
Tru64 UNIX
NUMA Overview

Part Number: AA-NUMAG-DE

September 2002

Operating System and Version: Tru64 UNIX Version 5.1 or higher

This document introduces the operating system features that support
Non-Uniform Memory Access (NUMA) and explains when and how they
are used.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

UNIX® and The Open Group™ are trademarks of The Open Group in the U.S and/or other countries. All
other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

Preface

1 NUMA Concepts
1.1 RADs and Hardware Design 1–2
1.1.1 GS80, GS160, and GS320 AlphaServer Systems 1–3
1.1.2 ES80 and GS1280 AlphaServer Systems 1–4
1.1.3 Implications for Portability 1–6
1.2 RADs and Partitioning 1–7
1.3 RADs, Resource Allocation, and Process Scheduling 1–9
1.3.1 NUMA Enhancements to System Utilities and Daemons . 1–9
1.3.2 NUMA APIs 1–11

2 NUMA-Aware Applications
2.1 Default NUMA-Aware Behavior of the Operating System 2–1
2.2 NUMA APIs for User Applications 2–2
2.3 NUMA Memory Management Policies 2–11

A The radtool Program

B Reference Pages for NUMA APIs
numa_types(4) B–3
numa_scheduling_groups(4) B–13
cpu_foreach(3) B–15
cpu_get_current(3) B–18
cpu_get_info(3) B–20
cpu_get_rad(3) B–23
cpusetops(3) B–24
memalloc_attr(3) B–29
nfork(3) B–32
nloc(3) B–39
nmadvise(3) B–43
nmmap(3) B–48
nsg_attach_pid(3) B–50
nsg_destroy(3) B–54

Contents iii

nsg_get(3) B–56
nsg_get_nsgs(3) B–58
nsg_get_pids(3) B–60
nsg_init(3) B–62
nsg_set(3) B–66
nshmget(3) B–68
pthread_nsg_attach(3) B–71
pthread_nsg_detach(3) B–75
pthread_nsg_get(3) B–77
pthread_rad_attach(3) B–79
pthread_rad_detach(3) B–82
rad_attach_pid(3) B–83
rad_detach_pid(3) B–87
rad_foreach(3) B–89
rad_fork(3) B–92
rad_get_current_home(3) B–94
rad_get_num(3) B–95
radsetops(3) B–100

Index

Examples
A–1 Source File for the radtool Program A–2
A–2 Header File for the radtool Program A–7
A–3 Makefile for the radtool Program A–7

Figures
1–1 RAD/QBB Mapping 1–3
1–2 RAD Mapping in a Switchless Mesh Configuration 1–5
1–3 Partitioned NUMA System 1–8

Tables
1–1 NUMA Enhancements to System Utilities and Daemons 1–9
2–1 RADs and RAD Sets 2–5
2–2 CPUs and CPU Sets 2–7
2–3 NUMA Scheduling Groups 2–8
2–4 Processes and Threads 2–9
2–5 Memory Management 2–10

iv Contents

Preface

This is a post-release document that is currently available only on line, in
HTML and PDF formats, at the HP Tru64 UNIX web site. This document
is not orderable in printed form nor is it included on the Tru64 UNIX
documentation CD-ROMs.

If you are using a web browser to read the HTML version of this document,
you can click on documentation cross-references to display them. Some
cross-references are to different locations in this document and some
cross-references are to reference pages not included in this document.
External references display in a different window from sections in this
document. You can therefore navigate among sections of this document in
one window and among external documents in the supplementary window.

Audience

This document is aimed at system administrators and programmers who
will be using Tru64 UNIX Version 5.1 and Version 5.1A on GS80, GS160, and
GS320 AlphaServer systems or Tru64 UNIX Version 5.1B on GS80, GS160,
GS320, ES80, and GS1280 AlphaServer systems.

Conventions

This document uses the following conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside

Preface v

brackets or braces indicate that you choose one item
from among those listed.

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

vi Preface

1
NUMA Concepts

On traditional multiprocessor systems, there is one interconnect, either a
bus or a switch, that links all system resources. This means that all CPUs
in the system are subject to the same latency and bandwidth restrictions
with respect to accessing the system’s memory and I/O channels. Uniform
Memory Access (UMA) is a term sometimes used to describe the system
architecture in which all CPUs access memory and I/O by using the same
bus or switch. This document refers to systems that use UMA architecture
as traditional symmetric multiprocessor (SMP) systems.

The drawback of the architecture of traditional SMP systems is that scaling
the system to large numbers of CPUs causes the system bus to become a
performance bottleneck. One way to address this bottleneck is to design
a system composed of SMP units (each with a limited number of CPUs,
memory arrays, and I/O ports) that have access one another’s resources
through a high speed bus or switch. Non-Uniform Memory Access (NUMA)
is the term used to describe this type of system architecture because it
results in bandwidth and latency differences, depending on whether a
particular CPU accesses memory and I/O resources in its own SMP unit or
in one more distant.

Hardware Requirements for NUMA Support

The first NUMA implementations did not support cache coherency between
the SMP building blocks, only within them. On these early NUMA
implementations, software was responsible for ensuring cache coherency
when a CPU accessed memory in any SMP unit other than the one in which
the CPU was located.

All AlphaServer NUMA systems are cache-coherent NUMA (CC-NUMA)
systems, for which system hardware handles cache coherency between the
system’s SMP units as well as within them. Because software is relieved of
this responsibility, both the operating system and user applications can treat
a CC-NUMA system the same way they treat a traditional SMP system
and still be programmatically correct.

The GS80, GS160, and GS320 AlphaServer systems were the first Alpha
implementations of CC-NUMA systems.

NUMA Concepts 1–1

The ES80 and GS1280 AlphaServer systems are the current generation of
cache-coherent NUMA systems and are supported by Tru64 UNIX Version
5.1B and higher versions.

Performance Implications of NUMA Support

Although software can treat a CC-NUMA system as a traditional SMP
system and still be programmatically correct, obtaining optimal performance
from a CC-NUMA system depends on appropriate use of its capabilities.
In a network of systems, an application must sometimes run on a remote
system rather than one local to the user. However, the application will
almost always run faster on a local system that has all the resources needed
by the application. This is because the connection between the systems
increases response latency. The same principal applies when you consider a
CC-NUMA multiprocessor system as a network of SMP units, each of which
contains a set of CPUs, memory arrays, and I/O ports. The CPUs in one SMP
unit can access memory that is available locally or remotely (in another SMP
unit). However, using local memory is fastest; there is some performance
penalty for accessing memory in another SMP unit.

Starting with Tru64 UNIX Version 5.1, the operating system includes kernel
algorithms, utilities, and programming APIs that are NUMA aware. These
algorithms and user interfaces are used to maximize the ratio of local to
remote memory accesses and thereby help ensure optimal performance on
CC-NUMA hardware.

In most of the software product documentation pertaining to NUMA
support, references to a NUMA system assume a CC-NUMA hardware
implementation. Therefore, this document also refers to CC-NUMA systems
as NUMA systems.

1.1 RADs and Hardware Design

On Tru64 UNIX systems, the building blocks that make up a NUMA system
are mapped to structures called Resource Affinity Domains (RADs). A RAD
identifies the set of CPUs, memory arrays, and I/O busses that, when used
together, allow the system to work most efficiently.

The concept of a resource affinity domain, like most abstract concepts, is
easier learned in the context of a concrete example. For that reason, it is
worthwhile to consider what a RAD corresponds to in current AlphaServer
systems.

1–2 NUMA Concepts

1.1.1 GS80, GS160, and GS320 AlphaServer Systems

On the GS80, GS160, and GS320 AlphaServer systems, each SMP unit is
called a Quad Building Block (QBB or QUAD). Figure 1–1 shows how a
RAD maps to a QBB.

Figure 1–1: RAD/QBB Mapping

ZK-1804U-AI

Switch

GP0
GP1

GP2

QBB0 QBB1 QBB2

RAD0 RAD1 RAD2

Each QBB can contain up to four CPUs, a set of memory arrays, and an I/O
processor (IOP) that, through two I/O risers, accommodates two to eight I/O
busses. An internal switch in each QBB allows all CPUs equal access to both
local memory and the I/O busses connected to the local I/O processor. An
application running on a CPU in one QBB accesses the memory in another
QBB by routing through the global port (GP) of the local QBB and the global
port (GP) of the other QBB. On larger NUMA systems (GS160 and GS320),
access is also routed through a Hierarchical Switch (sometimes called the
HSwitch or Global Switch) that connects the global ports of all QBBs.
Therefore, the remote/local response latency between QBBs is on the order
of 2/1 or 3/1, depending on the type of system.

Although the operating system supports transparent resource access
through the global ports and the HSwitch, performance is optimized when
process operations use memory and I/O channels in the same QBB as the
CPU where the process is running. Therefore, the CPUs, memory arrays,
and I/O busses in the same QBB are viewed by the operating system as
having affinity for one another and are included in the same RAD.

Starting with Tru64 UNIX Version 5.1, the operating system makes a best
effort to:

• Schedule all threads of a multithreaded application on CPUs in the
same RAD

NUMA Concepts 1–3

• Allocate memory for each process or application thread in the same RAD
as the CPU where the process or thread is running

The default NUMA-aware algorithms for scheduling and allocating
resources to a process or thread work well when the resources in one RAD
can accommodate the number of threads and the memory demands in any
one application.

The NUMA application programming interfaces (APIs) allow applications
to make scheduling and resource allocation decisions based on advance
knowledge of the application’s resource needs and behavior. Proper
manipulation of system resources and process scheduling through NUMA
APIs has the following potential advantages:

• A master application can distribute associated applications among
available QBBs in a way that will ensure each the most likelihood of
using CPU cycles, memory cache, and I/O channels of the same QBB.

• An application can notify the operating system of relationships between
processes and threads that should be scheduled on the same RAD and,
if migration to another RAD becomes advantageous, must be moved
together.

• A very large and complex application whose resource demands and
number of threads exceed the capacity of one QBB can stripe its CPU
cycles, I/O load, and the memory that contains program data across
QBBs.

1.1.2 ES80 and GS1280 AlphaServer Systems

On the GS1280 AlphaServer systems, each SMP unit is called a RAD. The
ES80 and GS1280 AlphaServer platforms use a design wherein one- or
two-processor RADs are connected to one another in a switchless mesh
configuration, as shown by Figure 1–2.

1–4 NUMA Concepts

Figure 1–2: RAD Mapping in a Switchless Mesh Configuration

ZK-1961U-AI

RAD0 RAD2 RAD4 RAD6

RAD3RAD1 RAD5 RAD7

RAD12 RAD14RAD10RAD8

RAD13 RAD15RAD11RAD9

Note how the cables from RADs at the edges of the mesh wrap around to
connect to RADs on the opposite side of the mesh. Although not shown in the
figure, each RAD has its own memory and I/O channel.

In this NUMA implementation, the inter-RAD distance varies and can be
defined in terms of how many “hops” it takes to get from a RAD in one
location to a RAD in another location. For example, assuming that a process
is running on a CPU in RAD0, access to additional resources is:

• One hop away if the resources are in RADs 1, 2, 6, and 9

• Two hops away if the resources are in RADs 3, 4, 7, 8, 11, and 15

• Three hops away if the resources are in RADs 5, 10, and 13

The advantage of the switchless mesh implementation is that the faster
chip speed and extremely fast inter-RAD connections result in a negligible

NUMA Concepts 1–5

increase in memory latency for each hop. More specifically, it would take
about five hops before the memory latency penalty for remote memory
access equals what it would be on a NUMA system using a hierarchical
switch implementation, such as in a GS80, GS160, or GS320 AlphaServer.
Therefore, the switchless mesh implementation, particularly when
single-processor RADs are used, more closely emulates the behavior of a
traditional SMP system but is one that permits modular growth. This makes
a GS1280 AlphaServer system the best NUMA platform option for large,
multithreaded applications that are written for traditional SMP systems but
need more CPU resources than a traditional SMP system can provide.

1.1.3 Implications for Portability

It is important to emphasize two points about NUMA platforms:

• A RAD is a more generic concept than what it maps to in hardware.

Applications can assign themselves to a particular RAD. In addition,
system administrators can start applications on a RAD by using
the -r option of the runon command. However, to be portable and
maintainable, applications and scripts should not bind themselves to
hardware topology. For example, applications and scripts should not
assume that a RAD always contains a particular number of CPUs. In
addition, applications and system administration scripts should never
depend on the existence of a particular RAD identifier, such as 0, 1, or 2.

• In most cases, it is not necessary for programmers to rewrite existing
applications or for system administrators to assign applications to
specific RADs to obtain good performance on NUMA platforms running a
mix of applications. Use of NUMA APIs and RAD-specific scheduling by
a system administrator are recommended only for specific cases.

A RAD is used by software to identify and use optimal combinations of
run-time resource combinations independently of hardware platform
differences. Therefore, RADs support application portability among different
NUMA implementations.

This application portability also applies to traditional SMP systems, such
as those in the ES and DS families of AlphaServer systems. Starting with
Tru64 UNIX Version 5.1, NUMA-aware applications can run on these SMP
systems by handling them as single-RAD systems. On single-RAD systems,
the only RAD that exists is RAD0, which contains all the CPUs, memory
arrays, and I/O channels in the system. There is no performance advantage
to running NUMA-aware applications on a single-RAD system (all resources
are treated as being equidistant from one another). However, application
portability is preserved as long as the application is designed to:

• Query the configuration to get information about available RADs

1–6 NUMA Concepts

• Use only the RADs that are currently available

The NUMA structures and functions discussed in Chapter 2 are analogous
to those used by the operating system software. Although they can be used
in any program, they are recommended for use only in specialized layered
software, such as databases, transaction processing products, or high
performance technical computing applications, for which dedicated use and
control of system resources are appropriate. For system administrators,
there are also tuning parameters that can be adjusted to customize memory
allocation on a per-RAD basis. However, even RAD-specific tunable
parameters are best left to be automatically set by the operating system
(or, if reset, be the same value for all RADs) unless all user applications
being run on the system are NUMA aware. Therefore, RAD-specific
system tuning should be used only when the NUMA system (or one of its
hardware partitions) is dedicated to running NUMA-aware applications.
(See Section 1.2 for more information about partitioning.)

1.2 RADs and Partitioning

Partitioning refers to dividing a system into two or more resource groups, or
partitions, each partition containing CPUs, memory, and I/O channels. After
a system is partitioned, each partition is used independently of the others.
Theoretically, partitioning can be done through hardware (hard partitioning)
or operating system software (soft partitioning).

Hard partitioning is supported on all NUMA platforms and partitions all
resources (CPUs, memory, and I/O channels). For hard partitioning, the
operating system provides resource management features that do not cross
partition boundaries.

For example, a hard partition on a GS160 or GS320 AlphaServer system
can contain one or more QBBs and is set up through a hardware console
facility. When a system is partitioned, an operating system is installed in
each partition. Therefore, a GS320 with two partitions can be running two
instances of the same version of Tru64 UNIX software, two different versions
of Tru64 UNIX software, or two entirely different operating systems.
As shown in Figure 1–3, each operating system instance is essentially
firewalled from access to resources in any hard partition except the one in
which it is running.

NUMA Concepts 1–7

Figure 1–3: Partitioned NUMA System

ZK-1805U-AI

Switch

GP0
GP1

GP2

QBB0 QBB1

OS instance
in Partition 0

OS instance
in Partition 1

QBB0

RAD0 RAD1 RAD0

The instance of Tru64 UNIX software that is running in Partition 0 can
access two QBBs whereas the instance that is running in Partition 1 can
access 1 QBB. In each partition, QBB numbering and RAD numbering starts
at 0 and are unique only within the same partition. An operating system
does not have access to information about RADs or their associated QBBs
in any hard partition save the one in which it is installed. Even firmware
upgrades must be installed independently on each hard partition.

This point is important when using NUMA user and programming interfaces
provided by the operating system. When the operating system is installed in
a partition, queries about the number of RADs or CPU slots available in the
system return the number of RADs available in the partition.

Recognition that the system contains three QBBs occurs at the hardware
level through the HSwitch, which recognizes each QBB through its
unique global port identifier. System operators can access platform-wide
information through an external System Management Console (SMC).
Operating system instances that are installed on any of the partitions do
not have access to the SMC.

Hardware partitioning is also supported on NUMA platforms based on the
switchless mesh architecture but the implementation details are different.
However, the end result is the same in that operating system software has
no access to partitions other than the one in which it is installed.

1–8 NUMA Concepts

User-Defined Processor Sets

A partial implementation of soft partitioning, called a user-defined processor
set (pset), is supported on both SMP and NUMA platforms. A pset partitions
CPUs but does not partition I/O channels. Psets are created and managed
by using the pset_* commands or the comparable programming interfaces
that are included in the operating system product.

On NUMA platforms, system administrators should factor in the RAD
locations of CPUs when assigning them to psets. On a NUMA system, it is
important to create a pset that contains processors in the same RAD or (if
more processors are required than a RAD contains) in the fewest number of
RADs that are needed to meet the resource requirements of the applications
to be run on the processor set. On ES80 and GS1280 AlphaServer systems,
which use the switchless mesh NUMA implementation, a processor set
should include CPUs in the same RAD or in a set of RADs adjacent to one
another. Creating a pset to contain CPUs that are as close as possible to one
another optimizes performance on NUMA systems because it minimizes the
performance penalty of accesses to remote memory. System administrators
and programmers should apply this principle both to processor sets being
defined for new applications and processor sets being defined for applications
that previously ran on traditional SMP systems. See pset_create(1)
for information about creating a pset and for cross-references to other
pset-related reference pages.

1.3 RADs, Resource Allocation, and Process Scheduling

NUMA enhancements are available through command-line and
programming interfaces.

1.3.1 NUMA Enhancements to System Utilities and Daemons

Starting with Tru64 UNIX Version 5.1, system administrators can use the
-r option of the runon command to execute an application on a specific
RAD. This and additional NUMA enhancements for resource monitoring and
scheduling are described in Table 1–1.

Table 1–1: NUMA Enhancements to System Utilities and Daemons
Command Description Reference Page

hwmgr view hier Displays the RAD location of
CPUs and devices. Output
from this command identifies
the hardware construct that
corresponds to a RAD.

hwmgr_view(8)

NUMA Concepts 1–9

Table 1–1: NUMA Enhancements to System Utilities and Daemons (cont.)

Command Description Reference Page

inetd -r Customizes the RAD locations
on which to start Internet
server child daemons. By
default, one child daemon is
started on each RAD.

inetd(8)

netstat -R Displays the network routing
tables for each RAD.

netstat(1)

nfsd -t and nfsd -u Customizes the number
of TCP and UCP server
threads, respectively, that
are spawned per RAD. This
feature allows the NFS server
to automatically scale the
number of TCP and UCP
server threads according to
the size of the system.

nfsd(8)

ps -o RAD Includes RAD binding in
the information displayed
about processes running
on the system.

ps -O NUMA Includes process ID, user,
terminal, time, and command
information along with
processor, pset, RAD,
and NSG information for
running processes.

ps(1)

runon -r Executes an application on
a specific RAD.

runon(1)

sched_stat Displays process scheduling
statistics on a per-RAD basis
(available starting with Tru64
UNIX Version 5.1B).

sched_stat(8)

vmstat -r Displays virtual memory
statistics for a specific RAD.

vmstat(1)

______________________ Note _______________________

On Tru64 UNIX Version 5.1 and Version 5.1A systems, system
administrators cannot determine the RAD location of a CPU
through a command-line or graphical interface. (For programs,
the rad_get_cpus() function returns this information.)
However, Appendix A contains the source code for a utility that
queries the system for RAD and CPU identifiers. Sites can copy,
adapt, and build this program for local use. Starting with Tru64

1–10 NUMA Concepts

UNIX Version 5.1B, the sched_stat utility displays tables that
reveal the RAD locations of system CPUs and the RAD distance
(number of hops) that separates any two CPUs.

