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About this Manual

This book describes the organization and usage of object files and imagesthat are built on Tru64 UNIX
systems.

Audience

This manual istargeted for compiler and debugger writers and other devel opers who must access or
manipulate object files. A familiarity with basic program devel opment and symbol table conceptsis
assumed.

Necessity

Thisisanew manual designed to fill aneed for technical information for back-end devel opers working on
the Tru64 UNIX operating system. It supplements or replaces information that has been previousy
available in the Assembly Language Programmer's Guide.

Organization

This manual is organized asfollows:

Provides background information on the devel opment environment and describes the

Chapter 111 gh-level organization and usage of object files

Chapter 2 |Describes the header sections of the abject file.

Chapter 3  |Describes the contents of the "raw data" sections of the object file.

Chapter 4 |Describes the relocation process and related structures stored in the object file.

Chapter 5 | Describes the symbol table.

Chapter 6  |Describes the object file sections containing dynamic loading information.

Chapter 7 | Describes the format and usage of the object file comment section (. comment).

Chapter 8 |Describes the archive file format.

Chapter 9  |Provides examples that illustrate symbol table representations.

Related Documents

This manual discusses the object file format from the perspectives of tools that produce or use object files.
Understanding the purpose of these tools is a prerequisite, but thisinfo is touched upon briefly in this
document. The primary source for information on system programsin the development environment isthe
Programmer's Guide. The default debugger on Tru64 UNIX istheladebug debugger, which is treated
separately in the Ladebug Debugger Manual.



The contents of object files are a so tied to the Alphaarchitectural implementation. The Assembly
Language Programmer's Guide provides an architectural overview that focuses on assembly-level
instructions and directives. Architectural documentation is also available in the Alpha Architecture
Reference Manual.

The Calling Standard for Alpha Systems a so contains materia related to thismanual. The calling standard
defines the interface and other requirements for procedure calls on Alpha platforms.

The Documentation Overview, Glossary, and Master Index provides information on all of the booksin the
Tru64 UNIX documentation set.

Reader's Comments

Compag wel comes any comments and suggestions you have on this and other Tru64 UNIX manuals.
Y ou can send your commentsin the following ways:

e Fax: 603-884-0120 Attn: UBPG Publications, ZK03-3/Y 32

e Internet eectronic mail: readers comment@zk3.dec.com

A Reader's Comment form is located on your system in the following location:
/usr/doc/readers_comment.txt

e Mail:
Compag Computer Corporation
UBPG Publications Manager
ZK03-3/Y 32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader's Comment form is located in the back of each printed manual. The formis postage paid if
you mail it in the United States.

Please include the following information along with your comments:

e Thefull title of the book and the order number. (The order number is printed on thetitle page of this
book and on its back cover.)

e The section numbers and page numbers of the information on which you are commenting.

e Theversion of Tru64 UNIX that you are using.

e If known, thetype of processor that isrunning the Tru64 UNIX software.

The Tru64 UNIX Publications group cannat respond to system problems or technical support inquiries.
Please address technical questionsto your local system vendor or to the appropriate Compaq technical

support office. Information provided with the software media explains how to send problem reportsto
Compag.

Conventions

This document uses the following typographic and symbol conventions:



o\°

Ur

A percent sign represents the C shell system prompt. A dollar sgn represents the system prompt for the
Bourne and Korn shells.

#
A number sign represents the superuser prompt.

% cat
Boldface type in interactive examples indicates typed user input.

file
Italic (danted) type indicates variable val ues, placeholders, and function argument names.

(]

{1}
In syntax definitions, bracketsindicate itemsthat are optional and braces indicate itemsthat are
required. Vertical bars separating itemsinsde brackets or braces indicate that you choose one item
from among those listed.
In syntax definitions, ahorizonta ellipsisindicates that the preceding item can be repeated one or more
times.

cat(l)

A cross-reference to areference page includes the appropriate section number in parentheses. For
example, cat(1) indicates that you can find information on the cat command in Section 1 of the
reference pages.
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1. Introduction

The Tru64 UNIX Object File/Symbol Table Format Specification isthe official definition of the object file
and symbol table formats used for Tru64 UNIX object files. It also describes the legal uses of the formats
and their interpretation.

This document treatsin detail the file formats for object files and archive files. These files are described as
follows:

Object File
An object fileisabinary file produced by a compiler, assembler, and/or linker from high-level-
language source files or other object files. Object files can be executable programs, shared libraries, or
rel ocatabl e object files. One or more rel ocatabl e object files can be linked together to form executable
programs or shared libraries.

Symbol Table

A symbol tableis contained within an object file. It isused to convey linking and debugging
information describing the contents of the object file.

ArchiveFile
An archivefileisasinglefile which contains many object or text files that are managed as a group.
Archivefiles can serve aslibraries that are searched by the linker. A special symbol table isincluded in
the archivefilefor this purpose. Thearchiver (ar (1)) isthetool used to create and update archive
files.

Toolsthat create, use, or otherwise interact with object or archive files should conform to the formatting
and usage conventions outlined in this specification.

1.1. Definitions

This section defines termsthat are used throughout this document.
address

If not otherwise specified, an addressisalocation in virtual memory.
alignment

The positioning of dataitems or object file sections in memory so that the starting addressis evenly
divisible by a given factor.

absolute file offset
Seefile offset.
API
Application Programming Interface.

application
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A user-level program.
base address

The lowest-numbered location of an object file mapped in virtual memory.
byte boundary

The aignment factor.
common stor age class symbol

A global symbol that can be legally multiply defined. Storage space for common storage class symbols
istypically allocated when relocatable object files are linked.

constant
A variable or value that cannot be overwritten.
dynamic executable

A call-shared application or program. A dynamic executable islinked with shared libraries and loaded
by the dynamic loader.

dynamic loader

A system program that maps dynamic executables and shared libraries into virtual memory so that they
can be executed.

entry point
Thefirg instruction that is executed in a program or procedure.
executable

An object file that can be executed. Also referred to asa program, image, or executable object.
Executables can be static or dynamic.

file offset

The digance in bytes from the beginning of an on-disk file to an item within thefile. Also referred to
as an absolute file of fset.

hashing
A search technique typically used in performance-sensitive programs.
image

A program mapped in memory for execution. A shared process image includes mappings of shared
libraries used by the program.

linker

The system utility 1d. This utility is the primary producer of executable object files and shared
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libraries.
literal
A valuerepresented directly.
locally stripped
Stripped of local symbol information.
namespace
A scope within which symbol names should al be unique.
preemption

A mechanism by which all references to a multiply defined symbol are resolved to the same insance
of the symbal.

relative file offset

The digtance in bytes from a given position in an on-disk file to another item within the file.
relative index

An index represented as an offset from a base index.
relocatable obj ect

An object file that includes the information required to link it with other object files.
section

The primary unit of an object file.
segment

A portion of an object file that consists of one or more sections and can be loaded into virtual memory.
shared library

An object file that provides routines and data used by one or mare dynamic executables.
shared obj ect

A dynamic executable or shared library.
static executable

An object file that contains all of the executable code and datarequired to create a runnable program
image.
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1.2. History and Applicability

The object file format described in this specification originated from the System V COFF (Common Object
File Format). I mplementati on-dependent varieties of the COFF format are used on many UNIX systems.
Tru64 UNIX has altered and extended the object file format to serve as the basis for program devel opment
on Alpha systems. This extended version of COFF isreferred to in this document as eCOFF.

All systems based on the Alpha architecture and running Trué4 UNIX employ the eCOFF object file
format.

1.3. Producers and Consumers

Many tools interact with objects and archives in the development environment. Object file producers create
object files, and object file consumers read object files. A tool may be both a producer and a consumer.
Figure 1-1 provides one view of the program devel opment process from source files through executable
object file production.

Figure 1-1 Object File Producers and Consumers

source Files  Clompilers Assembler Linker, Archiver Instrumentation
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name.s
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A summary of the functions of relevant system utilities and their relationship to objects and archives
follows. Detailed information is available in reference pages.

1.3.1. Compilers

Compilers are programs that trandate source code into either intermediate code that can be processed by an
assembler or an object file that can be processed by the linker (or executed directly). Accordingly,
compilers may be direct or indirect producers of object files, depending on the compilation system. The
compiler creates theinitial symbol table.

1.3.2. Assemblers

Assemblers also produce object files. An assembler converts a compiler's output from assembly language
(the intermediate form) into binary machine language. Theresult istraditionally a non-executabl e object
file(.o file). The assembler lays out the sections of the object file and assigns data el ements and code to
the various sections. It also lays the groundwork for the relocation process performed by linkers.
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1.3.3. Linkers

A linker (or link-editor) accepts one or more object files asinput and produces another object file, which
may be an executable program. Thelinker performs relocation fixups and symbol resolution. It merges
symbolic information and searches for referenced symbolsin shared libraries and archive libraries. Linkers
are producers and consumers of object files, and consumers of archivefiles.

The selection of command-line options determines what type of object the linker produces. A final link
produces an executable object file or shared library. A partia link produces a relocatable object that can be
included in a futurelink.

1.3.4. Loaders

Loaders (sometimes referred to as dynamic linkers) load executable object files and shared libraries into
system memory for execution. A loader may perform dynamic rel ocation and dynamic symbol resol ution.
It may also provide run-time support for loading and unloading shared objects and on-the-fly symbol
resolution. The loader isa consumer of executable object files and shared libraries.

1.3.5. Debuggers

Debuggers are utilities designed to assist programmers in pinpointing errors in their programs. Debuggers
are object file consumers, and they rely heavily on the debug symbol table information contained in object
files.

1.3.6. Object Instrumentation Tools

Object instrumentation tools are both consumers and producers of object files. Their input is an executable
object and, possibly, the shared libraries used by that executable object. Their output isthe instrumented
version of the executable program. Instrumentation invol ves modifying the application by adding callsto
anaysis procedures at basic block, procedure, or ingruction boundaries. Depending on the tool, theaim
may be to optimize the program or gather data to enable future optimizations.

1.3.6.1. Post-Link Optimizers

The om object modification tool isan object transformation tool that performs post-link optimizations such
asremoval of unneeded ingructions and data. om'sinput isa specially linked object file produced by the
linker, and its output isamodified executable object file.

The cord tooal is apost-link tool that rearranges procedures in an executabl e file to facilitate improved
cache mapping.

These tools are abject file consumers and producers.

1.3.6.2. Profiling Tools

UNIX profiling tools (such as Compag's programmable profiling and program analysistool, Atom) are
object file producers and consumers. These tools examine an executable object and the shared libraries it
uses and report information such as basic block counts and procedure calling hierarchies. They may also
restructure the program to improve performance. Output includes files that store profiling data generated
during execution of the insrumented application.
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1.3.7. Archivers

An archiver isatool that produces and maintains archivefiles. It isa producer and a consumer of archive
files and a consumer of object files.

1.3.8. Miscellaneous Object Tools

1.3.8.1. Object Dumpers

Tools are available that read abject files and dump (print) their contentsin human-readable form. Examples
are nm, odump, stdump, and dis. These tools are object file consumers.

1.3.8.2. Object Manipulators

Thetoolsostrip and strip reduce the size of an object file by removing certain portions of thefile.
Themcs tool modifies the comment section only. These tools are both consumers and producers of object
files.

1.4. Object File Overview

1.4.1. Main Components of Object Files

This document is organized to correspond to a conceptual breakdown of an object file€'s contents. The main
components of an object file are described briefly in the remainder of this section.

A high-leve view of the eCOFF object file contentsis depicted in Figure 1-2.

Figure 1-2 Object File Contents

File Header
a.out Header
Section Headers
Raw Data Sections
Relocations
Symbol Table
Comment Section

1.4.1.1. Object File Headers

Header structures serve as aroadmap for navigating portions of the object file. They provide information
about the size, location, and status of various sections and about the object asawhole. See Chapter 2 for
more information.
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1.4.1.2. Instructions and Data

Ingructions and data are located in loadable segments of the object file. Instructions consist of all
executable code. Data consists of uninitialized and initialized data, constants, and literals. Instructions and
dataarelaid out in sections that are arranged into segments. The segments are then loaded to form part of
the program'’s final image in memory. See Chapter 3 for more information.

1.4.1.3. Object File Relocation Information

The purpose of relocation isto defer writing the address-dependent contents of an object file until link time.
Rel ocation entries are created by the compiler and assembler, and the necessary address adjustments are
calculated by thelinker. Information relevant to relocation is stored in section rel ocation entries and in the
symbol table. In some instances, the loader subsequently performs dynamic relocation. See Chapter 4 and
Chapter 6 for more details.

1.4.1.4. Symbol Table

The symbol table contains information that describes the contents of an object file. Linkersrely on symbol
table information to resolve references between object files. Debuggers use symbol table information to
provide users with a source language view of a program's execution and its execution image. See Chapter 5
for more details.

1.4.1.5. Dynamic Loading Information

Dynamic sections are utilized by the loader to create a process image for an executable object. These
sections are present in shared object files only. Information isincluded to enable dynamic symbol
resolution, dynamic rel ocation, and quickstarting of programs. See Chapter 6 for more details.

1.4.1.6. Comment Section

The comment section is anon-loadable section of the object file that is divided into subsections, each
containing a different kind of information. This section is designed to be a flexible and expandable
repository for supplemental object file data. See Chapter 7 for more information.

1.4.2. Kinds of Object Files

There are four principal types of object files:

e Reocatable objects
Rel ocatabl e objects are object files that contain full relocation information. They are usually not
executable. Pre-link producers- generally compilers and assemblers- always generate rel ocatable
objects. The linker can also generate rel ocatabl e objects, but does not do so by default. See Chapter 4
for more details.

e  Static (non-shared) executables

An object fileis executableif it has no undefined symbol references. Executable objects can be static
or dynamic.

Static executables are object filesthat arelinked -non_shared. They use archive libraries only.
They arefully resolved at link time and are loaded by the kernel's program execution facility.

e Dynamic (call-shared) executables
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Dynamic executables are object files that arelinked -call shared. They may use shared libraries,
archive libraries or both. A dynamic executable is the compilation system's default output. The system
loader performs dynamic linking, dynamic symbol resolution, and memory mapping for dynamic
executables and the shared libraries they use.

e  Shared libraries

Shared libraries are object files that provide collections of routines that can be used by dynamic
executables. Although it contains executable code, a shared library by itsalf isnot usually executable.
Advantages of shared libraries include the ahility to use updated libraries without relinking and a
reduction in disk requirements. Thereduction in disk requirementsis achieved by providing asingle
copy of routines and data that might otherwise be duplicated in many executable object files.

Object file types can often be differentiated by their file name extension. Typically, rel ocatable objects
have a . o file extenson and shared librarieshave a . so file extenson. The default name for an executable
object fileisa . out. User-named executable files often do not have an extension.

It isimportant to be aware of which type of fileis under discussion because the usage, content, and format
of each kind of abject file can vary significantly.

1.4.3. Object File Compression

File compression is used widely on al kinds of filesto save disk space. Smilarly, object files can be
compressed to save space. However, not all objects are candidates for compression and not al tool s that
handle objects al so support compressed object files.

Decompressed data can be, at most, eight times the size of the compressed data. Thisrate of compression is
the best case possible. At worst case, a compressed object will actually be larger than the decompressed
version. Typically, however, areduction of 50% to 75% in sizeis achieved.

When an object is compressed, the file header in uncompressed form precedes the compressed object file.
The uncompressed file header's magic number indicates whether theremainder of the file contains a
compressed object.
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Figure 1-3 Object File Compression
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The value of "size" isthe sze of the uncompressed object in bytes. The archiver uses the "pad” valueto
indicate the bytes of padding it inserted. Both fields are 8-byte unsigned integers.

The most commonly compressed objects are archive members. Both the archiver and the linker support
compressed objects used as archive members.

Executabl e objects and shared libraries cannot be compressed because the dynamic loader does not support
compressed objects. To decompress an image, the loader would need to all ocate space whereit could write
the decompressed image. Serious system penalties would be incurred because no part of the image would
be shareable. However, a compressed abject file can subsequently be decompressed and then loaded; this
might be away to temporarily save disk spacein some circumstances.

Thetool objzisaTru64 UNIX compression utility designed for object files. Seethe objZ (1) man page
for details.

1.4.4. Object Archives

Archiving isamethod used to enable manipulation of alarge number of files as a single group, which may
ease the task of file management. Any file can be archived. However, the archivefiles of primary interest in
program devel opment are archived object files that are used aslibraries for static executables.

Object archives provide a means of working with a collection of objects simultaneously. System libraries
such as"libc.a" and "libm.a" are object archives. Each library collects a set of related objects which provide
aservicein theform of callable APIs. Benefits of using archives in this fashion include the grouping of
related functions and shorter build commands.

Another benefit of archive libraries is sdective linking, whereby the linker extracts only needed objects
from alibrary, ingead of mapping the entire library with the image. For example, suppose the library
1ibEx.a contained theobjectsx.o, y.o, and z.o. If the executable a . out depended on x. o to
define areferenced symbol, but not on the other objectsin the archive, only x . o would become part of the
fina executable abject.
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Another typical use for object archivesisto subdivide large buildsinto subsystems, each of whichis
implemented as an archive that is eventually included in the final link.

Most tools that read objects will also read object archives. Thelinker applies special semanticsin its
handling of object archives, while other utilities treat an object archive as smply alist of object files.

Object archive members can also be compressed. In this case, each object that isan archive member is
compressed as shown in Section 1.4.3. The archive file€'s administrative information is not compressed.
Also, an archive file may contain both compressed and uncompressed file members.

More information on archives can be found in Chapter 8.

1.4.5. Object File Versioning

The object file and symbol table formats are versioned. This versioning scheme is independent of the
operating system or hardware versions. It isnot designed to be visible to end-users.

The object file and symbol table versions are each stored as a two-byte version stamp, with major and
minor components of one byte each. The object file version isstored in the a . out header's vstamp field,
and the symbol table version is stored in the symbolic header'svstamp field. The minor version is
incremented when new features or compatible structure changes are introduced. The major version is
incremented when an incompatible or semantically very significant change is made.

The object file version stamp covers the following structures:

e Fileheader (filehdr.h)

a.out header (aouthdr.h)

e Section header (scnhdr.h)

e Rdocations(reloc.h)

e .comment data (scncomment . h)

e Dynamic loading information structures (cof£_dyn.h)

The symbol table version covers all symboal table structures and values defined in the header files sym. h
and symconst . h.

The object file and symbol table versions can differ.
This document covers VV3.13 of the object file and V3.13 of the symboal table.

Tool-specific version information for object file consumers may also be stored in the on-disk object file. If
present, thisinformation is stored in the comment section. See Chapter 7 for details.
1.4.6. Object File Abstract Data Types

A consistent set of basic abstract data types are used to build object file, symbol table, and dynamic loading
structures. These names are defined in the header file cof £ _type . h.
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The use of abstract types for all elements of these structures facilitates cross-platform builds. To build a
tool to run on another platform, redefine the COFF basic abstract types for the new platform. Thisisdone
by inserting the new definitionsand "#define ALTERNATE COFF BASIC TYPES" prior toany
object file or symbol table header files.

Table 1-1 COFF Basic Abstract Types

Name Size Alignment Purpose

coff addr 8 8 Unsigned program address
coff off 8 8 Unsigned file offset
coff ulong 8 8 Unsigned long word
coff long 8 8 Signed long word
coff uint 4 4 Unsigned word

coff_ int 4 4 Signed word

coff ushort 2 2 Unsigned half word
coff short 2 2 Signed half word
coff ubyte 1 1 Unsigned byte

coff byte 1 1 Signed byte

Another data representation that is currently used exclusively in the optimization symbol tableis LEB
(Little Endian Byte) 128 format. Thisis avariable-length format for numeric data. The low-order seven
bits of each LEB byte are interpreted as an integer value. The high bit, if set, indicates a continuation to the
next byte. An LEB byteisillustrated in Figure 1-4. Thisformat takes advantage of the likelihood that most
numbers will be small. To form alarge number, concatenate the 7-bit segments of the LEB128 bytes, as
shown in Figure 1-5.

Figure 1-4 LEB 128 Byte
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Figure 1-5 LEB 128 M ulti-Byte Data
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A valuerepresented in LEB 128 format may be signed (SLEB) or unsigned (LEB). The second-highest hit
in the final byte of an SLEB valueisthe sign bit. This meansthat the signed value has to be propagated
only within one byte.

1.5. Source Language Support

Object files originate from source files that may be coded in any of several high-level languages. The
Tru64 UNIX eCOFF object file format supports the programming languages C, C++, Fortran, Bliss,
Fortran90, Pascal, Cobol, Ada, PL1, and assembly. The choice of source language primarily impacts the
symbol table, which includes the type and scope information used by the debugger. See Section 5.3.2 for
more information.

The UNIX system is closely tied to the C programming language, and many tools that work with objects do
not fully support non-C languages. Reference the specific tool's documentation for details.

1.6. System Dependencies

Certain characteristics of the object file format are dependent on the Tru64 UNIX operating system. This
section highlights those features and provides references to more detail ed information.

The address space and image layout information covered in Chapter 2 are dependent on the operating
system's virtual memory organization.

The kernd's virtual memory manager ensures that multiple processes can share al text and data pages. As
Soon as a process writes to one of those pages, it receives its own copy of that page. Because text pages are
always mapped read-only, they are aways shared for the lifetime of the process.

The virtual memory manager uses additional shareable pages, known as Pege Table pages, to record the
memory layout of a process. The linker's default address selection and the system library addresses are
designed to maximize sharing of page table pages, which are implemented as "wired" memory, alimited
system resource.
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As part of thisimplementation, the text and data segments of shared libraries are usually separated in the
address space. This separation allows many shared library text segmentsto be mapped in one area of
memory. The Page Table pages used to describe an area of memory containing only text segmentsare
shared by all processes that map one or more of those text segmentsinto their address space. This sharing
can result in significant savingsin wired memory used by the system.

The GP-relative addressing techniqueis unique to Tru64 UNIX. See Section 3.3.2.

The operation of the system dynamic loader as described in Chapter 6 is system-dependent. Other loaders
may behave differently.

The discussion of system shared library implementation using weak symbolsis unique to Tru64 UNIX. See
Section 6.3.4.1.

1.7. Architectural Dependencies

The 64-bit Alpha architecture defaultsto using the little-endian byte-ordering scheme. In little-endian
systems, the address of a multibyte data eement isthe address of its least significant byte, and the sign hit
islocated in the most significant bit. Bytes are numbered beginning at byte O for the lowest address byte, as
shown in Figure 1-6

Figure 1-6 Little Endian Byte Ordering

Quadword
Byte: 7 & 5 4 32 2 1 0O

most byte address
significant bits of quadword

A big-endian byte-order can be infered by assuming all structurefields would be byte-swapped in abig-
endian object. For example, big-endian byte order can be infered from Figure 1-6 by reversing the byte-
numbering and moving the "byte address of quadword" label to the new location of byte 0. Non-obvious
differences in the big-endian representation will be called out in the appropriate sections.

Asdiscussed in Section 2.3.5, hardware congraints dictate text and data alignment. Unaligned references
can cause fata errors or negatively impact performance. For instance, on Alpha systems, dereferencing a
pointer to alongword- or quadword-aligned object is more efficient than dereferencing a pointer to a byte-
or word-aligned object. Special ingructions exist for unaligned data memory accesses. The default
assumption isthat datais aligned.

TASO, the Truncated Address Space Option, isamigration path for applications with 32-bit assumptions
onto 64-bit Alpha platforms. Thistopic isdiscussed in Section 2.3.3.2.

Rel ocation entries are heavily dependent on the Alphainstruction format. See Chapter 4 for details.

See the Assembly Language Programmer's Guide and Alpha Architecture Handbook for additional
information about the Alpha Architecture.
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1.8. Relevant Header Files

Object and archive file structure declarations and val ue definitions are contained in the following header
filesinthe /usr/include directory:

aouthdr.h

ar.h

coff type.h
coff dyn.h
cmplrs/cmrlc.h
cmplrs/stsupport.h
filehdr.h
linenum.h
pdsc.h

reloc.h
scnhdr.h

sym.h
symconst.h
scncomment . h
stamp.h

To access object file structures, it is preferable to use defined APIs. APIs provide a constant interface to an
underlying structure which will evolve over time. Seethe 1ibst intro (3) manpage for reference.
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2. Headers

Headers serve as a cover page and table of contents for the object file. They contain size descriptions,
magic numbers, and pointersto other sections.

The object file components covered in this chapter are thefile header, a . out header, and section headers:
e Thefile header identifies the object file and indicates itstype.
e Thea.out header providesthe size, location, and addresses of the object's segments.

e  Section headers store the name, size, and mapped address of their sections and contain the locations of
the section'sraw data and rel ocation entries. Each object file section that isnot part of the symbol table
has a section header.

An object file may contain other header sections that are used to navigate the symbol table and dynamic
loading information. The symbolic header and dynamic header are discussed in Chapter 5 and Chapter 6
respectively.

2.1. New or Changed Header Features

Version 3.13 of the object file format does not introduce any new header features.

2.2. Structures, Fields, and Values for Headers

2.2.1. File Header (filehdr.h)
struct filehdr ({

coff ushort f magic;
coff ushort f nscns;
coff int f timdat;
coff off f symptr;
coff int f nsyms;
coff ushort f opthdr;
coff ushort £ flags;

}i
SIZE - 24 bytes, ALIGNMENT - 8 bytes

File Header Fields
f magic
File magic number (see Table 2-1). Used for identification.
f nscns
Number of section headersin the object file.
f timdat

Time and date samp. Thisfield isimplemented as a signed 32-bit quantity that acts as a forward or
backward offset in seconds from midnight on January 1, 1970. Theresulting daterangeis
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approximately 1902-2038.
f symptr
File offset to symbolic header. Thisfield isset to zeroin a stripped object.
f nsyms
Size of symbolic header (in bytes). Thisfieldis set to zero in a stripped object.
f opthdr
Size of a. out header (in bytes).
t flags

Flags (see Table 2-2) that describe the object file. Note that the file header flags cannot be treated asa
bit vector because some values are overloaded.

Table 2-1 File Header M agic Numbers

Symbol Value Description
ALPHAMAGIC 0603 Object file.
ALPHAMAGICZ 0610 Compressed object file.

ALPHAUMAGIC 0617 Ucode object file. Obsolete.




Table 2-2 File Header Flags

Symbol Value Description

oxonos [Fledomt oy oo femaion s

F_EXEC 0x0002 |Fileisexecutable (hasno unresolved external references).

F_LNNO 0x0004 |Linenumbersare stripped from file.

F_LSYMS 0x0008 |Local symbols are stripped from file.

F_NO_SHARED 0x0010 |Currently unused.

F_NO_ CALL SHARED 0x0020 83%'!:)6 @C?gﬁtagfel;isleg tocredtea-call_shared
Allows a static executable file to be loaded at an address less

F_LOMAP 0x0040 |than vM_MIN_ ADDRESS (0x10000). Thisflag cannot be
used by dynamic executables.

F_SHARABLE 0x2000 |Shared library.

F_CALL_SHARED 0x3000 |Dynamic executablefile.

F_NO_REORG 0x4000 |Tellsobject consumer not to reorder sections.

F_NO_REMOVE 0x8000 |Tells object consumer not to remove NOPS.

2.2.2. a.out Header (aouthdr.h)

The a. out header isalso referred to as the "optional header”. Note that "optional” isamisnomer because

the header is actually mandatory.

typedef struct aouthdr {

coff ushort
coff ushort
coff ushort
coff ushort
coff long
coff long
coff long
coff addr
coff addr
coff addr
coff addr
coff uint
coff word
coff long
} AOUTHDR;

magic;

vstamp;
bldrev;
padcell;

tsize;
dsize;
size;
entry;

text start;
data_start;
bss_start;
gprmask;
fprmask;
gp_value;
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SIZE - 80 bytes, ALIGNMENT - 8 bytes
a.out Header Fields
magic

Object-file magic numbers (see Table 2-3).
vstamp

Object file version stamp. This value consists of a major version number and aminor version number,
asdefined in the stamp . h header file:

MAJ SYM STAMP 3 High byte

MIN SYM STAMP 13 Low byte

Thisversion slamp covers al parts of the object file exclusive of the symbol table, which is covered by
an independent version stamp stored in the symbolic header

See Section 2.1, Section 3.1, Section 4.1, Section 6.1, and Section 7.1 for adescription of object file
features introduced with version V3.13.

bldrev

Revision of system build tools. Thisvalueisdefined in stamp . h and is updated for each major
release of the operating system. The values for Tru64 UNIX releases to date are shown below. This
field isnot meaningful to users.

Build Revison Constants

Release | 1.2 13 2.0 3.0 3.2 4.0 5.0

bldrev - 2 4 6 8 10 12

tsize
Text segment size (in bytes) padded to 16-byte boundary; set to zero if thereis no text segment.

For ZMAGIC object files, this value includes the size of the header sections (file header, a . out
header, and all section headers). See Section 2.3.2 for moreinformation.

dsize

Data segment size (in bytes) padded to 16-byte boundary; set to zero if there isno data segment..
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bsize
Bss segment size (in bytes) padded to 16-byte boundary; set to zero if there is no bss segment.
entry
Virtual address of program entry point. Thisfield is meaningful primarily for executable objects. For
shared libraries, it contains the starting address of the first procedure. For pre-link objects, it is
typically set to zero.

text start, data_start, bss_start

Base address of text, data, and bss segments, respectively, for thisfile. Alignment requirementsare
discussed in Section 2.3.2.

gprmask
Unused.

fprmask
Unused.

gp_value
Theinitial GP (Global Pointer) value used for this object. The kerndl loads this value into the GP
register ($gp) when a program is executed. The program entry point identified by the ent ry field will
load its GP vaue into the GP register, which may or may not be different than thevaluein thisfield for
objects with multiple GP ranges. See Section 2.3.4. Thisvalueisalso used by the linker as abasis for
rel ocation adjustmentsin objects. See Section 4.3.3.2.

Table2-3 a.out Header Magic Numbers

Symbol  |Value |Description

Impure format. The text segment is not write-protected or shareable; the data
OMAGIC |0407 segment is contiguous with the text sesgment. An OMAGIC file can be arelocatable
object or an executable.

Shared text format. NMAGIC files are static executables. Thislayout israrely used

NMAGIC 10410 but supported for historical reasons.

Demand-paged format. The text and data segments are separated and the text
ZMAGIC (0413 segment iswrite-protected and shareable. The object can be adynamic or static
executable, or ashared library. All shared objects use a ZMAGIC layout.

2.2.3. Section Headers (scnhdr.h)

struct scnhdr {

char s_name [8] ;
coff addr s_paddr;
coff addr s_vaddr;

coff long s_size;



coff off s_scnptr;
coff off s _relptr;
coff ulong s_lnnoptr;
coff ushort s _nreloc;
coff ushort s_nlnno;
coff uint s _flags;

}i
SIZE - 64 bytes, ALIGNMENT - 8 bytes

Section Header Fields
S_name

Section name (see Table 2-4); null-terminated unless exactly 8 bytes. Long section names are
truncated to 8 bytes and are not null-terminated. Unused bytes are zero filled.

s_paddr

Base virtua address of section in theimage. Although this field containsthe samevalueas s_vaddr,
normally s_vaddr isused and s_paddr isignored.

s_vaddr
Base virtua address of aloadable section in the image.
Thisfield is set to zero for nonloadable sections such as . comment.

For the sections . t 1sdata and . t1sbss, thisfield contains an offset from the beginning of the
object'sdynamically allocated TLSregion.

s_size
Section size padded to 16-byte boundary.
S_scnptr

File offset to beginning of raw data for the section. Theraw data pointed to by this field, and described
bythes size field, ismapped at s_vaddr (if non-zero) in the process image.

For sections with no raw data, such as . bss, thisfield is set to zero.
s_relptr

File offset to relocations for the section; set to zero if the section has no relocations.
s_lnnoptr

In .1lita section header, indicates number of GP ranges used for the object:

Value M eaning

0 Object has one GP range.




1 Invalid value.

2 or higher Object has this number of GP ranges.

For sections with GP relative relocations, this field contains the number of R_GPVALUE relocation
entriesfor that section. In . pdata thisfield contains the number of runtime procedure descriptors.

For other sections, thefield is reserved and must be zero for object file versionsv3 . 13 and greater.
s_nreloc

Number of relocation entries; 0x££ £ £ if number of entries overflows size of thisfield (see Table 2-5).
s_nlnno

Reserved for future use, must be zero.
s _flags

Flagsidentifying the section (see Table 2-5). Not al of these flag values are Snglebit masks. See
Section 2.3.6 for information on testing section flags.

Table 2-4 Section Header Constantsfor Section Names

Symbol Field Contents |Description

_TEXT .text Text section

_INIT .init Initialization text section
_FINI .fini Termination (clean-up) text section
_RCONST .rconst Read-only constant section
_RDATA .rdata Read-only data section
_DATA .data Large data section

_LITA .lita Literal address pool section
_LITS8 .1lits 8-byte literal pool section
_LIT4 .lit4 4-byte literal pool section
_SDATA .sdata Small data section

_BSS .bss Large bss section

_SBSS .sbss Small bss section
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_UCODE .ucode Ucode section (obsol ete)

_cot! .got Global offset table

_DYNAMIC .dynamic Dynamic linking information

_DynNsyMm .dynsym Dynamic linking symbol table
_REL_DYN' .rel.dyn Rel ocation information

_DYNSTR' .dynstr Dynamic linking strings

_HASH' .hash Dynamic symbol hash table

_MsyM' .msym Additional dynamic linking symbol table
_LIBLIST .liblist Shared library dependency list

Additional dynamic linking information
1

_CONFLICT .conflict (Thisname istruncated to . conf1ic when stored
inthe s_name field of the section header.)

_XDATA? .xdata Exception scope table

_PDATA? .pdata Exception procedure table

_TLS_DATA .tlsdata Initidized TLS data

_TLS_BSS .tlsbss Uninitialized TLS data

_TLS_INIT .tlsinit Initiglization for TLS data

_ COMMENT .comment Comment section

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are used during dynamic
linking. See Chapter 6 for details.

2. The.xdata and .pdata sectionsrespectively contain the run-time procedure descriptors and code
range descriptorsthat enable exception-handling. See the Calling Sandard for Alpha Systems for
details. Other sections are described in Chapter 3.
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Symbol Value Description

STYP REG 0x00000000 ﬁgogglr?ravﬁigns:;ilr?gc?ted, relocated, loaded. User section
STYP_ TEXT 0x00000020 Text only

STYP_DATA 0x00000040 Dataonly

STYP_ BSS 0x00000080 Bssonly

STYP RDATA 0x00000100 Read-only data only

STYP_ SDATA 0x00000200 Small data only

STYP_ SBSS 0x00000400 Small bss only

STYP_ UCODE 0x00000800 Obsolete

STYP_GOT' 0x00001000  |Global offset table

STYP DyYNAMIC! 0x00002000 Dynamic linking information

STYP DYNSYM' 0x00004000 Dynamic linking symbol table
STYP_REL_DYN' 0x00008000  |Dynamic relocation information

STYP DYNSTR' 0x00010000 Dynamic linking symbol table

STYP HASH' 0x00020000 Dynamic symbol hash table
STYP_DSOLIST' 0x00040000 Shared library dependency list

STYP MsyMm' 0x00080000 Additional dynamic linking symbol table
STYP CONFLICT 0x00100000 Additional dynamic linking information
STYP_FINI 0x01000000 Termination text only
STYP_COMMENT 0x02000000 Comment section

STYP_RCONST 0x02200000 Read-only constants

STYP_ XDATA 0x02400000 Exception scope table

STYP_ TLSDATA 0x02500000 Initialized TLS data




47

STYP_TLSBSS 0x02600000 Uninitialized TLS data

STYP TLSINIT 0x02700000 Initiglization for TLS data

STYP_ PDATA 0x02800000 Exception procedure table

STYP LITA 0x04000000 Addressliterals only

STYP LITS8 0x08000000 8-byte literals only

STYP_ EXTMASK 0x0££00000 Identifies bits used for multiple bit flag values.

STYP LIT4 0x10000000 4-byteliterals only

S_NRELOC_OVFL® [0x20000000 Indicates that section header field s_nreloc overflowed
STYP INIT 0x80000000 Initialization text only

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are used during dynamic
linking. See Chapter 6 for details.

2. Thes NRELOC OVFL flagis used when the number of relocation entries in a section overflows the
s_nreloc field in the section header. In thiscase, s nreloc containsthe value 0xf££ £ and the
s_flags fiddhasthes NRELOC OVFL flag set. The actual relocation count isin thefirst
relocation entry for the section.

General Notes:

The system linker usesthes_flags fiedinstead of s _name to determine the section type. User-defined
sections (see Section 3.3.10) constitute an exception; they are identified exclusively by section name.

Each section header must be unique within the object file. For system-defined sections, both the section
name and flags must be unique. For user-defined sections, the name must be unique.



2.3. Header Usage

2.3.1. Object Recognition

Object file consumers use the file header to recognize an input file as an object file. Other tools that do not
support objects may use the file header to determine that they cannot processthefile The £ile tool can
also identify an object by means of thefileand a . out headers.

A fileisidentified asan object initsfirst 16 bits. These bits correspond to the magic number field in the
file header. Objects built for the Alpha architecture are identified by the magic number ALPHAMAGIC;
equivalent compressed objects areidentified by ALPHAMAGICZ. Foreign objects, which are objects built
for other architectures, may also be positively identified. However, once a foreign object isrecognized, it is
not considered to be a linkable or executable object file on the Alpha system.

In addition to providing basic identification, the file header also provides a high-level description of the
object filethrough its £ 1ags field. File header flags store the following information: whether the object is
executable, whether symbol table sections have been stripped, whether thefileis suitable for creation of a
shared library, and more. See Table 2-2 for alist of all flags.

The a . out header magic numbers also contribute important information about the file format. The magic
numbers signify different organizations of object file sections and indicate where the image will be mapped
into memory (see Section 2.3.2).

2.3.2. Image Layout

The a . out header storesrun-time information about the object. Its magic number field indicates how the
fileisto be organized in virtual memory. Note that the contents and ordering of the sections of theimage
can be affected by compilation options and program contentsin addition to the MAGIC classification.

The possible image formats are:
e Impure Format (OMAGIC)

OMAGIC filesaretypically relocatable object files. They are referred to as "impure” because the text
segment iswritable.

e  Shared Text Format (NMAGIC)

NMAGIC files are static executables that use a different organization from the default ZMAGIC layout.
The NMAGIC format ishistorical and offers no special advantages. Thisformat can be selected by
using the linker option -n or -nN in conjunction with -non_shared. Inan NMAGIC file, the text
segment is shared.

e Demand Paged Format (ZMAGIC)

ZMAGIC files are executable files or shared libraries. Thisformat isreferred to as demand-paged
because its segments are blocked on page boundaries, allowing the operating system to pagein text
and data as needed by the running process. By default, the linker aligns ZMAGIC segments on 64K
boundaries, the maximum possible page size on Alpha systems.

The ordering of sections within segmentsis flexible. Diagramsin this section depict the default ordering as
laid out by the linker.
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The default segment ordering, which places the text segment before the data segment, isflexible. However,
the bss segment isrequired to contiguoudy follow the data segment, wherever the data segment is |l ocated.

All three formats are constrained by the following restrictions:
e Segments must not overlap.
e Thebss segment must follow the data segment.

e All text addresses in the object file must be within two gigabytes (0x7£££8000) of all data addresses
inthefile.

2.3.2.1. OMAGIC

The oMAGIC format typically hasthe following layout and characteristics:

Figure 2-1 oMAGIC Layout
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e Segments must not overlap.

e  The bss segment must follow the data segment.
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e All text addresses in the object file must be within two gigabytes (0x7£££8000) of all data addresses
inthefile.

e  Starting section addresses are aligned on a 16-byte boundary.

e Prelink OMAGIC objects are zero-based, with the data segment contiguous to the text sesgment. The
default text segment address for partially linked objectsis 0x10000000, and the data segment
follows the text segment.

e May contain relocation information.

e Cannot be ashared object.

Starting addresses can be specified for the text and data segmentsusing - T and -D options. These
addresses can be anywhere in the virtual address space but must be aligned on a 16-byte boundary.

OMAGIC layout is most commonly used for pre-link object files produced by compilers. Post-link OMAGIC
files tend to be used for special purposes such as |oadable device drivers or om input objects.

Loadable device drivers must be built as OMAGI C files because the kernel loader k1oadsrv reies upon
relocation information in order to link objects into the kernel image.

OMAGIC files can also be executable. An important example of an OMAGIC executable fileisthe kernd,

/vmunix. A programmer might also choose to use an OMAGIC format for self-modifying programs or for
any other application that has areason to write to the text segment.

2.3.2.2. NMAGIC

The NMAGIC fileformat isof historical interest only.

The NMAGIC format typically hasthe following layout and characteristics:
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Figure 2-2 NMAGIC Layout
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e Segments must not overlap.
e  The bss segment must follow the data segment.

e All text addresses in the object file must be within two gigabytes (0x7£££8000) of all data addresses
inthefile.

e Text and data segment addresses fall on page-size boundaries. The bss segment isaligned on a 16-byte
boundary.

e By default, the starting address of the text segment is 0x20000000 and the starting address of the
data segment is 0x40000000.

e Cannot contain rel ocation information.
e Cannot be a shared object.

Addresses can be specified for the start of the text and data segments using - T and -D options. These
addresses may be anywhere in the virtual address space but must be a multiple of the page size.
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The zMAGIC format typically hasthe following layout and characteristics:

Figure 2-3 ZMAGIC Layout for Shared Object
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Figure 2-4 ZMAGIC Layout for Static Executable Objects
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The .rdata and .tlsinit sectionsare shown as part of the text segment. However, it is possible that
one or both of those sections might be in the data segment. They are placed in the data segment only if they
contain dynamic relocations.

Segments must not overlap.
The bss segment must follow the data segment.

All text addresses in the object file must be within two gigabytes (0x7£££8000) of all data addresses
inthefile.

Text and data segments are blocked; the blocking factor is the page size.

By default the starting address of the text segment is 0x120000000 and the starting address of the
data segment is 0x140000000. The bss segment follows the data segment.

Can be either a shared or nonshared object.

Cannot contain relocation information, but shared objects may contain dynamic rel ocation information.
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Addresses can be specified for the start of the text and data segments using - T and -D options. Those
addresses can be anywhere in the virtual address space but must be a multiple of the page size.
2.3.3. Address Space

At load time, an executable object is mapped into the system's virtual memory using one of the formats
detailed in Section 2.3.2. The user can choose where the object, transformed into the program image, will
be loaded, but system-specific constraints exist. This section discusses the general layout of the address
space and the various considerations involved in choosing memory locations for object file segments.

Figure 2-5 shows the default memory scheme for a dynamic image.

Figure 2-5 Address Space L ayout
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The stack isused for storing local variables. It grows toward zero. The stack pointer (stored in register
$sp) pointsto thetop of the stack at all times. In generated code, items on the stack are often referenced
relative to the stack pointer.

The program hesp isreserved for system memory-allocation calls (brk () and sbrk () ). TLS sectionsare
allocated from the heap. The heap begins where the bss segment of the program ends, and the specia
symbol _end indicates the start of the heap. The heap's placement can also be cal culated using the starting
addresses and sizes of segmentsin the a . out header. The mapping of shared libraries may impose an
upper bound on the heap's size. Some programs do not have a heap.
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The dynamic loader and shared libraries reside in memory during program execution. See Section 6.3.2 for
details.

User programs can request additional memory space that is dynamically allocated. One way to request
space is through an anonymous mmap () call. This system call creates anew memory region belonging to
the process. The user can attempt to specify the address where theregion will be placed. However, if itis
not possible to accomodate that placement, the system will rely on environment variables to dictate
placement. See themmap (2) man pagefor details.

The usable address range for user mode addressesis 0x0 - 0x800000000000. Attemptsto map object
file segments outside this range will fail, and the defaults will be invoked or execution aborted.

2.3.3.1. Address Selection

Several mechanisms permit the user to select addresses for |oadable objects or assist the user in choosing
viable addresses. Unless there isagood reason to do otherwisg, it is preferable to rely on system defaults,
which are designed to enhance performance and reduce conflicts.

Thelinker's - T and -D options may be used to specify the starting addresses for the text and data segments
of an executable, respectively. Use of these options may be appropriate for large applications with
dependencies on many shared libraries that need to explicitly manage their address space. Programsrelying
in any way on fixed addresses may also need to control the segment placement.

Another use of the address sel ection optionsisto place an application in the lowest 31 bits of the address
space. Torestrict an application to this part of the address space, the - T and -D switches may beused in
conjunction with the - taso option (see Section 2.3.3.2) or separately.

The default placement of the text and data segmentsat 0x120000000 and 0x140000000 for
executables means the default maximum size of the text segment is 0x20000000 bytes, or approximately
500MB. If this space is insufficient, the - D option can be used to enlarge it by specifying ahigher starting
address for the data segment.

The -T and -D options can also be used to change the segment ordering. Some applications, such as those
ported from other platforms onto the Alpha platform, may rely upon the data segment being mapped in
lower addresses than the text segment.

If only -T or only -D is specified on thelink line, system defaults are used for the nonspecified address. If
agiven addressisnot properly aligned, the linker rounds the val ue to the applicable boundary. If
inappropriate addresses are chosen, such as addresses for the text and data segmentsthat aretoo far apart,
linking may fail. Alternatively, linking may succeed, but execution can abnormally terminate if addresses
are incompatible with the system memory configuration.

Thelinker option - B, which specifies a placement for the bss segment, isavailable for partia links only.
For executable objects, the bss segment should be contiguous with the data segment, which is the system
default. Asageneral rule, the - B option should not be used.

Another mechanism permits address selection for shared libraries. A registry file, by default named
so_locations, storesshared library segment addresses and sizes. The so_locations directives,
described in the Programmer's Guide, can be used to control the linker's address selection for shared
libraries.
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2.3.3.2. TASO Address Space

The TASO (Truncated Address Space Option) address space is a 32-bit address-space emulation that is
useful for porting 32-bit applications to 64-bit Alpha systems. Selection of the - taso linker option causes
object file segments to be loaded into the lower 31 bits of the memory space. This can also be
accomplished, in part, by using - T and -D. If the - taso option is used in conjunction with the -T or -D
options, the addresses specified with - T and - D take precedence.

Use of the - taso option also causes shared libraries linked outside the 31-bit address space to be
appropriately relocated by the loader. All executable objects and shared libraries will be mapped to the
addressrange 0x0 - Ox7fffffff.

The default segment addresses for a TASO executable are 0x12000000 for the text segment and
0x14000000 for the data segment, with the bss segment directly following the data ssgment. The -T and
-D options can be used to alter the segment placement if necessary.

Figure 2-6 isadiagram of the TASO address space layout.

Figure 2-6 TASO Address Space L ayout
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A TASO shared object is marked as such with theRHF _USE_31BIT ADDRESSES flaginthe
DT_FLAGS entry in the dynamic header. The loader recognizes dynamic executable objects marked with
the TASO flag and maps their shared library dependenciesto the TASO address space. A TASO datic
executable is not explicitly identified.
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2.3.4. GP (Global Pointer) Ranges

Programs running on Tru64 UNIX obtain the addresses of procedures and global data by means of a GP
(Global Pointer) and an address table. Address ranges and address-table sections (. 1ita and .got) are
described further in Section 3.3.2 and Section 6.3.3. However, several important pieces of information
concerning GP-rel ative addressing are contained in the headers.

During program execution, the global pointer register (Sgp) contains the active GP value. Thisvalueis
used to access run-time addresses stored in the image's address-table section. Addresses are specified in
generated code as an offset to the GP.

There are several reasons for using this GP-relative addressing technique:

e Alphaingructions support only 16-hit relative addressing, but the generated code must be able to
quickly and efficiently access arbitary 64-bit addresses.

e Thegenerated code must be position independent.
e Theaddressing method must support symbol preemption (see Section 6.3.4).

A GPrangeisthe set of addresses reachable from a given GP. The size of thisrange is approximately
64K B, or 8K 64-bit addresses.

Although only one GP value is active at any time, a program can use several GP values. A program'stext
can be divided into ranges of addresses with a different GP value for each range. The linker will start a
new GP range at a boundary between two input object file's section contributions. Asaresult, a GP range

will rarely befilled before anew GPrange is started. Regardless of how much of a GPrangeis actudly
used, the linker always sets the GP value associated with that range as follows:

GP value = GP range start address + 32752
Figure 2-7 isadepiction of the use of GP values and ranges.

Figure 2-7 GP (Global Pointer) Ranges
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Objects can share a GP range, as shown in Figure 2-7, or use more than one GP range, depending on the
amount of program data. However, the Calling Standard for Alpha Systems specifies that a single
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procedure can use only one GP value. The a . out header'sgp value field contains either the GP value
of the object (if thereisonly one) or the first one the program should use (if there are multiple GP ranges).

How the number of GP ranges is represented in an object depends on the object's type:

e For objectswitha . 1ita section, the section header field s_nlnnoptr indicates the number of GP
ranges, as explained in Section 2.2.3.

e Inarelocatable object (OMAGIC file), anew GPrangeissignalled by aR_GPVALUE relocation entry.
See Section 4.3.4.18 for details.

e Inshared objects, multiple GP ranges are indicated by entries in the dynamic header section
(.dynamic), which are described in Section 6.2.1.

2.3.5. Alignment

Alignment is an architectural issue that must be dealt with in the object file at severa levels: object file
segments, object file sections, and program variables all have alignment requirements.

Data aignment refers to the rounding that must be applied to a data item's address. For natural alignment, a
dataitem's address must be amultiple of its Sze. For example, the natural alignment of a character variable
isone byte, and the natural aignment of a double-precision floating-point variable is 8 bytes.

On Alpha systems, al data should be aligned on proper boundaries. Unaligned references can result in
substantially slower access times or cause fatal errors. The compiler and the user have some control over
the aignments through the use of assembler directives and compilation flags (see the Programmer's Guide
and Assembly Language Programmer's Guide). When designing alignment attributes, however, the
architectural cost of loading unaligned values should be considered.

Object file segments are, by default, aligned asindicated in Section 2.3.2. Segment alignment can be
impacted by section alignment. The segment alignment must be evenly divisible by the highest sectional
alignment factor for sections contained in that segment.

Object file sections may have a power-of-two alignment factor specified in their section headers (see
Section 2.2.3). The default sectional aignment is 16 bytes.

The default alignment boundary for raw datais 16 bytes. Smaller alignments can be applied to invidua
dataitemsallocated in raw section data. If adataitem must be aligned with greater than 16 byte alignment,
the section in which it is allocated must be aligned with a power-of-two alignment factor that is greater than
or equd to the dataitem's required alignment.

Individual dataitems should meet the foll owing minimum requirements. Structure members and array
elements are aligned according to the minimum requirementsin order to minimize pad bytes between
members. Other dataitems are typically aligned with 8 or 16 byte rounding due to alignment requirements
imposed by the generated code used to access data addresses.

e Atomic dataitemsare aligned using natural alignment.

e Structures are aligned based on the size of their largest member.

e Arraysareaigned according to the alignment requirements of the array element.
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e Procedures are aligned on a 16-byte (quadruple instruction word) boundary. This preserves the
integrity of multiple-instruction issue established by the instruction scheduling phase of code
generation.

e Common storage class symbols must be aligned when they are alocated. The value fidd for a
common storage class symbol indicatesits sze and determines which section it will be allocated in
(.bss or . sbss). All common storage class symbols with a size of 16-bytes or greater are aligned to
octaword (16-byte) boundaries. All other common storage class symbols are aligned to quadword (8-
byte) boundaries.

