
TruCluster Server
Cluster Technical Overview

Part Number: AA-RHGVD-TE

June 2001

Product Version: TruCluster Server Version 5.1A

Operating System and Version: Tru64 UNIX Version 5.1A

This document describes the components and features of TruCluster
Server Version 5.1A.

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, the Compaq logo, AlphaServer, and TruCluster Registered in U.S. Patent and Trademark Office.
Alpha and Tru64 are trademarks of Compaq Information Technologies Group, L.P. in the United States and
other countries.

UNIX, X/Open, and The Open Group are trademarks of The Open Group in the United States and other
countries. All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information
in this document is provided “as is” without warranty of any kind and is subject to change without
notice. The warranties for Compaq products are set forth in the express limited warranty statements
accompanying such products. Nothing herein should be construed as constituting an additional warranty.

Contents

About This Manual

1 Introduction to TruCluster Server
1.1 New or Changed Features for Version 5.1A 1–1
1.2 TruCluster Server Features 1–2

2 Clusterwide File Systems, Storage, and Device Names
2.1 Supported File Systems 2–3
2.2 Cluster File System 2–6
2.3 Device Request Dispatcher 2–8
2.4 CFS and Device Request Dispatcher FAQ 2–10
2.4.1 CFS, I/O, and the Cluster Interconnect 2–10
2.4.2 AdvFS Requested Block Caching 2–11
2.4.3 The Device Request Dispatcher and File Opens 2–11
2.4.4 Relocating the CFS server 2–11
2.5 Context-Dependent Symbolic Links 2–11
2.6 Device Names 2–14
2.7 Worldwide ID 2–16
2.8 Clusters and the Logical Storage Manager 2–17

3 Connection Manager
3.1 Quorum and Votes 3–1
3.1.1 What Is a Cluster Member? 3–2
3.1.2 Node Votes 3–2
3.1.3 Quorum Disk Votes 3–2
3.1.4 Expected Votes 3–3
3.1.5 Current Votes 3–4
3.2 Calculating Cluster Quorum 3–4
3.3 Using a Quorum Disk 3–6

Contents iii

4 Highly Available Applications

5 Cluster Application Availability
5.1 Overview 5–1
5.2 CAA Architecture 5–2
5.3 Resources 5–5
5.4 Resource Profiles 5–7
5.4.1 Application Resource Profiles 5–7
5.4.2 Nonapplication Resource Profiles 5–9
5.5 Action Scripts 5–9

6 Cluster Alias
6.1 Overview 6–1
6.2 Cluster Alias Subsystem Components 6–3
6.3 The Default Cluster Alias 6–5
6.4 The Number of Aliases per Cluster 6–6
6.5 The Location of Alias IP Addresses 6–7
6.6 Routing for Alias IP Addresses 6–8
6.6.1 Advertising Routes to Aliases 6–9
6.6.2 Routing for Aliases on Common Subnets 6–9
6.6.3 Routing for Aliases on Virtual Subnets 6–10
6.6.4 Summary of Routing for Aliases on Common and Virtual

Subnets 6–11
6.6.5 Accepting and Redirecting Packets and Connection

Requests Addressed to an Alias 6–11
6.6.6 Routing Example 6–12
6.7 in_single and in_multi Services 6–14
6.8 Alias Attributes 6–16
6.9 Service Port Attributes 6–18
6.10 vMAC Support 6–20
6.11 NFS and Cluster Aliases 6–21
6.11.1 Getting Packets Off the Network 6–21
6.11.2 Mount Requests 6–21
6.11.3 NFS over TCP 6–22
6.11.4 NFS over UDP 6–24
6.12 RPC Services and Cluster Aliases 6–26
6.13 ifconfig Aliases and Cluster Aliases 6–27

iv Contents

7 Cluster Interconnect
7.1 LAN Interconnect 7–1
7.2 Memory Channel Interconnect 7–2

8 Distributed Lock Manager

9 Cluster Installation and Administration
9.1 Installation 9–1
9.2 Administration 9–3

Glossary

Index

Figures
2–1 Storage Software Layering in a Cluster 2–2
2–2 A Cluster’s View of Hardware 2–5
2–3 CFS Makes File Systems Available to All Cluster Members .. . 2–7
2–4 CDSL Pathname Resolution 2–13
3–1 Two-Member deli Cluster Without a Quorum Disk 3–7
3–2 Two-Member deli Cluster with Quorum Disk Survives

Member Loss 3–8
5–1 Application Failover with CAA 5–2
5–2 CAA Architecture 5–5
6–1 Client’s View of a Cluster With and Without Cluster Alias 6–2
6–2 Cluster Alias Functional Overview 6–5
6–3 Cluster Using Two Aliases 6–6
6–4 Alias Routing Example 6–13
6–5 in_single Service Accessed Through Default Cluster Alias 6–15
6–6 in_multi Service Accessed Through Default Cluster Alias 6–16
6–7 NFS over TCP 6–23
6–8 NFS over UDP 6–25
7–1 Memory Channel Logical Diagram 7–2

Tables
1–1 Features in the TruCluster Server Version 5.1A Product 1–2
2–1 File Systems Supported in a Cluster 2–3

Contents v

2–2 Examples of New Device Names 2–15
6–1 Summary of Routing for Aliases on Common and Virtual

Subnets 6–11

vi Contents

About This Manual

This manual provides a concise summary of the features that are available
in the TruCluster™ Server Version 5.1A product.

______________________ Note _______________________

The information in this manual does not supersede that found
in the TruCluster Server Software Product Description (SPD),
which contains the authoritative description of this product. See
the SPD for the latest product information.

Audience

This manual is for anyone who is interested in a descriptive overview of the
TruCluster Server features and functions.

New and Changed Features

The following changes have been made to this manual since the Version
5.1 release:

• Chapter 1 contains a new section (Section 1.1) that lists new and changed
features for this release.

• Chapter 2 contains a new section (Section 2.4) that answers several
frequently asked questions about the Cluster File System (CFS) and the
device request dispatcher. Table 2–1 is updated to include additional
file systems supported in this release. Section 2.8 is updated to include
Logical Storage Manager (LSM) support for the root (/) and swap file
systems.

• Chapter 4 contains a new note at the end of the chapter to further
clarify the distinction between terms such as single-instance and
in_single, and multi-instance and in_multi.

• Chapter 6 has been reorganized, with major additions and changes to
Section 6.6 and Section 6.11. Section 6.13 is a new section that describes
the differences between cluster aliases and ifconfig aliases.

• Chapter 7 is updated, and retitled, to incorporate information about
using LAN hardware for the cluster interconnect.

About This Manual vii

• Chapter 9 is updated to include New Hardware Delivery (NHD) kits in
the list of tasks you can perform during a rolling upgrade.

Organization

This manual is organized as follows:

Chapter 1 Provides an introduction to TruCluster Server.

Chapter 2 Describes supported file systems, the Cluster File System
(CFS), context-dependent symbolic links (CDSLs), storage,
and device-naming conventions.

Chapter 3 Introduces the connection manager and its role in forming
and maintaining a cluster.

Chapter 4 Defines the three basic types of highly available applications in a
cluster: single-instance, multi-instance, and distributed.

Chapter 5 Provides an overview of the cluster application availability
(CAA) subsystem, which provides clusterwide management
for single-instance applications.

Chapter 6 Provides an overview of the cluster alias subsystem, which makes
the cluster look like a single system to Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) applications.

Chapter 7 Provides an overview of LAN and Memory Channel
cluster interconnects.

Chapter 8 Describes the distributed lock manager (DLM), which provides
specialized functions that allow cooperating processes in a cluster
to synchronize access to a shared resource.

Chapter 9 Provides an overview of cluster installation and administration.

Glossary Defines common terms that are used throughout the
TruCluster Server documentation.

Related Documents

The following documents and manuals provide detailed information about
the TruCluster Server product:

• TruCluster Server Software Product Description (SPD) — The
authoritative description of the TruCluster Server Version 5.1A product.
You can find the latest version of the SPD at the following URL:
http://www.tru64unix.compaq.com/docs/pub_page/spds.html.

• Cluster Release Notes — Provides a brief introduction to new features in
TruCluster Server and describes known problems and workarounds.

viii About This Manual

• Cluster Hardware Configuration — Describes how to set up the systems
that will become cluster members, and how to configure cluster shared
storage.

• Cluster Installation — Describes how to install the TruCluster Server
software.

• Cluster Highly Available Applications — Describes how to deploy
existing applications in a TruCluster Server cluster and how to write
cluster-aware applications.

• Cluster Administration — Describes cluster-specific administration
tasks.

• Cluster LAN Interconnect — Describes how to install and configure LAN
hardware for the cluster interconnect.

You can find the latest versions of the TruCluster Server
documentation at the following URL: http://www.tru64unix.com-
paq.com/docs/pub_page/cluster_list.html.

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from
Compaq.) The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments
Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

About This Manual ix

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send problem
reports to Compaq.

Conventions

This manual uses the following conventions:

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

x About This Manual

1
Introduction to TruCluster Server

TruCluster Server Version 5.1A is a highly integrated synthesis of the
Compaq Tru64™ UNIX operating system software, AlphaServer™ systems,
and storage devices that operate as a single virtual system. Members of the
cluster can share resources, data storage, and clusterwide file systems under
a single security and management domain, yet they can boot or shut down
independently without disrupting the cluster’s services to clients.

A TruCluster Server environment can be as simple or as feature-rich as
you require. You configure a cluster that fits your needs, from a two-node
cluster up to an eight-node cluster running high availability applications
such as transaction processing systems, servers for network client/server
applications, data-sharing applications that require maximum uptime, and
distributed parallel processing applications that take full advantage of the
TruCluster Server application programming interfaces (APIs).

TruCluster Server includes a cluster alias for the Internet protocol suite
(TCP/IP) so that a cluster appears as a single system to its network clients
and peers.

This chapter provides the following information:

• A list of the new or changed features for this release (Section 1.1)

• A comprehensive table of TruCluster Server features (Section 1.2)

1.1 New or Changed Features for Version 5.1A
The following lists new or changed features for TruCluster Server Version
5.1A. Each item is accompanied by a pointer to a TruCluster Server manual,
a section in this manual, or a reference page that provides information about
that feature.

• Support for local area network (LAN) hardware as the cluster
interconnect (provides an alternative to Memory Channel). (See
Chapter 7 and the Cluster LAN Interconnect manual for information on
LAN cluster interconnects.)

• Memory File System (MFS) and UNIX File System (UFS) read/write
support (local member only). (See Table 2–1 and Cluster Administration.)

• Cluster File System (CFS) performance enhancement — direct-access
cached reads. (See Section 2.2.)

Introduction to TruCluster Server 1–1

• Cluster alias support for Network File System (NFS) clients using
non-default cluster aliases when mounting and accessing NFS file
systems that are exported by the cluster. (See Section 6.11.)

• Logical Storage Manager (LSM) support for mirrored root (/) and swap
file systems. (See Cluster Administration and volmigrate(8).)

• Quota support. (See Cluster Administration.)

• User-initiated forced unmount of file systems. (See cfsmgr(8).)

1.2 TruCluster Server Features

TruCluster Server Version 5.1A provides the features listed in Table 1–1.

Table 1–1: Features in the TruCluster Server Version 5.1A Product
Feature Description

Clusterwide namespace The Cluster File System (CFS) supports a single clusterwide
namespace and uniform coherent access to all file systems in a
cluster. Context-dependent symbolic links (CDSLs) are used to
maintain per-system configuration and data files within the
shared CFS root (/), /usr, and /var file systems.
See Section 2.2 for more information on CFS. See Section 2.5 for
more information on CDSLs.

Clusterwide access to disk
and tape storage

The device request dispatcher facility provides highly available
clusterwide access to both character and block disk devices, as
well as tape devices. All cluster disk and tape I/O passes through
the device request dispatcher.
See Section 2.3 for more information on the device request
dispatcher.

Clusterwide Logical Storage
Manager (LSM)

The semantics of LSM have been extended to a cluster
environment.
See Section 2.8 for more information on LSM in a cluster
environment.

Connection manager The connection manager ensures that all cluster members
communicate with each other in order to control the formation
and continued operation of a cluster. The connection manager
calculates the votes required for quorum and decides when
members are added to and removed from the cluster.
See Chapter 3 for more information on the connection manager.

1–2 Introduction to TruCluster Server

Table 1–1: Features in the TruCluster Server Version 5.1A Product (cont.)

Feature Description

Cluster application
availability (CAA)

The CAA facility provides resource monitoring and application
restart capabilities. It provides the same type of application
availability provided by user-defined services in the TruCluster
Available Server Software and TruCluster Production Server
Software products.
See Chapter 4 for a definition of the types of applications that can
run in a cluster. See Chapter 5 for more information on CAA’s
role in making single-instance applications highly available.

Cluster alias The cluster alias subsystem lets TCP and UDP applications
address the cluster as though it were a single system. When
the cluster is created, a default cluster alias is defined that
addresses all cluster members. A site can define additional
aliases that address some or all cluster members.
See Chapter 6 for more information on cluster aliases.

Highly available Network
File System (NFS) server
using cluster alias

As shipped, the cluster is a highly available NFS server. CFS
ensures that file systems exported from a TruCluster Server
cluster are highly available to clients. By default, clients use
the default cluster alias as the name of the NFS server when
mounting file systems exported by the cluster. However, clients
can also use an alias listed in the /etc/exports.aliases file.
See Section 6.11 for more information.

Highly available Internet
services using cluster alias

As shipped, the cluster supports many Internet services, such as
telnet and ftp as highly available services. These services are
designated as in_multi services in the /etc/clua_services
file, and the cluster alias subsystem routes packets and requests
addressed to these services to available cluster members.
Nothing special was done to the services; the design of the
cluster alias subsystem makes this possible.

Introduction to TruCluster Server 1–3

Table 1–1: Features in the TruCluster Server Version 5.1A Product (cont.)

Feature Description

multiple cluster
interconnects

TruCluster Server Version 5.1A supports either Memory
Channel or local area network (LAN) hardware as the cluster
interconnect.
The Memory Channel interconnect is a high-speed interconnect
designed specifically for the needs of clusters.
TruCluster Server provides a Memory Channel application
programming interface (API) library, which is the same as that
provided in the TruCluster Production Server Software product.
Support for a LAN cluster interconnect provides an alternative
to Memory Channel when configuring a new cluster or upgrading
an existing TruCluster ASE cluster. See the Cluster LAN
Interconnect manual for detailed information on LAN cluster
interconnects.
See Chapter 7 for more information on LAN and Memory
Channel interconnects. See the TruCluster Server Cluster
Highly Available Applications manual for a description of the
Memory Channel API.

Distributed lock manager
(DLM)

TruCluster Server supports the DLM and its API, which is the
same as that provided in the TruCluster Production Server
Software product.
See Chapter 8 for a description of the DLM. See the Cluster
Highly Available Applications manual for a description of the
DLM API.

Single-system management Because a cluster uses CFS, all member systems’ configuration
files are available for management. The SysMan suite of
graphical management utilities provides an integrated view of
the cluster environment, letting you manage a single member or
the entire cluster.
See Chapter 9 for an overview of cluster installation and
administration.

Rolling Upgrade TruCluster Server Version 5.1A supports rolling upgrade.
You can roll a cluster from TruCluster Server Version 5.1 to
Version 5.1A. See Chapter 9 for more information.

File system partitioning CFS makes it possible to mount an AdvFS file system so that it
is accessible to only a single cluster member. This is referred to
as file system partitioning.
File system partitioning is provided in TruCluster Server to
ease migration from TruCluster Production Server Software or
TruCluster Available Server Software Version 1.5 or Version 1.6.
File system partitioning is not intended as a general purpose
method for restricting file system access to a single member.
See Cluster Administration and mount(8) for more information.

1–4 Introduction to TruCluster Server

Table 1–1: Features in the TruCluster Server Version 5.1A Product (cont.)

Feature Description

Single Security Domain Because a cluster uses CFS, there is a single copy of security
administration files such as /etc/passwd and /etc/group.
A user who is authenticated on one member has access to all
members. A user with access to a file on one member has access
to that file from any member. Access control lists (ACLs) are
uniformly available to all members.
See the Tru64 UNIX Security manual for more information.

Expanded process IDs
(PIDs)

PIDs are expanded to a full 32-bit value. PIDs are unique
across a cluster. Each cluster member has a block of
numbers that it assigns as PIDs.

Introduction to TruCluster Server 1–5

2
Clusterwide File Systems, Storage, and

Device Names

From a configuration and administration point of view, perhaps the most
important feature of TruCluster Server is the creation of a single, clusterwide
namespace for files and directories. This namespace provides each cluster
member with the same view of all file systems. In addition, there is a single
copy of most configuration files. With few exceptions, the directory structure
of a cluster is identical to that of a standalone system.

The clusterwide namespace is implemented by several new TruCluster
Server technologies, including the Cluster File System (CFS) and the device
request dispatcher, both of which are described in this chapter.

This chapter discusses the following topics:

• Supported file systems (Section 2.1)

• Cluster File System (CFS) (Section 2.2)

• Device request dispatcher (Section 2.3)

• CFS and device request dispatcher FAQ (Section 2.4)

• Context-dependent symbolic links (CDSLs) (Section 2.5)

• Device names (Section 2.6)

• Worldwide ID (Section 2.7)

• Clusters and the Logical Storage Manager (LSM) (Section 2.8)

To begin to understand how storage software works in a cluster, examine
Figure 2–1. This figure shows a high-level view of storage software layering
in a cluster. Note that the device request dispatcher controls all I/O to
physical devices; all cluster I/O passes through this subsystem. Also note
that CFS layers on top of existing file systems such as the Advanced File
System (AdvFS).

Clusterwide File Systems, Storage, and Device Names 2–1

Figure 2–1: Storage Software Layering in a Cluster

ZK-1547U-AI

Application

Block/Character
APIs

File System
APIs

Cluster File
System (CFS)

Physical File Systems
(AdvFS, UFS, ...)

Device Drivers

Logical Storage
Manager

(LSM)

Device Request
Dispatcher

2–2 Clusterwide File Systems, Storage, and Device Names

2.1 Supported File Systems

Table 2–1 summarizes supported file systems.