For the GS80, GS160, and GS320 AlphaServer systems, CPU
identifiers and RAD identifiers have a fixed relationship, such
that CPUs 0 to 3 are in RAD0, CPUs 4 to 7 are in RAD1, and so
forth. Therefore, system administrators can assume for use in
the pset_assign_cpu command that this fixed relationship
of CPU numbers to RAD numbers is valid. However, the fixed
relationship of these numbers does not apply to the ES80 and
GS1280 AlphaServer systems. Therefore, users should not
write scripts or programs that assume a fixed relationship of
CPU numbers to RAD numbers if they want these scripts and
programs to be portable to all types of NUMA AlphaServer
systems. In addition, users should not write scripts that assume
that the boot CPU always resides in RAD0. RAD0 is typically a
default location but is not a required location for the boot CPU on
NUMA platforms using current versions of firmware.

1.3.2 NUMA APIs

The NUMA APIs are used to:

• Identify and query the number of existing RADs and the availability of
resources in these RADs

• Identify the RADs that are equal to or less than a specified distance
(number of hops) from a particular resource

• Schedule processes and threads to run in RADs that offer the appropriate
balance of available CPU cycles and memory for what the processes
will be doing

See Section 2.2 for a summary of the library routines associated with
NUMA-aware resource allocation and process scheduling.

The NUMA APIs are recommended for new versions of applications
that currently create and manipulate psets if those applications
will run on NUMA AlphaServer systems as well as traditional SMP
systems. Existing applications that use the functions create_pset(),
destroy_pset(), assign_cpu_to_pset(), assign_pid_to_pset(),
and print_pset_error() do not require changes to be able to run on
NUMA AlphaServer systems. However, the manner in which existing
programs assign CPUs to a processor set does not take into account the
recommended practice of minimizing the distance of memory accesses on a
NUMA system. If this distance is not as small as possible (given the amount

NUMA Concepts 1–11

of local or nearby memory that is available), the application might not
achieve optimal performance.

For this reason, new applications designed for use on NUMA systems or
on both traditional SMP and NUMA systems should use NUMA APIs.
Reference pages for these APIs are listed in Section 2.2.

1–12 NUMA Concepts

2
NUMA-Aware Applications

Starting with Tru64 UNIX Version 5.1, Tru64 UNIX software is composed
of NUMA-aware programs. Therefore, the majority of user applications do
not have to use NUMA APIs to achieve reasonable performance on NUMA
systems. However, certain user applications might be optimized through
direct use of these APIs. This chapter describes the default NUMA-aware
behavior in the operating system, and provides an overview of the NUMA
APIs that applications can use directly.

2.1 Default NUMA-Aware Behavior of the Operating System

Starting with Tru64 UNIX Version 5.1, the following defaults are in place to
increase the likelihood that NUMA system resources are used efficiently for
most types of applications:

• The operating system defines a “home RAD” for each process and all its
threads. Default process or thread scheduling and memory allocation are
done on the assigned home RAD whenever possible.

In other words, the operating system attempts to schedule a process and
all its threads on CPUs in the home RAD. Furthermore, the operating
system attempts to allocate memory for application and kernel data
on the home RAD. The cache affinity algorithms previously available
for traditional SMP systems are also used. Therefore, if a thread that
previously ran on a particular CPU needs to be scheduled, the operating
system attempts to schedule that thread on the same CPU.

The operating system also defines a default overflow set of RADs. When
there is insufficient free memory for application and kernel data on the
home RAD, the operating system attempts to allocate memory from one
or more remote RADs based on the default overflow set.

Starting with Tru64 UNIX Version 5.1B and for NUMA platforms where
RADs are not equidistant from one another in terms of response latency,
the operating system first attempts to allocate the needed memory from
a RAD that is one hop from the home RAD, then from a RAD that is two
hops from the home RAD, and so on; this helps ensure that accesses to
memory in remote RADs have minimal impact on performance.

• For data that is globally accessed, the operating system attempts to
replicate the data in or stripe it across all RADs where it might be
accessed. More specifically, the operating system attempts to:

NUMA-Aware Applications 2–1

– Replicate kernel code and kernel read-only data on all RADs at
boot time

– Replicate other kinds of read-only data, such as shared program
and library code, on all RADs where a running process or thread
needs to access it

If there is insufficient free memory on the RAD where the process or
thread is running to replicate shared, read-only data, the operating
system will utilize a copy on a remote RAD rather than wait for free
memory on the local RAD to make the copy.

– Stripe System V shared memory (which is not read-only) across all
RADs

Striping minimizes the likelihood that certain processes and threads
always access System V shared memory locally while others always
access it remotely.

• The operating system attempts to balance the load on each RAD so
that local CPU cycles and local memory pages are both available to the
processes running on the RAD.

Local availability of memory and CPU cycles influences RAD selection
at the time a process is created. The same factors might cause the
operating system to migrate a process and associated memory pages
from one RAD to another in response to changing resource requirements
and access patterns.

2.2 NUMA APIs for User Applications

When a mix of applications with differing resource needs are run on the
same system, it is best for user applications to rely on the default behavior
of operating system software. However, large and highly specialized user
applications might realize additional performance advantages through direct
use of NUMA APIs. For example:

• An application for which I/O requests are extremely large might realize
significant performance advantages when the CPU cycles and memory
pages associated with an I/O request are striped across all available
RADs. This optimization strategy works only if the data being read from
or written to disk is also striped across controllers that are attached to
the I/O ports of different RADs. (If I/O ports on different RADs channel
data into the same RAID controllers, device latency will likely offset the
bandwidth increase for CPU cycles and memory.)

• Applications with many subprocesses or threads that operate on large
but different subsets of the same data might benefit from explicit
resource management. In this case, NUMA APIs can help to increase the

2–2 NUMA-Aware Applications

ratio of local to remote accesses by changing the default algorithms for
replicating or striping program data and System V shared memory.

NUMA APIs are included in the following libraries:

• The NUMA Library (libnuma)

• The Standard C Library (libc)

Certain routines required for NUMA-aware programming are included
in the libc library because they perform operations that are also useful
in more generic types of programs.

• The POSIX Threads Library (libpthread)

NUMA routines that are useful only in multithreaded programs are
included in the libpthread library.

The NUMA data types, structures, and function prototypes are defined
by including the numa.h header file. These APIs introduce three new
constructs:

• RAD set

A RAD set is a mechanism for passing information about RADs between
an application and the operating system or between two applications.
For example, an application can use a RAD set to query the operating
system about the number of existing RADs. An application can also
specify a RAD set to pass information about the number of RADs needed
to meet application resource requirements.

In traditional applications, the identifiers for system components are
typically returned as a bit mask that is stored in a word or longword
buffer. A fixed-length buffer limits the number of components that can
be identified to the number of bits in the buffer (32 or 64 for a word or
longword, respectively). However, a RAD set is represented by an opaque
data type so that applications do not include a fixed-length buffer for
querying or passing information about RADs.

• CPU set

A CPU set is also a mechanism for passing information about CPUs
between an application and the operating system or between two
applications. Like a RAD set, a CPU set is represented by an opaque
data type.

A CPU set is different from the processor set (pset) that is created
and manipulated by the APIs and commands already in use on
traditional SMP systems. A pset reserves specific CPUs for use
only by user-specified applications, while a CPU set is simply an
information-passing mechanism.

A NUMA-aware application that requests allocation of system resources
uses RAD sets and CPU sets to ensure that CPUs and memory are

NUMA-Aware Applications 2–3

evaluated and used in the context of the RADs in which these resources
are located. If the application intends to isolate some number of CPUs on
the system for exclusive use by one or more key processes, the application
first queries the number of RADs on the system and the RAD locations of
the available CPUs. In almost all cases, the CPUs selected for a processor
set should be from the same RAD or, if any one RAD has an insufficient
number of CPUs for the expected workload, from a set of adjacent RADs.
If the application runs on a traditional SMP system, all available CPUs
are in a single RAD; however, the NUMA-aware logic for evaluating and
using information about system processors remains the same.

• NUMA Scheduling Group (NSG)

A NUMA Scheduling Group is the construct through which a
NUMA-aware application ensures that a related set of processes and
threads execute on the same RAD.

An application can attach the identifiers of one RAD and of one or more
processes to a NUMA Scheduling Group. By doing this, the application
specifies that:

– All those processes and any of their subprocesses or threads must
execute on the same RAD

– In the event that any of the processes or threads must be moved to
a new RAD, all other processes and threads attached to the NUMA
Scheduling Group are moved as well

See numa_types for a detailed description of the data types, structures, and
macros used with the NUMA functions. See numa_scheduling_groups for a
description of a NUMA scheduling group.

NUMA functions can be grouped into categories according to what is being
queried or used. The tables referred to in the following list include the
name, purpose, library, and reference page for each routine in the category.
Some routines are duplicated in two tables because they query or create a
relationship that spans two categories:

• RADs and RAD sets: Table 2–1

• CPUs and CPU sets: Table 2–2

• NUMA Scheduling Groups: Table 2–3

• Processes and threads: Table 2–4

• Memory management: Table 2–5

See Section 2.3 for a summary of policies for NUMA memory
management.

2–4 NUMA-Aware Applications

Table 2–1: RADs and RAD Sets
Function Purpose Library Reference Page

nloc() Returns the set of RADs
that is local to or a specified
distance from a resource.

libnuma nloc

rad_attach_pid() Attaches a process to a
RAD (assigns a home RAD
but allows execution on
other RADs).

libnuma rad_attach_pid

rad_bind_pid() Binds a process to a RAD
(assigns a home RAD and
restricts execution to the
home RAD).

libnuma rad_attach_pid

rad_detach_pid() Detaches a process from
a RAD.

libnuma rad_detach_pid

rad_foreach() Scans a RAD set for members
and returns the first
member found.

libnuma rad_foreach

rad_get_cur-
rent_home()

Returns the caller’s
home RAD.

libnuma rad_get_current_home

rad_get_cpus() Returns the set of CPUs
that are in a RAD.

libnuma rad_get_num

rad_get_freemem() Returns a snapshot of the
free memory pages that
are in a RAD.

libnuma rad_get_num

rad_get_info() Returns information about
a RAD, including its state
(online or offline) and the
number of CPUs and memory
pages it contains.

libnuma rad_get_num

rad_get_max() Returns the number of RADs
in the system. a

libnuma rad_get_num

rad_get_num() Returns the number of RAD’s
in the caller’s partition. a

libnuma rad_get_num

rad_get_physmem() Returns the number of
memory pages assigned
to a RAD.

libnuma rad_get_num

rad_get_state() Reserved for future use.
(Currently, RAD state is
always set to ONLINE.)

libnuma rad_get_num

radaddset() Adds a RAD to a RAD set. libnuma radsetops

NUMA-Aware Applications 2–5

Table 2–1: RADs and RAD Sets (cont.)

Function Purpose Library Reference Page

radandset() Performs a logical AND
operation on two RAD
sets, storing the result
in a RAD set.

libnuma radsetops

radcopyset() Copies the contents of one
RAD set to another RAD set.

libnuma radsetops

radcountset() Returns the members of
a RAD set.

libnuma radsetops

raddelset() Removes a RAD from
a RAD set.

libnuma radsetops

raddiffset() Finds the logical difference
between two RAD sets,
storing the result in
another RAD set.

libnuma radsetops

rademptyset() Initializes a RAD set such
that no RADs are included.

libnuma radsetops

radfillset() Initializes a RAD set such
that it includes all RADs.

libnuma radsetops

radisemptyset() Tests whether a RAD
set is empty.

libnuma radsetops

radismember() Tests whether a RAD belongs
to a given RAD set.

libnuma radsetops

radorset() Performs a logical OR
operation on two RAD
sets, storing the result in
another RAD set.

libnuma radsetops

radsetcreate() Allocates a RAD set and
sets it to empty.

libnuma radsetops

radsetdestroy() Releases the memory
allocated for a RAD set.

libnuma radsetops

radxorset() Performs a logical XOR
operation on two RAD
sets, storing the result in
another RAD set.

libnuma radsetops

a On a partitioned system, the system and the partition are equivalent. In this case, the operating system
returns information only for the partition in which it is installed.

2–6 NUMA-Aware Applications

Table 2–2: CPUs and CPU Sets
Function Purpose Library Reference Page

cpu_foreach() Enumerates the members
of a CPU set.

libc cpu_foreach

cpu_get_current() Returns the identifier of the
current CPU on which the
calling process is running.

libc cpu_get_current

cpu_get_info() Returns CPU information
for the system. a

libc cpu_get_info

cpu_get_max() Returns the number of CPU
slots available in the caller’s
partition. a

libc cpu_get_info

cpu_get_num() Returns the number of
available CPUs.

libc cpu_get_info

cpu_get_rad() Returns the RAD identifier
for a CPU.

libnuma cpu_get_rad

cpuaddset() Adds a CPU to a CPU set. libc cpusetops

cpuandset() Performs a logical AND
operation on the contents of two
CPU sets, storing the result
in a third CPU set.

libc cpusetops

cpucopyset() Copies the contents of one CPU
set to another CPU set.

libc cpusetops

cpucountset() Returns the number of CPUs
in a CPU set.

libc cpusetops

cpudelset() Deletes a CPU from a CPU set. libnuma cpusetops

cpudiffset() Finds the logical difference
between two CPU sets, storing
the result in a third CPU set.

libnuma cpusetops

cpuemptyset() Initializes a CPU set such that
it includes no CPUs.

libnuma cpusetops

cpufillset() Initializes a CPU set such that
it includes all CPUs.

libnuma cpusetops

cpuisemptyset() Tests whether a CPU set
is empty.

libnuma cpusetops

cpuismember() Tests whether a CPU is a
member of a particular CPU set.

libnuma cpusetops

cpuorset() Performs a logical OR operation
on the contents of two CPU
sets, storing the result in a
third CPU set.

libnuma cpusetops

NUMA-Aware Applications 2–7

Table 2–2: CPUs and CPU Sets (cont.)

Function Purpose Library Reference Page

cpusetcreate() Allocates a CPU set and
sets it to empty.

libnuma cpusetops

cpusetdestroy() Releases the memory allocated
to a CPU set.

libnuma cpusetops

cpuxorset() Performs a logical XOR
operation on the contents of two
CPU sets, storing the result
in a third CPU set.

libnuma cpusetops

a On a partitioned system, the system and the partition are equivalent. In this case, the operating system
returns information only for the partition in which it is installed.

Table 2–3: NUMA Scheduling Groups
Function Purpose Library Reference Page

nsg_attach_pid() Attaches a process to a
NUMA scheduling group.

libnuma nsg_attach_pid

nsg_destroy() Removes a NUMA
scheduling group and
deallocates its structures.

libnuma nsg_destroy

nsg_detach_pid() Detaches a process from a
NUMA scheduling group.

libnuma nsg_attach_pid

pthread_nsg_attach() Attaches a thread to a
NUMA scheduling group.

libpthread pthread_nsg_at-
tach

pthread_nsg_detach() Detaches a thread from a
NUMA scheduling group.

libpthread pthread_nsg_de-
tach

nsg_get() Returns the status of a
NUMA scheduling group.

libnuma nsg_get

nsg_get_nsgs() Returns a list of NUMA
scheduling groups that
are active.

libnuma nsg_get_nsgs

nsg_get_pids() Returns a list of processes
attached to a NUMA
scheduling group.

libnuma nsg_get_pids

nsg_init() Looks up (and possibly
creates) a NUMA
scheduling group.

libnuma nsg_init

2–8 NUMA-Aware Applications

Table 2–3: NUMA Scheduling Groups (cont.)

Function Purpose Library Reference Page

nsg_set() Sets group ID, user ID, and
permissions for a NUMA
scheduling group.

libnuma nsg_set

pthread_nsg_get() Returns a list of threads
attached to a NUMA
scheduling group.

libpthread pthread_nsg_get

Table 2–4: Processes and Threads
Function Purpose Library Reference Page

nfork() Creates a child process
that is an exact copy
of its parent process.
See also the table entry
for rad_fork().

libnuma nfork

nmadvise() Tells the system what
behavior to expect
from a process with
respect to referencing
mapped files and shared
memory regions.

libnuma nmadvise

nsg_attach_pid() Attaches a process to
a NUMA scheduling
group.

libnuma nsg_attach_pid

nsg_detach_pid() Detaches a process from
a NUMA scheduling
group.

libnuma nsg_attach_pid

pthread_nsg_at-
tach()

Attaches a thread to
a NUMA scheduling
group.

libpthread pthread_nsg_attach

pthread_nsg_de-
tach()

Detaches a thread from
a NUMA scheduling
group.

libpthread pthread_nsg_detach

pthread_rad_at-
tach()

Attaches a thread to
a RAD set.

libpthread pthread_rad_attach

pthread_rad_bind() Attaches a thread to a
RAD set and restricts
its execution to the
home RAD.

libpthread pthread_rad_attach

pthread_rad_de-
tach()

Detaches a thread from
a RAD set.

libpthread pthread_rad_detach

NUMA-Aware Applications 2–9

Table 2–4: Processes and Threads (cont.)

Function Purpose Library Reference Page

rad_attach_pid() Attaches a process
to a RAD (assigns a
home RAD but allows
execution on other
RADs).

libnuma rad_attach_pid

rad_bind_pid() Binds a process to a
RAD (assigns a home
RAD and restricts
execution to the home
RAD).

libnuma rad_attach_pid

rad_detach_pid() Detaches a process
from a RAD.

libnuma rad_detach_pid

rad_fork() Creates a child
process on a RAD
that optionally does
not inherit the RAD
assignment of its
parent. See also
the table entry for
nfork().

libnuma rad_fork

Table 2–5: Memory Management
Function Purpose Library Reference Page

memalloc_attr() Returns the memory
allocation policy for a
RAD set specified by
its virtual address.

libnuma memalloc_attr

nacreate() Sets up an arena a for
memory allocation
for use with the
amalloc() function.

libc amalloc(3)

nmadvise() Tells the system what
behavior to expect
from a process with
respect to referencing
mapped files and
shared memory
regions.

libnuma nmadvise

2–10 NUMA-Aware Applications

Table 2–5: Memory Management (cont.)

Function Purpose Library Reference Page

nmmap() Maps an open file (or
anonymous memory)
onto the address space
for a process by using
a specified memory
allocation policy.

libnuma nmmap

nshmget() Returns or creates
the ID for a shared
memory region.

libnuma nshmget

a An arena is used in multithreaded programs when there is a need for thread-specific heap memory
allocation.

2.3 NUMA Memory Management Policies

Starting with Tru64 UNIX Version 5.1, application programmers can choose
among different policies to control memory allocation on NUMA systems.
The following policies, which are defined in the numa_types.h file, can be
specified for either a specific memory object or a kernel memory allocation
request:

MPOL_DIRECTED Allocate memory from a specific RAD (directed
allocation)

MPOL_THREAD Allocate memory from the current thread’s home
RAD (directed allocation that operates in the context
of a multithreaded application)

MPOL_STRIPED Stripe application data across the memory in a
specified RAD set

MPOL_REPLICATED Replicate application data in the memory of all RADs

These major policies can be refined by associated parameters. For the
directed and thread-related memory allocation policies, an application
programmer can specify an overflow set of RADs for use when sufficient
resources are unavailable in the preferred RAD. For the striped memory
allocation policy, a programmer can specify the number of pages for the
stripe width (stride). To request that the operating system not migrate
already allocated pages to another RAD, a programmer can combine the
major policies with the MPOL_NO_MIGRATE policy.

NUMA-Aware Applications 2–11

When the NUMA memory allocation policy is not set by the application, the
operating system applies the following defaults for different parts of an
application’s address space:

• Memory for private data, such as the heap and stacks for processes and
threads, is allocated from the home RADs of the processes and threads.

• Program text and shared libraries are replicated in all RADs

• Shared data, such as System V shared memory, is striped (using a
one-page stride) across all RADs

To override these defaults, an application programmer can use the following
functions:

• The nmmap() function to override the default policy for a new file object
or to map a new range of addresses for a file that is already open

• The nshmget() function to override the default policy for an already
mapped address range of shared memory

• The nmadvise() function to override the default policy used for process
access to an already mapped range of address space for an open file or a
region of shared memory

The nmmap(), nshmget(), and nmadvise() functions include a parameter
of type memalloc_attr_t to contain the NUMA memory allocation
policy and associated attribute values. When this argument is null, the
nmmap(), nshmget(), and nmadvise() functions have the same behavior
as their traditional counterparts (mmap(), shmget(), and madvise(),
respectively).