Sections are padded wherever necessary to maintain proper alignment. Padding is done with zero bytesin
the data and bss sections. In the text segment, each routineis padded with NOP instructionsto a 16-byte
boundary. The section sizes reported in the section headers and the segment sizesreported inthea . out
header reflect this padding.

2.3.6. Section Types

The primary unit of an object fileisa section, and the sectionsin an object are identified, located, and
broadly characterized by means of the section headers. Object files are organized into sections primarily to
enable the linker to combine multiple input objects into an executable image. At link time, sections of the
same type are concatenated or merged. The sectiona breakdown also provides the linker flexibility in
segment mapping; the linker has a choice in assigning sections to segments for memory-mapping and
loading.

Section headers indude flags that describe the section type. These flags identify the section type and
attributes. See Table 2-5 for a completelisting of section flags. Note that the s f1ags field cannot be
treated asa simple bit vector when testing or accessing section types because some of the flag values are
overloaded. Thealgorithm below illustrates how to test for a particular section typeusingthes flags
fied.

if (type & STYP EXTMASK)

FOUND = ((SHDR.s_flags & STYP EXTMASK) == type)
else

FOUND = (SHDR.s flags & type)

Sections can be mapped or unmapped. A mapped section is onethat is part of the process image as well as
the object file. An unmapped section is present only in the on-disk object file.

Raw data, organized by section and segment, is part of the processimage. For a ZMAGIC file, al header
sections in the object are also mapped into memory as part of the text ssgment. However, the . comment
section is never loaded with a program.

2.3.7. Special Symbols

Some special symbol names arereserved for use by thelinker or loader. The mgjority of these special
symbols correspond to locationsin the image layout.

Table 2-6 describes the special symbols and indicates whether they arereserved for the linker or the loader.
Additional specia symbolsfor debug information are described in Section 5.3.9.
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Linker Reserved Symbols

Symbol

Description

| BASE_ADDRESS

Base address of text segment.

| _cobol main

Firs COBOL main symbol; undefined if not a COBOL program.

| DYNAMIC

Starting address of . dynamic section if present; otherwise, zero.

| DYNAMIC LINK

\Valueis 1if adynamic executablefile; otherwise, zero.

| _ebss End of bss segment.
|_edata End of data segment.
edata’ Weak symbol for end of data segment.
| _end End of bss segment.
end’ Weak symbol for end of bss segment.
|_etext End of text segment.
etext! Weak symbol for end of text segment.
fbss Firg location of bss d_ata Usually the virtual address of either the
— .sbss or .bss section.
fdata Firg Iocatio_n of initialized data. Usually the virtua address of the
— .data section and data segment.
| fpdata Start of .pdata section.

| fpdata size

Number of entriesin . pdata. The exception-handling object file
sections (. pdata and . xdata) areincluded in the output object if
this symbal is referenced.

| fstart Start of . £ini section.
Firg location of executable text. Usually the virtual address of the
ftext ;
~ . text section.
| ftlsinit The address of the . t1sinit section.
GOT OFFSET Starting address of . got section if present; otherwise, zero.
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| gp GP value stored in a . out header.
| gpinfo Table of GP ranges used exclusively by exception handling code.
| istart Start of . init section.

_procedure_string_table2

String table for run-time procedures

_procedure_table2

Run-time procedure table.

| procedure table size®

Number of entriesin run-time procedure table.

| tlsbsize Size of the . t 1sbss section.
| tlsdsize Sizeof the . t1sdata section.
The value of this symbol isthe address of the GOT or . 1ita entry
tlskey
— of thetlsoffset symbal.
Offset in the TSD array of the TLS pointer for a particular object. For
| tlsoffset static executables, thisvalueis set at link time. For shared objects, the
valueis set to O at link timeand filled in at run time.
| tlsregions The number of TLSregions (TSD entries) that are used by an

executable or library.

L oader Reserved Symbols

| 1dr process_context

Points to |oader's data structures.

ldr_process_context1

\Weak symbol pointing to |oader's data structures.

| rld new_interface

The generic loader entry point servicing al loader function calls.

Table Notes:

1

These symbols are not defined under strict ANSI standards. They are weak symbols that areretained

for backward compatibility. See Section 6.3.4.2 for further discussion of weak aiasing to strong

symbols.

These symbolsrelate to the run-time procedure table, which isatable of RPDR stuctures (their

declaration isin the header file sym. h). The table isa subset of the procedure descriptor table portion
of the symbol table with one additional field, exception info. When the procedure table entry is
for an external procedure and an external symbol table exists, the linker fillsin exception info
with the address of the external symbol. Otherwise, it fillsin exception info with zeros,

Thelinker defines special symbols only if they are referenced.

The majority of these symbols have local binding in a shared object's dynamic symbal table. Consequently,
a shared object can only reference its own definition of these symbols. However, several special symbols
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have global scope. Thelinker-defined symbolsend, end,  istart,and _cobol main areglobal,
which implies that each has a unique value process-wide. The symbol _end and its weak counterpart end
areused by 1ibc. so to identify the start of the heap in memory. Thesymbol _cobol main givesa
COBOL program's main entry point.

Special symbolsin addition to those listed in Table 2-1 are defined by the linker to represent object file
section addresses:

.bss
.comment
.data
.fini
.init
.lit4
.1lits
.lita
.pdata
.rconst
.rdata
.sbss
.sdata
.text
.xdata

The value of the symbal is the starting address of the corresponding section. These symbols generally are
not referenced by user code. For shared objects, they may appear in the dynamic symbol table.

2.3.7.1. Accessing

A user program can reference, but not define, reserved symbols. An error message is generated if a user
program attempts to define a symbol reserved for system use.

A special symbol isalabel, and thusits valueisits address. Interpreting alabel's contents as its value may
lead to an access violation, particularly for those linker-defined symbols that are not address locations
within the image (for example, DYNAMIC LINKOr procedure table size).

The following example shows how linker-defined labels are referenced in code:

$ cat proctab.c
#include <stdio.h>

extern procedure table size;
extern procedure string table;

main () {
int 1i;
void *tempsize=& procedure table size;
void *tempstring=& procedure string table;
long size=(long) tempsize
char *string=(char *) tempstring;

printf ("\n Procedure Table Size=%d\n\n",size);
for (i=0;i < size;i++){

printf ("%d: %$s\n",i+1,string);
string+=strlen(string)+1;
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}

S a.out
Procedure Table Size=11

static procedure (no name)
: main

: _ start

exit

_mcount

__eprol

eprol

printf

strlen

: _ exc_add pc range_ table
: ___exc_add gp range

W ooJo Ul b WwWwhPRE

B

Ur

This example prints out the names stored in the run-time procedure string table. The string table consists of
character strings of varying lengths separated by null characters.

2.4. Language-Specific Header Features

Thelinker-defined symbol _cobol main isset tothe symbol value of the first external symbol
encountered by the linker with its cobol main flag set. COBOL programs use this symbol to determine
the program entry point.



3. Instructions and Data

Ingructions and data are the portions of the object file that are logically copied into the final process image.
Ingructionsinclude all executable machine code. Data includes initialized and zero-initialized data,
constant data, exception-handling data structures, and thread local storage (TLS) data. The breakdown of
the instructions and data into object file sectionsis shown in Figure 3-1.

Object file sections are organized into three |oadable segments: text, data, and bss. Multiple TLS regions
may also be loaded. The mapping of sectionsinto segmentsis principally determined by segment access
permissions and object file. Figure 3-1 illustrates the layout of a typical dynamic executable file. See
Section 2.3.2 for details.

Figure 3-1 Raw Data Sections of an Object File
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Relocations Jinit

Symbol Table Lini

user-text
Comment Section dara
user-data
gdata
Sdata
got

data
segment

if shared
object

shss —

bas
bss segment

tlsdata
tlshiss

TL3 Region

The object file sections containing dynamic load information are covered separately in Chapter 6. Chapter
7 describesthe . comment section data. This chapter covers all other raw data sections.
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3.1. New or Changed Instructions and Data Features

Version 3.13 of the object file format does not introduce any new features for the instructions or data
contained within the object file.

3.2. Structures, Fields, and Values for Instructions and Data

Section 3.2.1 and Section 3.2.2 contain structure declarations for the exception-handling data structures as
stored in the . xdata and . pdata object file sections. These are the only two sections covered in this
chapter that contain structured data. Text sections containing machine instructions use the Alpha instruction
formats and other sections contain binary and character data

3.2.1. Code Range Descriptor (pdsc.h)

The . pdata section contains a table of code range descriptors ordered by address.

typedef unsigned int pdsc_mask;
typedef unsigned int pdsc_space;
typedef int pdsc_offset;
union pdsc_crd {
struct {
pdsc_offset begin address;
pdsc_offset rpd offset;
} words;
struct {
pdsc_space reservedl :2;
pdsc_offset shifted begin address :30;
pdsc_mask no_prolog :1;
pdsc_mask memory speculation :1;
pdsc_offset shifted rpd offset :30;
} fields;

}
SIZE - 8 bytes, ALIGNMENT - 4 bytes

See the Calling Sandard for Alpha Systems for a full description.

3.2.2. Run-time Procedure Descriptor (pdsc.h)

The . xdata section contains a table of run-time procedure descriptors. Thistable isnot necessarily sorted.
In addition to thistable, the . xdata section may contain other exception-handling data

typedef unsigned char pdsc_uchar offset;
typedef unsigned short pdsc_ushort offset;
typedef unsigned int pdsc_count;

typedef unsigned int pdsc_register;
typedef unsigned long pdsc_address;

typedef union pdsc_rpd {

struct pdsc_short stack rpd {
pdsc_mask flags:8;
pdsc_uchar offset rsa offset;
pdsc_mask fmask:8;



pdsc_mask

pdsc_count
pdsc_count
pdsc_count

} short stack rpd;
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imask:8;
frame size:16;
Sp_set:8;
entry length:8;

struct pdsc_short reg rpd {

pdsc_mask
pdsc_space

pdsc_register
pdsc_register

pdsc_space
pdsc_count
pdsc_count
pdsc_count

} short reg rpd;

flags:8;
reservedl:3;
entry ra:5;
save_ra:5;
reserved2:11;
frame size:16;
Sp_set:8;

entry length:8;

struct pdsc long stack rpd {

pdsc_mask

pdsc_register

flags:11;
entry ra:5;

pdsc_ushort offset rsa offset;

pdsc_count
pdsc_count
pdsc_count
pdsc_space
pdsc_mask
pdsc_mask

} long stack rpd;

Sp_set:16;

entry length:16;
frame_size;
reserved;

imask;

fmask;

struct pdsc_long reg_rpd {

pdsc_mask

pdsc_register
pdsc_register

pdsc_space
pdsc_count
pdsc_count
pdsc_count
pdsc_space
pdsc_mask
pdsc_mask

} long reg rpd;

flags:11;

entry ra:5;
save_ra:5;
reservedl:11;
Sp_set:16;

entry length:16;
frame_size;
reserved?2;
imask;

fmask;

struct pdsc_short with handler {

union {

struct pdsc_short stack rpd short stack rpd;
struct pdsc_short reg rpd short reg rpd;
} stack or reg;
pdsc_address
pdsc_address
} short with handler;

handler;
handler data;

struct pdsc_long with handler {
union {
struct pdsc_long stack rpd long stack rpd;
struct pdsc_long reg rpd long reg rpd;
} stack _or_reg;

pdsc_address handler;
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pdsc_address handler data;
} long with handler;

} pdsc_rpd;
SIZE - 40 bytes, ALIGNMENT - 8 bytes

See the Calling Standard for Alpha Systems for a full description.
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3.3. Instructions and Data Usage

3.3.1. Minimal Objects

Many sections may be missing from a till-viable object file. Sections may not be present due to the type of
the object file or to the contents of a particular program.

The .init and . £ini sectionsof the text segment are typically not present in relocatable objects. They
contain code generated during final link.

The dlocation of datain the "small” and "large” writable data sections (. sdata, .data, .sbss,
.bss) can be controlled by the user in some situations. See Section 3.3.6 for more details.

The .1it4 and .1it8 sections, which hold 4- and 8-byte literal values respectively, may be omitted from
an object file. Compilers may choose not to emit these sections.

The .xdata and . pdata sections, which contain exception-handling information, may not be present.
All pre-link objects with a non-empty text segment contain these sections because compilers are expected
to provide exception-handling information for their code. Statically linked executables will only contain
these sectionsif they include code which handles exceptions. The linker identifies exception handling code
by looking for referencestothe fpdata_ size symbol. By default, shared objects will contain these
sections. The .xdata and . pdata sectionsarerequired if a shared object includes exception handling
code or if it is used in conjunction with another shared object that includes exception handling code.

Although most objects contain both text and data segments, only one loadabl e segment isrequired for an
object to be loadable. A minimal pre-link object file may contain no sections.

3.3.2. Position-Independent Code (PIC)

Position-independent code is generated code that isnot constrained to any particular location in the virtual
address space. Eventually, code must be assigned to a portion of the address space whereit can execute.
However, on True4 UNIX, codeis kept position-independent aslong as possible.

The implementation of position-independent code in eCOFF relies upon address tables to store full virtual
addresses for procedures and data | ocationsinvoked or referenced in the text segment. Programsrefer to
these addresses using a technique called GP-relative addressing.

Most eCOFF objects have address tables that hold 64-hit addresses. Address tables in shared objects are
called Global Offset Tables (GOTs) and arefound in the . got section. Address tables for rel ocatable and
static objects are called literal address pools and arefound inthe . 1ita section.

Address table entries are accessed in code by adding a signed 16-bit offset to the currently active GP value,
which isstored in the $gp register:

1dq t12,-31656 (gp)

Multiple GP ranges can be associated with a program, each corresponding to a different portion of the
address table. See Section 2.3.4 for details.

In some cases, special ingruction sequences may be required to update the contents of the $gp register. In
particular, the GP value used by a procedure may or may not be the same as the value used by the calling
code. Under most circumstances, the caled procedure's GP value is cd culated when a procedureis
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invoked. Upon completion of the procedure's execution, the calling code's GP value must be reestablished.
Refer to the Calling Standard for Alpha Systems for details.

Different kinds of objects use address tables in different ways:
e Rdocatable Objects

Pre-link objects usually have a . 11 ta section with associated section relocation information. The
literal address pool contains addresses that must be adjusted at link time.

e Static Executables

Addressesin static executables are fixed at link time. Theimage must be loaded and executed at
addresses the linker has chosen. Library addresses as well as segment base addresses are known at
link time.

Static executables store addressesina . 1ita section that encompasses one or more GP ranges.
The contents of the address table are accessed by means of the GP value or values, which are also
fixed at link time.

e Shared Objects

Each . 1ita entryintheinput object filesisrelocated by the linker to form the GOT in the output
object. The loader may need to update the GOT entries when mapping the process image. The
addresses are then absolute and may be extracted at run time to obtain the final locations of
referenced items.

The loader may also update GOT entries at run time, such as when it replaces lazy text stubs with resolved
procedure addresses or dynamically loads new objects.

The GOT may contain entries for nonsymbolic text and data addresses. These are known aslocal GOT
entries. The GOT may also contain entries for unresolvable symbols; which are either set to NULL or to the
address of alazy text stub routine.

Special semantics are associated with multiple GP ranges in shared objects. See Section 6.3.3.3 for details
on multiple GOT representation and usage.

Code can be only partialy position independent. For example, shared libraries can be mapped anywherein
the address space that isnot in conflict with previously mapped objects, but executable objects must be
mapped at their link-time base addresses. Dynamic executables are thus partly PIC because their own
segment addresses are fixed, but the addresses of shared librariesthey use are not.

Code may also be position dependent, or nonPIC. Thelinker and om generate nonPIC code. On Alpha
systems, relocatabl e objects must always be PIC.

3.3.3. Lazy-Text Stubs
This section applies to shared objects only. See Section 6.3.4.5 for rdated information.

Final addresses may be unknown at link time for subroutines that are defined in shared libraries and called
by dynamic executables. Instructions reference these routines in an address-independent manner, and the
dynamic loader uses run-time resolution, or "lazy binding", to locate the procedure's absol ute | ocation the
first timeit isinvoked.
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Stubs are specially constructed code fragments used for this run-time symbol resolution. They serve as
placeholders for the definitions of functions that cannot be resolved at gatic link time. The linker builds the
stub for each called function and allocates GOT table entries that point to the stubs. The stubs themselves
areinserted in the . text section of the shared object file by thelinker.

A stub lookslikethis:

stub xyz:
ldg t12, got index(gp) //load register with .got entry
// of lazy text resolver
lda $at, dynsym index low(zero) //load register with external
ldah $at, dynsym index high($at) // symbol's .dynsym index
jmp  tl1l2, (tl2) //jump to lazy text resolver

Thefirg time the procedure is called, its sub isinvoked. The stub, in turn, callsthe loader to resolve the
associated symbol. The dynamic loader then replaces the stub address with the correct function address,
which isused for subsequent calls.

The calling standard requires that when control actually reaches the procedure's entry point, register $27
must contain the procedure value of the newly loaded routine-asif no intermediate processing had
occurred.

3.3.4. Constant Data

Constant data is data that cannot be changed over the course of program execution. It can include constants
appearing in the source program, constants that are generated during the compilation process (usually
addresses), and literal values (also referred to asimmediate val ues).

Constant data may appear in any data section. Itislikely to appear inthe . 1ita, .1it4, .11t8,
.rconst, and . rdata sections. Compilers and other object file producers may make varying choices
concerning data placement in object file sections.

Theliteral sections contain only literal values sorted by sizes. 4-byte literalsare stored inthe . 1it4
section, 8-byteliteralsin the . 11t 8 section, and 8-byte (64-bit) addressesin the . 1ita section. However,
these sections do not necessarily contain all literalsin the program. String literals, for example, are assigned
tothe . data section (or . rconst section whenthe -read_only strings compiler optionis
specified).

There are compile-time, link-time, and run-time constants. Examples of compile-time constants include
numeric constant data such as floating-point constants and literals appearing in the source file. Examples of
link-time constants include addresses that are fully resolved at link time. Examples of run-time constants
include addresses established by the dynamic |oader.

Thelinker placesthe . rconst section and all threeliteral sections with the text segment because they
contain nonwritable data. The advantage of mapping constant data with a program'sread-only segment is
that it allows the data to be shared among processes.

The . rdata section contains constant data with valuesthat may not be known until run time (such as
global symbol addresses). For shared objects, the . rdata section is mapped with the data segment so the
loader can perform relocations for that section without affecting the shareability of text or page table pages.
If there are no dynamic relocations, the . rdata section may be mapped with the text segment.
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3.3.5. INIT/FINI Driver Routines

Every compilation unit in an executable or shared library has the opportunity to contribute initialization or
termination code to be run at startup and exit, respectively. INIT routines perform initiaization actions and
arerun automatically at load time or by theroutine dlopen () . FINI routines are termination functions
that are executed by d1close () or a program termination by exit ().

The .init and . £ini sectionsconsist of a series of callsto the initialization and termination routines.
These calls, or drivers, are generated by thelinker. They are not present in pre-link objects. The . init
driver isinvoked by a call from startup codein /usr/1ib/cmplrs/cc/crt0. o, which mug belinked
into every executable object file.

Thedriver codeinthe . init and . £ini sectionshasthe following characteristics:

e No associated symbolic information

e Noassociated call frame information

e Useof sdf-relative code for jumping to the routines; therefore, no use of the GOT table or GP value

The initialization and termination routines themselves arein the . text section and have the following
characteristics:

e Noarguments
e Noreturnvalue
e Defined in one of the objects or archives being linked

Figure 3-2 presents a graphical overview of the INIT/FINI mechanism for shared objects:
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Figure 3-2 INIT/FINI Routinesin Shared Objects
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call ld_run_finis

For static executables, the first call isto themain object's  istart symbol instead of r1d_run init.
The dynamic loader isnot involved.

System tools can generate initialization and termination routines. For example, global constructor and
destructor routines for static objects areimplemented as INIT/FINI routines by the C++ compiler.
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The INIT/FINI mechanism is used for allocation and deallocation of thread-specific data. Every object
using TLS hasitsown INIT routine to take care of the TLS data associated with that object. The purpose of
thisINIT routineisto allocate a TSD key that will be used for the object's TLS for the duration of the
object mapping. See Section 3.3.9 for moreinformation on TLS data.

3.3.5.1. Linking

INIT and FINI routines can be included implicitly, by prefix recognition, or explicitly, by option
processing. With either linking method, as the routine's symbol s are identified, alist determining the
execution order is built. When thelist is complete, code to invoke the routines is generated by the linker
andplacedinthe .init and . £ini sections.

Tolink explicitly, the -init and -£ini linker options are used with a symbol parameter. The symbol
should meet the criterialisted above for INIT and FINI routines.

Tolink implicitly, it is necessary to conform to naming and usage conventions. A symbal is recognized as
an initialization or termination symbol if:

e Automatic recognition of special symbolsisnot disabled.

e Thesymboal isdefined in an object included in the link.

e Thesymbol bearsthe correct prefix (_ init or  fini ).
e Thesymbol isaprocedure.

Library archives may contain aptly named routines that are not implicitly linked into an object as INIT or
FINI routines. The reason this situation can occur isthat prefix recognition aloneisnot sufficient causeto
extract amodule from an archive.

Figure 3-3INIT/FINI Recognition in Archive Libraries

main.o libfubar.a
main{) { foo.o
fool); fool) {}
) | _init_fool) {3
l bar.o
bart] {}
__init_bar(}{}

__init_bar) not in a.out

On the other hand, if the archived object isaready linked into the object, prefix recognition will apply to
routines contained in that module. Explicit inclusion can be used to ensure an archived routineisincluded
asaninitialization or termination routinein all cases. See the Programmer's Guide for more information on
linking with archive libraries.
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Thelinker's -no_prefix recognition option disablesimplicit linking of INIT and FINI routines.

3.3.5.2. Execution Order

This section describes the execution order of initialization and termination routines in dynamic and static
executables. It also covers the determining factors used by the linker and loader to establish this order.
3.35.21L Dynamic Executables

The INIT driver routine for each shared object is executed after INIT driversfor al of its dependencies.
Dependencies are processed in a post-order traversal of the dependency graph. The dependency graphs
shown in this section are based on link-line ordering (aleft "sibling” appears first on the link line) as well
asthe shared library dependency information.

FINI drivers are executed in precisely thereverse order of INIT drivers.

Figure 3-4 INIT/FINI Example (1)

a.out

N

libA so libB . so

libc so

INIT order: 1ibc.so 1ibB.so libA.so a.out
FINI order: a.out libA.so 1libB.so libc.so

Cyclic dependencies are handled using a first-seen approach, while still conforming to the preceding rules.
For example:

Figure 3-5INIT/FINI Example (11)
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INIT order: 1ibA.so libB.so a.out

Initialization and termination routines may also be executed when shared objects are |oaded and unloaded
dynamically during run time. dlopen () runsINIT routines for any shared objects that it |oads.
dlclose () runsFINI routinesfor each shared object that it unloads.

Figure 3-6 INIT/FINI Example (111)

a.out

l

libc.so

INIT order beforedlopen call: 1ibc.so a.out.

Figure 3-7 INIT/FINI Example (1V)

a.out [—*dlopen() libfoo so

|

libc.so I( libm so

INIT order after dlopencal: 1ibm.so libfoo.so.
FINI order after dlopen call: 1ibfoo.so libm.so a.out libc.so.

3.3.5.2.2. Static Executables

For static executables, the execution order for initialization and termination routines is determined at link
time. The linker establishes the the execution order for INIT routines by the order in which they are
encountered within an object’'s external symbol table and by the ordering of objects on the command line. It
also takes into account the ordering of archive libraries on the command line. The INIT routines from each
archive are executed in the reverse order of their occurrence on the command line. For example:

$1d x.0 y.o z.o0 libm.a libfoo.a

INIT order: libfoo.a libm.a x.0 y.o z.o
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FINl order: z.o y.o x.o0 libm.a libfoo.a

3.35.23. Ordering Within Objects

It isaso possible to have multiple INIT or FINI routines within an object. The number of initialization or
termination functionsthat can be included from a single object is unlimited. When multiple routines are
encountered in an input object, they are placed as a group within the overall ordering.

If both methods of linking are used, explicitly linked initialization routines are executed prior to the
implicitly linked routines for that object. Because the FINTI order isalways the opposite of the INIT order,
any explicitly linked termination routines are executed last.

If the linker's range-table generating routines are present, they execute first and last, respectively in
INIT/FINI ordering on a per-object basis. These initidization routines set up a PC-range table that enables
exception-handling. They execute first so that range information is added before other INIT routines are
executed. These termination routines run last so that all others are run before range information is removed.
These precautions dlow other INIT and FINI routines to utilize exception handling.

3.35.24. Subsystem Control of INIT/FINI Order

Compilers may need to generateinitialization and termination routines and to control the order in which
they execute. For thisreason, subsystem-generated INIT and FINI routines are distinguished from user
INIT and FINI routines.

The linker recognizes a subsystem-generated routine by the prefixes_ INIT and __ FINI_. Routines
recognized withthe _ INIT prefix always run prior to any routinesrecognized withthe __init_ prefix
within the same executable or shared library. FINI routinesrecognized withthe _ FINTI_ prefix always run
after any routinesrecognized withthe _ fini_ prefix. Subsystem INIT and FINI routines aso run,
respectively, before and after any routines added by a user using the linker's-init and -fini switches.

All routineswiththe  INTIT prefix execute in dphabetic order, and all routineswiththe  FINT prefix
execute in reverse aphabetic order. For aname of theform __ INTT ALPHANAME, the ALPHANAME
portion should be encoded as a variable-length hexadecimal string. The string will contain one or more hex
digits followed by an underscore.

INIT routines generated by the linker for exception-handling, speculative execution, and thread-1ocal
storagerun prior to al other INIT routines. The associated FINI routines run lagt.

3.3.6. Initialized Data and Zero-Initialized Data (bss)

Weritable user-program datais divided between data (initialized data) and bss (zero-initialized data)
sections, which may then be subdivided according to data e ement size. Zero-initiaized data consists of
program variables whaose values are not specified at compiletime. Initialized data includes all variables that
are explicitly initialized in declaration statements.

One example of zero-initialized data is Fortran commons. Ancther is uninitialized C data, such asthe
global variable "count" declared:

int count;
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Note that a C-global or C-static dataitem explicitly initialized to zero (that isint count = 0;) may be
placed in an initialized data section, even though itsvalueis the same asif it were part of bss.

The primary advantage of separating initialized and uninitialized dataisto save spacein the object file. All
bss data el ements are set to the same value (zero). The only information required in the object fileisa
description of the run-time size and | ocation of the bss sections. This description isfound in the .bss and
. sbss section headers.

Zero-filled memory is allocated for the bss segment when an object is mapped into memory. Because the
.bss and . sbss raw data sections do not require space in the object file, their section header sizefield
reports the size of the section in the process image instead of in the object file.

To take advantage of all available space, zero-initialized dataimmediately follows initialized datain the
image. An object can have bss sections but no bss segment. If the datain the bss sections does not exceed
the size of the leftover spacein the last page of the data segment, the bss segment will be empty. This
situation isillustirated in Figure 3-8.

Figure 3-8 Data and Bss Segment Layout (1)
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For the same reason, some bss data can potentially be present in the data segment, even if a separate bss
segment exists. Thissituation isillustrated in Figure 3-9.
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Figure 3-9 Data and Bss Segment Layout (11)
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When part or al of the bss segment is contained in the last page of a data segment, that portion of the data
page must beinitialized to zero in the corresponding raw data area of the object file.

Thedivision of initialized and uninitialized data by size may split writable datainto "small" (. sdata,
.sbss) and "large” (. data, .bss) sections. It may be possible to exploit this division by grouping
frequently used data together in a section. This strategy may enhance performance by reducing page faults.
The size division may also allow post-link tools, such as om, to generate more efficient code sequences for
accessing dataitems.

The default maximum value for an item allocated in a"small" section is eight bytes. Some compilers accept
a -G option with a parameter to specify the maximum size of a"small" dataitem. However, the default
compilers on Tru64 UNIX do not.

When speaking of item size, note that an aggregate dataitem is considered as awhole. For example, a
string of ten characters has a size of ten bytes.
3.3.7. Permissions/Protections

When a processimage is created for a program, loadabl e segments are assigned access permissions. These
are determined by thefiles MAGIC number and the segment type.
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Table 3-1 Segment Access Permissions

Image Segment Access Permissions
OMAGIC text, data, bss Read, Write, Execute
NMAGIC text Read, Execute
NMAGIC data Read, Write
NMAGIC bss Read, Write, Execute
ZMAGIC text Read, Execute
ZMAGIC data Read, Write
ZMAGIC bss Read, Write, Execute

3.3.8. Exception Handling Data

Exception handling is provided on the system to cope with unusual conditions. The object file contains two
sections for storing exception-handling data structures. The declaration of these structuresis shown in
Section 3.2.

The object file sections . xdata and . pdata work together to provide exception-handling support. The
.xdata section contains the run-time procedure descriptor table and the . pdata section contains code
range descriptors. Exception information is produced for all pre-link object files. Thelinker produces
exception information for shared executables and shared libraries because they will potentially be utilized
in conjunction with other shared executables or shared libraries that rely on exception handling. The linker
also produces exception information for nonshared executables that reference  fpdata_size, alinker-
defined symbol which represents the number of entriesin the . pdata section.

A code range descriptor associates a contiguous sequence of addresses with arun-time procedure
descriptor. The . pdata code range descriptors are ordered by run-time address. The ranges never overlap.
Thelast . pdata entry isan end marker, which may be followed by padding.

The code range descriptor pointsinto both the text segment and the run-time procedure descriptors, as
shown in Figure 3-10. The relationship between code range descriptors and procedure descriptors can be a
many-to-one relationship. Also note that a code range descriptor may not have an associated procedure
descriptor.
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Figure 3-10 Exception-Handling Data Structuer s
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The virtual address space containing the text section of the object file is portioned into code ranges. Each
code range descriptor has only one address, which indicates the beginning of therange. Therangeis
implicitly ended just prior to the beginning address of the subsequent range. Thefinal code range descriptor
serves to end the range begun by the next-to-last descriptor, not to start a new range.

The Programmer's Guide and the Calling Standard for Alpha Systems provide detailed explanations of the
exception-handling mechanisms supported by Tru64 UNIX. Related man pages such aspdsc (4) and
exception intro(3) areasoavailablefor quick reference.

C++ uses its own unigue exception mechanism. An example illustrating the symbol table representation of
C++ exception information can be found in Section 9.2.6.

3.3.9. Thread Local Storage (TLS) Data

Threads are available on Tru64 UNIX as away to increase processor utilization and overall application
performance. Thread Local Storage (TLS) provides away for an application writer to declare data that has
multiple instances, one per thread. The object file has specific structures designed to store and manage
TLS. These structures and the impact of TLS on the object file and symbol table are described here. For
general information about threads programming, see the Guide to DECthreads.
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Three object file sections aredevoted to TLS datar . t1sdata, .tlsbss,and .tlsinit. TheTLS
region consists of the . t1sdata and . t1sbss sections. The . t1sinit section,which may be mapped
with the object file€'s text or data segments, contains initialization information for . t1sdata. Objects
containing TLS data are distinguished by the presence of these sections.

Structures outside the object file are used to reference TLS data. The Thread Environment Block (TEB) is
an architected structure provided by system libraries. One of the fields in the TEB is the address of the
Thread Specific Data (TSD) array, which contains pointersinto the TLS region. Each object containing
TLSwill be allocated one or more TSD entries. In each thread, the TSD entries will contain the address of
the start of aregion of that thread'sTLS area.

Figure 3-11 Thread L ocal Storage Data Structures
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Because the TLSregion is alocated dynamically and is unique per-thread, no address information can be
recorded in the object file. All other attributes of the TLS region can be determined at link time and are
recorded in the object filein the TLS data and TL S bss section headers.

The TLS data and bss sections occupy no space in the object file and do not have associated section
relocation information.

The TLS INIT section contains the data which will be used to initialize each thread'sinstance of the TLS
data section at run time. The TLSINIT section can contain relocation information. Only R_REFQUAD and
R_REFLONG relocations are allowed, and the relocations must reference nonTLS symbols or sections.
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The TLSregion for ashared object consists of theinitialized and zero-initialized TLS data defined by that
object. The TLS region is composed of two sections: the TLS data section containing initialized TLS data
(.tlsdata) andthe TLS bss section (. t 1sbss) containing zero-initialized TLS data.

If ashared object contains TLS data, an entry in the GOT (for the special symbol ~ tlsoffset)
containsthe offset into the TSD array to the array e ement that pointstothe TLS area. If thisisamultiple-
GOT shared object, the entry may be duplicated in each GOT. The value of the GOT entry isfilled in at
load time when the TLS initidization routine calls the loader with the allocated TSD key value.

If anon-shared object contains TLS data, the addressof ~ t1soffset will normally be accessed through
a . lita entry that containsthe value 2048, the offset to TSD key 256.

Special symbol types and relocation types are specific to TLS. See Chapter 5 and Chapter 4 for more
information.

3.3.10. User Text and User Data Sections

The linker contains provisions for creating and rel ocating user-defined object file sections. Thisfeature was
implemented for a specific customer at the customer'srequest. It is very rardy used and minimally
supported. This section is designed to provide only a genera overview.

Any number of user sections can be added to an object file. See Section 2.3.2 for the placement of the user
sections in the various object file layouts.

The section header for a user section has the same semantics as those used for other object file sections.
The section flagsare set to STYP_REG. The user creating the section chooses the section name. User text
sections are distinguished from user data sections by their addresses. User text sections have text segment
addresses, and user data sections have data segment addresses.

For user sections, the linker synthesizes special symbols for the start and end addresses of each section.
These symbols take the form:

_fuser section<section namex>
_euser section<section namex>

where <section names isthenamein the section header. These linker-defined symbols are always
strong symbols.

The linker also combines like-named user sectionsin multipleinput filesto form asingle section in the
output file.

User sections can only have external rel ocation records.

Namespace issues can arise due to the user's naming of these sections. It isthe responsibility of the user to
protect against and recognize errors caused by namespace i Ssues.

3.4. Language-Specific Instructions and Data Features

Procedures with alternate entry points require multiple run-time procedure descriptors. See the Calling
Standard for Alpha Systemsfor details.

C++ has exception handling facilities in addition to those discussed in this chapter.
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C++ global constructors and destructors areimplemented as initialization and termination routinesinvoked
by driver codestoredinthe .init and . £ini sections.



4. Relocation

The purpose of relocation isto identify and update storage | ocations that need to be adjusted when an
executable imageis created from input object files at link time. Relocation information enables the linker to
patch addresses where necessary by providing the location of those addresses and indicating the type of
adjustmentsto be performed. Relocation entries in the section rel ocation information are created by the
assembler, compiler, or other object producer, and the address adjustments are performed by the linker.

Thelinker performsrelocation fixups after determining the linked object's memory layout and selecting
starting addresses for its segments. During partial links, relocation information is updated and preserved for
subsequent links. Relocation updates for partia linksinclude converting external relocation entriesto local
rel ocation entries and retargeting rel ocation entries to new section addresses. See Section 4.3.2.1 for details.

Rel ocation information contained in an object file can have three distinct representations:

e Reocation entriesidentified in section headers. These aretherelocation entriesreferred to in this
document as "normal” or "actual".

e Compact relocation records, produced by the linker and consumed by profiling tools. Compact
relocations are stored in the . comment section.

e Dynamic relocations, which are present only in shared objects. Dynamic relocation may be performed
for shared objects at load time.

The firgt two forms of rel ocation information are discussed in this chapter. Note that the discussion of the
second form is limited to Section 4.4. Thethird form is covered in Chapter 6. Figure 4-1 summarizes
which kinds of objects contain which kinds of rel ocation information.

Figure 4-1 Kinds of Relocations
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Actual relocation entries are organized by raw data section. Not all object file sections necessarily have
rel ocation entries associated with them. For example, bss sections do not have rel ocation entries because
they do not have raw datato relocate. Section headers for sections with rel ocation entries contain pointers
to the appropriate section rel ocation information, as shown in Figure 4-2.

Objects
with
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Figure 4-2 Section Relocation Information in an Object File
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Note that the ordering of section headers does not necessarily correspond to the ordering of raw data and
section rel ocation information. Consumers should rely on the section header to access this information.

4.1. New or Changed Relocations Features

Version 3.13 of the object file format does not introduce any new relocations features.

4.2. Structures, Fields, and Values for Relocations

4.2.1. Relocation Entry (reloc.h)

struct reloc ({

coff addr r vaddr;

coff uint r symndx;

coff uint r type : 8;
coff uint r extern: 1;
coff uint r offset:6;
coff uint r reserved:11;
coff uint r size:6;

}i
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Relocation Entry Fields
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r_vaddr
Virtual address of an item to be rel ocated.
r_ symndx

For an external relocation entry, r symndx iSan index into external symbols. For alocal relocation
entry, r _symndx isthenumber of the section containing the symbol. Table 4-1 lists the section
numbering.

There are exceptions to this interpretation:
e Ifthes_nreloc field in the section header overflows, this field contains the number of

relocation entries for the section. This possibility applies only to thefirst entry in a section's
relocation information. See Section 4.2.3 for moreinformation.

e For entries of typeR_LITUSE, thisfield contains a subtype. See Table 4-3.
r type

Rel ocation type code. Table 4-2 listsall possible values.
r_extern

Set to 1 for an external relocation entry.
Set to O for alocal relocation entry.

r offset

For an entry of typeR_OP_STORE, r offset isthebit offset of afield within a quadword. For
other relocation types, the field is unused and must be zero.

r_reserved
Must be zero.
r size

For an entry of typeR_OP_STORE, r_size isthebit sizeof afield. For R_IMMED_ * entries,itisa
subtype. See Table 4-4. For other rel ocation types, the field is unused and must be zero.



87

Table 4-1 Section Numbersfor Local Relocation Entries

Symbol Value Description
R_SN_NULL 0 Nno section

R SN TEXT 1 . text section
R_SN RDATA 2 .rdata section

R _SN DATA 3 .data section

R _SN SDATA 4 .sdata section

R _SN SBSS 5 . sbss section
R_SN BSS 6 .bss section

R SN INIT 7 .init section

R SN LITS8 8 .1it8 section

R SN LIT4 9 .1it4 section
R_SN XDATA 10 .xdata section
R_SN PDATA 11 .pdata section

R SN FINI 12 .fini section

R SN LITA 13 .lita section
R_SN_ABS 14 for R_OP_xxxx constants
R_SN_RCONST 15 .rconst section
R_SN TLSDATA 16 .tlsdata section
R _SN TLSBSS 17 .tlsbss section

R_SN TLSINIT

18

.tlsinit section




Table 4-2 Relocation Types

88

Symbol Value |Description
R_ABS 0x0 Rel ocation already performed.
R_REFLONG Ox1 I dentifies a 32-bit reference to symbol's virtual address.
R_REFQUAD 0x2 I dentifies a 64-hit reference to symbol's virtual address.
R GPREL32 0x3 It_jentifi es a 32-hit displacement from the global pointer to a symbol's
- virtual address.
R LITERAL Oxd Identifiesa r(_aference toaliteral in theliteral address pool as an offset from
- the global pointer.
R_LITUSE' 0x5 I dentifies an instance of a literal address previously loaded into aregister.
R GPDISP Ox6 Identifies an 1da/1d_ahinstr_uction pair that isused to initialize a
- procedure's global -pointer register.
R_BRADDR 0ox7 Identifies a 21-hit branch reference to the symbol's virtual address.
R_HINT 0x8 Identifies a 14-bit j sr hint reference to symbol's virtual address.
R_SREL16 0x9 Identifies a 16-bit self-relative reference to symbol's virtual address.
R_SREL32 Oxa I dentifies a 32-bit self-relative reference to symbol's virtual address.
R_SREL64 Oxb I dentifies a 64-bit self-relative reference to symbol's virtual address.
R OP PUSH OxC Identifies a64-bit virtual address to push on the relocation expression
- - stack.
R OP STORE oxd Identifi_es an address to store the value popped from the rel ocation
- = expression stack.
R OP PSUB Oxe Identifi_eﬁ a symbo_l 'svirtual address to subtract from value at the top of the
- = rel ocation expression stack.
R OP PRSHIFT loxf Identifi_es the num_ber of hit positions to shift the value at the top of the
- = rel ocation expression stack.
Specifies anew gp valueto be used for the address range starting with the
R_GPVALUE 10 | address specified by the r_vaddr field.
R GPRELHIGH ox11 Identifiesl thg most significant 16 bits of a 32-bit from the global pointer to
- a symbol's virtual address.
R_GPRELLOW 0x12

Identifies the least significant 16 bits of a 32-bit from the global pointer to
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a symbol's virtual address.

R_IMMED?

0x13 Indicates an instruction sequence that cal culates an address.

R _TLS_ LITERAL

0x14 I dentifies the ingruction that loads the TLS key.

I dentifies the most significant 16 bits of a 32-bit from the TLSregion

R_TLS_HIGH Ox15 pointer to a symbol's virtual address

R TLS LOW 0x16 Idgntlflesthe least ?gmflcant 16 bits of a 32-bit from the TLSregion
- = pointer to a symbol's virtual address.

Table Notes

1. Ther symndx fieldfor therelocation typeR LITUSE isasubtype. The valid entries for thisfield
and their meanings are summarized in Table 4-3.

2. Ther size fiedfor therelocation typeR IMMED is asubtype. The valid entries for this field and
their meanings are summarized in Table 4-4.

Table4-3 Literal Usage Types

Symbol Value |Description

R LU BASE 1 H};;)a;a drraisster of amemory format instruction (except 1dah) containsa
R_LU BYTOFF |2 Should not be used.

R_LU JSR 3 The target register of a j sr ingruction contains aliteral address.

Table 4-4 Immediate Relocation Types

Symbol Value [Description

R_IMMED GP_16 1 16-bit displacement from GP value

R_IMMED GP_HI32 |2 Most significant 16 bits of 32-bit displacement from GP value
R_IMMED SCN HI32 |3 Most significant 16 bits of 32-bit displacement from section start

R_IMMED BR HI32 |4

Most significant 16 bits of 32-bit displacement from instruction
following branch

R_IMMED LO32

Least significant 16 bits of 32-bit displacement specified by last
R_IMMED * HI32
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4.2.2. Compact Relocation Subsection (of .comment section)

Compact rel ocation records are written into the free-form data area of the comment section. They are
identified by a tag type of CM_COMPACT_RLC in the comment header. The public versions of compact
relocation interfaces for producers and consumers are located in the header file cmplrs/cmrlc.h. See
Section 4.4 and Chapter 7 for more information.

4.2.3. Section Header

The section header contains afile pointer to the section's rel ocation information and the number of entries.
(See Section 2.2.3 for the declaration.) The number of relocation entries for a section is contained in the
section header field s_nrelocs. If that field overflows, the section header flag S NRELOCS_OVFL is set
and the first relocation entry's r _symndx field stores the actual number of relocation entries for the
section. That relocation entry hasatype of R_ABS and all other fields are zero, causing it to beignored
during relocation.
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4.3. Relocations Usage

4.3.1. Relocatable Objects

An object isrelocatableif it contains enough relocation information for the linker to successfully relocate
it. Relocatable objects can be produced by compiling without linking or by partial linking.

Compilers and assembl ers always produce rel ocatabl e objects. By default, the rel ocatable object files
produced are passed to the linker to produce a non-rel ocatabl e executable object. Maost compilersrecognize
a -c option. The -c option suppresses the link operation and writes the object file in itsrel ocatable form.
For example, the following command produces a non-executable OMAGI C file named pgm. o.

Scc -c pgm.c

By means of partia linking, the linker can also produce a rel ocatable object. By default, the linker attempts
to produce an executable ZMAGIC file for which al relocation entries have been processed and removed.
To preserve relocation information, the linker's - r switch should be selected. For example, the following
command produces a non-executable OMAGIC filenamed a . out .

$1d -r pgm.o

Selection of the - r switch has other effects: common storage class symbaol allocation is deferred until final
link and undefined symbol error messages are suppressed.

Rel ocatabl e objects have various uses. The most obviousis asinput to a subsequent partial or final link
operation. All objectsinput to the linker are rel ocatable objects, regardless of how they are produced.
Multiple rel ocatabl e objects can be combined during afinal link to produce an executable object. The
typical example of this process is when several separately compiled modules are created at different times
and later linked together to produce the final executable program. For example, the following steps produce
an executable ZMAGIC filenamed a . out .

Scc -c partl.c
Scc -c part2.c
Scc -c part3.c
Scc partl.o part2.o part3.o

Rel ocatabl e objects are also used for archives. Although files of any type may be archived, one important
use of archivesisfor user or system libraries. An exampleisthe system library 1ibce. a, which islinked
with many C programs. Objectsin archive libraries must be rel ocatable to be linked with other object files
to make executable programs.

Rel ocatabl e objects may be used as |oadabl e drivers, which are object files that are dynamically added to a
running kernel. Information is available in the System Administration Guide.

Rel ocatabl e objects can also be used by the bootlinker, which builds the kernel from object files at boot
time. Information is available in the Sysem Administration Guide.

Some profiling tools require rel ocatabl e objects as input because they rebuild the object and require the
capability of rearranging raw data. However, on Tru64 UNIX, these toolsrely on compact relocations,
which are an dternate form of relocation information. Compact rel ocations are described in Section 4.4.
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4.3.2. Relocation Processing

This section describes the generic process of relocating object files from a high-level viewpoint. It does not
include details of address calculations, nor does it take into account the substantial variationsin the
contents of arelocation entry's fields. For specifics, see Section 4.3.4.

Rel ocation involves tracking and updating references as the referenced items move in memory. At a
minimum, onerelocation entry isrequired for each reference made to an item whose address may
potentially change. This address, pointed to by the reloc dructurefield r _vaddr, isthetarget address of
therelocation. Thisaddressis adjusted whenever necessary to prevent it from becoming outdated. The
target addressislocated in one of the raw data sections of the object file.

The target address points to another item in the raw data. Thisitem can be a dataitem, procedure, or any
program element that will potentially be mapped to a new memory location when the linker buildsthe
executable object.

Figure 4-3 Relocation Entry
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Note that a many-to-one relationship may exist between relocation entries and target items. A target item
may be addressed multipletimes in an object file's raw data, and a single target address reference may be
described by multiple rel ocation entries.

Taken together, ther symndx field and r_extern bit track the position of the target item. If it is moved
to anew location, the target address is updated accordingly.

The value of therelocation isthe distance that the tracked item will move in memory.

4.3.2.1. Local and External Entries

Rel ocation entries are used for several purposes:



e Addressreferences to unresolved symbols that will be imported from other objects.

e Referencesto addresses within an object that may change when the object islinked at a different base

address or linked with other object files.

e Identification of address references that may be optimized at link time.

Rel ocation entries may belocal or external. Local relocation entries are used for references to addresses
within an object. Externa relocation entries are used for references to any external symbols. In particular,
unresolved symbols references can only be represented by external relocation entries.

Ther extern flagis setin external relocation entries. Thisflag determines the interpretation of the
r symndx field. For external entries, this field provides the external symbol table index of the referenced

symbol.

Figure 4-4 shows a sample externa relocation entry.

Figure 4-4 External Relocation Entry
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For an externa entry, the value for relocation istherun-time address of the referenced externa symbal. In
cases where the symbol is undefined in an input object, it must first be resolved. Figure 4-5 depictsthis

process.
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Figure 4-5 Processing an External Relocation Entry
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A local relocation entry hasits r_extern flag cleared and tracks references by section.

Figure 4-6 shows a sample local entry.



Figure 4-6 L ocal Relocation Entry
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For alocal entry, the value for relocation is the difference between a section's address in the input object
and the address of that section's data after linking. The section isidentified by arelocation section typein

r_symndx. Figure 4-7 depicts this situation.

Figure 4-7 Processing a Local Relocation Entry
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To completerelocation for all entries, the base address for the final processimageisrequired. The linker
can then use that address to patch all relocatable entries.

4.3.2.2. Relocation Entry Ordering

The ordering of relocation entries is sometimes significant. The diagram below shows the optional
rel ocation entry count and grouping of relocation entries according to GP range.

Figure 4-8 Relocation Entry Ordering Requir ements

section Relocations
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/ for first GP range
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If a section requires an optiona relocation entry overflow count, it must be in the first relocation entry.
Rel ocation processing tools require GP-rel ative rel ocations to be grouped by GPrange. R_GP_VALUE

entries will effectively separate the groups of GP-relative relocation entries for each GP range. For alist of
GP-relative relocation types, see Section 4.3.3.2.

Some rel ocation types can only be used when paired with other rel ocation types. These relocation
groupings are

e R GPRELHIGH, R GPRELLOW

e R TLSHIGH, R TLSLOW

e R LITERAL, R LITUSE

e R OP PUSH, R OP PSUB, R OP_PRSHIFT, R OP STORE
AnR_GPRELHIGH entry must be followed by one or moreR_GPRELLOW entries.
AnR_TLSHIGH entry must be followed by one or moreR_TLSLOW entries.

AnR_LITERAL entry may be followed by zero or moreR_LITUSE entries.
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AnR_OP_PUSH entry must be followed by exactly oneR_OP_STORE entry. Zero or moreR_OP_PSUB
and R_OP_PRSHIFT entries may be |located between theR_OP_PUSH and R_OP_STORE entries.

4.3.2.3. Shared Object Transformation

Part of the linker's preparation of loading information for shared objectsis to create dynamic relocation
entries from some of the actual relocation entries.

The linker must determine which relocation entries need to be converted to dynamic rel ocation entries.
Datareferences (R_REFQUAD and R_ REFLONG relocation types) must be represented inthe . rel.dyn
section if they arenot inthe . 1ita section. The . 1ita section isan exception because its contents are
mapped directly into the GOT. All other R_REFQUAD or R_REFLONG entries have an associated dynamic
relocation entry in the shared object file.

Dynamic relocation entries are not permitted for text addresses. The text segment isnot mapped with write
permission, so text relocation fixups cannot be performed by the dynamic loader.

4.3.3. Kinds of Relocations

Rel ocations types can be grouped into the following categories:
e Direct Reocations

e GP-reative Relocations

e Sdf-relative Relocations

e Literal Relocations

e Reocations Stack Expressions

e Immediate Relocations

e TLSRelocations

The categories often overlap.

4.3.3.1. Direct Relocations

Direct rd ocations are independent entries; al of the information necessary to process them is self-
contained. Therelocation target contains either the address of arelocatable symbal or an offset from that
address. They are used for simple address adjustments; addresses in the literal address pool (.1ita
section), for example, will have associated direct relocation entries.

R_REFQUAD and R_REFLONG aredirect relocation types. R_REFQUAD indicates a 64-bit address and
thusis normally used on Alphasystems. R_REFLONG indicates a 32-bit address and most often occurs
when the xt aso environment isin effect. These types of relocations are processed in the manner described
in Section 4.3.2.

Thefollowing specia reguirements exist for direct relocation entries for the . 1ita section:

e Onlyentriesof typeR_REFQUAD of R_REFLONG are permitted.
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e R REFLONG entries pertain to the bottom 4 bytes of a . 1ita entry. The size of the entry is
unchanged, but an error isgenerated if the result overflows 4 bytes.

e All external entries must correspond to symbols whose value is zero prior to rel ocation.

4.3.3.2. GP-Relative Relocations

This class of relocationsrequires use of the GP value as afactor in the calculation. Note that the literal
relocationsin Section 4.3.3.4 and Section 4.3.3.7 dso fit this category.