Table 2–1: File Systems Supported in a Cluster
Type How Supported Failure Characteristics

Advanced File System (AdvFS) Read/write A file domain is served by a member
selected on the basis of its connectivity
to the storage containing the file
system. Upon member failure, CFS
selects a new server for the domain.
Upon path failure, CFS uses an
alternate device request dispatcher
path to the storage.

CD-ROM File System (CDFS) Read-only A CD-ROM device is served for
read-only access by the member that
is directly connected to the device.
Because TruCluster Server does
not support CD-ROM devices on a
shared bus, a CD-ROM device becomes
inaccessible to the cluster when the
member to which it is locally connected
fails, even if it is being served by
another member. The device becomes
accessible again when the member
that failed rejoins the cluster.

DVD-ROM File System
(DVDFS)

Read-only A DVD-ROM device is served for
read-only access by the member that
is directly connected to the device.
Because TruCluster Server does not
support DVD-ROM devices on a shared
bus, a DVD-ROM device becomes
inaccessible to the cluster when the
member to which it is locally connected
fails, even if it is being served by
another member. The device becomes
accessible again when the member
that failed rejoins the cluster.

File-on-File Mounting (FFM)
file system

Read/write (local
use)

Can be mounted and accessed only
on the local member.

Memory File System (MFS) Read/write (local
use)

A cluster member can mount an MFS
file system read-only or read/write.
The file system is accessible only by
that member. There is no remote
access; there is no failover.

Named pipes Read/write (local
use)

Reader and writer must be on
the same member.

Clusterwide File Systems, Storage, and Device Names 2–3

Table 2–1: File Systems Supported in a Cluster (cont.)

Type How Supported Failure Characteristics

Network File System
(NFS) server

Read/write External clients use the default
cluster alias, or an alias listed in
/etc/exports.aliases, as the host
name when mounting file systems
NFS-exported by the cluster. File
system failover and recovery is
transparent to external NFS clients.

NFS client Read/write A cluster member can mount an NFS
file system whose server is outside
the cluster. If the cluster member
fails, the file system is automatically
unmounted. If the cluster uses
automount or autofs, the file
system is remounted automatically;
otherwise, the file system must be
remounted manually.

PC-NFS server Read/write PC clients use the default cluster
alias, or an alias listed in
/etc/exports.aliases, as the
host name when mounting file systems
NFS-exported by the cluster. File
system failover and recovery is
transparent to external NFS clients.

/proc file system Read/write (local
use)

Each cluster member has its own
/proc file system, which is accessible
only by that member.

UNIX File System (UFS) Read-only
(clusterwide)
Read/write (local
use)

A UFS file system explicitly mounted
read-only is served for clusterwide
read-only access by a member selected
for its connectivity to the storage
containing the file system. Upon
member failure, CFS selects a new
server for the file system. Upon path
failure, CFS uses an alternate device
request dispatcher path to the storage.
Read/write support is identical to
MFS read/write support. A cluster
member can mount a UFS file system
read/write. The file system is accessible
only by that member (only that member
can read it, only that member can write
it). There is no remote access; there is
no failover.

If you know how to manage a Tru64 UNIX system, you already know how
to manage a TruCluster Server cluster because TruCluster Server extends

2–4 Clusterwide File Systems, Storage, and Device Names

single-system management capabilities to clusters. It provides a clusterwide
namespace for files and directories, including a single root (/) file system
that all cluster members share. In a like manner, it provides a clusterwide
namespace for storage devices; each storage device has the same unique
device name throughout the cluster.

The SysMan suite of graphical management utilities provides an integrated
view of the cluster environment, letting you manage a single member or the
entire cluster. Figure 2–2 shows the SysMan Station hardware view for a
cluster named deli with two members: provolone and polishham.

Figure 2–2: A Cluster’s View of Hardware

ZK-1700U-AI

deli

provolone polishham

TruCluster Server preserves the following availability and performance
features of the TruCluster products provided for the Tru64 UNIX Version
4.0 series operating system:

• Like the TruCluster Available Server Software and TruCluster
Production Server products, TruCluster Server lets you deploy highly
available services that can access their disk data from any member in
the cluster.

Any application that can run on Tru64 UNIX can run as a highly
available single-instance application in a cluster. The application is

Clusterwide File Systems, Storage, and Device Names 2–5

automatically relocated (failed over) to another cluster member in the
event that a required resource, or the the current member itself, becomes
unavailable.

• Like the TruCluster Production Server Software product, TruCluster
Server lets you run components of distributed applications in parallel,
providing high availability while taking advantage of cluster-specific
synchronization mechanisms and performance optimizations.

2.2 Cluster File System

The Cluster File System (CFS) makes all files visible to and accessible by
all cluster members. Each cluster member has the same view; it does not
matter whether a file is stored on a device that is connected to all cluster
members or on one that is private to a single member. By maintaining cache
coherency across cluster members, CFS guarantees that all members at all
times have the same view of file systems mounted in the cluster.

From the perspective of the CFS, each file system or AdvFS domain is served
to the entire cluster by a single cluster member. Any cluster member can
serve file systems on devices anywhere in the cluster. File systems mounted
at cluster boot time are served by the first cluster member to have access to
them. This means that file systems on devices on a bus private to one cluster
member are served by that member.

This client/server model means that a cluster member can be a client for
some domains and a server for others. In addition, you can transition a
member between the client/server roles. For example, if you enter the
/usr/sbin/cfsmgr command without options, it returns the names of
domains and file systems, where each is mounted, the name of the server
of each, and the server status. You can use this information to relocate file
systems to other CFS servers, which balances the load across the cluster.

Because CFS preserves full X/Open and POSIX semantics for file-system
access, file management interfaces and utilities work in the same way they
do on a standalone system.

Figure 2–3 shows the relationship between file systems contained by disks
on a shared bus and the resulting cluster directory structure. Each member
boots from its own boot partition, but then mounts that file system at its
boot_partition mount point in the clusterwide name space. This figure
is only an example to show how each cluster member has the same view of
file systems in a cluster. There are many physical configurations possible,
and a real cluster provides additional storage to mirror the critical root (/),
/usr, and /var file systems.

2–6 Clusterwide File Systems, Storage, and Device Names

Figure 2–3: CFS Makes File Systems Available to All Cluster Members

SCSI BUS

Cluster Interconnect

/
(clusterwide root)

/usr
(clusterwide /usr)

/cluster /var
(clusterwide /var)

clusterwide root
clusterwide /usr
clusterwide /var

member 1
boot_partition

member 2
boot_partition

members
(member-specific files)

/boot_partition
(and other files specific

to member 1)

/member1

/boot_partition
(and other files specific

to member 2)

/member2

memberid = 1

System B

memberid = 2
ZK-1439U-AI

dsk1 dsk3dsk2System A

CFS provides several performance enhancements:

• Direct I/O: When direct I/O is enabled for a file by opening the file with
the O_DIRECTIO flag, read and write requests on it are executed to
and from disk storage through direct memory access, bypassing AdvFS
and CFS caching. This may improve I/O performance for database
applications that do their own caching and file region synchronization.
Remote CFS clients, as well as applications that are local to the CFS
server, can read and write directly to file systems that are opened for
direct I/O. Regardless of which member originates the I/O request, direct

Clusterwide File Systems, Storage, and Device Names 2–7

I/O to a file does not go through the cluster interconnect to the CFS
server.

• Direct-access cached reads: A performance enhancement for AdvFS file
systems when reading files 64 KB or larger in size. Direct-access cached
reads allow CFS to read directly from storage simultaneously from
multiple cluster members. If the cluster member that issues the read
request is directly connected to the storage containing the file system,
direct-access cached reads access the storage directly and do not go
through the cluster interconnect to the CFS server. This enhancement
maintains the served file system model by having the server perform
metadata and log updates, but offloads the cluster interconnect and the
CFS server by performing file I/O directly to storage from CFS clients.

Any application that performs read and writes to a file of 64 KB or larger
in size uses direct-access cached reads when reading from that file. For
example the following types of applications benefit from direct-access
cached reads:

– Multi-instance read mostly applications such as Web servers and
proxy servers because they can perform simultaneous direct access
reads from multiple cluster nodes.

– Backup applications because, regardless of which node the
application runs on, the file system contents do not pass through
the cluster interconnect.

• Mounting file systems: When a mount command is issued, if the member
on which the mount command is issued does not have connectivity, a
member with connectivity to the underlying storage is chosen as the CFS
server for the file system.

For more information, see the Cluster Administration manual.

2.3 Device Request Dispatcher

In a TruCluster Server cluster, the device request dispatcher subsystem
controls all I/O to physical devices. All cluster I/O passes through this
subsystem, which enforces single-system open semantics so only one
program can open a device at any one time. The device request dispatcher
makes physical disk and tape storage available to all cluster members,
regardless of where the storage is physically located in the cluster. It uses
the new device-naming model to make device names consistent throughout
the cluster. This provides great flexibility when configuring hardware. A
member does not need to be directly attached to the bus on which a disk
resides to access storage on that disk.

When necessary, the device request dispatcher uses a client/server model.
While CFS serves file systems and AdvFS serves domains, the device

2–8 Clusterwide File Systems, Storage, and Device Names

request dispatcher serves devices, such as disks, tapes, and CD-ROM drives.
However, unlike the client/server model of CFS in which each file system or
AdvFS domain is served to the entire cluster by a single cluster member, the
device request dispatcher supports the use of many simultaneous servers.

In the device request dispatcher model, devices in a cluster are either
single-served or direct-access I/O devices. A single-served device, such as
a tape device, supports access from only a single member: the server of
that device. A direct-access I/O device supports simultaneous access from
multiple cluster members. Direct-access I/O devices on a shared bus are
served by all cluster members on that bus.

You can use the drdmgr command to look at the device request dispatcher’s
view of a device. In the following example, device dsk6 is on a shared bus,
and is served by three cluster members.

drdmgr dsk6

View of Data from member polishham as of 2000-07-26:10:52:40

Device Name: dsk6
Device Type: Direct Access IO Disk

Device Status: OK
Number of Servers: 3

Server Name: polishham
Server State: Server
Server Name: pepicelli

Server State: Server
Server Name: provolone

Server State: Server
Access Member Name: polishham

Open Partition Mask: 0x4 < c >
Statistics for Client Member: polishham

Number of Read Operations: 737
Number of Write Operations: 643

Number of Bytes Read: 21176320
Number of Bytes Written: 6184960

The device request dispatcher supports clusterwide access to both character
and block disk devices. You access a raw disk device partition in a TruCluster
Server configuration in the same way you do on a Tru64 UNIX standalone
system; that is, by using the device’s special file name in the /dev/rdisk
directory.

______________________ Note _______________________

Before TruCluster Server Version 5.0, cluster administrators had
to define special Distributed Raw Disk (DRD) services to provide
this level of physical access to storage. Starting with TruCluster
Server Version 5.0, this access is built into the cluster architecture
and is automatically available to all cluster members.

Clusterwide File Systems, Storage, and Device Names 2–9

2.4 CFS and Device Request Dispatcher FAQ
This section answers frequently asked questions about CFS and the device
request dispatcher in the following areas:

• CFS, I/O, and the cluster interconnect (Section 2.4.1)

• AdvFS requested block caching (Section 2.4.2)

• The device request dispatcher and file opens (Section 2.4.3)

• Relocating the CFS server (Section 2.4.4)

2.4.1 CFS, I/O, and the Cluster Interconnect

Question: On a shared bus with direct-access I/O disks, does I/O have to
pass through the cluster interconnect?

Answer: For raw I/O, any node that is directly connected to a device has
direct access via the device request dispatcher to a raw partition on that
device. (The drdmgr command lists nodes that are servers for a device.)

Block I/O to directly connected storage, not a file system, goes through the
CFS server for the device special file.

For generic file I/O writes, and reads of files less than 64 KB in size, the I/O
passes through the CFS server for the file system. If the CFS client node
is not the CFS server for the file system, the request is passed across the
cluster interconnect to the node that is the CFS server for the file system,
and then to the device request dispatcher on the CFS server node. The
request never has to go to one node for the CFS server and then to another
node for the device request dispatcher. (Asynchronous writes are written
into memory and flushed to the server via write-behinds.)

For reads of files 64 KB or larger in size, CFS clients can read the files
directly from storage using direct-access cached reads.

In addition, when a program opens a file with O_DIRECTIO, read and write
requests are executed to and from disk storage through direct memory
access, bypassing both AdvFS and CFS caching. Regardless of which
member originates the I/O request, direct I/O to a file does not go across the
cluster interconnect.

Section 2.2 has more detail on direct access cached reads and direct I/O.
Also see open(2).

To summarize, I/O goes directly to storage in the following cases:

• Raw I/O to directly connected storage

• The CFS client is also the CFS server

• File I/O to a file opened with O_DIRECTIO

2–10 Clusterwide File Systems, Storage, and Device Names

• Reads of files 64 KB or larger in size

2.4.2 AdvFS Requested Block Caching

Question: Are requested blocks of an AdvFS file system cached on the CFS
client node?

Answer: Yes. CFS clients cache data and do write-behinds.

2.4.3 The Device Request Dispatcher and File Opens

Question: When a program opens a file, at what point does the device
request dispatcher become involved?

Answer: The open() is CFS only; read() and write() involve CFS
and the device request dispatcher. The device request dispatcher becomes
involved on a read() when the cache CFS is reading needs filling, and on a
write() when the cache CFS is writing needs emptying.

2.4.4 Relocating the CFS server

Question: When does it make sense to relocate the CFS server?

Answer: Look at output from the cfsmgr command to determine which
members handle the most I/O. In general, the goal is to avoid having one
node serving all file systems. (CFS uses a lot of memory; you can see a
slowdown when all file systems are served by the same member.) The
simplest approach is to monitor I/O for a while, decide which members
should be CFS servers for which file systems, and then write some simple
boot scripts (for example, in /sbin/init.d/) that automatically relocate
systems to the correct host.

For example, consider a two-member cluster (M1 and M2) and six file
systems (A, B, C, D, E, F). After watching I/O, you decide that M1 should
serve A, D, and E; and M2 should serve B, C, and F. You write a boot-time
script that has M1 relocate A, D, and E to itself, and has M2 relocate B,
C, and F to itself.

When balancing I/O among cluster members, balance at the CFS level rather
than at the device request dispatcher level. In other words, use cfsmgr
rather than drdmgr to balance I/O among cluster members.

2.5 Context-Dependent Symbolic Links
Although the single namespace greatly simplifies system management,
some configuration files and directories should not be shared by all cluster
members. For example, a member’s /etc/sysconfigtab file contains
information about that system’s kernel component configuration, and

Clusterwide File Systems, Storage, and Device Names 2–11

only that system should use that configuration. Consequently, the cluster
must employ a mechanism that lets each member read and write the file
named /etc/sysconfigtab, while actually reading and writing its own
member-specific sysconfigtab file.

Tru64 UNIX Version 5.0 introduced a special form of symbolic link called
a context-dependent symbolic link (CDSL), which TruCluster Server
uses to create a namespace with the following characteristics. CDSLs allow
a file or directory to be accessed by a single name, regardless of whether the
name represents a clusterwide file or directory, or a member-specific file
or directory. CDSLs keep traditional naming conventions while providing
a behind-the-scenes mechanism that makes sure each member reads and
writes its own copy of member-specific system configuration files.

CDSLs contain a variable whose value is determined only during pathname
resolution. The {memb} variable is used to access member-specific files in a
cluster. The following example shows the CDSL for /etc/rc.config:

/etc/rc.config -> ../cluster/members/{memb}/etc/rc.config

When resolving a CDSL pathname, the kernel replaces the {memb}
variable with the string membern, where n is the member ID of the
current member. Therefore, on a cluster member whose member ID is 2,
the pathname /cluster/members/{memb}/etc/rc.config resolves to
/cluster/members/member2/etc/rc.config. Figure 2–4 shows the
relationship between {memb} and CDSL pathname resolution.

CDSLs are useful when running multiple instances of an application on
different cluster members when each member operates on a different set
of data. The Cluster Highly Available Applications manual describes how
applications can use CDSLs to maintain member-specific data sets and log
files.

2–12 Clusterwide File Systems, Storage, and Device Names

Figure 2–4: CDSL Pathname Resolution

Cluster Interconnect

/

/usr /cluster /var

member1

etc etc

members

member2

memberid = 1
{memb} = member1

rc.config rc.config

rc.config ->/cluster/members/{memb}/etc/rc/config

System B

memberid = 2
{memb} = member2

ZK-1548U-AI

System A

/etc

As a general rule, before you move a file or directory, make sure that the
destination is not a CDSL. Moving files to CDSLs requires special care on
your part to ensure that the member-specific files are maintained. For
example, consider the file /etc/rc.config as shown in the following
example:

/etc/rc.config -> ../cluster/members/{memb}/etc/rc.config

If you move a file to /etc/rc.config, you replace the symbolic link
with the actual file; /etc/rc.config will no longer be a symbolic link to
/cluster/members/{memb}/etc/rc.config.

Clusterwide File Systems, Storage, and Device Names 2–13

The mkcdsl command lets system administrators create CDSLs and update
a CDSL inventory file. The cdslinvchk command verifies the current
CDSL inventory. For more information on these commands, see mkcdsl(8)
and cdslinvchk(8).

For more information about CDSLs, see the Tru64 UNIX System
Administration manual, hier(5), ln(1), and symlink(2).

2.6 Device Names

This section provides an introduction to the device-naming model introduced
in Tru64 UNIX Version 5.0. For a detailed discussion of this device-naming
model, see the Tru64 UNIX System Administration manual.

Device names are consistent clusterwide:

• They are persistent beyond boot.

• A device name stays with the device even when you move a disk or tape
to a new location in the cluster.

Prior to the release of Tru64 UNIX Version 5.0, disk device names encoded
the I/O path for the disk. This path incorporated many pieces of data,
and minimally included the following pieces of information: the device
driver used to access the controller to which the disk is connected, the
instance of the controller within the system that the driver manages, and a
per-controller device unit ID.

For example, the rz device driver was used to access both SCSI and
ATAPI/IDE device controllers. Disks connected to these controllers had
names of the form rzn, where n identified both the controller to which the
disk was connected and the unit ID. For example, a disk with SCSI ID=3 on
the second SCSI/ATAPI/IDE controller was known as rz11. If that disk was
moved to the third controller, it was accessed as rz19.

