
Tru64 UNIX
Guide to the POSIX Threads Library
Order Number: AA–RH9RB–TE

April 2000

This guide reviews the principles of multithreaded programming, as
reflected in the IEEE® POSIX® 1003.1-1996 standard, and provides
implementation guidelines and reference information for the Compaq®

Multithreading Run-Time Library.

Revision/Update Information: This guide supersedes the Guide to
DECthreads, printed July 1999.

Product Version: Tru64 UNIX Version 5.0A or higher

Compaq Computer Corporation
Houston, Texas

© 2000 Compaq Computer Corporation.
All rights reserved.

COMPAQ and the Compaq logo are registered in the U.S. Patent and Trademark Office. Tru64
and OpenVMS are trademarks of Compaq Information Technologies Group, L.P.

Microsoft is a registered trademark of Microsoft Corporation. UNIX is a registered trademark
and The Open Group is a trademark of The Open Group in the U.S. and other countries. Other
product names mentioned herein may be trademarks or registered trademarks of their respective
companies.

Confidential computer software. Valid license from Compaq required for possession, use, or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein.
The information in this publication is subject to change without notice and is provided "as is"
without warranty of any kind. The entire risk arising out of the use of this information remains
with recipient. In no event shall Compaq be liable for any direct, consequential, incidental,
special, punitive, or other damages whatsoever (including without limitation, damages for loss
of business profits, business interruption or loss of business information), even if Compaq has
been advised of the possibility of such damages. The foregoing shall apply regardless of the
negligence or other fault of either party and regardless of whether such liability sounds in
contract, negligence, tort, or any other theory of legal liability, and notwithstanding any failure
of essential purpose of any limited remedy.

The limited warranties for Compaq products are exclusively set forth in the documentation
accompanying such products. Nothing herein should be construed as constituting a further or
additional warranty.

This document is available on CD–ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xvii

Part I POSIX Threads Library Overview and Programming
Guidelines

1 Introducing Multithreaded Programming

1.1 Advantages of Using Threads . 1–1
1.2 Overview of Threads . 1–2
1.3 Thread Execution . 1–4
1.4 Functional Models for Multithreaded Programming 1–5
1.4.1 Boss/Worker Model . 1–5
1.4.2 Work Crew Model . 1–6
1.4.3 Pipelining Model . 1–6
1.4.4 Combination of Functional Models . 1–7
1.5 Programming Issues for Multithreaded Programs 1–7
1.6 POSIX Threads Libraries and Interfaces 1–8
1.6.1 The pthread Multithreading Interface 1–10
1.6.1.1 Optionally Implemented POSIX.1 Routines 1–22
1.6.2 Thread-Independent Services Interface 1–23
1.6.3 Undocumented and Obsolete Interfaces 1–26
1.6.3.1 The cma Interface . 1–26
1.6.3.2 The d4 (DCEthread) Interfaces . 1–27

2 Objects and Operations

2.1 Threads and Synchronization Objects . 2–1
2.2 Attributes Objects . 2–2
2.3 Thread Operations . 2–2
2.3.1 Creating a Thread . 2–3

iii

2.3.2 Setting the Attributes of a New Thread 2–3
2.3.2.1 Setting the Inherit Scheduling Attribute 2–4
2.3.2.2 Setting the Scheduling Policy Attribute 2–4
2.3.2.2.1 Techniques for Setting the Scheduling Policy

Attribute . 2–5
2.3.2.2.2 Comparing Throughput and Real-Time Policies 2–6
2.3.2.2.3 Portability of Scheduling Policy Settings 2–6
2.3.2.3 Setting the Scheduling Parameters Attribute 2–7
2.3.2.4 Setting the Stacksize Attribute . 2–8
2.3.2.5 Setting the Stack Address Attribute 2–8
2.3.2.6 Setting the Guardsize Attribute . 2–9
2.3.2.7 Setting the Contention Scope Attribute 2–9
2.3.3 Terminating a Thread . 2–11
2.3.3.1 Cleanup Handlers . 2–14
2.3.4 Detaching and Destroying a Thread . 2–14
2.3.5 Joining With a Thread . 2–15
2.3.6 Scheduling a Thread . 2–16
2.3.6.1 Calculating the Scheduling Priority 2–16
2.3.6.2 Effects of Scheduling Policy . 2–17
2.3.7 Canceling a Thread . 2–19
2.3.7.1 Thread Cancelation Implemented Using Exceptions 2–19
2.3.7.2 Thread Return Value After Cancelation 2–19
2.3.7.3 Controlling Thread Cancelation . 2–20
2.3.7.4 Deferred Cancelation Points . 2–21
2.3.7.5 Cleanup from Deferred Cancelation 2–21
2.3.7.6 Cleanup from Asynchronous Cancelation 2–22
2.3.7.7 Example of Thread Cancelation Code 2–23
2.4 Synchronization Objects . 2–26
2.4.1 Mutexes . 2–26
2.4.1.1 Normal Mutex . 2–27
2.4.1.2 Default Mutex . 2–27
2.4.1.3 Recursive Mutex . 2–27
2.4.1.4 Errorcheck Mutex . 2–28
2.4.1.5 Mutex Operations . 2–28
2.4.1.6 Mutex Attributes . 2–29
2.4.2 Condition Variables . 2–30
2.4.3 Condition Variable Attributes . 2–35
2.4.4 Read-Write Locks . 2–36
2.4.4.1 Thread Priority and Writer Precedence for Read-Write

Locks . 2–36
2.4.4.2 Initializing and Destroying a Read-Write Lock 2–37
2.4.4.3 Read-Write Lock Attributes . 2–37
2.5 Process-Shared Synchronization Objects 2–37

iv

2.5.1 Programming Considerations . 2–38
2.5.2 Process-Shared Mutexes . 2–38
2.5.3 Process-Shared Condition Variables . 2–38
2.5.4 Process-Shared Read-Write Locks . 2–39
2.6 Thread-Specific Data . 2–39

3 Programming with Threads

3.1 Designing Code for Asynchronous Execution 3–1
3.1.1 Avoid Passing Stack Local Data . 3–2
3.1.2 Initialize Objects Before Thread Creation 3–2
3.1.3 Do Not Use Scheduling As Synchronization 3–3
3.2 Memory Synchronization Between Threads 3–4
3.3 Sharing Memory Between Threads . 3–4
3.3.1 Using Static Memory . 3–5
3.3.2 Using Stack Memory . 3–5
3.3.3 Using Dynamic Memory . 3–6
3.4 Managing a Thread’s Stack . 3–6
3.4.1 Sizing the Stack . 3–7
3.4.2 Using Stack Overflow Warning and Stack Guard Areas 3–7
3.4.3 Diagnosing Stack Overflow Errors . 3–8
3.5 Scheduling Issues . 3–8
3.5.1 Real-Time Scheduling . 3–8
3.5.2 Priority Inversion . 3–9
3.5.3 Dependencies Among Scheduling Attributes and Contention

Scope . 3–9
3.6 Using Synchronization Objects . 3–10
3.6.1 Distinguishing Proper Usage of Mutexes and Condition

Variables . 3–10
3.6.2 Avoiding Race Conditions . 3–10
3.6.3 Avoiding Deadlocks . 3–11
3.6.4 Signaling a Condition Variable . 3–11
3.6.5 Static Initialization Inappropriate for Stack-Based

Synchronization Objects . 3–13
3.7 Granularity Considerations . 3–13
3.7.1 Determinants of a Program’s Granularity 3–14
3.7.1.1 Alpha Processor Granularity . 3–15
3.7.1.2 VAX Processor Granularity . 3–15
3.7.2 Compiler Support for Determining the Program’s Actual

Granularity . 3–16
3.7.3 Word Tearing . 3–16
3.7.4 Alignments of Members of Composite Data Objects 3–17

v

3.7.5 Avoiding Granularity-Related Errors 3–17
3.7.5.1 Changing the Composite Data Object’s Layout 3–18
3.7.5.2 Maintaining the Composite Data Object’s Layout 3–18
3.7.5.3 Using One Mutex Per Composite Data Object 3–19
3.7.6 Identifying Possible Word-Tearing Situations Using Visual

Threads . 3–19
3.8 One-Time Initialization . 3–20
3.9 Managing Dependencies Upon Other Libraries 3–20
3.9.1 Thread Reentrancy . 3–21
3.9.2 Thread Safety . 3–21
3.9.3 Lacking Thread Safety . 3–22
3.9.3.1 Using Mutex Around Call to Unsafe Code 3–22
3.9.3.2 Using the Global Lock . 3–22
3.9.3.3 Using or Copying Static Data Before Releasing the

Mutex . 3–22
3.9.4 Use of Multiple Threads Libraries Not Supported 3–23
3.10 Detecting Error Conditions . 3–23
3.10.1 Bugcheck Information . 3–24
3.10.2 Interpreting a Bugcheck . 3–24

4 Writing Thread-Safe Libraries

4.1 Features of the tis Interface . 4–1
4.1.1 Reentrant Code Required . 4–2
4.1.2 Performance of tis Interface Routines 4–2
4.1.3 Run-Time Linkage of tis Interface Routines 4–2
4.1.4 Cancelation Points . 4–2
4.2 Using Mutexes . 4–3
4.3 Using Condition Variables . 4–3
4.4 Using Thread-Specific Data . 4–4
4.5 Using Read-Write Locks . 4–4

5 Using the Exceptions Package

5.1 About the Exceptions Package . 5–1
5.1.1 Supported Programming Languages 5–1
5.1.2 Relation of Exceptions to Return Codes and Signals 5–2
5.2 Why Use Exceptions . 5–2
5.3 Exception Programming . 5–3
5.3.1 Declaring and Initializing an Exception 5–4
5.3.2 Raising an Exception . 5–4
5.3.3 Catching an Exception . 5–5
5.3.4 Reraising an Exception . 5–6

vi

5.3.5 Expressing Epilogue Actions . 5–7
5.4 Exception Objects . 5–7
5.4.1 Declaring and Initializing Exception Objects 5–7
5.4.2 Address Exceptions and Status Exceptions 5–8
5.4.3 How Exceptions Terminate . 5–9
5.5 Exception Scopes . 5–9
5.6 Raising Exceptions . 5–11
5.7 Exception Handling Macros . 5–12
5.7.1 Context of the Handler . 5–12
5.7.2 Handlers and Macros . 5–12
5.7.3 Catching Specific Exceptions . 5–13
5.7.4 Catching Unspecified Exceptions . 5–14
5.7.5 Reraising the Current Exception . 5–15
5.7.6 Defining Epilogue Actions . 5–15
5.8 Operations on Exceptions . 5–16
5.8.1 Referencing the Caught Exception . 5–17
5.8.2 Setting a System-Defined Error Status 5–17
5.8.3 Obtaining a System-Defined Error Status 5–18
5.8.4 Reporting a Caught Exception . 5–18
5.8.5 Determining Whether Two Exceptions Match 5–19
5.9 Using Exceptions . 5–20
5.9.1 Develop Naming Conventions for Exceptions 5–20
5.9.2 Enclose Appropriate Actions in an Exception Scope 5–21
5.9.3 Raise Exceptions Prior to Performing Side-Effects 5–22
5.9.4 Exiting an Exception Scope . 5–22
5.9.5 Declare Variables Within Handler Code as Volatile 5–23
5.9.6 Reraise Caught Exceptions That Are Not Fully Handled 5–24
5.9.7 Avoid Dynamically Allocated Exception Objects 5–25
5.10 Exceptions Defined by the POSIX Threads Library 5–25
5.11 Interoperability of Language-Specific Exceptions 5–27
5.12 Host Operating System Dependencies . 5–27
5.12.1 Tru64 UNIX Dependencies . 5–27
5.12.2 OpenVMS Conditions and Exceptions 5–27

6 Examples

6.1 Prime Number Search Example . 6–1
6.2 Asynchronous User Interface Example . 6–10

vii

Part II POSIX.1 (pthread) Routines Reference

pthread_atfork . pthread–3
pthread_attr_destroy . pthread–6
pthread_attr_getdetachstate . pthread–8
pthread_attr_getguardsize . pthread–10
pthread_attr_getinheritsched . pthread–12
pthread_attr_getname_np . pthread–14
pthread_attr_getschedparam . pthread–16
pthread_attr_getschedpolicy . pthread–18
pthread_attr_getscope . pthread–20
pthread_attr_getstackaddr . pthread–23
pthread_attr_getstackaddr_np . pthread–25
pthread_attr_getstacksize . pthread–27
pthread_attr_init . pthread–29
pthread_attr_setdetachstate . pthread–32
pthread_attr_setguardsize . pthread–34
pthread_attr_setinheritsched . pthread–37
pthread_attr_setname_np . pthread–40
pthread_attr_setschedparam . pthread–42
pthread_attr_setschedpolicy . pthread–45
pthread_attr_setscope . pthread–47
pthread_attr_setstackaddr . pthread–50
pthread_attr_setstackaddr_np . pthread–53
pthread_attr_setstacksize . pthread–55
pthread_cancel . pthread–57
pthread_cleanup_pop . pthread–59
pthread_cleanup_push . pthread–61
pthread_condattr_destroy . pthread–63
pthread_condattr_getpshared . pthread–65
pthread_condattr_init . pthread–67
pthread_condattr_setpshared . pthread–69
pthread_cond_broadcast . pthread–71
pthread_cond_destroy . pthread–73
pthread_cond_getname_np . pthread–75
pthread_cond_init . pthread–77
pthread_cond_setname_np . pthread–80

viii

pthread_cond_signal . pthread–82
pthread_cond_signal_int_np . pthread–84
pthread_cond_sig_preempt_int_np . pthread–86
pthread_cond_timedwait . pthread–88
pthread_cond_wait . pthread–91
pthread_create . pthread–94
pthread_delay_np . pthread–99
pthread_detach . pthread–101
pthread_equal . pthread–103
pthread_exc_get_status_np . pthread–105
pthread_exc_matches_np . pthread–107
pthread_exc_report_np . pthread–109
pthread_exc_set_status_np . pthread–111
pthread_exit . pthread–113
pthread_getconcurrency . pthread–115
pthread_getname_np . pthread–117
pthread_getschedparam . pthread–119
pthread_getsequence_np . pthread–121
pthread_getspecific . pthread–123
pthread_get_expiration_np . pthread–125
pthread_join . pthread–127
pthread_key_create . pthread–130
pthread_key_delete . pthread–133
pthread_key_getname_np . pthread–135
pthread_key_setname_np . pthread–137
pthread_kill . pthread–139
pthread_lock_global_np . pthread–141
pthread_mutexattr_destroy . pthread–143
pthread_mutexattr_getpshared . pthread–145
pthread_mutexattr_gettype . pthread–147
pthread_mutexattr_init . pthread–149
pthread_mutexattr_setpshared . pthread–151
pthread_mutexattr_settype . pthread–153
pthread_mutex_destroy . pthread–155
pthread_mutex_getname_np . pthread–157
pthread_mutex_init . pthread–159
pthread_mutex_lock . pthread–161

ix

pthread_mutex_setname_np . pthread–163
pthread_mutex_trylock . pthread–165
pthread_mutex_unlock . pthread–167
pthread_once . pthread–169
pthread_rwlockattr_destroy . pthread–172
pthread_rwlockattr_getpshared . pthread–174
pthread_rwlockattr_init . pthread–176
pthread_rwlockattr_setpshared . pthread–178
pthread_rwlock_destroy . pthread–180
pthread_rwlock_getname_np . pthread–182
pthread_rwlock_init . pthread–184
pthread_rwlock_rdlock . pthread–187
pthread_rwlock_setname_np . pthread–189
pthread_rwlock_tryrdlock . pthread–191
pthread_rwlock_trywrlock . pthread–193
pthread_rwlock_unlock . pthread–195
pthread_rwlock_wrlock . pthread–197
pthread_self . pthread–199
pthread_setcancelstate . pthread–201
pthread_setcanceltype . pthread–203
pthread_setconcurrency . pthread–206
pthread_setname_np . pthread–208
pthread_setschedparam . pthread–210
pthread_setspecific . pthread–213
pthread_sigmask . pthread–215
pthread_testcancel . pthread–217
pthread_unlock_global_np . pthread–218
pthread_yield_np . pthread–220
sched_get_priority_max . pthread–222
sched_get_priority_min . pthread–224
sched_yield . pthread–226
sigwait . pthread–228

x

Part III Compaq Proprietary Interfaces: tis Routines Reference

tis_cond_broadcast . tis–3
tis_cond_destroy . tis–5
tis_cond_init . tis–7
tis_cond_signal . tis–9
tis_cond_timedwait . tis–11
tis_cond_wait . tis–14
tis_getspecific . tis–16
tis_get_expiration . tis–18
tis_io_complete . tis–20
tis_key_create . tis–21
tis_key_delete . tis–24
tis_lock_global . tis–26
tis_mutex_destroy . tis–27
tis_mutex_init . tis–29
tis_mutex_lock . tis–31
tis_mutex_trylock . tis–33
tis_mutex_unlock . tis–35
tis_once . tis–37
tis_read_lock . tis–40
tis_read_trylock . tis–42
tis_read_unlock . tis–44
tis_rwlock_destroy . tis–46
tis_rwlock_init . tis–48
tis_self . tis–50
tis_setcancelstate . tis–51
tis_setspecific . tis–53
tis_sync . tis–55
tis_testcancel . tis–57
tis_unlock_global . tis–58
tis_write_lock . tis–60
tis_write_trylock . tis–62
tis_write_unlock . tis–64
tis_yield . tis–66

xi

Part IV Appendixes

A Considerations for Tru64 UNIX Systems

A.1 Overview . A–1
A.2 Building Threaded Applications . A–1
A.2.1 Including Threads Header Files . A–1
A.2.2 Building Multithreaded Applications from Threads

Libraries . A–2
A.2.3 Linking Multithreaded Shared Libraries A–2
A.2.4 Compiling Applications With the tis Interface A–3
A.3 Two-Level Scheduling on Tru64 UNIX Systems A–3
A.3.1 Use of Kernel Threads . A–4
A.3.2 Support for Real-Time Scheduling . A–4
A.4 Thread Cancelability of System Services A–5
A.4.1 Cancelation Points . A–6
A.4.2 Conditional or Future Cancelation Points A–7
A.5 Using Signals . A–9
A.5.1 POSIX sigwait Service . A–9
A.5.2 Handling Synchronous Signals as Exceptions A–10
A.6 Thread Stack Guard Areas . A–11
A.7 Thread Stack and Backing Store Allocation A–11
A.8 Dynamic Activation . A–12
A.9 Pagefaults and Realtime Scheduling . A–12

B Considerations for OpenVMS Systems

B.1 Overview . B–1
B.2 Compiling Under OpenVMS . B–1
B.3 Linking OpenVMS Images . B–2
B.4 Using the Threads Library with AST Routines B–3
B.5 Dynamic Activation . B–3
B.6 Default and Minimum Thread Stack Size B–4
B.7 Requesting a Specific, Absolute Thread Stack Size B–4
B.8 Declaring an OpenVMS Condition Handler B–5
B.9 Thread Cancelability of System Services B–6
B.10 Using OpenVMS Alpha 64-Bit Addressing B–6
B.11 Condition Values . B–6
B.12 Two-Level Scheduling on OpenVMS Alpha Systems B–8
B.12.1 Linker Options to Specify Image’s Use of Kernel Threads . . . B–9
B.12.2 Setting Kernel Threads Support in Existing Images B–10
B.12.2.1 Examples . B–11
B.12.3 Querying and Setting Kernel Threads Features B–11

xii

B.12.4 Creation of Virtual Processors . B–12
B.12.5 Delivery of ASTs . B–12
B.12.6 Blocking System Services . B–14
B.12.7 $HIBER and $WAKE . B–15
B.12.8 Event Flags . B–15
B.12.9 Interactions with OpenVMS . B–16
B.12.10 Image Exit . B–17
B.12.11 SYSGEN Parameter MULTITHREAD B–17
B.12.12 Process Control System Services and DCL Commands B–18
B.12.12.1 Process-Level System Services . B–18
B.12.12.2 Kernel-Level System Services . B–18
B.12.12.3 DCL Commands . B–18
B.13 Interoperability with POSIX for OpenVMS B–18

C Debugging Multithreaded Applications

C.1 Using PTHREAD_CONFIG . C–1
C.1.1 Major and Minor Keywords . C–1
C.1.2 Specifying Multiple Values . C–2
C.2 Running in Metered Mode . C–2
C.3 Using Ladebug on Tru64 UNIX Systems C–3
C.4 Debugging Threads on OpenVMS Systems C–3
C.4.1 Display of Stack Trace from Unhandled Exception C–3

D Migrating from the cma Interface

D.1 Overview . D–1
D.2 cma Handles . D–2
D.3 Interface Routine Mapping . D–2
D.4 New pthread Routines . D–5

E Migrating from the d4 Interface

E.1 Overview . E–1
E.2 Error Status and Function Returns . E–1
E.3 Replaced or Renamed Routines . E–2
E.4 Routines with No Changes to Syntax . E–2
E.5 Routines with Prototype or Syntax Changes E–3
E.6 New Routines . E–5

xiii

Glossary

Index

Examples

2–1 pthread Cancel . 2–23
5–1 Raising an Exception . 5–4
5–2 Catching an Exception Using CATCH 5–5
5–3 Catching an Exception Using CATCH and CATCH_ALL 5–5
5–4 Defining Epilogue Actions Using FINALLY 5–7
5–5 Defining an Exception Scope . 5–10
5–6 Raising an Exception . 5–11
5–7 Catching a Specific Exception Using CATCH 5–14
5–8 Catching an Unspecified Exception Using CATCH_ALL 5–15
5–9 Defining Epilogue Actions Using FINALLY 5–16
5–10 Setting an Error Status in an Exception Object 5–18
5–11 Obtaining the Error Status Value from a Status Exception

Object . 5–19
5–12 Comparing Two Exception Objects . 5–20
5–13 Incorrect Placement of Statements That Might Raise an

Exception . 5–21
5–14 Correct Placement of Statements That Might Raise an

Exception . 5–22
5–15 Use of the volatile Type Qualifier Within an Exception

Scope . 5–24
6–1 C Program Example (Prime Number Search) 6–4
6–2 C Program Example (Asynchronous User Interface) 6–13

Figures

1–1 Single-Threaded Process . 1–3
1–2 Multithreaded Process . 1–4
1–3 Thread State Transitions . 1–5
1–4 Work Crew Model of Thread Operation 1–6
1–5 Pipelining Model of Thread Operation 1–7
2–1 Flow with FIFO Scheduling . 2–18

xiv

2–2 Flow with RR Scheduling . 2–18
2–3 Flow with Default Scheduling . 2–18
2–4 Only One Thread Can Lock a Mutex 2–26
2–5 Thread A Waits on Condition Ready 2–32
2–6 Thread B Signals Condition Ready . 2–33
2–7 Thread A Wakes and Proceeds . 2–34
4–1 Read-Write Lock Behavior . 4–5

Tables

1 Conventions . xxi
1–1 pthread Routines Summary . 1–12
1–2 tis Routines Summary . 1–24
2–1 Support for Thread Contention Scope 2–11
3–1 Default and Optional Granularities . 3–16
5–1 Names of Exception Objects Defined by the Threads

Library . 5–25
A–1 Header Files . A–1
A–2 Tru64 UNIX Shared Libraries for Multithreaded

Programs . A–2
A–3 Signals Reported as Exceptions . A–11
B–1 Header Files . B–1
B–2 Threads Library Images . B–2
B–3 Condition Values . B–7
B–4 Results of Keyword Arguments to /THREADS_ENABLE

Qualifier . B–9
B–5 Return Values from $GETJPI System Service B–11
C–1 PTHREAD_CONFIG Settings . C–1
D–1 Corresponding cma and pthread Routines D–2
E–1 pthread Routines That Replace d4 Routines E–2
E–2 d4 Routines With Syntax Changes as pthread Routines E–3
E–3 d4 Routines Whose pthread Counterpart Uses Standard

Datatypes . E–4

xv

Preface

This guide describes the POSIX Threads Library, Compaq’s Multithreading
Run-Time Library. In addition to introducing components for building
multithreaded applications and libraries to be called from either single-
threaded or multithreaded programs, this guide reviews the key principles
of multithreaded programming.

This guide also presents the concepts behind thread-safe and multithreaded
processing environments and provides guidelines for using the library to
implement them on various Compaq platforms. Finally, this guide describes in
detail each routine in the two recommended Compaq interfaces:

• For building portable, multithreaded applications, Compaq provides
the pthread interface. This is an implementation the POSIX standard
1003.1c-1995 (part of 1003.1-1996). This interface adds extensions specified
in The Open Group’s Single Unix Specification, Version 2 (SUSV2), also
known as XSH5, part of the UNIX98 brand.

• For building libraries whose routines can be called in either a single-
threaded or multithreaded context, Compaq provides a proprietary thread-
independent services (or tis) interface.

The interface you select depends upon your goals and the anticipated
environment for your software.

As a complement to this guide, and for a user’s guide to multithreaded
programming using the pthreads standard, we recommend:

Programming with POSIX Threads by David R. Butenhof, pub-
lished as part of the Addison-Wesley Professional Computing Series
(ISBN 0-201-63392-2).
The Single UNIX Specification, Version 2, The Open Group
(ISBN 85912-181-0).
Available online at http://www.opengroup.org/onlinepubs/7908799/toc.htm.

xvii

Intended Audience
This guide is for system and application programmers who use the POSIX
Threads Library to create multithreaded applications or to create thread-safe
code libraries that can be called from either single-threaded or multithreaded
applications.

Document Structure
This guide consists of the following:

Part I

• Chapter 1 provides a brief overview of multithreaded programming.

• Chapter 2 discusses the concepts and techniques related to the POSIX
Threads Library.

• Chapter 3 describes thread disciplines and coding issues you may face
when writing a multithreaded program.

• Chapter 4 addresses writing thread-safe libraries.

• Chapter 5 introduces and provides conventions for the modular use of the
POSIX Threads Library exception package.

• Chapter 6 contains example programs demonstrating how to call library
routines from a C language program.

Part II

• This part provides detailed reference information on each pthread
interface routine. Routine descriptions appear in alphabetical order by
routine name.

Part III

• This part provides detailed reference information on each tis interface
routine. Routine descriptions appear in alphabetical order by routine
name.

Part IV - Appendixes

• Appendix A discusses POSIX Threads Library issues and restrictions
specific to Tru64 UNIX systems.

• Appendix B discusses POSIX Threads Library issues and restrictions
specific to OpenVMS systems.

• Appendix C discusses debugging issues for a multithreaded program that
uses the POSIX Threads Library.

xviii

• Appendix D summarizes the differences between the obsolete Compaq-
proprietary CMA (or cma) interface and the Compaq pthread interface.
Use this appendix to help you migrate your programs and applications to
the pthread interface.

• Appendix E summarizes the differences between the retired POSIX 1003.4a
/Draft 4 (d4 or DCEthreads) interface and the Compaq pthread interface.
Use this appendix to help you migrate your programs and applications to
the pthread interface.

Glossary

• The Glossary contains definitions of terms used in this guide, listed
alphabetically.

Related Documents
See your system’s documentation set for more information on that system.
This manual covers the version of the POSIX Threads Library available on the
following platforms:

• Tru64 UNIX 5.0A or higher

• OpenVMS Alpha Version 7.2

• OpenVMS VAX Version 7.2

Compaq has changed the name of its UNIX® operating system from DIGITAL
UNIX to Compaq Tru64™ UNIX. The new name reflects Compaq’s commitment
to UNIX and its conformance to UNIX standards.

For a complete list and description of the books in the OpenVMS
documentation set, see the Overview of OpenVMS Documentation.

The printed version of the Tru64 UNIX documentation set uses letter icons
on the spines of the books to help specific audiences quickly find the books
that meet their needs. (You can order the specific books from Compaq.) The
following list describes this convention:

Icon Audience

G General users

S System and network administrators

P Programmers

D Device driver writers

xix

Icon Audience

R Reference page users

Some books in the OpenVMS or Tru64 UNIX documentation set help meet
the needs of several audiences. For example, the information in some system
manager, system administrator, or user books is also used by programmers.
Keep this in mind when searching for information on specific topics. The
Documentation Overview provides information on all of the books in the
OpenVMS or Tru64 UNIX documentation set.

Reader’s Comments
Compaq welcomes your comments on this or any other guide. You can send
comments in the following ways:

• Electronic mail: writer@zko.dec.com

• FAX: 603-881-0120
Attn: Core Technologies Group, ZKO2-3/Q18

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book or on its back cover.)

• The type and version of the operating system that you are using. For
example, Tru64 UNIX Version 5.0 or OpenVMS Version 7.2.

• If known, the type of processor that is running the operating system
software. For example, AlphaServer 2000.

• The section numbers and page numbers of the information on which you
are commenting.

Note: Please address technical questions to your local system vendor or to the
appropriate Compaq technical support office. Information provided with this
software media explains how to send problem reports to Compaq.

xx

Conventions
Table 1 shows the conventions used in this manual.

Table 1 Conventions

Convention Description

%
$

A percent sign represents the C shell system
prompt. A dollar sign represents the system prompt
for the Bourne and Korn shells. It is also the
default OpenVMS prompt.

A number sign represents the superuser prompt.

cat(1) A cross-reference to a UNIX reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of the
UNIX Programmer reference pages.

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

monospaced text This typeface indicates the name of a command,
routine, service, exception, or file. This typeface is
also used in interactive examples and other screen
displays.

monospaced text This bolded typeface represents user input in
interactive examples in the hardcopy and online
versions of this guide.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis indicates the omission of items
from a code example or command format; the items
are omitted because they are not important to the
topic being discussed.

() In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

[] In format descriptions, brackets indicate that
whatever is enclosed is optional; you can select
none, one, or all of the choices.