TheR_GPREL32,R_GPRELHIGH, R_GPRELLOW, and R_GPDISP relocation types are GP-reative.
They typically point to instructions that cal culate or load addresses using a GP value. TheR_ GPRELHIGH
and R_GPRELLOW relocation types must be used together. TheR_GPDISP relocation typeis used for
instruction pairsthat load the GP value.

A special-purpose GP-relative rel ocation entry specifies that anew GP rangeisin effect. Therelocation
typefor thisentry iSR_GPVALUE. Thelinker insertsR_GPVALUE entries at object module boundaries
during apartid link (1d -r)whenthe . 1ita sectionitisbuilding would otherwise overflow. Entries of
thistype appear in the . text section or the . rdata section. Theseentriesarelocal entries because they
arenot tied to any symbal.

4.3.3.3. Self-Relative (PC-Relative) Relocations

This class of relocations require adjustments based on the current position in the text or data. Self-relative
relocations are also referred to as PC-relative rel ocations.

TheR SREL16,R_SREL32,andR_SREL64 relocation types apply to 16, 32, and 64 bit target addresses,
respectively.

Two more self-relative relocation typesareR_ BRADDR and R_HINT. R BRADDR isused to identify
branching instructions whose targets are known at link time. R_HINT isused to adjust the branch-
prediction hint bitsin jump ingructions.

4.3.3.4. Literal Relocations

This category of relocations encompasses both literal relocations (type R LITERAL) and literal-usage
relocations (type R_LITUSE), which work together to describe text references.

A literal relocation (type R_ LITERAL) occurs on aload of an addressfromthe . 1ita section. Any
associated R_LITUSE entries always directly follow theR_LITERAL entry.

The literal-usage entries are used for linker optimizations. Processing for these relocation entriesis
optional. Thelinker and other tools may ignore these relocation entries with no risk of producing an
improperly relocated object file.

The advantage of literal-usage entries is that they enable link-time memory-access optimizations. These
rel ocation entries identify instructions which use a previously loaded literal. With this knowledge, the
linker is able to determine that certain ingructions are unnecessary or can be altered to improve
performance. Optimization is performed only during final link and with an optimization level setting of at
least -01.
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4.3.3.5. Relocation Stack Expressions

Rel ocation stack expressions constitute a sequence of relocation entries that must be evaluated as a group.
The purpose of stack expressionsisto provide a way to represent complex relationships between

rel ocatabl e addresses and store results with bit field granularity. They are currently used only for exception-
handling sections.

An additional advantage of stack expressionsisthat they provide the capahility to describe a new relocation
type without requiring tool support or code modification to recognize and execute anew r_type.
However, the greater flexibility of relocations expressionsis offset by the fact that multiple entriesare
necessary to describe a single fix-up.

Special relocation types are used to build relocation expressions. The types are:
e R OP PUSH

¢ R OP STORE

e R OP PSUB

¢ R OP PRSHIFT

AnR_OP_PUSH entry marks the beginning of a sequence of relocation stack expressions and an
R_OP_STORE marksthe end. The types of any intervening relocation entries should be either
R_OP_PRSHIFT to shift the top of stack valueright or R_OP_PSUB to subtract an address from the top of
stack value.

AnR_OP_STORE entry pops the value from the top of the expression stack and stores selected bitsinto a
fieddinaword in memory. Ther offset andr_ size fields of arelocation entry are used to specify the
target bit field.

Itisan eror to cause stack underflow or to have values |eft on the stack when section relocation is
compl ete.

Currently, these relocation types are used exclusively for rel ocating the exception-handling datain

.xdata and . pdata. Thereason thisrelocation is performed usng the stack expression typesis the need
to shift the address by two bits. Bit field granularity cannot be specified with other rel ocation types unless it
isimplicit in therel ocation type.

4.3.3.6. Immediate Relocations

Immediate rel ocations are used to describe the linker's optimization of literal pool references. If
optimization options arein effect, the linker will replaceR_ LITERAL and R_LITUSE entries with
R_IMMED entries wherever possible. This information isthen used to generate compact rel ocations that
sufficiently describe all relocatable storage locations.

Immediate rel ocations can describe ingtruction sequences that cal culate addresses by adding either a 16-bit
or 32-bit immediate displacement to abase address. R_ IMMED entries always point to memory-access
instructions. The displacement is obtained from the instruction.

There are five types of immediate relocations. Subcodesin ther _size field identify them. The types are:

e R IMMED GP 16



100

e R IMMED GP 32

e R IMMED SCN HI32
e R IMMED BR HI32
e R _IMMED LO32

R_IMMED GP_16 andR_IMMED GP_32 entriesidentify address calculations performed by adding an
offset to the global pointer. AnR_IMMED SCN HI32 entryispaired withanR IMMED LO32 entry to
identify a pair of ingtructions whi ch add a 32 hit d|spl acement to the gtarting address of a section. An
R_IMMED BR HI32 entryisparedwithanR_IMMED LO32 entry toidentify apair of instructions
which add a 32 bit displacement to the address of an instruction following a branch.

4.3.3.7. TLS Relocations

ThetypesR_TLS_LITERAL,R TLS LOW,andR_TLS HIGH are TLS-specific relocation types.

R_TLS LITERAL isvery smilar toR_LITERAL, except it rdatesto aliteral inthe TLS data storage
areg, the TSD array. R_TLS_LOW and R_TLS_HIGH entriesare used as apair to identify instructions
which load a TLS data address by adding a 32 bit offset to the TLSregion pointer. Theserelocation types
areidentical totheR_GPRELHIGH and R_GPRELLOW relocation types except for the fact that the target
instructions for the TLS relocation entries cal cul ate addresses usi ng the TLSregion pointer ingtead of the
GP value.

4.3.4. Relocation Entry Types

The type of arelocation entry (stored inther _type field) describes the action the linker must perform.
This section discusses the purposes of the different types and provides examples of their use.

Relocation entry fields are interpreted differently based on rel ocation type. There also may be constraints
on fields contents depending on the type. Some relocation entries are context sensitive and must be
preceded or followed by a particular entry. Some are size specific and the computed address must fall
within a specified range. Moreover, some types are constrained to be local entries only or are associated
with particular object file sections.

To describe the cal culations performed by the linker, the following notation is used in the detailed
descriptions for each relocation type:

* disp

The displacement field of whatever instruction is indicated.
GP

Current GP value; begins as the contents of aouthdr.gp value for thefinal object.
new_scn_addr

The address of the tracked section of alocal relocation entry, as calculated by the linker.

old GP
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GP value in the input object; beginsas aouthdr.gp_ value for theinput object.
old scn_addr

The contentsof s_vaddr in the section header of the input object file for the tracked section of a
local relocation entry.

[r_vaddr]

The contents at the address r_vaddr; to be distinguished from the address itself.
SEXT

The constant immediately following is sgn-extended.
stack

Therelocation expression stack.
this new addr

Wherer vaddr will be after relocation .
this _new scn_addr

Where the section containing r_vaddr will be after rd ocation, as calculated by the linker.
this old scn_addr

The contentsof s_vaddr in the section header of the input object file for the section containing
r vaddr.

tos
Top of relocation expression stack.
result

Theresult of the relocation, which iswritten back into therelocated r _vaddr in the object file that
the linker is producing.

4.3.4.1. R_ABS
Fields

r vaddr Number of relocation entriesif s_nreloc section header field has overflowed. This
number includesitself in the count. Otherwise, unused.

r_ symndx Unused.
r_extern Unused.

r offset Unused.
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r size Unused.
Operation

N/A

Restrictions

N/A

Description

Thisrelocation entry is used to indicate arel ocation has already been performed or should not be
performed. No calculation is associated with such an entry.

Thefirg entry in arelocation section is of type R_ABS if it contains the number of relocation entriesin that
section (which isthe case when the section header field s_nreloc overflows). Thistype can aso be used
to pad relocation data or to delete relocation entriesin place. In-place deletions of relocation entries are
likely to be performed during a partial link.

Example

An object file produced during apartial link has 99993 rd ocations associated with its . text section. A
listing of the entries begins with an R_ABS because the total number overflows s_nreloc:

Vaddr Symndx Type Off Size Extern Name
.text:

0x0000000000018699 0 ABS local <null>

4.3.4.2. R_REFLONG
Fields

r vaddr Pointsto target address.
r_symndx  Externad symbol index if r_externisl; section number if r _externisO.
r extern EitheOor 1l

r offset  Unused.

r size Unused.
Operation
if (r_extern == 0)
result = (new _scn addr - old scn addr) + (int) [r vaddr]
else

result = EXTR.asym.value + (int) [r_vaddr]
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Restrictions

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type describes a ssmple address adjustment to the 32-hit value pointed to by
r_vaddr. R_REFLONG entries aremost likely to occur when the compilation option -xtaso_short is
specified.

Therelocated value may be unaligned.

Example 1

C code fragment:

extern int i;
void *p = (void *) (&1 + 1);

Compileasfollows:
$ cc -c -xtaso_short pgmname.c

Produces thefollowing R_ REFLONG entry:

***RELOCATION INFORMATION***
Vaddr Symndx Type Off Size Extern Name

.sdata:
0x0000000000000000 0 REFLONG extern I

Thisrelocation entry is necessary because the value of the pointer p depends on the address of the global
(common storage class) symbol i, whose addressisyet to be determined. At the location indicated by
s_vaddr, thevalue 4 is stored, which will be added to the resolved address of i. The "4" represents the 4
bytes to the next integer storage location in memory after i's.

Example 2

From assembly code, the following declaration produces the same rel ocation entry as the previous example.

.long I

43.43. R_REFQUAD
Fields

r vaddr Pointsto target address.

r_symndx  Externad symbol index if r_externisl; section number if r _externisO.
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r extern EitheOor 1l

r offset  Unused.

r size Unused.
Operation
if (r_extern == 0)
result = (new_scn _addr - old scn _addr) + (long) [r vaddr]
else

result = EXTR.asym.value + (long) [r vaddr]

Restrictions
None.

Description

A relocation entry of this type describes a ssimple address adjustment to the 64-hit value pointed to by
r_vaddr. R_REFQUAD entriesaremost likely to occur in data sections and almost always are used for

relocation of the . 1ita section.
Therelocated value may be unaligned.
Example 1

Small program:

#include <stdio.h>

main () {
printf ("printing!\n") ;
}

Rel ocation entries produced for its . 1ita section:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern
.lita:
0x0000000000000070 1 REFQUAD extern
0x0000000000000078 3 REFQUAD local

Name

printf
.data

The . 1ita section consists of two entries, and each isrelocated. One entry is external, tracking the routine

nameprintf, and onelocal, tracking an item in the . data section.

Example 2

A R_REFQUAD entry can aso be produced by an assembly language statement such as:
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.globl vy
.data
b: .quad vy

Rel ocation entry produced:

***RELOCATION INFORMATION***
Vaddr Symndx Type Off Size Extern Name

.data:
0x0000000000000000 0 REFQUAD extern vy

Thevariableb isdllocated a s_vaddr inthe . data section and will be updated by adding the address of
y when the symbol v isresolved.

4.3.4.4. R_GPREL32

Fields
r vaddr Pointsto a 32-bit GP-relative value.
r_symndx External symbol index if r_externis1; section number if r externisO.
r extern Either Oor 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
result = (new_scn _addr - old scn _addr) + old GP - GP +
SEXT ( (int) [r_vaddr]
else

result = EXTR.asym.value - GP + SEXT((int) [r_vaddr]

Restrictions

Signed result after rel ocation must not overflow 32 bits.

Description

A relocation entry of thistype indicates a 32-bit GP-relative value that must be updated. If itisalocal
entry, this value must be biased by the GP value for the input object file. In both cases, the current GP
value is subtracted to produce aresult that is an offset from the GP.

Example 1

Local R_GPREL32 entries are produced for amany-case switch statement. For example, consider the
following C program:
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main () {
int 1i;

gcanf ("%d", &1) ;
switch (i) {

case 0:i++; break;
case 1:i--; break;
case 2:1i+=2; break;
case 3:1-=2; break;
case 4:i+=3; break;
case 5:1-=3; break;
case 6:i++; break;
default: i=0;

A compiler may implement a switch statement with a"jump table", that is a code sequence containing
labels for each case and a jump statement selecting between them. For each case label, arelocation entry is
produced:

Vaddr Symndx Type Off Size Extern Name

.rconst:
0x00000000000000d0 1 GPREL32 local .text
0x00000000000000d4 1 GPREL32 local .text
0x00000000000000d8 1 GPREL32 local .text
0x00000000000000dc 1 GPREL32 local .text
0x00000000000000e0 1 GPREL32 local .text
0x00000000000000e4 1 GPREL32 local .text
0x00000000000000e8 1 GPREL32 local .text

Example 2

The following assembly code sequence also producesaR_GPREL32 entry:

.globl =z
.data
a: .gprel32 z

Rel ocation entry produced:

***RELOCATION INFORMATION***
Vaddr Symndx Type Off Size Extern Name

gprel32.o0:

.data:
0x0000000000000000 0 GPREL32 extern =z
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4.3.4.5. R_LITERAL
Fields

r vaddr Pointsto aload instruction in the text segment. The valueto be relocated isthe
memory displacement from the $gp in theinstruction.

r symndx R _SN_LITA
r_extern Must be zero; all R_LITERAL entriesarelocal.

r offset Unused.

r size Unused.
Operation
result = (new_scn _addr - old scn _addr) + (SEXT((short) [r vaddr]) +

old GP) - GP

Restrictions

Theresult after relocation for an R_LITERAL entry must not overflow 16 hits. .

R_LITERAL entriesmust belocal andrelativetothe . 1ita section.

Description

A relocation entry of thistypeis produced when an instruction attemptsto reference valuesin the literal -
address pool (. 1ita section). Theingruction containing the reference accessesa . 1ita entry using the
GPvaluein effect and a signed 16-bit constant. The original address of the item has to be reconstructed and
then adjusted for the new location of the address table. The new address then hasto be reconverted into a

GP displacement using the new GP value.

AnR_LITERAL entry may or may not be followed by corresponding R_ LITUSE entries. The
R_LITERAL entry isrequired but theR_LITUSE entriesare not.

Example

R_LITERAL entries are used when an addressis loaded from the literal address pool:
ldg tl2, -32664(gp)
Rel ocation entry produced:

***RELOCATION INFORMATION***
Vaddr Symndx Type Off Size Extern Name

.text:

0x0000000000000038 13 LITERAL local .lita
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4.3.46. R_LITUSE: R_LU BASE
Fields

r vaddr Points to memory-format instruction.

r_ symndx R LU _BASE

r_extern Must be zero; all R_LITUSE entries arelocal.
r offset Unused.

r size Unused.

Operation

Check if displacement iswithin 16 or 32 bits. The displacement is cal cul ated:

new lit = [relocated literal belonging to correponding R _LITERAL]
disp = new_lit + lituse_disp - GP

Restrictions

A relocation entry of thistype must follow either an R_LITERAL or ancther R_LITUSE entry with no
other types intervening.

r vaddr must be aligned on a byte boundary.

Ignored if optimization level isnot at least -01.

Cannot remove the first load instruction unless thisis the only corresponding R_LITUSE entry.
Description

Thisrelocation entry isinformationa and indicates that the base register of the indicated instruction holds a
literal address. Notethat aR_LITERAL entry, corresponding to an 1dqg ingruction, precedes this entry.

Possi bl e optimizations depend on the distance of the memory displacement from the GP value. If the
displacement isless than 16 bits from the GP, a single instruction suffices to describe the location. The
code sequence can be changed as shown:

ldg rx, disp(gp) R_LITERAL
1dg/stqg ry, disp2(rx) R_LITUSE(R LU BASE)

ldg/stqg ry, disp3(gp)

Thelinker convertstheR_LITUSE entry toan R_IMMED_GP16 for the transformed instructions.

If the displacement is within 32 bits of the GP, one memory access can be saved by replacing the first load
instruction with the faster 1dah instruction.

ldg rx, disp(gp) R_LITERAL
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1dg/stqg ry, disp2(rx) R_LITUSE(R LU BASE)

1dah rx, disp3 (gp)
ldg/stqg ry, disp4 (rx)

Thelinker will convert theR LITERAL and theR_LITUSE, respectively, to entries of type
R_IMMED GP HI32 andR_IMMED GPLOW32.

Thiscan currently only be doneif exactly oneR_LITUSE existsfor theR_LITERAL.
Example 1

The following instructions represent a single use of an address literal:

0x100: 1dqg al, -32656(gp) // R_LITERAL
0x104: lda al, 32(al) // R_LU BASE

Rel ocation entries produced:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000100 13 LITERAL local .lita
0x0000000000000104 1 LITUSE local R LU BASE

The potential optimization indicated by thiSR_LU_BASE isthat the two instructions could possibly be
replaced by a single 1dq instruction of the form:

1dg al, <disp>(gp)

Example 2

The following instructionsillustrate multipleR_LITUSE entriesfollowing an R_LITERAL entry:

0x130: ldg t0, -32736(gp) // R_LITERAL
0x134: 1dg tl, 0(t0) // R_LU BASE
0x138: zap tl, 0x2, t1
0x13c: insbl v0, 0x1, vO
0x140: bis tl, vo0, tl
0x144: stg tl, 0(to0) // R_LU BASE

Rel ocation entries produced are:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
0x0000000000000130 13 LITERAL local .lita
0x0000000000000134 1 LITUSE local R LU BASE

0x0000000000000144 1 LITUSE local R LU BASE
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43.47. R_LITUSE: R_LU JSR
Fields

r vaddr Pointsto jump instruction (in text segment).

r symndx R LU_JSR

r_extern Must be zero; all R_LITUSE entries arelocal.
r offset Unused.

r size Unused.

Operation

new lit = [relocated literal belonging to correponding R_LITERAL]
this new addr = r vaddr - this old scn addr + this new scn addr
branch disp = prologue_size + new_lit - this new_addr + 4

result = branch disp / 4

Restrictions
Must follow either an R_ LITERAL or ancther R_LITUSE entry with no other types intervening.

Result after relocation must not overflow 21 bits (size of branch displacement field in the branch
instruction format).

Description

A relocation entry of thistypeisinformational only. It informsthe linker that the indicated jump instruction
isjumping to an address previously loaded out of the literal address pool. The load instruction had an
associated R_LITERAL entry that precedes thisrelocation entry.

Under theright circumstances, the linker can optimize this sequence in several ways:

e The procedure prologue can be skipped if it isnot needed to load a GP value for the procedure.

e Thebranch can be calculated and the ingtruction changed to a branch instruction.

e Thepreceding 1dg can be removed.

The first two actions may be performed but not the last if other R_LITUSE entries correspond to the same
R_LITERAL. These optimization are performed by the linker for optimization level 1 and greater.
Optimization cannot be done for external symbols that are weak symbolsin a dynamic executable, hidden
symbolsin ashared library, or unresolved.

Example

The following instructions illustrate the use of aliteral asthe target of a jump ingtruction:
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0x8: 1dg tl2, -32736(gp) // R_LITERAL
0xc: lda sp, -16(sp)

0x10: stg ra, O0(sp)

0x14: Jjsr ra, (t12) // R_LU JSR

Rel ocation entries produced:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000008 13 LITERAL local .lita
0x0000000000000014 3 LITUSE local R LU JSR

Theingructions identified by theR_LITERAL and R_LU_ JSR entriesin this example can be optimized.
The 1dq instruction can be replaced with aNOP instruction and the j s can bereplaced with absr
yieding:

0x1200011a8: ldg_ u zero, O0(sp) // NOP
0x120001llac: 1lda sp, -16(sp)
0x120001110: stg ra, O0(sp)

0x120001114: bsr ra, 0x1200011d8

4.3.4.8. R_GPDISP
Fields

r vaddr Pointsto thefirst of a pair of instructions: 1da and 1dah. Either instruction may
occur first.

r symndx Contains the unsigned byte offset from theinstruction indicated in r_vaddr to
the other instruction used to |oad the GP value.

r extern Must be zero; all R_GPDISP entriesarelocal.
r offset Unused.
r size Unused.

Operation

result = (old GP - GP) + (this old scn addr - this new scn addr)
+ (65536 * high disp) + low disp

Theresult after relocation is written back into the ingruction pair.

lda disp = result
ldah disp = (result + 32768) / 65536
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Restrictions

Must be alocal relocation.

Must describe an 1da/1dah instruction pair.

Result after relocation must not overflow 32 bits.

Description

A relocation entry of thistype corresponds to two instructionsin the code. Thefield r_vaddr pointsto
oneinstruction and the address of the other is computed by adding the value of r symndx to r vaddr.
Thisrelocation entry occurs for each instruction sequence that loads the gp value. For instance, procedure
entry pointstypically include instructions which load their effective gp value. They are normally the first
instructionsin a procedure's prologue.

Example

A simple example of an occurrence of theR_GPDISP entry is the program entry point:

main() {

}

Ingructions generated:

0x0: ldah gp, 1(t12) // R_GPDISP (r_ vaddr)
0x4 : lda gp, -32704(gp) // R _GPDISP (r vaddr + r symndx)

Rel ocation entry produced:

Vaddr Symndx Type Off Size Extern Name

.text:
0x0000000000000000 4 GPDISP local

There are Situations where a procedureis called but theR_GPDISP entry isnot required. In this case, the
gp_used field of the procedure's descriptor will be zero, andan R_LU_JSR optimization may cause the
prologue to be skipped. See the Calling Sandard for Alpha Systems for details on when a procedure
requires calculation of a GP value.

4.3.4.9. R_BRADDR
Fields

r vaddr Pointsto a branch instruction.
r symndx Externa symbol index if r_extern is1; section number if r externisO.
r extern Either O or 1.

r offset Unused.
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r size Unused.

Operation

if (r_extern == 0)
this new addr = r vaddr - this old scn addr + this new scn addr
result = ((new_scn _addr - old scn_addr) +

(branch displacement * 4)
+ r vaddr + 4 - this new_addr) / 4

else
this new addr = r vaddr - this old scn addr + this new scn addr
result = (EXTR.asym.value + (branch displacement * 4)
- this new addr) / 4
Restrictions

After relocation the result should be aligned on a 4-byte boundary.
The signed result must not overflow the 21-bit branch displacement field.
Description

A relocation entry of thistype identifies a branch instruction in the code. The branch displacement is
treated asalongword (32-hit, or oneinstruction) offset. The branch target's virtual address is computed:

va <- PC + (4 * branch displacement)

The branch displacement must be rel ocated.

TheR_ BRADDR relocation can only be used for local or static references because the displacement is fixed
at link time. Updating it at run time would require writing to the text segment, which isnot permitted.
Without the ability to update at run time, symbol preemption for shared objects will not function.

Example

An examplethat will result in production of thistype of relocation isa procedure call of a static function:

static bar () {
int g =1;
printf ("the value of g is %d\n", q);

}

main () {
bar () ;
}

Ingruction generated:
0x4c: bsr ra, 0x8(zero) // R_BRADDR

Rel ocation entry produced:
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Vaddr Symndx Type Off Size Extern Name
.text:

0x000000000000004c 1 BRADDR local .text

4.3.4.10. R_HINT
Fields

r vaddr Points to jump-format instruction.
r_symndx External symbol index if r_extern is1; section number if r externisO.
r extern Either Oor 1.

r offset Unused.

r size Unused.
Operation
if (r_extern == 0)
this new addr = r vaddr - this old scn addr + this new scn addr
result = ((new _scn addr - old scn addr) + (jump disp * 4) +
r vaddr + 4 - this new addr) / 4
else
this new addr = r vaddr - this old scn addr + this new scn addr
result = (EXTR.asym.value + (jump displacement * 4) -
this new addr) / 4
Restrictions

Result after relocation should be aligned on a 4-byte (instruction-size) boundary.

Description

Jump instructions are memory-format ingtructions where the 14 bits of the displacement field serveasa
hint for determining the jump target. The hint is PC-relative and must be rel ocated to remain relevant. Note
that the use of hintsis for optimization purposes only and takes advantage of branch-prediction logic built
into the architecture. If the hint values were not rel ocated, a correct executable program would still be
produced but potential performance improvements would be | ost.

A characterigic of R_HINT entry processing isthat instead of checking for overflow of the 14-bit result
after relocation, the linker truncates the result and writesit back without issuing an error or warning.

Example

Subroutine calls often causeR_HINT entries.

main() {
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printf ("hello\n") ;

Ingructions generated:

0x14: 1dg t1l2, -32752(gp) // R_LITERAL
0x18: jsr ra, (tl2), printf // R_HINT

Rel ocation entries produced:

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000018 3 LITUSE local R_LU JSR
0x0000000000000018 0 HINT extern printf

Note that the same source line and corresponding instruction produce a second rel ocation entry of type
R _LITUSE_ JSR. Thissecond entry is also informational only. It indicates that the target register of the
jump ingruction contains a previously loaded literal address.

4.3.411. R_SREL16

Fields
r vaddr Pointsto a 16-hit self-relative value.
r symndx Externa symbol index if r_extern is1; section number if r externisO.
r extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
this new addr = r vaddr - this old scn addr + this new scn_addr
result = (new_scn addr - old scn addr) +
SEXT ( (short) [r vaddr]) + r vaddr - this new addr
else

this new addr = r vaddr - this old scn addr + this new scn addr
result = EXTR.asym.value - this new addr

Restrictions
Theresult after rel ocation must not overflow 16 bits.

Description



116

A relocation entry of thistypeisidentical toanR_SREL32 entry except for the size of the value being
adjusted.

Example

Thistypeis currently not used by the compilation system.

4.3.412. R_SREL32

Fields
r vaddr Pointsto a 32-hit self-relative value.
r symndx Externa symbol index if r_extern is1; section number if r externisO.
r extern Either Oor 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
this new addr = r vaddr - this old scn addr + this new scn addr
result = (new_scn addr - old scn_addr)
+ SEXT((int) [r vaddr]) + r_vaddr - this new addr
else

this new addr = r vaddr - this old scn addr + this new scn addr
result = EXTR.asym.value - this new addr

Restrictions
Theresult after rel ocation must not overflow 32 bits.
Description

A relocation entry of thistype indicates a value that describes a reference as an offset to its own location. In
other words, the target address is computed by adding the contents of therelocation address ([r_vaddr])
to the address of therelocation (r_vaddr). To perform thisrelocation, the new location of r_vaddr
must be computed and subtracted from the new target address to provide the correctly adjusted self-
relative, offset which isthen written back into the raw data

Example
The code range descriptors that are generated for each object contain a 32-bit sdlf-relative offset in the

rpd_offset field. See Section 3.2.1. Therpd_offset field containsan offset to the associated run-
time procedure descriptor in the . xdata section. TheR_SREL32 entry identifies this value.

main () {
printf ("Printing\n") ;
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}

Rel ocation entry produced:
Vaddr Symndx Type Off Size Extern Name
.pdata:

0x0000000000000054 10 SREL32 local .xdata

Note that thisrelationship between the . xdata and . pdata sectionsimposes arestriction on the distance
between the text and data segments. The run-time proceduresin the .xdata section must be within reach of a
32-bit signed offset from the code range descriptorsin .pdata.

4.3.4.13. R_SREL64
Fields

r vaddr Pointsto a 64-hit self-relative value.
r_symndx External symbol index if r_extern is1; section number if r_externisO.
r extern Either Oor 1.

r offset Unused.

r size Unused.

Operation

if (r_extern == 0)
this new addr = r vaddr - this old scn addr + this new scn addr
result = (new_scn _addr - old scn _addr) + (long) [r vaddr]

+ r vaddr - this new addr
else
this new addr = r vaddr - this old scn addr + this new scn addr
result = EXTR.asym.value - this new addr

Restrictions
None.
Description

A relocation entry of thistypeisidentical toanR_SREL32 entry except for the size of the value being
adjusted.

Example

Thistypeis currently not used by the compilation system.
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4.3.4.14. R_OP_PUSH

Fields
r vaddr O0if r externisl; anunsgned offset withinasectionif r_externisO.
r_symndx External symbol index if r _extern is1; section number if r externisO.
r extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
stack[++tos] = (new_scn _addr - old scn_addr) + r_ vaddr
else
stack [++tos] = EXTR.asym.value
Restrictions

Thisrelocation entry must be followed by anR_OP_STORE entry, withone or moreR_OP_PSUB or
R_OP_ PRSHIFT entriesin between.

Stack can hold a maximum of 20 entries.
Description

A relocation entry of thistype causes a value to be pushed onto the relocation stack. Thevalue is generally
the target address of the relocation, which will be adjusted using subsequent R_0OP_PSUB and
R_OP_PRSHIFT relocation calculations.

Example

A code range descriptor in the . pdata section contains a 32-hit field, begin_address, whichisthe
offset of the associated code range address from the beginning of the code range descriptor table. See
Section 3.2.1. Thisvalueis calculated by subtracting two addresses and storing the least significant 32 hits.
A series of three stack relocation entries is used to represent this offset cal cul ation.

main () {
foo();
}

foo () {
printf ("Printing\n") ;
}

Rel ocation entries produced for usein calculating thebegin address in foo's code range descriptor:

Vaddr Symndx Type Off Size Extern Name

.pdata:
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0x0000000000000030 1 PUSH local .text
0x0000000000000000 3 PSUB extern _fpdata
0x0000000000000078 11 STORE O 32 local .pdata

The following series of relocation entries will effectively perform the cal culation:

(.pdata+0x78) = (long) (((.text+0x30)-& fpdata) & Oxffffffff)

4.3.4.15. R_OP_STORE
Fields

r vaddr Location to store calculated bit field.
r symndx  Section index of containing section.
r extern Must beO.

Bit offset from r_vaddr. (Bit Oistheleast significant bit inlittle-endian

ffset . L . . . .
rortse objects and the most significant bit in big-endian objects. See Section 1.7.)
r size Number of bitsto store.

Operation

if (little endian)
rshift = r offset
else
rshift = 64 - (r_offset + r_size)
bitfield = ((long) [r vaddr] >> r offset) & ((1 << r size) - 1)
bitfield <- stackl[tos--]

Restrictions
Stack cannot be empty.

Description

A relocation entry of this type causes the value currently on the top of the relocation stack to be written into
abit field specified by the entry. The bit field is described using a bit position and sizein bits. It should be

noted that bits are numbered differently depending on the endian-ness of the object.
Example

Anexampleof theR_OP_STORE entry isgiven in Section 4.3.4.14.

4.3.4.16. R_OP_PSUB
Fields



120

r vaddr Oif r_externisl; anunsgned offset within asectionif r _externisO.
r_ symndx Externa symbol index if r_extern is1; section number if r externisO.
r extern Either Oor 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old scn _addr) + r_vaddr
stack([tos] = stack[tos] - result
else
result = EXTR.asym.value
stack([tos] = stack[tos] - result
Restrictions

The relocation stack cannot be empty. This entry must fall somewhere between anR_OP_PUSH entry and
anR_OP_ STORE entry.

Description

A relocation entry of thistype causes the value at the top of the relocation expression stack to be popped,
adjusted by subtracting the address described by r extern and r_symndx, and pushed back on the
stack.

Example

Anexampleof theR_OP_STORE entry isgiven in Section 4.3.4.14.

4.3.417. R_OP_PRSHIFT

Fields

r vaddr Oif r_externisl; anunsgned offset withinasectionif r_externisO.
r symndx External symbol index if r _externis1; section number if r externisO.
r_extern Either Oor 1.

r offset Unused.

r size Unused.

Operation

if (r_extern == 0)

result =

(new_scn_addr - old _scn_addr) + r_ vaddr
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stack[tos] = stack[tos] >> result
else

result = EXTR.asym.value

stack[tos] = stack[tos] >> result
Restrictions

The stack cannot be empty. So this entry must fall somewhere between anR_OP_PUSH and an
R_OP_STORE.

Description

A relocation entry of thistype causes the value at the top of the relocation expression stack to be popped,
adjusted by right shifting the value by the number of bits described by r extern and r symndx, and
pushed back on the stack.

Example

Thisrelocation typeis not currently used by the system compiler. A potential use of thisrelocation type
would be to convert a byte offset into an instruction offset. Right shifting a byte offset by two bits will

produce an instruction offset because Alphainstructions are 4 bytes wide.

The following assembly code will result in an R_HINT entry for the 14-bit instruction offset contained in
thehint field of a j sr instruction. See Section 4.3.4.10 for adescription of theR_HINT entry.

0x3c 1ldg tl2, -32752(gp) /* &printf */
0x40 jsr ra, (tl2)

TheR_HINT entry for theinstruction at 0x4 0 could also be accomplished with a series of stack relocation
options:

.text:
0x0000000000000000 2 PUSH extern printf
0x0000000000000044 1 PSUB local .text
0x0000000000000002 14 PRSHIFT local R SN _ABS
0x0000000000000040 1 STORE O 14 local .text

4.3.4.18. R_GPVALUE
Fields

r vaddr Starting virtual address for new GP value.

r symndx Constant that is added to the GP value in the a . out header to obtain the new GP
value.

r_extern Must be zero; all R_GPVALUE entries arelocal.

r offset Unused.
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r size Unused.

Operation
new GP = aouthdr.gp value + r_symndx

Restrictions
Thistype of relocation entry cannot be external.
Description

A relocation entry of thistype identifies the position in the code where anew GP val ue takes effect.
R_GPVALUE entriesare inserted by the linker during partial links.

Example

A linked program that references 20,000 external symbols will have at least 3 GOT entrieswith 3
corresponding GP values. See Section 2.3.4. If the program has GP-relative rel ocation entriesin both
.text and . rdata sections, two R_GPVALUE entries would be reported for each of these sections.

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000010084cf0 64000 GPVALUE local
0x00000000100cb190 111984 GPVALUE local
.rdata:
0x000000001000£a00 64000 GPVALUE local
0x000000001001b570 111984 GPVALUE local

4.3.4.19. R_GPRELHIGH

Fields

r vaddr Pointsto amemory format ingruction (1dah).

r_symndx External symbol index if r _extern is1; section number if r externisO.
r extern Either Oor 1.

r offset Unused.

r size Unused.

Operation

SeeR_GPRELLOW relocation type.
Restrictions

Must be followed by at least oneR_GPRELLOW.
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Rel ocated result must not overflow unsigned 32-hit range.

Description

A relocation entry of thistypeisinvalid unless it is followed by at least oneR_GPRELLOW entry. When an
R_GPRELHIGH entry is encountered, no calculation is performed. The relocation cal culation is deferred
until theR_GPRELLOW entry is processed. SeetheR GPRELLOW description for more information.

Example

SeeR_GPRELLOW.

4.3.420. R_GPRELLOW

Fields

r vaddr Points to memory format ingruction (1d+* or st*).
r symndx Must match R_GPRELHIGH

r extern Must match R_GPRELHIGH.

r offset Unused.

r size Unused.

Operation

low _disp = [r_vaddr] .displacement
high disp = [R_GPRELHIGH->r vaddr] .displacement
displacement = high disp * 65536 + low_disp
if (r_extern = 0)
result = displacement + (new _scn addr - old scn addr) +
(old_GP - GP)
else
result = displacement + EXTR.asym.value + (old GP - GP)

[R_GPRELHIGH->r vaddr] .displacement = (result+32768) >> 16
[r vaddr] .displacement = result & OxXFFFF

Restrictions

TheR_GPRELHIGH/R_GPRELLOW relocations must be used asapair or set. At least oneR_GPRELLOW
entry followseach R_GPRELHIGH entry.

After relocation, the result must not overflow 32 hits.

The memory displacement for all R_GPRELLOW entries corresponding to the sameR_GPRELHIGH must
match.

Description
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TheR_GPRELHIGH/R_GPRELLOW entry pair is used to describe GP-relative memory accesses. The
R_GPRELHIGH entry indicatesan 1dah indruction. TheR_GPRELLOW entry (or entries) indicates aload
or storeinstruction. If multipleR_GPRELLOW entries are associated with an R_GPRELHIGH, they must all
describe the same memory location. A relocatable address can be formed with the following computation:

addr = 65536 * high disp + SEXT (low disp)

To relocate this code sequence, the memory displacement fieldsin each instruction must be adjusted to
reflect changes in the target address they compute and in the GP value.

Thereason these entries are treated as a pair isthat sign extension of the low instruction's displacement
field can result in an off-by-one error that must be fixed by adding one to the high instruction's
displacement. This situation can only be detected if the instructions are considered together.

These relocation entries describe instructions that are primarily used for computing addresses in kernel
code.. The kernel isbuilt without a . 1ita section, and kernel performance is enhanced by code that
calcul ates addresses directly instead of loading addresses from a . 1ita memory location. The code size,
on average, is unaffected by the kerndl's use of this addressing method.

Example

Usethekernel build option "-Wb, -static" to compilethe following sample code.

static int a;
foo () {
a++;

Code generated for loading the address of "a":

0x0: ldah t0, O(gp)
0x4: lda t0, 16(t0)

Rel ocation entries produced are:

Vaddr Symndx Type Off Size Extern Name

.text:
0x0000000000000000 5 GPHIGH local .sbss
0x0000000000000004 5 GPLOW local .sbss

4.3.4.21. R_IMMED: GP16
Fields

r vaddr Points to memory-format instruction.

r_ symndx Externa symbol index if r_externis1; section number if r externisO.
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r extern Either O or 1.

r offset Unused.

r_size R _IMMED GP16.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of thistype identifies an instruction that adds a 16-bit displacement to the GP value,
obtaining an address. Ther extern and r _symndx fields specify the external symbol or section to

which the calculated address isrelative.

Thisrelocation entry is created by the linker to indicate that an optimization has taken place because the
displacement iswithin 16-bits of the GP value.

Example

N/A

4.3.4.22. R_IMMED: GP_HI32
Fields

r vaddr Points to memory-format instruction.
r_ symndx Unused.

r_extern Unused.

r offset Unused.

r size R IMMED_GP HI32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of thistype identifies an instruction that is part of a pair of instructionsthat add a 32-bit
displacement to the GP value. Thisinstruction adds the high portion of the 32-hit displacement. The next



126

R_IMMED LO32 entry identifies the instruction containing the low portion of the displacement. More than
one subsequent R_IMMED LO32 entry can sharethesameR_IMMED GP_HI32 entry.

Example

N/A

4.3.4.23. R_IMMED: SCN_HI32
Fields

r vaddr Points to memory-format instruction.

r_ symndx Unused.

r_extern Unused.

r offset Unused.

r size R_IMMED_SCNHI32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of thistype identifies an instruction that is part of a pair of instructionsthat add a 32-bit
displacement to the starting address of the current section. Thisingruction adds the high portion of the
displacement. Thenext R_IMMED LO32 entry identifies the ingtruction with the low portion.
Example

N/A

4.3.4.24. R_IMMED: BR_HI32
Fields

Pointsto amemory-format instruction following abranch (br, bsr, jsr, or
jmp) ingruction.

r_vaddr
r symndx Specifies a byte offset from r_vaddr to the branch ingtruction.
r extern Unused.

r offset Unused.

r size R_IMMED_BRHI32.
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Operation

N/A

Restrictions

N/A

Description

A relocation entry of thistype identifies an instruction that is part of a pair of instructionsthat add a 32-bit
displacement to the address of the ingtruction following abranch (bx, bsr, jsr, or jmp). The branch
must precede thisingruction. The r _symndx field specifies a byte offset from r_vaddr to the branch
instruction. The ingruction identified by this relocation entry adds the high portion of the displacement.
ThenextR_IMMED LO32 entry identifies the instruction with thelow portion of the displacement.

Example

N/A

4.3.4.25. R_IMMED: LO32

Fields

r vaddr Points to a memory-format instruction.

r_ symndx Externa symbol index if r_extern is1; section number if r externisO.

r extern Either Oor 1.

r offset Unused.

r size R_IMMED LO32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of thistype identifies an instruction that is part of a pair of instructionsthat add a 32-bit
displacement to a base address. Thisinstruction adds the low portion of the displacement. This rel ocation
entry is combined with the previousR_IMMED_GP_HI32,R_IMMED SCN_HI32, Or
R_IMMED BR HI32entry. Ther externandr symndx fields specify the external symbol or section
to which the calculated address isrel ative.

Example

N/A
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4.3.4.26. R_TLS_LITERAL

Fields

r vaddr Pointsto an ingruction that loads the TSD key for initiating athread local storage
reference — actually, not the key itself but key * 8, which gives the offset of the
TLS pointer inthe TSD array.

r_ symndx R SN _LITA

r extern Must be zero; all R_TLS LITERAL entries arelocal.

r offset Unused.

r size Unused.

Operation

result = (new_scn_addr - old scn _addr) +
(SEXT ( (short) [r_vaddr]) +old GP) - GP

Restrictions

Theresult after relocation for an R_TLS_LITERAL entry must not overflow 16 bits.
R_TLS_ LITERAL entriesmust belocal andrelativetothe . 1ita section.
Description

A relocation entry of thistypeisvery smilar toan R_LITERAL entry. AnR_TLS_LITERAL entry
identifies an ingtruction that uses a GP displacement to load an the address of thesymbol ~ t1soffset
fromthe . 1ita section.

Thevalueof the  tlsoffset symbol isfixed at run timeto bethe TSD array offset of the TLS pointer.
The symbol can occur anywherein the GOT or .lita section. Thelinker-defined symbol — t1skey points
to one of theinstances of the  t1soffset symbol.

Thelinker processestheR_TLS LITERAL reocation by adjusting the GP offset in the displacement of
the target instruction.

Example

Routines that reference TLS addresses will have at least oneR_TLS_LITERAL entry for the load of the
__tls offset value

__declspec(thread) long foo;
main () {

foo = 2;
}

Code generated will include the ingruction:
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0x14: ldg at, -32752(gp)
Rel ocation entry produced:

Vaddr Symndx Type Off Size Extern Name

.text:
0x0000000000000014 13 TLSLITE local .lita

4.3.4.27. R_TLS_HIGH
Fields

r vaddr Points to memory-format instruction.
r_ symndx Externa symbol index if r_extern is1; section number if r externisO.
r extern Either Oor 1.

r offset Unused.

r size Unused.

Operation

SeeR_TLS_LOW description.

Restrictions

Must be followed by R_TLS_LOW entry.

Description

SeeR TLS_LOW.

Example

SeeR_TLS_LOW.

4.3.428. R_TLS_LOW
Fields

r vaddr Points to memory-format instruction.
r_symndx External symbol index if r_extern is1; section number if r externisO.

r_extern Either Oor 1.
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r offset Unused.
r size Unused.

Operation

low _disp = [r_vaddr] .displacement
high disp = [R_TLS_HIGH->r vaddr].displacement
displacement = high disp * 65536 + low_disp
if (r_extern = 0)

result = displacement + (new_scn_addr - old_scn_addr)
else

result = displacement + EXTR.asym.value

[R_TLS HIGH->r vaddr] .displacement = (result+32768) >> 16
[r vaddr] .displacement = result & OxXFFFF

Restrictions

External relocation entries of thistype are limited to TLS symbals.

Local relocation entries of thistype arerestricted to the TLS sections . t1sdata and .t 1sbss.

The relocated result must not exceed 32 hits.

Description

Thelinker must handleR_TLS HIGH and R_TLS_ LOW entriesasapair. The pairs of relocation entries
must be in sequence starting with R_TLS_HIGH. The order and |location of the instructions associated with
these relocation entries are not restricted.

Example

Theload of a TLS symbol's addressrequiresen R_TLS_HIGH/R_TLS_LOW entry pair.

__declspec(thread) long foo;

main () {

foo = 2;
}
Code generated:
0x0c: call pal rdunig
0x10: ldg wvO0, 96(v0)
0x14: 1dg at, -32752(gp)
0x18: addg vO0, at, vO
Ox1lc: ldg wvO0, 0(v0)
0x20: ldah v0, 0(v0)

0x24 : stg t0, 0(wv0)
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Rel ocation entries produced:

Vaddr Symndx Type Off Size Extern Name

.text:
0x0000000000000020 0 TLSHIGH extern foo
0x0000000000000024 0 TLSLOW extern foo

4.4. Compact Relocations

Compact rel ocations are ahighly compressed form of rel ocation records designed for the use of profiling
tools and object restructuring tools. By default, they are generated by the linker for al fully linked
executabl e objects and recorded in the object's . comment section. The linker produces this information
using 1ibmld.a APIs, which implement the reading and writing of compact rel ocations. Compact
relocations are not produced for images linked with the following linker options: -r, -om, or -ncr. See
Chapter 7 for the format of the . comment section.

Compact rel ocations must provide crucid relocation information in much less space than the space required
for actua relocation entries. This goal isaccomplished by employing a heuristic function to predict
relocations. For some sections, this heuristic is highly accurate. Detailing many records in the object file
becomes unnecessary because the algorithm can be used instead to recreate many of the actual re ocation
entries.

The current implementation contains only enough relocation information to drive tools that restructure an
executable's . text, .init,and . £ini sections. It is sufficient for compact relocations to handle text
segment rel ocations only because the current consumers (Atom-based tools) change only these sections.
Thereis currently no algorithm to predict data relocations.

The interfaces for compact rel ocations continue to evolve. These interfaces are defined and described in the

header file cmplrs/cmrlc. h. This section describes the on-disk file format of compact rel ocations and
the producer and consumer algorithms.

4.41. Overview

The procedure for creation of compact relocationsis as follows:
1. Generatealist of predicted rdocations usng heuristics.

2. Compare the predicted relocations to the actual relocation entries (which areinput data to the compact
rel ocations producer).

3. Wherever a"miss’ occurs (that is, the predicted and actual entries do not match) output a compact
relocation record.

The procedure for the use of compact rel ocation records follows:

1. Generatethelist of predicted rel ocations using the same heuristics as the compact rel ocations
producer.

2. Compare the expanded compact rel ocations data with predicted rel ocations to reconstruct the actua
relocation entries.
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See Section 4.4.3 for more details.

4.4.2. File Format

Compact relocations are stored in a subsection of the . comment section. The linker and other tools do not
need to be aware of the details of theinternal structure of the compact rel ocation subsection. This
knowledge is encapsulated inthe cmrlc * routinesfoundin 1ibmld. a.

The on-disk format of the compact rel ocations data consists of the following components, in order:
e Versionidentifier

e  Compact relocations file header

e  Compact rel ocations section headers (for each section)

e Compact relocations tables (for each section)

e Expression stack rdocations tables (for each section)

e GPvauetables (for each section)

Code may only assume that the version and the file header are contiguous. To access other structures, itis
necessary to rely on thelocation information in the file header.

4.4.2.1. Compact Relocations Version

The compact relocation section begins with a version identifier, which hasthe following structure:

struct {
unsigned int version major;
unsigned int version minor;

}i
SIZE - 8 bytes, ALIGNMENT - 4 bytes

The version identifier alows the format of the compact rel ocations to change from one rel ease to another
while providing a mechanism for tools to work on binaries with either the old or new formats. The version
identifiers are separate from the header because the format of the header itself may change from release to
release.

The major version identifier isincremented whenever a change in the compact rel ocation algorithms affects
the externa interface. For example, adding support for data-related rel ocation information would require
the major version identifier to be incremented. Simple bug fixes that correct problems with the external
interface should not cause the major version identifier to be incremented.

The minor version identifier isincremented whenever the compact rel ocation al gorithms change without
affecting the external interface. For example, changing the heuristic to further compact the stored relocation
information would require the minor version identifier to be incremented. If the consumer routines see that
an object has an old minor version number, they can call a matching version of the heurigtic to correctly
reconstruct the rel ocation information.
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4.4.2.2. Compact Relocations File Header

The version identifier is followed by a high-level header structure that stores the sizes and locations of the
other tables with compact rel ocations information:

struct cmrlc file header ({

/*

* Total number of elements in each sub-table.

*/
unsigned long scn_num; /* section header table */
unsigned long rlc num; /* compact relocation table */
unsigned long expr num; /* expression relocation table */

unsigned long gpval num; /* GP value table */

/*
* Relative file offset from start of compact relocation data
* to each sub-table.
*/

unsigned long scn off;

unsigned long rlc off;

unsigned long expr off;

unsigned long gpval off;

}i

SIZE - 64 bytes, ALIGNMENT - 8 bytes

Each of the *_num fields indicates the number of entries in the corresponding tables. Each of the *_of £
fields contains arelative file offset from the start of the compact relocations . comment subsection to the

start of the corresponding table. If any of the tables are not present for a particular program, the * _num and
* off fields should be set to zero.

4.4.2.3. Compact Relocations Section Header

One or more compact rel ocations section headers follow the compact rel ocations file header. Each section
header has the following structure:

struct cmrlc file scnhdr {

char name [8] ; /* section name */

/*
* Number of elements for this section in each sub-table.
*/

unsigned long rlc_ snum;
unsigned long expr_ snum;
unsigned long gpval snum;

/*
* Index from start of table to this section's elements.
* (This is an element index, not a byte offset.)
*/

unsigned long rlc_ indx;

unsigned long expr indx;

unsigned long gpval indx;

/*
* Flag: True if compact relocation table is sorted by
* increasing virtual address.
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*/
unsigned long
unsigned long

rlc_sorted:1;
:63;

}i

SIZE - 64 bytes, ALIGNMENT - 8 bytes

One compact rel ocation section header is created for each eCOFF object file section for which compact
relocation datais stored. This section header isunrelated to the eCOFF section header structure except for
the name field, which connects the two.

Each of the *_num fields indicates the number of entriesin the corresponding table for this object file
section. If the *_num field is non-zero, the corresponding *_indx field contains the index of the start of
that section’s entries within the table.

Therlc_sorted fied indicates whether the compact rel ocation table entries for this section are sorted
by virtual address.

If an object file section does not have entriesin one of the tables for a particular program, the
corresponding fields should be set to zero.

4.4.2.4. Compact Relocations Table

Compact rel ocation tables follow the compact rel ocation section headers. Each compact rel ocation table
consists of an array of structures:

struct cmrlc file rlc {

unsigned v_offset;
union {

unsigned word;

struct {
unsigned type:5;
unsigned :27;

} common;

struct { /* GPDISP */
unsigned type:5;
unsigned lda offset:27;

} gpdisp;

struct { /* EXPRESSION */
unsigned type:5;
unsigned index:27;

} expr;

struct { /* REF*, SREL*, GPREL32 */
unsigned type:5;
unsigned rel scn:5;
unsigned count:12;
unsigned :10;

} addrtype;

struct /* IMMED: GP HI32, SCN HI32, BR HI32 */
unsigned type:5;
unsigned subop:6;
unsigned br offset:21;

} immedhi;

struct { /* IMMED: all other sub-opcodes */
unsigned type:5;
unsigned subop:6;



135

unsigned rel scn:5;
unsigned :16;
} immedlo;
struct { /* VADJUST */
unsigned type:5;
signed adjust:27;
} vadjust;
struct { /* BRADDR, HINT */
unsigned type:5;
unsigned rel scn:5;
unsigned :22;
} other;

} info;
}i
SIZE - 8 bytes, ALIGNMENT - 4 bytes

/*
* Values for 'type' field.
*/
enum cmrlc rlctypes {
CMRLC_REFLONG=1, /* unpredicted R_REFLONG */
CMRLC_ REFQUAD=2, /* unpredicted R _REFQUAD */
CMRLC GPREL32=3, /* unpredicted R_GPREL32 */
CMRLC _GPDISP=4, /* unpredicted R_GPDISP */
CMRLC BRADDR=5, /* unpredicted R_BRADDR */
CMRLC_HINT=6, /* unpredicted R_HINT */
CMRLC_SREL16=7, /* unpredicted R_SREL16 */
CMRLC_ SREL32=8, /* unpredicted R _SREL32 */
CMRLC_ SREL64=9, /* unpredicted R _SREL64 */
CMRLC_EXPRESSION=10, /* unpredicted R_OP_* expression */
CMRLC IMMEDHI=11, /* unpredicted R_IMMED for high part */
CMRLC IMMEDLO=12, /* unpredicted R_IMMED for low part */
CMRLC NO RELOC=13, /* correct mispredicted relocation */

CMRLC_VADJUST=14,
CMRLC_TLS_ HIGH=15,
CMRLC_TLS LOW=16

/*
/*
/*

adjust base for succeeding 'v_offset's */
unpredicted R_TLS_HIGH */
unpredicted R_TLS_LOW */

}i

/*

* Maximum value for 'count' field in 'addrtype' relocations.
*/

#define CMRLC_COUNT_ MAX ((1<<12) - 1)

Thenumber of eementsin the array is determined by the corresponding * _num field in the section header.