Tru64 UNIX Version 5.0 introduced a new device naming model in which
the device name simply consists of a descriptive name for the device and an
instance number. These two elements form the base name of the device,
such as dsk0. Note that the instance number in a device’s new name does
not correlate to the unit number in its old name: the operating system
assigns the instance numbers in sequential order, beginning with 0 (zero), as
it discovers devices. Additionally, most modern disks have IDs that can be
used to uniquely identify the disk. For disks that support this feature, Tru64
UNIX Version 5.0 keeps track of this ID and uses it to build and maintain
a table that maps disks to device names. As a result, moving one of these
disks from one physical connection to another does not change the device
name for the disk. This gives the system administrator greater flexibility
when configuring disks in the system.

2–14 Clusterwide File Systems, Storage, and Device Names

In a TruCluster environment, the flexibility provided by the new device
naming model is particularly useful because each disk within the cluster
has a unique name.

______________________ Note _______________________

Although Tru64 UNIX supports old-style device names as a
compatibility option, TruCluster Server supports only new-style
device names. Applications that depend on old-style device
names (or the structure of /dev) must be modified to use the new
device-naming model.

Table 2–2 lists some examples of new device names.

Table 2–2: Examples of New Device Names
Old Name New Name Description

/dev/rz4c /dev/disk/dsk4c The c partition of the fifth disk recognized
by the operating system.

/dev/rz19c /dev/disk/dsk5c The c partition of the sixth disk recognized
by the operating system.

The suffix assigned to the device name special files differs depending on
the type of device, as follows:

• Disks — In general, disk device file names consist of the base name and
a one-letter suffix from a through z; for example, /dev/disk/dsk0a.
Disks use a through h to identify partitions. By default, floppy disk and
CD-ROM devices use only the letters a and c; for example, floppy0a
and cdrom1c.

For raw device names, the same device names are in the directory
/dev/rdisk.

• Tapes — These device file names have the base name and a suffix
composed of the characters _d followed by a single digit; for example,
tape0_d0. This suffix indicates the density of the tape device, according
to the entry for the device in the /etc/ddr.dbase file; for example:

Device Density

tape0 default density

tape0c default density with compression

tape0_d0 density associated with entry 0 in /etc/ddr.dbase

tape0_d1 density associated with entry 1 in /etc/ddr.dbase

Clusterwide File Systems, Storage, and Device Names 2–15

With the new device special file naming for tapes, the old name suffix
directly mapping to the new name suffix, as follows:

Old Suffix New Suffix

l (low) _d0

m (medium) _d2

h (high) _d1

a (alternative) _d3

There are two sets of device names for tapes; both conform to the new
naming convention — the /dev/tape directory for rewind devices and
the /dev/ntape directory for no-rewind devices. To determine which
device special file to use, look in the /etc/ddr.dbase file.

Tru64 UNIX provides utilities to identify device names. For example, the
following hwmgr commands display device and device hierarchy information
in a cluster:

hwmgr -view devices -cluster
hwmgr -view hierarchy -cluster

You can use hwmgr to list a member’s hardware configuration and correlate
bus-target-LUN names with /dev/disk/dskn names. For more information
on the hwmgr command, see hwmgr(8).

______________________ Note _______________________

The Logical Storage Manager (LSM) naming conventions have
not changed.

2.7 Worldwide ID

Tru64 UNIX associates the new device name with the worldwide ID
(WWID) of a disk. A disk’s WWID is unique; it is set by the manufacturers
for devices that support WWID. No two disks can have the same WWID.
Using the WWID to identify a disk has two implications. After a disk is
recognized by the operating system, the disk’s /dev/disk/dsk name stays
the same even if its SCSI address changes.

This ability to recognize a disk lets Tru64 UNIX support multipathing to a
disk where the disk is accessible through different SCSI adapters. If disks
are moved within a TruCluster Server environment, their device names and
how users access them remain the same.

2–16 Clusterwide File Systems, Storage, and Device Names

______________________ Note _______________________

The names of disks behind RAID array controllers are associated
with both the WWID of their controller module and their own bus,
target, and LUN position. In this case, moving a disk changes
its device name. However, you can use the hwmgr utility to
reassociate such a disk with its previous device name.

The following hwmgr command displays the WWIDs for a cluster:

hwmgr -get attr -a name -cluster

2.8 Clusters and the Logical Storage Manager

The Logical Storage Manager (LSM) provides shared access to all LSM
volumes from any cluster member. LSM consists of physical disk devices,
logical entities, and the mappings that connect both. LSM builds virtual
disks, called volumes, on top of UNIX physical disks. LSM transparently
places a volume between a physical disk and an application, which then
operates on the volume rather than on the physical disk. For example, you
can create a file system on an LSM volume rather than on a physical disk.

As previously shown in Figure 2–1, LSM is layered on top of the device
request dispatcher. Using LSM in a cluster is like using LSM in a single
system. The same LSM software subsets are used for both clusters and
noncluster configurations, and you can make configuration changes from any
cluster member. LSM keeps the configuration state consistent clusterwide.

The following list outlines LSM support for basic clusterwide file systems:

• Supported: root (/), /usr, /var file systems; and member swap
partitions.

• Not supported: quorum disk and member boot disks.

See the Cluster Administration manual for configuration and usage issues
that are specific to LSM in a TruCluster Server environment.

Clusterwide File Systems, Storage, and Device Names 2–17

3
Connection Manager

Clustered systems share various data and system resources, such as access
to disks and files. To achieve the coordination that is necessary to maintain
resource integrity, the cluster must have clear criteria for membership and
must disallow participation in the cluster by systems that do not meet those
criteria.

The connection manager is a distributed kernel component that monitors
whether cluster members can communicate with each other, and enforces
the rules of cluster membership. The connection manager:

• Forms a cluster, adds members to a cluster, and removes members
from a cluster

• Tracks which members in a cluster are active

• Maintains a cluster membership list that is consistent on all cluster
members

• Provides timely notification of membership changes using Event
Manager (EVM) events

• Detects and handles possible cluster partitions

An instance of the connection manager runs on each cluster member. These
instances maintain contact with each other, sharing information such as
the cluster’s membership list. The connection manager uses a three-phase
commit protocol to ensure that all members have a consistent view of the
cluster.

This chapter provides the following information:

• A discussion of quorum, votes, and cluster membership (Section 3.1)

• A discussion of how the connection manager calculates quorum
(Section 3.2)

• When and how to use a quorum disk (Section 3.3)

3.1 Quorum and Votes
The connection manager ensures data integrity in the face of communication
failures by using a voting mechanism. It allows processing and I/O to occur
in a cluster only when a majority of votes are present. When the majority of
votes are present, the cluster is said to have quorum.

Connection Manager 3–1

The mechanism by which the connection manager calculates quorum and
allows systems to become and remain cluster members depends on a number
of factors, including expected votes, current votes, node votes, and quorum
disk votes. This section describes these concepts.

3.1.1 What Is a Cluster Member?

The connection manager is the sole arbiter of cluster membership. A node
that has been configured to become a cluster member, either through the
clu_create or clu_add_member command does not become a cluster
member until it has rebooted with a clusterized kernel and is allowed to form
or join a cluster by the connection manager. The difference between a cluster
member and a node configured to become a cluster member is important in
any discussion of quorum and votes.

After a node has formed or joined a cluster, the connection manager forever
considers it to be a cluster member (until someone uses clu_delete_member
to remove it from the cluster). A disruption of communications in a cluster
(such as that caused by broken or disconnected hardware) might cause
an existing cluster to divide into two or more clusters. If the cluster
divides, known as a cluster partition, nodes may consider themselves to be
members of one cluster or another. However, as discussed in Section 3.2, the
connection manager at most allows only one of these clusters to function.

3.1.2 Node Votes

Node votes are the fixed number of votes that a given member contributes
towards quorum. Cluster members can have either 1 or 0 (zero) node votes.
Each member with a vote is considered to be a votingmember of the cluster.
A member with 0 (zero) votes is considered to be a nonvoting member.

Voting members can form a cluster. Nonvoting members can only join an
existing cluster.

A member’s votes are initially determined by the cluster_node_votes
kernel attribute in the clubase subsystem of its member-specific
etc/sysconfigtab file.

3.1.3 Quorum Disk Votes

In certain cluster configurations, described in Section 3.3, you can enhance
cluster availability by configuring a quorum disk. Quorum disk votes are
the fixed number of votes that a quorum disk contributes towards quorum.
A quorum disk can have either 1 or 0 (zero) votes.

3–2 Connection Manager

Quorum disk votes are initialized from the cluster_qdisk_votes kernel
attribute in the clubase subsystem of each member’s etc/sysconfigtab
file.

When configured, a quorum disk’s vote plays a unique role in cluster
formation because of the following rules, which are enforced by the
connection manager:

• A booting node cannot form a cluster unless it has quorum.

• Before the booting node can claim the quorum disk and its vote, it must
be a cluster member.

In the situation where the booting node needs the quorum disk vote to
achieve quorum, these rules create an impasse: the booting node can never
form a cluster.

The connection manager resolves this dilemma by allowing booting members
to provisionally apply the quorum disk vote towards quorum. This allows a
booting member to achieve quorum and form the cluster. After it has formed
the cluster, it claims the quorum disk. At that point, the quorum disk’s vote
is no longer provisional; it is real.

3.1.4 Expected Votes

Expected votes are the number of votes the connection manager expects
when all configured votes are available. In other words, expected votes are
the sum of all node votes that are configured in the cluster, plus the vote of
the quorum disk, if one is configured. Each member brings its own notion of
expected votes to the cluster; all members must agree on the same number
of expected votes.

The connection manager refers to the node expected votes settings of booting
cluster members to establish its own internal clusterwide notion of expected
votes, referred to as cluster expected votes. The connection manager uses
its cluster expected votes value when determining the number of votes that
the cluster requires to maintain quorum, as explained in Section 3.2.

Use the clu_quorum command or the clu_get_info -full command to
display the current value of cluster expected votes.

The clu_create and clu_add_member scripts automatically adjust
each member’s expected votes as a new voting member or quorum disk is
configured in the cluster. The clu_delete_member command automatically
lowers expected votes when a member is deleted. Similarly, the clu_quorum
command adjusts each member’s expected votes as a quorum disk is added
or deleted, or node votes are assigned to or removed from a member. These
commands ensure that the member-specific expected votes value is the same

Connection Manager 3–3

on each cluster member, and that it is the sum of all node votes and the
quorum disk vote, if a quorum disk is configured.

Amember’s expected votes are initialized by the cluster_expected_votes
kernel attribute in the clubase subsystem of its member-specific
etc/sysconfigtab file. Use the clu_quorum command to display a
member’s expected votes.

3.1.5 Current Votes

Current votes are the actual number of votes that are visible within the
cluster. If expected votes are the number of configured votes in a cluster,
current votes are the number of votes contributed by current members and
any configured quorum disk that is on line.

3.2 Calculating Cluster Quorum

The quorum algorithm is the method by which the connection manager
determines the circumstances under which a given member can participate
in a cluster, safely access clusterwide resources, and perform useful work.
The algorithm operates dynamically: that is, cluster events trigger its
calculations, and the results of its calculations can change over the lifetime
of a cluster. This section describes how the connection manager’s quorum
algorithm works.

The quorum algorithm operates as follows:

1. The connection manager selects a set of cluster members upon which
it bases its calculations. This set includes all members with which it
can communicate. For example, it does not include configured nodes
that have not yet booted, members that are down, or members that it
cannot reach due to a hardware failure (for example, a detached cluster
interconnect cable or a bad cluster interconnect adapter).

2. When a cluster is formed, and each time a node boots and joins the
cluster, the connection manager calculates a value for cluster expected
votes using the largest of the following values:

• The maximum member-specific expected votes value from the set of
proposed members that were selected in step 1.

• The sum of the node votes from the set of proposed members selected
in step 1, plus the quorum disk vote if a quorum disk is configured.

• The previous cluster expected votes value.

Consider a three-member cluster with no quorum disk. Each member
has one vote and has its member-specific expected votes set to 3. The
value of cluster expected votes is currently 3.

3–4 Connection Manager

A fourth member is then added to the cluster. When the new member
boots, the connection manager calculates the new cluster expected votes
as 4, which is the sum of node votes in the cluster.

Use the clu_quorum or clu_get_info -full command to display
the current value of cluster expected votes.

3. Whenever the connection manager recalculates cluster expected votes
(or resets cluster expected votes as the result of a clu_quorum -e
command), it calculates a value for quorum votes.

Quorum votes is a dynamically calculated clusterwide value, based
on the value of cluster expected votes, that determines whether a
given node can form, join, or continue to participate in a cluster. The
connection manager computes the clusterwide quorum votes value
using the following formula:

quorum votes = round_down((cluster_expected_votes+2)/2)

For example, consider the three-member cluster described in the
previous step. With cluster expected votes set to 3, quorum votes
are calculated as round_down((3+2)/2), or 2. In the case where the
fourth member was added successfully, quorum votes are calculated as
round_down((4+2)/2), or 3.

____________________ Note _____________________

Expected votes (and, hence, quorum votes) are based on
cluster configuration, rather than on which nodes are up
or down. When a member is shut down, or goes down for
any other reason, the connection manager does not decrease
the value of quorum votes. Only member deletion and the
clu_quorum -e command can lower the quorum votes value
of a running cluster.

4. Whenever a cluster member determines that the number of votes it can
see has changed (when a node joins the cluster, an existing member
is deleted from the cluster, or a communications error is reported), it
compares current votes to quorum votes.

The action the member takes is based on the following conditions:

• If the value of current votes is greater than or equal to quorum
votes, the member continues running or resumes (if it had been in a
suspended state).

• If the value of current votes is less than quorum votes, all of its
I/O is suspended and all network interfaces except the cluster
interconnect interfaces are turned off. No commands that access a

Connection Manager 3–5

clusterwide resource will work on that member. The member might
appear to be hung.

This state is maintained until sufficient votes are added (that is,
until enough members join the cluster or the communications
problem is mended) to bring current votes to a value greater than or
equal to quorum votes.

The comparison of current votes to quorum votes occurs on a
member-by-member basis, although events may make it appear that quorum
loss is a clusterwide event.

Depending upon how the member lost quorum, you might be able to remedy
the situation by booting a member with enough votes for the member in
quorum hang to achieve quorum. If all cluster members have lost quorum,
your options are limited to booting a new member with enough votes for
the members in quorum hang to achieve quorum, rebooting the entire
cluster, or using the troubleshooting procedures discussed in the Cluster
Administration manual.

3.3 Using a Quorum Disk

In a two-member cluster configuration, where each member has one member
vote and expected votes has the value of 2, the loss of a single member will
cause the cluster to lose quorum and all applications to be suspended. This
type of configuration is not highly available.

A more realistic (but not substantially better) two-member configuration
assigns one member 1 vote and the second member 0 (zero) votes. Expected
votes is 1. This cluster can lose its second member (the one with no votes)
and remain up. However, it cannot afford to lose the first member (the
voting one).

To foster better availability in such a configuration, you can designate a
disk on a shared bus as a quorum disk. The quorum disk acts as a virtual
cluster member whose purpose is to add one vote to the total number of
expected votes. When a quorum disk is configured in a two-member cluster,
the cluster can survive the failure of either the quorum disk or one member
and continue operating.

For example, consider the two-member deli cluster without a quorum disk
as shown in Figure 3–1.

3–6 Connection Manager

Figure 3–1: Two-Member deli Cluster Without a Quorum Disk

Memory
Channel

 hub

deli cluster
expected votes = 1
no quorum disk
quorum = 1 [round_down((1+2)/2)]

salami
1 vote

polishham
0 vote

ZK-1569U-AI

...

One member contributes 1 node vote and the other contributes 0 (zero),
so cluster expected votes is 1. The connection manager calculates quorum
votes as follows:

quorum votes =
round_down((cluster_expected_votes+2)/2) =
round_down((1+2)/2) = 1

The failure or shutdown of member salami causes member polishham to
lose quorum. Cluster operations are suspended.

However, if the cluster includes a quorum disk (adding 1 vote to the total
of cluster expected votes), and member polishham is also given a vote,
expected votes becomes 3 and quorum votes becomes 2:

quorum votes =
round_down((cluster_expected_votes+2)/2) =
round_down((3+2)/2) = 2

Connection Manager 3–7

Now, if either member or the quorum disk leaves the cluster, sufficient
current votes remain to keep the cluster from losing quorum. The cluster in
Figure 3–2 can continue operation.

Figure 3–2: Two-Member deli Cluster with Quorum Disk Survives Member
Loss

Memory
Channel

 hub

deli cluster
expected votes = 3
quorum disk with 1 vote
quorum = 2 [round_down((3+2)/2)]

salami
1 vote

polishham
1 vote

ZK-1575U-AI

quorum disk
1 vote

The clu_create utility allows you to specify a quorum disk at cluster
creation and assign it a vote. You can also use the clu_quorum utility to add
a quorum disk later; for example, when the result of a clu_delete_member
is a two-member cluster with compromised availability.

To configure a quorum disk, use the clu_quorum -d add command. For
example, the following command defines /dev/disk/dsk11 as a quorum
disk with one vote:

clu_quorum -d add dsk11 1
Collecting quorum data for Member(s): 1 2

Initializing cnx partition on quorum disk : dsk11h

3–8 Connection Manager

Successful quorum disk creation
clu_quorum
Collecting quorum data for Member(s): 1 2

Quorum Data for Cluster: deli as of Thu Mar 9 09:59:18 EDT 2000

Cluster Common Quorum Data
Quorum disk: dsk11h

.

.

.

The following restrictions apply to the use of a quorum disk:

• A cluster can have only one quorum disk.

• The quorum disk should be on a shared bus to which all cluster members
are directly connected. If it is not, members that do not have a direct
connection to the quorum disk may lose quorum before members that
do have a direct connection to it.

• The quorum disk must not contain any data. The clu_quorum command
overwrites existing data when initializing the quorum disk. The integrity
of data (or file system metadata) placed on the quorum disk from a
running cluster is not guaranteed across member failures.