______________________ Note _______________________

A memory allocation policy request on any UNIX® platform
(NUMA or traditional SMP) is not implemented in an absolute
manner. UNIX architecture is designed for efficient sharing of
resources among system and user processes rather than dedicated
resource assignments, particularly where memory is concerned.
This means that the operating system does not allow the policies
requested by or for any one application to completely override
the minimal memory requirements of other user and system
processes that are running at the same time. Therefore, to
ensure consistent implementation of the memory allocation policy
requested through NUMA APIs, a NUMA-aware application
should be run on a system (or system partition) that contains
sufficient memory resources for both the application’s processes
and any other processes that will be running at the same time.

2–12 NUMA-Aware Applications

A
The radtool Program

This appendix contains the source code (Example A–1 and Example A–2)
and the Makefile (Example A–3) for the radtool utility. This utility queries
the system for identifiers of available RADs and for identifiers of CPUs in
a specified RAD. The source code for this tool illustrates the use of several
NUMA APIs that all NUMA-aware programs will need to use. In addition,
the radtool utility can be built and installed on a customer system, then
used by system administrators and site-specific scripts to avoid dependence
on static assignments of RAD numbers and of CPU numbers within RADs.

The command-line synopsis for radtool is as follows:

path/radtool [-x] | [[-v] [-r | -c rad-id]]

Where:

-x Displays the utility’s usage message.

-v Displays descriptive headings and comma separators
for returned values.

-r Returns identifiers of existing RADs. This is also
the behavior when the command is entered without
any options.

-c rad-id Returns identifiers of available CPUs in the specified
RAD.

The program header file for this example is a template and is included for
possible site enhancements. (The header file does not supply definitions
used in this version of the program but is referred to in the Makefile.)
For example, the program might be internationalized to support message
catalogs for translated messages and also include a header file that is created
by the mkcatdefs command. In this case, the header file will be renamed
radtool_msg.h and will define macros for default message strings. See
mkcatdefs(1) for more information about creating message catalogs and a
header file that centralizes maintenance of default message strings.

The radtool Program A–1

Example A–1: Source File for the radtool Program

/*
* radtool.c -- NUMA API Example program
*
*
*/
#include <sys/types.h>
#include <sys/time.h>
#include <sys/siginfo.h>

#include <errno.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <numa.h>
#include <cpuset.h>
#include <radset.h>
#include "radtool.h"

/*
* command-line options:
*
* -r = display existing RADs
* -c <radid> = display CPUs for specified RAD
* -x = display eXplanation.
*/
#define OPTIONS "c:rvx"

/*
* command-line settable parameters and flags:
*/
bool show_rads = false; /* display existing RADs */
bool verbose = false; /* annotate output */
radid_t parm_rad = RAD_NONE; /* display CPUs for this RAD */

/*
* usage/help message
*/
char *USAGE = "\nUsage: %s {[-r] | [-c <radid>]} [-v] | [-x]\n\n\
Where:\n\
\t-r = Display existing RADs. Same as no arguments.\n\
\t-c <radid> = Display CPUs for specified RAD.\n\
\t-v = Include formatting text in display.\n\
\t-x = Display this explanation.\n\
";
char *cmd;

bool error = false;

/*
* die() - Emit error message and exit w/ specified return code.
* If exit_code < 0, save current errno, and fetch associated
* error string. Print error string after app error message.
* Then exit with abs(exit_code).
*/
void
die(int exit_code, char *format, ...)
{
va_list ap;
char *errstr;

A–2 The radtool Program

Example A–1: Source File for the radtool Program (cont.)

int saverrno;

va_start(ap, format);

if (exit_code < 0) {
saverrno = errno;
errstr = strerror(errno);
}

(void) vfprintf(stderr, format, ap);
va_end(ap);

if (exit_code < 0)
fprintf(stderr,"Error = (%d) %s\n", saverrno, errstr);

exit(abs(exit_code));
}

void
usage(){
fprintf(stderr, USAGE, cmd);
exit(1);
}

/*
* ===
*/
/*
* rad_get_existing() -- return set of currently existing rads, using nloc()
*
* NOTE: It is the caller’s responsibility to free the returned radset when it
* is no longer needed. See the call to radsetdestroy() at the end
* of the program.
*/
radset_t
rad_get_existing()
{
radset_t allrads;
numa_attr_t nat;

if(radsetcreate(&allrads) == -1) {
die(0-errno, "Unable to create radset for allrads\n");
}

/*
* This works for Tru64 UNIX Version 5.1 or higher versions.
* It returns the set of RADs that are <= RAD_DIST_REMOTE from an
* empty RAD set. All existing RADs satisfy this relationship.
*/
nat.nattr_type = R_RAD;
nat.nattr_descr.rd_radset = allrads;
nat.nattr_distance = RAD_DIST_REMOTE;
nat.nattr_flags = 0;

if(nloc(&nat, allrads) == -1) {
die(0-errno, "rad_get_existing: failure to get allrads\n");
}

return(allrads);
}

The radtool Program A–3

Example A–1: Source File for the radtool Program (cont.)

/*
* radshowset(): display a RAD set
*
* The "note" parameter is for annotating the display with text
* to indicate what the returned numbers represent.
* If "note" is NULL, RAD numbers are printed in a single line,
* separated by whitespace. The latter case is useful for returning
* values to commands in a shell script, for example:
*
* for rad in ‘radtool -r‘; do whatever; done
*
*/
void
radshowset(const radset_t set, const char *note)
{
radid_t id;
rad_cursor_t cursor = SET_CURSOR_INIT;
int flags = 0;
int i;

if (note != NULL)
printf("\n%s:\n", note);

if (radisemptyset(set)) {
if (note != NULL)
fprintf(stderr, "\tNone");

return;
}

for(i = 0;
(id = rad_foreach(set, flags, &cursor)) != RAD_NONE;

++i) {
if (note != NULL) {
/*
* "pretty print" - 8 to the bar
*/
if((i % 8) == 0)
printf("\n");
else

printf(", ");
}
printf("%3d", id);
}
printf("\n");
}
/*
* cpushowset(): display the CPU set
*
* The "note" parameter is for annotating the display with text to
* indicate what the returned numbers represent.
* If "note" is NULL, CPU numbers are printed in a single line and
* separated by whitespace. The latter case is useful for returning
* values to commands in a shell script, for example:
*
* for cpu in ‘radtool -c 2‘; do whatever; done
*/
void
cpushowset(const cpuset_t set, const char *note)
{

A–4 The radtool Program

Example A–1: Source File for the radtool Program (cont.)

cpuid_t id;
cpu_cursor_t cursor = SET_CURSOR_INIT;
int flags = 0;
int i;

if (note != NULL)
printf("\n%s:\n", note);

if (cpuisemptyset(set)) {
if (note != NULL)
fprintf(stderr, "\tNone");

return;
}

for(i = 0;
(id = cpu_foreach(set, flags, &cursor)) != CPU_NONE;

++i) {
if (note != NULL) {
/*
* "pretty print" - 8 to the bar
*/
if((i % 8) == 0)
printf("\n");
else

printf(", ");
}
printf("%3d", id);
}
printf("\n");
}

/*
* ===
*/

void
main(int argc, char *argv[])
{
extern int optind;
extern char *optarg;
char c;

cmd = argv[0];

/*
* process command-line options.
*/
while ((c = getopt(argc, argv, OPTIONS)) != (char)EOF) {
char *next;

switch (c) {
case ’c’:
parm_rad = strtoul(optarg, &next, 0);
if (parm_rad < 0 || *next != ’\0’) {
fprintf(stderr,
"Error: RAD identifier must be a positive integer\n");
error = true;
}
break;

The radtool Program A–5

Example A–1: Source File for the radtool Program (cont.)

case ’r’:
show_rads = true;
break;

case ’v’:
verbose = true;
break;

case ’x’:
usage();
/* NOT REACHED */

default:
error = true;
break;

}
}
done:

if (error) {
usage();
}

/*
* If a number was specified, it must be the "-c" argument.

* Display CPUs on the RAD with that number.
*/
if (parm_rad != RAD_NONE) {
cpuset_t cpus_in_rad;
char note[32]; /* big enough for now */

cpusetcreate(&cpus_in_rad);

if (rad_get_cpus(parm_rad, cpus_in_rad) == -1)
die(-2, "Unable to get CPUs in RAD %d\n", parm_rad);

if (verbose)
sprintf(note, "CPUs in RAD %d", parm_rad);

cpushowset(cpus_in_rad, verbose ? note : NULL);

cpusetdestroy(&cpus_in_rad);

exit(0);

} else {
show_rads = true; /* show something! */
}

/*
* Show all existing RADs, if requested.
*/
if (show_rads) {
radset_t allrads = rad_get_existing();

radshowset(allrads, verbose ? "Existing RADs" : NULL);

radsetdestroy(&allrads); /* be a good citizen */
}

A–6 The radtool Program

Example A–1: Source File for the radtool Program (cont.)

exit(0);
}

Example A–2: Header File for the radtool Program

/*
* radtool.h -- local header template for NUMA RAD tool program
*/

/*
* a useful type definition -- for example:
*/
typedef enum {false=0, true} bool;

Example A–3: Makefile for the radtool Program

Makefile template for NUMA sample programs
#
SHELL = /bin/sh

MACH =

CMODE = -std0
COPT = $(CMODE) -O2 #-non_shared
DEFS =
INCLS =
CFLAGS = $(COPT) $(DEFS) $(INCLS) $(ECFLAGS)

CXX = cxx
CXXMODE =
CXXFLAGS = $(CXXMODE) $(DEFS) $(INCLS) $(ECXXFLAGS)

ASFLAGS for alpha assembler:
ASDEFS = -DLANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY -D__alpha
ASPIC =
ASCPP =
ASFLAGS = $(ASPIC) -tune generic $(ASCPP) $(ASDEFS) $(EASFLAGS)

LDOPTS = #-dnon_shared
LDLIBS = -lnuma
LDFLAGS = $(CMODE) $(LDOPTS) $(ELDFLAGS)

export to environment as needed...
ROOTDIR = /
TMPDIR = /var/tmp
COMP_HOST_ROOT =
COMP_TARGET_ROOT =

HDRS = radtool.h

OBJS = radtool.o
PROGS = radtool

#---------------------------------

all: $(PROGS)

The radtool Program A–7

Example A–3: Makefile for the radtool Program (cont.)

radtool: radtool.o
$(CC) -o $@ $(LDFLAGS) $@.o $(LDLIBS)

$(OBJS): $(HDRS)

install:
@echo "Nothing to do..."

clean:
-rm -f *.o core.[0-9]*

clobber: clean
-rm -f $(PROGS)

A–8 The radtool Program

B
Reference Pages for NUMA APIs

Reference Pages for NUMA APIs B–1

numa_types(4)

NAME

numa_types – Data types used by NUMA application interfaces

SYNOPSIS
#include <sys/numa_types.h>

DESCRIPTION

This reference page lists and describes the data types, flags, structures,
and unions that are defined in the <numa_types.h> header file to support
the HP Tru64 UNIX NUMA APIs.

The program must call radsetcreate() or cpusetcreate() to allocate
the RAD set or CPU set associated with any fields defined as type radset_t
or cpuset_t, respectively.

Note that numa_types.h is indirectly included by the <numa.h> header file,
which is the header file more frequently specified in the SYNOPSIS sections
of reference pages for NUMA-related functions.

Definitions

The <numa_types> header defines the following data types, flags,
structures, and unions, and associated symbolic values:

iopath_t

Reserved for future use.

memalloc_attr_t

A structure type that defines the policy and associated parameters for
memory allocation. The memalloc_attr structures are associated
with memory objects and with processes and threads. This structure
contains the following members:

memalloc_policy_t mattr_policy

Specifies the memory allocation policy (as described in the entry
for memalloc_policy_t). Remaining members of the structure
contain parameters used to implement this policy.

Reference Pages for NUMA APIs B–3

numa_types(4)

radid_t mattr_rad

Specifies the primary or preferred RAD (region) from which to
allocate memory for the MPOL_DIRECTED memory allocation
policy.

int mattr_distance

Specifies the distance to overflow. This value is not currently used
for any memory allocation policy.

int mattr_stride

Specifies the stride (in pages) for the MPOL_STRIPED memory
allocation policy.

int mattr_pagesz

Specifies the page size in bytes. This value is not currently used
for any memory allocation policy.

radset_t mattr_radset

If mattr_policy is MPOL_DIRECTED or MPOL_THREAD, specifies
the overflow RAD set.

If mattr_policy is MPOL_STRIPED, specifies the RAD set across
which memory is striped.

memalloc_policy_t

An enumeration type that determines, along with associated parameter
attributes, how memory will be allocated for a memory object or a
kernel memory allocation request. Valid policy values are:

MPOL_DIRECTED Allocate pages from a specified (meaning
preferred) RAD with overflow into a specified,
possibly NULL, overflow RAD set.

MPOL_THREAD Equivalent to MPOL_DIRECTED but having the
thread context determine the preferred RAD
from which pages are allocated. (In this case,
the mattr_rad value is ignored.)

B–4 Reference Pages for NUMA APIs

numa_types(4)

MPOL_STRIPED Allocate pages so that they are striped
across a specified RAD set by using a
specified (page multiple) stripe as specified
by the mattr_stride member of the
memalloc_attr_t structure. Starting with
a specified RAD, pages will be allocated from
RADs in the RAD set in order of increasing
RAD number. An mattr_stride number of
pages will be allocated from each RAD before
pages are allocated from the next RAD. After
pages are allocated from the highest numbered
RAD in the set, allocation will wrap, which
means that pages are next allocated from the
lowest numbered RAD in the set.

MPOL_REPLICATED Replicate pages on the home RAD of the thread
that caused the pages to be allocated.

__________ Note __________

MPOL_REPLICATED is the default
and only memory allocation policy
supported for shared library text
pages and program text pages.
Furthermore, the operating system
ignores MPOL_REPLICATED when
it is specified for other types of
memory (stack, heap, and shared
data pages). Therefore, specifying
MPOL_REPLICATED has no effect in
the current implementation.

The following modifier may be combined (by using a logical OR
operation) with the preceding policies:

MPOL_NO_MIGRATE Disable automatic migration of pages by the
system.

Reference Pages for NUMA APIs B–5

numa_types(4)

The following table indicates how different memory policies are
supported for the different types of memory in the program address
space:

SHPT = shared program text
SHLT = shared library text
SVSHM = System V shared memory
STACK = program or thread stack
DATA = initialized program data
BSS = uninitialized program data and heap
MPRIV = [n]mmap(MAP_PRIVATE)
MSHAR = [n]mmap(MAP_SHARED)
MANON = [n]mmap(MAP_ANONYMOUS)

MPOL_DIRECTED MPOL_THREAD MPOL_STRIPED MPOL_REPLI-
CATED

SHPT Ignored * Ignored * Ignored * Default

SHLT Ignored * Ignored * Ignored * Default

SVSHM As specified. As specified but no
migration. **

Default *** =MPOL_DIRECTED

STACK As specified. Default As specified. =MPOL_DIRECTED

DATA As specified. Default As specified =MPOL_DIRECTED

BSS As specified. Default As specified. =MPOL_DIRECTED

MPRIV As specified. Default As specified. =MPOL_DIRECTED

MSHAR As specified. Default As specified. =MPOL_DIRECTED

MANON As specified. Default As specified. =MPOL_DIRECTED

* “Ignored” means only that the MPOL_* flag is
ignored; the nmadvise() call is still checked
for errors and any applicable behaviors are
performed.

** When thread-local memory allocation is
specified for System V shared memory
segments, the policy is used only for pages that
have not yet been allocated, have been paged
out, or have been discarded (by means of the
MADV_DONTNEED flag on an nmadvise() call).

B–6 Reference Pages for NUMA APIs

numa_types(4)

Existing pages are not migrated according
to the new memory allocation policy in order
to avoid thrashing; in other words, the
MADV_CURRENT flag on a nmadvise() call is
treated as MADV_DONTNEED with respect to
System V shared memory segments.

*** The default memory allocation policy for
System V shared memory segments is
configurable. If the shm_allocate_striped
attribute of the IPC kernel subsystem is set to
1 (the default), SVSHM segments are striped.
If this attribute is set to 0, SVSHM segments
are allocated by using the thread local policy
(MPOL_THREAD).

nmemalloc_range_t

Structures of this type are supported for internal use only.

nsgid_t

Identifier for a NUMA Scheduling Group (NSG).

numa_attr_t

A structure that describes the NUMA topology attributes. This
structure is used with the nloc() function to query the NUMA system
topology or with the nfork() function to specify the set of RADs
from which a RAD will be selected for a new process. This structure
contains the following members:

rsrctype_t nattr_type The type of resource (as described in
the entry for type rsrctype_t).

rsrcdescr_t nattr_descr The resource descriptor, which
identifies the instance of
the resource specified by the
nattr_type value. Specify this
field as a union with the appropriate
resource handle as described in
the entry for rsrcdescr_t. For

Reference Pages for NUMA APIs B–7

numa_types(4)

example, a resource descriptor for a
RAD set might be specified as:

nat.nattr_descr.rd_radset

For this descriptor, nat is a
structure of type numa_attr_t,
rd_radset is the resource handle,
and nat.nattr_type has been set
to R_RAD.

ulong nattr_distance The distance to the requested
resource. The nloc() function
returns a set of RADs that are less
than or equal this distance from the
specified resource.

ulong nattr_flags Symbolic values used by certain
functions. The nloc(3) and nfork(3)
reference pages list and describe
these values.

radid_t

Identifier for a Resource Affinity Domain (RAD), which is a grouping
of basic system resources that form a NUMA building block. NUMA
platforms contain multiple RADs, and each RAD can contain zero or
more CPUs, memory arrays, and I/O busses. Single-processor and
multiprocessor platforms that do not use NUMA architecture are
treated by the operating system as single-RAD systems.

The radid_t data type is a generic, integral type, for which there
is the following symbolic value:

RAD_NONE

No valid RAD ID. Functions return RAD_NONE when no RAD
matches the specified criteria, there are no more RADs in a RAD
set, and so forth.

radset_t

A set of RADs. This type is used to specify a set of radid_t values to
the NUMA APIs. A subset of these APIs perform operations on a set of
RADs and manage radset_t as an opaque type.

B–8 Reference Pages for NUMA APIs

numa_types(4)

rad_cursor_t

A opaque type used in an enumeration or an iteration operation on a
RAD set. This type stores the current cursor position during a scan of
the members in a RAD set. See rad_foreach(3) for more information.

rad_info_t

A structure returned by the rad_get_info() function to describe the
state and resources associated with a RAD. This structure contains the
following members:

int rinfo_version The RAD revision number.

radid_t rinfo_radid The RAD identifier.

rad_state_t rinfo_state The RAD state, whose values are
listed in the description of the
rad_state_t type.

ssize_t rinfo_physmem The amount of physical memory
present in the RAD.

ssize_t rinfo_freemem The current amount of free memory
available in the RAD.

cpuset_t rinfo_cpus The set of CPUs associated with
the RAD.

See rad_get_info(3) for more information about querying RAD
information.

rad_state_t

A RAD’s software state. The defined states are:

RAD_ONLINE The specified RAD exists and is on line.
Processes and threads may be assigned to and
memory allocated to the RAD.

RAD_OFFLINE The specified RAD exists but is not currently on
line. No processes or threads may be assigned

Reference Pages for NUMA APIs B–9

numa_types(4)

to, nor memory allocated to, this RAD; however,
its resource complement may be queried.

____________________ Note ____________________

RAD_ONLINE is the only state currently supported.

rsrctype_t

An enumeration type that specifies the kind of resource with which
affinity is desired. Functions that perform NUMA topology queries
and resource binding pass rsrctype_t arguments along with
rsrcdescr_t descriptors to identify resources. The following symbolic
values identify the type of resource being specified by a particular
descriptor:

R_RAD A RAD set.