Thev_offset field specifies the virtual address of each relocation entry as a byte offset from a base
address. Initialy, the base isthe starting virtual address of the current section. If relocations are required at
addresses that cannot be expressed as a 32-bit offset from the section's start address, CMRLC_VADJUST
relocation entries are used to extend the addressing range. However, thisfeature isnot fully supported.

The value of the type field determines how to interpret the remainder of a compact rel ocation structure.
Thelda_offset field specifies an ingtruction offset (byte offset divided by 4) from the relocation entrys

virtual addressto the 1da indruction inan R_GPDISP entry's 1dah/1da pair. Thisdesign does not
support 1dah/1da parsthat are separated by more than 229 bytes.
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Therel scn fiddindicatesthe ID of the section to which thisrelocation isrelative. It usestheR_SN_*
values from the header file reloc . h.

The count field isused to specify consecutive relocation entries that areidentical. The count field can
be used in thismanner for R_REFLONG, R_REFQUAD, R_SREL16,R_SREL32,R_SREL64, and
R_GPREL32 entries. Two relocation entries areidentical if they have the same type and relative section.
Two relocation entries are consecutive if the difference in their virtua addressesis equal to the natural size
for therelocation type (16 bitsfor R_SREL16; 32 bitsfor R_REFLONG, R_SREL32, and R_GPREL32;
and 64 bitsfor R_REFQUAD andR_SREL64). A count value of zeroisnot allowed. The count field
reduces the impact of mispredicting the relocations for jump tables.

4.4.2.5. Stack Relocation Table

Expression stack relocation information is stored separately. Each stack relocation table entry hasthe
following structure:

struct cmrlc_file expr {
unsigned long vaddr;

unsigned type:5;

unsigned rel scn:5;

unsigned offset:6; /* CMRLC_EXPR_STORE only */
unsigned size:6; /* CMRLC_EXPR_STORE only */
unsigned last:1; /* true for last reloc in expr */
unsigned :9;

unsigned reserved;

}i
SIZE - 16 bytes, ALIGNMENT - 8 bytes

/ *
* Values for 'type' field.
*/
enum cmrlc_exprtypes {
CMRLC EXPR PUSH=1, /* R_OP_PUSH */
CMRLC EXPR PSUB=2, /* R_OP_PSUB */
CMRLC_ EXPR _PRSHIFT=3, /* R _OP PRSHIFT */
CMRLC_EXPR_STORE=4 /* R_OP_STORE */

}i

Expression stack compact relocation records are stored in a separate tabl e because each record requires
more space than other types of compact relocation records. Entriesin thistable are grouped into sequences
of relocation entries that form a single expression. Thefirst entry in each table starts a sequence. The last
entry in each sequence hasits 1ast field set to one. A new sequence starts immediately after the end of the
previous sequence.

The start of each sequence isreferenced by a CMRLC_EXPRESSION entry in the section's compact
relocation table. Theindex field of that entry points to the first entry in a stack relocation sequence. All
sequences in the stack rel ocation table should have a corresponding CMRLC_EXPRESSION entry in the
compact relocation table.

4.4.2.6. GP Value Tables

Additional tables called GP value tables are used to store GP range information. GP values are kept in
tables separate from other compact rel ocations to reduce the processing required to map a virtual addressto
the corresponding active GP value.
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Each GP value table consists of an array of these structures:

struct {
unsigned long vaddr
unsigned gp_ offset
unsigned reserved

}i
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Each additional GP range after thefirg range has an entry in thetable. (Thefirst rangeis described by the
GPvaluein thefilésa . out header.) Therefore, asingle-GOT program will have no entriesin its GP value
tables.

If an executabl€'s sections have different numbers of GP ranges, gpval num should be set to describe the
section with the largest number of ranges. eCOFF sections with fewer GP ranges mugt still have GP value
tableswith gpval num entries. Sections with short GP value tables can duplicate their last GP value table
entry until the table isthe proper length.

The vaddr field contains the virtual address where the new range sarts. vaddr must point within the
section to which this GP value table corresponds. The new GP value is computed by adding gp _offset
tothe GP valuein thefil€sa . out header.

4.4.3. Detailed Algorithm for Compact Relocations Production

In order to produce compact relocations, atool must have a set of actual rel ocation entries and the raw data
to which those rel ocation entries apply. It should then apply the following algorithm to create a set of
matching compact rel ocations.

1. Removeany actua relocation entries not needed to describethe . text, . init, or .£ini sections.
2. Convert theremaining externa relocation entriesto local rel ocation entries.

3. Runthe prediction heuristic function to construct a set of predicted rel ocation entries from the raw
data.

4. Compare the predicted relocation entries to theremaining actua relocation entries and creste a
compact relocation record for any mismatches.

5. Compress any sequences of consecutive, identicall R_REF*, R_SREL*,0r R_GPREL32 entries.
6. Settherlc sortedfieldif the compact relocation entries are stored in a sorted order.

Thetool should first remove any actual relocation entriesthat are not needed to describe the . text,
.init, or .fini sections. Compact relocation entries describe only these sections, so any others should
be removed to save space. In generd, any relocation entry relative to one of these sections must be saved.
Also, any sdlf-relative relocation entry that pointsinside one of these sections must be saved. Because
R_GPDISP entries point to instructions that areimplicitly relative to text addresses, any R_GPDISP
entrieswithinthe . text, . init, or . £ini sectionsmust also be preserved. Finally, any R REFLONG,
R_REFQUAD, and R_GPREL32 entriesinthe . text, .init, or . £ini sections must be saved because
these rel ocation entries would indicate the presence of address constantsin these sections. Note that
R_LITERAL andR_LITUSE entries describe addressesinthe . 1ita or . got section, so they do not
need to be saved.
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A tool must take special care when analyzing expression stack (R_OP_*), R_IMMED, and
R_GPRELHIGH/R_GPRELLOW entries. It isnot possible to determineif one of these entries needs to be
saved without analyzing it in the context of its other related rel ocation entries. For instance, an expression
stack relocation must be saved if any relocation in itsexpression isrelativeto the . text, . init, or
.fini sections. The sameistrue for sequences of R_IMMED entries or sequences of

R _GPRELHIGH/R GPRELLOW entries.

Any R_GPVALUE entries must also be handled specially. These relocation entries must be added to their
section's GP valuetable. They should then be removed from the list of actual rel ocation entries used to
create compact rel ocations.

The second step in the algorithm isto convert any remaining actual relocation entries from externa to
local. The compact relocations only exist in fully linked executables with no undefined symbols. Thus,
external relocation entries are not needed. An external relocation entry is converted to alocal relocation
entry by setting itsr_extern field to zero and changing its r_ symndx field to the appropriateR_SN_*
constant.

Thethird step isto run the prediction heuristic function over theraw datafor which these actual rel ocation
entries apply. Thisproduces a set of predicted relocation entries.

Then compare the predicted re ocation entries to the actual rel ocation entries as follows:

1. If amatch exists between a predicted relocation entry and an actual relocation entry at the same virtual
address, do nothing.

2. If apredicted relocation entry and an actua relocation entry at the same virtual address do not match,
write a compact form of the actual relocation entry to the compact relocation data file.

3. If only a predicted relocation entry exists for a particular virtual address, write a compact
CMRLC_NO_ RELOC record to thedatafile at thisvirtual address.

4. If only an actual relocation entry exists for a particular virtual address, write a compact form of the
actual relocation entry to the compact re ocation datafile.

Creating a compact rel ocation entry from an actual rel ocation entry is fairly straightforward except in the
case of an expression stack relocation sequence. First, create entries in the stack relocation table for each
relocation entry in the sequence. Normally, this sequence startswith anR_OP_PUSH entry and ends with
anR_OP_STORE entry. Thelast entry should have the 1ast field set to one. Then create an
EXPRESSION compact relocation entry whose index field points to the first entry in the stack relocation
table for this expression. (This can only be done for a sequence that describes a complete expression.)

The fifth step isto compress any sequencesof R_REF*, R_SREL*, or R_GPREL32 entriesthat are
consecutive and identical . Such a sequence existsif all relocation entries in the sequence have the same
relocation type, arerelative to the samerel_scn value (R_SN_* constant), and have v_offset fields that
increase by the natural size of the relocation type (for example, 8 bytesfor REFQUAD, 2 bytes for
SREL16). Such sequences can be replaced with a single compact relocation entry that has the sequence's
typeand rel scnvalue. Thev_offset field should bethat of thefirst relocation entry in the sequence,
and the count field should be set to the number of relocation entriesin the sequence.

Thefinal stepistoset therlc sorted fiedin the compact relocation section header. If the compact
relocations are stored in order of increasing v_offset values, thisfield should be set to one. Otherwise, it
should be set to zero.
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4.4.4. Detailed Algorithm for Compact Relocations Consumption

A consumer tool can read back the compact relocation entriesif it has the compact rel ocation information
and the raw data that they describe. The consumer tool can use thisinformation to regenerate the actual
rel ocation entries by following this algorithm:

1

Expand any R_REF*, R_SREL*, of R_GPREL32 compact relocation entries whose count field is
greater than one.

Run the prediction heuristic function to construct a set of predicted relocation entries from the raw
data.

Compare the predicted rel ocation entries to the compact rel ocation entries and reconstruct the actua
relocation entries.

Thefirgt step in this algorithm just undoes the compression step (step five) in the production algorithm.

The second step runs the same prediction heuristic that was used in the production algorithm. To guarantee
that the generated predicted rel ocation entries are the same as when the compact re ocation entries were
produced, it is critica that the heuristic function isthe same. Itisalso critical that theraw datais the same
as when the compact rel ocation entries were produced.

The final step compares the predicted rel ocation entries with the stored compact relocation entries as

follows:

1. If only apredicted relocation entry exists for aparticular virtual address, report the predicted rel ocation
entry.

2. If aCMRLC_NO_ RELOC entry exists at the same virtual address as a predicted relocation entry, do not
report arelocation entry at this virtual address.

3. If acompact relocation entry other than CMRLC NO_RELOC exists at the same virtual address as a
predicted rel ocation entry, report the compact rel ocation entry.

4. If only acompact relocation entry exists for a particular virtual address, report the compact relocation

entry.

The basic strategy for compact rel ocations consumption is to step through both the predicted
rel ocation entries and the stored compact rel ocation mismatch data for a given section in order to
reconstruct the actual relocation entries for that section.

4.5. Language-Specific Relocations Features

Rel ocation entries may be generated for language-specific compiler-generated external symbols. For
example, they are often generated in Fortran programs for the procedure for set reentrancy andin
C++ programs for exception-handling labels.
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5. Symbol Table (V3.13)

One of the chief tasks of the compilation processis the production of a symbol table, which isa collection
of data structures whose purpose isto store type, scope, and address information about program data.
Compilers and assemblers create the symbol table. It isread and may be modified by linkers, profiling
tools, and assorted object manipulation tools. It aso contains information required for debugging.

For large applications, a single compilation can involve many program components, including sourcefiles,
header files, and libraries. Data from all of these files must be described in the symbol table.

The Tru64 UNIX eCOFF symbal table, when present, comprises alarge portion of the physical object file
and is often considered a stand-a one entity. It is divided into numerous sections, including a header section
that is used for navigation. The contents of the symbol table are shown in Figure 5-1.

Figure 5-1 Symbol Table Sections

Symbolic Header
Frocedure Descriptors | %
Local Symbols *
: Auxiliary Symbols %
File Header LocarIyStr:}’ngs *
a.out Header External Strings
Section Headers File Descriptors
Raw Data Sections Relative File Descriptors| *
Relocations | External Symbols
Symbol Table Optimization Symbols | *
Comment Section [™_ Line Numbers *

* one subtable per
source file

The symbol table hasa hierarchical design. The sections storing local symbals, local strings, relative file
descriptors, procedure descriptors, line numbers, auxiliary symbols, and optimization symbols are divided
into subtables and organized by file. Local symbals, local strings, and optimization symbols are further
broken down by procedure. Figure 5-2 depictsthis hierarchy.
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Figure 5-2 Symbol Table Hierarchy

Symbolic Header

File Descriptors
External Symbuols
External Strings

\ﬁrocedure Desc. (file 1)
rocedure Desc. (file N

L 4

| Line Numbers (file 1)

# | Line Numbers (file N) L

Local Symbols (file 1)

> | Local Symbols (file N)

Local Strings (file 1)

}3 Local Strings (file N
Aux. Symbols (file 1)

> | Aux. Symbols (file N)

Rel. File Desc. (file 1)
> Rel. File Desc. (file N)

>
— [ Opt. Symbols (file 1)

ol

Opt. S}mbols (file n)

A particular symbol table may not contain all sections, for one of the following reasons:

Relative file descriptors are present in linked objects only.

The line number, auxiliary symbol and optimization symbol tables are produced only when debugging
information isrequested.

Symbol table information may be partially or entirely removed by post-processing tools.

Optimization symbols are not present in older object files (V3.12 and prior)

The function of each symbol table section is summarized below:

The symbolic header stores the sizes and locations of all other symbol table sections.

The line number table enables debuggers to map machine instructions to source code lines.
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e The procedure descriptor table contains call-frame information as well as pointersto a procedure's
local symboals, line numbers and optimization entries.

e Thelocal symbol table describes procedures, static and local data, and user-defined types.
e Theexterna symbol table storesinformation about global symboals.

e Therdativefile descriptor table contains a post-link file descriptor table index mapping for each filein
the compilation.

e Thelocal and externa gring tables store local and external symbol names, respectively.

e Thefile descriptor table stores the sizes and locations of each subtable produced for contributing
source and includefiles. It aso contains miscellaneous information about each file, such as the source
language and the level of symbalic information.

e Theauxiliary symbol table contains data type information for local and external symboals.

e The optimization symbols section stores procedure relative information, including extended source
location information and optimized debugging information.

Several tools are available to view the contents of the symbol table. Seethe stdump (1), odump (1),
and nm (1) man pages.

This chapter covers symbol table organization and usage, concentrating on debugging issuesin particular.
The version of the symbol table covered is V3.13. The dynamic symbol table built by the linker is
discussed separately in Section 6.3.3.

5.1. New or Changed Symbol Table Features

Version 3.13 of the symbol table includes the following new or changed features:
e 64-hit auxiliary support (see Section 5.3.7.3)

e Parameterswith static storage and unallocated parameters (see Section 5.2.11)
e New optimization symbols section (see Section 5.3.3)

e Extended Source Location Information (see Section 5.3.2.2)

e New representation for procedures with no text (see Section 5.3.6.1)

e Maodified variant record representation (see Section 5.3.8.11)

e New function pointer representation (see Section 5.3.8.5)

e Block symbol added for alternate entry prologue size (see Section 5.3.6.7)

e Addressof locally stripped FDRS set to addressNil (see Section 5.3.1.2)

e Upleve linksfor referencing local symbolsin an outer scope (see Section 5.3.4.4)

e New profile feedback information (see Section 5.3.5)
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e New representation for C++ namespaces (see Section 5.3.6.4)

e Unnamed union or structure representation (see Section 5.3.8.3)

5.2. Structures, Fields and Values for Symbol Tables

Unless otherwise specified, al structures described in this section are declared in the header file sym. h,
and all constants are defined in the header file symconst . h.

5.2.1. Symbolic Header (HDRR)

typedef struct {

coff ushort magic;

coff ushort vstamp;

coff int ilineMax;
coff int idnMax;

coff int ipdMax;

coff int isymMax;
coff int ioptMax;
coff int ilauxMax;
coff int issMax;

coff int issExtMax;
coff int ifdMax;

coff int crfd;

coff int ilextMax;
coff long cbLine;

coff off cbLineOffset;
coff off cbDnOffset;
coff off cbPdOffset;
coff off cbSymOffset;
coff off cbOptOffset;
coff off cbAuxOffset;
coff off cbSsOffset;
coff off cbSsExtOffset;
coff off cbFdOffset;
coff off cbRfdOffset;
coff off cbExtOffset;

} HDRR, *pHDRR;

SIZE - 144 bytes, ALIGNMENT - 8 bytes

Symbolic Header Fields
magic

To verify validity of the symbol table, thisfield must contain the constant magicSym, defined as
0x1992.

vstamp



144

Symbol table version stamp. Thisvalue consists of a major version number and aminor version
number, asdefined in the stamp . h header file:

MAJ SYM STAMP 3 High byte

MIN SYM STAMP 13 Low byte

See Section 5.1 for alist of symbol table features introduced with version V3.13.
ilineMax

Number of line number entries (if expanded).
idnMax

Obsolete.
ipdMax

Number of procedure descriptors.
isymMax

Number of local symbols.
ioptMax

Byte size of optimization symbol table.
iauxMax

Number of auxiliary symbals.
issMax

Byte size of local string table.
issExtMax

Byte size of external string table.
ifdMax

Number of file descriptors.
crfd

Number of relative file descriptors.

iextMax
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Number of external symbols.
cbLine

Byte size of (packed) line number entries.
cbLineOffset

Byte offset to start of (packed) line numbers.
cbDnOffset

Obsolete.
cbPdOffset

Byte offset to start of procedure descriptors.
cbSymOffset

Byte offset to start of local symboals.
cbOptOffset

Byte offset to start of optimization entries.
cbAuxOffset

Byte offset to start of auxiliary symbols.
cbSsOffset

Byte offset to start of local strings.
cbSsExtOffset

Byte offset to start of external strings.
cbFdOffset

Byte offset to start of file descriptors.
cbRfdOffset

Byte offset to start of relative file descriptors.
cbExtOffset

Byte offset to start of external symbols.

General Notes
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The size and offset fields describing symbol table sections must be set to zero if the section described is not
present.

The cb*0f £set fields are byte offsets from the beginning of the object file.

The i *Max fields contain the number of entries for a symbol table section. Legal index valuesfor a
symbol table section will range from O to the value of the associated i* Max field minus one.

For an explanation of packed and expanded line number entries, see the discussion in Section 5.3.2.2.

5.2.2. File Descriptor Entry (FDR)

typedef struct fdr {

coff addr adr;

coff long cbLineOffset;
coff long cbLine;
coff long cbSs;
coff_ int rss;

coff int issBase;
coff int isymBase;
coff int csym;

coff int ilineBase;
coff int cline;
coff int ioptBase;
coff_int copt;

coff int ipdFirst;
coff_int cpd;
coff_int iauxBase;
coff_int caux;
coff_int rfdBase;
coff int crfd;
coff_uint lang : 5;

coff _uint
coff uint

fMerge : 1;

fReadin : 1;
coff uint fBigendian : 1;
coff uint glevel : 2;
coff uint fTrim : 1;
coff uint reserved: 5;
coff ushort vstamp;
coff uint reserved2;

} FDR, *pFDR;

SIZE - 96 bytes, ALIGNMENT - 8 bytes

See Section 5.3.2.1 for related information.

File Descriptor Table Entry Fields
adr

Address of first instruction generated from this source file, which should be the same value as found in
the PDR . adr field of the first procedure descriptor for thisfile. If no instructions are associated with
this source file, this field should be set to 0. File descriptors that have been merged by source language
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in locally-stripped objects will have thisfield set to addressNil (-1).
cbLineOffset

Byte offset from start of packed line numbersto start of entries for thisfile.
cbLine

Byte size of packed line numbersfor thisfile.
cbSs

Byte size of local string table entries for thisfile.
rss

Byte offset from start of file'slocal string table entries to source filename; setto issNil (-1) to
indicate the source file name is unknown.

issBase

Start of local strings for thisfile.
isymBase

Starting index of local symbol entries for thisfile.
csym

Count of local symbal entriesfor thisfile.
ilineBase

Starting index of line number entries (if expanded) for thisfile.
cline

Count of line number entries (if expanded) for thisfile.
ioptBase

Byte offset from start of optimization symbol table to optimization symbol entries for thisfile.
copt

Byte size of optimization symbol entries for thisfile.
ipdFirst

Starting index of procedure descriptors for thisfile.
cpd

Count of procedure descriptors for thisfile.
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iauxBase

Starting index of auxiliary symbol entries for thisfile.
caux

Count of auxiliary symbol entries for thisfile.
rfdBase

Starting index of relative file descriptors for thisfile.
crfd

Count of relative file descriptors for thisfile.
lang

Source language for thisfile (see Table 5-1).
fMerge

Informs linker whether this file can be merged.
fReadin

Trueif filewasread in (as opposed to just created).
fBigendian

Unused.
glevel

Symbolic information level with which this file was compiled. Thisvalue isnot the same asthe user's

idea of debugging levels. The value mapping from the user level (-g compiler switch value) to the
symbol tablevalueis

Debug switch -g0 | -9l -g2 -g3

glevel contents 2 1 0 3

fTrim
Unused.
vstamp
Symboal table version stamp (HDRR . vstamp) value from the origina object module (.ofile) that is

recorded by thelinker. The linker may combine objects that were compiled at different times and
potentially contain different versions of the symbal table. In post-link objects, this value may or may
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not match the version stamp in the symbolic header. For pre-link objects, the valuesin thisfield and
the symbolic header stamp should be the same.

reserved, reserved2

Must be zero.

General Notes

The i *Base fields provide the starting indices of this fil€'s subtables within the symbol table sections. If
the associated count fields are set to O, the base fields will aso be set to zero.

For an explanation of packed and expanded line number entries, see the discussion in Section 5.3.2.2.
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Table 5-1 Sour ce L anguage (lang) Constants

Name Value Comment
langC 0
langPascal 1
langFortran 2
langAssembler 3
langMachine 4
langNil 5
langAda 6
langPl1l 7
langCobol 8
langStdc 9
langMIPSCxx 10 Unused.
langDECCxx 11
langCxx 12
13 Not used by all compilers-
langFortran90 langFortran might be used
instead for both f77 and f90
langBliss 14
langMax 31 glvl;r_rlmggeof language codes

5.2.3. Procedure Descriptor Entry (PDR)

struct pdr {
coff addr
coff long
coff int
coff int
coff uint
coff int
coff int

adr;
cbLineOffset;
isym;

iline;
regmask;
regoffset;
iopt;




coff uint
coff int
coff int
coff int
coff int
coff uint
coff uint
coff uint
coff uint
coff uint
coff uint
coff ushort
coff ushort
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fregmask;
fregoffset;
frameoffset;
1nLow;

1nHigh;
gp_prologue : 8;
gp_used : 1;
reg frame : 1;
prof : 1;
reserved : 13;
localoff : 8;
framereg;
pcreg;

} PDR, *pPDR;
SIZE - 64 bytes, ALIGNMENT - 8 bytes

See Section 5.3.4 for related information.

Procedur e Descriptor Table Entry Fields

adr
The start address of thisprocedure. Setto addressNil (-1) for procedures with notext. This
field may not be updated by the linker in symbol table versions prior to V3.13. To determine the
procedure start address in pre-V 3.13 symbol tables, use the algorithm described in Section 5.3.4.2.

cbLineOffset

Byte offset to the start of this procedure's line numbers from the start of the file descriptor entry
(FDR.cbLineOffset).

isym

Start of local symbols for this procedure. This symboal isthe symbol for the procedure (symbol type
stProc). Thename of the procedure can be obtained from the iss field of the symbol table entry.

If the object is stripped of local symbol information, thisfield contains an externa symbol table index
for the procedure symbol's entry.

If this procedure has no symbols associated with it, thisfield should be set to i symNil (-1). This
situation occurs for a static procedure in an object stripped of local symboal information.

iline

Start of line number entries (if expanded) for thisprocedure. Setto i1ineNil (-1) toindicate that
this procedure does not have line numbers.

regmask
Saved general register mask.

regoffset
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Offset from the virtual frame pointer to the general register save area in the stack frame.
iopt

Start of procedure's optimization symbol entries. Setto ioptNil (-1) toindicate that this procedure
does not have optimization symbol entries.

fregmask

Saved floating-point register mask.
fregoffset

Offset from the virtual frame pointer to the floating-point register save areain the stack frame.
frameoffset

Size of the fixed part of the stack frame. The actual frame size can exceed thisvalue. A routine can
extend its own frame size for frame Szes larger than 2 GB or for dynamic stack allocation requests.

InLow
Lowest source line number within thisfile for the procedure. Thisistypically the line number of the
first instruction in the procedure, but not always. Code optimizations can rearrange or remove
instructions making the first ingtruction map to a different line number.

1nHigh

Highest source line number within thisfile for the procedure. Thisfield containsavalue of -1 for
alternate entry points, which is how an alternate entry point isidentified.

gp_prologue

Byte size of gp prologue.
gp_used

Flag set if the procedure uses gp.
reg_frame

Trueif the procedureis alight-weight or null-weight procedure. Seethe Genera Notes section
following these definitions for more details on procedure weights.

prof

Trueif the procedure has been compiled with -pg for gprof profiling.
reserved

Must be zero.
localoff

Bias value for accessing local symbols on the stack at run time.
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framereg
Frame pointer register number.
pcreg

PC (Program Counter) register number.

General Notes:
For more information on call frames, see Section 5.3.4.1.

If thevalue of gp_prologue iszeroand gp usedis1, agp prologueis present but was scheduled into
the procedure prologue.

For an explanation of packed and expanded line number entries, see the discussion in Section 5.3.2.2.

A procedure may be heavy-, light-, or null-weight. The weight of a procedure can be determined fromits
descriptor by using the following guidelines:

Weight Indications

Heavy reg frameisOand bit 26 of theregister mask (regmask) ison
Light reg frameislandregoffsetisra save

Null reg frameisland regoffset is26

See the Calling Standard for Alpha Systems for details on the calling conventions for different weight
procedures. Note that a calling routine does not need to know the weight of the routine being called.

5.2.4. Line Number Entry (LINER)

Line numbers are represented using two formats: packed and expanded. The packed format is a byte stream
that can be interpreted as described in Section 5.3.2.2 to build an expanded table that maps ingructions to
source line numbers. The LINER field is used to refer to asingle entry in the expanded table. It is declared
as.

typedef int LINER, *pLINER;

A second, newer form of line number information islocated in the optimization symbols section. See
Section 5.2.10 and Section 5.3.2.2.
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5.2.5. Local Symbol Entry (SYMR)

typedef struct {

coff long value;

coff int iss;

coff uint st : 6;

coff uint sc : 5;

coff uint reserved : 1;
coff uint index : 20;

} SYMR, *pSYMR;
SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 5.2.11, Section 5.3.4, and Section 5.3.8 for related information.

Local Symbal Table Entry Fields

value

A fidd that can contain an address, size, offset, or index. Itsinterpretation is determined by the symbol
type and storage class combination, as explained in Section 5.2.11.

iss
Byte offset from the i ssBase field of afile descriptor table entry to the name of the symbol. If the
symbol does not have aname, thisfieldissettoissNil (-1). Generaly, all user-defined symbols
have names. A symbol without anameis one that has been created by the compilation system for its
own use.

st
Symbol type (see Table 5-2).

sC
Storage class (see Table 5-3).

reserved
Must be zero.

index

An index into either the local symbol table or auxiliary symbol table, depending on the symbol type
and class. Theindex is used as an offset from the i symBase field in the file descriptor entry for an
entry in the local symbol table or an offset from the iauxBase field for an entry in the auxiliary
symbol table.

Theindex field may have avalue of indexNil, whichisdefined as(long)oxff£££. Thisvalueis
used to indicate that the index isnot a valid reference.
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The next two tables contain all defined values for the st and sc constants, along with short descriptions.
However, these fields must be considered as pairsthat have alimited number of possible pairings as
explained in Section 5.2.11.

Table 5-2 Symbol Type (st) Constants

Constant Value |Description

StNil 0 Dummy entry

stGlobal 1 Global variable

stStatic 2 Static variable

stParam 3 Procedure argument

stLocal 4 Local variable

stLabel 5 Labd

stProc 6 Global procedure

stBlock 7 Start of block

stEnd 8 End of block, file, or procedure
stMember 9 Member of class, structure, union, or enumeration
stTypedef 10 User-defined type definition

stFile 11 Source file name

stStaticProc |14 Static procedure

stConstant 15 Constant data

stBase 17 Base class (for example, C++)
stVirtBase 18 Virtual base class (for example, C++)
stTag 19 Data structure tag vaue (for example, C++ class or struct)
stInter 20 Interlude (for example, C++)

stModule 22 Eg{t;:?r?];]eor?]::qetgdeﬁ nition;
stNamespace |22 Namespace definition (for example, C++)
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stModview 23 Modifi ers for current view of given module;
not yet implemented

stUsing 23 Namespace use (for example, C++ "using").

stAlias o Defines an allasf_or another symbols. Currently, only used
for namespace aliases.

Table 5-3 Storage Class (sc) Constants

Constant Value |[Description

scNil 0 Dummy entry

scText 1 Symboal allocated in the . text section

scData 2 Symboal allocated in the . data section

scBss 3 Symboal allocated in the . bss section

scRegister 4 Symbol allocated in aregister

scAbs 5 Symbol value is absolute

scUndefined 6 Symboal referenced but not defined in the current module
scUnallocated |7 Storage not alocated for this symbol
scTlsUndefined |9 Undefined TLS symbol

scInfo 11 Symbol contains debugger information

scSData 13 Symboal allocated in the . sdata section

SCcSBss 14 Symboal allocated in the . sbss section

scRData 15 Symboal allocated in the . rdata section

scvVar 16 Parameter passed by reference (for example, Fortran or Pascal)
scCommon 17 Common symboal

scSCommon 18 Small common symboal

scVarRegister |19 Parameter passed by reference in aregister

scVariant 20 Variant record (for example, Pascd or Ada)
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scFileDesc 20 File descriptor (for example, COBOL)

scSUndefined |21 Small undefined symbol

scInit 22 Symboal allocated in the . init section
scReportDesc 23 Report descriptor (for example, COBOL)
scXData 24 Symboal allocated in the . xdata section
scPData 25 Symbol allocated in the . pdata section
scFini 26 Symbol allocated inthe . £ini section
scRConst 27 Symbol allocated in the . rconst section

scT1lsCommon 29 TLS undlocated data

scTlsData 30 Symbol allocated in the . t1sdata section
scTlsBss 31 Symbol allocated in the . t1sbss section
scMax 32 Maximum number of storage classes

5.2.6. External Symbol Entry (EXTR)

typedef struct {

SYMR asym;

coff uint jmptbl:1;
coff uint cobol main:1;
coff uint weakext:1;
coff uint reserved:29;
coff int ifd;

} EXTR, *pEXTR;
SIZE - 24 bytes, ALIGNMENT - 8 bytes

External Symbaol Table Entry Fields
asym

Externa symbal table entry. This structure has the same format asalocal symbol entry. Thefield
interpretations differ somewhat:

value
Contains the symbol address for most defined symbols. See Section 5.2.11 for details.

iss
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Byte offset in external string table to symbol name. Setto issNil (-1) if thereisno name for
this symbal.

st

Symbol type. See Table 5-2 for possible values.
sSC

Storage class. See Table 5-3 for possible values.
reserved

Must be zero.
index

Can contain an index into the auxiliary symbol table for atype description or an index into the
local symboal table to pointing to arelated symbol.

jmptbl

Unused.
cobol main

Flag set to indicate that the symbol isa COBOL main procedure.
weakext

Flag set to identify the symbol as aweak external. See Section 6.3.4.2 for more detail s on weak
symbols.

reserved
Must be zero.
ifd

Index of the file descriptor wherethe symbol isdefined. Setto i£dNil (-1) for undefined symbols
and for some compiler system symbols.

5.2.7. Relative File Descriptor Entry (RFDT)

Therelative file descriptor table provides a post-link mapping of file descriptor indices. The purpose of this
table isto minimize work for the linker, which does not update symbol table referencesto local symbols.
Thisinformation is used to obtain the file offset used to bias local symboal indices. Because thistableisaso
known as the File Indirect Table, two declarations are included in the sym . h header file, as shown here.

typedef int RFDT, *pRFDT;
typedef int FIT, *pFIT;

SIZE - 4 bytes, ALIGNMENT - 4 bytes
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See Section 5.3.2.1 for related information.

5.2.8. Auxiliary Symbol Table Entry (AUXU)

The auxiliary symbol table entry is a 32-bit union. It is either interpreted asa TIR or RNDXR structure or as
an integer value. See Section 5.3.7.3 for detailed instructions on reading the auxiliary symbals.

typedef union {

TIR ti;
RNDXR rndx;
coff int dnLow;
coff int dnHigh;
coff int isym;
coff int iss;
coff int width;
coff int count;

} AUXU, *pAUXU;
SIZE - 4 bytes, ALIGNMENT - 4 bytes

See Section 5.3.7.3 for related information.

Auxiliary Symbol Table Entry Fields
ti
Type information record (TIR), asdefined in Section 5.2.8.1.
rndx
Relative index into local or auxiliary symbols (RNDX), as defined in Section 5.2.8.2.
dnLow

Lower bound of range or array dimension. For large structures, two of these fields can be used together
to form one 64-bit number.

dnHigh

Upper bound of range or array dimension. For large structures, two of these fields can be used together
to form one 64-bit number.

isym

For procedures (stProc of stStaticProc symboals), thisfield isan index into the local symbals.
It isaso used as an index into the relative file descriptors.

iss
Unused.

width
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Width of abit field or array stridein bits. Fortran compilers set the array stride to the array e ement
sizein bits. Two of these fields can be used together to form one 64-bit number.

count

Count of ranges for variant arm. This field nameis only used within the type description of a variant
block (stBlock, scVariant).

General Notes:

Thefields dnLow, dnHigh, or width mug all use either the 32-bit or 64-bit representation when used
together. For example, an array dimension cannot be specified with a 32-bit dnLow and a 64-bit dnHigh.

5.2.8.1. Type Information Record (TIR)

typedef struct {

coff uint fBitfield : 1;
coff uint continued : 1;
coff uint bt : 6;
coff uint tg4 : 4;
coff uint tg5s 4;
coff uint tgo 4;
coff uint tqgl 4;
coff uint tg2 4;
coff uint tg3 4;

} TIR, *pTIR;
SIZE - 4 bytes, ALIGNMENT - 4 bytes

Type Information Record Entry Fields
fBitfield

Flag set if bit width is specified.
continued

Flag set to indicate that the type description is continued in another TIR record. Thiswill happen if the
typeisrepresented with more than six type qualifiers.

bt

Basic type (see Table 5-4 and Section 5.3.7.1).

tg0, tgl, tg2, tg3, tg4, tgb

Type qualifiers (see Table 5-5 and Section 5.3.7.2). Thelower-numbered tq fields must be used first,
and all unneeded fields must be set to tgNil (0).

Table5-4 Basic Type (bt) Constants

Constant Value |Description

btNil 0 Undefined or void
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btAdr32 1 Address

btChar 2 Character

btUChar 3 Unsigned character

btshort 4 Short (16 bits)

btUShort 5 Unsigned short (16 bits)

btInt 6 Integer (32 bits)

btUInt 7 Unsigned integer (32 hits)

btLong32 8 Long (32 bits)

btULong32 9 Unsigned long (32 bits)

btFloat 10 Floating point

btDouble 11 Double-precision floating point

btStruct 12 Structure or record

btUnion 13 Union

btEnum 14 Enumeration

btTypedef 15 Defined by means of a user-defined type definition
btRange 16 Range of values (for example, Pascal subrange)
btSet 17 Sets (for example, Pascal)

btComplex 18 Currently unused

btDComplex |19 Currently unused

seanaizecs o0 [[PIE O g e pote o ey i el o
btFixedBin |21 Fixed binary (for example, COBOL)

btDecimal 22 Packed or unpacked decimal (for example, COBOL)
btPicture 25 Picture (for example, COBOL)

btvoid 26 Void
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btPtrMem 27 Currently unused

btScaledBin |27 Scaled binary (for example, COBOL)
btVptr 28 Virtual function table (for example, C++)
btArrayDesc |28 Array descriptor (for example, Fortran, Pascal)
btClass 29 Class (for example, C++)

btLong64 30 Address

btLong 30 Long (64 bits)

btULongé64 31 Unsigned long (64 bits)

btULong 31 Unsigned long (64 bits)

btLongLong |32 Long long (64 bits)

btULongLong |33 Unsigned long long (64 hits)

btAdre4 34 Address (64 bits)

btAdr 34 Address (64 bits)

btInté4 35 Integer (64 bits)

btUInte64 36 Unsigned integer (64 bits)

btLDouble 37 Long double floating point (128 bits)
btInts8 38 Integer (64 bits)

btUInts 39 Unsigned integer (64 bits)

btRange 64 |41 64-bit range

btProc 42 Procedure or function

btChecksum |63 Symboal table checksum value stored in auxiliary record
btMax 64 Number of basic type codes
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Table Notes:

1. btInt andbtLong32 are Synonymous.

2. btUInt and btULong32 are Synonymous.

3. btLong, btLong64, btLongLong, bt Int64, and bt Int 8 are Ssynonymous.

4. btULongé4, btULongLong, btUInt64, and btUInt8 are Ssynonymous.

Table5-5 Type Qualifier (tg) Constants

Constant Value Description

tgNil 0 No qualifier (placeholder)
tgPtr 1 Pointer

tgProc 2 Procedure or function (obsol ete)
tgArray 3 Array

tgFar 4 32-hit pointer; used with the -xtaso emulation
tgvol 5 Volatile

tgConst 6 Constant

tgRef 7 Reference

tgArray 64 8 Large array

tgHasLen 9 Reserved

tgShar 10 Reserved

tgSharArr 64 |11 Reserved

tgMax 16 Number of type qualifier codes

5.2.8.2. Relative Symbol Record (RNDXR)

typedef struct {
coff uint rfd : 12;
coff uint index : 20;
} RNDXR, *pRNDXR;

SIZE - 4, ALIGNMENT - 4
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Relative Symbol Record Fields
rfd
Index into relative file descriptor tableif it exists; otherwise, index into file descriptor table.

Thisfield may have avalue of ST _RFDESCAPE, defined as 0x£ £ £ in the header file
cmplrs/stsupport . h. Thisvalueisused to indicate that the next auxiliary entry, interpreted as
an isym, contains the index.

index

Symbol index. Used as an offset from either FDR . i symbase or FDR. iauxbase, depending on
context.
5.2.9. String Table

The string table is composed of two parts: thelocal string table and the external string table. In the on-disk
symbol table, the externa strings follow thelocal strings. Thelocal string tableis present only for objects
created with full debugging information; it isremoved if an object islocally stripped.

The storage format for the sring table isalist of null-terminated character strings. It is correctly
considered as one long character array, not an array of strings. Fieldsin the symbolic header and file
headers represent string table sizes and offsetsin bytes.

5.2.10. Optimization Symbol Entry (PPODHDR)

typedef struct {

coff uint ppode tag;
coff uint ppode len;
coff ulong ppode_val;

} PPODHDR, *pPPODHDR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 5.3.3 for related information.

Optimization Symbol Entry Fields
ppode_tag

Identifies the kind of data described by this entry.
ppode_len

Indicatesthe size in bytes of the data that is found in the raw data areafor this entry. When thisfieldis
zero, the only datais stored in the ppode _val fied.

ppode_val

Thisfield iseither apointer to the entry's data or isitself the data. If ppode lenisnonzero, this
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field isardativefile offset from the beginning of the current Per-Procedure Optimization Descriptor
(PPOD) to the applicable dataarea. If ppode_ len iszero, thisfield containsthe data for the entry.

Table 5-6 Optimization Tag Values

Name Value | Description
PPODE STAMP . .
- 1 Version number of the PPOD stored in ppode_val.
The current PPOD_VERSION valueis1
PPODE_END . .
- 2 End of entries for this PPOD
PPODE_EXT SRC . .
- - 3 Extended source line information
PPODE SEM EVENT . . .
- = 4 Semantic event information. (Reserved for future use.)
PPODE SPLIT o .
- 5 Split lifetime information. (Reserved for future use.)
PPODE DISCONTIG SCOPE . . . .
- - 6 Discontiguous scope information. (Reserved for future
use)
PPODE INLINED CALL . . .
- - 7 Inlined procedure call information. (Reserved for future
use)
PPODE PROFILE INFO . . .
- - 8 Profile feedback information.

5.2.11. Symbol Type and Class (st/sc) Combinations

Entriesin the symbal table are primarily identified by the combination of their symbol type (st) and
storage class (sc) values. Not all combinations are valid. Figure 5-3 indicates which combinations are
currently in use.
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Figure 5-3 st/sc Combination Matrix

Interpretation of storage class column labels:

Ab. scAbs RC. scRConst TC. scTlsCommon
BV. scBasedVar RD. scRData TD. scTlsData

Bi. scBits RI. scRegImage TU. scTlsUndefined
Bs. scBss Re. scRegister Ua. scUnallocated
Co. scCommon Rp. scReportDesc Un. scUndefined
Da. scData SB. scSBss US. scUserStruct
FD. scFileDesc SC. scSCommon Va. scVar

Fi. scFini SD. scSData VR. scVarRegister
If. scInfo SU. scSUndefined Vt. scVariant

In. scInit Sy. scSymref XD. scXData

Ni. scNil Te. scText

PD. scPData TB. scTlsBss

sc |ABBBC|DFFII |NPRRR|RRSSS|SSTTT |TTUUU|VVVX
st bViso|aDifn|iDCDI |epBCD |UyeBC|DUanS |aRtD

stAlias X

stBase X

stBlock X| X X X X X
stConstant X X [X X

stEnd X| X X

stExpr
stFile X
stForward
stGlobal XX | X XX XXX [X XX|XX X
stInter X
stLabel X X XXX
stLocal X X XXX |X
stMember X X X
stModule
stModview
stNamespace X
StNil
stNumber
stParam
stProc
stRegReloc
stSplit
stStaParam

| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
stStatic | XX|X X | XX | X X| X |X |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

XX
XX

>
>
>
>

XX X

stStaticProc
stStr

stTag

stType
stTypedef
stUsing
stVirtBase

X
X
X

A symbol's type and class taken together determines interpretation of other fields in the symbol table entry.
The same combination can be used for different purposesin different contexts. Asaresult, to understand
the symbol entry, it also may be necessary to access type information in the auxiliary table or the source
language information in the file descriptor.
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The contents of the value and index fields for each combination, with a brief explanation of the
symbol's use, are described in the following list of combinations. For many combinations, greater detail
can be found in Section 5.3.7 and Section 5.3.8 .

stGlobal, sc(S)Data/ (S)Bss/RData/Rconst

e Thevalue fiedisthe symbol's address.

e Theindex fiedisan auxiliary tableindex or indexNil (if the auxiliary tableis not present).
e Thissymboal isadefined global variable.

stGlobal, scTlsData/TlsBss

e Thevalue fiddisthe offset from the base of the object's TLS region.

e Theindex fiddisan auxiliary tableindex or indexNil (if the auxiliary tableis not present).
e Thissymbol isadefined global TLS variable.

stGlobal, sc(S)Common/T1lsCommon

e Thevalue fiddisthe symbol'ssizein bytes.

e Theindex fiddisan auxiliary tableindex or indexNi1l (if the auxiliary tableisnot present).
e Thissymboal isa common.

stGlobal, sc(S)Undefined/TlsUndefined

e Thevalue fiddiszeroin linked objects. In relocatable objects, the value field isignored. (Some
compilers store the size in bytes of the global variable in thevalue field.)

e Theindex fiddis anauxiliary tableindex or indexNil (if theauxiliary tableisnot present).
e Thissymbal isan undefined global variable.

stStatic, sc(S)Data/(S)Bss/RData/Rconst

e Thevalue fiddisthe symbol's address.

e The index fiddisan auxiliary table index.

e Thissymbal isadefined static variable.

stStatic, scTlsData/TlsBss

e Thevauefiddisan offset from the base of the object's TLS region.

e Theindex field isan auxiliary table index.

e Thissymbol isadefined static TLS variable.
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stStatic, scCommon

e Thevalue fiddiszero.

e Theindex fiddisan auxiliary tableindex.

e Thissymbol isa Fortran common block.

stStatic, scInfo

e Thevalue fiddiszero.

e Theindex fiedisan auxiliary tableindex.

e Thissymbal isa C++ static datamember.

stParam, scAbs

e Thevalue fiddisan offset from the virtual frame pointer.

e Theindex fiddisan auxiliary table index.

e Thissymbal isa parameter sored on the stack.

stParam, scRegister

e Thevalue fiddisthe number of theregister containing the parameter.
e Theindex fiddisan auxiliary table index.

e Thissymbol isa parameter stored in aregister.

stParam, scVar

e Thevalue fiddisan offset from the virtual frame pointer to the parameter's address.
e Theindex fiddisan auxiliary table index.

e Thissymbal isa parameter sored on the stack. Oneleve of indirection isrequired to access the
parameter's value.

stParam, scVarRegister
e Thevalue fiddistheregiser number containing the address of the parameter.
e Theindex fiddisan auxiliary table index.

e Thissymbal isa parameter sored on the stack. Oneleve of indirection isrequired to access the
parameter's value.

stParam, scInfo

e Thevalue fiddiszero.
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e Theindex fiedisan auxiliary tableindex.

e Thissymbol isa parameter of a C++ member function, function pointer definition, or procedure with
no code.

stParam, sc(S)Data/(S)Bss/Rconst/Rdata

e Thevalue fiedisthe address of the parameter.

e Theindex fiddisan auxiliary table index.

e Thissymbol isa gatic parameter.

stParam, scUnallocated

e Thevalue fiddiszero.

e Theindex fiedisan auxiliary tableindex.

e Thisisan unallocated parameter.

stLocal, scAbs

e Thevalue fiddisan offset from the virtual frame pointer.

e Theindex fiddisan auxiliary table index.

e Thisisaloca variable stored on the stack.

stLocal, scRegister

e Thevalue fiddisthe number of the register containing the variable.
e Theindex fiddisan auxiliary table index.

e Thissymboal isalocal variable stored in aregister.

stLocal, scVar

e Thevalue fiddisan offset from the virtual frame pointer to the symbol's address.
e The index fiddisan auxiliary table index.

e Thissymbol isalocal variable stored on the stack. Onelevel of indirection isrequired to access its
value.

stLocal, scVarRegister
e Thevalue fiddistheregiser number containing the address of this variable.

e Theindex fiddisan auxiliary table index.
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e Thissymbol isalocal variable stored on the stack. Oneleve of indirection isrequired to accessits
value.

stLocal, scUnallocated

e Thevalue fiddiszero.

e Theindex fiddisan auxiliary tableindex.

e Thisisan unalocated local variable.

stLocal, scText/Init/Fini/(S)Data/(S)Bss/Rconst/Rdata/TlsData/TlsBss
e Thevauefiedisthe address of the section indicated by the storage class.

e Theindex fiddis indexNil.

e These are special symbolsinserted by the compilation system for shared objects. They arefound in the
externa symbol table and their names are the section names (for example, . text or . init).

stLabel, scAbs

e Thevauefiddisthe symbol'svalue. Thismay be either a numeric constant or absolute address.
e Theindex field isindexNil.

e Thissymbal isalinker defined absolute symbal.

stLabel, scText/Init/Fini/(S|X|P|R)Data/(S)Bss/Rconst/TlsData/TlsBss
e Thevalue fiddisthelabe's value (an address).

e TheindexfiddisindexNil.

e Thissymbal isan allocated label. It can be associated with any raw data section of the object file.
stLabel, scUnallocated

e Thevalue fiddiszero.

e TheindexfiddisindexNil.

e Thissymbal isan unalocated label.

stProc, scNil

e Thevalue fiddiszero.

e TheindexfiddisindexNil.

e Thisisan external symbal.

stProc, scText
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e Thevalue fiedisthe procedure's address.
e Thissymboal can occur in the external or local symbol table:

e Inthelocal symbol table, the index field isan auxiliary table index.

e Intheexternal symbol table, it isthelocal symbol index of the corresponding procedure
symbol inthelocal symbol table, unlessthefileisstripped of local symbol information. If the
fileislocally stripped, the index field is indexNil.

e Thissymbol isadefined procedure.
stProc, scUndefined
e Thevalue fiddiszero.
e Theindex fiddis indexNil.
e Thissymbal isan undefined procedure.
stProc, scInfo
e Thevalue fidd containsavalue of:
e -1 (aprocedure with no code)

e -2 (afunction prototype or function pointer definition)

e A non-negative index into the virtual function table for thisfunction, for a C++ virtua
member function.

e Theindex fiddisan auxiliary table index.

e Thissymbal represents a procedure without code, a function prototype, or a function pointer. The
value field isused to distinguish among these possibilities.

stBlock, scText
e Thevalue field depends on context:
e |If thisisthefirs stBlock, scText symbal following an stProc, scText symboal, the
value isthe byte offset from the procedure's address to the address of the first instruction

beyond the end of the procedure's prol ogue.

e For atext block, it isthe byte offset from the procedure's address to the starting instruction
address of the block.

e The index fiddisthelocal symbol index of the symbol following the matching stEnd. If thisisthe
first stBlock, scText following an stProc, scText for an aternate entry point, theindex field
will be set to indexNil because the symbol will not have a matching st End symbol.

e Thissymbal indicates the start of a block scope.
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stBlock, scInfo
e Thevalue field dependson context:
e Sizein bytesfor aclass, structure, or union
e Sizeof theunderlying data type for an enumerated type
e Auxiliary tableindex for avariant record
e Zerofor the block scope of a procedure with no code.
e Theindex fiddisthelocal symbol index of the symbol following the matching st End.
e Thissymbal indicates the start of a structure, union, or enumeration definition (in C; the C++

representation differs). It describesavariant armif itisinddean stBlock, scVariant scope.
Thissymbol isalso used to define the block scope of a procedure with no code.

stBlock, scCommon
e Thevalue fiddisthe size of the common block in bytes.
e Theindex fiddisthelocal symbol index of the symbol following the matching st End.

e Thissymbal isa scoping symbol for a Fortran common block. It occurs in the context of the
synthesized file used to define a common block.

stBlock, scVariant

e Thevalue fiddisthelocal symbol index of the structure member whose value determines which
variant range is used.

e Theindex fiddisathelocal symbol index of the symboal following the matching st End.

e Thissymbal occursin the context of Pascal and Adavariant records. It indicates the start of the
symbols for one variant.

stBlock, scFileDesc/scReportDesc
e Thevalue fiddiszero.
e Theindex fiddisathelocal symbol index of the symboal following the matching st End.
e Thissymbol occursin COBOL only. It indicatesthe start of thefile or report descriptor scope.
stEnd, scText
e Thevalue fidd depends on the type of scopeitisending. Itis:
e Thesizein bytes of the procedure'stext (for a procedure)

e Byteoffset from aprocedure's address to the start of the epilogue (for the outermost text block
in a procedure)
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e Byteoffsat from aprocedure's address to the first instruction address beyond the end of the
block (for atext block)

e Zero (for afile)
e Theindex fiedisthelocal symbol index of the matching stBlock, stProc, or stFile.
e Thissymbol ends afile, procedure, or text block scope.
stEnd, scInfo
e Thevalue fiddiszero.
e Theindex fiedisatheloca symbol index of the matching stBlock or stNamespace.
e If thematching symboal isan stBlock, this symbol ends a structure, union, enumeration, C++ member

function definition, procedure with no code, or the block scope contained by a procedure with no code.
If the matching symbol is an stNamespace, thissymbol ends anamespace definition.

stEnd, scCommon
e Thevalue fiddiszero.
e Theindex fiedisthelocal symbol index of the matching stBlock.
e Thissymbol ends a Fortran common definition.
stEnd, scVariant
e Thevalue fiddisthe sameasthat of the matching stBlock.
e Theindex fiddisthelocal symbol index of the matching stBlock.
e Thissymbol endsavariant record block.
stEnd, scFileDesc/scReportDesc
e Thevalue fiddiszero.
e Theindex fiddisthelocal symbol index of the matching stBlock.
e Thissymbol endsafileor report descriptor block.
stMember, scInfo
e Thevalue fied depends on the symbol's data type:
e Theordina vaue (for an element of an enumerated type)
e Zero (for anamespace or union member)

e Bit offset from the beginning of the structure (for a C structure or C++ class member)
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e Theindex fiedisan auxiliary tableindex.

e Thissymbol describes a data structure field or the member of a namespace. It isfound inside a block
defining a data structure (for example, class or struct) or a namespace definition block.

stMember, scFileDesc/scReportDesc
e Thevalue fiediszero or one, depending on whether the symbol islocal or external, respectively.
e Theindex fiddisan auxiliary table index.
e Thissymbol occursin COBOL only. Itisfound insde afile descriptor or report descriptor block.
stTypedef, scInfo
e Thevalue field depends on the purpose of this symbal:

e Zero (for a user-defined type definition).

e Theauxiliary table index of the next auxiliary entry after the start of the class definition (for a
compiler inserted symboal). In effect, the valueis the contents of the index field plus one.

e Theindex fiddisan auxiliary table index.

e Thissymbal isa user-chosen name for a datatype. It also appears as a compiler-inserted symbol
following the st Tag, scInfo symbol for an empty C++ class or structure.

stFile, scText

e Thevalue fiddiszero.

e Theindex fiddisthelocal symbol index of the symbol following the matching st End.
e Thissymbol denotes the scoping block for asourcefile.
stStaticProc, scText

e Thevalue fiddisthe procedure's address.

e Theindex fiddisan auxiliary table index.

e Thissymbal isa defined static procedure.
stStaticProc, scInit/Fini

e Thevalue fiddisthe procedure address.

e Theindex fiddisan auxiliary table index.

e These combinations are used for the special symbols _ istart and __ fstart, which areinserted
by the linker.

stConstant, scInfo
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e Thevalue fiedisthe value of the constant.

e Theindex fiddisan auxiliary table index.

e Thissymboal represents a named value (for example, Fortran PARAMETER).
stConstant, scAbs

e Thevalue fiedisthe value of the constant.

e Theindex fiddisan auxiliary tableindex.

e Thissymbol represents a named value (for example, Fortan PARAMETER).
stConstant, sc(S)Data/(S)Bss/RData/Rconst

e Thevalue fiedisthe symbol's address.

e Theindex fiedisan auxiliary tableindex.

e Thissymbal represents allocated constant data.

stBase, scInfo

e Thevalue fiddisthe offset of the base classrelative to aderived class.

e Theindex fiddisan auxiliary table index.

e Thissymbol isaC++ baseclass.

stvirtBase, scInfo

e Thevalue fiddisanindex (starting at 1) of the base classrun-time description in the virtual base
classtable. See Section 5.3.8.6.2.

e Theindex fiedisan auxiliary tableindex.
e Thissymbol isa C++ virtual base class.
stTag, scInfo

e Thevalue fiddiszero.

e Theindex fiedisan auxiliary tableindex.

e Thissymbol isa C++ class, sructure, or union. Note that the representation for C structures and
unionsis different.

stInter, scInfo

e Thevalue fiddiszero.
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e Theindex fiedisan auxiliary tableindex.

e Thissymboal isused in C++ to connect the definition of amember function with its prototype in the
class definition context.

stNamespace, scInfo

e Thevalue fiddiszero.

e Theindex fiedisthelocal symbol index of the symbol following the matching stEnd.
e Thissymboal indicates the start of the symbols in a namespace definition.

stUsing, scInfo

e Thevalue fiddiszero.

e Theindex fiddisan auxiliary table index.

e Thissymbol specifies a C++ namespace (or portion thereof) that is being imported into another scope.
stAlias, scInfo

e Thevalue fiddiszero.

e Theindex fiddisan auxiliary table index.

e Thissymbal defines an dias for a C++ namespace.