This means that the member boot disks and the disk holding the
clusterwide root (/) cannot be used as quorum disks.

• The quorum disk can be quite small. The cluster subsystems use only 1
MB of the disk.

• A quorum disk can have either 1 vote or 0 (zero) votes. In general,
always assign a vote to the quorum disk. You might assign an existing
quorum disk no votes in certain testing or transitory configurations,
such as a one-member cluster (in which a voting quorum disk introduces
a second point of failure).

• You cannot use the Logical Storage Manager (LSM) on the quorum disk.

Connection Manager 3–9

4
Highly Available Applications

Applications on clusters can be divided into three basic types:

single-instance
application

A single-instance application runs on only one
cluster member at a time. To make this type
of application highly available, the cluster must
provide a mechanism for starting the application on
another cluster member in the event that the current
member can no longer run the application. The
TruCluster Server high availability mechanism for
single-instance applications is the cluster application
availability (CAA) subsystem; see Chapter 5 for a
description of CAA.

The Cluster Highly Available Applications manual
provides detailed information about moving
applications from the TruCluster Software Version
1.x series of products to TruCluster Server Version
5.1A.

multi-instance
application

A multi-instance application can run on multiple
cluster members at the same time. A multi-instance
application by definition is highly available
because the failure of one cluster member does
not affect the instances of the application running
on other members. See Chapter 6 for a discussion
of how cluster aliases provide transparent client
access to applications.

distributed
application

A distributed application is specifically designed to
run on a cluster, using different members for specific
purposes. These applications use the Memory
Channel, distributed lock manager (DLM), and
cluster alias application programming interfaces
(APIs) to integrate applications with cluster
resources.

TruCluster Server lets you run components of
distributed applications in parallel, providing
high availability while taking advantage of

Highly Available Applications 4–1

cluster-specific synchronization mechanisms and
performance optimizations.

See Chapter 6, Section 7.2, Chapter 8, and the
Cluster Highly Available Applications manual for
more information on the subsystems and interfaces
that you can use to create distributed applications.

______________________ Note _______________________

Section 6.7 discusses the in_single and the in_multi service
attributes, which determine whether the cluster alias subsystem
arbitrarily selects one member to receive all packets for a service
that is reached through an alias or distributes packets among all
eligible members of an alias. Although these terms are similar
in form to single-instance and multi-instance, the in_single
and in_multi attributes affect how the cluster alias subsystem
routes packets and connection requests that are addressed to a
service’s port. Do not confuse these routing attributes with the
generic terms that describe how many instances of an application
can run in the cluster. The Cluster Administration manual has a
section in its Cluster Alias Subsystem chapter that describes the
differences between the cluster alias subsystem and the cluster
application availability subsystem.

4–2 Highly Available Applications

5
Cluster Application Availability

This chapter provides the following information:

• A general overview of the cluster application availability (CAA)
subsystem (Section 5.1)

• A discussion of the CAA architecture (Section 5.2)

• An introduction to CAA resources (Section 5.3)

• A description of resource profiles and their use (Section 5.4)

• A description of the action scripts used by CAA commands to manage
applications and other resources (Section 5.5)

5.1 Overview

The cluster application availability (CAA) subsystem provides high
availability for single-instance applications and the capability to monitor
applications and the state of other types of resources, such as network
interfaces, tape devices, and media changer devices. (A single-instance
application runs on a single member of a cluster, and cannot be run on more
than one member at a time.) A single instance of any application that can
run on Tru64 UNIX can be made highly available in a cluster with CAA. For
example, in a cluster, the daemons for BIND (named), DHCP (joind), and
network locking (rpc.lockd and rpc.statd) are managed by CAA.

Each application under CAA control has a resource profile, which describes
that application’s resource requirements and the circumstances under which
it can be relocated to another cluster member. CAA monitors the state of
cluster members and resources to ensure that each application runs on a
member that meets its resource requirements. Resource profiles can be
created and managed through either a command-line interface or a graphical
user interface (GUI).

CAA can automatically relocate an application to another cluster member
if a required resource, or the current member itself, becomes unavailable.
This feature requires no changes to the application itself, and can be used
with any single-instance application. CAA also monitors resources so that it
can restart applications resources that have gone off line due to a resource
failure.

Cluster Application Availability 5–1

______________________ Note _______________________

CAA’s resource monitoring and application restart capabilities
are enhancements to the type of application availability provided
by available server environment (ASE) for user-defined services
in previous TruCluster products.

Figure 5–1 shows how the failure of one member results in the failover of an
application to the second member. If clients access the application through a
cluster alias, the cluster alias subsystem automatically forwards connection
requests to the second member.

Figure 5–1: Application Failover with CAA

ZK-1446U-AI

Member 2Member 1

Single-Instance Service

Member 1 Member 2

Client 2

Failover

Client 1 Client 3

BEFORE: AFTER:

Client 3Client 2Client 1

5.2 CAA Architecture
The CAA subsystem consists of the following components:

resource A resource is a cluster software or hardware
component that provides a service to end users or
to other software components. Resources are the
building blocks that CAA uses to make services
highly available to clients. CAA supports the

5–2 Cluster Application Availability

following types of resources: applications, network
interfaces, tape drives, and media changers.

resource manager The resource manager communicates with all the
components of the CAA subsystem, as well as the
connection manager and the Event Manager (EVM).

The resource manager consists of all the CAA
daemons running on cluster members. Each CAA
daemon (caad) starts, stops, relocates, and restarts
application resources when a required resource,
the application itself, or a cluster member fails.
Each cluster member runs a CAA daemon. These
daemons are independent but they communicate
with each other, sharing information about the
status of the resources.

The resource manager also uses the resource
monitors that monitor the status of a particular
type of resource.

resource monitor A resource monitor is a shared library located in
/var/cluster/caa/monitors, which is loaded by
the resource manager, caad, at boot time. There
is one resource monitor for each type of resource
(application, network, tape, and media changer).

resource profile Resource profiles contain the information needed
by the resource manager and monitors to control
application relocation and monitor resources.

A resource profile contains keyword/value pairs that
define a resource, its dependencies (for application
resources), and how the resource is managed by CAA.
After the resource is registered with caa_register,
the resource manager can use the resource profile.

The caa_profile command and SysMan can
create resource profiles, or they can be created in
any text editor. (Use caa_profile -validate
to ensure the correct syntax of profiles that are
created or modified using a text editor.) Errors other
than syntactical errors are detected at the time of
registration. This two-stage validation allows for
profiles to be created with dependencies on resources
that are currently off line or yet to be created.

Cluster Application Availability 5–3

Resource profiles are located in the
/var/cluster/caa/profile directory. The
file names of resource profiles take the form
resource_name.cap.

action script An action script is a set of commands that are used
by CAA to start, stop, and check an application. The
name of an application’s action script is defined in
that application’s resource profile.

You can create or update an action script using the
command-line interface, SysMan, or a text editor.

Action scripts are located in the
/var/cluster/caa/script directory.
The file names of action scripts take the form
resource_name.scr.

command-line
interface

The CAA subsystem provides the caa_profile,
caa_register, caa_unregister, caa_start,
caa_stop, caa_relocate, and caa_stat
commands to manage and monitor resources. See
caa(4) for a list of all CAA reference pages.

The command-line interface interacts with resource
profiles, action scripts, and the resource manager.

graphical user
interface

SysMan Menu and SysMan Station provide
graphical user interfaces (GUIs) to perform system
management tasks for the cluster, cluster members,
and CAA applications. For more information on
using the GUIs for performing system management
tasks for CAA applications, see sysman(8) and the
online help for the SysMan Menu and SysMan
Station.

The CAA GUI calls the command-line interface to
interact with resource profiles, action scripts, and
the resource manager.

Although the connection manager and Event Manager are not part of the
CAA subsystem, the subsystem makes extensive use of these facilities.

Figure 5–2 shows a graphical representation of the CAA architecture.

5–4 Cluster Application Availability

Figure 5–2: CAA Architecture

ZK-1585U-AI

GUI/SMS Resource1

Resource2

Event
manager

Resource
manager

Connection
 manager

Resource profiles
and

action scripts

Commands

5.3 Resources

A resource is a cluster software or hardware component that provides a
service to end users or to other software components. Resources are the
building blocks that CAA uses to make services highly available to clients.
CAA supports the following types of resources:

application An executable program. An application resource
can have dependencies on other resources,
including another application resource. In the
resource profile that defines an application
resource, these dependencies are defined as either
required, REQUIRED_RESOURCES, or optional,
OPTIONAL_RESOURCES.

If you define a resource as a required resource
and the required resource becomes unavailable,
CAA stops the application. CAA then attempts to
restart the application on another member that has
the required resource. If CAA cannot restart the
application on another member because the other
member is down or because the placement policy
forbids starting the application on that member, the
application is stopped. CAA does not restart the
application until all required resources are available.

Cluster Application Availability 5–5

You can use optional resources in conjunction with
required resources and the placement policy to help
determine the optimal system on which to start
an application. If an optional resource becomes
unavailable the application does not fail over.

network A network interface. All cluster members can
indirectly access any network attached to any
member. An application that makes extensive use of
a network connection available on another cluster
member can add traffic to the cluster interconnect,
and slow down performance of both the application
and the cluster. Defining a network resource as a
required resource for an application is useful when
you want an application to run on a member with
direct connectivity to a specific network.

If you define a network resource as a required
resource for an application and the network interface
adapter fails, CAA relocates or stops the application
if it cannot relocate the resource.

If you define a network resource as an optional
resource for an application, CAA starts the
application on a member that is directly connected
to the network. If the subnet adapter fails, the
application reverts to accessing the network
indirectly.

tape or changer A tape drive or media changer. If you define a tape
or media changer resource as a required resource
for an application, the application always runs on a
cluster member with direct connectivity to the tape
device or changer. If the device fails, CAA attempts
to relocate the application, or stops the application if
relocation is not possible.

If you define a tape or media changer resource as an
optional resource for an application, CAA attempts
to start the application on a member with direct
connectivity, but it also runs the application on
a member that does not have direct connectivity
to the device. Running on a member with direct
connectivity to a tape device is desirable to maximize
performance.

5–6 Cluster Application Availability

5.4 Resource Profiles

Each resource has a resource profile, which defines the resource, lists
any dependencies, and provides instructions for how CAA should manage
the resource. A resource profile is a simple text file containing a list of
keyword/value pairs, which are described in caa(4). By default, all resource
profiles are located in the /var/cluster/caa/profile directory.

A resource profile must be registered through the caa_register command
in order for CAA to monitor and manage the resource.

The following sections describe the two types of resource profiles:

• Application resource profiles (Section 5.4.1)

• Nonapplication resource profiles (Section 5.4.2)

5.4.1 Application Resource Profiles

For an application resource, a resource profile can contain the application’s
type, name, check interval, monitoring thresholds, resource dependencies
(required resources), optional resources, hosting member list, placement
policy, restart attempts, failover delay, auto start value, active placement
value, and name of the resource’s action script. Some keywords are optional.
For example, the following sample named.cap resource profile does not
set an active placement value, which means that the placement of the
application will not be reevaluated when a member boots into the cluster.

cat named.cap
TYPE = application
NAME = named
DESCRIPTION = BIND Server
CHECK_INTERVAL =
FAILURE_THRESHOLD = 0
FAILURE_INTERVAL = 0
REQUIRED_RESOURCES =
OPTIONAL_RESOURCES =
HOSTING_MEMBERS =
PLACEMENT = balanced
RESTART_ATTEMPTS =
FAILOVER_DELAY =
AUTO_START =
ACTION_SCRIPT = named.scr

The caa(4) reference page provides detailed descriptions of each type
of profile and keyword. In addition, see the Cluster Highly Available
Applications manual and caa_profile(8) for more information on the
contents and creation of application resource profiles.

Cluster Application Availability 5–7

The remainder of this section discusses placement policies, hosting members,
active placement, and failure threshold and failure interval. Action scripts
are described in Section 5.5.

An application’s placement policy determines where the application is
started. Supported policies are: balanced, favored, and restricted.

balanced CAA favors starting or restarting the application
resource on the member that is currently running
the fewest application resources. Placement that is
due to optional resources is considered first. Next,
the host with the fewest application resources
running is chosen. If no cluster member is favored
by these criteria, any available member is chosen.

favored CAA refers to the list of members in the
HOSTING_MEMBERS attribute of the resource profile.
Only cluster members that are both in this list
and satisfy the required resources are eligible for
placement consideration. Placement due to optional
resources is considered first. If no member can be
chosen based on optional resources, the order of the
hosting members decides which member will run
the application resource. If none of the members in
the hosting member list are available, CAA favors
placing the application resource on the member that
is running the fewest application resources.

You must specify a hosting members list when you
select a favored placement policy.

restricted This policy is similar to the favored placement
policy, except that if none of the members on the
hosting members list are available, CAA will not
start or restart the application resource. A restricted
placement policy ensures that the resource never
runs on a member that is not on the list, unless you
manually relocate it to that member.

You must specify a hosting members list when you
select a restricted placement policy.

Hosting members are, in order of preference, members to consider when the
application is (a) started, or (b) relocated. A hosting member list is used in
conjunction only with the favored or restricted placement policies.

5–8 Cluster Application Availability

Active placement causes CAA to reevaluate the placement of an application
when a new cluster member is added to a cluster or rebooted. If a more
highly favored cluster member joins the cluster and active placement is on,
then the application will stop on its current member and restart on the
more favored member.

Failure threshold and failure interval values are used together to stop an
application that repeatedly fails. If an application fails too many times
during the failure interval time, the application is not started again. These
values are considered only when a check of the application fails, and not at
initial start attempts.

The restart attempts value defines the maximum number of times that an
application start or restart is attempted on one cluster member before that
attempt is considered failed.

5.4.2 Nonapplication Resource Profiles

All other types of currently supported resources (network, tape, and media
changer) have resource profiles that define which resource to monitor and
specify the failure threshold and failure interval values. If a nonapplication
resource fails too many times during the failure interval time, monitoring
of the resource is stopped.

For tape and media changer resources, you define which tape to monitor by
its device name; for a network resource you must define a subnet.

See the Cluster Highly Available Applications manual, caa_profile(8),
and caa(4) for detailed descriptions of the contents and creation of resource
profiles.

5.5 Action Scripts

An action script is a set of commands used by CAA to start, stop, and check
an application. Only application resources have action scripts. The name of
an action script is specified as the ACTION_SCRIPT value in the application’s
resource profile.

By default, action scripts are located in the /var/cluster/caa/script
directory although they can be placed anywhere. The file names of action
scripts take the form resource_name.scr.

The Cluster Highly Available Applications manual provides examples of
action scripts.

In function, an action script is similar to available server environment (ASE)
scripts, and to the system initialization scripts located in the /sbin/init.d
directory.

Cluster Application Availability 5–9

An action script has multiple entry points that are executed by the CAA
commands when an application resource needs to be started or stopped.
The start entry point is used by caa_start and caa_relocate to
start an application, and the stop entry point is used by caa_stop and
caa_relocate to stop an application. The check entry point is used by the
resource manager to validate that an application is still running.

Each action script has an associated timeout value defined in its application
resource profile. If the action script does not finish executing within this
time, CAA considers the start attempt a failure and either attempts to start
the application on another member or fails completely.

Both the caa_profile command and the SysMan suite of applications
can be used to create simple action scripts when creating resource profiles.
You may need to edit these action scripts to customize the start, stop, and
check procedures for an application.

5–10 Cluster Application Availability

6
Cluster Alias

This chapter discusses the following topics:

• A general overview of cluster aliases (Section 6.1)

• Cluster alias subsystem components (Section 6.2)

• The default cluster alias (Section 6.3)

• The number of aliases per cluster (Section 6.4)

• The location of alias IP addresses (Section 6.5)

• Routing for alias IP addresses (Section 6.6)

• in_single and in_multi services (Section 6.7)

• Alias attributes (Section 6.8)

• Service port attributes (Section 6.9)

• vMAC support (Section 6.10)

• NFS and cluster alias (Section 6.11)

• RPC services and cluster alias (Section 6.12)

• ifconfig aliases and cluster aliases (Section 6.13)

6.1 Overview

A cluster alias is an IP address that makes some or all of the systems in
a cluster look like a single system to Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP) applications. Figure 6–1 shows how a
network client views the systems in a cluster with and without a cluster
alias.

Cluster Alias 6–1

Figure 6–1: Client’s View of a Cluster With and Without Cluster Alias

ZK-1471U-AI

Without Cluster Alias With Cluster Alias

Cluster aliases free clients from having to connect to specific cluster
members for services. Just as clients can request a variety of services from
a single host, clients can request a variety of services from a cluster alias.
For example, you can telnet or rlogin to a cluster alias as you do to a
single host.

A cluster can have more than one cluster alias. One alias, the default cluster
alias, is created during cluster installation and all members can receive
packets that are addressed to this alias. You can create additional aliases as
needed.

You can think of a cluster alias as a distributed virtual clusterwide network
interface. In that sense, a cluster alias is conceptually similar to an
ifconfig alias, where a single physical network interface responds to more
than one IP address.

Each system in a cluster explicitly joins the aliases to which it wants to
belong. After a system joins an alias, it is a member of that alias. Using
the analogy that a cluster alias is similar to an address on virtual network
interface, joining an alias is similar to issuing an ifconfig up command
for that alias interface. The member can now receive packets addressed
to the alias.

Clients send TCP connection requests or UDP messages to the IP address
representing an alias. The cluster transparently routes the request or

6–2 Cluster Alias

message to a cluster node that is a current member of that alias. The hop
within the cluster uses the cluster interconnect, not network routing.

If a member of an alias is unavailable, the cluster stops sending packets to
that member and routes packets to active members of that alias. As long as
one member of an alias is active, the alias is available.

6.2 Cluster Alias Subsystem Components

The cluster alias subsystem has the following main components:

• The kernel portion of the cluster alias subsystem, clua, which is a
configurable kernel subsystem loaded at boot time.

• A user-level daemon, aliasd. The kernel communicates with this
daemon to manage routing for cluster aliases. The alias daemon
transparently handles the routing configuration for cluster aliases,
automatically adding any needed host routes (and network routes
for alias addresses on virtual subnets) for cluster aliases to that
member’s /etc/gated.conf.membern file. The daemon starts gated
using this file as gated’s configuration file rather than the member’s
/cluster/members/{memb}/etc/gated.conf file.