R_FILDES A file or device referenced by an open file descriptor.

R_PATH A file or device specified by a pathname.

R_SHM A System V shared memory segment that is referenced by
a shared memory ID.

R_PID A process that is referenced by a pid_t identifier.

R_MEM A physical memory mapped region that is referenced by a
process virtual address. This resource type is used to find
RADs that are equal to or less than a specified distance
from a particular memory location. See nloc(3).

R_NSG A NUMA Scheduling Group that is referenced by an
nsgid_t identifier.

rsrcdescr_t

A union of the various resource handles, or descriptors, that are
specified by different resource type (rsrctype_t) values. Along with
an rsrctype_t argument, an rsrcdescr_t handle is included on
the nattr_descr argument to the NUMA APIs that perform NUMA

B–10 Reference Pages for NUMA APIs

numa_types(4)

topology queries and resource binding. The resource handles for
different resource types are as follows:

radset_t rd_radset If the rsrctype_t value is R_RAD,
a RAD set is the resource, for which
rd_radset is the handle.

int rd_fd If the rsrctype_t value is
R_FILDES, an open file or device
(referenced by descriptor) is the
resource, for which rd_fd is the
handle.

char *rd_pathname If the rsrctype_t value is R_PATH,
a file or device (referenced by
pathname) is the resource, for which
rd_pathname is the handle.

int rd_shmid If the rsrctype_t value is R_SHM,
a System V shared memory segment
is the resource, for which rd_shmid
is the handle.

pid_t rd_pid If the rsrctype_t value is R_PID,
a process is the resource, for which
rd_pid is the handle.

void *rd_addr If the rsrctype_t value is R_MEM,
a mapped region of virtual memory
is the resource, for which rd_addr
is the handle.

nsgid_t rd_nsg If the rsrctype_t value is R_NSG,
a NUMA Scheduling Group is the
resource, for which rd_nsg is the
handle.

See nloc(3) and nfork(3) for information about using rsrcdescr_t
handles to query and bind resources in the context of NUMA system
topology.

Reference Pages for NUMA APIs B–11

numa_types(4)

struct_nsgid_ds

A structure that specifies the access permissions and associated
parameters and statistics for a NUMA Scheduling Group (NSG). This
structure contains the following members:

struct ipc_perm nsg_perm A subordinate structure that
contains the NSG access
permissions.

int nsg_nattach The number of processes attached
to the NSG.

struct_nsg_thread

A structure that specifies a thread (process ID and thread ID) attached
to an NSG. This structure contains the following members:

pid_t nsgth_pid

The process ID of a thread that is attached to an NSG.

unsigned int nsgth_thread

The thread ID (index) of a thread that is attached to an NSG.

SEE ALSO

Functions: nfork(3), nloc(3), numa_intro(3), rad_foreach(3),
rad_get_info(3)

B–12 Reference Pages for NUMA APIs

numa_scheduling_groups(4)

NAME

numa_scheduling_groups – HP Tru64 UNIX NUMA Scheduling Groups
description (libnuma library)

DESCRIPTION

Normally, the kernel scheduler attempts to distribute the workload evenly
over the entire machine. When the system resources are evenly utilized,
the machine is considered to be balanced. When balancing the workload,
the scheduler operates in a context-free manner; that is, processes may be
distributed to various CPUs, or other resources, without regard to their
function or relationship to one another. In certain cases, a user may wish to
bundle a group of processes together so that they have equal access to the
same system resources. For instance, cooperating processes that share the
same physical memory may perform better if all of these processes execute
on CPUs that are local to that memory.

NUMA Scheduling Groups (NSG) cause the scheduler load-balancing system
to treat all members of an NSG as a unit. If one process belonging to an
NSG moves from one Resource Affinity Domain (RAD) to another, all other
members of the NSG have to move with it.

NSGs and their members have the following characteristics:

• The resource domain of the first process joining an NSG provides the
initial resource domain location for that NSG, called the NSG home RAD.

• All other processes joining the NSG (through the nsg_attach_pid()
function) will be migrated to the NSG home RAD. If the joining process
is not allowed to migrate, the nsg_attach_pid() function will fail.

• To support load balancing, an NSG is allowed to migrate to any RAD on
the system if none of its members is bound to a specific resource (such
as another RAD, CPU, and so on).

• An NSG member is allowed to attach to or bind to a resource only if
no other members are bound to different resources. The entire NSG
will migrate to the RAD containing the resource at the time it was
successfully bound.

• If one NSG member is bound to a resource, all other members of that
NSG are also bound to the RAD containing that resource, because the
NSG and, therefore its members, is no longer allowed to migrate.

Reference Pages for NUMA APIs B–13

numa_scheduling_groups(4)

SEE ALSO

Commands: runon(1)

Functions: numa_intro(3), bind_to_cpu(3), nsg_attach_pid(3),
nsg_detach_pid(3), nsg_destroy(3), nsg_get(3), nsg_get_nsgs(3),
nsg_get_pids(3), nsg_init(3), nsg_set(3), rad_attach_pid(3),
rad_bind_pid(3), rad_detach_pid(3)

B–14 Reference Pages for NUMA APIs

cpu_foreach(3)

NAME

cpu_foreach – enumerate members of a CPU set (libc library)

SYNOPSIS
#include <cpuset.h>

cpu_cursor_t cursor = SET_CURSOR_INIT;

cpuid_t cpu_foreach(
cpuset_t cpuset,
unsigned int flags,
cpu_cursor_t *cursor);

PARAMETERS
cpuset

Specifies a CPU set whose members are to be enumerated.

flags

Control the processing of set members. The flags parameter can be one
or more (a logical OR operation) of the following flags:

SET_CURSOR_FIRST

Initializes the cursor to the first member of the set before
scanning.

SET_CURSOR_WRAP

Wraps around to the beginning of the set when scanning for
members.

SET_CURSOR_CONSUME

Consumes the set members; that is, removes the member from
the set when found.

As shown in the SYNOPSIS, a cursor variable may be initialized
to the value SET_CURSOR_INIT. Initialization of this variable is
equivalent to setting the SET_CURSOR_FIRST flag on the initial call to
cpu_foreach().

Reference Pages for NUMA APIs B–15

cpu_foreach(3)

cursor

Points to an opaque type that records the position in a set for
subsequent invocations of the cpu_foreach() function.

DESCRIPTION

The cpu_foreach() function scans the specified cpuset, starting at the
position saved in the cursor parameter, for members of the set and returns
the first member found. If the SET_CURSOR_FIRST flag is set, the cursor is
initialized to the beginning of the set before starting the scan. If no members
are found, the cpu_foreach() function will return CPU_NONE.

If the SET_CURSOR_WRAP flag is set, the scan will wrap from the end of the
set to the beginning searching for a member to return. Otherwise, a one
pass scan is performed, and when the end of the set is reached, the cursor
is positioned at the end of the set. From then on, the cpu_foreach()
function will continue to return CPU_NONE until the cursor is reinitialized
(by specifying the SET_CURSOR_FIRST orSET_CURSOR_WRAP flag).

If the SET_CURSOR_CONSUME flag is set, the member returned, if any, will be
removed from the set.

NOTES

Although the preceding description discusses the “beginning” and “end”
of the set, and wrapping from the end to the beginning, CPU sets are
conceptually unordered. Thus, these end points are arbitrary points in the
set that exist to ensure that each member is returned only once per pass
through the set. Therefore, applications should not depend on a specific
numeric order of the returned member IDs.

RETURN VALUES

The cpu_foreach() function returns the next member in the set starting
at the position of the cursor. If no more members are found, CPU_NONE is
returned. This function always completes successfully.

ERRORS

No errors are defined for the cpu_foreach() function.

B–16 Reference Pages for NUMA APIs

cpu_foreach(3)

EXAMPLES

See the EXAMPLES section of cpusetops(3) for a sample program that
uses the cpu_foreach() function.

SEE ALSO

Functions: cpusetops(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–17

cpu_get_current(3)

NAME
cpu_get_current – Return the caller’s current CPU ID (libc library)

SYNOPSIS
#include <cpuset.h>

cpuid_t cpu_get_current(void);

PARAMETERS
The cpu_get_current() function has no parameters.

DESCRIPTION
The cpu_get_current() function fetches the ID of the CPU on which
the caller is executing.

NOTES
This function is similar to the following call:

getsysinfo(GSI_CPU_CURRENT, &cpuid, ...);

However, cpu_get_current() returns the CPU identifier directly (as
type cpuid_t), whereas the getsysinfo() call stores the identifier into a
buffer (as type long) whose address is passed to the function.

RESTRICTIONS
As is true for many system information queries, the data returned by
cpu_get_current() may be stale by the time it is returned to or used by
the caller. In other words, a context switch to a different CPU can occur after
the “current CPU” has been fetched by the application.

RETURN VALUES
The cpu_get_current() function returns the CPU ID of the processor
where the caller is executing. This function always completes successfully.

ERRORS
None.

B–18 Reference Pages for NUMA APIs

cpu_get_current(3)

SEE ALSO

Functions: getsysinfo(2), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–19

cpu_get_info(3)

NAME
cpu_get_info, cpu_get_num, cpu_get_max – Query CPU information for the
platform (libc library)

SYNOPSIS
#include <cpuset.h>

int cpu_get_info(
ncpu_info_t *info);

int cpu_get_num(void);

int cpu_get_max(void);

PARAMETERS
info

Points to an ncpu_info_t buffer to receive the CPU information for
the booted configuration.

DESCRIPTION
The cpu_get_info() function returns the following information about the
platform CPU configuration in the buffer pointed to by the info parameter:
int ncpu_version

Revision number.

int ncpu_max

Maximum number of CPUs supported by the machine architecture.

cpuset_t ncpu_present

CPU processor set that is physically plugged into the system and
recognized by the system console.

cpuset_t ncpu_running

Set of online CPUs in the caller’s partition; that is, the set of CPUs on
which the caller can schedule work.

cpuset_t ncpu_binding

Set of CPUs in the partition that have processes bound to them.

B–20 Reference Pages for NUMA APIs

cpu_get_info(3)

cpuset_t ncpu_ex_binding

Set of CPUs in the partition whose processor set is marked for
exclusive use.

The CPU sets specified in the ncpu_info_t structure must have been
created by the caller prior to the call. If the caller specifies zero for a CPU
set, the function silently ignores filling in data for that set.

The information returned by the cpu_get_info() function is relative to
the caller’s partition.

The cpu_get_num() function returns the actual number of CPUs available
in the caller’s partition.

The cpu_get_max() function returns the maximum number of CPUs,
including unpopulated CPU slots, that can be configured in the system.

NOTES

A cpu_get_info() call is similar to a getsysinfo(GSI_CPU_INFO,
...) call. The principal difference is that the main ncpu_info_t
structure fields returned by cpu_get_info() are of type cpuset_t,
whereas the same information returned by getsysinfo()is of type
ulong_t. Furthermore, a getsysinfo(GSI_CPU_INFO, ...) call returns
information only about the first n CPUs, where n is the number of bits in a
ulong_t field, or (sizeof(ulong_t)*8).

For cpu_get_info(), the ncpu_version field of the info argument must
be set to NCPU_INFO_VERSION prior to the call.

RESTRICTIONS

The information returned by these functions is a snapshot of the
platform/partition configuration at the time the information is sampled. The
data may be stale by the time the caller uses the information.

RETURN VALUES

The cpu_get_info() function returns the following values:

0 Success.

Reference Pages for NUMA APIs B–21

cpu_get_info(3)

–1 Failure. In this case, errno is set to indicate the error.

The cpu_get_num() and cpu_get_max() functions return values as
stated in the DESCRIPTION. These functions always complete successfully.

ERRORS

The cpu_get_info() function fails, it sets errno to one of the following
values:

[EFAULT]

The info argument or one of the cpuset_t elements, points to an
invalid address.

[EINVAL]

One or more of the cpuset_t elements of the info argument
points to an invalid CPU set, possibly one that was not created by
cpusetcreate().

[EPERM]

The version number specified in the ncpu_version field of the info
argument is not recognized by the system.

SEE ALSO

Functions: cpusetops(3), numa_intro(3)

B–22 Reference Pages for NUMA APIs

cpu_get_rad(3)

NAME
cpu_get_rad – Queries the RAD associated with a CPU (libnuma library)

SYNOPSIS
#include <numa.h>

radid_t cpu_get_rad(
cpuid_t cpu);

PARAMETERS
cpu

Identifies the CPU for which the associated RAD is requested.

DESCRIPTION

The cpu_get_rad() function returns the identifier of the Resource Affinity
Domain (RAD) associated with the CPU specified by the cpu argument.

RETURN VALUES

The cpu_get_rad() function returns the following values:

RAD ID for cpu Success.

–1 Failure. In this case, errno is set to indicate the
error.

ERRORS

If the cpu_get_rad() function fails, it sets errno to the following value:

[EINVAL]

The CPU identifier specified by cpu is invalid.

SEE ALSO

Functions: numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–23

cpusetops(3)

NAME

cpusetops: cpuaddset, cpuandset, cpucopyset, cpucountset, cpudelset,
cpudiffset, cpuemptyset, cpufillset, cpuisemptyset, cpuismember, cpuorset,
cpusetcreate, cpusetdestroy, cpuxorset – Perform operations on CPU sets
(libc library)

SYNOPSIS
#include <cpuset.h>

int cpuaddset(
cpuset_t set,
cpuid_t cpuid);

int cpuandset(
cpuset_t set_src1,
cpuset_t set_src2,
cpuset_t set_dst);

int cpucopyset(
cpuset_t set_src,
cpuset_t set_dst);

int cpucountset(
cpuset_t set);

int cpudelset(
cpuset_t set,
cpuid_t cpuid);

int cpudiffset(
cpuset_t set_src1,
cpuset_t set_src2,
cpuset_t set_dst);

int cpuemptyset(
cpuset_t set);

int cpufillset(
cpuset_t set);

int cpuisemptyset(
cpuset_t set);

int cpuismember(
cpuset_t set,
cpuid_t cpuid);

int cpuorset(
cpuset_t set_src1,
cpuset_t set_src2,
cpuset_t set_dst);

int cpusetcreate(
cpuset_t *set);

int cpusetdestroy(
cpuset_t *set);

B–24 Reference Pages for NUMA APIs

cpusetops(3)

int cpuxorset(
cpuset_t set_src1,
cpuset_t set_src2,
cpuset_t set_dst);

PARAMETERS
cpuid

Identifies a CPU.

set

Specifies or points to a CPU set.

set_dst

Specifies a CPU set that is being copied to or that is the result of a
logical OR, XOR, or AND operation on two other CPU sets.

set_src[n]

Specifies a CPU set that is being copied to another CPU set or that is
part of a logical OR, XOR, or AND operation with another CPU set.

DESCRIPTION

The cpusetops primitives manipulate sets of CPUs, by operating on data
objects (of type cpuset_t) that are created by cpusetcreate().

The cpusetcreate() function allocates, and sets to empty, a CPU set
pointed to by set.

The cpusetdestroy() function releases the memory that was obtained by
cpusetcreate() for the specified CPU set pointed to by set.

The cpucountset() function returns the number of members in the CPU
set specified by set.

The cpuemptyset() function initializes the CPU set specified by set, such
that no CPUs are included in the set.

The cpufillset() function initializes the CPU set specified by set, such
that as many CPUs as the system architecture is capable of supporting are
included in the set. Note that this platform maximum might be more than
the number of CPUs that are available on the system.

Reference Pages for NUMA APIs B–25

cpusetops(3)

The cpuismember() function tests whether the CPU specified by the value
of cpuid is a member of the CPU set specified by set.

The cpuisemptyset() function tests whether the CPU set specified by
the set is empty.

The cpucopyset() function copies the contents of the CPU set specified by
set_src to the CPU set specified by set_dst.

The cpuaddset() and cpudelset() functions respectively add or delete
the individual CPU specified by the value of cpuid to or from the CPU set
specified by set.

The cpuandset(), cpuorset(), and cpuxorset() functions perform a
logical AND, OR, or XOR operation, respectively, on the CPU sets specified by
set_src1 and set_src2, storing the result in the CPU set specified by set_dst.

The cpudiffset() function finds the logical difference between the CPU
sets specified by set_src1 and set_src2, storing the result in the CPU set
specified by set_dst. (The result is made up of members that are included in
set_src1 but not in set_src2.)

RETURN VALUES
These functions return the following values:

0 Success (returned by all functions).

For cpuisemptyset() and cpuismember() only, 0 also
means the condition being tested is false; that is, the specified
CPU set is not empty or does not contain the specified member.

1 Success (returned by cpuisemptyset() and
cpuismember()only). This return value also means the
condition being tested is true; that is, the specified CPU set is
empty or contains the specified member.

–1 Failure (returned by all functions). In this case, errno is set
to indicate the error.

ERRORS
The cpuaddset(), cpuandset(), cpucopyset(), cpucountset(),
cpudelset(), cpudiffset(), cpuemptyset(), cpufillset(),

B–26 Reference Pages for NUMA APIs

cpusetops(3)

cpuisemptyset(), cpuismember(), cpuorset(), and cpuxorset()
functions set errno to the following value for the corresponding condition:

[EINVAL]

The value of a set or set_* argument is invalid (possibly is not a CPU
set created bycpusetcreate()).

The cpusetcreate() and cpusetdestroy() functions set errno to one
of the the following values for the corresponding condition:

[EFAULT]

The address of the specified CPU set is invalid.

[ENOMEM]

For cpusetcreate() only, no memory could be allocated for the
specified CPU set.

If the cpuaddset(), cpudelset(), and cpuismember() functions fail,
they set errno to the following value for the reason specified:

[EDOM]

The value of cpuid is an invalid or unsupported CPU identifier.

EXAMPLES
The following example demonstrates a variety of CPU set operations:
#include <cpuset.h>

int
main()
{

cpuset_t cpuset, cpuset2;

/* Create cpusets - initialized as empty */
cpusetcreate(&cpuset);
cpusetcreate(&cpuset2);
/* demonstrate cpuset operations */

/* add cpu 0 to cpuset */
if (cpuaddset(cpuset, 0) == -1) {

perror("cpuaddset");
return 0;

}

/* copy cpuset to cpuset2 */
if (cpucopyset(cpuset, cpuset2) == -1) {

Reference Pages for NUMA APIs B–27

cpusetops(3)

perror("cpucopyset");
return 0;

}

if (cpuaddset(cpuset, 1) == -1) {
/* add cpu 1 to cpuset */
perror("cpuaddset");
return 0;

}

/* difference of cpuset and cpuset2, store in cpuset */
if (cpudiffset(cpuset, cpuset2, cpuset) == -1) {

perror("cpudiffset");
return 0;

}

/* Enumerate cpuset. */
while (1) {

cpuid_t id;
int flags = SET_CURSOR_CONSUME;
cpu_cursor_t cpu_cursor = SET_CURSOR_INIT;

id = cpu_foreach(cpuset, flags, &cpu_cursor);

if (id == CPU_NONE) {
printf("\n");
break;

} else {
printf("%3d ", id);

}
}

/* Destroy cpuset */
cpusetdestroy(&cpuset);
cpusetdestroy(&cpuset2);
return 0;

}

SEE ALSO

Functions: cpu_foreach(3), numa_intro(3)

Files: numa_types(4)

B–28 Reference Pages for NUMA APIs

memalloc_attr(3)

NAME
memalloc_attr – Query the memory allocation policy and attributes
(libnuma library)

SYNOPSIS
#include <numa.h>

int memalloc_attr(
vm_offset_t va, memalloc_attr_t *attr);

PARAMETERS
va

The user virtual address for which the memory allocation policy is
requested.

attr

Points to a buffer to receive the memory allocation policy and attributes
for the page containing the specified virtual address.

DESCRIPTION
The memalloc_attr() function returns the current memory allocation
policy and associated attributes in the buffer pointed to by attr for the
address specified by va.

If radset information about the memory allocation policy is desired, a
radset must be allocated through the radsetcreate() function, and the
mattr_radset element of the attr argument must point to that radset.
Otherwise, a 0 must be specified for the mattr_radset.