Combinations may be valid in thelocal symbol table, the external symbol table, or both. Table 5-7 shows
which combinations are valid in which table, based on the symbol type value and a so the storage class
value where necessary. Only combinations previously specified as valid apply where the storage class
valueis shown asawildcard value with the character "'

Table5-7 Valid Placement for st/sc Combinations

st/sc Combination External Symbol Local Symbol
Table Table

stNil, =* X X
stGlobal, * X

stStatic, * X

stParam, * X

stLocal, scSCN! X

stLocal, not scSCN' X
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stLabel, * X X
stProc, scInfo X
stProc, scText X X
stProc, scUndefined | X
stBlock, * X
stEnd, * X
stMember, * X
stTypedef, * X
stFile, * X
stStaticProc, X
scText
stStaticProc, X
scInit/Fini
stConstant, * X X
stBase, * X
stVirtBase, * X
stTag, * X
stInter, * X
stNamespace, * X
stUsing, * X
stAlias, * X
Table Notes:
1. scSCN = gcData, scSData, scBss, scSBss, scRConst,
scFini, scText, scXData, scPData, scTlsData, scTlsBss,

scRData, scInit,

scTlsInit
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5.3.  Symbol Table Usage

5.3.1. Levels of Symbolic Information

Different levels of symbolic information can be stored with an object file. Compilers often provide options
that allow the user to choose the desired level of symbolic information for their program. This choice may
be influenced by size considerations and debugging needs. A trade-off exists between the benefit of saving
space in the object file and the amount of information available to tools that consume symbolic
information.

It is aso possible to change the amount of symbolic information present in a program that has already been
compiled and linked. Information can be added or deleted. Two of the most common and useful
operations are locally stripping and fully stripping the symbol tables in executable files. Tools that modify

linked executables, such asinstrumentation tools and code optimizers, may rewrite parts of the symbol
table to reflect changes that they made.

5.3.1.1. Compilation Levels

Therepresentation of symbolic information supported by compilers can be broken down into four levels:

1. Minimal-Only information required for linking

2. Limited— Source file and line number information for profiling and limited debugging (stack-tracing)
3. Full- Complete debugging information for non-optimized code

4. Optimized— Debugging information for optimized code

These levels correspond to the system compiler switches -g0 (minimal), -g1 (limited), -g2 (full), and
-g3 (optimized). Table 5-8 shows the symbol table sectionsthat are produced by system compilers at each

compilation level.

Table 5-8 Symbol Table Sections Produced at VVarious Compilation Levels

Symbol Table Section Compilation Level
Minimal Limited Full Optimized

Symbolic header Yes Yes Yes Yes
File Descriptors Yes Yes Yes Yes
Externd Symbols Yes Yes Yes Yes
Externd Strings Yes Yes Yes Yes
Procedure Descriptors Yes Yes Yes Yes
Line Numbers No Yes Yes Yes
Relative File Descriptors No No Yes Yes
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Optimization Symbols No Partial Yes Yes
Local Symbols No Partial Yes Yes
Local Strings No Partial Yes Yes
Auxiliary Symbols No Partial Yes Yes

The minimal level of symbolic information that may be produced during compilation includes only the
symbol information required for the linker to function properly. Thisincludes externa symbol information
that is needed to perform symbol resolution and rel ocation.

If thelimited level of symbolic information is requested, line number entries are generated, but the
auxiliary table will contain only external symbol entries. Again, external symbol and procedure descriptors
are available. In addition, local symbols for procedures (and the corresponding auxiliary symbals,
optimization symbols, and local strings) are present. Limited symbolic information is sufficient to meet the
needs of profiling tools. Theinformation present at thislevel is asubset of that required for full debugger
support.

If full symbolic information isincluded, all symbol table section are produced in full. Thislevel enables
full debugging support with complete type descriptions for local and external symbols. Optimization is
disabled.

Optimized symbolic information is designed to balance the aims of performance and debugging
capabilities. Thislevel supplies the sameinformation as the full debugging option, but it also allows all
compiler optimizations. Asaresult, some of the correlation islost between the source code and the
executable program.

On Tru64 UNIX systems, users can choose to compile their programs with any one of the four levels of
symbolic information. The options -g0, -g1, and -g2 specify increasing levels of symboalic information.
The system compiler's default isto produce the minimal level (-g0). Currently, debugging of optimized
code (-g3) isnot fully supported. See cc (1) for more details.

5.3.1.2. Locally Stripped Images

Objects can be produced with only global symbolic information stored in the symbol table. Selection of the
-x option causes the linker to create alocally-stripped object. Reasons for stripping local symbolic
information include reducing file size and limiting the amount of symbolic information available to end
users of an application.

A locally-stripped object is very similar to an object produced with minimal symbolic information (see
Section 5.3.1.1). The differenceis the consolidation of file descriptors, which the linker does only for
locally-stripped objects.

In alocally-stripped image, the file descriptors are included solely for the purpose of identifying sourcefile
languages. One file descriptor is present for each source language involved in the compilation. Thesefile
descriptorswill havetheir adr field set to addressNil indicating the file descriptors cannot be used to
identify text addresses.

The procedure descriptor tableis present in full but isrearranged to group procedures by source language.
All procedure descriptors for procedures written in a particular source language are thus contiguous, and
they reflect the file descriptor's information.
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External symbols are also present in alocally-stripped image. Thefileindices (1 £d field) of the external
symbols are updated to identify the generic file descriptor for the appropriate source language. The index
fields are set to zero to indicate that no type information is available. External symbols with the storage
class scNil areremoved. These are debugging symbols that are not normally produced for minimal
symbol tables.

Limited debugging is possible with locally-stripped objects. Because the procedure descriptors are retained,
stack traces are possible. External symbol information can aso be viewed, and language-dependent
handling of symbals (for example, C++ name demangling) is preserved.

A linked executable file can belocally stripped at any time after its creation using theostrip -x
option. The output is the same as described above. This operation may also alter the raw data of the
.comment section. See Chapter 7 for details.

5.3.1.3. (Fully) Stripped Images

Executable files may be fully stripped at any time after creation using either the st rip command or the
ostrip -s command. Stripping an executable will result in complete removal of the symbol table,
including the symbolic header. Thefile header filds £ symptr and £ nsyms are set to zero to indicate
that the file has been stripped.

This operation may also alter the raw data of the . comment section. See Chapter 7 for details.

5.3.2. Source Information

The final executable image for a program bears little resemblance to the source code files from which it
was created. One of the principal functions of the symbol tableisto track the relationship between the two
so that the debugger is able to describe the resulting program in a way that the programmer can recognize.

5.3.2.1. Source Files

Much of the complication of source information stems from the "include" system. When a compilation
involves several source files, there may be duplication of the header files included in each sourcefile, or of
the source files themsalves. To avoid repetition of header file information in the linked object, the linker
merges the input objects' included files wherever possible. Compilers mark file descriptors as mergeable or
unmergeable. The linker then examines the input file descriptors and performs the merge whenever
possible.

Thelinker considerstwo file descriptorsto be mergeableif al of the following criteria are met:

1) Thefiledescriptor £Merge hitis set in both (marked as mergeable by compiler).

2) Fileshavethe samename.

3) Filesarewritten in the same language.

4) Files contain the same number of local and auxiliary symbols.

5) Checksums match.
The checksums match if ether:

i) Neither file'sfirst auxiliary record isabt Checksum.
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ii) Bothfiles first auxiliary record isabtChecksum and they areidentical.

Therole of therelative file descriptor (RFD) tablesisto track file-relative information after merging. A
relative file descriptor table entry maps theindex of each file at compile timeto itsindex after linking.
After linking, local or auxiliary symbols must be accessed through the RFD table to obtain the updated file

descriptor index. This mechanism is necessary because the indices in thelocal symbol table are not updated
when files are merged.

Figure 5-4 isan example of the use of therdative file descriptor table.

Figure 5-4 Relative File Descriptor Table Example

#include a.h #include b h
¥include b.h ¥include a.h
dat.c tab ¢
0) dat.c
1) tab.c
File
2)ah Descriptors
3) b.h (merged)
datc — 0)0
1)2 Relative
2) 3 File
tab ¢ s| o)1 Descriptors
1) 3 (per file)
2) 2

For a symbal reference composed of a fileindex and symbol index (offset within file), therelative file
descriptor table isused asfollows:

1) Tolook up given fileindex in the RFD table to get updated file index.

2) Tolook up new fileindex in the (merged) file descriptor table to get base of symbolsfor that file.
3) Toadd symbol index to file's base to access the symboal entry.

See Section 5.3.7.3 for the representation of relative indicesin the auxiliary symbol table.
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5.3.2.2. Line Number Information

For a debugger to be effective, a connection must be made between high-level-language statementsin
source files and the executable machine ingructions in object files. Line number entries map executable
instructions to source lines. This mapping allows a debugger to present to a programmer the line of source
code that correspondsto the code being executed. Theline number information is produced by the
compiler and should be rewritten if an application such as an instrumentation tool or an optimizer modifies
code.

In V3.13 of the Tru64 UNIX symbol table, line number information is emitted in two forms, one found in
the line number table and one in the optimization symbol table. (Section5.3.3 describes the structure of the
optimization symbol table.) Theline number information found in the optimization symbol tableis
referred to as "extended source location information”. Thisisanew form of line number information
introduced in V3.13 symbol tables. Thenew line number information augments the information in the line
number table. If both forms of line number information are present in an object the extended source line
information will only be present for procedures that cannot be described adequately by entriesin the line
number table.

5.3.2.2.1. The Line Number Table

Line number information is generated for each source file that contributes executable code to a program.
Within each sourcefile, line numbers are organized by procedure, in the order of appearancein thefile.
The line number symbal table section is produced only when a program is compiled with limited or greater
symbolic information (see Section 5.3.2.2).

Figure 5-5 illustrates of the organization of the line number table.

Figure 5-5Line Number Table

File 1
Froc 1
Froc 2

Froc Y
File 2

Froc 1

Froc 2

Froc I
File M
Froc 1

Froc 2
Proc I

The order outlined in Figure 5-5 is not guaranteed to match the ordering of file descriptors or procedure
descriptorsin those tables. To determine the bounds of the line number table entries for a specific
procedure, fields in the associated file descriptor and procedure descriptors must be used. The starting
offset for aprocedure'slinetable entriesis calcul ated directly from these fields. The ending offset can only
be determined by finding the starting offset of the next procedure's entriesin the line number table. An
algorithm to identify the starting and ending line table offsets for a procedure follows.
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IPD = index-of-procedure
IFD = index-of-file-containing-procedure

if (FDR[IFD].cbLine == 0 or
(PDR[IPD] .iline == ilineNil ))
/* No line information for this procedure */

START FILE OFFSET = FDR[IFD].cbLineOffset
END FILE OFFSET = START FILE OFFSET + FDR[IFD].cbLine

START PROC OFFSET = START FILE OFFSET + PDR[IPD].cbLineOffset
NEXTIPD = -1

for (I = 0; I < FDR[IFD].cpd; I++)
IPD2 = FDR[IFD].ideirst + I

if (IPD2 != IPD and
PDR[IPD2] .iline != ilineNil and /* No lines */
PDR[IPD2] .1nHigh != -1 and /* Alt entry */

PDR[IPD2] .cbLineOffset > PDR[IPD] .cbLineOffset)

if (NEXTIPD == -1 or
PDR [PID2] .cbLineOffset < PDR[NEXTIPD] .cbLineOffset)

NEXTIPD = IPD2

if (NEXTIPD == -1)
/* IPD is the last procedure with line numbers in the file */
END PROC_OFFSET = END FILE OFFSET

else
END_PROC_OFFSET = START FILE OFFSET + PDR [NEXTIPD] .cbLineOffset

Alternate entrypoints have a starting line number, but they have no specific ending line number. Procedure
descriptors for a procedure and each of its associated alternate entrypoints share a common end offset in the
line number table. See Section 5.3.6.7 for moreinformation on alternate entrypoints.

The line number table has two forms. The "packed” form is used in the object file. The "expanded” formis
amore useful representation to programmers and can be derived algorithmically (or by API) from the
packed form.

The packed line numbers are stored as bytes. Each packed entry within the single byte value consists of
two parts: count and delta. The count isthe number of instructions generated from a source line. The delta
isthe number of source lines between the current source line and the previous one that generated
executable instructions.

Figure 5-6 shows how these two values are represented.
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Figure 5-6 Line Number Byte For mat

Bit:

k—,\ji__,.k—,v__/
Delta Count

The four-bit count is interpreted as an unsigned vaue between 1 and 16 (0 means 1, 1 means 2, and so
forth). A zero value would be wasted when no ingructions are generated for asource line and, as aresult,
no line number entry will exist for that line.

The four-bit deltaisinterpreted as a signed value in therange -7 to +7. Thereason for thisisthat code
generators may produce instructionsthat are not in the same order as the corresponding source lines.
Therefore, the offset to the "next" source line may be a forwards or backward jump.

Either of these quantities may fall outside the permissible range. For a delta outside the range, an extended
format exists (as shown in Figure 5-7).

Figure 5-7 Line Number 3-Byte Extended Format

Bit:
Ki 0
110|010
'u—,\fi__,.k—,v__/
Constant Count
Bit:
Ki 0
N
e
Upper 8 bits of Delta
Bit:
Ki 0
e
e

Lower & bits of Delta
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For a count outside the range, one or more additional entries follow, with the delta set to zero.

If both fields are out of range, the deltais handled first. An extended-format delta representation is
followed by an entry with the delta bits set to zero and the remainder of the count contained in the count
value.

The packed line number format can be expanded to produce the ingtruction-to-source-line mapping that is
needed for debugging. An agorithm to accomplish this transformation for a given procedure follows. The
expanded line number array has a source line number entry for each instruction in the given procedure.
The address of the first entry is the addressrecorded in the PDR . adr field. Subsequent entries correspond
to contiguous sequential instruction addresses.

START PROC_OFFSET = offset-of-procedure's-entries-in-line-table
END_PROC_OFFSET = offset-of-next-procedure's-line-table-entries

PACKED = HDRR.cbLineOffset + START PROC OFFSET
CURRENTLINE = PDR.lnLow
EXPANDED = ALLOCATE (number-of-instructions-in-procedure)

for (I = 0;
I < (END_PROC_OFFSET - START_PROC_OFFSET)/sizeof(*PACKED);
I++)
COUNT = (unsigned) (PACKED[0] & O0xOF) + 1
DELTA = (Signed)(PACKED[O] & OxF0) >> 4
if (DELTA == (signed) 0x8) /* Extended delta */
DELTA = (signed)((PACKED[Z] << 8) | PACKED[1])
PACKED += 2
else

PACKED += 1

if (current-offset-matches-offset-of-alternate-entry)
CURRENTLINE = PDR.1nLow of alternate entry

CURRENTLINE += DELTA
while (COUNT-- > 0)

*EXPANDED = CURRENTLINE
EXPANDED++

The following source listing of afilenamed 1ines . c provides an example that shows how the compiler
assignsline numbers:

1 #include <stdio.h>

2 main ()

3

4 char c¢;

5

6 printf ("this program just prints input\n");
7 for (;;) {

8 if ((c =fgetc(stdin)) != EOF) break;

9 /* this is a greater than 7-line comment
10 * 1

11 * 2

12 * 3
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13 * 4

14 * 5

15 * 6

16 * 7

17 */

18 printf ("%c", c);
19 } /* end for */

20 } /* end main */

The compiler generates line numbers only for thelines 2, 6, 8, 18, and 20; the other lines are either blank or
contain only comments.

Table 5-9 shows the packed entries interpretation for each sourceline.

Table5-9 Line Number Example

SourcelLine LINER contents I nterpretation

2 03 Delta0, count 4
6 44 Ddlta4, count 5
8 29 Delta2, count 10
181 88 00 0Oa Delta 10, count 9
19 10 Ddtal, count 1
20 14 Ddtal, count 5
Table Note:

1. Extended format (deltais greater than 7 lines).

The compiler generates the following ingtructions for the example program:

[lines.c: 2] 0x0: ldah gp, 1(t12)
[lines.c: 2] 0x4: lda gp, -32592(gp)
[lines.c: 2] 0x8: lda sp, -16(sp)
[lines.c: 2] Oxc: stqg ra, O(sp)
[lines.c: 6] 0x10: 1ldg a0, -32720(gp)
[lines.c: 6] 0x14: 1ldg t1l2, -32728(gp)
[lines.c: 6] 0x18: jsr ra, (tl2), printf
[lines.c: 6] Oxlc: ldah gp, 1l(ra)
[lines.c: 6] 0x20: lda gp, -32620(gp)
[lines.c: 8] 0x24: 1ldg a0, -32736(gp)
[lines.c: 8] 0x28: ldg tl2, -32744(gp)
[lines.c: 8] 0Ox2c: jsr ra, (tl2), fgetc
[lines.c: 8] 0x30: ldah gp, 1l(ra)
[lines.c: 8] 0x34: lda gp, -32640(gp)
[lines.c: 8] 0x38: and v0, Oxff, toO
[lines.c: 8] 0x3c: stq v0, 8(sp)
[lines.c: 8] 0x40: XOor to, Ooxff, toO
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[lines.c: 8] 0x44: bne t0, 0x6c
[lines.c: 18] 0x48: 1ldg t2, 8(sp)
[lines.c: 18] O0x4c: sll t2, 0x38, t2
[lines.c: 18] 0x50: sra t2, 0x38, al
[lines.c: 18] 0x54: 1ldg a0, -32752(gp)
[lines.c: 18] 0x58: 1ldg t1l2, -32728(gp)
[lines.c: 18] 0x5c: jsr ra, (tl2), printf
[lines.c: 18] 0x60: ldah gp, 1l(ra)
[lines.c: 18] 0x64: 1da gp, -32688(gp)
[lines.c: 19] 0x68: br zero, 0x24
[lines.c: 20] O0xé6c¢: bis zero, zero, VO
[lines.c: 20] 0x70: 1ldg ra, 0(sp)
[lines.c: 20] 0x74: lda sp, 16 (sp)
[lines.c: 20] 0x78: ret zero, (ra), 1
[lines.c: 20] Ox7c: call pal halt

After applying the given algorithm, the following instruction-to-source mapping (formatted instruction
number. source line number) is obtained:

0. 2 1. 2 2. 2
3. 2 4. 6 5. 6
6. 6 7. 6 8. 6
9. 8 10. 8 11. 8
12. 8 13. 8 14. 8
15. 8 16. 8 17. 8
18. 18 19. 18 20. 18
21. 18 22. 18 23. 18
24. 18 25. 18 26. 19
27. 20 28. 20 29. 20
30. 20 31. 20

Header filesincluded in an object have no associated line numbers recorded in the symbal table. Line
number information for included files containing source code is not supported.

5.3.2.2.2 Extended Sour ce L ocation Information (ESLI)

The line number table does nat correctly describe optimized code or programs with untraditional source
files, resulting in images that are difficult to debug. Extended Source Location Information (ESLI) is
intended to provide more information to enable debugging of optimized programs, including PC and line
number changes, filetrangtions, and line and column ranges. ESLI is essentialy a superset of the older
line number table.

ESLI is stored in the optimization symbols section. Thisinformation is accessi ble on a per-procedure basis
from the procedure descriptors. See Section 5.3.3 for more detail on accessing information in the
optimization symbols section.

ESLI isabyte stream that can be interpreted in two modes: datamode or command mode. Currently, two
formats are defined for datamode. These are designated as "Data Mode 1" and "Data Mode 2". Additional
data modes may be defined as needed.
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Figure 5-8 ESLI Data M ode Bytes

Data Mode 1
Bit:
Fi 0

H—_\/___,. 'a—_v__/'
Delta Count
Data Mode 2
Bit:
K 0 7 0

Delta Count Column #

DataMode 1 istheinitial mode for a proceduresESLI. DataMode 1 isidentica to the packed line number
format with the exception of the interpretation of the delta PC escape value ' 1000 ' (which indicates a
switch to command mode).

In Data Mode 2, each entry consists of two bytes. Thefirst byteisidentica to the encoding and
interpretation of DataMode 1. The second byte is an absolute column number (from O to 255), where
column number O indicatesthat column information is missing or not meaningful for this entry. The escape
from Data Mode 2 to command mode consists of a delta PC escapevaluesetto ' 1000 ' and column
number set to O.

In command mode, each byteis either acommand or acommand parameter. For a command byte, the low-
order six bitsare acommand code, and the two high bits are used as flags, as shown in Figure 5-9. The
"mark" flag, if set, announces that a new state has been established. Several commands may be required to
fully describe anew state. The "resume” flag, if set, indicates the end of command mode. Thenext byte
following a command with "resume” set will be a data mode byte. The same data mode that was in effect
prior to the escape to command mode will be resumed. See Table 5-10 for a complete list of commands.

Figure5-9 ESLI Command Byte

Bit:
7 0

I
Resume command code
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Command parameters are stored in LEB (Little Endian Byte) 128 format. See Section 1.4.6 for a
description of this data representation. PC deltas are aways expressed as machine instruction offsets and
must be scaled by the size of a machine instruction before adding to the current PC. No other deltas need
to be scaled.

Table 5-10 shows how to interpret the bytesin command mode. These definitions can be found in the
system header file Linenum. h.

Table5-10 ESLI Commands

Name Value Number of Type of
Parameters Parameters

ADD_PC 1 1 SLEB

ADD LINE 2 1 SLEB

SET_COL 3 1 LEB

SET FILE 4 1 LEB

SET DATA MODE 5 1 LEB

ADD LINE PC 6 2 SLEB, SLEB

ADD LINE PC_COL 7 3 SLEB, SLEB,
LEB

SET LINE 8 1 LEB

SET_LINE_COL 9 2 LEB, LEB

ADD PC

Parameter isasigned value to add to the current PC value.

ADD_LINE
Parameter isasigned value to add to the current line number.

SET_COL
Parameter is an unsigned value that represents a new column number. The column number isused to
associate the PC with a particular ocation within a source line. Column number parameters use a
zero-based representation that must be adjusted by adding 1.

SET FILE

Parameter is an unsigned value used to switch file context. This command istypically followed by a
set line command.

SET DATA MODE
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Parameter is an unsigned value used to set current datamode. The only parameter values that are
currently accepted are 1 and 2. Additional data modes may be defined in futurerel eases.

ADD LINE PC

Both parameters are signed values. Thefirst isadded to the PC and the second is added to the line
number.

ADD LINE PC_COL

The firgt two parameters are signed values and the third isan unsgned value. Thefirst two are added
to the PC and line number respectively. Thethird isused to set the column number.

SET_ LINE
Parameter is an unsigned value that sets the current line number.
SET LINE COL

Both parameters are unsigned values. The first represents the line number and the second represents
the column number.

A tool reading the ESLI must maintain the current PC value, file number, line number, and column. Taken
together, these four values represent the current "state”. Consumers must also keep track of the modein
effect to interpret the data properly. The following example shows the ingtructions for consuming ESLI for
one procedure.

MODE = data mode 1
FILE = current file
LINE = PDR.1nLow
COLUMN = 0
PC = PDR.adr
STATE TABLE++ = (FILE, LINE, COLUMN, PC)
ESLI = GET_ESLI(PDR.iopt)
for ppode len bytes of ESLI do
if (MODE == data mode 1 or MODE == data mode 2)
if (ESLI.delta == escape)
PUSH_MODE(MODE)
MODE = command mode
else
PC += 4 * ESLI.delta
LINE += COUNT + 1

if (MODE == data mode 1)
STATE_TABLE++ = (FILE,LINE, COLUMN, PC)
ESLI++
if (MODE == data mode 2)

COLUMN = ESLI++
STATE TABLE++ = (FILE,LINE,COLUMN, PC)
if (MODE == command mode)
read all parameters
update FILE, LINE, COLUMN and PC asrequired
if (mark flag set)
STATE TABLE++ = (FILE,LINE,COLUMN, PC)
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if (resume flag set)
MODE = POP_MODE ()
ESLI += number-of-bytes-read

Data encoded in ESLI can berepresented in tabular format. The PC vaue and file, line and column
numbers can be stored as a state table. The following example shows how to build this state table.

In this example ESLI will record line numbersfor aroutine that includes text from a header file.

Sourcelisting for 1inel.c:

1 /* ESLI example using included source lines */
2

3 main() {

4 char *msg;

5

6 msg = (char *)O0;

7

8 #include "line2.h"

9

10 printf ("%s", msg);
11}

Sourcelisting for 1ine2.h

1 msg = (char *)malloc(20);
2 /*
3 *
4 *
5 *
6 *
'7 *
8 *
9 *
10 * /

11 strcpy(msg, "Hello\n");

The compiler generates the following ingtructions for the example program:

main:
[linel.c: 3] 0x1200011d0: ldah gp, 8192(t1l2)
[linel.c: 3] 0x1200011d4: lda gp, 28336 (gp)
[linel.c: 3] 0x1200011d8: lda sp, -16(sp)
[linel.c: 3] 0x1200011dc: stqg ra, O(sp)
[linel.c: 3] 0x1200011e0: stqg s0, 8(sp)
[linel.c: 6] 0x1200011le4: bis zero, zero, s0
[1ine2.h: 1] 0x1200011e8: bis zero, 0x14, a0
[line2.h: 1] 0x120001llec: 1ldg tl2, -32560(gp)
[1ine2.h: 1] 0x1200011f0: jsr ra, (tl12)
[line2.h: 1] 0x1200011f4: ldah gp, 8192 (ra)
[line2.h: 1] 0x1200011f8: 1da gp, 28300 (gp)
[1ine2.h: 1] 0x1200011fc: bis zero, v0, s0
[line2.h: 11] 0x120001200: bis zero, s0, a0
[line2.h: 11] 0x120001204: lda al, -32768(gp)
[line2.h: 11] 0x120001208: 1ldg tl2, -32600(gp)
[line2.h: 11] 0x12000120c: jsr ra, (t1l2)
[line2.h: 11] 0x120001210: ldah gp, 8192 (ra)
[line2.h: 11] 0x120001214: lda gp, 28272 (gp)
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[linel.c: 10] 0x120001218: ldg u zero, 0 (sp)
[linel.c: 10] 0x12000121c: 1lda a0, -32760(gp)
[linel.c: 10] 0x120001220: bis zero, s0, al
[linel.c: 10] 0x120001224: 1ldg tl2, -32552(gp)
[linel.c: 10] 0x120001228: jsr ra, (tl2)
[linel.c: 10] 0x12000122c: ldah gp, 8192 (gp)
[linel.c: 10] 0x120001230: lda gp, 28244 (gp)
[linel.c: 11] 0x120001234: bis zero, zero, VO
[linel.c: 11] 0x120001238: ldg ra, O(sp)
[linel.c: 11] 0x12000123c: ldg s0, 8(sp)
[linel.c: 11] 0x120001240: 1lda sp, 16 (sp)
[linel.c: 11] 0x120001244: ret zero, (ra)

The ESLI and itsinterpretation for the generated code is shown in the following table.

Table5-11 ESLI Example

ESLI bytes (hex) Mode | Command State
(M)ark (R)esume (Bile (L)ine (C)olumn
Code M | R | PC (hex) F|L |cC
Initial State Datal 120001140 0 3 0
04 Datal 120001le4 |0 |3 0
30 Datal 1200011e8 0 6 0
80 Datal | Escape
04 01 Cmd set _file (1) 1
48 01 Cmd set_line(1) X 1
05 Datal 120001200 1 1 0
80 Datal | Escape
86 0a 06 Cmd |add line pc(10,6) | X 120001218 |1 |11 | 0O
04 00 Cmd |set file(0) 0
48 0a Cmd set_line(10) X 10
06 Datal 120001234 0 10 0
16 Datal 120001250 0 11 0

The handling of alternate entry points differs from the handling of main entry points. Procedure descriptors
for alternate entry points are identified by a PDR . 1nHigh value of -1. If the PC for an instruction maps to
an alternate entry point, the following steps should be taken:
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e Find procedure descriptor for the corresponding main entry. Thisis accomplished by searching back
in the procedure descriptors until a PDR is found that isnot an alternate entry (PDR . 1nHigh isnot
-1).

e AccesstheESLI for the procedure.

e Readthe ESLI until the PC value matchesthe PDR . adr field of the alternate entry's procedure
descriptor.

5.3.3. Optimization Symbols

The optimization symbols section givesindividua producers and consumersthe ability to communicate
information about any aspect of the object file, in any form they choose. New information can be
generated at any time with minimal coordination between all producers and consumers. In V3.13 of the
symbol table, the optimization section may include extended source location information (see Section
5.3.2.2).

The optimization section is organized on a per-procedure basis. Each procedure descriptor has a pointer to
the optimization symbolsin thefield PDR . iopt. If no optimization symbols are associated with the
procedure, the field contains ioptNil. Otherwise, it containsthe index of the first optimization symbol
entry for this procedure. Consumers should access the optimization symbols through the procedure
descriptors. The optimization section is not present in alocally-stripped object.

This section consists of a sequence of zero or more Per-Procedure Optimization Descriptions (PPODS), as
shown in Figure 5-10. Each PPOD'sinternd structure consists of two parts:

1) A leading sequence of structured entries using a Tag-Length-Value model to describe subsequent raw
data. The structure of the PPOD entry can be found in Section 5.2.10.

2) Theraw dataarea.
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Figure 5-10 Optimization Symbaols Section
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This section has the foll owing alignment requirements:

e Octaword (16-byte) alignment of the beginning of the section.

e Octaword (16-byte) alignment of the beginning of the raw data area.
e Octaword (16-byte) alignment of each PPOD.

Object file producers must produce either an empty optimization symbols section or avalid one. An empty
one hasthe symbolic header fields cbOptOffset and ioptMax Set to zero. If an optimization section is
present, but a particular file does not contribute to it, thefile descriptor field copt isset to zero. In this
case, all procedure descriptors belonging to the file must have their iopt fieldsset to 1optNil.

Tools that both read and write object files must consume a valid optimization symbols section (if present in
theinput file) and produce an equivalent and valid section in its output file. If atool does not know how to
process the section contents, the section must be omitted from the output file. If atool does know how to
process portions of the optimization symbols, those portions may be modified and therest should be
removed. As usua, thelinker isa special case. It concatenates input optimization symbol s sections into one
output section without reading or modifying any of the entries.
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The format and flexible nature of this section are similar by design to the . comment section. The
structures are the same size and contain the same fields (with different names), and therules of navigation
are the same. The primary difference isthat the optimization section is broken down by procedure;
whereas, the comment section must be treated as awhole.

5.3.4. Run-Time Information

The symbol table contains information that debuggers must interpret to find symbols at run time. This
section describes the information that the static symbol table structures provides. Algorithms for
determining run-time symbol addresses are included.

5.3.4.1. Stack Frames

A stack frameisarun-time memory structurethat is created whenever aprocedureis called. The Calling
Sandard for Alpha Systems specifies the stack frame format and related code requirements. This section
explainshow to interpret procedure descriptor fields related to the stack frame.

Two types of stack frames are supported: fixed-size frames and variable-size frames. The variable frame
format is used for procedures that dynamically allocate memory and for those with very large frames.
Figure 5-11 shows a fixed-size frame and Figure 5-12 shows a variable-sized frame.

From the procedure descriptor, you can determine which type of stack frame the procedure has. The field
PDR. framereg stores the frame pointer register number. If thisfield hasavalue of 30 ($sp), the stack
frameisafixed-size frame. If it hasavalue of 15 ($fp), the stack frameisa variable-size frame.

Figure 5-11 Fixed-Size Stack Frame
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Figure 5-12 Variable-Size Stack Frame
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For both types of stack frames, the value of PDR . frameof fset isthesize of the fixed part of the stack
frame. In the case of afixed-size frame, it isthe entire frame size. For avariable-sized frame, the entire
frame dze cannot be determined from the symbal table. The code may dynamically increase and decrease
the size of the frame multiple times during procedure execution.

The virtual frame pointer represents the contents of the frame pointer register at procedure entry, prior to
prologue execution. The (real) frame pointer isthe contents of the frame pointer register after prologue
execution. The difference between the virtual and real frame pointer valuesisthe fixed frame sze, which
is subtracted from the $sp contents during the procedure prologue. Note that stack offsets recorded in the
symbol table arerelative to the virtual frame pointer, not the real value used at run time.

The contents of the frame pointer register at are used at run time as the base address for accessing data,
such as parameters and local variables, on the stack. See Section 5.3.4.3 for details.

5.3.4.2. Procedure Addresses

The PDR . adr isreliably updated by the linker starting with version V3.13 of the symbol table. To
determine the procedure start address for agiven PDR in prior versions of the symbal table, the following
algorithm is recommended:

if (HDRR.vstamp >= 0x30D || PDR.isym == isymNil)
return (PDR.adr)
else
foreach FDR in HDRR
foreach PDR in FDR
if PDR matches
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if (FDR.csym == 0) /* Use external symbol */
return (EXTR[PDR.isym].asym.value)
else /* Use local symbol */

return (SYMR[FDR.isymbase + PDR.isym] .value)

If local symbol information is present for the given PDR, the i sym field identifies the local symbol table
entry that contains the start address of the procedure. If nolocal symbol information is present, the i sym
field identifies the external symbal table entry containing the start address of the procedure. 1f no symbol
information is present for the PDR, the i sym field isset to 1 symNi1 and the adr field will contain a
reliable start address.

5.3.4.3. Local Symbol Addresses

Local variables and parameters may be stored in registers or on the stack. Those stored in registers
(identified by a storage class of scRegister) do not have addresses. For local variables and parameters
with addresses, this section explains how to calculate their run-time locations from the symbol table
information.
To calculate therun-time address for alocal variable (st Local) based on its symbal table value:

Frame pointer - PDR.localoff + SYMR.value
To calculate therun-time address for aparameter (st Param) based on its symbol table value:

Frame pointer - argument home area size + SYMR.value

The argument home areais a portion of the stack frame designated for parameter storage. See Figure 5-11
for anillustration. For historical reasons, the size of thisareais always 48 bytes.

The cal culations above must be performed at run time when the actual frame pointer valueis known. Note
that the value becomes valid only after the procedure prol ogue has executed.

To calculate the locations based on gatic information, convert the symbol's value to an offset from thereal
frame pointer:

Local:

PDR.frameoffset - PDR.localoff + SYMR.value
Parameter:

PDR.frameoffset - 48 + SYMR.value

Theresulting offsets are dways positive val ues because the frame pointer contains the address of the
lowest memory in the fixed part of the stack frame at run time.

5.3.4.4. Uplevel Links

An uplevel link isthereal frame pointer of an ancestor of anested routine. Theroutine nesting may be a
feature of the language (such as Pascal), or the nesting may occur in optimized code which has been
decomposed for parallel execution into smaller routines. Uplevel links provide debuggers amethod of
finding all local symbols associated with the ancestor routine.
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When a procedureis passed a static link, that static link will be represented within the scope of the
procedure definition as alocal automatic symbol with a special name beginning with
" StaticLink.". Thelifetime of this symbol begins after the procedure prologue has been executed.

The static link symbol will occur between the procedure's parameter definitions and the first stBlock
symbol.

The full name of the symbol will be " StaticLink." followed by a positive decimal integer with no
leading zeros. Thisinteger value identifies the number of levels up the ancestor tree the static link points
to.

For example, if thenameis " StaticLink.3" itwill contain the static link of the procedurein which
it is defined, and that procedure's gatic link pointsto a stack framethat isthree levels up in the procedure's
ancestor tree, the great-grandfather of the procedure.

Figure 5-13 Representation of Uplevel Reference
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Debuggers of Tru64 UNIX object files need to use the uplevel link information to determine which
symbols are visible at alocation in the program and to compute the addresses of local symbols in ancestor
routines. When the debugger needs the current value or address of a name that might be defined as an
uplevel reference, two separate actions may be required: finding the procedure that defines the currently
visible instance of that name, and finding the address of the currently visible instance of that name. If only
type information isrequired, finding the procedure that defines the name may be sufficient.

Finding the defining procedure is accomplished by repeatedly |ooking up the namein the local symbal
table of a chain of procedures that extends from the current procedure through its chain of ancestors until
either the nameisfound in a procedure or the end of the chain of ancestors isreached without finding the
name. If this search terminates without finding the name, the debugger should conclude that the nameis
not visible by uplevel reference at the current location in the program.

When searching for the desired procedure, the debugger should count how many levelsin the ancestor
chain were traversed before finding the name. If zero levels were traversed, the name is defined within the
current procedure and isnot an uplevel reference. The number of levelstraversed is assumed to be in the
variable LevelsToGo inthe agorithm below.

Finding the address for the name involves locating static link values and dereferencing them with
appropriate offsets. Basically, while the number of levelsto be traversed is greater than zero, find the static
link symbol for the current level and obtain itsvalue. Finally, add the desired symbol's offset from the real
frame pointer to the find static link value.

The recommended algorithm for finding the addressis as follows:

LevelsToGo = <from name lookup aboves>
NewProc = CurrentProcedure
NewFrame = FramePointerValue (CurrentProcedure)
Failed = false
while (LevelsToGo > 0 && !Failed)
StaticLink = FindStaticLinkSym (NewProc)
if (StaticLink == NULL)
Failed = true
else
NewFrame = * (NewFrame + StaticLink->symbol.offset)
Levels = StaticLinkLevels (StaticLink)
LevelsToGo = LevelsToGo - Levels
for (; Levels > 0; Levels--)
NewProc = NewProc->proc.parent

if Failed istrueafter executing this algorithm, required information about static linksismissing in the
symbol table, and an error has occurred. If LevelsToGo ends up less than zero, the optimizer's gatic link
optimization has eliminated a static link level that would be needed to compute the address of the name. It
isrecommended that debuggers inform the user that optimization prevents the debugger from computing
the address of the name.

If Failedisfalseand LevelsToGo isequa to zero, the address for the currently visible instance of the
nameis NewFrame plus the offset of the name with respect to thereal frame pointer for NewProc.

Thefunction StaticLinkLevels returnstheinteger at the end of the name for the indicated static link
symbol.
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5.3.4.5. Finding Thread Local Storage (TLS) Symbols

This section explains how to interpret symbolic information for TLS symbols (identified by a storage class
of scTlsdata or scTlsbss). See Section 3.3.9 or the Programmer's Guide for general information on
TLS.

A TLS symbal's value containsits offset from the start of the TLSregion for that object. This offset can be
used at process execution time to determine the address of the TLS symbol for a particular thread.

A debugger can calculate TLS symbol addresses by |ooking up the address of the TLSregion using run-
time structures and adding the offset of the TLS symboal to that address. The following formula can be used
to calculate TLS symbol addresses.

TLS sym address = *(TEB.TSD + _ tlskey) + SYMR.value

A detailed description of this formulafollows:

1) Get the address of the Thread Environment Block (TEB).

2) Get the address of the Thread Specific Data (TSD) array from the TEB structure.
3) Get the offset of the TLS pointer in the TSD array.

Thisoffset isnormally storedina . 1ita or .got entry. Thisvalue should be accessed using the
symbol _ tlskey.Inspiteof thefactthat tlskey isalabe symbol, no ampersand isused in
this context because the value that the label pointsto isbeing retrieved. Theaddressof  t1lskey
will need to be adjusted by the address mapping displacement in the same manner that the debugger
adjusts addresses of text and data symbals.

For non-shared objects, the . 1ita entry contains the constant offset (2048). This offset identifies the
first and only TSD dot (256) that will be allocated for the TLS pointer.

For shared objects, the . got entry labeled by t1skey isinitially O, indicating that the TSD slot
has not been allocated yet. After the the object’'s initiaization routines have run, aTSD key will be
allocated and the . got entry will contain its offset.

4) Getthe TLS pointer value. The TLS pointer is a64-bit address set to the start of the TLS Region.

5) Calculatethe address of the TLS symbol by adding the offset of the TLS symbol to the TLS pointer
value.

5.3.5. Profile Feedback Data

Profile feedback datais stored in entries in the optimization symbols table with tag type
PPODE PROFILE INFO. Thedatacontained in thissection isintended for Compag interna useonly. It
contains execution profiling feedback used by compilers and the om utility.

Profile feedback data contains relative file descriptor and local symbol table indexes. 1f an object tool
removes, adds, or rearrangesre ative file descriptors or local symbol table entriesit must aso remove all
optimization symbol table entries indluding the profile feedback data.
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5.3.6. Scopes

From a user-program’s point of view, an identifer's scope determinesitsvisibility in different parts of the
program. Programming languages provide facilities for declaring and defining names of procedures,
variables and other program components inside various scoping levels. This section briefly discusses the
concept of scope and then explainshow it isrepresented in the symbol table. References are made to
structures in the auxiliary symbol table; see Section 5.3.7.3 for details.

Generally speaking, the four main scoping levelsin a program are block scope, procedure scope, file scope,
and program scope. Most programming languages have constructs to implement at least these scoping
levels. Figure 5-14 shows the hierarchy of these scopes.

Figure 5-14 Basic Scopes
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Names with block scope can only be referenced inside the declaring block. Blocks are delimited by begin
and end markers, the syntax of which varies among languages.

Names with procedure scope are only recognized inside their enclosing subroutines. For instance, the
names of formal parametersand local variables declared inside a procedure are accessible only to that
procedure's executabl e statements.

Names with file scope can be referenced by any instruction within the file where they are declared. A file
can be composed of procedures and data external to any procedure. Both external data names and
procedure names can have file scope or program scope. Note that in a compilation involving only asingle
file or in a compilation for a programming language with no separate-compilation facilities, file scope and
program scope are equivalent.

Names with program scope are visible everywhere in the program, even when the executable program is
built from many source and header files. The linker must resolve these names or pass them to the dynamic
|oader to resolve. See Section 5.3.10 for more information about symbol resolution.
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In the symbol table, procedure scope, file scope and program scope correspond to local, satic, and global
symbols, respectively. Block scope names are aso local symbols. Local and static symbols appear in the
local symbol table, and global symbols arein the externa symbol table.

5.3.6.1. Procedure Scope

Although procedure symbols can only be global or static (with symbol types st Proc and
stStaticProc, respectively), procedure entries appear in thelocal symbol table to identify the
containing scope of their local data. The set of symbols appearing in the local symbol table to describe a
procedure scope and their associated auxiliary entriesis shown in Figure 5-15. Global procedures also have
entriesin the external symbol table. Asillustrated, the indices of these externa entries point to the scoping
entriesin thelocal symbol table.

In this chapter, all diagrams of symbol table representations use arrows to show that one entry
contains an index to another entry. For external and local symbaol table entries, the index used is
contained in the index field. For auxiliary symbols, the 1 sym or RNDXR field isthe index used.
Any exceptionsto this general rule are noted in the diagrams.

Figure 5-15 Procedur e Representation

External Symbols Local Symbols Auxiliary Entries
procedure name P rocedure name |
stProc, scText — EtPrDc, scText 4 return
& value
<parameters> type
- block (start \ .
4 stEIl|:|:|:u|:-:':}-:|:,E aéchext 1:' 1351 2:' TIR
<|local variables> -...-__-__\
T Twype descriptions
end (block) ki3 P
gtEnd, =cText
| end (procedurs)
stEnd, =scText
|pl <next symbols-

A special instance of a procedure definition occurs for a procedure with no text. Thistype of procedure
occursonly in thelocal symbol table and isvery similar to the representation of other procedures. Itis
generally used for procedures that have been optimized away that ill need to be represented for debugging
or profiling information.



Figure 5-16 Procedur e with No Text
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Auxiliary Entries

return
& value

Type descriptions

A procedure with no code can contain only nested procedures that al so have no code associated with them.
If a procedure with no code does not contain any nested procedures, the stBlock/stEnd symbol pair
can be omitted from the representation.

The st Proc symbol included in this representation is distinguished from smilar sProc symbols by its

valuefidd that isset to addressNil (-1).

5.3.6.2. File

Scope

Asin the case of procedures, file name entries appear in the local symbol table to define the file's scope.
Thisrepresentation is shown in Figure 5-17. Note that file symbols appear in thelocal symbaol table only.

Figure 5-17 File Representation
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5.3.6.3. Block Scope

In general, thelocal symbol table denotes scoping levelswith stBlock and stEnd pairs, as shown in
Figure 5-18.

All symbols contained between these two entries belong to the scope they describe. Nested blocks are
possible, and st End symbols match the most recent occurences of stBlock (or other opening symbol
entriessuch as stProc of stTag).

Figure 5-18 Block Representation

Local Symbols Auxiliary Entries
| begin (block)

2tBlock, =cText

~~ data ~~ =3 Type Descriptions
engd (block)

stEnd, scText

<next symbol-

Block scopes occur in many languages. In C, they take the form of lexical blocks. In C++, declarations can
occur anywherein the code. In Pascal and Ada, nested procedures are possible, with local variables at any
or al levels.

5.3.6.4. Namespaces (C++)

A C++ namespace is amechanism that allows the partitioning of the program global name space. This
partitioning is intended to reduce name clashing and provide greater program managability to C++
developers.
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Figure 5-19 C++ Namespace Representation
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A namespace definition may exist only at the global scope or within another namespace. The namespace
representation in Figure 5-19 shows a single contribution to a namespace. This representation may be
replicated many times in the symbol table for a single namespace. A namespace definition may be
continued within the same file or over multiple sourcefiles.

A single namespace contribution that spans multiple source filesisrepresented asif it were contained
entirely within the source file in which it began.
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Namespaces may be aliased, allowing a single namespace to be refered to by multiple names. Namespace
components may also be referenced without their namespace qualification if they are included within a
scope by a using directive or using declaration. Therepresentations of namespace aliases, using directives,
and using declarations are shown in Figure 5-19. Namespace definitions, namespace component
declarations, namespace diases, using directives, and using declarations occur only in the local symbol
table. Namespace component definitions may occur in the local or external symbol table.

53.6.4.1 Namespace Components

The components of a namespace are represented in two parts: declarations and definitions. Namespace
components that do not require definition must be declared in the namespace definition. Namespace
componentsthat arereferenced by a using declaration must be declared in the namespace definition. All
other namespace component decl arations may be omitted from the namespace definition.

Namespace component names are mangled only as needed. Function and data definitions have mangled
name definitionsin thelocal or external symbol table. These entries are mangled for type-safe linkage and
as amethod of matching components with the namespaces to which they belong. Names of component
declarations within a namespace definition may or may not be mangled. They are not required to include
the namespace name in their mangled form.

Empty namespace contributions can be omitted, but at least one instance of a namespace definition must
occur somewhere in thelocal symbol table. Thisdefinition isrequired because name mangling rules do not
distinguish namespace component definitions from class member definitions.

5.3.6.4.2. Namespace Aliases

Namespace aliases can occur in namespace, file, procedure or block scopein the local symbol table. The
index valuefor the stAlias entry isan auxiliary tableindex. The auxiliary entry isa RNDXR record
containing the local symbal table index of the stNamespace symbol in thefirst instance of a namespace
definition within a compilation unit. For an alias of an alias, the RNDXR record can aso contain the index
of another stalias symbol inthelocal symbol table. Section 9.2.5 provides an example of a namespace
alias.

The stalias symbol type may be used in future versions of the symbol table format as a general purpose
symbol alias representation. The semantic interpretation of the stAlias symbol depends on the type of
the symbol it aliases.