(continued on next page)

xxi

Table 1 (Cont.) Conventions

Convention Description

{} In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text Boldface text represents the introduction of a new
term.

italic text Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

numbers Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—
binary, octal, or hexadecimal—are explicitly
indicated.

mouse The term mouse refers to any pointing device, such
as a mouse, a puck, or a stylus.

xxii

Part I
POSIX Threads Library Overview and

Programming Guidelines

Part I contains chapters that provide an overview and concepts of the Threads
Library as well as defining programming disciplines and guidelines for writing
a multithreaded program.

1
Introducing Multithreaded Programming

This chapter introduces the concepts of threads and multithreaded
programming. It describes four functional models that can be a basis for
constructing multithreaded applications. The concepts and techniques
introduced here are described in more detail in Chapter 2 and in this guide’s
platform-specific appendixes.

This chapter’s last section introduces the components of the POSIX Threads
Library package, in particular the pthread and tis interfaces, and how those
components support building multithreaded applications and thread-safe
libraries.

1.1 Advantages of Using Threads
Multithreaded programming means organizing and coding a program so
that instances of its routines, called threads, can execute concurrently in the
same process. You use threads to improve a program’s performance—that is,
its throughput, computational speed, responsiveness, or some combination.

Using threads can improve a program’s performance on uniprocessor systems
by permitting the overlap of input, output, or other slow operations with
computational operations. Threads are useful in driving slow devices such
as disks, networks, terminals, and printers. A multithreaded program can
perform other useful work while waiting for the device to produce its next
event, such as the completion of a disk transfer or the receipt of a packet from
the network.

Using threads can also be advantageous when constructing an application’s
user interface. Consider the typical arrangement of a window system. Each
time the user invokes an action (for example, by clicking on a mouse button),
the program can use a separate thread to implement the action. If the user
invokes multiple actions, multiple threads can perform the actions in parallel.

Introducing Multithreaded Programming 1–1

Introducing Multithreaded Programming
1.1 Advantages of Using Threads

Using threads is especially advantageous when building a distributed system.
These systems frequently contain a shared network server, where the server
services requests from multiple clients. Using multiple threads allows the
server to handle clients’ requests in parallel, instead of artificially serializing
them or creating (at great expense) one server process per client.

A program with multiple threads can be especially suited to run on a
multiprocessor system, where threads run concurrently on separate processors.
Threads created using the POSIX Threads Library are capable of utilizing
multiprocessors, if the target platform supports parallelism within a process.
Compaq’s Tru64 UNIX platforms and OpenVMS Alpha platforms support
parallelism; the OpenVMS VAX platform does not support parallelism.

1.2 Overview of Threads
A thread is a single, sequential flow of control within a process. Within
each thread there is a single point of execution. Most traditional programs
execute as a process with a single thread. Figure 1–1 and Figure 1–2 show the
differences between a single-threaded process and a multithreaded process.

1–2 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.2 Overview of Threads

Figure 1–1 Single-Threaded Process

Process

Memory

Heap

Static

Code

Stack

ZK−3913A−GE

Registers

In Figure 1–2, notice that multiple threads share heap storage, static storage,
and code but that each thread has its own register set and stack.

Using Compaq’s multithreading run-time library, a programmer can create
several threads within a process. The process’ threads execute concurrently.
Within a multithreaded program there are at any time multiple points of
execution.

Threads execute within (and share) a single address space; therefore, a process’
threads can read and write the same memory locations. When the threads
access the same memory locations, your program must use synchronization
elements, such as mutexes and condition variables, to ensure that the shared
memory is accessed correctly. The Threads Library provides routines that
allow you to use these and other synchronization objects. Section 2.4 describes
the synchronization objects that the Threads Library offers as well as the
operations your program can perform on them.

Introducing Multithreaded Programming 1–3

Introducing Multithreaded Programming
1.2 Overview of Threads

Figure 1–2 Multithreaded Process

Process

Memory

Heap

Static

Code

Stack

Thread Thread Thread

Registers Registers Registers

Stack Stack

ZK−3914A−GE

1.3 Thread Execution
You should design and code a multithreaded program with the assumption
that its threads execute simultaneously. That is, your program cannot make
assumptions about the relative start or finish times of its threads or the
sequence in which they execute. These are governed by the thread scheduler,
part of the run-time environment that the Threads Library establishes before
your program begins running. Nevertheless, your program can influence
how threads are scheduled by setting each thread’s scheduling policy and
scheduling priority. (Section 2.3.6 describes how thread scheduling works.)

Each thread has its own thread identifier, which distinguishes it from all
other threads in the process. In addition to the thread’s scheduling policy and
scheduling priority, each thread is associated with any thread-specific instances
of data objects and with thread-specific system resources to support a flow of
control.

A thread changes its state over the course of its execution. A thread is in one
of the following states:

• Blocked—The thread is not eligible to execute, because it is synchronizing
with another thread or with an external event, such as I/O.

1–4 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.3 Thread Execution

• Ready—The thread is eligible to be executed by a processor.

• Running—The thread is currently being executed by a processor.

• Terminated—The thread has completed all of its work or has been canceled.

Figure 1–3 shows the transitions between states for a typical thread
implementation.

Figure 1–3 Thread State Transitions

Waiting Ready Running Terminated

ZK−3786A−GE

1.4 Functional Models for Multithreaded Programming
The following sections describe four functional models of processing information
that are especially well suited for implementation in multithreaded programs:

• Boss/worker model

• Work crew model

• Pipelining model

• Combination of models

1.4.1 Boss/Worker Model
In a boss/worker model, one thread functions as the ‘‘boss’’ because it assigns
tasks for ‘‘worker’’ threads to perform. Each worker performs a distinct task
until it has finished, at which point it notifies the boss that it is ready to
receive another task. Alternatively, the boss polls workers periodically to see
whether any is ready to receive another task.

A variation of the boss/worker model is the work queue model. The boss places
tasks in a queue, and workers check the queue and take tasks to perform.
When there are multiple bosses, this is often called producer/consumer.

An example of the work queue model in an office environment is a secretarial
typing pool. The office manager boss puts documents to be typed in a basket,
and worker typists take documents from the basket to work on.

Introducing Multithreaded Programming 1–5

Introducing Multithreaded Programming
1.4 Functional Models for Multithreaded Programming

1.4.2 Work Crew Model
In the work crew model, multiple threads work together on a single task. The
task is divided into pieces that are performed in parallel, and each thread
performs one piece.

An example of a work crew is a group of people cleaning a building. Each
person cleans certain rooms or performs certain types of work (washing floors,
polishing furniture, and so forth), and each works independently.

In a multithreaded program that reflects the work crew model, each thread
executes a task that can be performed in parallel. Figure 1–4 shows a task
performed by three threads in a work crew model.

Figure 1–4 Work Crew Model of Thread Operation

Thread A

Thread B

Thread C

(Time)

TASK

Setup Cleanup

ZK−3787A−GE

1.4.3 Pipelining Model
In the pipelining model, a task is divided into steps. The steps must be
performed in sequence to produce a single instance of the desired result,
and the work done in each step (except for the first and last) is based on the
previous step and is a prerequisite for the work in the next step. However, the
goal is to produce multiple instances of the desired result, and the steps are
designed to operate in parallel: while one step is performed on one instance
of the result, the preceding step can be performed on the next instance of the
result.

An example of the pipelining model is an automobile assembly line. Each step
or stage in the assembly line is continually busy receiving the product of the
previous stage’s work, performing its assigned work, and passing the product
along to the next stage.

1–6 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.4 Functional Models for Multithreaded Programming

In a multithreaded program that reflects the pipelining model, each thread
executes a step in the task. Figure 1–5 shows a task performed by three
threads in a pipelining model.

Figure 1–5 Pipelining Model of Thread Operation

(Time)

TASK

Thread A Thread B Thread C

ZK−3788A−GE

1.4.4 Combination of Functional Models
If the task that your program performs is complex, you might find it
appropriate to organize it as a combination of the functional models previously
described. For example, a program could follow the pipelining model, but with
one or more steps performed by a set of threads that follow a work crew model.
In addition, threads could be assigned to a work crew by taking a task from a
work queue and deciding (based on the task characteristics) which threads are
needed for the work crew.

1.5 Programming Issues for Multithreaded Programs
Building your multithreaded program must produce executable code that is
reentrant. Therefore, be sure that your compiler generates reentrant code
before you design or code your multithreaded program. By default, Compaq’s
C, C++, Ada, Pascal, COBOL, FORTRAN and BLISS compilers generate
reentrant code.

If you cannot build your program so that its executable code is reentrant, it
might be impossible to keep the program’s threads from interfering with each
other. See Section 3.9.1 for more information about thread-reentrant libraries.

In general, when using threads, be aware of language-based programming
practices that are inherently not thread-safe. (‘‘Thread safety’’ is explained in
Section 3.9.2.) You must address these factors when writing multithreaded
applications and thread-safe libraries. For example, FORTRAN language
routines typically rely heavily upon static storage, which can prevent those
routines from being thread safe.

Introducing Multithreaded Programming 1–7

Introducing Multithreaded Programming
1.5 Programming Issues for Multithreaded Programs

When you design and code a multithreaded program, you must also
accommodate or eliminate, as appropriate, each of the following issues:

• Program complexity is the most significant issue to consider in any
multithreaded programming effort. Although using threads can simplify
the coding and designing of a program, a certain level of expertise is
required to be sure that the design of the synchronization and interplay
among threads is appropriate and correctly specified. This level of expertise
is higher than that required to design most single-threaded programs.

• Dependence upon other nonreentrant software means that your
multithreaded program calls a routine or library that is not equipped
to deal with threads. Given this dependence, your program must prevent
conflicts with other threads that use the same nonreentrant routine or
library. Section 3.9 presents multithreaded programming techniques for
managing dependencies upon other nonreentrant software.

• Due to programming errors, race conditions in the program’s behavior can
cause unpredictable and erroneous program behavior, which depends on,
and varies with, the precise timing of the threads’ execution. Similarly,
deadlocks can cause two or more threads to be blocked from executing
indefinitely. Section 3.6.2 discusses race conditions in more detail, and
Section 3.6.3 discusses deadlocks.

• Priority inversion prevents high-priority threads from executing when
interdependencies exist among three or more threads of different priorities.
Section 3.5.2 discusses techniques for avoiding priority inversion.

1.6 POSIX Threads Libraries and Interfaces
As a package, the POSIX Threads Library is a collection of shared code
libraries and C language header files that declare entry points into those
libraries. This guide’s platform-specific appendixes describe these libraries
in more detail and list all other libraries upon which the Threads Libraries
depend.

From the programmer’s view, the Threads Libraries offer interfaces. Each
interface is a distinct set of routines that together provide a well-defined set of
related data objects and operations.

This version of the Threads Library supports two interfaces that are
documented in this guide:

• The pthread interface provides multithreading capability in your
applications. This interface is based on the Single UNIX Specification

1–8 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

(SUSV2), which incorporates the POSIX thread standard (1003.1c-1995).
Use this interface to build portable, multithreaded applications.

Section 1.6.1 introduces the pthread interface. Chapter 2 and Chapter 3
describe how to use the features and functionality of the pthread interface.
The reference descriptions in Part II describe in detail each routine in the
pthread interface.

• The Compaq proprietary tis interface offers routines that provide thread-
independent services. The routines in this interface enable your software to
perform thread-safe processing that requires synchronization, but without
requiring the use of the pthread interface.

Section 1.6.2 introduces the tis interface. Chapter 4 describes how to
use the features and functionality of the tis interface. The reference
descriptions in Part III describe in detail each routine in the tis interface.

This release of the Threads Library includes interface definitions for the
C programming language only. However, all Threads Library routines are
callable from languages other than C. Your application must provide its
own declarations for Threads Library routines in a manner appropriate for
its programming language. These definitions should be modeled after the
declarations in the C language pthread.h header file.

For backward compatibility, this version of the Threads Library also supports
other interfaces that are not documented in this guide. See Section 1.6.3.

Special note when using the Threads Library from non-C languages:

Several Threads Library features and most Threads Library identifiers are
provided as C language macros. As such, their definitions may not be available
in other languages. Developers working in other languages will have to
provide their own declarations of functions and constants, and features such
as TRY/CATCH exception handling and POSIX push/pop cleanup handlers may
be completely unavailable (although it may be possible to provide similar
functionality using native exception handling facilities). Note that in this
context, C++ is a non-C language; while the C language macros may compile
successfully under C++, TRY/CATCH and push/pop cleanup handlers are not
supported for C++ code. C++ code should use object descructors and C++
exception handlers.

Introducing Multithreaded Programming 1–9

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

1.6.1 The pthread Multithreading Interface
The pthread interface routines implement the IEEE Standard 1003.1-
1996, Portable Operating System Interface (or POSIX) Application Program
Interface, also known as POSIX.1. It also supports extensions specified in
SUSV2 (UNIX98).

Table 1–1 lists and summarizes functionally the pthread interface routines.

The pthread interface contains routines grouped in the following functional
categories:

• General threads routines

• Thread attributes object routines

• Thread cancelation routines

• Thread priority, concurrency, and scheduling routines

• Thread-specific data routines

• Mutex routines

• Mutex attributes object routines

• Condition variable routines

• Condition variable attributes object routines

• Read-write lock routines

• Read-write lock attributes object routines

The pthread interface also provides routines that implement nonportable
extensions to the POSIX.1 standard. These routines are grouped in these
functional categories:

• Thread execution routines

• Global mutex routines

• Mutex attributes routines

• Condition variable routines

• Object naming routines

• Exception object routines

1–10 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Among the routines in the pthread interface that implement nonportable
extensions to the POSIX.1 standard, are the routines in the Threads Library
exception package. This package consists of a library and C language header
file (pthread_exceptions.h) that implement a Compaq-specific exception-
handling facility. It is designed specifically for use with the pthread interface.
Chapter 5 describes the Threads Library exception package.

This guide also documents several routines that are not declared entries in the
pthread interface, but that have close affinity with its functionality. Examples
are the sched_yield() and sigwait() routines. See the end of Table 1–1 for a
list of these routines.

Introducing Multithreaded Programming 1–11

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 pthread Routines Summary

Routine Description

General Threads Routines

pthread_atfork() Declares fork handler routines to be called.

pthread_create() Creates a thread object and thread.

pthread_detach() Marks a thread object for deletion.

pthread_equal() Compares one thread identifier to another
thread identifier.

pthread_exit() Terminates the calling thread.

pthread_join() Causes the calling thread to wait for the
termination of a specified thread and
detach it.

pthread_kill() Delivers a signal to a specified thread.

pthread_once() Calls an initialization routine to be
executed only once.

pthread_self() Obtains the identifier of the calling thread.

pthread_sigmask() Examines or changes the calling thread’s
signal mask.

(continued on next page)

1–12 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Thread Attributes Object Routines

pthread_attr_destroy() Destroys a thread attributes object.

pthread_attr_getdetachstate() Obtains the detachstate attribute of the
specified thread attributes object.

pthread_attr_getguardsize() Obtains the guardsize attribute of the
specified thread attributes object.

pthread_attr_getinheritsched() Obtains the inherit scheduling attribute of
the specified thread attributes object.

pthread_attr_getschedparam() Obtains the scheduling parameters for the
scheduling policy attribute of the specified
thread attributes object.

pthread_attr_getschedpolicy() Obtains the scheduling policy attribute of
the specified thread attributes object.

pthread_attr_getscope() Obtains the contention-scope attribute of
the specified thread attributes object.

(continued on next page)

Introducing Multithreaded Programming 1–13

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Thread Attributes Object Routines

pthread_attr_getstackaddr() Obtains the stackaddr attribute of the
specified thread attributes object.

pthread_attr_getstacksize() Obtains the stacksize attribute of the
specified thread attributes object.

pthread_attr_init() Initializes a thread attributes object.

pthread_attr_setdetachstate() Changes the detachstate attribute of the
specified thread attributes object.

pthread_attr_setguardsize() Changes the guardsize attribute of the
specified thread attributes object.

pthread_attr_setinheritsched() Changes the inherit scheduling attribute of
the specified thread attributes object.

pthread_attr_setschedparam() Changes the values of the parameters
associated with the scheduling policy
attribute of the specified thread attributes
object.

pthread_attr_setschedpolicy() Changes the scheduling policy attribute of
the specified thread attributes object.

pthread_attr_setscope() Changes the contention-scope attribute of
the specified thread attributes object.

pthread_attr_setstackaddr() Changes the stackaddr attribute of the
specified thread attributes object.

pthread_attr_setstacksize() Changes the stacksize attribute of the
specified thread attributes object.

(continued on next page)

1–14 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Thread Cancelation Routines

pthread_cancel() Allows a thread to request that it, or
another thread, terminate execution.

pthread_cleanup_pop() Removes a cleanup handler routine
from the top of the ‘‘cleanup stack’’ and
optionally executes it.

pthread_cleanup_push() Establishes a cleanup handler routine
to be executed when the thread exits or
is canceled while the handler is on the
‘‘cleanup stack’’.

pthread_setcancelstate() Sets the calling thread’s cancelability
state to enable or disable the delivery of
cancelation requests.

pthread_setcanceltype() Sets the calling thread’s cancelability
type to enable or disable the delivery of
cancelation requests.

pthread_testcancel() Requests delivery of any pending
cancelation request to the calling thread.

Thread Priority, Concurrency, and Scheduling Routines

pthread_getconcurrency() Obtains the current concurrency level
parameter for the process.

pthread_getschedparam() Obtains the current scheduling policy and
scheduling parameters of a thread.

pthread_setconcurrency() Changes the current concurrency level
parameter for the process.

pthread_setschedparam() Changes the current scheduling policy and
scheduling parameters of a thread.

(continued on next page)

Introducing Multithreaded Programming 1–15

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Thread-Specific Data Routines

pthread_getspecific() Obtains the thread-specific data value
associated with the specified key.

pthread_key_create() Generates a unique thread-specific data key
for the calling thread.

pthread_key_delete() Deletes a thread-specific data key.

pthread_setspecific() Changes the thread-specific data value
associated with the specified key for the
calling thread.

Mutex Routines

pthread_mutex_destroy() Destroys a mutex.

pthread_mutex_init() Initializes a mutex with attributes specified
by the attributes argument.

pthread_mutex_lock() Locks an unlocked mutex; if locked, the
caller waits for the mutex to become
available before locking it.

pthread_mutex_trylock() Attempts to lock a mutex; returns
immediately if mutex is already locked.

pthread_mutex_unlock() Unlocks a mutex locked by the calling
thread.

Mutex Attributes Object Routines

pthread_mutexattr_destroy() Destroys a mutex attributes object.

pthread_mutexattr_getpshared() Obtains the process-shared attribute from
the specified mutex attributes object.

pthread_mutexattr_gettype() Obtains the mutex type attribute from the
specified mutex attributes object.

pthread_mutexattr_init() Initializes a mutex attributes object.

pthread_mutexattr_setpshared() Changes the process-shared attribute in the
specified mutex attributes object.

pthread_mutexattr_settype() Changes the mutex type attribute in the
specified mutex attributes object.

(continued on next page)

1–16 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Condition Variable Routines

pthread_cond_broadcast() Wakes all threads currently waiting on a
condition variable.

pthread_cond_destroy() Destroys a condition variable.

pthread_cond_init() Initializes a condition variable.

pthread_cond_signal() Wakes at least one thread that is waiting
on a condition variable.

pthread_cond_timedwait() Causes a thread to wait a specified period
of time for a condition variable to be
signaled or broadcast.

pthread_cond_wait() Causes a thread to wait for a condition
variable to be signaled or broadcast.

Condition Variable Attributes Object Routines

pthread_condattr_destroy() Destroys a condition variable attributes
object.

pthread_condattr_getpshared() Obtains the process-shared attribute from
the specified condition variable attributes
object.

pthread_condattr_init() Initializes a condition variable attributes
object.

pthread_condattr_setpshared() Changes the process-shared attribute in
the specified condition variable attributes
object.

(continued on next page)

Introducing Multithreaded Programming 1–17

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Read-Write Lock Routines

pthread_rwlock_destroy() Destroys a read-write lock object.

pthread_rwlock_init() Initializes a read-write lock object.

pthread_rwlock_rdlock() Acquires a read-write lock for read access;
if locked, the caller waits for the lock to
become available before locking it.

pthread_rwlock_tryrdlock() Acquires a read-write lock for read access
without waiting.

pthread_rwlock_trywrlock() Acquires a a read-write lock for write
access without waiting.

pthread_rwlock_unlock() Releases a read-write lock previously
acquired by the calling thread.

pthread_rwlock_wrlock() Acquires a read-write lock for write access;
if locked, the caller waits for the lock to
become available before locking it.

Read-Write Lock Attributes Object Routines

pthread_rwlockattr_destroy() Destroys a read-write lock attributes object.

pthread_rwlockattr_getpshared() Obtains the process-shared attribute from
the specified read-write lock attributes
object.

pthread_rwlockattr_init() Initializes a read-write lock attributes
object.

pthread_rwlockattr_setpshared() Changes the process-shared attribute in the
specified read-write lock attributes object.

(continued on next page)

1–18 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Nonportable Extensions

pthread_delay_np() Pauses the calling thread’s execution for
the specified time interval.

pthread_get_expiration_np() Calculates a timeout for a timed condition
variable wait.

pthread_getsequence_np() Gets a small integer specific to the calling
thread.

(continued on next page)

Introducing Multithreaded Programming 1–19

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Nonportable Extensions

pthread_attr_getstackaddr_np() Obtains the address and size of the
specified thread attributes object.

pthread_attr_setstackaddr_np() Sets the address and size of the specified
thread attributes object.

pthread_lock_global_np() Locks the global mutex.

pthread_unlock_global_np() Unlocks the global mutex.

pthread_cond_signal_int_np() Requests condition variable signal from
software interrupt routine.

pthread_cond_sig_preempt_int_np() Wakes one thread that is waiting on the
specified condition variable; called from
software interrupt routine.

pthread_attr_getname_np()
pthread_attr_setname_np()
pthread_cond_getname_np()
pthread_cond_setname_np()
pthread_getname_np()
pthread_key_getname_np()
pthread_key_setname_np()
pthread_mutex_getname_np()
pthread_mutex_setname_np()
pthread_rwlock_getname_np()
pthread_rwlock_setname_np()
pthread_setname_np()

Gets/sets name associated with specific
objects for debugging.

pthread_exc_get_status_np()
pthread_exc_matches_np()
pthread_exc_report_np()
pthread_exc_set_status_np()

Exception object routines (some are macros)

pthread_yield_np() Notifies the scheduler that the current
thread is willing to release its processor to
other threads of the same or higher priority
(alias for sched_yield()).

(continued on next page)

1–20 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Related Standard Routines

sched_get_priority_max() Returns the maximum priority for the
specified scheduling policy.

sched_get_priority_min() Returns the minimum priority for the
specified scheduling policy.

sched_yield() Notifies the scheduler that the calling
thread is willing to release its processor to
other threads of the same or higher priority.

sigwait() Suspends a calling thread until a signal
arrives.

Introducing Multithreaded Programming 1–21

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

1.6.1.1 Optionally Implemented POSIX.1 Routines
In this version of the Threads Library, the pthread interface does not support
the following features that are specified in the POSIX.1 standard:

• Reported by the POSIX.1 _POSIX_THREAD_PRIO_PROTECT macro:

pthread_mutex_getprioceiling()
pthread_mutex_setprioceiling()
pthread_mutexattr_getprioceiling()
pthread_mutexattr_setprioceiling()

• Reported by the POSIX.1 _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT macros:

pthread_mutexattr_getprotocol()
pthread_mutexattr_setprotocol()

• (Not supported for OpenVMS systems) Reported by the POSIX.1
_POSIX_THREAD_PROCESS_SHARED macro:

pthread_condattr_getpshared()
pthread_condattr_setpshared()
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_setpshared()

The POSIX.1 standard directs the Threads Library to provide the macros
named _POSIX_THREAD_PROCESS_SHARED, _POSIX_THREAD_PRIO_PROTECT, and
_POSIX_THREAD_PRIO_INHERIT to report whether optionally implemented
routines are present.

The Threads Library does provide the following macros specified in the
POSIX.1 standard:

_POSIX_THREADS: threads are supported
_POSIX_THREAD_SAFE_FUNCTIONS: thread-safe libraries are supported
_POSIX_THREAD_ATTR_STACKSIZE: can specify stack size
_POSIX_THREAD_ATTR_STACKADDR: can specify stack address
_POSIX_THREAD_PRIORITY_SCHEDULING: real-time scheduling control is
supported
_POSIX_THREAD_PROCESS_SHARED: cross-process synchronization is
supported (Tru64 UNIX only)

1–22 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

1.6.2 Thread-Independent Services Interface
The Compaq proprietary tis interface offers a set of thread-independent
services. Use these routines to build software that performs processing that
requires synchronization, but without requiring the use of pthreads. That is,
use tis routines to build thread-safe code libraries whose routines can be called
from either a single-threaded or a multithreaded environment.

In the absence of threads, tis routines impose minimal overhead on the calling
program. For instance, tis routines avoid the use of interlocked instructions
and memory barriers.

When threads are present, tis routines provide full support for synchronization.
Note that there are no tis routines for creating threads or thread objects,
because that would have no meaning if called from a single-threaded
environment.

The tis routines can be classified into these functional categories:

• General routines

• Thread cancelation routines

• Thread-specific data key routines

• Mutex routines

• Condition variable routines

• Read-write lock routines

Note

Unlike the other tis interfaces, the read-write lock functions work on
a data type different from that used by the pthread read-write lock
functions.

Table 1–2 summarizes these groups of tis routines.

Introducing Multithreaded Programming 1–23

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–2 tis Routines Summary

Routine Description

General Routines

tis_once() Calls an initialization routine to be executed only
once.

tis_self() Obtains the identifier of the calling thread.

tis_yield() Notifies the scheduler that the calling thread is
willing to release its processor to other threads of
the same or higher priority.

Thread Cancelation Routines

tis_setcancelstate() Sets the calling thread’s cancelability state to
enable or disable the delivery of cancelation
requests.

tis_testcancel() Requests delivery of any pending cancelation
request to the calling thread.

Thread-Specific Data Key Routines

tis_getspecific() Obtains the thread-specific data associated with the
specified key for the calling thread.

tis_key_create() Generates a unique thread-specific data key.

tis_key_delete() Deletes a thread-specific data key.

tis_setspecific() Changes the thread-specific data value associated
with the specified key for the calling thread.

(continued on next page)

1–24 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–2 (Cont.) tis Routines Summary

Routine Description

Mutex Routines

tis_lock_global() Locks the global mutex.

tis_mutex_destroy() Destroys the specified mutex object.

tis_mutex_init() Initializes a mutex object.

tis_mutex_lock() Locks the specified mutex, if unlocked.

tis_mutex_trylock() Tries to lock the specified mutex.

tis_mutex_unlock() Unlocks the specified mutex when locked by the
calling thread.

tis_unlock_global() Unlocks the global mutex.

Condition Variable Routines

tis_cond_broadcast() Wakes all threads currently waiting on the specified
condition variable.

tis_cond_destroy() Destroys the specified condition variable object.

tis_cond_init() Initializes a condition variable object.

tis_cond_signal() Wakes at least one thread that is waiting on the
specified condition variable.

tis_cond_timedwait() Causes a thread to wait a specified period of time
for a condition variable to be signaled or broadcast.

tis_cond_wait() Causes the calling thread to wait for the specified
condition variable to be signaled or broadcast.

tis_get_expiration() Calculates a timeout for a timed condition variable
wait.

OpenVMS I/O Completion Routines

tis_io_complete() Completion AST service routine.

tis_sync() Thread-synchronous replacement for $SYNC system
service.

(continued on next page)

Introducing Multithreaded Programming 1–25

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–2 (Cont.) tis Routines Summary

Routine Description

Read-Write Lock Routines

tis_read_lock() Acquires the specified read-write lock for read
access.

tis_read_trylock() Acquires the specified read-write lock for read
access; returns immediately if already locked.

tis_read_unlock() Unlocks the specified read-write lock already
acquired for read access by the calling thread.

tis_rwlock_destroy() Destroys the specified read-write lock object.

tis_rwlock_init() Initializes the specified read-write lock object.

tis_write_lock() Acquires the specified read-write lock for write
access.

tis_write_trylock() Acquires the specified read-write lock for write
access; returns immediately if already locked.

tis_write_unlock() Unlocks the specified read-write lock already
acquired for write access by the calling thread.

1.6.3 Undocumented and Obsolete Interfaces
Previous versions of the Threads Library offered interfaces that under this
version are no longer documented.

1.6.3.1 The cma Interface
This version of the Threads Library supports the Compaq proprietary CMA (or
cma) interface. The cma interface reports errors by raising exceptions. This
interface is layered on top of the pthread interface. This interface is usually
available only on Compaq platforms.

Compaq will continue to support existing applications which were developed
using the cma interface. Binary compatibility will be supported indefinitely.
Nonetheless, Compaq recommends that, as soon as possible, you migrate any
cma code in your existing applications to the latest pthread interface, to take
advantage of its standard features, portability, and future enhancements.

Routines of the cma interface are not documented in this guide. In this guide
see Appendix D for information to help you migrate your cma-based programs
and applications to the latest pthread interface.

1–26 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

1.6.3.2 The d4 (DCEthread) Interfaces
Note

These obsolete interfaces will be removed in a future DECthreads
release. As of that release, both source and binary code using the d4
(DCEthread) interfaces will no longer compile or execute.

For backward compatibility only, this version of the Threads Library retains
full binary support for the d4 interfaces. These interfaces are implementations
of the IEEE POSIX 1003.4a/Draft 4 document, and are also known as ‘‘DCE
threads’’.

These interfaces include both a ‘‘standard’’ interface that reports errors
by setting errno and returning a value of -1, and an ‘‘exception-returning’’
interface that, like the cma interface, reports errors by raising exceptions.

The d4 interfaces will not be provided in a future release of the Threads
Library. Compaq recommends that you migrate any d4 code in your existing
applications to the latest pthread interface, to take advantage of its standard
features, portability, and future enhancements.

Routines of the d4 interfaces are not documented in this guide. In this guide
see Appendix E for information to help you migrate your d4-based programs
and applications to the latest pthread interface.