The cluamgr command provides options that can modify the daemon’s
behavior. Each cluster member runs aliasd.

_____________________ Note _____________________

The aliasd daemon supports only the Routing Information
Protocol (RIP).

• An administrative interface that provides both a command-line and a
graphical user interface (GUI) to manage aliases and alias attributes.
The command-line interface is the cluamgr command. The GUI is
accessed from the SysMan Menu.

• A member-specific alias configuration file, /etc/clu_alias.config,
which contains the cluamgr commands that configure aliases, including
the default cluster alias, for that member.

• A clusterwide application configuration file, /etc/clua_services,
which assigns alias-related attributes to ports used by services.
The /etc/clua_services file is the cluster alias extension of the
/etc/services file. The clua_services file extends the services
syntax to assign alias-related attributes to ports.

• A clusterwide file, /etc/exports.aliases, which contains the names
of non-default cluster aliases that NFS clients can use. By default, only
NFS requests directed to the default cluster alias are accepted by the

Cluster Alias 6–3

cluster. This file lets you use additional aliases as NFS server names.
This is useful, for example, when not all members of a cluster are directly
connected to the storage that contains exported file systems. In this case,
you can create an alias that encompasses only those members directly
connected to the storage, and then tell users on NFS client systems to
use that cluster alias when requesting NFS services from the cluster.

• An application programming interface (API), libclua.

Figure 6–2 provides a functional overview of the cluster alias subsystem
components.

6–4 Cluster Alias

Figure 6–2: Cluster Alias Functional Overview

gated

Member 1 Member 2

/sbin/init.d/clu_alias /etc/clu_alias.config

/etc/clu_alias.configcluamgr
User

application

aliasd

ZK-1551U-AI

Socket
library

Cluster
alias

library

Kernel/user boundary

Alias
membership

kernel threads

Alias A

Alias B

Alias n

. . .

Alias kernel
routines

(port locking, etc)

ipintr
(IP interrupt

handler)

packet queue

TCP UDP

ip_forward

Alias network
stack and

round-robin

Alias
membership

kernel threads

Alias
forwarder
listener

Alias
forwarder

sender

Alias
forwarder

listener

Alias
forwarder

sender

ip_output

Datalink driver

6.3 The Default Cluster Alias

There is one special alias, called the default cluster alias.
During installation, the cluster is given a name, which is stored in

Cluster Alias 6–5

/etc/sysconfigtab as the value of the cluster_name attribute. The
installation procedure adds an entry to /etc/hosts, which associates
this cluster name with a user-specified default cluster alias IP address.
For example, for a cluster named deli whose alias IP address is
16.140.112.209, the installation procedure adds the following entry to
/etc/hosts:

16.140.112.209 deli.zk3.dec.com deli

Each cluster member is a member of the default cluster alias. The command
that makes a cluster member a member of the default cluster alias is
in each member’s /etc/clu_alias.config file. All cluster members
automatically join the default cluster alias at boot time.

Figure 6–3 shows a three-node cluster with two cluster aliases. All members
belong to alias A, the default cluster alias, but only two members belong to
alias B.

Figure 6–3: Cluster Using Two Aliases

ZK-1443U-AI

Cluster Alias A (default alias)
Cluster Alias B

Member 1 Member 2 Member 3

Several standard Internet services, such as telnet and login, use the
IP address of the default cluster alias as the source address for outgoing
packets. Cluster alias IP addresses, including that of the default cluster
alias, must be on a network accessible to cluster clients; that is, clients must
be able to route to this subnet. For this reason, cluster alias IP addresses
cannot be on the cluster interconnect (the subnet used by the cluster for
internal communication).

6.4 The Number of Aliases per Cluster

For many clusters, the default cluster alias provides sufficient access for
cluster clients. Whether or not a cluster will benefit from having additional
aliases depends on the symmetry (storage and network) of the cluster, and

6–6 Cluster Alias

whether you want all members to handle client requests for all services.
Additional aliases are useful in the following situations:

• In a heterogeneous cluster where some devices or applications are best
served through a subset of cluster members.

• If you want to restrict services to a subset of cluster members in order to
reduce the internal forwarding of requests and packets.

• In a cluster where all members are not directly connected to the storage
containing files systems exported by the cluster. In this case, using an
alias the encompasses just those systems that are directly connected to
this storage reduces traffic across the cluster interconnect.

After cluster installation, you can define as many aliases as are needed for a
cluster. The default value for the clua subsystem max_aliasid attribute is
8, the maximum value is 102,400. In practice this upper limit is probably
memory restricted, but the useful range should meet all practical needs. One
suggestion is to use the default alias for a while, and then decide whether
your site can benefit from additional aliases. In many cases, the default
alias is sufficient; the Cluster Administration manual describes a situation
where a site uses two aliases for load balancing.

6.5 The Location of Alias IP Addresses

A cluster alias address can be in one of two types of subnets:

common subnet A subnet to which one or more cluster systems are
connected with physical network interfaces.

Using a common subnet for cluster aliases works
well when the cluster is connected to only a single
local area network, and that network is managed as
a single IP address domain.

Cluster alias routing in a common subnet is based on
proxy Address Resolution Protocol (ARP) support.
For each alias, one cluster member acts as the proxy
ARP master for that alias.

virtual subnet A cluster alias resides in a virtual subnet if its
address is in a subnet that is not associated with any
physical interfaces. A virtual subnet is made visible
to the physical network by gated, the gateway
routing daemon.

If the cluamgr virtual option is assigned to an
alias address, a cluster member advertises a host
route and a network route to the alias.

Cluster Alias 6–7

Multiple clusters on the same LAN can use the same
virtual subnet.

___________ Caution ___________

A virtual subnet must not have any real
systems in it.

The choice of subnet type depends mainly on whether the existing subnet
to which the cluster is connected (that is, the common subnet) has enough
addresses available for cluster aliases. If addresses are not available on an
existing subnet, consider creating a virtual subnet. A lesser consideration is
that if a cluster is connected to multiple subnets, configuring a virtual subnet
has the advantage of being uniformly reachable from all of the connected
subnets. However, this advantage is more a matter of style than substance.
It does not make much practical difference which type of subnet you use for
cluster alias addresses; do whatever makes the most sense at your site.

Regardless of the type of subnet, it must be configured so that packets from
clients can be routed to alias addresses. Services that use cluster aliases
will not be accessible to clients if those alias addresses are on a virtual or a
common subnet that clients cannot reach.

A cluster alias address should not be a broadcast address or a multicast
address, nor should it reside in the subnet used by the cluster interconnect.
Although you can assign a cluster alias an IP address that resides in one of
the private address spaces defined in RFC 1918, you must use the cluamgr
-r resvok command in order for the alias subsystem to advertise a route to
the alias address. (See cluamgr(8) for information on using the resvok flag
and how to add an entry to /etc/rc.config.common to make the route
advertising persist beyond reboots.)

6.6 Routing for Alias IP Addresses

This section discusses how routes to aliases are advertised and how packets
addressed to aliases are taken off the wire:

• Advertising routes to aliases (Section 6.6.1)

• Routing for aliases on common subnets (Section 6.6.2)

• Routing for aliases on virtual subnets (Section 6.6.3)

• Accepting and redirecting packets and connection requests addressed
to an alias (Section 6.6.5)

• Routing example (Section 6.6.6)

6–8 Cluster Alias

The following terms, which are used in these sections, are defined in the
glossary. If you are not familiar with the terms, read the glossary definitions
before continuing.

• host route

• network route

• proxy ARP

6.6.1 Advertising Routes to Aliases

An alias router is a cluster member that makes a cluster alias address
known to the network and receives incoming packets for that alias. By
default, all cluster members are configured as alias routers for the default
cluster alias at boot time. Any cluster member can be configured to advertise
a host or a network route to any alias.

______________________ Note _______________________

By default, cluster members route only for cluster aliases; they
are not configured as general purpose routers. Whether or
not a site decides to configure one or more cluster members to
route for non-alias traffic is the responsibility of the network
administrators at that site.

A cluster member does not have to join an alias in order to route for that
alias. In the following example, a cluster member specifies alias1, and
specifies and joins alias2. The member will route packets addressed to
either alias, but will only receive requests/packets addressed to alias2:

/usr/sbin/cluamgr -a alias=alias1
/usr/sbin/cluamgr -a alias=alias2,join

You can put these commands in a member’s /etc/clu_alias.config file
to ensure that the commands are run at boot time.

6.6.2 Routing for Aliases on Common Subnets

For each alias, all cluster members that are aware of the alias (have either
specified or joined the alias) use gated to advertise a host route to that alias.
The aliasd daemon automatically configures /etc/gated.conf.membern
to advertise a host route at boot time based on the information in
/etc/clu_config.alias.

Only one alias member at a time responds to Address Resolution Protocol
(ARP) requests for a given cluster alias. This member is the proxy ARP
master for the alias. If this system fails, another is elected to take over
the role of proxy ARP master.

Cluster Alias 6–9

______________________ Note _______________________

In routing tables, host routes take precedence over the interface
routes used for proxy ARP. Proxy ARP applies only to alias
addresses configured on a common subnet (a physical network).

If multiple cluster alias addresses are defined, you can use the rpri alias
attribute to balance the incoming load a bit by giving different nodes the
highest routing priority for different alias addresses. With a single alias and
ARP-based routing, only one member acts as the alias router at a time.
(Section 6.8 describes the router priority, rpri attribute.)

However, all cluster members that are aware of an alias use gated to set up
a host route to each cluster alias on each of their network interfaces. Because
host routes take precedence over the interface routes used with ARP, any
client in the same subnet as the cluster that is running a route daemon sees
the host routes. Depending on various random occurrences, such as which
nodes boot in what order, different clients may see a different cluster node’s
host route first. Therefore, clients might use different cluster nodes as their
route to the cluster alias. (This is not guaranteed to be uniformly distributed.
If the clients boot before the cluster, all clients will see and use the host route
through the first cluster node that advertises one.) Client nodes that do not
run a route daemon, such as routed or gated, find the cluster alias using
the ARP protocol, and are routed through the proxy ARP master.

6.6.3 Routing for Aliases on Virtual Subnets

The alias daemon, aliasd, creates a /etc/gated.conf.membern file
for each cluster member. The alias configuration process modifies this
configuration file to advertise each alias address in a virtual subnet as a host
route. No manual modification is required; each member’s alias daemon
automatically modifies that member’s /etc/gated.conf.membern file to
advertise a route to each cluster alias host address through each network
interface on that member.

If the cluamgr virtual option is assigned to an alias address, the cluster
member also advertises a network route to the virtual subnet containing
the alias address. To ensure that the virtual subnet’s location is known
to the network, make sure that at least one, and preferably all members,
specify the cluamgr command virtual=t option for at least one alias in
each virtual subnet.

As with common subnet route advertising, the routing load may be balanced
across multiple cluster nodes, depending on which route advertisements
the clients see in what order.

6–10 Cluster Alias

6.6.4 Summary of Routing for Aliases on Common and Virtual
Subnets

Table 6–1 summarizes the types of routes that are advertised for cluster
aliases on common and virtual subnets.

Table 6–1: Summary of Routing for Aliases on Common and Virtual Subnets
Subnet
Type

Address Domain Proxy ARP Host Route via
gated

Network Route
via gated

Common A subnet to
which a cluster
is connected.

Yesa Yesb No

Virtual A subnet with
no physical
connections that
appears to exist
"behind" the
cluster.

No Yesb Yesc

a For any interface on that subnet on a cluster alias that has specified or joined the alias.
b For each interface on a cluster member that has specified or joined the alias.
c For each interface on a cluster member that has specified or joined the alias, and that has also specified the cluamgr
option virtual=t for at least one cluster alias on that virtual subnet.

6.6.5 Accepting and Redirecting Packets and Connection Requests
Addressed to an Alias

Normal routing ensures that a packet addressed to a cluster alias arrives
at exactly one cluster node. (One packet is not handled by multiple cluster
members.) That node determines the cluster member to receive and process
the packet based on the following:

• Which members of the alias are available (the alias subsystem monitors
calls to bind() and listen())

• The port number

• The type of packet

• A weighted round-robin algorithm

The following table describes how packets are redirected within a cluster:

Cluster Alias 6–11

New TCP/IP connection Look at the packet and make a list of
eligible members for the target port.
Use the weighted round-robin algorithm
to select a member from the list of
active listening members. Forward the
packet to the selected member.

Existing TCP/IP connection Determine which alias member
owns this connection. Forward the
packet to the member.

UDP Look at the packet and make a list of
eligible members for the target port. Use
the weighted round-robin algorithm to
select a member from the list of active
listening members. Forward the packet
to the selected member.
See Section 6.11 for information on how
NFS over UDP is handled by the cluster
alias subsystem.

ICMP (some ICMP packets must be
handled in cluster-alias context)

Look at the packet and determine
whether to handle it or forward it to
another member. If needed, forward
the packet to that member.

6.6.6 Routing Example

Figure 6–4 shows a cluster with interfaces on three networks, two public
common networks and one private virtual network. The default cluster alias
IP address is on the virtual subnet.

6–12 Cluster Alias

Figure 6–4: Alias Routing Example

Green
Net

Red
Net

Memory
 Channel

ZK-1472U-AI

16.140.32.225

16.140.240.153

16.140.64.237

16.140.32.125

A

B

Virtual
Subnet

Default Cluster Alias

Gateway

If the correct cluamgr commands are used to configure the alias, the gated
daemon on each node will advertise on all connected networks:

• A host route to that address for the benefit of local nodes.

• A network route to the virtual network to ensure that nodes beyond
these networks can locate the virtual subnet.

The following examples show the cluamgr commands run on hosts A and B
to advertise routes to the cluster alias on the virtual subnet:

• To have gated advertise a host route for the alias:

cluamgr -a alias=16.140.240.153

• To have gated advertise a host route and a network route (16.140.240.0)
for the alias:

cluamgr -a alias=16.140.240.153,virtual=t

• To have gated advertise a host route and a network route (16.140.240.0)
for the alias, and to receive packets and connection requests addressed
to the alias:

Cluster Alias 6–13

cluamgr -a alias=16.140.240.153,virtual=t,join

6.7 in_single and in_multi Services

Service ports that are accessed through a cluster alias are defined as either
in_single or in_multi. These service port attributes determine the routing
of network requests to applications, not whether an application can run on
more than one member at the same time. From the point of view of the
cluster alias subsystem:

• When a service’s port is designated as in_single, only one alias member
receives connection requests or packets for that service. If that member
becomes unavailable, the cluster alias subsystem selects another eligible
member of that alias to receive all connection requests or packets.

• When a service’s port is designated as in_multi, the alias subsystem
distributes connection requests and packets among all eligible members
of the alias.

By default, the cluster alias subsystem treats all services as in_single.
For the cluster alias subsystem to treat a service’s port as in_multi, the
port must either be registered as in_multi in /etc/clua_services or
through a call to clua_registerservice(). See Section 6.9 for more
information on service port attributes.

A service whose port is designated as in_multi can take advantage of
cluster aliasing to distribute incoming TCP connection requests and UDP
packets among members of the alias. The alias subsystem provides load
balancing through a weighted round-robin algorithm that distributes
requests/packets among alias members. If one member of an alias cannot
respond to client requests, the cluster alias software transparently
distributes requests/packets among the remaining alias members.

______________________ Note _______________________

Cluster alias and CAA are separate subsystems with
complementary but different functions. CAA is an
application-control tool; cluster alias is a routing tool. CAA
decides where an application will run; cluster alias decides how
to get there. You cannot use CAA to control routing within
the cluster; you cannot use cluster aliases to control where an
application is running in the cluster. The Cluster Administration
manual provides more information on the differences between
cluster alias and CAA.

The following two figures show how the alias subsystem distributes client
requests for in_single and in_multi services. For the in_single service

6–14 Cluster Alias

(Figure 6–5), all requests are sent to the alias member currently running
the service. For the in_multi service (Figure 6–6), requests are distributed
among all alias members.

Figure 6–5: in_single Service Accessed Through Default Cluster Alias

ZK-1444U-AI

Member 1 Member 2 Member 3

Multi-Instance Service

Single-Instance Service

Cluster Alias deli

Clients requesting
a service from deli

Cluster alias routes
requests to member
providing the service

Client 3Client 2Client 1

Cluster Alias 6–15

Figure 6–6: in_multi Service Accessed Through Default Cluster Alias

ZK-1445U-AI

Member 1 Member 2 Member 3

Multi-Instance Service

Single-Instance Service

Cluster Alias deli

Client 1 Client 3Client 2

Clients requesting
a service from deli

Cluster alias routes
requests to members
providing the service

6.8 Alias Attributes

Alias attributes are member-specific. Each cluster member has its own view
of an alias. For example, one cluster member can route for an alias but not
be a member of that alias, but another cluster member can both route for
that alias and be an end recipient for requests or messages addressed to
that alias. In like manner, alias attributes are also alias-specific. A cluster
member can join two aliases and assign a different selection weight to each

6–16 Cluster Alias

alias, thus ensuring that the member system receives a higher proportion of
connections addressed to the alias with the higher selection weight.

Aliases and their attributes are managed through the cluamgr command
and the SysMan Menu. The SysMan Menu calls cluamgr as needed.

The following attributes control the routing and distribution of connection
requests and packets among members of an alias. The descriptions are
paraphrased from those in cluamgr(8), which describes these and other
alias attributes.

router priority The router priority (rpri) controls the proxy ARP
router selection for an alias on a common subnet.
For each alias in a common subnet, the cluster
member with the highest router priority for that
alias responds to ARP requests for that alias. Note
that this option does not control which members
broadcast host or network routes for aliases.

When a cluster has more than one cluster alias,
you can use router priority to spread the proxy
ARP response overhead for aliases among cluster
members. (This option is irrelevant for an alias
whose address is in a virtual subnet.)

selection priority The selection priority (selp) identifies subsets
of members of an alias for the assignment of
new connection requests. The selection priority
establishes a hierarchy within the members of an
alias. Connection requests are distributed among
those members sharing the highest selection priority
value. If an alias has three members, two with
selp=10 and one with selp=5, no connection
requests or messages are given to the selp=5
member as long as either of the selp=10 members
is available.

