Tru64 UNIX

Programmer’s Guide

Part Number: AA-RHOVC-TE

August 2000

Product Version: Tru64 UNIX Version 5.1 or higher

This manual describes the programming development environment
of the Compag Tru64™ UNIX operating system, emphasizing the C
programming language.

Compaq Computer Corporation
Houston, Texas

© 2000 Compaq Computer Corporation

COMPAQ and the Compagq logo Registered in U.S. Patent and Trademark Office. Alpha and Tru64 are
trademarks of Compaq Information Technologies Group, L.P.

Microsoft and Windows are trademarks of Microsoft Corporation. UNIX and The Open Group are
trademarks of The Open Group. All other product names mentioned herein may be trademarks or
registered trademarks of their respective companies.

Confidential computer software. Valid license from Compag required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

Compag shall not be liable for technical or editorial errors or omissions contained herein. The information
in this document is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND. THE ENTIRE RISK ARISING OUT OF THE USE OF THIS INFORMATION REMAINS WITH
RECIPIENT. IN NO EVENT SHALL COMPAQ BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL,
INCIDENTAL, SPECIAL, PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION OR LOSS
OF BUSINESS INFORMATION), EVEN IF COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES AND WHETHER IN AN ACTION OF CONTRACT OR TORT, INCLUDING
NEGLIGENCE.

The limited warranties for Compaq products are exclusively set forth in the documentation accompanying
such products. Nothing herein should be construed as constituting a further or additional warranty.

Contents

About This Manual

1 Overview

1.1 Application Development Phases ... 1-1
1.2 Specification and Design Considerations 1-2
121 StaNdards ... 1-2
1.2.2 Internationalization ... 1-3
1.2.3 Window-Oriented Applicationscccociiiiiiinnnn, 1-3
1.2.4 Secure Applicationso 1-4
13 Major Software Development ToOIScoovviiiiiiinnnnn. 14
131 Languages Supported by the Tru64 UNIX Environment .. 1-4
1.3.2 Linking Object Files ...t 1-4
1.3.3 Debugging and Program Analysis Tools 1-5
14 Source File Control ... e 1-5
15 Program Installation ToolSccoooiiiiiiiiiiiii.n, 1-6
1.6 Overview of Interprocess Communication Facilities 1-7
2 The Compiler System

21 Compiler System Componentsoooiiiiiiiiiiiiiiaiaa... 2-2
2.2 Data Types in the Tru64 UNIX Environment 2-4
221 Data TYPe SIZeS ..ottt 2-4
222 Floating-Point Range and Processingc..c.cc.uvvuvv.. 2-5
2.2.3 Structure Alignment 2-5
224 Bit-Field Alignment i 2-6
225 The __align Storage Class Modifier 2-8
2.3 Using the C PreproCesSOr eueeieee e iaaaes 2-9
23.1 Predefined Macroscceeiiiiiiiiiii e 2-9
23.2 Header Files ... e 2-9
2.3.3 Setting Up Multilanguage Include Files 2-11
234 Implementation-Specific Preprocessor Directives

(FPragma) ... 2-11
2.4 Compiling Source Programs ..., 2-12
24.1 Default Compilation Behaviorccoooiiiiiiin. 2-12
242 Compiling Multilanguage Programs 2-16
243 Enabling Run-Time Checking of Array Bounds 2-17

Contents i

2.5
251
252
253
2.6
2.7
27.1
2.7.2
2.7.3
2.7.4
275
2.8

2.9

Linking Object Files

Linking with Compiler Commandsccoovvinne.
Linking with the Id Command ...t

Specifying Libraries
Running Programs
Object File Tools

Dumping Selected Parts of Files (odump)
Listing Symbol Table Information (nm)
Determining a File’s Type (file) ...
Determining a File’s Segment Sizes (size)
Disassembling an Object File (diS)ccovvvvveeaian
ANSI Name Space Pollution Cleanup in the Standard C

Library ...

Inline Assembly Code — ASMSooiiiiiiiiii e

3 Pragma Preprocessor Directives

The #pragma assert Directive ...,
#pragma assert func_attrs ...
#pragma assert global_status_variable

3.1
3.1.1
3.1.2
3.1.3
3.2
3.3
3.3.1
3.3.2
3.3.3
3.34
3.35
3.4
3.5
3.6
3.7
3.8
3.9
3.9.1
3.9.2
3.9.3
3.10
3.11
3.12
3.13
3.14

iv Contents

#pragma assert non_zero

The #pragma environment Directiveccccovviiiiniinnn
The #pragma extern_model Directivec..ccooiiiiin

Syntax ...l

#pragma extern_model relaxed_refdef
#pragma extern_model strict_refdef
#pragma extern_model save ...
#pragma extern_model restore ...t
The #pragma extern_prefix Directive ...

The #pragma inline Directive

The #pragma intrinsic and #pragma function Directives
The #pragma linkage Directive ...
The #pragma member_alignment Directive
The #pragma message Directive ...
#pragma message optionl ...
#pragma message option2ooiiiiiiiiiie i
#pragma message (“String”) ...
The #pragma optimize Directive ...,

The #pragma pack Directive

The #pragma pointer_size Directiveccoooiiiiiiinnn
The #pragma use_linkage Directiveccocoiiiiiiinnnn

The #pragma weak Directive

NN

COVWOPPRWRFRRFPPFPOOWONO O A~

o1 T 1 1 1
A D

WWWWWWWWwWwowowowowaowowowaowow

|
WNRNNNNNNNRRRRRRRRR

4 Shared Libraries

4.1
4.2
42.1
422
4.2.3
424

4.3
4.4
4.5
45.1
45.2
4.6
4.7
4.7.1
4.7.2
4.7.3

4.8
4.9
4.10
411
411.1
411.2
4.11.3
411.4
4.115
4.11.6
4.11.7
412
4.13

Shared Library OVerview ...
Resolving Symbols ...

Search Pathofthe Linker ...t
Search Path of the Run-time Loader
Name Resolution ...t
Options to Determine Handling of Unresolved External

SYMDBOIS ..

Linking with Shared Librariesoooiiiiiinn.
Turning Off Shared Libraries ...,
Creating Shared Libraries ...

Creating Shared Libraries from Object Files
Creating Shared Libraries from Archive Libraries

Working with Private Shared Libraries
USIiNg QUICKSTAIT ...

Verifying That an Object Is Quickstarting
Manually Tracking Down Quickstart Problems
Tracking Down Quickstart Problems with the fixso

ULty oo

Debugging Programs Linked with Shared Libraries
Loading a Shared Libraryat Run Time
Protecting Shared Library Files ...
Shared Library Versioning ..o

Binary Incompatible Modifications
Shared Library Versionscccoiiiiiiiiiniiiiinnn.
Major and Minor Versions ldentifiers
Full and Partial Versions of Shared Libraries
Linking with Multiple Versions of Shared Libraries
Version Checking at Load Timecoovvviiiiiiinnnn.
Multiple Version Checking at Load Time

Symbol Binding ...
Shared Library Restrictionsc..ooviiiiiiiiiiiiiiieeen

5 Debugging Programs with dbx

51

51.1
51.2
5.1.3
514
515

General Debugging Considerationsocooeeet.
Reasons for Using a Source-Level Debugger
Explanation of Activation Levelsccooiiiiiiinn.
Isolating Program Execution Failures
Diagnosing Incorrect Output Resultsc..eeee
Avoiding Pitfalls ...

4-1
4-3
4-4
4-4
4-5

4-8

4-11
4-12

4-14
4-15
4-15
4-17
4-17
4-18
4-19
4-21
4-22
4-22
4-24
4-25
4-30
4-30

Contents v

vi

5.2

521
522
5.2.3
5.3

53.1
5.3.2
5.3.3
5.4

541
5.4.2
5.4.3
54.4
5.5

5.5.1
5.5.2
5.5.3
554
555
5.5.6
5.5.7

5.5.8
5.6
5.6.1
5.6.2
5.6.2.1
5.6.2.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.7
571
5.7.2
5.7.3
574
575
5.7.6
5.7.7

Contents

Running dbx ...

Compiling a Program for Debugging
Creating a dbx Initialization File

Invoking and Terminating dbx .
Using dbx Commands
Qualifying Variable Names

dbx Expressions and Their Precedence

dbx Data Types and Constants .
Working with the dbx Monitor
Repeating dbx Commands
Editing the dbx Command Line
Entering Multiple Commands .
Completing Symbol Names
Controllingdbxee.
Setting and Removing Variables
Predefined dbx Variables
Defining and Removing Aliases

Monitoring Debugging Session Status

Deleting and Disabling Breakpo

(18] £,

Displaying the Names of Loaded Object Files
Specifying the Location of Shared Libraries for Core

Dumps ..o

Invoking a Subshell from Withindbx

Examining Source Programs

Specifying the Locations of Source Files
Moving Up or Down in the Activation Stack
Using the where and tstack Commands

Using the up, down, and fun
Changing the Current Source Fi
Listing Source Code

cCommands
le oo

Searching for Text in Source Filesooel.
Editing Source Files from Withindbx
Identifying Variables That Share the Same Name
Examining Variable and Procedure Types

Controlling the Program

Running and Rerunning the Program
Executing the Program Step by Stepoiis

Using the return Command

Going to a Specific Place inthe Code
Resuming Execution After a Breakpoint
Changing the Values of Program Variables

Patching Executable Disk Files

o1 1 1 1 1
I
WNNOODOVWOUNNO O

a

o1 1 1
A w~NOOO

PG OOaaaaaaaaa
NNNNRRRPRRRRERRR

OO U WWWNNRPOOOWWOWMONNNO

o1 1
\‘

U1010101010101010101(|J101010101010101010101
WWWWWWWWWWWWWWNNDNDNDNDNDN

5.7.8
5.7.9
5.8

5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.9

59.1
59.2

5.9.3
594
594.1
5.9.4.2
5.10
5.10.1
5.10.2
5.11
5.12
5.13
5.14

Running a Specific Procedure ..., 5-39
Setting Environment Variables 5-40
Setting Breakpoints ... 5-40
OVEIVIBW ittt 5-41
Setting Breakpoints with stop and stopi 5-41
Tracing Variables During Execution 5-43
Writing Conditional Code indbXcoooiiiiiiiiinn, 5-45
Catching and Ignoring Signals ..., 5-46
Examining Program State ... 5-47
Printing the Values of Variables and Expressions 5-47
Displaying Activation-Level Information with the dump
COMMANG .. 5-49
Displaying the Contents of Memorycceeeeeinan 5-50
Recording and Playing Back Portions of a dbx Session 5-51
Recording and Playing Back Input 5-51
Recording and Playing Back Output 5-53
Enabling Core-Dump File Namingcoooviiiiiiinnnn. 5-54
Enabling Core-File Naming at the System Level 5-55
Enabling Core-File Naming at the Application Level 5-55
Debugging a RUnNning Processccovvviiiiiiiiiiiinniiinnnn. 5-55
Debugging Multithreaded Applications 5-57
Debugging Multiple Asynchronous Processes 5-60
Sample Programooooiiiii e 5-61

6 Checking C Programs with lint

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4
6.4.1
6.4.2
6.4.3
6.5
6.6
6.7
6.7.1

Syntax of the lint Command ... 6-1
Program Flow Checkingcoooiiiiiiiiiiiiin, 6-3
Data Type Checking ... 6-4
Binary Operators and Implied Assignments 6-4
Structures and UNioNScoviiiiiiiiiiiiii e 6-5
Function Definition and Usesccoiiiiiiiieeannn 6-5
Enumerators ... 66
TYPE CaSES .. e 6—6
Variable and Function Checkingccocoiiiiiiiiiiinns 6—6
Inconsistent Function Return ..o, 6—7
Function Values That Are Not Usedcccoouit 6—7
Disabling Function-Related Checking 6-8
Checking on the Use of Variables Before They Are Initialized 6-9
Migration Checking ... 6-10
Portability Checkingcoiiiiiiiiii e 6-10
Character USESoviiiiiiiiiii e 6-11

Contents vii

6.7.2
6.7.3
6.7.4
6.8
6.8.1
6.8.2
6.8.3
6.9
6.10
6.10.1
6.10.2
6.10.3
6.11
6.12
6.13

Bit Field USESoooiiiiii e
External Name Size ...
Multiple Uses and Side Effectsccccoiiiiiiiiinn.
Checking for Coding Errors and Coding Style Differences
Assignments of Long Variables to Integer Variables
Operator Precedence ...
Conflicting Declarations ...,
Increasing Table Size ...
CreatingalintLibrary ...
Creatingthe Input File ...
Creating the lint Library File ...t
Checking a Program with a New Library
Understanding lint Error Messagesccovvvvvveiiiinnn..
Using Warning Class Options to Suppress lint Messages
Generating Function Prototypes for Compile-Time Detection
OF SYNTAX EXTOrS ..

7 Debugging Programs with Third Degree

viii

7.1
7.1.1
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.2.3.4
7.3
7.3.1
7.3.2
7.3.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.5

7.6
7.7

Contents

Running Third Degree on an Application
Using Third Degree with Shared Libraries
Debugging Example ...
Customizing Third Degreecooiiiiiiiiiiiiiiiaa.n.
Modifying the Makefile ...
Examining the Third Degree Log File
List of Run-Time Memory Access Errors
Memory Leaks ...
Heap History
Memory Layout ...
Interpreting Third Degree Error Messages
Fixing Errors and Retrying an Application
Detecting Uninitialized Valuesccoooiiiiiiit.
Locating Source Files ...
Examining an Application’'s Heap Usagecccvvvee
Detecting Memory Leaks ...
Reading Heap and Leak Reportscooviviiiin..
Searching for Leakscoooiiiiiiiiii
Interpreting the Heap History ...,
Using Third Degree on Programs with Insufficient Symbolic
INfOrmation i e
Validating Third Degree Error Reportscccocovevvnnnn
Undetected Errors ...

WWWWNN PP

a

[R
a

G)O)O)G)G)G)G)CIT)G)G)G)O)O)O)

NP RRRPRPRRRRRERRERRR

= o o O,

6-25

|
A OWN

DL L LN NN NN NN
WNNPFPPFPOONNO O

a

a

[
~N o g

NN NP NN NN NN
R R S

8 Profiling Programs to Improve Performance

8.1 Profiling Sample Programcooiiiiiiiiiiiiiiiaaan,
8.2 Compilation Options for Profiling
8.3 Manual Design and Code Optimizationsc.....
8.3.1 TechNiqQUES .o
8.3.2 Toolsand Examples ...
8.3.2.1 CPU-Time Profiling with Call Graph
8.3.211 Using the hiprof Profiler
8.3.2.1.2 Using the cc Command'’s -pg Option
8.3.2.2 CPU-Time/Event Profiles for Sourcelines/Instruc-

L1 0] 0
8.3.2.21 Using the uprofile Profiler ...l
8.3.2.2.2 Using the hiprof Profiler ...l
8.3.2.2.3 Using the cc Command'’s -p Option
8.3.2.24 Using the pixie Profiler ...t
8.4 Minimizing System Resource UsSagec..cvveiiiiiinnnnnnns
8.4.1 TechnNiqQUES .o
8.4.2 Toolsand Examples ...
8.4.2.1 SyStem MORNITOrS ...
8.4.2.2 Heap Memory Analyzers ...,
8.5 Verifying the Significance of Test Casesccccvviiiiiiinnn
8.5.1 TechnNiqQUES .o
8.5.2 Toolsand Examples ...
8.6 Selecting Profiling Information to Display
8.6.1 Limiting Profiling Display to Specific Procedures
8.6.2 Displaying Profiling Information for Each Source Line
8.6.3 Limiting Profiling Display by Line ...t
8.6.4 Including Shared Libraries in the Profiling Information ..
8.6.4.1 Specifying the Location of Instrumented Shared

Libraries
8.7 Merging Profile Data Files ...,
8.7.1 Data File-Naming Conventionsccociiiiiiinnnn.
8.7.2 Data File-Merging Techniquesccooiiiiiiiiiiiinnns.
8.8 Profiling Multithreaded Applicationso...
8.9 Using monitor Routines to Control Profiling

9 Using and Developing Atom Tools

9.1
9.1.1
9.1.2

RuUNNing Atom TOOISuuu e
Using Installed ToOIS ..o
Testing Tools Under Developmentcooeeeet.

1
A AN

(00]

| 00 00 00 00 O 00 00
=]

o ororor b

AP UWOWWRPRPFPFPOOWLWODONLE

1 1 1 1
~

0O CO CO CO CO 0O 00 00 00 00 00 00 00 OO0 OO OO0 OO O

[
NDNNNNNNNNNNNNNERERERRPRE

Contents ix

9.1.3 ALOM OPLIONS o

9.2 Developing Atom ToolS ...
9.2.1 Atom’s View of an Application ...t
9.2.2 Atom Instrumentation Routineoovieeeeeaian
9.2.3 Atom Instrumentation Interfacesccooiin
9.23.1 Navigating Within a Program ...,
9.2.3.2 Building Objectso
9.2.3.3 Obtaining Information About an Application’s
COMPONENTS ...ttt
9.2.34 Resolving Procedure Names and Call Targets
9.2.35 Adding Calls to Analysis Routines to a Program
9.2.4 Atom Description Fileo i
9.2.5 Writing Analysis Proceduresccoeeviiiiiiiiienaaannns
9.25.1 INPUE/OULPUL ...
9.25.2 fork and exec System Calls ...t
9.2.6 Determining the Instrumented PC from an Analysis
ROUTING o e
9.2.7 Sample TooIS ..o
9.2.7.1 Procedure Tracingcovvviiiiiiiiiiii e
9.2.7.2 Profile Toolo
9.2.7.3 Data Cache Simulation Toolooeeeeeen,

10 Optimizing Techniques

10.1 Guidelines to Build an Application Program
10.1.1 Compilation Considerationsc.oooviiiiiiiiiaiiann.n.
10.1.2 Linking and Loading Considerations
10.1.3 Spike and Profile-Directed Optimization
10.1.3.1 Overview of spike ...
10.1.3.2 Using spike for Profile-Directed Optimization
10.1.4 Preprocessing and Postprocessing Considerations
10.1.5 Library Routine Selection ...
10.2 Application Coding Guidelinescooiiiiiiiiiinnn,
10.2.1 Data-Type Considerationsccooviiiiiiiiiiiinnnnnn.
10.2.2 Using Direct /O on AdvFS Files ...
10.2.3 Cache Usage and Data Alignment Considerations
10.2.4 General Coding Considerationsc..ccoeiiiiian..

11 Handling Exception Conditions

11.1 Exception-Handling OVerviewccooevvviiiiiiiiinnnn.n.
1111 C Compiler SYNtaXoooiiiiiiii e
11.1.2 libexc Library Routines ...

x Contents

10-2
10-2
10-6
10-6
10-6
10-8
10-11
10-12
10-13
10-14
10-14
10-16
10-17

12

13

11.1.3 Header Files That Support Exception Handling 11-3

11.2 Raising an Exception from a User Program 11-4
11.3 Writing a Structured Exception Handler 11-5
11.4 Writing a Termination Handler ..., 11-12

Developing Thread-Safe Libraries

12.1 Overview of Thread Supportcccooiiiiiiiiiiiiin, 12-1
12.2 Run-Time Library Changes for POSIX Conformance 12-2
12.3 Characteristics of Thread-Safe and Reentrant Routines 12-3
1231 Examples of Nonthread-Safe Coding Practices 12-4
12.4 Writing Thread-Safe Codeccooiiiiiiiiiiiin, 12-5
1241 Using TIS for Thread-SpecificDataccuet 12-6
12411 Overview of TIS ... 12-6
12.41.2 Using Thread-SpecificDataoooet. 12-6
12.4.2 Using Thread Local Storagec..cciviiiiiiiiiiiiiinnnn. 12-8
124.2.1 The __thread Attribute ..., 12-9
12.4.2.2 Guidelines and Restrictionsccoiiiiinnn. 12-9
12.4.3 Using Mutex Locks to Share Data Between Threads 12-10
12,5 Building Multithreaded Applications 12-11
1251 Compiling Multithreaded C Applications 12-11
12.5.2 Linking Multithreaded C Applications 12-12

1253 Building Multithreaded Applications in Other Languages 12-12

OpenMP Parallel Processing

13.1 Compilation OPtioNSeei e 13-1
13.2 Environment Variablesoo 13-3
13.3 Run-Time Performance TUNINGccooiiiiiiiiiiiiiiaiaaann, 13-4
13.3.1 Schedule Type and Chunksize Settings 13-4
13.3.2 Additional Controls 13-5
13.4 Common Programming Problems ..., 13-6
13.4.1 SCOPING -t ettt 13-6
13.4.2 Deadlock ... 13-6
13.4.3 Threadprivate Storageoooiiiiiiiiii e 13-7
13.4.4 USING LOCKS ..o 13-7
13.5 Implementation-Specific Behavioro. 13-7
13.6 DEDUGQING ...ttt 13-8
13.6.1 Background Information Needed for Debugging 13-8
13.6.2 Debugging and Application-Analysis Tools 13-10
13.6.2.1 Ladebug ... 13-10
13.6.2.2 Visual Threadsc.cooviiiiiiii e 13-12

Contents xi

13.6.2.3
13.6.2.4

Atom and OpenMP Tools ...,
Other Debugging AidScccoiiiiiiiiiiiiiiian,

14 Posting and Receiving EVM Events

14.1 Events and Event Management ...,
14.2 Overview of How EVM Events Are Handled
14.3 Starting and Stopping EVM ...
14.4 Authorization to Post and Receive Events
145 Contentsofan EVMEvent ...
1451 Standard Data Itemsot
14511 Event Name Data ltem ...,
1451.1.1 Reserved Component Namesccccvvennn
1451.1.2 Comparing Event Names ...,
1451.2 Event Format Data Item ...,
145.1.3 Event Priority Data Iltem ...l
145.1.4 118N Catalog Name, Message Set ID, and Message 1D
Data ltems
145.1.5 Reference Data ltem ...
145.2 Variable Data Items ...
14.6 Designing a Set of EVENTS ..o
14.6.1 Deciding Which Status Changes Are Eventworthy
14.6.2 Writing Event Explanation Textccoociiiiiiiinnns
14.6.3 Designing Event Templatesccooiiiiiiiiiiiiiinnnn.
14.6.3.1 Deciding What to Put in an Event Template
14.6.3.2 Matching the Names of Posted Events with Event
Template Names ...
14.6.3.3 Merging Data Items from Templates and Posted
EVEeNtS ..o
14.6.3.4 Installing Template Files — Location, Naming,
Ownership, and Permission Requirements
14.6.3.5 Checking Event Template Registration
14.6.4 Establishing Translations for Event Text (I18N)
147 The EVM Programming Interfaceoooooiel,
1471 The EVM Header File ...
14.7.2 The EVM APl Library ...
14.7.3 Return Status Codeseevviiiiiiiiii e
14.7.4 Signal Handling
14.7.5 EVM In Multithreaded Programscccociiivvnnnn.
14.7.6 Reassigning and Replicating EVM Events
14.7.7 Callback FUNCLIONSooiii e
14.7.8 Choosing a Connection Policy ...,
14.7.9 Handling Disconnectionsc.c.ceiiiiiiiiiiiiinnnnnns

xii Contents

14-2
14-4
14-5
14-5
14-6
14-6
14-7
14-9
14-11
14-12
14-13

14-14
14-15
14-15
14-17
14-18
14-19
14-20
14-20

14-21

14-22

14-23
14-24
14-24
14-26
14-26
14-26
14-26
14-27
14-27
14-28
14-29
14-30
14-30

14.7.10

14.7.11

14.7.11.1
14.7.11.2
14.7.11.3
14.7.11.4
14.7.11.5
14.7.11.6
14.7.11.7
14.7.11.8
14.7.11.9

14.7.11.10

Using Event Filters ...
Sample EVM Programming Operations
Performing Simple Event Manipulations
Using Variable-Length Argument Lists
Adding and Retrieving Variables
Posting EVents ...
Reading and Writing Eventsccoooiiiiiiinnn.
Subscribing for Event Notification
Handling Multiple 1/O Sourcescciviiien...
Using Filter Evaluators ...,
Matching Event Names ...,
Dealing with Missed Eventscoooeeet.

14.8 Adding an Event Channel to EVM ...,

14.8.1
14.8.2
14.8.3
14.8.4
14.8.5
14.8.6

The Get Function ...
The Details Function
The Explain Function
The Monitor Function
The Cleanup Function ...,
Channel Security ...

A Using 32-Bit Pointers on Tru64 UNIX Systems

Al Compiler-System and Language Support for 32-Bit Pointers .
A.2 Using the -taso Option ...t

A21
A.2.2
A.2.3

Use and Effects of the -taso Optionccooevvinns
Limits on the Effects of the -taso Option
Behavior of malloc in the Taso Environment

A3 Using the —xtaso or —xtaso_short Option

A3.1

A.3.2
A.3.3

Coding Considerations Associated with Changing Pointer
SHZES o
Restrictions on the Use of 32-Bit Pointers
Avoiding Problems with System Header Files

B Differences in the System V Habitat

B.1 Source Code Compatibility ...
B.2 Summary of System Calls and Library Routines

C Creating Dynamically Configurable Kernel Subsystems

(O Overview of Dynamically Configurable Subsystems
Cz2 Overview of Attribute Tables ...,

C21

Definition Attribute Table ...t

14-31
14-31
14-32
14-33
14-35
14-37
14-39
14-41
14-44
14-47
14-50
14-51
14-54
14-55
14-58
14-58
14-59
14-60
14-61

Contents Xxiii

C22
c23
c24
C3

C31
C3.2
C.33
C34
C.35
C.3.6
C4

C5
C.6
c7

Example Definition Attribute Tableo...s
Communication Attribute Tablel.
Example Communication Attribute Table
Creating a Configuration Routine
Performing Initial Configuration
Responding to Query Requestscccoiviiiiiiiiiian.n.
Responding to Reconfigure Requests
Performing Subsystem-Defined Operations
Unconfiguring the Subsystem ...t
Returning from the Configuration Routine
Allowing for Operating System Revisions in Loadable
SUDSY S EIMS
Building and Loading Loadable Subsystems
Building a Static Configurable Subsystem Into the Kernel
Testing Your SUbSysStem ...t

D Parallel Processing — Old Style

D.1

D.1.1
D.1.2
D.1.3
D.2

D.2.1
D.2.2
D.2.3
D.2.4
D.2.5
D.2.6
D.2.7
D.3

Use of Parallel-Processing Pragmasccoovviiiiinnnnn
General Coding RUleSo
General Use ...
Nesting Parallel Directives ...

Parallel-Processing Pragma Syntaxcooovviia.n.
#pragma parallel ...
#pragma pfor ...
#pragma psection and #pragma section
#pragmacritical ...
H#Pragma 0N PrOCESSOTuue it e itiee e atee e eaneeeaaneens
#pragma synchronize ...
#pragma enter gate and #pragma exitgate

Environment Variables ...

E Handling Names of Device Special Files

F Optimizing Programs with -om and cord

F1
F1l.1
F1.2
F.2

xiv Contents

Using the -om Postlink Optimizerccoooiiiiiiiiiiinnnn,
OVEIVIBW ettt et et
Profile Directed Optimization with-om

Profile Directed Reordering with -cord

Cc-8
C-10
c-11
c-12
C-13
C-15
c-17
C-20
C-20
c-21

UUUUIUUUUU

[
I |
P OOOOWWOWOLOOUITANDNN

vAvBvlw)
el el

F-1
F-1
F-2
F-4

Index

Examples

(]
[A I
A OWNPREPP

|
PR PR ERO0~N®U

I—‘I—‘I—‘CDCDCDCDCDCIDCDCDCDCDCDCDCD

s

=
T
w

11-4
12-1
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
Cc-1

Figures
2-1

Sample Program Used in dbx Examples 5-61
Profiling Sample Programcooiiiiiiiiiiiiiiiiaans 8-2
Sample hiprof Default Profile Using gprof 8-6
Sample hiprof -cycles Profile Using gprof 8-8
Sample cc -pg Profile Using gprof ..., 8-10
Sample uprofile CPU-Time Profile Using prof 8-12
Sample uprofile Data-Cache-Misses Profile Using prof 8-14
Sample hiprof -lines PC-Sampling Profile 8-15
Sample cc -p Profile Using prof ...l 8-17
Sample pixie Profile Using prof ...l 8-19
Sample third Log File ... 8-22
Using monstartup() and monitor()cccocoiiiiiiiiiiiinnn, 8-31
Allocating Profiling Buffers Within a Program 8-32
Using monitor_signal() to Profile Nonterminating Programs .. 8-34
Pointers and Optimization ..., 10-20
Handling a SIGSEGYV Signal as a Structured Exception 11-7
Handling an IEEE Floating-Point SIGFPE as a Structured

EXCEPLION ..o 11-9
Multiple Structured Exception Handlers 11-11
Abnormal Termination of a Try Block by an Exception 11-15
Threads Programming Example ..., 12-6
Sample Event Explanation Text ..., 14-19
Performing Simple Event Manipulations 14-32
Using Variable-Length Argument Listscooovvins, 14-34
Adding and Retrieving Variables ... 14-35
POStiNg EVENTS ... 14-38
Reading and Writing EVeNntscooiiiiiiiiiiiiiiiiannan.n. 14-40
Subscribing for Event Notification 14-42
Handling Multiple 1/O Sourcesccooviiiiiiiiiiiiiinnnn 14-45
Using Filter Evaluators ... 14-48
Matching Event Names ...t 14-51
Dealing with Missed Events ... 14-52
Example Attribute Table ... C-8
Compiling @aProgramooiiiiiiiiiii e 2-2

Contents xv

14-1
14-2
A-1
B-1
C-1

Tables

XVi

AR

|
WNRPRPRPWOWNRRE

[
N

A WNPFPPFPOONO O

Contents

Default Structure Alignment ...
Default Bit-Field Alignment ...
Padding to the Next Pack Boundaryc..cooviiiiiin..
Use of Archive and Shared Librariese.
Linking with Multiple Versions of Shared Libraries
Invalid Multiple Version Dependencies Among Shared

Objects: Example 1 ...
Invalid Multiple Version Dependencies Among Shared

Objects: Example 2 ...
Invalid Multiple Version Dependencies Among Shared

Objects: Example 3 ...
Valid Uses of Multiple Versions of Shared Libraries: Example

EVM OVEIVIEW .ottt et e
Posted Event and Template Mergingc..oovvieeeeeannn
Layout of Memory Under -taso Optioncccvvvivvninnnn
System Call Resolution ...
System Attribute Value Initialization

Programming Phases and Tru64 UNIXe.
Compiler System Functions ...
File Suffixes and Associated Files ...t
cc Command Default Options, by Option Category
INtrinsic FUNCLIONS ..o e
Linker Options That Control Shared Library Versioning
Keywords Used in Command Syntax Descriptions
dbx Command OpLioNSo
The dbx Number-Sign Expression Operator
Expression Operator Precedencec.c.oevveviiiiiinnnnnnnnns
BUilt-in Data TYPES ...eiiiiiiiie et
INPUE CONSTANTS ...
Command-Line Editing Commands in emacs Mode
Predefined dbx Variables ...
Modes for Displaying Memory Addressesccoeevvvnnn
lint Warning Classesoouiiiiiiiiiiiiiii e
Example Prepackaged Atom ToolScccvviiiiiiiiiiiiinnnn,
Atom Object Query ROULINESooviiiiiiiiiiiiiiiiaas
Atom Procedure Query ROULINESovviiiiiiiiiiiiiiiinnnns
Atom Basic Block Query Routinesccccoviiiiiininnns

4-27
4-28
4-29
4-30
14-4
14-23
A-5

C-3

9-5

111
14-1
14-2
14-3

Atom Instruction Query RoUtinesc.covviiiiiiiiiiinnnnnns 9-12

Header Files That Support Exception Handling 11-3
Standard Data [temMS ..o 14-7
Substituting Variables into Event Text 14-13
EVM's Variable Data TYPeSuviriiiiiiiiiiiiiiiiiiiiianans 14-16
Name Matching Examples ... 14-22
Example Data Item Values for an Internationalized Event ... 14-25
System Call SUMMANY ... e B-4
Library Function SUMmMarycooiiiiiiiiiieiiiinnn. B-5
Attribute Data TYPES ...t C-6
Codes That Determine the Requests Allowed for an Attribute c-7
Attribute Status Codesooiiiiiiii C-11

Contents xvii

About This Manual

This manual describes the programming environment of the Tru64™ UNIX
operating system, with an emphasis on the C programming language. The
availability of other programming languages on any system is determined by
the choices made at the time the system was configured or modified.

Audience

This manual addresses all programmers who use the Tru64 UNIX operating
system to create or maintain programs in any supported language.

New and Changed Features

In addition to many corrections and revisions throughout this manual, the
following major changes and additions have been made for the Version 5.1
release of Tru64 UNIX:

Chapter 3 — Three new sections, for pragma assert, pragma
extern model, and pragma optimize have been added. The section
on pragma use linkage has been modified: you can now associate
a typedef name with a linkage.

Chapter 2 — Section 2.9, Inline Assembly Code (ASMSs), has been added.

Chapter 8 — Section 8.4, Automatic and Profile-Directed Optimization,
has moved to Section 10.1, which covers all automatic optimization
techniques.

Chapter 9 — Documentation on the new -gap and -gpa options has
been added.

Chapter 10 — Section 10.1 has been revised to centralize all automatic
optimization techniques. It now includes use of the new spike tool

and information that was formerly in Chapter 8 about automatic and
profile-directed optimization. Because spike is intended to replace the
cc command’s -om option and the cord utility, these older tools are now
described in the new Appendix F.

Chapter 14 — A new section, Section 14.7.8 Choosing a Connection
Policy, has been added. Example 14-3 has been modified. Example 14-4
has been replaced. Section 14.5.1.1 and Section 14.5.1.1.1 have been
completely revised. A detailed description of date and time variables
has been added to Section 14.8.1.

About This Manual xix

= Appendix F — This new appendix contains information that was formerly
in Chapter 8 and Chapter 10 about using the cc command’s -om option
and the cord utility. The spike tool, described in Section 10.1.3, is
replacing them.

Organization
This manual contains 14 chapters and 6 appendixes.

Chapter 1 Describes the phases of program development and which
programming tools to use during those phases.

Chapter 2 Describes the tools that make up the compiler system
and how to use them. Topics covered include compiler
commands, preprocessors, compilation options, multilanguage
programs, and the archiver.

Chapter 3 Describes the implementation-specific pragmas that
the C compiler supports.

Chapter 4 Describes the use, creation, and maintenance of shared
libraries and discusses how symbols are resolved.

Chapter 5 Describes how to use the dbx debugger. It includes information
about the dbx commands, working with the monitor, setting
breakpoints, and debugging machine code.

Chapter 6 Describes how to use the 1int command to produce clean code.

Chapter 7 Describes how to use the Third Degree tool to perform memory
access checks and leak detection on an application program.

Chapter 8 Describes how to use various tools and techniques to profile
your code, enabling you to find which portions of code are
consuming the most execution time. It also describes how
to feed profiling data back to the C compiler to provide
some automatic optimization of the code.

Chapter 9 Describes how to use prepackaged Atom tools to instrument
an application program for various purposes, such as to obtain
profiling data or to perform cache-use analysis. It also describes
how you can design and create custom Atom tools.

Chapter 10 Describes how to optimize your code using the optimizer
and the spike postlink optimizer.
Chapter 11 Describes how to use the features of the C compiler to write a
structured exception handler or a termination handler.
Chapter 12 Describes how to develop multithreaded programs.
Chapter 13 Describes some programming considerations associated with

using the OpenMP parallel-processing interface.

Chapter 14 Describes how to use the Event Manager utility to post
and receive event notifications.

xx About This Manual

Appendix A
Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Describes how to use 32-bit pointers on a Tru64 UNIX system.

Describes how to achieve source code compatibility for C
language programs in the System V habitat.

Describes how to write dynamically configurable
kernel subsystems.

Describes the old-style parallel processing pragmas
implemented before OpenMP.

Describes the routines that handle conversions between the
old-style and new-style names of device special files.

Describes how to optimize a program with the cc
command’s -om and -cord options.

Related Documents

In addition to this manual, the following manuals contain information
pertaining to program development:

Programming: General

Calling Standard for Alpha Systems

Assembly Language Programmer’s Guide

Programming Support Tools

Network Programmer’s Guide

Compaq Portable Mathematics Library

Writing Software for the International Market

Kernel Debugging

Ladebug Debugger Manual

Writing Kernel Modules

Alpha Architecture Reference Manual, 2nd Edition (Butterworth-Hinemann
Press, ISBN:1-55558-145-5)

Programming: Realtime

Guide to Realtime Programming

Programming: Streams

Programmer’s Guide: STREAMS

Programming: Multithreaded Applications

About This Manual

XXi

Guide to the POSIX Threads Library

OpenMP C and C++ Application Programming Interface specification,
available on the Internet from http://www.openmp.org/specs/.

General User Information

Release Notes

Icons on Tru64 UNIX Printed Books

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books that
meet their needs. (You can order the printed documentation from Compag.)
The following list describes this convention:

Books for general users

Books for system and network administrators

Books for programmers

Books for device driver writers

I O T 0 ®

Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

Reader's Comments

XXii

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

= [Fax: 603-884-0120 Attn: UBPG Publications, ZK0O3-3/Y32

= Internet electronic mail: readers comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt
e Mail:

Compag Computer Corporation
UBPG Publications Manager
ZKO03-3/Y32

About This Manual

110 Spit Brook Road
Nashua, NH 03062-2698

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

= The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

= The section numbers and page numbers of the information on which
you are commenting.

= The version of Tru64 UNIX that you are using.
< If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems

or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send problem
reports to Compag.

Conventions

o
o

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[1]

{1} In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

About This Manual xxiii

In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the
first named key while pressing the key or mouse
button that follows the slash. In examples, this
key combination is enclosed in a box (for example,

[CtrirC]).

xxiv About This Manual

1

Overview

This chapter describes the various phases in an application development
project and the Tru64 UNIX tools that you can use during each of the phases.

This chapter addresses the following topics:

= Application development phases (Section 1.1)

= Specifications and design considerations (Section 1.2)
= Major software development tools (Section 1.3)

= Source file control (Section 1.4)

= Program installation tools (Section 1.5)

= Interprocess communications (Section 1.6)

1.1 Application Development Phases

There are five major phases in application development. Table 1-1 describes
these phases and the tools and features available for use in each phase.

Table 1-1: Programming Phases and Tru64 UNIX
Phase Tools/Features

Requirements and specifications Standards
Internationalization
Security

Design Routines
Coding considerations
Libraries
Common files

Implementation vi, ex, ed, lint, grep, cxref,
sed, time, dbx, third, 1d, make,
compilers, threads

Testing diff, shell scripts, pixie, prof

Maintaining setld, tar, sccs, rcs

In many instances, the Tru64 UNIX system offers more than one tool to do a
job. The choices of tools and programming languages to use are left to you.

Overview 1-1

1.2 Specification and Design Considerations

When you design an application, some of your decisions depend on the nature
of the application. Tru64 UNIX provides features and tools to help you
create applications that can be portable, internationalized, window-oriented,
or whatever is appropriate for the needs of the users of those applications.

One of the primary design considerations concerns adhering to UNIX
environment standards and portability. If you want your application to
run both on Tru64 UNIX systems and on other UNIX operating systems,
consider limiting your design to features that adhere to X/Open portability
guidelines and POSIX standards.

You might also need to design your application so that it can be used

in a variety of countries. The Tru64 UNIX operating system contains
internationalization tools and functions to help you write software to be used
by people working in different natural languages.

Another consideration is the terminal environment in which your application
will be used. If end users have workstations or window terminals, you might
want to design your application to use window displays.

1.2.1 Standards

Adhering to programming standards enhances the ability to port programs
and applications between hardware platforms or even operating systems.
Writing programs according to portability standards makes it easy for users
to move between systems without major retraining. As part of program
portability, some standards include internationalization concepts.

The following are the primary standards in the UNIX programming
environment:

ANSI

< ISO
POSIX
X/Open

In addition to the standards in the preceding list, the OSF Application
Environment Specification (AES) specifies application-level interfaces
that an application must provide to support portable applications and the
semantics or protocols associated with these interfaces.

Various ANSI standards apply to specific programming tools such as
languages, networks and communication protocols, character coding,
and database systems. Information on conformance and extensions to
a particular ANSI standard appears in the documentation set for the

1-2 Overview

particular language, network system, or database system. For information
about compiling C programs to adhere to ANSI standards, see Chapter 2.

The Tru64 UNIX system allows you to write programs that conform to
POSIX and X/Open standards. Information on the POSIX standard is
contained in POSIX — Part 1: System Application Program Interface (API)
[C Language] for IEEE Std. 1003.1¢-1994. The Tru64 UNIX header files
contain POSIX and X/Open conformant information.

1.2.2 Internationalization

An internationalized application provides a run-time interface that

allows users to work in their own language with culturally appropriate
representations of data. The Tru64 UNIX operating system provides
interfaces and utilities for you to develop internationalized applications that
conform to Issue 4 of the X/Open CAE specifications. It also supports the
Multibyte Support Extension (MSE) of 1SO C that is part of Issue 5 of the
X/Open CAE specifications.

Considerations for developing internationalized applications include:
= Language

= Cultural data

= Character sets

e | ocalization

To meet these considerations, your applications must not make any
assumptions about language, local customs, or coded character sets. Data
specific to a culture is held separate from the application’s logic. You use
run-time facilities to bind your application to the appropriate language
message text.

For details about the Tru64 UNIX internationalization package, see Writing
Software for the International Market.
1.2.3 Window-Oriented Applications

For information on developing window-oriented applications, see the
following manuals:

OSF/Motif Programmer’s Guide

Common Desktop Environment: Programmer’s Guide

Common Desktop Environment: Programmer’s Overview
Common Desktop Environment: Application Builder User’s Guide

Common Desktop Environment: Internationalization Programmer’s Guide

Overview 1-3

Common Desktop Environment: Style Guide and Certification Checklist

Common Desktop Environment: Help System Author’s and Programmer’s
Guide

1.2.4 Secure Applications

Tru64 UNIX provides a Security Integration Architecture (SIA) that allows
the layering of local and distributed security authentication mechanisms
onto the operating system. The SIA configuration framework isolates
security-sensitive commands from the specific security mechanisms. See the
Security Integration Architecture chapter of the Security manual and the
sia*(3) reference pages for more information.

The Programmer’s Guide to Security portion of the Security manual also
provides detailed information on all aspects of creating trusted programs.

1.3 Major Software Development Tools

The Tru64 UNIX system is compatible with a number of higher-level
languages, and it includes tools for linking and debugging programs.

1.3.1 Languages Supported by the Tru64 UNIX Environment

The Tru64 UNIX operating system includes an assembler (for assembly
language programs) and a Java development kit (JDK). Compilers for other
languages — such as C, C++, Fortran, Ada, and Pascal — are separately
orderable.

For a complete list of optional products, contact your Compaq representative.

For more information on Java, see the Java documentation in the following
directory on the system where the JDK in installed:

/usr/share/doclib/java/index.html

For more information on the assembler, see as(1) and the Assembly
Language Programmer’s Guide.

You can order documentation for the other languages when you order the
compilers for those languages.

1.3.2 Linking Object Files

In most instances, you can use the C compiler driver command (cc) to link
separate object files into a single executable object file.

As part of the compilation process, most compiler drivers call the linker
(1) to combine one or more object files into a single executable object file.

1-4 Overview

In addition, the linker resolves external references, searches libraries, and
performs all other processing required to create an executable object file.

The development environment allows you to create applications composed
of source code files written in different languages. In these instances, you
compile each of the files separately and then link the compiled object files
together in a separate step. You invoke the linker separately from the
compiler by entering the 14 command.

You can create shared libraries by using compiler driver commands or the
1d command. In addition, you can create archive (static) libraries by using
the ar command. For more information on how to create libraries, see
Chapter 4. For detailed information on compiling and linking programs,
see Chapter 2 and Chapter 4, as well as the documentation sets for the
individual languages.

1.3.3 Debugging and Program Analysis Tools

The following tools are the primary debugging and program analysis tools on
the Tru64 UNIX operating system:

= The dbx debugger (see Chapter 5 or dbx(1) for details)

= Program profiling tools (see Chapter 8 or hiprof(1), pixie(l),
uprofile(l), gprof(l), and prof(1) for details)

= The Third Degree tool (see Chapter 7 or third(1) for details)
= The lint utility (see Chapter 6 or 1int(1) for details)

The ladebug debugger is also supported on the Tru64 UNIX operating
system. In addition to providing the features provided by the dbx debugger,
it supports features for debugging multithreaded programs. For information
on the ladebug debugger, which supports C, C++, and Fortran, see the
Ladebug Debugger Manual and 1adebug(l).

1.4 Source File Control

An integral part of creating a software application is managing the
development and maintenance processes. The Tru64 UNIX operating system
provides the Source Code Control System (SCCS) utility and the RCS code
management system to help you store application modules in a directory,
track changes made to those module files, and monitor user access to the
files.

SCCS and RCS on the Tru64 UNIX operating system provide support
similar to SCCS and RCS utilities on other UNIX systems. In addition,
Tru64 UNIX has an sccs preprocessor, which provides an interface to the
more traditional SCCS commands.

Overview 1-5

SCCS and RCS maintain a record of changes made to files stored using the
utility. The record can include information on why the changes were made,
who made them, and when they were made. You can use either SCCS or
RCS to recover previous versions of files as well as to maintain different
versions simultaneously. SCCS is useful for application project management
because it does not allow two people to modify the same file simultaneously.

For more information , see sccs(1), res(l), and the Programming Support
Tools manual.

1.5 Program Installation Tools

After you create your program or application, you might want to package it
as a kit for the set1d installation utility so that it can be easily distributed
to other users. The Tru64 UNIX operating system has several utilities that
you can use to install, remove, combine, validate, and configure programs
and applications.

Software for Tru64 UNIX systems consists of a hierarchical group of files
and directories. If your application or program consists of more than one file
or directory, you need to determine how the files and directories are grouped
within the hierarchy. The set1d installation process preserves the integrity
of each product’s hierarchy when it is transferred from the development
system to a production system (that is, when the product is installed). The
kitting process includes grouping the component files for the product into
subsets, allowing the system administrator to install some or all of them as
needed.

Using the set1d utility and its related tools provides the following benefits:
= Installation security

The set1d utility verifies each subset immediately after it is transferred
from one system to another to make sure that the transfer was
successful. Each subset is recoverable, so you can reinstall one that has
been damaged or deleted.

« Flexibility

System administrators can choose which optional subsets to install.
Administrators can also delete subsets and then reinstall them later, as
needed. You might use this feature to provide multiple language support
for your application or to allow users to select among optional features
of your application.

= Uniformity

The set1d utility is an integral part of the Tru64 UNIX installation
implementation.

1-6 Overview

Using set1d, you can load your application on any of the following
distribution media for installation on other systems:

e CD-ROM distribution media

= An arbitrary, mountable file system on any supported data disk; for
example, a third-party SCSI disk cartridge

For more information on using the set1d command and creating and
managing software product kits, see the Programming Support Tools
manual.

1.6 Overview of Interprocess Communication Facilities

Interprocess communication (IPC) is the exchange of information between
two or more processes. In single-process programming, modules within a
single process communicate with each other using global variables and
function calls, with data passing between the functions and the callers.
When programming using separate processes having images in separate
address spaces, you need to use additional communication mechanisms.

Tru64 UNIX provides the following facilities for interprocess communication:
e System V IPC

System V IPC includes the following IPC facilities: messages, shared
memory, and semaphores.

< Pipes

For information about pipes, see the Guide to Realtime Programming.
- Signals

For information about signals, see the Guide to Realtime Programming.
= Sockets

For information about sockets, see the Network Programmer’s Guide.

e STREAMS
For information about STREAMS, see the Programmer’s Guide:
STREAMS.

e Threads

For information about programming using threads, see the Guide to the
POSIX Threads Library and Chapter 12.

= X/Open Transport Interface (XTI)

For information about XTI, see the Network Programmer’s Guide.

Overview 1-7

2

The Compiler System

This chapter contains information on the following topics:

= Compiler system components (Section 2.1)

= Data types in the Tru64 UNIX environment (Section 2.2)
= Using the C preprocessor (Section 2.3)

= Compiling source programs (Section 2.4)

= Linking object files (Section 2.5)

< Running programs (Section 2.6)

= Object file tools (Section 2.7)

= ANSI name space pollution cleanup in the standard C library
(Section 2.8)

The compiler system is responsible for converting source code into an
executable program. This can involve several steps:

= Preprocessing — The compiler system performs such operations as
expanding macro definitions or including header files in the source code.

= Compiling — The compiler system converts a source file or preprocessed
file to an object file with the . o file suffix.

= Linking — The compiler system produces a binary image.

These steps can be performed by separate preprocessing, compiling, and
linking commands, or they can be performed in a single operation, with
the compiler system calling each tool at the appropriate time during the
compilation.

Other tools in the compiler system help debug the program after it has been
compiled and linked, examine the object files that are produced, create
libraries of routines, or analyze the run-time performance of the program.

Table 2—1 summarizes the tools in the compiler system and points to the
chapter or section where they are described in this and other documents.

The Compiler System 2-1

Table 2—-1: Compiler System Functions

Task Tools Where Documented

Compile, link, and Compiler drivers, link This chapter, Chapter 4,

load programs; build editor, dynamic loader cc(l), ¢89(1), as(1), 14(1),

shared libraries loader(5), Assembly Language
Programmer’s Guide, Compaq C
Language Reference Manual

Debug programs Symbolic debugger (dbx Chapter 5, Chapter 6, Chapter 7,
and ladebug) and dbx(1), third(l), ladebug(l),
Third Degree Ladebug Debugger Manual

Profile programs Profiler, call graph Chapter 8, hiprof(1),
profiler pixie(1), gprof(1), prof(l),

atom(1)

Optimize programs Optimizer, postlink This chapter, Chapter 10, cc(1),
optimizer Chapter 7, third(1)

Examine object files nm, file, size, dis, This chapter, nm(1), £ile(1),

odump, and stdump tools size(l), dis(l), odump(l),
stdump(1), Programming
Support Tools

Produce necessary Archiver (ar), linker This chapter, Chapter 4,
libraries (1d) command ar(l), 1d4(1)

2.1 Compiler System Components

Figure 2—-1 shows the relationship between the major components of the
compiler system and their primary inputs and outputs.

Figure 2-1: Compiling a Program

.Cc
d

T

ZK-1079U-Al

.C° 89,0

2-2 The Compiler System

Compiler system commands, sometimes called driver programs, invoke
the components of the compiler system. Each language has its own set of
compiler commands and options.

The cc command invokes the C compiler. In the Tru64 UNIX programming
environment, a single cc compiler command can perform multiple actions,
including the following:

= Determine whether to call the appropriate preprocessor, compiler (or
assembler), or linker based on the file name suffix of each file. Table 2-2
lists the supported file suffixes, which identify the contents of the input
files.

= Compile and link a source file to create an executable program. If
multiple source files are specified, the files can be passed to other
compilers before linking.

= Assemble one or more . s files, which are assumed to contain assembler
code, by calling the as assembler, and link the resulting object files.
(Note that if you directly invoke the assembler, you need to link the
object files in a separate step; the as command does not automatically
link assembled object files.)

= Prevent linking and the creation of the executable program, thereby
retaining the . o object file for a subsequent link operation.

= Pass the major options associated with the link command (14) to the
linker. For example, you can include the —L option as part of the cc
command to specify the directory path to search for a library. Each
language requires different libraries at link time; the driver program
for a language passes the appropriate libraries to the linker. For more
information on linking with libraries, see Chapter 4 and Section 2.5.3.

= Create an executable program file with a default name of a. out or with
a name that you specify.

Table 2-2: File Suffixes and Associated Files

Suffix File

-a Archive library

-C C source code

i The driver assumes that the source code was processed by

the C preprocessor and that the source code is that of the
processing driver; for example, ¥ cc -c¢ source.i. The file,
source. i, is assumed to contain C source code.

-0 Object file.
-8 Assembly source code.
-S0 Shared object (shared library).

The Compiler System 2-3

2.2 Data Types in the Tru64 UNIX Environment

The following sections describe how data items are represented on the Tru64
UNIX system.

Note

The default memory access size on a Tru64 UNIX system is 8
bytes (quadword). This means that when two or more threads
of execution are concurrently modifying adjacent memory
locations, those locations must be quadword aligned to protect
the individual modifications from being erroneously overwritten.
Errors can occur, for example, if separate data items stored
within a single quadword of a composite data structure are being
concurrently modified.

For details on the problems that non-quadword alignment can
cause and the various situations in which the problems can occur,
see the Granularity Considerations section in the Guide to the
POSIX Threads Library.

2.2.1 Data Type Sizes

The Tru64 UNIX system is little-endian; that is, the address of a multibyte
integer is the address of its least significant byte and the more significant
bytes are at higher addresses. The C compiler supports only little-endian
byte ordering. The following table gives the sizes of supported data types:

Data Type Size, in Bits
char 8

short 16

int 32

long 64

long long 64

float 32 (IEEE single)
double 64 (IEEE double)
pointer 642

long double 128

2 32-bit pointers available with -xtaso_short.

2-4 The Compiler System

2.2.2 Floating-Point Range and Processing

The C compiler supports IEEE single-precision (32-bit £1oat) and
double-precision (64-bit double) floating-point data, as defined by the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

Floating-point numbers have the following ranges:
e float: 1.17549435e-38f to 3.40282347e+38f
e double: 2.2250738585072014e-308 to 1.79769313486231570e+308

Tru64 UNIX provides the basic floating-point number formats, operations
(add, subtract, multiply, divide, square root, remainder, and compare), and
conversions defined in the standard. You can obtain full IEEE-compliant
trapping behavior (including NaN [not-a-number]) by specifying a
compilation option, or by specifying a fast mode when IEEE-style traps are
not required. You can also select, at compile time, the rounding mode applied
to the results of IEEE operations. See cc(1) for information on the options
that support IEEE floating-point processing.

A user program can control the delivery of floating-point traps to a thread
by calling ieee _set fp control(), or dynamically set the IEEE rounding
mode by calling write rnd(). See ieee(3) for more information on how to
handle IEEE floating-point exceptions.

2.2.3 Structure Alignment

The C compiler aligns structure members on natural boundaries by default.
That is, the components of a structure are laid out in memory in the order in
which they are declared. The first component has the same address as the
entire structure. Each additional component follows its predecessor on the
next natural boundary for the component type.

For example, the following structure is aligned as shown in Figure 2-2:

struct {char cl;
short s1;
float f;
char c2;

}

The Compiler System 2-5

Figure 2-2: Default Structure Alignment

31 16 15 8 7 0
short s1 char cl
63 float f 32
char c2
64
71
ZK-1082U-Al

The first component of the structure, c1, starts at offset 0 and occupies the
first byte. The second component, s1, is a short; it must start on a word
boundary. Therefore, padding is added between c1 and s1. No padding is
needed to make £ and c2 fall on their natural boundaries. However, because
size is rounded up to a multiple of £'s alignment, three bytes of padding are
added after c2.

You can use the following mechanisms to override the default alignment of
structure members:

e The #fpragma member alignment and #pragma nomember align-
ment directives

e The #pragma pack directive
e The —Zpn option

See Section 3.8 and Section 3.11 for information on these directives.

2.2.4 Bit-Field Alignment

In general, the alignment of a bit field is determined by the bit size and bit
offset of the previous field. For example, the following structure is aligned as
shown in Figure 2-3:

struct a {

char f£0: 1;
short f1: 12;
char f2: 3;

} struct a;

2-6 The Compiler System

Figure 2—-3: Default Bit-Field Alignment

31

15 12 0

short f1

oL va

char f2 —/ char fO —/

ZK-1080U-Al

The first bit field, £0, starts on bit offset 0 and occupies 1 bit. The second,
f1, starts at offset 1 and occupies 12 bits. The third, £2, starts at offset 13
and occupies 3 bits. The size of the structure is two bytes.

Certain conditions can cause padding to occur prior to the alignment of the
bit field:

Bit fields of size 0 cause padding to the next pack boundary. (The pack
boundary is determined by the #pragma pack directive or the —Zpn
compiler option.) For bit fields of size 0, the bit field's base type is
ignored. For example, consider the following structure:

struct b {
char f0: 1;
int : 05
char f1: 2;
} struct b;

If the source file is compiled with the —zp1 option or if a #pragma pack 1
directive is encountered in the compilation, £0 would start at offset 0 and
occupy 1 bit, the unnamed bit field would start at offset 8 and occupy O
bits, and £1 would start at offset 8 and occupy 2 bits.

Similarly, if the —zp2 option or the #pragma pack 2 directive were
used, the unnamed bit field would start at offset 16. With —zp4 or
#pragma pack 4, it would start at offset 32.

If the bit field does not fit in the current unit, padding occurs to either
the next pack boundary or the next unit boundary, whichever is closest.
(The unit boundary is determined by the bit field’s base type; for
example, the unit boundary associated with the declaration “char foo:
1" is a byte.) The current unit is determined by the current offset, the
bit field’s base size, and the kind of packing specified, as shown in the
following example:

struct c {
char fO: 7;
short f1: 11;
} struct c;

The Compiler System 2-7

Assuming that you specify either the —Zp1 option or the #pragma pack 1
directive, £0 starts on bit offset O and occupies 7 bits in the structure.
Because the base size of £1 is 8 bits and the current offset is 7, £1 will
not fit in the current unit. Padding is added to reach the next unit
boundary or the next pack boundary, whichever comes first, in this case,
bit 8. The layout of this structure is shown in Figure 2—4.

Figure 2—4: Padding to the Next Pack Boundary
31 20 19 8 7 0

short f1 char f0

ZK-1081U-Al

2.2.5 The __align Storage Class Modifier

Data alignment is implied by data type. For example, the C compiler aligns
an int (32 bits) on a 4-byte boundary and a long (64 bits) on an 8-byte
boundary. The _ align storage-class modifier aligns objects of any of the
C data types on the specified storage boundary. It can be used in a data
declaration or definition.

The _align modifier has the following format:

__align (keyword)
__align (n)

Where keyword is a predefined alignment constant and n is an integer
power of 2. The predefined constant or power of 2 tells the compiler the
number of bytes to pad in order to align the data.

For example, to align an integer on the next quadword boundary, use any of
the following declarations:

int align(QUADWORD) data;
int _align(quadword) data;
int _align(3) data;

In this example, int _ _align (3) specifies an alignment of 2x2x2 bytes,
which is 8 bytes, or a quadword of memory.

The following table shows the predefined alignment constants, their
equivalent power of 2, and equivalent number of bytes:

Constant Power of 2 Number of Bytes
BYTE or byte 0 1
WORD or word 1 2

2-8 The Compiler System

LONGWORD or longword 2 4
QUADWORD or quadword 3

2.3 Using the C Preprocessor

The C preprocessor performs macro expansion, includes header files, and
executes preprocessor directives prior to compiling the source file. The
following sections describe the Tru64 UNIX specific operations performed by
the C preprocessor. For more information on the C preprocessor, see cc(1),
cpp(1), and the Compaq C Language Reference Manual.

2.3.1 Predefined Macros

When the compiler is invoked, it defines C preprocessor macros that identify
the language of the input files and the environments on which the code can
run. See cc(1) for a list of the preprocessor macros. You can reference these
macros in #ifdef statements to isolate code that applies to a particular
language or environment. Use the following statement to uniquely identify
Tru64 UNIX:

#if defined (__digital) && defined (__unix)

The type of source file and the type of standards you apply determine
the macros that are defined. The C compiler supports several levels of
standardization:

= The —std option enforces the ANSI C standard, but allows some common
programming practices disallowed by the standard, and defines the
macro __STDC__ to be O (zero). This is the default.

= The —stdo option enforces the Kernighan and Ritchie (K & R)
programming style, with certain ANSI extensions in areas where the
K & R behavior is undefined or ambiguous. In general, —stdo compiles
most pre-ANSI C programs and produces expected results. It does not
define the _ STDC _ macro.

= The —std1 option strictly enforces the ANSI C standard and all of its
prohibitions (such as those that apply to handling a void, the definition
of an 1value in expressions, the mixing of integrals and pointers, and
the modification of an rvalue). It definesthe _ STDC _ macro to be 1.

2.3.2 Header Files

Header files are typically used for the following purposes:
= To define interfaces to system libraries

= To define constants, types, and function prototypes common to separately
compiled modules in a large application

The Compiler System 2-9

C header files, sometimes known as include files, have a . h suffix. Typically,
the reference page for a library routine or system call indicates the required
header files. Header files can be used in programs written in different
languages.

Note

If you intend to debug your program using dbx or ladebug,

do not place executable code in a header file. The debugger
interprets a header file as one line of source code; none of the
source lines in the file appears during the debugging session. For
more information on the dbx debugger, see Chapter 5. For details
on ladebug, see the Ladebug Debugger Manual.

You can include header files in a program source file in one of two ways:

#include "filename"

This indicates that the C macro preprocessor should first search for the
include file £filename in the directory in which it found the file that
contains the directive, then in the search path indicated by the —1
options, and finally in /usr/include.

#include <filename>

This indicates that the C macro preprocessor should search for the
include file filename in the search path indicated by the —I options
and then in /usr/include, but not in the directory where it found the
file that contains the directive.

You can also use the —Idir and -nocurrent include options to specify
additional pathnames (directories) to be searched by the C preprocessor for
#include files:

e For -1dir, the C preprocessor searches first in the directory where
it found the file that contains the directive, followed by the specified
pathname (dir), and then the default directory (/usr/include). If dir
is omitted, the default directory is not searched.

= For -1 with no arguments, the C preprocessor does not search in
/usr/include.

= For -nocurrent include, the C preprocessor does not search the
directory containing the file that contains the #include directive;
that is, #include "filename" is treated the same as #include
<filenames.