Introducing Multithreaded Programming 1–27

2
Objects and Operations

This chapter describes operations that act upon the objects supported in the
pthread interface.

2.1 Threads and Synchronization Objects
A multithreaded program typically manipulates these objects:

• A thread object describes a thread, which refers to a distinct flow of
control within a process. After a thread object is created, the Threads
Library uses it to maintain information about the thread’s state and its
associated attributes.

• A mutex serves as a lock for data that is shared among the program’s
threads. To access data that is guarded by a mutex, a thread must acquire
the mutex, access the data, and then release the mutex. Each instance of
acquiring a mutex is called a lock acquisition. While a mutex is locked,
if other threads attempt to acquire that mutex, those threads must wait for
the mutex to be released.

• For data that is shared among a program’s threads but is more frequently
read than written, use a read-write lock to guard access to the data.
Unlike a mutex, more than one thread can acquire the same read-write
lock for read access at the same time.

• When associated with a shared data object and its mutex, a condition
variable provides a mechanism which allows a thread to wait until a piece
of shared data protected by a mutex is placed into a particular state.

Objects and Operations 2–1

Objects and Operations
2.2 Attributes Objects

2.2 Attributes Objects
When your program creates a thread, mutex, read-write lock or condition
variable, it can accept the default attributes for that object or specify an
existing attributes object (previously created by your program) that contains
particular attribute values. You can also change some of the attributes of a
thread after it has begun execution—for example, you can change the thread’s
priority. However, other attributes, such as stack size, are fixed at execution.

To initialize an attributes object, you can use one of the following routines,
depending on the type of object to which the attributes apply:

• pthread_attr_init() for thread attributes

• pthread_mutexattr_init() for mutex attributes

• pthread_rwlockattr_init() for read-write lock attributes

• pthread_condattr_init() for condition variable attributes

These routines initialize an attributes object with default values for the
individual attributes. To modify any attribute values in an attributes object,
use one of the ‘‘attr_set’’ routines, such as pthread_attr_setinheritsched(),
described in later sections.

Initializing an attributes object (or changing the values in an attributes object)
does not affect the attributes of existing threads, mutexes, read-write locks and
condition variables.

To destroy an attributes object, use one of the following routines:

• pthread_attr_destroy() for thread attributes objects

• pthread_condattr_destroy() for condition variable attributes objects

• pthread_mutexattr_destroy() for mutex attributes objects

• pthread_rwlockattr_destroy() for read-write lock attributes objects

Deleting an attributes object does not affect the attributes of objects previously
created with that attributes object.

2.3 Thread Operations
The following sections describe these operations on threads:

• Creating a thread

• Setting the attributes for a new thread

• Terminating a thread

2–2 Objects and Operations

Objects and Operations
2.3 Thread Operations

• Detaching and destroying a thread

• Joining with another thread

• Controlling how a thread is scheduled

• Canceling a thread

2.3.1 Creating a Thread
Your program creates a thread using the pthread_create() routine. This
routine creates a thread based on the settings of the thread attributes object
if specified, which your program must have previously initialized. If called
without a specified thread attributes object, pthread_create creates a new
thread that has the default attributes.

The Threads Library creates a thread in the ready state and prepares
the thread to begin executing its start routine, the function passed to the
pthread_create() routine. Depending on the presence of other threads and
their scheduling attributes, the new thread might preempt its creator (that
is, it might start before the call to pthread_create() returns). The caller of
pthread_create() can synchronize with the new thread using any mutually
agreed upon mechanism or await its termination using pthread_join().

The Threads Library assigns each new thread a thread identifier, which is
written into the address specified as the pthread_create() routine’s thread
argument. The new thread’s identifier is written before the new thread
executes.

You can create a thread that is detached. To do so, create a thread using a
thread attributes object whose detachstate attribute has been set, using the
pthread_attr_setdetachstate() routine, to PTHREAD_CREATE_DETACHED. This
is useful for creating a thread that your program knows will not be joined by
any other thread. That is, when such a thread terminates, the thread and its
thread object are automatically destroyed.

For more detailed information about thread creation, see the reference
description of the pthread_create() routine in Part II.

2.3.2 Setting the Attributes of a New Thread
When creating a thread, your program can optionally specify the attributes of
the new thread using a thread attributes object. To do so, your program
must:

1. Allocate a thread attributes object and then initialize it by calling the
pthread_attr_init() routine. (Normally, you will initialize an extern or
local variable of the appropriate type.)

Objects and Operations 2–3

Objects and Operations
2.3 Thread Operations

2. Set values for the individual attributes of the thread attributes object. (The
POSIX standard provides a separate routine for setting each attribute in
the thread attributes object.)

3. When ready to create the new thread, pass the address of the thread
attributes object as an argument to the pthread_create() routine.

After your program creates a thread attributes object, it can be reused for
each new thread that the program creates. For the details about creating
and deleting a thread attributes object, see the descriptions in Part II of the
pthread_attr_init() and pthread_attr_destroy() routines.

Using the thread attributes object, your program can specify these attributes of
a new thread:

• Scheduling inheritance

• Scheduling policy

• Scheduling parameters

• Stack size

• Stack location

• Stack guard size

• Contention scope

2.3.2.1 Setting the Inherit Scheduling Attribute
By default, a new thread is created with the scheduling attributes (policy,
parameters and contention scope) of its creator. If an attributes object is
specified, the scheduling attribute values are ignored. When you want to create
a thread with different scheduling attributes, you must set the attribute values,
and also set the value of the inheritsched attribute to PTHREAD_EXPLICIT_SCHED.
You do this by calling the pthread_attr_setinheritsched() routine. The
default value is PTHREAD_INHERIT_SCHED.

2.3.2.2 Setting the Scheduling Policy Attribute
The scheduling policy attribute describes how new threads are scheduled for
execution relative to the other threads in the process.

A thread has one of the following scheduling policies:

• SCHED_FIFO (first-in/first-out or FIFO)—The highest-priority thread runs
until it blocks. If there is more than one thread with the same priority and
that priority is the highest among other threads, the first thread to begin
running continues until it blocks. If a thread with this policy becomes
ready, and it has a higher priority than the currently running thread,

2–4 Objects and Operations

Objects and Operations
2.3 Thread Operations

then the current thread is preempted and the higher priority thread
immediately begins running.

• SCHED_RR (round-robin or RR)—The highest-priority thread runs until it
blocks; however, threads of equal priority are time sliced. If a thread with
this policy becomes ready, and it has a higher priority than the currently
running thread, then the current thread is preempted and the higher
priority thread immediately begins running.

On a multiprocessor, threads of varying policy and priority may run
simultaneously. A high priority thread is not guaranteed exclusive use
of a multiprocessor system. You must use synchronization, not scheduling
attributes, to ensure exclusive access.

• SCHED_OTHER (Foreground or ‘‘throughput’’; also known as SCHED_FG_NP)—
This is the default scheduling policy. All threads are time sliced, and
no thread with this policy will completely starve any other thread with
this policy, regardless of their respective priorities. (Time slicing is a
mechanism that ensures that every thread is allowed time to execute by
preempting running threads at fixed intervals.) However, higher-priority
threads tend to receive more execution time than lower-priority threads, if
the threads are similarly behaved.

Threads with this scheduling policy can be denied execution time by first-
in/first-out (FIFO) or round-robin (RR) threads. Threads in this policy do
not preempt other threads.

Section 2.3.6 describes and shows the effect of the scheduling policy on thread
scheduling.

2.3.2.2.1 Techniques for Setting the Scheduling Policy Attribute Use either
of two techniques to set a thread attributes object’s scheduling policy attribute:

• Set the scheduling policy attribute in the attributes object, which
establishes the scheduling policy of a new thread when it is created. To
do so, call the pthread_attr_setschedpolicy() routine. This allows the
creator of a thread to establish the created thread’s initial scheduling
policy. (Note that this value is used only if the attributes object is set
so that the created thread does not inherit its priority from the creating
thread as shown in Section 2.3.2.1. Inheriting scheduling policy is the
default behavior.)

• Change the scheduling policy of an existing thread (and, at the same
time, the scheduling parameters) by calling the pthread_setschedparam()
routine. This routine allows a thread to change its own scheduling policy
and/or scheduling priority, but has no effect on the corresponding settings
in the thread attributes object.

Objects and Operations 2–5

Objects and Operations
2.3 Thread Operations

When you change the scheduling policy attribute, you must be sure the
scheduling parameter attribute is compatible before using the attributes
object to create a thread.

2.3.2.2.2 Comparing Throughput and Real-Time Policies The default
throughput scheduling policy is intended to be an ‘‘adaptive’’ policy, giving
each thread an opportunity to execute based on its behavior. That is, for a
thread that doesn’t execute often, the Threads Library tends to give it high
access to the processor because it isn’t greatly affecting other threads. On the
other hand, the Threads Library tends to schedule with less preference any
compute-bound threads with throughput scheduling policy.

This yields a responsive system in which all threads with throughput
scheduling policy get a chance to run fairly frequently. It also has the effect of
automatically resolving priority inversions, because over time any threads that
have received less processing time (among those with throughput scheduling
policy) will rise in preference while the running thread drops, and eventually
the inversion is reversed.

The FIFO and RR scheduling policies are considered ‘‘real-time’’ policies,
because they require the Threads Library to schedule such threads strictly by
the specified priority. Because threads that use real-time scheduling policies
require additional overhead, incautious use of the FIFO or RR policies can
cause the performance of the application to suffer.

If relative priorities of threads are important to your application—that is, if a
compute-bound thread really requires consistently predictable execution—then
create those threads using either the FIFO or RR scheduling policy. However,
use of ‘‘real-time’’ policies can expose the application to unexpected performance
problems, such as priority inversions, and therefore their use should be avoided
in most applications.

2.3.2.2.3 Portability of Scheduling Policy Settings Only the SCHED_FIFO
and SCHED_RR scheduling policies are portable across POSIX-conformant
implementations. The other scheduling policies are extensions to the POSIX
standard.

Note

The SCHED_OTHER identifier is portable, but the POSIX standard
does not specify the behavior that it signifies. For example, on non-
Compaq platforms, the SCHED_OTHER scheduling policy could be identical
to either the SCHED_FIFO or the SCHED_RR policy.

2–6 Objects and Operations

Objects and Operations
2.3 Thread Operations

2.3.2.3 Setting the Scheduling Parameters Attribute
The scheduling parameters attribute specifies the execution priority of a
thread. (Although the terminology and format are designed to allow adding
more scheduling parameters in the future, only priority is currently defined.)
The priority is an integer value, but each policy can allow only a restricted
range of priority values. You can determine the range for any policy by calling
the sched_get_priority_min() or sched_get_priority_max() routines. The
Threads Library also supports a set of nonportable symbols designating the
priority range for each policy, as follows:

Low High

PRI_FIFO_MIN PRI_FIFO_MAX

PRI_RR_MIN PRI_RR_MAX

PRI_OTHER_MIN PRI_OTHER_MAX

PRI_FG_MIN_NP PRI_FG_MAX_NP

PRI_BG_MIN_NP PRI_BG_MAX_NP

Section 2.3.6 describes how to specify a priority between the minimum and
maximum values, and it also discusses how priority affects thread scheduling.

Use either of two techniques to set a thread attributes object’s scheduling
parameters attribute:

• Set the scheduling parameters attribute in the thread attributes object,
which establishes the execution priority of a new thread when it is created.
To do so, call the pthread_attr_setschedparam() routine. This allows
the creator of a thread to establish the created thread’s initial execution
priority. (Note that this value is used only if the thread attributes object is
set so that the created thread does not inherit its priority from the creating
thread. Inheriting priority is the default behavior.)

• Change the scheduling parameters of an existing thread by calling the
pthread_setschedparam() routine and requesting the current policy
with the new parameters. This routine allows a thread to change its
own scheduling policy or scheduling priority, but has no effect on the
corresponding settings in the thread attributes object.

Note

On Tru64 UNIX Systems:
There are system security issues for threads running with system
contention scope. High priority threads may prevent other users from
accessing the system. A system contention scope thread cannot have a

Objects and Operations 2–7

Objects and Operations
2.3 Thread Operations

priority higher than 19 (the default user priority). A system contention
scope thread with SCHED_FIFO policy, because it will prevent execution
by other threads of equal priority, cannot have a priority higher than
18.

2.3.2.4 Setting the Stacksize Attribute
The stacksize attribute represents the minimum size (in bytes) of the memory
required for a thread’s stack. To increase or decrease the size of the stack for
a new thread, call the pthread_attr_setstacksize() routine and use the
specified thread attributes object when creating the thread and stack. You
must specify at least PTHREAD_STACK_MIN bytes.

After a thread has been created, your program cannot change the size of the
thread’s stack. See Section 3.4.1 for more information about sizing a stack.

2.3.2.5 Setting the Stack Address Attribute
The stack address attribute represents the location or address of a region of
memory that your program allocates for use as a thread’s stack. The value
of the stack address attribute represents the origin of the thread’s stack (i.e.
the initial value to be placed in the thread’s stack pointer register). However,
please be aware that the actual address you specify, relative to the stack
memory you have allocated, is inherently nonportable.

To set the address of the stack origin for a new thread, call the
pthread_attr_setstackaddr() routine, specifying an initialized thread
attributes object as an argument, and use the thread attributes object when
creating the new thread. Use the pthread_attr_getstackaddr() routine
to obtain the value of the stack address attribute of an initialized thread
attributes object.

After a thread has been created, your program cannot change the address of
the thread’s stack.

Code using this attribute is nonportable because the meaning of ‘‘stack
address’’ is undefined and untestable. Generally, implementations likely
assume, as does the Threads Library, that you have specified the initial
stack pointer; however, this is not required by the standards. Even so, some
machines’ stacks grow up while others grow down, and many may modify the
stack pointer either before or after writing (or reading) data. In other words,
one system may require that you pass the base, another base - sizeof(int),
another base + size, another base + size + sizeof(long). Furthermore, the
system cannot know the size of the stack, which may restrict the ability of
debuggers and other tools to help you. As long as you are using an inherently
nonportable interface, consider using pthread_attr_setstackaddr_np().

2–8 Objects and Operations

Objects and Operations
2.3 Thread Operations

You cannot create two concurrent threads that use the same stack address.
The amount of storage you provide must be at least PTHREAD_STACK_MIN bytes.

The system uses an unspecified (and varying) amount of the stack to
‘‘bootstrap’’ a newly created thread.

2.3.2.6 Setting the Guardsize Attribute
The guardsize attribute represents the minimum size (in bytes) of the guard
area for the stack of a thread. A guard area can help a multithreaded
program detect overflow of a thread’s stack and the stack. A guard area is
a region of no-access memory that is allocated at the overflow end of the
thread’s writable stack. When the thread attempts to access a memory location
within the guard area, a memory addressing violation occurs.

A new thread can be created using a thread attributes object with a default
guardsize attribute value. This value is platform dependent, but will always
be at least one ‘‘hardware protection unit’’ (that is, at least one page; non-zero
values are rounded up to the next integral page size). For more information,
see this guide’s platform-specific appendixes.

The Threads Library allows your program to specify the size of a thread stack
guard area for two reasons:

• For a thread that allocates large data structures on the stack, a large
guard area might be required to detect stack overflow.

• Overflow protection of a thread’s stack is otherwise a waste of system
resources. An application that creates a large number of threads that will
never overflow their stacks can conserve system resources by ‘‘turning off’’
guard areas—that is, by specifying a guardsize attribute of zero for each
such thread. In this case, no guard area or overflow warning area are
allocated.

To set the guardsize attribute of a thread attributes object, call the
pthread_attr_setguardsize() routine. To obtain the value of the guardsize
attribute in a thread attributes object, call the pthread_attr_getguardsize()
routine.

2.3.2.7 Setting the Contention Scope Attribute
When creating a thread, you can specify the set of threads with which this
thread competes for processing resources. This set of threads is called the
thread’s contention scope.

Objects and Operations 2–9

Objects and Operations
2.3 Thread Operations

A thread attributes object includes a contention scope attribute. The
contention scope attribute specifies whether the new thread competes for
processing resources only with other threads in its own process, called
process contention scope, or with all threads on the system, called system
contention scope.

Use the pthread_attr_setscope() routine to set an initialized thread at-
tributes object’s contention scope attribute. Use the pthread_attr_getscope()
routine to obtain the value of the contention scope attribute of an initialized
thread attributes object. You must also set the inheritsched attribute to
PTHREAD_EXPLICIT_SCHED to prevent a new thread from inheriting its
contention scope from the creator.

In the thread attributes object, set the contention scope attribute’s value to
PTHREAD_SCOPE_PROCESS to specify process contention scope, or set the value to
PTHREAD_SCOPE_SYSTEM to specify system contention scope.

The Threads Library selects at most one thread to execute on each processor at
any point in time. The Threads Library resolves the contention based on each
thread’s scheduling attributes (for example, priority) and scheduling policy (for
example, round-robin).

A thread created using a thread attributes object whose contention scope
attribute is set to PTHREAD_SCOPE_PROCESS contends for processing resources
with other threads within its own process that also were created with
PTHREAD_SCOPE_PROCESS. It is unspecified how such threads are scheduled
relative to threads in other processes or threads in the same process that were
created with PTHREAD_SCOPE_SYSTEM contention scope.

A thread created using a thread attributes object whose contention
scope attribute is set to PTHREAD_SCOPE_SYSTEM contends for processing
resources with other threads in any process that also were created with
PTHREAD_SCOPE_SYSTEM.

Whether process contention scope and system contention scope are available
for your program’s threads depends on the host operating system. Attempting
to set the contention scope attribute to a value not supported on your system
will result in a return value of [ENOTSUP]. The following table summarizes
support for thread contention scope by operating system:

2–10 Objects and Operations

Objects and Operations
2.3 Thread Operations

Table 2–1 Support for Thread Contention Scope

Operating System
Available Thread
Contention Scopes

Default Thread
Contention Scope

Tru64 UNIX Process
System

Process

OpenVMS Process Process

Note

On Tru64 UNIX systems:

When a thread creates a system contention scope thread, the creation
can fail with an [EPERM] error condition. This is because system
contention scope threads can only be created with priority above
‘‘default’’ priority if the process is running with root privileges.

2.3.3 Terminating a Thread
Terminating a thread means causing a thread to end its execution. This can
occur for any of the following reasons:

• The thread returns from its start routine (this is the usual case). The value
returned by the routine indicates the thread’s exit status to a thread that
joins with this thread.

• The thread calls the pthread_exit() routine. This routine accepts a
status value in its value_ptr argument. The value returned by the routine
indicates the thread’s exit status to a thread that joins with this thread.

• The thread is canceled, by being specified in a call to the pthread_cancel()
routine. This routine requests the thread’s termination if the thread
permits cancelation. See Section 2.3.7 for more information on canceling
threads and on controlling whether or not cancelation is permitted.

When a thread terminates, the Threads Library performs these actions:

1. It writes a return value into the terminated thread’s thread object:

• If the thread has been canceled, the value PTHREAD_CANCELED is written
into the thread’s thread object.

Objects and Operations 2–11

Objects and Operations
2.3 Thread Operations

• If the thread terminated by returning from its start routine, the return
value is copied from the start routine into the thread’s thread object.
Alternatively, if the thread explictly called pthread_exit(), the value
received in the value_ptr argument (from pthread_exit()) is stored in
the thread’s thread object.

Another thread can obtain this return value by joining with the terminated
thread (using pthread_join()). See Section 2.3.5 for a description of
joining with a thread.

Note

If the thread terminated by returning from its start routine normally
and the start routine does not provide a return value, the results
obtained by joining with that thread are unpredictable.

2. If the termination results from a cancelation or a call to pthread_exit(),
the Threads Library calls, in turn, each cleanup handler that this
thread declared (using pthread_cleanup_push()) that had not yet been
removed (using pthread_cleanup_pop()). (It also transfers control to
any appropriate CATCH, CATCH_ALL, or FINALLY blocks, as described in
Chapter 5. You can also use Compaq C’s structured handling (SEH)
extensions.)

The Threads Library calls the terminated thread’s most recently pushed
cleanup handler first. See Section 2.3.3.1 for more information about
cleanup handlers.

For C++ programmers: At normal exit from a thread, your program will
call the appropriate destructor functions. You can also catch the exit or
cancel exception using the catch(...).

To exit the terminated thread due to a call to pthread_exit(), the
Threads Library raises the pthread_exit_e exception. To exit the
terminated thread due to cancelation, the Threads Library raises the
pthread_cancel_e exception.

Your program can use the exception package to operate on the generated
exception. (Note that the practice of using CATCH handlers in place
of pthread_cleanup_push() is not portable.) Chapter 5 describes the
exception package. The name of the native system extension, or that seen
by C++, varies by platform.

3. For each of the terminated thread’s thread-specific data keys that has a
non-NULL value and a non-NULL destructor function:

• The thread’s value for the corresponding key is set to NULL.

2–12 Objects and Operations

Objects and Operations
2.3 Thread Operations

• The thread-specific data destructor function is called.

This step is repeated until all thread-specific data values in the
thread are NULL, or for up to a number of iterations equal to
PTHREAD_DESTRUCTOR_ITERATIONS (4). This destroys all thread-specific
data associated with the terminated thread. See Section 2.6 for more
information about thread-specific data. Note that if after 4 iterations
through the thread’s thread-specific data values, there are still non-NULL
values, they will be ignored. This may result in an application memory
leak, and should be avoided.

4. The thread (if there is one) that is currently waiting to join with the
terminated thread is awakened. That is, the thread that is waiting in a
call to pthread_join() is awakened

5. If the thread is already detached or if there was a thread waiting in a
call to pthread_join(), its storage is destroyed Otherwise, the thread
continues to exist until detached or joined with. Section 2.3.4 describes
detaching and destroying a thread.

After a thread terminates, it continues to exist as long as it is not detached.
This means that storage, including stack, may remain allocated. This allows
another thread to join with the terminated thread (see Section 2.3.5).

When a terminated thread is no longer needed, your program should detach
that thread (see Section 2.3.4).

Note

For Tru64 UNIX systems:

When the initial thread in a multithreaded process returns from the
main routine, the entire process terminates, just as it does when a
thread calls exit().

For OpenVMS systems:

When the initial thread in a multithreaded image returns from the
main routine, the entire image terminates, just as it does when a
thread calls SYS$EXIT.

Objects and Operations 2–13

Objects and Operations
2.3 Thread Operations

2.3.3.1 Cleanup Handlers
A cleanup handler is a routine you provide that is associated with a
particular lexical scope within your program and that can be invoked when
a thread exits that scope. The cleanup handler’s purpose is to restore that
portion of the program’s state that has been changed within the handler’s
associated lexical scope. In particular, cleanup handlers allow a thread to react
to thread-exit and cancelation requests.

Your program declares a cleanup handler for a thread by calling the
pthread_cleanup_push() routine. Your program removes (and optionally
invokes) a cleanup handler by calling the pthread_cleanup_pop() routine.

A cleanup handler is invoked when the calling thread exits the handler’s
associated lexical scope, due to:

• Normal exit of the scope (that is, by calling pthread_cleanup_pop(TRUE))

• Thread termination (that is, via a call to the pthread_exit() routine)

• Thread cancelation

• Raising or reraising an exception

• A thread-directed Tru64 UNIX signal (e.g. SIG_SEGV) while default signal
action is in effect. (This raises an exception.)

For each call to pthread_cleanup_push(), your program must contain a
corresponding call to pthread_cleanup_pop(). The two calls form a lexical
scope within your program. One pair of calls to pthread_cleanup_push() and
pthread_cleanup_pop() cannot overlap the scope of another pair; however,
pairs of calls can be nested.

Because cleanup handlers are specified by the POSIX standard, they are a
portable mechanism. An alternative to using cleanup handlers is to define
and/or catch exceptions with the exception package. Chapter 5 describes how
to use the exception package. Cleanup handler routines, exception handling
clauses (that is, CATCH, CATCH_ALL, FINALLY), and C++ object destructors (or
catch(...) clauses) are functionally equivalent mechanisms.

2.3.4 Detaching and Destroying a Thread
Detaching a thread means to mark a thread for destruction as soon as it
terminates. Destroying a thread means to free, or make available for reuse, the
resources associated with that thread.

If a thread has terminated, then detaching that thread causes the Threads
Library to destroy it immediately. If a thread is detached before it terminates,
then the Threads Library frees the thread’s resources after it terminates.

2–14 Objects and Operations

Objects and Operations
2.3 Thread Operations

A thread can be detached explicitly or implicitly:

• To detach a thread explicitly, use the pthread_detach() routine.

• After a target thread has joined with another thread, the Threads Library
implicitly detaches the target thread when it terminates.

• Your program can create a thread that is detached. See Section 2.3.1 for
more information about creating a thread.

It is illegal for your program to attempt to join or detach a detached thread.
In general, you cannot perform any operation (for example, cancelation) on a
detached thread. This is because the thread ID might have become invalid or
might have been assigned to a new thread immediately upon termination of
the thread. The thread should not be detached until no further references to it
will be made.

2.3.5 Joining With a Thread
Joining with a thread means to suspend this thread’s execution until another
thread (the target thread) terminates. In addition, the target thread is
detached after it terminates.

Join is one form of thread synchronization. It is often useful when one thread
needs to wait for another and possibly retrieve a single return value. (The
value may be a pointer, e.g. to heap storage.) There is nothing special about
join, though—similar results, or infinite variations, can be achieved by use of a
mutex and condition variable.

A thread joins with another thread by calling the pthread_join() routine and
specifying the thread identifier of the thread. If the target thread has already
terminated, then this thread does not wait.

By default, the target thread of a join operation is created with the detachstate
attribute of its thread attributes object set to PTHREAD_CREATE_JOINABLE. It
should not be created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED.

Keep in mind these restrictions about joining with a thread:

• If more than one thread calls pthread_join() and specifies the same
thread identifier, your program’s behavior is undefined. This is because the
target thread is detached after completing the first join.

• If a thread specifies its own thread identifier when calling pthread_join()
routine, the result is a deadlock. See Section 3.6.3 for more information
about deadlocks.

Objects and Operations 2–15

Objects and Operations
2.3 Thread Operations

2.3.6 Scheduling a Thread
Scheduling means to evaluate and change the states of the process’ threads.
As your multithreaded program runs, the Threads Library detects whether
each thread is ready to execute, is waiting for a synchronization object, has
terminated, and so on.

Also, for each thread, the Threads Library regularly checks whether that
thread’s scheduling priority and scheduling policy, when compared with those
of the process’ other threads, entail forcing a change in that thread’s state.
Remember that scheduling priority specifies the ‘‘precedence’’ of a thread in
the application. Scheduling policy provides a mechanism to control how the
Threads Library interprets that priority as your program runs.

To understand this section, you must be familiar with the concepts presented
in these sections:

• Section 2.3.2.1 on inheriting of scheduling attributes by created threads

• Section 2.3.2.2 on scheduling policies, including how each policy handles
thread scheduling priority

• Section 2.3.2.3 on thread scheduling priorities

2.3.6.1 Calculating the Scheduling Priority
A thread’s scheduling priority falls within a range of values, depending on its
scheduling policy. To specify the minimum or maximum scheduling priority for
a thread, use the sched_get_priority_min() or sched_get_priority_max()
routines—or use the appropriate nonportable symbol such as PRI_OTHER_MIN
or PRI_OTHER_MAX. Priority values are integers, so you can specify a value
between the minimum and maximum priority using an appropriate arithmetic
expression.

For example, to specify a scheduling priority value that is midway between
the minimum and maximum for the SCHED_OTHER scheduling policy, use the
following expression (coded appropriately for your programming language):

pri_other_mid = (sched_get_priority_min(SCHED_OTHER) +
sched_get_priority_max(SCHED_OTHER)) / 2

where pri_other_mid represents the priority value you want to set.

Avoid using literal numerical values to specify a scheduling priority
setting, because the range of priorities can change from implementation to
implementation. Values outside the specified range for each scheduling policy
might be invalid.

2–16 Objects and Operations

Objects and Operations
2.3 Thread Operations

2.3.6.2 Effects of Scheduling Policy
To demonstrate the results of the different scheduling policies, consider the
following example: A program has four threads, A, B, C, and D. For each
scheduling policy, three scheduling priorities have been defined: minimum,
middle, and maximum. The threads have the following priorities:

A minimum

B middle

C middle

D maximum

On a uniprocessor system, only one thread can run at any given time.
The ordering of execution depends upon the relative scheduling policies
and priorities of the threads. Given a set of threads with fixed priorities
such as the previous list, their execution behavior is typically predictable.
However, in a symmetric multiprocessor (or SMP) system the execution
behavior is completely indeterminate. Although the four threads have differing
priorities, a multiprocessor system might execute two or more of these threads
simultaneously.

When you design a multithreaded application that uses scheduling priorities, it
is critical to remember that scheduling is not a substitute for synchronization.
That is, you cannot assume that a higher-priority thread can access shared
data without interference from lower-priority threads. For example, if one
thread has a FIFO scheduling policy and the highest scheduling priority
setting, while another has default scheduling policy and the lowest scheduling
priority setting, the Threads Library might allow the two threads to run at the
same time. As a corollary, on a four-processor system you also cannot assume
that the four highest-priority threads are executing simultaneously at any
particular moment. Refer to Section 3.1.3 for more information about using
thread scheduling as thread synchronization.

The following figures demonstrate how the Threads Library schedules a set of
threads on a uniprocessor based on whether each thread has the FIFO, RR, or
throughput setting for its scheduling policy attribute. Assume that all waiting
threads are ready to execute when the current thread waits or terminates and
that no higher-priority thread is awakened while a thread is executing (that is,
executing during the flow shown in each figure).

Figure 2–1 shows a flow with FIFO scheduling.

Objects and Operations 2–17

Objects and Operations
2.3 Thread Operations

Figure 2–1 Flow with FIFO Scheduling

D B C A

ZK−3789A−GE

Thread D executes until it waits or terminates. Next, although thread B and
thread C have the same priority, thread B starts because it has been waiting
longer than thread C. Thread B executes until it waits or terminates, then
thread C executes until it waits or terminates. Finally, thread A executes.