EXAMPLE
#include <numa.h>
main()
{

vm_offset_t va;
memalloc_attr_t attr;
int id;
int flags = SET_CURSOR_CONSUME;
rad_cursor_t cursor = SET_CURSOR_INIT;
radsetcreate(&attr.mattr_radset);
va = (vm_offset_t)&attr;

Reference Pages for NUMA APIs B–29

memalloc_attr(3)

/* no policy in effect - return zeroes */
if (memalloc_attr(va, &attr) == -1) {

perror("memalloc_attr");
radsetdestroy(&attr.mattr_radset); return 0;

}
printf("mattr_policy = 0x%lx\n", attr.mattr_policy);
printf("mattr_rad = 0x%lx\n", attr.mattr_rad);
printf("mattr_stride = 0x%lx\n", attr.mattr_stride);
printf("mattr_distance = 0x%lx\n", attr.mattr_distance);
printf("mattr_pagesz = 0x%lx\n\n", attr.mattr_pagesz);

/* set policy */
attr.mattr_policy = MPOL_DIRECTED;
attr.mattr_rad = 0;
if (nmadvise((void *)va, sizeof(memalloc_attr_t), 0, &attr) == -1) {

perror("nmadvise");
radsetdestroy(&attr.mattr_radset); return 0;

}

if (memalloc_attr(va, &attr) == -1) {
perror("memalloc_attr");
radsetdestroy(&attr.mattr_radset);
return 0;

}
printf("mattr_policy = 0x%lx\n", attr.mattr_policy);
printf("mattr_rad = 0x%lx\n", attr.mattr_rad);
printf("mattr_stride = 0x%lx\n", attr.mattr_stride);
printf("mattr_distance = 0x%lx\n", attr.mattr_distance);
printf("mattr_pagesz = 0x%lx\n", attr.mattr_pagesz);

/* enumerate the mattr_radset */
printf("\nEnumerating radset members:\n");
while ((id = rad_foreach(attr.mattr_radset, flags, &cursor)) != RAD_NONE) {

if ((id % 8) == 0)
printf("\n");

printf("%3d, ", id);
}
printf("\n");

}

RETURN VALUES

0 Success. In this case, the function stores the requested memory
allocation policy and attributes in the buffer pointed to by attr.
If no memory allocation policy has been set for the specified
virtual address (e.g., madvise() or nmadvise()) not called
for that address), a zeroed attr structure is returned.

–1 Failure. In this case, the function sets errno to indicate the
error.

B–30 Reference Pages for NUMA APIs

memalloc_attr(3)

ERRORS

If the memalloc_attr() function fails, it sets errno to one of the following
values:

[EFAULT]

The address pointed to by va, attr, or mattr_radset is invalid.

[EINVAL]

The mattr_radset element of the attr argument points to an invalid
RAD set, possibly one that has not been created by a radsetcreate()
call.

SEE ALSO

Functions: numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–31

nfork(3)

NAME

nfork – Creates a child process (libnuma library)

SYNOPSIS
#include <numa.h>

pid_t nfork(
numa_attr_t *numa_attr);

PARAMETERS
numa_attr

Points to a structure of type numa_attr_t that contains the following
members:

nattr_type The type of resource to which the child process
will be attached, or near which the child
process will be located.

nattr_descr The resource descriptor for the resource to
which the child process will be attached, or
near which the child process will be located.

nattr_distance The distance criteria for selecting resources.
RADs in the caller’s partition that have a
distance (from the specified resource) equal to
or less than this value will be considered as
candidates for the child process’s location.

nattr_flags A bit mask of options that help control how
the system assigns a “home RAD” to the child
process.

The following symbolic values are defined for
this bit mask:

RAD_INSIST The requested
RAD assignment is
mandatory. The child
process will be created
on one of the RADs in

B–32 Reference Pages for NUMA APIs

nfork(3)

the specified RAD set
regardless of the CPU
or memory load of the
specified RADs.

RAD_NO_INHERIT The child process might
not be assigned to the
same home RAD as its
parent process. Allows
the system to assign a
home RAD to the child
process depending on
available resources.

Normally, child
processes do inherit
the assignments and
attributes of the parent
process.

RAD_SMALLMEM The process has “small
memory” requirements,
so the system should
favor (for the child
process’s home RAD)
those RADs with
light CPU loads,
independent of their
available memory.

RAD_LARGEMEM The process has large
memory requirements,
so the system should
favor (for the child
process’s home RAD)
those RADs with more
available memory,
independent of CPU
loads.

If numa_attr is NULL, the function behaves as fork().

Reference Pages for NUMA APIs B–33

nfork(3)

DESCRIPTION

The nfork() function causes creation of a new process. The new process
(child process) is an exact copy of the calling process (parent process). This
means the child process inherits the following attributes from the parent
process:

• Environment

• Close-on-exec flag. See exec(2).

• Signal-handling settings (in other words, SIG_DFL, SIG_IGN, SIG_HOLD,
function address)

• Set-user-ID mode bit

• Set-group-ID mode bit

• Trusted state

• Profiling on/off status

• Nice value. See nice(2).

• All attached shared libraries

• Process group ID

• Session ID (tty group ID)

• Foreground process ID. See exit(2).

• Current working directory

• Root directory

• File mode creation mask. See umask(2).

• File size limit. See ulimit(2).

• All attached shared memory segments. See shmat(2).

• All attached mapped regions. See mmap(2) and nmmap(3).

• All mapped regions with the same protection and sharing mode as in
the parent process.

The child process differs from the parent process in the following ways:

• The child process has a unique process ID that does not match any active
process group ID.

• The parent process ID of the child process matches the process ID of
the parent.

B–34 Reference Pages for NUMA APIs

nfork(3)

• The child process has its own copy of the parent process’s file descriptors.
Each of the child’s file descriptors refers to the same open file description
with the corresponding file descriptor of the parent process.

• The child process has its own copy of the parent’s open directory streams.
Each open directory stream in the child process may share directory
stream positioning with the corresponding directory stream of the parent.

• All semadj values are cleared.

• Process locks, text locks and data locks are not inherited by the child.
See plock(2).

• The child process’s values of tms_utime, tms_stime, tms_cutime, and
tms_cstime are set to 0.

• Any pending alarms are cleared in the child process.

• Any interval timers enabled by the parent process are reset in the child
process.

• Any signals pending for the parent process are cleared for the child
process.

• The NUMA scheduling parameters and memory allocation attributes of
the child process may be different from those of the parent process.

The nfork() function is used when the caller wishes to specify the location
where the child process should be loaded. If the nattr_descr field is NULL,
the nfork() function behaves identically to the fork() function, and the
child process inherits the calling thread’s memory allocation policy and
attributes. However, the nattr_flags field may still affect how the system
selects a home RAD for the child process, as described in PARAMETERS.

If the nattr_descr field is non-NULL, it, along with the nattr_type and
nattr_distance fields, identifies the acceptable RADs from which to select
the child process’s home RAD. The memory allocation policy for the child
process will be set to MPOL_THREAD.

If nattr_type is anything other than R_RAD or R_NSG, nfork() will
behave as though nloc() were called to obtain a RAD set that meets the
specified criteria, and then nfork() were called with nattr_type equal
to R_RAD, and nattr_descr pointing to the RAD set returned by nloc().
This behavior is described below. The nattr_distance parameter is
ignored for a nattr_type of R_RAD or R_NSG.

Reference Pages for NUMA APIs B–35

nfork(3)

If the nattr_descr field is equal to R_RAD, then nattr_descr points to a
radset_t that identifies the acceptable RADs from which to select the child
process’s initial home RAD. The remainder of the RAD set (in other words,
the set less the child process’s home RAD) becomes the child’s overflow set.

A suitable set of RADs can be located according to available resources
by nloc() and can be manipulated using the operators described for
radsetops(). Unless RAD_INSIST has been set in nattr_flags, the
specified RAD set is considered a hint, which may be overridden if all the
RADs in the specified set have very high CPU loads or too little available
memory. If the RAD_INSIST flag is specified in nattr_flags, the RAD
specification is treated as mandatory, and the child process is assigned to
one of the specified RADs despite a large CPU load or memory shortage.

When using nfork(), the caller can further specify an appropriate RAD
by setting the RAD_SMALLMEM or RAD_LARGEMEM bits in the nattr_flags
field. RAD_SMALLMEM indicates that the child will have very low memory
requirements, so can be placed on a RAD having little available memory if
that RAD has a particularly light CPU load. Conversely, if RAD_LARGEMEM
is set, the process is placed on the RAD with the most available memory
even though that RAD may have a high CPU load. RAD_SMALLMEM and
RAD_LARGEMEM are also taken into account during any future process
migrations.

If the nattr_descr field is equal to R_NSG, then nattr_descr specifies
a NUMA Scheduling Group (NSG) as returned by nsg_init(). The child
process will be attached to the NSG and will receive the same home RAD
as the other members in the NSG. If the child process is the first process to
attach to the NSG, then the home RAD for the child will be inherited from
the calling thread, just as for the fork() function.

NOTES

The nfork() function is supported for multithreaded applications.

If a multithreaded process calls the nfork() function, the new process
contains a replica of the calling thread and its entire address space, possibly
including the states of mutexes and other resources. Consequently, to avoid
errors, the child process should only execute operations that will not cause
deadlock until one of the exec functions is called.

The set of valid resources that may be specified is constrained by the caller’s
partition.

B–36 Reference Pages for NUMA APIs

nfork(3)

RETURN VALUES

0 Success (returned to the child process). In this case, the
function also returns the process ID of the child process to
the parent process. The child process and all of the related
data structures will be allocated on one of the RADs selected
by the system scheduler from among those specified by the
nattr_type, nattr_descr, and nattr_distance fields. The
initial thread of the child process will be scheduled on one of
the available CPUs in the selected RAD.

–1 Failure (returned to the parent process). In this case, no child
process is created, and errno is set to indicate the error.

ERRORS

If the nfork() function fails, it sets errno to one of the following values
for the condition specified:

[EAGAIN]

The limit on the total number of processes executing for a single user
would be exceeded. This limit can be exceeded by a process with
superuser privilege.

[EFAULT]

The numa_attr argument or the nattr_descr structure field points to
an invalid address.

[EINVAL]

The nattr_type field specifies an invalid resource type, the
nattr_descr field specifies an invalid resource, or the nattr_flags
field specifies an undefined flag.

[ENOMEM]

There is not enough memory to create the child process.

Reference Pages for NUMA APIs B–37

nfork(3)

SEE ALSO

Functions: exec(2), exit(2), fork(2), mmap(2), plock(2), umask(2), nice(3),
nloc(3), nmmap(3), nsg_init(3), numa_intro(3), radsetops(3), ulimit(3)

Files: numa_types(4)

B–38 Reference Pages for NUMA APIs

nloc(3)

NAME

nloc – Queries the NUMA Topology or Resource Affinity Domains (libnuma
library)

SYNOPSIS
#include <numa.h>

int nloc(
numa_attr_t *numa_attr,
radset_t radset);

PARAMETERS
numa_attr

Points to a structure that specifies the criteria for selecting a set
of resource Affinity Domains (RADs). This structure contains the
following elements:

nattr_type

The type of resource for which the set of “nearby” RADs is
requested.

nattr_descr

The resource descriptor for which the RAD set is requested.

nattr_distance

The distance criteria for selecting resources. RADs in the caller’s
partition that have a distance <= this value will be included in
the radset returned by nloc(). See DESCRIPTION for more
information about nattr_distance.

nattr_flags

Flags that influence the selection of RADs. See DESCRIPTION
for details.

radset

Specifies a buffer to contain the set of RADs in the caller’s partition
that satisfy the criteria specified by numa_attr.

Reference Pages for NUMA APIs B–39

nloc(3)

DESCRIPTION

The nloc() function will return in radset the set of RADs that have a
distance <= the nattr_distance value from the specified resource. The
returned radset value may be used as an argument to explicit process or
thread placement APIs or in the mattr_radset member of a memory
allocation policy structure for explicit memory placement.

The following symbolic values for nattr_distance are defined:

RAD_DIST_LOCAL Represents the distance value for resources that are
directly connected to the specified resource.

RAD_DIST_REMOTE Represents the maximum distance value for the
system. Generally, all RADs in the partition will be
<= this distance.

For NUMA topologies in which RADs are variable distances from one
another, RAD_DIST_LOCAL can be incremented to specify a specific distance.
In other words, RAD_DIST_LOCAL + 1 represents the distance to the
closest RADs, RAD_DIST_LOCAL + 2 represents the distance to the next
closest RADs, and so forth. For example, when nattr_distance is set to
RAD_DIST_LOCAL + 2, nloc() returns in radset the set of RADs that
have a distance <= (RAD_DIST_LOCAL + 2) from the specified resource.
For NUMA topologies where all RADs are equidistant from one another,
<= (RAD_DIST_LOCAL + n), where n is a positive integer, is equivalent
to <= RAD_DIST_REMOTE.

The following symbolic values are defined for the nattr_flags field:

RAD_BOUND When specified, only RADs that have processes
bound to them will be returned in radset.

RAD_NOBOUND When specified, only RADs that do not have
processes bound to them will be returned in radset.

RETURN VALUES

0 Success.

–1 Failure. In this case, errno is set to indicate the error.

B–40 Reference Pages for NUMA APIs

nloc(3)

ERRORS

If the nloc() function fails, it sets errno to one of the following values for
the reason specified:

[EFAULT]

The numa_attr argument (or its nattr_descr field) or the radset
argument point to an invalid address.

[EINVAL]

One or more of the following conditions are true:

• The numa_attr argument contains an undefined type value.

• The nattr_descr field contains an invalid resource value for the
specified type.

• The nattr_distance or nattr_flags fields contain an invalid or
undefined value.

[ESRCH]

The process specified by rd_pid does not exist.

[ELOOP]

There are too many symbolic links in rd_pathname.

[ENAMETOOLONG]

The rd_pathname length exceeds MAXPATHLEN, or a component of
rd_pathname exceeds MAXNAMELEN.

[ENOENT]

The file named by rd_pathname does not exist.

[ENOTDIR]

A component of rd_pathname is not a directory.

SEE ALSO

Functions: rad_get_info(3)

Reference Pages for NUMA APIs B–41

nloc(3)

Files: numa_types(4)

B–42 Reference Pages for NUMA APIs

nmadvise(3)

NAME
nmadvise – Advise the system of the expected paging behavior of a process
(libnuma)

SYNOPSIS
#include <numa.h>
#include <sys/nman.h>

int nmadvise(
void *addr,
long len,
int behav,
memalloc_attr_t *attr);

PARAMETERS
The parameters to the nmadvise() function are the same as for
madvise(), with the addition of the attr parameter:

addr

Points to the starting address of the range of pages to which the advice
refers.

len

Starting at the address specified by the addr parameter, specifies the
length (in bytes) of the memory range.

behav

Specifies the expected behavior pattern for referencing pages in the
specified range. See DESCRIPTION for details.

attr

Points to a structure containing the memory allocation policy and
attributes that will be assigned to the specified range. See the entry
for memalloc_attr_t in numa_types(4) for a description of this
structure.

DESCRIPTION
The nmadvise() function permits a process to advise the system about its
expected behavior in referencing a particular range of pages in the process

Reference Pages for NUMA APIs B–43

nmadvise(3)

address space. This advice includes reference patterns that the system can
use to optimize page fault behavior (as also supported by madvise()),
plus NUMA locality information that the system can use to optimize the
placement of the pages that are allocated in response to page faults.

The nmadvise() function supports the following flags to be ORed with one
of the behav values documented in madvise(2). The normal practice is to
OR one or more of the following flags with the MADV_NORMAL behavior to
advise the system about page placement without specifying any particular
paging behavior:

MADV_CURRENT Prepare the specified range or object for migration
to the memory region specified by the memory
allocation policy and associated attributes.
Migration means that pages already allocated in
the specified range will be copied to new pages
that are allocated according to the NUMA policy
and attributes as specified by the attr parameter.
Without this flag, only new allocations in the
specified range will be allocated according to the
specified policy and attributes.

See the discussion following this list for information
about the effect of ORing this flag with the
MADV_DONTNEED behavior value.

MADV_WAIT This flag may be logically ORed with another behav
flag to indicate that the requested operation be
performed before returning from the function call.

Without this flag, the nmadvise() function will
return as soon as the new memory allocation policy
and attributes are in place and, if MADV_DONTNEED
is also specified, the currently allocated pages are
discarded. In this case, migration of page contents
(if MADV_CURRENT is specified and MADV_DONTNEED
is not specified) or new allocations of zeroed pages in
accordance with the specified policy and attributes
does not occur until the program touches a page
in the specified range.

MADV_INSIST This flag may be logically ORed with another
behavflag to request that the program be notified if

B–44 Reference Pages for NUMA APIs

nmadvise(3)

the specified operation cannot be performed. This
flag is currently ignored.

Except for MADV_DONTNEED, the behav flags supported by both madvise()
and nmadvise() are equivalent. In other words, the behav information is
orthogonal to the additional NUMA information (the memory allocation
policy and associated attributes) that the nmadvise() function provides.
However, MADV_DONTNEED has special significance in the context of memory
location changes within the NUMA topology. The nmadvise() call uses
behav flags as follows to specify how currently allocated pages are to be
handled when the requested NUMA allocation policy and attributes are
applied:

• MADV_DONTNEED tells the system to discard the contents of any pages
currently allocated for the process or thread and then perform future
allocations according to the specified NUMA policy and attributes.

• MADV_CURRENT (without MADV_DONTNEED) requests that, if the NUMA
policy and attributes indicate that page allocations should start in
a location different from the location of pages already allocated, the
contents of the already allocated pages should be migrated to the new
location.

The MADV_CURRENT is ignored when ORed with MADV_DONTNEED
because the specified behavior is to discard currently allocated pages.

• Omitting both MADV_CURRENT and MADV_DONTNEED preserves the
contents of already allocated pages at their current location and allows
only future page allocations to be made according to the specified NUMA
policy and attributes.

Future page allocations that are performed according to the specified NUMA
policy and attributes will be initialized to zero unless the memory allocation
is performed to map a file from disk, in which case the memory pages are
inititalized from disk.

If, in the structure pointed to by attr, the mattr_policy member is
MPOL_DIRECTED, then the mattr_radset member specifies the Resource
Affinity Domain (RAD) from which pages will be allocated for virtual
addresses in the specified range (addr to addr+len). If the mattr_policy
member is MPOL_THREAD, then pages for the virtual addresses in the
specified thread will be allocated from the faulting thread’s home RAD.

Reference Pages for NUMA APIs B–45

nmadvise(3)

If the mattr_policy member is MPOL_DIRECTED or MPOL_THREAD, then
the mattr_radset member specifies the overflow behavior when there
is no free memory on the preferred RAD. If mattr_radset is NULL (in
other words, no RAD set), then the overflow set is taken to be the set of all
RADs in the caller’s partition. If mattr_radset specifies an empty RAD
set, no overflow RAD set is requested and the process or thread will wait for
memory to become available on the preferred RAD.

If the attr parameter is a NULL pointer, any behav flags specific to
nmadvise()are ignored, and the function is equivalent to madvise().
In this case, any behav flags specific to nmadvise() (in other words, not
supported by the madvise() function) are treated as invalid.

NOTES

As with madvise(), the behaviors specified with nmadvise() are
considered by the system to be hints, and may in fact, be unimplemented.
Unimplemented behaviors will always return success.

Furthermore, the operating system always attempts to replicate program
text and shared library text on all RADs, so any request to change the
memory allocation policy for these parts of the application’s address space
is always silently ignored.

RETURN VALUES

0 Success.

–1 Failure. In this case, errno is set to indicate the error.

ERRORS

If the nmadvise() function fails, it sets errno to one of the following
values for the reason specified:

[EBUSY]

MADV_DONTNEED was specified but pages could not be freed, most likely
because the specified memory range includes a wired page.