2-10 The Compiler System

2.3.3 Setting Up Multilanguage Include Files

C, Fortran, and assembly code can reside in the same include files, and
can then be conditionally included in programs as required. To set up a
shareable include file, you must create a .h file and enter the respective

code, as shown in the following example:

#ifdef = LANGUAGE C__
(C code)
#endif
#ifdef = LANGUAGE ASSEMBLY

(assembly code)

#endif

When the compiler includes this file in a C source file, the LANGUAGE C
macro is defined and the C code is compiled. When the compiler includes
this file in an assembly language source file, the = LANGUAGE ASSEMBLY
macro is defined, and the assembly language code is compiled.

2.3.4 Implementation-Specific Preprocessor Directives (#¥pragma)

The #pragma directive is a standard method of implementing features that
vary from one compiler to the next. The C compiler supports the following
implementation-specific pragmas:

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

assert
environment
extern model
extern prefix
function
inline
intrinsic
linkage
member alignment
message
optimize

pack

pointer size

The Compiler System 2-11

e fipragma use_ linkage

* f#ipragma weak

Chapter 3 provides detailed descriptions of these pragmas.

2.4 Compiling Source Programs

The compilation environment established by the cc command produces
object files that comply with the common object file format (COFF).

Options supported by the cc command select a variety of program
development functions, including debugging, optimizing, and profiling
facilities, and the names assigned to output files. See cc(1) for details on cc
command-line options.

The following sections describe the default compiler behavior and how to
compile multilanguage programs.

2.4.1 Default Compilation Behavior

Most compiler options have default values that are used if the option is

not specified on the command line. For example, the default name for an
output file is filename. o for object files, where £ilename is the base name
of the source file. The default name for an executable program object is
a.out. The following example uses the defaults in compiling two source
files named progl.c and prog2.c:

o

% cc progl.c prog2.c

This command runs the C compiler, creating object files progl.o and
prog2 .o and the executable program a. out.

When you enter the cc compiler command with no other options, the
following options are in effect:

-noansi_alias

Turns off ANSI C aliasing rules, which prevents the optimizer from
being aggressive in its optimizations.

-arch generic

Generates instructions that are appropriate for all Alpha™ processors.

-assume aligned objects

Allows the compiler to make such an assumption, and thereby generate
more efficient code for pointer dereferences of aligned pointer types.

2-12 The Compiler System

-assume math errno

Allows the compiler to make the assumption that the program might
interrogate errno after any call to a math library routine that is
capable of setting errno.

-call shared

Produces a dynamic executable file that uses shareable objects at run
time.

-nocheck bounds
Disables the run-time checking of array bounds.

-Cpp

Causes the C macro preprocessor to be called on C and assembly source
files before compiling.

-error limit 30

Limits the number of error-level diagnostics that the compiler will
output for a given compilation to 30.

-float

Informs the compiler that it is not necessary to promote expressions of
type float to type double.

-nofp reorder

Directs the compiler not to reorder floating-point computations in a
way that might affect accuracy.

-fprm n

Performs normal rounding (unbiased round to nearest) of floating-point
numbers.

-fptm n

Generates instructions that do not generate floating-point underflow or
inexact trapping modes.

_90

Does not produce symbol information for symbolic debugging.

The Compiler System 2-13

2-14

-I/usr/include

Specifies that #include files whose names do not begin with a slash (/)
are always sought first in the directory /usr/include.

-inline manual

Inlines only those function calls explicitly requested for inlining by a
#pragma inline directive.

-intrinsics

Directs the compiler to recognize certain functions as intrinsics and
perform appropriate optimizations.

-member_ alignment

Directs the compiler to naturally align data structure members (with
the exception of bit-field members).

-nomisalign

Generates alignment faults for arbitrarily aligned addresses.

-nestlevel=50
Sets the nesting level limit for include files to 50.
-newc

Invokes the compiler with all of the default option settings listed. This
option is provided only to turn off -migrate.

-01

Enables global optimizations.
_pO

Disables profiling.

-nopg
Turns off gprof profiling.

-preempt module

Allows symbol preemption on a module-by-module basis.

The Compiler System

-SD/usr/include

Suppresses messages for nonportable constructs in header files whose
pathnames are prefixed with /usr/include.

-signed

Causes type char to use the same representation as signed char.

-std

Enforces the ANSI C standard, but allows some common programming
practices disallowed by the standard.

-tune generic

Selects instruction tuning that is appropriate for all implementations

of the Alpha architecture.

-writable strings

Makes string literals writable.

Table 2-3 lists the default options according to the option categories used

in cc(l).

Table 2—-3: cc Command Default Options, by Option Category

Option Category

Default Options

Compiler selection
Language mode

Overall compiler behavior

Compiler diagnostic controls
C preprocessor
Linker or loader

Optimization

Feedback-directed optimization
Source-code debugging
Program profiling

Data alignment

-newc
-std

-arch generic, -error limit 30,
-nestlevel=50

-SD/usr/include
-cpp, -I/usr/include
-call shared

-noansi_alias, -assume

math errno, -float, -nofp reorder
-inline manual, -intrinsics, -01
-preempt symbol, -tune generic

None
_go
-p0, -nopg

-assume aligned objects
-member alignment, -nomisalign

The Compiler System 2-15

Table 2-3: cc Command Default Options, by Option Category (cont.)

Option Category Default Options

Data volatility -weak_volatile

C language -signed, -writable strings
Stack-handling and pointer-handling None

IEEE floating-point support -fprm n, -fptm n

Compiler development None

The following list includes miscellaneous aspects of the default cc compiler
behavior:

= Source files are automatically linked if compilation (or assembly) is
successful.

= The output file is named a.out unless another name is specified by
using the -o option.

= Floating-point computations are fast floating point, not full IEEE.

= Pointers are 64 bits. For information on using 32-bit pointers, see
Appendix A.

= Temporary files are placed in the /tmp directory or the directory specified
by the environment variable STMPDIR.

2.4.2 Compiling Multilanguage Programs

When the source language of the main program differs from that of a
subprogram, compile each program separately with the appropriate driver
and link the object files in a separate step. You can create objects suitable
for linking by specifying the -c option, which stops a driver immediately
after the object file has been created. For example:

o

% cc -c main.c
This command produces the object file main. o, not the executable file a . out.

After creating object modules for source files written in languages other
than C, you can use the cc command to compile C source files and link all
of the object modules into an executable file. For example, the following cc
command compiles c-prog.c and links c-prog.o and nonc-prog. o into
the executable file a . out:

o

% cc nonc-prog.o c-prog.c

2-16 The Compiler System

2.4.3 Enabling Run-Time Checking of Array Bounds

The cc command's -check bounds option generates run-time code to
perform array bounds verification. The -nocheck bounds option (the
default) disables the run-time checking of array bounds.

The kind of code that causes the compiler to emit run-time checks, and
the exact bounds values used in a given check, are subject to certain
characteristics of the compiler implementation that would not be obvious to
a user. The exact conditions, which assume a good understanding of the C
language rules involving arrays, are as follows:

Checks are made only when the name of a declared array object is used.
No checks are made when a pointer value is used, even if the pointer is
dereferenced using the subscript operator. This means, for example,
that no checks are made on formal parameters declared as arrays of
one dimension because they are considered pointers in the C language.
However, if a formal parameter is a multidimensional array, the first
subscript represents a pointer-manipulation that determines the array
object to be accessed, and that bound cannot be checked, but bounds
checks are generated for the second and subsequent subscripts.

If an array is accessed using the subscript operator (as either the left
or right operand) and the subscript operator is not the operand of an
address-of operator, the check is for whether the index is between zero
and the number of elements in the array minus one inclusive.

If an array is accessed using the subscript operator (as either the left or
right operand) and the subscript operator is the operand of the address-of
operator, the check is for whether the index is between zero and the
number of elements in the array inclusive. The C language specifically
requires that it be valid to use the address that is one past the end of an
array in a computation, to allow such common programming practice as
loop termination tests like:

int al[10];

int *b;

for (b =a ; b < &[10] ; b++) { }

In this case, the use of &a [10] is allowed even though a [10] is outside
the bounds of the array.

If the array is being accessed using pointer addition, the check is for
whether the value being added is between zero and the number of
elements in the array inclusive. Adding an integer to an array name
involves converting the array name to a pointer to the first element
and adding the integer value scaled by the size of an element. The
implementation of bounds checking in the compiler is triggered by the
conversion of the array name to a pointer, but at the point in time when
the bounds check is introduced, it is not known whether the resulting

The Compiler System 2-17

pointer value will be dereferenced. Therefore, this case is treated like the
previous case: only the computation of the address is checked and it is
valid to compute the address of one element beyond the end of the array.

If the array is being accessed using pointer subtraction (that is, the
subraction of an integer value from a pointer, not the subtraction of
one pointer from another), the check is for whether the value being
subtracted is between the negation of the number of elements in the
array and zero inclusive.

Note that in the last three cases, an optional compile-time message
(ident SUBSCRBOUNDS2) can be enabled to detect the case where an
array has been accessed using either a constant subscript or constant
pointer arithmetic, and the element accessed is exactly one past the
end of the array.

No check is made for arrays declared with one element. Because ANSI C
does not allow arrays without dimensions inside struct declarations,

it is common practice to implement a dynamic-sized array as a struct
that holds the number of elements allocated in some member, and whose
last member is an array declared with one element. Because accesses

to the final array member are intended to be bounded by the run-time
allocated size, it is not useful to check against the declared bound of 1.

Note that in this case, an optional compile-time message (ident
SUBSCRBOUNDS1) can be enabled to detect the case where an array
declared with a single element has been accessed using either a constant
subscript or constant pointer arithmetic, and the element accessed is
not part of the array.

The compiler will emit run-time checks for arrays indexed by constants
(even though the compiler can and does detect this case at compile-time).
An exception would be that no run-time check is made if the compiler
can determine that the access is valid.

If a multidimensional array is accessed, the compiler will perform checks
on each of the subscript expressions, making sure each is within the
corresponding bound. So, for the following code the compiler will check
that both x and y are between 0 and 9 (it will not check that 10 * x + vy
is between 0 and 99):

int af10] [10];

int x,y,z;
x = alx] [yl;

The following examples illustrate these rules:

int
int
int
int
int
int

al10];

*b;

c;

*d;

one[1l];

vlalc]; // C9X variable-length array

2-18 The Compiler System

alcl = 1; // check ¢ is 0-9, array subscript
clal] = 1; // check ¢ is 0-9, array subscript
blc] = 1; // no check, b is a pointer
d=a+ c; // check ¢ is 0-10, computing address
d=Db + c; // no check, b is a pointer
b = &alc] // check ¢ is 0-10, computing address
*(a + ¢c) = 1; // check ¢ is 0-10, computing address
*(a - ¢c) = 1; // check ¢ is -10 to 0, computing address
all]l = 1; // no run-time check - know access is valid
vlal[l]l = 1; // run-time check, vla has run-time bounds
al10] = 1; // run-time check (and compiler diagnostic)
d=a + 10; // no run-time check, computing address

// SUBSCRBOUNDS2 message can be enabled
c = one[5]; // no run-time check, array of one element

// SUBSCRBOUNDS1 message can be enabled

When an out-of-bounds access is encountered, the output is as follows:

Trace/BPT trap (core dumped)

A program can trap this error with the following code:

signal (SIGTRAP, handler) ;

Note that when run-time checking is enabled, incorrect checks might be
made in certain cases where arrays are legitimately accessed using pointer
arithmetic.

The compiler is only able to output the checking code for the first arithmetic
operation performed on a pointer that results from converting an array name
to a pointer. This can result in an incorrect check if the resulting pointer
value is again operated on by pointer arithmetic. Consider the expression a
= b + ¢ - d,where a is apointer, b is an array, and c and d are integers.
When bounds-checking is enabled, a check will be made to verify that c is
within the bounds of the array. This will lead to an incorrect run-time trap
in cases where c is outside the bounds of the array but ¢ - d is not.

In these cases, you can recode the pointer expression so that the integer part
is in parentheses. This way, the expression will contain only one pointer
arithmetic operation and the correct check will be made. In the previous
example, the expression would be changed to the following:

a=D>b+ (c - 4d);

2.5 Linking Object Files

The cc driver command can link object files to produce an executable
program. In some cases, you may want to use the 1d linker directly.
Depending on the nature of the application, you must decide whether

The Compiler System 2-19

to compile and link separately or to compile and link with one compiler
command. Factors to consider include:

= Whether all source files are in the same language

= Whether any files are in source form

2.5.1 Linking with Compiler Commands

You can use a compiler command instead of the linker command to link
separate objects into one executable program. Each compiler (except the
assembler) recognizes the .o suffix as the name of a file that contains object
code suitable for linking and immediately invokes the linker.

Because the compiler driver programs pass the libraries associated with that
language to the linker, using the compiler command is usually recommended.
For example, the cc driver uses the C library (1ibc. so) by default. For
information about the default libraries used by each compiler command, see
the appropriate command in the reference pages, such as cc(1).

You can also use the -1 option of the cc command to specify additional
libraries to be searched for unresolved references. The following example
shows how to use the cc driver to pass the names of two libraries to the
linker with the -1 option:

o

% cc -0 all main.o more.o rest.o -1lm -lexc

The -1m option specifies the math library; the -1exc option specifies the
exception library.

Compile and link modules with a single command when you want to optimize
your program. Most compilers support increasing levels of optimization with
the use of certain options. For example:

= The -00 option requests no optimization (usually for debugging
purposes).

= The -01 option requests certain local (module-specific) optimizations.

= Cross-module optimizations must be requested with the -ifo option.
Specifying -03 in addition to - ifo improves the quality of cross-module
optimization. In this case, compiling multiple files in one operation

allows the compiler to perform the maximum possible optimizations. The
-ifo option produces one .o file for multiple source files.

2.5.2 Linking with the Id Command

Normally, you do not need to run the linker directly, but use the cc command
to indirectly invoke the linker. Executables that need to be built solely from
assembler objects can be built with the 1d command.

2-20 The Compiler System

The linker (1d) combines one or more object files (in the order specified)
into one executable program file, performing relocation, external symbol
resolutions, and all other processing required to make object files ready for
execution. Unless you specify otherwise, the linker names the executable
program file a.out. You can execute the program file or use it as input
for another linker operation.

The as assembler does not automatically invoke the linker. To link a
program written in assembly language, do either of the following:

= Assemble and link with one of the other compiler commands. The .s
suffix of the assembly language source file automatically causes the
compiler command to invoke the assembler.

= Assemble with the as command and then link the resulting object file
with the 14 command.

For information about the options and libraries that affect the linking
process, see 1d4(1).

2.5.3 Specifying Libraries

When you compile your program on the Tru64 UNIX system, it is
automatically linked with the C library, 1ibc.so. If you call routines that
are not in 1ibc. so or one of the archive libraries associated with your
compiler command, you must explicitly link your program with the library.
Otherwise, your program will not be linked correctly.

You need to explicitly specify libraries in the following situations:
< When compiling multilanguage programs

If you compile multilanguage programs, be sure to explicitly request
any required run-time libraries to handle unresolved references. Link
the libraries by specifying -1string, where string is an abbreviation
of the library name.

For example, if you write a main program in C and some procedures
in another language, you must explicitly specify the library for that
language and the math library. When you use these options, the linker
replaces the -1 with 1ib and appends the specified characters (for the
language library and for the math library) and the .a or . so suffix,
depending upon whether it is a static (nonshared archive library) or
dynamic (call-shared object or shared library) library. Then, it searches
the following directories for the resulting library name:

/usr/shlib
/usr/ccs/lib
/usr/lib/cmplrs/cc
/usr/lib

The Compiler System 2-21

/usr/local/lib
/var/shlib

For a list of the libraries that each language uses, see the reference pages
of the compiler drivers for the various languages.

< When storing object files in an archive library

You must include the pathname of the library on the compiler or linker
command line. For example, the following command specifies that the
libfft.a archive library in the /usr/jones directory is to be linked
along with the math library:

)

% cc main.o more.o rest.o /usr/jones/libfft.a -1m

The linker searches libraries in the order that you specify. Therefore, if
any file in your archive library uses data or procedures from the math
library, you must specify the archive library before you specify the math
library.

2.6 Running Programs

To run an executable program in your current working directory, in most
cases you enter its file name. For example, to run the program a. out located
in your current directory, enter:

)

% a.out

If the executable program is not in a directory in your path, enter the
directory path before the file name, or enter:

% ./a.out

When the program is invoked, the main function in a C program can accept
arguments from the command line if the main function is defined with one
or more of the following optional parameters:

int main (int argc, char *argv[]l, char *envp[l]l)I[...]

The argc parameter is the number of arguments in the command line that
invoked the program. The argv parameter is an array of character strings
containing the arguments. The envp parameter is the environment array
containing process information, such as the user name and controlling
terminal. (The envp parameter has no bearing on passing command-line
arguments. Its primary use is during exec and getenv function calls.)

You can access only the parameters that you define. For example, the
following program defines the argc and argv parameters to echo the values
of parameters passed to the program:
/*

* Filename: echo-args.c

* This program echoes command-line arguments.

2-22 The Compiler System

*/
#include <stdio.h>

int main(int argc, char *argv([])

{

int i;

printf ("program: %$s\n", argv[0]); /* argv[0] is program name */
for (i=1; i < argc; i++)

printf ("argument %d: %$s\n", i, argvI[il);

return (0) ;

}

The program is compiled with the following command to produce a program
file called a. out:

$ cc echo-args.c

When the user invokes a.out and passes command-line arguments, the
program echoes those arguments on the terminal. For example:

$ a.out Long Day\’s "Journey into Night"
program: a.out
argument 1: Long
argument 2: Day'’s
argument 3: Journey into Night

The shell parses all arguments before passing them to a.out. For this
reason, a single quote must be preceded by a backslash, alphabetic
arguments are delimited by spaces or tabs, and arguments with embedded
spaces or tabs are enclosed in quotation marks.

2.7 Object File Tools

After a source file has been compiled, you can examine the object file or
executable file with following tools:

= odump — Displays the contents of an object file, including the symbol
table and header information.

= stdump — Displays symbol table information from an object file.
< nm — Displays only symbol table information.

= file — Provides descriptive information on the general properties of the
specified file, for example, the programming language used.

= size — Displays the size of the text, data, and bss segments.

= dis — Disassembles object files into machine instructions.

The Compiler System 2-23

The following sections describe these tools. In addition, see strings(1) for
information on using the strings command to find the printable strings
in an object file or other binary file.

2.7.1 Dumping Selected Parts of Files (odump)

The odump tool displays header tables and other selected parts of an object
or archive file. For example, odump displays the following information about
the file echo-args.o:

)

% odump -at echo-args.o

ARCHIVE SYMBOL TABLE

ARCHIVE HEADER

Member Name Date Uuid Gid Mode Size

SYMBOL TABLE INFORMATION
[Index] Name Value Sclass Symtype Ref
echo-args.o:
[0] main 0x0000000000000000 0x01 O0x06 Oxfffff
[1] printf 0x0000000000000000 0x06 0x06 Oxfffff
[2] fpdata 0x0000000000000000 0x06 O0x01 Oxfffff

For more information, see odump(1).

2.7.2 Listing Symbol Table Information (nm)

The nm tool displays symbol table information for object files. For example,

nm displays the following information about the object file produced for the
executable file a.out:

o

< nm

nm: Warning: - using a.out

Name Value Type Size
.bss | 0000005368709568 | B | 0000000000000000
.data | 0000005368709120 | D | 0000000000000000
.lita | 0000005368709296 | G | 0000000000000000
.lits | 0000005368709296 | G | 0000000000000000
.rconst | 0000004831842144 | Q | 0000000000000000
.rdata | 0000005368709184 | R | 0000000000000000

2-24 The Compiler System

The Name column contains the symbol or external name; the value column
shows the address of the symbol, or debugging information; the Type column
contains a letter showing the symbol type; and the Size column shows

the symbol’s size (accurate only when the source file is compiled with the
debugging option, for example, —g). Some of the symbol type letters are:

< B — External zeroed data

= D — External initialized data

e G — External small initialized data
= (Q — Read-only constants

< R — External read-only data

For more information, see nm(1).

2.7.3 Determining a File’s Type (file)

The £i1le command reads input files, tests each file to classify it by type,
and writes the file’s type to standard output. The £ile command uses the
/etc/magic file to identify files that contain a magic number. (A magic
number is a numeric or string constant that indicates a file's type.)

The following example shows the output of the £i1e command on a directory
containing a C source file, object file, and executable file:
% file *.*
directory
. directory
a.out: COFF format alpha dynamically linked, demand paged executable
or object module not stripped - version 3.11-8
echo-args.c: c program text

echo-args.o: COFF format alpha executable or object module not
stripped - version 3.12-6

For more information, see £ile(1).

2.7.4 Determining a File’s Segment Sizes (size)

The size tool displays information about the text, data, and bss segments of
the specified object or archive file or files in octal, hexadecimal, or decimal
format. For example, when it is called without any arguments, the size
command returns information on a . out. You can also specify the name of an
object or executable file on the command line. For example:

o

% size

text data bss dec hex

8192 8192 0 16384 4000
% size echo-args.o

text data bss dec hex

176 96 0 272 110

The Compiler System 2-25

For more information, see size(1).

2.7.5 Disassembling an Object File (dis)

The dis tool disassembles object file modules into machine language.
For example, the dis command produces the following output when it
disassembles the a.out program:

o

% dis a.out

__start:
0x120001080: 23defffo lda sp, -16(sp)
0x120001084: Db7fe0008 stqg zero, 8(sp)
0x120001088: c0200000 br t0, 0x12000108c
0x12000108c: a2le0010 1d1 a0, 16 (sp)
0x120001090: 223e0018 1lda al, 24 (sp)

For more information, see dis(1).

2.8 ANSI Name Space Pollution Cleanup in the Standard
C Library

The ANSI C standard states that users whose programs link against 1ibc
are guaranteed a certain range of global identifiers that can be used in their
programs without danger of conflict with, or pre-emption of, any global
identifiers in 1libc.

The ANSI C standard also reserves a range of global identifiers that

libce can use in its internal implementation. These are called reserved
identifiers and consist of the following, as defined in ANSI document number
X3.159-1989:

= Any external identifier beginning with an underscore

= Any external identifier beginning with an underscore followed by an
uppercase letter or an underscore

ANSI conformant programs are not permitted to define global identifiers
that either match the names of ANSI routines or fall into the reserved name
space specified earlier in this section. All other global identifier names are
available for use in user programs.

Historical 1ibc implementations contain large numbers of non-ANSI,
nonreserved global identifiers that are both documented and supported.
These routines are often called from within 1ibc by other 1ibc routines,
both ANSI and otherwise. A user’s program that defines its own version of

2-26 The Compiler System

one of these non-ANSI, nonreserved items would pre-empt the routine of
the same name in 1ibc. This could alter the behavior of supported 1ibc
routines, both ANSI and otherwise, even though the user’s program may be
ANSI-conformant. This potential conflict is known as ANSI name space
pollution.

The implementation of 1ibc on Tru64 UNIX includes a large number of
non-ANSI, nonreserved global identifiers that are both documented and
supported. To protect against pre-emption of these global identifiers within
libe and to avoid pollution of the user’s name space, the vast majority

of these identifiers have been renamed to the reserved name space by
prepending two underscores (__) to the identifier names. To preserve
external access to these items, weak identifiers have been added using
the original identifier names that correspond to their renamed reserved
counterparts. Weak identifiers work much like symbolic links between files.
When the weak identifier is referenced, the strong counterpart is used
instead.

User programs linked statically against 1ibc may have extra symbol table
entries for weak identifiers. Each of these identifiers will have the same
address as its reserved counterpart, which will also be included in the
symbol table. For example, if a statically linked program simply called the
tzset () function from libc, the symbol table would contain two entries for
this call, as follows:

stdump -b a.out | grep tzset
18. (file 9) (4831850384) tzset Proc Text symref 23 (weakext)
39. (file 9) (4831850384) _ _tzset Proc Text symref 23

In this example, tzset is the weak identifier and __tzset is its strong
counterpart. The __tzset identifier is the routine that will actually do
the work.

User programs linked as shared should not see such additions to the symbol
table because the weak/strong identifier pairs remain in the shared library.

Existing user programs that reference non-ANSI, nonreserved identifiers
from libc do not need to be recompiled because of these changes, with one
exception: user programs that depended on pre-emption of these identifiers
in 1ibc will no longer be able to pre-empt them using the nonreserved
names. This kind of pre-emption is not ANSI-compliant and is highly
discouraged. However, the ability to pre-empt these identifiers still exists by
using the new reserved names (those preceded by two underscores).

These changes apply to the dynamic and static versions of 1ibc:
e /usr/shlib/libc.so
e /usr/lib/libc.a

The Compiler System 2-27

When debugging programs linked against 1ibc, references to weak symbols
resolve to their strong counterparts, as in the following example:

)

% dbx a.out
dbx version 3.11.4

Type 'help’ for help.
main: 4 tzset
(dbx) stop in tzset
[2] stop in _ tzset
(dbx)

When the weak symbol tzset in 1libc is referenced, the debugger
responds with the strong counterpart _ tzset instead because the strong
counterpart actually does the work. The behavior of the dbx debugger is the
same as if __tzset were referenced directly.

2.9 Inline Assembly Code — ASMs

The compiler supports in-line assembly code, commonly called ASMs.

Like built-in functions, ASMs are implemented with a function-call syntax.
But unlike built-in functions, to use ASMs you must include the <c_asm.h>
header file containing prototypes for the three types of ASMs, and the
#fpragma intrinsic preprocessor directive.

These functions have the following format:

__int64 asm(const char *, ...); /* for integer operations, like MULQ */
float fasm(const char *, ...); /* for single precision float instructions, like MULS */
double dasm(const char *, ...); /* for double precision float instructions, like MULT */

#pragma intrinsic (asm, fasm, dasm)

const char* The first argument to the asm, fasm, or dasm
function contains the instruction(s) to be generated
inline and the metalanguage that describes the
interpretation of the arguments.

The source and destination arguments (if any) for
the instruction being generated, and any other
values used in the generated instructions.

These values are made available to the instructions through the normal
argument passing conventions of the calling standard (the first integer
argument is available in register R16).

2-28 The Compiler System

The #pragma intrinsic directive in the <c_asm.h> header file is required
when using ASMs. It notifies the compiler that:

< These functions are not user-defined functions.

= The special ASM processing should be applied to analyze at compile time
the first argument and generate machine-code instructions as specified
by the contents of the string.

The metalanguage for the argument references has the following form:

<metalanguage_sequence> : <register_alias»>
| <register numbers
| <register macros>

i

<register numbers> : "$" number
i
<register macro> : "%" <macro_sequence>

i

<macro_sequences : number
| <register name>
| "£" number | "F" number
| "r" number | "R" number
i
<register name> : /* argument registers: R16-R21 */
naon | wal" | ma2n | wa3w | nagn | wasw

/* return value: RO or FO0, depending on type */
| nvon

/* scratch registers: R1, R22-R24, R28 */
| mtom | meiv | we2n | owe3n | onean

/* save registers: R2-R15 */
| "som | msiv | ws2m | we3n | wganm | mgsw | nwgen | ng7w
| nsg" | "s7v | "sg" | ws9n | wsion | "siiv ns12n | "s13w

/* stack pointer: R30 */

| "sp" | ngpn | "Ssp" | nggpn

| "RA" | "ra" /* return addr: R26 */
| PV | vpun /* procedure value: R27 */
| vAI" | rain /* arg info: R25 */
| "FP" | "fp" /* frame pointer: R29 */
| "RZ" | "rz" | "zero" /* sink/source: R31 == zero */

Syntactically, the metalanguage can appear anywhere within an instruction
sequence.

The literal string that contains instructions, operands, and metalanguage
must follow the general form:
<string contents> : <instruction_seg>
| <string contents> ";" <instruction seg>
| error
| <string contents> error

The Compiler System 2-29

<instruction_ seg> : instruction operand
| directive
An instruction_operand is generally recognized as an assembly language
instruction separated by whitespace from a sequence of comma-separated
operands.

Since the C language concatenates adjacent string literals into a single
string, successive instructions can be written as separate strings, one per
line (as is normally done in assembly language) as long as each instruction is
terminated by a semicolon (as shown in the examples).

There are semantic and syntax rules associated with ASMs:

= The first argument to an ASM call is interpreted as the instructions
to be assembled in the metalanguage, and must be fully understood
by the compiler at compile time. Therefore, it must be a literal string
(or a macro expanding to a literal string) and must not be a run-time
value containing a string. Therefore, the following are not allowed:
indirections, table lookups, structure dereferences, and so on.

= The remaining arguments are loaded into the argument registers like
normal function arguments, except that the second argument to the ASM
call is treated as the first argument for purposes of the calling standard.

For example, in the following test, the six arguments are loaded into arg
registers a0 through a5, and the result of each subexpression is stored in
the value return register v0. Since v0 is the calling standard’s return value
register (RO for an integer function), the result of the final MULQ is the value
returned by the "call™:

if (asm("mulg %a0, %al, %vO;"
"mulg %az2, %vO, %vo;"
"mulg %a3, %vO, %vo;"
"mulg %a4, %vO, %vo;"
"mulg %a5, %vO0, %vO0;", 1, 2, 3, 4, 5, 6) != 720)({

error cnt++;
printf ("Test failed\n");

The following example does not work. There is no value loaded into the
floating-point return register. Furthermore, it results in a compile-time
warning stating that r2 is used before it is set, because the arguments are
loaded into the arg registers and not into r2:

z = fasm("mulg %r2, %al %r5", x=10, y=5);

The correct way of doing this is to specify an argument register number in
place of r2. A correct version of the above would be:

z = fasm("mulg %a0, %al, %al;"
"stq %al, 0(%a2);"
"1dt $f0, 0(%a2);"
"evtqgf %£f0, %£f0;", x=10, y=5, &temp);

2-30 The Compiler System

Note that the memory location used for the transfer from integer to
floating-point register is made available to the asm code by passing as an
argument the address of a variable allocated in the C code for that purpose.

= A return register must be specified in the metalanguage for the result
to appear in the expected place.

= For intructions that do not take any argument and do not have a return
type, leave out the arguments. For example:

asm("MB") ;

The Compiler System 2-31

3

Pragma Preprocessor Directives

The #pragma directive is a standard method for implementing features
that vary from one compiler to the next. This chapter describes the
implementation-specific pragmas that are supported on the C compiler:

e #pragma assert (Section 3.1)

e #pragma environment (Section 3.2)

* #pragma extern model (Section 3.3)

e #pragma extern prefix (Section 3.4)

e #pragma inline (Section 3.5)

* #pragma intrinsic and #pragma function (Section 3.6)
e f#pragma linkage (Section 3.7)

* #pragma member alignment (Section 3.8)
e f#pragma message (Section 3.9)

e f#pragma optimize (Section 3.10)

e #pragma pack (Section 3.11)

e #pragma pointer size (Section 3.12)

* #pragma use linkage (Section 3.13)

e {#pragma weak (Section 3.14)

Pragmas supported by all implementations of Compaq C are described in the
Compaq C Language Reference Manual.

Some pragmas may perform macro expansion, by default. The Compaqg C
Language Reference Manual lists these pragmas. It also describes the use
of double underscores as prefixes to pragma names and keywords to avoid
macro expansion problems when porting a program that defines a macro
with the same name as a pragma name or keyword.

You can force macro expansion for any pragma by adding a _m suffix to the
pragma name. When the pragma name is followed by m, the text that
follows the pragma name is subject to macro replacement. See the example
in Section 3.1.3.

Pragma Preprocessor Directives 3-1

3.1 The #pragma assert Directive

The #pragma assert directive allows you to specify assertions about a
program that the compiler can then use to generate more efficient code.

The #pragma assert directive is never needed to make a program execute
correctly; however, if a #pragma assert is specified, the assertions must
be valid or the program might behave incorrectly.

The #pragma assert directive has the following formats:
#pragma assert func attrs(identifier-1list) function-assertions
#pragma assert global status variable(variable-list)

#pragma assert non zero(constant-expression) "string-literal"

3.1.1 #pragma assert func_attrs

Use this form of the #pragma assert directive to make assertions about a
function’s attributes.

This form of the pragma has the following format:
#pragma assert func attrs(identifier-list) function-assertions
identifier-1list

A list of function identifiers about which the compiler can make

assumptions based on the function-assertions. If you specify more
than one identifier, separate them with commas.

function-assertions

A list of assertions that the compiler uses to make assumptions
about the functions. Specify one or more of the following assertions,
separating multiple assertions with white space:

noreturn

The compiler can assume that any call to the routine will never
return.

nocalls back

The compiler can assume that no routine in the source module
will be called before control is returned from this function.

nostate

The compiler can assume that only the function’s arguments
determine the value that the function returns and any side-effects
the function might have. If a function is marked as having both
noeffects and nostate, the compiler can eliminate redundant calls
to the function.

3-2 Pragma Preprocessor Directives

noeffects

The compiler can assume that any call to this function will have
no effect except to set the return value of the function. If the
compiler determines that the return value from a function call is
never used, it can remove the call.

file scope vars (option)

The compiler can make assumptions about how a function will
access variables that are declared at file scope (with either
internal or external linkage). The option is one of the following
keywords:

none

The function will not read or write to any file-scope variables
except those whose type is volatile or those that are listed
in a fipragma assert global status variable.

noreads

The function will not read any file-scope variables except
those whose type is volatile or those that are listed in a
#pragma assert global status variable

nowrites

The function will not write to any file-scope variables except
those whose type is volatile or those that are listed in a
#pragma assert global status variable

format (style, format-index, first-to-check-index)

The compiler can assume that this function takes printf or
scanf style arguments which should be type-checked against a
format string.

The format attribute allows you to identify your own functions
which take format strings as arguments, so that the compiler can
check the calls to these functions for errors. The compiler checks
formats for the library functions printf, fprintf, sprintf,
snprintf, scanf, fscanf, and sscanf whenever these
functions are enabled as intrinsics (the default). You may use the
format attribute to assert that the formats of these functions
should be checked when they are not enabled as intrinsics.

style

Determines how the format string is interpreted, and should
be either printf or scanf.

Pragma Preprocessor Directives 3-3

format-index

Specifies which argument is the format string argument
(starting from 1).

first-to-check-index

The number of the first argument to check against the
format string.

For functions where the arguments are not available to be checked
(such as vprintf), specify the third parameter as zero. In this
case the compiler only checks the format string for consistency.
For example, the following declaration causes the compiler to
check the arguments in calls to your printf for consistency
with the printf style format string argument your format:
extern int

your_ printf (void *your object, const char *your format, ...);
#pragma assert func_attrs(your printf) format (printf, 2, 3)

The format string (your format) is the second argument of the
function your printf, and the arguments to check start with
the third argument, so the correct parameters for the format
attribute are 2 and 3.

This form of the #pragma assert directive must appear at file scope.

The identifiers in the 1dentifier-1ist must have declarations that are
visible at the point of the #pragma assert directive.

A function can appear on more than one #pragma assert func attrs
directive as long as each directive specifies a different assertion about the
function. For example, the following is valid:

#pragma assert func attrs(a) nocalls back
#pragma assert func_attrs(a) file_scope_vars (noreads)

But the following is not valid:
#pragma assert func_attrs(a) file_ scope_vars (noreads)

#pragma assert func_attrs(a) file_ scope_vars (nowrites)

3.1.2 #pragma assert global_status_variable

Use this form of the #pragma assert directive to specify variables that
are to be considered global status variables, which are exempt from any
assertions that #pragma assert func attrs file scope vars
directives give to functions.

3-4 Pragma Preprocessor Directives

This form of the pragma has the following syntax:

#pragma assert global status variable(variable-list)
The variable-1ist is a list of variables.
This form of the #pragma assert directive must appear at file scope.

The variables in the variable-11ist must have declarations that are
visible at the point of the #pragma assert directive.

3.1.3 #pragma assert non_zero

This form of the #pragma assert directive has the following syntax:

#pragma assert non zero(constant-expression) "string-literal"

When the compiler encounters this directive, it evaluates the
constant-expression. If the expression is zero, the compiler generates a
message that contains both the specified string-literal and the compile-time
constant. For example:

#pragma assert non_zero(sizeof (a) == 12) "a is the wrong size"

If the compiler determines that the sizeof a is not 12, it generates the
following message:

cc: Warning: a.c, line 4: The assertion "sizeof (a)==12" was
not true, a is the wrong size. (assertfail)

Unlike the assert options func_attrs and global status variable,
#fpragma assert non_zero can appear either inside or outside a function
body. When it is used inside a function body, the #pragma can appear where
a statement can appear, but it is not treated as a statement. When it is used
outside a function body, the #pragma can appear where a declaration can
appear, but it is not treated as a declaration.

Any variables in the constant-expression must have declarations that
are visible at the point of the #pragma assert directive.

Because #pragma assert does not perform macro replacement on the
pragma, it is often necessary to use the #pragma assert m directive.
Consider the following program that verifies both the size of a struct and
the offset of one of its elements.

#include <stddef.h>
typedef struct {

int a;
int b;
} osi
#pragma assert non_zero(sizeof (s) == 8) "sizeof assert failed"
#pragma assert_m non_zero (offsetof(s,b) == 4) "offsetof assert failed"

Because offsetof is a macro, the second pragma must be assert m S0
that offsetof will expand correctly.

Pragma Preprocessor Directives 3-5

3.2 The #pragma environment Directive

The #pragma environment directive allows you to set, save, and restore
the state of all context pragmas. The context pragmas are:

#pragma extern prefix
#pragma member alignment
#pragma message

#pragma pack

#pragma pointer size

A context pragma can save and restore previous states, usually before and
after including a header file that might also use the same type of pragma.

The #pragma environment directive protects include files from compilation
contexts set by encompassing programs, and protects encompassing
programs from contexts set in header files that they include.

This pragma has the following syntax:

#pragma environment [cmd line | hdr defaults | restore | save]

cmd line

Sets the states of all of the context pragmas set on the command line.
You can use this pragma to protect header files from environment
pragmas that take effect before the header file is included.

hdr defaults

Sets the states of all of the context pragmas to their default values.
This is equivalent to the situation in which a program with no
command-line options and no pragmas is compiled, except that this
pragma sets the pragma message state to #pragma nostandard, as is
appropriate for header files.

restore

Restores the current state of every context pragma.

save

Saves the current state of every context pragma.

Without requiring further changes to the source code, you can use #pragma
environment to protect header files from things such as language
enhancements that might introduce additional compilation contexts.

A header file can selectively inherit the state of a pragma from the including
file and then use additional pragmas as needed to set the compilation to
nondefault states. For example:

3-6 Pragma Preprocessor Directives

#ifdef = pragma environment

#pragma __environment save

#pragma _ _environment header defaults
#pragma member alignment restore
#pragma member alignment save

#endif

/*contents of header filex*/

#ifdef pragma environment

#pragma _ _environment restore
#endif

In this example:

Saves the state of all context pragmas.
Sets the default compilation environment.

Pops the member alignment context from the #pragma
member alignment stack that was pushed by #pragma

___environment save, restoring the member alignment context to its
pre-existing state.

Pushes the member alignment context back onto the stack so that the
ffipragma __ environment restore can pop the entry.

Therefore, the header file is protected from all pragmas, except for the
member alignment context that the header file was meant to inherit.

3.3 The #pragma extern_model Directive

The #ipragma extern model directive controls how the compiler interprets
data objects that have external linkage. With this pragma you can select
one of the following global symbol models to be used for external (extern)
objects:

relaxed refdef

In this model, some declarations are references and some are
definitions. Multiple uninitialized definitions for the same object are
allowed, and the linker resolves them into one. However, a reference
requires that at least one definition exists. C compilers on most UNIX
systems use this model; it is the default model on Compaq C.

strict refdef

In this model, some declarations are references and some are
definitions. There must be exactly one definition in the program for
any symbol that is referenced. This model is the only one guaranteed
to strictly conform to all ANSI C implementations.

Pragma Preprocessor Directives 3—7

Note

Compaq C on OpenVMS platforms supports two other external
models named common_block and globalvalue, but these are
not supported on Tru64 UNIX.

After a global symbol model is selected with the extern model pragma,
all subsequent declarations of objects that have external storage class are
treated according to the specified model until another extern model
pragma is specified.

For example, consider the following pragma:
#pragma extern model strict refdef "progsec3"

After this pragma is specified, the following file-level declarations are
treated as declaring global symbols according to the strict refdef model:

int x = 0;
extern int y;

Regardless of the external model, the compiler uses ANSI C rules to
determine if a declaration is a definition or a reference. An external
definition is a file-level declaration that has no storage-class keyword, or
that contains the extern storage-class keyword, and is also initialized. A
reference is a declaration that uses the extern storage-class keyword and
is not initialized. In the previous example, the declaration of x is a global
definition and the declaration of y is a global reference.

A stack of the compiler’s external model state is kept so that #pragma
extern model can be used transparently in header files and in small
regions of program text. See Section 3.3.4 and Section 3.3.5 for more
information.

The following sections describe the various forms of the #pragma
extern model directive.

3.3.1 Syntax

The #ipragma extern model directive has the following syntax:

#pragma extern model model spec l[attrl,attr]...]

model spec

One of the following:

relaxed refdef
strict refdef "name"

Pragma Preprocessor Directives

where "name" is the name of the program section (psect) for any
definitions.

lattr[,attr]...]

Optional psect attribute specifications. Choose only one from each of
the following sets of attribute specifications:

shr |noshr

The psect can be shared in memory (shr) or cannot be shared in
memory (noshr). The default is noshr.

wrt |nowrt

The psect contains data that can be modified (wrt) or data that
cannot be modified (nowrt). The default is determined by the
first variable placed in the psect. If the variable has the const
type qualifier (or the readonly modifier), the psect is set to
nowrt. Otherwise, it is set to wrt.

ovr]con

The psect is concatenated with other psects with the same name
(con) or overlaid on the same memory locations (ovr). The default
is con for strict refdef, and over for relaxed refdef.

4loctalslel7lslol1ol11]12]13]14]15]16]page

These denote numeric alignment values. The default alignment is
octa. If a number is specified, the psect is given an alignment of
two raised to the power indicated by that number.

The strict refdef extern_model can also take the following psect
attribute specification:

noreorder

Causes variables in the section to be allocated in the order they
are defined. This attribute specification is off, by default.

In the following example, the initialized variables are to be aligned on a
64K-byte (2**16) boundary. The noreorder attribute specification means
that the variables will be allocated in the order they are declared:

#pragma extern model save

#pragma extern model strict refdef "progsecA" 16,noreorder
int varl = 5;

int var2 = 6;

#pragma extern model restore

Pragma Preprocessor Directives 3-9

In the following example, the (non-writable) variables are to be aligned on
a data cache line boundary:

#pragma extern model save
#pragma extern model strict refdef "progsecB" 3,noreorder,nowrt

const long c_vl = 1;
const long c_v2 = 2;
const long c_v3 = 2;

const long c_v4 = 2;
#pragma extern model restore

Under the relaxed refdef model, psect atttributes do not affect variables
that are declared with tentative definitions. Consider the following code:

#pragma extern model relaxed refdef 5
int a;

int b=6;

#pragma extern model strict_ refdef 5
int c¢;

Variable a is given the default octaword (2**4 or 16-byte) alignment because
it is a tentative definition. But b is given 32-byte (2**5) alignment because it
is initialized. Although c is a tentative definition, it is 32-byte (2**5) aligned
because it is under the strict refdef model.

Note

The psect attributes are normally used by system programmers
who need to perform declarations normally done in macro. Most
of these attributes are not needed in normal C programs.

3.3.2 #pragma extern_model relaxed_refdef

This pragma sets the compiler’s model of external data to the
relaxed_refdef model, which is the one used on UNIX systems.

The #pragma extern model relaxed refdef directive has the following
syntax:

#pragma extern model relaxed refdef [attr[,attr]...]

3.3.3 #pragma extern_model strict_refdef

This pragma sets the compiler’s model of external data to the
strict refdef model. Use this model for a program that is to be an ANSI
C strictly conforming program.

3-10 Pragma Preprocessor Directives

The #pragma extern model strict_ refdef directive has the following
syntax:

#pragma extern model strict refdef "name" [attr[,attr]...]

The name in quotes, if specified, is the name of the psect for any definitions.

3.3.4 #pragma extern_model save

This pragma pushes the current external model of the compiler onto a stack.
The stack records all information that is associated with the external model,
including the shr/noshr state and any quoted psect name.

This pragma has the following syntax:

#pragma extern model save

The number of entries that are allowed in the #pragma extern model
stack is limited only by the amount of memory that is available to the
compiler.

3.3.5 #pragma extern_model restore

This pragma pops the external model stack of the compiler. The external
model is set to the state popped off the stack. The stack records all
information that is associated with the external model, including the
shr/noshr state and any quoted psect name.

This pragma has the following syntax:

#pragma extern model restore

On an attempt to pop an empty stack, a warning message is issued and the
compiler’s external model is not changed.

3.4 The #pragma extern_prefix Directive

The #pragma extern prefix directive controls the compiler’s synthesis of
external names, which the linker uses to resolve external name requests.

When you specify #pragma extern prefix with a string argument, the C
compiler attaches the string to the beginning of all external names produced
by the declarations that follow the pragma specification.

This pragma is useful for creating libraries where the facility code can be
attached to the external names in the library.

This pragma has the following syntax:

Pragma Preprocessor Directives 3-11

#pragma extern prefix "string" [(id,...)]
#pragma extern prefix save

#pragma extern prefix restore

The quoted string is attached to external names in the declarations that
follow the pragma specification.

You can also specify a prefix for specific external identifiers using the
optional list [(id,...)].

You can use the save and restore keywords can be used to save the
current pragma prefix string and to restore the previously saved pragma
prefix string, respectively.

The default prefix for external identifiers, when none has been specified by a
pragma, is the null string.

The recommended use is as follows:

#pragma extern prefix save

#pragma extern prefix " prefix-to-prepend-to-external-names "
...some declarations and definitions ...

#pragma extern prefix restore

When an extern prefix isin effect and you are using #include to include
header files, but do not want the extern prefix to apply to extern
declarations in the header files, use the following code sequence:

#pragma extern prefix save
#pragma extern prefix ""
#include ...

#pragma extern prefix restore

Otherwise, the prefix is attached to the beginning of external identifiers
for definitions in the included files.

Notes

The following notes apply when specifying optional identifiers
on #pragma extern prefix:

e For each id there must not be a declaration of that id visible
at the point of the pragma; otherwise a warning is issued, and
there is no effect on that id.

= Each id affected by a pragma with a nonempty prefix is
expected to be subsequently declared with external linkage
in the same compilation unit. The compiler issues a default
informational if there is no such declaration made by the
end of the compilation.

3-12 Pragma Preprocessor Directives

= It is perfectly acceptable for the id list form of the pragma,
or declarations of the ids listed, to occur within a region of
source code controlled by the other form of the pragma. The
two forms do not interact; the form with an id list always
supersedes the other form.

e There is no interaction between the savel/restore stack
and the id lists.

= If the same id appears in more than one pragma, then a
default informational message is issued, unless the prefix on
the second pragma is either empty (" ") or matches the prefix
from the previous pragma. In any case, the behavior is that
the last-encountered prefix supersedes all others.

3.5 The #pragma inline Directive

Function inlining is the inline expansion of function calls, replacing the
function call with the function code itself. Inline expansion of functions
reduces execution time by eliminating function-call overhead and allowing
the compiler’s general optimization methods to apply across the expanded
code. Compared with the use of function-like macros, function inlining has
the following advantages:

= Arguments are evaluated only once.

= Overuse of parentheses is not necessary to avoid problems with
precedence.

= Actual expansion can be controlled from the command line.

= The semantics are as if inline expansion had not occurred. You cannot
get this behavior using macros.

The following preprocessor directives control function inlining:
#pragma inline (id, ...)

#pragma noinline (id, ...)
Where id is a function identifier:

= If a function is named in a #pragma inline directive, calls to that
function are expanded as inline code, if possible.

= If a function is named in a #pragma noinline directive, calls to that
function are not expanded as inline code.

= If a function is named in both a #pragma inline and a
#pragma noinline directive, an error message is issued.

If a function is to be expanded inline, you must place the function definition
in the same module as the function call (unless you also use the -ifo option,

Pragma Preprocessor Directives 3-13

which allows inlining across modules). The definition can appear either
before or after the function call.

The cc command options -03, -04, -inline size, -inline speed, Or
-inline all cause the compiler to attempt to expand calls to functions
named in neither a #pragma inline nor a #pragma noinline directive as
inline code whenever appropriate, as determined by the following function
characteristics:

= Size
= Number of times the function is called
= Conformance to the following restrictions:
— The function does not take a parameter’s address.

— Afield of a struct argument. An argument that is a pointer to a
struct is not restricted.

— The function does not use the varargs or stdarg package to access
the function’s arguments because they require arguments to be in
adjacent memory locations, and inline expansion may violate that
requirement.

For optimization level -02, the C compiler inlines small static routines only.
The #pragma inline directive causes inline expansion regardless of the
size or number of times the specified functions are called.

3.6 The #pragma intrinsic and #pragma function Directives

Certain functions can be declared to be intrinsic. Intrinsic functions
are functions for which the C compiler generates optimized code in certain
situations, possibly avoiding a function call.

Table 3-1 shows the functions that can be declared to be intrinsic.

Table 3-1: Intrinsic Functions

abs fabs labs
printf fprintf sprintf
strcpy strlen memcpy
memmove memset alloca
bcopy bzero

To control whether a function is treated as an intrinsic, use one of the
following directives (where func name list is a comma-separated list of
function names optionally enclosed in parentheses):

3-14 Pragma Preprocessor Directives

#pragma intrinsic [(] func name list [)]
#pragma function [(] func name Ilist [)]

#pragma function ()

The #pragma intrinsic directive enables intrinsic treatment of a function.
When the #pragma intrinsic directive is turned on, the compiler
understands how the functions work and is thus able to generate more
efficient code. A declaration for the function must be in effect at the time the
pragma is processed.

The #pragma function directive disables the intrinsic treatment of a
function. A #pragma function directive with an empty func name list
disables intrinsic processing for all functions.

Some standard library functions also have built-in counterparts in the
compiler. A built-in is a synonym name for the function and is equivalent
to declaring the function to be intrinsic. The following built-ins (and their
built-in names) are provided:

Function Synonym

abs __builtin abs
labs _ _builtin labs
fabs _ _builtin fabs
alloca _ _builtin alloca
strcpy _ _builtin strcpy

Several methods are available for using intrinsics and built-ins. The
header files containing the declarations of the functions contain the
#pragma intrinsic directive for the functions shown in Table 3-1. To
enable the directive, you must define the preprocessor macro INTRINSICS.
For alloca, all that is necessary is to include alloca.h.

For example, to get the intrinsic version of abs, a program should
either include stdlib.h and compile with -D_INTRINSICS or define
__INTRINSICS with a #define directive before including stdlib.h.

To enable built-in processing, use the -D switch. For example, to enable the
fabs built-in, the proc. c program is compiled with one of the following:

o

cc -Dfabs=__builtin fabs prog.c
% cc -Dabs=__builtin abs prog.c

Optimization of the preceding functions varies according to the function
and how it is used:

Pragma Preprocessor Directives 3-15

= The following functions are inlined:

abs
fabs
labs
alloca

The function call overhead is removed.

= In certain instances, the printf and fprintf functions are converted
to call puts, putc, £puts, or £putc (or their equivalents), depending on
the format string and the number and types of arguments.

= In certain instances, the sprintf function is inlined or converted to a
call to strcpy.

= The strecpy function is inlined if the source string (the second argument)
is a string literal.

3.7 The #pragma linkage Directive

The #pragma linkage directive allows you to specify linkage types. A
linkage type specifies how a function uses a set of registers. It allows you to
specify the registers that a function uses. It also allows you to specify the
characteristics of a function (for example, the registers in which it passes
parameters or returns values) and the registers that it can modify. The
#pragma use linkage directive associates a previously defined linkage
with a function (see Section 3.13).

The #pragma linkage directive affects both the call site and function
compilation (if the function is written in C). If the function is written in
assembler, you can use the linkage pragma to describe how the assembler
uses registers.

The #pragma linkage directive has the following format:

#pragma linkage linkage-name = (characteristics)

linkage-name
Identifies the linkage type being defined. It has the form of a C
identifier. Linkage types have their own name space, so their names

will not conflict with other identifiers or keywords in the compilation
unit.

characteristics

Specifies information about where parameters will be passed, where
the results of the function are to be received, and what registers are
modified by the function call.

3-16 Pragma Preprocessor Directives

You must specify a register-list. A register-listisa
comma-separated list of register names, either rn or fn. A
register-1ist can also contain parenthesized sublists. Use the
register-1ist to describe arguments and function result types that
are structures, where each member of the structure is passed in a
single register. For example:

parameters (r0, (£0,£1))

The preceding example is a function with two parameters. The
first parameter is passed in register r0. The second parameter is a
structure type with two floating-point members, which are passed in
registers £0 and £1.

The following list of characteristics can be specified as a
parenthesized list of comma-separated items. Note, these keywords
can be supplied in any order.

® parameters (register-1list)

The parameters characteristic passes arguments to a routine in
specific registers.

Each item in the register-1ist describes one parameter that
is passed to the routine.

You can pass structure arguments by value, with the restriction
that each member of the structure is passed in a separate
parameter location. Doing so, however, may produce code that is
slower because of the large number of registers used. The compiler
does not diagnose this condition.

Valid registers for the parameters option include integer registers
r0 through r25 and floating-point registers £0 through £30.

Structure types require at least one register for each field. The
compiler verifies that the number of registers required for a
structure type is the same as the number provided in the pragma.

e result (register-1list)

The compiler needs to know which registers will be used to return
the value from the function. Use the result characteristic to pass
this information.

If a function does not return a value (that is, the function has a
return type of void), do not specify result as part of the linkage.

Valid registers for the register option include general-purpose
registers ro through r25 and floating-point registers £0 through
£30.

e preserved (register-list)
nopreserve (register-1list)

Pragma Preprocessor Directives 3-17

notused (register-1list)
notneeded ((1lp))

The compiler needs to know which registers are used by the
function and which are not, and of those used, whether they are
preserved across the function call. To specify this information, use
the preserved, nopreserve, notused, and notneeded options:

— A preserved register contains the same value after a call to
the function as it did before the call.

— A nopreserve register does not necessarily contain the same
value after a call to the function as it did before the call.

— A notused register is not used in any way by the called
function.

— The notneeded characteristic indicates that certain items are
not needed by the routines using this linkage. The 1p keyword
specifies that the Linkage Pointer register (r27) does not need
to be set up when calling the specified functions. The linkage
pointer is required when the called function accesses global or
static data. You must determine whether it is valid to specify
that the register is not needed.

Valid registers for the preserved, nopreserve, and notused
options include general-purpose registers r0 through r30 and
floating-point registers £0 through £30.

The #pragma linkage directive does not support structures containing
nested substructures as parameters or function return types with special
linkages. Functions that have a special linkage associated with them do not
support parameters or return types that have a union type.

The following characteristics specify a simple-register-1ist containing
two elements (registers £3 and £4); and a register-1ist containing two
elements (register r0 and a sublist containing the registers £0 and £1):

nopreserve (£3,£4)
parameters (r0, (£0,£1))

The following example shows a linkage using such characteristics:

#pragma linkage my link=(nopreserve (f3,£f4),
parameters (r0, (£0,£1)),
notneeded (1lp))

The parenthesized notation in a register-1ist describes arguments and
function return values of type struct, where each member of the struct
is passed in a single register. In the following example, sample linkage
specifies two parameters — the first is passed in registers ro, r1, and r2
and the second is passed in £1:

3-18 Pragma Preprocessor Directives

struct sample struct t {
int A, B;
short C;
} sample struct;

#pragma linkage sample linkage = (parameters ((r0, rl, r2), f£1))
void sub (struct sample struct t pl, double p2) { }

main ()

{

double d;

sub (sample struct, d);

}

3.8 The #pragma member_alignment Directive

By default, the compiler aligns structure members on natural boundaries.
Use the #pragma [nolmember alignment preprocessor directive to
determine the byte alignment of structure members.

This pragma has the following formats:
#pragma member alignment [save | restore]

#pragma nomember alignment

save | restore Saves the current state of the member alignment
(including pack alignment) and restores the previous
state, respectively. The ability to control the state
is necessary for writing header files that require
member alignment OF nomember alignment,
or that require inclusion in a member alignment
that is already set.

Use #pragma member alignment to specify natural-boundary alignment
of structure members. When #pragma member alignment is used, the
compiler aligns structure members on the next boundary appropriate to the
type of the member, rather than on the next byte. For instance, an int
variable is aligned on the next longword boundary; a short variable is
aligned on the next word boundary.

Where the #pragma [no]lmember alignment directives allow you to choose
between natural and byte alignment, the pragma pack directive allows you
to specify structure member alignment on byte, word, longword, or quadword
boundaries. See Section 3.11 for more information on #pragma pack.

With any combination of #pragma member alignment,
#pragma nomember alignment, and #pragma pack, each pragma remains
in effect until the next one is encountered.

Pragma Preprocessor Directives 3-19

3.9 The #pragma message Directive

The #pragma message directive controls the issuance of individual
diagnostic messages or groups of diagnostic messages. The use of this
pragma overrides any command-line options that may affect the issuance
of messages.

The #pragma message directive has the following formats:
#pragma message optionl (message-list)
#pragma message option2

#pragma message ("string")

3.9.1 #pragma message optionl

This form of the #pragma message directive has the following format:
#pragma message optionl (message-list)
The optioni parameter must be one of the following keywords:

enable

Enables issuance of the messages specified in the message list.

disable

Disables issuance of the messages specified in the message list. Only
messages of severity Warning or Information can be disabled. If the
message has a severity of Error or Fatal, it is issued regardless of any
attempt to disable it.

emit once

Emits the specified messages only once per compilation. Certain
messages are emitted only the first time the compiler encounters the
causal condition. When the compiler encounters the same condition
later in the program, no message is emitted. Messages about the use of
language extensions are an example of this kind of message. To emit
one of these messages every time the causal condition is encountered,
use the emit_always option.

Errors and Fatals are always emitted. You cannot set them to
emit once.

emit always

Emits the specified messages at every occurrence of the condition.

3-20 Pragma Preprocessor Directives

error

Sets the severity of the specified messages to Error. Supplied Error
messages and Fatal messages cannot be made less severe. (The
exception is that a message can be upgraded from Error to Fatal, then
later downgraded to Error again, but it can never be downgraded from
Error.) Warnings and Informationals can be made any severity.)

fatal

Sets the severity of the specified messages to Fatal.

informational

Sets the severity of the specified messages to Informational. Note that
Fatal and Error messages cannot be made less severe.

warning

Sets the severity of each message in the message-1ist to Warning.
Note that Fatal and Error messages cannot be made less severe.

The message-1ist parameter can be one of the following:

Note

The default is to issue all diagnostic messages for the selected
compiler mode except those in the check group, which must be
explicitly enabled to display its messages.

= A single message identifier (within parentheses or not). Use the
-verbose option on the cc command to obtain the message identifier.

= The name of a single message group (within parentheses, or not).
Message-group names are:

all

All the messages in the compiler.

alignment
Messages about unusual or inefficient data alignment.
c _to cxx

Messages reporting the use of C features that would be invalid or
have a different meaning if compiled by a C++ compiler.

Pragma Preprocessor Directives 3-21

check

Messages reporting code or practices that, although correct and
perhaps portable, are sometimes considered ill-advised because
they can be confusing or fragile to maintain. For example,
assignment as the test expression in an if statement. The check
group gets defined by enabling Level5 messages.

nonansi

Messages reporting the use of non-ANSI Standard features.

defunct

Messages reporting the use of obsolete features: ones that were
commonly accepted by early C compilers but were subsequently
removed from the language.

obsolescent

Messages reporting the use of features that are valid in ANSI
Standard C, but which were identified in the standard as being
obsolete and likely to be removed from the language in a future
version of the standard.

overflow
Messages that report assignments and/or casts that can cause
overflow or other loss of data significance.

performance
Messages reporting code that might result in poor run-time
performance.

portable

Messages reporting the use of language extensions or other
constructs that might not be portable to other compilers or
platforms.

preprocessor

Messages reporting questionable or nonportable use of
preprocessing constructs.

3-22 Pragma Preprocessor Directives

questcode

Messages reporting questionable coding practices. Similar to the
check group, but messages in this group are more likely to indicate
a programming error rather than just a nonrobust style.

returnchecks
Messages related to function return values.
uninit
Messages related to using uninitialized variables.
unused
Messages reporting expressions, declarations, header files, static

functions, and code paths that are not used.

A single message-level name (within parentheses or not). Message-level
names are:

levell

Important messages. These are less important than the level 0
core messages, because messages in this group are not displayed if
#pragma nostandard is active.

level2

Moderately important messages. Level2 is the default for Compaq
C.

level3

Less important messages.

level4d

Useful check/portable messages.

level5s

Not so useful check/portable messages.

levels

Additional noisy messages.

Be aware that there is a core of very important compiler messages that
are enabled by default, regardless of what you specify with #pragma

Pragma Preprocessor Directives 3-23

message. Referred to as message levelO, it includes all messages issued
in header files, and comprises what is known as the nostandard group.
All other message levels add additional messages to this core of enabled
messages.

You cannot modify Levelo (You cannot disable it, enable it, change its
severity, or change its emit once characteristic). However, you can
modify individual messages in levelo, provided such modification

is allowed by the action. For example, you can disable a Warning or
Informational in Levelo, or you can change an error in levelO to a
Fatal, and so on. (See restrictions on modifying individual messages.)
Enabling a level also enables all the messages in the levels lower than
it. So enabling 1evel3 messages also enables messages in level2 and
levell. Disabling a level also disables all the messages in the levels
higher than it. So disabling 1evel4 messages also disables messages in
levels and levels.

= A comma-separated list of message identifiers, group names, and
message levels, freely mixed, enclosed in parentheses.

3.9.2 #pragma message option2

This form of the #pragma message directive has the following format:

#pragma message option2

The option2 parameter must be one of the following keywords:
save

Saves the current state of which messages are enabled and disabled.

restore

Restores the previous state of which messages are enabled and
disabled.