Figure 2–2 shows a flow with RR scheduling.

Figure 2–2 Flow with RR Scheduling

D B C B C A

ZK−3790A−GE

Thread D executes until it waits or terminates. Next, thread B and thread C
are time sliced, because they both have the same priority. Finally, thread A
executes.

Figure 2–3 shows a flow with Default scheduling.

Figure 2–3 Flow with Default Scheduling

D B C A B C
ZK−3791A−GE

Threads D, B, C, and A are time sliced, even though thread A has a lower
priority than the others. Thread A receives less execution time than thread D,
B, or C if any of those are ready to execute as often as Thread A. However, the
default scheduling policy protects thread A against indefinitely being blocked
from executing.

Because low-priority threads eventually run, the default scheduling policy
protects against occurrences of thread starvation and priority inversion, which
are discussed in Section 3.5.2.

2–18 Objects and Operations

Objects and Operations
2.3 Thread Operations

2.3.7 Canceling a Thread
Canceling a thread means requesting the termination of a target thread as
soon as possible. A thread can request the cancelation of another thread or
itself.

Thread cancelation is a three-stage operation:

1. A cancelation request is posted for the target thread. This occurs when
some thread calls pthread_cancel().

2. The posted cancelation request is delivered to the target thread. This
occurs when the target thread invokes a routine that is a cancelation point.
(See Section 2.3.7.4 for a discussion of routines that are cancelation points.)

If the target thread’s cancelability state is disabled, the target thread does
not receive the cancelation request until the next cancelation point after
the cancelability state is set to enabled. See Section 2.3.7.3 for how to
control a thread’s cancelability.

3. The target thread might have pushed cleanup handler routines (using the
pthread_cleanup_push() routine) on its handler stack. When the target
thread receives the cancelation request, the Threads Library unwinds the
thread’s call stack. For each frame, active exception handlers are invoked.
These include cleanup handler routines, C++ object destructors, Compaq C
SEH except clauses, and C++ catch(...) clauses.

2.3.7.1 Thread Cancelation Implemented Using Exceptions
The Threads Library implements thread cancelation using exceptions. Using
the exception package, it is possible for a thread (to which a cancelation
request has been delivered) explicitly to catch the thread cancelation exception
(pthread_cancel_e) defined by the Threads Library and to perform cleanup
actions accordingly. After catching this exception, the exception handler code
should always reraise the exception, to avoid breaking the ‘‘contract’’ that
cancelation leads to thread termination.

Chapter 5 describes the exception package.

2.3.7.2 Thread Return Value After Cancelation
When a thread is terminated due to cancelation, the Threads Library writes
the return value PTHREAD_CANCELED into the thread’s thread object. This is
because cancelation prevents the thread from calling pthread_exit() or
returning from its start routine.

Objects and Operations 2–19

Objects and Operations
2.3 Thread Operations

2.3.7.3 Controlling Thread Cancelation
Each thread controls whether it can be canceled (that is, whether it receives
requests to terminate) and how quickly it terminates after receiving the
cancelation request, as follows:

A thread’s cancelability state determines whether it receives a cancelation
request. When created, a thread’s cancelability state is enabled. If the
cancelability state is disabled, the thread does not receive cancelation requests,
instead, they remain pending.

If the thread’s cancelability state is enabled, a thread may use the
pthread_testcancel() routine to request the immediate delivery of any
pending cancelation request. This routine enables the program to permit
cancelation to occur at places where it is convenient, when it might not
otherwise occur, such as very long loops, to ensure that cancelation requests
are noticed within a reasonable time.

If its cancelability state is disabled, the thread cannot be terminated by any
cancelation request. This means that a thread could wait indefinitely if it
does not come to a normal conclusion; therefore, exercise care if your software
depends on cancelation.

A thread can use the pthread_setcancelstate() routine to change its
cancelability state.

A thread can use the pthread_setcanceltype() routine to change its
cancelability type, which determines whether it responds to a cancelation
request only at cancelation points (synchronous cancelation) or at any point in
its execution (asynchronous cancelation).

Initially, a thread’s cancelability type is deferred, which means that the thread
receives a cancelation request only at cancelation points—for example, during
a call to the pthread_cond_wait() routine. If you set a thread’s cancelability
type to asynchronous, the thread can receive a cancelation request at any time.

Note

If the cancelability state is disabled, the thread cannot be canceled
regardless of the cancelability type. Setting cancelability type
to deferred or asynchronous is relevant only when the thread’s
cancelability state is enabled.

2–20 Objects and Operations

Objects and Operations
2.3 Thread Operations

2.3.7.4 Deferred Cancelation Points
A cancelation point is a routine that delivers a posted cancelation request to
that request’s target thread.

The following routines in the pthread interface are cancelation points:

pthread_cond_timedwait()
pthread_cond_wait()
pthread_delay_np()
pthread_join()
pthread_testcancel()

The following routines in the tis interface are cancelation points:

tis_cond_wait()
tis_testcancel()

Other routines that are also cancelation points are mentioned in the operating
system-specific appendixes of this guide. Refer to the following thread
cancelability for system services topics:

• Section A.4 for Tru64 UNIX

• Section B.9 for OpenVMS

2.3.7.5 Cleanup from Deferred Cancelation
When a cancelation request is delivered to a thread, the thread could be
holding some resources, such as locked mutexes or allocated memory. Your
program must release these resources before the thread terminates.

The Threads Library provides two equivalent mechanisms that can do the
cleanup during cancelation, as follows:

• Use the pthread_cleanup_push() and pthread_cleanup_pop() routines to
establish and remove cleanup handlers for a section of code that contains
a cancelation point. When a cancelation request is delivered, the routine
specified in pthread_cleanup_push() is called. This allows the thread
to unlock mutexes or otherwise release resources held in the current
scope. Each routine can establish one or more cleanup handlers using
pthread_cleanup_push(). When the handler is no longer needed it is
removed by calling pthread_cleanup_pop(). The execute argument to
pthread_cleanup_pop() indicates whether the handler routine should be
called when it is removed.

Objects and Operations 2–21

Objects and Operations
2.3 Thread Operations

Calling the cleanup handler automatically on removal is convenient when
the thread is about to leave the scope and you must perform the cleanup
actions even though the thread wasn’t canceled (for example, releasing
the mutex after waking up from a condition variable wait). (This usually
corresponds to a FINALLY exception handler.)

Do not use pthread cleanup handlers in C++ code. Instead, rely on C++
object destructors.

• As described in Chapter 5, use the exceptions package TRY/CATCH/CATCH_ALL
or TRY/FINALLY macros to clean up during a cancelation request. A
cancelation request is sent to the thread by raising a special exception.
Thus, code that contains a cancelation point can be placed inside a TRY
block, and a CATCH, CATCH_ALL or FINALLY block can be used to release the
resources the thread is holding when the cancelation request is sent. Note
that code should always reraise the cancelation exception; failing to do so
will result in the thread not terminating as requested. You can also use
C++ object destructors or catch(...). Do not use the TRY macros from
C++.

2.3.7.6 Cleanup from Asynchronous Cancelation
When an application sets the cancelability type to asynchronous, cancelation
may occur at any instant, even within the execution of a single instruction.
Because it is impossible to predict exactly when an asynchronous cancelation
request will be delivered, it is extremely difficult for a program to recover
properly. For this reason, an asynchronous cancelability type should be set
only within regions of code that do not need to clean up in any way, such as
straight-line code or looping code that is compute-bound and that makes no
calls and allocates no resources.

While a thread’s cancelability type is asynchronous, it should not call any
routine unless that routine is explicitly documented as ‘‘safe for asynchronous
cancelation.’’ In particular, you can never use asynchronous cancelability type
in code that allocates or frees memory, or that locks or unlocks mutexes—
because the cleanup code cannot reliably determine the state of the resource.

Note

In general, you should expect that no run-time library routine is
safe for asynchronous cancelation, unless explicitly documented
to the contrary. Only three routines are safe for asynchronous
cancelation: pthread_setcanceltype(), pthread_setcancelstate()
and pthread_cancel().

2–22 Objects and Operations

Objects and Operations
2.3 Thread Operations

For additional information about accomplishing asynchronous cancelation for
your platform, see Section A.4 and Section B.9.

2.3.7.7 Example of Thread Cancelation Code
Example 2–1 shows a thread control and cancelation example.

Example 2–1 pthread Cancel

/*
* Pthread Cancel Example
*/

/*
* Outermost cancelation state
*/
{
.
.
.
int s, outer_c_s, inner_c_s;
.
.
.
/* Disable cancelation, saving the previous setting. */

s = pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &outer_c_s);
if(s == EINVAL)

printf("Invalid Argument!\n");
else if(s == 0)

.

.

.
/* Now cancelation is disabled. */

.

.

.

(continued on next page)

Objects and Operations 2–23

Objects and Operations
2.3 Thread Operations

Example 2–1 (Cont.) pthread Cancel

/* Enable cancelation. */

{
.
.
.
s = pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, &inner_c_s);
if(s == 0)

.

.

.
/* Now cancelation is enabled. */
.
.
.
/* Enable asynchronous cancelation this time. */

{
.
.
.
/* Enable asynchronous cancelation. */

(continued on next page)

2–24 Objects and Operations

Objects and Operations
2.3 Thread Operations

Example 2–1 (Cont.) pthread Cancel

int outerasync_c_s, innerasync_c_s;
.
.
.
s = pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS,

&outerasync_c_s);
if(s == 0)

.

.

.
/* Now asynchronous cancelation is enabled. */
.
.
.
/* Now restore the previous cancelation state (by
* reinstating original asynchronous type cancel).
*/
s = pthread_setcanceltype (outerasync_c_s,

&innerasync_c_s);
if(s == 0)

.

.

.
/* Now asynchronous cancelation is disabled,
* but synchronous cancelation is still enabled.
*/

}
.
.
.
}

.

.

.
/* Restore to original cancelation state. */

s = pthread_setcancelstate (outer_c_s, &inner_c_s);
if(s == 0)

.

.

.
/* The original (outermost) cancelation state is now reinstated. */

}

Objects and Operations 2–25

Objects and Operations
2.4 Synchronization Objects

2.4 Synchronization Objects
In a multithreaded program, you must use synchronization objects whenever
there is a possibility of conflict in accessing shared data. The following sections
discuss three kinds of synchronization objects: mutexes, condition variables,
and read-write locks.

2.4.1 Mutexes
A mutex (or mutual exclusion) object is used by multiple threads to ensure the
integrity of a shared resource that they access, most commonly shared data, by
allowing only one thread to access it at a time.

A mutex has two states, locked and unlocked. A locked mutex has an owner—
the thread that locked the mutex. It is illegal to unlock a mutex not owned by
the calling thread.

For each piece of shared data, all threads accessing that data must use the
same mutex: each thread locks the mutex before it accesses the shared data
and unlocks the mutex when it is finished accessing that data. If the mutex
is locked by another thread, the thread requesting the lock either waits for
the mutex to be unlocked or returns, depending on the lock routine called (see
Figure 2–4).

Figure 2–4 Only One Thread Can Lock a Mutex

Thread B

var

mutex_var
lock block

Thread A

access

ZK−3795A−GE

Each mutex must be initialized before use. The Threads Library supports
static initialization of static or extern mutexes at compile time, using the
PTHREAD_MUTEX_INITIALIZER macro provided in the pthread.h header file, as
well as dynamic initialization at run time by calling pthread_mutex_init().
This routine allows you to specify an attributes object, which allows you to

2–26 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

specify the mutex type. The types of mutexes are described in the following
sections.

2.4.1.1 Normal Mutex
A normal mutex is the most efficient type of mutex, but also the least
forgiving.

A normal mutex usually does not record or check thread ownership—that is, a
deadlock will result if the owner attempts to ‘‘relock’’ the mutex. The system
usually will not report an erroneous attempt to unlock a mutex not owned by
the calling thread; this means that some potentially severe application errors
may not be detected. Normal mutexes also provide less debugging information,
because the owner cannot be identified.

2.4.1.2 Default Mutex
This is the name reserved by the Single UNIX Specification, Version 2, for a
vendor’s default mutex type. For the pthread interface, the ‘‘normal’’ mutex
type is the ‘‘default’’ mutex type. Be aware that other implementations could
implement ‘‘default’’ errorcheck, recursive, or even a nonportable mutex type.

2.4.1.3 Recursive Mutex
A recursive mutex can be locked more than once by a given thread without
causing a deadlock. The thread must call the pthread_mutex_unlock() routine
the same number of times that it called the pthread_mutex_lock() routine
before another thread can lock the mutex.

When a thread first successfully locks a recursive mutex, it owns that mutex
and the lock count is set to 1. Any other thread attempting to lock the
mutex blocks until the mutex becomes unlocked. If the owner of the mutex
attempts to lock the mutex again, the lock count is incremented, and the
thread continues running.

When an owner unlocks a recursive mutex, the lock count is decremented. The
mutex remains locked and owned until the count reaches zero. The Threads
Library will always detect and report an attempt by any thread other than the
owner to unlock the mutex.

A recursive mutex is useful when a routine requires exclusive access to a piece
of data, and cannot tell whether its caller already owns the mutex. This is
common when converting old code to be thread-safe. However, the code must
ensure that the shared data is in a consistent state before calling another
routine which requires access to it under the lock.

Objects and Operations 2–27

Objects and Operations
2.4 Synchronization Objects

This type of mutex is called ‘‘recursive’’ because it allows you a capability
not permitted by a normal (default) mutex. However, its use requires more
careful programming. For instance, if a recursively locked mutex were used
with a condition variable, the unlock performed for a pthread_cond_wait()
or pthread_cond_timedwait() would not actually release the mutex. In that
case, no other thread can satisfy the condition of the predicate, and the thread
would wait indefinitely. See Section 2.4.2 for information on the condition
variable wait and timed wait routines.

2.4.1.4 Errorcheck Mutex
An errorcheck mutex is locked exactly once by a thread, like a normal
mutex. If a thread tries to lock the mutex again without first unlocking it, the
thread receives an error. If a thread other than the owner tries to unlock an
errorcheck mutex, an error is returned. Thus, errorcheck mutexes are more
informative than normal mutexes because normal mutexes deadlock in such a
case, leaving you to determine why the thread no longer executes. Errorcheck
mutexes are useful during development and debugging. Errorcheck mutexes
can be replaced with normal mutexes when the code is put into production use,
or left to provide the additional checking.

Errorcheck mutexes may be slower than normal mutexes, because they do
more internal tracking. The debugger can always display the current owner
(if any) of an errorcheck mutex. Any correct program that works with normal
mutexes will also work with errorcheck mutexes.

2.4.1.5 Mutex Operations
To lock a mutex, use one of the following routines, depending on what you want
to happen if the mutex is already locked by another thread:

• pthread_mutex_lock()

If the mutex is locked, the calling thread waits for the mutex to become
available.

• pthread_mutex_trylock()

This routine returns immediately with a status indicating whether or not it
was able to lock the mutex. Based on this return value, the calling thread
can take the appropriate action.

When a thread is finished accessing a piece of shared data, it unlocks the
associated mutex by calling the pthread_mutex_unlock() routine. If other
threads are waiting on the mutex, one is placed in the ready state. If
more than one thread is waiting on the mutex, the scheduling policy (see
Section 2.3.2.2) and the scheduling priority (see Section 2.3.2.3) determine
which thread is readied, and the next running thread that requests it locks the
mutex.

2–28 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

The mutex is not automatically granted to the first waiter. If a running
unlocking thread attempts to relock the mutex before the first waiter gets a
chance to run, the running thread will succeed in relocking the mutex, and the
first waiter may be forced to reblock.

You can destroy a mutex—that is, reclaim its storage—by calling the
pthread_mutex_destroy() routine. Use this routine only after the mutex
is no longer needed by any thread. It is invalid to attempt to destroy a mutex
while it is locked or has threads waiting on it.

Warning

The Threads Library does not currently detect deadlock conditions
involving more than one mutex, but may in the future. Never write
code that depends upon the Threads Library not reporting a particular
error condition.

2.4.1.6 Mutex Attributes
A mutex attributes object allows you to specify values other than
the defaults for mutex attributes when you initialize a mutex with the
pthread_mutex_init() routine.

The mutex type attribute specifies whether a mutex is default, normal,
recursive, or errorcheck. Use the pthread_mutexattr_settype() routine to
set the mutex type attribute in an initialized mutex attributes object. Use
the pthread_mutexattr_gettype() routine to obtain the mutex type from an
initialized mutex attributes object.

If you do not use a mutex attributes object to select a mutex type, calling the
pthread_mutex_init() routine initializes a normal (default) mutex by default.

The process-shared attribute specifies whether a mutex can be operated upon
by threads in only one process or by threads in more than one process, as
follows:

• If the process-shared attribute’s value is PTHREAD_PROCESS_PRIVATE (the
default), the mutex can be operated upon only by threads in the same
process as the thread that initialized that mutex.

• If the process-shared attribute’s value is PTHREAD_PROCESS_SHARED, the
mutex can be operated upon by any thread that has access to the memory
where the mutex is allocated, even if these threads are in different
processes.

Objects and Operations 2–29

Objects and Operations
2.4 Synchronization Objects

2.4.2 Condition Variables
A condition variable is a synchronization object used in conjunction with a
mutex. It allows a thread to block its own execution until some shared data
object reaches a particular state. A mutex controls access to shared data; a
condition variable allows threads to wait for that data to enter a defined state.

The state is defined by a predicate in the form of a Boolean expression. A
predicate may be a Boolean variable in the shared data or the predicate may
be indirect: e.g. testing whether a counter has reached a certain value, or
whether a queue is empty.

Each predicate should have its own unique condition variable. Sharing a single
condition variable between more than one predicate can introduce inefficiency
or errors unless you use extreme care.

Cooperating threads test the predicate and wait on the condition variable
while the predicate is not in the desired state. For example, one thread in
a program produces work-to-do packets and another thread consumes these
packets (does the work). If there are no work-to-do packets when the consumer
thread checks, that thread waits on a work-to-do condition variable. When the
producer thread produces a packet, it signals the work-to-do condition variable.

You must associate a mutex with a condition variable. You may have multiple
condition variables associated with the same mutex—representing different
states of the same data—but you cannot use the same condition variable with
multiple mutexes.

A thread uses a condition variable as follows:

1. A thread locks a mutex for some shared data and then tests the relevant
predicate. If it is not in the proper state, the thread waits on a condition
variable associated with the predicate. Waiting on the condition variable
automatically unlocks the mutex. It is essential that the mutex be
unlocked, because another thread needs to acquire the mutex in order
to put the data in the state required by the waiting thread.

2. When the thread that acquires the mutex puts the data in the appropriate
state, it wakes a waiting thread by signaling or broadcasting the condition
variable.

3. One thread (for signal), or all threads (for broadcast), comes out of the
condition wait state. The threads always resume execution one at a time,
because each thread must resume with the mutex locked (the condition
wait relocks the mutex before returning from the thread). Other threads
waiting on the condition variable remain blocked. Other threads awakened
by a broadcast will block on the mutex until it is unblocked.

2–30 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

When a thread waits on a condition variable, it cannot assume that the
predicate for which it is waiting will be satisfied when the condition variable
wait returns. There are a number of reasons for this behavior. For instance,
condition variable waits may return spuriously, meaning that the return may
not be directly due to some other thread signaling or broadcasting the condition
variable.

There are two reasons for these rules:

1. It can be extremely expensive, especially on a symmetric multiprocessor
(SMP) system, for the implementation to ensure that a condition signal
wakes one and only one thread. It is faster and easier to avoid the extra
complication. Also, a thread awakened by the delivery of a UNIX signal
will return from the condition wait when the signal is dismissed; the wait
predicate may not have changed.

2. Spurious wakeups promote good programming practices. It may often be
difficult to guarantee that a predicate will be true; most often, it’s easy to
determine that it might be true. It is often the case that, after signaling
one thread that a predicate is true, another thread may manipulate the
data in such a way that the predicate will not be true by the time the
signaled thread runs. The solution is to recheck the predicate after the
wait returns.

It is important to wait on the condition variable and evaluate the predicate
in a while loop. This ensures that the program checks the predicate after it
returns from the condition wait.

For example, a thread A may need to wait for a thread B to finish a task X
before thread A proceeds to execute a task Y. Thread B can tell thread A that
it has finished task X by putting a TRUE or FALSE value in a shared variable
(the predicate). When thread A is ready to execute task Y, it looks at the
shared variable to see if thread B is finished (see Figure 2–5).

Objects and Operations 2–31

Objects and Operations
2.4 Synchronization Objects

Figure 2–5 Thread A Waits on Condition Ready

mutex_ready

unlock

YES

NO

lock

Thread A

ready
(lock)
wait

(unlock)

mutex_ready

ZK−3793A−GE

First, thread A locks the mutex named mutex_ready that is associated with the
shared variable named ready. Then it reads the value in ready and compares it
against some expected value. This test is called the predicate. If the predicate
indicates that thread B has finished task X, then thread A can unlock the
mutex and proceed with task Y. If the predicate indicates that thread B has not
yet finished task X, however, then thread A waits for the predicate to change
by calling the pthread_cond_wait() routine. This automatically unlocks
the mutex, allowing thread B to lock the mutex when it has finished task X.
Thread B updates the shared data (predicate) to the state thread A is waiting
for and signals the condition variable by calling the pthread_cond_signal()
routine (see Figure 2–6).

2–32 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

Figure 2–6 Thread B Signals Condition Ready

Signal

unlock

write

mutex_ready

ready=
YES

mutex_ready

X

lock

Thread B

ZK−3792A−GE

Thread B releases its lock on the shared variable’s mutex. As a result of
the signal, thread A wakes up, implicitly regaining its lock on the condition
variable’s mutex. It then verifies that the predicate is in the correct state, and
proceeds to execute task Y (see Figure 2–7).

Objects and Operations 2–33

Objects and Operations
2.4 Synchronization Objects

Figure 2–7 Thread A Wakes and Proceeds

unlock

read

lock
mutex_ready

(wakeup)

Thread A

ready=
YES

Y

ZK−3794A−GE

Note that although the condition variable is used for communication among
threads, the communication is anonymous. Thread B does not necessarily
know that thread A is waiting on the condition variable that thread B signals,
and thread A does not know that it was thread B that awakened it from its
wait on the condition variable.

Use the pthread_cond_init() routine to initialize a condition variable. To
create condition variables as part of your program’s one-time initialization
code, see Section 3.8. You can also statically initialize extern or static
condition variables using the PTHREAD_COND_INITIALIZER macro provided
in the pthread.h header file.

Use the pthread_cond_wait() routine to cause a thread to wait until the
condition is signaled or broadcast. This routine specifies a condition variable
and a mutex that you have locked. If you have not locked the mutex, the
results of pthread_cond_wait() are unpredictable.

2–34 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

The pthread_cond_wait() routine automatically unlocks the mutex and causes
the calling thread to wait on the condition variable until another thread calls
one of the following routines:

• pthread_cond_signal(), to wake one thread that is waiting on the
condition variable

• pthread_cond_broadcast(), to wake all threads that are waiting on a
condition variable

• pthread_cond_signal_int_np() or pthread_cond_sig_preempt_int_np(),
to wake a thread from a signal handler (for Tru64 UNIX) or AST routine
(for OpenVMS). There are special restrictions on these functions (see
Part II).

If a thread signals or broadcasts a condition variable and there are no threads
waiting at that time, the signal or broadcast has no effect. The next thread
to wait on that condition variable blocks until the next signal or broadcast.
(Alternatively, the nonportable pthread_cond_signal_int_np() routine creates
a pending wake condition, which causes the next wait on the condition variable
to complete immediately.)

If you want to limit the time that a thread waits on a condition variable, use
the pthread_cond_timedwait() routine. This routine specifies the condition
variable, mutex, and absolute time at which the wait should expire if the
condition variable has not been signaled or broadcast.

You can destroy a condition variable and reclaim its storage by calling the
pthread_cond_destroy() routine. Use this routine only after the condition
variable is no longer needed by any thread. A condition variable cannot be
destroyed while one or more threads are waiting on it.

2.4.3 Condition Variable Attributes
A condition variable attributes object allows you to specify values other
than the defaults for condition variable attributes when you initialize a
condition variable with the pthread_cond_init() routine.

The process-shared attribute specifies whether a condition variable can be
operated upon by threads in only one process or by threads in more than one
process, as follows:

• If the process-shared attribute’s value is PTHREAD_PROCESS_PRIVATE (the
default), the condition variable can be operated upon only by threads in the
same process as the thread that initialized that condition variable.

Objects and Operations 2–35

Objects and Operations
2.4 Synchronization Objects

• If the process-shared attribute’s value is PTHREAD_PROCESS_SHARED, the
condition variable can be operated upon by any thread that has access
to the memory where the condition variable is allocated, even if it those
threads are in different processes.

2.4.4 Read-Write Locks
A read-write lock is a synchronization object for protecting shared data
that can be accessed concurrently by more than one of the program’s threads.
Unlike a mutex, a read-write lock distinguishes between shared read and
exclusive write operations on the shared data object.

Use a read-write lock to protect shared data that is read frequently but less
frequently modified. For example, when you build a cache of recently accessed
information, many threads might simultaneously examine the cache without
conflict, but when a thread must update the cache it must have exclusive
access.

When a thread locks a read-write lock, it must specify either shared read
access or exclusive write access. Many threads may simultaneously acquire
a read-write lock for read access, as long as there are no threads waiting for
write access. A thread that wants read access cannot acquire the read-write
lock if any thread has already acquired the read-write lock for write access;
such a thread will block (wait) on the read-write lock. A thread trying to
acquire the read-write lock for write access cannot continue if another thread
has already acquired the read-write lock for either write access or read access;
such a thread will block (wait) on the read-write lock.

2.4.4.1 Thread Priority and Writer Precedence for Read-Write Locks
If more than one thread is waiting for read access to a read-write lock, when
the lock becomes available all of the threads will acquire the lock for read
access.

If more than one thread is waiting for write access to a read-write lock, when
the lock becomes available the thread in that group with the highest priority
will acquire the lock for write access.

If both reader threads and writer threads are waiting for access to a read-write
lock at the time the lock becomes available, one of the writer threads will
acquire the lock, and the threads waiting for read access will continue to block.

The Threads Library implements ‘‘writer precedence’’ for read-write locks. A
thread cannot acquire a read-write lock for read access if at least one thread
is waiting for write access, even if other threads currently have read access.
When a read-write lock is released, a waiting writer will be released if there
are any, rather than releasing any waiting readers. Because readers usually

2–36 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

outnumber writers, and read access occurs more frequently, writer precedence
is needed to avoid ‘‘starvation’’. Without writer precedence, it would be possible
that the read-write lock was always locked for read access, and writers would
never run.

2.4.4.2 Initializing and Destroying a Read-Write Lock
Use the pthread_rwlock_init() routine to create and initialize a new read-
write lock object.

Use the pthread_rwlock_destroy() routine to destroy a previously initialized
read-write lock object.

You can initialize an extern or static read-write lock object using the
PTHREAD_RWLOCK_INITIALIZER macro provided in the pthread.h header file.

2.4.4.3 Read-Write Lock Attributes
By default, a new read-write lock object’s attributes have default values.
To create a new read-write lock object with nondefault attributes, call the
pthread_rwlock_init() routine and specify a read-write lock attributes object.
Use the pthread_rwlockattr_init() routine to create a new read-write lock
attributes object, and use the pthread_rwlockattr_destroy() routine to
destroy a read-write lock attributes object.

There is one settable attribute for a read-write lock object, the process-shared
attribute. To set and access the value of the process-shared attribute of a read-
write lock attributes object, use the pthread_rwlockattr_getpshared() and
pthread_rwlockattr_setpshared() routines, respectively.

2.5 Process-Shared Synchronization Objects
You can create synchronization objects (that is, mutexes, condition variables,
and read-write locks) that protect data that is shared among threads running
in different processes. These are called process-shared synchronization
objects.

Note

This version of the Threads Library supports process-shared
synchronization objects for Tru64 UNIX systems only.

The following routines are not supported on OpenVMS Alpha and
OpenVMS VAX systems:

pthread_condattr_getpshared()
pthread_condattr_setpshared()
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()

Objects and Operations 2–37

Objects and Operations
2.5 Process-Shared Synchronization Objects

pthread_rwlockattr_getpshared()
pthread_rwlockattr_setpshared()

2.5.1 Programming Considerations
On Tru64 UNIX systems, a process-shared synchronization object is a kernel
object. Performing any operation on such an object requires a call into the
kernel and thus is of higher cost than the same operation on a process-specific
synchronization object.

When debugging a process-shared synchronization object, the debugger cannot
currently display the mutex, nor its owner or waiting threads.

As is the case for process-specific synchronization objects, a process-shared
synchronization object must be initialized only once; you cannot initialize it
in each process that uses it. For independent processes that share a common
synchronization protocol using process-shared synchronization objects, there
must be some mechanism to determine which single process will initialize
those objects.

For example, if multiple processes connect to a named memory section, all but
one will fail, and the one successful process should have the responsibility of
initializing any global process-shared synchronization objects in that memory
section. (The other processes must also use some mechanism for waiting until
the process-shared object is initialized before attempting to use the shared
memory section.)

2.5.2 Process-Shared Mutexes
You can create a mutex that protects data that is shared among threads
running in different processes. This is called a process-shared mutex.

Create a process-shared mutex by using the pthread_mutexattr_setpshared()
routine to set the process-shared attribute in an initialized mutex attributes
object and then use that attributes object in a call to pthread_mutex_init().

2.5.3 Process-Shared Condition Variables
You can create a condition variable used to communicate changes to data
that is shared among threads running in different processes. This is called a
process-shared condition variable.

Create a process-shared condition variable by using the
pthread_condattr_setpshared() routine to set the process-shared attribute in
an initialized condition variable attributes object and then use that attributes
object in a call to pthread_cond_init().

2–38 Objects and Operations

Objects and Operations
2.5 Process-Shared Synchronization Objects

2.5.4 Process-Shared Read-Write Locks
You can create a read-write lock that protects data that is shared among
threads running in different processes. This is called a process-shared read-
write lock.