B–46 Reference Pages for NUMA APIs

nmadvise(3)

[EFAULT]

A non-NULL attr argument points to an invalid address, or the range
of pages (addr, len) includes a wired page or “hole” in the virtual
address space.

[EINVAL]

One of the following conditions is true:

• The value of the behav parameter or a member of the attr structure
(the specified RAD, RAD set, or memory allocation policy) is invalid.

• The attr parameter is a NULL pointer (which makes the
nmadvise() call equivalent to an madvise() call) and the logical
OR operation on behav values includes one or more flags supported
only by nmadvise().

[ENOMEM]

The attr structure specifies a RAD that has no memory.

[ENOSPC]

The behav parameter specifies MADV_SPACEAVAIL, and resources
cannot be reserved.

SEE ALSO

Functions: madvise(2), nshmget(3), nmmap(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–47

nmmap(3)

NAME

nmmap – Maps an open file into a process’s address space (libnuma library).

SYNOPSIS
#include <numa.h>
#include <sys/mman.h>

void *nmmap(
void *addr,
size_t len,
int prot,
ulong_t flags,
int filedes,
off_t off,
memalloc_attr_t *attr);

PARAMETERS

The parameters for nmmap() are the same as for mmap() with the addition
of the following NUMA-specific parameter:

attr

Points to a memory allocation policy and attributes structure that will
be assigned to the memory object created by the mapping.

See mmap(2) for descriptions of the remaining parameters.

DESCRIPTION

If the attr argument is NULL, the nmmap() function behaves identically
to the mmap() function. If the attr argument is non-NULL, it points to a
memory allocation policy and attributes structure that specifies where the
pages for the new memory object should be allocated.

If, in the structure pointed to by attr, the value of mattr_policy
is MPOL_DIRECTED and the value of mattr_rad is RAD_NONE, the
mattr_radset value specifies the set of Resource Affinity Domains (RADs)
from which the system will choose the RAD where the pages of the new
memory object will be allocated. If mattr_radset is set to NULL, the
system will select a RAD for the memory object from among all the RADs
in the caller’s partition. In this case, the memory object’s overflow set will
also be the set of all RADs in the caller’s partition.

B–48 Reference Pages for NUMA APIs

nmmap(3)

RETURN VALUES

addr Success. A value returned to addr indicates success and is the
starting address of the region (truncated to the nearest page
boundary) where the new memory object has been mapped.

(void
*)-1

Failure. In this case, errno is set to indicate the error.

ERRORS

If the nmmap() function fails, it sets errno to one of the values described
in the ERRORS section of mmap(2), or to one of the following values for the
reason specified:

[EFAULT]

A non-NULL attr argument points to an invalid address.

[EINVAL]

The structure pointed to by the attr argument contains an invalid
memory allocation policy, an invalid RAD, or an invalid RAD set.

SEE ALSO

Functions: mmap(2), nmadvise(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–49

nsg_attach_pid(3)

NAME

nsg_attach_pid, nsg_detach_pid – Attaches a process to, or detaches a
process from a NUMA Scheduling Group (libnuma library)

SYNOPSIS
#include <numa.h>

int nsg_attach_pid(
nsgid_t nsg,
pid_t pid,
ulong_t flags);

int nsg_detach_pid(
pid_t pid);

PARAMETERS
nsg

Specifies the NUMA Scheduling Group (NSG) to which the listed
process will be attached.

pid

Specifies the process ID to attach to (or detach from) the NSG.

flags

Specifies a bit mask of options that affect the attachment. The
following options are defined for the flags argument:

NSG_INSIST The requested attachment and any implied
reassignment is mandatory, overriding any
prior attachment and/or binding of the specified
processes.

NSG_MIGRATE Arrange for existing memory of the process that
is assigned a new home RAD to be migrated
to the new RAD. If this option is omitted, only
newly allocated pages will be allocated on the
new home RAD. Existing pages will migrate if
or when they experience a high rate of remote
cache misses. Migration will occur only for

B–50 Reference Pages for NUMA APIs

nsg_attach_pid(3)

pages in memory objects that have inherited
the process’s default memory allocation policy.

NSG_NO_INHERIT A child process will not inherit the NSG of the
parent and, therefore, can be assigned to any
eligible RAD on the system.

NSG_WAIT Wait for the requested memory migration
to be completed, if possible. If insufficient
resources exist to satisfy the request, the
function will return without having completed
the migration. If NSG_INSIST is also specified,
memory not migrated will be paged out.

See DESCRIPTION for more detail about these options.

DESCRIPTION

The nsg_attach_pid() function attaches the process identified by the pid
argument to an NSG. An NSG is a set of processes and/or threads that will
be constrained to reside on the same Resource Affinity Domain (RAD). That
is, the “home RAD” for all of the processes or threads in an NSG will be the
same, and the entire group will be migrated together, if at all. The process
identified by pid will be removed from any NSG of which it might currently
be a member, before adding it to the specified NSG.

If the pid argument is NULL, then the call is self-directed. That is, the
function behaves as if the current process ID were specified.

The nsg_detach_pid() will remove pid from its current NSG, if any, and
will not add pid to any new NSG. It is equivalent to the nsg_attach_pid()
function with the nsg argument of NSG_NONE.

RESTRICTIONS

The caller must have partition administration privilege and the process
identified by pid must be in the caller’s partition.

Reference Pages for NUMA APIs B–51

nsg_attach_pid(3)

RETURN VALUES

0 Success. In this case, the nsg_attach_pid() function
successfully attached to the NSG specified by nsg.

0 Success. In this case, the nsg_detach_pid() function
successfully detached from its NSG.

–1 Failure. In this case, errno is set to indicate the error.

ERRORS

If the nsg_attach_pid() function fails, it sets errno to one of the
following values for the condition specified:

[EACCES]

The caller does not have execute permission required to attach
processes to the NSG.

[ESRCH]

The process specified by pid does not exist.

[EINVAL]

The nsg argument does not specify a valid NSG, or one or more options
in the flags argument are invalid.

[EBUSY]

The specified process is hard attached (RAD_INSIST) to RADs or has
memory wired (locked) on its current RAD such that the process cannot
be migrated to the RAD selected for the NSG.

[ENOMEM]

The NSG_INSIST and NSG_MIGRATE options were specified and
no RAD can be found with sufficient memory to accommodate the
resulting group.

B–52 Reference Pages for NUMA APIs

nsg_attach_pid(3)

[EPERM]

The real or effective user ID of the caller does not match the real or
effective user ID of the process specified in pid.

If the nsg_detach_pid() function fails, it sets errno to one of the
following values for the condition specified:

[EACCES]

The caller does not have execute permission, which is required to
detach processes from the NSG.

[ESRCH]

The process specified by pid does not exist.

[EINVAL]

The process specified by pid is not a member of an NSG.

[EBUSY]

The specified process is hard attached (RAD_INSIST) to RADs or has
memory wired (locked) on its current RAD such that the process cannot
be detached.

[EPERM]

The real or effective user ID of the caller does not match the real or
effective user ID of the process specified in pid.

SEE ALSO

Functions: nsg_init(3), numa_intro(3), pthread_nsg_attach(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–53

nsg_destroy(3)

NAME
nsg_destroy – Destroys a NUMA Scheduling Group (libnuma library)

SYNOPSIS
#include <numa.h>

int nsg_destroy(
nsgid_t nsg);

PARAMETERS
nsg

Specifies the NUMA Scheduling Group (NSG).

DESCRIPTION
Remove the NSG identified by nsg and deallocate associated structures.
If the NSG is currently non-empty, existing members are removed before
deleting the NSG.

RESTRICTIONS
The effective user ID of the calling process must be equal to the value of
nsg_perm.cuid or nsg_perm.uid in the associated nsgid_ds structure,
or the calling process must have write permissions to the NSG.

RETURN VALUES
0 Success. In this case, the NSG was successfully destroyed.

–1 Failure. The NSG was not destroyed and errno is set to
indicate the error.

ERRORS
If the nsg_destroy() function fails, it sets errno to one of the following
values for the specified condition:

[EACCES]

The calling process does not have write permission.

B–54 Reference Pages for NUMA APIs

nsg_destroy(3)

[EINVAL]

The nsg argument does not specify a valid NSG ID.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_init(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–55

nsg_get(3)

NAME

nsg_get – Query status of a NUMA Scheduling Group (libnuma library)

SYNOPSIS
#include <numa.h>

int nsg_get(
nsgid_t nsg,
nsgid_ds_t *result);

PARAMETERS
nsg

Specifies the NUMA Scheduling Group (NSG)

result

Points to a structure that returns the result of the status query.

DESCRIPTION

The nsg_get() function queries the status of the NSG by copying its
associated nsgid_ds structure into a buffer pointed to by result.

RESTRICTIONS

The effective user ID of the calling process must be equal to the value of
nsg_perm.cuid or nsg_perm.uid in the associated nsgid_ds structure,
or the calling process must have read permissions to the NSG.

RETURN VALUES
0 Success.

–1 Failure. In this case, errno is set to indicate the error.

ERRORS

If the nsg_get() function fails, it sets errno to one of the following values
for the specified condition:

B–56 Reference Pages for NUMA APIs

nsg_get(3)

[EACCES]

The calling process does not have read permission.

[EFAULT]

The result argument specifies an invalid address.

[EINVAL]

The nsg argument does not specify a valid NSG ID.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_get(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–57

nsg_get_nsgs(3)

NAME

nsg_get_nsgs – Returns a list NUMA Scheduling Groups (libnuma library)

SYNOPSIS
#include <numa.h>

int nsg_get_nsgs(
nsgid_t *nsgidlist,
int numnsgs);

PARAMETERS
nsgidlist

Points to an array that receives the NUMA Scheduling Group (NSG)
identifiers.

numnsgs

Specifies the maximum number of nsgid_t entries in nsgidlist.

DESCRIPTION

The nsg_get_nsgs() function returns a list of NSGs that are active on
the system in the buffer pointed to by nsgidlist. The argument numnsgs
specifies the number of nsgid_t entries that can be accommodated in the
buffer. The list is terminated by a NULL entry.

The required size of the buffer can be obtained by first calling
nsg_get_nsgs() with a numnsgs set to zero. In this case, the number
of NSGs active on the system will be reported in nsgidlist[0]. As
always, on a dynamically changing system, the number of entries may be
different by the time it is used for the numnsgs argument to the second
nsg_get_nsgs() call.

RESTRICTIONS

The effective user ID of the calling process must be equal to the value of
nsg_perm.cuid or nsg_perm.uid in the associated nsgid_ds structure;
or the calling process must have read permissions to each NSG. If the
caller does not have the proper permission, that NSG will not be reported
in nsgidlist.

B–58 Reference Pages for NUMA APIs

nsg_get_nsgs(3)

RETURN VALUES

0 Success. However, if the errno is set to E2BIG, more NSGs
than numnsgs were available.

–1 Failure. In this case, errno is set to indicate the error.

ERRORS

If the nsg_get_nsgs() function fails, it sets errno to the following value
for the specified condition:

[EFAULT]

The nsgidlist argument points to an invalid address.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_get(3), nsg_get_pids(3),
numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–59

nsg_get_pids(3)

NAME

nsg_get_pids – Return a list of a NUMA Scheduling Group’s process
identifiers (libnuma library)

SYNOPSIS
#include <numa.h>

int nsg_get_pids(
nsgid_t nsg,
pid_t *pidlist,
int numpids);

PARAMETERS
nsg

Specifies the NUMA Scheduling Group (NSG).

pidlist

Specifies an array receiving the process identifiers of the specified NSG.

numpids

Specifies the maximum number of pid_t entries in pidlist.

DESCRIPTION

The nsg_get_pids() function returns a list of process IDs of processes
attached to the NSG in the buffer pointed to by pidlist. The argument
numpids specifies the number of process IDs that can be accommodated in
the buffer. The list is terminated by a NULL entry. The required size of the
buffer can be obtained from the nsg_nattach member of the nsgid_ds
structure returned by the nsg_get() function. As always, on a dynamically
changing system, the number of entries may be different by the time
nsg_get_pids() is called.

RESTRICTIONS

The effective user ID of the calling process must be equal to the value of
nsg_perm.cuid or nsg_perm.uid in the associated nsgid_ds structure;
or the calling process must have read permissions to the NSG.

B–60 Reference Pages for NUMA APIs

nsg_get_pids(3)

RETURN VALUES

0 Success. However, if errno is set to E2BIG on a successful
return, more processes than numpids were available.

–1 Failure. In this case, errno is set to indicate the error.

ERRORS

If the nsg_get_pids() function fails, it sets errno to one of the following
values for the specified condition:

[EACCES]

The calling process does not have read permission.

[EFAULT]

The pidlist argument specifies an invalid address.

[EINVAL]

The NSG argument does not specify a valid NSG identifier.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_get(3), nsg_get_nsgs(3),
numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–61

nsg_init(3)

NAME

nsg_init – Look up or create a NUMA Scheduling Group (libnuma library)

SYNOPSIS
#include <numa.h>

nsgid_t nsg_init(
key_t key,
ulong_t flags);

PARAMETERS
key

Specifies the key that identifies the NUMA Scheduling Group (NSG).
This value may be one of the following:

• An arbitrary binary value other than zero

• If the NSG_GETBYPID flag is set, the process ID of a member
process of the requested NSG

flags

Specifies lookup or creation flags. The following options are defined for
the flags argument:

NSG_CREATE Creates the NSG and return its identifier. If
NSG_CREATE and NSG_EXCL are both specified,
an error will be returned if the NSG identified
by key already exists.

NSG_GETBYPID If set, then the key parameter is the process
ID (pid_t) of a process that is currently a
member of the requested NSG. Otherwise, key
is an arbitrary binary value that identifies
the requested NSG.

If the NSG identified by key does not already
exist, an error will be returned unless
the NSG_CREATE flag is specified. If the
NSG_GETBYPID flag is set and the process
identified by the value of key does not exist,
an error is returned.

B–62 Reference Pages for NUMA APIs

nsg_init(3)

If both the NSG_CREATE and the
NSG_GETBYPID flags are set, and the process
identified by the value of key exists but is not
currently a member of an NSG, a new NSG will
be created using the value of key (the process’s
ID) and the process will be attached to the new
NSG. This establishes the “home RAD” of the
process as the home RAD for the NSG.

NSG_NO_INHERIT A child process will not inherit the NSG of the
parent and, therefore, can be assigned to any
eligible RAD on the system. This flag is valid
only if both NSG_CREATE and NSG_GETBYPID
are also specified.

NSG_CLEANUP The NSG will be marked for automatic deletion
when the nsg_perm.nattach member of the
associated nsgid_ds structure transitions
from nonzero to zero.

DESCRIPTION

The nsg_init() function looks up and possibly creates the NSG identified
by the key parameter. The flags parameter supplies options for the lookup or
create operation.

After creating a new NSG, the nsg_init() function initializes an
associated nsgid_ds structure as follows:

• The nsg_perm.cuid and nsg_perm.uid members are set equal to the
effective user ID of the calling process.

• The nsg_perm.cgid and nsg_perm.gid members are set equal to the
effective group ID of the calling process.

• The low order nine bits of nsg_perm.mode are set equal to the low order
nine bits of flags.

• The nsg_perm.nattach member is set to zero (or 1 if NSG_GETBYPID
is specified in flags).

The nsg_perm.mode permissions control operations on NSGs as follows:

Reference Pages for NUMA APIs B–63

nsg_init(3)

• Write permission is required to destroy the NSG or to set the owner
IDs and permissions.

• Read permission is required to query the NSG status or membership
roster.

• Execute permission is required to attach processes or threads to an NSG.

RETURN VALUES
NSG identifier of the NUMA Scheduling Group

Success.

–1

Failure. In this case, errno is set to indicate the error.

ERRORS

If the nsg_init() function fails, it sets errno to one of the following values
for the specified condition:

[EACCES]

An NSG already exists for the specified key, but the caller does not
have access based on the NSG’s current permissions.

[EEXIST]

An NSG already exists for the specified key, but NSG_CREATE and
NSG_EXCL flags were specified.

[ENOENT]

No NSG exists for the specified key, and the NSG_CREATE flag was
not specified.

[ENOSPC]

No space exists for the new NSG specified by NSG_CREATE.

[ESRCH]

The NSG_GETBYPID flag was set and the process identified by key was
not found.

B–64 Reference Pages for NUMA APIs

nsg_init(3)

[EINVAL]

One or more illegal values for flags was set.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_attach_thread(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–65

nsg_set(3)

NAME

nsg_set – Set NUMA Scheduling Group owner and permissions (libnuma
library)

SYNOPSIS
#include <numa.h>

int nsg_set(
nsgid_t nsg,
nsgid_ds_t *attrib);

PARAMETERS
nsg

Specifies the NUMA Scheduling Group (NSG).

attrib

Points to a structure containing owner and permission attributes.

DESCRIPTION

The nsg_set() function sets the NSG owner IDs (user ID and group ID) and
permissions (mode) by using the nsgid_ds structure pointed to by attrib.

RESTRICTIONS

The effective user ID of the calling process must be equal to the value of
nsg_perm.cuid or nsg_perm.uid in the associated nsgid_ds structure,
or the calling process must have write permissions to the NSG.

RETURN VALUES

0 Success. In this case, nsg_set() set the NSG owner IDs and
permissions as specified.

–1 Failure. In this case, errno is set to indicate the error.

B–66 Reference Pages for NUMA APIs

nsg_set(3)

ERRORS

If the nsg_set() function fails, it sets errno to one of the following values
for the specified condition:

[EACCES]

The calling process does not have write permission.

[EFAULT]

The attrib argument specifies an invalid address.

[EINVAL]

The nsg argument does not specify a valid NSG ID.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_init(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–67

nshmget(3)

NAME

nshmget – Returns (or creates) the ID for a shared memory region (libnuma
library)

SYNOPSIS
#include <numa.h>
#include <sys/shm.h>

int nshmget(
key_t key,
size_t size,
int shmflg,
memalloc_attr_t *attr);

PARAMETERS
key

Specifies the key that identifies the shared memory region. The value
for the key parameter can be IPC_PRIVATE or a random number other
than zero (0). If the value of key is IPC_PRIVATE, it can be used to
assure the return of a new, unused shared memory region.

size

Specifies the minimum number of bytes to allocate for the region.

shmflg

Specifies the creation flags. See shmget(2) for a description of these
flags.

attr

Points to a memory allocation policy and attributes structure. If the
specified key does not exist, and a shared memory region is created,
these attributes will be assigned to the memory object created to
manage the shared memory region.

DESCRIPTION

If the attr argument is NULL, the nshmget() function behaves identically
to the shmget() function.

B–68 Reference Pages for NUMA APIs

nshmget(3)

If the attr argument is non-NULL, it points to a memory allocation policy
and attributes structure that specifies where the pages should be allocated
for a newly created shared memory region. To change the policy of an
existing shared memory region, use the nmadvise() function.

If the mattr_policy member of the structure pointed to by attr is
MPOL_DIRECTED and the mattr_rad member is RAD_NONE, the system will
choose the Resource Affinity Domain (RAD) where the pages of the shared
memory region will be allocated from among the RADs specified in the
mattr_radset member of *attr. If the mattr_radset member is the empty
set, the system will select a RAD for the memory object from among all of
the RADs in the caller’s partition, and the overflow set will be the empty set.

RETURN VALUES
ID of a shared memory region

Success.

–1

Failure. In this case, errno is set to indicate the error.

ERRORS

The nshmget() function returns errors for all the conditions that are
documented for the shmget() function. In addition, the nshmget()
function sets errno for the following:

[EFAULT]

A non-NULL attr argument points to an invalid address.

[EINVAL]

The structure pointed to by the attr argument contains an invalid
memory allocation policy or an invalid RAD number. (The RAD number
is less than 0 or greater than nrads.) This error can also occur if the
memory allocation policy is MPOL_STRIPED, but the specified stride
(stripe width) is 0 pages.

