

Delta Count
Data Mode 2
Bit:
7 0 7 0

Delta Count Column #

Data Mode 1 is the initial mode for a procedure's ESLI. Data Mode 1 is identical to the packed line number
format with the exception of the interpretation of the delta PC escape1@b@e (which indicates a
switch to command mode).

In Data Mode 2, each entry consists of two bytes. The first byte is identical to the encoding and
interpretation of Data Mode 1. The second byte is an absolute column number (from 0 to 255), where
column number 0 indicates that column information is missing or not meaningful for this entry. The escape
from Data Mode 2 to command mode consists of a delta PC escape valu&@#'to and column

number set to 0.

In command mode, each byte is either a command or a command parameter. For a command byte, the low-
order six bits are a command code, and the two high bits are used as flags, as Slquve B9 The

"mark" flag, if set, announces that a new state has been established. Several commands may be required to
fully describe a new state. The "resume" flag, if set, indicates the end of command mode. The next byte
following a command with "resume” set will be a data mode byte. The same data mode that was in effect
prior to the escape to command mode will be resumedl &#e 5-10for a complete list of commands.

Figure 5-9 ESLI Command Byte

Bit:
7 0

I
Resume command code

189

Command parameters are stored in LEB (Little Endian Byte) 128 formatSeSten 1.4.6or a

description of this data representation. PC deltas are always expressed as machine instruction offsets and
must be scaled by the size of a machine instruction before adding to the current PC. No other deltas need
to be scaled.

Table 5-10shows how to interpret the bytes in command mode. These definitions can be found in the
system header filtnenum.h

Table 5-10 ESLI Commands

Name Value Number of Type of
Parameters Parameters

ADD_PC 1 1 SLEB
ADD_LINE 2 1 SLEB
SET_COL 3 1 LEB
SET_FILE 4 1 LEB
SET_DATA_MODE 5 1 LEB
ADD_LINE_PC 6 2 SLEB, SLEB
ADD_LINE_PC_COL 7 3 SLEB, SLEB,

LEB
SET_LINE 8 1 LEB
SET_LINE_COL 9 2 LEB, LEB
ADD_PC

Parameter is a signed value to add to the current PC value.

ADD_LINE
Parameter is a signed value to add to the current line number.

SET_COL
Parameter is an unsigned value that represents a new column number. The column number is used to
associate the PC with a particular location within a source line. Column number parameters use a
zero-based representation that must be adjusted by adding 1.

SET_FILE

Parameter is an unsigned value used to switch file context. This command is typically followed by a
set_line command.

SET_DATA_MODE

190

Parameter is an unsigned value used to set current data mode. The only parameter values that are
currently accepted afeand2. Additional data modes may be defined in future releases.

ADD_PC_LINE

Both parameters are signed values. The first is added to the PC and the second is added to the line
number.

ADD_PC_LINE_COL

The first two parameters are signed values and the third is an unsigned value. The first two are added
to the PC and line number respectively. The third is used to set the column number.

SET_LINE
Parameter is an unsigned value that sets the current line number.

SET_LINE_COL

Both parameters are unsigned values. The first represents the line number and the second represents
the (0-based) column number.

A tool reading the ESLI must maintain the current PC value, file number, line number, and column. Taken
together, these four values represent the current "state". Consumers must also keep track of the mode in
effect to interpret the data properly. The following example shows the instructions for consuming ESLI for
one procedure.

MODE = data mode 1
FILE = current file
LINE = PDR.InLow
COLUMN =0
PC = PDR.adr
STATE_TABLE++ = (FILE,LINE,COLUMN,PC)
ESLI = GET_ESLI(PDR.iopt)
for ppode_len bytes of ESLI do
if (MODE == data mode 1 or MODE == data mode 2)
if (ESLI.delta == escape)
PUSH_MODE(MODE)
MODE = command mode
else
PC += 4 * ESLl.delta
LINE += COUNT + 1
if (MODE == data mode 1)
STATE_TABLE++ = (FILE,LINE,COLUMN,PC)
ESLI++
if (MODE == data mode 2)
COLUMN = ESLI++
STATE_TABLE++ = (FILE,LINE,COLUMN,PC)
if (MODE == command mode)
read all parameters
updateFILE, LINE, COLUMN andPC as required
if (mark flag set
STATE_TABLE++ = (FILE,LINE,COLUMN,PC)

191

if (resume flag set)
MODE = POP_MODE()
ESLI += number-of-bytes-read

Data encoded in ESLI can be represented in tabular format. The PC value and file, line and column
numbers can be stored as a state table. The following example shows how to build this state table.

In this example ESLI will record line numbers for a routine that includes text from a header file.

Source listing fotinel.c

1 /* ESLI example using included source lines */

N

3 main() {

4 char *msg;

5

6 msg = (char *)0;
7

8 #include "line2.h"
9

10 printf("%s", msQ);
11 }

Source listing fotine2.h

msg = (char *)malloc(20);
/*

OCoO~NOOTA WNPE

L T

10 *#/
11 strcpy(msg, "Hello\n™);

The compiler generates the following instructions for the example program:

main:
[linel.c: 3] 0x1200011d0: Idah gp, 8192(t12)
[linel.c: 3]0x1200011d4: Ida gp, 28336(gp)
[linel.c: 3]0x1200011d8: Ida sp, -16(sp)
[linel.c: 3]0x1200011dc: stq ra, O(sp)
[linel.c: 3]0x1200011e0: stq sO, 8(sp)
[linel.c: 6] 0x1200011e4: bis zero, zero, sO
[line2.h: 1] 0x1200011e8: bis zero, 0x14, a0
[line2.h: 1] 0x1200011ec: Idg t12,-32560(gp)
[line2.h: 1] 0x1200011f0: jsr ra, (t12)
[line2.h: 1] 0x1200011f4: Idah gp, 8192(ra)
[line2.h: 1] 0x1200011f8: Ida gp, 28300(gp)
[line2.h: 1] 0x1200011fc: bis zero, vO, sO
[line2.h: 11] 0x120001200: bis zero, sO, a0
[line2.h: 11] 0x120001204: Ida al, -32768(gp)
[line2.h: 11] 0x120001208: Idq t12,-32600(gp)
[line2.h: 11] 0x12000120c: jsr ra, (t12)
[line2.h: 11] 0x120001210: Idah gp, 8192(ra)
[line2.h: 11] 0x120001214: Ida gp, 28272(gp)

192

[linel.c: 10] 0x120001218: Idg_u zero, O(sp)
[linel.c: 10] 0x12000121c: Ida a0, -32760(gp)
[linel.c: 10] 0x120001220: bis zero, sO, al
[linel.c: 10] 0x120001224: Idg t12,-32552(gp)
[linel.c: 10] 0x120001228: jsr ra, (t12)
[linel.c: 10] 0x12000122c: Idah gp, 8192(gp)
[linel.c: 10] 0x120001230: Ida gp, 28244(gp)
[linel.c: 11] 0x120001234: bis zero, zero, VO
[linel.c: 11] 0x120001238: Idg ra, O(sp)
[linel.c: 11] 0x12000123c: Idg sO, 8(sp)
[linel.c: 11] 0x120001240: Ida sp, 16(sp)
[linel.c: 11] 0x120001244: ret zero, (ra)

The ESLI and its interpretation for the generated code is shown in the following table.

Table 5-11 ESLI Example

ESLI bytes (hex) Mode | Command State

(M)ark (R)esume (File (L)ine (C)olumn

Code M | R | PC (hex) FlL |C

Initial State Datal 1200011d0 |0 3 0
04 Datal 1200011e4 0O 3 0
30 Datal 1200011e8 0O |6 0
80 Datal | Escape
0401 Cmd set_file(1) 1
48 01 Cmd set_line(1) X 1
05 Datal 120001200 1 0
80 Datal | Escape
86 Oa 06 Cmd add_line_pc(10,6) X 120001218 1 (11
04 00 Cmd set_file(0) 0
48 Oa Cmd set_line(10) X 10
06 Datal 120001234 0O |10 |0
16 Datal 120001250 0O |11 0

The handling of alternate entry points differs from the handling of main entry points. Procedure descriptors
for alternate entry points are identified biPBR.InHigh value of -1. If the PC for an instruction maps to
an alternate entry point, the following steps should be taken:

193

* Find procedure descriptor for the corresponding main entry. This is accomplished by searching back
in the procedure descriptors until a PDR is found that is not an alternateRiRyr(High is not
-1).

e Access the ESLI for the procedure.

¢ Read the ESLI until the PC value matchesRbéR.adr field of the alternate entry's procedure
descriptor.

5.3.3. Optimization Symbols

The optimization symbols section gives individual producers and consumers the ability to communicate
information about any aspect of the object file, in any form they choose. New information can be
generated at any time with minimal coordination between all producers and consumers. In V3.13 of the
symbol table, the optimization section may include extended source location informatiedisee

5.3.2.2.

The optimization section is organized on a per-procedure basis. Each procedure descriptor has a pointer to
the optimization symbols in the fieRDR.iopt . If no optimization symbols are associated with the
procedure, the field contaimgptNil . Otherwise, it contains the index of the first optimization symbol

entry for this procedure. Consumers should access the optimization symbols through the procedure
descriptors. The optimization section is not present in a locally-stripped object.

This section consists of a sequence of zero or more Per-Procedure Optimization Desdrip@iny as
shown inFigure 5-10 Each PPOD's internal structure consists of two parts:

1) A leading sequence of structured entries using a Tag-Length-Value model to describe subsequent raw
data. The structure of tiRPODentry can be found iBection 5.2.10

2) The raw data area.

194

Figure 5-10 Optimization Symbols Section

HDEER chOptOftset +
FDE. ioptBase+ > STODE o7 —
PDE iopt AME
1P PPODE_EXT SRC
FRODE EWMD
I:) PPOD O
extended source
location infortmation
FDR.1opt > [ProDE sTAnT 7
—| PPODE EXT SRC
<other entry type=
FEODE END
| extended source PPOD 1
location information
—
_ data
FDE 1optBaze + |
PLR.10pt PPODE STAND 7
(file boundary) Zother entry type> PPOD 2
FPODE EML _

This section has the following alignment requirements:

« Octaword (16-byte) alignment of the beginning of the section.

« Octaword (16-byte) alignment of the beginning of the raw data area.
e Octaword (16-byte) alignment of eaBlrOD

Object file producers must produce either an empty optimization symbols section or a valid one. An empty
one has the symbolic header fietd®OptOffset andioptMax set to zero. If an optimization section is
present, but a particular file does not contribute to it, the file descriptocéptd is set to zero. In this

case, all procedure descriptors belonging to the file must havéoihteir fields set taoptNil

Tools that both read and write object files must consume a valid optimization symbols section (if present in
the input file) and produce an equivalent and valid section in its output file. If a tool does not know how to
process the section contents, the section must be omitted from the output file. If a tool does know how to
process portions of the optimization symbols, those portions may be modified and the rest should be
removed. As usual, the linker is a special case. It concatenates input optimization symbols sections into one
output section without reading or modifying any of the entries.

195

The format and flexible nature of this section are similar by design toditenent section. The

structures are the same size and contain the same fields (with different names), and the rules of navigation
are the same. The primary difference is that the optimization section is broken down by procedure;
whereas, the comment section must be treated as a whole.

5.3.4. Run-Time Information

The symbol table contains information that debuggers must interpret to find symbols at run time. This
section describes the information that the static symbol table structures provides. Algorithms for
determining run-time symbol addresses are included.

5.3.4.1. Stack Frames

A stack frame is a run-time memory structure that is created whenever a procedure is calieallinthe
Standard for Alpha Systerspecifies the stack frame format and related code requirements. This section
explains how to interpret procedure descriptor fields related to the stack frame.

Two types of stack frames are supported: fixed-size frames and variable-size frames. The variable frame
format is used for procedures that dynamically allocate memory and for those with very large frames.
Figure 5-11shows a fixed-size frame aféjure 512 shows a variable-sized frame.

From the procedure descriptor, you can determine which type of stack frame the procedure has. The field
PDR.framereg stores the frame pointer register number. If this field has a value of 30 ($sp), the stack
frame is a fixed-size frame. If it has a value of 15 ($fp), the stack frame is a variable-size frame.

Figure 5-11 Fixed-Size Stack Frame

lowr memory

Fsp—
temporary
local storage frarme
3ize

argument
home

virtual | area

frame arguments

polnter | nassed in
Memory

high memory

196

Figure 5-12 Variable-Size Stack Frame

lowr memory

$ap— —
caller- variable
allocated part
$fp—
F
temporary E
local storage Fixed]i[
art
F E
argutnent
home
wirtual 1| area
frame " f arouments
pointer | nagsed in
Memory

high memory

For both types of stack frames, the valu®DR.frameoffset is the size of the fixed part of the stack

frame. In the case of a fixed-size frame, it is the entire frame size. For a variable-sized frame, the entire
frame size cannot be determined from the symbol table. The code may dynamically increase and decrease
the size of the frame multiple times during procedure execution.

The virtual frame pointer represents the contents of the frame pointer register at procedure entry, prior to
prologue execution. The (real) frame pointer is the contents of the frame pointer register after prologue
execution. The difference between the virtual and real frame pointer values is the fixed frame size, which
is subtracted from the $sp contents during the procedure prologue. Note that stack offsets recorded in the
symbol table are relative to the virtual frame pointer, not the real value used at run time.

The contents of the frame pointer register at are used at run time as the base address for accessing data,
such as parameters and local variables, on the stackeSten 5.3.4.3or details.

5.3.4.2. Procedure Addresses

ThePDR.adr is reliably updated by the linker starting with version V3.13 of the symbol table. To
determine the procedure start address for a given PDR in prior versions of the symbol table, the following
algorithm is recommended:

if (HDRR.vstamp >= 0x30D || PDR.isym == isymNil)
return(PDR.adr)
else
foreach FDR in HDRR
foreach PDR in FDR
if PDR matches

197

if (FDR.csym == 0) /* Use external symbol */
return (EXTR[PDR.isym].asym.value)
else [* Use local symbol */
return (SYMR[FDR.isymbase + PDR.isym].value)

If local symbol information is present for the given PDR,iflyen field identifies the local symbol table

entry that contains the start address of the procedure. If no local symbol information is preissm, the

field identifies the external symbol table entry containing the start address of the procedure. If no symbol
information is present for the PDR, tisgm field is set tasymNil and theadr field will contain a

reliable start address.

5.3.4.3. Local Symbol Addresses

Local variables and parameters may be stored in registers or on the stack. Those stored in registers
(identified by a storage classsifRegister) do not have addresses. For local variables and parameters
with addresses, this section explains how to calculate their run-time locations from the symbol table
information.
To calculate the run-time address for a local variadileo€al) based on its symbol table value:

Frame pointer - PDR.localoff + SYMR.value
To calculate the run-time address for a paramstBatam) based on its symbol table value:

Frame pointer - argument_home_area_size + SYMR.value

The argument home area is a portion of the stack frame designated for parameter stoFama.eSed 1
for an illustration. For historical reasons, the size of this area is always 48 bytes.

The calculations above must be performed at run time when the actual frame pointer value is known. Note
that the value becomes valid only after the procedure prologue has executed.

To calculate the locations based on static information, convert the symbol's value to an offset from the real
frame pointer:

Local:

PDR.frameoffset - PDR.localoff + SYMR.value
Parameter:

PDR.frameoffset - 48 + SYMR.value

The resulting offsets are always positive values because the frame pointer contains the address of the
lowest memory in the fixed part of the stack frame at run time.

5.3.4.4. Uplevel Links

An uplevel link is the real frame pointer of an ancestor of a nested routine. The routine nesting may be a
feature of the language (such as Pascal), or the nesting may occur in optimized code which has been
decomposed for parallel execution into smaller routines. Uplevel links provide debuggers a method of
finding all local symbols associated with the ancestor routine.

198

When a procedure is passed a static link, that static link will be represented within the scope of the
procedure definition as a local automatic symbol with a special name beginning with
" StaticLink." . The lifetime of this symbol begins after the procedure prologue has been executed.

The static link symbol will occur between the procedure's parameter definitions and 8 firsit
symbol.

The full name of the symbol will Be__StaticLink." followed by a positive decimal integer with no

leading zeros. This integer value identifies the number of levels up the ancestor tree the static link points
to.

For example, if the name’ls_StaticLink.3" it will contain the static link of the procedure in which
it is defined, and that procedure's static link points to a stack frame that is three levels up in the procedure's
ancestor tree, the great-grandfather of the procedure.

Figure 5-13 Representation of Uplevel Reference

Local Symbols Execution Stack

outer procedure

<parameters:

low memory

block (start)
stacls frame for
nested procedure
$ip—»f P

nested procedure <locals>

<parameters:

/f/,—b d
_ ataticlanic 1

stack frame for

outer procedure
block (start) $p—»
end (block) <locals>
end {procedures)
high memory

end (block)

end (procedure)

199

Debuggers of Tru64 UNIX object files need to use the uplevel link information to determine which

symbols are visible at a location in the program and to compute the addresses of local symbols in ancestor
routines. When the debugger needs the current value or address of a name that might be defined as an
uplevel reference, two separate actions may be required: finding the procedure that defines the currently
visible instance of that name, and finding the address of the currently visible instance of that name. If only
type information is required, finding the procedure that defines the name may be sufficient.

Finding the defining procedure is accomplished by repeatedly looking up the name in the local symbol
table of a chain of procedures that extends from the current procedure through its chain of ancestors until
either the name is found in a procedure or the end of the chain of ancestors is reached without finding the
name. If this search terminates without finding the name, the debugger should conclude that the name is
not visible by uplevel reference at the current location in the program.

When searching for the desired procedure, the debugger should count how many levels in the ancestor
chain were traversed before finding the name. If zero levels were traversed, the name is defined within the
current procedure and is not an uplevel reference. The number of levels traversed is assumed to be in the
variableLevelsToGo in the algorithm below.

Finding the address for the name involves locating static link values and dereferencing them with
appropriate offsets. Basically, while the number of levels to be traversed is greater than zero, find the static
link symbol for the current level and obtain its value. Finally, add the desired symbol's offset from the real
frame pointer to the final static link value.

The recommended algorithm for finding the address is as follows:

LevelsToGo = <from name lookup above>
NewProc = CurrentProcedure
NewFrame = FramePointerValue(CurrentProcedure)
Failed = false
while (LevelsToGo > 0 && !Failed)
StaticLink = FindStaticLinkSym(NewProc)
if (StaticLink == NULL)
Failed = true
else
NewFrame = *(NewFrame + StaticLink->symbol.offset)
Levels = StaticLinkLevels(StaticLink)
LevelsToGo = LevelsToGo - Levels
for (; Levels > 0O; Levels--)
NewProc = NewProc->proc.parent

if Failed is true after executing this algorithm, required information about static links is missing in the
symbol table, and an error has occurred.elfelsToGo ends up less than zero, the optimizer's static link
optimization has eliminated a static link level that would be needed to compute the address of the name. It
is recommended that debuggers inform the user that optimization prevents the debugger from computing
the address of the name.

If Failed is false and.evelsToGo is equal to zero, the address for the currently visible instance of the
name isNewFrame plus the offset of the name with respect to the real frame pointeefeProc .

The functionStaticLinkLevels returns the integer at the end of the name for the indicated static link
symbol.

200

5.3.4.5. Finding Thread Local Storage (TLS) Symbols

This section explains how to interpret symbolic information for TLS symbols (identified by a storage class
of scTilsdata orscTlsbss). SeeSection 3.3.%r theProgrammer's Guidéor general information on
TLS.

A TLS symbol's value contains its offset from the start of the TLS region for that object. This offset can be
used at process execution time to determine the address of the TLS symbol for a particular thread.

A debugger can calculate TLS symbol addresses by looking up the address of the TLS region using run-
time structures and adding the offset of the TLS symbol to that address. The following formula can be used
to calculate TLS symbol addresses.

TLS sym address = *(TEB.TSD + __tIskey) + SYMR.value

A detailed description of this formula follows:

1) Get the address of the Thread Environment Block (TEB).

2) Get the address of the Thread Specific Data (TSD) array from the TEB structure.
3) Get the offset of the TLS pointer in the TSD array.

This offset is normally stored in.ita or.got entry. This value should be accessed using the
symbol__tlskey . In spite of the fact that tiskey is a label symbol, no ampersand is used in

this context because the value that the label points to is being retrieved. The addréskeyf

will need to be adjusted by the address mapping displacement in the same manner that the debugger
adjusts addresses of text and data symbols.

For non-shared objects, thga entry contains the constant offset (2048). This offset identifies the
first and only TSD slot (256) that will be allocated for the TLS pointer.

For shared objects, thgot entry labeled by tlskey is initially O, indicating that the TSD slot
has not been allocated yet. After the the object's initialization routines have run, a TSD key will be
allocated and thegot entry will contain its offset.

4) Get the TLS pointer value. The TLS pointer is a 64-bit address set to the start of the TLS Region.

5) Calculate the address of the TLS symbol by adding the offset of the TLS symbol to the TLS pointer
value.

5.3.5. Profile Feedback Data

Profile feedback data is stored in entries in the optimization symbols table with tag type
PPODE_PROFILE_INFO The data contained in this section is intended for Compagq internal use only. It
contains execution profiling feedback used by compilers andnthaility.

Profile feedback data contains relative file descriptor and local symbol table indexes. If an object tool
removes, adds, or rearranges relative file descriptors or local symbol table entries it must also remove all
optimization symbol table entries including the profile feedback data.

201

5.3.6. Scopes

From a user-program's point of view, an identifer's scope determines its visibility in different parts of the
program. Programming languages provide facilities for declaring and defining names of procedures,
variables and other program components inside various scoping levels. This section briefly discusses the
concept of scope and then explains how it is represented in the symbol table. References are made to
structures in the auxiliary symbol table; Ssztion 5.3.7.3or details.

Generally speaking, the four main scoping levels in a program are block scope, procedure scope, file scope,
and program scope. Most programming languages have constructs to implement at least these scoping
levels.Figure 5-14shows the hierarchy of these scopes.

Figure 5-14 Basic Scopes

program

I

data filel __ fileN

data procl --- data procl ---

data block1 =~ data blockl ---
data data

Names with block scope can only be referenced inside the declaring block. Blocks are delimited by begin
and end markers, the syntax of which varies among languages.

Names with procedure scope are only recognized inside their enclosing subroutines. For instance, the
names of formal parameters and local variables declared inside a procedure are accessible only to that
procedure's executable statements.

Names with file scope can be referenced by any instruction within the file where they are declared. A file
can be composed of procedures and data external to any procedure. Both external data names and
procedure names can have file scope or program scope. Note that in a compilation involving only a single
file or in a compilation for a programming language with no separate-compilation facilities, file scope and
program scope are equivalent.

Names with program scope are visible everywhere in the program, even when the executable program is
built from many source and header files. The linker must resolve these names or pass them to the dynamic
loader to resolve. Se&gection 5.3.16or more information about symbol resolution.

202

In the symbol table, procedure scope, file scope and program scope correspond to local, static, and global
symbols, respectively. Block scope names are also local symbols. Local and static symbols appear in the
local symbol table, and global symbols are in the external symbol table.

5.3.6.1. Procedure Scope

Although procedure symbols can only be global or static (with symbol $yPesc and

stStaticProc , respectively), procedure entries appear in the local symbol table to identify the
containing scope of their local data. The set of symbols appearing in the local symbol table to describe a
procedure scope and their associated auxiliary entries is shéwgune 5-15 Global procedures also have
entries in the external symbol table. As illustrated, the indices of these external entries point to the scoping
entries in the local symbol table.

In this chapter, all diagrams of symbol table representations use arrows to show that one entry
contains an index to another entry. For external and local symbol table entries, the index used is
contained in théndex field. For auxiliary symbols, theym or RNDXRield is the index used.

Any exceptions to this general rule are noted in the diagrams.