Create a process-shared read-write lock by using the
pthread_rwlockattr_setpshared() routine to set the process-shared attribute
in an initialized read-write lock attributes object and then use that attributes
object in a call to pthread_rwlock_init().

2.6 Thread-Specific Data
Each thread can use an area of memory private to the Threads Library where
it stores thread-specific data. Use this memory to associate arbitrary data with
a thread’s context. Consider this as the ability to add user-specified fields to
the current thread’s context or as global variables that have private values in
each thread.

A thread-specific data key is shared by all threads within the process—each
thread has its own unique value for that shared key.

Use the following routines to create and access thread-specific data:

• Use the pthread_key_create() routine to create a unique key value. One
call to pthread_key_create() creates a thread-specific data key shared
by all threads. In addition, your program can specify a destructor routine
to destroy the context value associated with this key when any thread
terminates.

The process must create each key exactly once—otherwise, subsequent
creates will overwrite the first. See Section 3.8 for information about the
one-time initialization in a threaded environment, or use the operating
system’s initialization mechanisms (the Tru64 UNIX _ _init_* routines or
the OpenVMS LIB$INITIALIZE routine).

• Use pthread_setspecific() to associate thread-specific data values with a
key value. Each thread can associate its own private data with the shared
key.

For example, each thread might store a pointer to a block of dynamically
allocated memory that it has reserved. Although each thread has its own
block of memory, your code always uses the same key to get the current
thread’s block.

• Use pthread_getspecific() to obtain the data associated with a key. This
routine obtains the current thread’s thread-specific data value associated
with a specified key.

Objects and Operations 2–39

3
Programming with Threads

This chapter discusses programming disciplines that you should follow as
you use Threads Library routines in your programs. Pertinent examples
include programming for asynchronous execution, choosing a synchronization
mechanism, avoiding priority scheduling problems, making code thread-safe,
and working with code that is not thread-safe.

3.1 Designing Code for Asynchronous Execution
When programming with threads, always keep in mind that the execution of a
thread is inherently asynchronous with respect to other threads running in the
system (or in the process).

In short, there is no guarantee of when a thread will start. It can start
immediately or not for a significant period of time, depending on the priority
of the thread in relation to other threads that are currently running. When a
thread will start can also depend on the behavior of other processes, as well as
on other threaded subsystems within the current process.

You cannot depend upon any synchronization between two threads unless
you explicitly code that synchronization into your program using one of the
following:

• Mutexes or read-write locks

• A properly tested application predicate loop on a condition variable

• A call to join with a thread you expect to terminate

• An operating system synchronization mechanism, such as a file system
read, an OpenVMS event flag wait, or a Tru64 UNIX semaphore wait

• An equivalent hardware construct, such as VAX interlocked instructions or
Alpha load locked/store conditional sequences and memory barriers

Programming with Threads 3–1

Programming with Threads
3.1 Designing Code for Asynchronous Execution

On a uniprocessor, the Threads Library, in most cases, will context-switch
threads in user mode, within a single operating system process. (This is true
except for system contention scope threads on Tru64 UNIX.) Context switches
between such threads occur only at relatively determinate times, such as when
you make a blocking call to the threads library or when a timeslice interrupt
occurs. This behavior might be termed ‘‘slightly asynchronous,’’ because such a
library tolerates many classes of errors in your application.

On a multiprocessor system, the Threads Library may run more than one
application thread simultaneously. Many incautious programming techniques
that will not usually cause trouble on a uniprocessor will cause trouble–often
in ways that are difficult to isolate and fix–on a multiprocessor.

The following subsections present examples of programming errors.

3.1.1 Avoid Passing Stack Local Data
Avoid creating a thread with an argument that points to stack local data, or to
global or static data that is serially reused for a sequence of threads.

Specifically, the thread started with a pointer to stack local data may not start
until the creating thread’s routine has returned, and the storage may have
been changed by other calls. The thread started with a pointer to global or
static data may not start until the storage has been reused to create another
thread.

3.1.2 Initialize Objects Before Thread Creation
Initialize objects (such as mutexes) or global data that a thread uses before
creating that thread.

On ‘‘slightly asynchronous’’ uniprocessor systems this may seem safe, because
the thread will probably not run until the creator blocks. Thus, the error can
go undetected initially. On a multiprocessor, or even on a new release of the
Threads Library with different timeslicing behavior, the created thread may
run immediately, before the data has been initialized. This can lead to failures
that are difficult to detect. Note that a thread may run to completion, before
the call that created it returns to the creator. The system load may affect the
timing as well.

Before your program creates a thread, it should set up all requirements that
the new thread needs in order to execute. For example, if your program must
set the new thread’s scheduling parameters, do so with attributes objects
when you create it, rather than trying to use pthread_setschedparam() or
other routines afterwards. To set global data for the new thread or to create
synchronization objects, do so before you create the thread, else set them in a
pthread_once() initialization routine that is called from each thread.

3–2 Programming with Threads

Programming with Threads
3.1 Designing Code for Asynchronous Execution

3.1.3 Do Not Use Scheduling As Synchronization
Avoid using the scheduling policy and scheduling priority attributes of threads
as a synchronization mechanism.

In a uniprocessor system, only one thread can run at a time, and since a
higher-priority thread cannot be preempted by a lower-priority running thread,
a thread running at higher priority might erroneously be presumed not to need
a mutex to access shared data.

On a multiprocessor system, higher- and lower-priority threads are likely to
run at the same time. Situations can even arise where higher-priority threads
are waiting to run while the threads that are running have a lower priority.

Regardless of whether your code will run only on a uniprocessor implementa-
tion, never try to use scheduling as a synchronization mechanism. Even on
a uniprocessor system, your SCHED_FIFO thread can become blocked on a
mutex (perhaps in a called library routine), on an I/O operation, or even a page
fault. Any of these might allow a lower priority thread to run.

Programming with Threads 3–3

Programming with Threads
3.2 Memory Synchronization Between Threads

3.2 Memory Synchronization Between Threads
Your multithreaded program must ensure that access to data shared between
threads is synchronized with the system’s memory subsystem. While any
written data will, eventually, be seen by other threads, it is essential for
communication that some writes appear in a particular sequence. For example,
you want a thread that follows a queue link to see the data written to the enxt
queue entry. This requires explicit memory synchronization.

The POSIX standard requires that, when calling the following routines, a
thread synchronizes its memory access with respect to other threads:

fork() pthread_cond_signal()

pthread_create() pthread_cond_broadcast()

pthread_join() sem_post()

pthread_mutex_lock() sem_trywait()

pthread_mutex_trylock() sem_wait()

pthread_mutex_unlock() semop()

pthread_cond_wait() wait()

pthread_cond_timedwait() waitpid()

pthread_rwlock_*()

$HIBER

$WAKE

$WAIT*

If a call to one of these routines returns an error, synchronization is not
guaranteed. For example, an unsuccessful call to pthread_mutex_trylock()
does not necessarily provide actual synchronization.

Synchronization is a ‘‘protocol’’ among cooperating threads, not a single
operation. That is, unlocking a mutex does not guarantee memory
synchronization with all other threads—only with threads that later perform
some synchronization operation themselves, such as locking a mutex.

3.3 Sharing Memory Between Threads
Most threads do not operate independently. They cooperate to accomplish a
task, and cooperation requires communication. There are many ways that
threads can communicate, and which method is most appropriate depends on
the task.

3–4 Programming with Threads

Programming with Threads
3.3 Sharing Memory Between Threads

Threads that cooperate only rarely (for example, a boss thread that only sends
off a request for workers to do long tasks) may be satisfied with a relatively
slow form of communication. Threads that must cooperate more closely (for
example, a set of threads performing a parallelized matrix operation) need fast
communication—maybe even to the extent of using machine-specific hardware
operations.

Most mechanisms for thread communication involve the use of memory,
exploiting the fact that all threads within a process share their full address
space. Although all addresses are shared, there are three kinds of memory
that are characteristically used for communication. The following sections
describe the scope (or, the range of locations in the program where code can
access the memory) and lifetime (or, the length of time use of the memory is
invalid) of each of the three types of memory.

3.3.1 Using Static Memory
Static memory is allocated by the language compiler when it translates
source code, so the scope is controlled by the rules of the compiler. For
example, in the C language, a variable declared as extern is shared by all
scopes where the name is defined anywhere, and a static variable is private
to the source file or routine, depending on where it is declared.

In this discussion, static memory is not the same as the C language static
storage class. Rather, static memory refers to any variable that is permanently
allocated at a particular address for the life of the program.

It is appropriate to use static memory in your multithreaded program when
you know that only one instance of an object exists throughout the application.
For example, if you want to keep a list of active contexts or a mutex to control
some shared resource, you would not want individual threads to have their
own copies of that data.

The scope of static memory depends on your programming language’s scoping
rules. The lifetime of static memory is the life of the program.

3.3.2 Using Stack Memory
Stack memory is allocated by code generated by the language compiler at run
time, generally when a routine is initially called. When the program returns
from the routine, the storage ceases to be valid (although the addresses still
exist and might be accessible).

Generally, the storage is valid while the routine runs, and the actual address
can be calculated and passed to other threads; however, this depends on
programming language rules. If you pass the address of stack memory to
another thread, you must ensure that all other threads are finished processing

Programming with Threads 3–5

Programming with Threads
3.3 Sharing Memory Between Threads

that data before the routine returns; otherwise the stack will be cleared, and
values might be altered by subsequent calls, page fault handling, or other
interrupts. The other threads will not be able to determine that this has
happened, and erroneous behavior will result.

The scope of stack memory is the routine or a block within the routine. The
lifetime is no longer than the time during which the routine or block executes.

3.3.3 Using Dynamic Memory
Dynamic memory is allocated by the program as a result of a call to some
memory management routine (for example, the C language run-time routine
malloc() or the OpenVMS common run-time routine LIB$GET_VM).

Dynamic memory is referenced through pointer variables. Although the pointer
variables are scoped depending on their declaration, the dynamic memory itself
has no intrinsic scope or lifetime. It can be accessed from any routine or thread
that is given its address and will exist until explicitly made free. In a language
supporting automatic garbage collection, it will exist until the run-time system
detects that there are no references to it. (If your language supports garbage
collection, be sure the garbage collector is thread-safe.)

The scope of dynamic memory is anywhere a pointer containing the address
can be referenced. The lifetime is from allocation to deallocation.

Typically dynamic memory is appropriate to manage persistent context. For
example, in a reentrant routine that is called multiple times to return a stream
of information (such as to list all active connections to a server or to return a
list of users), using dynamic memory allows the program to create multiple
contexts that are independent of all the program’s threads. Thus, multiple
threads could share a given context, or a single thread could have more than
one context.

3.4 Managing a Thread’s Stack
For each thread created by your program, the Threads Library sets a default
stack size that is acceptable to most applications. You can also set the stacksize
attribute in a thread attributes object, to specify the stack size needed by the
next thread created.

This section discusses the cases in which the stack size is insufficient (resulting
in stack overflow) and how to determine the optimal size of the stack.

Most compilers on Compaq VAX based systems do not probe the stack. This
makes stack overflow failure modes unpredictable and difficult to analyze. Be
especially careful to use as little stack memory as practical.

3–6 Programming with Threads

Programming with Threads
3.4 Managing a Thread’s Stack

Most compilers on Compaq Alpha based systems generate code in the procedure
prologue that probes the stack, which detects if there is not enough space for
the procedure to run.

3.4.1 Sizing the Stack
To determine the required size of a thread’s stack, sum up the sizes of the
frames, including local variables, for the deepest call tree. Add to that number
an extra amount of memory to accommodate interrupts and context switching.
Determining this figure is difficult because stack frames vary in size and
because it might not be possible to estimate the depth of library routine call
frames.

Compaq’s Visual Threads includes a number of tools and procedures to measure
and monitor stack use. See the Visual Threads product’s online help for more
information.

You can also run your program using a profiling tool that measures actual
stack use. This is commonly done by ‘‘poisoning’’ the stack before it is used
by writing a distinctive pattern, and then checking for that pattern after the
thread completes. Remember: Use of profiling or monitoring tools typically
increases the amount of stack memory that your program uses.

3.4.2 Using Stack Overflow Warning and Stack Guard Areas
By default, at the overflow end of each thread’s stack, the Threads Library
allocates an overflow warning area followed by a guard area. These two
areas can help a multithreaded program detect overflow of a thread’s stack.

Tru64 UNIX 5.0 and OpenVMS Alpha 7.2 include overflow warning support
to allow the reporting of stack overflows while a thread can still be assured of
executing code. The warning area is a page (or more) that is initially protected
to trap writes, but then becomes writable so that it can be used to allow
reporting or recovering from the overflow. (On Tru64 UNIX, the warning area
is again protected once an overflow has been handled; on OpenVMS it remains
unprotected.)

A guard area is a region of no access memory. When the thread attempts to
access a memory location within this region, a memory addressing violation
occurs. For a thread that allocates large data structures on the stack, create
that thread using a thread attributes object in which a large guardsize
attribute value has been set. A large stack guard region can help to prevent
one thread from overflowing into another thread’s stack region.

The pages of memory that form a stack guard region are also known as guard
pages or ‘‘red zone’’; the overflow warning area is also known as a ‘‘yellow
zone’’.

Programming with Threads 3–7

Programming with Threads
3.4 Managing a Thread’s Stack

3.4.3 Diagnosing Stack Overflow Errors
A process can produce a memory access violation (or segmentation fault) when
it overflows its stack. As a first step in debugging this behavior, it is often
necessary to run the program under the control of your system’s debugger
to determine which thread’s stack has overflowed. However, if the debugger
shares resources with the target process (as under OpenVMS), perhaps
allocating its own data objects on the target process’ stack, the debugger might
not operate properly when the stack overflows. In this case, you might be
required to analyze the target process by means other than the debugger.

If a thread receives a memory access exception during a routine call or when
accessing a local variable, increase the size of the thread’s stack. However, not
all memory access violations indicate a stack overflow.

For programs that you cannot run under a debugger, determining a stack
overflow is more difficult. This is especially true if the program continues to
run after receiving a memory access exception. For example, if a stack overflow
occurs while a mutex is locked, the mutex might not be released as the thread
recovers or terminates. When the program attempts to lock that mutex again,
it could hang.

To set the stacksize attribute in a thread attributes object, use the
pthread_attr_setstacksize() routine. (See Section 2.3.2.4 for more
information.)

3.5 Scheduling Issues
There are programming issues that are unique to the scheduling attributes of
threads.

3.5.1 Real-Time Scheduling
Use care when writing code that uses real-time scheduling (i.e. FIFO and RR
policies) to control the priority of threads:

• Review Section 3.1. Scheduling of threads is not the same as
synchronization of threads.

• Giving threads higher priority does not necessarily make your code run
faster. Real-time priority adds overhead that can slow a program down,
especially when interfacing with other libraries. For example, a higher-
priority thread that polls for keyboard input may block work being done by
other threads.

3–8 Programming with Threads

Programming with Threads
3.5 Scheduling Issues

• Watch for pitfalls like priority inversion. It is best to avoid relying on
real-time scheduling, except where necessary to meet design goals. On the
other hand, most systems that interact with external devices have some
real-time aspect.

• Avoiding multiple priorities and/or policies increases the complexity of the
program: this complexity may cost more in performance than the addition
of priorities provides, resulting in a performance loss over an application
which does not use priorities.

3.5.2 Priority Inversion
Priority inversion occurs when the interaction among a group of three or
more threads causes that group’s highest-priority thread to be blocked from
executing. For example, a higher-priority thread waits for a resource locked by
a low-priority thread, and the low-priority thread waits while a middle-priority
thread executes. The higher-priority thread is made to wait while a thread of
lower priority (the middle-priority thread) executes.

You can address the phenomenon of priority inversion as follows:

• To avoid priority inversion, associate a priority (at least as high as the
highest-priority thread that will use it) with each resource and force any
thread using that object to first increase its priority to that associated with
the object.

• To minimize the chance that an occurrence of priority inversion will cause
a complete blockage of higher-priority threads, use the (default) throughput
scheduling policy. The throughput scheduling policy allows even low-
priority threads to execute eventually and to release the resources they
hold. The FIFO and RR scheduling policies do not provide for resumption
of the low-priority thread if the middle-priority thread executes indefinitely.

3.5.3 Dependencies Among Scheduling Attributes and Contention
Scope

On Tru64 UNIX systems, to use high (real-time) thread scheduling priorities, a
thread with system contention scope must run in a process with root privileges.
On the other hand, a thread with process contention scope has access to all
levels of priority without requiring special privileges.

Thus, if a process that is not privileged attempts to create another high priority
thread with system contention scope, the creation will fail.

Programming with Threads 3–9

Programming with Threads
3.6 Using Synchronization Objects

3.6 Using Synchronization Objects
The following sections discuss how to determine when to use a mutex with or
without a condition variable, and how to prevent two erroneous behaviors that
are common in multithreaded programs: race conditions and deadlocks.

Also discussed is why you should signal a condition variable with the
associated mutex locked.

3.6.1 Distinguishing Proper Usage of Mutexes and Condition Variables
Use a mutex for tasks with short duration waits and fine-grained
synchronization (memory access). Examples of a ‘‘fine-grained’’ task are
those that serialize access to shared memory or make simple modifications
to shared memory. This typically corresponds to a critical section of a few
program statements or less.

Mutex waits are not interruptible. Threads waiting to acquire a mutex cannot
be canceled.

Use a condition variable to wait for data to assume a desired state. Condition
variables should be used for tasks with longer duration waits and coarse-
grained synchronization (routine and system calls) Always use a condition
variable with a mutex that protects the shared data being waited for.
Condition variable waits are interruptible.

See Section 2.4.1 and Section 2.4.2 for more information about mutexes and
condition variables.

3.6.2 Avoiding Race Conditions
A race condition occurs when two or more threads perform an operation and
the result of the operation depends on unpredictable timing factors; specifically,
the points at which each thread executes and waits and when each thread
completes the operation.

For example, if two threads execute routines and each increments the same
variable (such as x = x + 1), the variable could be incremented twice and one of
the threads could use the wrong value. For example:

1. Thread A increments variable x.

2. Thread A is interrupted (or blocked, or scheduled off), and thread B is
started.

3. Thread B starts and increments variable x.

4. Thread B is interrupted (or blocked, or scheduled off), and thread A is
started.

3–10 Programming with Threads

Programming with Threads
3.6 Using Synchronization Objects

5. Thread A checks the value of x and performs an action based on that value.

The value of x differs from when thread A incremented it, and the
program’s behavior is incorrect.

Race conditions result from lack of (or ineffectual) synchronization. To avoid
race conditions, ensure that any variable modified by more than one thread has
only one mutex associated with it, and ensure that all accesses to the variable
are made after acquiring that mutex, or use hardware features such as Alpha
land-locked/store-conditional instruction sequences.

See Section 3.6.4 for another example of a race condition.

3.6.3 Avoiding Deadlocks
A deadlock occurs when a thread holding a resource is waiting for a resource
held by another thread, while that thread is also waiting for the first thread’s
resource. Any number of threads can be involved in a deadlock if there is at
least one resource per thread. A thread can deadlock on itself. Other threads
can also become blocked waiting for resources involved in the deadlock.

Following are three techniques you can use to avoid deadlocks:

• Use sequence numbers with mutexes. Associate a sequence number with
each mutex and acquire mutexes in sequence. Never attempt to acquire
a mutex with a sequence number lower than that of a mutex the thread
already holds.

If a thread needs to acquire a mutex with a lower sequence number, it must
first release all mutexes with a higher sequence number (after ensuring
that the protected data is in a consistent state).

• Use a ‘‘try and back off’’ algorithm when acquiring multiple mutexes. Use
pthread_mutex_trylock() to lock each additional mutex. If any call
to pthread_mutex_trylock() returns EBUSY, unlock all of the mutexes
(including the first one locked with pthread_mutex_trylock()), and start
over.

• Avoid locking more than one mutex at the same time.

3.6.4 Signaling a Condition Variable
Signaling the condition variable while holding the lock allows the Threads
Library to perform certain optimizations which can result in more efficient
behaviors in the working thread. In addition, doing so resolves a race condition
which results if that signal might cause the condition variable to be deleted.

Programming with Threads 3–11

Programming with Threads
3.6 Using Synchronization Objects

The following C code fragment is executed by a releasing thread (Thread A) to
wake a blocked thread:

pthread_mutex_lock (m);

... /* Change shared variables to allow another thread to proceed */

predicate = TRUE;
pthread_mutex_unlock (m);

!
pthread_cond_signal (cv); "

The following C code fragment is executed by a potentially blocking thread
(thread B):

pthread_mutex_lock (m);
while (!predicate)

pthread_cond_wait (cv, m);

pthread_mutex_unlock (m);
pthread_cond_destroy (cv);

! If thread B is allowed to run while thread A is at this point, it finds
the predicate true and continues without waiting on the condition
variable. Thread B might then delete the condition variable with the
pthread_cond_destroy() routine before thread A resumes execution.

" When thread A executes this statement, the condition variable does not
exist and the program fails.

These code fragments also demonstrate a race condition; that is, the routine,
as coded, depends on a sequence of events among multiple threads, but does
not enforce the desired sequence. Signaling the condition variable while still
holding the associated mutex eliminates the race condition. Doing so prevents
thread B from deleting the condition variable until after thread A has signaled
it.

This problem can occur when the releasing thread is a worker thread and
the waiting thread is a boss thread, and the last worker thread tells the boss
thread to delete the variables that are being shared by boss and worker.

Code the signaling of a condition variable with the mutex locked as follows:

pthread_mutex_lock (m);
...

/* Change shared variables to allow some other thread to proceed */
pthread_cond_signal (cv);
pthread_mutex_unlock (m);

3–12 Programming with Threads

Programming with Threads
3.6 Using Synchronization Objects

3.6.5 Static Initialization Inappropriate for Stack-Based Synchronization
Objects

Although it is acceptable to the compiler, you cannot use the following standard
macros (or any other equivalent mechanism) to initialize synchronization
objects that are allocated on the stack:

PTHREAD_MUTEX_INITIALIZER
PTHREAD_COND_INITIALIZER
PTHREAD_RWLOCK_INITIALIZER

The Threads Library detects some cases of misuse of static initialization of
automatically allocated (stack-based) thread synchronization objects. For
instance, if the thread on whose stack a statically initialized mutex is allocated
attempts to access that mutex, the operation fails and returns [EINVAL]. If
the application does not check status returns from Threads Library routines,
this failure can remain unidentified. Further, if the operation was a call to
pthread_mutex_lock(), the program can encounter a thread synchronization
failure, which in turn can result in unexpected program behavior including
memory corruption. (For performance reasons, the Threads Library does not
currently detect this error when a statically initialized mutex is accessed
by a thread other than the one on whose stack the object was automatically
allocated.)

If your application must allocate a thread synchronization object on the
stack, the application must initialize the object before it is used by calling
one of the routines pthread_mutex_init(), pthread_cond_init(), or
pthread_rwlock_init(), as appropriate for the object. Your application
must also destroy the thread synchronization object before it goes out
of scope (for instance, due to the routine’s returning control or raising
an exception) by calling one of the routines pthread_mutex_destroy(),
pthread_cond_destroy(), or pthread_rwlock_destroy(), as appropriate for
the object.

3.7 Granularity Considerations
Granularity refers to the smallest unit of storage (that is, bytes, words,
longwords, or quadwords) that a host computer can load or store in one
machine instruction. Granularity considerations can affect the correctness of
a program in which concurrent or asynchronous access can occur to separate
pieces of data stored in the same memory granule. This can occur in a
multithreaded program, where different threads access the data, or in any
program that has any of the following characteristics:

• Accesses data in memory that is shared with other processes

Programming with Threads 3–13

Programming with Threads
3.7 Granularity Considerations

• Accesses data that can be accessed by asynchronous device drivers, signal
handlers (on Tru64 UNIX), or ASTs (on OpenVMS)

• Accesses data objects that can be accessed by a continuable exception
handler

The subsections that follow explain the granularity concept, why it can affect
the correctness of a multithreaded program, and techniques the programmer
can use to prevent the granularity-related race condition known as word
tearing.

3.7.1 Determinants of a Program’s Granularity
A computer’s processor typically makes available some set of granularities
to programs, based on the processor’s architecture, cache architecture, and
instruction set. However, the computer’s natural granularity also depends
on the organization of the computer’s memory and its bus architecture. For
example, even if the processor ‘‘naturally’’ reads and writes 8-bit memory
granules, a program’s memory transfers may, in fact, occur in 32- or 64-bit
memory granules.

On a computer that supports a set of granularities, the compiler determines
a given program’s actual granularity by the instructions it produces for the
program to execute. For example, a given compiler on Alpha systems might
generate code that causes every memory access to load or store a 64-bit word,
regardless of the size of the data object specified in the application’s source
code. In this case, the application has a 64-bit word actual granularity. For
this application, 8-bit, 16-bit, and 32-bit writes are not atomic with respect to
other memory operations that overlap the same 64-bit memory granule.

To provide a run-time environment for applications that is consistent and
coherent, an operating system’s services and libraries should be built so that
they provide the same actual granularity. When this is the case, an operating
system can be said to provide a system granularity to the applications that it
hosts. (A system’s system granularity is typically reflected in the default actual
granularity that the system’s compilers encode when producing an object file.)

When preparing to port a multithreaded application from one system to
another, you should determine whether there is a difference in the system
granularities between the source and target systems. If the target system
has a larger system granularity than the source system, you should become
informed about the programming techniques presented in the sections that
follow.

3–14 Programming with Threads

Programming with Threads
3.7 Granularity Considerations

3.7.1.1 Alpha Processor Granularity
Systems based on the Alpha processor family have a quadword (64-bit) natural
granularity.

Versions EV4 and EV5 of the Alpha processor family provide instructions for
only longword- and quadword-length atomic memory accesses. Newer Alpha
processors (EV5.6 and later) support byte- and word-length atomic memory
accesses as well as longword- and quadword-length atomic memory accesses.
(However, there is no way to ensure that a compiler uses the byte or word
memory references when generating code for your application.)

Note

On systems using Tru64 UNIX Version 4.0 and later:

If you use Compaq C or Compaq C++ to compile your application’s
modules on a system that uses the EV4 or EV5 version of the Alpha
processor, you can use the -arch56 compiler switch to request the
compiler to produce instructions available in the Alpha processor
version EV5.6 or later, including instructions for byte- and word-length
atomic memory access, as needed.

When an application compiled with the -arch56 switch runs under
Tru64 UNIX Version 4.0 or later, with a newer Alpha processor (that
is, EV5.6 or later), it utilizes that processor’s full instruction set. When
that same application runs under Tru64 UNIX Version 4.0 or later, with
an older Alpha processor (that is, EV4 or EV5), the operating system
performs a software emulation of each instruction that is not available
to the older processor; however, this is considerably slower than if the
same application was run on a newer Alpha processor.

See the Compaq C and Compaq C++ compiler documentation for more
information about the -arch56 switch.

On Tru64 UNIX systems, use the /usr/sbin/psrinfo -v command to
determine the version(s) of your system’s Alpha processor(s).

3.7.1.2 VAX Processor Granularity
Systems based on the VAX processor family have longword (32-bit) natural
granularity, but all instructions can access unaligned data safely (though
perhaps with a substantial performance penalty).

Programming with Threads 3–15

Programming with Threads
3.7 Granularity Considerations

For more information about the granularity considerations of porting an
application from an OpenVMS VAX system to an OpenVMS Alpha systems,
consult the document Migrating to an OpenVMS System in the OpenVMS
documentation set.

3.7.2 Compiler Support for Determining the Program’s Actual
Granularity

Table 3–1 summarizes the actual granularities that are provided by the
respective compilers on the respective Compaq platforms.

Table 3–1 Default and Optional Granularities

Platform Compiler

Default
Granularity
Setting

Optional
Granularity
Settings

Tru64 UNIX Versions 4.0D and
later (Alpha only)

C/C++ quadword longword,
byte/word on
EV5.6

OpenVMS Alpha Version 7.2 C/C++ quadword byte, word

OpenVMS VAX Version 7.2 C/C++ longword None

Of course, for compilers that support an optional granularity setting, it
is possible to compile different modules in your application with different
granularity settings. You might do so to avoid the possibility of word-tearing
race condition, as described below, or to improve the application’s performance.

3.7.3 Word Tearing
In a multithreaded application, concurrent access by different threads to data
that occupy the same memory granule can lead to a race condition known as
word tearing. This situation occurs when two or more threads independently
read the same granule of memory, update different portions of that granule,
then independently (that is, asynchronously) store their respective copies of
that granule. Because the order of the store operations is indeterminate, it is
possible that only the last thread to write the granule continues with a correct
‘‘view’’ of the granule’s contents, and earlier writes could be ‘‘undone’’.

In a multithreaded program the potential for a word-tearing race condition
exists only when both of the following conditions are met:

• Two or more threads can concurrently write distinct pieces of data that
occupy the same memory granule G, where G is a byte, word, longword, or
quadword.

3–16 Programming with Threads

Programming with Threads
3.7 Granularity Considerations

• The application’s actual granularity is sizeof(G) or larger.

For instance, given a multithreaded program that has been compiled to
have longword actual granularity, if any two of the program’s threads can
concurrently update different bytes or words in the same longword, then that
program is, in theory, at risk for encountering a word-tearing race condition.
However, in practice, language-defined restrictions on the alignments of data
may limit the actual number of candidates for a word-tearing scenario, as
described in the next section.

3.7.4 Alignments of Members of Composite Data Objects
The only data objects that are candidates for participating in a word-tearing
race condition are members of composite data objects—that is, C language
structures, unions, and arrays. In other words, the application’s threads might
access different data objects that are members of structures or unions, where
those members occupy the same byte, word, longword, or quadword. Similarly,
the application might access arrays whose elements occupy the same word,
longword, or quadword.