The save and restore options are useful primarily within header files.

3.9.3 #pragma message (“string”)

This form of the #pragma message directive is provided for compatibility
with the Microsoft #pragma message directive, and it has the following
format:

#pragma message ("string")

The directive emits the specified string as a compiler message. For
example, when the compiler encounters the following line in the source file:

#pragma message ("hello")

3-24 Pragma Preprocessor Directives

It emits:

cc: Info: a.c, line 10: hello (simplemessage)
#pragma message ("hello")

N

This form of the pragma is subject to macro replacement. For example, the
following is allowed:

#pragma message ("Compiling file " _ FILE_)

3.10 The #pragma optimize Directive

The #pragma optimize directive sets the optimization characteristics of
function definitions that follow the directive. It allows optimization-control
options that are normally set on the command line for the entire compilation
to be specified in the source file for individual functions. This pragma has
the following formats:

#pragma optimize setttings
#pragma optimize save

#pragma optimize restore

The settings is any combination of the following:

level settings

These set the optimization level. Specify the level as follows:
level=n

Where n is an integer from 0 to 5:

0 Disables all optimizations. Does not check for unassigned
variables.
1 Enables local optimizations and recognition of some

common subexpressions. The callgraph determines the
order of compilation of procedures.

2 Includes 1evel 1 optimizations. Enables global
optimization. This includes data-flow analysis, code
motion, strength reduction and test replacement, split
lifetime analysis, and code scheduling.

3 Includes 1evel 2 optimizations. Enables additional
global optimizations that improve speed (at the cost of
extra code size), for example: integer multiplication and
division expansion (using shifts), loop unrolling, and code
replication to eliminate branches.

Pragma Preprocessor Directives 3-25

4 Includes 1level 3 optimizations. Enables interprocedural
analysis and automatic inlining of small procedures (with
heuristics limiting the amount of extra code). This is the
default.

5 Includes 1level 4 optimizations. Activates software
pipelining, which is a specialized form of loop unrolling
that in certain cases improves run-time performance.
Software pipelining uses instruction scheduling to
eliminate instruction stalls within loops, rearranging
instructions between different unrolled loop iterations
to improve performance.

Loops chosen for software pipelining are always innermost
loops and do not contain branches or procedure calls.

To determine whether using level 5 benefits your
particular program, you should time program execution
for the same program compiled at 1evel 4 and level 5.
For programs that contain loops that exhaust available
registers, longer execution times may result with level
5.

unroll settings
These control loop unrolling. Specify as follows:

unroll=n

Where n is a nonnegative integer. unroll= n means to unroll loop
bodies n times, where n is between 0 and 16. unroll=0 means the
optimizer will use its own default unroll amount. Specify unroll only
at level 3 or higher.

ansi-alias settings

These control ansi-alias assumptions. Specify one of the following:

ansi _alias=on
ansi_alias=off

intrinsic settings

These control recognition of intrinsics. Specify on of the following:

intrinsics=on
intrinsics=off

3-26 Pragma Preprocessor Directives

Whitespace is optional between the setting clauses and before and after the

=" in each clause. The pragma is not subject to macro replacement.

Example:
#pragma optimize level=5 unroll=6

The save and restore options save and restore the current optimization
state (level, unroll count, ansi-alias setting, and intrinsic setting).

Usage Notes

= Ifthe level=0 clause is present, it must be the only clause
present.

* The #pragma optimize directive must appear at file scope,
outside any function body.

e The #pragma environment save and restore operations
include the optimization state.

e The #pragma environment cmd line directive resets the
optimization state to that specified on the command line.

= |If #pragma optimize does not specify a setting for one of the
optimization states, that state remains unchanged.

< When a function definition is encountered, it is compiled
using the optimization settings that are current at that point
in the source.

= When a function is compiled under level=0, the compiler
will not inline that function. In general, when functions are
inlined, the inlined code is optimized using the optimization
controls in effect at the call site instead of using the
optimization controls specified for the function being inlined.

3.11 The #pragma pack Directive

The #pragma pack directive changes the alignment restrictions on all
members of a structure. The pragma must appear before the entire structure
definition because it acts on the whole structure. The syntax of this pragma
is as follows:

#pragma pack (n)
The nis a number (such as 1, 2, or 4) that specifies that subsequent structure
members are to be aligned on n-byte boundaries. If you supply a value of O

(zero) for n, the alignment reverts to the default, which may have been set
by the -zpn option on the cc command.

Pragma Preprocessor Directives 3-27

3.12 The #pragma pointer_size Directive

The #pragma pointer size directive controls pointer size allocation for
the following:

« References
= Pointer declarations
e Function declarations

= Array declarations

This pragma has the following syntax:
#pragma pointer size { long | short | 64 | 32 } | { save | restore }

long | 64 Sets all pointer sizes as 64 bits in all declarations
that follow this directive, until the compiler
encounters another #pragma pointer size
directive.

short | 32 Sets all pointer sizes as 32 bits in declarations that
follow this directive, until the compiler encounters
another #pragma pointer size directive.

save | restore Saves the current pointer size and restores the saved
pointer size, respectively. The save and restore
options are particularly useful for specifying mixed
pointer support and for protecting header files that
interface to older objects. Objects compiled with
multiple pointer size pragmas will not be compatible
with old objects, and the compiler cannot discern
that incompatible objects are being mixed.

For example:

#pragma pointer size lon
prag p _ g9

/* pointer sizes in here are 64-bits */
#pragma pointer size save
#pragma pointer size short

/* pointer sizes in here are 32-bits */
#pragma pointer size restore

/* pointer sizes in here are again 64-bits */

The use of short pointers is restricted to Compag C++ and Compaq C
compilers residing on a Tru64 UNIX system. Programs should not attempt
to pass short pointers from C++ routines to routines written in any language
other than the C programming language. Also, Compaq C++ may require
explicit conversion of short pointers to long pointers in applications that use
short pointers. You should first port those applications in which you are

3-28 Pragma Preprocessor Directives

considering using short pointers, and then analyze them to determine if
short pointers would be beneficial. A difference in the size of a pointer in a
function declaration is not sufficient to overload a function.

The C compiler issues an error level diagnostic if it encounters any of the
following conditions:
= Two functions defined differ only with respect to pointer sizes.

= Two functions differ in return type only with respect to pointer size.

3.13 The #pragma use_linkage Directive

After defining a special linkage with the #pragma linkage directive,
as described in Section 3.7, use the #pragma use linkage directive to
associate the linkage with a function.

This pragma has the following syntax:
#pragma use linkage linkage-name (idl, idz2, ...)

linkage-name

Specifies the name of a linkage that the #pragma linkage directive
previously defined.

idi, 1idz, ...

Specifies the names of functions, or typedef names of function type,
that you want to associate with the specified linkage.

If you specify a typedef name of function type, then functions or
pointers to functions that are declared using that type will have the
specified linkage.

The #pragma use linkage directive must appear in the source file before
any use or definition of the specified routines. Otherwise, the results are
unpredictable.

The following example defines a special linkage and associates it with a
routine that takes three integer parameters and returns a single integer
result in the same location where the first parameter was passed:

#pragma linkage example linkage (parameters(rlé, rl7, rl9), result(rleé)

#pragma use_linkage example linkage (sub)
int sub (int pl, int p2, short p3);

main ()
{

int result;

result = sub (1, 2, 3);

Pragma Preprocessor Directives 3-29

In this example, the result (r16) option indicates that the function result
will be returned in register r16 instead of the usual location (x0). The
parameters option indicates that the three parameters that are passed to
sub should be passed in registers r16, r17, and r19.

In the following example, both the function £1 and the function type t are
given the linkage foo. The invocation through the function pointer £2 will
correctly invoke the function £1 using the special linkage.:

#pragma linkage foo = (parameters(rl), result(r4))
#pragma use_linkage foo(f1l,t)

int f£1(int a);
typedef int t(int a);

t *£2;
#include <stdio.h>

O A
f2 = f1;
b = (*£f2) (1) ;

main

3.14 The #pragma weak Directive

The #pragma weak directive defines a new weak external symbol and
associates this new symbol with an external symbol. The syntax for this
pragma is as follows:

#pragma weak (secondary-name, primary-name)

See Section 2.8 for information on strong and weak symbols.

3-30 Pragma Preprocessor Directives

A

Shared Libraries

Shared libraries are the default system libraries. The default behavior of
the C compiler is to use shared libraries when performing compile and link
operations.

This chapter addresses the following topics:

= Overview of shared libraries (Section 4.1)

Resolving symbols (Section 4.2)

= Linking with shared libraries (Section 4.3)

= Turning off shared libraries (Section 4.4)

= Creating shared libraries (Section 4.5)

= Working with private shared libraries (Section 4.6)
= Using quickstart (Section 4.7)

= Debugging programs linked with shared libraries (Section 4.8)
= Loading a shared library at run time (Section 4.9)
= Protecting shared library files (Section 4.10)

= Shared library versioning (Section 4.11)

= Symbol binding (Section 4.12)

= Shared library restrictions (Section 4.13)

4.1 Shared Library Overview

Shared libraries consist of executable code that can be located at any
available address in memory. Only one copy of a shared library’s instructions
is loaded, and the system shares that one copy among multiple programs
instead of loading a copy for each program using the library, as is the case
with archive (static) libraries.

Programs that use shared libraries enjoy the following significant
advantages over programs that use archive libraries:

= Programs linked with shared libraries do not need to be recompiled and
relinked when changes are made to those libraries.

Shared Libraries 4-1

= Unlike programs linked with archive libraries, programs linked with
shared libraries do not include library routines in the executable program
file. Programs linked with shared libraries include information to load
the shared library and gain access to its routines and data at load time.

This means that use of shared libraries occupies less space in memory
and on disk. When multiple programs are linked to a single shared
library, the amount of physical memory used by each process can be
significantly reduced.

From a user perspective, the use of shared libraries is transparent. In
addition, you can build your own shared libraries and make them available
to other users. Most object files and archive libraries can be made into
shared libraries. See Section 4.5 for more information on which files can be
made into shared libraries.

Shared libraries differ from archive libraries in the following ways:

= You build shared libraries by using the 1d command with the appropriate
options. You create archive libraries by using the ar command. For more
information on the 1d command, see 1d(1).

= When shared libraries are linked into an executable program, they
can be positioned at any available address. At run time, the loader
(/sbin/loader) assigns a location in the process’s private virtual
address space. In contrast, when archive libraries are linked into an
executable program, they have a fixed location in the process’s private
virtual address space.

= Shared libraries reside in the /usr/shlib directory. Archive libraries
reside in the /usr/1ib directory.

= Shared library naming convention specifies that a shared library name
begins with the prefix 1ib and ends with the suffix . so. For example,
the library containing common C language functions is 1ibc. so.
Archive library names also begin with the prefix 1ib, but they end
with the suffix . a.

Figure 4-1 shows the difference between the use of archive and shared
libraries.

4-2 Shared Libraries

Figure 4-1: Use of Archive and Shared Libraries
Application using archive library:

processl process2

scanf.o scanf.o
from libc from libc

kernel

Application using shared library:

processl process2

information information
to load libc to load libc

libc

kernel

ZK-0474U-Al

4.2 Resolving Symbols

Symbol resolution is the process of mapping an unresolved symbol imported
by a program or shared library to the pathname of the shared library that
exports that symbol. Symbols are resolved in much the same way for shared
and archive libraries, except that the final resolution of symbols in shared
objects does not occur until a program is invoked.

The following sections describe:

= Search path of the linker (1d) (Section 4.2.1)

= Search path of the run-time loader (/sbin/loader) (Section 4.2.2)
< Name resolution (Section 4.2.3)

= Options to the 1d command to determine how unresolved external
symbols are to be handled (Section 4.2.4)

Shared Libraries 4-3

4.2.1 Search Path of the Linker

When the linker (1d) searches for files that have been specified by using the
-1 option on the command line, it searches each directory in the order shown
in the following list, looking first in each directory for a shared library (. so)
file:

/usr/shlib

/usr/ccs/1lib

/usr/lib/cmplrs/cc

/usr/1lib

/usr/local/lib

/var/shlib

2

If the linker does not find a shared library, it searches through the same
directories again, looking for an archive (. a) library. You can prevent the
search for archive libraries by using the -no_archive option on the 1d
command.

4.2.2 Search Path of the Run-time Loader

Unless otherwise directed, the run-time loader (/sbin/loader) follows the
same search path as the linker. You can use one of the following methods to
direct the run-time loader to look in directories other than those specified
by the default search path:

= Specify a directory path by using the -rpath string option to the 1d
command and setting string to the list of directories to be searched.

= Set the environment variable LD LIBRARY PATH to point to the directory
in which you keep your private shared libraries before executing your
programs. The run-time loader examines this variable when the
program is executed,; if it is set, the loader searches the paths defined
by LD LIBRARY PATH before searching the list of directories discussed
in Section 4.2.1.

You can set the LD LIBRARY PATH variable by either of the following
methods:

— Set it as an environment variable at the shell prompt.

For the C shell, use the setenv command followed by a

colon-separated path. For example:
% setenv LD LIBRARY PATH .:$HOME/testdir

°

For the Bourne and Korn shells, set the variable and then export it.
For example:

4-4 Shared Libraries

$ LD LIBRARY PATH=.:$HOME/testdir
$ export LD LIBRARY PATH

These examples set the path so that the loader looks first in the
current directory and then in your $HOME/testdir directory.

— Add the definition of the variable to your login or shell startup files.
For example, you could add the following line to your .login or
.cshre file if you work in the C shell:

setenv LD LIBRARY PATH .:S$SHOME/testdir:/usr/shlib

If the loader cannot find the library it needs in the paths defined by any of
the preceding steps, it looks through the directories specified in the default
path described in Section 4.2.1. In addition, you can use the RLD ROOT
environment variable to alter the search path of the run-time loader. For
more information, see 1oader(5).

4.2.3 Name Resolution

The semantics of symbol name resolution are based on the order in which
the object file or shared object containing a given symbol appears on the

link command line. The linker normally takes the leftmost definition for

any symbol that must be resolved.

The sequence in which names are resolved proceeds as if the link command
line was stored in the executable program. When the program runs, all
symbols that are accessed during execution must be resolved. The loader
aborts execution of the program if an unresolved text symbol is accessed.

For information on how unresolved symbols are handled by the system, see
Section 4.2.4. The following sequence resolves references to any symbol from
the main program or from a library:

1. If asymbol is defined in an object or in an archive library from which
you build the main executable program file, that symbol is used by the
main program file and all of the shared libraries that it uses.

2. If the symbol is not defined by the preceding step and is defined by one
or more of the shared objects linked with the executable program, then
the leftmost library on the link command line containing a definition
is used.

3. If the libraries on the link command line were linked to be dependent
on other libraries, then the dependencies of libraries are searched in a
breadth-first fashion instead of being searched in a depth-first fashion.
For example, as shown in the following diagram, executable program A
is linked against shared library B and shared library D, and library B is
linked against library C.

Shared Libraries 4-5

The search order is A-B-D-C. In a breadth-first search, the grandchildren
of a node are searched after all the children have been searched.

4. If the symbol is not resolved in any of the previous steps, the symbol
remains unresolved.

Note that because symbol resolution always prefers the main object, shared
libraries can be set up to call back into a defined symbol in the main object.

Likewise, the main object can define a symbol that will override (preempt or
hook) a definition in a shared library.

4.2.4 Options to Determine Handling of Unresolved External Symbols

The default behavior of the linker when building executable programs differs
from its default behavior when building shared libraries:

< When building executable programs, an unresolved symbol produces
an error by default. The link fails and the output file is not marked
as executable.

= When building shared libraries, an unresolved symbol produces only a
warning message by default.

You can control the behavior of the linker by using the following options

to the 14 command:

-expect unresolved pattern
This option specifies that any unresolved symbols matching pattern
are neither displayed nor treated as warnings or errors. This option can
occur multiple times on a link command line. The patterns use shell

wildcards (2, *, [, 1) and must be quoted properly to prevent expansion
by the shell. See sh(1), csh(1), and ksh(1) for more information.

-warning unresolved

This option specifies that all unresolved symbols except those matching
the —expect unresolved pattern produce warning messages. This
mode is the default for linking shared libraries.

-error_unresolved

This option causes the linker to print an error message and return a
nonzero error status when a link is completed with unresolved symbols

4-6 Shared Libraries

other than those matching the —expect unresolved pattern. This
mode is the default for linking executable images.

4.3 Linking with Shared Libraries

When compiling and linking a program, using shared libraries is the same as
using static libraries. For example, the following command compiles program
hello.c and links it against the default system C shared library 1ibc. so:

)

% cc -o hello hello.c

You can pass certain 1d command options to the cc command to allow
flexibility in determining the search path for a shared library. For example,
you can use the -Ldir option with the cc command to change the search
path by adding dir before the default directories, as shown in the following
example:

o

% cc -o hello hello.c -L/usr/person -lmylib

To exclude the default directories from the search and limit the search to
specific directories and specific libraries, specify the -1 option first with no
arguments. Then, specify it again with the directory to search, followed
by the -1 option with the name of the library to search for. For example,
to limit the search path to /usr/person for use with the private library
libmylib. so, enter the following command:

o

% cc -o hello hello.c -L -L/usr/person -lmylib

Note that because the cc command always implicitly links in the C library,
the preceding example requires that a copy of 1ibc.so or 1ibec.a must
be in the /usr/person directory.

4.4 Turning Off Shared Libraries

In application linking, the default behavior is to use shared libraries.
To link an application that does not use shared libraries, you must use
the -non_shared option to the cc or 1d commands when you link that
application.

For example:

o

% cc -non_shared -o hello hello.c

Although shared libraries are the default for most programming applications,
some applications cannot use shared libraries:

= Applications that need to run in single-user mode cannot be linked with
shared libraries because the /usr/shlib directory must be mounted to
provide access to shared libraries.

Shared Libraries 4-7

= Applications whose sole purpose is single-user benchmarks should not be
linked with shared libraries.

4.5 Creating Shared Libraries

You create shared libraries by using the 14 command with the -shared
option. You can create shared libraries from object files or from existing
archive libraries.

4.5.1 Creating Shared Libraries from Object Files

To create the shared library 1ibbig. so from the object files bigmodl.o
and bigmod2 . o, enter the following command:

)

% 1ld -shared -no _archive -o libbig.so bigmodl.o bigmod2.o -lc

The -no_archive option tells the linker to resolve symbols using only
shared libraries. The -1c option tells the linker to look in the system C
shared library for unresolved symbols.

To make a shared library available on a system level by copying it into

the /usr/shlib directory, you must have root privileges. System shared
libraries should be located in the /usr/shlib directory or in one of the
default directories so that the run-time loader (/sbin/loader) can locate
them without requiring every user to set the LD LIBRARY PATH variable to
directories other than those in the default path.

4.5.2 Creating Shared Libraries from Archive Libraries

You can also create a shared library from an existing archive library by using
the 1d command. The following example shows how to convert the static
library old.a into the shared library 1ibold. so:

o

% 1d -shared -no_archive -o libold.so -all old.a -none -lc

In this example, the -al1l option tells the linker to link all the objects from

the archive library o1d.a. The -none option tells the linker to turn off the

-all option. Note that the -no_archive option applies to the resolution of
the -1c option but not to o1d. a (because old. a is explicitly mentioned).

4.6 Working with Private Shared Libraries

In addition to system shared libraries, any user can create and use private
shared libraries. For example, you have three applications that share
some common code. These applications are named user, db, and admin.
You decide to build a common shared library, 1ibcommon. so, containing

4-8 Shared Libraries

all the symbols defined in the shared files io_util.c, defines.c, and
network.c. To do this, follow these steps:

1. Compile each C file that will be part of the library:

o\

cc -c io util.c
cc -c defines.c
cc -c network.c

o°

o°

2. Create the shared library 1ibcommon . so by using the 14 command:

o

% 1d -shared -no_archive \
-0 libcommon.so io_util.o defines.o network.o -lc

3. Compile each C file that will be part of the application:

o

CcC -C user.c
cc -o user user.o -L. -lcommon

o

Note that the second command in this step tells the linker to look in the
current directory and use the library 1ibcommon. so. Compile db.c
and admin. c in the same manner:

o°

cc -c db.c
cc -o db db.o -L. -lcommon

o°

cc -c admin.c
cc -o admin admin.o -L. -lcommon

o\

o

4. Copy libcommon. so into a directory pointed to by LD LIBRARY PATH,
if it is not already in that directory.

5. Run each compiled program (user, db, and admin).

4.7 Using Quickstart

One advantage of using shared libraries is the ability to change a library
after all executable images have been linked and to fix bugs in the library.
This ability is very useful during the development phase of an application.

During the production cycle, however, the shared libraries and applications
that you develop are often fixed and will not change until the next release.
If this is the case, you can take advantage of quickstart, a method of using
predetermined addresses for all symbols in your program and libraries.

No special link options are required to prepare an application for
guickstarting; however, a certain set of conditions must be satisfied. If an
object cannot be quickstarted, it still runs but startup time is slower.

When the linker creates a shared object (a shared library or a main
executable program that uses shared libraries), it assigns addresses to the
text and data portions of the object. These addresses are what might be

Shared Libraries 4-9

called quickstarted addresses. The linker performs all dynamic relocations
in advance, as if the object will be loaded at its quickstarted address.

Any object depended upon is assumed to be at its quickstarted address.
References to that object from the original object have the address of the
depended-upon object set accordingly.

To use quickstart, an object must meet the following conditions:

= The object’s actual run-time memory location must match the quickstart
location. The run-time loader tries to use the quickstart location.
However, if another library is already occupying that spot, the object
will not be able to use it.

= All depended-upon objects must be quickstarted.

= All depended-upon objects must be unchanged since they were linked. If
objects have changed, addresses of functions within the library might
have moved or new symbols might have been introduced that can affect
the loading. (Note that you might still be able to quickstart objects that
have been modified since linking by running the £ixso utility on the
changed objects. See £ixso(1) for more information.)

The operating system detects these conditions by using checksums and
timestamps.

When you build libraries, they are given a quickstart address. Unless
each library used by an application chooses a unique quickstart address,
the quickstart constraints cannot be satisfied. Rather than worry about
addresses on an application basis, give a unique quickstart address to each
shared library that you build to ensure that all of your objects can be loaded
at their quickstart addresses.

The linker maintains the so_locations database to register each
quickstart address when you build a library. The linker avoids addresses
already in the file when choosing a quickstart address for a new library.

By default, 1d runs as though the -update registry ./so locations
option has been selected, so the so_locations file in the directory of the
build is updated (or created) as necessary.

To ensure that your libraries do not collide with shared libraries on your
system, enter the following commands:

o

cd <directory of build>
cp /usr/shlib/so locations .
chmod +w so_locations

o

o\

You can now build your libraries. If your library builds occur in multiple
directories, use the -update registry option to the 1d command to
explicitly specify the location of a common so locations file. For example:

4-10 Shared Libraries

)

% 1d -shared -update registry /common/directory/so locations ...

If you install your shared libraries globally for all users of your system,
update the systemwide so locations file. Enter the following commands
as root, with shared library.so being the name of your actual shared
library:

cp shared library.so /usr/shlib
mv /usr/shlib/so locations /usr/shlib/so locations.old
cp so_locations /usr/shlib

If several people are building shared libraries, the common so locations
file must be administered as any shared database would be. Each shared
library used by any given process must be given a unique quickstart address
in the file. The range of default starting addresses that the linker assigns
to main executable files does not conflict with the quickstarted addresses it
creates for shared objects. Because only one main executable file is loaded
into a process, an address conflict never occurs between a main file and

its shared objects.

If you are building only against existing shared libraries (and not building
your own libraries), you do not need to do anything special. As long as the
libraries meet the previously described conditions, your program will be
quickstarted unless the libraries themselves are not quickstarted. Most
shared libraries shipped with the operating system are quickstarted.

If you are building shared libraries, you must first copy the so locations
file as previously described. Next, you must build all shared libraries in
bottom-up dependency order, using the so_locations file. Specify all
depended-upon libraries on the link line. After all the libraries are built,
you can then build your applications.

4.7.1 Verifying That an Object Is Quickstarting

To test whether an application’s executable program is quickstarting, set
the RLD ARGS environment variable to —quickstart only and run the
program. For example:

o

setenv RLD ARGS -quickstart only

% foo

(non-quickstart output)

21887:foo: /sbin/loader: Fatal Error: NON-QUICKSTART detected \
-- QUICKSTART must be enforced

If the program runs successfully, it is quickstarting. If a load error message
is produced, the program is not quickstarting.

Shared Libraries 4-11

4.7.2 Manually Tracking Down Quickstart Problems

To determine why an executable program is not quickstarting, you can use
the fixso utility, described in Section 4.7.3, or you can manually test for the
conditions described in the following list of requirements. Using fixso is
easier, but it is helpful to understand the process involved.

1. The executable program must be able to be quickstarted.

Test the quickstart flag in the dynamic header. The value of the
quickstart flag is 0x00000001. For example:

o

% odump -D foo | grep FLAGS
(non-quickstart output)

FLAGS: 0x00000000
(quickstart output)

FLAGS: 0x00000001

If the quickstart flag is not set, one or more of the following conditions
exists:

— The executable program was linked with unresolved symbols.
Make sure that the 1d options -warning unresolved and
-expect unresolved are not used when the executable program
is linked. Fix any unresolved symbol errors that occur when the
executable program is linked.

— The executable program is not linked directly against all
of the libraries that it uses at run time. Add the option
-transitive link to the 1d options used when the executable
program is built.

2. The executable program’s dependencies must be able to be quickstarted.
Get a list of an executable program’s dependencies. For example:

)

% odump -Dl1 foo
(quickstart output)

***[LLIBRARY LIST SECTION**x*

Name Time-Stamp CheckSum Flags Version
foo:

1libX11.so0 Sep 17 00:51:19 1993 0x78c81c78 NONE

libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.l

libdnet_stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf.1l

Test the quickstart flag in the dynamic header of each of the
dependencies:

o

cd /usr/shlib
odump -D 1libXll.so libc.so libdnet stub.so | grep FLAGS

(quickstart output)

o

4-12 Shared Libraries

FLAGS: 0x00000001
FLAGS: 0x00000001
FLAGS: 0x00000001

If any of these dependencies cannot be quickstarted, the same measures
suggested in step 1 can be applied here, provided that the shared library
can be rebuilt by the user.

The timestamp and checksum information must match for all
dependencies.

The dependencies list in step 2 shows the expected values of the
timestamp and checksum fields for each of foo’s dependencies. Match
these values against the current values for each of the libraries:

o

cd /usr/shlib
odump -D 1libXll.so libc.so libdnet stub.so | \
grep TIME STAMP

o

(quickstart output)

TIME STAMP: (0x2c994247) Fri Sep 17 00:51:19 1993
TIME STAMP: (0x2c9921le) Thu Sep 16 22:29:50 1993
TIME STAMP: (0x2c992773) Thu Sep 16 22:56:51 1993

% odump -D libXll.so libc.so libdnet stub.so | grep CHECKSUM
(quickstart output)

ICHECKSUM: 0x78c81c78
ICHECKSUM: 0xba22309c
ICHECKSUM: 0x1d568a0c

If any of the tests in these examples shows a timestamp or checksum
mismatch, relinking the program should fix the problem.

You can use the version field to verify that you have identified the
correct libraries to be loaded at run time. To test the dependency
versions, use the odump command as shown in the following example:

o

odump -D 1libXll.so | grep IVERSION

odump -D libc.so | grep IVERSION
IVERSION: osf.1l

odump -D libdnet stub.so | grep IVERSION
IVERSION: osf.1l

o

o°

The lack of an IVERSION entry is equivalent to a blank entry in the
dependency information. It is also equivalent to the special version
null.

If any version mismatches are identified, you can normally find the
correct matching version of the shared library by appending the version
identifier from the dependency list or null to the path /usr/shlib.

Each of the executable program’s dependencies must also contain
dependency lists with matching timestamp and checksum information.

Shared Libraries 4-13

Repeat step 3 for each of the shared libraries in the executable
program’s list of dependencies:

% odump -D1 1libXll.so

(quickstart output)

[LIBRARY LIST SECTION

Name Time-Stamp CheckSum Flags Version
libX1l1l.so:

libdnet_stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf.1l

libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.l

% odump -D libdnet stub.so libc.so | grep TIME STAMP
TIME STAMP: (0x2c992773) Thu Sep 16 22:56:51 1993
TIME STAMP: (0x2c9921le) Thu Sep 16 22:29:50 1993

% odump -D libdnet stub.so libc.so | grep CHECKSUM
ICHECKSUM: 0x1d568a0c
ICHECKSUM: 0xba22309c

If the timestamp or checksum information does not match, the shared
library must be rebuilt to correct the problem. Rebuilding a shared
library will change its timestamp and, sometimes, its checksum.
Rebuild dependencies in bottom-up order so that an executable program
or shared library is rebuilt after its dependencies have been rebuilt.

4.7.3 Tracking Down Quickstart Problems with the fixso Utility

The £ixso utility can identify and repair quickstart problems caused by
timestamp and checksum discrepancies. It can repair programs as well as
the shared libraries they depend on, but it might not be able to repair certain
programs, depending on the degree of symbolic changes required.

The £ixso utility cannot repair a program or shared library if any of the
following restrictions apply:

= The program or shared library depends on other shared libraries that
cannot be quickstarted. This restriction can be avoided by using fixso
to repair shared libraries in bottom-up order.

= New name conflicts are introduced after a program or shared library is
created. Name conflicts result when the same global symbol name is
exported by two or more shared library dependencies or by the program
and one of its shared library dependencies.

= The program’s shared library dependencies are not all loaded at their
quickstart locations. A shared library cannot be loaded at its quickstart
locations if other shared libraries are loaded at that location and are
already in use. This rule applies systemwide, not just to individual
processes. To avoid this restriction, use a common so_locations file for
registering unique addresses for shared libraries.

4-14 Shared Libraries

= The program or shared library depends on an incompatible version of
another shared library. This restriction can be avoided by instructing
fixso where to find a compatible version of the offending shared library.

The fixso utility can identify quickstart problems as shown in the following
example:
% fixso -n hello.so
fixso: Warning: found ’/usr/shlib/libc.so’ (0x2d93b353) which does
not match timestamp 0x2déae076 in liblist of hello.so, will fix

fixso: Warning: found ’/usr/shlib/libc.so’ (0xc777f£16) which does
not match checksum 0x70e62eeb in liblist of hello.so, will fix

The -n option suppresses the generation of an output file. Discrepancies
are reported, but £ixso does not attempt to repair the problems it finds.
The following example shows how you can use fixso to repair quickstart
problems:

% fixso -o ./fixed/main main

fixso: Warning: found ’/usr/shlib/libc.so’ (0x2d93b353) which does

not match timestamp 0x2d7149c9 in liblist of main, will fix
% chmod +x fixed/main

The -o option specifies an output file. If no output file is specified, fixso
uses a.out. Note that fixso does not create the output file with execute
permission. The chmod command allows the output file to be executed. This
change is necessary only for executable programs and can be bypassed when
using £ixso to repair shared libraries.

If a program or shared library does not require any modifications to repair
quickstart, £ixso indicates this as shown in the following example:

% fixso -n /bin/ls
no fixup needed for /bin/ls

4.8 Debugging Programs Linked with Shared Libraries

Debugging a program that uses shared libraries is essentially the same as
debugging a program that uses archive libraries.

The dbx debugger’s 1istobj command displays the names of the executable
programs and all of the shared libraries that are known to the debugger. See
Chapter 5 for more information about using dbx.

4.9 Loading a Shared Library at Run Time

In some situations, you might want to load a shared library from within
a program. This section includes two short C program examples and a
makefile to demonstrate how to load a shared library at run time.

The following example (pr . c) shows a C source file that prints out a simple
message:

Shared Libraries 4-15

printmsg()

{
}

The next example (used1l . c) defines symbols and demonstrates how to use
the dlopen function:

printf ("Hello world from printmsg!\n") ;

#include <stdio.h>
#include <dlfcn.h>

/* All errors from dl* routines are returned as NULL */
#define BAD (x) ((x) == NULL)

main (int argc, char *argv[])
{

void *handle;

void (*fp) ();

/* Using "./" prefix forces dlopen to look only in the current
* current directory for pr.so. Otherwise, if pr.so was not
* found in the current directory, dlopen would use rpath,
* LD_LIBRARY PATH and default directories for locating pr.so.
*/
handle = dlopen("./pr.so", RTLD LAZY);
if (!BAD(handle)) ({
fp = dlsym(handle, "printmsg");
if (!BAD(fp)) {
/*
* Here is where the function
* we just looked up is called.
*/
(*£p) () ;

else {
perror ("dlsym") ;
fprintf (stderr, "%$s\n", dlerror());
}
}

else {
perror ("dlopen") ;
fprintf (stderr, "%s\n", dlerror());

}

dlclose (handle) ;

}

The following example shows the makefile that makes pr.o, pr. so,
so locations, and usedl.o:

this is the makefile to test the examples
all: runit

runit: wusedl pr.so
. /usedl

usedl: wusedl.c
$(CC) -o usedl usedl.c

pr.so: pr.o

4-16 Shared Libraries

$(LD) -o pr.so -shared pr.o -lc

4.10 Protecting Shared Library Files

Because of the sharing mechanism used for shared libraries, normal file
system protections do not protect libraries against unauthorized reading.
For example, when a shared library is used in a program, the text part
of that library can be read by other processes even when the following
conditions exist:

= The library’'s permissions are set to 600.

= The other processes do not own the library or are not running with their
UID set to the owner of that library.

Only the text part of the library, not the data segment, is shared in this
manner.

To prevent unwanted sharing, link any shared libraries that need to be
protected by using the linker’'s -T and -D options to put the data section in
the same 8-MB segment as the text section. For example, enter a command
similar to the following:

% 1d -shared -o libfoo.so -T 30000000000 \
-D 30000400000 object files

In addition, segment sharing can occur with any file that uses the mmap
system call without the PROT WRITE flag as long as the mapped address
falls in the same memory segment as other files using mmap.

Any program using mmap to examine files that might be highly protected can
ensure that no segment sharing takes place by introducing a writable page
into the segment before or during the mmap. The easiest way to provide
protection is to use the mmap system call on the file with PROT WRITE
enabled in the protection, and use the mprotect system call to make the
mapped memory read-only. Alternatively, to disable all segmentation and to
avoid any unauthorized sharing, enter the following line in the configuration
file:

segmentation 0

4.11 Shared Library Versioning

One of the advantages of using shared libraries is that a program linked
with a shared library does not need to be rebuilt when changes are made to
that library. When a changed shared library is installed, applications should
work as well with the newer library as they did with the older one.

Shared Libraries 4-17

Note

Because of the need for address fixing, it can take longer to load
an existing application that uses an older version of a shared
library when a new version of that shared library is installed.
You can avoid this kind of problem by relinking the application
with the new library.

4.11.1 Binary Incompatible Modifications

Infrequently, a shared library might be changed in a way that makes it
incompatible with applications that were linked with it before the change.
This type of change is referred to as a binary incompatibility. A binary
incompatibility introduced in a new version of a shared library does not
necessarily cause applications that rely on the old version to break (that is,
violate the backward compatibility of the library). The system provides
shared library versioning to allow you to take steps to maintain a shared
library’s backward compatibility when introducing a binary incompatibility
in the library.

Among the types of incompatible changes that might occur in shared
libraries are the following:

< Removal of documented interfaces

For example, if the malloc () function in 1ibc. so was replaced with a
function called (. _malloc), programs that depend on the older function
would fail due to the missing malloc symbol.

< Modification of documented interfaces

For example, if a second argument to themalloc () functionin libc.so
was added, the new malloc () would probably fail when programs

that depend on the older function pass in only one argument, leaving
undefined values in the second argument.

= Modification of global data definitions

For example, if the type of the errno symbol in 1ibec. so was changed

from an int to a long, programs linked with the older library might read
and write 32-bit values to and from the newly expanded 64-bit data item.
This might yield invalid error codes and indeterminate program behavior.

This is by no means an exhaustive list of the types of changes that result

in binary incompatibilities. Shared library developers should exercise
common sense to determine whether any change is likely to cause failures in
applications linked with the library prior to the change.

4-18 Shared Libraries

4.11.2 Shared Library Versions

You can maintain the backward compatibility of a shared library affected
by incompatible changes by providing multiple versions of the library.

Each shared library is marked by a version identifier. You install the new
version of the library in the library’s default location, and the older, binary
compatible version of the library in a subdirectory whose name matches that
library’s version identifier.

For example, if an incompatible change was made to 1ibc. so, the new
library (/usr/shlib/libc.so) must be accompanied by an instance of the
library before the change (/usr/shlib/osf.1/1ibc.so0). In this example,
the older, binary compatible version of 1ibc. so is the osf. 1 version.
After the change is applied, the new 1ibc.so is built with a new version
identifier. Because a shared library’s version identifier is listed in the shared
library dependency record of a program that uses the library, the loader
can identify which version of a shared library is required by an application
(see Section 4.11.6).

In the example, a program built with the older 1ibc. so, before the binary
incompatible change, requires the osf .1 version of the library. Because
the version of /usr/shlib/libc.so does not match the one listed in the
program’s shared library dependency record, the loader will look for a
matching version in /usr/shlib/osf. 1.

Applications built after the incompatible change will use
/usr/shlib/libc.so and will depend on the new version of the library.
The loader will load these applications by using /usr/shlib/libc.so until
some further binary incompatibility is introduced.

Table 4-1 describes the linker options used to effect version control of shared
libraries.

Shared Libraries 4-19

Table 4-1: Linker Options That Control Shared Library Versioning
Option Description

-set_version version-string Establishes the version identifiers
associated with a shared library. The
string version-string is either a single
version identifier or a colon-separated list
of version identifiers. No restrictions are
placed on the names of version identifiers;
however, it is highly recommended that UNIX
directory naming conventions be followed.
If a shared library is built with this option,
any program built against it will record a
dependency on the specified version or, if
a list of version identifiers is specified, the
rightmost version specified in the list. If a
shared library is built with a list of version
identifiers, the run-time loader will allow
any program to run that has a shared library
dependency on any of the listed versions.
This option is only useful when building a
shared library (with -shared).

-exact_version Sets an option in the dynamic object produced
by the 1d command that causes the run-time
loader to ensure that the shared libraries
the object uses at run time match the shared
libraries used at link time. This option is used
when building a dynamic executable file (with
-call shared) or a shared library (with
-shared). Its use requires more rigorous
testing of shared library dependencies.

In addition to testing shared libraries

for matching versions, timestamps and
checksums must also match the timestamps
and checksums recorded in shared library
dependency records at link time.

You can use the odump command to examine a shared library’s versions
string, as set by using the -set version version-string option of the
1d command that created the library. For example:

o

% odump -D library-name

The value displayed for the IVERSION field is the version string specified

when the library was built. If a shared library is built without the

-set version option, no IVERSION field will be displayed. These shared

libraries are handled as if they had been built with the version identifier
null.

When 14 links a shared object, it records the version of each shared library
dependency. Only the rightmost version identifier in a colon-separated list is

4-20 Shared Libraries

4.11.3

recorded. To examine these dependencies for any shared executable file or
library, use the following command:

)

% odump -Dl1 shared-object-name

Major and Minor Versions Identifiers

Tru64 UNIX does not distinguish between major and minor versions of
shared libraries:

= Major versions are used to distinguish incompatible versions of shared
libraries.

= Minor versions typically distinguish different but compatible versions
of a library. Minor versions are often used to provide revision-specific
identification or to restrict the use of backward-compatible shared
libraries.

Tru64 UNIX shared libraries use a colon-separated list of version identifiers
to provide the versioning features normally attained through minor versions.

The following sequence of library revisions shows how revision-specific
identification can be added to the version list of a shared library without
affecting shared library compatibility:

Shared Library Version
libminor.so 3.0
libminor.so 3.1:3.0
libminor.so 3.2:3.1:3.0

Each new release of 1ibminor. so adds a new identifier at the beginning
of the version list. The new identifier distinguishes the latest revision
from its predecessors. Any executable files linked against any revision of
libminor.so will record 3.0 as the required version, so no distinction is
made between the compatible libraries. The additional version identifiers
are only informational.

The following sequence of library revisions shows how the use of
backward-compatible shared libraries can be restricted:

Shared Library Version
libminor2.so 3.0
libminor2.so 3.0:3.1
libminor2.so 3.0:3.1:3.2

Shared Libraries 4-21

411.4

4.11.5

In this example, programs linked with old versions of 1ibminor2. so can be
executed with newer versions of the library, but programs linked with newer
versions of 1ibminor2 . so cannot be executed with any of the previous
versions.

Full and Partial Versions of Shared Libraries

You can implement a binary compatible version of a shared library as a
complete, independent object or as a partial object that depends directly

or indirectly on a complete, independent object. A fully duplicated shared
library takes up more disk space than a partial one, but involves simpler
dependency processing and uses less swap space. The reduced disk space
requirements are the only advantage of a partial version of a shared library.

A partial shared library includes the minimum subset of modules required
to provide backward compatibility for applications linked prior to a binary
incompatible change in a newer version of the library. It is linked against

one or more earlier versions of the same library that provide the full set of
library modules. By this method, you can chain together multiple versions
of shared libraries so that any instance of the shared library will indirectly
provide the full complement of symbols normally exported by the library.

For example, version osf .1 of 1ibxyz. so includes modules x.o, y.o, and
z.o. It was built and installed using the following commands:

o

% 1d -shared -o libxyz.so -set _version osf.1l \
X.0 y.o z.0 -lc
% mv libxyz.so /usr/shlib/libxyz.so

If, at some future date, 1ibxyz. so requires an incompatible change that
affects only module z . o, a new version, called osf .2, and a partial version,
still called osf . 1, can be built as follows:

% 1d -shared -o libxyz.so -set version osf.2 x.o \
y.0 new z.o -lc

mv libxyz.so /usr/shlib/libxyz.so

1d -shared -o libxyz.so -set version osf.l z.o \
-lxyz -1lc

% mv libxyz.so /usr/shlib/osf.l/libxyz.so

o

o\

Linking with Multiple Versions of Shared Libraries

In general, applications are linked with the newest versions of shared
libraries. Occasionally, you might need to link an application or shared
library with an older, binary compatible version of a shared library. In such
a case, use the 1d command’s -L option to identify older versions of the
shared libraries used by the application.

4-22 Shared Libraries

The linker issues a warning when you link an application with more than
one version of the same shared library. In some cases, the multiple version
dependencies of an application or shared library will not be noticed until it is
loaded for execution.

By default, the 1d command tests for multiple version dependencies only
for those libraries it is instructed to link against. To identify all possible
multiple version dependencies, use the 1d command’s -transitive link
option to include indirect shared library dependencies in the link step.

When an application is linked with partial shared libraries, the linker must
carefully distinguish dependencies on multiple versions resulting from
partial shared library implementations. The linker reports multiple version
warnings when it cannot differentiate between acceptable and unacceptable
multiple version dependencies.

In some instances, multiple version dependencies might be reported at link
time for applications that do not use multiple versions of shared libraries
at run time. Consider the libraries and dependencies shown in Figure 4-2
and described in the following table.

Figure 4-2: Linking with Multiple Versions of Shared Libraries

a.out

libA.so libB.so

libcommon.so

ZK-0882U-Al

Shared Libraries 4-23

Library Version Dependency Dependent Version

1ibA.so vl libcommon. so vl
1ibB.so v2 libcommon. so v2
libcom- v1v2 - -
mon. so

In the preceding table, 1ibA.so was linked against a version of
libcommon. so that had a rightmost version identifier of v1. Unlike
1ibA.so, 1ibB. so was linked against a version of 1ibcommon. so that had
a rightmost version identifier of v2. Because the 1ibcommon. so shown in
the table includes both v1 and v2 in its version string, the dependencies

of both 1ibA.so and 1ibB. so are satisfied by the one instance of
libcommon. so.

When a.out is linked, only 1ibA.so and 1ibB. so are mentioned on the
link command line. However, the linker examines the dependencies of
libA.so and 1ibB. so, recognizes the possible multiple version dependency
on libcommon. so, and issues a warning. By linking a.out against
libcommon. so as well, you can avoid this false warning.

4.11.6 Version Checking at Load Time

The loader performs version matching between the list of versions supported
by a shared library and the versions recorded in shared library dependency
records. If a shared object is linked with the -exact match option on the
link command line, the loader also compares the timestamp and checksum
of a shared library against the timestamp and checksum values saved in
the dependency record.

After mapping in a shared library that fails the version-matching test,
the loader attempts to locate the correct version of the shared library by
continuing to search other directories in RPATH, LD LIBRARY PATH, or the
default search path.

If all of these directories are searched without finding a matching version,
the loader attempts to locate a matching version by appending the version
string recorded in the dependency to the directory path at which the first

nonmatching version of the library was located.

For example, a shared library 1ibfoo.so is loaded in directory
/usr/local/lib with version osf .2, but a dependency on this library
requires version osf . 1. The loader attempts to locate the correct version of
the library using a constructed path like the following:

/usr/local/lib/osf.1/1libfoo.so

4-24 Shared Libraries

4.11.7

If this constructed path fails to locate the correct library or if no version

of the library is located at any of the default or user-specified search
directories, the loader makes one last attempt to locate the library by
appending the required version string to the standard system shared library
directory (/usr/shlib). This last attempt will therefore use a constructed
path like the following:

/usr/shlib/osf.1/1ibfoo.so

If the loader fails to find a matching version of a shared library, it aborts the
load and reports a detailed error message indicating the dependency and
shared library version that could not be located.

You can disable version checking for programs that are not installed with
the setuid function by setting the loader environment variable as shown in
the following C shell example:

)

% setenv RLD ARGS -ignore_ all versions

You can also disable version checking for specific shared libraries as shown
in the following example:

o

% setenv RLD ARGS -ignore version libDXm.so

Multiple Version Checking at Load Time

Like the linker, the loader must distinguish between valid and invalid uses
of multiple versions of shared libraries:

= Valid uses of multiple versions occur when partial shared libraries that
depend on other versions of the same libraries are loaded. In some
cases, these partial shared libraries depend on different partial shared
libraries, and the result can be complicated dependency relationships
that the loader must interpret carefully to avoid reporting false errors.

< Invalid uses of multiple versions occur when two different shared
objects depend on different versions of another shared object. Partial
shared library chains are an exception to this rule. For version-checking
purposes, the first partial shared library in a chain defines a set of
dependencies that overide similar dependencies in other members of
the chain.

The following figures show shared object dependencies that will result in
multiple dependency errors. Version identifiers are shown in parentheses.

In Figure 4-3, an application uses two layered products that are built with
incompatible versions of the base system.

Shared Libraries 4-25

Figure 4-3: Invalid Multiple Version Dependencies Among Shared Objects:

Example 1
| appl_1 I

layrdl.so | layrd2.so I

libc.so(osf.1) | libc.so(osf.2) I

ZK-0884U-Al

inlN

In Figure 4-4, an application is linked with a layered product that was built
with an incompatible version of the base system.

4-26 Shared Libraries

Figure 4-4: Invalid Multiple Version Dependencies Among Shared Objects:

Example 2
| appl_2 I

| layrdl.so I | libc.so(osf.2) I
| libc.so(osf.1) I

In Figure 4-5, an application is linked with an incomplete set of
backward-compatible libraries that are implemented as partial shared
libraries.

ZK-0885U-Al

Shared Libraries 4-27

Figure 4-5: Invalid Multiple Version Dependencies Among Shared Objects:

Example 3
| appl_3 I
| libc_r.so(osf.2) I | libc.so(osf.1) I

/

| libc.so(osf.2) I

The following figures show valid uses of multiple versions of shared libraries.

ZK-0886U-Al

In Figure 4—6, an application uses a backward-compatibility library
implemented as a partial shared library.

4-28 Shared Libraries

Figure 4-6: Valid Uses of Multiple Versions of Shared Libraries: Example 1

appl_4

libc.so(osf.1)

libc.so(osf.2)

libc.so(osf.3)

inlinlint

ZK-0887U-Al

In Figure 4-7, an application uses two backward-compatible libraries, one of
which depends on the other.

Shared Libraries 4-29

Figure 4-7: Valid Uses of Multiple Versions of Shared Libraries: Example 2

appl_5

l l

libc_r.so(osf.1) > libc.so(osf.1)

|Iibc_r.so(osf.2) I >| libc.so(osf.2) I

ZK-0888U-Al

4.12 Symbol Binding

The loader can resolve symbols using either deferred or immediate binding.
Immediate binding requires that all symbols be resolved when an executable
program or shared library is loaded. Deferred (lazy) binding allows text
symbols to be resolved at run time. A lazy text symbol is resolved the first
time that a reference is made to it in a program.

By default, programs are loaded with deferred binding. Setting the
LD _BIND NOW environment variable to a non-null value selects immediate
binding for subsequent program invocations.

Immediate binding can be useful to identify unresolvable symbols. With
deferred binding in effect, unresolvable symbols might not be detected until
a particular code path is executed.

Immediate binding can also reduce symbol-resolution overhead. Run-time
symbol resolution is more expensive per symbol than load-time symbol
resolution.

4.13 Shared Library Restrictions

The use of shared libraries is subject to the following restrictions:
= Shared libraries should not have any undefined symbols.

Shared libraries should be explicitly linked with other shared libraries
that define the symbols they refer to.

4-30 Shared Libraries

In certain cases, such as a shared library that refers to symbols in an
executable file, it is difficult to avoid references to undefined symbols.
See Section 4.2.4 for a discussion on how to handle unresolved external
symbols in a shared library.

Certain files (such as assembler files, older object files, and C files) that
were optimized at level 03 might not work with shared libraries.

C modules compiled with the Tru64 UNIX C compiler at optimization
level 02 or less will work with shared libraries. Executable programs
linked with shared libraries can be compiled at optimization level 03
or less.

Programs that are installed using the setuid or setgid subroutines do
not use the settings of the various environment variables that govern
library searches (such as LD_LIBRARY PATH, RLD ARGS, RLD LIST,
and RLD ROOT); they use only system-installed libraries (that is, those
in /usr/shlib). This restriction prevents potential threats to the
security of these programs, and it is enforced by the run-time loader
(/sbin/loader).

Shared Libraries 4-31

5

Debugging Programs with dbx

The dbx debugger is a command-line program. It is a tool for debugging
programs at the source-code level and machine-code level, and can be used
with C, Fortran, Pascal, and assembly language. After invoking dbx, you
can enter dbx commands that control and trace execution, display variable
and expression values, and display and edit source files.

The ladebug debugger, an alternate debugger, provides both command-line
and graphical user interfaces (GUIs) and supports some languages that are
not supported by dbx. The 1adebug debugger has better features than
dbx for debugging multithreaded programs. For more information about
ladebug, see the Ladebug Debugger Manual or 1adebug(l).

This chapter provides information on the following topics:
= General debugging considerations (Section 5.1)

= How to run the dbx debugger (Section 5.2)

= What you can specify in dbx commands (Section 5.3)

= How to enter dbx commands using options provided by the dbx monitor
(Section 5.4)

= How to control dbx (Section 5.5)
< How to examine source code and machine code (Section 5.6)

< How to control the execution of the program you are debugging
(Section 5.7)

< How to set breakpoints (Section 5.8)

< How to examine the state of a program (Section 5.9)

< How to preserve multiple core files (Section 5.10)

< How to debug a running process (Section 5.11)

< How to debug multithreaded processes (Section 5.12)

= How to debug multiple asynchronous processes (Section 5.13)

= The sample C program (sam.c) that is referred to in examples
throughout this chapter (Section 5.14)

Complete details on dbx command-line options, dbx commands, variables,
and so on can be found in dbx(1).

Debugging Programs with dbx 5-1

You can also use Visual Threads (available on the Associated Products
Volume 1 CDROM) to analyze multithreaded applications for potential
logic and performance problems. You can use Visual Threads with POSIX
Threads Library applications and with Java applications.

Examples in this chapter refer to a sample program called sam. The C
language source program (sam. c) is listed in Example 5-1.

In addition to the conventions outlined in the preface of this manual, an
additional convention is used in the command descriptions in this chapter;
uppercase keywords are used to indicate variables for which specific rules
apply. These keywords are described in Table 5-1.

Table 5-1: Keywords Used in Command Syntax Descriptions

Keyword Value

ADDRESS Any expression specifying a machine address.
COMMAND_LIST One or more commands, each separated by semicolons.
DIR Directory name.

EXP Any expression including program variable names for the

command. Expressions can contain dbx variables, for
example, ($listwindow + 2). If you want to use the
variable names in, to, or at in an expression, you must
surround them with parentheses; otherwise, dbx assumes
that these words are debugger keywords.

FILE File name.

INT Integer value.

LINE Source-code line number.

NAME Name of a dbx command.

PROCEDURE Procedure name or an activation level on the stack.
REGEXP Regular expression string. See ed(1).

SIGNAL System signal. See signal(2).

STRING Any ASCII string.

VAR Valid program variable or dbx predefined variable (see

Table 5-9). For machine-level debugging, VAR can also
be an address. You must qualify program variables with
duplicate names as described in Section 5.3.2.

The following example shows the use of the uppercase words in commands:
(dbx) stop VAR in PROCEDURE if EXP

Enter stop, in, and if as shown. Enter the values for VAR, PROCEDURE,
and EXP as defined in Table 5-1.

5-2 Debugging Programs with dbx

Note

Information on debugging multiple asynchronous processes,
including extensions to the syntax of certain dbx commands
to provide control of the asynchronous session, is contained in
Section 5.13.

5.1 General Debugging Considerations

The following sections introduce the dbx debugger and some debugging
concepts. They also give suggestions about how to approach a debugging
session, including where to start, how to isolate errors, and how to avoid
common pitfalls. If you are an experienced programmer, you may not need to
read these sections.

5.1.1 Reasons for Using a Source-Level Debugger

The dbx debugger enables you to trace problems in a program object at
the source-code level or at the machine-code level. With dbx, you control

a program’s execution, monitoring program control flow, variables, and
memory locations. You can also use dbx to trace the logic and flow of control
to become familiar with a program written by someone else.

5.1.2 Explanation of Activation Levels

Activation levels define the currently active scopes (usually procedures) on
the stack. An activation stack is a list of calls that starts with the initial
program, usually main (). The most recently called procedure or block is
number 0. The next procedure called is number 1. The last activation level is
always the main procedure (the procedure that controls the whole program).
Activation levels can also consist of blocks that define local variables within
procedures. You see activation levels in stack traces (see the where and
tstack debugger commands), and when moving around the activation stack
(see the up, down, and func debugger commands). The following example
shows a stack trace produced by a where command:

> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]

in 8 o ®

The most recently called procedure is prnt. The activation level of prnt
is 0; this function is at the top of the stack.

The main program is main.

Activation level number. The angle bracket (>) indicates the activation
level that is currently under examination.

Debugging Programs with dbx 5-3

Procedure name.
Procedure arguments.
Source file name.

Current line number.

@ N @ @ &

Current program counter.

5.1.3 Isolating Program Execution Failures

Because the dbx debugger finds only run-time errors, you should fix compiler
errors before starting a debugging session. Run-time errors can cause a
program to fail during execution (resulting in the creation of a core dump file)
or to produce incorrect results. The approach for debugging a program that
fails during execution differs from the approach for debugging a program
that executes to completion but produces incorrect results. (See Section 5.1.4
for information on how to debug programs that produce incorrect results.)

If a program fails during execution, you can usually save time by using the
following approach to start a debugging session instead of blindly debugging
line by line:

1. Invoke the program under dbx, specifying any appropriate options and
the names of the executable file and the core dump file on the dbx
command line.

2. Getastack trace using the where command to locate the point of failure.

Note

If you have not stripped symbol table information from the
object file, you can get a stack trace even if the program was
not compiled with the —g debug option.

Set breakpoints to isolate the error using the stop or stopi commands.

Display the values of variables using the print command to see where
a variable might have been assigned an incorrect value.

If you still cannot find the error, other dbx commands described in this
chapter might be useful.

5-4 Debugging Programs with dbx

5.1.4 Diagnosing Incorrect Output Results

If a program executes to completion but produces incorrect values or output,
follow these steps:

1.

Set a breakpoint where you think the problem is happening — for
example, in the code that generates the value or output.

Run the program.
Get a stack trace using the where command.

Display the values for the variables that might be causing the problem
using the print command.

Repeat this procedure until the problem is found.

5.1.5 Avoiding Pitfalls

The debugger cannot solve all problems. For example, if your program
contains logic errors, the debugger can only help you find the problem, not
solve it. When information displayed by the debugger appears confusing or
incorrect, taking the following actions might correct the situation:

Separate lines of source code into logical units wherever possible (for
example, after if conditions). The debugger may not recognize a source
statement written with several others on the same line.

If executable code appears to be missing, it might have been contained in
an included file. The debugger treats an included file as a single line of
code. If you want to debug this code, remove it from the included file and
compile it as part of the program.

Make sure you recompile the source code after changing it. If you do
not do this, the source code displayed by the debugger will not match
the executable code. The debugger warns you if the source file is more
recent than the executable file.

If you stop the debugger by pressing Ctrl/Z and then resume the same
debugging session, the debugger continues with the same object module
specified at the start of the session. This means that if you stop the
debugger to fix a problem in the code, recompile, and resume the session,
the debugger will not reflect the change. You must start a new session.

Similarly, dbx will not reflect changes you have made if you edit and
recompile your program in one window on a workstation while running
the debugger in another window. You must stop and restart dbx each
time you want it to recognize changes you have made.

When entering a command to display an expression that has the same
name as a dbx keyword, you must enclose the expression within
parentheses. For example, to display the value of output (a keyword in

Debugging Programs with dbx 5-5

the playback and record commands, discussed in Section 5.9.4), you
must specify the following command:

(dbx) print (output)

= If the debugger does not display any variables or executable code, make
sure you compiled the program with the —g option.

5.2 Running dbx

Before invoking dbx, you need to compile the program for debugging.
You might also want to create a dbx initialization file that will execute
commands when the debugger is started.

5.2.1 Compiling a Program for Debugging

To prepare a program for debugging, specify the —g option at compilation
time. With this option set, the compiler inserts into the program symbol
table information that the debugger uses to locate variables. With the —g
option set, the compiler also sets its optimization level to —00. When you use
different levels of optimizing, for example —02, the optimizer does not alter
the flow of control within a program, but it might move operations around
so that the object code and source code do not correspond. These changed
sequences of code can create confusion when you use the debugger.

You can do limited debugging on code compiled without the —g option. For
example, the following commands work properly without recompiling for

debugging:

e stop in PROCEDURE
e stepi

e cont

e conti

e (ADDRESS) /<COUNT><MODE>

e tracei

Although you can do limited debugging, it is usually more advantageous to
recompile the program with the —g option. Note that the debugger does not
warn you if an object file was compiled without the —g option.

Complete symbol table information is available only for programs in which
all modules have been compiled with the —g option. Other programs will
have symbol table information only for symbols that are either referenced by
or defined in modules compiled with the —g option.

5-6 Debugging Programs with dbx

Note

Any routines in shared library applications in which breakpoints
are to be set must be compiled with the —g option. If the —g option
is not specified, the symbol table information that dbx needs

to set breakpoints is not generated and dbx will not be able to
stop the application.

5.2.2 Creating a dbx Initialization File

You can create a dbx initialization file that contains commands you normally
enter at the beginning of each dbx session. For example, the file could
contain the following commands:

set Spage = 5

set $lines = 20

set Sprompt = "DBX> "
alias du dump

The initialization file must have the name .dbxinit. Each time you invoke
the debugger, dbx executes the commands in .dbxinit. The debugger looks
first for .dbxinit in the current directory and then in your home directory

(the directory assigned to the SHOME environment variable).

5.2.3 Invoking and Terminating dbx

You invoke dbx from the shell command line by entering the dbx command
and any necessary parameters.

After invocation, dbx sets the current function to the first procedure of the
program.

The dbx command has the following syntax:
dbx [options] [objfile [corefile]]

options Several of the most important options supported by
the dbx command line are shown in Table 5-2.

objfile The name of the executable file of the program that
you want to debug. If objfile is not specified, dbx
uses a.out by default.

corefile Name of a core dump file. If you specify corefile,
dbx lists the point of program failure. The dump file
holds an image of memory at the time the program
failed. Use dbx commands to get a stack trace and
look at the core file code. The debugger displays

Debugging Programs with dbx 5-7

information from the core file, not from memory as it
usually does. See also Section 5.10.

The maximum number of arguments accepted by dbx is 1000; however,
system limits on your machine might reduce this number.

Table 5-2: dbx Command Options
Option Function

-cfilename Selects an initialization command file other
than your .dbxinit file.

-Idirname Tells dbx to look in the specified directory for
source files. To specify multiple directories, use a
separate —I for each directory. Unless you specify
this option when you invoke dbx, the debugger looks
for source files in the current directory and in the
object file's directory. You can change directories
with the use command (see Section 5.6.1).

-1i Invokes dbx in interactive mode. With this option
set, dbx does not treat source lines beginning with
number signs (#) as comments.

-k Maps memory addresses. This option is useful
for kernel debugging. (For information on kernel
debugging, see the Kernel Debugging manual.)

—-module path Specifies the directory path where dbx should search
for shared libraries (or loadable kernel modules). This
option is useful if, for example, you are debugging a
core dump (or a kernel crash dump) and the version of
a shared library (or module) that was running when
the dump occurred has been moved to a different
location. (For information on kernel debugging,
see the Kernel Debugging manual.)

—-module verbose Causes dbx to print the path of shared libraries (or
loadable kernel modules, if you are debugging a
kernel) as they are being loaded. By default, dbx
does not print the path. (For information on kernel
debugging, see the Kernel Debugging manual.)

-pid process-id Attaches dbx to a currently running process.

-r Immediately executes the object file that you
specify on the command line. If program execution
terminates with an error, dbx displays the message
that describes the error. You can then either invoke
the debugger or allow the program to continue
exiting. The dbx debugger reads from /dev/tty
when you specify the —r option and standard
input is not a terminal. If the program executes
successfully, dbx prompts you for input.