Figure 5-15 Procedure Representation

External Symbols Local Symbols Auxiliary Entries
procedure name b rocedure name |
stProg, =zcText — EtPrDc, scText b return
& value
<parameters> type
—_ block (start \ .
4 stEIl|:|:|:u|:-:':}-:|:,E aéchext 1:' 1351 2:' TIR

<local variables> |- |

end (block) Biaeie Type descriptions
gtEnd, =cText

| end (procedurs)
stEnd, =scText

| p‘ <next symbols-

A special instance of a procedure definition occurs for a procedure with no text. This type of procedure
occurs only in the local symbol table and is very similar to the representation of other procedures. It is
generally used for procedures that have been optimized away that still need to be represented for debugging
or profiling information.

203

Figure 5-16 Procedure with No Text

Local Symbols Auxiliary Entries
rocedure name f———
be S%PEDC,SCInfD b return
<parameters= ® value
stParam, scInfo \ type
| block(start .
g stBchk(,scIjnfD 1) isym 2) TIE

<nested procedures=
end (block) Type descriptions
stEnd, scIntfo

—— | end (procedure)
stEnd, scInfo

|pl <next symbol -

A procedure with no code can contain only nested procedures that also have no code associated with them.
If a procedure with no code does not contain any nested procedurgs|tok/stEnd symbol pair
can be omitted from the representation.

ThestProc symbol included in this representation is distinguished from similar stProc symbols by its
value field that is set taddressNil ~ (-1)

5.3.6.2. File Scope

As in the case of procedures, file name entries appear in the local symbol table to define the file's scope.
This representation is shownhigure 5-17 Note that file symbols appear in the local symbol table only.

Figure 5-17 File Representation

Local Symbols Auxiliary Entries

—_— file name
stFile, scText

procedures,
data 3 Type Descriptions
end (file)

stEnd, =scText

fairan

A <next symbol>

204

5.3.6.3. Block Scope

In general, the local symbol table denotes scoping levelsstidthck andstEnd pairs, as shown in
Figure 5-18

All symbols contained between these two entries belong to the scope they describe. Nested blocks are
possible, andtEnd symbols match the most recent occurencesBiock (or other opening symbol
entries such astProc orstTag).

Figure 5-18 Block Representation

Local Symbols Auxiliary Entries
| begin (block)

2tBlock, =cText

~~ data ~~ =3 Type Descriptions
engd (block)

stEnd, scText

<next symbol-

Block scopes occur in many languages. In C, they take the form of lexical blocks. In C++, declarations can
occur anywhere in the code. In Pascal and Ada, nested procedures are possible, with local variables at any
or all levels.

5.3.6.4. Namespaces (C++)

A C++ namespace is a mechanism that allows the partitioning of the program global name space. This
partitioning is intended to reduce name clashing and provide greater program managability to C++
developers.

205

Figure 5-19 C++ Namespace Representation

Local Symbols Auxiliary Entries

narnespace rame
—y ptlamespace, scinfd

<type declarations> [————> Type Descriptions

FJ
]
*

w

inamesgace members3
stMember, acInto

rested namespaces:

namespace(end)
— | stEnd, =scInfo

—>| <next symbol‘}

namespace members are defined with
mangled names that identify thewr
contaning namespace.

TAfTe Sp ace 3.113.5
st&alias, seInfo

— | @
ST : 1TRMNDXR
Namnespace nars
stUSJ_I::'lg, s<Info -\) .
HEI'HESPB.CE TAfTe
stUsing, scInfo 1Y RNDXR

1) RNDXR

A namespace definition may exist only at the global scope or within another namespace. The namespace
representation iirigure 5-19shows a single contribution to a namespace. This representation may be
replicated many times in the symbol table for a single namespace. A namespace definition may be
continued within the same file or over multiple source files.

A single namespace contribution that spans multiple source files is represented as if it were contained
entirely within the source file in which it began.

206

Namespaces may be aliased, allowing a single namespace to be refered to by multiple names. Namespace
components may also be referenced without their namespace qualification if they are included within a
scope by a using directive or using declaration. The representations of namespace aliases, using directives,
and using declarations are showrFigure 5-19 Namespace definitions, namespace component

declarations, namespace aliases, using directives, and using declarations occur only in the local symbol
table. Namespace component definitions may occur in the local or external symbol table.

5.3.6.4.1. Namespace Components

The components of a namespace are represented in two parts: declarations and definitions. Namespace
components that do not require definition must be declared in the namespace definition. Namespace
components that are referenced by a using declaration must be declared in the namespace definition. All
other namespace component declarations may be omitted from the namespace definition.

Namespace component names are mangled only as needed. Function and data definitions have mangled
name definitions in the local or external symbol table. These entries are mangled for type-safe linkage and
as a method of matching components with the namespaces to which they belong. Names of component
declarations within a namespace definition may or may not be mangled. They are not required to include
the namespace name in their mangled form.

Empty namespace contributions can be omitted, but at least one instance of a namespace definition must
occur somewhere in the local symbol table. This definition is required because name mangling rules do not
distinguish namespace component definitions from class member definitions.

5.3.6.4.2. Namespace Aliases

Namespace aliases can occur in namespace, file, procedure or block scope in the local symbol table. The
index value for thatAlias entry is an auxiliary table index. The auxiliary entry RNDXRecord

containing the local symbol table index of gillamespace symbol in the first instance of a namespace
definition within a compilation unit. For an alias of an alias,RhN®XRecord can also contain the index

of anotherstAlias symbol in the local symbol tabl&ection 9.2.%rovides an example of a namespace
alias.

ThestAlias symbol type may be used in future versions of the symbol table format as a general purpose
symbol alias representation. The semantic interpretation efAlias symbol depends on the type of
the symbol it aliases.

5.3.6.4.3. Unnamed Namespace

An unnamed namespace can be declared at the global scope or within another namespace. An unnamed
namespace is unigue within a compilation unit. Multiple contributions to a unique unnamed namespace are
not allowed. Unnamed namespace contributions are included in the non-mergeable portion of a C++
header file.

Unnamed namespace components are subject to the same rules as named namespaces for declarations and
definitions.

ThestNamespace symbol for an unnamed namespace has no name, assl ifield is set tassNil

A compiler generated name is used to identify the unnamed namespace in the mangled names of unnamed
namespace components. A convention for this special name is currently being investigated and will be
identified in the next release of this document. The unnamed namespace exaSggedn 9.2.4will use

the name__unnamed until the actual naming convention has been determined.

207

5.3.6.4.4. Usage of Namespaces

A C++ using directive or a using declaration is represented by a symbol stitygieg . It may occur in

any scope in the local symbol table. The index value fostthging entry is an auxiliary table index. If
thestUsing entry represents a using declaration for a single namespace component, the auxiliary entry is
aRNDXRecord containing the local symbol table index of a namespace component declaration. If the
stUsing entry represents a using directive RiSDXRauxiliary contains the local symbol table index of
thestNamespace symbol in the first definition of that namespace in the compilation unit.

A using directive for a namespace alias is represented \RMCXRauxiliary that directly references the
aliased namespace. This representation contains no record of the alias referenced by the using directive.

Names are not required for stUsing entries, but they can be set to match the namespace or namespace
component to which they refer.

Namespace components that are referenced by an stUsing symbol must be declared in the namespace
definition.

Section 9.2.3rovides an example of namespace definitions and uses.

5.3.6.5. Exception Handling Blocks (C++)

In C++, a special scoping mechanism is introduced to expand user-defined exception-handling capabilities.
Exception handlers are defined to "catch" exceptions that are "thrown" by other functions. The symbol
table must contain sufficient information to recognize the scope of a handler. The compiler generates
special symbols to identify where exception handlers are valid.

208

Figure 5-20 C++ Exception Handler Representation

Local Symbols Auxiliary Entries
class name (stTag)
k_ e
m class name (stBlock) bt-:
<other class syms= bt lass ®
end (block) TITIR 2] RNDXR
<generated throw
| “tag> (5tTag)
q <generated throw
tag> (stBlock)
t ignat M bi=
vpe signature = Ptﬁ%‘har
q =
thunk)| tgPtr
<generated throw 1) TIR
tag > end
——— | <next symbol>
function name 2 Note: the throw
CAn oCcur in
?thei - :g”;;;;gg;;:;w e any function,
unction . .
tac (Static Dat ——] including a class
Symbqflmﬁimimmmmmmmftm method in the
defining class
end (functiomn)

5.3.6.6. Common Blocks (Fortran)

Fortran common blocks constitute another scoping level. Fortran uses common blocks as a way of
specifying data that is global or shared between program units. A common block is global storage that can
be named, allotted, accessed, and used by various subroutines. The block can be named or unnamed;

unnamed blocks are known as "blank commons". Internal to the symbol table, blank commons are named
" BLNK_".

Figure 5-21shows the symbolic representation of Fortran common blocks.

209

Figure 5-21 Fortran Common Block Representation

External Symbols Local Symbols Auxiliary Entries

From synthesized

file for the comumon:
BLWE

— #|=stFile, scText

. BLNE

~b =tBlock, sScCommon

BLNE

=tGlobal, scComtnoh

[T

<mermnberss -
L Type Descriptions

gtEnd, =cCommon

w[DLNE_
stBEnd, =scText

—pl <next symbol -

Frotn soutce
file where common
15 referenced:

_BLNE bt=
EEStatic, scC-:umm-:u:r_p htStact

NTIR 21 BRNDXR

Because a Fortran common is represented as a synthesized file, it also has an entry in the file descriptor
table. Furthermore, a global symbol with the same name is also present in the external symbol table.

An example of a Fortran common block can be foun8eation 9.3.1

5.3.6.7. Alternate Entry Points

Fortran also has a facility for creating alternate entry points in procedures. An alternate entry point is
represented using atProc, scText symbol. In the procedure descriptor table, an alternate entry
point is identified by dnHigh field with a value of -1. Procedure descriptors for alternate entry points
follow the procedure descriptor for the primary entry point. In the local symbol table, an alternate entry
point has an entry inside the scope of the procedure’'s main entry.

The representation of a procedure with an alternate entry point is shé&wguia 5-22

210

Figure 5-22 Alternate Entry Point Representation

Local Symbols main Auxiliary Entries
&=""antry point
function namse A
— stFroc, scText return
& value
<parameters> type
—[olock (start) \ ,
4 2tElock, 2cText 1) isym 2) TIR
<local varables> -..____-__\
enfry name b Type descriptions
=tProg, scText Cltermate
<entry’s paratns eniry point
block (start) I return
\E stBlock, scText 5: ® value
tee
end (block) * P

atEnd, acText

| end (functicmn)
stEnd, scText

|p‘ <next symbols w incdexil

Lisym 2 TIR

An example of Fortran alternate entries can be four8kation 9.3.2

5.3.7. Data Types in the Symbol Table

A data element's type dictates its size and interpretation in a programming environment. One of the symbol
table's most important tasks is to represent data types in a compact and complete manner.

Type information is stored in the local and auxiliary symbol tables. This section provides guidelines for
understanding the type information plus specific examples for depicting a range of types.

5.3.7.1. Basic Types

All programming languages have a set of simple types that are built into the language and from which other
data types can be derived. Examples of simple types are integer, character, and floating point. Languages
also provide constructs for creating user-defined types based on the simple types. For example, a C++ class
can be built using any simple type or previously defined user-defined type and the language facility for
declaring classes.

211

Similarly, a basic type in the symbol table is a building block from which each language constructs its type
information. Basic typebt) values directly represent many of the simple types for supported languages;
for instance, the valugtChar indicates a character. Oth#r values represent language constructs for
building aggregate types; a valuebtbtruct may be used, for example, to represent a C structure or
Pascal record.

The symbol table uses approximately forty basic type values. The interpretation of some of these values is
language dependent. SEable 5-4for a list of all values.

5.3.7.2. Type Qualifiers

Type qualifiers can be applied to basic types to create other data types. Examples are "pointer to" and
"array of". Generally the number and order of type qualifiers is unrestricted.

The type qualifier "function returningtqProc) is not used in V3.13 of the symbol table. However, it is
used in prior versions for variables declared as function pointers. This older representation uses a TIR
record to store the function type in the bt value followed by as many type qualifiers as necessary. A major
limitation of this representation is the inability to represent parameter types.

The symbol table currently uses eight type qualifiers. Taéde 5-5for a list of all possible values.

5.3.7.3. Interpreting Type Descriptions in the Aux iliary Table

This section explains in detail the encoding of type descriptions in the symbol table. To fully describe the
type of a symbol, the auxiliary symbol table must be created and referenced. Compilation with full
symbolic information{g option on system compilers) results in the creation of this table.

To correctly decode the type information, proceed sequentially, beginning with the symbol table entry.
Several fields may be required from other symbol table structures:

e symbol type $t)

* storage class¢)

¢ index SYMR.index)

e value SYMR.value)

e source languag@DR.lang)

The first step is to determine whether the symbol contains an index of an auxiliary table description.

Table 5-12 Symbol Table Entries with Associated Auxiliary Table Type Descriptions

Symbol Type Storage Class| Conditions SYMRField Containing
AUXUIndex

stGlobal Any None index

stStatic Any None index

stParam Any None index

212

stLocal Any Local symbol table index
stProc Any Local symbol table only index
stBlock scinfo Inside arscVariant block | value
only
stMember scinfo None index
stTypedef scinfo None index
stStaticProc Any None index
stConstant Any None index
stBase scinfo None index
stVirtBase sginfo None index
stTag scinfo None index
stinter sginfo None index
stNamespace scinfo None index
stUsing scinfo None index
stAlias s¢info None index

If the index does represent a record in the auxiliary symbol table, the interpretation of the first auxiliary

entry AUXL depends on the type of the symbol:

If the symbol's type istProc or stStaticProc and the symbol is a local symbol, the indexed
AUXUis anisym and the secondUXUis aTIR . External procedure symbols do not have descriptions
in the auxiliary table.

If the symbol's type istinter |, stAlias , orstUsing, the indexedAUXUis anRNDXRand the
type description does not contaiff iR .

If the symbol is arstBlock symbol inside ascVariant block, the symbol entry\salue field is
an index into the auxiliary table. This special case is the only one whesailee is used as an
auxiliary symbol pointer. In all other cases, it isitdex field that potentially indexes the auxiliary
table type description.

Otherwise, the indexe8flUXUis aTIR.

The next task is to examine the contents offiie. TheTIR contains constants representing the basic
type of the symbol and up to six type qualifiers, lab&l@dtq5 . If a type has more than one qualifier,
they are ordered from lowest to highest. Lower qualifiers are applied to the basic type before higher
qualifiers. All unusedq fields are set teqNil , and nagNil fields are present before or between
other type qualifiers.

213

In addition to the basic type and type qualifiers,Tilie contains two flags: afBitfield flag to mark
whether the size of the type is explicitly recorded, andrdinued flag to indicate that the type
description is continued in anothBIR . If fBitfield is set, thd'IR is immediately followed by a

width entry. If more than six type qualifiers are required for the current definition, the description is
continued, and theontinued flag is set. If exactly six type qualifiers are needed, all six fields are used
and thecontinued flag is cleared.

To illustrate, consider the type "array of pointers to integers". The basic type is "integer" and has two
qualifiers, "array of" and "pointer to". Each element of the array is a "pointer to integer". Therefore, the
qualifier "pointer to" must be applied first to the basic type "integer”. In this example, the qualifier "pointer
to" is lower than the qualifier "array of". The contents of TkiR are as follows:

bt: btint

tqo: tqPtr
tql: tqArray
tq2: tgNil
tq3: tgNil
tq4: tgNil
tq5: tgNil
continued: 0
fBitfield: O

The contents of th€IR dictate how to interpret any subsequent records. The records appear in a prescribed
order:

* If thefBitfield flag is set, avidth record follows thd'IR .

« Ifthe basic type ibtPicture , the next four records contain integer values.

« Ifthe basic type ibtScaledBin , the next three records contain integer values.

« If the basic type field ibtStruct, btUnion, btEnum, btClass, btindirect,
btSet, btRange, btRange_64, btDecimal, btFixedBin , orbtProc, the next
record is arRNDXR

o Iftherfd field of theRNDXReontains the valu8T_RFDESCAPREhe next record is asym .

« Ifthe basic type ibtRange , the next two records admLow anddnHigh .

« Ifthe basic type ibtRange_64 , the next two records admLow records and the two after that are
dnHigh records.

« Ifthe basic type ibtDecimal or btFixedBin , the next two records contain integer values.
* For each array type qualifier in tAéR , the following symbols occur:
* An RNDXR,again possibly followed by aaym

« Either one or twalnLow records (depending on whether the arragAsray or
tgArray_64)

« Either one or twalnHigh records (depending on whether the arragdsray or
tgArray_64)

214

« Either one or twavidth records (depending on whether the arrag#sray or
tgArray_64)

e Ifthecontinued flag is set, the next record is anotiiér
For a type description containing more than @, the fields of alllTIR records are interpreted in the
same way. When &R is reached with the flag cleared and any records associated withRhhtave

been decoded, the type description is complete.

As an example, consider an array of structures witliBitield flag set. A total of seven auxiliary
records can be used to describe the type:

1) TheTIR with a basic type dbtStruct and withtqO set totgArray

2) Awidth record. The size of the basic type

3) A RNDXRecord. A pointer to the structure definition in the local symbol table

4) A RNDXRrecord. A pointer to the array index type description elsewhere in the auxiliary table
5) Adnlow record. The lower bound of the array's range

6) A dnhigh record. The upper bound of the array's range

7) Awidth record. The distance in bits between each element in the array

If the continued flag of the TIR is cleared, theidth record corresponding to the array qualifier is the
final AUXUfor this type description.

For another view of this process, $gégure 5-23 Each box represents one auxiliary entry belonging to the
symbol's type description. Using the flowchart, an ordered list of entries can be assembled.

215

Figure 5-23 Auxiliary Table Interpretation

Index into
aux tahle

AYMR. st ==
stProc or
stataticFroc?

18I

AYMIR. st ==
stlnter?

SYMIR. 5t ==
stlnter?

COour

count - -

count

||—|-|"l\

216

Figure 5-24 Auxiliary Table "ti" Interpretation

t1. continued
=17

217

Figure 5-25 Auxiliary Table "bt vals" Interpretation

bt =
btFicture or
btScaledBin?

tiht —
otie of #7

15y
A
15V
_ ¥
e sym

tibt=
ktP1cture?

* htStruct, btEnum, btUnion, htClass,
htTypedef btSet, btlndirect, btRange,
btRange_64, btDecimal btFizedBin, W
htProc

** btRange, btRange 64,
btDecimal, btFoedBin

218

Figure 5-26 Auxiliary Table "arrays" Interpretation

Arrays - -

width

219

Figure 5-27 Auxiliary Table "range" Interpretation

l

AnLowr

220

Figure 5-28 Auxiliary Table "rndx" Interpretation

|

riudx

The final step is to decode tRANDXRecords. The basic types that are followedRbBiDXRecords require
reference to another local or auxiliary symbol to complete the type description. IntersiDX&
records as follows:

e Ifthe basic type ibtStruct ,btUnion , btEnum, btClass , btProc , or btTypedef |, the
index field of theRNDXRpoints into the local symbol table. The specified local symbol is the start of
the definition of the structure, union, enumeration, class, or user-defined tyf¢PFamr |, the
referenced local symbol is the start of the set of symbols defining the procedure's signature.

« Ifthe basic type ibtSet , theRNDXRpoints into the auxiliary symbol table. The specified record is
the start of the description of the type of each element in the set.

e If the basic type ibtindirect , theRNDXRpoints into the auxiliary symbol table. The specified
auxiliary record is the start of the description of the referenced type.

« If the basic type ibtRange , theRNDXRpoints into the auxiliary symbol table. The specified
auxiliary record is the start of the description of the type being subranged.

« Ifthe basic type ibtFixedBin |, therfd field of theRNDXRcontains a Boolean value of true or
false. Thandex field represents a type code.

« Ifthe basic type ibtDecimal , therfd field of theRNDXReontains the value 1 or 2. Thelex
field represents a type code.

Additionally, the index of everRNDXRused as a pointer must be mapped through the relative file
descriptor table (se®ection 5.3.2.]1 if the table exists. Thed field of the record controls this mapping.
The following algorithm can be used to locate the symbol referenced by the relative index record:

if (RNDXR.rfd == ST_RFDESCAPE)
RFD = (++AUXU).isym
else

RFD = RNDXR.rfd
if (HDRR.crfd) /* RFD table exists */

IFD = (current FDR's RFD table)[RFD]
else

IFD = RFD

if (SYMR needed)
SYMBASE = FDRJ[IFD].isymBase
SYMR = SYMBASE[RNDXR.index]
else if (AUXU needed)
AUXBASE = FDR[IFD].iauxBase
AUXU = AUXBASE[RNDXR.index]

221

222

5.3.8. Individual Type Representations

This section provides sketches of type representations in the local and auxiliary symbol tables. The
connections between the two tables is depicted for each type. This form of representation is only possible
when full symbolic information is present.

Note that external symbols as well as local symbols reference the auxiliary table, although the examples in
this chapter use local symbols only.

5.3.8.1. Pointer Type

A pointer is a variable containing the address of another variable. A pointer is representigétby &pe
qualifier modifying another type. A pointer is represented by a single symbol with an entry in the auxiliary
table, as shown iRigure 5-29

Note that if the pointer referenced a user-defined type, such as a class or structlire vibald be
followed by anRNDXRand possibly arsym).

Figure 5-29 Pointer Representation

Local Symbols Auxiliary Entries

bt=type
*| pointer name 2| pointed to
tg=tgPtr
*could be external
1) TIR

The combination of type qualifietgFar andtqPtr are used to represent a short (32-bit) pointer. This
pointer type is used with tRETASOemulation.

5.3.8.2. Array Type

An array is a list of elements that all have the same type. Arrays may be fixed size and allocated at compile
time or dynamically sized and allocated at run time. This section describes the fixed-size array symbol table
representation. For information on Fortran dynamic arraysSeetton 5.3.8.8 For conformant arrays in

Pascal and Ada, s&ection 5.3.8.9

An array is represented by@Array ortgArray 64 type qualifier applied to another type. This
second type describes the type of all elements in the array. In the local or external symbol table, a single
entry represents an arrdyigure 5-30shows the symbol table description for an array.

223

Figure 5-30 Array Representation

Local Symbols Auxiliary Entries
x| array name —*[bt=clem
&
* could be external tgAray

1TIR 2] RNDXR

For multidimensional e Upper
array, repeat (2) thru (5) bound bound
for each ditnension _

I dnhigh

S

3) dnlow

element] | indesx
. size type [#
MNote: Entry for index type | (in bits)

can be anywhere intable Blwidth 1 TIR

Note that for an array of elements of a user-defined type, such as a class or structureR Bitieand
possibly arisym) would be inserted between thER and theRNDXRlescribing the subscript type.

If an array has multiple dimensions, the symbols describing the dimension appear in the order of innermost
to outermost. For example, the following declaration produddR awith thetgArray qualifier followed
by theRNDXRand range description for 0-1 followed by the entries for the dimension 0-99:

float floattable[100][2]

Some arrays may have dimensions too large to represent in the 32-bit format skmuneirb-30 Such
arrays are represented using a 64-bit format in which two auxiliary entries are used for the dimension
bounds and sizeEigure 5-3lillustrates the 64-bit representation.

224

Figure 5-31 64-Bit Array Representation

Local Symbols Auxiliary Entries
x| array name ———P[bt=clem
ty= e @
* could be external tqhrray 64
1 TIR 2) RNDXR
lowrer lowrer
bound bound

L _ {low bits) {high hits)
For multidimensional
array, repeat (2) thru (2) 3)diLow 4) dnLow
for each dimension upper upper
hiound hound

{low bits) {high hits)
5) dnHigh &) dnHigh

element element
size size

{low hits) {high hits)

7y width 23 width

size 10 hits

index

Note: Entry for index type type ¢
can be anywhere intable
1) TIR

5.3.8.3. Structure, Union, and Enumerated Types

This section applies to data structures in languages other than C++. For the C++ structure, union, or
enumerated type representation, Seetion 5.3.8.6

Structures, unions, and enumerated types have a common representation. All three are identified using
"tags" and contain zero or more fields. In the symbol table, the tag is the name associated with the starting
stBlock symbol for the structure's set of local symbols. Note that it may be empty because the tag is
optional. Symbols for fields follow. The definition is completed by a block-end symbol matching the block-
start symbol.