On the other hand, the C language specification allows the compiler to allocate
scalar data objects so that each is aligned on a boundary for the memory
granule that the compiler prefers, as follows:

• For Compaq C and Compaq C++ on Tru64 UNIX Version 4.0D and higher
(Alpha only), and OpenVMS Alpha Version 7.2 systems, alignment of
scalars is always on quadword boundaries.

• For Compaq C and Compaq C++ on OpenVMS VAX Version 7.2 systems,
alignment of scalars is always on longword boundaries.

For the details of the compiler’s rules for aligning scalar and composite
data objects, see the Compaq C and C++ compiler documentation for your
application’s host platforms.

3.7.5 Avoiding Granularity-Related Errors
Compaq recommends that you inspect your multithreaded application’s code
to determine whether a word-tearing race condition is possible for any two
or more of the application’s threads. That is, determine whether any two or
more threads can concurrently write contiguously defined members of the same
composite data object where those members occupy the same memory granule
whose size is greater than or equal to the application’s actual granularity.

Programming with Threads 3–17

Programming with Threads
3.7 Granularity Considerations

If you find that you must change your application to avoid a word-tearing
scenario, there are several approaches available. The simplest techniques
require only that you change the definition of the target composite data
object before recompiling the application. The following sections offers some
suggestions.

3.7.5.1 Changing the Composite Data Object’s Layout
If you can change the organization or layout of the composite data object’s
definition, you should do both of the following:

• Widen the structures or union members to the granule. If that is
unacceptable, define padding storage after each structure or union member
(except the last) or add padding storage to the array’s element definition.
This forces all members/elements to be placed in separate granules by the
compiler.

And,

• (If your system’s compiler offers a choice) Compile the application’s modules
to produce the preferred actual granularity for the application’s target
system.

3.7.5.2 Maintaining the Composite Data Object’s Layout
If you cannot change the organization or layout of the composite data object’s
definition, you should do one of the following:

• (On OpenVMS Alpha or OpenVMS VAX) Compile all application modules
for byte actual granularity. Doing so automatically prevents word-tearing
race conditions for structure or union members and array elements of size
byte or larger that are accessed concurrently by different threads. No other
program modification is required. This may have a performance penalty on
Alpha EV4 and EV5 processors.

Or,

• (On Tru64 UNIX systems) For arrays, add the C language volatile
storage qualifier to the definition of the entire array; for structures, add
volatile to the declaration of only those members that share the pertinent
memory granule. You must also compile the application’s modules using
the Compaq C or Compaq C++ compiler’s -strong-volatile switch. Doing
so causes the compiler to produce code that forces all accesses to those
members to occur as atomic operations. See the description of the -strong-
volatile switch in the Compaq C or Compaq C++ documentation and on
the cc reference page. This may also have a severe performance penalty.

3–18 Programming with Threads

Programming with Threads
3.7 Granularity Considerations

If you must maintain the composite data object’s layout and cannot change the
storage qualifiers for the application’s composite objects, you can instead use
the technique described in the next section.

3.7.5.3 Using One Mutex Per Composite Data Object
If your source code inspection identified an array or a set of contiguously
defined structure or union members that is subject to a word-tearing race
condition, the program can use a mutex that is dedicated to protect all write
accesses by all threads to those data objects, rather than change the definition
of the composite data objects.

To use this technique, create a separate mutex for each composite data object
where any members share a memory granule that is greater than or equal
to the program’s actual granularity. For example, given an application with
quadword actual granularity, if structure members M1 and M2 occupy the same
longword in structure S and those members can be written concurrently by
more than one thread, then the application must create and reserve a mutex
for use only to protect all write accesses by all threads to those two members.

In general, this is a less desirable technique due to performance considerations.
However, if the absolute number of thread accesses to the target data objects
over the application’s run-time will be small, this technique provides explicit,
portable correctness for all thread accesses to the target members.

3.7.6 Identifying Possible Word-Tearing Situations Using Visual
Threads

For Tru64 UNIX systems, the Visual Threads tool can warn the developer
at application run-time that a possible word-tearing situation has been
detected. Enable the UnguardedData rule before running the application.
This rule causes Visual Threads to track whether any memory location (i.e.
granule) in the application has been accessed from two threads without proper
synchronization. This includes detection of word tearing as well as more
straightforward synchronization errors. See the Visual Threads product’s
online help for more information.

Visual Threads is available as part of the Developer’s Toolkit for Tru64 UNIX.

Programming with Threads 3–19

Programming with Threads
3.8 One-Time Initialization

3.8 One-Time Initialization
Your program might have one or more routines that must be executed before
any thread executes code in your facility, but that must be executed only once,
regardless of the sequence in which threads start executing. For example, your
program can initialize mutexes, condition variables, or thread-specific data
keys—each of which must be created only once—in a one-time initialization
routine.

You can use the pthread_once() routine to ensure that your program’s
initialization routine executes only once—that is, by the first thread that
attempts to initialize your program’s resources. Multiple threads can attempt
to call the program initialization routine via the pthread_once() routine, and
the Threads Library ensures that the specified initialization routine is called
only once.

On the other hand, rather than use the pthread_once() routine, your program
could statically initialize a mutex and a flag, then simply lock the mutex and
test the flag. In many cases, this technique might be more straightforward to
implement.

Finally, you can use implicit (and nonportable) initialization mechanisms, such
as OpenVMS LIB$INITIALIZE, Tru64 UNIX dynamic loader _ _init_ code.

3.9 Managing Dependencies Upon Other Libraries
Because multithreaded programming has become common only recently, many
existing code libraries are incompatible with multithreaded uses. For example,
many traditional run-time library routines maintain state across multiple
calls using static storage. This storage can become corrupted if routines are
called from multiple threads at the same time. Even if the calls from multiple
threads are serialized, code that depends upon a sequence of return values
might not work.

For example, the UNIX getpwent(2) routine returns the entries in the
password file in sequence. If multiple threads call getpwent(2) repeatedly,
even if the calls are serialized, no thread will obtain all entries in the password
file. (This is not a problem on Tru64 UNIX, because the state is maintained
using thread-specific data.)

Different library routines are be compatible with multithreaded programming
to different extents. The important distinctions are thread reentrancy and
thread safety.

3–20 Programming with Threads

Programming with Threads
3.9 Managing Dependencies Upon Other Libraries

3.9.1 Thread Reentrancy
A routine is reentrant if it can be used simultaneously when called by
different threads. For example, the standard C run-time library routine
strtok() can be made reentrant most efficiently by adding an argument that
specifies a context for the sequence of tokens. Thus, multiple threads can
simultaneously parse different strings without interfering with each other.

A reentrant routine should have no dependency on static data. Because access
to static data must be synchronized, there is always a performance penalty due
to the cost of synchronizing also in the loss of potential parallelism throughout
the program. A routine that does not use any data that is shared between
threads can proceed without locking.

If you are developing new interfaces, make sure that any persistent context
information (like the last-token-returned pointer in strtok()) is passed
explicitly so that multiple threads can process independent streams of
information independently. Return information to the caller through routine
values, output parameters (where the caller passes the address and length of
a buffer), or by allocating dynamic memory and requiring the caller to free
that memory when finished. Avoid using errno or other global variables for
returning error or diagnostic information; use routine return values instead.

3.9.2 Thread Safety
A routine is thread-safe if it can be called simultaneously from multiple
threads without risk of corruption. If the routine is not actually reentrant,
generally this means that it does some level of locking to prevent
simultaneously active calls in different threads.

Thread-safe routines tend to be less efficient than reentrant routines. For
example, a package that is thread-safe might still block all threads in the
process while one thread executes the code.

Routines such as localtime() or strtok(), which traditionally rely on static
storage, can be made thread-safe by using thread-specific data instead of
static variablesas is done on Tru64 UNIX. This prevents corruption and avoids
the overhead of synchronization. However, using thread-specific data is not
without its own cost, and it is not always the best solution. Using an alternate,
reentrant version of the routine, such as the POSIX strtok_r() interface, is
often preferable.

Programming with Threads 3–21

Programming with Threads
3.9 Managing Dependencies Upon Other Libraries

3.9.3 Lacking Thread Safety
When your program must call a routine that is not thread-safe, your program
must ensure serialization and exclusivity of the unsafe routine across all
threads in the program.

If a routine is not specifically documented as reentrant or thread safe, you are
most safe to assume that it is not safe to use as-is with your multithreaded
program. Never assume that a routine is fully thread safe unless it is expressly
documented as such; a routine can use static data in ways that are not obvious
from its interface. A routine carefully written to be thread-safe but that calls
some other routine that is not thread-safe without proper protection, is itself
not thread safe.

3.9.3.1 Using Mutex Around Call to Unsafe Code
Holding a mutex while calling any unsafe code accomplishes this. All threads
and libraries using the routine should use the same mutex. Note that even if
two libraries carefully lock a mutex around every call to a given routine, if each
library uses a different mutex, the routine is not protected against multiple
simultaneous calls from different libraries.

Note that your program might be required to protect a series of calls, rather
than just a single call, to routines that are not thread safe.

3.9.3.2 Using the Global Lock
To ensure serialization and exclusivity of the unsafe code, the Threads Library
provides one global lock that can be used by all threads in a program when
calling routines or code that is not thread-safe while already holding the lock.
Because there is only one global lock, you do not need to fully analyze all of the
dependencies in unsafe code that your program calls.

Acquire the global lock by calling pthread_lock_global_np(); release the
global lock by calling pthread_unlock_global_np().

The global lock allows a thread to acquire the lock recursively, so that you do
not need to be concerned if you call a routine that also may acquire the global
lock.

Use the global lock whenever calling unsafe routines. All Threads Library
routines are thread-safe.

3.9.3.3 Using or Copying Static Data Before Releasing the Mutex
In many cases your program must protect more than just the call itself to
a routine that is not thread-safe. Your program must use or copy any static
return values before releasing the mutex that is being held.

3–22 Programming with Threads

Programming with Threads
3.9 Managing Dependencies Upon Other Libraries

3.9.4 Use of Multiple Threads Libraries Not Supported
The Threads Library performs user-mode execution context-switching within a
process by exchanging register sets, including the program counter and stack
pointer. If any other code within the process also performs this sort of context
switch, neither the Threads Library nor that other code can ever know the
proper identity of the context which is active at any time. This can result in,
at best, unpredictable behavior—and, at worst, severe errors.

For example, under OpenVMS VAX, the VAX Ada run-time library provides its
own tasking package that does not use Threads Library scheduling. Therefore,
VAX Ada tasking cannot be used within a process that also uses the Threads
Library. (This restriction does not exist for Compaq Ada for Tru64 UNIX or for
OpenVMS Alpha, because it uses the Threads Library.)

3.10 Detecting Error Conditions
The Threads Library can detect some of the following types of errors:

• Application programming interface (API) errors can occur when the
program specifies an invalid parameter or attempts an inappropriate
operation on some Threads Library object.

• Internal errors can occur when the Threads Library determines that
internal information has become corrupted to the point where it cannot
continue operation.

The pthread interface reports API errors by returning an integer value
indicating the type of error.

The Threads Library internal errors result in a bugcheck. The Threads
Library writes a message that summarizes the problem to the process’ current
error device, and (on OpenVMS) writes a file that contains more detailed
information. (On Tru64 UNIX systems, the core file is sufficient for analysis of
the process using the Ladebug debugger.)

By default, the file is named pthread_dump.log and is created in the process’
current (or default) directory. To cause the Threads Library to write the
bugcheck information into a different file, define PTHREAD_CONFIG and set
its dump= major keyword. (See Section C.1 for more information about using
PTHREAD_CONFIG.)

If the Threads Library cannot create the specified file when it performs the
bugcheck, it will try to create the default file. If it cannot create the default
file, it will write the detailed information to the error device.

Programming with Threads 3–23

Programming with Threads
3.10 Detecting Error Conditions

3.10.1 Bugcheck Information
The header message written to the error device starts with a line reporting
that the Threads Library has detected an internal problem and that it is
terminating execution. It also includes the version of the Threads Library. The
message resembles this:

% Threads Library bugcheck (version V3.13-180), terminating execution.

The next line states the reason for the failure. On Tru64 UNIX, this is followed
by process termination with SIGABRT (SIGIOT), which causes writing of a
core dump file. On other platforms, a final line on the error device specifies
the location of the file that contains detailed state information produced by the
Threads Library, as in the following example:

% Dumping to pthread_dump.log

The detailed information file contains information that is usually necessary to
track down the problem.

3.10.2 Interpreting a Bugcheck
The fact that the Threads Library terminated the process with a bugcheck can
mean that some subtle problem in the Threads Library has been uncovered.
However, the Threads Library does not report all possible API errors, and
there are a number of ways in which incorrect code in your program can lead
to a bugcheck.

A common example is the use of any mutex operation or of certain condition
variable operations from within an interrupt routine (that is, a Tru64 UNIX
signal handler or OpenVMS AST routine). This type of programming error
most commonly results in a bugcheck that reports an ‘‘krnSpinLockPrm:
deadlock detected’’ message or a ‘‘Can’t find null thread’’ message. To prevent
this type of error, do not use Threads Library routines other than those with
the _int suffix in their names, such as pthread_cond_signal_int_np() from
an interrupt routine.

In addition, the Threads Library maintains a variety of state information in
memory which can be overwritten by your own code. Therefore, it is possible
for an application to accidentally modify the Threads Library state by writing
through invalid pointers, which can result in a bugcheck or other undesirable
behavior.

3–24 Programming with Threads

Programming with Threads
3.10 Detecting Error Conditions

If you encounter a bugcheck, first check your application for memory
corruptions, calls from AST routines, etc., and then contact your Compaq
support representative and include this information file (or the Tru64 UNIX
core file) along with sample code and output. Always include the full name and
version of the operating system, and any patches that have been installed. If
complete version information is lacking, useful core file analysis might not be
possible.

Programming with Threads 3–25

4
Writing Thread-Safe Libraries

A thread-safe library consists of routines that are coded so that they are safe
to be called from applications that use threads. The Threads Library provides
the thread-independent services (or tis) interface to support writing efficient,
thread-safe code that does not itself use threads.

When called by a single-threaded program, the tis interface provides thread-
independent synchronization services that are low overhead. For instance, tis
routines avoid the use of interlocked instructions and memory barriers.

When called by a multithreaded program, the tis routines also provide full
support for Threads Library synchronization.

The guidelines for using the pthread interface routines also apply to using the
corresponding tis interface routine in a multithreaded environment.

4.1 Features of the tis Interface
Among the key features of the tis interface are:

• Synchronization without linking the thread library with some unique
routines and some routines that correspond to those in the pthread
interface

• Common synchronization data types (such as mutexes and condition
variables) with the pthread interface

• Unique tis synchronization objects (such as the read-write lock which is
different from the pthread read-write lock.

• Support for thread-specific data objects

Implementation of the tis interface library varies by Compaq operating system.
For more information, see this guide’s operating system-specific appendixes.

It is not difficult to create thread-safe code using the tis interface, and it
should be straightforward to modify existing source code that is not thread-safe
to make it thread-safe.

Writing Thread-Safe Libraries 4–1

Writing Thread-Safe Libraries
4.1 Features of the tis Interface

4.1.1 Reentrant Code Required
Your first consideration is whether the language compiler used in translating
the source code produces reentrant code. Most Ada compilers generate
inherently reentrant code because Ada supports multithreaded programming.
On OpenVMS VAX systems, there are special restrictions on using the
VAX Ada compiler to produce code or libraries to be interfaced with the
Threads Library. See Section 3.9.4.

Although the C, C++, Pascal, BLISS, FORTRAN and COBOL programming
languages do not support multithreaded programming directly, compilers for
those languages generally create reentrant code.

4.1.2 Performance of tis Interface Routines
Routines in the tis interface are designed to impose low overhead when
called from a single-threaded environment. For example, locking a mutex is
essentially just setting a bit, and unlocking the mutex clears the bit.

4.1.3 Run-Time Linkage of tis Interface Routines
All operations of tis interface routines require a call into the tis library.
During program initialization, the Threads Library automatically revectors the
program’s run-time linkages to most tis routines. This allows subsequent calls
to those routines to use the normal multithreaded (and SMP-safe) operations.

After the revectoring of run-time linkages has occurred, for example, a call
to tis_mutex_lock() operates exactly as if pthread_mutex_lock() had been
called. Thus, the transition from tis stubs to full Threads Library operation
is transparent to library code that uses the tis interface. For instance, if the
Threads Library is dynamically activated while a tis mutex is acquired, the
mutex can be released normally.

The tis interface deliberately provides no way to determine whether the
Threads Library is active within the process. Thread-safe code should always
act as if multiple threads can be active. To do otherwise inevitably results in
incorrect program behavior, given that the Threads Library can be dynamically
activated into the process at any time.

4.1.4 Cancelation Points
The following routines in the tis interface are cancelation points:

tis_cond_wait()
tis_testcancel()

4–2 Writing Thread-Safe Libraries

Writing Thread-Safe Libraries
4.1 Features of the tis Interface

However, because the tis interface has no mechanism for requesting thread
cancelation, no cancelation requests are actually delivered in these routines
unless threads are present at run-time.

4.2 Using Mutexes
Like the mutexes available through the other pthread interface, tis
mutexes provide synchronization between multiple threads that share
resources. In fact, you can statically initialize tis mutexes using the
PTHREAD_MUTEX_INITIALIZER macro (see the Threads Library pthread.h
header file).

You can assign names to your program’s tis mutexes by statically initializing
them with the PTHREAD_MUTEX_INITWITHNAME_NP macro.

Unlike static initialization, dynamic initialization of tis mutexes is limited
due to the absence of support for mutex attributes objects among tis interface
routines. Thus, for example, the tis_mutex_init() routine can create only
normal mutexes.

If the multithreading run-time environment becomes initialized dynamically,
any tis mutexes acquired by your program remain acquired. The ownership of
recursive and errorcheck mutexes remains valid.

Operations on the global lock are also supported by tis interface routines. The
global lock is a recursive mutex that is provided by the Threads Library for
use by any thread. Your program can use the global lock without calling the
pthread interface by calling tis_lock_global() and tis_unlock_global().

4.3 Using Condition Variables
Tis condition variables behave like condition variables created using
the pthread interface. You can initialize them statically using the
PTHREAD_COND_INITIALIZER macro.

As for tis mutexes, dynamic initialization of tis condition variables is limited
due to the absence of support for condition variable attributes objects among
tis interface routines.

A condition variable wait is useful only when there are other threads.
Your program can have more than one thread only if the Threads Library
multithreading run-time environment is present. In a non-threaded
environment, a wait aborts and signaling or broadcasting a tis mutex does
nothing.

Writing Thread-Safe Libraries 4–3

Writing Thread-Safe Libraries
4.3 Using Condition Variables

For code in a thread-safe library that uses a condition variable, construct
its wait predicate so that the code does not actually require a block on the
condition variable when called in a single-threaded environment. Please see
the tis_io_complete() and tis_sync() reference pages.

4.4 Using Thread-Specific Data
The tis interface routines support the use of thread-specific data. If code
in the process creates keys or sets thread-specific data values before the
multithreading run-time environment is initialized, those keys and values
continue to be available to your program in the initial thread.

4.5 Using Read-Write Locks
A read-write lock is an object that allows the application to control access
to information that can be read concurrently by more than one thread and
that needs to be read frequently and written only occasionally. Routines that
manipulate the tis interface’s read-write lock objects can control access to any
shared resource.

For example, in a cache of recently accessed information, many threads can
simultaneously examine the cache without conflict. When a thread must
update the cache, it must have exclusive access.

Tis read-write locks are completely different from the newer pthread
read-write locks. Currently, the latter have no tis equivalent.

Your program can acquire a read-write lock for shared read access or for
exclusive write access. An attempt to acquire a read-write lock for read access
will block when any thread has already acquired that lock for write access. An
attempt to acquire a read-write lock for write access will block when another
thread has already acquired that lock for either read or write access.

In a multithreaded environment, when both readers and writers are waiting at
the same time for access via an already acquired read-write lock, tis read-write
locks give precedence to the readers when the lock is released. This policy
of ‘‘read precedence’’ favors concurrency because it potentially allows many
threads to accomplish work simultaneously. (Note that this differs from
pthread read-write locks, which have writer precedence.) Figure 4–1 shows
a read-write lock’s behavior in response to three threads (one writer and two
readers) that must access the same memory object.

The tis_rwlock_init() routine initializes a read-write lock by initializing the
supplied tis_rwlock_t structure.

4–4 Writing Thread-Safe Libraries

Writing Thread-Safe Libraries
4.5 Using Read-Write Locks

Figure 4–1 Read-Write Lock Behavior

ZK−7929A−GE

readers/writers

unlock

lock

Time:

writer active

reader waiting

lock free

1 reader active

2 readers active writer waiting

reader active
lock free

writer active

lock free

thread 2
(reader)

thread 3
(reader)

thread 1
(writer)

Your program uses the tis_read_lock() or tis_write_lock() routine to
acquire a read-write lock when access to a shared resource is required.
tis_read_trylock() and tis_write_trylock() can also be called to acquire
a read-write lock. Note that if the lock is already acquired by another caller,
tis_read_trylock() and tis_write_trylock() immediately return [EBUSY],
rather than waiting.

If a non-threaded program manes a tis call that would block (such as a call to
tis_cond_wait(), tis_read_lock() or tis_write_lock()), it is a fatal error
that will abort the program.

Your program calls the tis_rwlock_destroy() routine when it is finished
using a read-write lock. This routine frees the lock’s resources for re-use.

For more information about each tis interface routine that manipulates a
read-write lock, see Part III.

Writing Thread-Safe Libraries 4–5

5
Using the Exceptions Package

This chapter describes how to use the exceptions package and demonstrates
conventions for the modular use of exceptions in a multithreaded program.

This chapter:

• Describes the exceptions package.

• Shows how to declare, initialize, and handle an exception object in your
program.

• Describes the exceptions package’s macros that support exception handling.

• Describes the exceptions package’s API-level routines that operate on
exception objects.

• Lists the names of exception objects that the exceptions package defines for
its own use.

5.1 About the Exceptions Package
The exceptions package is a part of the POSIX Threads Library. A C language
header file (pthread_exception.h) provides an interface for defining and
handling exceptions. It is designed for use with the pthreads interface
routines. If the exceptions package is used, your application must be linked
with the Threads Library.

5.1.1 Supported Programming Languages
The exceptions package can be used only when you are programming in the C
language. While the exceptions will compile under C++, they will not behave
properly. In addition, gcc lacks the Compaq C extensions that are needed to
interact with the native exception handling system, and will not interoperate
correctly with other language exception facilities.

Using the Exceptions Package 5–1

Using the Exceptions Package
5.1 About the Exceptions Package

You can use the C language exception handling mechanism (SEH) to
catch exceptions. You can catch exceptions in C++ using catch(...), and
propagation of exceptions will run C++ object destructors. Currently, C++ code
cannot catch specific exceptions. Also, CATCH, CATCH_ALL and FINALLY clauses
will not run when C++ code raises an exception. (These restrictions will be
reduced or removed in a future release.)

5.1.2 Relation of Exceptions to Return Codes and Signals
The Threads Library uses exceptions in the following cases:

• The pthread_exit() routine raises the exception pthread_exit_e defined
by the Threads Library.

• Canceling a thread causes the Threads Library to raise the exception
pthread_cancel_e defined by the Threads Library.

• On Tru64 UNIX, synchronous signals (such as SIGSEGV) are converted to
exceptions unless a signal action is declared.

5.2 Why Use Exceptions
An exception is a mechanism for reporting an error condition. An exception is
represented by an exception subject. Operations on exception objects allow
your program to report and handle errors. If an exception can be handled
properly, the program can recover from errors. For example, if an exception is
raised from a parity error while reading a tape, the recovery action might be
to retry reading the tape 100 times before giving up. However, if the exception
is not handled, then the program terminates. Reporting errors via exceptions
ensures that the error will not inadvertently go unnoticed and cause problems
later.

You use exception programming to identify a portion of a routine, called an
exception scope, where a calling thread wishes to respond to particular error
conditions or perhaps to any error condition. The thread can respond to each
exception in either of two ways:

• Catch the exception. This means that the code handles all effects of the
error condition from within the exception scope, not from the point where
the exception was raised.

• Finalize the exception scope. This means that the current scope’s context is
cleaned up and resources (such as mutexes) are released. The exception is
then passed to the next outer exception scope for further processing. The
exception package supports finalization of a scope even when no exception
was raised, so that resources are always released without duplication of
code.

5–2 Using the Exceptions Package

Using the Exceptions Package
5.2 Why Use Exceptions

As a result, you can use the exceptions package to handle thread cancelation
and thread exit in a unified and modular manner. Because the Threads
Library implements both thread cancelation and thread exit by raising
exceptions, your code can respond to these events in the same modular manner
as for error conditions.

5.3 Exception Programming
Each exception object is of the EXCEPTION type, which is defined in the
pthread_exception.h header file.

To use exceptions, do the following:

1. Declare one exception object for each distinct error condition of interest to
your program.

2. Code your program to invoke the RAISE macro when it detects an error
condition.

3. Code an exception scope, using the TRY and ENDTRY macros, to define the
program scope within which an exception might be handled.

4. Associated with each exception scope, optionally include the CATCH macro
to define a block of exception handler code for each exception that your
program wishes to handle at this point in its work. In this block your
program can perform activities to respond to the particular error condition.

5. Associated with each exception scope, optionally include the CATCH_ALL
macro to define an exception handler to catch any other exception that
might be raised, if your code needs to respond to such errors. Unless your
code can fully recover from these exceptions, your handler code must also
reraise the caught exception so that the next outer exception scope also has
the chance to respond to it.

6. Associated with each exception scope, instead of defining CATCH and/or
CATCH_ALL blocks, use the FINALLY macro to define finalization code, also
known as epilogue code, that is always executed when control leaves the
TRY block, regardless of whether the code in the associated exception scope
raised an exception. If this code is reached because of an exception being
raised, the Threads Library automatically reraises the caught exception
and passes it to the next outer exception scope.

When a thread in your program raises an exception, the Threads Library
determines whether an exception scope has been defined in the current stack
frame. If so, the Threads Library checks whether there is a specific handler
(CATCH code block) for the raised exception or whether there is an unspecified
handler (CATCH_ALL or FINALLY code block). If not, the Threads Library passes

Using the Exceptions Package 5–3

Using the Exceptions Package
5.3 Exception Programming

the raised exception to the next outer exception scope that does contain the
pertinent code block. Thread execution resumes at that block. Attempting to
catch a raised exception can cause a thread’s stack to be unwound one or more
call frames.

An exception can be caught only by the thread in which it is raised. An
exception does not propagate from one thread to another.

5.3.1 Declaring and Initializing an Exception
Before referring to an exception object in your code, your program must
declare and initialize the object. An exception object must be defined (whether
explicitly or implicitly) to be of static storage class.

The next sample code fragment demonstrates declaring and initializing an
exception object.

static EXCEPTION parity_error; /* Declare the exception */

EXCEPTION_INIT (parity_error); /* Initialize the exception */

5.3.2 Raising an Exception
Raise an exception to indicate that your program has detected an error
condition in response to which the program must take some action. Your
program raises the exception by invoking the RAISE macro.

Example 5–1 demonstrates how to raise an exception.

Example 5–1 Raising an Exception

static EXCEPTION parity_error;

int read_tape(void)
{

int ret;

EXCEPTION_INIT (parity_error); /* Initialize it */
if (tape_is_ready) {

ret = read(tape_device);
if (ret = BAD_PARITY)

RAISE (parity_error); /* Raise it */
}

}

5–4 Using the Exceptions Package

Using the Exceptions Package
5.3 Exception Programming

5.3.3 Catching an Exception
After your program raises an exception, it is passed to a location within a block
of code in a containing exception scope. The exception scope defines:

• A TRY code block, a lexical scope within which an exception will be handled
if it is raised (if there is a matching CATCH block or a CATCH_ALL or FINALLY
block)

• (Optionally) A CATCH code block, where your program handles a particular
exception that was raised within the scope of this TRY block (a single TRY
block may have more than one CATCH block for different exceptions)

• (Optionally) A CATCH_ALL code block, where your program handles any
exception raised within the scope of this TRY block that is not named as
an argument in a preceding CATCH block in this TRY block. The CATCH_ALL
block must be the last block, following any CATCH blocks. (Only one
CATCH_ALL block may be associated with a TRY block)

• (Optionally) A FINALLY code block, where your program performs
finalization, or epilogue, actions at the end of the TRY block, whether
an exception was raised or not (an exception scope with a FINALLY block
cannot also have either a CATCH or CATCH_ALL block)

Example 5–2 shows a TRY code block with a CATCH code block defined to
catch the exception object named parity_error when it is raised within the
read_tape() routine.

Example 5–2 Catching an Exception Using CATCH

TRY {
read_tape ();

}
CATCH (parity_error) {

printf ("Oops, parity error, read aborted\n");
printf ("Try cleaning the heads!\n");

}
ENDTRY

Example 5–3 demonstrates how CATCH and CATCH_ALL code blocks work
together to handle different raised exceptions within a given TRY code block.

Example 5–3 Catching an Exception Using CATCH and CATCH_ALL

(continued on next page)

Using the Exceptions Package 5–5

Using the Exceptions Package
5.3 Exception Programming

Example 5–3 (Cont.) Catching an Exception Using CATCH and CATCH_ALL

int *local_mem;

local_mem = malloc (sizeof (int));
TRY { /* An exception can be raised within this scope */

read_tape ();
free (local_mem);

}
CATCH (parity_error) {

printf ("Oops, parity error, read aborted\n");
printf ("Try cleaning the heads!\n");
free (local_mem);

}
CATCH_ALL {

free (local_mem);
RERAISE;

}
ENDTRY

5.3.4 Reraising an Exception
Reraising an exception means to pass it to the next outer exception scope for
further processing. Your program should take this step for a given exception
when it must respond to the error condition but cannot completely recover from
it.

As shown in Example 5–3, within a CATCH or CATCH_ALL code block, your
program can invoke the RERAISE macro to pass a caught exception to the next
outer exception scope in your program. If there is no next outer TRY block, the
default handler for unhandled exceptions receives the exception, produces a
default error message that identifies the unhandled exception, then terminates
the process.