5-8 Debugging Programs with dbx

The following example invokes dbx with no options. Because an object file
name is not specified, dbx prompts for one. In this case, the user responds
with sam. The default debugger prompt is (dbx).

% dbx

enter object file name (default is ‘a.out’): sam
dbx version 3.12

Type 'help’ for help.

main: 23 1if (argc < 2) {
(dbx)

Use the quit or g command to end a debugging session. The quit command
accepts no arguments.

5.3 Using dbx Commands

You can enter up to 10,240 characters on an input line. Long lines can be
continued with a backslash (\). If a line exceeds 10,240 characters, dbx
displays an error message. The maximum string length is also 10,240.

The following sections describe scoping and the use of qualified variable
names, dbx expressions and precedence, and dbx data types and constants.

5.3.1 Qualifying Variable Names

Variables in dbx are qualified by file, procedure, block, or structure. When
using commands like print to display a variable’s value, dbx indicates
the scope of the variable when the scope could be ambiguous (for example,
you have a variable by the same name in two or more procedures). If the
scope is wrong, you can specify the full scope of the variable by separating
scopes with periods. For example:

Debugging Programs with dbx 5-9

sam.main.i

Current file
Procedure name

Variable name

5.3.2 dbx Expressions and Their Precedence

The dbx debugger recognizes expression operators from C; these operators
can also be used for debugging any other supported language. (Note that
dbx uses brackets ([1) for array subscripts even in Fortran, whose
natural subscript delimiters are parentheses.) In addition to the standard C
operators, dbx uses the number sign (#) as shown in Table 5-3.

Table 5-3: The dbx Number-Sign Expression Operator

Syntax Description

("FILE" #EXP) Uses the line number specified by #EXP in the
file named by FILE.

(PROCEDURE #EXP) Uses the relative line number specified by #EXP in
the procedure named by PROCEDURE.

(#EXP) Returns the address for the line specified by (#EXP).

Operators follow the C language precedence. Table 5-4 shows the language
operators recognized by dbx in order of precedence from top to bottom and
from left to right, with the dbx-specific number-sign operator included
among the unary operators to show its place in the precedence hierarchy.

Table 5-4: Expression Operator Precedence

Unary: &, +, —, * (pointer), #, sizeof ()&, ~, /, (type), (type *)

Binary: <<, >3, " 1 ==, 1=, ks, 55, <, 5, & &, |, |]+ o 5 /0 %, 11, >

2 The sizeof operator specifies the number of bytes retrieved to get an element, not (number-of-bits
+7) /8.
For backward compatibility, dbx also accepts two slashes (//) as a division operator.

5.3.3 dbx Data Types and Constants

Table 5-5 lists the built-in data types that dbx commands can use.

5-10 Debugging Programs with dbx

Table 5-5: Built-in Data Types

Data Type Description Data Type Description
Saddress Pointer Sreal Double-precision real
$boolean Boolean $short 16-bit integer

$char Character $signed Signed integer
$double Double-precision real Suchar Unsigned character
$float Single-precision real Sunsigned Unsigned integer
$integer Signed integer $void Empty

You can use the built-in data types for type coercion — for example, to
display the value of a variable in a type other than the type specified in the
variable’s declaration. The dbx debugger understands C language data
types, so that you can refer to data types without the dollar sign ($). The
types of constants that are acceptable as input to dbx are shown in Table 5-6.
Constants are displayed by default as decimal values in dbx output.

Table 5-6: Input Constants

Constant Description
false 0

true Nonzero
nil 0

Oxnumber Hexadecimal
Otnumber Decimal
Onumber Octal
number Decimal
number. [number] [e|E] [+|-]EXP Float
Notes:

= Overflow on nonfloat uses the rightmost digits. Overflow on float uses
the leftmost digits of the mantissa and the highest or lowest exponent
possible.

= The $octin variable changes the default input expected to octal. The
$hexin variable changes the default input expected to hexadecimal
(see Section 5.5.2).

= The $octints variable changes the default output to octal. The
Shexints variable changes the default output to hexadecimal (see
Section 5.5.2).

Debugging Programs with dbx 5-11

5.4 Working with the dbx Monitor

The dbx debugger provides a command history, command-line editing, and
symbol name completion. The dbx debugger also allows multiple commands
on an input line. These features can reduce the amount of input required or
allow you to repeat previously executed commands.

5.4.1 Repeating dbx Commands

The dbx debugger keeps a command history that allows you to repeat
debugger commands without retyping them. You can display these
commands by using the history command. The $1ines variable controls
the number of history lines saved. The default is 20 commands. You can use
the set command to modify the $1ines variable (see Section 5.5.1).

To repeat a command, use the Return key or one of the exclamation point
(') commands.

The history command has the following forms:
history Displays the commands in the history list.
Return key Repeats the last command that you entered. You can

disable this feature by setting the $repeatmode
variable to O (see Section 5.5.1).

Istring Repeats the most recent command that starts with
the specified string.

| integer Repeats the command associated with the specified
integer.
|—integer Repeats the command that occurred the specified

number of commands (integer) before the most
recent command.

The following example displays the history list and then repeats execution
of the twelfth command in the list:

(dbx) history
10 print x
11 print y
12 print =z

(dbx) 112

(112 = print z)
123

(dbx)

5-12 Debugging Programs with dbx

5.4.2 Editing the dbx Command Line

The dbx debugger provides support for command-line editing. You can edit a
command line to correct mistakes without reentering the entire command.
To enable command-line editing, set the EDITOR, EDITMODE, Or LINEEDIT
environment variable before you invoke dbx. For example, to set LINEEDIT
from the C shell, enter the following command:

% setenv LINEEDIT

From the Bourne or Korn shells, enter this command:

S export LINEEDIT

The debugger offers the following modes of command-line editing:

= If the environment variable LINEEDIT is not set and either of the
environment variables EDITMODE or EDITOR contains a path ending in
vi, the debugger uses a command-line editing mode that resembles the
Korn shell’'s vi mode, in which the following editing keys are recognized:

A

$+ - 0ABCDEFIRSWX
abcdefhijklrswzx-~
Ctrl/D
Ctrl/H
Ctrl/J
Ctrl/L
Ctrl/M
Ctrl/v

See ksh(1) for more information.

= If the environment variable LINEEDIT is set to any value, even the null
string, or if LINEEDIT is not set and either of the environment variables
EDITMODE or EDITOR contains a path ending in emacs, the debugger
uses a command-line editing mode that resembles the Korn shell’'s emacs
mode. This mode behaves slightly differently depending on whether it is
enabled by LINEEDIT or by EDITOR or EDITMODE.

Table 5-7 lists the emacs-mode command-line editing commands.

Table 5—7: Command-Line Editing Commands in emacs Mode

Command Function

Ctrl/A Moves the cursor to the beginning of the command line.
Ctrl/B Moves the cursor back one character.

Ctrl/C Clears the line.

Ctrl/D Deletes the character at the cursor.

Ctrl/E Moves the cursor to the end of the line.

Ctrl/F Moves the cursor ahead one character.

Debugging Programs with dbx 5-13

Table 5-7: Command-Line Editing Commands in emacs Mode (cont.)

Command Function

Ctrl/H Deletes the character immediately preceding the cursor.

Ctrl/J Executes the line.

Ctrl/K (When enabled by EDITOR or EDITMODE) Deletes from the cursor
to the end of the line. If preceded by a numerical parameter
whose value is less than the current cursor position, deletes from
the given position up to the cursor. If preceded by a numerical
parameter whose value is greater than the current cursor position,
deletes from the cursor up to the given position.

Ctrl/K char (When enabled by LINEEDIT) Deletes characters until the
cursor rests on the next occurrence of char.

Ctrl/L Redisplays the current line.

Ctrl/M Executes the line.

Ctrl/N Moves to the next line in the history list.

Ctrl/P Moves to the previous line in the history list.

Ctrl/R char Searches back in the current line for the specified character.

Ctrl/T Interchanges the two characters immediately preceding the cursor.

Ctrl/U Repeats the next character four times.

Ctrl/w Deletes the entire line.

CtrllY Inserts immediately before the cursor any text cut with Ctrl/K.

Ctrl/z Tries to complete a file or symbol name.

Escape Tries to complete a file or symbol name.

Down Arrow
Up Arrow
Left Arrow
Right Arrow

Moves to the next line in the history list.
Moves to the previous line in the history list.
Moves the cursor back one character.

Moves the cursor ahead one character.

5.4.3 Entering Multiple Commands

You can enter multiple commands on the command line by using a semicolon
(;) as a separator. This feature is useful when you are using the when
command (see Section 5.8.4).

The following example has two commands on one command line; the first
command stops the program and the second command reruns it:

(dbx)

stop at 40; rerun

[2] stop at "sam.c":40

5-14 Debugging Programs with dbx

[2] stopped at [main:40 ,0x120000b40] i=strlen(linel.string) ;
(dbx)

5.4.4 Completing Symbol Names

The dbx debugger provides symbol name completion. When you enter a
partial symbol name and press Ctrl/Z, dbx attempts to complete the name.
If a unique completion is found, dbx redisplays the input with the unique
completion added; otherwise, all possible completions are shown, and you
can choose one.

To enable symbol name completion, you must enable command-line editing
as described in Section 5.4.2. The following example displays all names
beginning with the letter i:

(dbx) i

ioctl.ioctl .ioctl isatty.isatty .isatty i int
(dbx) i

The display might include data types and library symbols.

After listing all names beginning with the partial name, dbx prompts
again with the previously specified string, giving you an opportunity to
specify additional characters and repeat the search.

The following example shows symbol name completion. In this case, the
entry supplied is unambiguous:
(dbx) print file

(dbx) print file header ptr
Oxl24ac
(dbx)

5.5 Controlling dbx

The dbx debugger provides commands for setting and removing dbx
variables, creating and removing aliases, invoking a subshell, checking and
deleting items from the status list, displaying a list of object files associated
with an application, and recording and playing back input.

5.5.1 Setting and Removing Variables

The set command defines a dbx variable, sets an existing dbx variable to

a different value, or displays a list of existing dbx predefined variables.
The unset command removes a dbx variable. Use the print command to
display the values of program and debugger variables. The dbx predefined
variables are listed in Table 5-8. You cannot define a debugger variable with
the same name as a program variable.

The set and unset commands have the following forms:

Debugging Programs with dbx 5-15

set Displays a list of dbx predefined variables.

set VAR = EXP Assigns a new value to a variable or defines a new
variable.
unset VAR Unsets the value of a dbx variable.

The following example shows the use of the set and unset commands:

(dbx) set
$listwindow 10
$datacache 1
Smain "main"
Spagewindow 22
test 5
Spage 1
Smaxstrlen 128
Scursrcline 24

more (n if no)? n
(dbx) set test = 12

(dbx) set
$listwindow 10
$datacache 1
Smain "main"
Spagewindow 22
test 12
Spage 1
Smaxstrlen 128
Scursrcline 24
more (n if no)? n
(dbx) unset test
(dbx) set
$listwindow 10
$datacache 1
Smain "main"
Spagewindow 22
Spage 1
Smaxstrlen 128
Scursrcline 24
more (n if no)? n
(dbx)

Display a list of dbx predefined variables.
Assign a new value to a variable.

Remove a variable.

5-16 Debugging Programs with dbx

5.5.2 Predefined dbx Variables

The predefined dbx variables are shown in Table 5-8. Each variable is
labeled I for integer, B for Boolean, or S for string. Variables that you can
examine but cannot modify are indicated by an R.

Table 5-8: Predefined dbx Variables
Type Name Default Description

S Saddrfmt "ox%1x" Specifies the format for
addresses. Can be set to
anything you can format
with a C language printf
statement.

B Sassignverify 1 Specifies whether new
values are displayed
when assigning a value
to a variable.

B Sasynch_interface 0 Controls whether dbx is,
or can be, configured
to control multiple
asynchronous processes.
Incremented by 1 when
a process is attached;
decremented by 1 when
a process terminates or
is detached. Can also be
set by the user. If O or
negative, asynchronous
debugging is disabled.

B Sbreak during step 0 Controls whether
breakpoints are
checked while
processing step/stepi,
next/nexti, call,
return, and so on.

B Scasesense 0 Specifies whether source
searching and variables
are case sensitive. A
nonzero value means case
sensitive; a 0 means not
case sensitive.

I R Scurevent 0 Shows the last event
number as reported by the
status command.

I R Scurline 0 Shows the current line in
the source code.

Debugging Programs with dbx 5-17

Table 5-8: Predefined dbx Variables (cont.)

Type

Name

Default

Description

I R

SR

SR

5-18 Debugging Programs with dbx

Scurpc

Scursrcline

$datacache

Sdefaultin

Sdefaultout

Sdispix

Shexchars

Shexin

Shexints

Shexstrings

Shistoryevent

Null string

Null string

Not defined

Not defined

Not defined

Not defined

None

Shows the current address.
Used with the wi and
1i aliases.

Shows the last line
listed plus 1.

Caches information from
the data space so that dbx
only has to check the data
space once. If you are
debugging the operating
system, set this variable
to O; otherwise, set it to

a nonzero value.

Shows the name of the
file that dbx uses to store
information when using the
record input command.

Shows the name of the
file that dbx uses to store
information when using the
record output command.

When set to 1, specifies
the display of only

real instructions when
debugging in pixie mode.

A nonzero value indicates
that character values are
shown in hexadecimal.

A nonzero value indicates
that input constants are
hexadecimal.

A nonzero value indicates
that output constants are
shown in hexadecimal; a
nonzero value overrides
octal.

A nonzero value indicates
that strings are displayed
in hexadecimal; otherwise,
strings are shown as
characters.

Shows the current history
number.

Table 5-8: Predefined dbx Variables (cont.)

Type

Name

Default

Description

$lines

$listwindow

Smain

Smaxstrlen

$module path

Smodule verbose

20

$Spagewindow/2

"main"

128

Null string

Specifies the size of the
dbx history list.

Specifies the number
of lines shown by the
list command.

Specifies the name of the
procedure where execution
begins. The debugger
starts the program at
main () unless otherwise
specified.

Specifies the maximum
number of characters that
dbx prints for pointers

to strings.

Specifies the directory path
where dbx should search
for shared libraries (or
loadable kernel modules).
This variable is useful

if, for example, you are
debugging a core dump

(or a kernel crash dump)
and the version of a shared
library (or module) that was
running when the dump
occurred has been moved
to a different location.

For information on kernel
debugging, see the Kernel
Debugging manual.

When set to a nonzero
value, causes dbx to

print the location of shared
libraries (or loadable kernel
modules, if debugging a
kernel) as they are being
loaded. By default, or when
this variable is set to 0, dbx
does not print the location.
For information on kernel
debugging, see the Kernel
Debugging manual.

Debugging Programs with dbx 5-19

Table 5-8: Predefined dbx Variables (cont.)

Type Name Default

Description

B Soctin Not defined

B Soctints Not defined

B $page 1

| $Spagewindow Various

B Spimode 0

| Sprintdata 0

B Sprinttargets 1

5-20 Debugging Programs with dbx

Changes the default
input constants to octal
when set to a nonzero
value. Hexadecimal
overrides octal.

Changes the default
output constants to octal
when set to a nonzero
value. Hexadecimal
overrides octal.

Specifies whether to
page long information.
A nonzero value enables
paging; a 0 disables it.

Specifies the number

of lines displayed when
viewing information that
is longer than one screen.
This variable should be set
to the number of lines on
the terminal. A value of
0 indicates a minimum of
1 line. The default value
depends on the terminal
type; for a standard video
display, the default is 24.

Displays input when using
the playback input
command.

A nonzero value indicates
that the values of
registers are displayed
when instructions are
disassembled; otherwise,
register values are not
displayed.

If set to 1, specifies that
displayed disassembly
listings are to include the
labels of targets for jump
instructions. If set to O,
disables this label display.

Table 5-8: Predefined dbx Variables (cont.)

Type

Name

Default

Description

B

Sprintwhilestep

Sprintwide

Sprompt

Sreadtextfile

Sregstyle

Srepeatmode

0

n (de) "

For use with the step

[n] and stepi [n]
instructions. A nonzero
value specifies that all n
lines or instructions should
be displayed. A 0 value
specifies that only the last
line and/or instruction
should be displayed.

Specifies wide (useful
for structures or arrays)
or vertical format for
displaying variables. A
nonzero value indicates
wide format; O indicates
vertical format.

Sets the prompt for dbx.

When set to a value

of 1, dbx tries to read
instructions from the object
file instead of from the
process. This variable
should always be set to

0 when the process being
debugged copies in code
during the debugging
process. However,
performance is better when
Sreadtextfileissettol.

Specifies the type of
register names to be used.
A value of 1 specifies
hardware names. A 0
specifies software names
as defined by the file
regdefs.h

Specifies whether dbx
should repeat the last
command when the
Return key is pressed.

A nonzero value indicates
that the command is
repeated; otherwise, it

is not repeated.

Debugging Programs with dbx 5-21

Table 5-8: Predefined dbx Variables (cont.)

Type Name Default

Description

B Srimode 0

S $sigvec "sigaction"

S $Ssigtramp " sigtramp"

B $stopall_on_step 1

B $stop_in main N/A

B $stop_on_exec 1

5-22 Debugging Programs with dbx

Records input when using
the record output
command.

Tells dbx the name of the
code called by the system
to set signal handlers.

Tells dbx the name of
the code called by the
system to invoke user
signal handlers.

Specifies whether dbx
should stop every child
process that is forked (1)
or ignore many of the
forks generated by various
system and library calls
(0). If sstop_all forks
is not set, the value

of $stop_on_fork
determines dbx’s
behavior with forks.
$stop_all_ forks

traps forks in libraries
and system calls that
are usually ignored by
$stop_on_fork.

Not used. This variable
is displayed by the set
command, but it presently
has no effect on dbx
operation.

Specifies whether dbx
should detect calls to
execl () and execv (),
and stop the newly
activated images at the
first line of executable code.

Table 5-8: Predefined dbx Variables (cont.)

Type Name

Default

Description

B $stop_on_fork

S Stagfile

| Straploops

1

n tags n

Specifies whether dbx
should advance a new
image activated by a
fork () or vfork () call
to its main activation
point and then stop (1)
or continue until stopped
by a breakpoint or event
(0). The dbx program
tries to avoid stopping
on forks from system

or library calls unless
$stop_all forks is set.

Contains a file name
indicating the file in which
the tag command and
the tagvalue macro are
to search for tags.

Specifies the number of
consecutive calls to a
SIGTRAP handler that
will be made before

dbx assumes that the
program has fallen into a
trap-handling loop.

5.5.3 Defining and Removing Aliases

The alias command defines a new alias or displays a list of all current

aliases.

The alias command allows you to rename any debugger command. Enclose
commands containing spaces within double- or single-quotation marks. You

can also define a macro as part of an alias.

The dbx debugger has a group of predefined aliases. You can modify these
aliases or add new aliases. You can also include aliases in your .dbxinit
file for use in future debugging sessions. The unalias command removes an
alias from a command. You must specify the alias to remove. The alias is

removed only for the current debugging session.

The alias and unalias commands have the following forms:

alias

Displays a list of all aliases.

Debugging Programs with dbx 5-23

alias NAME1l[(ARG1, ...,ARGN)] "NAME2"

Defines a new alias. NAME1 is the new name. NAME2 is the command to
string to rename. ARG1, . ..,ARGN are the command arguments.

unalias NAME

Removes an alias from a command, where NAME is the alias name.

The following example shows the use of the alias and unalias commands:

dbx) alias
i stepi
i nexti

(dbx) alias
h history

si stepi

Si nexti

g goto

s step

More (n if no) ?n

(dbx) alias ok(x) "stop at x"
(dbx) ok (52)
[2] Stop at "sam.c":52
(dbx)

(dbx) unalias h
(

s

S

g goto

s step
More (n if no)? n
(dbx)

Display aliases.

Define an alias for setting a breakpoint.

Set a breakpoint at line 52.

Debugger acknowledges breakpoint set at line 52.

Remove the h alias. (Note that it disappears from the alias list.)

5.5.4 Monitoring Debugging Session Status

The status command checks which, if any, of the following commands are
currently set:

e stop or stopi commands for breakpoints

5-24 Debugging Programs with dbx

= trace or tracei commands for line-by-line variable tracing
= when command

e record input and record output commands for saving information
in a file

The status command accepts no arguments. For example:

(dbx) status

[2] trace 1 in main

[3] stop in prnt

[4] record output /tmp/dbxt0018898 (0 lines)
(dbx)

The numbers in brackets (for example, [2]) indicate status item numbers.

5.5.5 Deleting and Disabling Breakpoints

The delete command deletes breakpoints and stops the recording of input
and output. Deleting a breakpoint or stopping recording removes the
pertinent items from the status list produced by the status command.

The disable command disables breakpoints without deleting them. The
enable command reenables disabled events.

The delete command has the following forms:
delete EXP1[,...,EXPN]

Deletes the specified status items.

delete all
delete *

Deletes all status items.

The following example shows the use of the delete command:

(dbx) status
[2] record output /tmp/dbxt0018898 (0 lines)
[3] trace i in main
[4] print pline at "sam.c":
[5] stop in prnt
(dbx) delete 4
(dbx) status
[2] record output /tmp/dbxt0018898 (0 lines)
[3] trace i in main

[5] stop in prnt

(dbx)

The disable and enable commands have the following forms:

Debugging Programs with dbx 5-25

disable EVENT1[,EVENT2, ...]
enable EVENT1[,EVENT2, ...]

Disables or enables the specified events.
disable all
enable all

Disables or enables all events.

5.5.6 Displaying the Names of Loaded Object Files

The 1istobj command displays the names of all object files that have been
loaded by dbx, together with their sizes and the address at which they
were loaded. These objects include the main program and all of the shared
libraries that are used in an application. The 1istobj command accepts
no arguments. For example:

(dbx) listobj

sam addr: 0x120000000 size: 0x2000
/usr/shlib/libc.so addr: 0x3ff80080000 size: 0xbc000
(dbx)

5.5.7 Specifying the Location of Shared Libraries for Core Dumps

When a core dump occurs, the location of any shared libraries used by the
program is recorded in the core file, enabling dbx to find the libraries. If
the version of a shared library that was running when the dump occurred
is moved to a different location, dbx will not find it. You can specify the
directory path where dbx should look for shared libraries by using any one
of the following methods (see dbx(1) for complete details):

= On the dbx command line, specify the directory path with the
-module path option. For example:

% dbx a.out core -module path /usr/project4/lib dir

= Before invoking dbx, set the environment variable DBX MODULE_PATH.
For example:

% setenv DBX MODULE PATH /usr/project4/lib dir

= During the dbx session, if you want to load a shared library dynamically,
first set the Smodule path dbx variable and then use the addobj
command to load the library, as in the following example:

(dbx) set $module path /usr/project4/lib dir
(dbx) addobj libdef.so

To verify that modules are being loaded from the correct location, turn on
verbose module-loading using any one of the following methods:

= Specify the -module verbose dbx command option.

5-26 Debugging Programs with dbx

= Set the DBX MODULE_VERBOSE environment variable to any integer
value.

= Set the $Smodule verbose dbx variable to a nonzero value.

5.5.8 Invoking a Subshell from Within dbx

To invoke an interactive subshell at the dbx prompt, enter sh. To return to
dbx from a subshell, enter exit or press Ctrl/D. To invoke a subshell that
performs a single command and returns to dbx, enter sh and the desired
shell command. For example:

(dbx) sh
% date
Tue Aug 9 17:25:15 EDT 1998

% exitz

(dbx) sh date

Tue Aug 9 17:29:34 EDT 1998
(dbx)

5.6 Examining Source Programs

The following sections describe how to list and edit source code, change
directories, change source files, search for strings in source code, display
qgualified symbol names, and display type declarations.

5.6.1 Specifying the Locations of Source Files

If you did not specify the —I option when invoking dbx (see Section 5.2.3),
the debugger looks for source files in the current directory or the object file's
directory. The use command has two functions:

= Change the directory or list of directories in which the debugger looks

= List the directory or directories currently in use

The command recognizes absolute and relative pathnames (for example, . /),
but it does not recognize the C shell tilde (~).

The use command has the following forms:
use

Lists the current directories.

use DIR1 ... DIRN

Replaces the current list of directories with a new set.

For example:

Debugging Programs with dbx 5-27

(dbx) use

:
(dbx) use /usr/local/lib

(dbx) use

/usr/local/lib
(dbx)

Current directory
New directory

5.6.2 Moving Up or Down in the Activation Stack

As described in Section 5.1.2, the debugger maintains a stack of activation
levels. To find the name or activation number for a specific procedure, get a
stack trace with the where or tstack command. You can move through the
activation stack by using the up, down, and func commands.

5.6.2.1 Using the where and tstack Commands

The where command displays a stack trace showing the current activation
levels (active procedures) of the program being debugged. The tstack
command displays a stack trace for all threads. See Section 5.12 for more
information about debugging threads.

The where and tstack commands have the following form:

where [EXP]
tstack [EXP] Displays a stack trace.

If EXP is specified, dbx displays only the top EXP levels of the stack;
otherwise, the entire stack is displayed.

If a breakpoint is set in prnt in the sample program sam. ¢, the program
runs and stops in the procedure prnt (). If you enter where, the debugger’s
stack trace provides the information shown in the following example:

(dbx) stop in prnt
[1] stop in prnt

(dbx) runs
(dbx) where 1
> 0 prnt(pline = Ox11ffffcb8) ["sam.c":52, 0x120000c04]

ol 5 ©

(dbx)

Activation level

Procedure name

5-28 Debugging Programs with dbx

Current value of the argument pline
Source file name

Line number

@ [@ F] [«

Program counter

5.6.2.2 Using the up, down, and func Commands

The up and down commands move you directly up or down in the stack; they
are useful when tracking a call from one level to another.

The func command can move you up or down incrementally or to a specific
activation level or procedure. The func command changes the current line,
the current file, and the current procedure, which changes the scope of the
variables you can access. You can also use the func command to examine
source code when a program is not executing.

The up, down, and func commands have the following forms:
up [EXP] Moves up the specified number of activation levels in

the stack. The default is one level.

down [EXP] Moves down the specified number of activation levels
in the stack. The default is one level.

func Displays the current activation levels.

func PROCEDURE Moves to the activation level specified by
PROCEDURE.

func EXP Moves to the activation level specified by the
expression.

The following example shows the use of these commands:

(dbx) where

> 0 prnt(pline = Ox11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffel08) ["sam.c":45, 0x120000bac]
(dbx) up
main: 45 prnt(&linel);
(dbx) where

0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
> 1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) down
prnt: 52 fprintf (stdout, "%$3d. (%$3d) %s",
(dbx) where
> 0 prnt(pline = Ox11ffffcb8) ["sam.c":52, 0x120000c04]

Debugging Programs with dbx 5-29

1 main(argc = 2, argv = 0x11ffffel08) ["sam.c":45, 0x120000bac]
(dbx) func 1

main 47 prnt (&linel)
(dbx)

Move up one level.
Move down one level.
Move directly to main.
5.6.3 Changing the Current Source File

The £i1e command displays the current source file name or changes the
current source file.

Note

Before setting a breakpoint or trace on a line number, use

the func command to get the correct procedure. The file
command cannot be specific enough for the debugger to access the
information necessary to set a breakpoint.

The £i1le command has the following forms:

file Displays the name of the file currently in use.
file FILE Changes the current file to the specified file.

For example:

(dbx) file

sam.c
(dbx) file data.c
(dbx) file

data.c
(dbx)

Current file
New file

5.6.4 Listing Source Code

The 1ist command displays lines of source code. The dbx variable
$1istwindow defines the number of lines that dbx lists by default. The

list command uses the current file, procedure, and line, unless otherwise
specified.

The 1ist command has the following forms:

5-30 Debugging Programs with dbx

list Lists the number of lines specified by $1istwindow,
starting at the current line.

list EXP Lists the number of lines specified by EXP, starting
at the current line.

list EXP1,EXP2 List lines from EXP1 to EXP2.

list EXP:INT Starting at the specified line (ExP), lists the specified
number of lines (INT), overriding $1istwindow.

list PROCEDURE Lists the specified procedure for $1istwindow lines.

The following example specifies a two-line list starting at line 49:

(dbx) 1list 49:2
49 void prnt (pline)
50 LINETYPE *pline;

If you use the 1ist command’s predefined alias w, the output is as follows:

(dbx) w
45 prnt (&linel) ;
46}
a7 '}
48
49 void prnt (pline)
> 50 LINETYPE *pline;

51 {
* 52 fprintf (stdout, "%3d. (%$3d) %s",pline->linenumber,
53 pline->length, pline->string);

54 fflush (stdout) ;

The right angle bracket in column 1 (>) indicates the current line, and the
asterisk in column 2 (*) indicates the location of the program counter (PC)
at this activation level.

5.6.5 Searching for Text in Source Files

The slash (/) and question mark (?) commands search for regular
expressions in source code. The slash searches forward from the current line,
and the question mark searches backward. Both commands wrap around

at the end of the file if necessary, searching the entire file from the point of
invocation back to the same point. By default, dbx does not distinguish
uppercase letters from lowercase when searching. If you set the dbx variable
$casesense to any nonzero value, the search is case sensitive.

The / and ? commands have the following form:

Debugging Programs with dbx 5-31

/ [REGEXP] Searches forward for the specified regular expression
or, if no expression is specified, for the regular
expression associated with the last previous search
command.

? [REGEXP] Searches backward in the same manner as the slash
command'’s forward search.

For example:
(dbx) /lines
no match
(dbx) /linel
16 LINETYPE linel;
(dbx) /

39 while(fgets(linel.string, sizeof (linel.string), £fd) != NULL){
(dbx)

5.6.6 Editing Source Files from Within dbx

The edit command enables you to change source files from within dbx. To
make the changes effective, you must quit from dbx, recompile the program,
and restart dbx.

The edit command has the following forms:

edit Invokes an editor on the current file.
edit FILE Invokes an editor on the specified file.

The edit command loads the editor indicated by the environment variable
EDITOR or, if EDITOR is not set, the vi editor. To return to dbx, exit normally
from the editor.

5.6.7 Identifying Variables That Share the Same Name

The which and whereis commands display program variables. These
commands are useful for debugging programs that have multiple variables
with the same name occurring in different scopes. The commands follow
the rules described in Section 5.3.1.

The which and whereis commands have the following forms:

which VAR Displays the default version of the specified variable.

whereis VAR Displays all versions of the specified variable.

5-32 Debugging Programs with dbx

In the following example, the user checks to see where the default variable
named i is and then verifies that this is the only instance of i in the program
by observing that whereis shows only the one occurrence:

(dbx) which i
sam.main.i
(dbx) whereis i
sam.main.i

5.6.8 Examining Variable and Procedure Types

The whatis command lists the type declaration for variables and procedures
in a program.

The whatis command has the following form:

whatis VAR Displays the type declaration for the specified
variable or procedure.

For example:

(dbx) whatis main
int main(argc,argv)
int argc;

unsigned char **argv;
(dbx) whatis i

int i;

(dbx)

5.7 Controlling the Program

The following sections describe the dbx commands used to run a program,
step through source code, return from a procedure call, start at a specified
line, continue after stopping at a breakpoint, assign values to program
variables, patch an executable disk file, execute a particular routine, set an
environment variable, and load shared libraries.

5.7.1 Running and Rerunning the Program

The run and rerun commands start program execution. Each command
accepts program arguments and passes those arguments to the program. If
no arguments are specified for a run command, dbx runs the program with
no arguments. If no arguments are specified for a rerun command, dbx
defaults to the arguments used with the previous run or rerun command.
You can specify arguments in advance of entering a rerun command by
using the args command. Arguments set by the args command are ignored
by a subsequent run command.

Debugging Programs with dbx 5-33

You can also use these commands to redirect program input and output in a
manner similar to redirection in the C shell:

= The optional parameter <FILE1 redirects input to the program from
the specified file.

= The optional parameter >FILE2 redirects output from the program to
the specified file.

= The optional parameter >&FILE2 redirects both stderr and stdout
to the specified file.

Note

The redirected output differs from the output saved with the
record output command (see Section 5.9.4.2), which saves
debugger output, not program output.

The run, args, and rerun commands have the following forms:

run [ARGl ... ARGN] [<FILE1l] [>FILE2]
run [ARGl1 ... ARGN] [<FILE1l] [>&FILE2]

Runs the program with the specified arguments and redirections.

args [ARG1 ... ARGN] [<FILEl] [>FILE2]
args [ARGl ... ARGN] [<FILE1l] [>&FILEZ2]

Sets the specified arguments and redirections for use by subsequent
commands; the specified values remain in effect until explicitly altered
by new values given with a run or rerun command.

rerun [ARGl ... ARGN] [<FILEl] [>FILE2]
rerun [ARGl ... ARGN] [<FILEl] [>&FILE2]

Reruns the program with the specified arguments and redirections.

For example:

(dbx) run sam.c
0. (19) #include <stdio.h>

1. (14) struct line {

2. (19) char string[256];

Program terminated normally

(dbx) rerun
0. (19) #include <stdio.h>

1. (14) struct line {

2. (19) char string[256];

5-34 Debugging Programs with dbx

Program terminated normally
(dbx)

The argument is sam. c.

Reruns the program with the previously specified arguments.

5.7.2 Executing the Program Step by Step

For debugging programs written in high-level languages, the step and next
commands execute a fixed number of source-code lines as specified by EXp.
For debugging programs written in assembly language, the stepi and
nexti commands work the same as step and next except that they step
by machine instructions instead of by program lines. If ExP is not specified,
dbx executes one source-code line or machine instruction; otherwise, dbx
executes the source-code lines or machine instructions as follows:

= The dbx debugger does not take comment lines into consideration in
interpreting EXP. The program executes EXP source-code lines, regardless
of the number of comment lines interspersed among them.

= For step and stepi, dbx considers EXP to apply both to the current
procedure and to called procedures. Program execution stops after EXP
source lines in the current procedure and any called procedures.

= For next and nexti, dbx considers EXP to apply only to the current
procedure. Program execution stops after executing EXP source lines in
the current procedure, regardless of the number of source lines executed
in any called procedures.

The step/stepi and next /nexti commands have the following form:

step [EXP]

stepi [EXP] Executes the specified number of lines or
instructions in both the current procedure and any
called procedures. The default is 1.

next [EXP]

nexti [EXP] Executes the specified number of source-code lines or

machine instructions in only the current procedure,
regardless of the number of lines executed in any
called procedures. The default is 1.

For example:

(dbx) rerun

[7] stopped at [prnt:52,0x120000c04] fprintf (stdout, "%$3d. (%3d) %s",
(dbx) step 2

Debugging Programs with dbx 5-35

0. (19) #include <stdio.h>
[prnt:55 ,0x120000c48] }
(dbx) step

[main:40 ,0x120000b40] i=strlen(linel.string) ;
(dbx)

The $break during step and $printwhilestep variables affect
stepping. See Table 5-8 for more information.

5.7.3 Using the return Command

The return command is used in a called procedure to execute the remaining
instructions in the procedure and return to the calling procedure.

The return command has the following forms:

return Executes the rest of the current procedure and stops
at the next sequential line in the calling procedure.

return PROCEDURE Executes the rest of the current procedure and any
calling procedures intervening between the current
procedure and the procedure named by PROCEDURE.

Stops at the point of the call in the procedure that
is named.

For example:

(dbx) rerun

[7] stopped at [prnt:52,0x120000c04] fprintf (stdout,"%3d. (%3d) %s",
(dbx) return

0. (19) #include <stdio.h>
stopped at [main:45 +0xc,0x120000bb0] prnt(&linel);
(dbx)

5.7.4 Going to a Specific Place in the Code

The goto command shifts to the specified line and continues execution. This
command is useful in a when statement — for example, to skip a line known
to cause problems. The goto command has the following form:

goto LINE Goes to the specified source line when you continue
execution.

For example:
(dbx) when at 40 {goto 43}

[8] start sam.c:43 at "sam.c":40
(dbx)

5-36 Debugging Programs with dbx

5.7.5 Resuming Execution After a Breakpoint

For debugging programs written in high-level languages, the cont command
resumes program execution after a breakpoint. For debugging programs
written in assembly language, the conti command works the same as cont.
The cont and conti commands have the following forms:

cont
conti

Continues from the current source-code line or machine-code address.

cont to LINE
conti to ADDRESS

Continues until the specified source-code line or machine-code address.

cont in PROCEDURE
conti in PROCEDURE

Continues until the specified procedure.

cont SIGNAL
conti SIGNAL

After receiving the specified signal, continues from the current line or
machine instruction.

cont SIGNAL to LINE
conti SIGNAL to ADDRESS

After receiving the specified signal, continues until the specified line
or address.

cont SIGNAL in PROCEDURE
conti SIGNAL in PROCEDURE

Continues until the specified procedure and sends the specified signal.

The following example shows the use of the cont command in a C program:

(dbx) stop in prnt
[9] stop in prnt
(dbx) rerun
[9] stopped at [prnt:52,0x120000c04] fprintf (stdout,"%3d. (%3d) %s",
(dbx) cont
0. (19) #include <stdio.h>
[9] stopped at [prnt:52,0x120000c04] fprintf (stdout,"%3d. (%3d) %s",
(dbx)

The following example shows the use of the conti command in an
assembly-language program:

Debugging Programs with dbx 5-37

(dbx) conti
0. (19) #include <stdio.h>

[4] stopped at >*[prnt:52 ,0x120000c04] ldg rlé,-32640(gp)
(dbx)

5.7.6 Changing the Values of Program Variables

The assign command changes the value of a program variable. The assign
command has the following form:

assign VAR = EXP
assign EXP1l = EXP2

Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

For example:

(dbx) print i

19
(dbx) assign i = 10

10
(dbx) assign *(int *)0x444 = 1
1

(dbx)

The value of i.
The new value of i.

Coerce the address to be an integer and assign a value of 1 to it.

5.7.7 Patching Executable Disk Files

The patch command patches an executable disk file to correct bad data
or instructions. Only text, initialized data, or read-only data areas can be
patched. The bss segment cannot be patched because it does not exist in

disk files. The patch command fails if it is entered against a program that
is executing.

The patch command has the following form:

patch VAR = EXP
patch EXP1 = EXP2

Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

The patch is applied to the default disk file; you can use qualified variable
names to specify a patch to a file other than the default. Applying a patch in
this way also patches the in-memory image of the file being patched.

5-38 Debugging Programs with dbx

For example:

patch &main = 0
patch var = 20
patch &var = 20
patch Oxnnnnn = Oxnnnnn

5.7.8 Running a Specific Procedure

It is possible for you to set the current line pointer to the beginning of a
procedure, place a breakpoint at the end of the procedure, and run the
procedure. However, it is usually easier to use the call or print command
to execute a procedure in your program. The call or print command
executes the procedure you specify on the command line. You can pass

parameters to the procedure by specifying them as arguments to the call
or print command.

The call or print command does not alter the flow of your program. When
the procedure returns, the program remains stopped at the point where you
entered the call or print command. The print command displays values
returned by called procedures; the call command does not.

The call and print commands have the following forms:

call PROCEDURE ([parameters])
print PROCEDURE ([parameters])

Executes the object code associated with the named procedure or
function. Specified parameters are passed to the procedure or function.

For example:

(dbx) stop in prnt
[11] stop in prnt

(dbx) call prnt(&linel)
[11] stopped at [prnt:52,0x120000c] fprintf (stdout, "%3d. (%3d) %s",
(dbx) status

[11] stop in prnt

[12] stop at "sam.c":40

[2] record output example2 (126 lines)

(dbx) delete 11,12 [4]

(dbx)

~]

The stop command sets a breakpoint in the prnt () function.

The call command begins executing the object code associated with
prant (). The 1inel argument passes a string by reference to prnt.

The status command displays the currently active breakpoints.

The delete command deletes the breakpoints at lines 52 and 40.

The print command allows you to include a procedure as part of an
expression to be printed. For example:

Debugging Programs with dbx 5-39

(dbx) print sqrt(2.)+sqrt(3.)

5.7.9 Setting Environment Variables

Use the setenv command to set an environment variable. You can use this
command to set the value of an existing environment variable or create a
new environment variable. The environment variable is visible to both dbx
and the program you are running under dbx control, but it is not visible
after you exit the dbx environment. However, if you start a shell with the
sh command within dbx, that shell can see dbx environment variables. To
change an environment variable for a process, you must enter the setenv
command before starting up the process within dbx with the run command.

The setenv command has the following form:
setenv VAR "STRING"

Changes the value of an existing environment variable or creates a new
one. To reset an environment variable, specify a null string.

For example:

(dbx) setenv TEXT "sam.c"

(dbx) run

[4] stopped at [prnt:52,0x120000e34] fprintf (stdout,"%3d. (%3d) %s",
(dbx) setenv TEXT ""

(dbx) run

Usage: sam filename

Program exited with code 1

The setenv command sets the environment variable TEXT to the value
sam. c.

The run command executes the program from the beginning. The
program reads input from the file named in the the environment
variable TEXT. Program execution stops at the breakpoint at line 52.

The setenv command sets the environment variable TEXT to null.

The run command executes the program. Because the TEXT
environment variable contains a null value, the program must get input.

5.8 Setting Breakpoints
A breakpoint stops program execution and lets you examine the program’s

state at that point. The following sections describe the dbx commands to set
a breakpoint at a specific line or in a procedure and to stop for signals.

5-40 Debugging Programs with dbx

5.8.1 Overview

When a program stops at a breakpoint, the debugger displays an
informational message. For example, if a breakpoint is set in the sample
program sam.c at line 23 in the main () procedure, the following message
is displayed:

S

[4] stopped at [main:40, 0x120000b18] i=strlen(linel.string) ;

@ ®

==

Breakpoint status number.
Procedure name.

Line number.

I NI

Current program counter. Use this number to display the
assembly-language instructions from this point. (See Section 5.7.5 for
more information.)

Source line.

Before setting a breakpoint in a program with multiple source files, be sure
that you are setting the breakpoint in the right file. To select the right
procedure, take the following steps:

1. Use the file command to select the source file.
2. Use the func command to specify a procedure name.

3. List the lines of the file or procedure using the 1ist command (see
Section 5.6.4).

4. Use a stop at command to set a breakpoint at the desired line.

5.8.2 Setting Breakpoints with stop and stopi

For debugging programs written in high-level languages, the stop command
sets breakpoints to stop execution as follows: at a source line, in a procedure,
when a variable changes, or when a specified condition is true. For
debugging programs written in assembly language, the stopi command
works the same as stop, except that it traces by machine instructions
instead of by program lines. You can also instruct dbx to stop when it enters
a new image invoked by an exec (\) call by setting the $stop _on exec
predefined variable (see Table 5-8).

= The stop at and stopi at commands set a breakpoint at a specific
source-code line or machine-code address, as applicable. The dbx
debugger stops only at lines or addresses that have executable code. If
you specify a nonexecutable stopping point, dbx sets the breakpoint at
the next executable point. If you specify the VAR parameter, the debugger

Debugging Programs with dbx 5-41

displays the variable and stops only when VAR changes; if you specify if
EXP, the debugger stops only when EXP is true.

* The stop in and stopi in commands set a breakpoint at the beginning
or, conditionally, for the duration of a procedure.

e The stop if and stopi if commands cause dbx to stop program
execution under specified conditions. Because dbx must check the
condition after the execution of each line, this command slows program
execution markedly. Whenever possible, use stop/stopi at or
stop/stopi in instead of stop/stopi if.

= |Ifthe $stop_on_exec predefined variable is set to 1, an exec () call
causes dbx to stop and read in the new image’s symbol table, then
advance to the image’s main activation point and stop for user input.

The delete command removes breakpoints established by the stop or
stopi command.

The stop and stopi commands have the following forms:

stop VAR
stopi VAR

Stops when VAR changes.

stop VAR at LINE
stopi VAR at ADDRESS

Stops when VAR changes at a specified source-code line or machine-code
address.

stop VAR at LINE if EXP
stopi VAR at ADDRESS if EXP

Stops when VAR changes at a specified line or address only if the
expression is true.

stop if EXP
stopi if EXP

Stops if EXP is true.

stop VAR if EXP
stopi VAR if EXP

Stops when VAR changes if EXP is true.

stop in PROCEDURE
stopi in PROCEDURE

Stops at the beginning of the procedure.

5-42 Debugging Programs with dbx

stop VAR in PROCEDURE

Stops in the specified procedure when VAR changes.

stop VAR in PROCEDURE if EXP
stopi VAR in PROCEDURE if EXP

Stops when VAR changes in the specified procedure if EXP is true.

Note

Specifying both VAR and EXP causes stops anywhere in the
procedure, not just at the beginning. Using this feature is time
consuming because the debugger must check the condition before
and after each source line is executed. (When both arguments are
specified, EXP is always checked before VAR.)

The following example shows the use of stop in a C program:

(dbx) stop at 52
[3] stop at "sam.c":52
(dbx) rerun

[3] stopped at [prnt:52,0x120000fb0] fprintf (stdout,"%3d. (%3d) %s",
(dbx) stop in prnt

[15] stop in prnt

(dbx)

The following example shows the use of stopi in an assembly-language
program:

(dbx) stopi at 0x120000c04
[4] stop at 0x120000c04

(dbx) rerun
[

7] stopped at >*[prnt:52 ,0x120000c04] ldg rlé, -32640(gp)

5.8.3 Tracing Variables During Execution

For debugging programs written in high-level languages, the trace
command lists the value of a variable while the program is executing and
determines the scope of the variable being traced. For debugging programs
written in assembly language, the tracei command works the same as

trace, except that it traces by machine instructions instead of by program
lines.

The trace and tracei commands have the following forms:
trace LINE

Lists the specified source line each time it is executed.

Debugging Programs with dbx 5-43

trace VAR
tracei VAR

Lists the specified variable after each source line or machine
instruction is executed.

trace [VAR] at LINE
tracei [VAR] at ADDRESS

Lists the specified variable at the specified line or instruction.

trace [VAR] in PROCEDURE
tracei [VAR] in PROCEDURE

Lists the specified variable in the specified procedure.

trace [VAR] at LINE if EXP
tracei [VAR] at ADDRESS if EXP

Lists the variable at the specified source-code line or machine-code
address when the expression is true and the value of the variable has
changed. (ExP is checked before VAR.)

trace [VAR] in PROCEDURE if EXP
tracei [VAR] in PROCEDURE if EXP

Lists the variable in the specified procedure when the expression is true
and the value of the variable has changed. (ExP is checked before vaRr.)
For example:

(dbx) trace i
[5] trace i in main
(dbx) rerun sam.c

[4] [main:25 ,0x400a50]

(dbx) e

[5] i1 changed before [main: line 41]:
new value = 19;

[5] 1 changed before [main: line 41]:
old value = 19;
new value = 14;

[5] i1 changed before [main: line 41]:
old value = 14;
new value = 19;

[5] i1 changed before [main: line 41]:
old value = 19;
new value = 13;

[5] i1 changed before [main: line 41]:
old value = 13;
new value = 17;

5-44 Debugging Programs with dbx

[5] i1 changed before [main: line 41]:
old value = 17;
new value = 3;

[5] i1 changed before [main: line 41]:
old value = 3;

new value = 1;
[5] 1 changed before [main: line 41]:
old value = 1;

new value = 30;

5.8.4 Writing Conditional Code in dbx

The when command controls the conditions under which certain dbx
commands that you specify will be executed.

The when command has the following forms:
when VAR [if EXP] {COMMAND LIST}

Executes the command list when EXP is true and VAR changes.

when [VAR] at LINE [if EXP] {COMMAND LIST}

Executes the command list when EXP is true, VAR changes, and the
debugger encounters LINE.

when in PROCEDURE {COMMAND LIST}

Executes the command list upon entering PROCEDURE.

when [VAR] in PROCEDURE [if EXP] {COMMAND_LIST}

Executes the specified commands on each line of PROCEDURE when EXP
is true and VAR changes. (EXP is checked before VAR.)

For example:

(dbx) when in prnt {print linel.length}
[6] print linel.length in prnt

(dbx) rerun

19 [1]
14

19

17

59

45

12

More (n if no)?

(dbx) delete 6

(dbx) when in prnt {stop}
[7] stop in prnt

(dbx) rerun

Debugging Programs with dbx 5-45

[7] stopped at [prnt:52,0x12000fb0] fprintf (stdout, "%3d. (%3d) %s")

Value of 1inel.length.
Stops in the procedure prnt.

5.8.5 Catching and Ignoring Signals

The catch command either lists the signals that dbx catches or specifies
a signal for dbx to catch. If the process encounters a specified signal, dbx
stops the process.

The ignore command either lists the signals that dbx does not catch or
specifies a signal for dbx to add to the ignore list.

The catch and ignore commands have the following forms:

catch Displays a list of all signals that dbx catches.
catch SIGNAL Adds a signal to the catch list.

ignore Displays a list of all signals that dbx does not catch.
ignore SIGNAL Removes a signal from the catch list and adds it

to the ignore list.

For example:

(dbx) catch
INT QUIT ILL TRAP ABRT EMT FPE BUS SEGV SYS PIPE TERM URG \
STOP TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH INFO USR1 USR2

(dbx) ignore
HUP KILL ALRM TSTP CONT CHLD

(dbx) catch kill
(dbx) catch

INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE TERM URG \
STOP TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH INFO USR1 USR2
(dbx) ignore

HUP ALRM TSTP CONT CHLD

(dbx)

Displays the catch list.
Displays the ignore list.

Adds KILL to the catch list and removes KILL from the ignore list.

The backslashes in the preceding example represent line continuation. The
actual output from catch and ignore is a single line.

5-46 Debugging Programs with dbx

5.9 Examining Program State

When dbx is stopped at a breakpoint, the program state can be examined
to determine what might have gone wrong. The debugger provides
commands for displaying stack traces, variable values, and register values.
The debugger also provides commands to display information about the
activation levels shown in the stack trace and to move up and down the
activation levels (see Section 5.6.2).

5.9.1 Printing the Values of Variables and Expressions

The print command displays the values of one or more expressions.

The printf command lists information in a specified format and supports
all formats of the printf () function except strings (%s). For a list of
formats, see print£(3). You can use the printf command to see a variable’s
value in a different number base.

The default command alias list (see Section 5.5.3) provides some useful
aliases for displaying the value of variables in different bases — octal (po),
decimal (pd), and hexadecimal (px). The default number base is decimal.

You can specify either the real machine register names or the software
names from the include file regdef . h. A prefix before the register number
specifies the type of register; the prefix can be either $f or $r, as shown in
the following list of registers:

Register Name(s) Register Type

$£00-3£31 Floating-point register (1 of 32)
$r00-$r31 Machine register (1 of 32)
Sfper Floating-point control register
$pc Program counter value

Sps Program status register?

2 The program status register is useful only for kernel debugging. For user-level programs, its value
is always 8

You can also specify prefixed registers in the print command to display a
register value or the program counter. The following commands display the
values of machine register 3 and the program counter:

(dbx) print $r3
(dbx) print $pc

The print command has the following forms:
print EXP1,...,EXPN

Displays the value of the specified expressions.

Debugging Programs with dbx 5-47

printf "STRING", EXP1,...,EXPN

Displays the value of the specified expressions in the format specified
by the string.

Note

If the expression contains a name that is the same as a dbx
keyword, you must enclose the name within parentheses. For
example, to print output, a keyword in the playback and
record commands, specify the name as follows:

(dbx) print (output)

For example:

(dbx) print i

14 [1]
(dbx) po i

016 2]
(dbx) px i

oxe II
(dbx) pd i

14 [4]
(dbx)

Decimal
Octal

Hexadecimal

Decimal

The printregs command displays a complete list of register values; it
accepts no arguments. As with the print command, the default base for

display by printregs is decimal. To display values in hexadecimal with the
printregs command, set the dbx variable $hexints.

For example:

(dbx) printregs

Svip= 4831837712 $Sr0_v0=0

$r1_t0=0 $r2 t1=0

Sr3 t2=18446744069416926720 Sr4 t3=18446744071613142936
Sr5_t4=1 $r6_t5=0

$f25= 0.0 $f26= 0.0

$f27= 2.3873098155006918e-314 $f28= 2.6525639909000367e-314
$£29= 9.8813129168249309e-324 $£30= 2.3872988413145664e-314
$f31= 0.0 Spc= 4831840840

5-48 Debugging Programs with dbx

5.9.2 Displaying Activation-Level Information with the dump
Command

The dump command displays information about activation levels, including
values for all variables that are local to a specified activation level. To see
what activation levels are currently active in the program, use the where

command to get a stack trace.

The dump command has the following forms:

dump Displays information about the current activation
level.

dump . Displays information about all activation levels.

dump PROCEDURE Displays information about the specified procedure

(activation level).

For example:

(dbx) where
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
1 main(argc = 2, argv = 0x11ffffel08) ["sam.c":45, 0x120000bac]

(dbx) dump
prnt (pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
(dbx) dump .

> 0 prnt(pline = Ox11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
linel = struct {

string = "#include <stdio.h>"

length = 19

linenumber = 0

}

fd = 0x140000158

fname = 0x11ffffe9c = "sam.c"
i =19
curlinenumber = 1

(dbx) dump main
main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
linel = struct {
string = "#include <stdio.h>"
length = 19
linenumber = 0
}
fd = 0x140000158
fname = 0x11ffffe9c = "sam.c"
i =19

Debugging Programs with dbx 5-49

curlinenumber = 1
(dbx)

5.9.3 Displaying the Contents of Memory

You can display memory contents by specifying the address and the format
of the display. Use the following form, with no spaces between the three
parts of the command:

address/count mode

The address portion of the command is the address of the first item to be
displayed, count is the number of items to be shown, and mode indicates the
format in which the items are to be displayed. For example:

prnt/201

This example displays the contents of 20 machine instructions, beginning
at the address of the prnt function.

The values for mode are shown in Table 5-9.

Table 5-9: Modes for Displaying Memory Addresses

Mode Display Format

b Displays a byte in octal.

c Displays a byte as a character.

D Displays a long word (64 bits) in decimal.
d Displays a short word (16 bits) in decimal.
dad Displays a word (32 bits) in decimal.

t Displays a single-precision real number.

g Displays a double-precision real number.
i Displays machine instructions.

0 Displays a long word in octal.

o Displays a short word in octal.

oo Displays a word (32 bits) in octal.

S Displays a string of characters that ends in a null byte.
X Displays a long word in hexadecimal.

X Displays a short word in hexadecimal.

XX Displays a word (32 bits) in hexadecimal.

The following example shows the output when displaying memory addresses
as instructions:

5-50 Debugging Programs with dbx

(dbx) &prnt/20i
[prnt:51, 0x120000bfO0] ldah gp, 8193(r27)
[prnt:51, 0x120000bf4] 1lda gp, -25616(gp)
[prnt:51, 0x120000bf8] lda sp, -64(sp)
[prnt:51, 0x120000bfc] stg r26, 8(sp)
[prnt:51, 0x120000c00] stq rlée, 16 (sp)
[prnt:52, 0x120000c04] ldg rle, -32640(gp)

>* [prnt:52, 0x120000c08] addg rlé, 0x38, rlé
[prnt:52, 0x120000c0c] ldg rl17, -32552(gp)
[prnt:52, 0x120000c10] ldg rl1, 16 (sp)
[prnt:52, 0x120000cl4] 1d1l ri18, 260(rl)
[prnt:52, 0x120000c18] 1d1l r19, 256(rl)
[prnt:52, 0x120000clc] Dbis rl, rl, r20
[prnt:52, 0x120000c20] ldg r27, -32624(gp)
[prnt:52, 0x120000c24] jsr r26, (r27), 0x4800030a0
[prnt:52, 0x120000c28] 1ldah gp, 8193 (r26)
[prnt:52, 0x120000c2c] 1lda gp, -25672(gp)
[prnt:54, 0x120000c30] ldg rle, -32640(gp)
[prnt:54, 0x120000c34] addg rle, 0x38, rle
[prnt:54, 0x120000c38] ldg r27, -32544(gp)
[prnt:54, 0x120000c3c] jsr r26, (r27), 0x480003100

5.9.4 Recording and Playing Back Portions of a dbx Session

The dbx debugger allows you to capture and replay portions of your input to
the program and also portions of its output. Recorded information is written
to a file so that you can reuse or re-examine it.

Recording input can be useful for creating command files containing
sequences that you want to repeat many times; you can even use recorded
input to control dbx for purposes such as regression testing. Recording
output is useful for capturing large volumes of information that are
inconvenient to deal with on the screen, so that you can analyze them later.
To look at recorded output later, you can read the saved file directly or you
can play it back with dbx.

5.9.4.1 Recording and Playing Back Input

The record input command records debugger input. The playback input
command repeats a recorded sequence. The record input and
playback input commands have the following forms:

record input [FILE]

Begins recording dbx commands in the specified file or, if no file is
specified, in a file placed in /tmp and given a generated name.

Debugging Programs with dbx 5-51

playback input [FILE]
source [FILE]

Executes the commands from the specified file or, if no file is specified,
from the temporary file. The two forms are identical in function.

The name given to the temporary file, if used, is contained in the debugger
variable $defaultin. To display the temporary file name, use the print
command:

(dbx) print $defaultin

Use a temporary file when you need to refer to the saved output only during
the current debugging session; specify a file name to save information

for reuse after you end the current debugging session. Use the status
command to see whether recording is active. Use the delete command to
stop recording. Note that these commands will appear in the recording; if
you are creating a file for future use, you will probably want to edit the file
to remove commands of this type.

Use the playback input command to replay the commands recorded with
the record input command. By default, playback is silent; you do not see
the commands as they are played. If the dbx variable $pimode is set to 1,
dbx displays commands as they are played back.

The following example records input and displays the resulting file:

(dbx) record input
[2] record input /tmp/dbxtX026963 (0 lines)
(dbx) status

[2] record input /tmp/dbxtX026963 (1 lines)
(dbx) stop in prnt

[3] stop in prnt

(dbx) when i = 19 {stop}
[4] stop ifchanged i = 19

(dbx) delete 2

(dbx) playback input

[3] stop in prnt

[4] stop ifchanged i = 19

[5] stop in prnt

[6] stop ifchanged i = 19

/tmp/dbxtX026963: 4: unknown event 2
(dbx)

[@]n]

Start recording.
Stop recording.

Play back the recorded input. As events 3 and 4 are played, they create
duplicates of themselves, numbered 5 and 6, respectively.

5-52 Debugging Programs with dbx

The debugger displays this error message because event 2, the command
to begin recording, was deleted when recording was stopped.

The temporary file resulting from the preceding dbx commands contains
the following text:

status

stop in prnt

when i = 19 {stop}
delete 2

5.9.4.2 Recording and Playing Back Output

Use the record output command to record dbx output during a debugging
session. To produce a complete record of activity by recording input along
with the output, set the dbx variable srimode. You can use the debugger’s
playback output command to look at the recorded information, or you
can use any text editor.

The record output and playback output commands have the following
forms:

record output [FILE]

Begins recording dbx output in the specified file or, if no file is specified,
in a file placed in /tmp and given a generated name.

playback output [FILE]

Displays recorded output from the specified file or, if no file is specified,
from the temporary file.

The name given to the temporary file, if used, is contained in the debugger
variable $defaultout. To display the temporary file name, use the print
command:

(dbx) print $defaultout

The playback output command works the same as the cat command; a
display from the record output command is identical to the contents of
the recording file.

Use a temporary file when you need to refer to the saved output only during
the current debugging session; specify a file name to save information

for reuse after you end the current debugging session. Use the status
command to see whether recording is active. Use the delete command

to stop recording.

The following example shows a sample dbx interaction and the output
recorded for this interaction in a file named code:

Debugging Programs with dbx 5-53

(dbx) record output code

[3] record output code (0 lines)

(dbx) stop at 25

[4] stop at "sam.c":25

(dbx) run sam.c

[4] stopped at [main:25 ,0x120000a48] if (argc < 2) {
(dbx) delete 3

(dbx) playback output code

[3] record output code (0 lines)

(dbx) [4] stop at "sam.c":25

(dbx) [4] stopped at [main:25 ,0x120000a48] if (argc < 2) {
(dbx)

5.10 Enabling Core-Dump File Naming

This section explains how to enable the operating system’s core-dump file
naming feature so that you can preserve multiple core files.

When you enable core-file naming, the system produces core files with
names in the following format:

core.prog-name.host-name.tag

The name of the core file has four parts separated by periods:
= The literal string core.

= Up to 16 characters of the program name, as displayed by the ps
command.

= Up to 16 characters of the system’s network host name, as derived from
the part of the host name that precedes the first dot in the host name
format.

< A numeric tag that is assigned to the core file to make it uniqgue among
all of the core files generated by a program on a host. The maximum
value for this tag, and therefore the maximum number of core files for
this program and host, is set by a system configuration parameter (see
Section 5.10.1).

The tag is not a literal version number. The system selects the first
available unique tag for the core file. For example, if a program’s core
files have tags 0, 1, and 3, the system uses tag 2 for the next core file it
creates for that program. If the system-configured limit for core-file
instances is reached, no further core files are created for that program
and host combination. By default, up to 16 versions of a core file can
be created.

To conserve disk space, be sure to remove core files after you have
examined them. This is necessary because named core files are not
overwritten.

5-54 Debugging Programs with dbx

5.10.1

5.10.2

You can enable core-file naming at either the system level (Section 5.10.1) or
the individual application level (Section 5.10.2).

Enabling Core-File Naming at the System Level

You can enable core-file naming at the system level by using the
dxkerneltuner(8X) (graphical interface) or sysconfig(8) utility. To enable
core-file naming, set the enhanced-core-name process subsystem attribute
to 1. To limit the number of unique core-file versions that a program

can create on a specific host system, set the process subsystem attribute
enhanced-core-max-versions to the desired value. For example:

proc:
enhanced-core-name = 1
enhanced-core-max-versions = 8

The minimum, maximum, and default numbers of versions are 1, 99999,
and 16, respectively.