Figure 5-32contains a graphical depiction of this set of symbols.

225

Figure 5-32 Structure Representation

Local Symbols Anxiliary Entries
ke
e tag name (block) i
Imemberss biStruct @
end (block) TITIR 2)RNDXR
| <next symbol=
g 0 0 i Type descriptions

Vo (o (Pl (Pl (et Pl P I P P P P e

| struct variable

* conld be external

The structure members have auxiliary table indices pointing to their type descriptions.

Untagged structures and unions are represented with a NULL tag name. Unnamed structures can be
embedded in other structures and are represented as a NULL-named member of the outer structure. See
Section 9.1.%or an example of an unnamed structure.

A structure can contain a field that is a pointer to itself. This field is representedtiffeanber symbol
with an auxiliary table entry that references the beginning of the structure's block of local symbols, as
shown inFigure 5-33

226

Figure 5-33 Recursive Structure Representation

Local Symbols

Auxiliary Entries

tag narne (block)

<members=

recursive member

—

end (block)

<next symbol>

struct variahle

* conld be external

.v"'t.ﬂ"-

Vo (o (Pl (Pl (et Pl P I P P P P e
P Pl Pl e T T

bt=
btStruct @

"1)TIR 2) RNDXR

Type descriptions

tgl=
tgPtr ®

bt=
btStruct
NTIR 2)RNOXR

When a field within a structure is itself a structure, the compiler may choose to generate the structure
definitions either sequentially or embedded, as shoviigiare 5-34

Figure 5-34 Nested Structure Representation

Local Symbols

Auxiliary Entries

— | f2gname (block)

<memberss

w| tag name (block)

<memhberss

)

end (block)

ht=
btStruct @

1)TIR 2) RNDXR

Type descriptions

| struct mermber

end (block)

—— | <next symbol>

VP P P P Pt Pt Pt R i i e

P I P P P P P P e e e

struct variahle

ft=
btStruct @

1)TIR 2) RNDXR

¥ conld be external

227

The following declaration might result in the nested structure representation:

struct line {
struct point {
float x, y;

} pL, p2;

5.3.8.4. Typedef Type

Most languages allow programmers to choose alternate names, or aliases, for data types. The alias created
by such a facility (such as QGigedef) isrepresented as a single local symbol entry that has a pointer to

its type description in the auxiliary table. The auxiliary entry contains a pointer to the definition of the type
name, as shown iaigure 5-35

Figure 5-35 Typedef Representation

Local Symbols Auxiliary Entries
*| typdef’ed variable
b'l': .
type narne
st Typedef, =cInfo '|]|‘|'||:{ 2) FEHMI=R
* conld be external
N type
desc,
10 TIE

5.3.8.5. Function Pointer Type

Languages such as C and C++, which allow pointers to functions, represent the type of the function pointer
using a speciatProc/scinfo block describing the parameters and return value for the function as
shown inFigure 5-36

228

Figure 5-36 Function Pointer Representation

Local Symbols Auxiliary Entries

* fmcptr narne —} bt=htProc
ty=tgPtr L

* could be external

13 TIR 2) RNDXE

-
! procedure —_—)

stFProc, scInfo return
& value

<parameters= type
stFParam, scInfo \

end (procedure) 1) isym 2 TIR
=tEnd, scInfo

| P| <nextsymbol> Type descriptions
ThestProc/scinfo entry has its value set 1@ , which distinguishes it from similar entries used to
represent procedures with no text and C++ member functionstFiree/scinfo and

stEnd/scinfo entries have null names in the function pointer representation. The parameters are
optional and may or may not be named.

This representation for function pointers is new in V3.13. The previous representation used the

combination of type qualifieg)Ptr andtgProc in theTIR of the function pointer variable. Prior to
V3.13, it was not possible to represent the parameter types for a function pointer.

5.3.8.6. Class Type (C++)

A C++ class resembles an extended C structure. One major distinction is that class fields (referred to as
"members") can be functions as well as variables. The set of symbols created for a class is organized as
follows:

« The name of the class
* A block symbol for scoping
« Data members

« Symbols associated with member functions. Each member function is represented by the normal set of
symbols present for a function.

« Corresponding end symbols that denote the completion of the block and class.

Another characteristic of classes is that symbols are defined implicitly. For example, all classes have an
operator= operator-overloading function included in the class definition ditlis pointer to its

229

own type as a parameter to all member functions. These symbols are always included explicitly in the
symbol table description.

Figure 5-37is a graphical representation of the set of symbols for a class.

Figure 5-37 Class Representation

Local Symbols Auxiliary Entries
T .
ctmen aeTafo Type Descriptions

block (hegin))

stElock, ScInfd:

\fl

ht=
<data members> htClass

cmember functionss 1N TIR 2) RMNDXR

|| block {end;
stEnd, =cInfo return
walue
—| <next symbol> ¢ type

to local ‘_!} isym 2)TIR

symbol after
function defintion

Y]
1l
FET:
TEL]
1l
Y]
13l
rFRY
3599

Py

Y
il

rlass instatce

Class members, including member functions, have auxiliary references that point to their type descriptions.
Note that member functions are represented as prototypes. The set of symbols defining the member
function is elsewhere in the symbol table. To locate the definition of a member function, a name lookup can
be performed using the mangled name of the member function with its class name qualifggctiSae
5.3.10.3for information on name mangling.

C++ structures, unions, and enumerated types are represented the same way as classes. The different data
structures are distinguished by basic type value.

The symbol table does not represent class member access attributes.

Examples of base and derived classes can be foupetiion 9.2.1

5.3.8.6.1. Empty Class or Structure (C++)

The representation of empty classes or structures in C++ is shéwquie 5-38

230

Figure 5-38 Empty Class or Structure (C++)

Local Symbols Auxiliary Entries
tagname S [—y| bt= rd=-1
d gcInfo btClass indesx

=-1

1)TIR 2)RMNDXR

rfd= -1
indesx
=-1

3) RNDXR

5.3.8.6.2. Base and Derived Classes (C++)

Hierarchical groups of classes can be designed in C++. A base class serves as a wider classification for its
derived classes, and a derived class has all of the members and methods of the base class, plus additional
members of its own. In the symbol table, the set of symbols denoting a derived class is nearly identical to
that for a non-derived class. The derived class includes an add#iBagke or stVirtBase symbol

that identifies its corresponding base class, and it does not need to duplicate the definitions for the base
class members. This representation is showfigare 5-39

231

Figure 5-39 Base Class Representation

Local Symbols Auxiliary Entries
class name (stTag)
ke sl
class name (stBlock) -
— bt= ®
base class name —| bt
(stBage) N s

<other class syms: \ TITIR 2] RNDXR

end (block) \Sl i

bt=
L | <next symbols btClass
P IR PR R NTIR 2V RNDXR
derived

class instance

N
to local symbol
stBloclk, scInfo for
base class definition

The representation of virtual base classes for C++ relies on the definition of a special symbol that identifies
the virtual base table. The name for this symbol is derived from the name of the class to which it belongs.
For example, the virtual base table symbol for d2ssvould be namedl btbl 2C5" . This table

contains entries for base class run-time descriptions.

A class can include the special membéaptr* . This class member is a pointer to the virtual base table
for that class.

Thevalue field for a virtual base class symbetVirtBase/scinfo) serves as an index (starting at
1) into the virtual base class table.

5.3.8.7. Template Type (C++)

Templates are a C++-specific language construct allowing the parameterization of types. C++ class
templates are represented in the symbol table for each instantiation, but not for the template itself. The set
of class symbols is unchanged from the set shovngire 5-37

5.3.8.8. Array Descriptor Type (Fortran90)

A Fortran90 array descriptor is a structure that describes an array: its location, dimensions, bounds, sizes,
and other attributes. Array descriptors are described in detail in the Fortran 90 User Manual for Tru64
UNIX. Fortran90 includes several types of arrays for which the dimensions or dimension bounds are
determined at run time: allocatable arrays, assumed shape arrays, and array pointers.

232

Two symbol table representations can be used for an array descriptor. The default representation describes
the array descriptor itself. The alternate representation describes what is known of the array itself at
compile time.

No matter what symbolic representation is used, symbols of this type point to a data location at which the
array descriptor is allocated. One of the array descriptor fields contains a pointer to the actual array. Other
fields are used to describe the attributes of the array. Fields that describe the number of dimensions and
upper and lower bounds are filled in at run time.

By default, array descriptors are described by a structure tag representation. Most of the array descriptor
fields are represented as structure members. (Excluded fields are not needed by debuggers.) Special tag
names are used to identify array descriptor structure definif@3$f90_array_ desc (assumed-

shape array$f90$fo0_ptr_desc (pointer to array) anfif90$f90_alloc_desc (allocatable
array).Figure 5-40shows the format of this representation.

Some compilers may emit other fields in addition to those showigime 5-40 A consumer's ability to
interpret additional fields depends on its knowledge of the producing compiler.

Figure 5-40 Array Descriptor Representation (1)

Local Symbols Anxiliary Entries

x| array name ———— | b=
btStruct ®

* could be external

DTIR 2] RNDXR

block | magic name #

member| # of dimensions

member| element length

memhber| pointer to array

member| element spacing \

member| upper bound

Mote that these 3 symbols
are repeated per dimension

tnetnher lowrer bound

Eﬁik end (magic name)

An example of the default Fortran array descriptor representation can be féedion 9.3.3

233

An alternate representation for array descriptors may be found in symbol tables prior to V3.13. The
overloaded basic type value 28 indicates an array descriptor ThRhend dimension bounds are set to

[1:1] indicating their true size is unknown. The alternate representation does not provide any information
describing the contents of the array descriptor itself, so debuggers must assume a static representation for
the descriptor and lookup the fields at their expected offsets.

This representation is substantially more compact in the local symbol table, but it provides no way to
distinguish between the different types of array descriptors.

Figure 5-41shows the format of the older array descriptor representation.

Figure 5-41 Array Descriptor Representation (II)

Local Symbols Auxiliary Entries

*| array name by ht=
btirray
Desc

1) TIR

¥ could be external

bt=elam
Tq-gpe "
T Array

2)TIR 3)RNDXR

Upper
Note: entries 3-6 will be ower)

repeated per dimension bound

Didnlow 5)dnhigh

element| | indesx

sire g
anbiey | | PE
&) width TIR

5.3.8.9. Conformant Array Type (Pascal)

Full details are not currently available for Pascal’s conformant array representation. A Pascal conformant
array is very similar to Fortran's assumed shape arrays. It is an array parameter with upper and lower
dimension bounds that are determined by the input argument. A conformant array is represented by an
array descriptor. The special names used and the format of the array descriptor differ from those used for
Fortran. The DEC Pascal release notes contain additional information on conformant arrays.

234

5.3.8.10. Variant Record Type (Pascal and Ada)

A variant record is an extension to the record data type, which is a Pascal or Ada data structure akinto a C
struct and is represented in the same manner in the symbol table. The variant part of the record consists
of sets of one or more fields associated with a range of values. Only one such set is part of the record, and it
is selected based on the value of another record field. Any number of variant parts can be embedded in a
single record.

The local symbol table entries for the variant part of a record are contained within a block with the storage
class §c value)scVariant . Thevalue field of thestBlock entry contains the index of the local

symbol entry for the member of the record whose value determines which variant arm is used. The variant
block contains multiple inner blocks, each representing a variant armalllee field of each of these

block entries is an auxiliary table index. Each auxliary table entry starts agiln& , which indicates

how many range entries follow. The range entries describe the values associated with the block.

Figure 5-42is a graphical representation of a variant record.

235

Figure 5-42 Variant Record Representation

Local Symbols Auxiliary Entries
— | stBlock, scWVariant number
value of
| stBlock, scinfo | ———P| ranges
<members= 1) count
sthember, sclnfo index)
bt =
stEnd, scInfo btRange
ar .
b stBlock, scInfo | 4 biRange 54
2y TIR. 3) RNDXR
<memmberss
sthdember, sclnfo
lower upper
tEnd, scInf
SLRAd, SCILo * | bound bound
—maore block/finfos—
stEnd, scWVariant 4) dnLow 5) driHiigh
&) etc.. repeat (2)
P | <nextsymbols thru (59 "count" times
ot b ot o o o ot b od b ot b oot _> 1_) count, 2) TIE. ...
mermber —determines s above
value range
* If btRange 64, two subrange 4
dnLow and two dnHigh fype
entries are used for the
boundary values TR

Prior to V3.13 of the symbol table, variant records were represented differEiaflye 5-43depicts the
older representation.

236

Figure 5-43 Variant Record Representation (pre-V3.13)

Local Symbols Auxiliary Entries
— | stBlock, scWVariant number
value of
—+p| stBlock, scInfo |——P ranges ®
<rmembers= 1) count 2)RND
sthdember, sclnfo -)) &
index
stEnd, scInfo lovwrer upper
bound hiound
-y stBlock, sclnfo | 4 o
{mer‘gberS} : 3ydnLow 4 dnHigh
(il In
S ener, Se o 5) etc.. repeat (2)
stEnd, scInfo thru (4) "count" times
—rmore blockfinfos— 1) count, 2) TIR. ...
stEnd, scVariant as above
| <nextsymbol> subrange
AP PP type +
rermber —determines range
value J 11 TIR

An example of a Pascal variant record can be fourgkation 9.4.3

5.3.8.11. Subrange Type (Pascal and Ada)

A subrange data type defines a subset of the values associated with a particular ordinal type (the "base
type" of the subrange). Ordinal types in Pascal include integers, characters, and enumerated types. The
symbol table representation of a subrange usdstRange or btRange 64 type followed by an

auxiliary index identifying the base type and entries providing the bounds of the subrange. The 32-bit
representation is shown gure 5-44and the 64-bit representation is showifrigure 545.

Figure 5-44 Subrange Representation

Local Symbols

237

x| subrange variable

= colld be exdernal

Mate: type description
could be anywhere in
auxiliary symhboltable

Figure 5-45 64-bit Range Representation

Local Symbols

Auxiliary Entries
bt=
btRange ®
1) TIR 2) RNDXR
lorwrer upper
bound haund
3)dnLow 4) dnHigh
e type in
subrange

Auxiliary Entries

*

subrange variable

= coyld be external

Mote: type description
could be anywhere in
auxiliary symbol takle

bt =
4 htFange 64 @
D TIR 2) ENDXER
lower lowrer
bound bound
(lowr bits) | [(high bits)
DdnLow 40 dnLow
upper upper
bound bound
(lowr hits) (high hits)
5)dnHigh 6 dnHigh
type in
subrange

An example of a Pascal subrange can be fourgdation 9.4.2

238

5.3.8.12. Set Type (Pascal)

A set is a data type that groups ordinal elements in an unordered list. The arithmetic and logical operators
are overloaded in Pascal; this enables them to be used with set variables to perform classic set operations
such as union and intersection. A special auxiliary type definiti§at exists to identify this type. The

symbol table representation is depictefigure 5-46

Figure 5-46 Set Representation

Local Symbols Auxiliary Entries
- bi=
set variable M LSt @

*could be external NTIR 2)RNDXR
lement
i

250,

1) TIR

The element type for a set is typically a range or an enumeration. An example of a Pascal set can be found
in Section 9.4.1

239

5.3.9. Special Debug Symbols

A variety of special symbols are used throughout the symbol table to convey call frame information, special
type semantics, or other language specific information. These names are reserved for use by compilers and
other tools that produce Tru64 UNIX object files.

Name Purpose

__StaticLink.* Uplevel link. Seesection 5.3.4.4

_BLNK__ Fortran unnamed common block. Samrtion 5.3.6.6
MAIN__ Fortran alias for main program unit. S&ection 5.3.10.4
<ARGNAME>.len Generated parameter for Fortran routines. It contains the

length of <ARGNAME>, a parameter of character type.

Ib_<ARRAY>.<dim> L d bounds of icular di . f
ub_ <ARRAY>.<dim> ower and upper bounds of particular dimensions of arrays—

when the array has an explicit shape, yet some bounds coine
from non-constant specification expressions (array arguments
in Pascal and Fortran routines).

$fo0$f90_array_desc

Variants of Fortran-90 described arrays (assumed shape,
gggggg_;ltlro%_eiisc ALLOCATABLE, and POINTER, respectively). S&ection
- - 5.3.8.8
cray pointee Fortran-generated typedef describing the type of a variable

pointed to by a CRAY pointer.

pointer Fortran generated typedef describing the type of a scalar with

the POINTER attribute.

_DECCXX_generated_name_* DECC++ compiler-inserted name for unamed classes and
enumerations.

this Hidden parameter in C++ member functions that is a pointer to
the current instance of the class. Seetion 5.3.8.6

_vptr Hidden C++ class member containing the virtual function
table. See example 8ection 9.2.2

__bptr Hidden C++ class member containing the virtual base class
table. See example Bection 9.2.2

__vtbl_* Global symbols for C++ virtual function tables. See example
in Section 9.2.2

__btbl_* Global symbols for C++ virtual base class tables. See example
in Section 9.2.2

__control Hidden argument to C++ constructors controlling descent (jn
the face of virtual base classes).

240

_t* evdf Structure used to maintain a list of C++ global deconstructors.

t*_iviw C++ static procedure used for global constructors.

t*___evdw C++ static procedure used for global destructors.

__t* thunk C++ static procedure used to provide a defaulted argumen
value.

__INTER__* C++ interlude. See example3ection 9.2.2

__unnamed::* C++ unnamed namespace components. See example in
Section 9.2.4

5.3.10. Symbol Resolution

Among the linker's chief tasks is symbol resolution. Because most compilations involve multiple source
files and virtually all programs rely on system libraries, a process is necessary to resolve conflicting uses of
global symbol names. The linker must decide which symbol is referenced by a given name. This section
highlights the major issues involved in that decision. Related information is contaBection 6.3.4nd
theProgrammer's Guide

Symbol table entries provide information relevant to performing symbol resolution. External symbols with
a storage class et(S)Undefined , sc(S)Common, orscTIsCommon must be resolved before they

are referenced. By default, the linker will not mark an object file with unresolved symbols as executable.
However, linker options give programmers a fair measure of control over its symbol resolution behavior.
Seeld(1) for more information.

5.3.10.1. Library Search

Symbols referenced, but not defined in the main executable of an application must be matched with
definitions in linked-in libraries. The linker combines objects, archives, and shared libraries while
attempting to resolve all references to undefined symbolsPidgrammer's Guideovers related topics in
detail, such as how to specify libraries during compilation and the search order of libraries.

In general, main executable objects and shared libraries are searched before archive libraries. If no
undefined external symbols remain, archive libraries in the library list do not have to be searched, because
archive members are only loaded to resolve external references. Archives are not used to find "better"
common definitions (seBection 5.3.10)2 and no archive definitions preempt symbol definitions from the
main object or shared libraries.

5.3.10.2. Resolution of Symbols with Common Storage Class

Symbols with common storage class are a special category of global symbols that have a size but no
allocated storage. Symbols with common storage class should not be confused with Fortran common
symbols, which are not represented by a single symbol table entry5¢&éen 5.3.6.60r a description of
Fortran common symbols.). Common storage classex@@mmon scSCommon andscTlsCommon .

The symbol definition model used by Tru64 UNIX allows an unlimited number of common storage class
symbols with the same name. Ultimately, the "best" of these must be selected (by the linker or the loader)

241

during symbol resolution. The criteria used to select the best symbol definition include the symbol's
allocation status and size.

The symbol table does not provide an "allocated common" storage class. Common storage class symbols
adopt a new storage class when they are allocated. Typically, their new storagescBss isr scSBss

or scTIsBss . On the other hand, the dynamic symbol table does explicitly distinguish common storage
class symbols that have been allocated.S&e#ion 6.3.40or more information on dynamic symbol

resolution.

A symbol reference is resolved according to the following precedence rules:

1) Find a symbol definition that does not have a common storage class and is not identified as an
allocated common in the dynamic symbol table.

2) Find the largest allocated common identified in the dynamic symbol table.

3) Find the largest common storage class symbol and allocate it. This step will be skipped when the linker
produces a relocatable object file.

Precedence is given to symbol definitions with storage allocation to minimize load time common

allocation and redundant storage allocations in shared objects. The loader is capable of allocating space for
common storage class symbols, but this should only be necessary when a program references an allocated
common symbol in a shared library that is later removed from that shared library.

Note that Fortran common block representations use common storage class symbols Another very frequent
occurrence of a common storage class symbol is a C-language global variable that does not have an
initializer in its declaration.

5.3.10.3. Mangling and Demangling

Another issue related to symbol resolution is the need to "mangle” user-level identifiers. For example, C++
allows function overloading, prototyping, and the use of templates—all of which can result in the occurrence
of the same names for different entities. The solution employed by the symbol table is to use mangled
names that derive from the symbol's type signature.

Object file consumers, such as debuggers and object dumpers, need to "demangle" the identifiers so they
can be output in a form that is recognizable to the user. For linking and loading, the mangled names are
used for symbol resolution.

The encoding of C++ names is described in the mausialy DEC C++ for Tru64 UNIX Systems

Other compilers may write symbol names that are modified by prepending or appending special characters
such as dollar sign ($) or underscore () or by prepending qualifier strings such as file names or namespace
names. Uppercasing of names is also common for certain languages such as Fortran. All of these
transformations fall into the general category of mangled names. Refer to the release notes for specific
compilers for additional information.

5.3.10.4. Mixed Language Resolution

Compilation of a program involving multiple source languages introduces additional symbol resolution
issues. One important task is resolving the main program entry point because conflicting "main” symbols
may be present in the different files. For C and C++, the symbol "main” is the main program entry point,
but for other languages, "main” will either be an alias for the main program or an interlude. DEC Fortran
and DEC COBOL provide interludes that perform some language specific initializations and then call the
real main program entry point. For DEC FORTRAN the main program is "MAIN__ " and for DEC COBOL

242

the main program is *__cobol_main". DEC PASCAL provides a "main" symbol that aliases the actual main
program symbol.

The symbols "MAIN__"and " __cobol_main" can both be present in a mixed language program, and either,
neither, or both can be used by the program. Debuggers can set a breakpoint in the user's main program by
applying some precedence for selecting the most appropriate symbol. For a mixed language program, there
is a slight chance that "MAIN__ " or "__cobol_main" will be present but never called.

5.3.10.5. TLS Symbols

TLS symbols, like non-TLS symbols, can be undefined or common. Unresolved TLS symbols are
identified by the storage classTIsUndefined , and TLS commons have the storage class
scTlsCommon . The symbol resolution process for TLS names is similar, but separate; TLS symbols
cannot be resolved to non-TLS symbols or vice versa.

TLS common symbols are resolved in the same manner as other common storage class symbols (see
Section 5.3.10)2 except that, again, only TLS symbols are candidates for resolution.

Another rule special to TLS is that symbol definitions for TLS common and undefined symbols cannot be
imported from shared libraries.

243

5.4. Language-Specific Symbol Table Features

Language-specific characteristics are pervasive in the symbol table, particularly in the local, external, and
auxiliary symbol tables. Se&gection 5.2andSection5.3.7for information on language-specific values.

Thelang field of the file descriptor entry encodes the source language of the file. This field should be
accessed prior to decoding symbolic information, especially type descriptions. This section highlights, by
language, language-specific features represented in the symbol table. Additional information on certain
features is available elsewhere in this chapter.

5.4.1. Fortran77 and Fortran90

In Fortran, it is possible to create multiple entry points in subroutines. A subroutine has one main entry
point and zero or more alternate entry points, indicatdeNdyR Ystatements. Segection 5.3.6.7or their
representation in the symbol table.

Fortran90 array descriptors include allocatable arrays, assumed-shape arrays, and pointers to arrays. Their
representation in the symbol table is discusse&skition 5.3.8.8

Modules provide another scoping level in Fortran90 programs. The symbol table representation for
modules has not yet been implemented.