Reraising is particularly appropriate for an exception caught in a CATCH_ALL
block. Because this code block may catch exceptions that are unexpected by
your program’s code, it is unlikely that your code is able to fully recover from
the error condition that the exception represents. Therefore, your code should
allow the exceptions to continue to propagate, so that it will either reach a
handler which can deal with it properly or that the process can be terminated
safely.

5–6 Using the Exceptions Package

Using the Exceptions Package
5.3 Exception Programming

5.3.5 Expressing Epilogue Actions
Example 5–4 demonstrates the use of the optional FINALLY block.

Example 5–4 Defining Epilogue Actions Using FINALLY

int *local_mem;

local_mem = malloc (sizeof (int));
TRY { /* An exception can be raised within this scope */

operation (local_mem);
}
FINALLY {

free (local_mem);
}
ENDTRY

A FINALLY block catches an exception and implicitly reraises the exception for
the next outer exception scope to handle. The actions defined by a FINALLY
block are also performed on normal exit from the TRY block if no exception is
raised. This means that those actions need not be duplicated in your code.

Do not combine a FINALLY block with a CATCH block or CATCH_ALL block in the
same TRY block.

5.4 Exception Objects
This section describes the attributes of exception objects (that is, the EXCEPTION
type) and the behavior of the exceptions package’s exception handling macros
(that is, RAISE and RERAISE, TRY, CATCH and CATCH_ALL, and FINALLY).

An exception object is a data object that represents an error condition that
has occurred in a particular context. The error condition can be detected
by the operating system, by the native programming language, by another
programmatic facility that your program calls, or by your own program. In the
exceptions package, it is a statically allocated variable of type EXCEPTION.

5.4.1 Declaring and Initializing Exception Objects
The EXCEPTION type is designed to be an opaque type and should only be
manipulated by the exceptions package routines. The actual definition of the
type may differ from one release to another. The EXCEPTION type is defined in
the pthread_exception.h header file.

Using the Exceptions Package 5–7

Using the Exceptions Package
5.4 Exception Objects

You should declare the type as static or extern. For example:

static EXCEPTION an_error;

Because on some platforms an exception object may require dynamic
initialization, the exceptions package requires a run-time initialization call
in addition to the declaration. The initialization routine is a macro named
EXCEPTION_INIT. The name of the exception is passed as a parameter.

The following code fragment shows declaring and initializing an exception
object:

EXCEPTION parity_error; /* Declare it */

EXCEPTION_INIT (parity_error); /* Initialize it */

5.4.2 Address Exceptions and Status Exceptions
By default, when your program raises an exception using an exception object
that has been properly initialized, the exception is identified by the address
of the exception object. This form of exception object is called an address
exception. Your program code that handles address exceptions is fully
portable among supported platforms because address exceptions contain
nothing which is platform dependent.

Use address exceptions if the error conditions that report in your program do
not correspond to a system status code. Address exceptions are always unique,
so using them cannot cause a ‘‘collision’’ with another facility’s status codes and
possibly lead inadvertently to handling the wrong exception.

Alternatively, after initializing an exception object and before the exception can
be raised, your program can assign a status value to it. The status value is
typically an operating system-specific status code that represents a particular
error condition. That is, your program can use the exceptions package’s
pthread_exc_set_status_np() routine to assign a C errno code on Tru64
UNIX or a condition code on OpenVMS to the exception object. This form of
exception object is called a status exception.

Given two different exception objects that have been set with the same status
value, the exceptions package considers the two objects as representing the
same exception. For example, if one of the two objects is used to raise an
exception, the exception can be caught by specifying the other exception object
that has been set to the same status value. In contrast, the Threads Library
never considers two distinct address exception objects to match the same
exception.

5–8 Using the Exceptions Package

Using the Exceptions Package
5.4 Exception Objects

Using status exceptions can make sense if your program’s target platform
supports a universal definition of error status. That is, a status exception has
the advantage of having some global meaning within your program and with
respect to other libraries that your program uses. Your program can interpret,
handle, and report the values used in status exceptions in a ‘‘centralized’’
manner, regardless of which facility in your program defines the status value.

5.4.3 How Exceptions Terminate
Threads Library exceptions are terminating exceptions. This means that after
a thread raises a particular exception, the thread never resumes execution in
the code that immediately follows the statement that invokes the RAISE macro.

Instead, raising the exception causes the thread to resume execution at the
appropriate block of handler code (that is, program statements in a CATCH,
CATCH_ALL or FINALLY block) that is declared in the current exception scope.
If the handler in the current exception scope contains a RERAISE statement,
control reverts to the appropriate handler in the next outer exception scope.

Propagation of the exception—that is, transfer of control to an outer exception
scope after executing the RERAISE statement—continues until control enters a
CATCH or CATCH_ALL block that does not end with a RERAISE statement; after
that block’s statements are executed, program execution continues at the first
statement after the ENDTRY statement that terminates that exception scope.

When any thread raises an exception, if no exception scope in that thread
handles the exception without reraising it, the Threads Library terminates
the process, regardless of the state of the process’ other threads. Termination
prevents the unhandled error from affecting other areas of the process.

5.5 Exception Scopes
An exception scope serves two purposes:

• It defines a lexical scope within your program where it can respond to a
specific raised exception or to any raised exception.

• It also associates this lexical scope with a set of exception handlers. Each
of an exception scope’s handlers is a code block enclosed within a Threads
Library reserved macro, as described in Section 5.7.

Use the TRY/ENDTRY pair of macros to define an exception scope. (Throughout
the discussion, this pair of macros is referred to simply as the TRY macro.) The
TRY macro defines the beginning of an exception scope, and the ENDTRY macro
defines the scope’s end.

Using the Exceptions Package 5–9

Using the Exceptions Package
5.5 Exception Scopes

Example 5–5 Defining an Exception Scope

EXCEPTION parity_error;

int my_function(void)
{

TRY { /* Beginning of exception scope */
read_tape (); /* Operation(s) whose execution can raise an exception */

}
ENDTRY /* End of exception scope */

}

int read_tape(void)
{

int ret;

if (tape_is_ready) {

EXCEPTION_INIT (parity_error); /* Initialize it */
ret = read(tape_device);
if (ret = BAD_PARITY)

RAISE (parity_error); /* Raise it */
}

}

Example 5–5 illustrates defining an exception scope that encloses one
operation, a call to the read_tape() routine.

Defining an exception scope identifies a block of code in which an exception
will be handled if it is raised. Any exception raised within the block, or within
any routines called directly or indirectly within the block, will pass through
the control of this scope.

Because your program can detect different error conditions at different points
in the code, your program can define more than one exception scope within its
routines.

One exception scope cannot span the boundary of another exception scope.
That is, it is invalid for one exception scope to contain only the beginning (the
invocation of the TRY macro) or end (the invocation of the ENDTRY macro) of
another exception scope. However, they may be nested–in fact, you can use TRY
blocks not only inside other TRY blocks, but inside CATCH and FINALLY blocks as
well.

5–10 Using the Exceptions Package

Using the Exceptions Package
5.6 Raising Exceptions

5.6 Raising Exceptions
After your program declares and initializes an exception object, your program
raises that exception when it detects an error condition. Use the exceptions
package’s RAISE macro to raise an exception.

Raising an exception reports an error not by returning a value, but by
propagating the exception. Propagating an exception takes place in a series of
steps, as follows:

1. Searching in the current scope, then to the next outer scope and so on,
for an exception handler that explicitly or implicitly responds to the error
(such as a CATCH, CATCH_ALL or FINALLY block).

2. Invoking the handler code that is found.

3. If the exception is reraised, then the process resumes with the first step
and the next outer scope.

If the exception scope within which an exception is raised does not define
a handler block, then the Threads Library simply ‘‘tears down’’ the current
execution scope as the exception propagates up the stack of exception scopes.
This is also referred to as ‘‘unwinding’’ the stack.

Example 5–6 illustrates raising an exception.

Example 5–6 Raising an Exception

error = get_data();
if (error) {

EXCEPTION parity_error; /* Declare it */

/* Initialize exception object and
optionally set its status code */

EXCEPTION_INIT (parity_error);
pthread_exc_set_status_np (&parity_error, ENOMEM);
RAISE (parity_error); /* Raise it */

}

Threads Library exceptions are classified as terminating exceptions because
after an exception is raised even if it is handled, the thread does not resume
its execution at the point where the error condition was detected. Rather,
execution resumes within the innermost exception scope that defines a handler
block that explicitly or implicitly matches that exception, or that defines an
epilogue block for finalization processing. See Section 5.4.3 for further details.

Using the Exceptions Package 5–11

Using the Exceptions Package
5.7 Exception Handling Macros

5.7 Exception Handling Macros
The exceptions package allows your program to define an exception scope and
to define and associate one or more blocks of code, each called an exception
handler, with that scope. The purpose of an exception handler is to take
appropriate actions in response to an error condition. ‘‘Appropriate actions’’
can mean merely cleaning up a routine’s local context and propagating the
exception to the next outer exception scope, or it can mean fully responding
to the error in such a manner that allows the routine with the handler to
continue its work.

5.7.1 Context of the Handler
An exception handler always runs within the context of the thread that
generates the exception. Exceptions are synchronous events, like an access
violation or segmentation fault, that are tied to a specified thread’s context.

Exception handlers are also closely tied to the execution context of the block
that declares the handler. Thus, in the exceptions package, exception handlers
are attached, which means that the handler code appears within the same
routine where the specified exceptions are raised (directly or indirectly). This
allows the code to access local commands when an exception occurs with that
exception scope, and allows the error handling code to be positioned ‘‘close’’ to
the code with which it is associated for readability and maintainability.

5.7.2 Handlers and Macros
Unlike a signal handler routine, an exception handler can call any pthread
routine.

Exception handler code is invoked when a matching exception propagates
within the execution scope of the associated exception scope.

Use the exceptions package’s CATCH macro to define an exception handler
code block that is invoked when an exception matching the macro’s specified
exception object is propagated within the associated exception scope. Use
the exceptions package’s CATCH_ALL macro to define an exception handler
code block that is invoked when any other exception is propagated within the
associated exception scope.

An exception handler’s code can reraise an exception. That is, the code can
propagate an exception to the next outer exception scope for further processing.
Use the exceptions package’s RERAISE macro to do so. If appropriate, a handler
may instead use the RAISE macro to raise a different exception.

5–12 Using the Exceptions Package

Using the Exceptions Package
5.7 Exception Handling Macros

Another form of exception handler code is finalization code, or epilogue code.
You can define a block of epilogue code and associate it with an exception
scope. When an exception is raised, epilogue code performs your cleanup
actions within the current exception scope (such as releasing resources), then
automatically propagates the raised exception to outer scopes for further
processing. Additionally, finalization occurs even if no exception was raised, so
that resources are always released without duplication of code.

Use the exceptions package’s FINALLY macro to define an epilogue code
block. Note that, for a given exception scope, FINALLY blocks and CATCH and
CATCH_ALL blocks are mutually exclusive.

Each of these macros is discussed in greater detail in the following sections.

5.7.3 Catching Specific Exceptions
The exception scope can express interest in catching a particular exception by
specifying a corresponding exception object as the argument in a statement
that invokes the CATCH macro. When an exception reaches the exception scope,
control is transferred to the first CATCH code block that specifies a matching
exception object. If there is more than one CATCH code block that specifies a
matching object within a single TRY/ENDTRY scope, only the first one gains
control. (Thus, there is no point in having two CATCH blocks with matching or
equivalent exceptions.)

To catch an address exception, the CATCH macro must specify the name of the
exception object used in the invoked RAISE macro. However, status exceptions
can be caught using any exception object that has been set to the same status
code as the exception that was raised.

Example 5–7 shows an exception scope with one exception handler that uses
the CATCH macro to catch a specific exception (parity_error) and to specify a
recovery action (produce a message).

Using the Exceptions Package 5–13

Using the Exceptions Package
5.7 Exception Handling Macros

Example 5–7 Catching a Specific Exception Using CATCH

TRY {
read_tape ();

}
CATCH (parity_error) {

printf ("Oops, parity error, read aborted\n");
printf ("Try cleaning the heads!\n");
RERAISE;

}
ENDTRY

In this example, after catching the exception and executing the recovery action,
the handler explicitly reraises the caught exception. This causes the exception
to propagate to the next outer exception scope.

Typically, you code one exception handler for each distinct error condition
that can be raised anywhere in the program’s execution within the associated
exception scope.

If it is appropriate for the caught exception to be propagated to the next higher
exception scope, the CATCH code block can use the RERAISE macro as its last
action to explicitly raise the same exception again.

5.7.4 Catching Unspecified Exceptions
The exception scope can express interest in catching all exceptions by coding
an exception handler that uses the CATCH_ALL macro.

There must be only one CATCH_ALL code block within an exception scope. Note
that it is invalid for a CATCH macro to follow a CATCH_ALL macro within an
exception scope.

Example 5–8 demonstrates using the CATCH_ALL macro to define an exception
handler for expressing actions in response to exceptions that are not being
uniquely handled on a per-exception basis in the program’s code.

Because you cannot necessarily predict all possible exceptions that your code
might encounter, you cannot assume that your code can recover in every
possible situation. Therefore, your CATCH_ALL code block should explicitly
reraise each caught exception as its final action; this allows an outer exception
scope also to catch the same exception and to respond appropriately for its own
context.

5–14 Using the Exceptions Package

Using the Exceptions Package
5.7 Exception Handling Macros

Example 5–8 Catching an Unspecified Exception Using CATCH_ALL

int *local_mem;

local_mem = malloc (sizeof (int));
TRY {

operation(local_mem);
free (local_mem);

}
CATCH (an_error) {

printf ("Oops; caught one!\n");
free (local_mem);

}
CATCH_ALL {

free (local_mem);
RERAISE;

}
ENDTRY

5.7.5 Reraising the Current Exception
Within an exception scope’s CATCH or CATCH_ALL code blocks, you can invoke
the RERAISE macro to reraise a caught exception. This allows the next outer
exception scope to handle the exception as it finds appropriate. Invoking the
RERAISE macro is valid only within a CATCH or CATCH_ALL code block.

Use the RERAISE macro in a CATCH or CATCH_ALL code block that must restore
some permanent program state (for example, releasing resources such as
memory or a mutex) but does not have enough context about the detected
error condition or sufficient reason to attempt to recover fully. For example,
a CATCH_ALL code block should always reraise the caught exception as its last
action, because the exception handler cannot recover fully from the error since
it does not know what the error specifically was.

Refer to Example 5–8 for an example of invoking the RERAISE macro as the last
action in a CATCH_ALL code block.

5.7.6 Defining Epilogue Actions
Some of your program’s CATCH or CATCH_ALL code blocks may catch exceptions
only for the purpose of performing cleanup actions, such as releasing resources.
In many cases, these actions are performed whether the TRY code block exits
normally or after an exception has been caught. This requires duplicating code
in the CATCH_ALL code block and following the exception scope (for the case
when an exception does not occur).

Using the Exceptions Package 5–15

Using the Exceptions Package
5.7 Exception Handling Macros

The exceptions package’s FINALLY macro defines a code block that catches
an exception and then implicitly reraises that exception for the next outer
exception scope to handle. The actions in a FINALLY code block are also
performed when the scope exits normally (that is, when no exception is raised),
so that they need not be coded more than once.

Example 5–9 demonstrates the FINALLY macro.

Example 5–9 Defining Epilogue Actions Using FINALLY

pthread_mutex_lock (&some_object.mutex);
some_object.num_waiters = some_object.num_waiters + 1;
TRY {

while (! some_object.data_available)
pthread_cond_wait (&some_object.condition, &some_object.mutex);

/* The code to act on the data_available goes here */
}
FINALLY {

some_object.num_waiters = some_object.num_waiters - 1;
pthread_mutex_unlock (&some_object.mutex);

{
ENDTRY

In this example, if the thread was canceled while it was waiting, the
pthread_cancel_e exception would propagate out of the pthread_cond_wait()
call. The operations in the FINALLY code block releases the mutex, after
ensuring that the shared data associated with the lock is correct for the next
thread that acquires the mutex.

Note

Do not define a FINALLY code block if your exception scope uses a CATCH
or CATCH_ALL code block. Doing so results in unpredictable behavior.

5.8 Operations on Exceptions
In addition to raising, catching, and reraising exception objects, the exceptions
package supports the following API-level operations on exception objects:

• Determine the current exception.

• Import a system-defined error status.

5–16 Using the Exceptions Package

Using the Exceptions Package
5.8 Operations on Exceptions

• Export a system-defined error status.

• Report an exception.

• Determine whether two exception objects match.

The following sections discuss these operations.

5.8.1 Referencing the Caught Exception
Within a CATCH or CATCH_ALL code block the caught exception object can be
referenced by using the THIS_CATCH symbol. You cannot use THIS_CATCH in a
FINALLY code block because there might not be an exception.

The THIS_CATCH definition has a type of EXCEPTION *. This value can be
passed to the pthread_exc_get_status_np(), pthread_exc_report_np(),
or pthread_exc_matches_np() routines, as described in Section 5.8.3,
Section 5.8.4, and Section 5.8.5.

Note

Because of the way that the exceptions package propagates exception
objects, the address contained in THIS_CATCH might not be the actual
address of an address exception. To match THIS_CATCH against known
exceptions, use the pthread_exc_matches_np() routine, as described
in Section 5.8.5. Furthermore, the value of THIS_CATCH may become
invalid when control leaves the CATCH or CATCH_ALL block.

5.8.2 Setting a System-Defined Error Status
Use the pthread_exc_set_status_np() routine to set a status value in an
existing address exception object. This converts an address exception object
into a status exception object.

This routine’s exception object argument must already have been initialized
with the exceptions package’s EXCEPTION_INIT macro, as described in
Section 5.3.1.

In a program that uses status exceptions, use this routine to associate a
system-specific status value with the specified exception object. Note that any
exception objects set to the same status value are considered equivalent by the
Threads Library.

Using the Exceptions Package 5–17

Using the Exceptions Package
5.8 Operations on Exceptions

Example 5–10 Setting an Error Status in an Exception Object

static EXCEPTION an_error;

unsigned long status_code = ENOMEM;
EXCEPTION_INIT (an_error);

/* Import status code into an existing, initialized,
address exception object */

pthread_exc_set_status_np (&an_error, status_code);

Example 5–10 demonstrates setting an error status in an address exception
object.

Note

On OpenVMS systems:

Threads Library exception status values are OpenVMS con-
dition codes with a SEVERE severity level. If necessary, the
pthread_exc_set_status_np() routine will modify the severity level of
the status code to SEVERE.

5.8.3 Obtaining a System-Defined Error Status
In a program that uses status exceptions, use the
pthread_exc_get_status_np() routine to obtain the status value from a status
exception object, such as after an exception is caught. If the routine’s exception
argument is a status exception object, it sets the status code argument and
returns 0 (zero); otherwise, it returns [EINVAL] and does not set the status
value argument.

Example 5–11 demonstrates using the pthread_exc_get_status_np() routine
to obtain the status value associated with a caught status exception object.

5.8.4 Reporting a Caught Exception
Use the pthread_exc_report_np() routine to produce a message that reports
what a given exception object represents. Your program calls this routine
within a CATCH or CATCH_ALL code block to report on a caught exception.

5–18 Using the Exceptions Package

Using the Exceptions Package
5.8 Operations on Exceptions

Example 5–11 Obtaining the Error Status Value from a Status Exception
Object

#include <pthread_exception.h>
.
.
.

TRY {
operation ();
}

CATCH_ALL {
unsigned long status_code;

if (pthread_exc_get_status_np (THIS_CATCH, &status_code) == 0
&& status_code == SOME_ERROR)

fprintf (stderr, "Exception %ld caught from system.\n", SOME_ERROR);
else

pthread_exc_report_np (THIS_CATCH);
}

ENDTRY

An exception in your program that has not been handled by a CATCH or
CATCH_ALL causes the unhandled exception handler to report the exception
and immediately terminate the process. However, you might prefer to report a
caught exception as part of your program’s error recovery.

The pthread_exc_report_np() routine prints a message to stderr (on Tru64
UNIX systems) or SYS$ERROR (on OpenVMS systems) that describes the
exception.

Each defined exception has an associated message that describes the given
error condition. Typically, external status values can also be reported. When
an address exception is reported, the Threads Library can only report the fact
that an exception has occurred and the address of the exception object.

See Example 5–11 for an example using the pthread_exc_report_np() routine
to report an error.

5.8.5 Determining Whether Two Exceptions Match
The pthread_exc_matches_np() routine compares two exception objects,
taking into consideration whether each is an address exception or a status
exception. Whenever you must compare two exception objects, use this routine.

Example 5–12 demonstrates how to use the pthread_exc_matches_np()
routine to test for the equivalence of two exception objects.

Using the Exceptions Package 5–19

Using the Exceptions Package
5.9 Using Exceptions

Example 5–12 Comparing Two Exception Objects

#include <pthread_exception.h>
.
.
.
EXCEPTION my_status;

EXCEPTION_INIT (my_status);
pthread_exc_set_status_np (&my_status, status_code);
.
.
.
TRY {

.

.

.
}
.
.
.
CATCH_ALL {

if (pthread_exc_matches_np (THIS_CATCH, &my_status))
fprintf (stderr, "This is my exception\n");

RERAISE;
}
ENDTRY

5.9 Using Exceptions
This section presents guidelines for using exceptions in a modular way, so that
independent software components can be written without requiring knowledge
of each other, and includes tips on writing code using exceptions.

5.9.1 Develop Naming Conventions for Exceptions
Develop naming conventions for exception objects. A naming convention
ensures that the names for exceptions that are declared extern in different
modules do not conflict. The following convention is recommended:

facility-prefix_error-name_e

Example: pthread_cancel_e

5–20 Using the Exceptions Package

Using the Exceptions Package
5.9 Using Exceptions

5.9.2 Enclose Appropriate Actions in an Exception Scope
In a TRY code block avoid including code that more appropriately belongs
outside it (in particular, before it). That is, the TRY macro should guard only
operations for which there are appropriate handler operations in the scope’s
FINALLY, CATCH, or CATCH_ALL code blocks.

A common misuse of a TRY code block is to include code that should be executed
before the TRY macro is invoked. Example 5–13 demonstrates this misuse.

Example 5–13 Incorrect Placement of Statements That Might Raise an
Exception

TRY {
handle = open_file (file_name);

/* Statements that might raise an exception here */

}
FINALLY {

close (handle);
}
ENDTRY

In this example, the FINALLY code block assumes that no exception is raised
by calling the open_file() routine. If calling open_file() results in raising
an exception, the FINALLY code block’s close() operation will use an invalid
identifier.

Thus, the code in Example 5–13 should be rewritten as shown in
Example 5–14.

Using the Exceptions Package 5–21

Using the Exceptions Package
5.9 Using Exceptions

Example 5–14 Correct Placement of Statements That Might Raise an
Exception

handle = open_file (file_name);
TRY {

/* Statements that might raise an exception here */

}
FINALLY {

close (handle);
}
ENDTRY

Notice that the initialization code belongs prior to the invoking of the TRY
macro, and the matching cleanup code belongs in the FINALLY code block. In
this example, the open_file() call is moved to before the TRY macro, and the
close() call is kept in the FINALLY block.

5.9.3 Raise Exceptions Prior to Performing Side-Effects
Raise exceptions prior to performing side-effects. That is, write routines that
propagate exceptions to their callers, so that the routine does not modify any
persistent process state before raising the exception. A matching close() call
is required only if the open_file() operation is successful. (If an exception
is raised, the caller cannot access the output parameters of the function,
because the compiler may not have copied temporary values back to their home
locations from registers.)

If the open_file() routine raises an exception, the identifier will not have
been written, so this open operation must not require that a corresponding
close() routine is called when open_file() raises an exception.

5.9.4 Exiting an Exception Scope
Do not place a return or goto statement between TRY and ENDTRY. It is invalid
to return from, branch from, or leave by other means a TRY, CATCH, CATCH_ALL,
or FINALLY block, such as using a continue or break in an exception scope
contained inside a loop or switch statement. After a given TRY macro is
executed, the exceptions package requires that the corresponding ENDTRY macro
is also executed unless an exception is raised or reraised.

5–22 Using the Exceptions Package

Using the Exceptions Package
5.9 Using Exceptions

5.9.5 Declare Variables Within Handler Code as Volatile
When declaring certain variables that are used within an exception scope,
you must use the ANSI C volatile type attribute. The volatile attribute
prevents the compiler from producing certain optimizations with respect
to such variables which would be unsafe if an exception were raised. This
ensures that such a variable’s value is reliable in an exception handler after an
exception is raised.

Specifically, use the volatile type attribute for a variable whose value is
written after the TRY macro is invoked and before the first CATCH/CATCH_ALL
/FINALLY macro is invoked and whose value must be used when an exception is
caught within a CATCH/CATCH_ALL/FINALLY block or (if the exception is caught
and not reraised) after the ENDTRY macro is invoked.

Example 5–15 demonstrates the significance of using the volatile type
qualifier for variables that are referenced within an exception scope.

! Values of updated_volatile and updated_before_try are reliable. Values
of updated and updated_static are unreliable.

" Regardless of the path to this code, the values of updated_volatile and
updated_before_try are reliable. If this code is reached after the ENDTRY
macro is invoked and no exception has been raised, the values of updated
and updated_static are reliable. If this code is reached after the exception
fully_handled_exception has been caught, the values of updated and
updated_static are unreliable.

The code in Example 5–15 demonstrates:

• For variables referenced within exception handler code blocks, it is
necessary to distinguish between those whose value is set before versus
after the TRY macro is invoked in order to declare those variables properly.

• The requirement to use the volatile type qualifier pertains to a variable
regardless of its C storage class—that is, for both automatic and static
variables).

Test your program after compiling it with the ‘‘optimize’’ compiler option, to
ensure that your program contains the appropriate exception handler code.

Using the Exceptions Package 5–23

Using the Exceptions Package
5.9 Using Exceptions

Example 5–15 Use of the volatile Type Qualifier Within an Exception Scope

void demonstrate_volatile_in_exception_scope (void)
{

int updated_before_try;
int updated;
static int updated_static;
volatile int updated_volatile;

updated_before_try = 1;
updated = 2;
updated_static = 3;
updated_volatile = 4;

TRY {
updated = 6;
updated_static = 7;
updated_volatile = 8;

something_that_might_result_in_an_exception();
}
CATCH (fully_handled_exception) {

/* Fully handle the exception here.
Execute the code after ENDTRY next. */

}
CATCH_ALL { !

if (updated > updated_static)
printf ("%d, %d", updated, updated_before_try);

if (updated > updated_volatile)
printf ("%d, %d", updated, updated_before_try);

RERAISE;
}
ENDTRY "

/* The following two statements use invalid
references to the variables updated and
updated_static.** */

if (updated > updated_static)
printf ("%d, %d", updated, updated_before_try);

if (updated > updated_volatile)
printf ("%d, %d", updated, updated_before_try);

} /* end demonstrate_volatile_in_exception_scope() */

5.9.6 Reraise Caught Exceptions That Are Not Fully Handled
Reraise exceptions that are not fully handled. That is, reraise any exception
that you catch, unless your handler has performed the complete recovery action
for the error. This rule permits an unhandled exception to propagate to some
final default handler that knows how to recover fully.

5–24 Using the Exceptions Package

Using the Exceptions Package
5.9 Using Exceptions

A corollary of this rule is that CATCH_ALL handlers must always reraise the
exceptions they catch because they can catch any exception, including those
not explicitly known to your code.

It is important to follow this convention, so that your program does not stop the
propagation of a thread cancelation exception or thread-exit request exception.
The Threads Library maps these requests into exceptions, so that exception
handler code can have the opportunity to handle all exceptional conditions—
from access violations to thread-exit. In some applications it is important to
be able to catch these to preserve an external invariant, such as an on-disk
database, but they must always be reraised so that the thread will terminate
properly.

5.9.7 Avoid Dynamically Allocated Exception Objects
Avoid dynamically allocated exception objects. Local exception objects should
be declared (explicitly or implicitly) as static, and extern exception objects
are acceptable.

5.10 Exceptions Defined by the POSIX Threads Library
Table 5–1 lists the names of exception objects that are defined by the Threads
Library and the meaning of each exception.

Exception object names that begin with the prefix pthread_ are raised within
the runtime environment itself and are not meant to be raised by your program
code. Names of exception objects that begin with pthread_exc_ are generic
and belong to the exceptions package or represent exceptions raised by the
underlying system.