Enabling Core-File Naming at the Application Level

To enable core-file naming at the application level, your program should use
the uswitch system call with the UWS CORE flag set, as in the following
example:

#include <signal.h>
#include <xsys/uswitch.h>
/*
* Request enhanced core-file naming for
* this process, then create a core file.
*/
main ()
{
long uval = uswitch(USC_GET, 0);
uval = uswitch(USC_SET, uval | USW_CORE) ;
if (uval < 0) {
perror ("uswitch") ;
exit (1) ;
}

raise (SIGQUIT) ;

5.11 Debugging a Running Process

You can use the dbx debugger to debug running processes that are started
outside the dbx environment. It supports the debugging of such processes,
both parent and child, by using the /proc file system. The debugger can
debug running processes only if the /proc file system is mounted. If /proc
is not already mounted, the superuser can mount it with the following
command:

mount -t procfs /proc /proc

Debugging Programs with dbx 5-55

You can add the following entry to the /etc/fstab file to mount /proc
upon booting:

/proc /proc procfs rw 0 O

The dbx debugger checks first to see if /proc is mounted, but it will still
function if this is not the case.

To attach to a running process, use the dbx command attach, which has the
following form:

attach process-id

The process-id argument is the process ID of the process you want
to attach to.

You can also attach to a process for debugging by using the command-line
option —pid process id.

To detach from a running process, use the dbx command detach, which
has the following form:

detach [process-id]

The optional process-id argument is the process ID of the process
you want to detach from. If no argument is given, dbx detaches from
the current process.

To change from one process to another, use the dbx command switch, which
has the following form:

switch process-id

The process-id argument is the process ID of the process you want
to switch to. You must already have attached to a process before you
can switch to it. You can use the alias sw for the switch command.

The attach command first checks to see whether /proc is mounted; dbx
gives a warning that tells you what to do if it is not mounted. If /proc

is mounted, dbx looks for the process ID in /proc. If the process ID is in
/proc, dbx attempts to open the process and issues a stop command. If
the process is not there or if the permissions do not allow attaching to it,

dbx reports this failure.

When the stop command takes effect, dbx reports the current position,
issues a prompt, and waits for user commands. The program probably will
not be stopped directly in the user code; it will more likely be stopped in a
library or system call that was called by user code.

5-56 Debugging Programs with dbx

The detach command deletes all current breakpoints, sets up a “run on last
close” flag, and closes (“releases”) the process. The program then continues
running if it has not been explicitly terminated inside dbx.

To see a summary of all active processes under the control of dbx, use the
plist command, which has the following form:

plist Displays a list of active processes and their status.

Indicates the current process with a marker: -->

5.12 Debugging Multithreaded Applications

The dbx debugger provides three basic commands to assist in the debugging
of applications that use threads:

The t1ist command displays a quick list of all threads and where
they are currently positioned in the program. This command accepts
no arguments.

Using the t1ist command, you can see all of the threads, with their IDs,
that are currently in your program.

The tset command sets the current thread. The debugger maintains one
thread as the current thread; this thread is the one that hits a breakpoint
or receives a signal that causes it to stop and relinquish control to dbx.

Use tset to choose a different thread as the current thread so that

you can examine its state with the usual dbx commands. Note that

the selected thread remains the current thread until you enter another
tset command. Note also that the continue, step, or next commands
might be inappropriate for a given thread if it is blocked or waiting to
join with another thread.

The tstack command lists the stacks of all threads in your application.
It is similar to the where command and, like where, takes an optional
numeric argument to limit the number of stack levels displayed.

The tset and tstack commands have the following forms:

tset [EXP] Choose a thread to be the current thread. The EXP
argument is the hexadecimal ID of the desired
thread.

tstack [EXP] Display stack traces for all threads. If EXP is

specified, dbx displays only the top EXP levels of the
stacks; otherwise, the entire stacks are displayed.

If the POSIX Threads Library product is installed on your system, you can
gain access to the POSIX Threads Library pthread debugger by issuing

Debugging Programs with dbx 5-57

a call cma debug () command within your dbx session. The pthread
debugger can provide a great deal of useful information about the threads
in your program. For information on using the pthread debugger, enter a
help command at its debug> prompt.

A sample threaded program, twait.c, is shown in Example 12-1. The
following example shows a dbx session using that program. Long lines in
this example have all been folded at 72 characters to represent display on a
narrow terminal.

% dbx twait
dbx version 3.11.6
Type ’'help’ for help.

main: 50 pthread t me = pthread self (), timer thread;
(dbx) stop in do_tick

[2] stop in do_tick

(dbx) stop at 85

[3] stop at "twait.c":85

(dbx) stop at 35

[4] stop at "twait.c":35

(dbx) run

1: main thread starting up
1: exit lock initialized

1: exit lock obtained

1: exit cv initialized

1: timer thread 2 created
1: exit lock released

[2] thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread
t
(

me = pthread self();

dbx) tlist
thread 0x81c623a0 stopped at [msg_receive trap:74 +0x8,0x3ff808edf04]
Source not available
thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread
t me = pthread self();
(dbx) where
> 0 do_tick(argP = (nil)) ["twait.c":21, 0x12000730c]

1 cma__thread base(0x0, 0x0, 0x0, 0x0, O0x0) ["../../../../../src/usr/

ccs/1lib/DECthreads/COMMON/cma_thread.c":1441, 0x3f£80931410]
(dbx) tset 0x8lcé623al
thread 0x81c623a0 stopped at [msg_receive trap:74 +0x8,0x3ff808edf04]
Source not available
(dbx) where
> 0 msg_receive trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57£0d0d, 0x3ff8087b68c) ["/usr/build/osfl/goldos.bld/export/alpha/usr/in
clude/mach/syscall sw.h":74, 0x3f£808edf00]

1 msg_receive (0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, O

xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff£808e474
4]

2 cma_ vp sleep(0x280187£578, 0x3990, 0x7, 0x3ffcl032848, 0x0) ["../.
./../../../src/usr/ccs/1lib/DECthreads/COMMON/cma_vp.c":1471, 0x3££809375
ccl

3 cma__dispatch(0x7, 0x3ffcl1032848, 0x0, 0x3ffcl00ee08, 0x3ff80917e3c
) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_dispatch.c":967

, 0x3ff80920e48]
4 cma__int wait (Ox11ffff228, 0x140009850, 0x3ffc040cdb0, 0x5, 0x3ffcoO
014co0) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_condition

.c":2202, 0x3ff80917e38]

5 cma_thread join(0x11ffffe648, Ox11ffffofo, O0x11ffff9e8, O0x60aaec4, O
x3f£8000cf38) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_thr
ead.c":825, 0x3ff80930a58

6 pthread join(0x140003110, 0x40002, O0x11ffffaé68, 0x3ffc040cdb0, 0x0)

5-58 Debugging Programs with dbx

[v../../../../../src/usr/ccs/1lib/DECthreads/COMMON/cma_pthread.c":2193,
0x3ff809286c8]

7 main() ["twait.c":81, 0x12000788c]
(dbx) tlist
thread 0x81c623a0 stopped at [msg_receive_ trap:74 +0x8,0x3ff808edf04]
Source not available
thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread
t me = pthread self();
(dbx) tset 0x8lcé62e80
thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread
t me = pthread self();

(dbx) cont

2: timer thread starting up, argP=0x0

[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf ("
%d: wait for next tick\n", THRID (&me)) ;

(dbx) cont

2: wait for next tick

2: TICK #1

[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf ("
%d: wait for next tick\n", THRID (&me)) ;

(dbx) tstack

Thread 0x81c623a0:

> 0 msg_receive trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57£0d0d, 0x3ff£8087b68c) ["/usr/build/osfl/goldos.bld/export/alpha/usr/in
clude/mach/syscall sw.h":74, 0x3f£808edf00]

1 msg_receive (0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, O
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff£808e474
4]

2 cma__ vp sleep(0x280187£578, 0x3990, 0x7, 0x3ffcl1032848, 0x0) ["../.
./../../../src/usr/ccs/1lib/DECthreads/COMMON/cma_vp.c":1471, 0x3££809375
ccl

3 cma__dispatch(0x7, 0x3ffc1032848, 0x0, 0x3ffcl00ee08, 0x3ff80917e3c
) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_dispatch.c":967
, 0x3ff80920e48]

4 cma__int wait (Ox11ffff228, 0x140009850, 0x3ffc040cdb0, 0x5, 0x3ffcoO
014co00) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_condition
.c":2202, 0x3ff80917e38]

5 cma_thread join(0x11ffffe648, Ox11ffffofo, O0x11ffff9e8, Ox60aaec4, O
x3f£8000cf38) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_thr
ead.c":825, 0x3ff80930a58

6 pthread join(0x140003110, 0x40002, O0x11ffffaé68, 0x3ffc040cdb0, 0x0)

[v../../../../../src/usr/ccs/1lib/DECthreads/COMMON/cma_pthread.c":2193,
0x3ff809286c8]

7 main() ["twait.c":81, 0x12000788c]
Thread 0x81c62e80:
> 0 do_tick(argP = (nil)) ["twait.c":35, 0x120007430
1 cma__thread base(0x0, 0x0, 0x0, 0x0, O0x0) ["../../../../../src/usr/

ccs/1lib/DECthreads/COMMON/cma_thread.c":1441, 0x3££80931410]

More (n if no)?

(dbx) tstack 3

Thread 0x81c623a0:

> 0 msg_receive trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57£0d0d, 0x3ff£8087b68c) ["/usr/build/osfl/goldos.bld/export/alpha/usr/in
clude/mach/syscall sw.h":74, 0x3f£808edf00]

1 msg_receive (0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, O
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3f£808e474
4]

2 cma_ vp sleep(0x280187£578, 0x3990, 0x7, 0x3ffcl032848, 0x0) ["../.
./../../../src/usr/ccs/1lib/DECthreads/COMMON/cma_vp.c":1471, 0x3££809375
ccl
Thread 0x81c62e80:
> 0 do_tick(argP = (nil)) ["twait.c":35, 0x120007430

1 cma__thread base(0x0, 0x0, 0x0, 0x0, O0x0) ["../../../../../src/usr/
ccs/1lib/DECthreads/COMMON/cma_thread.c":1441, 0x3f£80931410]

Debugging Programs with dbx 5-59

dbx) cont

wait for next tick

TICK #2

[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf ("

%d: wait for next tick\n", THRID (&me)) ;

(dbx) assign ticks = 29

29

(dbx) cont

2: wait for next tick

2: TICK #29

[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf ("

%d: wait for next tick\n", THRID (&me)) ;

(dbx) cont

wait for next tick

TICK #30

exiting after #31 ticks

joined with timer thread 2

3] thread 0x81c623a0 stopped at [main:85 ,0x1200078ec] if (errn

o != 0) printf("errno 7 = %d\n",errno) ;

(dbx) tlist

thread 0x81c623a0 stopped at [main:85 ,0x1200078ec] if (errno != 0)

printf ("errno 7 = %d\n",errno) ;

thread 0x81c62e80 stopped at [msg_rpc_trap:75 +0x8,0x3ff808edf10
Source not available

(dbx) cont

(
2
2

2
2
2
1

[

Program terminated normally

(dbx) tlist
(dbx) quit

5.13 Debugging Multiple Asynchronous Processes

The dbx debugger can debug multiple simultaneous asynchronous processes.
While debugging asynchronous processes, dbx can display status and
accept commands asynchronously. When running asynchronously, the
debugger might exhibit confusing behavior because a running process can
display output on the screen while you are entering commands to examine
a different process that is stopped.

The debugger automatically enters asynchronous mode in either of the
following circumstances:

= You command it to attach to a new process while a previous process
is still attached.

= The process to which dbx is attached forks off a child process, and the
debugger automatically attaches to the child process without detaching
from the parent.

The debugger uses several predefined variables to define the

behavior of asynchronous debugging. (See Table 5-8.) The variable
$asynch interface can be viewed as a counter that is incremented by
1 when a new process is attached and decremented by 1 when a process
terminates or is detached. The default value is 0.

5-60 Debugging Programs with dbx

When $asynch interface has a positive nonzero value, asynchronous
debugging is enabled; when the variable is 0 (zero) or negative, asynchronous
debugging is disabled. To prevent dbx from entering asynchronous mode, set
the sasynch interface variable to a negative value. (Note that disabling
asynchronous mode might make debugging more difficult if a parent is
waiting on a child that is stopped.)

When a process executes a fork () or viork () call to spawn a child process,
dbx attaches to the child process and automatically enters asynchronous
mode (if permitted by Sasynch interface). The default behavior is to
stop the child process right after the fork. You can change this default by
setting the variable $stop_on_ fork to 0; in this case, dbx will attach to the
child process but not stop it.

The dbx debugger attempts to apply a degree of intelligence to the handling
of forks by filtering out many of the fork calls made by various system and
library calls. If you want to stop the process on these forks also, you can set
the predefined variable $stop all forks to 1. This variable's default
value is 0. Stopping on all forks can be particularly useful when you are
debugging a library routine.

You can use the debugger’s plist and switch commands to monitor and
switch between processes.
5.14 Sample Program

Example 5-1 is the sample C program (sam. c) that is referred to in
examples throughout this chapter.

Example 5-1: Sample Program Used in dbx Examples

#include <stdio.hs>
struct line {
char string[256];
int length;
int linenumber;

i
typedef struct line LINETYPE;
void prnt () ;
main (argc,argv)
int argc;
char **argv;
LINETYPE linel;

FILE *fd;
extern FILE *fopen() ;

Debugging Programs with dbx 5-61

Example 5-1: Sample Program Used in dbx Examples (cont.)

extern char *fgets();
extern char *getenv () ;
char *fname;

int 1i;

static curlinenumber=0;

if (arge < 2) {
if ((fname =
fprintf (stderr, "Usage: sam filename\n") ;
exit (1) ;
}
} else
fname = argv([1l];

fd = fopen (fname,"r");

if (f£4d == NULL) {
fprintf (stderr, "cannot open %s\n", fname) ;
exit (1) ;

}

while (fgets(linel.string, sizeof (linel.string), £d)
i=strlen(linel.string) ;
if (i==1 && linel.string[0] == ’\n’)
continue;
linel.length = i;
linel.linenumber = curlinenumber++;
prnt (&linel) ;

}

void prnt (pline)
LINETYPE *pline ;

{

fprintf (stdout, "%$3d. (%3d) %s",

getenv ("TEXT")) == NULL || *fname == ' ’) {

!= NULL) {

pline->linenumber, pline-s>length, pline->string);

fflush(stdout) ;

5-62 Debugging Programs with dbx

6

Checking C Programs with lint

You can use the 1int program to check your C programs for potential coding
problems. The 1int program checks a program more carefully than some C
compilers, and displays messages that point out possible problems. Some

of the messages require corrections to the source code; others are only
informational messages and do not require corrections.

This chapter addresses the following topics:

= Syntax of the 1int command (Section 6.1)

= Program flow checking (Section 6.2)

= Data type checking (Section 6.3)

= Variable and function checking (Section 6.4)

= Checking the use of variables before they are initialized (Section 6.5)
= Migration checking (Section 6.6)

= Portability checking (Section 6.7)

= Checking for coding errors and coding style differences (Section 6.8)
= Increasing table sizes for large programs (Section 6.9)

= Creating a 1int library (Section 6.10)

= Understanding 1int error messages (Section 6.11)

= Using warning class options to suppress 1int messages (Section 6.12)

= Generating function prototypes for compile-time detection of syntax
errors (Section 6.13)

See 1int(1) for a complete list of Lint options.

6.1 Syntax of the lint Command

The 1int command has the following syntax:
lint [options] [file ...]
options

Options to control 1int checking operations.

Checking C Programs with lint 6-1

The cc driver options, —std, —stdo0, and —std1, are available as
options to 1int. These options affect the parsing of the source as well
as the selection of the 1int library to use. Selecting either the —std or
—std1l options turns on ANSI parsing rules in lint.

When you use the -MA 1int option, —std1l is used for the C
preprocessing phase and ANSI C SOURCES is defined using the -D
preprocessor option. The following table describes the action 1int
takes for each option:

lint Option Preprocessor Switch lint Parsing lint Library

—MA -stdl and ANSI 1lib-lansi.1ln
—-D ANSI C SOURCE

—std —std ANSI 1llib-1lcstd.1ln

—stdl —stdl ANSI 1llib-1lcstd.1ln

—stdo —stdo EXTD?2 1lib-1lc.1n

& EXTD is Extended C language, also know as K&R C.

file

The name of the C language source file for 1int to check. The name
must have one of the following suffixes:

Suffix Description

-C C source file

i File produced by the C preprocessor (cpp)
.1n lint library file

Note that 1int library files are the result of a previous invocation

of the 1int program with either the -c or -o option. They are
analogous to the .o files produced by the cc command when it is
given a . c file as input. The ability to specify 1int libraries as input
to the 1int program facilitates intermodule interface checking in
large applications. Adding rules that specify the construction of 1int
libraries to their makefiles can make building such applications more
efficient. See Section 6.10 for a discussion on how to create a 1int
library.

You can also specify as input a 1int library that resides in one of the
system’s default library search directories by using the -1x option. The
library name must have the following form:

6—2 Checking C Programs with lint

1llib-1libname.1ln

By default, the 1int program appends the extended C (K&R C) 1int
library (11ib-1c.1n) to the list of files specified on the command line. If
the —std or —std1 option is used, it appends the standard C 1int library
(11ib-1lcstd. 1n) instead.

The following additional libraries are included with the system:

Library Description Specify As
crses Checks curses library call syntax —lcrses

m Checks math library call syntax —1lm

port Checks for portability with other systems —p (not —1port)
ansi Enforces ANSI C standard rules —-MA (not —lansi)

If you specify no options on the command line, the 1int program checks
the specified C source files and writes messages about any of the following
coding problems that it finds:

= Loops that are not entered and exited normally
= Data types that are not used correctly

= Functions that are not used correctly

= \Variables that are not used correctly

= Coding techniques that could cause problems if a program is moved to
another system

= Nonstandard coding practices and style differences that could cause
problems

The 1int program also checks for syntax errors in statements in the source
programs. Syntax checking is always done and is not influenced by any
options that you specify on the 1int command.

If 1int does not report any errors, the program has correct syntax and will
compile without errors. Passing that test, however, does not mean that
the program will operate correctly or that the logic design of the program
is accurate.

See Section 6.10 for information on how to create your own lint library.

6.2 Program Flow Checking

The 1int program checks for dead code, that is, parts of a program that are
never executed because they cannot be reached. It writes messages about
statements that do not have a label but immediately follow statements that
change the program flow, such as goto, break, continue, and return.

Checking C Programs with lint 6-3

The 1int program also detects and writes messages for loops that cannot
be entered at the top. Some programs that include this type of loop may
produce correct results; however, this type of loop can cause problems.

The 1int program does not recognize functions that are called but can never
return to the calling program. For example, a call to exit may result in code
that cannot be reached, but 1int does not detect it.

Programs generated by yacc and lex may have hundreds of break
statements that cannot be reached. The 1int program normally writes

an error message for each of these break statements. To eliminate the
extraneous code associated with these break statements, use the -0 option
to the cc command when compiling the program. Use the —b option with
the 1int program to prevent it from writing these messages when checking
yacc and lex output code. (For information on yacc and lex, see the
Programming Support Tools manual.)

6.3 Data Type Checking

The 1int program enforces the type-checking rules of the C language more
strictly than the compiler does. In addition to the checks that the compiler
makes, 1int checks for potential data type errors in the following areas:

= Binary operators and implied assignments
e Structures and unions

= Function definition and uses

= Enumerators

= Type-checking control

= Type casts

Details on each of these potential problem areas are provided in the sections
that follow.

6.3.1 Binary Operators and Implied Assignments

The C language allows the following data types to be mixed in statements,
and the compiler does not indicate an error when they are mixed:

char
short
int

long
unsigned
float
double

6—4 Checking C Programs with lint

The C language automatically converts data types within this group to
provide the programmer with more flexibility in programming. This
flexibility, however, means that the programmer, not the language, must
ensure that the data type mixing produces the desired result.

You can mix these data types when using them in the following ways (in the
examples, alpha is type char and num is type int):

= Operands on both sides of an assignment operator, for example:
alpha = num; /* alpha converts to int */
= Operands in a conditional expression, for example:

value=(alpha < num) ? alpha : num;
/* alpha converts to int */

= Operands on both sides of a relational operator, for example:
if (alpha != num) /* alpha converts to int */

= The type of an argument in a return statement is converted to the type
of the value that the function returns, for example:

funct (x) /* returns an integer */

{

return(alpha) ;

}

The data types of pointers must agree exactly, except that you can mix
arrays of any type with pointers to the same type.

6.3.2 Structures and Unions

The 1int program checks structure operations for the following
requirements:

= The left operand of the structure pointer operator (->) must be a pointer
to a structure.

= The left operand of the structure member operator (.) must be a
structure.

= The right operand of these operators must be a member of the same
structure.

The 1int program makes similar checks for references to unions.

6.3.3 Function Definition and Uses

The 1int program applies strict rules to function argument and return
value matching. Arguments and return values must agree in type, with the
following exceptions:

Checking C Programs with lint 6-5

= You can match arguments of type £1oat with arguments of type double.
= You can match arguments within the following types:

char

short

int

unsigned

= You can match pointers with the associated arrays.

6.3.4 Enumerators

The 1int program checks enumerated data type variables to ensure that
they meet the following requirements:

< Enumerator variables or members of an enumerated type are not mixed
with other types or other enumerator variables.

= The enumerated data type variables are only used in the following areas:

Assignment (=)
Initialization
Equivalence (==
Not equivalence (I=)
Function arguments
Return values

6.3.5 Type Casts

Type casts in the C language allow the program to treat data of one type as
if it were data of another type. The 1int program can check for type casts
and write a message if it finds one.

The -wp and -h options for the 1int command line control the writing of
warning messages about casts. If neither of these options are used, 1int
produces warning messages about casts that may cause portability problems.

In migration checking mode, -Qc suppresses cast warning messages (see
Section 6.6).

6.4 Variable and Function Checking

The 1int program checks for variables and functions that are declared in a
program but not used. The 1int program checks for the following errors in
the use of variables and functions:

= Functions that return values inconsistently

= Functions that are defined but not used

6-6 Checking C Programs with lint

6.4.1

< Arguments to a function call that are not used
= Functions that can return either with or without values
= Functions that return values that are never used

= Programs that use the value of a function when the function does not
return a value

Details on each of these potential problem areas are provided in the sections

that follow.

Inconsistent Function Return

If a function returns a value under one set of conditions but not under
another, you cannot predict the results of the program. The 1int program
checks functions for this type of behavior. For example, if both of the
following statements are in a function definition, a program calling the
function may or may not receive a return value:

return (expr) ;

return;

These statements cause the 1int program to write the following message
to point out the potential problem:

function name has return(e); and return

The 1int program also checks functions for returns that are caused by
reaching the end of the function code (an implied return). For example, in
the following part of a function, if a tests false, checkout calls £ix_it and
then returns with no defined return value:

checkout (a)

{

if (a) return (3);
fix it ();
}

These statements cause the 1int program to write the following message:

function checkout has return(e); and return

If £ix it, like exit, never returns, 1int still writes the message even
though nothing is wrong.

6.4.2 Function Values That Are Not Used

The 1int program checks for cases in which a function returns a value and
the calling program may not use the value. If the value is never used, the
function definition may be inefficient and should be examined to determine
whether it should be modified or eliminated. If the value is sometimes

Checking C Programs with lint 6-7

used, the function may be returning an error code that the calling program
does not check.

6.4.3 Disabling Function-Related Checking

To prevent 1int from checking for problems with functions, specify one or
more of the following options to the 1int command:

-x Do not check for variables that are declared in an extern
statement but never used.

-v Do not check for arguments to functions that are not used, except for
those that are also declared as register arguments.

-u Do not check for functions and external variables that are either
used and not defined or defined and not used. Use this option to
eliminate useless messages when you are running 1int on a subset
of files of a larger program. (When using 1int with some, but not
all, files that operate together, many of the functions and variables
defined in those files may not be used. Also, many functions and
variables defined elsewhere may be used.)

You can also place directives in the program to control checking:

= To prevent 1int from warning about unused function arguments, add
the following directive to the program before the function definition:

/*ARGSUSED*/

= To prevent 1int from writing messages about variable numbers of
arguments in calls to a function, add the following directive before the
function definition:

/*VARARGS n* /

To check the first several arguments and leave the later arguments
unchecked, add a digit (n) to the end of the VARARGS directive to give the
number of arguments that should be checked, such as:

/ *VARARGS2*/
When 1int reads this directive, it checks only the first two arguments.

= To suppress complaints about unused functions and function arguments
in an entire file, place the following directive at the beginning of the file:

/*LINTLIBRARY*/
This is equivalent to using the —v and —x options.

= To permit a standard prototype checking library to be formed from
header files by making function prototype declarations appear as
function definitions, use the following directive:

/*LINTSTDLIB[filename]*/

6—-8 Checking C Programs with lint

The /*LINTSTDLIB*/ directive implicitly activates the functions of the
/*NOTUSED*/ and /*LINTLIBRARY*/ directives to reduce warning
noise levels. When a file is referenced (£ilename), only prototypes

in that file are expanded. Multiple /*LINTSTDLIB filename */
statements are allowed. (See Section 6.10.1 for more details on the use
of /*LINTSTDLIB*/ directives.)

= To suppress warnings about all used but undefined external symbols
and functions that are subsequently encountered in the file, use the
following directive:

/*NOTDEFINED* /

= To suppress comments about unreachable code, use the following
directive:

/*NOTREACHED* /

When placed at appropriate points in a program (typically
immediately following a return, break, or continue statement), the
/*NOTREACHED*/ directive stops comments about unreachable code.
Note that 1int does not recognize the exit function and other functions
that may not return.

= To suppress warnings about all unused external symbols, functions,
and function parameters that are subsequently encountered in the file,
use the following directive:

/*NOTUSED* /

The /*NOTUSED*/ directive is similar to the /*LINTLIBRARY*/
directive, although /*NOTUSED*/ also applies to external symbols.

6.5 Checking on the Use of Variables Before They Are
Initialized

The 1int program checks for the use of a local variable (auto and register
storage classes) before a value has been assigned to it. Using a variable
with an auto (automatic) or register storage class also includes taking
the address of the variable. This is necessary because the program can use
the variable (through its address) any time after it knows the address of the
variable. Therefore, if the program does not assign a value to the variable
before it finds the address of the variable, 1int reports an error.

Because 1int only checks the physical order of the variables and their
usage in the file, it may write messages about variables that are initialized
properly (in execution sequence).

The 1int program recognizes and writes messages about:

« |nitialized automatic variables

Checking C Programs with lint 6-9

= Variables that are used in the expression that first sets them

< Variables that are set and never used

Note

The Tru64 UNIX operating system initializes static and
extern variables to zero. Therefore, 1int assumes that these
variables are set to zero at the start of the program and does not
check to see if they have been assigned a value when they are
used. When developing a program for a system that does not do
this initialization, ensure that the program sets static and
extern variables to an initial value.

6.6 Migration Checking

Use 1lint to check for all common programming techniques that might cause
problems when migrating programs from 32-bit operating systems to the
Tru64 UNIX operating system. The —Q option provides support for checking
ULTRIX and DEC OSF/1 Version 1.0 programs that you are migrating to
64-bit systems.

Because the —Q option disables checking for most other programming
problems, use this option only for migration checking. Suboptions are
available to suppress specific categories of checking. For example, entering
—Qa suppresses the checking of pointer alignment problems. You can
enter more than one suboption with the —Q option, for example, —QacP to
suppress checking for pointer alignment problems, problematic type casts,
and function prototype checks, respectively. For more information about
migration checking, see 1int(1).

6.7 Portability Checking

Use lint to help ensure that you can compile and run C programs using
different C language compilers and other systems.

The following sections indicate areas to check before compiling the program
on another system. Checking only these areas, however, does not guarantee
that the program will run on any system.

Note

The 11ib-port.1n library is brought in by using the —p option,
not by using the —1port option.

6-10 Checking C Programs with lint

6.7.1 Character Uses

Some systems define characters in a C language program as signed
guantities with a range from —128 to 127; other systems define characters
as positive values. The 1int program checks for character comparisons
or assignments that may not be portable to other systems. For example,
the following fragment may work on one system but fail on systems where
characters always take on positive values:

char c;

if((¢ = getchar()) <0)...
This statement causes the 1int program to write the following message:

nonportable character comparison

To make the program work on systems that use positive values for
characters, declare c as an integer because getchar returns integer values.

6.7.2 Bit Field Uses

Bit fields may produce problems when a program is transferred to another
system. Bit fields may be signed quantities on the new system. Therefore,
when constant values are assigned to a bit field, the field may be too small to
hold the value. To make this assignment work on all systems, declare the bit
field to be of type unsigned before assigning values to it.

6.7.3 External Name Size
When changing from one type of system to another, be aware of differences in
the information retained about external names during the loading process:
= The number of characters allowed for external names can vary.

= Some programs that the compiler command calls and some of the
functions that your programs call can further limit the number of
significant characters in identifiers. (In addition, the compiler adds a
leading underscore to all names and keeps uppercase and lowercase
characters separate.)

< On some systems, uppercase or lowercase may not be important or may
not be allowed.

When transferring from one system to another, you should always take the
following steps to avoid problems with loading a program:

1. Review the requirements of each system.

2. Run lint with the -p option.

Checking C Programs with lint 6-11

The -p option tells 1int to change all external symbols to lowercase and
limit them to six characters while checking the input files. The messages
produced identify the terms that may need to be changed.

6.7.4 Multiple Uses and Side Effects

Be careful when using complicated expressions because of the following
considerations:

The order in which complex expressions are evaluated differs in many C
compilers.

Function calls that are arguments of other functions may not be treated
the same as ordinary arguments.

Operators such as assignment, increment, and decrement may cause
problems when used on different systems.

The following situations demonstrate the types of problems that can result
from these differences:

If any variable is changed by a side effect of one of the operators and is
also used elsewhere in the same expression, the result is undefined.

The evaluation of the variable years in the following printf statement
is confusing because on some machines years is incremented before the
function call and on other machines it is incremented after the function
call:

printf ("%d %d\n", ++years, amort(interest, years));

The 1int program checks for simple scalar variables that may be
affected by evaluation order problems, such as in the following statement:

alil=bli++];
This statement causes the 1int program to write the following message:

warning: i evaluation order undefined

6.8 Checking for Coding Errors and Coding Style
Differences

Use lint to detect possible coding errors, and to detect differences from the
coding style that 1int expects. Although coding style is mainly a matter

of individual taste, examine each difference to ensure that the difference is
both needed and accurate. The following sections indicate the types of coding
and style problems that 1int can find.

6-12 Checking C Programs with lint

6.8.1 Assignments of Long Variables to Integer Variables

If you assign variables of type 1long to variables of type int, the program
may not work properly. The 1ong variable is truncated to fit in the integer
space and data may be lost.

An error of this type frequently occurs when a program that uses more than
one typedef is converted to run on a different system.

To prevent 1int from writing messages when it detects assignments of long
variables to int variables, use the -a option.

6.8.2 Operator Precedence

The 1int program detects possible or potential errors in operator precedence.
Without parentheses to show order in complex sequences, these errors can
be hard to find. For example, the following statements are not clear:

if (x&077==0). . . /* evaluated as: if(x & (077 == 0)) */
/* should be: if((x & 077) == 0) */
X<<2+40 /* evaluated as: x << (2+40) */

/* should be: (x<<2) + 40 */
/* shift x left 42 positions */

Use parentheses to make the operation more clearly understood. If you do
not, 1int issues a message.

6.8.3 Conflicting Declarations

The lint program writes messages about variables that are declared in
inner blocks in ways that conflict with their use in outer blocks. This
practice is allowed, but may cause problems in the program.

Use the -h option with the 1int program to prevent 1int from checking
for conflicting declarations.

6.9 Increasing Table Size

The 1int command provides the —N option and related suboptions to allow
you to increase the size of various internal tables at run time if the default
values are not enough for your program. These tables include:

< Symbol table
< Dimension table
= Local type table

e Parse tree

Checking C Programs with lint 6-13

These tables are dynamically allocated by the 1int program. Using the —N
option on large source files can improve performance.

6.10 Creating a lint Library

For programming projects that define additional library routines, you can
create an additional 1int library to check the syntax of the programs. Using
this library, the 1int program can check the new functions in addition to
the standard C language functions. To create a new lint library, follow
these steps:

1. Create an input file that defines the new functions.
2. Process the input file to create the 1int library file.

3. Run lint using the new library.

The following sections describe these steps.

6.10.1 Creating the Input File

The following example shows an input file that defines three additional
functions for 1int to check:

/*LINTLIBRARY*/
#include <dms.h>

int dmsadd(rmsdes, recbuf, reclen)
int rmsdes;
char *recbuf;
unsigned reclen;
{ return 0; }
int dmsclos(rmsdes)
int rmsdes;
{ return 0; }
int dmscrea(path, mode, recfm, reclen)
char *path;
int mode;
int recfm;
unsigned reclen;
{ return 0; }

The input file is a text file that you create with an editor. It consists of:

= Adirective to tell the cpp program that the following information is to be
made into a library of 1int definitions:

/*LINTLIBRARY*/

e A series of function definitions that define:

6-14 Checking C Programs with lint

— The type of the function (int in the example)
— The name of the function

— The parameters that the function expects

— The types of the parameters

— The value that the function returns

Alternatively, you can create a 1int library file from function prototypes.
For example, assume that the dms . h file includes the following prototypes:

int dmsadd(int,
char*,
unsigned) ;
int dmsclose (int) ;
int dmscrea (char*,
int,
int,
unsigned) ;

In this case, the input file contains the following:

/*LINTSTDLIB*/
#include <dms.h>

In the case where a header file may include other headers, the LINTSTDLIB
command can be restricted to specific files:

/*LINTSTDLIB dms.h*/

In this case, only prototypes declared in dms . h will be expanded. Multiple
LINTSTDLIB commands can be included.

In all cases, the name of the input file must have the prefix 11ib-1. For

example, the name of the sample input file created in this section could be
11lib-1dms. When choosing the name of the file, ensure that it is not the
same as any of the existing files in the /usr/ccs/1ib directory.

6.10.2 Creating the lint Library File

The following command creates a 1int library file from the input file
described in the previous section:

% lint [options] -c¢ 11lib ldms.c

This command tells 1int to create a 1int library file, 11ib-1dms.1n, using
the file 11ib-1dms.c as input. Touse 11ib-1dms.1n as a system lint
library (that is, a library specified in the -1x option of the 1int command),
move it to /usr/ccs/1lib. Use the —std or —std1 option to use ANSI
preprocessing rules to build the library.

Checking C Programs with lint 6-15

6.10.3 Checking a Program with a New Library

To check a program using a new library, use the 1int command with the
following format:

lint -lpgm filename.c

The variable pgm represents the identifier for the library, and the variable
filename. c represents the name of the file containing the C language
source code that is to be checked. If no other options are specified, the 1int
program checks the C language source code against the standard 1int
library in addition to checking it against the indicated special 1int library.

6.11 Understanding lint Error Messages

Although most error messages produced by 1int are self-explanatory,
certain messages may be misleading without additional explanation.
Usually, once you understand what a message means, correcting the error
is straightforward. The following is a list of the more ambiguous 1int
messages:

constant argument to NOT

A constant is used with the NOT operator (!). This is a common coding
practice and the message does not usually indicate a problem. The
following program demonstrates the type of code that can generate
this message:

)

% cat x.c
#include <stdio.h>

#define SUCCESS 0

main ()

{
int value = !SUCCESS;
printf ("value = %d\n", value);
return 0;

N~

¥ lint -u x.c

"x.c", line 7: warning: constant argument to NOT
s ./x
value = 1

)
)

The program runs as expected, even though 1int complains.

Recommended Action: Suppress these 1int warning messages by
using the -wC option.

6-16 Checking C Programs with lint

constant in conditional context

A constant is used where a conditional is expected. This problem occurs
often in source code due to the way in which macros are encoded. For

example:
typedef struct dummy g {

int lock;

struct _dummy g *head, *tail;
} DUMMY Q;

#define QWAIT 1
#define QNOWAIT O
#define DEQUEUE(q, elt, wait) \
for (;;) {
simple lock(&(qg)->lock) ;
if (queue empty (&(qg)->head))
if (wait) \
assert (q) ;
simple unlock(&(q) ->1lock) ;
continue;
} else
*(elt) = 0;
else
dequeue head(&(qg) ->head) ;
simple unlock(&(q) ->1lock) ;
break;

}

int doit (DUMMY Q *qg, int *elt)

{

DEQUEUE (q, elt, QNOWAIT);

}

The QWAIT or QNOWAIT option is passed as the third argument
(wait) and is later used in the if statement. The code is correct,
but 1int issues the warning because constants used in this
way are normally unnecessary and often generate wasteful or
unnecessary instructions.

Recommended Action: Suppress these 1int warning messages by
using the -wC option.

conversion from long may lose accuracy

A signed long is copied to a smaller entity (for example, an int). This
message is not necessarily misleading; however, if it occurs frequently,
it may or may not indicate a coding problem, as shown in the following
example:

Checking C Programs with lint 6-17

long BuffLim = 512;

void foo (buffer, size)
char *buffer;

int size;

{

register int count;
register int limit = size < (int)BufLimit ? size : (int)BufLim;

The 1int program reports the conversion error, even though the
appropriate (int) cast exists.

Recommended Action: Review code sections for which 1int reports
this message, or suppress the message by using the -w1l option.

declaration is missing declarator

A line in the declaration section of the program contains just a
semicolon (;). Although you would not deliberately write code like this,
it is easy to inadvertently generate such code by using a macro followed
by a semicolon. If, due to conditionalization, the macro is defined as
empty, this message can result.

Recommended Action: Remove the trailing semicolon.

degenerate unsigned comparison

An unsigned comparison is being performed against a signed value
when the result is expected to be less than zero. The following program
demonstrates this situation:

o

% cat x.c
#include <stdio.h>

unsigned long offset = -1;
main ()
{
if (offset < 0) {
puts ("code is Ok...");
return 0;
} else {
puts ("unsigned comparison failed...");
return 1;

cc -g -0 X X.C

lint x.c

"x.c" line 7: warning: degenerate unsigned comparison
s ./x

unsigned comparison failed...

o° o —~~

6-18 Checking C Programs with lint

Unsigned comparisons such as this will fail if the unsigned
variable contains a negative value. The resulting code may be
correct, depending upon whether the programmer intended a
signed comparison.

Recommended Action: You can fix the previous example in two ways:
= Adda (long) cast before offset in the 1 £ comparison.

= Change the declaration of of fset from unsigned long to long.
In certain cases, it might be necessary to cast the signed value to
unsigned.

function prototype not in scope

This error is not strictly related to function prototypes, as the message
implies. Actually, this error occurs from invoking any function that has
not been previously declared or defined.

Recommended Action: Add the function prototype declaration.

null effect

The 1int program detected a cast or statement that does nothing. The
following code segments demonstrate various coding practices that
cause lint to generate this message:

scsi_slot = device->ctlr_hd->slot,unit_str;
#define MCLUNREF (p) \
(MCLMAPPED (p) && --mclrefent [mtocl(p)] == 0)

]

(void) MCLUNREF (m) ;

Reason: unit_str does nothing.

Reason: (void) is unnecessary; MCLUNREF is a macro.

Recommended Action: Remove unnecessary casts or statements,
or update macros.

possible pointer alignment problem

A pointer is used in a way that may cause an alignment problem. The
following code segment demonstrates the type of code that causes 1int
to generate this message:

read (p, args, retval)
struct proc *p;
void *args;

Checking C Programs with lint 6-19

long *retval;

register struct args {

long fdes;
char *cbuf;
unsigned long count;
} *uap = (struct args *) args;

struct uio auio;
struct iovec aiov;

The line *uap = (struct args *) args causes the error to be
reported. Because this construct is valid and occurs throughout
the kernel source, this message is filtered out.

precision lost in field assignment

An attempt was made to assign a constant value to a bit field when
the field is too small to hold the value. The following code segment
demonstrates this problem:

o

% cat x.c
struct bitfield {

unsigned int block_len : 4;
} bt;

void
test ()

{

bt.block len = Oxff;

¥ lint -u x.c
"x.c", line 8: warning: precision lost in field assignment
cc -c -0 X X.C

This code compiles without error. However, because the bit field may
be too small to hold the constant, the results may not be what the
programmer intended and a run-time error may occur.

Recommended Action: Change the bit field size or assign a different
constant value.

unsigned comparison with 0
An unsigned comparison is being performed against zero when the
result is expected to be equal to or greater than zero.

The following program demonstrates this problem:

o

% cat z.c
#include <stdio.h>
unsigned offset = -1;

6—20 Checking C Programs with lint

main ()

{

if (offset > 0) {
puts ("unsigned comparison with 0 Failed");
return 1;

} else {
puts ("unsigned comparison with 0 is Ok");
return 0;

}

}

% cc -o z z.c

% lint z.c

"z.c", line 7: warning: unsigned comparison with 0?
s ./z

unsigned comparison with 0 Failed

o
)

Unsigned comparisons such as this will fail if the unsigned
variable contains a negative value. The resulting code may not
be correct, depending on whether the programmer intended a
signed comparison.

Recommended Action: You can fix the previous example in two ways:

e Addan (int) cast before offset in the if comparison.

= Change the declaration of of fset from unsigned to int.

6.12 Using Warning Class Options to Suppress lint
Messages

Several 1int warning classes have been added to the 1int program to allow
the suppression of messages associated with constants used in conditionals,
portability, and prototype checks. By using the warning class option to the
lint command, you can suppress messages in any of the warning classes.

The warning class option has the following format:

-wclass [class...]

All warning classes are active by default, but may be individually
deactivated by including the appropriate option as part of the class
argument. Table 6-1 lists the individual options.

Note

Several 1int messages depend on more than one warning class.
Therefore, you may need to specify several warning classes for
the message to be suppressed. Notes in Table 6-1 indicate which

Checking C Programs with lint 6-21

messages can be suppressed only by specifying multiple warning
classes.

For example, because 1int messages related to constants in conditional
expressions do not necessarily indicate a coding problem (as described in
Section 6.11), you may decide to use the -wC option to suppress them.

The -wC option suppresses the following messages:
e constant argument to NOT

e constant in conditional context

Because many of the messages associated with portability checks are related
to non-ANSI compilers and limit restrictions that do not exist in the C
compiler for Tru64 UNIX, you can use the -wp option to suppress them. The
-wp option suppresses the following messages:

= ambiguous assignment for non-ansi compilers
e illegal cast in a constant expression

e long in case or switch statement may be truncated in
non-ansi compilers

e nonportable character comparison

e possible pointer alignment problem, op %s

e precision lost in assignment to (sign-extended?) field
e precision lost in field assignment

* too many characters in character constant

Although the use of function prototypes is a recommended coding practice
(as described in Section 6.13), many programs do not include them. You can
use the -wP option to suppress prototype checks. The -wP option suppresses
the following messages:

e function prototype not in scope

* mismatched type in function argument

* mix of old and new style function declaration
e o01d style argument declaration

e use of old-style function definition in presence of
prototype

6—22 Checking C Programs with lint

Table 6-1: lint Warning Classes

Warning Class

Description of Class

a

Non-ANSI features. Suppresses:

= Partially elided initialization®

= Static function %s not defined or used?
Comparisons with unsigned values. Suppresses:

= Comparison of unsigned with negative constant
= Degenerate unsigned comparison

= Possible unsigned comparison with 0
Declaration consistency. Suppresses:

= External symbol type clash for %s

= lllegal member use: perhaps %s.%s?

= Incomplete type for %s has already been completed
= Redeclaration of %s

= Struct/union %s never defined?

%s redefinition hides earlier one2 ?

Heuristic complaints. Suppresses:

e Constant argument to NOT®

< Constant in conditional context®

= Enumeration type clash, op %s

= lllegal member use: perhaps %s.%s¢

« Null effect®

= Possible pointer alignment problem, op %sf
= Precedence confusion possible: parenthesize!9
= Struct/union %s never definedd

= %s redefinition hides earlier oned

K&R type code expected. Suppresses:

= Argument %s is unused in function %s"

= Function prototype not in scopeh

= Partially elided initialization"

= Static function %s is not defined or used"

= %s may be used before set? d

= %s redefinition hides earlier oneb d

e %s set but not used in function %s h

Checking C Programs with lint

6-23

Table 6-1: lint Warning Classes (cont.)

Warning Class Description of Class

1 Assign long values to non-long variables. Suppresses:
= Conversion from long may lose accuracy
= Conversion to long may sign-extend incorrectly
n Null-effect code. Suppresses:
= Null effect ©
o Unknown order of evaluation. Suppresses:
= Precedence confusion possible: parenthesize! P
= %s evaluation order undefined
p Various portability concerns. Suppresses:
= Ambiguous assignment for non-ANSI compilers
= lllegal cast in a constant expression

= Long in case or switch statement may be truncated in
non-ANSI compilers

= Nonportable character comparison
= Possible pointer alignment problem, op %s P
= Precision lost in assignment to (possibly) sign-extended field
= Precision lost in field assignment
= Too many characters in character constant
r Return statement consistency. Suppresses:
= Function %s has return(e); and return;
= Function %s must return a value
= main() returns random value to invocation environment
S Storage capacity checks. Suppresses:
= Array not large enough to store terminating null
= Constant value (0x%x) exceeds (0x%x)
u Proper usage of variables and functions. Suppresses:
= Argument %s unused in function %s?
= Static function %s not defined or used?
* %s set but not used in function %s?
= %s unused in function %s"

A Activate all warnings. Default option in 1int script. Specifying
another A class toggles the setting of all classes.

6—24 Checking C Programs with lint

Table 6-1: lint Warning Classes (cont.)

Warning Class Description of Class

c Constants occurring in conditionals. Suppresses:
= Constant argument to NOTP
= Constant in conditional context?
D External declarations are never used. Suppresses:
= Static %s %s unused
0 Obsolete features. Suppresses:
= Storage class not the first type specifier
P Prototype checks. Suppresses:
= Function prototype not in scope?
= Mismatched type in function argument
= Mix of old- and new-style function declaration
e Old-style argument declaration?
= Use of old-style function definition in presence of prototype
R Detection of unreachable code. Suppresses:

e Statement not reached

2 vou can also suppress this message by deactiviating the k warning class.
You must also deactivate the h warning class to suppress this message.

€ You must also deactivate the ¢ warning class to suppress this message.
You must also deactivate the d warning class to suppress this message.

€ You must also deactivate the n warning class to suppress this message.
You must also deactivate the p warning class to suppress this message.

9 You must also deactivate the o warning class to suppress this message.
Other flags may also suppress these messages.

6.13 Generating Function Prototypes for Compile-Time
Detection of Syntax Errors

In addition to correcting the various errors reported by the 1int program,
Compaq recommends adding function prototypes to your program for both
external and static functions. These declarations provide the compiler with
information it needs to check arguments and return values.

The cc compiler provides an option that automatically generates prototype
declarations. By specifying the -proto [is] option for a compilation, you
create an output file (with the same name as the input file but witha .H
extension) that contains the function prototypes. The i option includes
identifiers in the prototype, and the s option generates prototypes for static
functions as well.

Checking C Programs with lint 6-25

You can copy the function prototypes from a . H file and place them in the
appropriate locations in the source and include files.

6—26 Checking C Programs with lint

v

Debugging Programs with Third Degree

The Third Degree tool checks for leaking heap memory, referencing invalid
addresses and reading uninitialized memory in C and C++ programs.
Programs must first be compiled with either the -g or -gn option, where
n is greater than 0. Third Degree also helps you determine the allocation
habits of your program by listing heap objects and finding wasted memory.
It accomplishes this by instrumenting executable objects with extra code
that automatically monitors memory management services and load/store
instructions at run time. The requested reports are written to one or more
log files that can optionally be displayed, or associated with source code by
using the xemacs(1) editor.

By default, Third Degree checks only for memory leaks, resulting in fast
instrumentation and run-time analysis. The other more expensive and
intrusive checks are selected with options on the command line. See
third(1) for more information.

You can use Third Degree for the following types of applications:

Applications that allocate memory by using the malloc, calloc,
realloc, valloc, alloca, and sbrk functions and the C++ new
function. You can also use Third Degree to instrument programs using
other memory allocators, such as the mmap function, but it will not check
accesses to the memory obtained in this manner. If your application uses
mmap, see the description of the -mapbase option in third(l).

Third Degree detects and forbids calls to the brk function. Furthermore,
if your program allocates memory by partitioning large blocks that it
obtained by using the sbrk function, Third Degree may not be able to
precisely identify memory blocks in which errors occur.

Applications that call fork(2). You must specify the -fork option with
the third(1) command.

Applications that use the Tru64 UNIX implementation of POSIX
threads (pthread(3)). You must specify the -pthread option with the
third(l) command. In pthread programs, Third Degree does not check
system-library routines (for example, 1ibc and 1ibpthread) for access
to invalid addresses or uninitialized variables; therefore, strcpy and
other such routines will not be checked.

Applications that use 31-bit heap addresses.

Debugging Programs with Third Degree 7-1

7.1 Running Third Degree on an Application
To invoke Third Degree, use the third(1l) command as follows:
third [option...] app [argument...]

In this command synopsis, option selects one or more options beyond the
default nonthreaded leak checking, app is the name of the application, and
argument represents one or more optional arguments that are passed to the
application if you want to run the instrumented program immediately. (Use
the - run option if app needs no arguments.)

The instrumented program, named app.third (see third(l)), differs from
the original as follows:

= The code is larger and runs more slowly because of the additional
instrumentation code that is inserted. The amount of overhead depends
on the number and nature of the specified options.

= To detect errant use of uninitialized data, Third Degree initializes
all otherwise uninitialized data to a special pattern (Oxfff8a5a5, or as
specified in the -uninit option). This can cause the instrumented
program to behave differently, behave incorrectly, or crash (particularly
if this special pattern is used as a pointer). All of these behaviors
indicate a bug in the program. You can take advantage of this by running
regression tests on the instrumented program, and you can investigate
problems using the third(l) command’s -g option and running a
debugger. Third Degree poisons memory in this way only if the -uninit
option is specified (for example, -uninit heap+stack). Otherwise,
most instrumented programs run just like the original.

= Each allocated heap memory object is larger because Third Degree pads
it to allow boundary checking. You can adjust the amount of padding by
specifying the -pad option.

= When memory is deallocated with free or delete, it is held back from
the free pool to help detect invalid access. Adjust the holding queue
size with the -free option.

Third Degree writes error messages in a format similar to that used by the C
compiler. It writes them to a log file named app.31og, by default. You can
use emacs to automatically point to each error in sequence. In emacs, use
Esc/X compile, replace the default make command with a command such
as cat app.3log, and step through the errors as if they were compilation
errors, with Ctrl/X. .

You can change the name used for the log file by specifying one of the
following options:

7-2 Debugging Programs with Third Degree

—pids

Includes the process identification number (PID) in the log file name.

—dirname directory-name

Specifies the directory path in which Third Degree creates its log file.

-fork

Includes the PID in the name of the log file for each forked process.

Depending on the option supplied, the log file's name will be as follows:

Option Filename Use

None or —fork parent app.3log Default
—pids or -fork child app.12345.31og Include PID
—dirname /tmp /tmp/app.3log Set directory

—dirname /tmp -pids /tmp/app.12345.31log Set directory and PID

Errors in signal handlers may be reported in an additional .sig.31log
option.

7.1.1 Using Third Degree with Shared Libraries

Errors in an application, such as passing too small a buffer to the strcpy
function, are often caught in library routines. Third Degree supports the

instrumentation of shared libraries; it instruments programs linked with

either the —-non_shared or the —call shared option.

The following options let you determine which shared libraries are
instrumented by Third Degree:

—all

Instruments all shared libraries that were linked with the call-shared
executable.

—excobj objname
Excludes the named shared library from instrumentation. You can use
the —excobj option more than once to specify several shared libraries.
—incobj objname

Instruments the named shared library. You can use the —incobj
option more than once to specify several shared libraries, including
those loaded using dlopen ().

Debugging Programs with Third Degree 7-3

-Ldirectory

Tells Third Degree where to find the program’s shared libraries if they
are not in the standard places known to the linker and loader.

When Third Degree finishes instrumenting the application, the current
directory contains an instrumented version of each specified shared library,
and at least minimally instrumented versions of 1ibc. so, libexx. so, and
libpthread. so, as appropriate. The instrumented application needs to use
these versions of the libraries. Define the LD LIBRARY PATH environment
variable to tell the instrumented application where the instrumented shared
libraries reside. The third(1) command will do this automatically if you
specify the -run option or you specify arguments to the application (which
also cause the instrumented program to be executed).

By default, Third Degree does not fully instrument any of the shared
libraries used by the application, though it does have to minimally
instrument 1ibc.so, libexx.so, and 1ibpthread. so when used.

This makes the instrumentation operation much faster and causes the
instrumented application to run faster as well. Third Degree detects and
reports errors in the instrumented portion normally, but it does not detect
errors in the uninstrumented libraries. If your partially instrumented
application crashes or malfunctions and you have fixed all of the errors
reported by Third Degree, reinstrument the application and all of its shared
libraries and run the new instrumented version, or use Third Degree’s -g
option to investigate the problem in a debugger.

Third Degree needs to instrument a shared library (but only minimally,

by default) to generate error reports that include stack traces through its
procedures. Also, a debuggable procedure (compiled with the -g option, for
example) must appear within the first few stack frames nearest the error.
This avoids printing spurious errors that the highly optimized and assembly
code in system libraries can generate. Use the -hide option to override
this feature.

For pthread programs, Third Degree does not check some system shared
libraries (including 1ibc) for errors, because doing so would not be thread
safe.

7.2 Debugging Example

Assume that you must debug the small application represented by the
following source code (ex. c):

#include <assert.h>

1

2

3 int GetValue() {
4 int qg;

7-4 Debugging Programs with Third Degree

5 int *r=&q;

6 return q; /* q is uninitialized */
7}

8

9 long* GetArray(int n) {

10 long* t = (long*) malloc(n * sizeof (long)) ;
11 t[0] = GetValue() ;

12 t[0] = t[1]+1; /* t[1l] is uninitialized */
13 t[1] = -1;

14 t[n] = n; /* array bounds error*/
15 if (n<10) free(t); /* may be a leak */

16 return t;

17}

18

19 main() {

20 long* t = GetArray (20) ;

21 t = GetArray (4);

22 free(t) ; /* already freed */

23 exit (0) ;

24 |}

The following sections explain how to use Third Degree to debug this sample
application.

7.2.1 Customizing Third Degree

Command-line options are used to turn on and off various capabilities of
Third Degree.

If you do not specify any options, Third Degree instruments the program as
follows but does not run the instrumented program or display the resulting
.31og file(s):

= Detect leaks at program exit.

= Do not check for memory errors (invalid addresses or uninitialized
values).

= Do not analyze the heap-usage history.

You can run the instrumented application with a command such

as ./app.third argl arg2 after setting the LD LIBRARY PATH
environment variable. Alternatively, you can append the application
arguments to the third(l) command line and/or specify the -run or
-display options. You can view the resulting .31log file manually or by
specifying the -display option.

To add checks for memory errors, specify the -invalid option and/or the
-uninit option.

Debugging Programs with Third Degree 7-5

You can abbreviate the -invalid option, like all third(l) options, to three
letters (-inv). It tells Third Degree to check that all significant load and
store instructions are accessing valid memory addresses that application
code should. This option carries a noticeable performance overhead, but it
has little effect on the run-time environment.

The -uninit option takes a “+”-separated list of keyword arguments. This
is usually heap+stack (or h+s), which asks that both heap memory and
stack memory be checked for all significant load instructions. Checking
involves prefilling all stack frames and heap objects allocated with malloc,
and so on (but not calloc), with the unusual pattern 0xfff8a5a5, and
reporting any load instruction that reads such a value out of memory. That
is, the selected memory is poisoned, much as by the cc -trapuv option, to
highlight code that reads uninitialized data areas. If the offending code was
selected for instrumentation, Third Degree will report each case (once only)
in the .31o0g file. However, whether or not the code was instrumented,
the code will load and process the poison pattern instead of the value that
the original program would have loaded. This may cause the program to
malfunction or crash, because the pattern is not a valid pointer, character,
or floating-point number, and it is a negative integer. Such behavior is a
sign of a bug in the program.

You can identify malfunctions by running regression tests on the
instrumented program, specifying -quiet and omitting -display if
running within third(1). You can debug malfunctions or crashes by looking
at the error messages in the .31og file and by running the instrumented
program in a debugger such as dbx(1), or 1ladebug(l) for C++ and pthread
applications. To use a debugger, compile with a -g option and specify -g on
the third(1) command line as well.

The -uninit option can report false errors, particularly for variables, array
elements, and structure members of less than 32 bits (for example, short,
char, bit-field). See Section 7.6. However, using the -uninit heap+stack
option can improve the accuracy of leak reports.

To add a heap-usage analysis, specify the -history option. This enables
the -uninit heap option.

7.2.2 Modifying the Makefile

Add the following entry to the application’s makefile:

ex.third: ex
third ex

Build ex.third as follows:

> make ex.third
third ex

7-6 Debugging Programs with Third Degree

Now run the instrumented application ex.third and check the log
ex.3log. Alternatively, run it and display the .31og file immediately by
adding the -display option before the program name.

7.2.3 Examining the Third Degree Log File

The ex.31og file contains several parts that are described in the following
sections, assuming this command line as an example:

> third -invalid -uninit h+s -history -display ex

7.2.3.1 List of Run-Time Memory Access Errors

The types of errors that Third Degree can detect at run-time include such
conditions as reading uninitialized memory, reading or writing unallocated
memory, freeing invalid memory, and certain serious errors likely to cause
an exception. For each error, an error entry is generated with the following
items:

A banner line with the type of error and number — The error banner
line contains a three-letter abbreviation of each error (see Section 7.3
for a list of the abbreviations). If the process that caused the error is
not the root process (for instance, because the application forks one or
more child processes), the PID of the process that caused the error also
appears in the banner line.

An error message line formatted to look like a compiler error message —
Third Degree lists the file name and line number nearest to the location
where the error occurred. Usually this is the precise location where the
error occurred, but if the error occurs in a library routine, it can also
point to the place where the library call occurred.

One or more stack traces — The last part of an error entry is a stack
trace. The first procedure listed in the stack trace is the procedure in
which the error occurred.

The following examples show entries from the log file:

The following log entry indicates that a local variable of procedure
GetValue was read before being initialized. The line number confirms
that g was never given a value.

—— rus -- 0 --
ex.c: 6: reading uninitialized local variable g of GetValue
GetValue ex, ex.c, line 6
GetArray ex, ex.c, line 11
main ex, ex.c, line 20
__start ex

Debugging Programs with Third Degree 7-7

< In the following log entry, an error is reported at line 12:
t[0] = t[1]+1

Because the array was not initialized, the program is using the
uninitialized value of t [1] in the addition. The memory block containing
array t is identified by the call stack that allocated it. Stack variables
are identified by name if the code was compiled with the -g option.

—— ruh -- 1 --
ex.c: 12: reading uninitialized heap at byte 8 of 160-byte block
GetArray ex, ex.c, line 12
main ex, ex.c, line 20
__start ex

This block at address 0x14000ca20 was allocated at:

malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
__start ex

= The following log entry indicates that the program has written to the
memory location one position past the end of the array, potentially
overwriting important data or even Third Degree internal data
structures. Keep in mind that certain errors reported later could be a
consequence of this error:

—— wih -- 2 --
ex.c: 1l4: writing invalid heap 1 byte beyond 160-byte block
GetArray ex, ex.c, line 14
main ex, ex.c, line 20
__start ex
This block at address 0x14000ca20 was allocated at:
malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
__start ex

= The following log entry indicates that an error occurred while freeing
memory that was previously freed. For errors involving calls to the free
function, Third Degree usually gives three call stacks:

— The call stack where the error occurred
— The call stack where the object was allocated

— The call stack where the object was freed

Upon examining the program, it is clear that the second call to GetArray
(line 20) frees the object (line 14), and that another attempt to free the
same object occurs at line 21:

—— fof -- 3 --
ex.c: 22: freeing already freed heap at byte 0 of 32-byte block
free ex
main ex, ex.c, line 22
__start ex

7-8 Debugging Programs with Third Degree

This block at address 0x14000dla0 was allocated at:

malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 21
__start ex

This block was freed at:

free ex
GetArray ex, ex.c, line 15
main ex, ex.c, line 21
__start ex

See Section 7.3 for more information.

7.2.3.2 Memory Leaks

The following excerpt shows the report generated when leak detection on
program exit, the default, is selected. The report shows a list of memory
leaks sorted by importance and by call stack.

New blocks in heap after program exit

Leaks - blocks not yet deallocated but apparently not in use:

* A leak is not referenced by static memory, active stack frames,
or unleaked blocks, though it may be referenced by other leaks.

* A leak "not referenced by other leaks" may be the root of a leaked tree.

* A block referenced only by registers, unseen thread stacks, mapped memory,
or uninstrumented library data is falsely reported as a leak. Instrumenting
shared libraries, if any, may reduce the number of such cases.

* Any new leak lost its last reference since the previous heap report, if any.

A total of 160 bytes in 1 leak were found:

160 bytes in 1 leak (including 1 not referenced by other leaks) created at:

malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
__ start ex

Objects - blocks not yet deallocated and apparently still in use:
An object is referenced by static memory, active stack, or other objects.

* A leaked block may be falsely reported as an object if a pointer to it
remains when a new stack frame or heap block reuses the pointer’s memory.
Using the option to report uninitialized stack and heap may avoid such cases.

* Any new object was allocated since the previous heap report, if any.

A total of 0 bytes in 0 objects were found:

Upon examining the source, it is clear that the first call to GetArray did
not free the memory block, nor was it freed anywhere else in the program.
Moreover, no pointer to this block exists in any other heap block, so it
qualifies as “not referenced by other leaks”. The distinction is often
useful to find the real culprit for large memory leaks.

Consider a large tree structure and assume that the pointer to the root has
been erased. Every block in the structure is a leak, but losing the pointer
to the root is the real cause of the leak. Because all blocks but the root still
have pointers to them, albeit only from other leaks, only the root will be
specially qualified, and therefore the likely cause of the memory loss.