You can use selection priority values to set up a
failover order for members of a particular cluster
alias.

selection weight Selection weight provides a simple, static method for
controlling which members of an alias get the most
connections. The selection weight (selw) indicates
the number of connections (on average) that this
member is given before connections are given to the
next alias member with the same selp value. (The

Cluster Alias 6–17

selp value determines the order in which members
are eligible to receive requests or messages; the selw
value determines how many requests or messages a
member gets after it is eligible.)

If node A is larger than node B and can handle 50
percent more connections, then assign, for instance,
selw=3 to an alias on node A, and selw=2 to an
alias on node B.

Selection weight applies only to applications that are
registered as in_multi services. (All traffic for an
in_single service must go to the cluster member
running that service.)

Selection weight and routing priority address two different load balancing
issues; selection weight balances application overhead within a cluster, and
router priority balances proxy ARP response overhead within a cluster.

In general, the default routing priority provides acceptable performance. The
selection weight is probably more useful when balancing application loads
within a heterogeneous cluster consisting of both large and small systems.

6.9 Service Port Attributes

The /etc/clua_services file is a shared file that is read by all cluster
members. The file is similar in concept and syntax to the /etc/services
file. The clua_services file provides a method for associating alias-related
attributes with the port numbers used by services. (When application source
code is available, the clua_registerservice() function serves the same
purpose.) Any service with a fixed port assignment can have an entry in
/etc/clua_services.

With the exception of the out_alias attribute, these attributes apply to
services accessed through any cluster alias. The out_alias attribute,
which applies only to connections originating from the cluster, is specific
to the default cluster alias.

You can associate the following attributes with a service’s port:

in_single A service that, from the cluster alias point of view,
runs on only one cluster member at a time, but can
fail over to another instance of the service on another
member if the active service goes away. (Active, in
this context, relates only to messages addressed
to the cluster alias. All instances of a service are
always active for their node’s local IP addresses
unless the in_nolocal attribute is also set.) As

6–18 Cluster Alias

each service binds to the application’s port, the first
is flagged as active for the alias, and the others are
flagged as inactive. If the active service fails, one of
the inactive service daemons is marked as active.

Any port that is not explicitly listed in
the clua_services file as in_multi, or
registered as in_multi through a call to the
clua_registerservice() function, is treated as
in_single.

in_multi Indicates a service that can run concurrently on two
or more cluster members. For a service using UDP,
each packet might go to a different alias member.
For a service using TCP, each connection is bound to
a single alias member, but different connections to
the service from the same client might be established
on different alias members.

An in_multi service must be explicitly registered,
either in the /etc/clua_services file or through
the clua_registerservice() function.

in_noalias Indicates that the port does not honor connection
requests to alias addresses.

in_nolocal Indicates that the port does not honor connection
requests to nonalias addresses. For TCP, the port
does not accept connections; for UDP, the port drops
messages.

out_alias Indicates that the default cluster alias is used
as the source address whenever this port is used
as a destination. Normally, outbound connections
(or UDP messages) use the local IP address of the
cluster member on which the client is running. It is
often beneficial to use the cluster alias address as
the source address for outbound traffic from the
cluster (for example, to simplify authentication).

The out_alias attribute applies only when the
connection (assuming TCP, not UDP) is originated
from the cluster; that is, the cluster is the client. If
a process running on a cluster member initiates
an outbound connection, and the destination port
(the port representing that half of the connection

Cluster Alias 6–19

that is not in the cluster) is flagged in the cluster’s
/etc/clua_services file as out_alias, the
connection uses the default alias as its source
address.

The same logic holds true when the outbound traffic
is a UDP send, because each send can be viewed as a
microconnection.

static Indicates that the port cannot be assigned as a
dynamic port. This option is assigned to ports
between 512 and 1024 that are used by well-known,
multi-instance network services that are always
started at boot time.

The in_multi, in_single, and in_noalias attributes are mutually
exclusive. The in_nolocal and in_noalias attributes are mutually
exclusive. See clua_services(4) and clua_registerservice(3) for more
information about the use of these attributes.

6.10 vMAC Support

When a cluster alias IP address is configured in a common subnet, one
cluster member in that subnet acts as the alias’s proxy ARP master,
responding to local ARP requests addressed to the alias. If another member
of the alias takes over the proxy ARP master role, the new master broadcasts
a gratuitous ARP packet to inform other systems about the new hardware
media access control (MAC) address associated with the alias’s IP address.
The other local systems then update their ARP tables to reflect this new
cluster-alias-to-MAC association.

However, this broadcast packet is a problem for systems that do not
understand gratuitous ARP packets. These systems do not become aware of
changes in the cluster alias-to-MAC association, and continue to send alias
traffic to the stale MAC address until the normal timeout interval for their
ARP tables has elapsed. A solution is to provide a virtual hardware address
(vMAC address) for each cluster alias.

A virtual MAC address is a unique hardware address that can be
automatically created for each alias IP address. An alias vMAC address
follows the cluster alias proxy ARP master from node to node as needed.
Regardless of which cluster member is serving as the proxy ARP master for
an alias, the alias’s vMAC address does not change.

The Cluster Administration manual describes how to enable vMAC support
for a cluster alias.

6–20 Cluster Alias

6.11 NFS and Cluster Aliases
When a cluster is configured as an NFS server, NFS client requests must
be directed either to the default cluster alias or to an alias listed in
/etc/exports.aliases. NFS mount requests directed at individual
cluster members are rejected.

As shipped, the default cluster alias is the only alias that NFS clients can
use. However, you can make additional cluster aliases available for use by
NFS clients by putting the alias names in the exports.aliases file. This
feature is useful when some members of a cluster are not directly connected
to the storage containing exported file systems. In this case, creating an
alias with only directly connected systems as alias members can reduce the
number of internal hops required to service an NFS request.

The remainder of this section discusses how NFS and the cluster alias
subsystem interact for TCP and UDP NFS traffic. (We recommend that,
whenever possible, you use UDP as the network transport.) In the following
scenarios, assume that the client’s first interaction with the cluster is to
mount a file system exported by the cluster, and that all members are
connected both to the network and to storage.

• Getting packets off the network (Section 6.11.1)

• Mount requests (Section 6.11.2)

• NFS over TCP (Section 6.11.3)

• NFS over UDP (Section 6.11.4)

6.11.1 Getting Packets Off the Network

NFS requests using TCP or UDP are addressed to the default cluster alias or
to an alias whose name is in /etc/exports.aliases.

By default, a cluster member advertises a host route to each alias that it has
specified or joined. Because a client tends to cache the first host route to an
alias that it sees, as long as that route is available the client will send all
packets for an alias to the same cluster member.

All packets pass through this member on the way in, but not necessarily
on the way out. The cluster member that puts the response packet on the
wire inserts the cluster alias address as the source address, so the client is
satisfied: send a packet to an alias, receive a packet from an alias.

6.11.2 Mount Requests

The mount daemon, mountd, is a multi-instance service that handles
incoming UDP and TCP mount requests. The cluster alias subsystem
decides which mountd instance services a mount request. The node handling

Cluster Alias 6–21

the mount request has no relationship to the node that will eventually
service the incoming NFS packets although by chance they may end up
being the same node.

6.11.3 NFS over TCP

TCP connection requests are assigned to a member based on the alias
round-robin algorithm and alias selection weights. (Because there is no file
system information in the connection request, the cluster cannot route the
request to the member that is currently the CFS server for the file system.)
All subsequent TCP NFS packets for that file system from that client are
handled by the same member that was assigned the connection, regardless
of file-system relocations.

Use Figure 6–7, and the callouts that follow the figure, to trace the path
of an NFS TCP connection:

6–22 Cluster Alias

Figure 6–7: NFS over TCP

ZK-1801U-AI

Client

NFS
Server 3

CFS Server

NFS
Server 4

4

NFS over TCP

1
6

35

Storage

2

NFS
Server 1

NFS
Server 2

1. Because clients cache routes, the NFS request most likely goes through
the same member as the mount request.

2. Because a TCP connection has already been established by the initial
request, the member that takes the packet off the wire automatically
tunnels it to the NFS server member that is handling the connection.
(There is no CFS server lookup on the node that takes the packet off
the wire.)

Cluster Alias 6–23

____________________ Note _____________________

The following steps are based on the assumption that the
NFS server member is not the CFS server for the file system.

3. The NFS server sends a CFS request across the interconnect to the
member that is the CFS server.

4. The CFS server member handles the I/O to storage.

5. The CFS server member returns the results across the interconnect to
the NFS server member.

6. The NFS server member replies to the client (using the alias address as
the source address).

6.11.4 NFS over UDP

UDP NFS packets are redirected to the cluster member that is serving the
file system. All UDP NFS traffic for that file system is handled on that
member. If another cluster member becomes the CFS server for the file
system, UDP packets are tunneled to the new server. UDP packets always
follow the CFS server for the file system.

______________________ Note _______________________

Some clients, for example PCs, broadcast UDP requests when
trying to find an NFS server. The cluster responds to these
requests by returning the IP address of the default cluster alias.
This ensures that later NFS client requests are sent to the default
cluster alias.

Use Figure 6–8, and the callouts that follow the figure, to trace the path of
an NFS request over UDP:

6–24 Cluster Alias

Figure 6–8: NFS over UDP

ZK-1800U-AI

Client

NFS
Server 1

NFS
Server 3

CFS Server

NFS
Server 4

NFS
Server 2

2

4

NFS over UDP

1

3

5

Storage

1. Because clients cache routes, the NFS request most likely goes through
the same member as the mount request.

2. Because an NFS UDP packet contains all the data needed for the NFS
request, the cluster alias software on the member that takes the packet
off the wire can determine which file system contains the file, and
performs a CFS-callout to determine which cluster member is the CFS
server for the file system.

Cluster Alias 6–25

____________________ Note _____________________

The remaining steps are based on the assumption that the
CFS server is a member of the cluster alias to which the
packet was addressed.

3. The packet is tunneled to the NFS server that is also the CFS server for
the file system. CFS can service the request locally. (This is why UDP
can provide better performance that TCP: the UDP packet makes just
one trip across the interconnect. Because the NFS server is also the
CFS server, no extra trips are needed to handle the CFS I/O.)

4. The NFS server/CFS server member handles the I/O to storage.

5. The NFS server/CFS server member replies directly to the client (using
the alias address as the source address).

______________________ Note _______________________

However, if the CFS server for the file system is not a member of
the alias, the receiving node round-robins the packet in the same
manner that it handles TCP connection requests. In this case,
UDP performance will be worse than TCP performance because,
with TCP, all incoming packets from a client are tunneled to the
node servicing the connection. As a result, all I/O to the same file
from the same client is handled by the same node. However, with
UDP, if the CFS server is not a member of the alias being used,
each I/O request for a given file will end up being handled by a
different cluster member. In this case, the CFS clients cannot
cache data; they will be constantly invalidating each other’s
caches and writing through the CFS server node.

6.12 RPC Services and Cluster Aliases

RPC services can call either the clusvc_getcommport() function
or the clusvc_getresvcommport() function to bind to a port.
(Use clusvc_getresvcommport() when binding to a reserved
(privileged) port, a port number in the range 0-1023.) Both functions call
clua_registerservice() to automatically set the CLUASRV_MULTI
(in_multi) attribute on the port.

Use the clusvc_getcommport() and clusvc_getresvcommport()
functions in the following circumstances:

• The RPC service does not use a well-known port (services that use
well-known ports can have in_multi entries in /etc/clua_services).

6–26 Cluster Alias

• Multiple instances of the RPC service will run in a cluster.

• Requests for the RPC service will be directed to a cluster alias, which
will provide load balancing among the instances of the service.

These two functions make it possible to run an RPC application accessed
via a cluster alias on multiple cluster members. In addition to ensuring
that each instance of an RPC application uses the same common port,
the functions also inform the portmap daemon that the application is a
multi-instance, alias application.

If you do not use one of these functions to bind to the port, you can still
run multiple instances of the application, but only one instance will receive
requests directed to a cluster alias.

6.13 ifconfig Aliases and Cluster Aliases

Before TruCluster Server Version 5.0, TruCluster products used the asemgr
command to control application failover. The asemgr command ran the
ifconfig command to create IP aliases as needed. Because the cluster alias
subsystem creates and manages aliases on a clusterwide basis, there is no
longer any need to explicitly establish and remove IP aliases with ifconfig
when an application fails over.

Cluster alias addresses are not designed with a one-IP-address-one-service
mindset. A cluster alias is an address that encompasses the cluster as a
whole (or whatever subset of the cluster chooses to define the particular
alias), with the design center being applications that can run multiple copies
concurrently (multi-instance services). When single-instance services are
necessary, they are best configured with CAA so that failover of the service
can be more easily managed.

If you are familiar with ASE services, you can continue to define
application-specific interface alias addresses in CAA scripts using ifconfig
alias. These aliases are independent of cluster aliases and do not create
any conflicts.

The advantage of using the default cluster alias is that you do not need
to migrate an application’s address when moving the application within
the cluster, because all applications are using the same address (the
default cluster alias) and the cluster alias code will always find where the
application is running in the cluster. Furthermore, if an application can run
multi-instance (concurrently on multiple nodes for enhanced scaling), all
instances can be transparently accessed using the same cluster alias without
the client knowing multiple nodes are involved.

One advantage of using an ASE-style per-service interface alias (defined in
the scripts and migrated with the service by the script) is that traffic is

Cluster Alias 6–27

always routed directly to the node running the service (with the cluster alias,
traffic often takes one hop within the cluster). Whether this hop outweighs
defining an address for each service and migrating it manually depends on
the application’s throughput needs.

6–28 Cluster Alias

7
Cluster Interconnect

A cluster must have a dedicated cluster interconnect to which all cluster
members are connected. The cluster interconnect serves as a private
communications channel between cluster members. It is used by the
connection manager to maintain cluster membership, by the Cluster File
System (CFS) to perform I/O to and from remotely served storage, by the
distributed lock manager (DLM) to maintain resource lock information,
and by most other cluster subcomponents. For hardware, the cluster
interconnect can use either Memory Channel or a private LAN.

In general, the following rules and restrictions apply to the selection of a
cluster interconnect:

• All cluster members must be configured to use a LAN interconnect
(Section 7.1) or to use Memory Channel (Section 7.2). You cannot mix
interconnect types within a cluster.

• Replacing a Memory Channel interconnect with a LAN interconnect
(or vice versa) requires some cluster downtime. (That is, you cannot
perform a rolling upgrade from one interconnect type to the other.) The
Cluster LAN Interconnect manual describes how migrate from Memory
Channel to a LAN interconnect.

• Applications using the Memory Channel application programming
interface (API) library require Memory Channel. The Memory Channel
API library is not supported in a cluster using a LAN interconnect.

7.1 LAN Interconnect

Because of the relatively low cost of Ethernet hardware, a LAN interconnect
is a good choice as the private communications channel for an entry level
cluster. In general, any Ethernet adapter, switch, or hub that works in a
standard LAN at 100 Mb/s should work within a LAN interconnect. (Fiber
Distributed Data Interface (FDDI) and ATM LAN Emulation (LANE), 10
Mb/s Ethernet, and Gigabit Ethernet are not supported.)

See the Cluster LAN Interconnect manual for guidelines and examples of
cluster LAN interconnect configurations.

Cluster Interconnect 7–1

7.2 Memory Channel Interconnect

The Memory Channel interconnect is a specialized interconnect designed
specifically for the needs of clusters. This interconnect provides both
broadcast and point-to-point connections between cluster members. The
Memory Channel interconnect:

• Allows a cluster member to set up a high-performance, memory-mapped
connection to other cluster members. These other cluster members can,
in turn, map transfers from the Memory Channel interconnect directly
into their memory. A cluster member can thus obtain a write-only
window into the memory of other cluster systems. Normal memory
transfers across this connection can be accomplished at extremely low
latency (3 to 5 microseconds).

• Has built-in error checking, virtually guaranteeing no undetected errors
and allowing software error detection mechanisms, such as checksums,
to be eliminated. The detected error rate is very low (on the order of
one error per year per connection).

• Supports high-performance mutual exclusion locking (by means
of spinlocks) for synchronized resource control among cooperating
applications.

Figure 7–1 shows the general flow of a Memory Channel transfer.

Figure 7–1: Memory Channel Logical Diagram

 Member A
address space

Memory Channel
 address space Member B

 memory

Page

Normal
memory write

 tr
an

sf
er

transfer

Page

Page

ZK-1190U-AI

A Memory Channel adapter must be installed in a PCI slot on each member
system. A link cable connects the adapters. If the cluster contains more than
two members, a Memory Channel hub is also required.

A redundant, multirail Memory Channel configuration can further improve
reliability and availability. It requires a second Memory Channel adapter
in each cluster member, and link cables to connect the adapters. A second

7–2 Cluster Interconnect

Memory Channel hub is required for clusters containing more than two
members.

The Memory Channel multirail model operates on the concept of physical
rails and logical rails. A physical rail is defined as a Memory Channel hub
with its cables and Memory Channel adapters and the Memory Channel
driver for the adapters on each node. A logical rail is made up of one or
two physical rails.

A cluster can have one or more logical rails, up to a maximum of four. Logical
rails can be configured in the following styles:

• Single-rail

• Failover pair

If a cluster is configured in the single-rail style, there is a one-to-one
relationship between physical rails and logical rails. This configuration
has no failover properties; if the physical rail fails, the logical rail fails.
Its primary use is for high-performance computing applications using the
Memory Channel application programming interface (API) library and not
for highly available applications.

If a cluster is configured in the failover pair style, a logical rail consists of
two physical rails, with one physical rail active and the other inactive. If
the active physical rail fails, a failover takes place and the inactive physical
rail is used, allowing the logical rail to remain active after the failover. This
failover is transparent to the user. The failover pair style is the default for
all multirail configurations.

A cluster fails over from one Memory Channel interconnect to another if a
configured and available secondary Memory Channel interconnect exists
on all member systems, and if one of the following situations occurs in the
primary interconnect:

• More than 10 errors are logged within 1 minute.

• A link cable is disconnected.

• The hub is turned off.