54.2. C++

C++ classes encapsulate functions and data inside a single structure. Classes are represented in the symbol
table using ®tClass basic type and th&tBlock/stEnd scoping mechanism. S&ection 5.3.8.6

Templates provide for parameterized types. At present, no special symbol table values are related to
templates. The template itself is not represented; rather, entries that correspond to each instantiation are
generated. Template instantiations are distinguished by mangled names based on their type signatures.

C++ namespaces, like Fortran modules, offer an additional scope for program identifiers. Again, they are
not yet implemented in the symbol table.

The C++ concepts of private, protected, and public data attributes are not currently represented in the
symbol table. The C++ concept of "friend"” classes and functions are also not represented.

5.4.3. Pascal and Ada

Pascal conformant arrays are function parameters with array dimensions that are determined by the
arguments passed to the function at run time Sgeton 5.3.8.9

Variant records are an extension of the record data structure. Variant records allow different sets of fields
depending on the value of a particular record memberS&e@n 5.3.8.10

Nested procedures are supported in these languages. They are represented using standard scoping
mechanisms discussed3ection 5.3.@nd uplevel references describedettion5.3.4.4

Sets and subranges are user-defined subsets of ordinal types. Sets are unordered groups of elements, which
can be manipulated with the classic set operations. Subranges are ordered and are used with the usual
operators. SeBection 5.3.8.1andSection5.3.8.12

244

Ada subtypes of ordinal types are represented in the same manner as Pascal subranges.

245

6. Dynamic Loading Information

The dynamic linker/loader (commonly referred to as the loader) is responsible for creating a dynamic
executable's process image and placing it into system memory so that it can execute. The loader's functions
include finding and mapping shared libraries, completing symbol resolution, and finalizing program
addresses.

To accomplish these functions, the loader requires information on external symbols and shared libraries.
The linker prepares this dynamic loading information for shared objects only. The dynamic loader then
uses this information to create and map the process image. The dynamic information consists of the
sections highlighted ifigure 6-1

Figure 6-1 Dynamic Object File Sections

File Header
a.out Header dynamic heade
Section Headers Jliblist shared libraries

Cywnamic Sections

Lo rel.dvn relocations
Raw Data Sections y

Relocations .conflict multiplydeined
Symbol Table MSYM hash values
Comment Section dynstr string table
dynsym symbol table
.hash hash table
.got address table

These sections are mapped with the text segment, except fgpthewhich contains the GOT (Global
Offset Table). The GOT is part of the data segment because it must be written into when addresses are
updated.

The function of each dynamic section can be summarized as follows:

« The.dynamic section serves as a header for the dynamic information.

 The.dynsym section contains the dynamic symbol table.

« The.dynstr section contains the names of dynamic symbols and shared library dependencies.

 The.hash section holds a hash table to provide quick access into the dynamic symbol table.

246

« The.msym table contains supplemental symbolic information, including pre-computed hash values
and dynamic relocation indices.

e The.liblist section stores dependency information.
e The.conflict section contains a list of multiply-defined symbol names that must be resolved at
load time.

e The.rel.dyn section contains dynamic relocation entries.

« The.got section contains one or more tables of 64-bit run-time addresses.

This chapter covers the dynamic sections and related topics. The actions of the system dynamic loader are
explained in detail. Related material is available inRlegrammer’'s Guidandloader(5)

6.1. New or Changed Dynamic Loading Information Features

Version 3.13 of the object file format introduces a new dynamic tag value for specifying symbol resolution
order. Se®T_SYMBOLIGnN Section 6.2.%or details.

6.2. Structures, Fields, and Values for Dynamic Loading Information

All structures and macros are declared in the headardfifedyn.h unless otherwise indicated.

6.2.1. Dynamic Header Entry

typedef struct {
coff int d_tag;
coff uint reserved,;
union {
coff uintd_val;
coff_addr d_ptr;
}d_un;
} Coff_Dyn;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Dynamic Header Entry Fields
d_tag
Indicates how the_un field is to be interpreted.
reserved
Must be zero.
d_val

Represents integer values.

247

d_ptr

Represents virtual addresses. Virtual addresses stored in this field may not match the memory virtual
addresses during execution. The dynamic loader computes actual addresses based on the virtual
address from the file and the memory base address. Object files do not contain relocation entries to
correct addresses in the dynamic section.

Thed_tag requirements for dynamic executable files and shared library files are summarizaétein
6-1. "Mandatory" indicates that the dynamic linking array must contain an entry of that type; "optional”
indicates that an entry for the tag may exist but is not required.

Table 6-1 Dynamic Array Tags (l_tag)

Name Value d_un Executable Shared Library
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT_STRSZ 10 d_val optional optional
DT_SYMENT 11 d_val optional optional
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored mandatory
DT_RPATH 15 d_val optional ignored
DT_SYMBOLIC 16 ignored optional optional
DT_REL 17 d_ptr mandatory mandatory
DT_RELSZ 18 d_val mandatory mandatory
DT_RELENT 19 d_val optional optional
DT_RLD_VERSION 0x70000001 d_val mandatory mandatory
DT_TIME_STAMP 0x70000002 d_val optional optional

248

DT_ICHECKSUM 0x70000003 d_val optional optional
DT_IVERSION 0x70000004 d_val optional optional
DT_FLAGS 0x70000005 d_val optional optional
DT_BASE_ADDRESS |0x70000006 d_ptr optional optional
DT_MSYM 0x70000007 d_ptr optional optional
DT_CONFLICT 0x70000008 d_ptr optional optional
DT_LIBLIST 0x70000009 d_ptr optional optional
DT_LOCAL_GOTNO 0x7000000A d_val mandatory mandatory
DT_CONFLICTNO 0x7000000B d_val optional optional
DT_LIBLISTNO 0x70000010 d_val optional optional
DT_SYMTABNO 0x70000011 d_val mandatory mandatory
DT_UNREFEXTNO 0x70000012 d_val optional optional
DT _GOTSYM 0x70000013 d_val mandatory mandatory
DT_HIPAGENO 0x70000014 d_val optional optional
DT_SO_SUFFIX 0x70000017 d_val optional optional

The uses of the various dynamic array tags are as follows:

DT_NULL

Marks the end of the array.

DT_NEEDED

Contains the string table offset of a null-terminated string that is the name of a needed library. The
offset is an index into the table indicated in e STRTABentry. The dynamic array can contain
multiple entries of this type. The order of these entries is significant.

DT_HASH
Contains the quickstart address of the symbol hash table.

DT_STRTAB

Contains the quickstart address of the string table.

DT_SYMTAB

249

Contains the quickstart address of the symbol table@ofh Sym entries.
DT_STRSZ

Contains the size of the string table (in bytes).
DT_SYMENT

Contains the size of a symbol table entry (in bytes).
DT_INIT

Contains the quickstart address of the initialization function.
DT_FINI

Contains the quickstart address of the termination function.
DT_SONAME

Contains the string table offset of a null-terminated string that gives the name of the shared library file.
The offset is an index into the table indicated in@fie STRTABentry.

DT_RPATH

Contains the string table offset of a null-terminated library search path string. The offset is an index
into the table indicated in tHeT_STRTABentry.

DT_SYMBOLIC
The presence of this entry indicates that symbol references should be resolved using a depth-ring
search of the shared object's dependenciesS&gmn 6.3.4.30r a details on shared object search
order.
This dynamic entry is for information only. The search order is controlled HyEhELAGSsetting
that includes th&HF_RING_SEARCIdndRHF_DEPTH_FIRSTlags wherDT_SYMBOLIOs
added to the dynamic section.

DT_REL

Contains the address of the dynamic relocation table. If this entry is present, the dynamic structure
must contain th®T_RELSZentry.

DT_RELSZ

Contains the size (in bytes) of the dynamic relocation table pointed to ByltHREL entry.
DT_RELENT

Contains the size (in bytes) oDa _RELentry.
DT_RLD_VERSION

Contains the version number of the run-time linker interface. The version is:

250

« 1 for executable objects that have a single GOT

« 2 for executable objects that have multiple GOTs

« 3 only for objects built on Tru64 UNIX V2.x

DT_TIME_STAMP
Contains a 32-bit time stamp.

DT_ICHECKSUM

Contains a checksum value computed from the names and other attributes of all symbols exported by

the library.

DT_IVERSION

Contains the string table offset of a series of colon-separated versions. An index value of zero means

no version string was specified.

DT_FLAGS

Contains a set of 1-bit flags. The following flags are define®frFLAGS

Table 6-2 DT_FLAGS Flags

Flag Value Meaning
RHF_QUICKSTART 0x00000001 Object may be quickstarted by loader
RHF_NOTPOT 0x00000002 Hash size not a power of two
RHF_NO_LIBRARY_REPLACEMEN|Dx00000004 Use default system libraries only
RHF_NO_MOVE 0x00000008 Do not relocate
RHF_TLS 0x04000000 Identifies objects that use TLS
Symbol resolution same 88 _SYMBOLIC This flag
RHF_RING_SEARCH 0x10000000 [is only meaningful when combined with
RHF_DEPTH_FIRST
RHF_DEPTH_FIRST 0x20000000 Depth-first symbol resolution
RHF_USE_31BIT_ADDRESSES 0x40000000 TASO (Truncated Address Support Option) object

U7

DT_BASE_ADDRESS

Contains the quickstart base address of the object.

DT_CONFLICT

Contains the quickstart address of tbenflict

section.

251

DT_LIBLIST
Contains the quickstart address of fitgist section.
DT_LOCAL_GOTNO

Contains the number of local GOT entries. The dynamic array contains one of these entries for each
GOT.

DT_CONFLICTNO

Contains the number of entries in thenflict section.
DT _LIBLISTNO
Contains the number of entries in thielist section.

DT_SYMTABNO
Indicates the number of entries in tdgnsym section.
DT_UNREFEXTNO

Holds the index to the first dynamic symbol table entry that is an external symbol not referenced
within the object.

DT_GOTSYM

Holds the index to the first dynamic symbol table entry that corresponds to an entry in the global offset
table. The dynamic array contains one of these entries for each GOT.

DT_HIPAGENO
Not used by the default system loader. If present, must contain the value 0.
DT_SO_SUFFIX

Contains a shared library suffix that the loader appends to library names when searching for
dependencies. This tag is used, for example, with Atom tools. Instrumented applications may be
dependent on instrumented shared libraries identified by a tool-specific suffix.

All other tag values are reserved. Entries can appear in any order, excepOi@r NiglLL entry at the end
of the array and the relative order of & NEEDEL[®ntries.

6.2.2. Dynamic Symbol Entry

typedef struct {
coff _uint st_name;
coff_uint reserved,;
coff_addr st_value;
coff_uint st_size;
coff _ubyte st info;
coff_ubyte st other;
coff _ushort st shndx;

252
} Coff_Sym;
SIZE - 24 bytes, ALIGNMENT - 8 bytes

SeeSection 6.3.3or related information.

Dynamic Symbol Entry Fields
st_name
Contains the offset of the symbol's name in the dynamic string section.
reserved
Must be zero.
st_value

Contains the quickstart address if the symbol is defined within the object. Contains O for undefined
external symbols, the alignment value for commons, or any arbitrary value for absolute symbols.

st_size

Identifies the size of symbols with common storage allocation; otherwise, contains the value zero. For
STB_DUPLICATEsymbols (se@able 6-4. The size field holds the index of the primary symbol.

st_info

Identifies the symbol's binding and type. The ma@@éF_ST_BINDandCOFF_ST_TYPEare used
to access the individual values. Sexble 6-3andTable 64 for the possible values.

st_other
Currently has a value of zero and no defined meaning.
st_shndx

Identifies the symbol's dynamic storage class.T2dxe 6-5for the possible values.

253

Table 6-3 Dynamic Symbol Typegt_info) Constants

Name Value | Description

STT_NOTYPE |0 Indicates that the symbol has no type or its type is unknown.
STT_OBJECT |1 Indicates that the symbol is a data object.

STT_FUNC 2 Indicates that the symbol is a function.

STT_SECTION |3 Indicates that the symbol is associated with a program section.
STT_FILE 4 Indicates that the symbol is the name of a source file.

Table 6-4 Dynamic Symbol Binding ¢t_info) Constants

Name Value | Description

STB_LOCAL 0 Indicates that the symbol is local to the object (or designated as hidde
STB_GLOBAL 1 Indicates that the symbol is visible to other objects.

STB_WEAK 2 Indicates that the symbol is a weak global symbol.

STB_DUPLICATE |13 g(d)i_clz_zt)es the symbol is a duplicate. (Used for objects that have multip

Table 6-5 Dynamic Section Indexgt_shndx) Constants

Name Value Description

SHN_UNDEF 0x0000 Indicates that the symbol is undefined.

SHN_ACOMMON O0xff00 |Indicates that the symbol has common storage (allocated).

SHN_TEXT 0xffo1 Indicates that the symbol is in a text segment.
SHN_DATA 0xff02 Indicates that the symbol is in a data segment.
SHN_ABS Oxfffl Indicates that the symbol has an absolute value.

SHN_COMMON 0xfff2 Indicates that the symbol has common storage (unallocated).

254

6.2.3. Dynamic Relocation Entry

typedef struct {
coff_addr r_offset;
coff_uint r_info;
coff_uint reserved,;
} Coff_Rel;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

SeeSection 6.3.50r related information.

Dynamic Relocation Entry Fields
r_offset

Indicates the quickstart address within the object that contains the value requiring relocation.
r_info

Indicates the relocation type and the index of the dynamic symbol that is referenced. The macros
COFF_R_SYMndCOFF_R_TYPEccess the individual attributes. The relocation type must be
R_REFQUAIR_REFLON@Gor R_NULL.

reserved

Must be zero.

6.2.4. Msym Table Entry

typedef struct {
coff_uint ms_hash_value;
coff_uint ms_info;

} Coff_Msym;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

SeeSection 6.3.3.4or related information.

Msym Table Entry Fields
ms_hash_value

Contains the hash value computed from the name of the corresponding dynamic symbol.
ms_info

Contains both the dynamic relocation index and the symbol flags field. The macros
COFF_MS_REL_INDBEXndCOFF_MS_FLAG&re used to acess the individual values. The dynamic
relocation index identifies the first entry in thel.dyn section that references the dynamic symbol
corresponding to thisisymentry. If the index is 0, no dynamic relocations are associated with the

255

symbol. The symbol flags field is reserved for future use and should be zero.

6.2.5. Library List Entry

typedef struct {
coff_uint|_name;
coff_uint|_time_stamp;
coff _uint|_checksum;
coff_uint|_version;
coff_uint |_flags;

} Coff_Lib;

SIZE - 20 bytes, ALIGNMENT - 4 bytes

SeeSection 6.3.%or related information.

Library List Entry Fields
|_name

Records the name of a shared library dependency. The value is a string table index. This name can be a
full pathname, relative pathname, or file name.

|_time_stamp

Records the time stamp of a shared library dependency. The value can be combined with the
|_checksum value and thé version string to form a unique identifier for this shared library file.

|_checksum

Records the checksum of a shared library dependency.
|_version

Records the interface version of a shared library dependency. The value is a string table index.
|_flags

Specifies a set of 1-bit flags. Thdlags field can have one or more of the flags described in Table
6-6.

256

Table 6-6 Library List Flags

Name Value | Description

LL EXACT MATCH 0xO1 Requires that the ru_n-time_dynamic share_d I_ibrar_y file maich
- - exactly the shared library file used at static link time.

Ignores any version incompatibility between the dynamic
LL_IGNORE_INT_VER 0x02 shared library file and the shared library file used at link tijne.

Marks shared library dependencies that should be loaded| with
a suffix appended to the name. € _SO_SUFFIXentry in
LL USE_SO_SUFFIX 0x04 |the.dynamic section records the name of this suffix. Thik is
used by object instrumentation tools to distinguish
instrumented shared libraries.

Marks entries for shared libraries that are not loaded as djrect
dependencies of an object. Object instrumentation tools npay

LL_NO_LOAD 0x08 |useLL_NO_LOADentries to set thel, USE_SO_SUFFIX
for dynamically loaded shared libraries or for indirect shared
library dependencies.

If neitherLL_EXACT_MATCHior LL_IGNORE_INT_VERDits are set, the dynamic loader requires
that the version of the dynamic shared library match at least one of the colon-separated version strings
indexed by thé version string table index.

6.2.6. Conflict Entry

typedef struct {
coff_uint c_index;
} Coff_Conflict;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

The conflict entry is an index into the dynamic symbalgr{sym) section. Se8ection 6.3.6.%or related
information.

6.2.7. GOT Entry

typedef struct {
coff addr g_index;
} Coff_Got;

SIZE - 8 bytes, ALIGNMENT - 8 bytes

The GOT entry is a 64-bit address. Most GOT entries map to dynamic symbdiecBen 6.3.3or
details.

6.2.8. Hash Table Entry

The hash table is implemented as an array of 32-bit values. The structure is declared internal to system
utilities.

257
SeeSection 6.3.3.%0r more information.

6.2.9. Dynamic String Table

The dynamic string table consists of null-terminated character strings. The strings are of varying length and
separated only by a single character. Offsets into the dynamic string table give the number of bytes from
the beginning of the string space to the beginning of the name in question.

Offset 0 in the dynamic string table is reserved for the null string.

258

6.3. Dynamic Loading Information Usage

6.3.1. Shared Object Identification

A shared object is either a dynamic executable or a shared library. The file header flags indicate whether
the object is a shared object and, if so, what type of shared object it is. The layout of the object is also
stated in the file header. Normally shared objects u8dAaGICimage layout (seBection 2.3.2.8

Additional information on the shared object is located in the dynamic hedgearhic section). When
the dynamic loader is invoked by the kernekec() routine, this header information is read.

The kernel and loader take the following steps upon receiving a user command to execute a dynamic
executable:

1) User enters command.
2) Shell callsexec() in kernel.
3) Exec() opens the file and reads the file header.
4) If the file is a dynamic executablexec() calls/sbin/loader
5) The loader then:
a) Reads file header and dynamic header information.
b) Maps the executable into memory.
c) Locates each shared library dependency, relocates it if necessary, and maps it into memory.
d) Resolves symbols for all shared objects.
e) Sets the heap address.
f) Transfers control to program entry point.
6) The program entrypoint (start incrt0.0) then:
a) Calls special symbol istart which invokes the loader routine to run INIT routines

b) Callsmain with ___Argc , __Argv , __environ and_auxv .

6.3.2. Shared Library Dependencies

Dynamic executables usually rely on shared libraries. At load time, these shared libraries must be located,
validated, and mapped with the process image.

If an executable object refers to a symbol whose definition resides in a shared library, the executable is
dependent on that library. This relationship is described as a direct dependency. A shared library
dependency also exists if a library is used by any previously identified dependency. This is an indirect
dependency for the executable.

259

In the example shown fRigure 6-21ibA ,libB , andlibcool are all shared library dependencies for
a.out . The librarylibA is a direct dependency, and the others are indirect dependencies.

Figure 6-2 Shared Library Dependencies

a.out
b
libd.50
T
libB 50 —)l libcool so

Although the possibility of duplicate dependencies exists, as ind#eedging example, each library is
mapped only once with the image. The linker also prevents recursive inclusion, which could occur in a case
of cyclic dependencies.

6.3.2.1. Identification

A shared object's dependencies are stored ilibiist entries and iDT_NEEDELntries in the
.dynamic section. The linker records this information as dependencies are encountered.

The library list (liblist section) has name, timestamp, checksum, and version information for every
entry, along with a flags field. Taken together, the timestamp and checksum value and the version string
form a unique identifier for a shared library. An entry is created for each shared library dependency.

A DT_NEEDERag in the dynamic header also indicates a shared library dependency. The value of the
entry is the string table offset for the needed library's name. Note that this representation of the dependency
information is redundant with that contained in the library list. The loader relies on the library list only. The
DT_NEEDERntries are maintained for historical reasons.

As an example, an object linked agailitst has the following dependency information:

DYNAMIC SECTION*

LIBLISTNO: 1.
LIBLIST: 0x0000000120000690
NEEDED: libc.so

LIBRARY LIST SECTION

Name Time-Stamp CheckSum Flags Version
a.out:

libc.so May 19 22:18:46 1996 0xf937323b 0 osf.1

260

A shared library's checksum is computed by the linker when the library is created or updated, and the value
is written into the dynamic header. When an application is linked against the library, the linker copies the
library's current checksum into its entry in the applicatidibkst

The checksum computation is a summation of the names of dynamic symbols that meet the following
criteria:

 Defined
* Not local
* Not hidden

* Not duplicate

Common storage class symbol names are included, along with their size. Weak symbols are included, but
the calculation for weak symbols differs from that used for non-weak symbols.

For a single symbol, the checksum is computed using this algorithm :

if (SYMBOL.st_shndx == SHN_COMMON || SYMBOL.st_shndx == SHN_ACOMMON)
CHECKSUM = SYMBOL.st_size

else
CHECKSUM =0

for (# of characters in symbol name)
CHECKSUM = (CHECKSUM << 5) + character_value

if (weak symbol)
CHECKSUM = (CHECKSUM << 5) + CHECKSUM + 1

A change in the number of weak symbols or a change in the size of a common storage class symbol is
therefore reflected in the checksum. However, the checksum calculation is insensitive to symbol
reordering.

The checksums for all symbols included are summed to produce the shared object's checksum.

6.3.2.2. Searching

After loading an executable, the loader loads the executable's shared library dependencies. The loader
searches for shared libraries that match the names contained in the execlilthble’'s entries. Subject

to the search guidelines described in this section, the loader will load the first matching shared library that it
finds for each dependency.

Certain directories are searched by default, in the following order:

1) /usr/shlib

2) lusr/ccs/lib

3) /usr/lib/cmplrs/cc

4y lusrllib

261

5) /usr/local/lib

6) /var/shlib

The loader's search path can be altered by several methods:
e -soname linker option

e -rpath linker option

e environment variables

The-soname option is used to set internal shared library names. The de@malne is the output file

name of the library when it is built. The linker usesaname value to record shared library dependencies

in the library list. Dependencies containing pathnames are located without prepending search directories to
their paths. A pathname is identified by the presence of one or more slashes in the string.

TheRPATHs included in a shared objectiynamic section under an entry tagged_RPATHIt is a
colon-separated list of shared library search directoriesRP#I His set using thepath linker option.
The loader will searcRPATHdirectories prior to searchind_LIBRARY_PATHand default directories.

The environment variables that impact the search ordéfarel BRARY_PATHand_RLD_ROOT
LD_LIBRARY_PATHhas the same format gsath . No root directories are prepended to the
LD_LIBRARY_PATHdirectoriesLD LIBRARY_PATHcan also be set by a program before it calls
dlopen()

The_RLD_ROOenvironnment variable is a colon-separated list of "root" directories that are prepended to
other search directories. It modifiB® ATHand the default search directories.

The precedence (highest to lowest) of search directories used by the loader is as follows:
1) soname (if it includes a path)

2) _RLD_ROOT + RPATH

3) LD_LIBRARY_PATH

4) _RLD_ROOT default search directories

When using non-system libraries, it is often necessary to specify the search path rather than relying on the
defaults. Here is one example:

$ Id -shared -0 my.so mylib.o -Ilc

$ cc -0 hello hello.c my.so

$ hello

7526:hello: /sbin/loader: Fatal Error: cannot map my.so
$ LD_LIBRARY_PATH-=.

$ export LD_LIBRARY_PATH

$ hello

Hello, World!

262

6.3.2.3. Validation

One of the loader's jobs is to ensure that correct shared libraries are available to the program. Shared library
versioning is used to distinguish incompatible versions of shared libraries. The loader tests for matching
versions when shared library dependences are loaded. If the application is found to be incompatible with a
needed shared library, the program may have to be recoded or relinked. Causes of binary incompatibility
include altered global data definitions and changes to documented interfaces.

Each shared library is built with a version identifer. This identifier is recorded idythamic section

with the tagDT_IVERSION. Each entry in the dependency informatidibl{st section) also records

the version identifier of a shared library dependency.-3&k version linker option is used to provide
the version identifier. Without this option, the linker will build a shared library with a null version. Version
identifiers can be an&SCIl string.