SEE ALSO

Functions: shmget(2), nmadvise(3), numa_intro(3)

Reference Pages for NUMA APIs B–69

nshmget(3)

Files: numa_types(4), shmid_ds(4)

B–70 Reference Pages for NUMA APIs

pthread_nsg_attach(3)

NAME

pthread_nsg_attach – Attaches a thread to a NUMA Scheduling Group
(libpthread library)

SYNOPSIS
#include <numa.h>

int pthread_nsg_attach(
nsgid_t nsg,
pthread_t thread,
long flags);

PARAMETERS
nsg

Specifies the NUMA Scheduling Group (NSG) to which the thread
will belong.

thread

Identifies the thread to attach to the NSG.

flags

Specifies options (bit mask) that affect the attachment. See
DESCRIPTION for details.

DESCRIPTION

The pthread_nsg_attach() function attaches the thread specified by
the thread argument to a NUMA Scheduling Group (NSG) specified by the
nsg argument. An NSG is a set of processes and/or threads that will be
constrained to reside on the same Resource Affinity Domain (RAD). That is,
the “home RAD” for all of the processes/threads in an NSG will be the same,
and the entire group will be migrated together, if at all. The thread specified
by thread will be removed from any NSG of which it might currently be a
member, before being added to the specified NSG.

If the specified thread resides on a different RAD, the thread will be
reassigned to a single RAD. The home RAD for the thread will be selected as
follows:

Reference Pages for NUMA APIs B–71

pthread_nsg_attach(3)

• If the specified NSG already has processes/threads attached, the home
RAD for the specified thread will be the home RAD for that NSG.

• If the specified NSG is empty, the home RAD for the thread will be
selected based on the setting of the flags argument.

The following options are defined for the flags argument:

NSG_INSIST

The requested attachment and any implied reassignments are
mandatory, overriding any prior binding of the specified thread. If this
option is not set, and the thread is bound (RAD_INSIST) to a different
RAD such that the system cannot honor the request, the request will
fail.

NSG_SMALLMEM

The thread has small memory requirements, so the system should favor
(for the home RAD) those RADs with light CPU loads, independent of
their available memory. This flag applies only when attaching to an
empty NSG.

NSG_LARGEMEM

The thread has large memory requirements, so the system should
favor (for the home RAD) those RADs with more available memory,
independent of their CPU loads. This flag only applies when attaching
to an empty NSG.

NSG_MIGRATE

Arrange for the existing memory (stack pages) of a thread that is
assigned a new home RAD to be migrated to the new RAD. If omitted,
only newly allocated pages will be allocated on the new home RAD.
Existing pages will migrate if/when they experience a high rate of
remote cache misses. Migration will occur only for pages-in-memory
objects that have inherited the process’s default memory allocation
policy.

NSG_WAIT

Wait for the requested memory migration to be completed. Effectively,
this flag specifies “migrate now!”.

B–72 Reference Pages for NUMA APIs

pthread_nsg_attach(3)

RETURN VALUES
0 Success.

Integer value Failure. In this case, the returned integer indicates
the type of error. Possible errors include the
following:

[EACCES]

The caller does not have execute permission
required to attach the thread based on the
NSG’s permissions.

[EBUSY]

The thread specified by thread is hard attached
(RAD_INSIST) to RADs or has memory wired
(locked) on its current RAD such that it cannot
be migrated to the common RAD selected for
the NSG.

[EINVAL]

The value of the flags argument is invalid.

[ENOMEM]

NSG_INSIST and NSG_MIGRATE were specified
and no RAD can be found with sufficient
memory to accommodate the resulting group.

[ESRCH]

The thread specified by the thread argument
does not exist.

ERRORS

None.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_get(3), numa_intro(3)

Reference Pages for NUMA APIs B–73

pthread_nsg_attach(3)

Files: numa_types(4)

B–74 Reference Pages for NUMA APIs

pthread_nsg_detach(3)

NAME

pthread_nsg_detach – Detaches a thread from a NUMA Scheduling Group
(libpthread library)

SYNOPSIS
#include <numa.h>

int pthread_nsg_detach(
pthread_t thread);

PARAMETERS
thread

Identifies the thread to detach from a NUMA Scheduling Group (NSG).

DESCRIPTION

The pthread_nsg_detach() function detaches the thread specified by the
thread argument from the NSG to which it is attached. The function does
not reassign the thread to a new NSG.

RETURN VALUES

0 Success.

Integer value Failure. In this case, the integer value indicates the
type of error. Possible errors include the following:
[EACCES]

Based on the NSG’s permissions, the caller
does not have execute permission, which is
required to detach a thread.

[EBUSY]

The specified thread is hard attached
(RAD_INSIST) to a RAD or has memory wired
(locked) on its current RAD such that it cannot
be migrated to a common RAD selected for
the NSG.

Reference Pages for NUMA APIs B–75

pthread_nsg_detach(3)

[EINVAL]

The value of the flags argument is invalid.

[ENOMEM]

NSG_INSIST and NSG_MIGRATE were specified
and no RAD can be found with sufficient
memory to accommodate the resulting NSG.

[ESRCH]

The thread argument specifies a thread that
does not exist.

ERRORS

None.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_get(3), numa_intro(3)

Files: numa_types(4)

B–76 Reference Pages for NUMA APIs

pthread_nsg_get(3)

NAME

pthread_nsg_get – Gets the list of threads in a NUMA Scheduling Group
(libpthread library)

SYNOPSIS
#include <numa.h>

int pthread_nsg_get(
nsgid_t nsg,
pthread_t *list,
long size);

PARAMETERS
nsg

Specifies the NUMA Scheduling Group (NSG) from which to retrieve
the list of threads.

list

Specifies the address of the array of thread identifiers where the list
of threads will be written.

size

Specifies the size (in number of thread identifiers) of the array where
the list of threads will be written.

DESCRIPTION

The pthread_nsg_get() returns into the buffer pointed to by list an array
of nsg_thread structures containing the process ids and thread indexes for
all threads attached to the specified NSG. The list argument specifies the
number of nsg_thread structures that the array must accommodate.

To obtain the value for size, the application can first call
pthread_nsg_get() with list set to null and read in the value of the
nsg_nthread member in the nsgid_ds structure that the call returns.
On the second call to pthread_nsg_get(), the application uses the
nsg_nthread value for size and includes the appropriate value for list.

Reference Pages for NUMA APIs B–77

pthread_nsg_get(3)

RESTRICTIONS

The effective user ID of the calling process must be equal to the value of
nsg_perm.cuid or nsg_perm.uid in the associated nsgid_ds structure;
or the calling process must have read permissions to the NSG.

RETURN VALUES
0

Success.

Integer value

Failure. In this case, the returned integer indicates the type of error.
Possible errors are as follows:

[EACCES]

The calling process does not have read permission on the NSG.

[EINVAL]

The nsg argument does not specify a valid NSG identifier, or the
nsg argument is not a valid address.

ERRORS

None.

SEE ALSO

Functions: nsg_attach_pid(3), nsg_get(3), numa_intro(3),
pthread_nsg_attach(3)

Files: numa_types(4)

B–78 Reference Pages for NUMA APIs

pthread_rad_attach(3)

NAME

pthread_rad_attach, pthread_rad_bind – Attaches or binds a thread to a
NUMA Resource Affinity Domain (libpthread library)

SYNOPSIS
#include <numa.h>

int pthread_rad_attach(
pthread_t thread,
radset_t radset,
ulong_t flags);

int pthread_rad_bind(
pthread_t thread,
radset_t radset,
ulong_t flags);

PARAMETERS
thread

Identifies the thread to be attached or bound to the specified set of
Resource Affinity Domains (RADs).

radset

Identifies the RAD set to which the thread is to be attached or bound.

DESCRIPTION

The pthread_rad_attach() function attaches the thread specified by the
thread argument to the RAD set specified by the radset argument.

The pthread_rad_bind() function binds the specified thread to the
specified RAD set.

While both functions assign a home RAD for the thread, an attach operation
allows remote execution on other RADs while a bind operation restricts
execution to the home RAD. In the following paragraphs, the term “assign”
is used when the description refers equally to both the attach and the bind
operations.

The home RAD for the thread will be selected by the system scheduler from
among the RADs included in radset based on current system load balance

Reference Pages for NUMA APIs B–79

pthread_rad_attach(3)

and the flags argument. The overflow set (mattr_radset) for the thread
will be set to radset.

The following symbolic values are defined for the flags argument:
RAD_INSIST

The requested assignments are mandatory. If this option is not set, the
system will consider the request to be a “hint” and may take no action
for the specified thread.

RAD_SMALLMEM

The thread has small memory requirements, so the system should (for
the home RAD) favor those RADs with light CPU loads, independent
of their available memory.

RAD_LARGEMEM

The thread has large memory requirements, so the system should
(for the home RAD) favor those RADs with more available memory,
independent of their CPU loads.

If the caller does not have partition administration privilege and if the
radset argument contains RADs that are not in the caller’s partition, an
error will be returned.

NOTES
The value for the radset argument could be obtained from an nloc() call
to assign or migrate the process to a RAD close (or closer) to a particular
resource. When obtained in this manner, the radset value will identify
RADs that were in the caller’s partition at the time of the nloc() call.
The partition configuration could change between the call to nloc() and
a subsequent call to pthread_rad_attach(), resulting in an error. An
application should be prepared to handle this error, even though it should
not be a frequent occurrence.

RETURN VALUES
0 Success.

Integer value Failure. In this case, the integer value indicates the
type of error. Possible errors are as follows:

B–80 Reference Pages for NUMA APIs

pthread_rad_attach(3)

[EBUSY]

The thread is hard attached (RAD_INSIST)
to RADs or has memory wired (locked) on its
current RAD such that it cannot be migrated to
the specified RAD set.

[EINVAL]

One of more of the RADs in the radset
argument or options in the flags argument
are invalid.

[ENOMEM]

RAD_INSIST and RAD_MIGRATE were specified,
and the thread cannot be migrated because
insufficient memory exists on RADs in the
specified RAD set.

[EPERM]

The caller does not have appropriate privileges
to assign threads to RADs in the specified
RAD set.

[ESRCH]

The thread specified by thread does not exist.

ERRORS

None.

SEE ALSO

Functions: nloc(3), pthread_rad_detach(3)

Reference Pages for NUMA APIs B–81

pthread_rad_detach(3)

NAME

pthread_rad_detach – Detach a thread from its Resource Affinity Domain
(libpthread library)

SYNOPSIS
#include <numa.h>

int pthread_rad_detach(
pthread_t thread);

PARAMETERS
thread

Identifies the thread to detach from its current RAD

DESCRIPTION
The pthread_rad_detach() function detaches the thread specified by the
thread argument from its current Resource Affinity Domain. The thread is
free to be scheduled in any RAD available to the process.

RETURN VALUES
0

Success. In this case, the specified thread is detached from its RAD.

Integer value

In this case, the integer value indicates the type of error. Possible
errors are as follows:
[ESRCH]

The thread specified in thread does not exist.

ERRORS
None.

SEE ALSO

Functions: nloc(3), pthread_rad_attach(3), pthread_rad_bind(3)

B–82 Reference Pages for NUMA APIs

rad_attach_pid(3)

NAME

rad_attach_pid, rad_bind_pid – Attaches or binds a process to a Resource
Affinity Domain by process ID (libnuma library)

SYNOPSIS
#include <numa.h>

int rad_attach_pid(
pid_t pid,
radset_t radset,
ulong_t flags);

int rad_bind_pid(
pid_t pid,
radset_t radset,
ulong_t flags);

PARAMETERS
pid

Identifies the process to be attached or bound to the specified set of
Resource Affinity Domains (RADs).

radset

Specifies the RAD set to which the process will be attached or bound.

flags

Specifies options (a bit mask) that affect the attachment or binding
operation. See DESCRIPTION for details.

DESCRIPTION

The rad_attach_pid() function attaches the process specified by pid to
the set of RADs specified by radset.

The rad_bind_pid() function binds the process specified by pid to the set
of RADs specified by radset.

While both functions assign a “home” RAD for the process, an attach
operation allows remote execution on other RADs while a bind operation
restricts execution to the “home” RAD. For both functions, if the pid

Reference Pages for NUMA APIs B–83

rad_attach_pid(3)

argument is NULL, the call is self-directed. That is, the function behaves as
if pid identified the calling process.

The memory allocation policy for the process will be set to MPOL_THREAD.
The home RAD for the process will be selected by the system scheduler from
among the RADs included in radset and will be based on current system load
balance and the flags argument. The overflow set (mattr_radset) for the
process will be set to radset. If the process has multiple threads, then any of
those threads that have inherited the process’s default memory allocation
policy will be attached or bound by using the same new memory allocation
policy as used for the process that contains them.

The threads of the specified process will be scheduled on one of the CPUs
associated with the selected RAD, except for threads that have been
explicitly bound to some other processor. The CPU will be selected by the
scheduler from among those CPUs associated with the selected RAD in the
process’s partition. (This partition might not be the same as the caller’s
partition if the caller has appropriate privilege.) The selection will be
determined by the loading of the CPUs.

The following options are defined for the flags argument:

RAD_NO_INHERIT

Any processes later forked by the specified process can be assigned to
any RAD on the system, and might not inherit its parent’s home RAD
assignment; that is, the child processes might not be assigned to the
same home RAD as the parent. This allows the system to assign a
home RAD to the child process depending on available resources.

Normally, child processes do inherit the assignments and attributes of
the parent process.

By default, processes that are later forked by the process specified
in a rad_attach_pid() or rad_bind_pid() call inherit the RAD
assignment of their parent.

RAD_INSIST

The requested attachments or bindings are mandatory. If this option
is not set, the system will consider the request to be a “hint” and may
take no action for the specified process or, if applicable, any child
processes that the specified process contains.

B–84 Reference Pages for NUMA APIs

rad_attach_pid(3)

RAD_SMALLMEM

The process has small memory requirements, so the system should
favor (for the home RAD) those RADs with light CPU loads,
independent of their available memory.

RAD_LARGEMEM

The process has large memory requirements, so the system should
favor (for the home RAD) those RADs with more available memory,
independent of their CPU loads.

RAD_MIGRATE

Arrange for existing memory of the process to be migrated to the new
home RAD. If RAD_MIGRATE is omitted, only newly allocated pages will
be allocated on the new home RAD. Existing pages will migrate if or
when they experience a high rate of remote cache misses. Migration
will occur only for pages in memory objects that have inherited the
process’s default memory allocation policy.

RAD_WAIT

Wait for the requested memory migration to be completed. Effectively,
this specifies “migrate now!”.

If the caller does not have partition administration privilege and if pid is not
in the caller’s partition, or if the radset argument contains RADs that are
not in the caller’s partition, an error will be returned.

The value for the radset argument could be obtained from a prior call to
nloc() that assigned or migrated the process to a RAD close or closer to a
particular resource. When obtained this way, radset will contain only the
RADs in the caller’s partition at the time of the nloc() call. The partition
configuration could change between a call to nloc() and a subsequent call
to rad_attach_pid() or rad_bind_pid(), resulting in an error. This
error is not likely to occur often, but a robust application should handle it.

RETURN VALUES

0 Success.

Reference Pages for NUMA APIs B–85

rad_attach_pid(3)

–1 Failure. In this case, the functions set errno to indicate the
error.

ERRORS

If either of these functions fail, errno is set to one of the following values
for the condition specified:

[EBUSY]

RAD_INSIST and RAD_MIGRATE were specified and the specified
process cannot be migrated for some reason. For example, memory is
wired (locked) on the process’s current RAD.

[EFAULT]

The radset argument points to an invalid address.

[EINVAL]

One or more of the RADs in the radset argument or options in the
flags argument are invalid.

[ENOMEM]

RAD_INSIST and RAD_MIGRATE were specified and the specified
process cannot be migrated because insufficient memory exists on the
specified RAD set.

[EPERM]

The real or effective user ID of the caller does not match the real or
effective user ID of the specified process, or the caller does not have
appropriate privileges to assign processes to RADs.

[ESRCH]

The process specified by pid does not exist.

SEE ALSO

Functions: nloc(3), rad_detach_pid(3)

B–86 Reference Pages for NUMA APIs

rad_detach_pid(3)

NAME

rad_detach_pid – Detach a process from a Resource Affinity Domain by
pid (libnuma library)

SYNOPSIS
#include <numa.h>

int rad_detach_pid(
pid_t pid);

PARAMETERS
pid

Specifies a process identifier (pid) to detach from a RAD set.

DESCRIPTION

The rad_detach_pid() function frees a process that has been bound
or attached to a RAD through the functions rad_bind_pid() or
rad_attach_pid(), respectively. If the pid argument is NULL, the call
is self-directed. That is, the function behaves as if the calling process’s
pid were specified. Calling rad_detach_pid() for a process that is not
attached or bound is not considered to be an error.

RETURN VALUES
0

Success. In this case, rad_detach_pid() detaches the pid specified
by pid from the RAD set.

–1

Failure. In this case, errno is set to indicate the error.

ERRORS

If the rad_detach_pid() function fails, errno is set to one of the following
values for the reasons specified.

Reference Pages for NUMA APIs B–87

rad_detach_pid(3)

[ESRCH]

The process specified in pid does not exist.

[EPERM]

The real or effective user ID of the caller does not match the real
or effective user ID of the process pid, or the caller does not have
appropriate privileges to free processes from RADs.

SEE ALSO

Functions: rad_attach_pid(3), rad_bind_pid(3)

B–88 Reference Pages for NUMA APIs

rad_foreach(3)

NAME

rad_foreach – Enumerates the members of a Resource Affinity Domain
(libnuma library)

SYNOPSIS
#include <numa.h>
rad_cursor_t cursor = SET_CURSOR_INIT;

int rad_foreach(
radset_t radset,
unsigned int flags,
radset_cursor_t *cursor);

PARAMETERS
radset

Specifies a set of Resource Affinity Domains (RADs) whose members
are to be enumerated.

flags

Specifies one or more flags that control the processing of RAD members
in the set. The following symbolic values are defined for flags:

SET_CURSOR_FIRST

Initialize the cursor to the first member of the set before scanning.

SET_CURSOR_WRAP

Wrap around to the beginning of the RAD set when scanning
for members.

SET_CURSOR_CONSUME

Consume the set members; in other words, remove members
from the set as they are found.

cursor

Specifies an opaque type that records the position in a set for
subsequent invocations of the rad_foreach() function.

Reference Pages for NUMA APIs B–89

rad_foreach(3)

DESCRIPTION

The rad_foreach() function scans the specified RAD set, starting at the
position saved in cursor, for members of the set and returns the first member
found. If the SET_CURSOR_FIRST flag is set, the cursor is initialized to the
beginning of the set before starting the scan. If no members are found, the
rad_foreach() function will return RAD_NONE.

If the SET_CURSOR_WRAP flag is set, the scan will wrap from the end of the
set to the beginning searching for a member to return. Otherwise, a one-pass
scan is performed, and when the end of the set is reached, cursor()is
left positioned at the end of the set. From then on, the rad_foreach()
function will continue to return RAD_NONE until cursor is reinitialized,
either by specifying the SET_CURSOR_FIRST flag or by specifying the
SET_CURSOR_WRAP flag.

If the SET_CURSOR_CONSUME flag is set, the member returned, if any, will be
removed from the set.

The cursor variable may be initialized to the value SET_CURSOR_INIT.
This is equivalent to setting SET_CURSOR_FIRST on the initial call to
rad_foreach().

NOTES

Although DESCRIPTION discusses the “beginning” and “end” of the set,
and wrapping from the end to the beginning, RAD sets are conceptually
unordered. Thus, these end points are arbitrary points in the set that exist
to ensure that each member is returned only once per pass through the
set. Applications should not depend on a numeric ordering of the returned
member IDs.

RETURN VALUES

This function returns either the next member in the RAD set, starting at the
position in cursor, or RAD_NONE (if there is no next member). Execution of
this function is always successful.

ERRORS

None.

B–90 Reference Pages for NUMA APIs

rad_foreach(3)

EXAMPLES

See EXAMPLES in radsetops(3) for a sample program that uses the
rad_foreach() function.