After the failover completes, the secondary Memory Channel interconnect
becomes the primary interconnect. Another interconnect failover cannot
occur until you fix the problem with the interconnect that was originally
the primary.

If more than 10 Memory Channel errors occur on any member system within
a 1-minute interval, the Memory Channel error recovery code attempts to
determine whether a secondary Memory Channel interconnect has been
configured on the member as follows:

Cluster Interconnect 7–3

• If a secondary Memory Channel interconnect exists on all member
systems, the member system that encountered the error marks the
primary Memory Channel interconnect as bad and instructs all member
systems (including itself) to fail over to their secondary Memory Channel
interconnect.

• If any member system does not have a secondary Memory Channel
interconnect configured and available, the member system that
encountered the error displays a message indicating that it has exceeded
the Memory Channel hardware error limit and panics.

See the Cluster Hardware Configuration manual for information on how to
configure the Memory Channel interconnect in a cluster.

The Memory Channel API library implements highly efficient memory
sharing between Memory Channel API cluster members, with automatic
error handling, locking, and UNIX style protections. See the Cluster Highly
Available Applications manual for a discussion of the Memory Channel API
library.

7–4 Cluster Interconnect

8
Distributed Lock Manager

The distributed lock manager (DLM) provides functions that allow
cooperating processes in a cluster to synchronize access to a shared resource,
such as a raw disk device or a program. For the DLM to effectively
synchronize access to a shared resource, all processes in the cluster that
share the resource must use DLM functions to control access to the resource.
For example, a distributed database application might use lock manager
services to coordinate access to the shared disks participating in a database.

An application secures a lock on a named shared resource. Resource names
can be single-dimensional or tree-structured. You can use a resource tree to
create a hierarchy of locks and sublocks that reflect the structure of a shared
resource. The DLM supplies functions that:

• Provide mutual exclusion, restricted sharing, and full sharing of data
access

• Notify a process holding a lock when its lock is blocking another process’s
access to a resource

• Notify a process that has queued a lock request to a resource when its
request has been granted

• Convert a lock’s mode between less restrictive and more restrictive lock
modes

• Return information about locks

The DLM employs a distributed, centralized tree design. It does not replicate
lock information on each cluster member. Rather, the cluster member that
manages a lock tree maintains all information about that tree. The member
that holds a given lock is aware of only its contribution of that lock to the
resource. Any member system can serve as the master for any lock tree,
which distributes the overall lock management load.

The DLM uses a distributed directory service to quickly locate the directory
node for a resource tree. A directory table associates a root resource name
with the cluster member that is the manager of the resource. This directory
table is identical on all cluster members.

The DLM is designed to handle member failures. If a lock holder fails, its
locks are released. If a member system fails, a new lock master for locks that

Distributed Lock Manager 8–1

were previously mastered on that member is chosen and provided with all
pertinent lock information.

8–2 Distributed Lock Manager

9
Cluster Installation and Administration

This chapter provides an overview of cluster installation (Section 9.1) and
administration (Section 9.2).

9.1 Installation
TruCluster Server Version 5.1A supports three upgrade paths:

1. A full installation of TruCluster Server Version 5.1A.

2. A rolling upgrade from TruCluster Server Version 5.1. A rolling
upgrade is a software upgrade of a cluster that is performed while the
cluster is in operation. One member at a time is rolled and returned to
operation while the cluster transparently maintains a mixed-version
environment for the Tru64 UNIX base operating system, cluster, and
Worldwide Language Support (WLS) software.

The rolling upgrade procedure is used for three major tasks:

a. Rolling from the prior version of the Tru64 UNIX base operating
system and cluster software to the current version.

b. Rolling patch kits into the cluster.

c. Rolling New Hardware Delivery (NHD) kits into the Version 5.1A
cluster.

Rolling in a patch kit or an NHD kit uses the same procedure as rolling
in a new release of the base operating system and cluster software. The
clu_upgrade command controls rolling upgrades. See clu_upgrade(8)
for a description of the clu_upgrade command.

3. Three upgrade procedures for those upgrading from the TruCluster
Production Server Software or TruCluster Available Server Software
Version 1.5 or Version 1.6 products. Two of these options use scripts
that are specifically designed to facilitate the migration of storage
from the old cluster (rz* style device names) to the new cluster (dsk*
style device names). The Cluster Installation manual also describes an
upgrade path for TruCluster Memory Channel Software products that
have little or no shared storage.

One major difference when creating a TruCluster Server Version 5.x cluster
is that you install Tru64 UNIX on only one system in the cluster. Because

Cluster Installation and Administration 9–1

CFS creates shared clusterwide file systems, after a cluster is created,
additional members boot into the cluster and have access to these files.
(Before TruCluster Server Version 5.0, you had to install the base operating
system on all cluster members, and there were no clusterwide file systems.)

For TruCluster Server, the initial creation of a cluster, the adding of
members, and the removing of members are accomplished through three
interactive installation scripts: clu_create, clu_add_member, and
clu_delete_member. The scripts provide online help and write log files
to the /cluster/admin directory.

The following list outlines the steps needed to install and create a new
TruCluster Server cluster:

1. Using the information in the Cluster Hardware Configuration manual,
configure the system and storage hardware and firmware.

2. Using AdvFS file systems, install Tru64 UNIX on a private disk on the
system that will become the first cluster member.

3. Configure the Tru64 UNIX system, including network and time services.
Load and configure the applications that you plan to use in the cluster.

4. Load the TruCluster Server license and software.

____________________ Notes ____________________

Each cluster member must have both a Tru64 UNIX license
and a TruCluster Server license.

If there are any patch or NHD kits available, you can install
them after loading the cluster software but before running
clu_create. Installing them before running clu_create
means that you do not have to roll them into the cluster later.

5. Run the clu_create command to create the boot disk for the first
cluster member, and to create and populate the clusterwide root (/),
/usr, and /var AdvFS file systems.

6. Halt the Tru64 UNIX system and boot the disk containing the first
member’s cluster boot partition. As the system boots, it forms a
single-member cluster and mounts the clusterwide root (/), /usr, and
/var file systems.

7. Log in to the single-member cluster and run the clu_add_member
command to add members to the cluster. Boot each new member before
adding the next.

See the Cluster Installation manual for more information on installing
TruCluster Server.

9–2 Cluster Installation and Administration

9.2 Administration
Having a clusterwide file namespace greatly simplifies cluster management.
A cluster has just one copy of most system configuration files. For example,
a cluster is managed as a single security domain through one /etc/group
file and one /etc/passwd file.

User access to files is independent of which node a user is logged in on,
and which node is serving the file. File permissions and access control lists
(ACLs) are uniform across the cluster.

Audit logs are kept in a common location; each member’s host name is
appended to its log files to avoid confusion when tracking audit events.

In most cases, the fact that you are administering a cluster rather than a
single system becomes apparent because of the occasional need to manage
one of the following aspects of a TruCluster Server environment. In the
following list, each area of administration is followed by one or more of the
cluster-specific commands used to manage or monitor it. (You can use the
SysMan Menu and SysMan Station GUIs to perform most command-line
functions; you must use the cluster installation commands to install a
cluster.)

• Cluster creation, which supports installing the initial cluster member,
adding and deleting members, and querying the cluster configuration
(clu_create, clu_add_member, clu_delete_member, and
clu_check_config).

• Cluster application availability (CAA), which lets you define and
manage highly available applications (caa_profile, caa_register,
caa_unregister, caa_start, caa_stop, caa_relocate, and
caa_stat).

• Cluster aliases, which provide a single system view from the network
(cluamgr).

• Cluster quorum and votes, which determine what constitutes a valid
cluster and membership in that cluster, and thereby control access to
cluster resources (clu_quorum).

• Optional load-balancing of CFS servers (cfsmgr).

• Optional load-balancing of the device request dispatcher subsystem
(drdmgr).

In addition to the previous items, there are some command-level exceptions
to the Single System Image (SSI) model. (SSI means that, when possible,
the cluster appears to the user like a single computer system.) For example,
when you execute the wall command, the message is sent only to users who
are logged in on the cluster member where the command executes. To send a
message to all users who are logged in on all cluster members, use the wall

Cluster Installation and Administration 9–3

-c command. The same logic applies to the shutdown command; you can
shut down an individual member or the entire cluster.

See the Cluster Administration manual for more information on configuring
and managing a TruCluster Server cluster.

9–4 Cluster Installation and Administration

Glossary

The terms in this glossary are commonly used in a TruCluster Server
environment.

A

action script
Shell scripts used by CAA to control how applications are started,
stopped, and checked. By default, action scripts are located in the
/var/cluster/caa/script directory. The file names of action scripts
take the form resource_name.scr.

adapter
A device that converts the protocol and hardware interface of one bus type
into that of another bus.

address switches
Electrical switches on some disk drives that determine the SCSI address
setting for the drive.

alias router
A cluster member that makes a cluster alias address known to the network
and receives incoming packets for that alias. By default, all cluster members
are configured as alias routers at boot time.

availability
The characteristic of a computing system that allows it to provide computing
services (such as applications) to clients with little or no disruption.

See also highly available

B

bus
Flat or twisted-wire cable or a backplane composed of individual
parallel circuits. A bus connects computer system components to provide
communications paths for addresses, data, and control information.

Glossary–1

C

CAA
cluster application availability. A subsystem that provides high availability
for single-instance applications and monitoring of the state of other types of
resources (such as network interfaces). A single instance of any application
that can run on Tru64 UNIX can be made highly available in a cluster with
CAA.

CDSL
context-dependent symbolic link. A special form of a symbolic link whose
target pathname includes an environment variable, such as {memb}, which
is resolved at run time. In a cluster, CDSLs make it possible to maintain
per-system configuration and data files within the shared CFS root (/),
/usr, and /var file systems.

CFS
Cluster File System. A virtual file system that sits above the physical file
systems and provides clusterwide access (with assistance from the device
request dispatcher) to all mounted file systems in a cluster. CFS maintains
cache coherency across all cluster members, which ensures that all members
have an identical, consistent view of file systems directly connected to the
cluster.

client
A computer system that uses resources provided by another computer,
called a server.

cluster
A loosely coupled collection of servers that share storage and other resources
that make applications and data highly available. A cluster consists
of communications media, member systems, peripheral devices, and
applications. The systems communicate over a cluster interconnect.

cluster alias
An IP address that is used to address all or a subset of the members in a
cluster. A cluster alias makes some or all of the systems in a cluster look like
a single system to the outside world.

cluster application availability (CAA)
See CAA

cluster expected votes
See expected votes

Cluster File System (CFS)
See CFS

Glossary–2

cluster interconnect
A private interconnect that cluster members use for intracluster
communication.

cluster member
The basic computing resource in a cluster. A member system must be
physically connected to a cluster interconnect.

In common usage, a system configured with TruCluster Server software
that is capable of forming or joining a cluster. From the point of view of
the connection manager, a system that has either formed a single-member
cluster or has been granted membership in an existing cluster. The
connection manager dynamically determines cluster membership based on
communications among the cluster members. Only an active cluster member
can access the shared resources of a cluster.

cluster partition
An abnormal condition in which nodes in an existing cluster divide into
multiple independent clusters.

common subnet
In the context of cluster aliases, an existing physical subnet. Cluster alias IP
addresses are either in a common subnet or in a virtual subnet.

connection manager
The cluster software component that coordinates participation of systems
in the cluster, and maintains cluster integrity when systems join or leave
the cluster.

context-dependent symbolic link (CDSL)
See CDSL

current votes
The number of votes contributed by current cluster members and by the
quorum disk as seen by this member.

D

dedicated port
See locked port

default cluster alias
A special cluster alias created during cluster installation. All cluster
members are, by default, members of the default cluster alias.

Glossary–3

device request dispatcher
A kernel subsystem that controls all I/O access to storage devices in a
cluster. The device request dispatcher supports clusterwide access to both
character and block disk devices.

Note: Do not confuse the device request dispatcher with the Distributed
Raw Disk (DRD) services provided in the TruCluster Production Server
product. The device request dispatcher is fully integrated with the kernel,
and removes the need for having a specific service to make storage accessible
to cluster members.

differential SCSI bus
A SCSI bus where the signal’s level is determined by the voltage differential
between two wires.

direct-access cached reads
A performance enhancement for AdvFS file systems. Direct-access cached
reads allow CFS to read directly from storage simultaneously on behalf of
multiple cluster members.

direct-access I/O device
An I/O device that supports simultaneous access from multiple cluster
members.

See also single-server device

distributed application
An application that is specifically designed to run on a cluster, using
different members for specific purposes. These applications use the Memory
Channel, distributed lock manager (DLM), and cluster alias application
programming interfaces to integrate application with the cluster resources.

distributed lock manager (DLM)
See DLM

DLM
distributed lock manager. A software component that synchronizes access to
shared resources among cooperating processes throughout the cluster.

E

Event Manager (EVM)
See EVM

EVM
Event Manager. A facility that lets kernel-level and user-level processes and
components post events, and provides a means for processes to subscribe

Glossary–4

for notification when selected events occur. The facility provides an event
viewer, an API, and command-line utilities. See EVM(5) for more information.

expected votes
The sum of all node votes held by cluster members, plus the vote of the
quorum disk, if one is defined.

F

failover
A transfer of the responsibility to provide services. A failover occurs when a
hardware or software failure causes a service to restart on another member
system.

failover pair
A Memory Channel logical rail configuration that consists of two physical
rails, with one physical rail active and the other inactive. If the active
physical rail fails, a failover takes place and the inactive physical rail is used.

fast SCSI
An optional mode of SCSI-2 that allows transmission rates of up to 10 MB
per second.

file system partitioning
Mounting an AdvFS file system so that it is accessible to only a single
cluster member.

File system partitioning is provided to ease migration from TruCluster
Production Server Software or TruCluster Available Server Software Version
1.5 or Version 1.6. File system partitioning is not intended as a general
purpose method for restricting file system access to a single member.

H

highly available
In the TruCluster Server software, the ability to survive any single hardware
or software failure.

A cluster can be considered highly available if the hardware and software
provide protection against any single failure, such as a system failure, disk
failure, or a SCSI cable disconnection.

A service can be considered highly available if the hardware that it depends
on provides protection against any single failure, and the service is
configured to fail over in case of a failure.

Glossary–5

host route
When discussing routing for cluster aliases, an advertised route (using RIP)
to a cluster alias IP address via a local IP address on a cluster node, using a
subnet mask of all 1s.

hot swap
The ability to replace a device on a shared bus while the bus is active.

I

in_multi service
A designation on a service port that causes the cluster alias subsystem to
route connection requests and packets to all eligible members of the alias.

in_noalias service
A designation on a service port that causes the cluster alias subsystem to
ensure that the port will not receive inbound alias messages.

in_nolocal service
A designation on a service port that causes the cluster alias subsystem to
ensure that the port will not honor connection requests to a nonalias address.

in_single service
A designation on a service port that causes the cluster alias subsystem
to ensure that only one alias member will receive connection requests or
packets for that service.

L

local bus
See private bus

lock file
A file that indicates that operations on one or more other files are restricted
or prohibited. The presence of the lock file can be used as the indication, or
the lock file can contain information describing the nature of the restrictions.

locked port
A port in the clusterwide port space that is dedicated for use by a single
node in the cluster.

logical rail
One or more Memory Channel physical rails. Logical rails are configured
as a single-rail or as a failover pair.

Logical Storage Manager (LSM)
See LSM

Glossary–6

logical unit number (LUN)
See LUN

LSM
Logical Storage Manager. A disk storage management tool that protects
against data loss, improves disk I/O performance, and customizes the disk
configuration.

System administrators use LSM to perform disk management functions
without disrupting users or applications accessing data on those disks.

LSM disk group
A group of Logical Storage Manager (LSM) disks that share a common
configuration. The configuration information for an LSM disk group consists
of a set of records describing objects including LSM disks, LSM volumes,
LSM plexes, and LSM subdisks that are associated with the LSM disk group.
Each LSM disk group has an administrator-assigned name that can be used
to reference that LSM disk group.

LSM plex
A copy of an LSM volume’s logical data address space, which is sometimes
known as a mirror. An LSM volume can have up to eight LSM plexes
associated with it. A read can be satisfied from any LSM plex, while a write
is directed to all LSM plexes.

LSM volume
A special device that contains data used by a UNIX file system, a database,
or other applications. LSM transparently places an LSM volume between
applications and a physical disk. Applications then operate on the LSM
volume rather than on the physical disk. For example, a file system is
created on an LSM volume rather than on a physical disk.

An LSM volume presents block and raw interfaces that are compatible in
their use with disk partition special devices. Because an LSM volume is a
virtual device, it can be mirrored, spanned across disk drives, moved to
use different storage, and striped using administrative commands. The
configuration of an LSM volume can be changed using LSM utilities without
disrupting applications or file systems that are using the LSM volume.

LUN
logical unit number. A physical or virtual peripheral device addressable
through a target. LUNs use their target’s bus connection to communicate on
a SCSI bus.

Glossary–7

M

Mb/s
Megabits per second

MB/s
Megabytes per second

member
See cluster member

member ID
An integer, in the range 1-63, that identifies a cluster member system. Each
member has a unique member ID, which is assigned during the installation
procedure.

Memory Channel interconnect
A peripheral component interconnect (PCI) cluster interconnect that
provides fast and reliable communications between cluster members.
Physically, the interconnect consists of a Memory Channel adapter installed
in a PCI slot in each member system, one or more Memory Channel link
cables to connect the adapters, and an optional Memory Channel hub.

multi-instance application
An application that can run on multiple cluster members at the same time.
A multi-instance application is, by definition, highly available because the
failure of one cluster member does not affect the instances of the application
running on other members.

N

network route
When discussing routing for cluster aliases, an advertised route (using RIP)
to a virtual subnet in which one or more cluster alias IP addresses reside.

node votes
The fixed number of votes that a given member contributes toward quorum.

nonvoting member
A cluster member with 0 (zero) votes.

See also voting member

Glossary–8

O

out_alias service
A designation on a service port that causes the cluster alias subsystem to
ensure that the default cluster alias is used as the source address whenever
the port is used as a destination.