Version checking can also be controlled by the user. The linker epttant_version leads to more

rigorous version testing by the loader. When this option is in effect, timestamps and checksums are checked
in addition to version numbers. The linker-recorded dependency information for the timestamp and
checksum must precisely match the load-time values for all shared libraries. Normally, a mismatch leads to
additional symbol resolution work instead of a rejected object.

Version checking can be disabled through use of the loader environment valRaBIeARGS Setting this
variable to-ignore_all_versions disables version testing for all shared library dependencies.
Setting it to-ignore_version with a library name parameter turns off version checking for that
specific dependency.

By default, versions are checked, but not checksums or timestamps. If version testing fails, the loader
searches for the matching version of the shared library.

The version identifiers are used to locate version-specific libraries. The loader looks for these libraries in:
1) dirnaméversion_id
2) lustr/shlib/ version_id

wheredirnameis the first directory where a library with a matching name but non-matching version is
found.

For example, if an application needs version 1 of a shared library but the loader first encounters version 2,
it continues looking for the correct version.

6.3.2.3.1. Backward Compatibility

When shared libraries are modified and new versions built, the older versions are frequently retained to
support previously linked applications. Maintaining multiple versions of the library helps ensure backward
compatibility for existing applications even after binary-incompatible changes have been made.
Backward-compatible shared libraries can be:

e Complete independent shared libraries

e Partial shared libraries that import missing symbols from other versions of the same shared libraries

The advantage of partial shared libraries is that they require less disk space; a disadvantage is that they
require more swap space.

263

The linker'sL option can be used to link with backward-compatible shared libraries. Warnings are
generated when a shared library is linked with dependencies on different versions of the same shared
library. However, the linker tests direct dependencies only. The optamsitive_link should be
used to uncover all multiple-version dependencies.

Multiple versions of the same shared library can only be loaded to support partial shared library
dependencies. Otherwise, dependencies on multiple versions of a library are invalid.

Figure 6-3shows examples of valid uses of multiple versions.

Figure 6-3 Valid Shared Library with Multiple Versions

Example 1

app_T

&

libc.so (osf1.0)

al

libc.so (osf2.0)

Exarmple 2

app_Z

libc_r.so (0sf1.0) | libc.so (0sf1.0)

L.
libc_r.so (osf2.0) —)l libc.so (osf2.0)

264

Figure 6-4shows examples of invalid uses of multiple versions.

Figure 6-4 Invalid Shared Library with Multiple Versions

Example 1
app_3
layeredl .so layeredZ.so
libc.so (osf1.0) libc.so {osf2.0)
Example 2
app_4
layeredl so libc.so (_oaﬂ 0]

L

libc.so (0sf2.0)

6.3.2.4. Loading

The executable object is placed in memory first, at the segment base addresses designated by the linker and
recorded in th@a.out header. These addresses are never changed during the lifetime of the executable's
image. After the executable file's segments have been mapped into memory, shared library dependencies
are loaded. Shared library dependencies are mapped recursively.

The linker chooses quickstart addresses for the text and data regions of shared libraries. The loader attempts
to map shared libraries to their quickstart addresses. If this attempt fails because another library has already
been mapped to the same address range, the library is relocated to a different address. Note that this
problem could be caused by a library mapped by another process. The system tries to map no more than
one shared library at a particular virtual address range, system-wide.

Additional dependencies, not present in the library list, can be dynamically loaded dipgrg) call.
Again, the loader will attempt to load the library at its quickstart addresses and will relocagedssary.

When a shared library is relocated, its text and data segments must move the same distance in memory. By
fixing the distance between these segments at link time, the number of dynamic relocations is minimized
and restricted to the data segment.

265

6.3.2.4.1. Dynamic Loading and Unloading

Dependencies can be loaded and unloaded during execution by ugitgpére anddiclose system
functions.

Thedlopen routine accepts a library name and loads the library and its dependencies. The loader resolves
all symbols in all shared objects while processiagpgen call. If the library was previously loaded,
dlopen re-resolves global symbols and returns a handle without loading any new objects.

The loader maintains a count of references made to all shared objects that have been loaded. For example,
if ibm.so is dependent updibc.so , libc 's reference count is incremented when the libraries are
loaded. This reference counting is part of an effort to ensure that a library is never unloaded prematurely.
As an additional precaution to avoid unloading a library that is still needed, the number of existing

dlopen handles is tracked by the loader. Téllispen count is incremented each timelapen call is

made for a particular object.

Thediclose routine unloads a shared library and its dependencies. It accepts a handle that was returned
by dlopen .

The diclose routine will not unload shared libraries that are still in use. Botdltgpen count and
the reference count are checked and should be zero before a library is unloaded.

The diclose routine cannot unload an executable. It is designed for shared libraries only. It also cannot
unload a shared library that was not dynamically loadedidpen .

Objects withTLS data can be dynamically loaded or unloaded during process execution. A new TLS

region is allocated for all existing threads when an object with TLS data is loaded. Similarly, the TLS
region will be deallocated for all threads when the object is unloaded.

6.3.3. Dynamic Symbol Information

The dynamic symbol table is created at link time for shared objects. Its primary purpose is to enable
dynamic symbol resolution. Run-time address information for dynamic symbols is contained in the GOT
section (got).

The dynamic symbol sectiordynsym) provides information on globally scoped symbols that are defined
or used by the object. This section consists of a table of dynamic symbol entries. The entries are ordered as
follows:

1) A single null entry

2) Symbols local to the object

3) Unreferenced global symbols

4) Referenced global symbols (corresponding to GOT entries)

5) Relocations-referenced global symbols (corresponding to special final GOT)

Local symbols are global in scope but are not exported to other objects. The local portion of the dynamic

symbol table contains system symbols representing the sections of the.tbject; .data , and other
linker-defined symbols. Typically, they do not have GOT entries.

266

Unreferenced globals are symbols that can be exported but are not referenced by the defining object. They
are present in the dynamic symbol table so that other shared objects can import and use them. Unreferenced
globals do not have GOT entries.

Referenced globals are exported and are used internally. Dynamic symbols in this category have global
GOT entries.

Global symbols that are referenced only by the object's dynamic relocation entries are grouped at the end of
the dynamic symbol table, corresponding to a special final GOT. These symbols require GOT entries to
record their run-time addresses used in processing dynamic relocations. This special GOT is only used by
the loader and is never directly referenced by the program itself.

All linker-defined TLS symbols (se®ection 2.3.yYhave dynamic symbol entries.

Note that the dynamic symbol table itself is never relocated,; it contains only link-time addresses (in the
st value field).

6.3.3.1. Symbol Look-Up

Dynamic symbol look-up is performed by tllisym (handle,namproutine. The routine searches for the
symbol name beginning in the object associated with the handle. The search is breadth first by default and
depth-first for objects built with the linkefsB symbolic" option. If the handle is null, the routine
performs a depth-first search beginning at the main executable.

It is important to use thélsym interface for symbol look-up to avoid using an outdated address. This

problem can be caused by an improper compiler assumption that a symbol's address will not change after
load-time. A symbol's address may be cached as an optimization and not reloaded thereafter. However, that
address may be changed during execution as the result of dynamic loading and unloading.

6.3.3.2. Scope and Binding

The concept of scope in the dynamic symbol table differs somewhat from the concept of scope in the
regular symbol table because the dynamic symbol table contains only global user-program symbols. The
terms "local" and "external” thus have different meanings in this context.

The two scoping levels for symbols in the dynamic symbol table are object scope and process scope. A
symbol with object scope is local to the shared object and can only be referenced in the library or
executable where it is defined. A symbol with process scope is visible to all program components, and may
be referenced anywhere. A symbol with process scope can also be preempted by a higher-precedence
definition in another shared object.

Note that the distinction between object scope and process scope does not correspond directly to the
local/global symbol division in the dynamic symbol table. All symbols in the local part of the table have
object scope, but global dynamic symbols can be internal to the object as well. Another factor, called
binding, comes into play.

The possible bind values in the dynamic symbol table are local, global, weak, and duplicate. These values
are encoded in th&_info field of the dynamic symbol entry. (S8ection 6.2.Zor details.)

Users are able to designate global symbols as "hidden". In the dynamic symbol table, hidden symbols have
a local binding. This representation ensures that they will not be exported from the object and will not
preempt any other symbol definition. Also, internal references to hidden symbols will not be preempted.
The linker's *hidden_symbol symbal option can be used to specify a hidden symbol.

267

Weak symbols are also a special-case category of global symbols that have the same scope as globals but a
lower precedence for symbol resolution conflicts. Seetion 6.3.4.%2or details.

6.3.3.3. Multiple GOT Representation

The GOT contains address information for all referenced external symbols in the dynamic symbol table.
Observe that the GOT is the source of final, run-time addresses, whereas the symbol table contains only
link-time addresses. To access a dynamic symbol, the GOT must be referenced. To associate GOT entries
with dynamic symbol table entries, the symbol table and GOT are aligned as shéauré&6-5

Figure 6-5 Dynamic Symbol Table and Multiple-GOT

GOT-Dynamic
Symbol Mapping dynsym
resensed
ot
p— locals l DT_MIPS_
lazy_text_resolve unreferenced UMREFEXTMO
locals globals
15t OT_MIFS_ N 1t DT_GOTSYM
LOCAL_GOTHO globals H referenced
GOT1 globals (GOT)
lazy_text_resolve K— 2nd DT_GOTSYh
5nd DT MIPS o locals referenced
= - globals (GOTT)
GOTZ lazy text resolswe referenced
locals globals (GOTZ)
Ird DT_MIPS_ N K—4th DT_GOTSYM
LOCAL GOTMO glohals referenced
globals (GOT32) (—I
GOTS3 lazy_text_resole
4th Egaﬂpga S | Note: dynamic symbols
- globals T corresponding to final
m&;ﬁ%]ings 0T are referenced

in .dyn.real only.

Note that the GOT also contains entries that do not correspond to dynamic symbols. These are placed at the
top of each GOT table.

The maximum number of entries in a GOT is 8189. A single GOT may be sufficient to represent all
necessary addresses for an object, but one or more additional GOTs are sometimes required, as illustrated
in Figure 6-50ne GOT table can contain entries from multiple input objects, but a single object's entries
cannot be split between two tables. The linker also builds a separate, final GOT for relocatable global
symbols, referenced only in the dynamic relocation section. These constraints generally result in some
unused GOT entries at the bottom of each table.

The loader recognizes a multiple-GOT object by examining the dynamic hedd&r.@OTSY Mntry
exists in the dynamic header for each GOT. This entry holds the index of the first dynamic symbol table
entry corresponding to a GOT entryDA_LOCAL_GOTNEentry exists for each GOT as well. This entry

268

contains the index of the first global entry in that GOT. The numbef oGOTSYMntries and
DT_LOCAL_GOTN®@ntries in the dynamic header should match. They are also expected to occur in
ascending numerical order.

The first (zero-indexed) entry for every GOT in a multiple-GOT object points to the loadgrtext-
resolve entry point. In the final GOT (consisting of relocatable symbols), it is present even though it is
unused.

Multiple-GOT objects may contain duplicate symbols. A symbol appears only once per GOT, but it can be
duplicated in other GOTSs. All duplicate symbols, marked in the symbol table as STB_DUPLICATE, have
an associated primary symbol. The primary symbol is simply the first instance of a duplicate symbol. The
st size field for a duplicate symbol is the dynamic symbol table index of the primary symbol. When a
symbol is resolved in a multiple-GOT situation, all duplicates must be found and resolved as well.

6.3.3.4. Msym Table

Themsymtable, which is stored in thensym section of a shared object file, maps dynamic symbol hash
values to the first of any dynamic relocations for that symbol. This section is included for performance
reasons to avoid time-consuming and repetitive hashing calculations during symbol resolution.

An entry in theansymtable contains a hash value and an information field. The information field can be
masked to obtain a dynamic relocation index and a flags field. The sizenofyh@able is the same as the
size of the dynamic symbol table; the two tables line up directly and have matching indices.

Themsymtable is referenced repeatedly when an object is opened. The loader resolves symbols by
searching all shared objects for matching definitions. The search requires a hash value computed from the
symbol name. The msym table provides precomputed hash values for symbols to avoid the costly hash
computation at load time.

Figure 6-6 Msym Table

Object 1 (current) Object 2 (searched)
dynsym 5 hash
hash | dwnamic
11+ value symbol
index
MET dynsym

The.msym section is an optional object file section; it is not produced by default. The lirrkeym

option causes thasymtable to be generated. If ttrasym section is not present in a shared object, the
loader will create the table each time that the object is loaded. For this reason, it is often preferable to
specify themsym section's inclusion when building shared objects.

269

6.3.3.5. Hash Table

A hash table, stored in thigash section of a shared object file, provides fast access to symbol entries in
the dynamic symbol section. The table is implemented as an array of 32-bit integers.

The hash table has the format showkinure 6-7

Figure 6-7 Hash Table

nbucket
nchain

bucket[0]

bucket
[nbucket - 1]

chain[d]

chain[nchain-1]

The entries in the hash table contain the following information:
e Thenbucket entry indicates the number of entries in ltueket array.
e Thenchain entry indicates the number of entries in¢hain array.

e Thebucket andchain arrays both hold dynamic symbol table indices, and the entrabsin
parallel the dynamic symbol table. The valuadfain is equal to the number of symbol table
entries. Symbol table indices can be used to sefeth entries.

The hashing function accepts a symbol name and returns the hash value, which can be used to compute a
bucket index. If the hashing function returns the va¥uler a namexX%nbucket is the bucket index. The
hash table entrigucket] X%nbucket] gives an indexy, into the dynamic symbol table.

The loader must determine whether the indexed symbol is the correct one. It checks the corresponding
dynamic symbol's hash value in tmsymtable and its name.

If the symbol table entry indicated is not the correct one, the hash tableletrjy] indicates the next
symbol table entry for a dynamic symbol with the same hash value. The indexed symbol is again checked
by the loader. If it is incorrect, the same index is used iglithn array to try the next symbol that has

the same hash value. THieain links can be followed in this manner until the correct symbol table entry

is located or until thehain entry contains the valU8TN_UNDEF

As an example, assume that a symbol with the hash value 12 is sought. If there are ten buckets, the
calculation12 % 10 gives the bucket index 2, which signifies the third bucket. A bucket index translates

270

into a hash table index hscket[i]=hashl[i+2] . If that bucket contains a 3, the dynamic symbol
table entry with an index of 3 is checked. If the symbol is incorrect, the hash tablehamt{] is
accessed to get the next possible symbol index. A chain index translates into a hash table index as
chain[i]=hash[nbucket+2+i] . If chain[3] is 7, the dynamic symbol table entry with an index
of 7 is checked. If it is the correct symbol, the search is successful and halts.

The structures used in this example are shoviigare 6-8

Figure 6-8 Hashing Example

Jhash
nbucket 10
tichain =
bucket[D]
bucket[2] 3
buckets
[3] - [9] Aynsym
chain[{] 0
chain[3] 7 = 3 IO
YRS
chain[3%-1] ' %1

6.3.4. Dynamic Symbol Resolution

The dynamic loader must perform symbol resolution for unresolved symbols that remain after link time. A
post-link unresolved symbol is one that was not defined in a shared object or in any of the shared object's
shared library dependencies searched by the linker. If a dependency is changed before execution or
additional libraries are dynamically loaded, the loader will attempt to resolve the symbol.

The linker accepts unresolved symbols when linking shared objects and records them in the dynamic
symbol (dynsym) section. The loader recognizes an unresolved symbol by a symbol type of undefined
(st_shndx == SHN_UNDEF) and a symbol value of zerst(value == 0) in the dynamic symbol

table. For such symbols, the GOT value distinguishes imported symbols from symbols that are unresolved
across all shared objects.

Table 6-7 gives a rough idea of different categories of symbols and how they are represented in the
dynamic symbol table. Run-time addresses are stored in the GOT. They can be pre-computed by the linker
and adjusted at load time.

271

Table 6-7 Dynamic Symbol Categories

Description Type Section Value GOT
' . OBJECT, [TEXT, DATA
defined item FUNC ACOMMON address address
imported function |FUNC UNDEF 0 address (in defining object)
imported data OBJECT | UNDEF 0 address (in defining object)
common COMMON | OBJECT |alignment ad‘?"?ss of _allocated common (in
defining object)
unresolved function [FUNC UNDEF 0 stub address
unresolved data OBJECT | UNDEF 0 0

The loader performs symbol resolution during initial load of a program. The amount of symbol resolution
work required by a program varies (&gztion 6.3.4.6

The loader can also perform dynamic symbol resolution for particular symbols during program execution.
If new dependencies are added or existing dependencies are rearranged, externally visible symbols (those
with process scope) must be re-resolved.

Unresolved text symbols can be resolved at run time instead of load tinge¢Ses 6.3.4.

6.3.4.1. Symbol Preemption and Namespace Pollution

A namespace is a scope within which symbol names should all be unique. In a namespace, a given name is
bound to a single item, wherever it may be used. This generic use of the term "namespace” is distinct from
the C++ namespace construct, which is discuss&edation 5.3.6.4

Dynamic executables running on Tru64 UNIX share a namespace with their shared library dependencies.
This policy is implemented with symbol preemption. Symbol preemption, also referred to as "hooking", is a
mechanism by which all references to a multiply defined symbol are resolved to the same instance of the
symbol.

Advantages of symbol preemption include:

* All shared objects use one global namespace.

« Dynamic and static executables behave more consistently.

« Applications can replace library routines to debug, improve, or customize them.

Disadvantages include extra load time for symbol resolution and potential problems resulting from
namespace pollution.

Namespace pollution can occur during the use of shared libraries. A library routine may malfunction if it
calls or accesses a global symbol that is redefined by another shared library or apphogtien6-9
presents an example of this situation.

272

Figure 6-9 Namespace Pollution

a.out

int open=0; <
maing)
FILE *fd;
if (fd=fopen(” thame","tw"))
open=1;

libe
fopen() {

cl:;ijen(...);
}

Namespace pollution is partly covered by ANSI standards. Namespace conflicts that occur between libc
and ANSI compliant programs must not affect the behavior of ANSI defined functions implemented in libc.

The identifiers reserved for use by the library are:
¢ Names beginning with underscores
e ANSI defined symbolsfépen , malloc , and so forth)

All other names are available to user programs. User versions of non-reserved identifiers preempt library
versions.

Historically, system libraries have used many unreserved symbols. To achieve compliance with the ANSI
standard, global symbols have undergone a name change. Documented interfaces have been retained as
weak symbols (se8ection 6.3.4.@ Their strong counterparts have names that are formed by prepending
two underscores to the corresponding weak symbol's name.

Hidden symbols do not cause namespace pollution problems and cannot be preempted because they are not
exported from the shared object where they are defined.

The linker optionshidden_symbol and-exported_symbol turn the hidden attribute on or off for
a given symbol name. The optiofsdden -non_hidden turn the hidden attribute on or off for all
subsequent symbols.

TLS data symbols have the same name scope as hidden symbols. The names are not shared among multiple
threads.

273

6.3.4.2. Weak Symbols

Weak symbols are global symbols that have a lower precedence in symbol resolution than other globals.
Strong symbols are any symbols that are not marked as weak.

Weak symbols can be used as aliases for other weak or strong symbols. This technique can be useful when
it is desirable to provide both a low-precedence name and a high-precedence name for the same data item
or procedure. When the weak symbol is referenced, its strong counterpart is the one actually used.

This aliasing approach employing weak symbols is uséddrso to avoid namespace pollution

problems. In the example Figure 6-1Qthe strong symbol definition in the application takes precedence

over the weak library definition, and the program functions properly.

Figure 6-10 Weak Symbol Resolution (1)

a.out

int open=0; *
main() |
FILE *fd;
if (fd=fopen(”thame","tw"))
open=1;

libe
fopen() {
__open...);

1
#pragma weak open=__ open

—open {
,

274

Figure 6-11 Weak Symbol Resolution (II)

a.out

main) {
FILE *fd.

fd = open{" myfile" 0);

libe
fopen() {

__open(..J; ad

1
#pragma weak open=__ open

—open {
,

If no non-weakopen symbols were defined, reference®pen would bind tdibc's weak symboal, as
shown inFigure 6-11

Weak symbols can also be used to prevent multiple symbol definition errors or warnings when linking. The
linker does not require a weak symbol to be aliased to a strong symbol, but the loader produces a warning
message if it cannot find a matching strong symbol for a weak symbol it is attempting to resolve.

To find a weak symbol's strong counterpart, the loader follows these steps:

Use hash lookup to find __ <NAME> in the dynamic symbol table.
if (not found or not a match)
foreach symbol in the dynamic symbol table
Test for match

Matching symbols will have the sarse value, @ COFF_ST_TYPE(st_info) andst_shndx

A weak symbol is identified in the dynamic symbol table 1878 WEAWiInd value. In the external
symbol table, a weak symbol hasvitsak_ext flag set in th&EXTRentry.

275

Users can specify weak symbols using.theakext assembler directive or the#pragma weak
preprocessor directive.

6.3.4.3. Search Order

The symbol resolution policy, or symbol search order, defines the order in which the loader searches for
symbol definitions in a dynamic executable and its dependencies.

Default search order is a breadth-first, left-to-right traversal of the shared object dependency graph.

Figure 6-12 Symbol Resolution Search Order

a.ouf
libA libE
))
likD litE
h
> libe.so

The search order iRigure 6-12s: a.out libA libB libc.so libD libE

Objects loaded dynamically lhfopen() are appended to the search order established at load time.
However,dlopen options will determine whether a dynamically loaded object's symbols are visible to
objects that do not include it in their dependency listsd®geen(3) for details.

Alternatively, the user can specify the search order by using linker or loader options. The linker's
-depth_ring_search option causes the loader to use a different symbol resolution policy. This policy
is a two-step search:

1) Depth-first search the referencing object and its dependencies

2) Depth-first search from the main executable

Using the depth ring search policy and the dependency grapliigome 6-12 the search order is:

From Search Order
a.out a.out libA libD libc.so libB libE
libA libA libD libc.so a.out libB libE

libB libB libE libc.so a.out libA libD

276

libD libD libc.so a.out libA libB libE
libE libE libc.so a.out libA libD libB
libc.so libc.so a.out libA libD libB libE

6.3.4.4. Precedence

The highest-to-lowest precedence order for dynamic symbol resolution is:

1) Strong text or data

2) Strong largest allocated common

3) Weak data

4) Weak largest allocated common

5) Largest common

6) Weak text

In case (5), the loader allocates the common symbol. This situation only arises when an object containing
an allocated common of the same name has been changed between link time and load time or is
dynamically unloaded during run time. The linker will always allocate a common storage class symbol, but

if there are multiple occurrences of that symbol, the others are retained as unallocated commons.

When symbols have equal precedence, the loader relies on the search order to choose the citimact defin
for the symbol.
6.3.4.5. Lazy Text Resolution

Lazy text resolution allows programs to execute without resolving text symbols that are never referenced.

Programs with unresolved text symbols are linked with stub routines. When a program or library calls a

stub routine, the stub calls the load&zy_text _resolve entry point with a dynamic symbol index

as an argument. The loader then resolves the text symbol. Subsequent calls will use the true address, which
has replaced the stub in the appropriate GOT entry.

The dynamic symbol table does not contain any explicit information that indicates whether a text symbol
has a stub associated with it. The loader looks for the following clues instead:

e Symbol'sst_ shndx isSHN_UNDEF

e Symbol'sst value iszero

« Symbol's GOT entry is not 0 and is in text segment's address range

The environment variableD BIND_NOWontrols the loader's text resolution mode. If the variable has a
non-null value, the bind mode is immediate. If the value is null, the bind mode is deferred. Inmediate

binding requires all symbols to be resolved at load time. Deferred binding allows text symbols to be
resolved at run time using lazy text evaluation. The default is deferred binding.

277

SeeSection 3.3.3or related information.

6.3.4.6. Levels of Resolution

Conditions may exist that cause the loader to do more symbol resolution work for some programs than for
others. The amount of symbol resolution work that is necessary can have a significant impact on a
program'’s start-up time.