5.3.6.4.3. Unnamed Namespace

An unnamed namespace can be declared at the global scope or within another namespace. An unnamed
namespace is unique within a compilation unit. Multiple contributions to a unique unnamed namespace are
not allowed. Unnamed namespace contributions are included in the non-mergeable portion of a C++
header file.

Unnamed namespace components are subject to the same rules as named namespaces for declarations and
definitions.

The stNamespace symbol for an unnamed namespace hasno name, and its i ss fieldisset to issNil.
A compiler generated name is used to identify the unnamed namespace in the mangled names of unnamed
namespace components. A convention for this special name is currently being investigated and will be
identified in the next release of this document. The unnamed namespace examplein Section 9.2.4 will use
thename __ unnamed until the actual naming convention has been determined.
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5.3.6.4.4. Usage of Namespaces

A C++ using directive or ausing declaration is represented by a symbol of type stUsing. It may occur in
any scopein thelocal symbol table. Theindex valuefor the stUsing entry isan auxiliary table index. If
the stUsing entry represents a using declaration for a single namespace component, the auxiliary entry is
aRNDXR record containing the local symbal table index of a namespace component declaration. If the
stUsing entry represents a using directive, its RNDXR auxiliary contains the local symbol table index of
the stNamespace symbol in the first definition of that namespace in the compilation unit.

A using directive for anamespace diasisrepresented with a RNDXR auxiliary that directly references the
aliased namespace. Thisrepresentation containsno record of the alias referenced by the using directive.

Names are not required for stUsing entries, but they can be set to match the namespace or namespace
component to which they refer.

Namespace components that arereferenced by an stUsing symbol must be declared in the namespace
definition.

Section 9.2.3 provides an example of namespace definitions and uses.

5.3.6.5. Exception Handling Blocks (C++)

In C++, a specia scoping mechaniam isintroduced to expand user-defined exception-handling capahilities.
Exception handlers are defined to "catch" exceptionsthat are "thrown" by other functions. The symbol
table must contain sufficient information to recognize the scope of a handler. The compiler generates
special symbals to identify where exception handlersare valid.



208

Figure 5-20 C++ Exception Handler Representation
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5.3.6.6. Common Blocks (Fortran)

Fortran common blocks constitute another scoping level. Fortran uses common blocks as a way of
specifying datathat is global or shared between program units. A common block is global storage that can
be named, allotted, accessed, and used by various subroutines. The block can be named or unnamed,
unnamed blocks are known as "blank commons”. Internal to the symbol table, blank commons are named
" BLNK_".

Figure 5-21 shows the symbolic representation of Fortran common blocks.
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Figure 5-21 Fortran Common Block Representation
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Because a Fortran common is represented as a synthesized file, it also has an entry in the file descriptor
table. Furthermore, a global symbol with the same nameis also present in the external symbaol table.

An example of a Fortran common block can be found in Section 9.3.1.

5.3.6.7. Alternate Entry Points

Fortran also has afacility for creating aternate entry pointsin procedures. An aternate entry point is
represented using an stProc, scText symbol. In the procedure descriptor table, an alternate entry
point isidentified by a 1nHigh field with a value of -1. Procedure descriptors for alternate entry points
follow the procedure descriptor for the primary entry point. In the local symbol table, an alternate entry
point has an entry inside the scope of the procedure's main entry.

Therepresentation of a procedure with an alternate entry point is shown in Figure 5-22
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Figure 5-22 Alter nate Entry Point Representation
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An example of Fortran alternate entries can be found in Section 9.3.2.

5.3.7. Data Types in the Symbol Table

A data dement'stype dictates its size and interpretation in a programming environment. One of the symbol
table's most important tasksisto represent data types in a compact and complete manner.

Type information is stored in thelocal and auxiliary symbol tables. This section provides guidelines for
understanding the type information plus specific examples for depicting arange of types.

5.3.7.1. Basic Types

All programming languages have a set of simple types that are built into the language and from which other
data types can be derived. Examples of simple types are integer, character, and floating point. Languages
also provide constructs for creating user-defined types based on the simple types. For example, a C++ class
can be built usng any simpletype or previoudy defined user-defined type and the language facility for
declaring classes.
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Similarly, a basic type in the symbol table isa building block from which each language constructsits type
information. Basic type (bt) values directly represent many of the simple types for supported languages;
for ingtance, the value bt Char indicates a character. Other bt values represent language constructs for
building aggregate types, avalue of bt Struct may be used, for example, to represent a C structure or
Pascal record.

The symbol table uses approximately forty basic type values. Theinterpretation of some of these valuesis
language dependent. See Table 5-4 for alist of all values.

5.3.7.2. Type Qualifiers

Type qualifiers can be applied to basic types to create other data types. Examples are "pointer to" and
"array of". Generaly the number and order of type qualifiersisunrestricted.

The type qualifier "function returning” (tgProc) isnot used in V3.13 of the symbol table. However, itis
used in prior versionsfor variables declared as function pointers. This older representation usesaTIR
record to store the function type in the bt value followed by as many type qualifiers as necessary. A major
limitation of thisrepresentation isthe inability to represent parameter types.

The symbol table currently uses eight type qualifiers. See Table 5-5 for alist of all possible values.

5.3.7.3. Interpreting Type Descriptions in the Auxiliary Table

This section explains in detail the encoding of type descriptionsin the symbol table. To fully describe the
type of a symboal, the auxiliary symbol table must be created and referenced. Compilation with full
symbolic information (-g option on system compilers) resultsin the creation of thistable.

To correctly decode the type information, proceed sequentially, beginning with the symbol table entry.
Several fields may be required from other symbol table structures:

e symbol type(st)

e storageclass(sc)

e index (SYMR. index)

e vaue(SYMR.value)

e sourcelanguage (FDR.lang)

Thefirgt step isto determine whether the symbol contains an index of an auxiliary table description.

Table5-12 Symbol Table Entrieswith Associated Auxiliary Table Type Descriptions

Symboal Type Storage Class | Conditions SYMR Field Containing
AUXU I ndex

stGlobal Any None index

stStatic Any None index

stParam Any None index
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stLocal Any Local symbol table index
stProc Any Local symbol table only index
stBlock scInfo Insdean scvariant block | value
only
stMember scInfo None index
stTypedef scInfo None index
stStaticProc Any Local symbol table only index
stConstant Any None index
stBase scInfo None index
stVirtBase scInfo None index
stTag scInfo None index
stInter scInfo None index
stNamespace scInfo None index
stUsing scInfo None index
stAlias scInfo None index

If theindex does represent arecord in the auxiliary symbaol table, the interpretation of thefirst auxiliary
entry (AUXU) depends on the type of the symboal:

e Ifthesymbol'stypeis stProc or stStaticProc andthesymbol isalocal symbol, theindexed
AUXU isan isym and the second AUXU isa TIR. Externa procedure symbols do not have descriptions
in the auxiliary table.

e Ifthesymbol'stypeisstInter, stAlias, or stUsing, theindexed AUXU isan RNDXR and the
type description does not contain a TIR.

e Ifthesymbol isan stBlock symbol insdean scvariant block, the symbal entry'svalue fiddis
an index into the auxiliary table. This special caseisthe only one wherethevalue isused asan
auxiliary symbol pointer. In all other cases, it isthe index field that potentially indexes the auxiliary
table type description.

e Otherwise, theindexed AUXU isaTIR.

The next task is to examine the contents of the TIR. The TIR contains constants representing the basic
type of the symbol and up to six type qualifiers, labeled tg0-tg5. If atype has more than one qualifier,
they are ordered from lowest to highest. Lower qualifiers are applied to the basic type before higher
qualifiers. All unused tg fieldsareset to tgNil, andno tgNil fieldsare present before or between
other type qualifiers.
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In addition to the basic type and type qualifiers, the TIR containstwo flags: an £Bitfield flagto mark
whether the size of thetypeis explicitly recorded, and a continued flag to indicatethat the type
description is continued in another TIR. If £Bitfield issd, the TIR isimmediately followed by a
width entry. If morethan six type qualifiers arerequired for the current definition, the description is
continued, and the cont inued flag is set. If exactly six type qualifiers are needed, all six fieldsare used
and the cont inued flag is cleared.

Toillustrate, consider the type "array of pointersto integers'. The basic typeis "integer” and has two
qualifiers, "array of" and "pointer to". Each element of the array is a"pointer to integer”. Therefore, the
qualifier "pointer to" must be applied first to the basic type "integer”. In this example, the qualifier "pointer
to" islower than the qualifier "array of". The contents of the TIR are asfollows:

bt: btiInt
tg0: tgPtr
tgl: tgArray
tg2: tgNil
tg3: tgNil
tgd4: tgNil
tg5: tgNil

continued: O
fBitfield: 0

The contents of the TIR dictate how to interpret any subsequent records. The records appear in a prescribed
order:

e |IfthefBitfield flagisset, awidth record followsthe TIR.

e |IfthebasictypeisbtPicture, thenext four records contain integer values: the string table index of
the picture string, the length, precision and scale.

e |IfthebasictypeisbtScaledBin, thenext threerecords contain integer values: abasic type, the
precision and scale.

e |IfthebasictypefiddisbtStruct, btUnion, btEnum, btClass, btIndirect,
btSet, btTypedef, btRange, btRange 64, btDecimal, btFixedBin, Or
btProc, thenextrecordisan RNDXR.

e Iftherfd field of the RNDXR containsthe value ST RFDESCAPE, thenext recordisan isym.

e IfthebasictypeisbtRange, the next two records are dnLow and dnHigh.

e If thebasictypeisbtRange 64, thenext two records are dnLow records and the two after that are
dnHigh records.

e |IfthebasictypeisbtDecimal or btFixedBin, the next two records contain integer values: the
precision and scale.

e For each array type qualifier in the TIR, the following symboals occur:
e ANnRNDXR, again possibly followed by an i sym

e Either oneor two dnLow records (depending on whether the array is tgArray or
tgArray 64)
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e Either one or two dnHigh records (depending on whether the array is tgArray or
tgArray 64)

e Either one or two width records (depending on whether the array is tgArray or
tgArray 64)

e Ifthecontinued flagisset, thenext record isanother TIR
For atype description containing more than one TIR, the fields of all TIR recordsareinterpreted in the
same way. When a TIR isreached with the flag cleared and any records associated with that TIR have

been decoded, the type description is complete.

As an example, consider an array of structureswith the fBitfield flag set. A total of seven auxiliary
records can be used to describe the type:

1) TheTIR withabasctypeof btStruct andwith tqg0 setto tgArray

2) A widthrecord. Thesize of the basic type

3) A RNDXR record. A pointer to the structure definition in the local symbol table

4) A RNDXR record. A pointer tothe array index type description elsewherein the auxiliary table
5) A dnlowrecord. Thelower bound of the array's range

6) A dnhigh record. The upper bound of the array's range

7) A widthrecord. Thedistancein bits between each ement in the array

If the cont inued flag of the TIR iscleared, the width record corresponding to the array qualifier isthe
final AUXU for this type description.

For another view of this process, see Figure 5-23. Each box represents one auxiliary entry belonging to the
symbol's type description. Using the flowchart, an ordered list of entries can be assembled.
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Figure 5-23 Auxiliary Table Interpretation
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Figure 5-24 Auxiliary Table"ti" Interpretation
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Figure 5-25 Auxiliary Table" bt vals' Interpretation
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Figure 5-26 Auxiliary Table" arrays' Interpretation

Arrays - -

width




219

Figure 5-27 Auxiliary Table" range" Interpretation
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Figure 5-28 Auxiliary Table" rndx" Interpretation
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The final step isto decode the RNDXR records. The basic types that are followed by RNDXR records require
reference to another local or auxiliary symbol to complete the type description. Interpret the RNDXR
records asfollows:

e IfthebasictypeisbtStruct,btUnion, btEnum btClass, btProc, of bt Typedef, the
index field of the RNDXR pointsinto the local symbol table. The specified local symbol isthe start of
the definition of the structure, union, enumeration, class, or user-defined type. For bt Proc, the
referenced local symbol isthe start of the set of symbols defining the procedure's signature.

e IfthebasictypeisbtSet, the RNDXR pointsinto the auxiliary symbol table. The specified record is
the start of the description of the type of each element in the set.

e IfthebasictypeisbtIndirect, the RNDXR pointsinto the auxiliary symbol table. The specified
auxiliary record isthe start of the description of the referenced type.

e IfthebasictypeisbtRange, the RNDXR pointsinto the auxiliary symbol table. The specified
auxiliary record isthe start of the description of the type being subranged.

e IfthebasictypeisbtFixedBin, the r£d field of the RNDXR contains a Boolean value. If r£d is
true, thebaseisdecimal; if rfdis false, thebaseisbinary. The index field represents atype
code.

e IfthebasictypeisbtDecimal, the rfd field of the RNDXR containsthe value 1 for 4-bit digits
(packed decimal) or 2 for 8-hit digits (zoned decimal). The index field represents a type code.

Additionally, theindex of every RNDXR used as a pointer must be mapped through therelativefile
descriptor table (see Section 5.3.2.1), if the table exists. The r£d field of the record controls this mapping.
The following algorithm can be used to locate the symbol referenced by the relative index record:

if (RNDXR.rfd == ST RFDESCAPE)
RFD = (++AUXU) .isym
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else
RFD = RNDXR.rfd
if (HDRR.crfd) /* RFD table exists */
IFD = (current FDR's RFD table) [RFD]
else
IFD = RFD

if (SYMR needed)
SYMBASE = FDR[IFD].isymBase
SYMR = SYMBASE [RNDXR.index]
else if (AUXU needed)
AUXBASE = FDRI[IFD] .iauxBase
AUXU = AUXBASE [RNDXR. index]
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5.3.8. Individual Type Representations

This section provides sketches of type representationsin thelocal and auxiliary symbol tables. The
connections between the two tablesis depicted for each type. This form of representation is only possible
when full symbolic information is present.

Note that externa symbols aswell aslocal symbols reference the auxiliary table, although the examplesin
this chapter uselocal symbols only.

5.3.8.1. Pointer Type

A pointer is avariable containing the address of another variable. A pointer isrepresented by a tgPtr type
qualifier modifying another type. A pointer isrepresented by a single symbol with an entry in the auxiliary
table, as shown in Figure 5-29.

Note that if the pointer referenced a user-defined type, such asa class or structure, the TIR would be
followed by an RNDXR (and possibly an i sym).

Figure 5-29 Pointer Representation
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bt=type
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tg=tgPtr
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1) TIR

The combination of type qualifiers tgFar and tgPtr areused torepresent ashort (32-bit) pointer. This
pointer typeis used with the XTASO emulation.

5.3.8.2. Array Type

An aray isalig of e ementsthat al have the sametype. Arrays may be fixed size and allocated at compile
time or dynamically sized and allocated at run time. This section describes the fixed-size array symbol table
representation. For information on Fortran dynamic arrays, see Section 5.3.8.9. For conformant arraysin
Pascal and Ada, see Section 5.3.8.10.

An array isrepresented by a tgArray or tgArray 64 type qualifier applied to another type. This
second type describes the type of all eementsin thearray. In thelocal or external symbaol table, a sngle
entry represents an array. Figure 5-30 shows the symbol table description for an array.
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Figure 5-30 Array Representation
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Note that for an array of elements of a user-defined type, such asa class or structure, another RNDXR (and
possibly an isym) would be inserted between the TIR and the RNDXR describing the subscript type.

If an array has multiple dimensions, the symbols describing the dimension appear in the order of innermost
to outermost. For example, the following declaration produces a TIR with the tgArray qualifier followed
by the RNDXR and range description for 0-1 followed by the entries for the dimension 0-99:

float floattable[100] [2]

Some arrays may have dimensionstoo large to represent in the 32-bit format shown in Figure 5-30. Such
arrays arerepresented using a 64-bit format in which two auxiliary entries are used for the dimension
boundsand size. Figure 5-31 illustrates the 64-bit representation.
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Figure 5-31 64-Bit Array Representation
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5.3.8.3. Structure, Union, and Enumerated Types

This section applies to data structures in languages other than C++. For the C++ gructure, union, or
enumerated type representation, see Section 5.3.8.6.

Structures, unions, and enumerated types have a common representation. All three areidentified using
"tags' and contain zero or more fields. In the symboal table, the tag is the name associated with the starting
stBlock symbol for the structure's set of local symbols. Note that it may be empty becausethetagis
optional. Symbols for fields follow. The definition is completed by a block-end symbol matching the bl ock-
start symbol.

Figure 5-32 contains a graphical depiction of this set of symbols.
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Figure 5-32 Structur e Representation
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The structure members have auxiliary table indices pointing to their type descriptions.

Untagged structures and unions are represented with a NULL tag name. Unnamed structures can be
embedded in other structures and are represented as a NUL L-named member of the outer structure. See
Section 9.1.1 for an example of an unnamed structure.

A structure can contain afield that isapointer toitself. Thisfield isrepresented by an stMember symbol
with an auxiliary table entry that references the beginning of the structure's block of local symbols, as
shown in Figure 5-33.
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Figur e 5-33 Recur sive Structur e Representation
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When afield within a structureisitsalf a structure, the compiler may choose to generate the sructure
definitions either sequentially or embedded, as shown in Figure 5-34.

Figure 5-34 Nested Structur e Representation
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The following declaration might result in the nested structure representation:

struct line {
struct point {
float x, vy;
} pl, p2;

5.3.8.4. Typedef Type

Most languages alow programmers to choose alternate names, or aliases, for data types. The alias created
by such afacility (such asC's typedef) isrepresented asa singlelocal symbol entry that has a pointer to
itstype description in the auxiliary table. The auxiliary entry contains a pointer to the definition of the type
name, as shown in Figure 5-35.

Figure 5-35 Typedef Representation
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5.3.8.5. Function Pointer Type

Languages such as C and C++, which allow pointers to functions, represent the type of the function pointer
using aspecial stProc/scInfo block describing the parameters and return value for the function as
shown in Figure 5-36.
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Figure 5-36 Function Pointer Representation
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The stProc/scInfo entry hasitsvalue set to -2, which distinguishesit from similar entries used to
represent procedures with no text and C++ member functions. The stProc/scInfo and
stEnd/scInfo entries have null namesin the function pointer representation. The parameters are
optional and may or may not be named.

Thisrepresentation for function pointersisnew in VV3.13. The previous representation used the

combination of type qualifiers tgPtr and tgProc inthe TIR of the function pointer variable. Prior to
V3.13, it was not possible to represent the parameter types for a function pointer.

5.3.8.6. Class Type (C++)

A C++ classresembles an extended C structure. One major distinction isthat classfields (referred to as
"members") can be functions as well as variables. The set of symbols created for a classis organized as
follows:

e Thename of the class

e A block symbal for scoping

e Datamembers

e  Symbols associated with member functions. Each member function isrepresented by the normal set of
symbols present for afunction.

e Corresponding end symbols that denote the compl etion of the block and class.

Another characteristic of classesisthat symbals are defined implicitly. For example, all classes have an
operator= operator-overloading function included in the class definition and a "this™" pointer toits
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own type as a parameter to all member functions. These symbols are aways included explicitly in the
symbol table description.

Figure 5-37 isagraphica representation of the set of symbolsfor aclass.

Figure 5-37 Class Representation
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Class members, including member functions, have auxiliary references that point to their type descriptions.
Note that member functions are represented as prototypes. The set of symbols defining the member
function is elsewherein the symbol table. To locate the definition of a member function, aname lookup can
be performed using the mangled name of the member function with its classname qualifier. See Section
5.3.10.3 for information on name mangling.

C++ structures, unions, and enumerated types are represented the same way as classes. The different data
structures are distinguished by basic type value.

The symbol table does not represent class member access attributes.

Examples of base and derived classes can be found in Section 9.2.1.

5.3.8.6.1 Empty Classor Structure (C++)

The representation of empty classes or structuresin C++ is shown in Figure 5-38.
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Figure 5-38 Empty Classor Structure (C++)
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5.3.8.6.2. Base and Derived Classes (C++)

Hierarchical groups of classes can be designed in C++. A base class serves as awider classification for its
derived classes, and aderived classhas all of the members and methods of the base class, plus additional
members of its own. In the symbol table, the set of symbols dencting a derived classisnearly identica to
that for anon-derived class. The derived class includes an additional stBase or stVirtBase symbol
that identifies its corresponding base class, and it does not need to duplicate the definitions for the base

class members. Thisrepresentation is shown in Figure 5-39.
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Figure 5-39 Base Class Representation
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Therepresentation of virtua base classes for C++ relies on the definition of a special symbol that identifies
the virtual base table. Thename for this symbol is derived from the name of the class to which it belongs.
For example, the virtua base table symbol for class 5 would be named " _btbl 2C5". Thistable
contains entries for base class run-time descriptions.

A class can include the special member " bptxr". Thisclassmember isapointer to the virtual base table
for that class.

Thevalue field for avirtual base class symbol (stVirtBase/scInfo) servesasanindex (starting at
1) into the virtua base classtable.

5.3.8.7. Template Type (C++)

Templates are a C++-specific language construct allowing the parameterization of types. C++ class
templates arerepresented in the symbol table for each ingtantiation, but not for the template itself. The set
of class symbolsis unchanged from the set shown in Figure 5-37.

5.3.8.8. Interlude Type (C++)

Interludes are compiler generated functionsin C++. They arerepresented in the local symbal table with
special names starting withthe”_INTER " prefix. Their representation in the symbol table makes use of
two RNDXR aux entries to identify the related member function and the actual interlude function, both of
which arelocal symbol table entries.
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Figure 5-40 Interlude Representation
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5.3.8.9. Array Descriptor Type (Fortran90)

A Fortran90 array descriptor isa structure that describes an array: itslocation, dimensions, bounds, sizes,
and other attributes. Array descriptors are described in detail in the Fortran 90 User Manual for Tru64
UNIX. Fortran90 includes several types of arrays for which the dimensions or dimension bounds are
determined at run time: alocatable arrays, assumed shape arrays, and array pointers.

Two symbol table representations can be used for an array descriptor. The default representation describes
the array descriptor itself. The alternate representation describes what is known of the array itself at
compile time.

No matter what symbolic representation is used, symbols of thistype point to a data location at which the
array descriptor isallocated. One of the array descriptor fields contains a pointer to the actual array. Other
fields are used to describe the attributes of the array. Fieldsthat describe the number of dimensions and
upper and lower bounds arefilled in at run time.

By default, array descriptors are described by a structure tag representation. Most of the array descriptor
fields are represented as structure members. (Excluded fields are not needed by debuggers.) Special tag
names are used to identify array descriptor structure definitions: S£90$£90 array desc (assumed-
shape array), S£90s£90 ptr desc (pointer to array) and s£90$£90_alloc desc (allocatable
array). Figure 5-41 shows the format of this representation.

Some compilers may emit other fields in addition to those shown in Figure 5-41. A consumer's ability to
interpret additiona fields depends on its knowledge of the producing compiler.
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Figure 5-41 Array Descriptor Representation (1)
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An example of the default Fortran array descriptor representation can be found in Section 9.3.3.

An dternate representation for array descriptors may be found in symbol tables prior to V3.13. The
overloaded basic type value 28 indicates an array descriptor in the TIR, and dimension bounds are set to
[1:1] indicating their true sizeis unknown. The aternate representation does not provide any information
describing the contents of the array descriptor itself, so debuggers must assume a static representation for
the descriptor and lookup the fields at their expected offsets.

Thisrepresentation is substantially more compact in thelocal symbaol table, but it provides no way to
distinguish between the different types of array descriptors.

Figure 5-42 shows the format of the older array descriptor representation.
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Figure 5-42 Array Descriptor Representation (11)
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5.3.8.10. Conformant Array Type (Pascal)

Full details are not currently available for Pascal's conformant array representation. A Pascal conformant
array isvery similar to Fortran's assumed shape arrays. It isan array parameter with upper and lower
dimension boundsthat are determined by the input argument. A conformant array isrepresented by an
array descriptor. The special names used and the format of the array descriptor differ from those used for
Fortran. The DEC Pascal release notes contain additiona information on conformant arrays.

5.3.8.11. Variant Record Type (Pascal and Ada)

A variant record isan extension to therecord data type, which isaPascal or Ada data structure akintoaC
struct and isrepresented in the same manner in the symbol table. The variant part of the record consists
of sets of one or more fields associated with arange of values. Only one such set is part of the record, and it
is selected based on the value of another record field. Any number of variant parts can be embedded in a
singlerecord.

Thelocal symbol table entries for the variant part of arecord are contained within a block with the storage
class (sc value) scvariant. Thevalue fied of the stBlock entry containsthe index of the local
symbol entry for the member of the record whose val ue determines which variant arm is used. The variant
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block contains multipleinner blocks, each representing avariant arm. The value field of each of these
block entriesisan auxiliary tableindex. Each auxliary table entry starts with a count, which indicates
how many range entries follow. The range entries describe the val ues associated with the block.

Figure 5-43 isagraphical representation of a variant record.

Figure 5-43 Variant Record Representation
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Prior to V3.13 of the symbol table, variant records were represented differently. Figure 5-44 depictsthe
ol der representation.
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Figure 5-44 Variant Record Representation (pre-V3.13)
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An example of a Pasca variant record can be found in Section 9.4.3.

5.3.8.12.

A subrange data type defines a subset of the values associated with a particular ordinal type (the "base
type" of the subrange). Ordinal types in Pascal include integers, characters, and enumerated types. The
symbol table representation of a subrange usesthe bt Range or btRange 64 type followed by an
auxiliary index identifying the base type and entries providing the bounds of the subrange. The 32-bit

Subrange Type (Pascal and Ada)
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¢« bound hound
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representation is shown in Figure 5-45 and the 64-bit representation is shown in Figure 5-46.




Figur e 5-45 Subr ange Repr esentation
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Figur e 5-46 64-bit Range Representation
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An example of a Pasca subrange can be found in Section 9.4.2.
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5.3.8.13. Set Type (Pascal)

A set isadatatype that groups ordinal elementsin an unordered list. The arithmetic and logical operators
are overloaded in Pascal; this enables them to be used with set variables to perform classic set operations
such as union and intersection. A special auxiliary type definition bt Set existsto identify thistype. The
symbol table representation is depicted in Figure 5-47.

Figure 5-47 Set Representation
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The element type for aset istypically arange or an enumeration. An example of a Pascal set can be found
in Section 9.4.1.
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5.3.9. Special Debug Symbols

A variety of special symbols are used throughout the symbol table to convey call frame information, special
type semantics, or other language specific information. These names are reserved for use by compilersand
other tools that produce Tru64 UNIX object files.

Name Purpose

__ StaticLink.* Uplevel link. See Section 5.3.4.4.

_BLNK_ Fortran unnamed common block. See Section 5.3.6.6.
MAIN Fortran alias for main program unit. See Section 5.3.10.4.
<ARGNAME>.len Generated parameter for Fortran routines. It containsthe

length of <ARGNAME>, a parameter of character type.

.1b <ARRAY>.<dim>

.ub_<ARRAY>.<dim> Lower and upper bounds of particular dimensions of arrays—

when the array has an explicit shape, yet some bounds come
from non-constant specification expressions (array arguments
in Pascal and Fortran routines).

$£908£f90 array desc
$£905£f90 alloc desc
$£908£90 ptr desc

Variants of Fortran-90 described arrays (assumed shape,
ALLOCATABLE, and POINTER, respectively). See Section

5.3.8.9.

cray pointee Fortran-generated typedef describing the type of a variable
pointed to by a CRAY pointer.

pointer Fortran generated typedef describing the type of a scalar with
the POINTER attribute.

_DECCXX generated name * DECC++ compiler-inserted name for unamed classes and
enumerations.

this Hidden parameter in C++ member functionsthat isa pointer to

the current instance of the class. See Section 5.3.8.6.

__vptr Hidden C++ class member containing the virtual function
table. See examplein Section 9.2.2.

__bptr Hidden C++ class member containing the virtual base class
table. See examplein Section 9.2.2.

_ vtbl * Global symbolsfor C++ virtual function tables. See example
in Section 9.2.2.

_ btbl * Global symbolsfor C++ virtual base classtables. See example
in Section 9.2.2.

___control Hidden argument to C++ constructors controlling descent (in

the face of virtual base classes).
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__t*  evdf Structure used to maintain alist of C++ global deconstructors.

t*  iviw C++ static procedure used for global constructors.

t*  evdw C++ static procedure used for global destructors.

__t* thunk C++ static procedure used to provide a defaulted argument
value.

___INTER__ * C++ interlude. See examplein Section 9.2.2.

__unnamed: :* C++ unnamed namespace components. See examplein
Section 9.2.4.

5.3.10. Symbol Resolution

Among the linker's chief tasksis symbol resolution. Because most compilations invol ve multiple source
filesand virtualy all programsrely on system libraries, a process is necessary to resolve conflicting uses of
global symbol names. The linker must decide which symboal isreferenced by a given name. This section
highlights the major issuesinvolved in that decision. Related information is contained in Section 6.3.4 and
the Programmer's Guide.

Symbol table entries provide information relevant to performing symbol resolution. External symbols with
astorage class of sc (S) Undefined, sc (S) Common, Or scT1sCommon must beresolved before they
arereferenced. By default, the linker will not mark an object file with unresolved symbols as executable.
However, linker options give programmers a fair measure of control over its symbol resolution behavior.
See1d (1) for moreinformation.

5.3.10.1. Library Search

Symbols referenced, but not defined in the main executable of an application must be matched with
definitionsin linked-in libraries. The linker combines objects, archives, and shared libraries while
attempting to resolve all references to undefined symbols. The Programmer's Guide coversreated topicsin
detail, such ashow to specify libraries during compilation and the search order of libraries.

In general, main executable objects and shared libraries are searched before archive libraries. If no
undefined external symbols remain, archive librariesin thelibrary list do not have to be searched, because
archive members are only loaded to resolve external references. Archives arenot used to find "better"
common definitions (see Section 5.3.10.2), and no archive definitions preempt symbol definitions from the
main object or shared libraries.

5.3.10.2. Resolution of Symbols with Common Storage Class

Symbols with common storage class are a special category of global symbols that have a size but no
allocated storage. Symbols with common storage class should not be confused with Fortran common
symbols, which are not represented by a single symbol table entry. (See Section 5.3.6.6 for a description of
Fortran common symboals.). Common storage classes are scCommon, scSCommon, and scT1sCommon.

The symbol definition model used by Tru64 UNIX allows an unlimited number of common storage class
symbols with the same name. Ultimately, the "best" of these must be selected (by the linker or the loader)
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during symbol resolution. The criteria used to select the best symbol definition include the symbol's
allocation status and size.

The symbol table does not provide an "allocated common" storage class. Common storage class symbols
adopt a new storage class when they are allocated. Typically, their new storage classis scBss or scSBss
or scT1lsBss. On the other hand, the dynamic symbol table does explicitly distinguish common storage
class symbols that have been allocated. See Section 6.3.4 for more information on dynamic symbol
resolution.

A symbol reference isresolved according to the following precedence rules:

1) Find asymbal definition that does not have a common storage class and is not identified as an
allocated common in the dynamic symbol table.

2) Findthe largest allocated common identified in the dynamic symbal table.

3) Findthelargest common storage class symbol and allocate it. This step will be skipped when the linker
produces arelocatable object file.

Precedence is given to symbol definitions with storage allocation to minimizeload time common
allocation and redundant storage allocations in shared objects. The loader is capable of allocating space for
common storage class symbols, but this should only be necessary when a program references an allocated
common symbol in ashared library that is later removed from that shared library.

Note that Fortran common block representations use common storage class symbols Another very frequent
occurrence of a common storage class symbol isa C-language global variable that does not have an
initializer in its declaration.

5.3.10.3. Mangling and Demangling

Anocther issue related to symbol resolution isthe need to "mangle” user-level identifiers. For example, C++
allows function overloading, prototyping, and the use of templates—all of which can result in the occurrence
of the same names for different entities. The solution employed by the symboal table isto use mangled
namesthat derive from the symbol's type signature.

Object file consumers, such as debuggers and object dumpers, need to "demangle” the identifiers so they
can be output in a form that is recognizable to the user. For linking and loading, the mangled names are
used for symbol resolution.

The encoding of C++ names is described in the manual Using DEC C++ for Tru64 UNIX Systens.

Other compilers may write symbol names that are modified by prepending or appending special characters
such as dollar sign ($) or underscore (L) or by prepending quadlifier strings such as file names or namespace
names. Uppercasing of namesisaso common for certain languages such as Fortran. All of these
transformations fall into the general category of mangled names. Refer to the rel ease notes for specific
compilersfor additional information.

5.3.10.4. Mixed Language Resolution

Compilation of a program involving multiple source languages introduces additiona symbol resolution
issues. One important task isresolving the main program entry point because conflicting "main" symbols
may be present in the different files. For C and C++, the symbol "main" is the main program entry point,
but for other languages, "main” will either be an alias for the main program or an interlude. DEC Fortran
and DEC COBOL provide interludes that perform some language specific initializations and then cdl the
real main program entry point. For DEC FORTRAN the main program is"MAIN__" and for DEC COBOL
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the main programis™__cobol_main". DEC PASCAL providesa"main" symbol that aliases the actual main
program symbal.

The symbols"MAIN__" and"__cobol_main" can both be present in a mixed language program, and either,
neither, or both can be used by the program. Debuggers can set a breskpoint in the user's main program by
applying some precedence for selecting the most appropriate symbol. For a mixed language program, there
isadight chancethat "MAIN__"or"__cobol_main" will be present but never called.

5.3.10.5. TLS Symbols

TLS symboals, like non-TLS symbals, can be undefined or common. Unresolved TLS symbols are
identified by the storage class scT1sUndefined, and TLS commons have the storage class
scTlsCommon. Thesymbol resolution processfor TLS namesissimilar, but separate; TLS symbols
cannot be resolved to non-TLS symbols or vice versa.

TLS common symbols are resolved in the same manner as other common storage class symbols (see
Section 5.3.10.2), except that, again, only TLS symbols are candidates for resol ution.

Anocther rule special to TLSisthat symbol definitionsfor TLS common and undefined symbols cannot be
imported from shared libraries.



243

5.4. Language-Specific Symbol Table Features

Language-specific characteristics are pervasive in the symbol table, particularly in thelocal, external, and
auxiliary symbol tables. See Section 5.2 and Section 5.3.7 for information on language-specific values.

The 1ang field of the file descriptor entry encodes the source language of thefile. Thisfield should be
accessed prior to decoding symbolic information, especially type descriptions. This section highlights, by
language, language-specific features represented in the symbol table. Additional information on certain
featuresisavailable e sawhere in this chapter.

5.4.1. Fortran77 and Fortran90

In Fortran, it is possible to create multiple entry pointsin subroutines. A subroutine has one main entry
point and zero or more alternate entry points, indicated by ENTRY statements. See Section 5.3.6.7 for their
representation in the symbol table.

Fortran90 array descriptors include allocatable arrays, assumed-shape arrays, and pointersto arrays. Their
representation in the symbol table isdiscussed in Section 5.3.8.9.

Modul es provide another scoping level in Fortran90 programs. The symbol table representation for
modules has not yet been implemented.

5.4.2. C++

C++ classes encapsul ate functions and datainside a single structure. Classes are represented in the symbol
tableusing abtClass basic type and the st Block/stEnd scoping mechanism. See Section 5.3.8.6.

Templates provide for parameterized types. At present, no special symbol table values arerelated to
templates. Thetemplate itself isnot represented; rather, entries that correspond to each instantiation are
generated. Template instantiations are distinguished by mangled names based on their type signatures.

C++ namespaces, like Fortran modules, offer an additional scope for program identifiers. Again, they are
not yet implemented in the symbol table.

The C++ concepts of private, protected, and public data attributes are not currently represented in the
symbol table. The C++ concept of "friend” classes and functions are also not represented.

5.4.3. Pascal and Ada

Pascal conformant arrays are function parameters with array dimensions that are determined by the
arguments passed to the function at run time. See Section 5.3.8.10.

Variant records are an extension of therecord data structure. Variant records allow different sets of fields
depending on the value of a particular record member. See Section 5.3.8.11.

Nested procedures are supported in these languages. They are represented using standard scoping
mechanisms discussed in Section 5.3.6 and uplevel references described in Section 5.3.4.4.

Sets and subranges are user-defined subsets of ordinal types. Sets are unordered groups of e ements, which
can be manipulated with the classic set operations. Subranges are ordered and are used with the usual
operators. See Section 5.3.8.12 and Section 5.3.8.13.
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Ada subtypes of ordinal types are represented in the same manner as Pascal subranges.
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6. Dynamic Loading Information

The dynamic linker/loader (commonly referred to as the loader) isresponsible for creating a dynamic
executable's process image and placing it into system memory so that it can execute. The loader's functions
include finding and mapping shared libraries, completing symbol resolution, and finalizing program
addresses.

To accomplish these functions, the loader requires information on external symbols and shared libraries.
The linker prepares this dynamic loading information for shared objects only. The dynamic loader then
uses thisinformation to create and map the process image. The dynamic information consists of the
sections highlighted in Figure 6-1.

Figure 6-1 Dynamic Object File Sections

File Header
a.out Header dynamic  heade
Section Headers Jliblist shared libraries

Cywnamic Sections

Lo rel.dvn relocations
Raw Data Sections y

Relocations .conflict multiplydeined
Symbol Table MSYM  hash values
Comment Section dynstr  string table
dynsym symbol table
hash hash table
.got address table

These sections are mapped with the text segment, except for the . got, which contains the GOT (Global
Offset Table). The GOT is part of the data segment because it must be written into when addresses are
updated.

The function of each dynamic section can be summarized as follows:

e The .dynamic section serves as aheader for the dynamic information.

e The .dynsym section contains the dynamic symbol table,

e The .dynstr section containsthe names of dynamic symbols and shared library dependencies.

e The .hash section holds a hash table to provide quick access into the dynamic symbol table.
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e The .msym table contains supplemental symbolic information, including pre-computed hash values
and dynamic relocation indices.

e The.liblist section storesdependency information.

e The.conflict section containsalist of multiply-defined symbol names that must be resolved at
load time.

e The .rel.dyn section contains dynamic rel ocation entries.

e The .got section contains one or more tables of 64-hit run-time addresses.

This chapter covers the dynamic sections and related topics. The actions of the system dynamic loader are
explained in detail. Related material isavailablein the Programmer's Guide and 1oader (5).

6.1. New or Changed Dynamic Loading Information Features

Version 3.13 of the object file format introduces a new dynamic tag value for specifying symbol resolution
order. SeeDT SYMBOLIC in Section 6.2.1 for details.

6.2. Structures, Fields, and Values for Dynamic Loading Information

All gructures and macros are declared in the header file cof £ dyn . h unless otherwise indicated.

6.2.1. Dynamic Header Entry

typedef struct {

coff int d_tag;
coff uint reserved;
union {

coff uint d val;
coff addr d _ptr;
} d_un;
} Coff Dyn;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Dynamic Header Entry Fields
d tag
Indicates how the d_un field isto be interpreted.
reserved
Must be zero.
d val

Represents integer val ues.
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d ptr

Represents virtual addresses. Virtual addresses stored in this field may not match the memory virtual
addresses during execution. The dynamic loader computes actual addresses based on the virtual
address from the file and the memory base address. Object files do not contain relocation entries to
correct addresses in the dynamic section.

Thed_tag reguirements for dynamic executable files and shared library files are summarized in Table
6-1. "Mandatory" indicates that the dynamic linking array must contain an entry of that type; "optiona”
indicates that an entry for the tag may exist but is not required.

Table 6-1 Dynamic Array Tags(d_tag)

Name Value d_un Executable Shared Library
DT NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_va optional optional
DT PLTGOT 3 d_ptr optional optional
DT HASH 4 d_ptr mandatory mandatory
DT STRTAB 5 d_ptr mandatory mandatory
DT SYMTAB 6 d_ptr mandatory mandatory
DT STRSZ 10 d_va optional optional
DT SYMENT 11 d_va optional optional
DT INIT 12 d_ptr optional optional
DT _FINI 13 d_ptr optional optional
DT SONAME 14 d_va ignored mandatory
DT _RPATH 15 d_va optional ignored
DT SYMBOLIC 16 ignored optional optional
DT _REL 17 d_ptr mandatory mandatory
DT RELSZ 18 d_va mandatory mandatory
DT _RELENT 19 d_va optional optional
DT RLD VERSION 0x70000001 d va mandatory mandatory
DT TIME STAMP 0x70000002 d va optional optional
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DT ICHECKSUM 0x70000003 d_va optional optional
DT IVERSION 0x70000004 d_va optional optional
DT FLAGS 0x70000005 d_val optional optional
DT BASE ADDRESS 0x 70000006 d_ptr optional optional
DT MSYM 0x70000007 d_ptr optional optional
DT CONFLICT 0x70000008 d_ptr optional optional
DT LIBLIST 0x 70000009 d_ptr optional optional
DT LOCAL_ GOTNO 0x7000000A d va mandatory mandatory
DT CONFLICTNO 0x7000000B d_va optional optional
DT LIBLISTNO 0x70000010 d_va optional optional
DT SYMTABNO 0x70000011 d_va mandatory mandatory
DT UNREFEXTNO 0x70000012 d_va optional optional
DT GOTSYM 0x70000013 d va mandatory mandatory
DT HIPAGENO 0x70000014 d_va optional optional
DT SO_SUFFIX 0x70000017 d va optional optional

The uses of the various dynamic array tags are as follows:

DT NULL

Marksthe end of the array.

DT NEEDED

Contains the string table offset of a null-terminated string that isthe name of aneeded library. The
offset is an index into the table indicated in the DT _STRTAB entry. The dynamic array can contain

multiple entries of thistype. The order of these entriesis significant.

DT HASH

Contains the quickstart address of the symbol hash table.

DT STRTAB

Contains the quickstart address of the string table.

DT SYMTAB
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Contains the quickstart address of the symbol table with Cof £ Sym entries.
DT STRSZ
Containsthe size of the string table (in bytes).
DT SYMENT
Containsthe size of a symbol table entry (in bytes).
DT INIT
Containsthe quickstart address of the initialization function.
DT FINI
Contains the quickstart address of the termination function.
DT SONAME

Containsthe string table offset of a null-terminated string that gives the name of the shared library file.
The offset is an index into the table indicated in the DT_STRTAB entry.

DT RPATH

Containsthe string table offset of a null-terminated library search path string. The offset isan index
into thetableindicated in the DT _STRTAB entry.

DT_SYMBOLIC
The presence of this entry indicates that symbol references should be resolved using a depth-ring
search of the shared object's dependencies. See Section 6.3.4.3 for adetails on shared object search
order.
Thisdynamic entry is for information only. The search order is controlled by the DT FLAGS setting
that includestheRHF RING SEARCH and RHF DEPTH FIRST flagswhen DT _SYMBOLIC S
added to the dynamic section.

DT REL

Contains the address of the dynamic relocation table. If this entry is present, the dynamic sructure
must contain the DT _RELSZ entry.

DT RELSZ

Containsthe size (in bytes) of the dynamic relocation table pointed to by the DT REL entry.
DT RELENT

Containsthe size (in bytes) of aDT_ REL entry.
DT RLD VERSION

Contains the version number of therun-timelinker interface. The versioniis:
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e 1 for executable objects that have a single GOT
e 2 for executable objects that have multiple GOTs
e 3only for objects built on Tru64 UNIX V2.x
DT TIME STAMP
Contains a 32-bit time stamp.
DT ICHECKSUM

Contains a checksum value computed from the names and other attributes of all symbols exported by
thelibrary.

DT IVERSION

Contains the string table offset of a series of colon-separated versions. An index value of zero means
no version string was specified.

DT_FLAGS
Contains aset of 1-bit flags. The following flags are defined for DT _FLAGS:

Table6-2 DT_FLAGSFlags

Flag Value M eaning
RHF QUICKSTART 0x00000001 Object may be quickstarted by |oader
RHF NOTPOT 0x00000002 Hash size not a power of two

RHF_NO_LIBRARY REPLACEMENT |0x00000004 Use default system libraries only

RHF_NO_MOVE 0x00000008 Do not relocate

RHF TLS 0x04000000 Identifies objects that use TLS

Symbol resolution sameasDT SYMBOLIC. Thisflag
RHF RING SEARCH 0x10000000 is only meaningful when combined with
RHF DEPTH FIRST

RHF DEPTH_ FIRST 0x20000000 Depth-first symbol resolution

RHF USE 31BIT ADDRESSES 0x40000000 TASO (Truncated Address Support Option) objects

DT _BASE ADDRESS
Contains the quickstart base address of the object.
DT _CONFLICT

Containsthe quickstart address of the . conflict section.
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DT LIBLIST
Containsthe quickstart address of the . 1iblist section.
DT LOCAL_ GOTNO

Contains the number of local GOT entries. The dynamic array contains one of these entries for each
GOT.

DT CONFLICTNO

Contains the number of entriesin the . conflict section.
DT LIBLISTNO

Contains the number of entriesinthe . 1iblist section.
DT SYMTABNO

Indicates the number of entriesin the . dynsym section.
DT UNREFEXTNO

Holds the index to thefirst dynamic symbaol table entry that is an external symbol not referenced
within the object.

DT GOTSYM

Holds the index to thefirst dynamic symbol table entry that correspondsto an entry in the global offset
table. The dynamic array contains one of these entries for each GOT.

DT HIPAGENO
Not used by the default system loader. If present, must contain the value O.

DT SO_SUFFIX
Contains ashared library suffix that the loader appends to library names when searching for
dependencies. Thistag isused, for example, with Atom tools. Instrumented applications may be

dependent on instrumented shared libraries identified by a tool-specific suffix.

All other tag values are reserved. Entries can appear in any order, except for the DT NULL entry at the end
of thearray and therelative order of the DT NEEDED entries.

6.2.2. Dynamic Symbol Entry

typedef struct {

coff uint st _name;
coff uint reserved;
coff addr st _value;
coff uint st _size;
coff ubyte st _info;
coff ubyte st _other;

coff ushort st _shndx;
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} Coff Sym;
SIZE - 24 bytes, ALIGNMENT - 8 bytes

See Section 6.3.3 for related information.

Dynamic Symbol Entry Fields
st _name
Containsthe offset of the symbol's name in the dynamic string section.
reserved
Must be zero.
st_value

Containsthe quickstart address if the symbol is defined within the object. Contains O for undefined
external symboals, the alignment value for commons, or any arbitrary value for absolute symbols.

st _size

I dentifies the size of symbols with common storage all ocation; otherwise, contains the value zero. For
STB_DUPLICATE symbols (see Table 6-4). Thesizefield holds theindex of the primary symbol.

st_info

Identifies the symbol's binding and type. The macros COFF_ST BIND and COFF_ST TYPE are used
to access the individual values. See Table 6-3 and Table 6-4 for the possible values.

st _other
Currently has avalue of zero and no defined meaning.
st_shndx

I dentifies the symbol's dynamic storage class. See Table 6-5 for the possible values.
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Table 6-3 Dynamic Symbol Type (st_info) Constants

Name Value |Description

STT NOTYPE 0 Indicates that the symbol has no type or itstype is unknown.
STT OBJECT 1 Indicates that the symbol is a data object.

STT FUNC 2 Indicates that the symboal is afunction.

STT SECTION |3 Indicates that the symbol is associated with a program section.
STT FILE 4 Indicates that the symbol is the name of a sourcefile.

Table 6-4 Dynamic Symbol Binding (st_info) Constants

Name Value |[Description

STB_LOCAL 0 Indicates that the symbol islocal to the object (or designated as hidden).
STB_GLOBAL 1 Indicates that the symbol isvisible to other objects.

STB_WEAK 2 Indicates that the symbol is aweak global symbol.

STB_DUPLICATE |13 Indicates the symbal is aduplicate. (Used for objects that have multiple

GOTs)

Table 6-5 Dynamic Section Index (st_shndx) Constants

Name Value Description

SHN_UNDEF 0x0000 Indicates that the symbol is undefined.

SHN_ ACOMMON 0xf£f00 Indicates that the symbol has common storage (all ocated).
SHN_ TEXT oxffol Indicatesthat the symbol isin atext segment.

SHN DATA 0xffo2 Indicates that the symbol isin a data segment.

SHN ABS Oxfffl Indicates that the symbol has an absolute value.
SHN_COMMON Oxfff2 Indicates that the symbol has common storage (unall ocated).
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6.2.3. Dynamic Relocation Entry

typedef struct {

coff addr r offset;

coff uint r info;

coff uint reserved;
} Coff Rel;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 6.3.5 for related information.

Dynamic Relocation Entry Fields
r offset

Indicates the quickstart address within the object that contains the value requiring rel ocation.
r info

Indicates the rel ocation type and the index of the dynamic symbol that isreferenced. The macros
COFF_R_SYMand COFF_R_TYPE access theindividual attributes. The relocation type must be
R_REFQUAD, R REFLONG, Of R_NULL.

reserved

Must be zero.

6.2.4. Msym Table Entry

typedef struct {
coff uint ms_hash value;
coff uint ms_info;

} Coff Msym;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

See Section 6.3.3.4 for related information.

Msym Table Entry Fields
ms_hash value

Contains the hash value computed from the name of the corresponding dynamic symbol.
ms_info

Contains both the dynamic rel ocation index and the symbol flags field. The macros
COFF_MS_REL_INDEX and COFF_MS_ FLAGS are used to acess theindividual values. The dynamic
relocation index identifies thefirst entry in the . rel . dyn section that references the dynamic symbol
corresponding to thismsym entry. If theindex is 0, no dynamic rel ocations are associated with the
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symbol. The symbol flagsfield isreserved for future use and should be zero.

6.2.5. Library List Entry

typedef struct {
coff uint 1 name;
coff uint 1 time stamp;
coff uint 1 checksum;
coff uint 1 version;
coff uint 1 _flags;

} Coff Lib;

SIZE - 20 bytes, ALIGNMENT - 4 bytes

See Section 6.3.2 for related information.

Library List Entry Fields
1 name

Records the name of a shared library dependency. Thevalue is a string tableindex. Thisname can be a
full pathname, relative pathname, or file name.

1 time stamp

Records the time stamp of a shared library dependency. The value can be combined with the
1 checksumvalueandthel version stringtoform auniqueidentifier for thisshared library file.

1 checksum

Records the checksum of a shared library dependency.
1 version

Records the interface version of a shared library dependency. The valueis a string table index.
1 flags

Specifies a set of 1-bit flags. Thel flags field can have one or more of the flags described in Table
6-6.
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Name

Value

Description

LL_EXACT MATCH

0x01

Requires that the run-time dynamic shared library file match
exactly the shared library file used at static link time.

LL_IGNORE INT VER

0x02

Ignores any version incompatibility between the dynamic
shared library file and the shared library file used at link time.

LL USE SO SUFFIX

0x04

Marks shared library dependencies that should be |oaded with
a suffix appended to thename. TheDT _SO_SUFFIX entryin
the . dynamic section records the name of this suffix. Thisis
used by object instrumentation tools to distinguish
instrumented shared libraries.

LL _NO_ LOAD

0x08

Marks entries for shared libraries that are not loaded as direct
dependencies of an object. Object instrumentation tools may

useLL NO LOAD entriesto set the L. USE SO SUFFIX

for dynamically loaded shared libraries or for indirect shared
library dependencies.

If neither L. EXACT MATCHNnor LL_IGNORE_INT VER hitsare set, the dynamic loader requires
that the version of the dynamic shared library match at least one of the colon-separated version strings
indexed by the 1 version siring table index.

6.2.6. Conflict Entry

typedef struct {

coff uint c_index;

} Coff Conflict;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

The conflict entry is an index into the dynamic symbols (. dynsym) section. See Section 6.3.6.2 for related

information.