SEE ALSO

Functions: numa_intro(3), radsetops(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–91

rad_fork(3)

NAME

rad_fork – Creates a new process on a Resource Affinity Domain (libnuma
library)

SYNOPSIS
#include <numa.h>

pid_t rad_fork(
radid_t radid,
ulong_t flags);

PARAMETERS
radid

Identifies a Resource Affinity Domain (RAD) on which to allocate data
and schedule threads for a new process.

flags

Specifies options (a bit mask) that affect the attachment or binding
operation. See DESCRIPTION for details.

DESCRIPTION

The rad_fork() function behaves the same as nfork() when the latter
specifies a resource type of R_RAD and a resource descriptor that points
to a RAD set containing a single RAD identifier. For a description of this
behavior, refer to the description of the R_RAD resource type in nfork(3).

The following option is specified for the flags argument:

RAD_NO_INHERIT The child process might not be assigned to the same
home RAD as its parent process. Allows the system
to assign a home RAD to the child process depending
on available resources.

Normally, child processes do inherit the assignments
and attributes of the parent process.

B–92 Reference Pages for NUMA APIs

rad_fork(3)

RETURN VALUES

0 Success (returned to the child process). In this case, the
function also returns the process ID of the child process to the
parent process.

The child process and all of its data structures are allocated on
the RAD specified by the radid argument. In addition, the
initial thread of the child process is scheduled on one of the
CPUs in the specified RAD.

–1 Failure (returned to the parent process). In this case, no child
process is created and the function sets errno to indicate the
error.

ERRORS
[EAGAIN]

The limit on the total number of processes executing for a single user
would be exceeded. This limit can be exceeded by a process with
superuser privilege.

[EINVAL]

The radid argument specifies an invalid RAD identifier.

[ENOMEM]

There is insufficient memory to create this process.

SEE ALSO

Functions: nfork(3), nloc(3), numa_intro(3), radsetops(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–93

rad_get_current_home(3)

NAME

rad_get_current_home – Returns the caller’s home Resource Affinity
Domain (libnuma library)

SYNOPSIS
#include <numa.h>

radid_t rad_get_current_home(void);

PARAMETERS

None.

DESCRIPTION

The rad_get_current_home() function returns the home Resource
Affinity Domain (RAD) of the caller.

RESTRICTIONS

As is true for many system information queries, the data returned by the
rad_get_current_home() function may be stale by the time it is returned
to or used by the caller. For example, migration of the process to a different
RAD could occur after the “current home RAD” is fetched.

RETURN VALUES

This function returns the caller’s home RAD and always completes
successfully.

ERRORS

None.

SEE ALSO

Functions: cpu_get_current(3), cpu_get_rad(3), nloc(3), numa_intro(3),
rad_attach_pid(3)

Files: numa_types(4)

B–94 Reference Pages for NUMA APIs

rad_get_num(3)

NAME

rad_get_num, rad_get_cpus, rad_get_freemem, rad_get_info, rad_get_max,
rad_get_physmem, rad_get_state – Query resource complements of a
Resource Affinity Domain (libnuma)

SYNOPSIS
#include <numa.h>

int rad_get_cpus(
radid_t rad,
cpuset_t cpuset);

ssize_t rad_get_freemem(
radid_t rad);

int rad_get_info(
radid_t rad,
rad_info_t *info);

int rad_get_max(void);

int rad_get_num(void);

ssize_t rad_get_physmem(
radid_t rad);

ssize_t rad_get_state(
radid_t rad);

PARAMETERS
cpuset Specifies a buffer to receive the CPU set assigned

to the specified Resource Affinity Domain (RAD)
in the caller’s partition

info Points to a buffer to receive information about the
specified RAD.

rad Identifies the RAD for which the resource
complement is being requested.

DESCRIPTION

A Resource Affinity Domain (RAD) is a collection of resources that are
related by the platform hardware topology. The collection of processors and
I/O buses connected to a local memory of a NUMA platform, plus the local

Reference Pages for NUMA APIs B–95

rad_get_num(3)

memory itself, comprise a RAD. More generally, a RAD may be characterized
as a set of resources that are within some “distance” of each other.

The rad_get_info() function stores in the buffer pointed to by info,
a rad_info_t structure containing information about the RAD specified
by the radid argument. This information includes the state of the RAD,
the amount of memory in the RAD, and the CPUs it contains. The
remaining functions on this reference page return individual members of
the rad_info_t structure.

The rad_get_cpus() function stores in the buffer specified by cpuset the
set of CPUs in the specified RAD that are assigned to the caller’s partition.

The rad_get_freemem() function returns a snapshot of the amount of free
memory (pages) in the specified RAD in the caller’s partition.

The rad_get_max() function returns the maximum number of RADs on
the system.

The rad_get_num() function returns the number of RADs in the caller’s
partition.

The rad_get_physmem() function returns the amount of physical memory
(pages) assigned to the specified RAD in the caller’s partition.

The rad_get_state() function returns the current state of the RAD
specified by the radid argument. The possible RAD state values are:

RAD_ONLINE The specified RAD exists and is on line. Processes
and threads may be assigned to the RAD and
memory may be allocated there.

RAD_OFFLINE The specified RAD exists but is not currently on line.
Neither processes nor threads may be assigned to
this RAD, and no memory may be allocated there.
However, the RAD’s resource complement may be
queried.

____________ Note _____________

Currently, RAD state is always set to
RAD_ONLINE; therefore, consider this
function as being reserved for future use.

B–96 Reference Pages for NUMA APIs

rad_get_num(3)

Note that prior to calling any of the rad_get_*() functions, the application
must set the rinfo_version field in the rad_info_t structure to
RAD_INFO_VERSION. The CPU set (cpuset) stored in this structure must
have been created by the application prior to the call. If zero is specified for
cpuset, the function does not fill in data for the CPU set.

RESTRICTIONS

As with many queries of system information, the data returned by these
functions may be stale by the time it is returned to or used by the calling
application.

RETURN VALUES

The rad_get_info() and rad_get_cpus() functions return the following
values:

0 or positive integer Success. In this case, the integer value is
the number of CPUs in the specified RAD.

–1 Failure. In this case, errno is set to
indicate the error.

The rad_get_freemem() and rad_get_physmem() functions return the
following:

Number of pages of memory Success. Depending on the function,
this value is the amount of free memory
for the specified RAD or the amount of
physical memory assigned to the RAD.

(ssize_t)–1 Failure. In this case, errno is set to
indicate the error.

The rad_get_num() and rad_get_max() functions return the number
of RADs in the caller’s partition or on the system, respectively. There is no
value defined to indicate failure for these functions.

The rad_get_state() function always returns a state value. There is no
value defined to indicate failure for this function.

Reference Pages for NUMA APIs B–97

rad_get_num(3)

ERRORS

The rad_get_cpus(), rad_get_info(), rad_get_freemem(), and
rad_get_physmem() functions set errno to one of the following values
for the specified condition:

[EFAULT] The cpuset argument indirectly points to
an invalid address, or the specified CPU
set does not exist, possibly because it was
not created by a call to cpusetcreate().

[EINVAL] The rad argument specifies a RAD that
does not exist.

[EPERM] The version number specified for the
rinfo_version field in the info
argument is not recognized by the system.

EXAMPLES

The following example prints data returned by a call to rad_get_info():

#include <sys/errno.h>
#include <numa.h>

int
print_rad_info(radid_t rad)
{

rad_info_t radinfo;

/* Create a cpuset for the radinfo struct. */
cpusetcreate(&radinfo.rinfo_cpuset);

radinfo.rinfo_version = RAD_INFO_VERSION;

/* Fetch the data */
if (rad_get_info(rad, &radinfo) == -1) {

perror("rad_get_info");
return -1;

}

/* Simple data types can be printed directly. */
printf("rinfo_radid = %d\n", radinfo.rinfo_radid);
printf("rinfo_state = %d\n", radinfo.rinfo_state);
printf("rinfo_physmem = 0x%lx pages\n", radinfo.rinfo_physmem);
printf("rinfo_freemem = 0x%lx pages\n", radinfo.rinfo_freemem);
printf("\ncpuset members: ");

/* Complex datatypes (cpuset) need to be enumerated. */

B–98 Reference Pages for NUMA APIs

rad_get_num(3)

while (1) {
cpuid_t id;
int flags = SET_CURSOR_CONSUME;
cpu_cursor_t cpu_cursor = SET_CURSOR_INIT;

id = cpu_foreach(radinfo.rinfo_cpuset, flags, &cpu_cursor);

if (id == CPU_NONE) {
printf("\n");
break;

} else {
printf("%3d ", id);

}
}

/* Destroy cpuset */
cpusetdestroy(&radinfo.rinfo_cpuset);

return 0;
}

SEE ALSO

Functions: cpu_foreach(3), cpusetcreate(3), nloc(3), numa_intro(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–99

radsetops(3)

NAME

radsetops: radaddset, radandset, radcopyset, radcountset, raddelset,
raddiffset, rademptyset, radfillset, radisemptyset, radismember, radorset,
radsetcreate, radsetdestroy, radxorset – Perform operations on a set of
Resource Affinity Domains (libnuma library)

SYNOPSIS
#include <radset.h>

int radaddset(
radset_t set,
radid_t radid);

int radandset(
radset_t set_src1,
radset_t set_src2,
radset_t set_dst);

int radcopyset(
radset_t set_src,
radset_t set_dst);

int radcountset(
radset_t set);

int raddelset(
radset_t set,
radid_t radid);

int raddiffset(
radset_t set_src1,
radset_t set_src2,
radset_t set_dst);

int rademptyset(
radset_t set);

int radfillset(
radset_t set);

int radisemptyset(
radset_t set);

int radismember(
radset_t set,
radid_t radid);

int radorset(
radset_t set_src1,
radset_t set_src2,
radset_t set_dst);

int radsetcreate(
radset_t *set);

int radsetdestroy(
radset_t *set);

B–100 Reference Pages for NUMA APIs

radsetops(3)

int radxorset(
radset_t set_src1,
radset_t set_src2,
radset_t set_dst);

PARAMETERS
radid

Identifies the RAD for which the function is requesting information or
on which the function operates.

set

Specifies or points to a set of Resource Affinity Domains (RADs) on
which the function operates.

set_src[n]

Specifies, depending on the function, one of the following:

• A source RAD set that the function copies to a destination RAD set

• One of two RAD sets for which the function will find a logical
difference

• One of two RAD sets on which the function will perform a logical
AND, OR, or XOR operation

set_dst

Specifies the destination RAD set where the function stores the results
of the logical operation it performs.

DESCRIPTION

The radsetops primitives manipulate a specified set of Resource Affinity
Domains (RADs). These functions operate on data objects (of type radset_t)
that are created by calls to radsetcreate().

The radsetcreate() function allocates, and sets to empty, the specified
RAD set.

The radsetdestroy() function releases the RAD set memory allocated
by radsetcreate().

Reference Pages for NUMA APIs B–101

radsetops(3)

The radfillset() function initializes the specified RAD set, such that all
RADs that are currently configured in the caller’s partition are included
in that set.

The radcountset() function returns the number of members in the
specified RAD set.

The rademptyset() function reinitializes the specified RAD set, such that
no RADs are included in that set.

The radisemptyset() function tests whether the specified RAD set is
empty.

The radismember() function tests whether the specified RAD is a member
of the specified RAD set.

The radaddset() and raddelset() functions respectively add or delete
the specified RAD from the specified RAD set.

The raddiffset() function finds the logical difference between the RAD
sets specified by the arguments set_src1 and set_src2 and stores the result in
the RAD set specified by set_dst. (The result is made up of those members
included in set_src1 but not in set_src2.)

The radandset(), radorset(), and radxorset()functions respectively
perform a logical AND, OR, or XOR operation on the RAD sets specified
by the arguments set_src1 and set_src2, storing the result in the RAD set
specified by set_dst.

RETURN VALUES

The radisemptyset() and radismember() functions return the following
values:

1 Success (True).

0 Success (False).

–1 Failure. In this case, errno is set to indicate the type of error.

The remaining functions return the following values:

0 Success.

B–102 Reference Pages for NUMA APIs

radsetops(3)

–1 Failure. In this case, errno is set to indicate the type of error.

ERRORS
If the radcountset(), rademptyset(), radfillset(),
radisemptyset(), radorset(), radxorset(), radandset(),
raddiffset(), and radcopyset() functions fail, they set errno to the
following value for the specified condition specified:

[EINVAL]

The specified RAD set is invalid, possibly not created by
radsetcreate().

If the radsetcreate() and radsetdestroy() functions fail, they set
errno to one of the following values for the condition specified:

[EFAULT]

The set argument points to an invalid address.

[ENOMEM]

(radsetcreate() only) No memory could be allocated for the RAD set.

If the radaddset(), raddelset(), and radismember() functions fail,
they set errno to one of the following values for the condition specified:

[EINVAL]

The specified RAD set is invalid, possibly not created by
radsetcreate().

[EDOM]

The value of radid is an invalid or unsupported RAD identifier.

EXAMPLES
The following example demonstrates various operations on RAD sets:

#include <radset.h>

int
main()
{

Reference Pages for NUMA APIs B–103

radsetops(3)

radset_t radset, radset2;

/* Create radsets - initialized as empty */
radsetcreate(&radset);
radsetcreate(&radset2);

/* demonstrate radset operations */

/* add rad 0 to radset */
if (radaddset(radset, 0) == -1) {

perror("radaddset");
return 0;

}

/* copy radset to radset2 */
if (radcopyset(radset, radset2) == -1) {

perror("radcopyset");
return 0;

}

/* add rad 1 to radset */
if (radaddset(radset, 1) == -1) {

perror("radaddset");
return 0;

}

/* store the difference of radset and radset2 in radset */
if (raddiffset(radset, radset2, radset) == -1) {

perror("raddiffset");
return 0;

}

/* Enumerate radset. */
while (1) {

radid_t id;
int flags = SET_CURSOR_CONSUME;
rad_cursor_t rad_cursor = SET_CURSOR_INIT;

id = rad_foreach(radset, flags, &rad_cursor);

if (id == RAD_NONE) {
printf("\n");
break;

} else {
printf("%3d ", id);

}
}

/* Destroy radset and radset2*/
radsetdestroy(&radset);
radsetdestroy(&radset2);
return 0;

}

B–104 Reference Pages for NUMA APIs

radsetops(3)

SEE ALSO

Functions: numa_intro(3), rad_foreach(3)

Files: numa_types(4)

Reference Pages for NUMA APIs B–105

Index

A
APIs, NUMA

advantages of, 1–4
appropriate applications for, 1–7
categories of, 2–4
compared to SMP pset interfaces,

1–11
header file for including, 2–3
library locations, 2–3
portability issues, 1–6
purpose, 1–11
system defaults when APIs not

used, 2–1
when to use, 2–2

C
cache coherency, 1–1
CPU

getting RAD location of, 1–10
CPU sets

APIs for, 2–7t
purpose, 2–3

cpu_foreach function, 2–7t, B–15
use in radtool example, A–2e

cpu_get_current function, 2–7t,
B–18

cpu_get_info function, 2–7t, B–20
cpu_get_max function, 2–7t, B–20
cpu_get_num function, 2–7t, B–20
cpu_get_rad function, 2–7t, B–23
cpuaddset function, 2–7t, B–24
cpuandset function, 2–7t, B–24
cpucopyset function, 2–7t, B–24

cpucountset function, 2–7t, B–24
cpudelset function, 2–7t, B–24
cpudiffset function, 2–7t, B–24
cpuemptyset function, 2–7t, B–24
cpufillset function, 2–7t, B–24
cpuisemptyset function, 2–7t,

B–24
use in radtool example, A–2e

cpuismember function, 2–7t, B–24
cpuorset function, 2–7t, B–24
cpusetcreate function, 2–8t, B–24

use in radtool example, A–2e
cpusetdestroy function, 2–8t,

B–24
use in radtool example, A–2e

cpuxorset function, 2–8t, B–24

E
ES80 AlphaServer systems, 1–4
ES80 systems, 1–1

G
Global Port, 1–3
Global Switch

(See Hierarchical Switch
(HSwitch))

GS1280 AlphaServer systems, 1–4
GS1280 systems, 1–1
GS80, GS160, and GS320 systems

QBBs, 1–3
RAD to QBB mapping, 1–11

GS80, GS160, GS320 systems, 1–1

Index–1

H
Hierarchical Switch (HSwitch),

1–3
hwmgr command, 1–9t

I
inetd command, 1–10t

M
memalloc_attr function, 2–10t,

B–29
memalloc_attr_t structure, 2–12
memory management

default system behavior, 1–3
NUMA APIs for, 2–10t
NUMA policies for, 2–11
response latency issues, 1–3
system tuning issues, 1–7

MPOL_* attributes, 2–11

N
nacreate function, 2–10t
netstat command, 1–10t
nfork function, 2–9t, B–32
nfsd command, 1–10t
nloc function, 2–5t, B–39

use in radtool example, A–2e
nmadvise function, 2–10t, 2–12,

B–43
nmmap function, 2–11t, 2–12,

B–48
Non-Uniform Memory Access, 1–1
nsg_attach_pid function, 2–8t,

2–9t, B–50
nsg_destroy function, 2–8t, B–54
nsg_detach_pid function, 2–8t,

2–9t, B–50
nsg_get function, 2–8t, B–56
nsg_get_nsgs function, 2–8t, B–58

nsg_get_pids function, 2–8t, B–60
nsg_init function, 2–8t, B–62
nsg_set function, 2–9t, B–66
NSGs

(See NUMA Scheduling Groups
(NSGs))

nshmget function, 2–11t, 2–12,
B–68

NUMA
(See Non-Uniform Memory

Access)
NUMA Scheduling Groups (NSGs),

2–4
APIs for, 2–8t
purpose, 2–4

numa_types header file, B–3

P
partitioning, 1–7

software implications, 1–8
processes

NUMA APIs for, 2–9t
processor sets

(See psets)
ps command, 1–10t
psets, 1–9

compared to CPU sets, 2–3
pthread_nsg_attach function,

2–8t, 2–9t, B–71
pthread_nsg_detach function,

2–8t, 2–9t, B–75
pthread_nsg_get function, B–77
pthread_rad_attach function,

2–9t, B–79
pthread_rad_bind function, 2–9t,

B–79
pthread_rad_detach function,

2–9t, B–82

Q
QBB

Index–2

(See Quad Building Block)
QUAD

(See Quad Building Block)
Quad Building Block, 1–3

R
RAD

(See Resource Affinity Domains)
RAD sets

APIs for, 2–5t
purpose, 2–3

rad_attach_pid function, 2–5t,
2–10t, B–83

rad_bind_pid function, 2–5t,
2–10t, B–83

rad_detach_pid function, 2–5t,
2–10t, B–87

rad_foreach function, 2–5t, B–89
use in radtool example, A–2e

rad_fork function, 2–10t, B–92
rad_get_cpus function, 2–5t, B–95

use in radtool example, A–2e
rad_get_current_home function,

2–5t, B–94
rad_get_freemem function, 2–5t,

B–95
rad_get_info function, 2–5t, B–95
rad_get_max function, 2–5t, B–95
rad_get_num function, 2–5t, B–95
rad_get_physmem function, 2–5t,

B–95
rad_get_state function, 2–5t, B–95
radaddset function, 2–5t, B–100
radandset function, 2–6t, B–100
radcopyset function, 2–6t, B–100
radcountset function, 2–6t, B–100
raddelset function, 2–6t, B–100
raddiffset function, 2–6t, B–100

rademptyset function, 2–6t,
B–100

radfillset function, 2–6t, B–100
radisemptyset function, 2–6t,

B–100
use in radtool example, A–2e

radismember function, 2–6t,
B–100

radorset function, 2–6t, B–100
radsetcreate function, 2–6t,

B–100
use in radtool example, A–2e

radsetdestroy function, 2–6t,
B–100
use in radtool example, A–2e

radtool utility, A–1
Makefile, A–7e
radtool.c, A–2e
radtool.h, A–7e

radxorset function, 2–6t, B–100
Resource Affinity Domains, 1–2
runon command, 1–10t

S
sched_stat command, 1–10t
scheduling

(See NUMA Scheduling Groups
(NSGs))

T
threads

NUMA APIs for, 2–9t

V
vmstat, 1–10t

Index–3