Descriptions of the possible levels of dynamic symbol resolution follow.

Quickstart Resolution

Minimal symbol resolution. For details on quickstart, Seetion 6.3.6

Timestamp Resolution

Moderate symbol resolution. This is used when any of the following are true:

* The executable or one of its dependencies has indirect dependencies that it was not linked with.

* The executable or one of its dependencies has unresolved text symbols that are used in dynamic
relocations.

* A sshared library dependency was rebuilt so that the timestamp no longer matches the dependency
information in the executable.

Checksum Resolution

Extensive symbol resolution. This is used when a shared library dependency has been rebuilt and its
checksum no longer matches the dependency information in the executable. The checksum changes if any
of the following conditions are met:

¢ Global symbols are added

¢ Global symbols are deleted

¢ Global symbols change from strong to weak or vice versa

« Common storage class symbols' sizes change.

Binding Resolution

Re-resolve symbols marké&tNDERor immediate binding. This is used @ppen() to apply immediate
binding symbol resolution to shared objects that were previously resolved with lazy binding.

6.3.5. Dynamic Relocation

The dynamic relocation section describes all locations that must be adjusted within the object if an object is
loaded at an address other than its linked base address.

Although an object may have multiple relocation sections, the linker concatenates all relocation
information present in its input objects. The dynamic loader is thus faced with a single relocation table.
This dynamic relocation table is stored in tfet.dyn section and is ordered by the corresponding
dynamic symbol index.

278

Offset 0 in the dynamic relocation table is reserved for a null entry with all fields zeroed.

All dynamic relocations must be of the tygeREFQUADr R_REFLONGThis simplifies the dynamic

relocation process. These two relocation types are sufficient to represent all information that is necessary to
accomplish dynamic relocations. Dynamic relocation entries must only apply to addresses in an object's
data segment. The object's text segment must not contain any relocatable addresses.

Relocation entries are updated during dynamic symbol resolution. When a dynamic symbol's value
changes, any dynamic relocations associated with that symbol must be updated. To update the entries, the
relocation value is computed by subtracting the old value of the from the new value. This value is then
added to the contents of the relocation targets. The old value of a dynamic symbol is always stored in a
GOT entry. The new value of a dynamic symbol is stored in that GOT entry after dynamic relocations are
processed.

Relocation types other thé& REFQUARNAR_REFLONGre not allowed for dynamic relocations
because no other relocation types apply to absolute addresses stored in data. Most relocation types apply to
values that need to be computed at link time and do not change at run time.

A dynamic executable file may also contain normal relocation sections. If normal relocation entries are
present, the loader ignores them.

6.3.6. Quickstart

Quickstart is a loading technique that uses predetermined addresses to run a program that depends on
shared libraries. It is particularly useful for applications that rely on shared libraries that change
infrequently.

The linker chooses quickstart addresses for all shared library dependencies when a dynamic executable is
linked. These addresses are stored in the registry file normally rsamledations . For details on the

shared library registry file, refer to tlReogrammer's Guide

Any modification to a shared library impairs quickstarting of applications that depend on that library. If a
shared library dependency has changed, it may be possible to &igedheutility to update the

application and thus enable quickstart to succeed.

To verify that an application is quickstarted, set tReD_ARGSenvironment variable to
-quickstart_only

Additional information on quickstart is available in fimgrammer's Guide

6.3.6.1. Quickstart Levels

Not all shared objects can be successfully quickstarted. If an executable cannot be quickstarted, it still runs,
but start up is slower. Quickstarting is possible for programs requiring minimal symbol resolution at load
time. A dynamic executable is quickstarted if:

« The object's mapped virtual address matches the quickstart address chosen by the linker.

* The object's dependencies have not been modified incompatibly since the object was linked.

« The object's indirect dependencies are all included as direct dependencies.

« The object's dependencies also meet quickstart criteria.

279

Each quickstart requirement that is not met by a dynamic executable and its dependencies leads to
additional symbol resolution work.

« If all quickstart requirements are met, only undefined and multiply defined symbols need to be
resolved.

« If the mapped address differs from the quickstart address, addresses of defined symbols must be
adjusted.

« If the timestamp has been changed, external (imported) symbols must be resolved.
« If the checksum has been changed, all symbols must be resolved.
At this point, the timesaving advantage of quickstarting has disappeared.

For quickstart purposes, a link-time shared library matches its associated load-time shared library if the
timestamp and checksum are unchanged. If they have been changed, usiag théool may remedy the
situation and enable quickstart to succeed.

6.3.6.2. Conflict Table

The conflict table, stored in theonflict section, contains a list of symbols that are multiply defined
and must be resolved by the loader. The conflict table is used only when full quickstarting is possible. If
any changes preventing quickstart have occurred, the loader resorts to other methods of symbol resolution.

The linker records conflicts in a shared objecitmflict section if a second definition is found for a
previously-defined symbol. Common storage class symbols are not considered conflicts unless they are
allocated in more than one shared object.

Weak symbols aliased to a newly resolved conflict entry are also treated as conflicts. This means the loader
does not have to search for weak symbols matching conflict symbols. The weak symbols are added to the
conflict list for the first shared library that defined the symbol in question as well as the library where the
conflicting definition was found.

Figure 6-13shows a simple example of the use of conflict entries.

280

Figure 6-13 Conflict Entry Example

a.out
lihaso
1main |
a_sort(), a_sort()
} .
a_error),
a_error(){ K
ki
a_error(){exit(1);}
conflict:
a_error

In this example, the a.out executable has been linked with liba.so, and a single conflict has been recorded
for the symbol_error . The conflict is recorded in the executable file at link time because both the
executable and shared library define the symbol. At run time, any calletor froma_sort will be
preempted by the definition af error in thea.out executable. Without the conflict entry, the call to
a_error would not be preempted properly wheiout is quickstarted.

6.3.6.3. Repairing Quickstart

Thefixso utility updates shared libraries to permit quickstarting of applications that utilize them, even if

the libraries have changed since the executable was originally linked against them. Given a shared object as
input, it updates the object and its dependencies to make them meet quickstart criteria. The library changes
handled byfixso are timestamp and checksum discrepancies.

Thefixso utility creates a breadth-first list of the object's dependencies. It then handles conflicts present
in the conflict table. Nexfjxso resolves globals, updating global symbol values, dynamic relocation
entries, and GOT entries where necessary. Lastly, if these actions are sudbessfulresets the

timestamp and checksum of its target object.

When a dependency is discovered during procesksg, automatically opens the associated object and
adds it to the object list if possible. The dependency will be found and opened if it is located in the default
library search path, the path indicated byltbe LIBRARY_PATHenvironment variable, or the path

specified in the command line. Otherwise, it may be necessary to rixsthe program on the library
separately, before fixing the target object.

Some changes made to shared libraries cannot be reconcflesidby. Thefixso utility does not
support:

* Increases in size required in the conflict list (new conflicts)

¢ Movement of the library in memory

281

« Discrepancies in interface versions
e Changes to a library's path

« Discrepancies isoname values

282

7. Comment Section

The Tru64 UNIX object file format supports a mechanism for storing information that is not part of a
program's code or data and is not loaded into memory during execution. The comment section
(.comment) is used for this purpose. Typically, this section contains information that describes an object
but is not required for the correct operation of the object. Any kind of object file can have a comment
section.

7.1. New and Changed Comment Section Features

Version 3.13 of the object file format introduces the following new features for comment sections:
* New comment subsection types (Sedle 7-)

* Tag descriptors for describing comment subsectionsSsegon 7.3.4.1

* Toolversion information for tool specific versioning of object files Seetion 7.3.4.p

7.2. Structures, Fields, and Values of the Comment Section

All declarations described in this section are found in the headscfitomment.h .

7.2.1. Subsection Headers

The comment section begins with a set of header structures, each describing a separate subsection.

typedef struct {
coff_uint cm_tag;
coff_uint cm_len;
coff_ulong cm_val;
} CMHDR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Subsection Header CMHDRFields

cm_tag
Identifies the type of data in this subsection of.tmenment section. This value may be recognized
by system tools. If it is not recognized, generic processing occurs, as desceetan 7.3.3 Refer
to Table 7-1for a list of system-defined comment tags.

cm_len

Specifies the unpadded length (in bytes) of this subsection's data.lén is zero, the data is stored
in thecm_val field. The padded length is this value rounded up to the nearest 16-byte boundary.

cm_val
Provides either a pointer to this subsection's data or the data itsglf.l6fn is nonzerogcm_val isa

relative file offset to the start of the data from the beginning ofctirament section. Ifcm_len is
zero, this field contains all data for that subsection. In the latter case, the size of the data is considered

to be the size of the field (8 bytes).

283

Table 7-1 Comment Section Tag Values

Tag Value Description
CM_END 0 Last subsection header. Must be present.
First subsection header. Tom_val field contains a
CM CMSTAMP 3 version stamp_that identifies the version qf t_h_e
- comment section format. The current definition of
CM_VERSIONSs 0. Must be present.
CM_COMPACT_RLC| 4 Compact relocation data. SBection 4.4or details.
CM_STRSPACE 5 Generic string space.
Subsection containing flags that tell tools how to
CM_TAGDESC 6 process unfamiliar subsections. Saetion 7.2.2And
Section 7.3.4.1
CM_IDENT 7 Identification string. Reserved for system use.
CM_TOOLVER 8 Tool-specific version information. S&ection 7.3.4.:
CM_LOUSER 0x80000000 |Beginning of user tag value range (inclusive).
CM_HIUSER Oxfrffffff End of user tag value range (inclusive).

7.2.2. Tag Descriptor Entry

Tag descriptors are used to specify behavior for tools that modify object files and potentially affect the
accuracy of comment subsection data. They are especially useful as processing guidelines for tools that do
not understand certain subsections. Tools which have specific knowledge of certain comment subsection
types can ignore the tag descriptor settings for subsection type. The tag descriptors are stored in the raw

data of theCM_TAGDES6ubsection. Segection 7.3.4.%or more information.

typedef struct {
coff _uint
cm_flags_t

}em_td_t;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

Tag Descriptor Fields

tag

tag;

flags;

Tag value of subsection being described.

284

flags

Flag settings. Seeection 7.2.2.1

7.2.2.1. Comment Section Flags

typedef struct {
coff_uint cmf_strip :3;
coff_uint cmf_combine :5;
coff _uint cmf_modify :4;
coff_uint reserved :20;
} cm_flags t;

SIZE - 4 bytes, ALIGNMENT - 4 bytes
Comment Section Flags Fields
cmf_strip
Tells tools that perform stripping operations whether to strip comment section data.
cmf_combine
Tells tools how to combine multiple input subsections of the same.
cmf_modify

Tells tools that modify single object files how to rewrite the input comment section in the output
object.

Table 7-2 Strip Flags

Name Value | Description

CMFS_KEEP 0x0 Do not remove this subsection when performing stripping operations.

CMFS_STRIP 0x1 Remove this subsection if stripping the entire symbol table.

CMFS_LSTRIP 0x2 Remove this subsection if stripping local symbolic information or if fiilly
stripping the symbol table.

Table 7-3 Combine Flags

285

Name Value | Description

CMFC_APPEND 0x0 Concatenate multiple instances of input subsection data.

CMFC_CHOOSE Ox1 Choose one instance of input subsection data (randomly).

CMFC_DELETE 0ox2 Do not output this subsection.

CMFC_ERRMULT | 0x3 Raise an error if multiple instances of this subsection are encounterpd as
input.

CMFC_ERROR 0x4 Raise an error if a subsection of this type is encountered as input.

Table 7-4 Modify Flags

butput

Name Value | Description

CMFM_COPY 0x0 Copy this subsection's data unchanged from the input object to the
object.

CMFM_DELETE 0x1 Do not output a subsection of this type.

CMFM_ERROR 0x2 Raise an error if a subsection of this type is encountered as input.

286

7.3. Comment Section Usage

7.3.1. Comment Section Formatting Requirements

The comment section is divided between subsection header structures and an unstructured raw data area.
The subsection headers contain tags that identify the data stored in the subsequent raw data area. Each
header describes a different subsection. The raw data for all subsections follows the last header, as shown

in Figure 7-1

Figure 7-1 Comment Section Data Organization

SCNHDR.,
sotiptt o
P CM_CMSTAMP cm_val
offsets
cTAGS
C::T"ﬂ{tDR <TAG>
SLructures “TAGS
Ch_END L
raw
data
area
FI—
4

Begin and end marker tags are used to denote the boundaries of the structured portion of the comment
section. The begin marker@V_CMSTAM®Rhich contains a comments section version stamp, and the
end marker i€M_ENDIf either of these headers is missing or the version indicated by the value of
CM_CMSTAMBR invalid, the comment section is considered invalid.

The ordering of the subsection headers and their corresponding raw data do not need to match. Nor is the
density of the raw data area guaranteed. However, all subsection headers must be contiguous: no other data
can be placed between them. Furthermore, a one-to-one relationship must exist between the subsection
headers that point into the raw data and the data itself. Subsection raw data must not overlap.

The interpretation of them_val field depends on them_len field. Whencm_len is zero,cm_val
contains arbitrary data whose interpretation depends on the valuem theg field. Whencm_len is

287

non-zerocm_val contains a relative file offset from the start of the comment section into the raw data
area.

The start of data allocated in the raw data area must be octaword (16-byte) aligned for each subsection.
Zero-byte padding is inserted at the end of each data item as necessary to maintain this alignment. The
value stored irtm_len represents the actual length of the data, not the padded length. Tools manipulating
this data must calculate the padded length.

7.3.2. Comment Section Contents

The comment section can contain various types of information. Each type of information is stored in its
own subsection of the comment section. Each subsection must have a unique tag value within the section.

The comment section can include supplemental descriptive information about the object file. For instance,
the tagST_CM_IDENTpoints to one or more ASCII strings in the raw data area that serve to identify the
module. Use of this tag is reserved for compilation system object producers such as compilers and
assemblers.

User-defined comment subsections are also possibleCWVhé OUSERNACM_HIUSERags delimit the
user-defined range of tag values. Potential uses include product version information and miscellaneous
information targeted for specific consumers.

Although no restrictions are put on the type or amount of information that can be placed in the comment
section, it is important to be aware that users have the capability to remove the section entirely (by using
ostrip -c) and that object file consumers may ignore its presence.

The minimal valid comment section consists @M _CMSTAM#Reader and @M _ENDeader. Because

no structure field in the object file format holds the number of subsections in the comment section, the
presence of thEM_ENDeader is crucial. Without it, a consumer cannot determine the number of
subsections present.

7.3.3. Comment Section Processing

Many tools that handle objects read or write the comment section. Some tools, such as the lnksy and
perform special processing of comment section data. Others may be interested in extracting certain
subsections. Most object-handling tools provided on the system access the comment section to check for
tool-specific version information (sé&ection 7.3.4.9

The linker is both a consumer and producer of the comment section. As with other object file sections, the
linker must combine multiple input comment sections to form a single output section. When comment
sections are encountered in input object files, the linker reads subsection headers and merges the raw data
according to its own defaults and the flag settings of any tag descriptors that are present.

Themcs utility provides comment section manipulation facilities. This tool allows users to add, modify,
delete, or print the comment section from the command line.mtisaool can only process objects that
already have a&comment section header—in spite of the fact that the header may indicate that the section
is empty. In all cases, the operations performech&y do not affect the object's suitability for linking or
execution. See thmcs(l) man page for more details.

Stripping tools, such agtrip andostrip , also process the comment section. They read the tag
descriptors to determine what subsections to removecrhestrip field of the tag descriptor specifies
the stripping behavior. If themf_strip field is set tadCMF_STRIPthat subsection will be removed if

288

an object is fully stripped. If themf_strip field is set tacCMF_LSTRIPfor a particular subsection
type, that subsection will be removed if an object is fully stripped or locally stripped.

7.3.4. Special Comment Subsections

Comment subsections can have particular structures or semantics that a consumer must know to be able to
read and process them correctly. Two system-defined subsections with special formatting and processing
rules are the tag descripto\M_TAGDESGnd the tool-specific version informatiodNl_TOOLVER

Another special subsection contains compact relocation @aGOMPACT_R).CThis topic is covered
in Section 4.4

7.3.4.1. Tag Descriptors (CM_TAGDESC

The tag descriptor subsection contains a table of tags and their corresponding flag settings. This

information tells tools how to handle unfamiliar subsections. OMe TAGDES6ubsection may not be

present, and if present, it may not contain entries for subsections that are present. Also, a tag descriptor may
be present for a subsection that is not found in the object.

A list of possible tag descriptor flag settings can be fonrfkction 7.2.2.1 Flag settings are divided into
three categories based on the categories of object tools that need to modify the comment section:

1. Tools that strip object files
2. Tools that combine multiple instances of comment section data
3. Tools that modify and rewrite single object files

The default flag settings for user subsections that do not have tag descrip@4-SKEEP,
CMFC_APPENDandCMFM_CORYTools that strip or rewrite objects should not modify subsection data

for comment subsections marked with these default flag settings. A tool that combines multiple instances of
subsection data, should concatenate the subsection raw data for same-type input subsections marked with
the default flag settings.

A tool can ignore the tag descriptor flags and default flag settings for a subsection if it recognizes the
subsection type and understands how to process its data.

Some of the system tags have different defaults. These are shown in Table 7-5. However, tag descriptors in
the CM_TAGDESS6ubsection can be used to override the default settings for system tag values as well as
user tag values.

289

Table 7-5 Default System Tag Flags

Tag Default Flag Settings
CM_END KEEP, CHOOSE, COPY
CM_CMSTAMP KEEP, CHOOSE, COPY
CM_COMPACT_RLC STRIP, DELETE, DELETE
CM_STRSPACE KEEP, APPEND, COPY
CM_TAGDESC KEEP, CHOOSE, COPY
CM_IDENT KEEP, APPEND, COPY
CM_TOOLVER KEEP, CHOOSE, COPY

Because the size of a tag descriptor entry is fixed, a consumer can determine the number of entries by
dividing the size of the subsection by the size of a single tag descript@e(dem 7.2.2 If cm_len is
set to zero, a single tag descriptor is stored as immediate data.

7.3.4.2. Tool Version Information (CM_TOOLVER)

TheCM_TOOLVERubsection contains tool-specific version entries for system tools that process object
files. If present, this subsection may have any number of entries. This subsection can also can also be used
to record version information for non-system tools.

Each tool version entry consists of three parts:

1. Tool name (null-terminated character string)

2. Tool version number (unsigned 8-byte unaligned numeric value)
3. Printable version string (null-terminated character string)

The number of tool version entries cannot be determined from the subsection header because the entries
vary in length. The data must be read until the entry sought is found or until the end of the subsection's
data is reached.

The encoding of the tool version number is generally tool dependent. The only requirement is that the
value, viewed as an unsigned long, must be monotonically increasing with time.

Typically, an object file consumer uses the tool version information to verify its ability to handle an input
object file. The consumer uses an API (dest reference pages) to look for a tool version entry with a
tool name matching its own (part one of the entry). If found, the version number (part two of the entry)
must not exceed the version number of the tool. Otherwise, theitbpfimt a message instructing the user
to obtain the newer version of the tool, using the printable version string (part three of the entry). This
mechanism can be used as a warning to customers of a necgggande to a newer release of a product,
for instance.

290

As an example, a compiler might produce object files with new symbol table information that causes an old
version of the ladebug debugger to produce a fatal error. To provide more user-friendly behavior for old
versions of the debugger, the compiler outputs a tool version entry:

1. "ladebug"
2. 2
3. "5.0A-BL5"

This entry occupies 25 bytes. The debugger recognizes its name in the entry and compares the version
number "2" with the version number it was built with. (Note that the version number is most likely
meaningless to an end user of the debugger.) In this case, assume that the installed debugger's version
number is "1". The message "Please obtain version 5.0A-BL5" is output to the user.

Note that the numeric tool version number can be unaligned. This is an exception to the general rule
requiring alignment of numeric data.

291

8. Archives

An archive is a collection of files stored and treated as a single entity. They are used most commonly to
implement libraries of relocatable objects. These libraries simplify linking in a program development
environment by allowing the manipulation of one archive file instead of dozens or hundreds of object files.

This chapter covers the archive file format and usage. The archiver is the tool used to create and manage
archives. Sear(1l) for more information on its facilities.

New and Change Archive Features

Version 5.0 of Tru64 UNIX introduces archive support for extended user and group ids (8de and
ar_gid in Section 8.1.p

8.1. Structures, Fields, and Values for Archives

All declarations in this section are from the headerdfile .

SeeSection 8.2.¥or more information on the organization of object file contents.

8.1.1. Archive Magic String

The archive magic string identifies a file as an archive.

#define ARMAG "l<arch>\n"
#define SARMAG 8

8.1.2. Archive Header

struct ar_hdr {
char ar_name[16];
char ar_date[12];
char ar_uid[6];
char ar_gid[6];
char ar_mode[8];
char ar_size[10];
char ar_fmag[2];

} AR_HDR;

SIZE - 60 bytes, ALIGNMENT - 1 byte

Archive Header Fields

ar_name
File member name, blank-terminated if the length of the name is less than 16 bytes.
File member names that are 16 characters or longer are stored in the special file member called the file
member name table. In that case, this field confaiffsetwhereoffsetindicates the byte offset of the

file name within the table. The offset is a decimal number.

The prefixARSYMPRERIefined as the 16-byte blank-terminated character string

292

64ELEL_ , is stored in this field for the special file member called the symbol definitions
(symdef) file and is used to identify that file. Téwe tool marks an out of date symdef file by

changing the ladt in the name to aK (64ELEX) .

The blank-terminated nante is stored in this field to identify the file member name table.

ar_date

File member date (decimal).

ar_uid
File member user id (decimal).

For a file with a user id greater thell$HRT_MAX65535U), this field will contaié valuewhere
valueis a 4-byte unsigned integer.

ar_gid
File member group id (decimal).

For a file with a group id greater thedsHRT_MAX65535U), this field will contai¥ valuewhere
valueis a 4-byte unsigned integer.

ar_mode

File member mode (octal).

ar_size

File member size (decimal). Sizes reflect padding for the symdef file and the file name table, but not
for file member contents. File members always start on even byte boundaries. Therefore, if the

ar_size field indicates an odd length, it should be rounded up to the next even number.

ar_fmag
Archive magic string. The possible values are shown in Table 8-1.

Table 8-1 Archive Magic Strings
Symbol Value Meaning
ARFMAG "\n File member. May be a special file member or any type of
file other than a compressed object file.
ARFZMAG "Z\n" Compressed object file member.

General Note:
Archive header fields are stored as character strings and must be converted to numeric types.

293

8.1.3. Hash Table (ranlib) Structure

This structure is found only inside the special file member called the "symdef file'SeSiéen 8.2.7or
related information.

struct ranlib {
union {
int ran_strx;
}ran_un;
int ran_off;

k
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Ranlib Structure Fields
ran_strx

Symdef string table index for this symbol's name.
ran_off

Byte offset from the beginning of the archive file to the archive header of the member that defines this
symbol.

General Note :

Theran_un union of this structure has only one field, as shown, for historical reasons.

294

8.2. Archive Implementation

8.2.1. Archive File Format

The firstSARMAG8) bytes in an archive file identify it as an archive. To verify that a file is an archive,
these bytes should be compared with the archive magic string, defiABiVesGn the header filar.h .

An archive file consists of the magic string followed by multiple file members, each of whigteslpd

by an archive file member header. File members can be object files, compressed object files, text files, or
files of any other type, and an archive can contain a mix of file types. A file member can also be one of
two special file members: the symbol definition (or symdef file) or the file member nameFRahiee 8-1
illustrates this file layout.

Figure 8-1 Archive File Organization

Archive magic string

Archive File Header ar_hdr

Symbol Definttions ("symdet™) file

Archive File Header ar_hdr

Long File Member Name Table

Archive File Header ar_hdr

File hMember Contents (.o file or text file)

Archive File Header ar_hdr

File Member Contents (.o file or text file)

The symdef file, if present, is the first file member of an arch@e Section 8.2 fr details on the
symdef file.