Debugging Programs with Third Degree 7-9

See Section 7.4 for more information.

7.2.3.3 Heap History

When heap history is enabled, Third Degree collects information about
dynamically allocated memory. It collects this information for every block
that is freed by the application and for every block that still exists (including
memory leaks) at the end of the program’s execution. The following excerpt
shows a heap allocation history report:

Heap Allocation History for parent process

Legend for object contents:
There is one character for each 32-bit word of contents.
There are 64 characters, representing 256 bytes of memory per line.
: word never written in any object.
'z’ : zero in every object.
i’ : a non-zero non-pointer value in at least one object.
‘pp’: a valid pointer or zero in every object.
’ss’: a valid pointer or zero in some but not all objects.

192 bytes in 2 objects were allocated during program execution:

160 bytes allocated (8% written) in 1 objects created at:

malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
_ start ex
Contents:
O: d.dd. ...

32 bytes allocated (38% written) in 1 objects created at:

malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 21
_ start ex
Contents:
0: i.dii....

The sample program allocated two objects for a total of 192 bytes (8*(20+4)).
Because each object was allocated from a different call stack, there are two
entries in the history. Only the first few bytes of each array were set to a
valid value, resulting in the written ratios shown.

If the sample program was a real application, the fact that so little of the
dynamic memory was ever initialized is a warning that it was probably
using memory ineffectively.

See Section 7.4.4 for more information.

7-10 Debugging Programs with Third Degree

7.2.3.4 Memory Layout

The memory layout section of the report summarizes the memory used by
the program by size and address range. The following excerpt shows a
memory layout section:

memory layout at program exit

heap 40960 bytes [0x14000c000-0x140016000]
stack 2720 bytes [0x11ffff560-0x120000000]
ex data 48528 bytes [0x140000000-0x14000bd90]
ex text 1179648 bytes [0x120000000-0x120110000]

The heap size and address range indicated reflect the value returned by
sbrk (0), (the heap break) at program exit. Therefore, the size is the total
amount of heap space that has been allotted to the process. Third Degree
does not support the use of the malloc variables that would alter this
interpretation of sbrk (0).

The stack size and address range reflect the lowest address reached by the
main thread’s stack pointer during execution of the program. That is, Third
Degree keeps track of it through each instrumented procedure call. For this
value to reflect the maximum stack size, all shared libraries need to have
been instrumented (for example, using the third(1) command’'s -all option
for a nonthreaded program and - incobj options for libraries loaded with
dlopen (3)). The stacks of threads (created using pthread create) are
not included.

The data and text sizes and address ranges show where the static portions of
the executable and each shared library were loaded.

7.3 Interpreting Third Degree Error Messages

Third Degree reports both fatal errors and memory access errors. Fatal
errors include the following:

= Bad parameter
For example, malloc (-10).
= Failed allocator

For example, malloc returned a zero, indicating that no memory is
available.

= Call to the brk function with a nonzero argument
Third Degree does not allow you to call brk with a nonzero argument.

= Memory allocation not permitted in signal handler.

Debugging Programs with Third Degree 7-11

A fatal error causes the instrumented application to crash after flushing the
log file. If the application crashes, first check the log file and then rerun it
under a debugger, having specified -g on the third(1) command line.

Memory errors include the following (as represented by a three-letter
abbreviation):

Name Error
ror Reading out of range: not heap, stack, or static

(for example, NULL)
ris Reading invalid data in stack: probably an array bound error
rus Reading an uninitialized (but valid) location in stack
rih Reading invalid data in heap: probably an array bound error
ruh Reading an uninitialized (but valid) location in heap
wor Writing out of range: neither in heap, stack, or static area
wis Writing invalid data in stack: probably an array bound error
wih Writing invalid data in heap: probably an array bound error
for Freeing out of range: neither in heap or stack
fis Freeing an address in the stack
fih Freeing an invalid address in the heap: no valid object there
fof Freeing an already freed object
fon Freeing a null pointer (really just a warning)
mrn malloc returned null

You can suppress the reporting of specific memory errors by specifying one
or more -ignore options. This is often useful when the errors occur within
library functions for which you do not have the source. Third Degree allows
you to suppress specific memory errors in individual procedures and files,
and at particular line numbers. See third(l) for more details.

Alternatively, do not select the library for checking, by specifying -excobj
or omitting the -all or -incobj option.
7.3.1 Fixing Errors and Retrying an Application

If Third Degree reports many write errors from your instrumented program,
fix the first few errors and then reinstrument the program. Not only can
write errors compound, but they can also corrupt Third Degree’s internal
data structures.

7-12 Debugging Programs with Third Degree

7.3.2 Detecting Uninitialized Values

Third Degree’s technique for detecting the use of uninitialized values can
cause programs that have worked to fail when instrumented. For example,
if a program depends on the fact that the first call to the malloc function
returns a block initialized to zero, the instrumented version of the program
will fail because Third Degree poisons all blocks with a nonzero value
(Oxfff8a5a5, by default).

When it detects a signal, perhaps caused by dereferencing or otherwise using
this uninitialized value, Third Degree displays a message of the following
form:

*** Fatal signal SIGSEGV detected.
**x* This can be caused by the use of uninitialized data.
*** Please check all errors reported in app.3log.

Using uninitialized data is the most likely reason for an instrumented
program to crash. To determine the cause of the problem, first examine
the log file for reading-uninitialized-stack and reading-uninitialized-heap
errors. Very often, one of the last errors in the log file reports the cause
of the problem.

If you have trouble pinpointing the source of the error, you can confirm
that it is indeed due to reading uninitialized data by removing one of the
heap and stack options from the -uninit option (or the whole option).
Removing stack disables the poisoning of newly allocated stack memory
that Third Degree normally performs on each procedure entry. Similarly,
removing heap disables the poisoning of heap memory performed on each
dynamic memory allocation. By using one or both options, you can alter the
behavior of the instrumented program and may likely get it to complete
successfully. This will help you determine which type of error is causing the
instrumented program to crash and, as a result, help you focus on specific
messages in the log file.

Alternatively, run the instrumented program in a debugger (using the -g
option of the third(1) command) and remove the cause of the failure. You
need not use the -uninit option if you just want to check for memory leaks;
however, using the -uninit option can make the leak reports more accurate.

If your program establishes signal handlers, there is a small chance that
Third Degree’s changing of the default signal handler may interfere with it.
Third Degree defines signal handlers only for those signals that normally
cause program crashes (including SIGILL, SIGTRAP, SIGABRT, SIGEMT,
SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, and SIGXFSZ). You can
disable Third Degree’s signal handling by specifying the -signals option.

Debugging Programs with Third Degree 7-13

7.3.3 Locating Source Files

Third Degree prefixes each error message with a file and line number in the
style used by compilers. For example:

——— fof -- 3 --
ex.c: 21: freeing already freed heap at byte 0 of 32-byte block
free malloc.c
main ex.c, line 21
___start crt0.s

Third Degree tries to point as closely as possible to the source of the error,
and it usually gives the file and line number of a procedure near the top
of the call stack when the error occurred, as in this example. However,
Third Degree may not be able to find this source file, either because it is in
a library or because it is not in the current directory. In this case, Third
Degree moves down the call stack until it finds a source file to which it can
point. Usually, this is the point of call of the library routine.

To tag these error messages, Third Degree must determine the location of
the program’s source files. If you are running Third Degree in the directory
containing the source files, Third Degree will locate the source files there.
If not, to add directories to Third Degree’s search path, specify one or more
-use options. This allows Third Degree to find the source files contained
in other directories. The location of each source file is the first directory on
the search path in which it is found.

7.4 Examining an Application’s Heap Usage

In addition to run-time checks that ensure that only properly allocated
memory is accessed and freed, Third Degree provides two ways to
understand an application’s heap usage:

= It can find and report memory leaks.

= It can list the contents of the heap.
By default, Third Degree checks for leaks when the program exits.
This section discusses how to use the information provided by Third Degree
to analyze an application’s heap usage.
7.4.1 Detecting Memory Leaks

A memory leak is an object in the heap to which no in-use pointer exists.
The object can no longer be accessed and can no longer be used or freed. It is
useless, will never go away, and wastes memory.

Third Degree finds memory leaks by using a simple trace-and-sweep
algorithm. Starting from a set of roots (the currently active stack and the

7-14 Debugging Programs with Third Degree

static areas), Third Degree finds pointers to objects in the heap and marks
these objects as visited. It then recursively finds all potential pointers inside
these objects and, finally, sweeps the heap and reports all unmarked objects.
These unmarked objects are leaks.

The trace-and-sweep algorithm finds all leaks, including circular structures.
This algorithm is conservative: in the absence of type information, any
64-bit pattern that is properly aligned and pointing inside a valid object in
the heap is treated as a pointer. This assumption can infrequently lead to
the following problems:

= Third Degree considers pointers either to the beginning or interior of an
object as true pointers. Only objects with no pointers to any address
they contain are considered leaks.

< If an instrumented application hides true pointers by storing them in the
address space of some other process or by encoding them, Third Degree
will report spurious leaks. When instrumenting such an application with
Third Degree, specify the -mask option. This option lets you specify a
mask that is applied as an AND operator against every potential pointer.
For example, if you use the top three bits of pointers as flags, specify a
mask of Ox1fffffffffffffff. See third(1).

= Third Degree can confuse any bit pattern (such as string, integer,
floating-point number, and packed struct) that looks like a heap pointer
with a true pointer, thereby missing a true leak.

= Third Degree does not notice pointers that optimized code stores only in
registers, not in memory. As a result, it may produce false leak reports.

To maximize the accuracy of the leak reports, use the -uninit h+s and
-all options. However, the -uninit option can cause the program to fail,
and the -all option increases the instrumentation and run time. So, just
check both the Leaks and Objects listings, and evaluate for possible program
errors.

7.4.2 Reading Heap and Leak Reports

You can supply command options that tell Third Degree to generate heap
and leak reports incrementally, listing only new heap objects or leaks since
the last report or listing all heap objects or leaks. You can request these
reports when the program terminates, or before or after every nth call to a
user-specified function. See third(1) for details of the -blocks, -every,
-before, and -after options. The -blocks option (the default) reports
both the leaks and the objects in the heap, so you will never miss one in
the event that it is classified as the wrong type. The .31og file describes
the situations where incorrect classification can occur, along with ways to
improve its accuracy.

Debugging Programs with Third Degree 7-15

You should pay closest attention to the leaks report, because Third Degree
has found evidence suggesting that the reported blocks really are leaked,
whereas the evidence suggests that the blocks reported as objects were
not. However, if your debugging and examination of the program suggests
otherwise, you can reasonably deduce that the evidence was misleading to
the tool.

Third Degree lists memory objects and leaks in the report by decreasing
importance, based on the number of bytes involved. It groups together
objects allocated with identical call stacks. For example, if the same call
sequence allocates a million one-byte objects, Third Degree reports them as
a 1-MB group containing a million allocations.

To tell Third Degree when objects or leaks are the same and should be
grouped in the report (or when objects or leaks are different and should not
be thus grouped), specify the -depth option. It sets the depth of the call
stack that Third Degree uses to differentiate leaks or objects. For example,
if you specify a depth of 1 for objects, Third Degree groups valid objects in
the heap by the function and line number that allocated them, no matter
what function was the caller. Conversely, if you specify a very large depth for
leaks, Third Degree groups only leaks allocated at points with identical call
stacks from main upwards.

In most heap reports, the first few entries account for most of the storage,
but there is a very long list of small entries. To limit the length of the report,
you can use the -min option. It defines a percentage of the total memory
leaked or in use by an object as a threshold. When all smaller remaining
leaks or objects amount to less than this threshold, Third Degree groups
them together under a single final entry.

Notes

Because the realloc function always allocates a new object (by
involving calls to malloc, copy, and free), its use can make
interpretation of a Third Degree report counterintuitive. An
object can be listed twice under different identities.

Leaks and objects are mutually exclusive: an object must be
reachable from the roots.

7.4.3 Searching for Leaks

It may not always be obvious when to search for memory leaks. By default,
Third Degree checks for leaks after program exit, but this may not always be
what you want.

7-16 Debugging Programs with Third Degree

Leak detection is best done as near as possible to the end of the program
while all used data structures are still in scope. Remember, though, that the
roots for leak detection are the contents of the stack and static areas. If
your program terminates by returning from main and the only pointer to
one of its data structures was kept on the stack, this pointer will not be
seen as a root during the leak search, leading to false reporting of leaked
memory. For example:

1 main (int argc, char* argv(]) {

2 char* bytes = (char*) malloc(100);
3 exit (0) ;

4}

When you instrument this program, specifying -blocks all -before
exit will cause Third Degree to not find any leaks. When the program calls
the exit function, all of main’s variables are still in scope.

However, consider the following example:

1 main (int argc, char* argv(]) {
char* bytes = (char*) malloc(100);
3}

When you instrument this program, providing the same (or no) options,
Third Degree’s leak check may report a storage leak because main has
returned by the time the check happens. Either of these two behaviors may
be correct, depending on whether bytes was a true leak or simply a data
structure still in use when main returned.

N

Rather than reading the program carefully to understand when leak
detection should be performed, you can check for new leaks after a specified
number of calls to the specified procedure. Use the following options to
disable the default leak-checking and to request a leak before every 10,000th
call to the procedure proc_name:

-blocks cancel
-blocks new -every 10000 -before proc_name

7.4.4 Interpreting the Heap History

When you instrument a program using the -history option, Third Degree
generates a heap history for the program. A heap history allows you to see
how the program used dynamic memory during its execution. For example,
you can use this feature to eliminate unused fields in data structures or to
pack active fields to use memory more efficiently. The heap history also
shows memory blocks that are allocated but never used by the application.

When heap history is enabled, Third Degree collects information about each
dynamically allocated object at the time it is freed by the application. When
program execution completes, Third Degree assembles this information for

Debugging Programs with Third Degree 7-17

every object that is still alive (including memory leaks). For each object,
Third Degree looks at the contents of the object and categorizes each word as
never written by the application, zero, a valid pointer, or some other value.

Third Degree next merges the information for each object with what it has
gathered for all other objects allocated at the same call stack in the program.
The result provides you with a cumulative picture of the use of all objects

of a given type.

Third Degree provides a summary of all objects allocated during the life

of the program and the purposes for which their contents were used. The
report shows one entry per allocation point (for example, a call stack where
an allocator function such as malloc or new was called). Entries are sorted
by decreasing volume of allocation.

Each entry provides the following:

= Information about all objects that have been allocated

= Total number of bytes allocated

= Total number of objects that have been allocated

= Percentage of bytes of the allocated objects that have been written

= The call stack and a cumulative map of the contents of all objects
allocated by that call stack

The contents part of each entry describes how the objects were used. If
all allocated objects are not the same size, Third Degree considers only
the minimum size common to all objects. For very large allocations, it
summarizes the contents of only the beginning of the objects, by default,
the first kilobyte. You can adjust the maximum size value by specifying
the -size option.

In the contents portion of an entry, Third Degree uses one of the following
characters to represent each 32-bit longword that it examines:

Character Description

Dot (.) Indicates a longword that was never written in any of the objects,
a definite sign of wasted memory. Further analysis is generally
required to see if it is simply a deficiency of a test that never used
this field, if it is a padding problem solved by swapping fields or
choosing better types, or if this field is obsolete.

z Indicates a field whose value was always 0 (zero) in every object.

pp Indicates a pointer: that is, a 64-bit quantity that was a valid pointer
into the stack, the static data area, the heap (or was zero).

7-18 Debugging Programs with Third Degree

Character Description

SS Indicates a sometime pointer. This longword looked like a pointer
in at least one of the objects, but not in all objects. It could be a
pointer that is not initialized in some instances, or a union. However,
it could also be the sign of a serious programming error.

i Indicates a longword that was written with some nonzero value in at
least one object and that never contained a pointer value in any object.

Even if an entry is listed as allocating 100 MB, it does not mean that at any
point in time 100 MB of heap storage were used by the allocated objects. It
is a cumulative figure; it indicates that this point has allocated 100 MB
over the lifetime of the program. This 100 MB may have been freed, may
have leaked, or may still be in the heap. The figure simply indicates that
this allocator has been quite active.

Ideally, the fraction of the bytes actually written should always be close to
100 percent. If it is much lower, some of what is allocated is never used. The
common reasons why a low percentage is given include the following:

= A large buffer was allocated but only a small fraction was ever used.

= Parts of every object of a given type are never used. They may be
forgotten fields or padding between real fields resulting from alignment
rules in C structures.

= Some objects have been allocated but never used at all. Sometimes leak
detection will find these objects if their pointers are discarded. However,
if they are kept on a free list, they will be found only in the heap history.

7.5 Using Third Degree on Programs with Insufficient
Symbolic Information

If the executable you instrumented contains too little symbolic information
for Third Degree to pinpoint some program locations, Third Degree prints
messages in which procedure names or file names or line numbers are
unknown. For example:

—— rus -- 0 --
reading uninitialized stack at byte 40 of 176 in frame of main
proc_at 0x1200286f0 libc.so
pc = 0x12004a268 libc.so
main app, app.c, line 16
__start app

Third Degree tries to print the procedure name in the stack trace, but if the
procedure name is missing (because this is a static procedure), Third Degree
prints the program counter in the instrumented program. This information
enables you to find the location with a debugger. If the program counter is
unavailable, Third Degree prints the number of the unknown procedure.

Debugging Programs with Third Degree 7-19

Most frequently, the file name or line number is unavailable because the file
was compiled with the default -g0 option. In this case, Third Degree prints
the name of the object in which the procedure was found. This object may be
either the main application or a shared library.

By default, error reports are printed only if a stack frame with a source file
name and a line number appears within two frames of the top of the stack.
This hides spurious reports that can be caused by the highly optimized and
assembly language code in the system libraries. Use the -hide option to
hide fewer (or more) reports involving nondebuggable procedures.

If the lack of symbolic information is hampering your debugging, consider
recompiling the program with more symbolic information. Recompile with
the —g or -gloption and link without the —x option. Using -g will make
variable names appear in reports instead of the byte offset shown in the
previous example.

7.6 Validating Third Degree Error Reports

The following spurious errors can occur:

= Modifications to variables, array elements, or structure members that
are less than 32 bits in size (such as short, char, bit field), as in this

example:
void Packed() {
char c[4];
struct { int a:6; int b:9; int c:4} x;
c[0] = cl[1] = 1; /* rus errors here ... */
X.a = Xx.¢c = x.e = 3; /* ... maybe here */

}

Ignore any implausible error messages, such as those reported for
strcpy, memcpy, printf, and so on.

= Third Degree poisons newly allocated memory with a special value to
detect references to uninitialized variables (see Section 7.3.2). Programs
that explicitly store this special value into memory and subsequently
read it may cause spurious “reading uninitialized memory” errors.

If you think that you have found a false positive, you can verify it by using
a debugger on the procedure in which the error was reported. All errors
reported by Third Degree are detected at loads and stores in the application,
and the line numbers shown in the error report match those shown in the
disassembly output. Compile and instrument the program with the -g
option before debugging.

7.7 Undetected Errors

Third Degree can fail to detect real errors, such as the following:

7-20 Debugging Programs with Third Degree

Errors in operations on quantities smaller than 32 bits can go undetected
(for example, char, short, and bit-field). The -uninit repeat option
can expose such errors by checking more load and store operations,
which Third Degree usually considers too low a risk to check.

Third Degree cannot detect a chance access of the wrong object in the
heap. It can only detect memory accesses from objects. For example,
Third Degree cannot determine that a [1ast+100] is the same address
as b[0]. You can reduce the chances of this happening by altering the
amount of padding added to objects. To do this, specify the -pad option.

Third Degree may not be able to detect if the application walks past the
end of an array unless it also walks past the end of the array’s stack
frame or its heap object. Because Third Degree brackets objects in the
heap by guard words, it will miss small array bounds errors. (Guard
words are spare memory added at the ends of valid memory blocks to
detect overshoots.) In the stack, adjacent memory is likely to contain
local variables, and Third Degree may fail to detect larger bounds errors.
For example, issuing a sprintf operation to a local buffer that is much
too small may be detected, but if the array bounds are only exceeded by a
few words and enough local variables surround the array, the error can
go undetected. Use the cc command’s -check bounds option to detect
array bounds violations more precisely.

Hiding pointers by encoding them or by keeping pointers only to the
inside of a heap object will degrade the effectiveness of Third Degree’s
leak detection.

Third Degree may detect more uninitialized variables if compiler
optimization is disabled (that is, with the -00 and -inline none
options).

At times, some leaks may not be reported, because old pointers were
found in memory. Selecting checks for uninitialized heap memory
(-uninit heap) may reduce this problem.

Any degree of optimization will skew leak-reporting results, because
instructions that the compiler considers nonessential may be optimized
away.

Debugging Programs with Third Degree 7-21

8

Profiling Programs to Improve
Performance

Profiling is a method of identifying sections of code that consume large
portions of execution time. In a typical program, most execution time is
spent in relatively few sections of code. To improve performance, the greatest
gains result from improving coding efficiency in time-intensive sections.

Tru64 UNIX supports four approaches to performance improvement:

= Automatic and profile-directed optimizations (see Section 10.1, which
covers all such optimization techniques).

= Manual design and code optimizations (see Section 8.3).
= Minimizing system-resource usage (see Section 8.4).

= \Verifying the significance of test cases (see Section 8.5).

One approach might be enough, but more might be beneficial if no single
approach addresses all aspects of a program'’s performance. Automatic and
profile-directed optimizations provide the simplest means of performance
improvement. This chapter describes the last three (manual) performance
improvement techniques and the tools provided by Tru64 UNIX to support
them. In addition, the following topics are covered in this chapter:

= The source code for a sample program (sample) that is used in examples
throughout this chapter (Section 8.1)

= Compilation options for profiling (Section 8.2)

= Selecting profiling information to display (Section 8.6)
= Merging profile data files (Section 8.7)

= Profiling multithreaded applications (Section 8.8)

= Using monitor routines to control profiling (Section 8.9)

For more information, see the following reference pages:

= Profiling: cc(1), hiprof(1), pixie(l), third(l), uprofile(l), prof(1),
gprof(l)

= System monitoring: ps(1), swapon(8), vmstat(l)

= Performance Manager, available from the Tru64 UNIX Associated
Products Volume 1 installation media: pmgr(8X)

Profiling Programs to Improve Performance 8-1

= Graphical tools, available from the Graphical Program Analysis subset of
the Tru64 UNIX Associated Products Volume 1 installation media, or as
part of the Compaq Enterprise Toolkit for Windows/NT desktops with
the Microsoft VisualStudio97: dxheap(l), dxprof(l), mview(l), pview(l)

= Visual Threads, available from the Tru64 UNIX Associated Products
Volume 1 installation media: dxthreads(1). Use Visual Threads to
analyze a multithreaded appplication for potential logic and performance
problems.

= The System Configuration and Tuning manual.

8.1 Profiling Sample Program

The examples in this chapter refer to the program sample, whose source code
is contained in the files profsample.c (main program), add vector.c,
mul by scalar.c,print it.c, and profsample.h. These files are
shown in Example 8-1.

Example 8-1: Profiling Sample Program

khkkkkhkkhkkkhkkhkhkkhkkhkhkkhkkkkx profsample_c khkkkkkkkhkkhkhkkk*k

#include <math.h>
#include <stdio.h>
#include "profsample.h"

static void mul by pi(double aryl[])

{
}

void main ()

{

mul by scalar(ary, LEN/2, 3.14159);

double aryl [LEN];
double *ary2;
double sum = 0.0;
int 1i;

ary2 = malloc (LEN * sizeof (double)) ;
for (i=0; i<LEN; i++) {
aryl[i] = 0.0;
ary2[i] = sqgrt((double)i);
}
mul by pi(aryl);
mul by scalar(ary2, LEN, 2.71828);
for (i=0; 1i<100; i++)
add vector (aryl, ary2, LEN);
for (i=0; 1i<100; i++)
sum += aryll[i];
if (sum < 0.0)

8-2 Profiling Programs to Improve Performance

Example 8-1: Profiling Sample Program (cont.)

print it (0.0);
else
print it (sum) ;

}

khkkkkkhkkkhkkhkhkkhkkhkhkkhkkkkx profsample_h: khkkkkkhkkkhkkhkhkkhkhkhkkhkkhkkkkk*

void mul by scalar(double ary[], int len, double num) ;
void add vector (double aryal], double aryb[], int len);
void print it (double value) ;

#define LEN 100000

khkkkkhkkkkhkkhkkhkkkhkk*k add vector_c: khkkkkkhkkkhkkhkhkkhkhkhkkkhkkkkk*

#include "profsample.h"

void add vector (double aryal]l, double aryb[], int len)

{
int 1i;
for (i=0; i<LEN; i++) {
aryal[i]l += arybl[il];

}

khkkkkhkkkkhkkhkkhkhkkkk*x mul by Scalar.c: khkkkkkhkkkhkkhkhkkhkhkhkkhkkkkx

#include "profsample.h"

void mul by scalar (double ary[], int len, double num)

{ . .
int 1;
for (i=0; i<LEN; i++) {
ary[i] *= num;
}
}

khkkkkhkkhkkkhkkhkkhkkkk*x prlnt lt.c: khkkkkhkkhkkkhkhkhkkhkhkhkkhhkhkkrkkkhx*

#include <stdio.h>
#include "profsample.h"

void print it (double value)

{
}

printf ("Value = %f\n", value);

Profiling Programs to Improve Performance 8-3

8.2 Compilation Options for Profiling

When using debug and optimization options with the cc command, note the
following considerations. They apply to all the profiling tools discussed in
this chapter unless stated otherwise.

e The -g1 option provides the minimum debug information needed (that
is, line numbers and procedure names) and is sufficient for all profilers.
The cc command default, -go, is tolerated but provides no names for
local (for example, static) procedures. The -g2 and higher options
provide less than optimal code as well as unneeded information.

= When doing manual optimization, note that none of the profiling tools
show inlined procedures separately by their own names. Profiling
statistics for an inlined procedure are included in the statistics for the
calling procedure. For example, if proc1 calls proc2 (which is inlined),
the statistics for proc1 will include the time spent in proc2. Therefore,
to provide some optimization but with minimal inlining when profiling,
use the -02 (or -0) option. In some cases, you may need to specify the
-inline none option to eliminate all inlining. This restriction does not
apply to automatic optimization as described in Section 10.1.

8.3 Manual Design and Code Optimizations

The following sections discuss the techniques and tools used for manual
design and code optimizations.

8.3.1 Techniques

The effectiveness of the automatic optimizations described in Section 10.1
is limited by the efficiency of the algorithms that the program uses. You
can further improve a program'’s performance by manually optimizing its
algorithms and data structures. Such optimizations may include reducing
complexity from N-squared to log-N, avoiding copying of data, and reducing
the amount of data used. It may also extend to tuning the algorithm to
the architecture of the particular machine it will be run on — for example,
processing large arrays in small blocks such that each block remains in the
data cache for all processing, instead of the whole array being read into
the cache for each processing phase.

Tru64 UNIX supports manual optimization with its profiling tools, which
identify the parts of the application that impose the highest CPU load —
CPU cycles, cache misses, and so on. By evaluating various profiles of a
program, you can identify which parts of the program use the most CPU
resources, and you can then redesign or recode algorithms in those parts to
use less resources. The profiles also make this exercise more cost-effective

8-4 Profiling Programs to Improve Performance

by helping you to focus on the most demanding code rather than on the
least demanding.

8.3.2 Tools and Examples

The following sections discuss the tools used for CPU-time profiling with call
graph and for CPU-time/event profiling with source lines and instructions.

8.3.2.1 CPU-Time Profiling with Call Graph

A call-graph profile shows how much CPU time is used by each procedure,
and how much is used by all the other procedures that it calls. This profile
can show which phases or subsystems in a program spend most of the
total CPU time, which can help in gaining a general understanding of the
program’s performance. This section describes two tools that provide this
information:

= The hiprof profiler (Section 8.3.2.1.1)

= The cc command’s -pg option (Section 8.3.2.1.2)

Both tools are used with the gprof tool, implicitly or explicitly, to format
and display the profile.

The optional dxprof command provides a graphical display of CPU-time
call-graph profiles.

8.3.2.1.1 Using the hiprof Profiler

The hiprof profiler (see hiprof(1)) instruments the program and generates
a call graph while the instrumented program executes. This profiler does
not require that the program be compiled in any particular way except as
indicated in Section 8.2. The hiprof command can generate a call-graph
profile for shared libraries and for program code, with moderate optimization
and minimal debug information. For example:

% cc -o libsample.so -shared -gl -02 add vector.c mul by scalar.c print it.c

% cc -o sample -gl -02 profsample.c -L. -lsample -1lm
% hiprof -numbers -L. -inc libsample.so sample

A shared library, 1ibsample. so, is created from three source modules,
with debug information and optimization as indicated in Section 8.2.

The source module profsample is compiled and linked against the
shared library 1ibsample. so (located in the current directory) to
produce the executable sample.

The -inc [obj] option tells hiprof to profile 1ibsample.so in
addition to the executable (sample). The hiprof command creates
an instrumented version of the program (sample.hiprof). Because
at least one gprof option (-numbers) is specified, hiprof then

Profiling Programs to Improve Performance 8-5

automatically runs that instrumented program to create a profile
data file (sample.hiout) and then runs gprof to display the profile.
The -numbers option prints each procedure’s starting line number,
source-file name, and library name. This helps identify any multiple
static procedures with the same name.

The resulting sample profile is shown in Example 8-2. The call-graph profile
estimates the total cost of calling a procedure, including other procedures
that it calls. The estimation assumes that each call to a given procedure
takes the same amount of time; this may not be true in many cases, but it
is always accurate when there is only one caller.

By default, hiprof uses a low-frequency sampling technique. This can
profile all the code executed by the program, including all selected libraries.
It also provides a call-graph profile of all selected procedures (except those
in the threads-related system libraries) and detailed profiles at the level of
source lines or machine instructions (if selected).

Example 8-2: Sample hiprof Default Profile Using gprof

% cc -o libsample.so -shared -gl -02 add vector.c mul by scalar.c print_it.c
add_vector.c:

mul by scalar.c:

print_it.c:

% cc -o sample -gl -02 profsample.c -L. -lsample -1m

% hiprof -numbers -L. -inc libsample.so sample
hiprof: info: instrumenting sample ...

hiprof: info: the LD_LIBRARY PATH environment variable is not defined
hiprof: info: setting LD LIBRARY PATH=.:.
hiprof: info: running instrumented program sample.hiprof ...

Value = 179804.149985

hiprof: info: instrumented program exited with status 0
hiprof: info: displaying profile for sample ...

gprof -b -scaled -all -numbers -L. sample.hiprof ./sample.hiout
KAKKKKKK KKK Kk kkkkxkxkxk call-graph profile *xxkxkkkkkkkkkkkkkk

granularity: samples per 4 bytes; units: seconds*le-3; total: 323e-3 seconds

called / total parents
index %total self descendents called + self name index
called / total children
2 321 1/ 1 __start [2]
[1] 100.0 2 321 1 main [1]
318 0 100 / 100 add_vector [3]
0 2/ 2 mul by scalar [4]
0 0 1/ 1 print_it [5]
318 0 100 / 100 main [1] [6]

8-6 Profiling Programs to Improve Performance

Example 8-2: Sample hiprof Default Profile Using gprof (cont.)

*okk ok k

98.5 318 0 100 add_vector [3]
3 0 2/ 2 main [1]
0.9 3 0 2 mul_by scalar [4]
0 0 1/ 1 main [1]
0.0 0 0 1 print_it [5]

Kkkkkkkkkkkkkkkkkx timing profile sSectiomn *xkkkkkkkkkkkkk

granularity: samples per 4 bytes; units: seconds*le-3; total: 323e-3 seconds

to
9

O O O Wt
oo)
o o v U

* ok ok k

cumulative self self/call total/call
units units calls seconds seconds name
318 318 100 3184e-6 3184e-6 add vector [3]
321 3 2 1465e-6 1465e-6 mul by scalar [4]
323 2 1 1953e-6 323242e-6 main [1]
323 0 1 0 0 print_it [5]

kkkkkkkkkkhkkkkk**k* index SECLION ***xkkkkkkkkkkhkhhkhkhkhk k%

Index by function name - 4 entries

] add_vector :"add_vector.c":1

] main :"profsample.c":12

] mul by scalar :"mul_by scalar.c":1
] print_it :"print_it.c":4

The LD LIBRARY PATH environment variable is automatically set to
point to the working directory, where the instrumented shared library
libsample is located (see Section 8.6.4.1).

The automatically generated gprof command line uses the -scaled
option by default, which can display profiles with CPU-cycle granularity
and millisecond units if the procedures selected for display have short
run times.

The gprof output comprises three sections: a call-graph profile, a
timing profile, and an index (a concise means of identifying each
procedure). In this example, the three sections have been separated
by rows of asterisks (with the section names) that do not appear in
the output produced by gprof. In the call-graph profile section, each
routine in the program has its own subsection that is contained within
dashed lines and identified by the index number in the first column.

This line describes the main routine, which is the subject of this
portion of the call-graph profile because it is the leftmost routine in

Profiling Programs to Improve Performance 8-7

the rightmost column of this section. The index number [2] in the
first column corresponds to the index number [2] in the index section
at the end of the output. The percentage in the second column reports
the total amount of time in the subgraph that is accounted for by main
and its descendants, in this case add_vector, mul by scalar, and
print_it. The 1 in the called column indicates the total number of
times that the main routine is called.

This line describes the relationship of add_vector to main. Because
add_vector is below main in this section, add_vector is identified
as the child of main. The fraction 100/100 indicates that of the total
of 100 calls to add_vector (the denominator), 100 of these calls came
from main (the numerator).

[6] This line describes the relationship of main to add_vector. Because
main is listed above add_vector in the last column, main is identified
as the parent of add_vector.

For nonthreaded programs, hiprof can alternatively count the number of
machine cycles used or page faults suffered by the program. The cost of
each parent procedure’s calls is accurately calculated, making the call-graph
profile much more useful than the one in the default mode, which can only
estimate the costs of parents. Also, the CPU time (in nanosecond units for
short tests) or page-faults count reported for the instrumented routines
includes that for the uninstrumented routines that they call. This can
summarize the costs and reduce the run-time overhead, but note that the
machine-cycle counter wraps if no instrumented procedure is called at least
every few seconds.

In the following example, the hiprof command’s -cycles option is used to
display a profile of the machine cycles used by the sample program:

o°

cc -o libsample.so -shared -gl -02 add vector.c mul by scalar.c print it.c
cc -o sample -gl -02 profsample.c -L. -lsample -1lm
% hiprof -cycles -numbers -L. -inc libsample.so sample

o°

The resulting sample profile is shown in Example 8-3.

Example 8-3: Sample hiprof -cycles Profile Using gprof

% cc -o libsample.so -shared -gl -02 add vector.c mul by scalar.c print_it.c
add_vector.c:

mul by scalar.c:

print_it.c:

% cc -o sample -gl -02 profsample.c -L. -lsample -1m

% hiprof -cycles -numbers -L. -inc libsample.so sample
hiprof: info: instrumenting sample ...

hiprof: info: the LD_LIBRARY PATH environment variable is not defined
hiprof: info: setting LD LIBRARY PATH=.:.

8-8 Profiling Programs to Improve Performance

Example 8-3: Sample hiprof -cycles Profile Using gprof (cont.)

hiprof: info: running instrumented program sample.hiprof
Value = 179804.149985

hiprof: info: instrumented program exited with status 0
hiprof: info: displaying profile for sample

gprof -b -scaled -all -numbers -L. sample ./sample.hiout

granularity: cycles; units: seconds*le-9; total: 362320292e-9 seconds

called / total parents
index %total self descendents called + self name index
called / total children
<spontaneous>
[1] 100.0 893310 361426982 1 __start [1]
361371860 1/ 1 main [2]
361371860 1/ 1 __start [1]
[2] 99.7 36316218 325055642 1 main [2]
321107275 100 / 100 add_vector [3]
3519530 2/ 2 mul by scalar [4]
428838 1/ 1 print_it [5]
321107275 100 / 100 main [2]
[3] 88.6 321107275 0 100 add_vector [3]
3519530 2/ 2 main [2]
[4] 1.0 3519530 0 2 mul_by scalar [4]
428838 1/ 1 main [2]
[5] 0.1 428838 0 1 print_it [5]

granularity: cycles; units: seconds*le-9; total: 362320292e-9 seconds

% cumulative self self/call total/call
total units units calls seconds seconds name
88.6 321107275 321107275 100 321le-6 321le-6 add vector [3]
10.0 357423492 36316218 1 36316e-6 361372e-6 main [2]
1.0 360943022 3519530 2 1760e-6 1760e-6 mul by scalar [4]
0.2 361836332 893310 1 893310e-9 362320e-6 _ start [1]
0.1 362265170 428838 1 428838e-9 428838e-9 print_it [5]
Index by function name - 11 entries
[1] _ start <sample>
[3] add_vector <libsample.so>:"add vector.c":1
[2] main <sample>: "profsample.c":12
[4] mul by scalar <libsample.so>:"mul by scalar.c":1

Profiling Programs to Improve Performance

Example 8-3: Sample hiprof -cycles Profile Using gprof (cont.)

[5] print_ it <libsample.so>:"print it.c":4

8.3.2.1.2 Using the cc Command’s -pg Option

The cc command's -pg option uses the same sampling technique as hiprof,
but the program needs to be instrumented by compiling with the -pg option.
(The program also needs to be compiled with the debug and optimization
options indicated in Section 8.2.) Only the executable is profiled (not shared
libraries), and few system libraries are compiled to generate a call-graph
profile; therefore, hiprof may be preferred. However, the cc command’s
-pg option and gprof are supported in a very similar way on different
vendors’ UNIX systems, so this may be an advantage. For example:

% cc -pg -o sample -gl -02 *.c -1lm % ./sample % gprof
-scaled -b -numbers sample

The cc command’s -pg call-graph profiling option creates an
instrumented version of the program, sample. (You must specify the
-pg option for both the compile and link phases.)

Running the instrumented program produces a profiling data file
(named gmon . out, by default) to be used by the gprof tool. For
information about working with multiple data files, see Section 8.7.

The gprof command extracts information from the profiling data file
and displays it. The -scaled option displays CPU time in units that
give the best precision without exceeding the report’s column widths.
The -b option suppresses the printing of a description of each field in
the profile.

The resulting sample profile is shown in Example 8-4. The gprof tool
estimates the total cost of calling a procedure (including its calls) in its
call-graph profile.

Example 8-4: Sample cc -pg Profile Using gprof

% cc -pg -o sample -gl -02 add vector.c mul_by scalar.c print it.c profsample.c -1m
add_vector.c:

mul by scalar.c:

print_it.c:

profsample.c:

% ./sample
Value = 179804.149985

% gprof -scaled -b -numbers sample

granularity: samples per 8 bytes; units: seconds*le-3; total: 326e-3 seconds

8-10 Profiling Programs to Improve Performance

Example 8-4: Sample cc -pg Profile Using gprof (cont.)

called / total parents
index %total self descendents called + self name index
called / total children
5 321 1/ 1 __start [2
[1] 100.0 5 321 1 main [1]
317 0 100 / 100 add_vector [3]
4 0 2/ 2 mul by scalar [4]
0 0 1/ 1 print_it [5]
317 0 100 / 100 main [1]
[3] 97.3 317 0 100 add_vector [3]
4 0 2/ 2 main [1]
[4] 1.2 4 0 2 mul_by scalar [4]
0 0 1/ 1 main [1]
[5] 0.0 0 0 1 print_it [5]

granularity: samples per 8 bytes; units: seconds*le-3; total: 326e-3 seconds

% cumulative self self/call total/call

total units units calls seconds seconds name

97.3 317 317 100 3174e-6 3174e-6 add_vector [3]
1.5 322 5 1 4883e-6 326172e-6 main [1]
1.2 326 4 2 1953e-6 1953e-6 mul_by scalar [4]
0.0 326 0 1 0 0 print_it [5]

Index by function name - 4 entries

[3] add_vector <sample>:"add vector.c":1
[1] main <sample>: "profsample.c":12
[4] mul by scalar <sample>:"mul by scalar.c":1
[5] print_it <sample>:"print_ it.c":4

8.3.2.2 CPU-Time/Event Profiles for Sourcelines/Instructions

A good performance-improvement strategy may start with a procedure-level
profile of the whole program (possibly with a call graph, to provide an overall
picture), but it will often progress to detailed profiling of individual source
lines and instructions. The following tools provide this information:

e The uprofile profiler (Section 8.3.2.2.1)

= The hiprof profiler (Section 8.3.2.2.2)

e The cc command’s -p option (Section 8.3.2.2.3)
= The pixie profiler (Section 8.3.2.2.4)

Profiling Programs to Improve Performance 8-11

8.3.2.2.1 Using the uprofile Profiler

The uprofile profiler (see uprofile(1)) uses a sampling technique to
generate a profile of the CPU time or events, such as cache misses, associated
with each procedure or source line or instruction. The sampling frequency
depends on the processor type and the statistic being sampled, but it is on
the order of a millisecond for CPU time. The profiler achieves this without
modifying the application program at all, by using hardware counters that
are built into the Alpha CPU. Running the uprofile command with no
arguments yields a list of all the kinds of events that a particular machine
can profile, depending on the nature of its architecture. The default is

to profile machine cycles, resulting in a CPU-time profile. The following
example shows how to display a profile of the instructions that used the
top 90 percent of CPU time:

% cc -o sample -gl -02 *.c -1lm
% uprofile -asm -quit 90cum% sample

The resulting sample profile, which includes explanatory text, is shown
in Example 8-5.

For information about the -g1 and -02 options, see Section 8.2.

The uprofile command runs the sample program, collecting the
performance counter data into a profile data file (named umon. out,
by default). Because prof options (-asm and -quit) are specified,
uprofile then automatically runs the prof tool to display the profile.

The -asm option provides per-instruction profiling of cycles (and other
CPU statistics, such as data cache misses, if specified). Because no
counter statistics are specified here, uprofile displays a CPU-time
profile for each instruction. The -quit 90cum$% option truncates the
profile after 90 percent of the whole has been printed (see Section 8.6.3).
(Also available are the -heavy option, which reports the lines that
executed the most instructions, and the -1ines option, which reports
the profile per source line within each procedure (see Section 8.6.2).

Example 8-5: Sample uprofile CPU-Time Profile Using prof

% cc -o sample -gl -02 add vector.c mul_by scalar.c print_it.c profsample.c -1m
add_vector.c:

mul by scalar.c:

print_it.c:

profsample.c:

% uprofile -asm -quit 90cum% sample
Value = 179804.149985
Writing umon.out

Displaying profile for sample:

Profile listing generated Thu Dec 3 10:29:25 1998 with:
prof -asm -quit 90cum% sample umon.out

8-12 Profiling Programs to Improve Performance

Example 8-5: Sample uprofile CPU-Time Profile Using prof (cont.)

-a[sm] using performance counters:

cyclesO: 1 sample every 65536 Cycles (0.000164 seconds)
sorted in descending order by total time spent in each procedure;
unexecuted procedures excluded

Each sample covers 4.00 byte(s) for 0.052% of 0.3123 seconds

millisec % cum % address:line instruction
add_vector (add_vector.c)

0.0 0.00 0.00 0x120001260:2 addl zero, a2, a2

0.0 0.00 0.00 0x120001264:5 bis zero, zero, tO

0.0 0.00 0.00 0x120001268:5 ble a2, 0x12000131c

0.0 0.00 0.00 0x12000126c:5 subl az, 0x3, til

0.0 0.00 0.00 0x120001270:5 cmple tl, a2, t2

0.0 0.00 0.00 0x120001274:5 beqg t2, 0x1200012f4

0.0 0.00 0.00 0x120001278:5 ble tl, 0x1200012f4

0.0 0.00 0.00 0x12000127c:5 subg a0, al, t3

0.0 0.00 0.00 0x120001280:5 lda t3, 31(t3)

0.0 0.00 0.00 0x120001284:5 cmpule t3, O0x3e, t3

0.0 0.00 0.00 0x120001288:5 bne t3, 0x1200012f4

0.0 0.00 0.00 0x12000128c:5 ldg u zero, O0(sp)
20.2 6.45 6.45 0x120001290:6 1d1 zero, 128 (al)

.3 0.42 6.87 0x120001294:6 1lds $f31, 128(a0)
35.6 11.39 18.26 0x120001298:6 1ldt sfo, 0(al)
20.0 6.40 24.66 0x12000129c:6 1ldt sfl1, 0(a0)

9.7 3.10 27.75 0x1200012a0:6 1ldt sf10, 8(al)
14.9 4.77 32.53 0x1200012a4:6 1ldt $f11, 8(ao0)
17.4 5.56 38.09 0x1200012a8:6 1ldt sfl12, 16(al

7.0 2.26 40.35 0x1l200012ac:6 1ldt $f13, 16(a0)

8.2 2.62 42.97 0x1200012b0:6 1ldt sfl4, 24(al
12.9 4.14 47.11 0x1200012b4:6 1ldt $f15, 24 (a0)
24.9 7.97 55.09 0x1200012b8:6 addt $£1,$£0, S0
24.7 7.92 63.01 0x1200012bc:6 addt $£11,8£10,$£10
37.8 12.12 75.13 0x1200012c0:6 addt $£13,8f12,8f12
39.2 12.54 87.67 0x1200012c4:6 addt $£15,5f14, $f14

0.8 0.26 87.93 0x1200012c8:5 addl t0, 0x4, to

0.0 0.00 87.93 0x1200012cc:5 lda al, 32(al

8.4 2.68 90.61 0x1200012d0:6 stt sfo, 0(a0)

By comparison, the following example shows how to display a profile of the
instructions that suffered the top 90 percent of data cache misses on an
EV56 Alpha system:

cc -o sample -gl -02 *.c -1m
uprofile -asm -quit 90cum% dcacheldmisses sample

o
s
o
s

The resulting sample profile is shown in Example 8—6.

Profiling Programs to Improve Performance 8-13

Example 8-6: Sample uprofile Data-Cache-Misses Profile Using prof

o

% uprofile -asm -quit 90cum% dcacheldmisses sample
Value = 179804.149985
Writing umon.out

Displaying profile for sample:

Profile listing generated Thu Dec 3 10:34:25 1998 with:
prof -asm -quit 90cum% sample umon.out

-a[sm] using performance counters:

dcacheldmiss: 1 sample every 16384 DCache LD Misses
sorted in descending order by samples recorded for each procedure;
unexecuted procedures excluded

Each sample covers 4.00 byte(s) for 0.18% of 550 samples
samples % cum % address:line instruction

add_vector (add _vector.c

()

0.0 0.00 0.00 0x120001260:2 addl zero, a2, a2

0.0 0.00 0.00 0x120001264:5 bis zero, zero, tO

0.0 0.00 0.00 0x120001268:5 ble a2, 0x12000131c

0.0 0.00 0.00 0x12000126c:5 subl az, 0x3, ti

0.0 0.00 0.00 0x120001270:5 cmple tl, a2, t2

0.0 0.00 0.00 0x120001274:5 beqg t2, 0x1200012f4

0.0 0.00 0.00 0x120001278:5 ble tl, 0x1200012f4

0.0 0.00 0.00 0x12000127c:5 subg a0, al, t3

0.0 0.00 0.00 0x120001280:5 lda t3, 31(t3)

0.0 0.00 0.00 0x120001284:5 cmpule t3, 0x3e, t3

0.0 0.00 0.00 0x120001288:5 bne t3, 0x1200012f4

0.0 0.00 0.00 0x12000128c:5 ldg u zero, O0(sp)

1.0 0.18 0.18 0x120001290:6 1d1 zero, 128 (al)

3.0 0.55 0.73 0x120001294:6 1lds $f31, 128(a0)
62.0 11.27 12.00 0x120001298:6 1ldt sfo, 0(al)
64.0 11.64 23.64 0x12000129c:6 1ldt sfl, 0(a0)

8.0 1.45 25.09 0x1200012a0:6 1ldt sf10, 8(al)
47.0 8.55 33.64 0x1200012a4:6 1ldt $f11, 8(ao0)
13.0 2.36 36.00 0x1200012a8:6 1ldt $f12, 16(al)
38.0 6.91 42.91 0x1200012ac:6 1ldt $f13, 16(a0)
15.0 2.73 45.64 0x1200012b0:6 1ldt $fl14, 24(al)
51.0 9.27 54.91 0x1200012b4:6 1ldt $f15, 24 (a0)
49.0 8.91 63.82 0x1200012b8:6 addt $f1,$£0,Sf0
142.0 25.82 89.64 0x1200012bc:6 addt $f11,$£10,$f10
13.0 2.36 92.00 0x1200012c0:6 addt $f13,8f12,8f12

The stated sampling rate of 1 sample every 16384 means that each
sample shown in the profile occurred after 16384 data cache misses, but
not all of these occurred at the instruction indicated.

The total number of samples is shown, not the number of data cache
misses.

Indicates the number of samples recorded at an instruction, which
statistically implies a proportionate number of data cache misses.

8-14 Profiling Programs to Improve Performance

The uprofile profiling technique has the advantage of very low run-time
overhead. Also, the detailed information it can provide on the costs of
executing individual instructions or source lines is essential in identifying
exactly which operation in a procedure is slowing the program down.

The disadvantages of uprofile are as follows:

= Only executables can be profiled. To profile code in a library, you must
first link the program with the -non_shared option.

< Only one program can be profiled with the hardware counters at one
time.

= Threads cannot be profiled individually.

= The Alpha EV6 architecture’s execution of instructions out of sequence
can significantly reduce the accuracy of fine-grained profiles.

8.3.2.2.2 Using the hiprof Profiler

As noted earlier, the hiprof command’s default PC-sampling technique
can also generate CPU-time profiles like those of uprofile, using a
sampling frequency of a little under a millisecond. The profile is not as
accurate, because the call counting affects the performance, but it has some
advantages:

= Shared libraries can be profiled.

= Threads can be individually profiled (at the cost of very large memory
and data file size).

= Itis independent of hardware resources and architecture.
In the following example, the hiprof command’s -1ines option is used

to display a profile of the CPU time used by each source line, grouped by
procedure:

o°

cc -o libsample.so -shared -gl -02 add vector.c mul by scalar.c print it.c
cc -o sample -gl -02 profsample.c -L. -lsample -1lm
% hiprof -lines -numbers -L. -inc libsample.so sample

The resulting sample profile is shown in Example 8-7.

Example 8-7: Sample hiprof -lines PC-Sampling Profile

% cc -o libsample.so -shared -gl -02 add vector.c mul by scalar.c print_it.c
add_vector.c:

mul by scalar.c:

print_it.c:

% cc -o sample -gl -02 profsample.c -L. -lsample -1m

% hiprof -lines -numbers -L. -inc libsample.so sample
hiprof: info: instrumenting sample ...

Profiling Programs to Improve Performance 8-15

Example 8-7: Sample hiprof -lines PC-Sampling Profile (cont.)

hiprof: info: the LD_LIBRARY PATH environment variable is not defined
hiprof: info: setting LD LIBRARY PATH=.:.
hiprof: info: running instrumented program sample.hiprof ...

Value = 179804.149985

hiprof: info: instrumented program exited with status 0
hiprof: info: displaying profile for sample ...

gprof -b -scaled -all -lines -numbers -L. sample.hiprof ./sample.hiout

Milliseconds per source line, in source order within functions

procedure (file) line bytes millisec % cum %
add_vector (add_vector.c) 2 52 0.0 0.00 0.00
5 92 1.0 0.30 0.30
6 92 318.4 98.19 98.49
8 4 0.0 0.00 98.49
mul_by scalar (mul by scalar.c) 2 52 0.0 0.00 98.49
5 72 0.0 0.00 98.49
6 64 3.9 1.20 99.70
8 4 0.0 0.00 99.70
main (profsample.c) 9 32 0.0 0.00 99.70
12 128 0.0 0.00 99.70
16 8 0.0 0.00 99.70
19 32 0.0 0.00 99.70
20 36 0.0 0.00 99.70
21 16 0.0 0.00 99.70
22 24 0.0 0.00 99.70
24 4 0.0 0.00 99.70
25 36 0.0 0.00 99.70
26 16 0.0 0.00 99.70
27 28 1.0 0.30 100.00
28 20 0.0 0.00 100.00
29 40 0.0 0.00 100.00
30 4 0.0 0.00 100.00
31 20 0.0 0.00 100.00
32 4 0.0 0.00 100.00
33 20 0.0 0.00 100.00
34 56 0.0 0.00 100.00

8.3.2.2.3 Using the cc Command’s -p Option

The cc command’s —p option uses a low-frequency sampling technique to
generate a profile of CPU time that is similar to uprofile’s but statistically
less accurate. However, the -p option does offer the following advantages:

« Shared libraries can be profiled

= Threads can be individually profiled

= Independent of hardware resources and architecture
< Common to many UNIX operating systems

= On Tru64 UNIX, can profile all the shared libraries used by a program

8-16 Profiling Programs to Improve Performance

The program needs to be relinked with the —p option, but it does not need
to be recompiled from source so long as the original compilation used an
acceptable debug level, such as the —g1 cc command option (see Section 8.2).
For example, to profile individual source lines and procedures of a program
(if the program runs for long enough to generate a dense sample array):

% cc -p -o sample -gl -02 *.c -1lm % setenv PROFFLAGS ’-all -stride 1’ %
./sample % prof -all -proc -heavy -numbers sample

The cc command’s -p PC-sample-profiling option creates an
instrumented version of the program, called sample.

The -all option specified with the PROFFLAGS environment variable
asks for all shared libraries to be profiled (see Section 8.6.4). This causes
sgrt (from 1libm. so) to show up in the profile as the second highest
CPU-time user. The variable must be set before the instrumented
program is run.

The -stride 1 option in PROFFLAGS asks for a separate counter to be
used for each instruction, to allow accurate per-source-line profiling
with prof’s -heavy option.

Running the instrumented program produces a PC-sampling data file
called mon . out, by default, to be used by the prof tool. For information
about working with multiple data files, see Section 8.7.

The prof tool (see prof(1)) uses the PC-sampling data file to produce
the profile. Because this technique works by periodic sampling of the
program counter, you might see different output when you profile the
same program multiple times.

When running prof manually, as in this example, you can filter which
shared libraries to include in the displayed profile; the -al11 option tells
prof to include all libraries (see Section 8.6.4). The -proc [edures]
option profiles the instructions executed in each procedure and the
calls to procedures. The -heavy option reports the lines that executed
the most instructions. (Also, -1ines shows per-line profiles and -asm
shows per-instruction profiles, both grouped by procedure.)

The resulting sample profile is shown in Example 8-8.

Example 8-8: Sample cc -p Profile Using prof

% cc -p -o sample -gl -02 add vector.c mul_by scalar.c print it.c profsample.c -1m
add_vector.c:

mul by scalar.c:

print_it.c:

profsample.c:

% setenv PROFFLAGS "-all -stride 1"

% ./sample
Value = 179804.149985

Profiling Programs to Improve Performance 8-17

Example 8-8: Sample cc -p Profile Using prof (cont.)

% prof -all -proc -heavy -numbers sample
Profile listing generated Mon Feb 23 15:33:07 1998 with:
prof -all -proc -heavy -numbers sample

-p[rocedures] using pc-sampling; *
* sorted in descending order by total time spent in each procedure; *
* unexecuted procedures excluded *

Each sample covers 4.00 byte(s) for 0.25% of 0.3955 seconds

$time seconds cum % cum sec procedure (file)

93.1 0.3682 93.1 0.37 add_vector (<sample>:"add vector.c":1)
5.4 0.0215 98.5 0.39 sgrt (<libm.so>)
1.0 0.0039 99.5 0.39 mul by scalar (<sample>:"mul by scalar.c":1)
0.5 0.0020 100.0 0.40 main (<sample>:"profsample.c":12)

* -hleavy] using pc-sampling; *

* sorted in descending order by time spent in each source line; *

* unexecuted lines excluded *

Each sample covers 4.00 byte(s) for 0.25% of 0.3955 seconds

procedure (file) line bytes millisec % cum %
add_vector (add_vector.c) 6 80 363.3 91.85 91.85
add_vector (add_vector.c) 5 96 4.9 1.23 93.09
mul_by scalar (mul by scalar.c) 6 60 3.9 0.99 94.07
main (profsample.c) 20 36 2.0 0.49 94.57

8.3.2.2.4 Using the pixie Profiler

The pixie tool (see pixie(l)) can also profile source-lines and instructions
(including shared libraries), but note that when it displays counts of cycles,
it is actually reporting counts of instructions executed, not machine cycles.
Its —truecycles 2 option can estimate the number of cycles that would be
used if all memory accesses were satisfied by the cache, but programs can
rarely cache enough of their data for this to be accurate, and only the Alpha
EV4 and EV5 families can be fully simulated in this way. For example:

cc -o sample -gl -02 *.c -1m
% pixie -all -proc -heavy -quit 5 sample

o°

For information about the -g1 and -02 options, see Section 8.2.

The pixie command creates an instrumented version of the program
(sample.pixie) and an instruction-addresses file (sample.Addrs).
Because prof options (-proc, -heavy, -quit) are specified,
pixie automatically runs that instrumented program to create an

8-18 Profiling Programs to Improve Performance

instructions-counts file (sample.Counts) and then runs prof to
display the profile, using the .Addrs and . Counts files as input.

The -all option asks for shared libraries to be profiled. Although
a pixie profile can include shared libraries, system libraries (like
libm. so, which contains the sgrt function) do not include source-line
numbers, so they are not included in the -heavy option’s per-line
profile, and static procedures get proc_at ... names created for them.

The -heavy option reports lines that executed the most instructions.
The -proc [edures] option profiles the instructions executed in each
procedure and the calls to procedures. The -quit 5 option truncates
the report after 5 lines for each mode (-heavy, -proc [edures]).

The resulting sample profile is shown in Example 8-9.

Example 8-9: Sample pixie Profile Using prof

o

% cc -o sample -gl -02 add vector.c mul by scalar.c print_it.c profsample.c -1m
add_vector.c:

mul by scalar.c:

print_it.c:

profsample.c:

% pixie -all -proc -heavy -quit 5 sample
pixie: info: instrumenting sample ...

pixie: info: the LD LIBRARY PATH environment variable is not defined
pixie: info: setting LD_LIBRARY PATH=.
pixie: info: running instrumented program sample.pixie ...

Value = 179804.149985

pixie: info: instrumented program exited with status 0
pixie: info: displaying profile for sample ...
Profile listing generated Mon Feb 23 15:33:55 1998 with:
prof -pixie -all -procedures -heavy -quit 5 sample ./sample.Counts

-p[rocedures] using basic-block counts; *
* sorted in descending order by the number of cycles executed in each *
* procedure; unexecuted procedures are excluded *

69089823 cycles (0.1727 seconds at 400.00 megahertz)

o

cycles %$cycles cum % seconds cycles bytes procedure (file)
/call /line

60001400 86.85 86.85 0.1500 600014 48 add_vector (add vector.c)
7100008 10.28 97.12 0.0178 72 ? sgrt (<libm.so>)
1301816 1.88 99.01 0.0033 1301816 27 main (profsample.c)
675020 0.98 99.98 0.0017 337510 36 mul_by scalar (mul by scalar.c)
854 0.00 99.98 0.0000 854 ? _ cvtas_t_to_a (<libc.so>)
* -plrocedures] using invocation counts; *
* sorted in descending order by number of calls per procedure; *
* unexecuted procedures are excluded *

Profiling Programs to Improve Performance 8-19

Example 8-9: Sample pixie Profile Using prof (cont.)

100504 invocations total

calls %calls cum$ bytes procedure (file)
100000 99.50 99.50 820 sgrt (<libm.so>)
100 0.10 99.60 192 add vector (add_vector.c)
39 0.04 99.64 164 proc_at_ 0x3ff815bcleld (<libc.so>)
38 0.04 99.67 144 proc_at_ 0x3ff815bcl50 (<libc.so>)
38 0.04 99.71 16 proc_at_ 0x3ff815bcl40 (<libc.so>)
* -hleavy] using basic-block counts; *
* sorted in descending order by the number of cycles executed in each *
* line; unexecuted lines are excluded *
procedure (file) line bytes cycles % cum %
add_vector (add_vector.c) 6 92 45000000 65.13 65.13
add_vector (add_vector.c) 5 92 15001200 21.71 86.85
main (profsample.c) 20 36 600003 0.87 87.71
main (profsample.c) 22 24 600000 0.87 88.58
mul_by scalar (mul by scalar.c) 6 64 487500 0.71 89.29

The -procedures profile includes a profile of call counts.

The optional dxprof command provides a graphical display of profiles
collected by either pixie or the cc command’s —p option.

You can also run the prof -pixstats command on the executable file
sample to generate a detailed report on opcode frequencies, interlocks, a
miniprofile, and more. For more information, see prof(1).

8.4 Minimizing System Resource Usage

The following sections describe the techniques and tools to help you minimize
use of system resources by your application.

8.4.1 Techniques

The techniques described in the previous sections can improve an
application’s use of just the CPU. You can make further performance
enhancements by improving the efficiency with which the application uses
the other components of the computer system, such as heap memory, disk
files, network connections, and so on.

As with CPU profiling, the first phase of a resource usage improvement
process is to monitor how much memory, data 1/0 and disk space, elapsed
time, and so on, is used. The throughput of the computer can then be

8-20 Profiling Programs to Improve Performance

increased or tuned in ways that help the program, or the program’s design
can be tuned to make better use of the computer resources that are available.
For example:

= Reduce the size of the data files that the program reads and writes.
= Use memory-map files instead of regular 1/O.

= Allocate memory incrementally on demand instead of allocating at
startup the maximum that could be required.

= Fix heap leaks and do not leave allocated memory unused.

See the System Configuration and Tuning manual for a broader discussion
of analyzing and tuning a Tru64 UNIX system.

8.4.2 Tools and Examples

The following sections discuss using system monitors and the Third Degree
tool to minimize system resource usage.