6.2.7. GOT Entry

typedef struct {

coff addr g_index;

} Coff Got;

SIZE - 8 bytes, ALIGNMENT - 8 bytes

The GOT entry is a64-bit address. Most GOT entries map to dynamic symbols. See Section 6.3.3 for

details.

6.2.8. Hash Table Entry

The hash table isimplemented as an array of 32-hit values. The structure isdeclared internal to system

utilities.
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See Section 6.3.3.5 for more information.

6.2.9. Dynamic String Table

The dynamic string table consists of null-terminated character strings. The strings are of varying length and
separated only by a single character. Offsets into the dynamic gtring table give the number of bytes from
the beginning of the string space to the beginning of the name in question.

Offset 0in the dynamic string table is reserved for the null string.
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6.3. Dynamic Loading Information Usage

6.3.1. Shared Object Identification

A shared object is either adynamic executable or a shared library. The file header flags indicate whether
the object isa shared object and, if so, what type of shared object it is. The layout of the object isalso
stated in the file header. Normally shared objects use a ZMAGI C image layout (see Section 2.3.2.3).

Additional information on the shared object is located in the dynamic header (. dynamic section). When
the dynamic loader isinvoked by the kernél's exec () routine, this header information is read.

The kernel and loader take the foll owing steps upon receiving auser command to execute a dynamic
executable:

1) User enters command.
2) Shdlcdlsexec () inkernd.
3) Exec () opensthefile and readsthefile header.
4) If thefileisadynamic executable, exec () cals/sbin/loader.
5) Theloader then:
a) Readsfile header and dynamic header information.
b) Mapsthe executable into memory.
c) Locates each shared library dependency, relocates it if necessary, and mapsit into memory.
d) Resolvessymbolsfor al shared objects.
€) Setstheheap address.
f) Transferscontrol to program entry point.
6) Theprogram entrypoint (__start incrto0.o) then:
a) Callsspecial symbol  istart whichinvokestheloader routineto run INIT routines

b) Calsmainwith Argc, Argv, environand auxv.

6.3.2. Shared Library Dependencies

Dynamic executables usually rely on shared libraries. At load time, these shared libraries must be located,
validated, and mapped with the process image.

If an executable object refersto a symbol whose definition residesin a shared library, the executableis
dependent on that library. Thisrelationship is described as a direct dependency. A shared library
dependency also existsif alibrary is used by any previously identified dependency. Thisisan indirect
dependency for the executable.
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In the example shown in Figure 6-2, 1ibAa, 1ibB, and 1ibcool areall shared library dependencies for
a.out. Thelibrary 1iba isadirect dependency, and the othersare indirect dependencies.

Figure 6-2 Shared Library Dependencies

a.out
b
libd.50
T
libB 50 —)l libcool so

Although the possibility of duplicate dependencies exists, asin the preceding example, each library is
mapped only once with theimage. The linker also prevents recursve inclusion, which could occur in a case
of cyclic dependencies.

6.3.2.1. Identification

A shared object’s dependencies are stored inits . 1iblist entriesand in DT _NEEDED entriesin the
.dynamic section. Thelinker records this information as dependencies are encountered.

Thelibrary list (. 1iblist section) has name, timestamp, checksum, and version information for every
entry, along with a flagsfield. Taken together, the timestamp and checksum value and the version string
form aunique identifier for ashared library. An entry is created for each shared library dependency.

A DT _NEEDED tag in the dynamic header also indicates a shared library dependency. The value of the
entry isthe gring table offset for the needed library's name. Note that this representation of the dependency
information isredundant with that contained in the library list. Theloader relies on thelibrary list only. The
DT_NEEDED entries are maintained for historical reasons.

As an example, an object linked against 1ibc has the following dependency information:

***DYNAMIC SECTION***

LIBLISTNO: 1.
LIBLIST: 0x0000000120000690
NEEDED: libc.so

***LLITBRARY LIST SECTION***

Name Time-Stamp CheckSum Flags Version
a.out:
libc.so May 19 22:18:46 1996 0xf937323Db 0 osf.1
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A shared library's checksum is computed by the linker when thelibrary is created or updated, and the value
iswritten into the dynamic header. When an application islinked against the library, the linker copies the
library's current checksum intoits entry in the application's . 1iblist.

The checksum computation is a summation of the names of dynamic symbols that meet the following
criteria

e Defined
e Not local
e Not hidden

e Not duplicate

Common gtorage class symbol names areincluded, along with their size. Weak symbols are included, but
the calculation for weak symbols differs from that used for non-weak symbols.

For asingle symbal, the checksum is computed using this agorithm :

if (SYMBOL.st shndx == SHN COMMON || SYMBOL.st shndx == SHN_ ACOMMON)
CHECKSUM = SYMBOL.st size

else
CHECKSUM = 0

for (# of characters in symbol name)
CHECKSUM = (CHECKSUM << 5) + character value

if (weak symbol)
CHECKSUM = (CHECKSUM << 5) + CHECKSUM + 1

A changein the number of weak symbals or achangein the size of a common storage class symbol is
therefore reflected in the checksum. However, the checksum cal culation is insendtive to symbol
reordering.

The checksumsfor al symbolsincluded are summed to produce the shared object's checksum.

6.3.2.2. Searching

After loading an executable, the loader loads the executabl€'s shared library dependencies. Theloader
searches for shared libraries that match the names contained in the executablée's . 1iblist entries. Subject
to the search guidelines described in this section, the loader will load the first matching shared library that it
finds for each dependency.

Certain directories are searched by default, in the following order:

1) /usr/shlib

2) /usr/ccs/lib

3) /usr/lib/cmplrs/cc

4) /usr/lib
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5) /usr/local/lib

6) /var/shlib

The loader's search path can be altered by several methods:
e -soname linker option

e -rpath linker option

e environment variables

The -soname option isused to set internal shared library names. The default soname is the output file
name of the library when it is built. Thelinker uses an soname valueto record shared library dependencies
in the library list. Dependencies containing pathnames are located without prepending search directoriesto
their paths. A pathname isidentified by the presence of one or more slashes in the string.

The RPATH isincluded in ashared object's . dynamic section under an entry tagged DT RPATH. Itisa
colon-separated list of shared library search directories. The RPATH is set using the -rpath linker option.
The loader will search RPATH directories prior to searching LD_LIBRARY PATH and default directories.

The environment variables that impact the search order are LD_LIBRARY PATHand RLD ROOT.
LD LIBRARY PATH hasthe sameformat as rpath. Noroot directories are prepended to the

LD LIBRARY PATH directories. LD LIBRARY PATH can also be set by a program beforeit calls
dlopen ().

The RLD_ ROOT environnment variable isacolon-separated list of "root" directories that are prepended to
other search directories. It modifies RPATH and the default search directories.

The precedence (highest to lowest) of search directories used by the loader is as follows:
1) soname (if it includes a path)

2) _RLD ROOT + RPATH

3) LD LIBRARY PATH

4) _RLD_ROOT + default search directories

When using non-system libraries, it is often necessary to specify the search path rather than relying on the
defaults. Hereis one example:

$ 1d -shared -o my.so mylib.o -1lc

$ cc -o hello hello.c my.so

S hello

7526:hello: /sbin/loader: Fatal Error: cannot map my.so
$ LD _LIBRARY PATH=.

S export LD LIBRARY PATH

$ hello

Hello, World!
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6.3.2.3. Validation

One of the loader's jobs is to ensure that correct shared libraries are available to the program. Shared library
versioning isused to distinguish incompatible versions of shared libraries. The loader tests for matching
versions when shared library dependences are loaded. If the application is found to be incompatible with a
needed shared library, the program may have to be recoded or relinked. Causes of binary incompatibility
include altered global data definitions and changes to documented interfaces.

Each shared library is built with a version identifer. Thisidentifier isrecorded in the . dynamic section
with thetag DT _IVERSION. Each entry in the dependency information (. 1iblist section) also records
the version identifier of a shared library dependency. The -set_version linker option isused to provide
the version identifier. Without this option, the linker will build a shared library with anull version. Version
identifiers can be any ASCII string.

Version checking can aso be controlled by the user. Thelinker option -exact version leadsto more
rigorous version testing by the loader. When this option isin effect, timestamps and checksums are checked
in addition to version numbers. The linker-recorded dependency information for the timestamp and
checksum must precisaly match the load-time values for al shared libraries. Normally, amismatch leadsto
additional symbol resolution work instead of arejected object.

Version checking can be disabled through use of the loader environment variable  RLD ARGS. Setting this
variableto -ignore all versions disablesversion testing for all shared library dependencies.
Setting it to - ignore_version with alibrary name parameter turns off version checking for that
specific dependency.

By default, versions are checked, but not checksums or timestamps. If version testing fails, the loader
searches for the matching version of the shared library.

The version identifiers are used to locate version-specific libraries. The loader looks for these libraries in:
1) dirnamelversion_id
2) /usr/shlib/version_id

where dirname isthe first directory where alibrary with a matching name but non-matching version is
found.

For example, if an application needs version 1 of a shared library but the loader first encountersversion 2,
it continues looking for the correct version.

6.3.2.3.1. Backward Compatibility

When shared libraries are modified and new versions built, the older versions are frequently retained to
support previoudly linked applications. Maintaining multiple versions of the library hel ps ensure backward
compatibility for existing applications even after binary-incompatible changes have been made.
Backward-compatible shared libraries can be:

e Complete independent shared libraries

e Partial shared libraries that import missing symbols from other versions of the same shared libraries

The advantage of partial shared librariesisthat they require less disk space; a disadvantage isthat they
require more swap space.
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Thelinker's -1 option can be used to link with backward-compatible shared libraries. Warnings are
generated when a shared library is linked with dependencies on different versions of the same shared
library. However, the linker tests direct dependencies only. The option -transitive 1ink should be
used to uncover all multiple-version dependencies.

Multiple versions of the same shared library can only be loaded to support partial shared library
dependencies. Otherwise, dependencies on multiple versions of alibrary areinvalid.

Figure 6-3 shows examples of valid uses of multiple versions.

Figure 6-3Valid Shared Library with Multiple Versions
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Figure 6-4 shows examples of invalid uses of multiple versions.

Figure 6-4 Invalid Shared Library with Multiple Versions
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6.3.2.4. Loading

The executable object is placed in memory first, at the segment base addresses designated by the linker and
recorded in the a . out header. These addresses are never changed during the lifetime of the executable's
image. After the executable file€'s segments have been mapped into memory, shared library dependencies
areloaded. Shared library dependencies are mapped recursively.

The linker chooses quickstart addresses for the text and data regions of shared libraries. The loader attempts
to map shared libraries to their quickstart addresses. If this attempt fails because another library has already
been mapped to the same addressrange, thelibrary isrelocated to a different address. Note that this
problem could be caused by alibrary mapped by another process. The system tries to map no more than
one shared library at a particular virtual address range, system-wide.

Additional dependencies, not present in thelibrary list, can be dynamically loaded usinga dlopen () call.
Again, the loader will attempt to load thelibrary at its quickstart addresses and will relocateit if necessary.

When a shared library isrelocated, itstext and data segments must move the same distance in memory. By
fixing the distance between these segments at link time, the number of dynamic relocationsis minimized
and restricted to the data segment.
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6.3.2.4.1. Dynamic L oading and Unloading

Dependencies can be loaded and unloaded during execution by using the d1lopen and d1close system
functions.

The dlopen routine accepts alibrary name and loads the library and its dependencies. The loader resolves
all symbolsin al shared objects while processing adlopen call. If the library was previously |oaded,
dlopen re-resolves global symbols and returns a handle without |oading any new objects.

The loader maintains a count of references made to al shared objects that have been loaded. For example,
if libm. so isdependent upon 1ibc. so, 1ibc'sreference count isincremented when thelibraries are
loaded. Thisreference counting is part of an effort to ensure that alibrary is never unloaded prematurely.
As an additional precaution to avoid unloading alibrary that is still needed, the number of existing
dlopen handlesistracked by theloader. This d1open count isincremented each timeadlopen cal is
made for a particular object.

The dlclose routine unloads a shared library and its dependencies. It accepts a handle that was returned
by dlopen.

The dlclose routinewill not unload shared libraries that are till in use. Both the d1open count and
the reference count are checked and should be zero before alibrary is unl caded.

The dlclose routine cannot unload an executable. It is designed for shared libraries only. It also cannot
unload a shared library that was not dynamically loaded by d1open.

Objects with TLS data can be dynamically loaded or unloaded during process execution. A new TLS
region is alocated for all existing threads when an object with TLS dataisloaded. Similarly, the TLS
region will be deallocated for all threads when the object is unloaded.

6.3.3. Dynamic Symbol Information

The dynamic symbol tableis created at link time for shared objects. Its primary purposeisto enable
dynamic symbal resolution. Run-time address information for dynamic symbolsis contained in the GOT
section (. got).

The dynamic symbol section (. dynsym) provides information on globally scoped symbols that are defined
or used by the object. This section consists of a table of dynamic symbol entries. The entries are ordered as
follows:

1) A singlenull entry

2) Symbolslocal to the object

3) Unreferenced global symbols

4) Referenced global symbols (corresponding to GOT entries)

5) Reocations-referenced global symbols (corresponding to special final GOT)

Local symboals are glabal in scope but are not exported to other objects. The local portion of the dynamic

symbol table contains system symbols representing the sections of the object: . text, .data, and other
linker-defined symbols. Typically, they do not have GOT entries.
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Unreferenced globals are symbol s that can be exported but are not referenced by the defining object. They
are present in the dynamic symbol table so that other shared objects can import and use them. Unreferenced
globals do not have GOT entries.

Referenced globals are exported and are used internally. Dynamic symbalsin this category have global
GOT entries.

Global symbolsthat are referenced only by the object's dynamic rel ocation entries are grouped at the end of
the dynamic symbal table, corresponding to a specid final GOT. These symbols require GOT entriesto
record their run-time addresses used in processing dynamic relocations. This special GOT isonly used by
the loader and is never directly referenced by the program itself.

All linker-defined TLS symbols (see Section 2.3.7) have dynamic symbol entries.

Note that the dynamic symbol table itself is never rel ocated; it contains only link-time addresses (in the
st_value fied).

6.3.3.1. Symbol Look-Up

Dynamic symbol look-up is performed by the d1 sym(handle,name) routine. The routine searches for the
symbol name beginning in the object associated with the handle. The search is breadth first by default and
depth-first for objects built with thelinkers "-B symbolic" option. If thehandleisnull, theroutine
performs a depth-first search beginning at the main executable.

It isimportant to use the d1 sym interface for symbol |ook-up to avoid using an outdated address. This
problem can be caused by an improper compiler assumption that a symbol's address will not change after
load-time. A symbol's address may be cached as an optimization and not rel oaded thereafter. However, that
address may be changed during execution as theresult of dynamic loading and unloading.

6.3.3.2. Scope and Binding

The concept of scope in the dynamic symbol table differs somewhat from the concept of scopein the
regular symbol table because the dynamic symbol table contains only global user-program symbols. The
terms "local" and "external” thus have different meaningsin this context.

The two scoping levels for symbolsin the dynamic symbol table are object scope and process scope. A
symbol with object scopeislocal to the shared object and can only be referenced in thelibrary or
executable whereit isdefined. A symbol with process scopeis visible to all program components, and may
be referenced anywhere. A symbol with process scope can also be preempted by a higher-precedence
definition in another shared object.

Note that the distinction between object scope and process scope does not correspond directly to the
local/global symbol division in the dynamic symbol table. All symbolsin thelocal part of the table have
object scope, but global dynamic symbols can beinternal to the object as well. Another factor, called
binding, comesinto play.

The possible bind values in the dynamic symbol table are local, global, weak, and duplicate. These values
areencoded inthe st _info field of the dynamic symbol entry. (See Section 6.2.2 for details)

Users are able to designate global symbols as "hidden”. In the dynamic symbol table, hidden symbols have
alocal binding. Thisrepresentation ensures that they will not be exported from the object and will not
preempt any other symbol definition. Also, internal references to hidden symbolswill not be preempted.
Thelinker's"-hidden symbol symbol" option can be used to specify a hidden symbol.
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Weak symbols are a so a special-case category of global symbols that have the same scope as globals but a
lower precedence for symbol resolution conflicts. See Section 6.3.4.2 for details.

6.3.3.3. Multiple GOT Representation

The GOT contains address information for all referenced external symbols in the dynamic symbol table.
Observe that the GOT isthe source of final, run-time addresses, whereas the symbol table contains only
link-time addresses. To access a dynamic symbol, the GOT must be referenced. To associate GOT entries
with dynamic symbol table entries, the symbol table and GOT are aligned as shown in Figure 6-5.

Figure 6-5 Dynamic Symbol Tableand MultipleGOT
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in .dyn.rel only.

Note that the GOT also contains entriesthat do not correspond to dynamic symbols. These are placed at the
top of each GOT table.

The maximum number of entriesin a GOT is 8189. A single GOT may be sufficient to represent all
necessary addresses for an object, but one or more additional GOTs are sometimes required, asillustrated
in Figure 6-5. One GOT table can contain entries from multiple input objects, but a sngle object’'s entries
cannot be split between two tables. Thelinker also builds a separate, final GOT for relocatable global
symboals, referenced only in the dynamic rel ocation section. These constraints generally result in some
unused GOT entries at the bottom of each table.

The loader recognizes a multiple-GOT object by examining the dynamic header. A DT _GOTSYM entry
exists in the dynamic header for each GOT. This entry holds the index of the first dynamic symbol table
entry corresponding to a GOT entry. A DT _LOCAL_GOTNO entry exists for each GOT aswell. This entry
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containsthe index of thefirst global entry in that GOT. The number of DT _GOTSYM entries and
DT_LOCAL_ GOTNO entriesin the dynamic header should match. They are also expected to occur in
ascending numerical order.

Thefirs (zero-indexed) entry for every GOT in amultiple-GOT object pointsto theloader's lazy-text -
resolve entry point. In thefinal GOT (consisting of relocatable symbols), it is present even though it is
unused.

Multiple-GOT objects may contain duplicate symbols. A symbol appears only once per GOT, but it can be
duplicated in other GOTs. All duplicate symbols, marked in the symbol table as STB_DUPLICATE, have
an associated primary symbol. The primary symboal is simply the first instance of a duplicate symbol. The
st_size field for aduplicate symbol is the dynamic symbol table index of the primary symbol. When a
symbol isresolved in amultiple-GOT situation, al duplicates must be found and resolved as well.

6.3.3.4. Msym Table

Themsym table, which is stored in the . msym section of a shared object file, maps dynamic symbol hash
values to the first of any dynamic relocations for that symbol. This section isincluded for performance
reasonsto avoid time-consuming and repetitive hashing cal cul ations during symbol resolution.

An entry in themsym table contains a hash value and an information field. The information field can be
masked to obtain a dynamic relocation index and aflags field. The size of the msym table isthe same asthe
size of the dynamic symbol table; the two tables line up directly and have matching indices.

Themsym table isreferenced repeatedly when an object is opened. The loader resolves symbols by
searching all shared objects for matching definitions. The search requires a hash value computed from the
symbol name. The msym table provides precomputed hash values for symbols to avoid the costly hash
computation at load time.

Figure 6-6 Msym Table

Object 1 (current) Object 2 (searched)
dynsym 5 hash
hash | dwnamic
11+ value symbol
index
MET dynsym

The . msym section isan optional object file section; it isnot produced by default. Thelinker's -msym
option causes the msym table to be generated. If the . msym section is not present in ashared object, the
loader will create the table each time that the object isloaded. For thisreason, it is often preferable to
specify the . msym section's inclusion when building shared objects.
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6.3.3.5. Hash Table

A hash table, stored in the . hash section of a shared object file, provides fast access to symbol entriesin
the dynamic symbol section. Thetableisimplemented as an array of 32-bit integers.

The hash table has the format shown in Figure 6-7.

Figure 6-7 Hash Table

nbucket
nchain

bucket[0]

bucket
[nbucket - 1]

chain[d]

chain[nchain-1]

The entriesin the hash table contain the foll owing information:
e Thenbucket entry indicates the number of entriesin the bucket array.
e Thenchain entry indicates thenumber of entriesin the chain array.

e Thebucket and chain arrays both hold dynamic symbol table indices, and the entriesin chain
pardle the dynamic symbol table. The value of nchain isequd to the number of symbol table
entries. Symbal table indices can be used to select chain entries.

The hashing function accepts a symbol name and returns the hash value, which can be used to compute a
bucket index. If the hashing function returns the value X for aname, X%nbucket is the bucket index. The
hash table entry bucket [X$nbucket] givesan index, Y, into the dynamic symbol table.

The loader must determine whether the indexed symboal is the correct one. It checks the corresponding
dynamic symbol's hash value in the msym table and its name.

If the symbol table entry indicated isnot the correct one, the hash table entry chain [Y] indicates the next
symbol table entry for a dynamic symbol with the same hash value. The indexed symbol is again checked
by the loader. If itisincorrect, the sameindex isused in the chain aray to try the next symbol that has
the same hash value. The chain links can be followed in this manner until the correct symbol table entry
islocated or until the chain entry containsthe value STN_UNDEF.

As an example, assume that a symbol with the hash value 12 is sought. If there are ten buckets, the
calculation 12 % 10 givesthe bucket index 2, which sgnifies thethird bucket. A bucket index translates
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into ahash tableindex asbucket [i] =hash [i+2]. If that bucket containsa 3, the dynamic symbol
table entry with an index of 3 is checked. If the symbol isincorrect, the hash table entry chain [3] is
accessed to get the next possible symbol index. A chain index trandates into ahash table index as
chain[i] =hash [nbucket+2+1i].If chain[3] is7, thedynamic symbol table entry with an index
of 7 ischecked. If it isthe correct symbol, the search is successful and halts.

The structures used in this example are shown in Figure 6-8.

Figure 6-8 Hashing Example

Jhash
nbucket 10
tichain =
bucket[D]
bucket[2] 3
buckets
[3] - [9] Aynsym
chain[{] 0
chain[3] 7 = 3 IO
YRS
chain[3%-1] ' %1

6.3.4. Dynamic Symbol Resolution

The dynamic loader must perform symbol resolution for unresolved symbols that remain after link time. A
post-link unresolved symbal is one that was not defined in a shared object or in any of the shared object's
shared library dependencies searched by thelinker. If adependency is changed before execution or
additional libraries are dynamically loaded, the loader will attempt to resol ve the symbol.

The linker accepts unresolved symbols when linking shared objects and records them in the dynamic
symbol (. dynsym) section. Theloader recognizes an unresolved symbol by a symbol type of undefined
(st_shndx == SHN_UNDEF) and a symbol value of zero (st_value == 0) in the dynamic symbol
table. For such symbols, the GOT value distingui shes imported symbol s from symbaols that are unresolved
across all shared objects.

Table 6-7 gives arough idea of different categories of symbols and how they are represented in the
dynamic symbaol table. Run-time addresses are stored in the GOT. They can be pre-computed by the linker
and adjusted at load time.
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Table 6-7 Dynamic Symbol Categories

Description Type Section \VValue GOT

N OBJECT, |TEXT, DATA,
defined item FUNC L COMMON address address
imported function FUNC UNDEF 0 address (in defining object)
imported data OBJECT [UNDEF 0 address (in defining object)

. address of allocated common (in

common COMMON  |OBJECT alignment defining object)
unresolved function |FUNC UNDEF 0 stub address
unresolved data OBJECT [UNDEF 0 0

The loader performs symbol resolution during initial load of a program. The amount of symbol resolution
work required by a program varies (see Section 6.3.4.6).

The loader can also perform dynamic symbol resolution for particular symbols during program execution.

If new dependencies are added or existing dependencies arerearranged, externally visible symbols (those
with process scope) must be re-resolved.

Unresolved text symbols can be resolved at run time instead of load time (see Section 6.3.4.5).

6.3.4.1. Symbol Preemption and Namespace Pollution

A namespace is a scope within which symbol names should all be unique. In a namespace, a given nameis
bound to asingle item, wherever it may be used. This generic use of the term "namespace” is distinct from
the C++ namespace construct, which isdiscussed in Section 5.3.6.4.

Dynamic executables running on Tru64 UNIX share a namespace with their shared library dependencies.
This palicy is implemented with symbol preemption. Symbol preemption, also referred to as "hooking”, isa
mechanism by which all references to a multiply defined symbol are resolved to the same instance of the
symbol.

Advantages of symbol preemption include:

e All shared objects use one global hamespace.

e Dynamic and static executables behave more consistently.

e Applications can replace library routines to debug, improve, or customize them.

Disadvantages include extraload time for symbol resolution and potential problems resulting from
namespace pollution.

Namespace pollution can occur during the use of shared libraries. A library routine may mafunction if it
calls or accesses a global symbol that isredefined by another shared library or application. Figure 6-9
presents an example of this situation.
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Figur e 6-9 Namespace Pollution

a.out

int open=0; <
maing)
FILE *fd;
if (fd=fopen(” thame","tw")
open=1;

libe
fopen() {

cl:;ijen(...);
}

Namespace pollution is partly covered by ANSI standards. Namespace conflicts that occur between libc
and ANSI compliant programs must not affect the behavior of ANSI defined functionsimplemented in libc.

Theidentifiersreserved for use by the library are:
e  Names beginning with underscores
e ANSI defined symbols (fopen, malloc, and so forth)

All other names are available to user programs. User versions of non-reserved identifiers preempt library
Versions.

Historically, system libraries have used many unreserved symbols. To achieve compliance with the ANS|
standard, global symbols have undergone a name change. Documented interfaces have been retained as
weak symbols (see Section 6.3.4.2). Their strong counterparts have names that are formed by prepending
two underscores to the corresponding weak symbol's name.

Hidden symbols do not cause namespace pollution problems and cannot be preempted because they are not
exported from the shared object where they are defined.

Thelinker options -hidden symbol and -exported symbol turn the hidden attribute on or off for
agiven symbol name. The options -hidden -non_hidden turn the hidden attribute on or off for all
subsequent symboals.

TLS data symbols have the same name scope as hidden symbols. The names are not shared among multiple
threads.
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6.3.4.2. Weak Symbols

Weak symbols are global symbols that have alower precedence in symbol resolution than other globals.
Strong symbols are any symbols that are not marked as weak.

Weak symbols can be used as aliases for other weak or strong symbols. Thistechnique can be useful when
it is desirable to provide both alow-precedence name and a high-precedence name for the same dataitem
or procedure. When the weak symboal isreferenced, its strong counterpart is the one actually used.
Thisaliasng approach employing weak symbolsisusedin 1ibc . so to avoid namespace pollution
problems. In the examplein Figure 6-10, the strong symboal definition in the application takes precedence
over the weak library definition, and the program functions properly.

Figure 6-10 Weak Symbol Resolution (1)

a.out

int open=0; *
main() |
FILE *fd;
if (fd=fopen(”thame","tw"))
open=1;

libe
fopen() {
__open...);

1
#pragma weak open=__ open

—open {
,
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Figure 6-11 Weak Symbol Resolution (I1)

a.out

main) {
FILE *fd.

fd = open{" myfile" 0);

libe
fopen() {

__open(..J; ad

1
#pragma weak open=__ open

—open {
,

If no non-weak open symbols were defined, referencesto open would bindto 1ibe ' s weak symbal, as
shown in Figure 6-11.

Weak symbols can aso be used to prevent multiple symbol definition errors or warnings when linking. The
linker does not require aweak symbol to be aliased to a strong symbal, but the loader produces a warning
message if it cannot find a matching strong symbol for a weak symbal it is attempting to resolve.

To find aweak symboal's strong counterpart, the loader follows these steps:

Use hash lookup to find _ <NAME> in the dynamic symbol table.
if (not found or not a match)
foreach symbol in the dynamic symbol table
Test for match

Matching symbols will havethesame st_value, COFF_ST TYPE(st_info) and st_shndx.

A weak symbol isidentified in the dynamic symbol table by a STB_ WEAK bind vaue. In the external
symbol table, aweak symbol hasitsweak ext flag set in the EXTR entry.
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Users can specify weak symbols using the . weakext assembler directive or the C #pragma weak
preprocessor directive.

6.3.4.3. Search Order

The symbol resolution palicy, or symbol search order, defines the order in which the loader searches for
symbol definitionsin adynamic executable and its dependencies.

Default search order isa breadth-first, left-to-right traversal of the shared object dependency graph.

Figure 6-12 Symbol Resolution Search Order

a.ouf
libA libE
) )
likD litE
h
> libe.so

The search order in Figure6-12is.a.out 1ibA 1ibB libc.so 1ibD 1ibE

Objects |oaded dynamically by dlopen () are appended to the search order established at |oad time.
However, dlopen options will determine whether a dynamically loaded object's symbols are visible to
objects that do not include it in their dependency lists. See dlopen (3) for details.

Alternatively, the user can specify the search order by using linker or loader options. Thelinker's
-depth ring search option causes theloader to use adifferent symbol resolution policy. This policy
is atwo-step search:

1) Depth-first search thereferencing object and its dependencies

2) Depth-first search from the main executable

Using the depth ring search policy and the dependency graph from Figure 6-12, the search order is:

From Search Order
a.out a.out 1libA 1ibD libc.so 1ibB libE
libAa libA 1ibD libc.so a.out 1libB 1ibE

1ibB 1ibB 1libE libc.so a.out 1libA 1ibD
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1ibD 1ibD libc.so a.out libA 1ibB 1ibE
1ibE 1ibE libc.so a.out libA 1libD 1ibB
libc.so libc.so a.out libA 1ibD 1ibB 1ibE

6.3.4.4. Precedence

The highest-to-lowest precedence order for dynamic symbol resolution is:

1) Strongtext or data

2) Strong largest allocated common

3) Weak data

4) Wesk largest allocated common

5) Largest common

6) Weak text

In case (5), the loader all ocates the common symbol. This situation only arises when an object containing
an allocated common of the same hame has been changed between link time and load time or is
dynamically unloaded during run time. The linker will always allocate a common storage class symbol, but

if there are multiple occurrences of that symbal, the others are retained as unallocated commons.

When symbols have equal precedence, the loader relies on the search order to choose the correct definition
for the symboal.
6.3.4.5. Lazy Text Resolution

Lazy text resolution allows programs to execute without resolving text symbols that are never referenced.

Programs with unresolved text symbols are linked with stub routines. When aprogram or library callsa
stub routine, the stub callsthe loader's lazy text resolve entry point with adynamic symbol index
as an argument. The loader then resolves the text symbol. Subsequent calls will use the true address, which
has replaced the stub in the appropriate GOT entry.

The dynamic symbol table does not contain any explicit information that indicates whether a text symbol
has a stub associated with it. The loader looks for the following clues instead:

e Symbol'sst_shndx iSSHN UNDEF

e Symbol'sst_value iszero

e Symbol's GOT entry isnot 0 and isin text segment's address range

The environment variable LD_BIND NOW controls the |oader's text resol ution mode. If the variable has a
non-null value, the bind mode isimmediate. If the valueis null, the bind mode is deferred. Immediate

binding requires all symbolsto be resolved at |oad time. Deferred binding allows text symbols to be
resolved at run time using lazy text evaluation. The default is deferred binding.
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See Section 3.3.3 for related information.

6.3.4.6. Levels of Resolution

Conditions may exist that cause the loader to do more symbol resolution work for some programs than for
others. The amount of symbol resolution work that is necessary can have a significant impact on a
program'’s start-up time.

Descriptions of the possible levels of dynamic symbol resolution follow.

Quickstart Resolution

Minima symbol resolution. For details on quickstart, see Section 6.3.6.

Timestamp Resolution

Moderate symbol resolution. Thisisused when any of the following aretrue:

e Theexecutable or one of its dependencies has indirect dependencies that it was not linked with.

e Theexecutable or one of its dependencies has unresolved text symbols that are used in dynamic
relocations.

e A shared library dependency was rebuilt so that the timestamp no longer matches the dependency
information in the executable.

Checksum Resolution

Extensive symbol resolution. Thisis used when a shared library dependency has been rebuilt and its
checksum no longer matches the dependency information in the executable. The checksum changesif any
of thefollowing conditions are met:

e Global symbols are added

e Glaobal symbols are deleted

e  Glabal symbols change from strong to weak or vice versa

e Common storage class symbols' sizes change.

Binding Resolution

Re-resolve symbols marked UNDEF for immediate binding. Thisis used by dlopen () to apply immediate
binding symbol resolution to shared objects that were previoudy resol ved with lazy binding.

6.3.5. Dynamic Relocation

The dynamic rel ocation section describes all locations that must be adjusted within the object if an object is
|oaded at an address other than its linked base address.

Although an object may have multiple relocation sections, the linker concatenates all relocation
information present in itsinput objects. The dynamic loader is thus faced with a single relocation table.
Thisdynamic relocation table is stored in the . rel . dyn section and is ordered by the corresponding
dynamic symbol index.



278

Offset 0in the dynamic relocation table isreserved for anull entry with all fields zeroed.

All dynamic relocations must be of thetypeR_REFQUAD or R_REFLONG. Thissimplifies the dynamic

rel ocation process. These two rel ocation types are sufficient to represent all information that is necessary to
accomplish dynamic relocations. Dynamic rel ocation entries must only apply to addressesin an object’s
data segment. The object's text segment must not contain any rel ocatabl e addresses.

Rel ocation entries are updated during dynamic symbol resolution. When a dynamic symbol's value
changes, any dynamic rel ocations associated with that symbol must be updated. To update the entries, the
relocation value is computed by subtracting the old value of the from the new value. Thisvalueis then
added to the contents of the relocation targets. The old value of a dynamic symbal is always stored in a
GOT entry. The new value of a dynamic symbol is stored in that GOT entry after dynamic relocations are
processed.

Rel ocation types other than R_REFQUAD and R_REFLONG arenot allowed for dynamic rel ocations
because no other rel ocation types apply to absolute addresses stored in data. Most rel ocation types apply to
values that need to be computed at link time and do not change at run time.

A dynamic executable file may also contain normal relocation sections. If normal relocation entries are
present, the loader ignores them.

6.3.6. Quickstart

Quickstart is aloading technique that uses predetermined addresses to run a program that depends on
shared libraries. It is particularly useful for applicationsthat rely on shared libraries that change
infrequently.

The linker chooses quickstart addresses for all shared library dependencies when a dynamic executableis
linked. These addresses are stored in the registry file normally named so_locations. For details on the
shared library registry file, refer to the Programmer's Guide.

Any modification to ashared library impairs quickstarting of applicationsthat depend on that library. If a
shared library dependency has changed, it may be possible to use the £ixso utility to update the
application and thus enable quickstart to succeed.

To verify that an application is quickstarted, set the  RLD ARGS environment variable to
-quickstart_only.

Additional information on quickstart is available in the Programmer's Guide.

6.3.6.1. Quickstart Levels

Not all shared objects can be successfully quickstarted. If an executable cannot be quickstarted, it fill runs,
but start up is slower. Quickstarting is possible for programs requiring minimal symbol resolution at load
time. A dynamic executableis quickstarted if:

e Theobject's mapped virtua address matches the quickstart address chosen by the linker.

e The object's dependencies have not been modified incompatibly since the object was linked.

e Theobject'sindirect dependencies are al included as direct dependencies.

e The object's dependencies also meet quickstart criteria.
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Each quickstart requirement that isnot met by a dynamic executable and its dependencies leads to
additional symbal resolution work.

o If all quickstart requirements are met, only undefined and multiply defined symbols need to be
resolved.

e If the mapped address differs from the quickstart address, addresses of defined symbols must be
adjusted.

e If thetimestamp has been changed, externa (imported) symbols must be resolved.
e If the checksum has been changed, all symbols must be resolved.
At this point, the timesaving advantage of quickstarting has disappeared.

For quickstart purposes, alink-time shared library matches its associated |oad-time shared library if the
timestamp and checksum are unchanged. If they have been changed, using the £ ixso tool may remedy the
situation and enable quickstart to succeed.

6.3.6.2. Conflict Table

The conflict table, stored in the . conflict section, containsalist of symbols that are multiply defined
and must be resolved by the loader. The conflict table is used only when full quickstarting ispossible. If
any changes preventing quickstart have occurred, the loader resorts to other methods of symbol resolution.

Thelinker records conflictsin ashared object's . conflict section if asecond definition isfound for a
previoudly-defined symbol. Common storage class symbols are not considered conflicts unless they are
allocated in more than one shared object.

Weak symbols aliased to a newly resol ved conflict entry are a so treated as conflicts. This means the loader
does not have to search for weak symbols matching conflict symbols. The weak symbols are added to the
conflict list for thefirst shared library that defined the symbol in question as well asthe library where the
conflicting definition was found.

Figure 6-13 shows a simple example of the use of conflict entries.
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Figure 6-13 Conflict Entry Example

a.out
lihaso
1main |
a_sort(), a_sort()
} .
a_error),
a_error(){ K
ki
a_error(){exit(1);}
conflict:
a_error

In this example, the a.out executable has been linked with liba.so, and a single conflict has been recorded
for thesymbol a_error. Theconflict isrecorded in the executable file at link time because both the
executable and shared library define the symbol. Atruntime, any callstoa_error froma_sort will be
preempted by the definition of a_error inthea . out executable. Without the conflict entry, the call to
a_error would not be preempted properly when a . out is quickstarted.

6.3.6.3. Repairing Quickstart

The £ixso utility updates shared libraries to permit quickstarting of applications that utilize them, even if
the libraries have changed since the executable was originaly linked againg them. Given a shared object as
input, it updates the object and its dependencies to make them meet quickstart criteria. Thelibrary changes
handled by £ ixso aretimestamp and checksum discrepancies.

The fixso utility creates a breadth-first list of the object's dependencies. It then handles conflicts present
in the conflict table. Next, £ ixso resolves globals, updating global symbol values, dynamic relocation
entries, and GOT entries where necessary. Lastly, if these actions are successful, £ixso resetsthe
timestamp and checksum of itstarget object.

When a dependency is discovered during processing, £ ixso automatically opens the associated object and
addsit to the object list if possible. The dependency will be found and opened if it islocated in the default
library search path, the path indicated by the LD_LIBRARY PATH environment variable, or the path
specified in the command line. Otherwise, it may be necessary to run the £ ixso program on the library
separately, before fixing the target object.

Some changes made to shared libraries cannot bereconciled by fixso. The £ixso utility does not
support:

e Increasesin sizerequired in the conflict list (new conflicts)

e Movement of the library in memory
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e Discrepanciesin interface versions
e Changestoalibrary's path

e Distrepanciesin soname values
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7. Comment Section

The Tru64 UNIX object file format supports a mechanism for storing information that is not part of a
program's code or data and is not loaded into memory during execution. The comment section

(. comment) isused for this purpose. Typically, this section contains information that describes an object
but isnot required for the correct operation of the object. Any kind of object file can have a comment
section.

7.1. New and Changed Comment Section Features

Version 3.13 of the object file format introduces the following new features for comment sections:
e New comment subsection types (see Table 7-1)
e Tagdescriptorsfor describing comment subsections (see Section 7.3.4.1)

e Toolversion information for tool specific versioning of object files (see Section 7.3.4.2)

7.2. Structures, Fields, and Values of the Comment Section

All declarations described in this section are found in the header file scncomment . h.

7.2.1. Subsection Headers

The comment section beginswith a set of header structures, each describing a separate subsection.

typedef struct {

coff uint cm_tag;
coff uint cm_len;
coff ulong cm_val;

} CMHDR;
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Subsection Header (CMHEDR) Fields

cm_tag
| dentifies the type of dataiin this subsection of the . comment section. This value may be recognized
by system tools. If it isnot recognized, generic processing occurs, as described in Section 7.3.3. Refer
to Table 7-1 for alist of system-defined comment tags.

cm_len

Specifies the unpadded length (in bytes) of this subsection's data. If cm_len iszero, the datais stored
inthecm_val field. The padded length isthis value rounded up to the nearest 16-byte boundary.

cm_val
Provides either a pointer to this subsection's data or the dataitself. If cm_len isnonzero, cm_val isa

relative file offset to the sart of the data from the beginning of the . comment section. If cm_lenis
zero, thisfield contains al datafor that subsection. In the latter case, the size of the datais considered



to be the size of thefield (8 bytes).

Table 7-1 Comment Section Tag Values
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Tag \VValue Description
CM_END 0 Last subsection header. Must be present.
Fi rst subsection hee_ader. _ '_rhe cm_val field containsa
c_cusTAME |3 Forment stion format, The crrent ceiiton of
CM_VERSION isO. Must be present.
CM_COMPACT_ RLC |4 Compact rel ocation data. See Section 4.4 for details.
CM_STRSPACE 5 Generic string space.
Subsection containing flagsthat tell tools how to
CM_TAGDESC 6 process unfamiliar subsections. See Section 7.2.2 and
Section 7.3.4.1.
CM_IDENT 7 Identification string. Reserved for system use.
CM_TOOLVER 8 Tool-specific version information. See Section 7.3.4.2.
CM_LOUSER 0x80000000 |Beginning of user tag value range (inclusive).
CM_HIUSER Oxffffffff |End of user tag valuerange (inclusive).

7.2.2. Tag Descriptor Entry

Tag descriptors are used to specify behavior for tools that modify object files and potentially affect the
accuracy of comment subsection data. They are especially useful as processing guidelines for tools that do
not understand certain subsections. Tools which have specific knowledge of certain comment subsection
types can ignore the tag descriptor settings for subsection type. The tag descriptors are stored in the raw

data of the CM_TAGDESC subsection. See Section 7.3.4.1 for more information.

typedef struct {

coff uint tag;
cm_flags t flags;
} em td t;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

Tag Descriptor Fields

tag

Tag value of subsection being described.
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flags

Flag settings. See Section 7.2.2.1.

7.2.2.1. Comment Section Flags

typedef struct {

coff uint cmf strip :3;
coff uint cmf combine :5;
coff uint cmf modify :4;
coff uint reserved :20;

} em flags t;
SIZE - 4 bytes, ALIGNMENT - 4 bytes

Comment Section Flags Fields
cmf strip
Tellstoolsthat perform stripping operations whether to strip comment section data.
cmf_combine
Tellstools how to combine multiple input subsections of the same.
cmf modify

Tellstools that modify single object files how to rewrite the input comment section in the output
object.

Table 7-2 Strip Flags

Name Value | Description

CMFS_KEEP 0x0 Do not remove this subsection when performing stripping operations.

CMFS_STRIP 0x1 Remove this subsection if stripping the entire symbaol table.

CMFS_LSTRIP 0x2 Remove this subsection if stripping local symbolic information or if fully
stripping the symbol table.
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Name Value | Description

CMFC_APPEND 0x0 Concatenate multiple instances of input subsection data.

CMFC_CHOOSE 0x1 Choose one instance of input subsection data (randomly).

CMFC_DELETE 0x2 Do not output this subsection.

CMFC_ERRMULT 0x3 Raise an error if multiple instances of this subsection are encountered as
input.

CMFC_ERROR 0x4 Raise an error if a subsection of thistype is encountered asinput.

Table 7-4 M odify Flags

Name Value | Description

CMFM_COPY 0x0 Copy this subsection's data unchanged from the input object to the output
object.

CMFM_DELETE 0x1 Do not output a subsection of thistype.

CMFM_ERROR 0x2 Raise an error if a subsection of thistype is encountered asinput.
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7.3. Comment Section Usage

7.3.1. Comment Section Formatting Requirements

The comment section is divided between subsection header structures and an unstructured raw data area.
The subsection headers contain tags that identify the data stored in the subsequent raw data area. Each
header describes a different subsection. Theraw datafor all subsections follows the last header, as shown

in Figure 7-1.

Figure 7-1 Comment Section Data Organization
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Begin and end marker tags are used to denote the boundaries of the structured portion of the comment
section. The begin marker is CM_CMSTAMP, which contains a comments section version stamp, and the
end marker isCM_END. If either of these headersis missing or the version indicated by the value of
CM_CMSTAMP isinvalid, the comment section is considered invalid.

The ordering of the subsection headers and their corresponding raw data do not need to match. Nor isthe
density of the raw data area guaranteed. However, all subsection headers must be contiguous: no other data
can be placed between them. Furthermore, a one-to-one relationship must exist between the subsection
headersthat point into the raw data and the data itself. Subsection raw data must not overlap.

Theinterpretation of thecm_val field dependsonthe cm_len field. When cm_leniszero, cm_val
contains arbitrary data whose interpretation depends on the valuein the cm_tag field. When cm_lenis
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non-zero, cm_val contains arelative file offset from the start of the comment section into the raw data
area

The start of data alocated in the raw data area must be octaword (16-byte) aligned for each subsection.
Zero-byte padding isinserted at the end of each dataitem as necessary to maintain this alignment. The
value stored in cm_ 1en represents the actud length of the data, not the padded length. Tools manipulating
this datamugt calculate the padded length.

7.3.2. Comment Section Contents

The comment section can contain various types of information. Each type of information is stored in its
own subsection of the comment section. Each subsection must have a unique tag val ue within the section.

The comment section can include supplemental descriptive information about the object file. For instance,
thetag ST CM_IDENT pointsto one or more ASCII stringsin theraw data areathat serve to identify the
module. Use of thistag isreserved for compilation system object producers such as compilers and
assemblers.

User-defined comment subsections are also possible. The CM_LOUSER and CM_HIUSER tags delimit the
user-defined range of tag values. Potential usesinclude product version information and miscellaneous
information targeted for specific consumers.

Although no restrictions are put on the type or amount of information that can be placed in the comment
section, it isimportant to be aware that users have the capability to remove the section entirely (by using
ostrip -c) andthat object file consumers may ignoreits presence.

Theminimal valid comment section consistsof a CM_CMSTAMP header and a CM_END header. Because
no structure field in the object file format holds the number of subsections in the comment section, the
presence of the CM_END header is crucial. Without it, a consumer cannot determine the number of
subsections present.

7.3.3. Comment Section Processing

Many tools that handle objects read or write the comment section. Some tools, such as thelinker and mes,
perform special processing of comment section data. Others may be interested in extracting certain
subsections. Most object-handling tools provided on the system access the comment section to check for
tool-specific version information (see Section 7.3.4.2).

Thelinker is both a consumer and producer of the comment section. Aswith other object file sections, the
linker must combine multiple input comment sections to form a single output section. When comment
sections are encountered in input object files, the linker reads subsection headers and merges theraw data
according to its own defaults and the flag settings of any tag descriptorsthat are present.

Themcs utility provides comment section manipulation facilities. Thistool allows users to add, modify,
delete, or print the comment section from the command line. Themes tool can only process objects that
already have a . comment section header—in spite of the fact that the header may indicate that the section
isempty. In all cases, the operations performed by mcs do not affect the object's suitability for linking or
execution. Seethemcs (1) man page for more details.

Stripping tools, such asstrip and ostrip, aso process the comment section. They read the tag
descriptors to determine what subsections to remove. Thecmf strip field of the tag descriptor specifies
the stripping behavior. If thecmf strip fieldisset to CMF_STRIP that subsection will be removed if



288

an object isfully stripped. If thecmf strip fildisset to CMF_LSTRIP for aparticular subsection
type, that subsection will be removed if an object is fully stripped or locally stripped.

7.3.4. Special Comment Subsections

Comment subsections can have particular structures or semantics that a consumer must know to be able to
read and process them correctly. Two system-defined subsections with specia formatting and processing
rules are the tag descriptors (CM_TAGDESC) and the tool-specific version information (CM_TOOLVER).

Another special subsection contains compact relocation data (CM_COMPACT RLC). Thistopic iscovered
in Section 4.4.

7.3.4.1. Tag Descriptors (CM_TAGDESC)

The tag descriptor subsection contains atable of tags and their corresponding flag settings. This
information tells tools how to handle unfamiliar subsections. The CM_TAGDESC subsection may not be
present, and if present, it may not contain entries for subsections that are present. Also, atag descriptor may
be present for a subsection that is not found in the object.

A lig of possible tag descriptor flag settings can be found in Section 7.2.2.1. Fag settings are divided into
three categories based on the categories of object tools that need to modify the comment section:

1. Toolsthat strip object files
2. Toolsthat combine multiple instances of comment section data
3. Toolsthat modify and rewrite single object files

The default flag settings for user subsections that do not have tag descriptors are CMFS_KEEP,
CMFC_APPEND, and CMFM_COPY. Toolsthat strip or rewrite objects should not modify subsection data
for comment subsections marked with these default flag settings. A tool that combines multiple instances of
subsection data, should concatenate the subsection raw datafor same-type input subsections marked with
the default flag settings.

A tool can ignorethe tag descriptor flags and default flag settings for a subsection if it recognizes the
subsection type and understands how to process its data.

Some of the system tags have different defaults. These are shown in Table 7-5. However, tag descriptorsin
the CM_TAGDESC subsection can be used to override the default settings for system tag values aswell as
user tag values.
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Table 7-5 Default System Tag Flags

Tag Default Flag Settings

CM_END KEEP, CHOOSE, COPY
CM_CMSTAMP KEEP, CHOOSE, COPY
CM_COMPACT RLC STRIP, DELETE, DELETE
CM_STRSPACE KEEP, APPEND, COPY
CM_TAGDESC KEEP, CHOOSE, COPY
CM_IDENT KEEP, APPEND, COPY
CM_TOOLVER KEEP, CHOOSE, COPY

Because the sze of atag descriptor entry is fixed, a consumer can determine the number of entries by
dividing the sze of the subsection by the size of a single tag descriptor (see Section 7.2.2). If cm_lenis
set to zero, asingletag descriptor is stored asimmediate data.

7.3.4.2. Tool Version Information (CM_TOOLVER)

The CM_TOOLVER subsection contains tool-specific version entries for system tools that process object
files. If present, this subsection may have any number of entries. This subsection can also can also be used
to record version information for non-system tools.

Each tool version entry consists of three parts:

1. Tool name (null-terminated character string)

2. Tool version number (unsgned 8-byte unaligned numeric value)
3. Printable version string (null-terminated character string)

The number of tool version entries cannot be determined from the subsection header because the entries
vary in length. The data must be read until the entry sought is found or until the end of the subsection's
dataisreached.

The encoding of thetool version number is generally tool dependent. The only requirement is that the
value, viewed as an unsigned long, must be monotonically increasing with time.

Typically, an object file consumer uses the tool version information to verify its ability to handle an input
object file. The consumer uses an API (see 1ibst reference pages) to look for atool version entry with a
tool name matching its own (part one of the entry). If found, the version number (part two of the entry)
must not exceed the version number of thetool. Otherwise, the tool will print amessage instructing the user
to obtain the newer version of the tool, using the printable version sring (part three of the entry). This
mechanism can be used as a warning to customers of a necessary upgrade to a newer release of a product,
for ingtance.
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As an example, a compiler might produce object files with new symbol table information that causes an old
version of the ladebug debugger to produce a fatal error. To provide more user-friendly behavior for old
versions of the debugger, the compiler outputs atool version entry:

1. "ladebug"
2. 2
3. "5.0A-BL5"

This entry occupies 25 bytes. The debugger recognizes its namein the entry and compares the version
number "2" with the version number it was built with. (Note that the version number is most likely
meaningless to an end user of the debugger.) In this case, assume that the installed debugger's version
number is"1". The message "Please obtain version 5.0A-BL5" is output to the user.

Note that the numeric tool version number can be unaligned. Thisisan exception to the genera rule
requiring alignment of numeric data.
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8. Archives

An archiveisacollection of files stored and treated as a single entity. They are used most commonly to
implement libraries of rel ocatable objects. These libraries ssimplify linking in a program devel opment
environment by allowing the manipulation of one archive file instead of dozens or hundreds of object files.

This chapter covers the archive file format and usage. The archiver isthetool used to create and manage
archives. Seear (1) for more information on its facilities.