The file member name table consists of file member names that are too long to fit into the 16-byte name
field of the archive header. If no file member names are 16 characters or longer, this table is not created. If
the table is needed, it is the first or second file member. If a symdef file is present, it is the first file

member and the file member name table is the second. Otherwise, the file member name table is the first
file member of the archive.

The member header for the file name table might look like this:

struct arhdr {
ar_name ="// "
ar_date = "871488454 ",
ar_ud ="0 "
ar_gid

||0 ",

295

ar_mode="0 "

ar_size ="b4 ;
ar_fmag ="\n",

Names in the file member name table are separated by a/slaahd a linefee\n) . For example, the
contents of the file name table for an archive with three long object file names might look like this:

st_cmrlc_basic.o/
st_cmrlc_print.o/
st_object_type.o/

The file member header for a file member whose name is stored in the file name table (in this case, the
objectst_cmrlc_print.o) might look like this:

struct arhdr {
ar_name ="/18 "
ar_date ="871414955
ar_uid ="9442 "
ar_ gd ="0 "
ar_mode ="100600 ";
ar_size ="47296 ",
ar_fmag ="\n";

8.2.2. Symdef File Implementation

The symdef file contains external symbol information for all object file members within an archive. When
present, the symdef file is the first file member of the archive. The member header for an up-to-date
symdef file might look as follows:

struct arhdr {

ar_name =" 64ELEL_ "
ar_date = "871488454 ";
ar_ud="0 "

ar_gd="0 "

ar_mode="0 "

ar_size ="8238 ";

ar_fmag ="\n",

The symdef file is typically present if at least one archive file member is an object file. The linker uses it
when searching for symbol definitions, as long as the file is up to date. Whenever an archive is modified,
either the symdef file must either be updated or its member name must be changed to reflect the fact that it
is outdated (seBection 8.1.p

The symdef file consists of a hash table and a string table. The contents of the symdef file are laid out as
follows:

1. Hash Table Size - 4 bytes indicating the numbeanlib structures in the hash table

296

2. Hash table - array a&nlib structures
3. String table Size - 4 bytes indicating the size, in bytes, of the symdef string table
4. String table - string space containing symbol names

At a minimum, the symdef file should contain the sizes of the hash and string tables, even if the tables are
empty.

The hash table containgan_lib structure for each externally visible symbol defined in any of the
archive file members. The total size of the hash table is two times the number of symbols rounded to the
next highest power of two. Each symbol has a private hash chain that is used for symbol lookup, as shown

in Figure 8-2

Figure 8-2 Symdef File Hash Table

symbol
name

hash

function

hash value rehash value
size of
N each jutnp
&
HASH TABLE

The hash function produces two values for any name it is given: a hash value and a rehash value. The hash
value is used for the first lookup. If the symbol found is not the right one, the rehash value is used for

297

chaining. The chain is followed until the correct symbol is found or until the search returns to the symbol
where it began.

The linker uses the hash structure fidd_off to locate a symbol's definition in the archive. This field
contains the byte offset from the beginning of the archive file to the file member header of the member
containing the symbol's definition.

Note that symbols appear only once in the symdef file hash table, regardless of how many file members
define them.

8.3. Archive Usage

8.3.1. Role As Libraries

One important use of archives is to serve as static libraries that programs can link against. Such archives
contain a collection of relocatable object files that can be selectively included in an executable image as
required. Archive libraries are the only libraries used in creating static executables. They can also be used
in conjunction with shared libraries in dynamic executables.

The linker searches archive libraries during symbol resolution. S&edgemmer's GuiderId(1) for
more information.
8.3.2. Portability

The archive file format is designed to meet current UNIX standards in order to assure portability with other
UNIX systems.

The format of compressed object files within archives is specific to Tru64 UNDS&®ien 1.4.3or
details.

298

9. Examples

This chapter contains sample programs that illustrate the symbol table representations of various language
constructs. The examples are organized by source language and each consists of a program listing and the
partial symbol table contents for that program. The system symbol table dwtdoenp(1) and

odump(1l) were used to produce the output.

91. C

9.1.1. Unnamed Structure

SeeSection 5.3.8.%or related information.

Source Listing

Struct S1 {
int abc;
struct {int x; signed int y; unsigned int z;};
int rst;

}s1;

Symbol Table Contents
File O Local Symbols:

0. (0)(0) unname.c File Text symref 12

1. (1)(Oxc) Block Info symref 6

2.(2)(0) x Member Info [3]int

3. (2)(0x20) y Member Info [3]int

4. (2)(0x40) z Member Info [4] unsigned int

5.(1)(0) End Info symrefl

6. (1)(0x14) S1 Block Info symrefil

7.(2)(0) abc Member Info [3]int

8. (2)(0x20) Member Info [5] struct(file O,
index 2)

9. (2)(0x80) rst Member Info [3]int

10. (1)(0) s1 End Info symref6

11. (0)(0) unname.c End Text symrefO

Externals Table:

0. (file 0)(0x14) s1 Global Common [7] struct(file O,
index 6)

9.2. C++

9.2.1. Base and Derived Classes

SeeSection 5.3.8.6or related information.

Source Listing

#include <iostream.h>

class employee {

299

char *name;
short age;

short deparment;
int salary;

public:

static int stest;
employee *next;
void print() const;

h

class manager : public employee {
employee emp;
employee *group;
short level;

public:

void print() const;

h
void employee::print() const

cout << "name is " << name << '\n";

}

void manager::print() const

{

employee::print();

void f()

{
manager m1l,m2;
employee €1, e2;
employee *elist;

elist=&m1;
ml.next=⪙
el.next=&m2;
m2.next=&e2;
e2.next=0;

Symbol Table Contents

File O Local Symbols:

0.(0)(0)bsb.cxx File Text symref 51

1. (1)(0) employee Tag Info [25] Class(extended file O,
index 2)

2. (1)(0x18) employee Block Info symref 17

3.(2)(0)name Member Info [28] Pointer to char

300

4. (2)(0x40) age Member Info [29] short

5. (2)(0x50) deparment Member Info [29] short

6. (2)(0x60) salary Member Info [30] int

7. (2)(0x80) next Member Info [31] Pointer to
Class(extended file 0,
index 2)

8. (2)(0) employee::stest
Static Info [30] int
9. (2)(0) employee::print(void) const
Proc Info [43] endref 12, void
10. (3)(0) this Param Info [40] Const Pointer to Const
Class(extended file 0,
index 2)
11. (2)(0) employee::print(void) const
End Info symref 9
12. (2)(0) employee::operator =(const employee&)
Proc Info [57] endref 16, Reference
Class(extended file 0,
index 2)
13. (3)(0) this Param Info [48] Const Pointer to
Class(extended file 0,
index 2)
14. (3)(0) Param Info [54] Reference Const
Class(extended file 0,
index 2)
15. (2)(0) employee::operator =(const employee&)
End Info symref 12
16. (1)(0) employee End Info symref 2
17. (1)(0) manager Tag Info [61] Class(extended file 0,
index 18)
18. (1)(0x40) manager Block Info symref 31
19. (2)(0) employee Base Class Info [25] Class(extended file 0,

index 2)

20. (2)(0xc0) emp Member Info [25] Class(extended file 0,
index 2)

21. (2)(0x180) group Member Info [31] Pointer to Class(extended
file 0, index 2)

22.(2)(0x1c0) level Member Info [29] short
23. (2)(0) manager::print(void) const
Proc Info [73] endref 26, void
24. (3)(0)this Param Info [70] Const Pointer to Const
Class(extended file 0,
index 18)
25. (2)(0) manager::print(void) const
End Info symref 23
26. (2)(0) manager::operator =(const manager&)
Proc Info [90] endref 30, Reference
Class(extended file 0,
index 18)
27.(3)(0)this Param Info [81] Const Pointer to
Class(extended file 0,
index 18)
28.(3)(0) Param Info [87] Reference Const
Class(extended file 0,
index 18)
29. (2)(0) manager::operator =(const manager&)
End Info symref 26
30. (1)(0) manager End Info symref 18
31. (1)(0) employee::print(void) const
Proc Text [414] endref 36, void
32. (2)(0x9) this Param Register [416] Const Pointer to Const
Class(extended file O,
index 2)

301

33. (2)(0x18) Block Text symref 35
34. (2)(0x60) End Text symref 33
35. (1)(0x70) employee::print(void) const
End Text symref 31
36. (1)(0x70) manager::print(void) const
Proc Text [419] endref 41, void
37. (2)(0x9) this Param Register [421] Const Pointer to Const
Class(extended file O,

index 18)
38. (2)(0x18) Block Text symref 40
39. (2)(0x2c) End Text symref 38

40. (1)(0x3c) manager::print(void) const
End Text symref 36
41. (1)(0xac) f(void) Proc Text [424] endref 50, void

42.(2)(0x8) Block Text symref 49

43. (3)(-64) m1 Local Abs [61] Class(extended file O,
index 18)

44. (3)(-128) m2 Local Abs [61] Class(extended file O,
index 18)

45. (3)(-152) el Local Abs [25] Class(extended file O,
index 2)

46. (3)(-176) e2 Local Abs [25] Class(extended file 0,
index 2)

47.(3)(0O)elist Local Register [31] Pointer to Class(extended
file 0, index 2)

48. (2)(0x28) End Text symref 42

49. (1)(0x30) f(void) End Text symref 41
50. (0)(0) bs6.cxx End Text symref O

302

9.2.2. Virtual Function Tables and Interludes

Source Listing

class Basel {
public:
virtual int virtual_mem_func() { return 1; }

3

class Base? : virtual public Basel {
public:
virtual int virtual_mem_func() { return 2; }

3

class Base3 : public Base2 {
public:
virtual int virtual_mem_func() { return 3; }

3

int foo(Basel *b1) {
return bl->virtual_mem_func();

}

int main() {
Basel *b1;
Base2 *b2;
Base3 *b3;

inti,jk;

i =foo(bl);
j = foo(b2);
k = foo(b3);
return O;

}

Symbol Table Contents

File O Local Symbols:

0. (0)(0) interlude.cxx
File Text symref 113
1.(1)(0)Basel Tag Info [17] Class(extended file O,
index 2)
2.(1)(0x8)Basel Block Info symref 19
3.(2)(0)__vptr Member Info [20] Pointer to Array
[(extended file O, aux
3)0-1:64] of Virtual func
table
4. (2)(0)Basel::Basel(void)
Proc Info [35] endref 7, Reference
Class(extended file 0,
index 2)

303

5. (3)(0) this Param Info [32] Const Pointer to
Class(extended file 0,
index 2)
6. (2)(0) Basel::Basel(void)
End Info symref 4
7.(2)(0)Basel::Basel(const Basel&)
Proc Info [45] endref 11, Reference
Class(extended file 0,
index 2)
8. (3)(0) this Param Info [32] Const Pointer to
Class(extended file 0,
index 2)
9.(3)(0) Param Info [42] Reference Const
Class(extended file 0,
index 2)
10. (2)(0) Basel::Basel(const Basel&)
End Info symref 7
11. (2)(0) Basel:operator =(const Basel&)
Proc Info [49] endref 15, Reference
Class(extended file 0,
index 2)
12. (3)(0) this Param Info [32] Const Pointer to
Class(extended file 0,
index 2)
13.(3)(0) Param Info [42] Reference Const
Class(extended file 0,
index 2)
14. (2)(0) Basel::operator =(const Basel&)
End Info symref 11
15. (2)(0x1) Basel::virtual_mem_func(void)
Proc Info [53] endref 18, int
16. (3)(0) this Param Info [32] Const Pointer to
Class(extended file 0,
index 2)
17. (2)(0) Basel::virtual_mem_func(void)
End Info symref 15
18.(1)(0)Basel End Info symref 2
19. (1)(0)Base2 Tag Info [55] Class(extended file 0,
index 20)
20. (1)(0x18) Base2 Block Info symref 42
21.(2)(0) _vptr Member Info [20] Pointer to Array
[(extended file 0, aux
3)0-1:64] of Virtual func
table
22.(2)(0x40) __bptr Member Info [20] Pointer to Array
[(extended file 0, aux
3)0-1:64] of Virtual func
table
23.(2)(0)Basel Virtual Base Class
Info [17] Class(extended file O,

index 2)
24. (2)(0) Base2::Base2(void)
Proc Info [67] endref 28, Reference
Class(extended file 0,
index 20)

25. (3)(0)this Param Info [64] Const Pointer to
Class(extended file 0,
index 20)
26. (3)(0) <control> Param Info [3]int
27. (2)(0) Base2::Base2(void)
End Info symref 24
28. (2)(0) Base2::Base2(const Base2&)
Proc Info [77] endref 33, Reference

304

Class(extended file 0,
index 20)

29. (3)(0)this Param Info [64] Const Pointer to
Class(extended file 0,

index 20)

30. (3)(0) <control> Param Info [3]int

31.(3) 0) Param Info [74] Reference Const
Class(extended file 0,
index 20)

32. (2)(0) Base2::Base2(const Base2&)
End Info symref 28
33. (2)(0) Base2::operator =(const Base2&)
Proc Info [81] endref 38, Reference
Class(extended file 0,
index 20)
34. (3)(0)this Param Info [64] Const Pointer to
Class(extended file 0,

index 20)

35. (3)(0) <control> Param Info [3]int

36.(3)(0) Param Info [74] Reference Const
Class(extended file 0,
index 20)

37.(2)(0) Base2::operator =(const Base2&)
End Info symref 33
38. (2)(Ox1) Base2::virtual_mem_func(void)
Proc Info [85] endref 41, int
39. (3)(0)this Param Info [64] Const Pointer to
Class(extended file 0,
index 20)
40. (2)(0) Base2::virtual_mem_func(void)
End Info symref 38
41.(1)(O0)Base2 End Info symref 20
42.(1)(O0)Base3 Tag Info [87] Class(extended file 0,
index 43)
43.(1)(0x18) Base3 Block Info symref 65
44.(2)(0) _vptr Member Info [20] Pointer to Array
[(extended file 0, aux
3)0-1:64] of Virtual func
table
45. (2)(0x40) __bptr Member Info [20] Pointer to Array
[(extended file 0, aux
3)0-1:64] of Virtual func

table
46.(2)(0)Base2 Base Class Info [55] Class(extended file 0,
index 20)
47. (2)(0) Base3::Base3(void)
Proc Info [99] endref 51, Reference
Class(extended file 0,
index 43)

48. (3)(0) this Param Info [96] Const Pointer to
Class(extended file 0,
index 43)
49. (3)(0) <control> Param Info [3]int
50. (2)(0) Base3::Base3(void)
End Info symref 47
51. (2)(0) Base3::Base3(const Base3&)
Proc Info [109] endref 56, Reference
Class(extended file O,
index 43)
52. (3)(0)this Param Info [96] Const Pointer to
Class(extended file 0,
index 43)
53. (3)(0) <control> Param Info [3]int

305

54. (3)(0) Param Info [106] Reference Const
Class(extended file 0,
index 43)
55. (2)(0) Base3::Base3(const Base3&)
End Info symref 51
56. (2)(0) Base3::operator =(const Base3&)
Proc Info [113] endref 61, Reference
Class(extended file O,
index 43)
57. (3)(0)this Param Info [96] Const Pointer to
Class(extended file 0,

index 43)

58. (3)(0) <control> Param Info [3]int

59. (3)(0) Param Info [106] Reference Const
Class(extended file O,
index 43)

60. (2)(0) Base3::operator =(const Base3&)
End Info symref 56
61. (2)(Ox1) Base3::virtual_mem_func(void)
Proc Info [117] endref 64, int
62. (3)(0) this Param Info [96] Const Pointer to
Class(extended file 0,
index 43)
63. (2)(0) Base3::virtual_mem_func(void)
End Info symref 61
64. (1)(0)Base3 End Info symref 43
65. (1)(0) _INTER__Base3_virtual_mem_func_Basel Base2_Xv
Interlude Info thunk(extended file 0, index
61), proc(extended file
0, index 104)
66. (1)(0) __INTER__Base2_virtual_mem_func_Basel Xv
Interlude Info thunk(extended file 0, index
38), proc(extended file
0, index 108)
67. (1)(0x160) __ vtbl_5Basel
Static SData [126] Const Array [(extended
file 0, aux 3)0-0:64] of
Pointer to void
68. (1)(0x168) __ vtbl_5Base2
Static SData [126] Const Array [(extended
file 0, aux 3)0-0:64] of
Pointer to void
69. (1)(0x170) __ btbl 5Base2
Static SData [138] Const Array [(extended
file 0, aux 3)0-0:64] of
long
70. (1)(0x178) __vtbl_5Basel5Base2
Static SData [126] Const Array [(extended
file 0, aux 3)0-0:64] of
Pointer to void
71. (1)(0x180) __ vtbl_5Base3
Static SData [126] Const Array [(extended
file 0, aux 3)0-0:64] of
Pointer to void
72.(1)(0x188) __ btbl 5Base3
Static SData [138] Const Array [(extended
file 0, aux 3)0-0:64] of long
73. (1)(0x190) __ vitbl_5Basel5Base25Base3
Static SData [126] Const Array [(extended
file 0, aux 3)0-0:64] of
Pointer to void
74. (1)(0) Basel::virtual_mem_func(void)
StaticProc Text [152] endref 79, int

306

75. (2)(Ox1) this Param Register [32] Const Pointer to
Class(extended file 0,

index 2)
76. (2)(0x4) Block Text symref 78
77.(2)(0x8) End Text symref 76

78. (1)(Oxc) Basel::virtual_mem_func(void)
End Text symref 74
79. (1)(0x14) Base2::virtual_mem_func(void)
StaticProc Text [154] endref 84, int
80. (2)(Ox1) this Param Register [64] Const Pointer to
Class(extended file 0,

index 20)
81. (2)(Ox4) Block Text symref 83
82. (2)(0x8) End Text symref 81

83. (1)(Oxc) Base2::virtual_mem_func(void)
End Text symref 79
84. (1)(0x28) Base3::virtual_mem_func(void)
StaticProc Text [156] endref 89, int
85. (2)(Ox1) this Param Register [96] Const Pointer to
Class(extended file 0,

index 43)
86. (2)(0x4) Block Text symref 88
87. (2)(0x8) End Text symref 86

88. (1)(Oxc) Base3::virtual_mem_func(void)
End Text symref 84
89. (1)(0x34) foo(Basel*) Proc Text [158] endref 94, int
90. (2)(0x9) bl Param Register [29] Pointer to Class(extended

file 0, index 2)
91. (2)(0x10) Block Text symref 93
92. (2)(0x28) End Text symref 91

93. (1)(0x38) foo(Basel*) End Text symref 89
94. (1)(0x6c) main Proc Text [160] endref 104, int

95. (2)(Oxc) Block Text symref 103
96. (3)(-8) bl Local Abs [29] Pointer to Class(extended
file 0, index 2)

97. (3)(-16) b2 Local Abs [61] Pointer to Class(extended
file 0, index 20)
98. (3)(0x9) b3 Local Register [93] Pointer to Class(extended
file 0, index 43)

99. (3)(-24) i Local Abs [3]int

100. (3)(-28) j Local Abs [3]int

101. (3)(-32) k Local Abs [3]int

102. (2)(0x70) End Text symref 95

103. (1)(0x80) main End Text symref 94

104. (1)(0x20) __INTER__Base3_virtual_mem_func_Basel_Base2_Xv
StaticProc Text [162] endref 108, btNil

105. (2)(0) Block Text symref 107

106. (2)(0x28) End Text symref 105

107. (1)(0x8) __INTER__Base3_virtual_mem_func_Basel_ Base2_Xv
End Text symref 104

108. (1)(0xc) __INTER__Base2_virtual_mem_func_Basel_ Xv
StaticProc Text [164] endref 112, btNil

109. (2)(0) Block Text symref 111

110. (2)(0x14) End Text symref 109

111. (1)(0x8) __INTER__Base2_virtual_mem_func_Basel_Xv
End Text symref 108

112. (0)(0) interlude.cxx
End Text symref 0

9.2.3. Namespace Definitions and Uses

SeeSection 5.3.6.4or related information.

307

Source Listing
nsl.h:

namespace nsl {
class Cobj {};
extern int il;

}
ns2.h:

namespace nsl {
int x1(void);
}

ns.C:

#include "ns1.h"
#include "ns2.h"

namespace nsl {
extern int part3;

}

int ns1::i1 = 1000;

int nsl:part3 = 3;

int ns1::x1(void) {
using namespace nsli;
return i1*10;

}
Symbol Table Contents

File 0 Local Symbols:

0.(0)(O)ns.C File Text symref7

1. (1)(0)nsl:x1(void) Proc Text [4]endref6, int
2.(2)(0) Using Info [6] symref(file 1, index 1)
3. (2)(0x8) Block Text symref5

4. (2)(0x14) End Text symref3

5. (1)(0x18) ns1::x1(void) End Text symrefl

6. (0)(0)ns.C End Text symref0

File 1 Local Symbols:

0.(0)(0O)nsil.h File Text symref8

1.(1)(0)nsl Namespace Info symref 7
2.(2)(0)nsl:xl(void) Proc Info [2]endref4, int
3.(2)(0)nsl:x1(void) End Info symref 2
4.(2)(0)i1 Member Info [4]int

5.(2)(0) part3 Member Info [4]int

6. (1) 0)nsl End Info symref1

7.(0)(0)nsl.h End Text symrefO

Externals Table:

0. (file 0)(0x50) ns1::il Global SData [3]int
1. (file 0)(0x58) nsl::part3 Global Sdata [3]int

308

2. (file 0)(0) nsl::x1(void) Proc Text symrefl

9.2.4. Unnamed Namespaces

SeeSection 5.3.6.4.%r related information.

Source Listing

uns.C:
namespace {

int usvi;
int usv2;

}

int privat(void) {
return usvl + usv2;
}

Symbol Table Contents

File O Local Symbols:

0.(0)(O)uns.C File Info symref 13

1.(1) 0) Namespace Info symref5

2.(2)(0)usvl Member Info [3]int

3.(2)(0)usv2 Member Info [3]int

4.(1)(0) End Info symref1

5.(1)(0) Using Info [4] symref(file O, index 1)
6. (1)(0x50) __unnamed::usvl Static SBss [3]int

7. (1)(0x54) __unnamed::usv2 Static SBss [3]int

8. (1)(0) privat(void) Proc Text [5] endref 12, int
9. (2)(0x8) Block Text symref1l

10. (2)(0x1c) End Text symref9

11. (1)(0x20) End Text symref8

12. (0)(0) End Text symref0

9.2.5. Namespace Aliases

SeeSection 5.3.6.4.%r related information.

Source Listing
alias.C:

namespace long_namespace_name {
extern int nmem;
}

int get_nmem(void) {
namespace nknm = long_namespace_name;
namespace nknm2 = nknm;
return nknm::nmem;

}

309

Symbol Table Contents

File O Local Symbols

0.(0)(0)alias.C File Text symref 11

1. (1)(0)long_namespace_name Namespace Info symref 4
2.(2)(0) nmem Member Info [3]int

3. (1)(0)long_namespace_name End Info symref 1
4.(1)(0)get_nmem(void) Proc Text [4] endref 10, int
5. (2)(0x8) Block Text symref9

6 (2)(0) nknm Alias Info [5] symref(file 0,index 1)
7 (2)(0) nknm2 Alias Info [6] symref(file 0,index 6)
8. (2)(0x10) End Text symref5

9. (1)(0x14) get_ nmem(void) End Text symref 4

10. (0)(0) alias.C End Text symref O

Externals Table

0. (file 0)(0x4) long_namespace_name::nmem Global Undefined [3]int
1. (file 0)(0) get_nmem(void) Proc Text symref 4

310

9.2.6. Exception-Handling

SeeSection 3.3.8or related information.