8.4.2.1 System Monitors

The Tru64 UNIX base system commands ps u, swapon -s, and vmstat 3
can show the currently active processes’ usage of system resources such as
CPU time, physical and virtual memory, swap space, page faults, and so on.
See ps(l), swapon(8), and vmstat(3) for more information.

The optional pview command provides a graphical display of similar
information for the processes that comprise an application. See pview(l).

The time commands provided by the Tru64 UNIX system and command
shells provide an easy way to measure the total elapsed and CPU times for a
program and it descendants. See time(1).

Performance Manager is an optional system performance monitoring and
management tool with a graphical interface. See pmgr(8X).

For more information about related tools, see the System Configuration
and Tuning manual.

8.4.2.2 Heap Memory Analyzers

The Third Degree tool (see third(l)) reports heap memory leaks in a
program, by instrumenting it with the Third Degree memory-usage checker,
running it, and displaying a log of leaks detected at program exit. For
example:

Profiling Programs to Improve Performance 8-21

o°

cc -o sample -g -non shared *.c -1lm
% third -display sample

Full debug information (that is, compiling with the -g option) is usually
best for Third Degree, but if less is available, the reports will just be
machine-level instead of source-level. The -g1 option is fine if you are
just checking for memory leaks.

The third command creates an instrumented version of the program
(sample.third). Because the -display option is specified, third
automatically runs that instrumented program to create a log file
(sample.31log) and then runs more to display the file.

The resulting sample log file is shown in Example 8-10.

Example 8-10: Sample third Log File

cc -o sample -g -non_shared add vector.c mul_by scalar.c print_it.c profsample.c -1m
add_vector.c:

mul by scalar.c:

print_it.c:

profsample.c:

third -display sample

third: info: instrumenting sample ...

third: info: running instrumented program sample.third ...

Value = 179804.149985

third: info: instrumented program exited with status 0

third: info: error log for sample ...

more ./sample.3log

Third Degree version 5.0

sample.third run by jpx on frumpy.abc.dec.com at Mon Jun 21 16:59:50 1999

[1117777777777777777777777777) Options [/////////777771777171111111]]]

New blocks in heap after program exit

Leaks - blocks not yet deallocated but apparently not in use:

* A leak is not referenced by static memory, active stack frames,
or unleaked blocks, though it may be referenced by other leaks.

* A leak "not referenced by other leaks" may be the root of a leaked tree.

* A block referenced only by registers, unseen thread stacks, mapped memory,
or uninstrumented library data is falsely reported as a leak. Instrumenting
shared libraries, if any, may reduce the number of such cases.

* Any new leak lost its last reference since the previous heap report, if any.

A total of 800000 bytes in 1 leak were found:

800000 bytes in 1 leak (including 1 not referenced by other leaks) created at:

malloc sample
main sample, profsample.c, line 19
__start sample

Objects - blocks not yet deallocated and apparently still in use:

8-22 Profiling Programs to Improve Performance

Example 8-10: Sample third Log File (cont.)

* An object is referenced by static memory, active stack, or other objects.

* A leaked block may be falsely reported as an object if a pointer to it
remains when a new stack frame or heap block reuses the pointer’s memory.
Using the option to report uninitialized stack and heap may avoid such cases.

* Any new object was allocated since the previous heap report, if any.

A total of 0 bytes in 0 objects were found:

memory layout at program exit

heap 933888 bytes [0x140012000-0x1400£6000]
stack 819504 bytes [0x11ff37ed0-0x120000000]
sample data 66464 bytes [0x140000000-0x1400103a0]
sample text 802816 bytes [0x120000000-0x1200c4000]

By default, Third Degree profiles memory leaks, with little overhead.

If you are interested only in leaks occurring during the normal operation of
the program, not during startup or shutdown, you can specify additional
places to check for previously unreported leaks. For example, the
preshutdown leak report will give this information:

% third -display -after startup -before shutdown sample

Third Degree can also detect various kinds of bugs that may be affecting
the correctness or performance of a program. See Chapter 7 for more
information on debugging and leak detection.

The optional dxheap command provides a graphical display of Third
Degree’s heap and bug reports. See dxheap(l).

The optional mview command provides a graphical analysis of heap usage
over time. This view of a program'’s heap can clearly show the presence
(if not the cause) of significant leaks or other undesirable trends such as
wasted memory. See mview(l).

8.5 Verifying the Significance of Test Cases
The following sections discuss the techniques and tools used to verify the
significance of test cases.

8.5.1 Techniques

Most of the profiling techniques described in the previous sections are
effective only if you profile and optimize or tune the parts of the program
that are executed in the scenarios whose performance is important. Careful
selection of the data used for the profiled test runs is often sufficient, but you

Profiling Programs to Improve Performance 8-23

may want a quantitative analysis of which code was and was not executed
in a given set of tests.

8.5.2 Tools and Examples

The pixie command’'s —t[estcoverage] option reports lines of code that
were not executed in a given test run. For example:

% cc -o sample -gl -02 *.c -1m

% pixie -t sample

Similarly, the —zero option reports the names of procedures that were never
executed. Conversely, pixie’'s —p[rocedure], —h[eavy], and —a[sm] options
show which procedures, source lines, and instructions were executed.

If multiple test runs are needed to build up a typical scenario, the prof
command can be run separately on a set of profile data files. For example:
% cc -o sample -gl -02 *.c -1lm

% pixie -pids sample

% ./sample.pixie

% ./sample.pixie

% prof -pixie -t sample sample.Counts.* E

For information about the -g1 and -02 options, see Section 8.2.

The pixie command creates an instrumented version of the program
(sample.pixie) and an instruction-addresses file (sample.Addrs).
The -pids option adds the process ID of the instrumented program’s
test run (item 3) to the name of the profiling data file produced, so that
a unique file is retained after each run. For information about working
with multiple data files, see Section 8.7.

The instrumented program is run twice (usually with different input
data) to produce two profiling data files named sample.Counts.pid.

The -pixie option tells prof to use pixie mode rather than the default
PC-sampling mode. The prof tool uses the sample.Addrs file and the
two sample.Counts. pid files to create the profile from the two runs.

8.6 Selecting Profiling Information to Display

Depending on the size of the application and the type of profiling you
request, profilers may generate a very large amount of output. However, you
are often only interested in profiling data about a particular portion of your
application. The following sections show how you can select the appropriate
information by using:

e prof options (with the pixie, uprofile, or prof command)

= gprof options (with the hiprof or gprof command)
Many of the prof and gprof options perform similar functions and have
similar names and syntax. The examples used show prof options. For

8-24 Profiling Programs to Improve Performance

complete details, see hiprof(l), pixie(l), uprofile(l), prof(l), and
gprof(1).

See Section 8.9 for information on using monitor routines to control
profiling.

8.6.1 Limiting Profiling Display to Specific Procedures

The prof command'’s —only option prints profiling information for only a
specified procedure. You can use this option several times on the command
line. For example:

% pixie -only mul by scalar -only add vector sample

The —exclude option prints profiling information for all procedures except
the specified procedure. You can use this option several times on the
command line. Do not use —only and —exclude together on the same
command line.

Many of the prof profiling options print output as percentages; for example,
the percentage of total execution time attributed to a particular procedure.

By default, the —only and —exclude options cause prof to calculate
percentages based on all of the procedures in the application even if they
were omitted from the listing. You can change this behavior with the —-only
and —Exclude options. They work the same as —only and —exclude, but
cause prof to calculate percentages based only on those procedures that
appear in the listing.

The —totals option, used with the —-procedures and —invocations
listings, prints cumulative statistics for the entire object file instead of for
each procedure in the object.

8.6.2 Displaying Profiling Information for Each Source Line

The prof and gprof -heavy and -1ines options display the number of
machine cycles, instructions, page faults, cache misses, and so on for each
source line in your application. The -asm option displays them for each
instruction.

The —heavy option prints an entry for every source line. Entries are sorted
from the line with the heaviest use to the line with the lightest. Because
—heavy often prints a large number of entries, you might want to use one of
the —quit, —only, or —exclude options to reduce output to a manageable
size (see Section 8.6.3).

The —1ines option is similar to —heavy, but sorts the output differently.
This option prints the lines for each procedure in the order that they occur in

Profiling Programs to Improve Performance 8-25

the source file. Even lines that never executed are printed. The procedures
themselves are sorted by decreasing total use.
8.6.3 Limiting Profiling Display by Line

The —quit option reduces the amount of profiling output displayed. It affects
the output from the -procedures, —heavy, and —1ines profiling modes.

The —quit option has the following three forms:

—quit N Truncates the listing after n lines.

—quit N% Truncates the listing after the first line that
shows less than N% of the total.

—quit Ncum% Truncates the listing after the line at which the
cumulative total reaches N% of the total.

If you specify several modes on the same command line, —quit affects the
output from each mode. The following command prints only the 20 most
time-consuming procedures and the 20 most time-consuming source lines:

o

% pixie -procedures -heavy -quit 20 sample

Depending on the profiling mode, the total can refer to the total amount
of time, the total number of executed instructions, or the total number
of invocation counts.

8.6.4 Including Shared Libraries in the Profiling Information

When you are using the hiprof, pixie, third, prof, or gprof commands,
the following options let you selectively display profiling information for
shared libraries used by the program:

= —all displays profiles for all shared libraries (if any) described in the
data file(s) in addition to the executable.

e —incobj I1ib displays the profile for the named shared library in
addition to the executable.

= —excobj 1ib does not display the profile for the named shared library, if
-all was specified.

For example, the following command displays profiling information in all

shared libraries except for userl. so:

o

% prof -all -excobj userl.so sample

When you are using the cc command’s -p option to obtain a PC-sampling
profile, you can use the PROFFLAGS environment variable to include or
exclude profiling information for shared libraries when the instrumented

8-26 Profiling Programs to Improve Performance

program is run (as shown in Example 8-8). The PROFFLAGS variable accepts
the -all, -incobj, and excobj options.

For more information specific to shared libraries, see Section 8.6.4.1.

8.6.4.1 Specifying the Location of Instrumented Shared Libraries

The LD LIBRARY PATH environment variable is used to tell the loader
where to find instrumented shared libraries.

By default, when you run hiprof, pixie, or third, the LD LIBRARY PATH
variable is automatically set to point to the working directory. You can set it
to point to an arbitrary directory, as in the following C shell example:

% setenv LD LIBRARY PATH "my inst libraries"

8.7 Merging Profile Data Files

If the program you are profiling is fairly complicated, you may want to run it
several times with different inputs to get an accurate picture of its profile.
Each of the profiling tools lets you merge profile data from different runs of a
program. But first you must override the default behavior whereby each run
of the instrumented program overwrites the existing data file. Section 8.7.1
explains how to do that. Section 8.7.2 explains how to merge data files.

8.7.1 Data File-Naming Conventions

The default name of a profiling data file depends on the tool used to create

it, as follows:

Tool Default Name of Profiling Data File
hiprof program.hiout

pixie program.Counts (used with program.Addrs)
uprofile umon.out

cc -p mon.out

cc -pg gmon.out

By default, when you make multiple profiling runs, each run overwrites
the existing data file in the working directory. Each tool has options for
renaming data files so they can be preserved from run to run. The hiprof,
pixie, and uprofile commands have the following options:

-dirname path Specifies a directory where the data file is to be created.

-pids Adds the process ID of the instrumented program’s
run to the data file name.

Profiling Programs to Improve Performance 8-27

For example, the following command sequence produces two data files of the
form sample.pid.hiout in the subdirectory profdata:

o\

hiprof -dir profdata -pids sample
./sample
./sample

o

o

Then, when using the gprof command, you can specify a wildcard to include
all the profiling data files in the directory:

)

% gprof -b sample profdata/*

When using the cc -p or cc -pg profiling options, you need to set

the PROFFLAGS environment variable (before running the instrumented
program). For example, the following command sequence would produce
two data files of the form pid.sample in the subdirectory profdata (C
shell example):

o

cc -pg -o sample -gl -02 *.c -1m
setenv PROFFLAGS "-dir profdata -pids"
./sample

./sample

o° o

o

Note that PROFFLAGS affects the profiling behavior of a program during its
execution; it has no effect on the prof and gprof postprocessors. When you
set PROFFLAGS to a null string, no profiling occurs.

For more information about file-naming conventions, see the tool reference
pages. See Section 8.8 for the file-naming conventions for multithreaded
programs.

8.7.2 Data File-Merging Techniques

After creating several profiling data files from multiple runs of a program,
you can display profiling information based on an average of these files.

Use the prof or gprof postprocessor, depending on the profiling technique
used, as follows:

If the profiling tool is: Use this post processor:
cc -p, uprofile, or pixie prof
cc -pg, Or hiprof gprof

One merge technique is to specify the name of each data file explicitly on
the command line. For example, the following command prints profiling
information from two profile data files generated using hiprof:

o

% gprof sample sample.l1510.hiout sample.l522.hiout

8-28 Profiling Programs to Improve Performance

Keeping track of many different profiling data files, however, can be difficult.
Therefore, prof and gprof provide the -merge option to combine several
data files into a single merged file. When prof operates in pixie mode
(prof —pixie), the —merge option combines the . Counts files. When prof
operates in PC-sampling mode, this switch combines the mon. out or other
profile data files.

The following example combines two profile data files into a single data file
named total.out:

% prof -merge total.out sample 1773.sample 1777.sample

At a later time, you can then display profiling data using the combined file,
just as you would use a normal mon . out file. For example:

% prof -procedures sample total.out

The merge process is similar for -pixie mode. You must specify the
executable file’'s name, the . Addrs file, and each . Counts file. For example:

% prof -pixie -merge total.Counts a.out a.out.Addrs \
a.out.Counts.1866 a.out.Counts.1868

8.8 Profiling Multithreaded Applications

Note

To analyze a multithreaded appplication for potential logic and
performance problems, you can use Visual Threads, which is
available on the Tru64 UNIX Associated Products Volume 1
installation media. Visual Threads can be used on POSIX Threads
Library applications and on Java applications. See dxthreads(l).

Profiling multithreaded applications is essentially the same as profiling
nonthreaded applications. However, to profile multithreaded applications,
you must compile your program with the —-pthread or —threads option
(as they are defined by the cc command). Other threads packages are not
supported.

When using hiprof(1), pixie(l), or third(1), specify the -pthread option
to enable the tool’s thread-safe profiling support. The uprofile(l) command
and the cc command’s -p and -pg options need no extra option to become
thread-safe.

The default case for profiling multithreaded applications is to provide one
profile covering all threads. In this case, you get profiling across the entire
process, and you get one output file of profiling data from all threads.

Profiling Programs to Improve Performance 8-29

When using hiprof(1) or pixie(l), specify the -threads option for
per-thread data.

When using the cc command’s -p or -pg option, set the PROFFLAGS
environment variable to —threads for per-thread profiling, as shown in the
following C shell example:

setenv PROFFLAGS "-threads"
The uprofile(l) and third(l) tools do not provide per-thread data.

Per-thread profiling data files are given names that include unique thread
numbers, which reflect the sequence in which the threads were created or in
which their profiling was started.

If you use the monitor () or monstartup () calls (see Section 8.9) in a
threaded program, you must first set PROFFLAGS t0 "-disable default
-threads", which gives you complete control of profiling the application.

If the application uses monitor () and allocates separate buffers for each
thread profiled, you must first set PROFFLAGS to "-disable default
-threads" because this setting affects the file-naming conventions that are
used. Without the —threads option, the buffer and address range used as a
result of the first monitor or monstartup call would be applied to every
thread that subsequently requests profiling. In this case, a single data file
that covers all threads being profiled would be created.

Each thread in a process must call the monitor () or monstartup ()
routines to initiate profiling for itself.

8.9 Using monitor Routines to Control Profiling

The default behavior for the cc command’s -p and -pg modes on Tru64
UNIX systems is to profile the entire text segment of your program and
place the profiling data in mon. out for prof profiling or in gmon. out for
gprof profiling. For large programs, you might not need to profile the entire
text segment. The monitor routines provide the ability to profile portions
of your program specified by the lower and upper address boundaries of a
function address range.

The monitor routines are as follows:

monitor Use this routine to gain control of explicit profiling by
turning profiling on and off for a specific text range.
This routine is not supported for gprof profiling.

monstartup Similar to monitor except it specifies address range
only and is supported for gprof profiling.

8-30 Profiling Programs to Improve Performance

moncontrol Use this routine with monitor and monstartup to
turn PC sampling on or off during program execution
for a specific process or thread.

monitor signal Use this routine to profile nonterminating programs,
such as daemons.

You can use monitor and monstartup to profile an address range in each
shared library as well as in the static executable.

For more information on these functions, see monitor(3).

By default, profiling begins as soon your program starts to execute.
To prevent this behavior, set the PROFFLAGS environment variable to
—disable default, as shown in the following C shell example:

setenv PROFFLAGS "-disable default"

Then, you can use the monitor routines to begin profiling after the first call
to monitor or monstartup.

Example 8-11 demonstrates how to use the monstartup and monitor
routines within a program to begin and end profiling.

Example 8-11: Using monstartup() and monitor()

Profile the domath() routine using monstartup.

This example allocates a buffer for the entire program.
Compile command: cc -p foo.c -o foo -1m

Before running the executable, enter the following

from the command line to disable default profiling support:
setenv PROFFLAGS -disable_default

* ok X %k F X *

/

#include <stdio.h>
#include <sys/syslimits.h>

char dir [PATH MAX];

extern void _ start();
extern unsigned long _etext;

main ()

int 1i;
int a = 1;

/* Start profiling between _ start (beginning of text)

* and etext (end of text). The profiling library
* routines will allocate the buffer.

Profiling Programs to Improve Performance 8-31

Example 8-11: Using monstartup() and monitor() (cont.)

*/
monstartup(__start, & etext);

for(i=0;i<10;i++)
domath () ;

/* Stop profiling and write the profiling output file. */

monitor (0) ;

}

domath ()

{
int 1i;
double di, d2;
d2 = 3.1415;

for (i=0; 1<1000000; i++)
dl = sqgrt(d2) *sqgrt(d2) ;

The external name _etext lies just above all the program text. See end(3)
for more information.

When you set the PROFFLAGS environment variable to —disable default,
you disable default profiling buffer support. You can allocate buffers within
your program, as shown in Example 8-12.

Example 8-12: Allocating Profiling Buffers Within a Program

/* Profile the domath routine using monitor ().

Compile command: cc -p foo.c -o foo -1m

Before running the executable, enter the following

from the command line to disable default profiling support:
setenv PROFFLAGS -disable_default

*/

#include <sys/types.h>
#include <sys/syslimits.h>

extern char *calloc();

void domath (void) ;
void nextproc (void) ;

#define INST SIZE 4 /* Instruction size on Alpha */

8-32 Profiling Programs to Improve Performance

Example 8-12: Allocating Profiling Buffers Within a Program (cont.)

char dir [PATH MAX];

main ()

int 1i;
char *buffer;
size_t bufsize;

/* Allocate one counter for each instruction to
* Dbe sampled. Each counter is an unsigned short.

*/

bufsize = (((char *)nextproc - (char *)domath)/INST_ SIZE)
* gizeof (unsigned short) ;

/* Use calloc() to ensure that the buffer is clean
* Dbefore sampling begins.
*/

buffer = calloc (bufsize,1);

/* Start sampling. */
monitor (domath,nextproc,buffer,bufsize, 0);
for(i=0;1<10;1i++)
domath () ;

/* Stop sampling and write out profiling buffer. */
monitor (0) ;

}

void domath (void)

{
int 1i;
double di, d2;

d2 = 3.1415;
for (i=0; 1<1000000; i++4)
dl = sqgrt(d2) *sqgrt(d2) ;

}

void nextproc (void)

{}

You use the monitor signal () routine to profile programs that do not
terminate. Declare this routine as a signal handler in your program and
build the program for prof or gprof profiling. While the program is
executing, send a signal from the shell by using the ki11 command.

Profiling Programs to Improve Performance 8-33

When the signal is received, monitor signal is invoked and writes
profiling data to the data file. If the program receives another signal, the
data file is overwritten.

Example 8-13 shows how to use the monitor signal routine.

Setting the PROFFLAGS environment variable to -sigdump SIGNAME
provides the same capability without needing any new program code.

Example 8-13: Using monitor_signal() to Profile Nonterminating Programs

/* From the shell, start up the program in background.
* Send a signal to the process, for example: kill -30 <pid>
* Process the [glmon.out file normally using gprof or prof

*/
#include <signal.h>
extern int monitor signal() ;

main ()
{
int 1i;
double di, d2;

/*
* Declare monitor signal() as signal handler for SIGUSR1
*/
signal (SIGUSR1, monitor signal) ;
d2 = 3.1415;
/*
* Loop infinitely (absurd example of non-terminating process)
*/
for (;;)
dl = sqgrt(d2) *sqgrt(d2) ;

8-34 Profiling Programs to Improve Performance

9

Using and Developing Atom Tools

Program analysis tools are extremely important for computer architects and
software engineers. Computer architects use them to test and measure new
architectural designs, and software engineers use them to identify critical
pieces of code in programs or to examine how well a branch prediction or
instruction scheduling algorithm is performing. Program analysis tools

are needed for problems ranging from basic block counting to data cache
simulation. Although the tools that accomplish these tasks may appear
quite different, each can be implemented simply and efficiently through
code instrumentation.

Atom provides a flexible code instrumentation interface that is capable

of building a wide variety of tools. Atom separates the common part in

all problems from the problem-specific part by providing machinery for
instrumentation and object-code manipulation, and allowing the tool
designer to specify what points in the program are to be instrumented. Atom
is independent of any compiler and language as it operates on object modules
that make up the complete program.

This chapter discusses the following topics:

< How to run installed Atom tools and new Atom tools that are still under
development (Section 9.1).

= How to develop specialized Atom tools (Section 9.2).

9.1 Running Atom Tools

The following sections describe how to:
= Use installed Atom tools (Section 9.1.1)

= Test Atom tools under development (Section 9.1.2)

9.1.1 Using Installed Tools

The Tru64 UNIX operating system provides a number of example Atom
tools, listed in Table 9-1, to help you develop your own custom-designed
Atom tools. These tools are distributed in source form to illustrate Atom’s
programming interfaces — they are not intended for production use.
Section 9.2 describes some of the tools in more detail.

Using and Developing Atom Tools 9-1

Table 9-1: Example Prepackaged Atom Tools

Tool

Description

branch

cache

dtb

dyninst

inline

iprof

malloc

prof

ptrace

trace

Instruments all conditional branches to determine
how many are predicted correctly.

Determines the cache miss rate if an application
runs in an 8-KB direct-mapped cache.

Determines the number of dtb (data translation
buffer) misses if the application uses 8-KB pages and
a fully associative translation buffer.

Provides fundamental dynamic counts of instructions,
loads, stores, blocks, and procedures.

Identifies potential candidates for inlining.

Prints the number of times each procedure is called as well
as the number of instructions executed by each procedure.

Records each call to the malloc function and prints a
summary of the application’s allocated memory.

Prints the number of instructions executed by each
procedure in pthread programs.

Prints the name of each procedure as it is called.

Generates an address trace, logs the effective address of
every load and store operation, and logs the address of
the start of every basic block as it is executed.

The example tools can be found in the /usr/1ib/complrs/atom/examples
directory. Each one has three files:

< An instrumentation file — a C source file that uses Atom’s API to modify
application programs such that additional routines provided by the tool
are invoked at particular times during program execution.

< An analysis file — a C source file that contains the routines that are
invoked by the modified program when it is executed. These analysis
routines can collect the run-time data that the tool reports.

= A description file (toolname.desc) — a text file that tells Atom the
names of the tool’s instrumentation and analysis files, along with any
options that Atom should use when running the tool.

Atom tools that are put into production use or that are delivered to customers
as products usually have .o object modules installed instead of their
proprietary sources. The Tru64 UNIX hiprof(l), pixie(1), and third(1)
commands and the Visual Threads product include Atom tools that are
delivered, installed, and run this way. By convention, their instrumentation,
analysis, and description files are in /usr/1ib/complrs/atom/tools.

9-2 Using and Developing Atom Tools

To run an installed Atom tool or example on an application program, use the
following form of the atom(1) command:

atom application_program —tool toolname [-env environment] [options...]

This form of the atom command requires the —tool option and accepts
the —env option.

The —tool option identifies the installed Atom tool to be used. By
default, Atom searches for installed tools in the /usr/1ib/cm-
plrs/atom/tools and /usr/lib/cmplrs/atom/examples
directories. You can add directories to the search path by supplying
a colon-separated list of additional directories to the ATOMTOOLPATH
environment variable.

The —env option indicates that an alternative version of the tool is
desired. For example, some Tru64 UNIX tools require -env threads
to run the thread-safe version. The atom(1) command searches for

a toolname.env.desc file instead of the default toolname.desc
file. It prints an error message if a description file for the specified
environment cannot be found.

9.1.2 Testing Tools Under Development

A second form of the atom(1) command is provided to make it easy to
compile and run a new atom tool that you are developing. You just name the
instrumentation and analysis files directly on the command line:

atom application_program instrumentation_file [analysis_file] [options...]

This form of the command requires the instrumentation file
parameter and accepts the analysis file parameter, but not the
-tool or -env options.

The instrumentation file parameter specifies the name of

a C source file or an object module that contains the Atom tool’s
instrumentation procedures. If the instrumentation procedures are
in more than one file, the .o of each file may be linked together into
one file using the 1d command with a -r option. By convention, most
instrumentation files have the suffix .inst.c or .inst.o.

If you pass an object module for this parameter, consider compiling the
module with either the -g1 or-g option. If there are errors in your
instrumentation procedures, Atom can issue more complete diagnostic
messages when the instrumentation procedures are thus compiled.

The analysis file parameter specifies the name of a C source file
or an object module that contains the Atom tool’s analysis procedures.
If the analysis routines are in more than one file, the .o of each file

Using and Developing Atom Tools 9-3

may be linked together into one file using the 1d command with a

-r option. Note that you do not need to specify an analysis file if the
instrumentation file does not call analysis procedures to the application
it instruments. By convention, most analysis files have the suffix
.anal.cor .anal.o.

Analysis routines may perform better if they are compiled as a single
compilation unit.

You can have multiple instrumentation and analysis source files. The
following example creates composite instrumentation and analysis objects

from

o\

cec
cec
14
14

o° o o

o

several source files:

-c filel.c file2.c

-c file7.c file8

-r -o tool.inst.o filel.o file2.o
-r -o tool.anal.o file7.0 file8.o

atom hello tool.inst.o tool.anal.o -o hello.atom

Note

You can also write analysis procedures in C++. You must assign
a type of extern "C" to each procedure to allow it to be called
from the application. You must also compile and link the analysis
files before entering the atom command. For example:

o

cxx -c tool.a.C
1ld -r -o tool.anal.o tool.a.o -lcxx -lexc
atom hello tool.inst.c tool.anal.o -o hello.atom

o

o

9.1.3 Atom Options

9-4

With

the exception of the —tool and —env options, both forms of the atom

command accept any of the remaining options described in atom(l). The
following options deserve special mention:

-Al

Causes Atom to optimize calls to analysis routines by reducing the
number of registers that need to be saved and restored. For some tools,
specifying this option increases the performance of the instrumented
application by a factor of two (at the expense of some increase in
application size). The default behavior is for Atom not to apply these
optimizations.

-debug

Using and

Lets you debug instrumentation routines by causing Atom to transfer
control to the symbolic debugger at the start of the instrumentation

Developing Atom Tools

routine. In the following example, the ptrace sample tool is run under
the dbx debugger. The instrumentation is stopped at line 12, and the
procedure name is printed.

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -debug

dbx version 3.11.8

Type ’'help’ for help.

Stopped in InstrumentAll

(dbx) stop at 12

[4] stop at "/udir/test/scribe/atom.user/tools/ptrace.inst.c":12

(dbx) c

[3] [InstrumentAll:12 ,0x12004dea8] if (name == NULL) name = "UNKNOWN";
(dbx) p name

0x2a391 = "__ start"

-ladebug

Lets you debug instrumentation routines with the optional 1adebug
debugger, if installed on your system. Atom puts the control in
ladebug with a stop at the instrumentation routine. Use 1adebug
if the instrumentation routines contain C++ code. See the Ladebug
Debugger Manual for more information.

-ga (-9)

-gap

-9p

Produces the instrumented program with debugging information. This
option lets you debug analysis routines with a symbolic debugger. The

default -A0 option (not -A1) is recommended with -ga (or -g). For
example:

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -ga
% dbx hello.ptrace
dbx version 3.11.8
Type ’'help’ for help.
(dbx) stop in ProcTrace
[2] stop in ProcTrace
(dbx) r
[2] stopped at [ProcTrace:5 ,0x120005574] fprintf (stderr,"%s\n", name);
(dbx) n
__start
[ProcTrace:6 ,0x120005598] }

Produces the instrumented program with debugging information.
This enables debugging of analysis and application routines. The
prefix “ APP ” is attached to all variable and procedure names in the
application. The default -20 option (not -A1) is recommended when
-gpa is used.

Produces the instrumented program with debugging information. This
option lets you debug application routines with a symbolic debugger.

Using and Developing Atom Tools 9-5

-gpa

Produces the instrumented program with debugging information. This
enables debugging of analysis and application routines. The prefix

“ ANA " is attached to all variable and procedure names in the analysis
object. The default -20 option (not -A1) is recommended when -gpa
is used.

—pthread

Specifies that thread-safe support is required. This option should be
used when instrumenting threaded applications.

-toolargs

Passes arguments to the Atom tool’s instrumentation routine. Atom
passes the arguments in the same way that they are passed to C
programs, using the argc and argv arguments to the main program.
For example:

#include <stdio.h>
unsigned InstrumentAll (int argc, char **argv) {
int 1i;
for (i = 0; 1 < argc; i++) {
printf (stderr, "argv([%d]: %$s\n",argv([i]);
}
}

The following example shows how Atom passes the —toolargs
arguments:

% atom hello args.inst.c -toolargs="8192 4"
argv[0]: hello

argv[l]: 8192

argv([2]: 4

9.2 Developing Atom Tools

The remainder of this chapter describes how to develop atom tools.

9.2.1 Atom’s View of an Application
Atom views an application as a hierarchy of components:

The program, including the executable and all shared libraries.

2. Acollection of objects. An object can be either the main executable or
any shared library. An object has its own set of attributes (such as its
name) and consists of a collection of procedures.

9-6 Using and Developing Atom Tools

3. Acollection of procedures, each of which consists of a collection of basic
blocks.

4. A collection of basic blocks, each of which consists of a collection of
instructions.

5. A collection of instructions.

Atom tools insert instrumentation points in an application program at
procedure, basic block, or instruction boundaries. For example, basic
block counting tools instrument the beginning of each basic block, data
cache simulators instrument each load and store instruction, and branch
prediction analyzers instrument each conditional branch instruction.

At any instrumentation point, Atom allows a tool to insert a procedure call
to an analysis routine. The tool can specify that the procedure call be made
before or after an object, procedure, basic block, or instruction.

9.2.2 Atom Instrumentation Routine

A tool’s instrumentation routine contains the code that traverses the
application’s objects, procedures, basic blocks, and instructions to locate
instrumentation points; adds calls to analysis procedures; and builds the
instrumented version of an application.

As described in atom_instrumentation routines(5), an instrumentation
routine can employ one of the following interfaces based on the needs of
the tool:

Instrument (int iargc, char **iargv, Obj *obj)

Atom calls the Instrument routine for each object in the application
program. As a result, an Instrument routine does not need to use the
object navigation routines (such as GetFirstObj). Because Atom
automatically writes each modified object before passing the next to
the Instrument routine, the Instrument routine should never call
the Buildobj, WriteObj, or ReleaseObj routine. When using the
Instrument interface, you can define an InstrumentInit routine
to perform tasks required before Atom calls Instrument for the first
object (such as defining analysis routine prototypes, adding program
level instrumentation calls, and performing global initializations).
You can also define an InstrumentFini routine to perform tasks
required after Atom calls Instrument for the last object (such as
global cleanup).

Using and Developing Atom Tools 9-7

InstrumentAll (int iargc, char **iargv)

Atom calls the InstrumentAll routine once for the entire application
program, which allows a tool's instrumentation code itself to
determine how to traverse the application’s objects. With this method,
there are Nno InstrumentInit or InstrumentFini routines. An
InstrumentAll routine must call the Atom object navigation routines
and use the Buildobj, WriteObj, or ReleaseObj routine to manage
the application’s objects.

Regardless of the instrumentation routine interface, Atom passes the
arguments specified in the -toolargs option to the routine. In the case of
the Instrument interface, Atom also passes a pointer to the current object.

9.2.3 Atom Instrumentation Interfaces

Atom provides a comprehensive interface for instrumenting applications.
The interface supports the following types of activities:

= Navigating among a program'’s objects, procedures, basic blocks, and
instructions. See Section 9.2.3.1.

= Building, releasing, and writing objects. See Section 9.2.3.2.

= Obtaining information about the different components of an application.
See Section 9.2.3.3.

= Resolving procedure names and call targets. See Section 9.2.3.4.

= Adding calls to analysis routines at desired locations in the program.
See Section 9.2.3.5.

9.2.3.1 Navigating Within a Program

The Atom application navigation routines, described in atom applica-
tion navigation(5), allow an Atom tool's instrumentation routine to find
locations in an application at which to add calls to analysis procedures as
follows:

e The GetFirstObj, GetLastObj, GetNextObj, and GetPrevObj
routines navigate among the objects of a program. For nonshared
programs, there is only one object. For call-shared programs, the first
object corresponds to the main program. The remaining objects are each
of its dynamically linked shared libraries.

e The GetFirstObjProc and GetLastObjProc routines return a pointer
to the first or last procedure, respectively, in the specified object.
The GetNextProc and GetPrevProc routines navigate among the
procedures of an object.

9-8 Using and Developing Atom Tools

e The GetFirstBlock, GetLastBlock, GetNextBlock, and
GetPrevBlock routines navigate among the basic blocks of a procedure.

e The GetFirstInst, GetLastInst, GetNextInst, and GetPrevInst
routines navigate among the instructions of a basic block.

= The GetInstBranchTarget routine returns a pointer to the instruction
that is the target of a specified branch instruction.

= The GetProcObj routine returns a pointer to the object that contains
the specified procedure. Similarly, the GetBlockProc routine returns
a pointer to the procedure that contains the specified basic block, and
the Get InstBlock routine returns a pointer to the basic block that
contains the specified instruction.

9.2.3.2 Building Objects

The Atom object management routines, described in atom _object man-
agement(5), allow an Atom tool's InstrumentAll routine to build, write,
and release objects.

The Buildobj routine builds the internal data structures Atom requires to
manipulate the object. An InstrumentAll routine must call the Buildobj
routine before traversing the procedures in the object and adding analysis
routine calls to the object. The WriteObj routine writes the instrumented
version of the specified object, deallocating the internal data structures the
BuildObj routine previously created. The ReleaseObj routine deallocates
the internal data structures for the given object, but it does not write out
the instrumented version the object.

The IsObjBuilt routine returns a nonzero value if the specified object
has been built with the Buildobj routine but not yet written with the
WriteObj routine or unbuilt with the ReleaseObj routine.

9.2.3.3 Obtaining Information About an Application’s Components

The Atom application query routines, described in atom applica-

tion query(5), allow an instrumentation routine to obtain static
information about a program and its objects, procedures, basic blocks, and
instructions.

The GetAnalName routine returns the name of the analysis file, as passed
to the atom command. This routine is useful for tools that have a single
instrumentation file and multiple analysis files. For example, multiple
cache simulators might share a single instrumentation file but each have a
different analysis file.

The GetProgInfo routine returns the number of objects in a program.

Using and Developing Atom Tools 9-9

Table 9-2 lists the routines that provide information about a program'’s
objects.

Table 9—2: Atom Object Query Routines

Routine Description

GetObjInfo Returns information about an object’s text, data,
and bss segments; the number of procedures, basic
blocks, or instructions it contains; its object ID; or a
Boolean hint as to whether the given object should
be excluded from instrumentation.

GetObjInstArray Returns an array consisting of the 32-bit instructions
included in the object.

GetObjInstCount Returns the number of instructions in the array included
in the array returned by the GetObj InstArray routine.

GetObjName Returns the original file name of the specified object.

GetObjOutName Returns the name of the instrumented object.

The following instrumentation routine, which prints statistics about the
program’s objects, demonstrates the use of Atom object query routines:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3 unsigned InstrumentAll (int argc, char **argv)
P
5 Obj *o; Proc *p;
6 const unsigned int *textSection;
7 long textStart;
8 for (o = GetFirstObj(); o != NULL; o = GetNextObj (o)) {
9 BuildObj (o) ;
10 textSection = GetObjInstArray (o) ;
11 textStart = GetObjInfo (o,ObjTextStartAddress) ;
12 printf ("Object %d\n", GetObjInfo(o,0bjID)) ;
13 printf (" Object name: %s\n", GetObjName (o)) ;
14 printf (" Text segment start: 0x%lx\n", textStart);
15 printf (" Text size: %1d\n", GetObjInfo(o,ObjTextSize));
16 printf (" Second instruction: 0x%x\n", textSection[1]);
17 ReleaseObj (o) ;
18 }
19 return (0) ;
20 }

Because the instrumention routine adds no procedures to the executable,
there is no need for an analysis procedure. The following example
demonstrates the process of compiling and instrumenting a program with
this tool. A sample run of the instrumented program prints the object
identifier, the compile-time starting address of the text segment, the
size of the text segment, and the binary for the second instruction. The
disassembler provides a convenient method for finding the corresponding
instructions.

cc hello.c -o hello
atom hello info.inst.c -o hello.info

o o°

9-10 Using and Developing Atom Tools

Object 0

Object Name: hello

Start Address: 0x120000000
Text Size: 8192

Second instruction: 0x239f001d

Object 1

Object Name: /usr/shlib/libc.so
Start Address: 0x3f££80080000
Text Size: 901120

Second instruction: 0x239f09cb
dis hello | head -3

0x120000fe0: a77d8010 1dg t12, -32752(gp)
0x120000fe4: 239f001d lda at, 29 (zero)
0x120000fe8: 279c0000 ldah at, 0 (at)

dis /ust/shlib/libc.so | head -3
0x3££800bdob0: a77d8010 1dg tl2,-32752(gp)
0x3ff800bd9b4: 239f09cb lda at, 2507 (zero)
0x3ff800bd9b8: 279c0000 ldah at, 0 (at)

Table 9-3 lists the routines that provide information about an object’s
procedures.

Table 9-3: Atom Procedure Query Routines

Routine Description

GetProcInfo Returns information pertaining to the procedure’s stack

frame, register-saving, register-usage, and prologue
characteristics as defined in the Calling Standard

for Alpha Systems and the Assembly Language
Programmer’s Guide. Such values are important to
tools, like Third Degree, that monitor the stack for
access to uninitialized variables. It can also return
such information about the procedure as the number of
basic blocks or instructions it contains, its procedure
ID, its lowest or highest source line number, or an
indication if its address has been taken.

ProcFileName Returns the name of the source file that
contains the procedure.

ProcName Returns the procedure’s name.

ProcPC Returns the compile-time program counter (PC) of

the first instruction in the procedure.

Table 9—4 lists the routines that provide information about a procedure’s
basic blocks.

Using and Developing Atom Tools 9-11

Table 9—4: Atom Basic Block Query Routines

Routine Description

BlockPC Returns the compile-time program counter (PC) of
the first instruction in the basic block.

GetBlockInfo Returns the number of instructions in the basic
block or the block ID. The block ID is unique to this
basic block within its containing object.

IsBranchTarget Indicates if the block is the target of a

branch instruction.

Table 9-5 lists the routines that provide information about a basic block’s

instructions.

Table 9-5: Atom Instruction Query Routines

Routine Description
GetInstBinary Returns a 32-bit binary representation of the
assembly language instruction.
GetInstClass Returns the instruction class (for example, floating-point
load or integer store) as defined by the Alpha Architecture
Reference Manual. An Atom tool uses this information to
determine instruction scheduling and dual-issue rules.
GetInstInfo Parses the entire 32-bit instruction and obtains all
or a portion of that instruction.
GetInstRegEnum Returns the register type (floating-point or integer) from an
instruction field as returned by the GetInstInfo routine.
GetInstRegUsage Returns a bit mask with one bit set for each
possible source register and one bit set for each
possible destination register.
InstPC Returns the compile-time program counter
(PC) of the instruction.
InstLineNo Returns the instruction’s source line humber.
IsInstType Indicates whether the instruction is of the specified

type (load instruction, store instruction, conditional
branch, or unconditional branch).

9.2.3.4 Resolving Procedure Names and Call Targets

Resolving procedure names and subroutine targets is trivial for nonshared
programs because all procedures are contained in the same object. However,
the target of a subroutine branch in a call-shared program could be in any

object.

9-12 Using and Developing Atom Tools

The Atom application procedure name and call target resolution routines,
described in atom application resolvers(5), allow an Atom tool’s
instrumentation routine to find a procedure by name and to find a target
procedure for a call site:

The ResolveTargetProc routine attempts to resolve the target of a
procedure call.

The ResolveNamedProc routine returns the procedure identified by
the specified name string.

The ReResolveProc routine completes a procedure resolution if the
procedure initially resided in an unbuilt object.

The ResolveObjNamedProc () routine returns the procedure identified
by the specified name string. If the specified object is symbolically linked,
it is checked first for a local version of the procedure. If a local version
does not exist or if the specified object was not symbolically linked, then
all built objects are searched for the procedure.

9.2.3.5 Adding Calls to Analysis Routines to a Program

The Atom application instrumentation routines, described in
atom application instrumentation(5), add arbitrary procedure calls
at various points in the application as follows:

You must use the AddCallProto routine to specify the prototype of
each analysis procedure to be added to the program. In other words,

an AddcallProto call must define the procedural interface for each
analysis procedure used in calls to AddCallProgram, AddCallObj,
AddCallProc, AddCallBlock, and AddCallInst. Atom provides
facilities for passing integers and floating-point numbers, arrays, branch
condition values, effective addresses, cycle counters, as well as procedure
arguments and return values.

Use the AddCcallProgram routine in an instrumentation routine to add
a call to an analysis procedure before a program starts execution or
after it completes execution. Typically such an analysis procedure does
something that applies to the whole program, such as opening an output
file or parsing command-line options.

Use the AddCal10bj routine in an instrumentation routine to add

a call to an analysis procedure before an object starts execution or
after it completes execution. Typically such an analysis procedure does
something that applies to the single object, such as initializing some
data for its procedures.

Use the AddCcallProc routine in an instrumentation routine to add a
call to an analysis procedure before a procedure starts execution or after
it completes execution.

Using and Developing Atom Tools 9-13

= Use the AddCcallBlock routine in an instrumentation routine to add
a call to an analysis procedure before a basic block starts execution or
after it completes execution.

= Use the AddCallInst routine in an instrumentation routine to add a
call to an analysis procedure before a given instruction executes or after
it executes.

= Use the ReplaceProcedure routine to replace a procedure in the
instrumented program. For example, the Third Degree Atom tool
replaces memory allocation functions such as malloc and free with
its own versions to allow it to check for invalid memory accesses and
memory leaks.

9.2.4 Atom Description File

An Atom tool’s description file, as described in atom description file(5),
identifies and describes the tool's instrumentation and analysis files. It can
also specify the options to be used by the cc, 1d, and atom commands when
it is compiled, linked, and invoked. Each Atom tool must supply at least
one description file.

There are two types of Atom description file:

= A description file providing an environment for generalized use of the
tool. A tool can provide only one general-purpose environment. The
name of this type of description file has the following format:

tool.desc

= A description file providing an environment for use of the tool in specific
contexts, such as in a multithreaded application or in kernel mode. A
tool can provide several special-purpose environments, each of which
has its own description file. The name of this type of description file
has the following format:

tool.environment.desc

The names supplied for the tool and environment portions of these
description file names correspond to values the user specifies to the —tool
and —env options of an atom command when invoking the tool.

An Atom description file is a text file containing a series of tags and values.
See atom description file(5) for a complete description of the file’'s
syntax.

9.2.5 Writing Analysis Procedures

An instrumented application calls analysis procedures to perform the specific
functions defined by an Atom tool. An analysis procedure can use system

9-14 Using and Developing Atom Tools

calls or library functions, even if the same call or function is instrumented
within the application. The routines used by the analysis routine and the
instrumented application are physically distinct. The following is a list of
library routines that can and cannot be called:

= Standard C Library (1ibc.a) routines (including system calls) can be
called, except for:

— unwind(3) routines and other exception-handling routines

— tis(3) routines
Also, the standard 1/O routines have certain differences in behavior, as
described in Section 9.2.5.1.

* The pthread atfork(3) routine can be called only if the - fork option
was used during program instrumentation.

= Math Library (1ibm. a) routines can be called.

= Other routines related to multithreading or exception-handling should
not be called (for example, pthread(3), exc_*, and 1ibmach routines).

= Other routines that assume a particular environment (for example, X
and Motif) may not be useful or correct in an Atom analysis environment.

Thread Local Storage (TLS) is not supported in analysis routines.

9.2.5.1 Input/Output

The standard 1/O library provided to analysis routines does not automatically
flush and close streams when the instrumented program terminates, so

the analysis code must flush or close them explicitly when all output has
been completed. Also, the stdout and stderr streams that are provided

to analysis routines will be closed when the application calls exit (), so
analysis code may need to duplicate one or both of these streams if they
need to be used after application exit (for example, in a ProgramAfter or
ObjAfter analysis routine — see AddCallProto(5)).

For output to stderr (or a duplicate of stderr) to appear immediately,
analysis code should call setbuf (stream, NULL) to make the stream
unbuffered or call ££1ush after each set of fprintf calls. Similarly,
analysis routines using C++ streams can call cerr.flush().

9.2.5.2 fork and exec System Calls

If a process calls a fork function but does not call an exec function, the
process is cloned and the child inherits an exact copy of the parent’s state.
In many cases, this is exactly the behavior that an Atom tool expects.
For example, an instruction-address tracing tool sees references for both
the parent and the child, interleaved in the order in which the references
occurred.

Using and Developing Atom Tools 9-15

In the case of an instruction-profiling tool (for example, the trace

tool referenced in Table 9-1), the file is opened at a ProgramBefore
instrumentation point and, as a result, the output file descriptor is shared
between the parent and the child processes. If the results are printed at a
ProgramAfter instrumentation point, the output file contains the parent’s
data, followed by the child’s data (assuming that the parent process finishes
first).

For tools that count events, the data structures that hold the counts should
be returned to zero in the child process after the fork call because the
events occurred in the parent, not the child. This type of Atom tool can
support correct handling of fork calls by instrumenting the fork library
procedure and calling an analysis procedure with the return value of the
fork routine as an argument. If the analysis procedure is passed a return
value of 0 (zero) in the argument, it knows that it was called from a child
process. It can then reset the counts variable or other data structures so
that they tally statistics only for the child process.

9.2.6 Determining the Instrumented PC from an Analysis Routine

The Atom X1late routines, described in Xx1ate(5), allow you to determine the
instrumented program counter (PC) for selected instructions. You can use
these functions to build a table that translates an instruction’s PC in the
instrumented application to its PC in the uninstrumented application.

To enable analysis code to determine the instrumented PC of an instruction
at run time, an Atom tool’s instrumentation routine must select the
instruction and place it into an address translation buffer (XLATE).

An Atom tool’s instrumentation routine creates and fills the address
translation buffer by calling the CreateXxlate and AddXlateAddress
routines, respectively. An address translation buffer can only hold
instructions from a single object.

The AddXlateAddress routine adds the specified instruction to an existing
address translation buffer.

An Atom tool’s instrumentation passes an address translation buffer to an
analysis routine by passing it as a parameter of type XLATE *, as indicated
in the analysis routine’s prototype definition in an AddCallProto call.

Another way to determine an instrumented PC is to specify a formal
parameter type of REGV in an analysis routine’s prototype and pass the
REG_IPC value.

An Atom tool’s analysis routine uses the following interfaces to access an
address translation buffer passed to it:

9-16 Using and Developing Atom Tools

The X1ateNum routine returns the number of addresses in the specified
address translation buffer.

The XlateInstTextStart routine returns the starting address of the
text segment for the instrumented object corresponding to the specified
address translation buffer.

The XlateInstTextSize routine returns the size of the text segment.

The XlateLoadsShift routine returns the difference between the
run-time addresses in the object corresponding to the specified address
translation buffer and the compile-time addresses.

The X1ateAddr routine returns the instrumented run-time address

for the instruction in the specified position of the specified address
translation buffer. Note that the run-time address for an instruction in a
shared library is not necessarily the same as its compile-time address.

The following example demonstrates the use of the X1ate routines by the
instrumentation and analysis files of a tool that uses the X1ate routines.
This tool prints the target address of every jump instruction. To use it, enter
the following command:

)
)

atom progname xlate.inst.c xlate.anal.c -all

The following source listing (x1late. inst.c) contains the instrumentation
for the x1ate tool:

#include <stdlib.h>

#include <stdio.h>

#include <alpha/inst.h>
#include <cmplrs/atom.inst.h>

static void address_add (unsigned long) ;
static unsigned address_num(void) ;

static unsigned long * address_paddrs(void) ;
static void address_free (void) ;

void InstrumentInit (int iargc, char **iargv)

{

}

/* Create analysis prototypes. */

AddCallProto ("RegisterNumObjs (int) ") ;

AddCallProto ("RegisterXlate (int, XLATE *, long[0])");
AddCallProto ("JmpLog (long, REGV)");

/* Pass the number of objects to the analysis routines. */
AddCallProgram(ProgramBefore, "RegisterNumObjs",
GetProgInfo (ProgNumberObjects)) ;

Instrument (int iargc, char **iargv, Obj *obj)

{

Proc * P
Block * b;
Inst * i;
Xlate * pxlt;
union alpha_ instruction bin;
ProcRes pres;
unsigned long pc;

Using and Developing Atom Tools 9-17

char proto[128];

/*
* Create an XLATE structure for this Obj. We use this to translate
* instrumented jump target addresses to pure jump target addresses.
*/
pxlt = CreateXlate(obj, XLATE_NOSIZE) ;
for (p = GetFirstObjProc(obj); p; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b; b = GetNextBlock(b)) {
/*

* If the first instruction in this basic block has had its
* address taken, it’s a potential jump target. Add the
instruction to the XLATE and keep track of the pure address

*

* too.
*/
= GetFirstInst(b);

f (GetInstInfo(i, InstAddrTaken))
AddXlateAddress (pxlt, 1i);
address_add (InstPC(i)) ;

i
i

for (; i; 1 = GetNextInst(i)) ({
bin.word = GetInstInfo(i, InstBinary);
if (bin.common.opcode == op_jsr &&
bin.j_format.function == jsr_ jmp)

/*

* This is a jump instruction. Instrument it.

*/

AddCallInst (i, InstBefore, "JmpLog", InstPC(i)

GetInstInfo (i, InstRB));

}
/*

* Re-prototype the RegisterXlate() analysis routine now that we

* know the size of the pure address array.

*/

sprintf (proto, "RegisterXlate(int, XLATE *, long[%d])", address_num()) ;

AddCallProto (proto) ;

/*

* Pass the XLATE and the pure address array to this object.

*/
AddCallObj (obj, ObjBefore, "RegisterXlate", GetObjInfo (obj,
pxlt, address paddrs());

/*
* Deallocate the pure address array.
*/

address_free() ;

}

/*

** Maintains a dynamic array of pure addresses.
*/

static unsigned long * pAddrs;

static unsigned maxAddrs = 0;

static unsigned nAddrs = 0;

/*

9-18 Using and Developing Atom Tools

** Add an address to the array.

*
séatic void address_add(
unsigned long addr)
{
/*
* If there’s not enough room, expand the array.
*/
if (nAddrs >= maxAddrs) {
maxAddrs = (nAddrs + 100) * 2;
pAddrs = realloc(pAddrs, maxAddrs * sizeof (*pAddrs)) ;
if (!pAddrs)
fprintf (stderr, "Out of memory\n") ;
exit (1) ;
}
}
/*
* Add the address to the array.
*/
pAddrs [nAddrs++] = addr;
}
/*
** Return the number of elments in the address array.
*/

static unsigned address_num(void)

{
}

return (nAddrs) ;

/*

** Return the array of addresses.

*/

static unsigned long *address_paddrs (void)

{
}
/*

** Deallocate the address array.
*/
static void address_free(void)

{

return (pAddrs) ;

free (pAddrs) ;

pAddrs = 0;
maxAddrs = 0;
nAddrs = 0;

}

The following source listing (x1ate.anal.c) contains the analysis routine
for the x1late tool:
#include <stdlib.h>

#include <stdio.h>
#include <cmplrs/atom.anal.h>

/*

* Each object in the application gets one of the following data
* structures. The XLATE contains the instrumented addresses for
* all possible jump targets in the object. The array contains

*

the matching pure addresses.

Using and Developing Atom Tools 9-19

*/
typedef struct {

XLATE * pXlt;
unsigned long * pAddrsPure;
} Objxlt t;

/*
* An array with one ObjXlt_ t structure for each object in the
* application.

*/

static ObjXlt_t * pAllXlts;

static unsigned noObj ;

static int translate_addr (unsigned long, unsigned long *);

static int translate_addr_obj (ObjXlt_t *, unsigned long,
unsigned long *);

/*

** Called at ProgramBefore. Registers the number of objects in
** this application.
*/
void RegisterNumObjs (
unsigned nobj)
{

/*
* Allocate an array with one element for each object. The
* elements are initialized as each object is loaded.
*/
nObj = nobj;
pAllXlts = calloc(nobj, sizeof (pAllXlts));
if (!pAllXlts)
fprintf (stderr, "Out of Memory\n");
exit (1) ;

}
/*

** Called at ObjBefore for each object. Registers an XLATE with
** instrumented addresses for all possible jump targets. Also

** passes an array of pure addresses for all possible jump targets.

*
véid RegisterXlate (
unsigned iobj,
XLATE * pxlt,
unsigned long * paddrs_pure)
{
/*
* Initialize this object’s element in the pAllXlts array.
*
pAilets[iobj].let = pxlt;
pAllXlts[iobj] .pAddrsPure = paddrs_pure;
}
/*

** Called at InstBefore for each jump instruction. Prints the pure

** target address of the jump.

*/
void JmpLog (
unsigned long pc,
REGV targ)
{
unsigned long addr;
printf ("0x%1lx jumps to - ", pc)

if (translate_ addr(targ, &addr))

9-20 Using and Developing Atom Tools

}
/*

**
**
**
* %
* %

*/

printf ("0x%1x\n", addr);
else
printf ("unknown\n") ;

Attempt to translate the given instrumented address to its pure
equivalent. Set ’*paddr pure’ to the pure address and return 1
on success. Return 0 on failure.

Will always succeed for jump target addresses.

static int translate_addr(

}
/*

**
**
* %
**

*/

unsigned long addr_inst,
unsigned long * paddr_pure)
unsigned long start;
unsigned long size;
unsigned i;

/*

* Find out which object contains this instrumented address.
*/
for (i = 0; i < nObj; i++) {
start = XlateInstTextStart (pAllXlts[i] .pX1lt);
size = XlateInstTextSize (pAllXlts[i].pXlt);
if (addr inst >= size && addr inst < start + size) {
/*
* Found the object, translate the address using that
* object’s data.

*/
return(translate_addr_obj (&pAllXlts[i], addr inst,
paddr_pure)) ;
}

}
/*

* No object contains this address.

*/
return (0) ;

Attempt to translate the given instrumented address to its
pure equivalent using the given object’s translation data.

Set ’*paddr_pure’ to the pure address and return 1 on success.
Return 0 on failure.

static int translate_addr_obj (

ObjX1lt_t * pObjX1t,
unsigned long addr_inst,
unsigned long * paddr_pure)
unsigned num;
unsigned i;
/*

* See if the instrumented address matches any element in the XLATE.

*/
num = XlateNum(pObjX1lt->pXlt) ;
for (i = 0; 1 < num; i++)

if (XlateAddr (pObjXlt->pXlt, i) == addr_inst) {
/*

* Matches this XLATE element, return the matching pure

Using and Developing Atom Tools

9-21

* address.

*
*p;ddripure = pObjXlt->pAddrsPure[i];
return (1) ;
}
}
/*
* No match found, must not be a possible jump target.
*/
return (0) ;

9.2.7 Sample Tools

This section describes the basic tool-building interface by using three

simple examples: procedure tracing, instruction profiling, and data cache
simulation.

9.2.7.1 Procedure Tracing

The ptrace tool prints the names of procedures in the order in which they
are executed. The implementation adds a call to each procedure in the
application. By convention, the instrumentation for the ptrace tool is
placed in the file ptrace.inst.c. For example:

1 #include <stdio.h>

2 #include <cmplrs/atom.inst.h>

3

4 unsigned InstrumentAll (int argc, char **argv)

5 {

6 Obj *o; Proc *p;

7 AddCallProto ("ProTrace (char *)");

8 for (o = GetFirstObj(); o != NULL; o = GetNextObj (o)) { E
9 if (BuildObj (o) return 1;

10 for (p = GetFirstObjProc(o); p != NULL; p = GetNextProc(p)) { @
11 const char *name = ProcName (p) ;

12 if (name == NULL) name = "UNKNOWN";

13 AddCallProc (p, ProcBefore, "ProcTrace",name) ; @

B
LIS

WriteObj (o) ;
}

return (0) ;

PR R
® 3 o

}

Includes the definitions for Atom instrumentation routines and data
structures.

Defines the InstrumentAll procedure. This instrumentation routine
defines the interface to each analysis procedure and inserts calls to those
procedures at the correct locations in the applications it instruments.

Calls the AddcallProto routine to define the ProcTrace analysis
procedure. ProcTrace takes a single argument of type char *.

Calls the GetFirstObj and GetNextObj routines to cycle through
each object in the application. If the program was linked nonshared,

9-22 Using and Developing Atom Tools

there is only a single object. If the program was linked call-shared,
it contains multiple objects: one for the main executable and one for
each dynamically linked shared library. The main program is always
the first object.

Builds the first object. Objects must be built before they can be
used. In very rare circumstances, the object cannot be built. The
InstrumentAll routine reports this condition to Atom by returning a
nonzero value.

[6] Calls the GetFirstObjProc and GetNextProc routines to step
through each procedure in the application program.

For each procedure, calls the ProcName procedure to find the procedure
name. Depending on the amount of symbol table information that is
available in the application, some procedures names, such as those
defined as static, may not be available. (Compiling applications with
the —g1 option provides this level of symbol information.) In these
cases, Atom returns NULL.

Converts the NULL procedure name string to UNKNOWN.

[9] Calls the AddcallProc routine to add a call to the procedure pointed to
by p. The ProcBefore argument indicates that the analysis procedure
is to be added before all other instructions in the procedure. The name
of the analysis procedure to be called at this instrumentation point
is ProcTrace. The final argument is to be passed to the analysis
procedure. In this case, it is the procedure named obtained on line 11.

Writes the instrumented object file to disk.

The instrumentation file added calls to the ProcTrace analysis procedure.
This procedure is defined in the analysis file ptrace.anal.c as shown in
the following example:

#include <stdio.h>

1
2
3 void ProcTrace (char *name)
4 A

5
6 }

The ProcTrace analysis procedure prints, to stderr, the character string
passed to it as an argument. Note that an analysis procedure cannot return
a value.

fprintf (stderr, "%s\n",name) ;

After the instrumentation and analysis files are specified, the tool is
complete. To demonstrate the application of this tool, compile and link the
following application as follows:

#include <stdio.h>
main ()

Using and Developing Atom Tools 9-23

{
}

The following example builds a nonshared executable, applies the ptrace
tool, and runs the instrumented executable. This simple program calls
almost 30 procedures.

printf ("Hello world!\n") ;

cc -non_shared hello.c -o hello
atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace
hello.ptrace

__start

main

printf

_doprnt

__getmbcurmax

strchr

strlen

memcpy

o o

o

The following example repeats this process with the application linked
call-shared. The major difference is that the LD LIBRARY PATH
environment variable must be set to the current directory because Atom
creates an instrumented version of the 1ibc. so shared library in the local
directory.

cc hello.c -o hello
atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -all
setenv LD LIBRARY PATH ‘pwd‘
hello.ptrace
__start
_call add gp_range
___exc_add _gp_range
malloc
cartesian_alloc
cartesian growheap?2
__getpagesize
_ sbrk

o\° o o o

The call-shared version of the application calls almost twice the number of
procedures that the nonshared version calls.

Note that only calls in the original application program are instrumented.
Because the call to the ProcTrace analysis procedure did not occur in
the original application, it does not appear in a trace of the instrumented

9-24 Using and Developing Atom Tools

application procedures. Likewise, the standard library calls that print
the names of each procedure are also not included. If the application and
the analysis program both call the printf function, Atom would link into
the instrumented application two copies of the function. Only the copy

in the application program would be instrumented. Atom also correctly
instruments procedures that have multiple entry points.

9.2.7.2 Profile Tool

The iprof example tool counts the number of instructions a program
executes. It is useful for finding critical sections of code. Each time the
application is executed, iprof creates a file called iprof . out that contains
a profile of the number of instructions that are executed in each procedure
and the number of times each procedure is called.