P

PCI
peripheral component interconnect. An industry-standard expansion I/O bus
that is a synchronous, asymmetrical I/O channel.

peripheral component interconnect (PCI)
See PCI

personality module
The module on a storage shelf that provides the interface between a
differential SCSI bus and the storage shelf single-ended SCSI bus. Switches
on the module enable SCSI bus termination and control SCSI bus IDs for
the storage shelf.

physical rail
A Memory Channel hub with its cables and Memory Channel adapters and
the Memory Channel driver for the adapters on each node.

See also logical rail

placement policy
A policy that determines where an application under CAA control runs.
Supported policies are: balanced, favored, and restricted.

private bus
A bus that connects private storage to the local system.

private storage
A storage device on a private bus. Storage devices include hard disks, floppy
disks, tape drives, and other devices.

proxy ARP
The mechanism that cluster members use to handle requests that are
addressed to cluster aliases whose addresses reside on common subnets. The
Address Resolution Protocol (ARP) maps dynamically between IP addresses
and Ethernet addresses. An ARP request contains the IP address of an
interface on the target host. The host that recognizes this IP address should
respond with its Ethernet address. All other hosts should ignore the ARP
request.

Glossary–9

Proxy ARP is, in essence, when a system or router lies about being the
system with an interface that matches the IP address in the ARP request.
The proxy ARP system responds to the ARP request by returning its own
Ethernet address. The system then routes the packets to the real target
system. Proxy ARP is useful for subnetting and also when adding routers to
a topology where some hosts are not yet configured to use the routers.

The cluster member that is acting as the proxy ARP master for an alias
responds to an ARP request for a cluster alias IP address using one of its
own network interfaces.

Q

quorum
A cluster state in which members are allowed to access clusterwide shared
resources and thus perform useful work. The cluster has quorum when
the connection manager determines that the sum of the node votes and
quorum disk votes in the cluster equals or exceeds the required number
of quorum votes.

See also quorum votes

quorum algorithm
A mathematical method that the connection manager uses to determine the
circumstances under which a given member can participate in a cluster,
safely accessing clusterwide resources and performing useful work.

quorum disk
A disk whose h partition contains cluster status and quorum information.
Each cluster can have a maximum of one quorum disk. The quorum disk is
assigned votes that are used when calculating quorum.

quorum disk votes
The number of votes that a quorum disk contributes towards quorum.

quorum loss
A cluster state in which no member is allowed to access clusterwide shared
resources. A cluster enters a quorum loss state when the connection
manager determines that the member and quorum disk votes in the cluster
are less than the required number of quorum votes.

See also quorum votes

quorum votes
The number of votes that are required to form or maintain a cluster. The
formula for calculating quorum votes is:

quorum votes = round_down((cluster-expected-votes+2)/2)

Glossary–10

R

RAID
Redundant array of independent disks. A technique that organizes disk data
to improve performance and reliability. RAID has three attributes:

• It is a set of physical disks that the user views as a single logical device
or multiple logical devices.

• Disk data is distributed across the physical set of drives in a defined
manner.

• Redundant disk capacity is added so data can be recovered if a drive fails.

redundant
A term to describe duplicate hardware that provides spare capacity that
can be used when a component fails.

redundant array of independent disks (RAID)
See RAID

resource
A cluster hardware or software component that provides a service to end
users or to other software components. Examples of resources are disks,
tapes, file systems, network interfaces, and application software.

resource manager
All the CAA daemons running on cluster members. These daemons are
independent but they communicate with each other, sharing information
about the status of the resources.

The resource manager communicates with all the components of the CAA
subsystem, as well as the connection manager and the Event Manager
(EVM). The resource manager also uses the resource monitors to monitor
the status of a particular type of resource.

resource monitor
A monitor that is loaded by the resource manager at boot time. There is
one resource monitor for each type of resource (application, network, tape,
and media changer).

resource profile
A file that contains an application’s resource requirements. The
file contains keyword/value pairs that are used by CAA to monitor
resources and control application failover. Each application under CAA
control has a resource profile. Resource profiles are located in the
/var/cluster/caa/profile directory. The file names of resource profiles
take the form resource_name.cap.

Glossary–11

RIP
Routing Information Protocol. A protocol that is used to exchange routing
information among gateways and other hosts. The protocol was defined in
RFC 1058, and updated in RFCs 1388 and 1723.

rolling upgrade
A software upgrade of a cluster that is performed while the cluster is in
operation. One member at a time is rolled and returned to operation while
the cluster transparently maintains a mixed-version environment for the
base operating system, cluster, and Worldwide Language Support (WLS)
software. Clients accessing services are not aware that a rolling upgrade is
in progress.

router priority
A method that controls the proxy ARP router selection for a cluster alias on
a common subnet. For each alias in a common subnet, the cluster member
with the highest router priority for that alias will route for that alias.

Routing Information Protocol (RIP)
See RIP

S

SCSI
Small Computer System Interface. A standard, maintained by the American
National Standards Institute (ANSI), that provides a standard interface
for connecting disks and other peripheral devices to a computer system.
SCSI-based devices can be configured in a series, with multiple devices on
the same bus.

SCSI-2
An extension to the original SCSI standard featuring multiple systems
on the same bus and hot swap. The SCSI-2 standard is ANSI standard
X3.T9.2/86-109.

SCSI adapter
A storage adapter, commonly referred to as a host bus adapter (HBA), that
provides a connection between an I/O bus and a SCSI bus.

SCSI bus
A bus that supports the transmission and signaling requirements of a SCSI
protocol.

SCSI bus speed
The data transfer speed for a SCSI bus. SCSI bus speed can be slow, up to 5
MB/s; fast, up to 10 MB/s; fast and wide, up to 20 MB/s; or UltraSCSI, up
to 40 MB/s.

Glossary–12

SCSI controller
See SCSI adapter

SCSI device
A SCSI adapter, peripheral controller, or intelligent peripheral that can
be attached to a SCSI bus.

SCSI ID
A unique address, from 0 through 15, that identifies a device on a SCSI bus.

selection priority
A priority assigned to a cluster alias that determines the order in which
members of the alias receive new connection requests. The selection priority
establishes a hierarchy within the members of an alias. Connection requests
are distributed among those members sharing the highest selection priority
value.

selection weight
The number of connections (on average) a member is given before connections
are given to the next alias member with the same selection priority value.

shared bus
A bus that is connected to more than one member system and, optionally, to
one or more storage devices.

shared storage
Disks that are connected to a shared bus.

signal converter
A device that converts signals between a single-ended SCSI bus and a
differential SCSI bus.

single-ended SCSI bus
A signal path in which one data lead and one ground lead are utilized to
make a device connection. This transmission method is economical, but is
more susceptible to noise than a differential SCSI bus.

single-instance application
An application that is run on only one cluster member at a time. The cluster
application availability (CAA) subsystem can provide high availability for
single-instance applications by controlling their initial startup and failover
characteristics.

single rail
A Memory Channel logical rail configuration where there is a one-to-one
relationship between physical rails and logical rails. This configuration has
no failover properties; if the physical rail fails, the logical rail fails.

Glossary–13

single-server device
A device that supports access from only a single member.

See also direct-access I/O device

Small Computer System Interface (SCSI)
See SCSI

SRM
The external interface to console firmware for operating systems that expect
firmware compliance with the Alpha System Reference Manual (SRM).

standard hub mode
A Memory Channel interconnect configuration that uses a Memory Channel
hub to connect Memory Channel adapters. To set up a Memory Channel
interconnect in standard mode, use a link cable to connect each Memory
Channel adapter to a linecard installed in a Memory Channel hub.

static service
A designation on a service port that causes the cluster alias subsystem to
ensure that the port will not be assigned as a dynamic port.

subset
An installable software module that is compatible with the Tru64 UNIX
setld software installation utility.

T

terminator
A resistor array device that terminates a SCSI bus. A SCSI bus must be
terminated at its two physical ends.

trilink connector
A connector that joins two cables to a single device, or allows terminating a
shared SCSI bus external to the adapter or to the RAID controller.

tunneling
In the context of cluster aliases, moving an mbuf chain between cluster
members after receipt.

U

UltraSCSI
A differential SCSI bus standard that uses smaller diameter cables with
smaller connectors and allows bus speeds up to 40 MB/s at 25 meters
(approximately 82 feet).

Glossary–14

UltraSCSI hub
A specialized signal converter with multiple connectors. An UltraSCSI
hub converts differential input SCSI signals from a host bus adapter to
single-ended, then converts the single-ended signals back to differential
for the output connection to a RAID array controller. An UltraSCSI hub
allows radial connection of UltraSCSI devices and increases the separation
between host and storage.

V

virtual hub mode
A Memory Channel interconnect configuration that does not use a Memory
Channel hub to connect Memory Channel adapters. Virtual hub mode is
supported only for clusters that have two member systems. To set up a
Memory Channel interconnect in virtual hub mode, use a Memory Channel
link cable to connect the Memory Channel adapter in one member system to
the corresponding Memory Channel adapter in the other member system.

virtual subnet
In the context of cluster aliases, a subnet with no physical connections.
Cluster alias IP addresses are either in a common subnet or in a virtual
subnet.

vMAC
In the context of cluster aliases, a unique hardware address that can be
automatically created for each alias IP address. An alias vMAC (virtual
Media Access Control) address follows the cluster alias proxy ARP master
from node to node as needed. Regardless of which cluster member is serving
as the proxy ARP master for an alias, the alias’s vMAC address does not
change.

votes
See quorum

voting member
A cluster member with a vote.

See also nonvoting member

W

worldwide ID (WWID)
See WWID

WWID
Worldwide identifier. A unique ID that a manufacturer assigns to a disk.

Glossary–15

Y

Y cable
A cable that joins two cables to a single device, or allows terminating a
shared SCSI bus external to the adapter or RAID controller.

Glossary–16

Index

A
access control list
(See ACL)

ACL, 9–3
action script, 5–4, 5–9
adjusting expected votes, 3–4
administration, 9–3
Advanced File System
(See AdvFS)

AdvFS
caching on CFS clients, 2–11
CFS layers on top of, 2–1
read/write support, 2–3t

alias
(See cluster alias, ifconfig alias)

aliasd daemon
defined, 6–3
maintaining gated configuration file

automatically, 6–10
RIP support, 6–3

applications
high availability with CAA, 5–1
routing requests with cluster alias,
6–14

types of, 4–1
audit logs, 9–3

B
balanced placement policy, 5–8
block I/O, 2–10
boot partition

cluster member boot device, 2–6
broadcast address, 6–8

C
CAA, 5–1

action script, 5–4
caad daemon, 5–3
comparison to cluster alias, 6–14
placement policy, 5–8
resource manager, 5–3
resource monitor, 5–3
resource profile, 5–3

caad daemon, 5–3
CD-ROM, 2–3t
CD-ROM File System
(See CDFS)

CDFS
read-only support, 2–3t

CDSL, 2–11
CFS, 2–6

balancing server load, 2–11
cfsmgr command, 2–6
client caching of AdvFS blocks,
2–11

enhancements, 2–7
FAQ, 2–10
I/O to directly connected storage,
2–10

layers on top of AdvFS, 2–1
preserving X/Open and POSIX

semantics, 2–6
use of cluster interconnect, 7–1

clu_add_member command
adjusting expected votes

automatically, 3–4
clu_alias.config file, 6–3
clu_create command

Index–1

adjusting expected votes
automatically, 3–4

clu_delete command
adjusting expected votes

automatically, 3–4
clu_quorum command

adjusting expected votes
automatically, 3–4

defining a quorum disk, 3–8
displaying value of expected votes,
3–3

clu_upgrade command, 9–1
clua_registerservice() function,
6–14

clua_services file, 6–3, 6–14, 6–18
cluamgr command, 6–3

example of specifying versus joining
an alias, 6–9

cluster alias, 6–1
aliasd daemon, 6–3
ARP requests, 6–9
client routing tables, 6–10
common subnet, 6–7
comparison to CAA, 6–14
comparison to ifconfig aliases, 6–27
default, 6–2, 6–5
determining need for additional,
6–6

handling of NFS requests, 6–21
packet redirection, 6–11
restrictions on location of IP

addresses, 6–8
routing for, 6–8
specifying versus joining, 6–9
subsystem components, 6–3
virtual subnet, 6–7
vMAC support, 6–20

cluster alias attributes
router priority, 6–17
selection priority, 6–17
selection weight, 6–17

cluster alias service attributes
in_multi, 6–19
in_noalias, 6–19

in_nolocal, 6–19
in_single, 6–18
out_alias, 6–19
static, 6–20

cluster application availability
(See CAA)

Cluster File System
(See CFS)

cluster interconnect
rules and restrictions, 7–1

cluster partition, 3–2
cluster_expected_votes attribute,
3–4

cluster_node_votes attribute, 3–2
cluster_qdisk_votes attribute, 3–3
clusvc_getcommport()function,
6–26

clusvc_getresvcommport()func-
tion, 6–26

common subnet
defined, 6–7
host route advertising, 6–9
proxy ARP, 6–9
when to use, 6–8

connection manager, 3–1, 7–1
context-dependent symbolic link
(See CDSL)

current votes, 3–4, 3–5

D
daemon

aliasd, 6–3
caad, 5–3

default cluster alias, 6–5
using additional aliases, 6–2

device names
cluster support for new style, 2–14
consistency clusterwide, 2–14
determining, 2–14
disk, 2–15
drdmgr command, 2–9
examples of new style, 2–15
identifying, 2–16

Index–2

new naming model, 2–14
tape, 2–15

device request dispatcher, 2–8
drdmgr command, 2–9
FAQ, 2–10

direct I/O, 2–7
direct-access cached reads, 2–8
distributed application, 4–1
distributed lock manager
(See DLM)

DLM, 7–1, 8–1
drdmgr command

example, 2–9
DVD-ROM, 2–3t
DVDFS

read-only support, 2–3t

E
/etc/clua_services, 6–3, 6–14

comparison to /etc/services, 6–18
/etc/exports.aliases, 6–3
/etc/gated.conf.member<n>, 6–3

creation and maintenance by aliasd,
6–10

Event Manager
(See EVM)

EVM, 5–4
expected votes

calculating, 3–4
cluster, 3–4
member-specific, 3–4

exports.aliases file, 6–3

F
favored placement policy, 5–8
FFM

local use support, 2–3t
file

opening with O_DIRECTIO, 2–10
reads of 64KB or larger, 2–10

file system
support in a cluster, 2–3

file system partitioning, 1–4t
File-on-File Mounting file system
(See FFM)

G
gated daemon, 6–3

precedence of host and network
routes to proxy ARP, 6–10

gated.conf file, 6–3
gated.conf.member<n> file, 6–3

H
host route

aliases on common subnet, 6–10
aliases on virtual subnet, 6–10

hwmgr command, 2–16

I
I/O

block, 2–10
raw, 2–10
when I/O goes directly to storage,
2–10

ifconfig alias
comparison to cluster aliases, 6–27
similarity in concept to a cluster

alias, 6–2
in_multi

attribute, 6–19
service, 6–14

in_noalias attribute, 6–19
in_nolocal attribute, 6–19
in_single

attribute, 6–18
service, 6–14

installation, 9–1

Index–3

synopsis of steps, 9–2

J
joining an alias

defined, 6–2
versus specifying an alias, 6–9

L
LAN interconnect, 7–1
load balancing

CFS servers, 2–11
using alias attributes, 6–18
using multiple cluster aliases, 6–7

logical rail, 7–3
failover pair, 7–3
single-rail, 7–3

Logical Storage Manager
(See LSM)

logs
audit, 9–3

LSM
cluster support for, 2–17

M
media access control, 6–20
member, 3–2
Memory Channel, 7–2

logical rail, 7–3
physical rail, 7–3

Memory File System
(See MFS)

MFS
read/write local use support, 2–3t

multi-instance application, 4–1
multicast address, 6–8

N
named pipes

local use support, 2–3t
Network File System

(See NFS)
network route, 6–10
New Hardware Delivery
(See NHD)

NFS
exports.aliases file, 6–3
interaction with cluster aliases,
6–21

read/write client support, 2–4t
read/write server support, 2–3t
using other aliases, 6–3

NHD, 9–1

O
O_DIRECTIO flag, 2–7, 2–10
out_alias attribute, 6–19

P
partitioning

file system, 1–4t
patch, 9–1
PC-NFS

read/write support, 2–4t
physical rail, 7–3
PIDs, 1–5t
pipes

named pipes local use support, 2–3t
placement policy

balanced, 5–8
favored, 5–8
restricted, 5–8

portmap daemon, 6–27
/proc file system

local use support, 2–4t
process IDs
(See PIDs)

proxy ARP
gratuitous ARP packets and vMAC,
6–20

host and network route precedence,
6–9

responding to ARP requests, 6–9

Index–4

Q
quorum, 3–4

algorithm, 3–4
calculating, 3–4
loss, 3–5

quorum disk
configuring, 3–9
LSM and, 3–9
number of votes, 3–9
using, 3–6
votes, 3–2

quorum votes, 3–5

R
raw I/O, 2–10
Remote Procedure Call
(See RPC)

resource
CAA, 5–5

resource manager, 5–3
resource monitor, 5–3
resource profile, 5–3
restricted placement policy, 5–8
RIP

aliasd support, 6–3
rolling upgrade, 1–4t, 9–1
router priority attribute, 6–17
routing for cluster aliases, 6–8
Routing Information Protocol
(See RIP)

RPC
interaction with cluster alias, 6–26

rpri attribute, 6–10, 6–17

S
script

action, 5–4
selection priority attribute, 6–17

selection weight attribute, 6–17
selp attribute, 6–17
selw attribute, 6–17
services

in_single and in_multi, 6–14
RPC, 6–26

services file, 6–3
single-instance application, 4–1
single-system management, 1–4,
9–3

static attribute, 6–20
subnet

common, 6–7
virtual, 6–7

U
UFS

read-only clusterwide support, 2–4t
read/write local use support, 2–4t

UNIX File System
(See UFS)

V
virtual subnet

defined, 6–7
host route advertising, 6–10
network route advertising, 6–10
when to use, 6–8

vMAC, 6–20
volmigrate command, 1–2
votes

adjusting, 3–4
current, 3–5
expected, 3–3
node, 3–2
quorum, 3–5
quorum disk, 3–2

Index–5

W
worldwide ID, 2–16

Index–6