Source Listing

#include <iostream.h>

class Vector {
int *p;
int sz;

public:
enum { max=1000 };

Vector(int);

class Range { };
class Size { };

int operator[](int i);
}; Il Vector

Vector::Vector(int i) {
if (i>max) throw Size();
p=new int[i];
if (p) sz=i;
else sz=0;

}

int Vector::operator[](int i) {
if (O<=i && i<sz) return pl[i];
throw Range();

}
void f() {
inti;
try {
cout<<"size?";
cin>>i;
Vector v(i);
cout<<yv[il<<"\n";
}

catch (Vector::Range) {
cout<< "bad news; outta here...\n";

}
catch (Vector::Size) {

cout<< "can't initialize to that size...\n";
}

Yl f

311

main() {

fQ);

Symbol Table Contents

File O Local Symbols:

0. (0)(0) multiexc.cxx File Text symref 83
1. (1)(0)Vector Tag Info [16] Class(extended file O,
index 2)
2. (1)(0x10) Vector Block Info symref 40
3. (2)(0) <generated_name_0005>
Tag Info [19] enum(extended file 0,
index 4)
4. (2)(0) <generated_name_0005>
Block Info symref 7
5. (3)(0x3e8) max Member Info [2] btNil
6. (2)(0) <generated_name_0005> End Info symref 4
7.(2)(0)Range Tag Info [22] Class(extended file O,
index 8)
8.(2)(0x1) Range Block Info symref 14
9. (3)(0) Vector::Range::operator =(const Vector::Range&)
Proc Info [40] endref 13, Reference
Class(extended file 0,
index 8)
10. (4)(0) this Param Info [31] Const Pointer to
Class(extended file 0,
index 8)
11. (4)(0) Param Info [37] Reference Const
Class(extended file 0,
index 8)
12. (3)(0) Vector::Range::operator =(const Vector::Range&)
End Info symref 9
13.(2)(0)Range End Info symref 8
14. (2)(0) Size Tag Info [44] Class(extended file O,
index 15)
15. (2)(0x1) Size Block Info symref 21
16. (3)(0) Vector::Size::operator =(const Vector::Size&)
Proc Info [62] endref 20, Reference
Class(extended file 0,
index 15)
17. (4)(0) this Param Info [53] Const Pointer to
Class(extended file 0,
index 15)
18. (4)(0) Param Info [59] Reference Const
Class(extended file 0,
index 15)
19. (3)(0) Vector::Size::operator =(const Vector::Size&)
End Info symref 16
20. (2)(0) Size End Info symref 15
21.(2)(0)p Member Info [66] Pointer to int
22.(2)(0x40) sz Member Info [3]int
23. (2)(0) Vector::Vector(int)
Proc Info [76] endref 27, Reference
Class(extended file 0,
index 2)
24. (3)(0)this Param Info [73] Const Pointer to

312

Class(extended file 0,
index 2)
25.(3)(0)i Param Info [3]int
26. (2)(0) Vector::Vector(int)
End Info symref 23
27.(2)(0) Vector::Vector(const Vector&)
Proc Info [86] endref 31, Reference Class(extended
file 0, index 2)
28. (3)(0)this Param Info [73] Const Pointer to
Class(extended file 0,
index 2)
29.(3)(0) Param Info [83] Reference Const
Class(extended file 0,
index 2)
30. (2)(0) Vector::Vector(const Vector&)
End Info symref 27
31. (2)(0) Vector::operator [](int)
Proc Info [90] endref 35, int
32.(3)(0)this Param Info [73] Const Pointer to
Class(extended file 0,
index 2)
33.(3) 0)i Param Info [3]int
34. (2)(0) Vector::operator [](int)
End Info symref 31
35. (2)(0) Vector::operator =(const Vector&)
Proc Info [92] endref 39, Reference
Class(extended file 0,
index 2)
36. (3)(0) this Param Info [73] Const Pointer to
Class(extended file 0,
index 2)
37.(3)(0) Param Info [83] Reference Const
Class(extended file 0,
index 2)
38. (2)(0) Vector::operator =(const Vector&)
End Info symref 35
39.(1)(0) Vector End Info symref 2
40. (1)(0) __throw_Q16Vector4Size
Tag Info [96] struct(extended file O,
index 41)
41. (1)(0x10) __throw_Q16Vector4Size
Block Info symref 45
42. (2)(0) type_signature
Member Info [99] Pointer to char
43. (2)(0x40) thunk ~ Member Info [99] Pointer to char
44. (1)(0) __throw_Q16Vector4Size
End Info symref 41
45. (1)(0x3c0) __throw_Q16Vector4Size
Static Data [176] Array [(extended file 7,
aux 9)0-1:128] of
struct(extended file 0,
index 41)
46. (1)(0x3a0) __throw_Q16Vector5Range
Static Data [176] Array [(extended file 7,
aux 9)0-1:128] of
struct(extended file 0,
index 41)
47. (1)(0) Vector::Vector(int)
Proc Text [184] endref 57, Reference
Class(extended file O,
index 2)
48. (2)(Oxa) this Param Register [73] Const Pointer to
Class(extended file 0,

313

index 2)

49. (2)(0x9) i Param Register [3]int

50. (2)(0x20) Block Text symref 56

51.(3)(-8) __t8 Local Abs [44] Class(extended file 0,
index 15)

52. (3)(0x3c0) __throw_Q16Vector4Size
Static Data indexNil
53.(3)(-16) _ 19 Local Abs [10] unsigned long
54.(3)(-24) __t10 Local Abs [194] Pointer to Array
[(extended file 7, aux
9)0-0:32] of int
55. (2)(0x74) End Text symref 50
56. (1)(0xb4) Vector::Vector(int)
End Text symref 47
57. (1)(0xb4) Vector::operator [](int)
Proc Text [200] endref 65, int
58. (2)(0x28) this Param Abs [73] Const Pointer to
Class(extended file 0,

index 2)

59. (2)(0x9) i Param Register [3]int

60. (2)(0x1c) Block Text symref 64

61.(3)(-16) _ t11 Local Abs [22] Class(extended file 0,
index 8)

62. (3)(0x3a0) __throw_Q16VectorSRange
Static Data indexNil
63. (2)(0x44) End Text symref 60
64. (1)(0x7c) Vector::operator [J(int)
End Text symref 57
65. (11)(0x130) f(void) Proc Text [202] endref 78, void
66. (2)(0x1c) Block Text symref 77
67.(3)(-32) i Local Abs [3]int
68. (3)(-48) __current_try_block_decl
Local Abs indexNil

69. (3)(0x28) Block Text symref 72
70. (4)(-24) v Local Abs [16] Class(extended file O,
index 2)
71. (3)(Oxab) End Text symref 69
72. (3)(0xac) Block Text symref 74
73. (3)(0xe3) End Text symref 72
74. (3)(0Oxed) Block Text symref 76
75. (3)(0x113) End Text symref 74
76. (2)(0x11c) End Text symref 66

77. (1)(0x130) f(void) End Text symref 65

78. (1)(0x260) main Proc Text [204] endref 82, int
79. (2)(0x10) Block Text symref 81

80. (2)(0x18) End Text symref 79

81. (1)(0x24) main End Text symref 78

82. (0)(0) multiexc.cxx End Text symref 0

314

9.3. Fortran

9.3.1. Common Data

SeeSection 5.3.6.%0r related information.

Source Listing

comm.f:

C main program
INTEGER IND, CLASS(10)
REAL MARKS(50)
COMMON CLASS,MARKS,IND
CALL EVAL(5)
STOP
END

SUBROUTINE EVAL(PERF)
INTEGER PERF,JOB(10),PAR
REAL GRADES(50)
COMMON JOB,GRADES,PAR
RETURN

END

Symbol Table Contents

File 0 Local Symbols:

0.(0)(0)comm.f File Text symref 13

1. (1)(0) comm$main_ Proc Text [25] endref 6, btNil

2. (2)(0x10) Block Text symref 5

3.(3)(0)_BLNK__ Static Common [39] struct(extended file 1,
index 1)

4. (2)(0x44) End Text symref 2

5. (1)(0x44) comm$main_ End Text symrefl

6. (1)(0x44) eval_ Proc Text [42] endref 12, btNil

7.(2)(0) PERF Param VarRegister [11] 32-bit long

8. (2)(0x4) Block Text symref 11

9.(3)(0)_BLNK__ Static Common [56] struct(extended file 2,
index 1)

10. (2)(0x4) End Text symref 8

11. (1)(0x8) eval_ End Text symref 6
12. (0)(0)comm.f End Text symref O

File 1 Local Symbols:

0.(0)(0)_BLNK__ File Text symref?7

1. (1)(0xf4) _BLNK__ Block Common symref6

2. (2)(0x780) IND Member Info [5] 32-bit long

3.(2)(0)CLASS Member Info [6] Array [(extended file O,
aux 11)1-10:4] of 32-bit
long

4. (2)(0x140) MARKS Member Info [12] Array [(extended file 0,
aux 11)1-50:4] of float

315

5.(1)(0) End Common symref 1
6.(0)(0) _BLNK__ End Text symref 0

File 2 Local Symbols:

0.(0)(0)_BLNK__ File Text symref7

1. (1)(0xf4) _BLNK__ Block Common symref6

2.(2)(0)JoB Member Info [5] Array [(extended file 0,
aux 11)1-10:4] of 32-bit
long

3. (2)(0x780) PAR Member Info [11] 32-bit long

4. (2)(0x140) GRADES Member Info [12] Array [(extended file O,
aux 11)1-50:4] of float

5.(1)(0) End Common symref 1

6.(0)(0)_BLNK__ End Text symref 0

Externals table:
0. (file 0) (0) MAIN__ Proc Text symrefl
1. (file 0) (Oxf4) _BLNK__ Global Common indexNil
2. (file 0) (0) comm$main_ Proc Text symrefl
3. (file 0) (Ox44)eval_ Proc Text symref6
4. (file 0) (0)for_stop Proc Undefined indexNil
5. (file 0) (0) for_set_reentrancy
Proc Undefined indexNil
6. (file 0)(0) fpdata Global Undefined indexNil

E|LE DESCRIPTOR TABLE

filename address vstamp -g sex lang flags
cbLine --------------- iBase/count
InOffset sym line pd string opt aux rfd
comm.o:
comm.f 0x0000000000000000 0x0000 O el Fortran readin
0 0 0 0 0O 0O o0 O
5 13 20 2 4 0 59 O
_BLNK__ 0x0000000000000000 0x0000 O el Fortran merge
0 13 0 2 44 0 59 O
0 7 0 0 33 0O 18 O
_BLNK__ 0x0000000000000000 0x0000 O el Fortran merge
0 20 0 2 77 0 77 O
0 7 0 0 32 0 18 O

316

9.3.2. Alternate Entry Points

SeeSection 5.3.6.7or related information.

Source Listing

aent.f:
program entryp

print *, "In entryp, the main routine”
call anentry()

call anentry1(2,3)

call anentryla(2,3,4,5,6,7)

call asubr()

print *, "exiting..."

end

subroutine asubr

real*4 areal /1.2345E-6/
print *, "In asubr”

return

entry anentry
print *, "In anentry"
return

entry anentryl(a,b,c,d,e,f)
a=1

b=2

print *, "In anentryl"
return

include 'entrya.h’

entry anentry2(b,a)
print *, "In anentry2"
return

entry anentry3
include ‘entryb.h'
return

end

Symbol Table Contents
File 0 Local Symbols:

0.(0)(0)aentf File Text symref 30
1. (1)(0)entryp_ Proc Text [4] endref 5, btNil
2. (2)(0x14) Block Text symref 4
3. (2)(0xf8) End Text symref 2

317

4. (1)(0x108) entryp_ End Text symref 1

5. (1)(0x108) asubr_ Proc Text [6] endref 29, btNil
6. (2)(0x20) Block Text symref 28

7. (3)(0x610) AREAL Static Data [8] float

8. (3)(0x17c) anentry_ Proc Text [9] endref -1, btNil
9. (4)(0x1f0) anentryl_ Proc Text [11] endref -1, btNil
10. (5)(0xa) A Param VarRegister [8] float

11. (5)(0x9) B Param VarRegister [8] float

12. (5)(-144) C Param Var [8] float

13. (5)(-152) D Param Var [8] float

14. (5)(-160) E Param Var [8] float

15. (5)(-168) F Param Var [8] float

16. (5)(0x290) anentryla_Proc Text [13] endref -1, btNil
17. (6)(0xa) A Param VarRegister [8] float

18. (6)(0x9) B Param VarRegister [8] float

19. (6)(-144) C Param Var [8] float

20. (6)(-152) D Param Var [8] float
21. (6)(-160) E Param Var [8] float
22.(6)(-168) F Param Var [8] float
23. (6)(0x330) anentry2_ Proc Text [15] endref -1, btNil

24, (7)(0x9) B Param VarRegister [8] float
25.(7)(Oxa) A Param VarRegister [8] float

26. (7)(0x3ac) anentry3_ Proc Text [17] endref -1, btNil
27. (7)(0x384) End Text symref 6

28. (6)(0x3a0) asubr_ End Text symref 5
29.(5)(0)aentf End Text symref 0

Externals table:
0. (file 0) (0) MAIN__ Proc Text symrefl
1. (file 0) (O)entryp_ Proc Text symrefl
2. (file 0) (0x108) asubr_ Proc Text symref5
3. (file 0) (0x290) anentryla_Proc Text symref 16
4. (file 0) (0x1f0) anentryl_ Proc Text symref9
5. (file 0) (0x17c) anentry_ Proc Text symref8
6. (file 0) (0O) for_set_reentrancy

Proc Undefined indexNil
7. (file 0) (O) for_write_seq_lis

Proc Undefined indexNil
8. (file 0) (0x330) anentry2_ Proc Text symref 23
9. (file 0) (0x3ac) anentry3_ Proc Text symref 26
10.(file 0) (0) _fpdata Global Undefined indexNil

PROCEDURE DESCRIPTOR TABLE*

name prof rirm isym iline iopt regmask regoff fpoff fp
address guse gpro InOff InLow InHigh fregmask frgoff Icloff pc

aent.o:

aent.f [0 for 7]
entryp. 0 0O 1 O -1 0x04000200 -112 11230
0x000 1 8 0 1 10 0x0O0000000 O 026
asubr_ 0 0O 5 66 -1 0x04001e00 -256 256 30
0x108 1 8 8 12 37 0x0O0000000 0O 026
anentry . 0 0 8 95 -1 0x04001e00 -256 256 30

Ox17c 1 8 11 17 -1 Ox0O0000000 O 026
anentryl 0 O 9 124 -1 0x04001e00 -256 256 30
Ox1f0 1 8 14 21 -1 Ox00000000 O 026
anentryla_ 0 0 16 164 -1 0x04001e00 -256 256 30
0x290 1 8 20 1 -1 Ox00000000 O 026
anentry2_ 0 0 23 204 -1 0x04001e00 -256 256 30
0x330 1 8 25 29 -1 0x00000000 O 026
anentry3_ 0 0 26 235 -1 0x04001e00 -256 256 30

318

Ox3ac 1 8 28 33 -1 0x0O0000000 O 026

319

9.3.3. Array Descriptors

SeeSection 5.3.8.8or related information.

Source Listing

arraydescs.f:
I -*- Fortran -*-

integer, allocatable, dimension(:,:) :: alloc_int_2d
real, pointer, dimension(:) :: pointer_real_1d

allocate(alloc_int_2d(10,20))
call zowie(alloc_int_2d)
end
contains

subroutine zowie(assumed_int_2d)
integer, dimension(:,:) :: assumed_int_2d
print *, assumed_int_2d

return

end subroutine

Symbol Table Contents
File O Local Symbols:

0. (0)(0)arraydescs.f File Text symref 43
1. (1)(0) main$arraydescs_

Proc Text [4] endref 26, btNil
2. (2)(0x40) $f90%$f90_array_desc

Block Info symref 10
3.(3)(0)dim Member Info [6] 8-bit int
4. (3)(0x40) element_length Member Info [7] 32-bit long
5. (3)(0x80) ptr Member Info [9] Pointer to float
6. (3)(0x140) iesl Member Info [10] 32-bit long
7. (3)(0x180) ubl Member Info [11] 32-bit long
8. (3)(0x1cO) Ib1 Member Info [12] 32-bit long
9. (2)(0) $f90%f90_array_desc

End Info symref 2
10. (2)(0x58) $f90$f90_array_desc

Block Info symref 21
11. (3)(0)dim Member Info [16] 8-bit int
12. (3)(0x40) element_length

Member Info [17] 32-bit long
13. (1 3)(0x80) ptr Member Info [19] Pointer to 32-bit long
14. (3)(0x140)iesl Member Info [20] 32-bit long
15. (1 3)(0x180) ubl Member Info [21] 32-bit long
16. (3)(0x1c0) Ibl Member Info [22] 32-bit long
17. (3)(0x200) ies2 Member Info [23] 32-bit long
18. (1 3)(0x240) ub2 Member Info [24] 32-bit long
19. (1 3)(0x280) 1b2 Member Info [25] 32-bit long
20. (2)(0) $f90%$f90_array_desc

320

End Info symref 10
21. (2)(0x14) Block Text symref 25
22. (3)(0x450) POINTER_REAL_1D
Static Bss [13] struct(extended file O,
index 2)
23. (3)(0x3c0) ALLOC_INT_2D
Static Data [26] struct(extended file O,
index 10)
24. (2)(0x160) End Text symref 21
25. (1)(0x170) main$arraydescs_
End Text symref 1
26. (1)(0x170) zowie_ Proc Text [29] endref 42, btNil
27. (2)(0x58) $f90$f90_array_desc
Block Info symref 38
28.(3)(0)dim Member Info [31] 8-bit int
29. (3)(0x40) element_length
Member Info [32] 32-bit long
30. (3)(0x80) ptr Member Info [34] Pointer to 32-bit long
31. (3)(0x140) iesl Member Info [35] 32-bit long
32. (13)(0x180) ubl Member Info [36] 32-bit long
33. (3)(0x1c0) Ibl Member Info [37] 32-bit long
34. (3)(0x200) ies2 Member Info [38] 32-bit long
35. (13)(0x240) ub2 Member Info [39] 32-bit long
36. (3)(0x280) Ib2 Member Info [40] 32-bit long
37.(2)(0) $f90%$f90_array_desc
End Info symref 27
38. (2)(0x9) ASSUMED_INT_2D
Param VarRegister [41] struct(extended file O,

index 27)
39. (2)(0x34) Block Text symref 41
40. (2)(0x1f4) End Text symref 39

41. (1)(0x220) zowie_ End Text symref 26
42.(0)(0) arraydescs.f End Text symref 0

321

9.4. Pascal

9.4.1. Sets

SeeSection 5.3.8.1%or related information.

Source Listing

program sets(input,output);
type digitset=set of 0..9;
var odds,evens:digitset;
begin

odds:=[1,3,5,7,9];
evens:=[0,2,4,6,8];

end.

Symbol Table Contents
File O Local Symbols:
0)(0)setp File Text symref 10

0. (
1. (1)(0x50) $dat Static SBss indexNil

2.(1)(0) main Proc Text [8] endref 9, btNil
3.(

4. (

2)(Ox4) Block Text symref 8
3)(0) digitset Typdef Info [16] set of(extended file O,
index 10)
5. (3)(-8) odds Local Abs [16] set of(extended file O,
index 10)
6. (3)(-16) evens Local Abs [16] set of(extended file O,
index 10)
7. (2)(0x1c) End Text symref 3

8. (1)(0x24) main End Text symref 2
9.(0) O)setp End Text symref O

322

9.4.2. Subranges

SeeSection 5.3.8.1for related information.

Source Listing

subrange.p:

program years(input,output);
type century=0..99;

var year:century;

begin

readln(year);

end.

Symbol Table Contents
File O Local Symbols:

0. (0)(0) subrange.p File Text symref 9

1. (1)(0xcO) $dat Static SBss indexNil

2. (1)(0) main Proc Text [8] endref 8, btNil
3.(

4. (

2)(0x10) Block Text symref 7

3)(0) century Typdef Info [10] range0..99 of(extended
file 0, index 2): 8

5.(3)(-8) year Local Abs [10] range0..99 of(extended

file 0, index 2): 8

6. (2)(0x68) End Text symref 3

7. (1)(0x74) main End Text symref 2

8. (0)(0) subrange.p End Text symref O

323

9.4.3. Variant Records

SeeSection 5.3.8.1for related information.

Source Listing

variant.p:
program variant(input,output);

type employeetype=(h,s,m);
employeerecord=record
id:integer;
case status: employeetype of
h: (rate:real,
hours:integer;);
s: (salary:real);
m: (profit:real);
end; { record }

var employees:array[1..100] of employeerecord,
begin

employees[1].id:=1;
employees[1].profit:=0.06;

end.

Symbol Table Contents

File O Local Symbols

0. (0)(0) variant.p File Text symref 28
1. (1)(0) VARIANT StaticProc Text [2] endref 27, btNil
2.(2)(0) EMPLOYEETYPE
Block Info symref 7
3.3)(OH Member Info [0] btNil
4. (3)(0x1) S Member Info [0] btNil
5. (3)(0x2) M Member Info [0] btNil
6. (2)(0) EMPLOYEETYPE
End Info symref 2
7 (2)(0x10) EMPLOYEERECORD
Block Info symref 23
8 (3)(0)ID Member Info [1] int
9 (3)(0x20) STATUS Member Info [5] enum(extended file 1, index

2)
10. (3)(0x9) Block Variant symref 22
11. (4)(Oxc) Block Info symref 15

12. (5)(0x40) RATE Member Info [11] float
13. (5)(0x60) HOURS = Member Info [1] int
14 (4)(0) End Info symref 11

15. (4)(0x11) Block Info symref 18

16. (5)(0x40) SALARY Member Info [11] float
17. (4)(0) End Info symref 15

324

18. (4)(0x16) Block Info symref 21

19. (5)(0x40) PROFIT Member Info [11] float
20.(4)(0) End Info symref 18

21. (3)(0x9) End Variant symref 10

22.(2)(0) EMPLOYEERECORD
End Info symref 7

23. (2)(0x18) Block Text symref 26

24. (3)(-1600) EMPLOYEES Local Abs [32] Array [(extended file 1,
aux 27)1-100:128] of struct
(extended file 1, index 7)

25. (2)(0x30) End Text symref 23

26. (1)(0x40) VARIANT End Text symref 1

27.(0)(0) variant.p End Text symref 0

325

.conflict, 279

Ada, 156, 172, 204, 234, 236, 243, 244
Alternate entry points, 209
Archive
Symdef file, 295
Archive files, 240, 291
Auxiliarly symbol table, 181, 211, 215, 216, 217, 218, 219, 220

C

C++, 139, 154, 161, 168, 169, 171, 172, 173, 174, 175, 176, 180, 204, 207, 208, 210, 224, 228, 229, 230, 231, 241,
243, 271

COBOL, 156, 157, 160, 161, 172, 174

Common symbols, 155, 167, 208, 209, 240, 260, 277, 279

Compact relocation information, 90, 131, 132, 133, 134

D
diclose, 265
dlopen, 261, 264, 265, 275, 277
disym, 266

E

Executable File, 69, 74, 75
Extended Source Location Information, 187, 188, 189, 190, 191, 192, 193

F

File header, 38, 39, 40, 132
Fortran, 139, 155, 168, 172, 173, 175, 208, 209, 222, 241, 243

K
Kernel, 91, 124, 258

L
Lazy text resolution, 276
Line Number Information

ESLI, 187, 188, 189, 190, 191, 192, 193

M
Mangling/Demangling, 241, 243

N

Namespace pollution, 271
NMAGIC, 79

326

O
Object
File header, 38, 39, 40, 132
Object file consumers, 85, 190, 193
OMAGIC, 79, 91
P
Pascal, 155, 156, 160, 172, 204, 211, 234, 236, 238, 243, 244
R
Relocation, 84, 85, 86, 87, 88, 89, 92, 93, 99, 100, 101, 139, 254, 278
S
Scopes, 201, 202
Section header, 90, 133
Stripped object files, 179, 180
Symbol resolution, 240, 270
Symdef file, 295
T

TASO (Truncated Address Support Option), 250
Thread Local Storage, 64, 73, 80, 81, 82, 89, 97, 100, 127, 128, 129, 130, 155, 156, 167, 168, 200, 242, 250, 265, 266,
272

W
Weak symbols, 273

ZMAGIC, 79, 91, 258