The most efficient place to compute instruction counts is inside each
basic block. Each time a basic block is executed, a fixed humber of
instructions are executed. The following example shows how the iprof
tool’s instrumentation procedure (iprof . inst.c) performs these tasks:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>

3 static int n = 0;
4
5 static const char * SafeProcName (Proc *) ;
6
7 void InstrumentInit (int argc, char **argv)
8{
9 AddCallProto ("OpenFile (int)") ;
10 AddCallProto ("ProcedureCalls (int) ") ;
11 AddCallProto ("ProcedureCount (int,int) ") ;
12 AddCallProto ("ProcedurePrint (int,char*)") ;
13 AddCallProto("CloseFile()");
14 AddCallProgram(ProgramAfter, "CloseFile") ;
15 }
16
17 Instrument (int argc, char **argv, Obj *obj)
18 {
19 Proc *p; Block *b;
20
21 for (p = GetFirstObjProc(obj); p != NULL; p = GetNextProc (p)) {
22 AddCallProc (p, ProcBefore, "ProcedureCalls",n) ;
23 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock (b)) {
24 AddCallBlock (b,BlockBefore, "ProcedureCount",
25 n,GetBlockInfo (b,BlockNumberInsts)) ;
26 }
27 AddCallObj (obj, ObjAfter, "ProcedurePrint",n,SafeProcName (p)) ; @
28 n++;
29 }
30 }
31
32 void InstrumentFini (void)
33 {
34 AddCallProgram(ProgramBefore, "OpenFile",n) ;
35 }
36

37 static const char *SafeProcName (Proc *p)

Using and Developing Atom Tools 9-25

S

@] [«

[o]

Th
ip

O VW oW JO0 Uk WN

i

9-26 Using

const char * name;

static char buf[128];
name = ProcName (p) ; []
if (name)

return (name) ;
sprintf (buf, "proc_at_ 0x%1x", ProcPC(p));
return (buf) ;

Defines the interface to the analysis procedures.

Adds a call to the CloseFile analysis procedure to the end of the
program.

Loops through each procedure in the object.
Loops through each basic block in the procedure.

Adds a call to the ProcedureCount analysis procedure before any of
the instructions in this basic block are executed. The argument types
of the ProcedureCount are defined in the prototype on line 11. The
first argument is a procedure index of type int; the second argument,
also an int, is the number of instructions in the basic block. The
ProcedureCount analysis procedure adds the number of instructions
in the basic block to a per-procedure data structure. Similarly, the
ProcedureCalls analysis procedure increments a procedure’s call
count before each call begins executing the called procedure.

Adds a call to the ProcedurePrint analysis procedure to the end of
the program. The ProcedurePrint analysis procedure prints a line
summarizing this procedure’s instruction use and call count.

Increments the procedure index.

Adds a call to the OpenFile analysis procedure to the beginning of the
program, passing it an int representing the number of procedures in
the application. The OpenFile procedure allocates the per-procedure
data structure that tallies instructions and opens the output file.
Determines the procedure name.

e analysis procedures used by the iprof tool are defined in the

rof .anal.c file as shown in the following example:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

long instrTotal = 0;

long *instrPerProc;

long *callsPerProc;

FILE *OpenUnique (char *fileName, char *type)

and Developing Atom Tools

11 |
12 FILE *file;
13 char Name [200] ;

14

15 if (getenv ("ATOMUNIQUE") != NULL)

16 sprintf (Name, "$s.%d", fileName, getpid()) ;
17 else

18 strcpy (Name, fileName) ;

19

20 file = fopen (Name, type) ;

21 if (file == NULL)

22 {

23 fprintf (stderr, "Atom: can’t open %s for %s\n",Name, type);
24 exit (1) ;

25 }

26 return (file) ;

27 }

28

29 static FILE *file;

30 void OpenFile (int number)

31 {

32 file = OpenUnique ("iprof.out", "w") ;

33 fprintf (file, "%$30s %$15s %15s %12s\n", "Procedure", "Calls",

34 "Instructions", "Percentage") ;

35 instrPerProc = (long *) calloc(sizeof (long), number) ;
36 callsPerProc = (long *) calloc(sizeof (long), number) ;
37 if (instrPerProc == NULL || callsPerProc == NULL) {
38 fprintf (stderr, "Malloc failed\n");

39 exit (1) ;

40 }

41 }

42

43 void ProcedureCalls (int number)

44 |

45 callsPerProc [number] ++;

46 }

47

48 void ProcedureCount (int number, int instructions)

49 {

50 instrTotal += instructions;

51 instrPerProc [number] += instructions;

52 }

53

54

55 void ProcedurePrint (int number, char *name)

56 {

57 if (instrPerProc [number] > 0) {

58 fprintf (file, "%30s %$151d %151d %12.3f\n",

59 name, callsPerProc [number], instrPerProc [number],
60 100.0 * instrPerProc [number] / instrTotal) ;
61 }

62 }

63

64 void CloseFile()

65

66 fprintf (file, "\n%30s %15s %$151d\n", "Total", "", instrTotal);
67 fclose(file) ;

68 }

Allocates the counts data structure. The calloc function zero-fills
the counts data.

Using and Developing Atom Tools 9-27

Filters procedures that are never called.

Closes the output file. Tools must explicitly close files that are opened in
the analysis procedures.

After the instrumentation and analysis files are specified, the tool is
complete. To demonstrate the application of this tool, compile and link the
"Hello" application as follows:

#include <stdio.h>
main ()

{
}

The following example builds a call-shared executable, applies the iprof
tool, and runs the instrumented executable. In contrast to the ptrace tool
described in Section 9.2.7.1, the iprof tool sends its output to a file instead
of stdout.

printf ("Hello world!\n") ;

o\

cc hello.c -o hello

atom hello iprof.inst.c iprof.anal.c -o hello.iprof -all
setenv LD LIBRARY PATH ‘pwd‘

> hello.iprof

Hello world!

o

% more iprof.out

o° o

\o

Procedure Calls Instructions Percentage
__start 1 92 1.487
main 1 15 0.242
printf 1 81 0.926
Total 8750

% unsetenv LD LIBRARY PATH

9.2.7.3 Data Cache Simulation Tool

Instruction and data address tracing has been used for many years as a
technique to capture and analyze cache behavior. Unfortunately, current
machine speeds make this increasingly difficult. For example, the Alvinn
SPEC92 benchmark executes 961,082,150 loads, 260,196,942 stores, and
73,687,356 basic blocks, for a total of 2,603,010,614 Alpha instructions.
Storing the address of each basic block and the effective address of all the
loads and stores would take in excess of 10 GB and slow down the application
by a factor of over 100.

9-28 Using and Developing Atom Tools

The cache tool uses on-the-fly simulation to determine the cache miss rates

of an application running in an 8-KB, direct-mapped cache. The following
example shows its instrumentation routine:

1 #include <stdio.h>

2 #include <cmplrs/atom.inst.h>

3

4 unsigned InstrumentAll (int argc, char **argv)

5 {

6 Obj *o; Proc *p; Block *b; Inst *i;

7

8 AddCallProto ("Reference (VALUE) ") ;

9 AddCallProto ("Print()") ;

10 for (o = GetFirstObj(); o != NULL; o = GetNextObj (o)) {

11 if (BuildObj (o)) return (1);

12 for (p=GetFirstProc(); p != NULL; p = GetNextProc (p)) {

13 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock (b)) {
14 for (i = GetFirstInst(b); i != NULL; i = GetNextInst(i)) {
15 if (IsInstType(i,InstTypeload) || IsInstType (i,InstTypeStore)) {
16 AddCallInst (i, InstBefore, "Reference",EffAddrValue) ;
17 }

18 }

19 }
20 }
21 WriteObj (o) ;
22 }

23 AddCallProgram(ProgramAfter, "Print") ;
24 return (0);
25 '}

Examines each instruction in the current basic block.
If the instruction is a load or a store, adds a call to the Reference
analysis procedure, passing the effective address of the data reference.

The analysis procedures used by the cache tool are defined in the
cache.anal.c file as shown in the following example:

1 #include <stdio.h>
2 #include <assert.h>
3 #define CACHE_SIZE 8192
4 #define BLOCK SHIFT 5
5 1long tags[CACHE_SIZE >> BLOCK SHIFT];
6 long references, misses;
7
8 void Reference (long address) {
9 int index = (address & (CACHE SIZE-1)) >> BLOCK SHIFT;
10 long tag = address >> BLOCK SHIFT;
11 if tags([index] != tag) ({
12 misses++;
13 tags [index] = tag;
14 }
15 references++;
16 }
17 void Print () ({
18 FILE *file = fopen("cache.out", "w");
19 assert (file != NULL) ;
20 fprintf (file, "References: %1d\n", references);
21 fprintf (file, "Cache Misses: %1d\n", misses);
22 fprintf (file, "Cache Miss Rate: %£f\n", (100.0 * misses) / references);
23 fclose(file) ;
24 1}

Using and Developing Atom Tools 9-29

After the instrumentation and analysis files are specified, the tool is
complete. To demonstrate the application of this tool, compile and link the
"Hello" application as follows:

#include <stdio.h>
main ()

{
}

The following example applies the cache tool to instrument both the
nonshared and call-shared versions of the application:

printf ("Hello world!\n") ;

o\

cc hello.c -o hello

atom hello cache.inst.c cache.anal.c -o hello.cache -all
setenv LD LIBRARY PATH ‘pwd‘

hello.cache

Hello world!

% more cache.out

References: 1091

Cache Misses: 225

Cache Miss Rate: 20.623281

cc -non_shared hello.c -o hello

atom hello cache.inst.c cache.anal.c -o hello.cache -all
hello.cache

Hello world!

% more cache.out
References: 382

Cache Misses: 93

Cache Miss Rate: 24.345550

o° o o

o\° o o

9-30 Using and Developing Atom Tools

10

Optimizing Techniques

Optimizing an application program can involve modifying the build process,
modifying the source code, or both.

In many instances, optimizing an application program can result in major
improvements in run-time performance. Two preconditions should be met,
however, before you begin measuring the run-time performance of an
application program and analyzing how to improve the performance:

= Check the software on your system to ensure that you are using the
latest versions of the compiler and the operating system to build your
application program. Newer versions of a compiler often perform more
advanced optimizations, and newer versions of the operating system
often operate more efficiently.

= Test your application program to ensure that it runs without errors.
Whether you are porting an application from a 32-bit system to Tru64
UNIX or developing a new application, never attempt to optimize an
application until it has been thoroughly debugged and tested. (If you are
porting an application written in C, compile your program using the
C compiler’s -message enable questcode option, and/or use lint
with the —Q option to help identify possible portability problems that
you may need to resolve.)

After you verify that these conditions have been met, you can begin the
optimization process.

The process of optimizing an application can be divided into two separate,
but complementary, activities:

= Tuning your application’s build process so that you use, for example, an
optimal set of automatic preprocessing and compilation optimizations
(see Section 10.1).

= Analyzing your application’s source code to ensure that it uses efficient
algorithms, and that it does not use programming language constructs
that can degrade performance (see Section 10.2). This manual phase also
includes the use of profiling tools to analyze performance, as explained in
Chapter 8.

The following sections provide details that relate to these two aspects of the
optimization process.

Optimizing Techniques 10-1

10.1 Guidelines to Build an Application Program

Opportunities to automatically improve an application’s run-time
performance exist in all phases of the build process. The following sections
identify some of the major opportunities that exist in the areas of compiling,
linking and loading, preprocessing and postprocessing, and library selection.
A particularly effective technique is profile-directed optimization with the
spike tool (Section 10.1.3).

10.1.1 Compilation Considerations

Compile your application with the highest optimization level possible, that
is, the level that produces the best performance and the correct results.

In general, applications that conform to language-usage standards should
tolerate the highest optimization levels, and applications that do not conform
to such standards may have to be built at lower optimization levels. See
cc(1) or Chapter 2 for more information.

If your application will tolerate it, compile all of the source files together in a
single compilation. Compiling multiple source files increases the amount

of code that the compiler can examine for possible optimizations. This can
have the following effects:

= More procedure inlining
= More complete data flow analysis

= A reduction in the number of external references to be resolved during
linking

To take advantage of these optimizations, use the -ifo and either —03 or
—04 compilation options.

To determine whether the highest level of optimization benefits your
particular program, compare the results of two separate compilations of the
program, with one compilation at the highest level of optimization and the
other compilation at the next lower level of optimization. Some routines
may not tolerate a high level of optimization; such routines will have to be
compiled separately.

Other compilation considerations that can have a significant impact on
run-time performance include the following:

= For C applications with numerous floating-point operations, consider
using the —-fp_reorder option if a small difference in the result is
acceptable.

= If your C application uses a lot of char, short, or int data items within
loops, you may be able to use the C compiler’s highest-level optimization
option to improve performance. (The highest-level optimization option

10-2 Optimizing Techniques

(—04) implements byte vectorization, among other optimizations, for
Alpha systems.)

For C and Fortran applications whose performance can be characterized
using one or more sample runs, consider using the - feedback option.
This option is especially effective when used with the -spike option, as
discussed in Section 10.1.3.2, and/or the -ifo option for even better
results.

For C applications that are thoroughly debugged and that do not
generate any exceptions, consider using the —speculate option. When a
program compiled with this option is executed, values associated with a
variety of execution paths are precomputed so that they are immediately
available if they are needed. This work ahead operation uses idle
machine cycles, so it has no negative effect on performance. Performance
is usually improved whenever a precomputed value is used.

The —speculate option can be specified in two forms:

—speculate all
—speculate by routine

Both options result in exceptions being dismissed: the —speculate
all option dismisses exceptions generated in all compilation units of
the program, and the —speculate by routine option dismisses
only the exceptions in the compilation unit to which it applies. If
speculative execution results in a significant number of dismissed
exceptions, performance will be degraded. The —speculate all
option is more aggressive and may result in greater performance
improvements than the other option, especially for programs doing
floating-point computations. The —speculate all option cannot be
used if any routine in the program does exception handling; however,
the —speculate by routine option can be used when exception
handling occurs outside the compilation unit on which it is used. Neither
—speculate option should be used if debugging is being done.

To print a count of the number of dismissed exceptions when the program
does a normal termination, specify the following environment variable:
% setenv _SPECULATE ARGS -stats

The statistics feature is not currently available with the —speculate
all option.

Use of the —speculate all and —speculate by routine options
disables all messages about alignment fixups. To generate alignment
messages for both speculative and nonspeculative alignment fixups,
specify the following environment variable:

% setenv _SPECULATE ARGS -alignmsg

You can specify both options as follows:

Optimizing Techniques 10-3

% setenv _SPECULATE ARGS -stats -alignmsg

= You can use the following compilation options together or individually to
improve run-time performance (see cc(1) for more information):

Option

Description

-arch

—ansi_alias

—ansi_args

—fast

—feedback

—fp reorder

-G

—inline

—ifo

10-4 Optimizing Techniques

Specifies which version of the Alpha architecture to
generate instructions for. See -arch in cc(1) for an
explanation of the differences between -arch and -tune.

Specifies whether source code observes ANSI C
aliasing rules. ANSI C aliasing rules allow for
more aggressive optimizations.

Specifies whether source code observes ANSI C rules
about arguments. If ANSI C rules are observed, special
argument-cleaning code does not have to be generated.

Turns on the optimizations for the following options for
increased performance:

—ansi_alias
—ansi_args

—assume trusted short_alignment
—D FASTMATH

—float

—fp reorder

-ifo

—D INLINE INTRINSICS
—D INTRINSICS
-intrinsics

—03

—-readonly strings

Specifies that the compiler should use the profile
information contained in the specified file when
performing optimizations. For more information,
see Section 10.1.3.2.

Specifies whether certain code transformations that
affect floating-point operations are allowed.

Specifies the maximum byte size of data items in the
small data sections (sbss or sdata).

Specifies whether to perform inline expansion of functions.

Provides improved optimization (interfile optimization)
and code generation across file boundaries that would not
be possible if the files were compiled separately.

Specifies the level of optimization that is to be
achieved by the compilation.

Option Description

—om Performs a variety of postlink code optimizations. Most
effective with programs compiled with the -non shared
option (see Appendix F). This option is being replaced
with the -spike option (see Section 10.1.3).

—preempt_module Supports symbol preemption on a module-by-module basis.

—speculate Enables work (for example, load or computation
operations) to be done in running programs on execution
paths before the paths are taken.

—spike Performs a variety of postlink code optimizations
(see Section 10.1.3).

—tune Selects processor-specific instruction tuning for specific
implementations of the Alpha architecture. See
-arch in cc(1) for an explanation of the differences
between -tune and -arch.

—unroll Controls loop unrolling done by the optimizer
at levels —02 and above.

Using the preceding options may cause a reduction in accuracy and
adherence to standards.

= For C applications, the compilation option in effect for handling
floating-point exceptions can have a significant impact on execution
time as follows:

— Default exception handling (no special compilation option)

With the default exception-handling mode, overflow, divide-by-zero,
and invalid-operation exceptions always signal the SIGFPE
exception handler. Also, any use of an IEEE infinity, an IEEE NaN
(not-a-number), or an IEEE denormalized number will signal the
SIGFPE exception handler. By default, underflows silently produce a
zero result, although the compilers support a separate option that
allows underflows to signal the SIGFPE handler.

The default exception-handling mode is suitable for any portable
program that does not depend on the special characteristics of
particular floating-point formats. The default mode provides the best
exception-handling performance.

— Portable IEEE exception handling (-ieee)

With the portable IEEE exception-handling mode, floating-point
exceptions do not signal unless a special call is made to enable the
fault. This mode correctly produces and handles IEEE infinity, IEEE
NaNs, and IEEE denormalized numbers. This mode also provides
support for most of the nonportable aspects of IEEE floating point: all
status options and trap enables are supported, except for the inexact

Optimizing Techniques 10-5

10.1.2

10.1.3

10.1.3.1

exception. (See ieee(3) for information on the inexact exception
feature (—-ieee with inexact). Using this feature can slow down
floating-point calculations by a factor of 100 or more, and few, if any,
programs have a need for its use.)

The portable IEEE exception-handling mode is suitable for

any program that depends on the portable aspects of the IEEE
floating-point standard. This mode is usually 10-20 percent slower
than the default mode, depending on the amount of floating-point
computation in the program. In some situations, this mode can
increase execution time by more than a factor of two.

Linking and Loading Considerations

If your application does not use many large libraries, consider linking

it nonshared. This allows the linker to optimize calls into the library,
which decreases your application’s startup time and improves run-time
performance (if calls are made frequently). Nonshared applications, however,
can use more system resources than call-shared applications. If you are
running a large number of applications simultaneously and the applications
have a set of libraries in common (for example, 1ibX11 or 1ibc), you may
increase total system performance by linking them as call-shared. See
Chapter 4 for details.

For applications that use shared libraries, ensure that those libraries can
be quickstarted. Quickstarting is a Tru64 UNIX capability that can greatly
reduce an application’s load time. For many applications, load time is a
significant percentage of the total time that it takes to start and run the
application. If an object cannot be quickstarted, it still runs, but startup
time is slower. See Section 4.7 for details.

Spike and Profile-Directed Optimization

This section describes use of the spike postlink optimizer.

Overview of spike

The spike tool performs code optimization after linking. Because it can
operate on an entire program, spike is able to do optimizations that the
compiler cannot do. spike is most effective when it uses profile information
to guide optimization, as discussed in Section 10.1.3.2.

spike is new with Tru64 UNIX Version 5.1 and is intended to replace om
and cord. It provides better control and more effective optimization, and it
can be used with both executables and shared libraries. spike cannot be
used with om or cord. For information about om and cord, see Appendix F.

10-6 Optimizing Techniques

Some of the optimizations that spike performs are code layout, deleting
unreachable code, and optimization of address computations.

spike can process binaries that are linked on Tru64 UNIX V4.0 or
later systems. Binaries that are linked on V5.1 or later systems contain
information that allows spike to do additional optimization.

Note

spike does only some address optimizations on Tru64 UNIX
V5.1 or later images, but om will do the optimization on V4
images. If you are using spike on pre V5.1 binaries and you
enable linker optimization (-0 passed to cc in the link step), the
difference in performance between om and spike is not expected
to be significant.

You can use spike in two ways:
= By applying the spike command to a binary file after compilation.

= As part of the compilation process, by specifying the -spike option
with the cc command (or with the cxx, £77, or £90 command, if the
corresponding compiler is installed on your system).

The examples in this section and Section 10.1.3.2 show how to use both
forms of spike The spike command is more convenient when you do not
want to relink the executable (Example 1) or when you are using profile
information after compilation (Example 5 and Example 6). The -spike
option is more convenient when you are not using profile information
(Example 2), or when you are using profile information in the compiler, too
(Example 3 and Example 4).

Example 1 and Example 2 show how to use spike without profiling
information to guide the optimization. Section 10.1.3.2 explains how to use
spike with feedback information from the pixie profiler.

Example 1

In this example, spike is applied to the binary my prog, producing the
optimized output file progl.opt.

o

% spike my prog -o progl.opt

Example 2

In this example, spike is applied during compilation with the cc command’s
-spike option:

cc -c filel.c
cc -o prog3 filel.o -spike

o

o

Optimizing Techniques 10-7

The first command line creates the object file filel.o. The second
command line links £ilel.o into an executable and uses spike to optimize
the executable.

All of the spike command’s options can be passed directly to the cc
command’s -spike option by using the (cc) -ws option. The following
example shows the syntax:

% cc -spike -feedback prog -o prog *.c \
-WS, -splitThresh, .999, -noaggressiveAlign

For complete information on the spike command’s options and any
restrictions on using spike, see spike(1).

10.1.3.2 Using spike for Profile-Directed Optimization

You can achieve some degree of automatic optimization by using the
compiler’s automatic optimization options that are described in the previous
sections, such as -0, -fast, -inline, and so on. These options can help in
the generation of minimal instruction sequences that make best use of the
CPU architecture and cache memory.

However, the compiler and linker can improve on these optimizations if
given information on which instructions are executed most often when a
program is run with its normal input data and environment. Tru64 UNIX
helps you provide this information by allowing a profiler’s results to be fed
back into a recompilation. This customized, profile-directed optimization can
be used in conjunction with automatic optimization.

The following examples show how to use spike with the pixie profiler and
various feedback techniques to tune the generated instruction sequences of
a program.

Example 3

This example shows the three basic steps for profile-directed optimization
with spike: (1) preparing the program for optimization, (2) creating an
instrumented version of the program and running it to collect profiling
statistics, and (3) feeding that information back to the compiler and
linker to help them optimize the executable code. Later examples show
how to elaborate on these steps to accommodate ongoing changes during
development and data from multiple profiling runs.

% cc -feedback prog -o prog -03 *.c

% pixie -update prog
% cc -feedback prog -o prog -spike -03 *.c

When the program is compiled with the -feedback option for the
first time, a special augmented executable file is created. It contains

10-8 Optimizing Techniques

information that the compiler uses to relate the executable to the source
files. It also contains a section that is used later to store profiling
feedback information for the compiler. This section remains empty after
the first compilation because the pixie profiler has not yet generated
any feedback information (step 2). Make sure that the file name
specified with the - feedback option is the same as the executable file
name, which in this example is prog (from the -o option). By default,
the - feedback option applies the -g1 option, which provides optimum
symbolization for profiling. You need to experiment with the -0On
option to find the level of optimization that provides the best run-time
performance for your program and compiler. The compiler issues this
message during the first compilation, because no feedback information
is yet available:

cc: Info: Feedback file prog does not exist (nofbfil)
cc: Info: Compilation will proceed without feedback optimizations (nofbopt)

The pixie command creates an instrumented version of the program
(prog.pixie) and then runs it (because a prof option, -update,
is specified). Execution statistics and address mapping data are
automatically collected in an instruction-counts file (prog. Counts) and
an instruction-addresses file (prog.Addrs). The -update option puts
this profiling information in the augmented executable.

In the second compilation with the -feedback option, the profiling
information in the augmented executable guides the compiler and
(through the -spike option) the postlink optimizer. This customized
feedback enhances any automatic optimization that the -03 and
-spike options provide. You can make compiler optimizations even
more effective by using the -ifo and/or -assume whole program
options in conjunction with the -feedback option. However, as noted
in Section 10.1.1, the compiler may be unable to compile very large
programs as if there were only one source file.

See pixie(l) and cc(1) for more information.

The profiling information in an augmented executable file makes it larger
than a normal executable (typically 3-5 percent). After development is
completed, you can use the strip command to remove any profiling and
symbol table information. For example:

% strip prog

spike cannot process stripped images.

Optimizing Techniques 10-9

Example 4

During a typical development process, steps 2 and 3 of Example 3 are
repeated as needed to reflect the impact of any changes to the source code.
For example:

o°

cc -feedback prog -o prog -03 *.c
% pixie -update prog
% cc -feedback prog -o prog -03 *.c
[modify source codel
% cc -feedback prog -o prog -03 *.c
[modify source codel
% cc -feedback prog -o prog -03 *.c
% pixie -update prog
cc -feedback prog -o prog -spike -03 *.c

Because the profiling information in the augmented executable persists
from compilation to compilation, the pixie processing step that updates the
information does not have to be repeated every time that a source module

is modified and recompiled. But each modification reduces the relevance of
the old feedback information to the actual code and degrades the potential
quality of the optimization, depending on the exact modification. The pixie
processing step after the last modification and recompilation guarantees
that the feedback information is correctly updated for the last compilation.

Example 5

You might want to run your instrumented program several times with
different inputs to get an accurate picture of its profile. This example
shows how to optimize a program by merging profiling statistics from two
instrumented runs of a program, prog, whose output varies from run to run
with different sets of input:

% cc -feedback prog -o prog *.c

% pixie -pids prog

% prog.pixie |3

(input set 1)

% prog.pixie

(input set 2)

% prof -pixie -update prog prog.Counts.* []

% spike prog -feedback prog -o prog.opt

The first compilation produces an augmented executable, as explained
in Example 3.

By default, each run of the instrumented program (prog.pixie)
produces a profiling data file called prog. Counts. The -pids option
adds the process ID of each of the instrumented program’s test runs to
the name of the profiling data file produced (prog.Counts.pid). Thus,
the data files that subsequent runs produce do not overwrite each other.

10-10 Optimizing Techniques

10.1.4

The instrumented program is run twice, producing a uniquely
named data file each time — for example, prog. Counts.371 and
prog.Counts.422.

The prof -pixie command merges the two data files. The -update
option updates the executable, prog, with the combined information.

The spike command with the -feedback option uses the combined
profiling information from the two runs of the program to guide the
optimization, producing the optimized output file prog. opt.

The last step of this example could be changed to the following:

% cc -spike -feedback prog -o prog -03 *.c

The -spike option requires that you relink the program. When using the
spike command, you do not have to link the program a second time to
invoke spike.

Example 6

This example differs from Example 5 in that a normal (unaugmented)
executable is created, and the spike command’s - £b option (rather than the
-feedback option) is used:

% cc prog -o prog *.c

% pixie -pids prog

% prog.pixie

(input set 1)

% prog.pixie

(input set 2)

% prof -pixie -merge prog.Counts prog prog.Addrs prog.Counts.*

% spike prog -fb prog -o prog.opt

The prof -pixie -merge command merges the two data files from the
two instrumented runs into one combined prog. Counts file. With this form
of feedback, the -g1 option must be specified explicitly to provide optimum
symbolization for profiling.

The spike -fb command uses the information in prog.2Addrs and
prog.Counts to produce the optimized output file prog. opt.

The method of Example 5 is preferred. The method in Example 6 is supported
for compatibility and should be used only if you cannot compile with the
-feedback option that uses feedback information stored in the executable.

Preprocessing and Postprocessing Considerations

Preprocessing options and postprocessing (run-time) options that can affect
performance include the following:

Optimizing Techniques 10-11

= Use the Kuck & Associates Preprocessor (KAP) tool to gain extra
optimizations. The preprocessor uses final source code as input and
produces an optimized version of the source code as output.

KAP is especially useful for applications with the following
characteristics on both symmetric multiprocessing systems (SMP) and
uniprocessor systems:

— Programs with a large number of loops or loops with large loop bounds
— Programs that act on large data sets

— Programs with significant reuse of data

— Programs with a large number of procedure calls

— Programs with a large number of floating-point operations

To take advantage of the parallel-processing capabilities of SMP systems,
the KAP preprocessors support automatic and directed decomposition
for C programs. KAP’s automatic decomposition feature analyzes

an existing program to locate loops that are candidates for parallel
execution. Then, it decomposes the loops and inserts all necessary
synchronization points. If more control is desired, the programmer can
manually insert directives to control the parallelization of individual
loops. On Tru64 UNIX systems, KAP uses the POSIX Threads Library
to implement parallel processing.

For C programs, KAP is invoked with the kapc (which invokes separate
KAP processing) or kec command (which invokes combined KAP
processing and Compag C compilation). For information on how to use
KAP on a C program, see the KAP for C for Tru64 UNIX manual.

KAP is available for Tru64 UNIX systems as a separately orderable
layered product.

= Use the following tools, especially with profile-directed feedback, for
post-link optimization and procedure reordering:

— spike (see Section 10.1.3)
— om (see Appendix F)
— cord (see Appendix F)

10.1.5 Library Routine Selection

Library routine options that can affect performance include the following:

= Use the Compaq Extended Math Library (CXML, formerly Digital
Extended Math Library — DXML) for applications that perform
numerically intensive operations. CXML is a collection of mathematical
routines that are optimized for Alpha systems — both SMP systems

10-12 Optimizing Techniques

and uniprocessor systems. The routines in CXML are organized in the
following four libraries:

— BLAS — A library of basic linear algebra subroutines

— LAPACK — A linear algebra package of linear system and
eigensystem problem solvers

— Sparse Linear System Solvers — A library of direct and iterative
sparse solvers

— Signal Processing — A basic set of signal-processing functions,
including one-, two-, and three-dimensional fast Fourier transforms
(FFTs), group FFTs, sine/cosine transforms, convolution functions,
correlation functions, and digital filters

By using CXML, applications that involve numerically intensive
operations may run significantly faster on Tru64 UNIX systems,
especially when used with KAP. CXML routines can be called explicitly
from your program or, in certain cases, from KAP (that is, when KAP
recognizes opportunities to use the CXML routines). You access CXML
by specifying the —1dxm1 option on the compilation command line.

For details on CXML, see the Compaq Extended Math Library Reference
Guide.

The CXML routines are written in Fortran. For information on calling
Fortran routines from a C program, see the Compaq Fortran (formerly
Digital Fortran) user manual for Tru64 UNIX. (Information about calling
CXML routines from C programs is also provided in the TechAdvantage
C/C++ Getting Started Guide.)

= If your application does not require extended-precision accuracy, you
can use math library routines that are faster but slightly less accurate.
Specifying the -D_FASTMATH option on the compilation command causes
the compiler to use faster floating-point routines at the expense of three
bits of floating-point accuracy. See cc(1) for more information.

= Consider compiling your C programs with the -D INTRINSICS and
-D_INLINE INTRINSICS options; this causes the compiler to inline calls
to certain standard C library routines.

10.2 Application Coding Guidelines

If you are willing to modify your application, use the profiling tools to
determine where your application spends most of its time. Many applications
spend most of their time in a few routines. Concentrate your efforts on
improving the speed of those heavily used routines.

Tru64 UNIX provides several profiling tools that work for programs
written in C and other languages. See Chapter 7, Chapter 8, Chapter 9,

Optimizing Techniques 10-13

prof intro(l), hiprof(l), pixie(l), prof(l), third(l), uprofile(1), and
atom(1) for more information.

After you identify the heavily used portions of your application, consider the
algorithms used by that code. Is it possible to replace a slow algorithm with
a more efficient one? Replacing a slow algorithm with a faster one often
produces a larger performance gain than tweaking an existing algorithm.

When you are satisfied with the efficiency of your algorithms, consider
making code changes to help the compiler optimize the object code that it
generates for your application. High Performance Computing by Kevin Dowd
(O'Reilly & Associates, Inc., ISBN 1-56592-032-5) is a good source of general
information on how to write source code that maximizes optimization
opportunities for compilers.

The following sections identify performance opportunities involving data
types, 1/0O handling, cache usage and data alignment, and general coding
issues.

10.2.1 Data-Type Considerations

Data-type considerations that can affect performance include the following:

= The smallest unit of efficient access on Alpha systems is 32 bits. A 32-
or 64-bit data item can be accessed with a single, efficient machine
instruction.If your application’s performance on older implementations
of the Alpha architecture (processors earlier than EV56) is critical, you
may want to consider the following points:

— Avoid using integer and logical data types that are less than 32 bits,
especially for scalars that are used frequently.

— In C programs, consider replacing char and short declarations
with int and long declarations.

= Division of integer quantities is slower than division of floating-point
guantities. If possible, consider replacing such integer operations with
equivalent floating-point operations.

Integer division operations are not native to the Alpha processor and
must be emulated in software, so they can be slow. Other non-native
operations include transcendental operations (for example, sine and

cosine) and square root.

10.2.2 Using Direct I/O on AdVFS Files

Direct 1/0O allows an application to use the file-system features that the
Advanced File System (AdvFS) provides, such as file management, online
backup, and online recovery, while eliminating the overhead of copying user
data into the AdvFS cache. Direct 1/O uses Direct Memory Access (DMA)

10-14 Optimizing Techniques

commands to copy the user data directly between an application’s buffer
and a disk.

Normal file-system 1/O maintains file pages in a cache. This allows the
1/0 to be completed asynchronously; once the data is in the cache and
scheduled for 1/0O, the application does not need to wait for the data to be
transferred to disk. In addition, because the data is already in the cache,
subsequent accesses to this page do not need to read the data from disk.
Most applications use normal file-system 1/O.

Normal file-system 1/O is not suited for applications that access the data
on disk infrequently and manage inter-thread competition themselves.
Such applications can take advantage of the reduced overhead of direct
1/0. However, because data is not cached, access to a given page must

be serialized among competing threads. To do this, direct 1/O enforces
synchronous 1/O as the default. This means that when the read () routine
returns to the application, the 1/O has completed and the data is on disk.
Any subsequent retrieval of that data will also incur an 1/O operation to
retrieve the data from disk.

An application can take advantage of asynchronous 1/0O (AlO), but still

use the underlying direct 1/O mechanism, by using the aio read() and
aio write () system routines. These routines will return to the application
before the data has been transferred to disk, and the aio_error () routine
allows the application to poll for the completion of the 1/O. (The kernel
synchronizes the access to file pages so that two threads cannot concurrently
write the same page.)

Threads using direct 1/O to access a given file will be able to do so
concurrently, provided that they do not access the same range of pages. For
example, if thread A is writing pages 10 through 19 and thread B is writing
pages 20 through 39, these operations will occur simultaneously. Continuing
this example, if thread B attempts to write pages 15 through 39 in a single
direct 1/O transfer, it will be forced to wait until thread A completes its write
because their page ranges overlap.

When using direct 1/O, the best performance occurs when the requested
transfer is aligned on a disk sector boundary and the transfer size is an even
multiple of the underlying sector size. Larger transfers are generally more
efficient than smaller ones, although the optimal transfer size depends on
the underlying storage hardware.

Note

Direct 1/0 mode and the use of mapped file regions (mmap) are
exclusive operations. You cannot set direct 1/0 mode on a file that
uses mapped file regions. Mapping a file will also fail if the file
is already open for direct 1/0O.

Optimizing Techniques 10-15

10.2.3

Direct 1/O and atomic data logging modes are also mutually
exclusive. If a file is open in one of these modes, subsequent
attempts to open the file in the other mode will fail.

You can activate the direct 1/O feature for use on an AdvFS file for both AIO
and non-AlO applications. To activate the feature, use the open function in
an application, setting the 0 DIRECTIO file access flag. For example:

open ("file", O DIRECTIO | O RDWR, 0644)
Direct I1/O mode remains in effect until the file is closed by all users.

The fentl () function with the parameter F_ GETCACHEPOLICY can be
used to return the caching policy of a file, either FCACHE or FDIRECTIO
mode. For example:

int fentlarg = 0;

ret = fcentl(filedescriptor, F_GETCACHEPOLICY, &fcntlarg);
if (ret != -1 && fentlarg == FDIRECTIO)

For details on the use of direct 1/0 and AdVFS, see fcnt1(2) and open(2).

Cache Usage and Data Alignment Considerations

Cache usage patterns can have a critical impact on performance:

= If your application has a few heavily used data structures, try to allocate
these data structures on cache-line boundaries in the secondary cache.
Doing so can improve the efficiency of your application’s use of cache.
See Appendix A of the Alpha Architecture Reference Manual for more
information.

= Look for potential data cache collisions between heavily used data
structures. Such collisions occur when the distance between two data
structures allocated in memory is equal to the size of the primary
(internal) data cache. If your data structures are small, you can avoid
this by allocating them contiguously in memory. You can use the
uprofile tool to determine the number of cache collisions and their
locations. See Appendix A of the Alpha Architecture Reference Manual
for more information on data cache collisions.

Data alignment can also affect performance. By default, the C compiler
aligns each data item on its natural boundary; that is, it positions each data
item so that its starting address is an even multiple of the size of the data
type used to declare it. Data not aligned on natural boundaries is called
misaligned data. Misaligned data can slow performance because it forces the
software to make necessary adjustments at run time.

10-16 Optimizing Techniques

In C programs, misalignment can occur when you type cast a pointer
variable from one data type to a larger data type; for example, type casting a
char pointer (1-byte alignment) to an int pointer (4-byte alignment) and
then dereferencing the new pointer may cause unaligned access. Also in C,
creating packed structures using the #pragma pack directive can cause
unaligned access. (See Chapter 3 for details on the #pragma pack directive.)

To correct alignment problems in C programs, you can use the -misalign
option (or -assume noaligned objects) or you can make necessary
modifications to the source code. If instances of misalignment are required
by your program for some reason, use the ~ unaligned data-type qualifier
in any pointer definitions that involve the misaligned data. When data is
accessed through the use of a pointer declared ~ unaligned, the compiler
generates the additional code necessary to copy or store the data without
generating alignment errors. (Alignment errors have a much more costly
impact on performance than the additional code that is generated.)

Warning messages identifying misaligned data are not issued during the
compilation of C programs. However, during execution of any program, the
kernel issues warning messages (“unaligned access”) for most instances of
misaligned data. The messages include the program counter (PC) value for
the address of the instruction that caused the misalignment.

You can use either of the following two methods to access code that causes
the unaligned access fault:

= By using a debugger to examine the PC value presented in the "unaligned
access" message, you can find the routine name and line number for the
instruction causing the misalignment. (In some cases, the "unaligned
access" message results from a pointer passed by a calling routine. The
return address register (ra) contains the address of the calling routine
— if the contents of the register have not been changed by the called
routine.)

= By turning off the -align option on the command line and running
your program in a debugger session, you can examine your program'’s
stack and variables at the point where the debugger stops due to the
unaligned access.

For more information on data alignment, see Appendix A in the
Alpha Architecture Reference Manual. See cc(1) for information on
alignment-control options that you can specify on compilation command
lines.

10.2.4 General Coding Considerations

General coding considerations specific to C applications include the following:

Optimizing Techniques 10-17

e Use libc functions (for example: strcpy, strlen, strcmp, becopy,
bzero, memset, memcpy) instead of writing similar routines or your own
loops. These functions are hand coded for efficiency.

= Use the unsigned data type for variables wherever possible because:

— The variable is always greater than or equal to zero, which enables
the compiler to perform optimizations that would not otherwise be
possible.

— The compiler generates fewer instructions for all unsigned divide
operations.

Consider the following example:

int long i;
unsigned long j;

return i/2 + j/2;

In the example, i/2 is an expensive expression; however, j/2 is
inexpensive.

The compiler generates three instructions for the signed i/2 operations:

addg $1, 1, s28
cmovge $1, s1, $28
sra $28, 1, s2

The compiler generates only one instruction for the unsigned j/2
operation:

srl $3, 1, s$4

Also, consider using the -unsigned option to treat all char declarations
as unsigned char.

= If your application temporarily needs large amounts of data, consider
using the malloc function or the alloca built-in function instead of
declaring the data statically.

The alloca function allocates memory from the stack. The memory
is automatically released when the function that allocated it returns.
You must make sure that any code that uses alloca first includes
alloca.h. If you do not do this, your code may not work correctly.

Consider using the malloc function if your application needs memory
to live beyond the context of a specific function invocation. The malloc
function allocates memory from the process’s heap. The memory remains
available until it is explicitly released by a call to free.

Using these functions can increase the performance of applications
where physical memory is a scarce resource.

10-18 Optimizing Techniques

For multithreaded applications, note that alloca allocates memory from
the calling thread’s stack, which means that the allocating and freeing
of this memory does not incur any contention. The malloc function
(and associated functions) may allocate their memory from a common
pool using locking and atomic operations to control concurrent access.
See the Tuning Memory Allocation section of malloc(3) for information
on simple ways to improve the performance of single and multithreaded
applications that use malloc.

Also for multithreaded applications, consider using the arena malloc
(amalloc) mechanism to set up separate heaps for each thread of a
multithreaded application.

Minimize type casting, especially type conversion from integer to floating
point and from a small data type to a larger data type.

To avoid cache misses, make sure that multidimensional arrays are
traversed in natural storage order; that is, in row major order with the
rightmost subscript varying fastest and striding by 1. Avoid column
major order (which is used by Fortran).

If your application fits in a 32-bit address space and allocates large
amounts of dynamic memory by allocating structures that contain many
pointers, you may be able to save significant amounts of memory by
using the -xtaso option. To use this option, you must modify your source
code with a C-language pragma that controls pointer size allocations.
See cc(1) and Chapter 2 for information.

Do not use indirect calls in C programs (that is, calls that use routines
or pointers to functions as arguments). Indirect calls introduce the
possibility of changes to global variables. This effect reduces the amount
of optimization that can be safely performed by the optimizer.

Use functions to return values instead of reference parameters.

Use do while instead of while or for whenever possible. With
do while, the optimizer does not have to duplicate the loop condition to
move code from within the loop to outside the loop.

Use local variables and avoid global variables. Declare any variable
outside a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

Use value parameters instead of reference parameters or global
variables. Reference parameters have the same degrading effects as
pointers.

Write straightforward code. For example, do not use ++ and - - operators
within an expression. When you use these operators for their values

Optimizing Techniques 10-19

instead of their side effects, you often get bad code. For example, the
following coding is not recommended:

while (n--)

{

} .
The following coding is recommended:

while (n != 0)

{

n--;

}
= Avoid taking and passing addresses (that is, & values). Using & values
can create aliases, make the optimizer store variables from registers

to their home storage locations, and significantly reduce optimization
opportunities.

= Avoid creating functions that take a variable number of arguments. A
function with a variable number of arguments causes the optimizer to
unnecessarily save all parameter registers on entry.

= Declare functions as static unless the function is referenced by another
source module. Use of static functions allows the optimizer to use
more efficient calling sequences.

Also, avoid aliases where possible by introducing local variables to store
dereferenced results. (A dereferenced result is the value obtained from a
specified address.) Dereferenced values are affected by indirect operations
and calls, but local variables are not; local variables can be kept in registers.
Example 10-1 shows how the proper placement of pointers and the
elimination of aliasing enable the compiler to produce better code.

Example 10-1: Pointers and Optimization

Source Code:
int len = 10;
char al[10];

void zero ()

{

char *p;
for (p = a; p != a + len;) *p++ = 0;

}

10-20 Optimizing Techniques

Consider the use of pointers in Example 10-1. Because the statement *p++

0 might modify 1en, the compiler must load it from memory and add it to

the address of a on each pass through the loop, instead of computinga + len
in a register once outside the loop.

You can use two different methods to increase the efficiency of the code used
in Example 10-1:

Use subscripts instead of pointers. As shown in the following example,
the use of subscripting in the azero procedure eliminates aliasing; the
compiler keeps the value of 1en in a register, saving two instructions,

and still uses a pointer to access a efficiently, even though a pointer is
not specified in the source code:

Source Code:
char al[10];
int len;

void azero ()

{
int 1i;
for (i = 0; i != len; i++) ali]l = 0;

}

Use local variables. As shown in the following example, specifying len
as a local variable or formal argument ensures that aliasing cannot take
place and permits the compiler to place len in a register:

Source Code:

char al[10];

void

lpzero(len)
int len;
{
char *p;
for (p = a; p != a + len;) *p++ = 0;

}

Optimizing Techniques 10-21

11

Handling Exception Conditions

An exception is a special condition that occurs during the currently executing
thread and requires the execution of code that acknowledges the condition
and performs some appropriate actions. This code is known as an exception
handler.

A termination handler consists of code that executes when the flow of control
leaves a specific body of code. Termination handlers are useful for cleaning
up the context established by the exiting body of code, performing such tasks
as freeing memory buffers or releasing locks.

This chapter covers the following topics:

= Overview of exception handling (Section 11.1)

= Raising an exception from a user program (Section 11.2)
= Writing a structured exception handler (Section 11.3)

= Writing a termination handler (Section 11.4)

11.1 Exception-Handling Overview

On Tru64 UNIX systems, hardware traps exceptions, as described in the
Alpha Architecture Reference Manual, and delivers them to the operating
system kernel. The kernel converts certain hardware exceptions, such as
bad memory accesses and arithmetic traps, to signals. A process can enable
the delivery of any signal and establish a signal handler to deal with the
consequences of the signal processwide.

The Calling Standard for Alpha Systems manual defines special structures
and mechanisms that enable the processing of exceptional events on Tru64
UNIX systems in a more precise and organized way. Among the activities
that the standard defines are the following:

< The manner in which exception handlers are established

= The way in which exceptions are raised

= How the exception system searches for and invokes a handler
< How a handler returns to the exception system

= The manner in which the exception system traverses the stack and
maintains procedure context

Handling Exception Conditions 11-1

The run-time exception dispatcher that supports the structured
exception-handling capabilities of the Tru64 UNIX C compiler is an example
of the type of frame-based exception handler described in the standard. (See
Section 11.3 for a discussion of structured exception handling.)

The following sections briefly describe the Tru64 UNIX components that
support the exception-handling mechanism defined in the Calling Standard
for Alpha Systems manual.

11.1.1 C Compiler Syntax

Syntax provided by the Tru64 UNIX C compiler allows you to protect
regions of code against user- or system-defined exception conditions. This
mechanism, known as structured exception handling, allows you to define
exception handlers and termination handlers and to indicate the regions of
code that they protect.

The c¢_excpt . h header file defines the symbols and functions that user
exception-processing code can use to obtain the current exception code and
other information describing the exception.

11.1.2 libexc Library Routines

The exception support library, /usr/ccs/lib/cmplrs/cc/libexc.a,
provides routines with the following capabilities:

= The ability to raise user-defined exceptions or convert UNIX signals to
exceptions. These routines include:

exc_raise status exception
exc_raise signal exception
exc_ralise exception
exc_exception dispatcher
exc_dispatch exception

These exception-management routines also provide the mechanism

to dispatch exceptions to the appropriate handlers. In the case of C
language structured exception handling, described in Section 11.3, the
C-specific handler invokes a routine containing user-supplied code to
determine what action to take. The user-supplied code can either handle
the exception or return for some other procedure activation to handle it.

= The ability to perform virtual and actual unwinding of levels of procedure
activations from the stack and continuing execution in a handler or other
user code. These routines include:

unwind
exc_virtual unwind
RtlVirtualUnwind

11-2 Handling Exception Conditions

exc_resume
exc_longjmp
exc_continue
exc_unwind
Rt1lUnwindRfp

Some of the unwind routines also support invoking handlers as they
unwind so that the language or user can clean up items at particular
procedure activations.

= The ability to access procedure-specific information and map any address
within a routine to the corresponding procedure information. This
information includes enough data to cause an unwind or determine
whether a routine handles an exception. These routines include:

exc_add pc_range table
exc_remove pc_ range table
exc_lookup function table address
exc_lookup function entry

find rpd

exc_add gp_ range

exc_remove gp_range

exc_lookup gp

The C language structured exception handler calls routines in the last two
categories to allow user code to fix up an exception and resume execution,
and to locate and dispatch to a user-defined exception handler. Section 11.3
describes this process. For more information on any routine provided in
/usr/ccs/lib/cmplrs/cc/libexc. a, see the routine’s reference page.

11.1.3 Header Files That Support Exception Handling

Various header files define the structures that support the exception-handling
system and the manipulation of procedure context. Table 11-1 describes
these files.

Table 11-1: Header Files That Support Exception Handling
File Description

excpt.h Defines the exception code structure and defines a number of
Tru64 UNIX exception codes; also defines the system exception
and context records and associated flags and symbolic constants,
the run-time procedure type, and prototypes for the functions
provided in 1ibexc.a. See excpt(4) for more information.

Handling Exception Conditions 11-3

Table 11-1: Header Files That Support Exception Handling (cont.)

File Description

c_excpt.h Defines symbols used by C language structured exception
handlers and termination handlers; also defines the exception
information structure and functions that return the exception
code, other exception information, and information concerning
the state in which a termination handler is called. See
c_excpt(4) for more information.

machine/fpu.h Defines prototypes for the ieee set fp control and
ieee get fp control routines, which enable the delivery of
IEEE floating-point exceptions and retrieve information that
records their occurrence; also defines structures and constants
that support these routines. See ieee(3) for more information.

pdsc.h Defines structures, such as the run-time procedure descriptor
and code-range descriptor, that provide run-time contexts
for the procedure types and flow-control mechanisms
described in the Calling Standard for Alpha Systems
manual. See pdsc(4) for more information.

11.2 Raising an Exception from a User Program

A user program typically raises an exception in either of two ways:

= A program can explicitly initiate an application-specific exception by
calling the exc raise exception Or exc raise status exception
function. These functions allow the calling procedure to specify
information that describes the exception.

= A program can install a special signal handler, exc_raise sig-
nal exception, that converts a POSIX signal to an exception. The
exc_raise signal exception function invokes the exception
dispatcher to search the run-time stack for any exception handlers
that have been established in the current or previous stack frames. In
this case, the code reported to the handler has EXC_SIGNAL in its
facility field and the signal value in its code field. (See excpt(4) and the
excpt . h header file for a dissection of the code data structure.)

Note

The exact exception code for arithmetic and
software-generated exceptions, defined in the signal.h
header file, is passed to a signal handler in the code argument.
The special signal handler exc_raise signal exception
moves this code to ExceptionRecord.ExceptionInfo [0]
before invoking the exception dispatcher.

11-4 Handling Exception Conditions

The examples in Section 11.3 show how to explicitly raise an exception and
convert a signal to an exception.

11.3 Writing a Structured Exception Handler

The structured exception-handling capabilities provided by the Tru64 UNIX
C compiler allow you to deal with the possibility that a certain exception
condition may occur in a certain code sequence. These capabilities are
always enabled (the cc command’s -ms option is not required). The syntax
establishing a structured exception handler is as follows:

try {
try-body

}
except (exception-filter) {
exception-handler

}

The try-body is a statement or block of statements that the exception
handler protects. If an exception occurs while the try body is executing, the
C-specific run-time handler evaluates the exception-filter to determine
whether to transfer control to the associated exception-handler, continue
searching for a handler in outer-level try body, or continue normal execution
from the point at which the exception occurred.

The exception-filter is an expression associated with the exception
handler that guards a given try body. It can be a simple expression or it can
invoke a function that evaluates the exception. An exception filter must
evaluate to one of the following integral values in order for the exception
dispatcher to complete its servicing of the exception:

L <O

The exception dispatcher dismisses the exception and resumes

the thread of execution that was originally disrupted by the
exception. If the exception is noncontinuable, the dispatcher raises a
STATUS NONCONTINUABLE EXCEPTION exception.

« 0
The exception dispatcher continues to search for a handler, first in any
try...except blocks in which the current handler might be nested
and then in the try. . .except blocks defined in the procedure frame

preceding the current frame on the run-time stack. If a filter chooses not
to handle an exception, it typically returns this value.

o >O

Handling Exception Conditions 11-5

The exception dispatcher transfers control to the exception handler,
and execution continues in the frame on the run-time stack in which
the handler is found. This process, known as handling the exception,
unwinds all procedure frames below the current frame and causes any
termination handlers established within those frames to execute.

Two intrinsic functions are allowed within the exception filter to access
information about the exception being filtered:

long exception_code ();
Exception_info_ptr exception_info ();

The exception_ code function returns the exception code. The
exception_info function returns a pointer to an EXCEPTION POINTERS
structure. Using this pointer, you can access the machine state (for instance,
the system exception and context records) at the time of the exception. See
excpt(4) and c_excpt(4) for more information.

You can use the exception code function within an exception filter or
exception handler. However, you can use the exception info function
only within an exception filter. If you need to use the information returned
by the exception info function within the exception handler, invoke the
function within the filter and store the information locally. If you need to
refer to exception structures outside of the filter, you must copy them as well
because their storage is valid only during the execution of the filter.

When an exception occurs, the exception dispatcher virtually unwinds

the run-time stack until it reaches a frame for which a handler has been
established. The dispatcher initially searches for an exception handler in the
stack frame that was current when the exception occurred.

If the handler is not in this stack frame, the dispatcher virtually unwinds
the stack (in its own context), leaving the current stack frame and any
intervening stack frames intact until it reaches a frame that has established
an exception handler. It then executes the exception filter associated with
that handler.

During this phase of exception dispatching, the dispatcher has only
virtually unwound the run-time stack; all call frames that may have
existed on the stack at the time of the exception are still there. If it
cannot find an exception handler or if all handlers reraise the exception,
the exception dispatcher invokes the system last-chance handler. (See
exc_set last chance handler(3) for instructions on how to set up a
last-chance handler.)

By treating the exception filter as if it were a Pascal-style nested procedure,
exception-handling code evaluates the filter expression within the scope of

the procedure that includes the try. . .except block. This allows the filter
expression to access the local variables of the procedure containing the filter,

11-6 Handling Exception Conditions

even though the stack has not actually been unwound to the stack frame of
the procedure that contains the filter.

Prior to executing an exception handler (for instance, if an exception filter
returns EXCEPTION EXECUTE HANDLER), the exception dispatcher performs
a real unwind of the run-time stack, executing any termination handlers
established for try. ..finally blocks that terminated as a result of the
transfer of control to the exception handler. Only then does the dispatcher
call the exception handler.

The exception-handler is a compound statement that deals with the
exception condition. It executes within the scope of the procedure that
includes the try. . .except construct and can access its local variables. A
handler can respond to an exception in several different ways, depending on
the nature of the exception. For instance, it can log an error or correct the
circumstances that led to the exception being raised.

Either an exception filter or exception handler can take steps to modify or
augment the exception information it has obtained and ask the C language
exception dispatcher to deliver the new information to exception code
established in some outer try body or prior call frame. This activity is more
straightforward from within the exception filter, which operates with the
frames of the latest executing procedures — and the exception context —
still intact on the run-time stack. The filter completes its processing by
returning a 0 to the dispatcher to request the dispatcher to continue its
search for the next handler.

For an exception handler to trigger a previously established handler, it
must raise another exception, from its own context, that the previously
established handler is equipped to handle.

Example 11-1 shows a simple exception handler established to handle a
segmentation violation signal (SIGSEGV) that has been converted to an
exception by the exc_raise signal exception signal handler.

Example 11-1: Handling a SIGSEGV Signal as a Structured Exception

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <excpt.h>

void main (void)
struct sigaction act, oldact;
char *x=0;

* Set up things so that SIGSEGV signals are delivered. Set
* exc_raise_signal exception as the SIGSEGV signal handler
* in sigaction.

Handling Exception Conditions 11-7

Example 11-1: Handling a SIGSEGV Signal as a Structured Exception
(cont.)

act.sa handler = exc_raise signal_exception;

sigemptyset (&act.sa_mask) ;

act.sa_flags = 0;

if (sigaction(SIGSEGV, &act, &oldact) < 0)
perror ("sigaction:") ;

If a segmentation violation occurs within the following try
block, the run-time exception dispatcher calls the exception
filter associated with the except statement to determine
whether to call the exception handler to handle the SIGSEGV
signal exception.
/

try {
*x=55;

* ok ok ok ok ok ok

}
/
The exception filter tests the exception code against
SIGSEGV. If it tests true, the filter returns 1 to the
dispatcher, which then executes the handler; if it tests
false, the filter returns -1 to the dispatcher, which
continues its search for a handler in the previous run-time
stack frames. Eventually the last-chance handler executes.
Note: Normally the printf in the filter would be replaced
with a call to a routine that logged the unexpected signal.
/
except (exception code() == EXC_VALUE (EXC_SIGNAL,SIGSEGV) ? 1 :
(printf ("unexpected signal exception code 0x%lx\n",
exception code()), 0)

* ok ok ko k k ok ok F

printf ("segmentation violation reported: handler\n");
exit (0) ;

printf ("okay\n") ;
exit (1) ;

The following is a sample run of this program:

cc -std0 segfault ex.c -lexc
a.out
segmentation violation reported in handler

o° o

Example 11-2 is similar to Example 11-1 insofar as it also demonstrates a
way of handling a signal exception, in this case, a SIGFPE. This example
further shows how an IEEE floating-point exception, floating divide-by-zero,
must be enabled by a call to ieee_set fp control(), and how the handler
obtains more detailed information on the exception by reading the system
exception record.

11-8 Handling Exception Conditions

Example 11-2: Handling an IEEE Floating-Point SIGFPE as a Structured
Exception

#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<signal.h>
<excpt.h>
<machine/fpu.h>
<errno.h>

int main (void)

{

Exception_info ptr
system_exrec_type

long

struct sigaction
unsigned long
double

except_info;

exception_record;

code;

act, oldact;

float traps=IEEE_TRAP ENABLE DZE;
temperature=75.2, divisor=0.0, quot, return val;

* Set up things so that IEEE DZO traps are reported and that
* SIGFPE signals are delivered. Set exc_raise signal exception
* as the SIGFPE signal handler.

act.sa_handler = exc
sigemptyset (&act.sa_mask) ;
act.sa_flags = 0;
if (sigaction(SIGFPE, &act, &oldact) < 0)

_raise signal exception;

perror ("sigaction:") ;

ieee_set fp control (float_traps) ;

L R

try {
printf ("quot = I
quot = temperature / divisor;

}

* Ok ok ok ok ko ok ok Ok ok

/

If a floating divide-by-zero FPE occurs within the following
try block, the run-ti
exception filter associated with the except statement to
determine whether the SIGFPE signal exception is to be
handled by the exception handler.

me exception dispatcher calls the

EEE %.2f / %.2f\n", temperature,divisor) ;

The exception filter saves the exception code and tests it
against SIGFPE. If it
exception information, copies the exception record structure,
and returns 1 to the dispatcher which then executes the handler.
If the filter’s test of the code is false, the filter

returns 0 to the handler, which continues its search for a
handler in previous run-time frames. Eventually the last-chance
handler executes. Note: Normally the filter printf is replaced
with a call to a routine that logged the unexpected signal.

tests true, the filter obtains the

except ((code=exception code()) == EXC_VALUE (EXC_SIGNAL, SIGFPE) ?

/*

(except_info

= exception_info(),

exception record = *(except_ info->ExceptionRecord), 1)
(printf ("unexpected signal exception code 0x%lx\n",
exception code()), 0)

* The exception handler follows and prints out the signal code,
* which has the following format:

*

Handling Exception Conditions 11-9

Example 11-2: Handling an IEEE Floating-Point SIGFPE as a Structured
Exception (cont.)

* 0x 8 offe 0003
* | | |

* hex SIGFPE EXC_OSF facility EXC_SIGNAL
*/

{ printf ("Arithmetic error\n") ;

printf ("exception code() returns 0x%lx\n", code) ;

printf ("EXC_VALUE macro in excpt.h generates 0x%lx\n",
EXC_VALUE (EXC_SIGNAL, SIGFPE)) ;

printf ("Signal code in the exception record is 0x%1lx\n",
exception_ record.ExceptionCode) ;

* To find out what type of SIGFPE this is, look at the first
* optional parameter in the exception record. Verify that it is
* FPE_FLTDIV_TRAP) .

*/
printf ("No. of parameters is %lu\n",
exception_ record.NumberParameters) ;
printf ("SIGFPE type is 0x%lx\n",
exception record.ExceptionInformation[0]) ;
/*
* Set return value to IEEE_PLUS_INFINITY and return.
*/
if (exception record.ExceptionInformation[0] ==
FPE_FLTDIV_TRAP)
{
((long) &return_val) = IEEE_PLUS_INFINITY;
printf ("Returning 0x%f to caller\n", return val);
return 0;
/* }
* If this is a different kind of SIGFPE, return gracelessly.
*/
else
return -1;
/* }
* We get here only if no exception occurred in the try block.
*/
printf ("okay: %f\n", quot);
exit (1) ;

The following is a sample run of this program:

cc -std0 sigfpe ex.c -lexc

a.out

quot = IEEE 75.20 / 0.00

Arithmetic error

exception code() returns 0x80f£fe0003

The EXC VALUE macro in excpt.h generates 0x80£ffe0003
The signal code in the exception record is 0x80ffe0003
No. of parameters is 1

SIGFPE type is 0x4

Returning OxINF to caller

11-10 Handling Exception Conditions

A procedure (or group of interrelated procedures) can contain any number of
try...except constructs, and can nest these constructs. If an exception
occurs within the try. . .except block, the system invokes the exception
handler associated with that block.

Example 11-3 demonstrates the behavior of multiple try. . .except blocks
by defining two private exception codes and raising either of these two
exceptions within the innermost try block.

Example 11-3: Multiple Structured Exception Handlers

#include <excpt.h>
#include <stdio.hs>
#include <stdlib.h>
#include <string.h>

#define EXC NOTWIDGET EXC_VALUE (EXC_C USER, 1)
#define EXC NOTDECWIDGET EXC_VALUE (EXC_C USER, 2)

void getwidgetbyname (char *);

/*
* main() sets up an exception handler to field the EXC NOTWIDGET
* exception and then calls getwidgetbyname () .
*/
void main (int argc, char *argv[])
{
char widget [20];
long code;
try {
if (argc > 1)
strcpy (widget, argvI[l]);
else
{
printf ("Enter widget name: ") ;
gets (widget) ;
}
getwidgetbyname (widget) ;
}
except ((code=exception code()) == EXC NOTWIDGET)
{
printf ("Exception 0x%1lx: %$s is not a widget\n",
code, widget) ;
exit (0) ;

/*

* getwidgetbyname () sets up an exception handler to field the
* EXC NOTDECWIDGET exception. Depending upon the data it is

* passed, its try body calls exc raise status_ exception() to

Handling Exception Conditions 11-11

Example 11-3: Multiple Structured Exception Handlers (cont.)

* generate either of the user-defined exceptions.
*/

void

getwidgetbyname (char* widgetname)

{

long code;

try {
if (strcmp (widgetname, "foo") == 0)
exc_raise_status_exception (EXC_NOTDECWIDGET) ;
if (strcmp (widgetname, "bar") == 0)

exc_raise_status_exception (EXC_NOTWIDGET) ;

The exception filter t