New and Change Archive Features

Version 5.0 of Tru64 UNIX introduces archive support for extended user and group ids (seear_uid and
ar_gidin Section 8.1.2)

8.1. Structures, Fields, and Values for Archives

All declarationsin this section are from the header filear . h.
See Section 8.2.1 for moreinformation on the organization of object file contents.

8.1.1. Archive Magic String

The archive magic string identifies afile as an archive.

#define ARMAG "!<arch>\n"
#define SARMAG 8

8.1.2. Archive Header

struct ar_hdr {

char ar name [16] ;
char ar_date[12];
char ar uidl[e6];
char ar_gidl[e];
char ar_mode [8] ;
char ar _size[10];
char ar fmagl[2];
} AR HDR;

SIZE - 60 bytes, ALIGNMENT - 1 byte

Archive Header Fields

ar_name
File member name, blank-terminated if the length of the name isless than 16 bytes.
File member names that are 16 charactersor longer are stored in the special file member called thefile
member nametable. Inthat case, thisfield contains /offset where offset indicates the byte offset of the

file name within thetable. The offset is adecimal number.

The prefix ARSYMPREF, defined as the 16-byte blank-terminated character string
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64ELEL , isstoredin thisfield for the specia file member called the symbol definitions
(symdef) file and is used to identify that file. The ar tool marks an out of date symdef file by
changing thelast L in thenameto an X ( 64ELEX ).

The blank-terminated name / / isstored in this field to identify the file member name table.

ar_date

File member date (decimal).

ar uid

ar

File member user id (decimal).

For afilewith auser id greater than USHRT MAX (65535U), thisfield will contain / /value where
value is a 4-byte unsigned integer.

_gid

File member group id (decimal).

For afilewith agroup id grester than USHRT MAX (65535U), thisfield will contain / /value where
value is a 4-byte unsigned integer.

ar_mode

ar_

File member mode (octal).
size
File member size (decimal). Sizesreflect padding for the symdef file and the file name table, but not

for filemember contents. File members always start on even byte boundaries. Therefore, if the
ar_ size field indicates an odd length, it should be rounded up to the next even number.

ar_ fmag

Archive magic string. The possible values are shown in Table 8-1.

Table 8-1 Archive Magic Strings

Symbol Value M eaning
ARFMAG "r\n" File member. May be a special file member or any type of
file other than a compressed object file.
ARFZMAG "Z\n" Compressed object file member.
General Note:

Archive header fields are stored as character strings and must be converted to numeric types.
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8.1.3. Hash Table (ranlib) Structure

Thisstructure is found only inside the special file member called the "symdef file". See Section 8.2.2 for
related information.

struct ranlib ({

union {

int ran_ strx;
} ran un;
int ran off;

}i
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Ranlib Structure Fields
ran strx

Symdef string table index for this symbol's name.
ran off

Byte offset from the beginning of the archive file to the archive header of the member that defines this
symbol.

General Note:

Theran_un union of this structure has only onefield, as shown, for historical reasons.
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8.2. Archive Implementation

8.2.1. Archive File Format

Thefirst SARMAG (8) bytesin an archivefileidentify it asan archive. To verify that afileisan archive,
these bytes should be compared with the archive magic string, defined as ARMAG in the header filear . h.

An archivefile consists of the magic string followed by multiple file members, each of whichis preceded
by an archive file member header. File members can be object files, compressed object files, text files, or
files of any other type, and an archive can contain amix of file types. A file member can also be one of
two special file members: the symbol definition (or symdef file) or the file member name table. Figure 8-1
illugtrates thisfile layout.

Figure 8-1 Archive File Organization

Archive magic string

Archive File Header ar_hdr

Symbol Definttions ("symdet™) file

Archive File Header ar_hdr

Long File Member Name Table

Archive File Header ar_hdr

File hMember Contents (.o file or text file)

Archive File Header ar_hdr

File Member Contents (.o file or text file)

The symdef file, if present, isthe first file member of an archive. See Section 8.2.2 for details on the
symdef file.

The file member name table consists of file member names that are too long to fit into the 16-byte name
field of the archive header. If no file member names are 16 characters or longer, thistableisnot created. If
the tableis needed, it isthe first or second file member. If asymdef fileis present, it isthe first file
member and the file member name table isthe second. Otherwise, the file member nametableisthefirst
file member of the archive.

The member header for the file name table might look likethis:

struct arhdr {

ar_name = "// "
ar_date = "871488454 ";

ar uid = "0 "

ar gid = "0 "
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ar mode = "0 "
ar size = "54 ";
ar_fmag = "'\n";

Names in the file member nametable are separated by aslash (/) and alinefeed (\n). For example, the
contents of the file name table for an archive with three long object file names might look like this:

st _cmrlc basic.o/
st _cmrlc print.o/
st_object type.o/

The file member header for afile member whose nameis stored in the file name table (in this case, the
object st _cmrlc print.o) might look likethis:

struct arhdr {

ar _name = "/18 ",
ar_date = "871414955 "

ar uid = "9442 "

ar gid = "0 ";

ar mode = "100600 ";

ar size = "47296 ".

ar _fmag = "'\n";

8.2.2. Symdef File Implementation

The symdef file contains external symbol information for all object file members within an archive. When
present, the symdef fileis the first file member of the archive. The member header for an up-to-date
symdef file might look as follows:

struct arhdr {
ar name = " 64ELEL_ ";
ar_date = "871488454 "
ar uid "0 ";
ar gid = "0 "
ar_mode "0 "
ar size = "8238 ";
ar _fmag = "'\n";

The symdef fileistypically present if at least one archive file member isan object file. Thelinker usesit
when searching for symbol definitions, aslong asthefileis up to date. Whenever an archiveis modified,
either the symdef file must either be updated or its member name must be changed to reflect the fact that it
isoutdated (see Section 8.1.2).

The symdef file consists of a hash table and a string table. The contents of the symdef file are laid out as
follows:

1. Hash Table Size- 4 bytesindicating the number of ranlib structuresin the hash table
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2. Hashtable- array of ranlib structures
3. String table Size - 4 bytes indicating the size, in bytes, of the symdef string table
4. String table - string space containing symbol names

At aminimum, the symdef file should contain the sizes of the hash and string tables, even if thetables are
empty.

The hash table containsaran_11ib structure for each externally visible symbol defined in any of the
archive file members. Thetotal size of the hash tableis two times the number of symbols rounded to the
next highest power of two. Each symbol has a private hash chain that is used for symbol |ookup, as shown

in Figure 8-2.

Figure 8-2 Symdef File Hash Table

symbol
name

hash

function

hash value rehash value
size of
N each jutnp
&
HASH TABLE

The hash function produces two values for any nameit is given: ahash value and arehash value. The hash
valueis used for the first lookup. If the symbol found is not the right one, the rehash valueis used for
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chaining. The chain isfollowed until the correct symboal isfound or until the search returnsto the symbol
where it began.

Thelinker uses the hash structure field ran_of £ to locate a symbol's definition in the archive. Thisfield
contains the byte offset from the beginning of the archive file to the file member header of the member
containing the symbal's definition.

Note that symbols appear only once in the symdef file hash table, regardless of how many file members
define them.

8.3. Archive Usage

8.3.1. Role As Libraries

Oneimportant use of archivesisto serve as static libraries that programs can link againgt. Such archives
contain acollection of relocatable object files that can be selectively included in an executable image as
required. Archive libraries arethe only libraries used in creating static executables. They can aso be used
in conjunction with shared libraries in dynamic executables.

Thelinker searches archive libraries during symbol resolution. See the Programmer’'s Guide or 14 (1) for
more information.
8.3.2. Portability

The archivefileformat is designed to meet current UNIX standardsin order to assure portability with other
UNIX systems.

The format of compressed object files within archivesis specific to Tru64 UNIX. See Section 1.4.3 for
details.
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9. Examples

This chapter contains sample programsthat illustrate the symbol table representations of various language
constructs. The examples are organized by source language and each consists of a program listing and the
partial symbol table contents for that program. The system symbol table dumpers stdump (1) and
odump (1) were used to produce the outpuit.

91. C

9.1.1. Unnamed Structure

See Section 5.3.8.3 for related information.

Source Listing

Struct S1 {
int abc;
struct {int x; signed int y; unsigned int z;};
int rst;

} sl;

Symbol Table Contents
File 0 Local Symbols:

0 (0) ( 0) unname.c File Text symref 12

1 (1) ( 0xc) Block Info symref 6

2 (2) ( 0) x Member Info [ 3] int

3 (2) (0x20) vy Member Info [ 3] int

4 (2) (0x40) =z Member Info [ 4] unsigned int
5 (1) ( 0) End Info symref 1

6 (1) (0x14) S1 Block Info symref 11

7 (2) ( 0) abc Member Info [ 3] int

8 (2) (0x20) Member Info [ 5] struct(file O,

index 2)

9. (2)(0x80) rst Member Info [ 3] int
10. (1) ( 0) S1 End Info symref 6
11. (0) ( 0) unname.c End Text symref 0

Externals Table:

0. (file 0) (0x14) sl Global Common [7] struct(file O,
index 6)

9.2. C++

9.2.1. Base and Derived Classes

See Section 5.3.8.6 for related information.

Source Listing

#include <iostream.h>

class employee {



char *name;
short age;
short deparment;
int salary;

public:

static int stest;
employee *next;
void print () const;

}i

class manager : public employee
employee emp;
employee *group;
short level;

public:

void print () const;

}i

void employee: :print () const

{

cout << "name is " << name <<

}

void manager: :print () const
{
employee: :print () ;

}

void £ ()

{
manager ml,m2;
employee el, e2;
employee *elist;

elist=6&ml;
ml.next=&el;
el.next=&m2;
m2.next=&e2;
e2.next=0;

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)( 0) bs6.cxx File
1. (1) ( 0) employee Tag

2. ( 1) (0x18) employee Block
3. (2)( 0) name Member
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‘\n';

Text
Info

Info
Info

symref 51

[25]

Class (extended file 0,
index 2)

symref 17

[28]

Pointer to char
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11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.
23.

24 .

25.

26.

27.

28.

29.

30.
31.

32.

< o U1

—~ e~~~

2) (0x40)
2) (0x50)
2) (0x60)
2) (0x80)
2) ( 0)
2) ( 0)
3)( 0)
2) ( 0)
2) ( 0)
3)( 0)
3)( 0)
2) ( 0)
1) ( 0)
1) ( 0)
1) (0x40)
2) ( 0)
2) (0xc0)
2) (0x180)
2) (0x1c0)
2) ( 0)
3)( 0)
2) ( 0)
2) ( 0)
3)( 0)
3)( 0)
2) ( 0)
1) ( 0)
1) ( 0)
2) ( 0x9)

age
deparment
salary
next
employee:

employee:

this

employee:

employee:

this

employee:

employee
manager

manager
employee

emp
group

level
manager: :

this

manager: :

manager: :

this

manager: :

manager
employee:

this
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Member Info [29] short
Member Info [29] short
Member Info [30] int
Member Info [31] Pointer to
Class (extended file 0,
index 2)
:stest
Static Info [30] int
:print (void) const
Proc Info [43] endref 12, void
Param Info [40] Const Pointer to Const
Class (extended file 0,
index 2)
:print (void) const
End Info symref 9
:operator =(const employee&)
Proc Info [57] endref 16, Reference
Class (extended file 0,
index 2)
Param Info [48] Const Pointer to
Class (extended file 0,
index 2)
Param Info [54] Reference Const
Class (extended file 0,
index 2)
:operator =(const employee&)
End Info symref 12
End Info symref 2
Tag Info [61] Class(extended file 0,
index 18)
Block Info symref 31
Base Class Info [25] Class(extended file O,
index 2)
Member Info [25] Class(extended file O,
index 2)
Member Info [31] Pointer to Class (extended
file 0, index 2)
Member Info [29] short
print (void) const
Proc Info [73] endref 26, void
Param Info [70] Const Pointer to Const
Class (extended file O,
index 18)
print (void) const
End Info symref 23
operator =(const managers&)
Proc Info [90] endref 30, Reference
Class (extended file O,
index 18)
Param Info [81] Const Pointer to
Class (extended file O,
index 18)
Param Info [87] Reference Const
Class (extended file O,
index 18)
operator =(const managers&)
End Info symref 26
End Info symref 18
:print (void) const
Proc Text [414] endref 36, void
Param Register [416] Const Pointer to Const

Class (extended file 0,
index 2)



33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.

49.
50.

2) (0x18)
2) (0x60)
1) (0x70)

1) (0x70)

Block
End

employee: :print (void)
End

manager: :print (void)
Proc

this Param
Block
End

manager: :print (void)
End

f (void) Proc
Block

ml Local

m2 Local

el Local

e2 Local

elist Local
End

f (void) End

bs6 . cxx End
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Text
Text
const
Text
const
Text
Register

Text
Text
const
Text
Text
Text
Abs

Abs

Abs

Abs
Register
Text

Text
Text

symref 35
symref 33

symref 31

[419]
[421]

endref 41, void

Const Pointer to Const
Class (extended file 0,
index 18)

symref 40

symref 38

symref 36

[424] endref 50,
symref 49

[61] Class(extended file O,
index 18)

Class (extended file 0,
index 18)

Class (extended file 0,
index 2)

Class (extended file 0,
index 2)

Pointer to Class (extended
file 0, index 2)

symref 42

symref 41

symref 0

void

[61]
[25]
[25]

[31]



9.2.2. Virtual Function Tables and Interludes

Source Listing

class Basel
public:
virtual

class Base2
public:
virtual
}i

class Base3
public:
virtual
}i
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{

int virtual mem func() { return 1; }

virtual public Basel {

int virtual mem func() { return 2; }

public Base2 ({

int virtual mem func() { return 3; }

int foo(Basel *bl) {
return bl->virtual mem func();

}

int main ()

Basel *bl;
Base2 *b2;
Base3 *b3;

int 1i,79.k;

i = foo(bl);
j = foo(b2);
k = foo(b3);
return O;

Symbol Table Contents

File 0 Local Symbols:

0 (0)( 0) interlude.cxx

File Text
1. (1) ( 0) Basel Tag Info
2. ( 1) ( 0x8) Basel Block Info
3 (2)( 0) _ vptr Member Info
4 (2)( 0) Basel: :Basel (void)

Proc Info

symref 113

[17] Class(extended file 0,
index 2)

symref 19

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[35] endref 7, Reference
Class (extended file 0,
index 2)
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11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24 .

25.

26.
27.

28.

3)( 0)
2) ( 0)
2) ( 0)
3)( 0)
3)( 0)
2) ( 0)
2) ( 0)
3)( 0)
3)( 0)
2) ( 0)
2) ( 0x1)
3)( 0)
2) ( 0)
1) ( 0)
1) ( 0)
1) (0x18)
2) ( 0)
2) (0x40)
2) ( 0)
2) ( 0)
3)( 0)
3)( 0)
2) ( 0)
2) ( 0)
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this Param Info
Basel: :Basel (void)

End Info
Basel: :Basel (const Baselé&)

Proc Info
this Param Info

Param Info
Basel: :Basel (const Baselé&)

End Info
Basel: :operator =(const Baselé&)

Proc Info
this Param Info

Param Info
Basel: :operator =(const Baselé&)

End Info
Basel::virtual mem_ func(void)

Proc Info
this Param Info
Basel::virtual mem_ func(void)

End Info
Basel End Info
Base2 Tag Info
Base2 Block Info
__vptr Member Info
__bptr Member Info
Basel Virtual Base Class

Info
Base2: :Base2 (void)

Proc Info
this Param Info
<control> Param Info
Base2: :Base2 (void)

End Info
Base2: :Base2 (const Base2&)

Proc Info

[32] Const Pointer to
Class (extended file 0,
index 2)

symref 4

[45] endref 11, Reference
Class (extended file 0,
index 2)

[32] Const Pointer to
Class (extended file 0,
index 2)

[42] Reference Const
Class (extended file 0,
index 2)

symref 7

[49] endref 15, Reference
Class (extended file 0,
index 2)

[32] Const Pointer to
Class (extended file 0,
index 2)

[42] Reference Const
Class (extended file 0,
index 2)

symref 11

[53] endref 18, int

[32] Const Pointer to
Class (extended file 0,
index 2)

symref 15

symref 2

[55] Class(extended file 0,
index 20)

symref 42

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[17] Class(extended file 0,
index 2)

[67] endref 28, Reference
Class (extended file O,
index 20)

[64] Const Pointer to
Class (extended file O,
index 20)

[ 3] int

symref 24

[77] endref 33, Reference



29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.
44 .

45.

46.

47.

48.

49.

50.

51.

52.

53.

3)( 0)
3)( 0)
3)( 0)
2) ( 0)
2) ( 0)
3)( 0)
3)( 0)
3)( 0)
2) ( 0)
2) ( 0x1)
3)( 0)
2) ( 0)
1) ( 0)
1) ( 0)
1) (0x18)
2) ( 0)
2) (0x40)
2) ( 0)
2) ( 0)
3)( 0)
3)( 0)
2) ( 0)
2) ( 0)
3)( 0)
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this Param Info
<control> Param Info
Param Info

Base2: :Base2 (const Base2&)

End Info
Base2: :operator =(const Base2&)
Proc Info
this Param Info
<control> Param Info
Param Info
Base2: :operator =(const Base2&)
End Info
Base2::virtual mem func(void)
Proc Info
this Param Info
Base2::virtual_mem_ func(void)
End Info
Base2 End Info
Base3 Tag Info
Base3 Block Info
__vptr Member Info
__bptr Member Info
Base2 Base Class Info

Base3: :Base3 (void)

Proc Info
this Param Info
<control> Param Info
Base3: :Base3 (void)

End Info
Base3: :Base3 (const Base3&)

Proc Info
this Param Info
<control> Param Info

Class (extended file 0,
index 20)

[64] Const Pointer to
Class (extended file 0,
index 20)

[ 3] int

[74] Reference Const
Class (extended file 0,
index 20)

symref 28

[81] endref 38, Reference
Class (extended file 0,
index 20)

[64] Const Pointer to
Class (extended file 0,
index 20)

[ 3] int

[74] Reference Const
Class (extended file 0,
index 20)

symref 33

[85] endref 41, int

[64] Const Pointer to
Class (extended file 0,
index 20)

symref 38

symref 20

[87] Class(extended file 0,
index 43)

symref 65

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[55] Class(extended file 0,
index 20)

[99] endref 51, Reference
Class (extended file O,
index 43)

[96] Const Pointer to
Class (extended file O,
index 43)

[ 3] int

symref 47

[109] endref 56, Reference

Class (extended file O,
index 43)

[96] Const Pointer to
Class (extended file O,
index 43)

[ 3] int



54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74 .

0) Param
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Info

0) Base3::Base3 (const Base3&)

End Info

0) Base3::operator =(const Base3&)
Proc Info

0) this Param Info

0) <controls> Param Info

0) Param Info

0) Base3l::operator =(const Base3&)

[106]

Reference Const
Class (extended file O,
index 43)

symref 51

[113]

[96]

[ 3]
[106]

endref 61, Reference
Class (extended file 0,
index 43)

Const Pointer to
Class (extended file 0,
index 43)

int

Reference Const
Class (extended file 0,
index 43)

End Info symref 56
0x1) Base3::virtual mem func(void)
Proc Info [117] endref 64, int
0) this Param Info [96] Const Pointer to
Class (extended file 0,
index 43)
0) Base3::virtual mem func(void)
End Info symref 61
0) Base3 End Info symref 43
0) _ INTER_Base3_virtual mem_func Basel Base2 Xv
Interlude Info thunk (extended file 0, index
61), proc (extended file
0, index 104)
0) _ INTER_Base2_virtual mem_func_Basel Xv
Interlude 1Info thunk (extended file 0, index
38), proc (extended file
0, index 108)
1) (0x160) _ vtbl 5Basel
Static SData [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
1) (0x168) _ vtbl 5Base2
Static SData [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
1) (0x170) _ btbl S5Base2
Static SData [138] Const Array [ (extended
file 0, aux 3)0-0:64] of
long
1) (0x178) __ vtbl 5Basel5Base2
Static SData [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
1) (0x180) _ vtbl 5Base3
Static SData [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
1) (0x188) _ btbl 5Base3
Static SData [138] Const Array [ (extended
file 0, aux 3)0-0:64] of long

1) (0x190)

1) (

Static

0) Basel::virtual mem func(void)

__vtbl 5Basel5Base25Base3

SDhata

StaticProc Text

[126]

[152]

Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void

endref 79, int



75.

76.
77.
78.

79.

80.

81.
82.
83.

84.

85.

86.
87.
88.

89.
90.

91.
92.
93.
94 .
95.
96.

97.

98.

99.
100.
101.
102.
103.
104.

105.
106.
107.
108.
109.
110.
111.

112.

0x1)

0x4)
0x8)
0xc)
1) (0x14)
0x1)

0x4)
0x8)

1) (0x28)

this

Basel:

Base2:

this

Base2:

Base3:

this

Base3::

foo (Basel¥*)

bl

foo (Basel*)

main
bl
b2
b3

i

J

k

main

interlude.cxx
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Const Pointer to

Class (extended file 0,

84, int

Const Pointer to

Class (extended file 0,

89, int

Const Pointer to

Class (extended file 0,

94, int
to Class (extended
index 2)

104, int

to Class (extended
index 2)

to Class (extended
index 20)

to Class (extended
index 43)

108, btNil

112, btNil

Param Register [32]
index 2)
Block Text symref 78
End Text symref 76
:virtual mem_ func(void)
End Text symref 74
:virtual mem_ func(void)
StaticProc Text [154] endref
Param Register [64]
index 20)
Block Text symref 83
End Text symref 81
:virtual mem_ func(void)
End Text symref 79
:virtual mem_ func(void)
StaticProc Text [156] endref
Param Register [96]
index 43)
Block Text symref 88
End Text symref 86
virtual mem_ func(void)
End Text symref 84
Proc Text [158] endref
Param Register [29] Pointer
file 0,
Block Text symref 93
End Text symref 91
End Text symref 89
Proc Text [160] endref
Block Text symref 103
Local Abs [29] Pointer
file 0,
Local Abs [61] Pointer
file 0,
Local Register [93] Pointer
file 0,
Local Abs [ 3] int
Local Abs [ 3] int
Local Abs [ 3] int
End Text symref 95
End Text symref 94
__ INTER__Base3_virtual_mem func_Basel_ Base2_ Xv
StaticProc Text [162] endref
Block Text symref 107
End Text symref 105
__ INTER__Base3_virtual_mem func_Basel_ Base2_ Xv
End Text symref 104
_ INTER__Base2_virtual _mem func_Basel Xv
StaticProc Text [164] endref
Block Text symref 111
End Text symref 109
_ INTER__Base2_virtual mem func_Basel Xv
End Text symref 108
End Text symref 0

9.2.3. Namespace Definitions and Uses

See Section 5.3.6.4 for related information.



Source Listing
nsl.h:
namespace nsl {

class Cobj {};
extern int 11;

}

ns2.h:

namespace nsl {
int x1(void) ;

}

ns.C:

#include "nsl.h"
#include "ns2.h"

namespace nsl {
extern int part3;

int
int
int

nsl::il = 1000;
nsl::part3 = 3;
nsl::x1(void) {
using namespace nsl;
return i1*10;

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)( 0) ns.C
1. (1) ( 0) nsl::x1(void)
2. (2)( 0)
3. ( 2)( 0x8)
4. ( 2)(0x14)
5. (1) (0x18) nsl::x1(void)
6. (0)( 0) ns.C
File 1 Local Symbols:
0. ( 0)( 0) nsl.h
1. (1) ¢( 0) nsl
2. (2)( 0) nsl::x1(void)
3. (2)( 0) nsl::x1(void)
4. (2)( 0) i1
5. ( 2)( 0) part3
6. (1)( 0) nsl
7. ( 0)( 0) nsl.h

Externals Table:

0. (file 0) (0x50)
1. (file 0) (0x58)

nsl::il
nsl::part3
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File
Proc
Using
Block
End
End
End

File
Namespace
Proc

End
Member
Member
End

End

Global
Global

Text
Text
Info
Text
Text
Text
Text

Text
Info
Info
Info
Info
Info
Info
Text

SData
Sdata

symref 7
[4] endref 6, int
[6] symref (file 1,
symref 5
symref 3
symref 1
symref 0

symref 8
symref 7
[2] endref 4,
symref 2
[4] int
[4] int
symref 1
symref 0

int

(3]
(3]

int
int

index 1)
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2. (file 0) ( 0) nsl::x1(void) Proc Text symref 1

9.2.4. Unnamed Namespaces

See Section 5.3.6.4.3 for related information.

Source Listing

uns.C:
namespace {

int usvil;
int usv2;

}

int privat (void) {
return usvl + usv2;

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)¢( 0) uns.C File Info symref 13

1. (1) ( 0) Namespace Info symref 5

2. (2)( 0) usvl Member Info [3] int

3. ( 2)( 0) usv2 Member Info [3] int

4. (1) ( 0) End Info symref 1

5. (1)( 0) Using Info [4] symref (file 0, index 1)
6. ( 1) (0x50) _ unnamed::usvl Static SBss [3] int

7. ( 1) (0x54) _ unnamed::usv2 Static SBss [3] int

8. (1) 0) privat (void) Proc Text [5] endref 12, int
9. ( 2)( 0x8) Block Text symref 11
10. ( 2) (0xlc) End Text symref 9
11. ( 1) (0x20) End Text symref 8
12. ( 0) ( 0) End Text symref 0

9.2.5. Namespace Aliases

See Section 5.3.6.4.2 for related information.

Source Listing

alias.C:

namespace long namespace name {
extern int nmem;

int get nmem(void) {
namespace nknm = long namespace_name;
namespace nknm2 = nknm;
return nknm: :nmem;



Symbol Table Contents

File 0 Local Symbols
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0. ( 0)( 0) alias.C File Text
1. (1) ( 0) long namespace name Namespace Info
2. (2)( 0) nmem Member Info
3. (1) ( 0) long namespace name End Info
4. (1) ( 0) get nmem(void) Proc Text
5. ( 2)( 0x8) Block Text
6 (2)( 0) nknm Alias Info
7 ( 2)( 0) nknm2 Alias Info
8. ( 2)(0x10) End Text
9. ( 1) (0x14) get nmem(void) End Text
10. ( 0) ( 0) alias.C End Text
Externals Table
0. (file 0) (0x4) long namespace name::nmem Global
1. (file 0) ( 0) get nmem(void) Proc

symref 11

symref 4

[3] int

symref 1

[4] endref 10, int

symref 9

[5] symref(file 0,index 1)
[6] symref(file 0,index 6)
symref 5

symref 4

symref 0

Undefined [3]int
Text symref 4
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9.2.6. Exception-Handling
See Section 3.3.8 for related information.

Source Listing

#include <iostream.h>

class Vector
int *p;
int sz;

public:
enum { max=1000 };

Vector (int) ;

class Range { };
class Size { };

int operator([] (int 1i);
}: // Vector

Vector: :Vector (int 1) {
if (i>max) throw Size();
p=new int[i];
if (p) sz=i;
else sz=0;

}

int Vector::operator[] (int i) {
if (0<=i && i<sz) return plil;
throw Range () ;

cout<<"gize?";
cin>>1i;

Vector v (i) ;
cout<<v[i]l<<"\n";

catch (Vector::Range) {
cout<< "bad news; outta here...\n";

catch (Vector::Size) {
cout<< "can't initialize to that size

Yy /7 £

oo\nt;
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main() {

£0);

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)( 0) multiexc.cxx File Text symref 83
1. (1) ( 0) Vector Tag Info [16] Class(extended file 0,
index 2)
2. ( 1) (0x10) Vector Block Info symref 40
3. (2)( 0) <generated name 0005>
Tag Info [19] enum(extended file O,
index 4)
4. (2)( 0) <generated name 0005>
Block Info symref 7
5. ( 3) (0x3e8) max Member Info [ 2] btNil
6. ( 2)( 0) <generated name 0005> End Info symref 4
7. ( 2)( 0) Range Tag Info [22] Class(extended file 0,
index 8)
8. ( 2)( 0x1l) Range Block Info symref 14
9. ( 3)( 0) Vector::Range: :operator =(const Vector::Range&)
Proc Info [40] endref 13, Reference
Class (extended file 0,
index 8)
10. ( 4) ( 0) this Param Info [31] Const Pointer to
Class (extended file 0,
index 8)
11. ( 4) ( 0) Param Info [37] Reference Const
Class (extended file 0,
index 8)
12. ( 3)( 0) Vector::Range: :operator =(const Vector::Range&)
End Info symref 9
13. ( 2)( 0) Range End Info symref 8
14. ( 2)( 0) Size Tag Info [44] Class(extended file 0,
index 15)
15. ( 2)( 0x1) Size Block Info symref 21
16. ( 3)( 0) Vector::Size::operator =(const Vector::Sizeé&)
Proc Info [62] endref 20, Reference
Class (extended file 0,
index 15)
17. ( 4) ( 0) this Param Info [53] Const Pointer to
Class (extended file 0,
index 15)
18. ( 4) ( 0) Param Info [59] Reference Const
Class (extended file 0,
index 15)
19. ( 3)( 0) Vector::Size::operator =(const Vector::Sizeé&)
End Info symref 16
20. ( 2)( 0) Size End Info symref 15
21. ( 2)( 0) p Member Info [66] Pointer to int
22. ( 2) (0x40) sz Member Info [ 3] int
23. ( 2)( 0) Vector::Vector (int)
Proc Info [76] endref 27, Reference
Class (extended file 0,
index 2)

24. ( 3)( 0) this Param Info [73] Const Pointer to



25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44 .

45.

46.

47.

48.

1) (

0)
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Class (extended file 0,
index 2)

i Param Info [ 3] int
Vector: :Vector (int)
End Info symref 23
Vector: :Vector (const Vector&)
Proc Info [86] endref 31, Reference Class (extended
file 0, index 2)
this Param Info [73] Const Pointer to
Class (extended file 0,
index 2)
Param Info [83] Reference Const
Class (extended file 0,
index 2)
Vector: :Vector (const Vector&)
End Info symref 27
Vector: :operator [] (int)
Proc Info [90] endref 35, int
this Param Info [73] Const Pointer to
Class (extended file 0,
index 2)
i Param Info [ 3] int
Vector: :operator [] (int)
End Info symref 31
Vector: :operator =(const Vector&)
Proc Info [92] endref 39, Reference
Class (extended file 0,
index 2)
this Param Info [73] Const Pointer to
Class (extended file 0,
index 2)
Param Info [83] Reference Const
Class (extended file 0,
index 2)
Vector: :operator =(const Vectoré&)
End Info symref 35
Vector End Info symref 2
__throw QléVector4Size
Tag Info [96] struct (extended file O,
index 41)
__throw QléVector4Size
Block Info symref 45
type signature
Member Info [99] Pointer to char
thunk Member Info [99] Pointer to char
__throw QléVector4Size
End Info symref 41
1) (0x3c0) _ throw _QléVector4Size
Static Data [176] Array [(extended file 7,
aux 9)0-1:128] of
struct (extended file 0,
index 41)
1) (0x3a0) _ throw_QléVector5Range
Static Data [176] Array [(extended file 7,
aux 9)0-1:128] of
struct (extended file 0,
index 41)
Vector: :Vector (int)
Proc Text [184] endref 57, Reference
Class (extended file O,
index 2)
this Param Register [73] Const Pointer to

2) (

0xa)

Class (extended file O,



49.
50.
51.

52.

53.
54.

55.
56.

57.

58.

59.
60.
61.

62.

63.
64.

65.
66.
67.
68.

69.
70.

71.
72.
73.
74 .
75.
76.
77.
78.
79.
80.
81.
82.

A~~~ e~~~ o~~~ o~~~
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2)( 0x9) 1 Param
2) (0x20) Block Text
3)(-8) _ts8 Local Abs

3) (0x3c0) _ throw _QléVector4Size

Static Data
3)(-16) __t9 Local Abs
3)(-24) __tlo Local Abs
2) (0x74) End Text
1) (0xb4) Vector::Vector (int)

End Text
1) (0xb4) Vector::operator [] (int)

Proc Text
2) (0x28) this Param Abs
2) ( 0x9) i Param
2) (0x1lc) Block Text
3)(-16) __tl1 Local Abs

3) (0x3a0) __ throw QléVector5Range

Static Data
2) (0x44) End Text
1) (0x7c) Vector::operator [] (int)

End Text
1) (0x130) £ (void) Proc Text
2) (0x1lc) Block Text
3)(-32) i Local Abs
3) (-48) _ current_ try block decl

Local Abs
3) (0x28) Block Text
4) (-24) v Local Abs
3) (Oxab) End Text
3) (0xac) Block Text
3) (0xe3) End Text
3) (0xe4d) Block Text
3) (0x113) End Text
2) (0x11lc) End Text
1) (0x130) £ (void) End Text
1) (0x260) main Proc Text
2) (0x10) Block Text
2) (0x18) End Text
1) (0x24) main End Text
0) ( 0) multiexc.cxx End Text

Register

Register

index 2)

[ 3] int

symref 56

[44] Class(extended file 0,
index 15)

indexNil
[10] unsigned long
[194] Pointer to Array
[ (extended file 7, aux
9)0-0:32] of int
symref 50

symref 47

[200] endref 65, int

[73] Const Pointer to
Class (extended file 0,
index 2)

[ 3] int

symref 64

[22] Class(extended file 0,
index 8)

indexNil
symref 60

symref 57
[202] endref 78, void
symref 77
[ 3] int

indexNil

symref 72

[16] Class(extended file 0,

index 2)

symref 69

symref 74

symref 72

symref 76

symref 74

symref 66

symref 65

[204] endref 82, int
symref 81

symref 79

symref 78

symref 0
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9.3. Fortran

9.3.1. Common Data

See Section 5.3.6.6 for related information.

Source Listing

comm. f:

C main program
INTEGER IND, CLASS(10)
REAL MARKS (50)
COMMON CLASS, MARKS, IND
CALL EVAL(5)
STOP
END

SUBROUTINE EVAL (PERF)
INTEGER PERF,JOB(10),PAR
REAL GRADES (50)

COMMON JOB, GRADES, PAR
RETURN

END

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)( 0) comm.f File Text
1. (1) ( 0) comm$main_ Proc Text
2. ( 2)(0x10) Block Text
3. ( 3)( 0) _BLNK Static Common
4. ( 2)(0x44) End Text
5. ( 1) (0x44) comm$main_  End Text
6. ( 1) (0x44) eval Proc Text
7. ( 2)( 0) PERF Param VarRegister
8. ( 2)( 0x4) Block Text
9. ( 3)( 0) _BLNK Static Common
10. ( 2)( 0x4) End Text
11. ( 1) ( 0x8) eval End Text
12. ( 0) ( 0) comm.f End Text

File 1 Local Symbols:

0. (0)( 0) BLNK _ File Text
1. ( 1) (oxf4) BINK Block Common
2. ( 2)(0x780) IND Member Info
3. (2)( 0) CLASS Member Info
4. ( 2)(0x140) MARKS Member Info

symref 13

[25] endref 6, btNil

symref 5

[39] struct (extended file 1,
index 1)

symref 2

symref 1

[42] endref 12, btNil

[11] 32-bit long

symref 11

[56] struct (extended file 2,
index 1)

symref 8

symref 6

symref 0

symref 7

symref 6

[ 5] 32-bit long

[ 6] Array [(extended file O,
aux 11)1-10:4] of 32-bit
long

[12] Array [(extended file O,
aux 11)1-50:4] of float



0) BLNK _

File 2 Local Symbols:

0. ( 0)( 0) _BLNK
1. ( 1) (0xf4) BLNK
2. (2)( 0) JOB

3. ( 2)(0x780) PAR
4. ( 2)(0x140) GRADES

5. (1)
6. (0)(

Externals t
(file

U wND R o
O O OO oo

filename
cbLine
1nOffset
comm.o:
comm. f

_BLNK__

_BLNK__
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End Common symref 1
End Text symref 0
File Text symref 7
Block Common symref 6
Member Info [ 5] Array [(extended file O,

aux 11)1-10:4] of 32-bit
long

Member Info [11] 32-bit long
Member Info [12] Array [(extended file 0,

aux 11)1-50:4] of float

0) End Common symref 1
0) _BLNK End Text symref 0
le:
( 0) MAIN_ Proc Text symref 1
(0xf4) _BLNK Global Common indexNil
( 0) comm$main_Proc Text symref 1
(0x44) eval_ Proc Text symref 6
( 0) for stop Proc Undefined indexNil
( 0) for set reentrancy
Proc Undefined indexNil
( 0) _fpdata Global Undefined indexNil
***FTLE DESCRIPTOR TABLE***
address vstamp -g sex lang flags
——————————————— iBase/count-----=-------“~“ -
sym line pd string opt aux rfd
0x0000000000000000 0x0000 O el Fortran readin
0 0 0 0 0 0 0
13 20 2 44 0 59 0
0x0000000000000000 0x0000 O el Fortran merge
13 0 2 44 0 59 0
7 0 0 33 0 18 0
0x0000000000000000 0x0000 O el Fortran merge
20 0 2 77 0 77 0
7 0 0 32 0 18 0
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9.3.2. Alternate Entry Points
See Section 5.3.6.7 for related information.

Source Listing

aent.f:
program entryp

print *, "In entryp, the main routine"
call anentry()

call anentryl(2,3)

call anentryla(2,3,4,5,6,7)

call asubr()

print *, "exiting..."

end

subroutine asubr

real*4 areal /1.2345E-6/
print *, "In asubr"
return

entry anentry
print *, "In anentry"
return

entry anentryl(a,b,c,d, e, f)
a =1

b =2

print *, "In anentryl"
return

include 'entrya.h'

entry anentry2 (b, a)

print *, "In anentry2"
return

entry anentry3

include 'entryb.h'

return

end

Symbol Table Contents
File 0 Local Symbols:

0. ( 0)( 0) aent.f File Text symref 30
1. (1) ( 0) entryp Proc Text [ 4] endref 5,
2. ( 2)(0x14) Block Text symref 4
3. ( 2) (0x£f8) End Text symref 2

btNil



4. (1) (0x108) entryp End Text symref 1
5. ( 1) (0x108) asubr_ Proc Text [ 6] endref 29, btNil
6. ( 2)(0x20) Block Text symref 28
7. ( 3)(0x610) AREAL Static Data [ 8] float
8. ( 3)(0xl1l7c) anentry  Proc Text [ 9] endref -1, btNil
9. ( 4)(0x1f0) anentryl Proc Text [11] endref -1, btNil
10. ( 5)( Oxa) A Param VarRegister [ 8] float
11. ( 5)( 0x9) B Param VarRegister [ 8] float
12. ( 5)(-144) C Param Var [ 8] float
13. ( 5)(-152) D Param Var [ 8] float
14. ( 5) (-160) E Param Var [ 8] float
15. ( 5) (-168) F Param Var [ 8] float
16. ( 5) (0x290) anentryla_ Proc Text [13] endref -1, btNil
17. ( 6) ( Oxa) A Param VarRegister [ 8] float
18 (6)( 0x9) B Param VarRegister [ 8] float
19. ( 6) (-144) C Param Var [ 8] float
20. ( 6)(-152) D Param Var [ 8] float
21. ( 6) (-160) E Param Var [ 8] float
22. ( 6)(-168) F Param Var [ 8] float
23. ( 6) (0x330) anentry2_ Proc Text [15] endref -1, btNil
24. ( 7)( 0x9) B Param VarRegister [ 8] float
25. ( 7)( Oxa) A Param VarRegister [ 8] float
26. ( 7) (0x3ac) anentry3_ Proc Text [17] endref -1, btNil
27. ( 7) (0x384) End Text symref 6
28. ( 6) (0x3a0) asubr_ End Text symref 5
29. ( 5)( 0) aent.f End Text symref 0
Externals table:
0. (file 0) ( 0) MAIN Proc Text symref 1
1. (file 0) ( 0) entryp Proc Text symref 1
2. (file 0) (0x108) asubr_ Proc Text symref 5
3. (file 0) (0x290) anentryla Proc Text symref 16
4. (file 0) (0x1f0) anentryl  Proc Text symref 9
5. (file 0) (0x17c) anentry Proc Text symref 8
6. (file 0) ( 0) for set_reentrancy
Proc Undefined indexNil
7. (file 0) ( 0) for write seq lis
Proc Undefined indexNil
8. (file 0) (0x330) anentry2  Proc Text symref 23
9. (file 0) (0x3ac) anentry3  Proc Text symref 26
10. (file 0) ( 0) _fpdata Global Undefined indexNil
***PROCEDURE DESCRIPTOR TABLE***
name prof rfrm isym iline iopt regmask regoff fpoff fp
address guse gpro 1nOff 1lnLow lnHigh fregmask frgoff lcloff pc
aent.o:
aent.f [0 for 7]
entryp 0 0 1 0 -1 0x04000200 -112 112 30
0x000 1 8 0 1 10 0x00000000 0 0 26
asubr_ 0 0 5 66 -1 0x04001e00 -256 256 30
0x108 1 8 8 12 37 0x00000000 0 0 26
anentry 0 0 8 95 -1 0x04001e00 -256 256 30
0x17¢c 1 8 11 17 -1 0x00000000 0 0 26
anentryl 0 0 9 124 -1 0x04001e00 -256 256 30
0x1f0 1 8 14 21 -1 0x00000000 0 0 26
anentryla 0 0 16 164 -1 0x04001e00 -256 256 30
0x290 1 8 20 1 -1 0x00000000 0 0 26
anentry2 0 0 23 204 -1 0x04001e00 -256 256 30
0x330 1 8 25 29 -1 0x00000000 0 0 26
anentry3 0 0 26 235 -1 0x04001e00 -256 256 30
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0x3ac

28

33

318

-1

0x00000000

26
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9.3.3. Array Descriptors
See Section 5.3.8.9 for related information.

Source Listing

arraydescs.f:
! -*- Fortran -*-

integer, allocatable, dimension(:,:) :: alloc_int 2d
real, pointer, dimension(:) :: pointer real 1d

allocate(alloc_int 2d(10,20))
call zowie(alloc_int_2d)
end

contains

subroutine zowie (assumed_int_2d)

integer, dimension(:,:) :: assumed int 2d
print *, assumed int 2d
return

end subroutine

Symbol Table Contents
File 0 Local Symbols:

0. ( 0)( 0) arraydescs.f File Text symref 43
1. (1) ( 0) main$arraydescs_
Proc Text [ 4] endref 26, btNil
2. ( 2)(0x40) $£f905f90 array desc
Block Info symref 10
3. ( 3)( 0) dim Member Info [ 6] 8-bit int
4. ( 3)(0x40) element length Member Info [ 71 32-bit long
5. ( 3)(0x80) ptr Member Info [ 9] Pointer to float
6. ( 3)(0x140) iesl Member Info [10] 32-bit long
7. ( 3)(0x180) ubl Member Info [11] 32-bit long
8. ( 3)(0x1lcO) 1bl Member Info [12] 32-bit long
9. ( 2)( 0) $£90$£f90 array desc
End Info symref 2
10. ( 2) (0x58) $£90$f90 array desc
Block Info symref 21
11. ( 3)( 0) dim Member Info [16] 8-bit int
12. ( 3) (0x40) element length
Member Info [17] 32-bit long
13. ( 3) (0x80) ptr Member Info [19] Pointer to 32-bit long
14. ( 3) (0x140) iesl Member Info [20] 32-bit long
15. ( 3) (0x180) ubl Member Info [21] 32-bit long
16. ( 3) (0x1lc0O) 1lbl Member Info [22] 32-bit long
17. ( 3) (0x200) ies2 Member Info [23] 32-bit long
18. ( 3) (0x240) ub2 Member Info [24] 32-bit long
19. ( 3) (0x280) 1b2 Member Info [25] 32-bit long
20. ( 2)( 0) $£90S$£f90 array desc



21.
22.

23.

24 .
25.

26.
27.

28.
29.

30.
31.
32.
33.
34.
35.
36.
37.

38.

39.
40.
41.
42.

A~~~ o~~~ o~ —~

—~ o~~~

End
2) (0x14) Block
3) (0x450) POINTER REAL 1D
Static

3) (0x3c0) ALLOC_INT 2D

Static
2) (0x160) End
1) (0x170) main$arraydescs
End
1) (0x170) zowie Proc
2) (0x58) $£90$f90 array desc
Block
3) ( 0) dim Member
3) (0x40) element length
Member
3) (0x80) ptr Member
3) (0x140) iesl Member
3) (0x180) ubl Member
3) (0x1c0) 1bl Member
3) (0x200) ies2 Member
3) (0x240) ub2 Member
3) (0x280) 1b2 Member
2) ( 0) $£908£f90_array desc
End
2) ( 0x9) ASSUMED_ INT 2D
Param
2) (0x34) Block
2) (0x1£f4) End
1) (0x220) =zowie_ End
0) ( 0) arraydescs.f End
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Info symref 10
Text symref 25
Bss [

Data [
Text

Text
Text

Info
Info

Info
Info
Info
Info
Info
Info
Info
Info

Info
VarRegister
Text
Text

Text
Text

13] struct (extended file 0,

index 2)

26] struct (extended file 0,

index 10)

symref 21

symref 1
[29] endref

symref 38

42,

[31] 8-bit int

32] 32-bit

35] 32-bit
36] 32-bit
37] 32-bit
38] 32-bit
39] 32-bit
40] 32-bit

symref 27

[41] struct (extended file 0,

long

long
long
long
long
long
long

index 27)

symref 41
symref 39
symref 26
symref O

btNil

34] Pointer to 32-bit long



9.4. Pascal

9.4.1. Sets
See Section 5.3.8.13 for related information.

Source Listing

program sets (input,output) ;
type digitset=set of 0..9;
var odds,evens:digitset;
begin

odds:=[1,3,5,7,91;
evens:=[0,2,4,6,8];

end.

Symbol Table Contents
File 0 Local Symbols:

0. ( 0)( 0) set.p File
1. ( 1) (0x50) $dat Static
2. (1)( 0) main Proc
3. (2)( ox4) Block
4. ( 3)( 0) digitset Typdef
5. ( 3)(-8) odds Local
6. ( 3)(-16) evens Local
7. ( 2)(0xlc) End
8. ( 1) (0x24) main End

9. ( 0)( 0) set.p End
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Text
SBss
Text
Text
Info

Abs
Abs
Text

Text
Text

symref 10

indexNil

[ 8] endref 9, btNil

symref 8

[16] set of (extended file 0,
index 10)

[16] set of (extended file 0,
index 10)

[16] set of (extended file 0,
index 10)

symref 3

symref 2

symref 0



9.4.2. Subranges
See Section 5.3.8.12 for related information.

Source Listing

subrange.p:

program years (input, output) ;
type century=0..99;

var year:century;

begin

readln (year) ;

end.

Symbol Table Contents
File 0 Local Symbols:

0. ( 0)( 0) subrange.p File
1. ( 1) (0xc0) Sdat Static
2. (1)( 0) main Proc
3. ( 2)(0x10) Block
4. ( 3)( 0) century Typdef
5. ( 3)(-8) year Local
6. ( 2)(0x68) End
7. (1) (0x74) main End

8. ( 0)( 0) subrange.p End
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Text
SBss
Text
Text
Info

Abs
Text

Text
Text

symref 9
indexNil

[ 8] endref 8, btNil

symref 7

[10] rangeO..
file 0,

[10] rangeO..
file 0,

symref 3

symref 2

symref 0

99 of (extended

index 2): 8
99 of (extended
index 2): 8



323

9.4.3. Variant Records
See Section 5.3.8.11 for related information.

Source Listing

variant.p:
program variant (input, output) ;

type employeetype=(h,s,m) ;
employeerecord=record
id:integer;
case status: employeetype of
h: (rate:real;
hours:integer;) ;
s: (salary:real);
m: (profit:real);
end; { record }

var employees:array[l..100] of employeerecord;
begin

employees[1] .id:=1;
employees[1] .profit:=0.06;

end.

Symbol Table Contents

File 0 Local Symbols

0. (0)( 0) variant.p File Text symref 28
1 (1) ( 0) VARIANT StaticProc Text [2] endref 27, btNil
2 (2) ( 0) EMPLOYEETYPE
Block Info symref 7
3. (3)( 0) H Member Info [0] btNil
4. (3)( 0x1) s Member Info [0] btNil
5. (3)( 0x2) M Member Info [0] btNil
6. (2)( 0) EMPLOYEETYPE
End Info symref 2
7 (2) (0x10) EMPLOYEERECORD
Block Info symref 23
8 (3) ( 0) ID Member Info [1] int
9 (3) (0x20) STATUS Member Info [5] enum(extended file 1, index
2)
10. (3) ( 0x9) Block Variant symref 22
11. (4) ( 0xc) Block Info symref 15
12. (5) (0x40) RATE Member Info [11] float
13. (5) (0x60) HOURS Member Info [1] int
14 (4) ( 0) End Info symref 11
15. (4) (0x11) Block Info symref 18
16. (5) (0x40) SALARY Member Info [11] float
17. (4) ( 0) End Info symref 15



18.
19.
20.
21.
22.

23.
24 .

25.
26.
27.

(4) (0x16) Block
(5) (0x40) PROFIT Member
(4) ( 0) End
(3) ( 0x9) End
(2) ( 0) EMPLOYEERECORD
End
(2) (0x18) Block

(3) (-1600) EMPLOYEES Local

(2) (0x30) End
(1) (0x40) VARIANT End
(0) ( 0) variant.p End
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Info
Info
Info
Variant

Info
Text
Abs

Text
Text
Text

symref 21
[11] float
symref 18
symref 10

symref 7

symref 26

[32] Array [(extended file 1,
aux 27)1-100:128] of struct
(extended file 1, index 7)

symref 23

symref 1

symref 0
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.conflict, 279

Ada, 156, 172, 204, 234, 236, 243, 244
Alternate entry points, 209
Archive
Symdef file, 295
Archive files, 240, 291
Auxiliarly symbol table, 181, 211, 215, 216, 217, 218, 219, 220

C

C++, 139, 155, 162, 168, 169, 171, 172, 173, 174, 175, 176, 180, 204, 207, 208, 210, 224, 228, 229, 230, 231, 241,
243, 271

COBOL, 157, 158, 161, 162, 172, 174

Common symbals, 156, 167, 208, 209, 240, 260, 277, 279

Compact relocation information, 90, 131, 132, 133, 134

D
diclose, 265
dlopen, 261, 264, 265, 275, 277
disym, 266

E

Executable File, 69, 74, 75
Extended Source Location Information, 187, 188, 189, 190, 191, 192, 193

F

File header, 38, 39, 40, 133
Fortran, 139, 156, 168, 172, 173, 175, 208, 209, 222, 241, 243

K
Kerndl, 91, 124, 258

L
Lazy text resolution, 276
Line Number Information

ESLI, 187, 188, 189, 190, 191, 192, 193

M
Mangling/Demangling, 241, 243

N

Namespace pollution, 271
NMAGIC, 79
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O
Object
File header, 38, 39, 40, 133
Object file consumers, 85, 190, 193
OMAGIC, 79, 91
P
Pascal, 156, 161, 172, 204, 211, 234, 236, 238, 243, 244
R
Relocation, 84, 85, 86, 87, 88, 89, 92, 93, 99, 100, 101, 139, 254, 278
S
Scopes, 201, 202
Section header, 90, 133
Stripped object files, 179, 180
Symbol resolution, 240, 270
Symdef file, 295
T

TASO (Truncated Address Support Option), 250
Thread Local Storage, 64, 73, 80, 81, 82, 89, 97, 100, 128, 129, 130, 156, 157, 167, 200, 242, 250, 265, 266, 272

W
Weak symbols, 273

ZMAGIC, 79, 91, 258