Table 5–1 Names of Exception Objects Defined by the Threads Library

Exception Definition

pthread_cancel_e Thread cancelation in progress

pthread_exc_aritherr_e Unhandled floating-point exception signal (‘‘arithmetic
error’’)

pthread_exc_decovf_e Unhandled decimal overflow exception

pthread_exc_excpu_e ‘‘cpu-time limit exceeded’’

pthread_exc_exfilsiz_e ‘‘File size limit exceeded’’

pthread_exc_exquota_e Operation failed due to insufficient quota

(continued on next page)

Using the Exceptions Package 5–25

Using the Exceptions Package
5.10 Exceptions Defined by the POSIX Threads Library

Table 5–1 (Cont.) Names of Exception Objects Defined by the Threads
Library

Exception Definition

pthread_exc_fltdiv_e Unhandled floating-point/decimal divide by zero
exception

pthread_exc_fltovf_e Unhandled floating-point overflow exception

pthread_exc_fltund_e Unhandled floating-point underflow exception

pthread_exc_illaddr_e Data or object could not be referenced

pthread_exc_illinstr_e Unhandled illegal instruction signal (‘‘illegal
instruction’’)

pthread_exc_insfmem_e Insufficient virtual memory for requested operation

pthread_exc_intdiv_e Unhandled integer divide by zero exception

pthread_exc_intovf_e Unhandled integer overflow exception

pthread_exc_noexcmem_e Out of memory while processing an exception

pthread_exc_nopriv_e Insufficient privilege for requested operation

pthread_exc_privinst_e Unhandled privileged instruction fault exception

pthread_exc_resaddr_e Unhandled reserved addressing fault exception

pthread_exc_resoper_e Unhandled reserved operand fault exception

pthread_exc_SIGABRT_e Unhandled signal ABORT

pthread_exc_SIGBUS_e Unhandled bus error signal

pthread_exc_SIGEMT_e Unhandled EMT signal

pthread_exc_SIGFPE_e Unhandled floating-point exception signal

pthread_exc_SIGILL_e Unhandled illegal instruction signal

pthread_exc_SIGIOT_e Unhandled IOT signal

pthread_exc_SIGPIPE_e Unhandled broken pipe signal

pthread_exc_SIGSEGV_e Unhandled segmentation violation signal

pthread_exc_SIGSYS_e Unhandled bad system call signal

pthread_exc_SIGTRAP_e Unhandled trace or breakpoint trap signal

pthread_exc_subrng_e Unhandled subscript out of range exception

pthread_exc_uninitexc_e Uninitialized exception raised

pthread_exit_e Thread exiting using pthread_exit()

(continued on next page)

5–26 Using the Exceptions Package

Using the Exceptions Package
5.10 Exceptions Defined by the POSIX Threads Library

Table 5–1 (Cont.) Names of Exception Objects Defined by the Threads
Library

Exception Definition

pthread_stackovf_e Attempted stack overflow was detected

5.11 Interoperability of Language-Specific Exceptions
In general, the parts of your program that are coded in a given language (C,
C++, Ada) can use only that language’s own exception objects. This is also true
for a program that uses the Threads Library.

Currently on Tru64 UNIX systems, your program cannot use CATCH to catch a
C++ or Ada exception.

However, in a program that uses the Threads Library, C++ object destructors
will run when an exception from any facility, including the Threads Library,
reaches that frame. This includes the exceptions pthread_cancel_e
(cancelation of thread) and pthread_exit_e (thread exit).

5.12 Host Operating System Dependencies
This section mentions dependencies of the exceptions package on the operating
system environment.

5.12.1 Tru64 UNIX Dependencies
Tru64 UNIX has an architecturally specified exception model that is used by
the Threads Library as well as C++, Compaq Ada, and other languages that
support exceptions. The Compaq C compiler has extensions that allow ‘‘native’’
exception handling.

5.12.2 OpenVMS Conditions and Exceptions
On OpenVMS, the Threads Library propagates exceptions within the context
of the OpenVMS Condition Handling Facility (CHF). An exception is typically
raised by calling LIB$STOP with one of the condition codes listed in Table B–3.

Like the pthread_cleanup_push() routine, the exceptions package’s TRY macro
establishes an OpenVMS condition handler that catches conditions of ‘‘fatal’’
or ‘‘severe’’ severity. Conditions with other severity values are passed through
and thus cannot be caught using exception handler code.

This requirement also pertains to status exceptions. Thus, you cannot use the
exceptions package’s CATCH, CATCH_ALL, and FINALLY macros to handle a status
exception that is not of ‘‘severe’’ or ‘‘fatal’’ severity.

Using the Exceptions Package 5–27

Using the Exceptions Package
5.12 Host Operating System Dependencies

When your program raises an exception, an OpenVMS condition has been
signaled. Until the exception is actually caught (that is, before passing through
any TRY blocks or cleanup handlers), the primary condition code is either
CMA$_EXCEPTION (for an address exception) or a status value (for a status
exception).

When a status exception is reraised, whether performed explicitly in a CATCH
or CATCH_ALL block or implicitly at the end of a FINALLY block or a cleanup
handler, the Threads Library changes the primary condition code to either
CMA$_EXCCOP or CMA$_EXCCOPLOS (depending on whether the contents
of the exception can be reliably copied) and chains the original status code
to the new primary as a secondary condition code. The Threads Library
propagates the exception by calling LIB$STOP with the new argument array.

When a status exception is reraised, the Threads Library changes the primary
condition code to indicate, first, that the exception has been reraised and,
second, that the state of the program has been altered since the original
exception was raised—that is, some number of frames have been unwound
from the stack, which makes unavailable the values of any local variables.

This behavior also has these effects:

• The new primary condition code is not available to any CATCH blocks in call
frames further into the stack, because those blocks trigger based on the
status value in the original status exception, however, subsequent CATCHES
will function properly.

• The status code for the original status exception is available to any
‘‘native’’ OpenVMS condition handler in the argument array as a chained
(secondary) OpenVMS condition. You must code such a handler to
recognize the CMA$_EXCCOP and CMA$_EXCCOPLOS condition codes
and to use the chained condition code when those are encountered as the
primary.

For example, output of the following form indicates that some thread incurred
an access violation which was propagated as an exception without being fully
handled.

%CMA-F-EXCCOP, exception raised; VMS condition code follows
-SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
address=0000000000000000, PC=000000000002013C, PS=0000001B

After noticing the location where the access violation occurred, or by running
the failing program under the debugger with a breakpoint set on exceptions,
you can determine where the exception (in this example, the ACCVIO
condition) is originating.

5–28 Using the Exceptions Package

6
Examples

This chapter presents two example programs that use routines in the pthread
interface. Example 6–1 utilizes one parent thread and a set of worker threads
to perform a prime number search. Example 6–2 implements a simple,
text-based, asynchronous user interface that reads and writes commands to
the terminal.

Both examples use the pthread interface routines and rely upon their
default status-returning mechanism to indicate routine completion status.
Example 6–1 uses the POSIX cleanup handler mechanism to cleanup from
thread cancelation. In contrast, Example 6–2 uses the exception package to
capture and cleanup from thread cancelation and other synchronous fatal error
conditions.

6.1 Prime Number Search Example
Example 6–1 shows the use of pthread interface routines in a C program
that performs a prime number search. The program finds a specified number
of prime numbers, then sorts and displays these numbers. Several threads
participate in the search: each thread takes a number (the next one to be
checked), checks whether it is a prime, records it if it is prime, and then takes
another number, and so on.

This program reflects the work crew functional model (see Section 1.4.2.) The
worker threads increment the integer variable current_num to get their next
work assignment. As a whole, the worker threads are responsible for finding a
specified number of prime numbers, at which point their work is complete.

The number of worker threads to use and the number of prime numbers to find
are defined as constants. A macro checks for an error status from each call to
the Threads Library and prints a given string and the associated error value.
Data that is accessed by all threads (mutexes, condition variables, and so on)
are declared as global items.

Examples 6–1

Examples
6.1 Prime Number Search Example

Each worker thread executes the prime_search() routine, which immediately
waits for permission to continue from the parent thread. The worker thread
synchronizes with the parent thread using a predicate and a condition variable.
Before and after waiting on the condition variable, each worker thread pushes
and pops, respectively, a cleanup handler routine (unlock_cond()) to allow
recovery from cancelation or other unexpected thread exit.

Notice that a predicate loop encloses the condition wait, to prevent the
worker thread from continuing if it is wrongly signaled or broadcast. The lock
associated with the condition variable must be held by the thread during the
call to condition wait. The lock is released within the call and acquired again
upon being signaled or broadcast. Note that the same mutex must be used for
all operations performed on a specific condition variable.

After the parent sets the predicate and broadcasts, each worker thread begins
finding prime numbers until canceled by a fellow worker who has found the
last requested prime number. Upon each iteration a given worker increments
the current number to examine and takes that new value as its next work
item. Each worker thread uses a mutex to access the next work item, to
ensure that no two threads are working on the same item. This type of locking
protocol should be performed on all global data to ensure its integrity.

Next, each worker thread determines whether its current work item is prime
by trying to divide numbers into it. If the number proves to be nondivisible, it
is put on the list of primes. The worker thread disables its own cancelability
while working with the list of primes, better to control any cancelation requests
that might occur. The list of primes and its current count are protected by
mutexes, which also protect the step of canceling all other worker threads upon
finding the last requested prime. While the prime list mutex’s remains locked,
the worker checks whether it has found the last requested prime, and, if so,
unsets a predicate and cancels all other worker threads. Finally, the worker
enables its own cancelability.

The canceling thread should fall out of the work loop as a result of the
predicate that it unsets.

The parent thread’s flow of execution is as follows:

• Set up the environment, which means initialize the program’s mutexes and
one condition variable.

• Create worker threads. Creation of worker threads is straightforward and
uses the default attributes.

• Broadcast to the worker threads that they can start.

6–2 Examples

Examples
6.1 Prime Number Search Example

• Join each thread as it finishes. As the parent joins each of the returning
worker threads, it receives an exit value from each that indicates whether
that worker thread exited normally. In this case, the exit values on all but
one of the worker threads should be –1, indicating that the thread was
canceled.

• Sort and print the list of primes.

The following pthread interface routines are used in Example 6–1:

pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_wait()
pthread_create()

pthread_join()

pthread_mutex_lock()
pthread_mutex_unlock()

pthread_setcancelstate()

pthread_testcancel()

Examples 6–3

Examples
6.1 Prime Number Search Example

Example 6–1 C Program Example (Prime Number Search)

/*
*
* example program conducting a prime number search
*
*/

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

/*
* Constants used by the example.
*/
#define workers 5 /* Threads to perform prime check */
#define request 110 /* Number of primes to find */

/*
* Macros
*/

#define check(status,string) if (status != 0) { \
errno = status; \
fprintf (stderr, "%s status %d: %s\n", status, string, strerror (status)); \

}

/*
* Global data
*/

pthread_mutex_t prime_list = PTHREAD_MUTEX_INITIALIZER; /* Mutex for use in
accessing the
prime */

pthread_mutex_t current_mutex = PTHREAD_MUTEX_INITIALIZER; /* Mutex associated
with current
number */

pthread_mutex_t cond_mutex = PTHREAD_MUTEX_INITIALIZER; /* Mutex used for
thread start */

pthread_cond_t cond_var = PTHREAD_COND_INITIALIZER; /* Condition variable
for thread start */

int current_num= -1;/* Next number to be checked, start odd */
int thread_hold=1; /* Number associated with condition state */
int count=0; /* Count of prime numbers - index to primes */
int primes[request];/* Store prime numbers - synchronize access */
pthread_t threads[workers]; /* Array of worker threads */

(continued on next page)

6–4 Examples

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

static void
unlock_cond (void* arg)
{

int status; /* Hold status from pthread calls */

status = pthread_mutex_unlock (&cond_mutex);
check (status, "Mutex_unlock");

}

/*
* Worker thread routine.
*
* Worker threads start with this routine, which begins with a condition wait
* designed to synchronize the workers and the parent. Each worker thread then
* takes a turn taking a number for which it will determine whether or not it
* is prime.
*/
void *
prime_search (void* arg)
{

int numerator; /* Used to determine primeness */
int denominator; /* Used to determine primeness */
int cut_off; /* Number being checked div 2 */
int notifiee; /* Used during a cancelation */
int prime; /* Flag used to indicate primeness */
int my_number; /* Worker thread identifier */
int status; /* Hold status from pthread calls */
int not_done=1; /* Work loop predicate */
int oldstate; /* Old cancel state */

my_number = (int)arg;

/*
* Synchronize threads and the parent using a condition variable, the
* predicate of which (thread_hold) will be set by the parent.
*/

status = pthread_mutex_lock (&cond_mutex);
check (status, "Mutex_lock");

pthread_cleanup_push (unlock_cond, NULL);

while (thread_hold) {
status = pthread_cond_wait (&cond_var, &cond_mutex);
check (status, "Cond_wait");

}

pthread_cleanup_pop (1);

(continued on next page)

Examples 6–5

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

/*
* Perform checks on ever larger integers until the requested
* number of primes is found.
*/

while (not_done) {

/* Test for cancelation request */
pthread_testcancel ();

/* Get next integer to be checked */
status = pthread_mutex_lock (¤t_mutex);
check (status, "Mutex_lock");
current_num = current_num + 2; /* Skip even numbers */
numerator = current_num;
status = pthread_mutex_unlock (¤t_mutex);
check (status, "Mutex_unlock");

/* Only need to divide in half of number to verify not prime */
cut_off = numerator/2 + 1;
prime = 1;

/* Check for prime; exit if something evenly divides */
for (denominator = 2;

((denominator < cut_off) && (prime));
denominator++) {
prime = numerator % denominator;

}

if (prime != 0) {

/* Explicitly turn off all cancels */
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &oldstate);

/*
* Lock a mutex and add this prime number to the list. Also,
* if this fulfills the request, cancel all other threads.
*/

status = pthread_mutex_lock (&prime_list);
check (status, "Mutex_lock");

(continued on next page)

6–6 Examples

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

if (count < request) {
primes[count] = numerator;
count++;

}
else if (count >= request) {

not_done = 0;
count++;
for (notifiee = 0; notifiee < workers; notifiee++) {

if (notifiee != my_number) {
status = pthread_cancel (threads[notifiee]);
check (status, "Cancel");

}
}

}

status = pthread_mutex_unlock (&prime_list);
check (status, "Mutex_unlock");

/* Reenable cancelation */
pthread_setcancelstate (oldstate, &oldstate);

}

pthread_testcancel ();
}

return arg;
}

main()
{

int worker_num; /* Counter used when indexing workers */
void *exit_value; /* Individual worker’s return status */
int list; /* Used to print list of found primes */
int status; /* Hold status from pthread calls */
int index1; /* Used in sorting prime numbers */
int index2; /* Used in sorting prime numbers */
int temp; /* Used in a swap; part of sort */
int line_idx; /* Column alignment for output */

/*
* Create the worker threads.
*/

(continued on next page)

Examples 6–7

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

for (worker_num = 0; worker_num < workers; worker_num++) {
status = pthread_create (

&threads[worker_num],
NULL,
prime_search,
(void*)worker_num);

check (status, "Pthread_create");
}

/*
* Set the predicate thread_hold to zero, and broadcast on the
* condition variable that the worker threads may proceed.
*/
status = pthread_mutex_lock (&cond_mutex);
check (status, "Mutex_lock");
thread_hold = 0;
status = pthread_cond_broadcast (&cond_var);
check (status, "Cond_broadcast");
status = pthread_mutex_unlock (&cond_mutex);
check (status, "Mutex_unlock");

/*
* Join each of the worker threads inorder to obtain their
* summation totals, and to ensure each has completed
* successfully.
*
* Mark thread storage free to be reclaimed upon termination by
* detaching it.
*/

for (worker_num = 0; worker_num < workers; worker_num++) {
status = pthread_join (threads[worker_num], &exit_value);
check (status, "Pthread_join");

if (exit_value == (void*)worker_num)
printf ("Thread %d terminated normally\n", worker_num);

else if (exit_value == PTHREAD_CANCELED)
printf ("Thread %d was canceled\n", worker_num);

else
printf ("Thread %d terminated unexpectedly with %#lx\n",

worker_num, exit_value);

/*
* Upon normal termination the exit_value is equivalent to worker_num.
*/

}

(continued on next page)

6–8 Examples

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

/*
* Take the list of prime numbers found by the worker threads and
* sort them from lowest value to highest. The worker threads work
* concurrently; there is no guarantee that the prime numbers
* will be found in order. Therefore, a sort is performed.
*/
for (index1 = 1; index1 < request; index1++) {

for (index2 = 0; index2 < index1; index2++) {
if (primes[index1] < primes[index2]) {

temp = primes[index2];
primes[index2] = primes[index1];
primes[index1] = temp;

}
}

}

/*
* Print out the list of prime numbers that the worker threads
* found.
*/
printf ("The list of %d primes follows:\n", request);

for (list = 0, line_idx = 0; list < request; list++, line_idx++) {

if (line_idx >= 10) {
printf (",\n");
line_idx = 0;

}
else if (line_idx > 0)

printf (",\t");

printf ("%d", primes[list]);
}
printf ("\n");

}

Examples 6–9

Examples
6.2 Asynchronous User Interface Example

6.2 Asynchronous User Interface Example
Example 6–2 implements a simple, text-based, asynchronous user interface.
It allows you to use the terminal to start multiple commands that run
concurrently and that report their results at the terminal when complete. You
can monitor the status of, or cancel, commands that are already running.

This C program utilizes pthread interface routines but also uses the
exception package to capture and cleanup from thread cancelations (and
other synchronous fatal errors) as exceptions.

Asynchronous Commands
The asynchronous commands are date and time.

The asynchronous commands are as follows:

• date delay_number_of_seconds

Waits the specified number of seconds before displaying today’s date.

• time delay_number_of_seconds

Waits the specified number of seconds before displaying the time of day.

For example, issuing the following command causes the program to wait 10
seconds before reporting the time:

Info> time 10

Housekeeping Commands
The housekeeping commands are as follows:

• status command_number

Displays the state of a command.

• wait command_number

Waits for a command to finish.

• cancel command_number

Stops a command.

The argument command_number is the number of the command that assigned
and displayed when the asynchronous command starts.

This program is limited to four outstanding commands.

6–10 Examples

Examples
6.2 Asynchronous User Interface Example

Here is a sample of the output that the program produces:

Info> help
Commands are formed by a verb and an optional numeric argument.
The following commands are available:

Cancel <COMMAND> Cancel running command
Date <DELAY> Print the date
Help Print this text
Quit Quit (same as EOF)
Status [<COMMAND>] Report on running command
Time <DELAY> Print the time
Wait <COMMAND> Wait for command to finish

<COMMAND> refers to the command number.
<DELAY> delays the command execution for some number of seconds.
This delay simulates a command task that actually takes some
period of time to execute. During this delay, commands may be
initiated, queried, and/or canceled.

Info> time 5
This is command #0.
Info> date 15
This is command #1.

(0) At the tone the time will be, 11:19:46.

Info> status 1
Command #1: "date", 8 seconds remaining.

Info> status 1
Command #1: "date", 5 seconds remaining.

Info> time 10
This is command #0.

Info> status 0
Command #0: "time", 8 seconds remaining.

Info> status 1
Command #1: "date", waiting to print.

(1) Today is Tue, 6 Oct 1992.

Info> time 3
This is command #0.

Info> wait 0
(0) At the tone the time will be, 11:21:26.

Info> date 10
This is command #0.

Examples 6–11

Examples
6.2 Asynchronous User Interface Example

Info> cancel 0
(0) Canceled.
Info> quit

The following pthread routines are used in Example 6–2:

pthread_cancel()
pthread_cond_signal()
pthread_cond_wait()
pthread_create()

pthread_delay_np()
pthread_detach()

pthread_exc_report_np()

pthread_join()

pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_unlock()

pthread_once()

sched_yield()

In the program source, notice that:

• The main() routine uses pthread_once() to perform one-time initializa-
tion.

• The do_delay() routine specifies the preset delay interval. For a timespec
structure, initializing tv.sec = 1 and tv.nsec = 0 results in a delay of one
second.

• The do_cleanup() and find_free_thread() routines must lock two
mutexes at the same time. To avoid deadlock, each routine in the program
must lock the two mutexes in the same order.

• The find_free_thread() routine uses pthread_detach() to detach the
free thread found because no other threads will join with it.

6–12 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 C Program Example (Asynchronous User Interface)

/*
*
* example program featuring an asynchronous user interface
*
*/

/*
* Include files
*/
#include <pthread.h>
#include <pthread_exception.h>
#include <stdio.h>
#include <time.h>

#define check(status,string) if (status != 0) { \
fprintf (stderr, "%s status %d: %s\n", string, status, strerror (status)); \

}

/*
* Local definitions
*/
#define PROMPT "Info> " /* Prompt string */
#define MAXLINSIZ 81 /* Command line size */
#define THDNUM 5 /* Number of server threads */

/*
* Server thread "states"
*/
#define ST_INIT 0 /* "Initial" state (no thread) */
#define ST_FINISHED 1 /* Command completed */
#define ST_CANCELED 2 /* Command was canceled */
#define ST_ERROR 3 /* Command was terminated by an error */
#define ST_RUNNING 4 /* Command is running */

#ifndef FALSE /* Just in case these are not defined */
define FALSE 0
define TRUE (!FALSE)
#endif

#ifndef NULL /* Just in case this is not defined */
define NULL ((void*)0)
#endif

(continued on next page)

Examples 6–13

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Global variables
*/
struct THREAD_DATA {

pthread_t thread; /* Server thread handle */
pthread_mutex_t mutex; /* Mutex to protect fields below */
int time; /* Amount of delay remaining */
char task; /* Task being performed (’t’ or ’d’) */
int state; /* State of the server thread */

} thread_data[THDNUM];

pthread_mutex_t free_thread_mutex = /* Mutex to protect "free_thread" */
PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t free_thread_cv = /* Condition variable for same */
PTHREAD_COND_INITIALIZER;

int free_thread; /* Flag indicating a free thread */

/*
* Local Routines
*/
static void
dispatch_task (void *(*routine)(void*), char task, int time);

static void
do_cancel (int index);

static void
do_cleanup (int index, int final_state);

static void*
do_date (void* arg);

static void
do_delay (int index);

static void
do_status (int index);

static void*
do_time (void* arg);

static void
do_wait (int index);

static int
find_free_thread (int *index);

static char *
get_cmd (char *buffer, int size);

(continued on next page)

6–14 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

static int
get_y_or_n (char *query, char defans);

static void
init_routine (void);

static void
print_help (void);

/*
* The main program:
*/
main()
{

int done = FALSE; /* Flag indicating user is "done" */
char cmdline[MAXLINSIZ]; /* Command line */
char cmd_wd[MAXLINSIZ]; /* Command word */
int cmd_arg; /* Command argument */
int cmd_cnt; /* Number of items on command line */
int status;
void *(*routine)(void*); /* Routine to execute in a thread */
static pthread_once_t once_block = PTHREAD_ONCE_INIT;

/*
* Perform program initialization.
*/
status = pthread_once (&once_block, init_routine);
check (status, "Pthread_once");

/*
* Main command loop
*/
do {

/*
* Get and parse a command. Yield first so that any threads waiting
* to execute get a chance to before we take out the global lock
* and block for I/O.
*/
sched_yield ();
if (get_cmd(cmdline, sizeof (cmdline))) {

cmd_cnt = sscanf (cmdline, "%s %d", cmd_wd, &cmd_arg);
routine = NULL; /* No routine yet */

(continued on next page)

Examples 6–15

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

if ((cmd_cnt == 1) || (cmd_cnt == 2)) { /* Normal result */
cmd_wd[0] = tolower(cmd_wd[0]); /* Map to lower case */
switch (cmd_wd[0]) {
case ’h’: /* "Help" */
case ’?’:

print_help();
break;

case ’q’: /* "Quit" */
done = TRUE;
break;

case ’s’: /* "Status" */
do_status ((cmd_cnt == 2 ? cmd_arg : -1));
break;

/*
* These commands require an argument
*/
case ’c’: /* "Cancel" */
case ’d’: /* "Date" */
case ’t’: /* "Time" */
case ’w’: /* "Wait" */

if (cmd_cnt != 2)
printf ("Missing command argument.\n");

else {
switch (cmd_wd[0]) {
case ’c’: /* "Cancel" */

do_cancel (cmd_arg);
break;

case ’d’: /* "Date" */
routine = do_date;
break;

case ’t’: /* "Time" */
routine = do_time;
break;

case ’w’: /* "Wait" */
do_wait (cmd_arg);
break;

}
}
break;

default:
printf ("Unrecognized command.\n");
break;

}
}
else if (cmd_cnt != EOF) /* Ignore blank command line */

printf ("Unexpected parse error.\n");

(continued on next page)

6–16 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* If there is a routine to be executed in a server thread,
* create the thread.
*/
if (routine) dispatch_task (routine, cmd_wd[0], cmd_arg);

}
else

done = TRUE;
} while (!done);

}

/*
* Create a thread to handle the user’s request.
*/
static void
dispatch_task (void *(*routine)(void*), char task, int time)
{

int i; /* Index of free thread slot */
int status;

if (find_free_thread (&i)) {
/*
* Record the data for this thread where both the main thread and the
* server thread can share it. Lock the mutex to ensure exclusive
* access to the storage.
*/
status = pthread_mutex_lock (&thread_data[i].mutex);
check (status, "Mutex_lock");
thread_data[i].time = time;
thread_data[i].task = task;
thread_data[i].state = ST_RUNNING;
status = pthread_mutex_unlock (&thread_data[i].mutex);
check (status, "Mutex_unlock");

(continued on next page)

Examples 6–17

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Create the thread, using the default attributes. The thread will
* execute the specified routine and get its data from array slot ’i’.
*/
status = pthread_create (

&thread_data[i].thread,
NULL,
routine,
(void*)i);

check (status, "Pthread_create");
printf ("This is command #%d.\n\n", i);

}

}

/*
* Wait for the completion of the specified command.
*/
static void
do_cancel (int index)
{

int cancelable;
int status;

if ((index < 0) || (index >= THDNUM))
printf ("Bad command number %d.\n", index);

else {
status = pthread_mutex_lock (&thread_data[index].mutex);
check (status, "Mutex_lock");
cancelable = (thread_data[index].state == ST_RUNNING);
status = pthread_mutex_unlock (&thread_data[index].mutex);
check (status, "Mutex_unlock");

if (cancelable) {
status = pthread_cancel (thread_data[index].thread);
check (status, "Pthread_cancel");

}
else

printf ("Command %d is not active.\n", index);
}

}

(continued on next page)

6–18 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Post-task clean-up routine.
*/
static void
do_cleanup (int index, int final_state)
{

int status;

/*
* This thread is about to make the change from "running" to "finished",
* so lock a mutex to prevent a race condition in which the main thread
* sees this thread as finished before it is actually done cleaning up.
*
* Note that when attempting to lock more than one mutex at a time,
* always lock the mutexes in the same order everywhere in the code.
* The ordering here is the same as in "find_free_thread".
*/
status = pthread_mutex_lock (&free_thread_mutex);
check (status, "Mutex_lock");

/*
* Mark the thread as finished with its task.
*/
status = pthread_mutex_lock (&thread_data[index].mutex);
check (status, "Mutex_lock");
thread_data[index].state = final_state;
status = pthread_mutex_unlock (&thread_data[index].mutex);
check (status, "Mutex_unlock");

/*
* Set the flag indicating that there is a free thread, and signal the
* main thread, in case it is waiting.
*/
free_thread = TRUE;
status = pthread_cond_signal (&free_thread_cv);
check (status, "Cond_signal");
status = pthread_mutex_unlock (&free_thread_mutex);
check (status, "Mutex_unlock");

}

(continued on next page)

Examples 6–19

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Thread routine that prints out the date.
*
* Synchronize access to ctime as it is not thread-safe (it returns the address
* of a static string). Also synchronize access to stdio routines.
*/
static void*
do_date (void* arg)
{

time_t clock_time; /* Julian time */
char *date_str; /* Pointer to string returned from ctime */
char day[4], month[4], date[3], year[5]; /* Pieces of ctime string */

TRY {
/*
* Pretend that this task actually takes a long time to perform.
*/
do_delay ((int)arg);
clock_time = time ((time_t *)0);
date_str = ctime (&clock_time);
sscanf (date_str, "%s %s %s %*s %s", day, month, date, year);
printf ("%d) Today is %s, %s %s %s.\n\n", arg, day, date, month, year);

}
CATCH (pthread_cancel_e) {

printf ("%d) Canceled.\n", arg);

/*
* Perform exit actions
*/
do_cleanup ((int)arg, ST_CANCELED);
RERAISE;

}
CATCH_ALL {

printf ("%d) ", arg);
pthread_exc_report_np (THIS_CATCH);

/*
* Perform exit actions
*/
do_cleanup ((int)arg, ST_ERROR);
RERAISE;

}
ENDTRY;

(continued on next page)

6–20 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Perform exit actions (thread was not canceled).
*/
do_cleanup ((int)arg, ST_FINISHED);

/*
* All thread routines return a value. This program doesn’t check the
* value, however.
*/
return arg;

}

/*
* Delay routine
*
* Since the actual tasks that threads do in this program take so little time
* to perform, execute a delay to make it seem like they are taking a long
* time. Also, this will give the user something to query the progress of.
*/
static void
do_delay (int index)
{

static struct timespec interval = {1, 0};
int done; /* Loop exit condition */
int status;

while (TRUE) {
/*
* Decrement the global count, so the main thread can see how much
* progress we’ve made. Keep decrementing as long as the remaining
* time is greater than zero.
*
* Lock the mutex to ensure no conflict with the main thread that
* might be reading the time remaining while we’re decrementing it.
*/
status = pthread_mutex_lock (&thread_data[index].mutex);
check (status, "Mutex_lock");
done = ((thread_data[index].time--) <= 0);
status = pthread_mutex_unlock (&thread_data[index].mutex);
check (status, "Mutex_unlock");

/*
* Quit if the time is up.
*/
if (done) break;

(continued on next page)

Examples 6–21

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Wait for one second.
*/
pthread_delay_np (&interval);

}
}

/*
* Print the status of the specified thread.
*/
static void
do_status (int index)
{

int start, end; /* Range of commands queried */
int i; /* Loop index */
int output = FALSE; /* Flag: produced output */
int status;

if ((index < -1) || (index >= THDNUM))
printf ("Bad command number %d.\n", index);

else {
if (index == -1)

start = 0, end = THDNUM;
else

start = index, end = start + 1;

for (i = start; i < end; i++) {
status = pthread_mutex_lock (&thread_data[i].mutex);
check (status, "Mutex_lock");

if (thread_data[i].state != ST_INIT) {
printf ("Command #%d: ", i);

switch (thread_data[i].task) {
case ’t’:

printf ("\"time\", ");
break;

case ’d’:
printf ("\"date\", ");
break;

default:
printf ("[unknown] ");
break;

}

(continued on next page)

6–22 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

switch (thread_data[i].state) {
case ST_FINISHED:

printf ("completed");
break;

case ST_CANCELED:
printf ("canceled");
break;

case ST_ERROR:
printf ("terminated by error");
break;

case ST_RUNNING:
if (thread_data[i].time < 0)

printf ("waiting to print");
else

printf (
"%d seconds remaining",
thread_data[i].time);

break;
default:

printf ("Bad thread state.\n");
break;

}

printf (".\n");
output = TRUE;

}

status = pthread_mutex_unlock (&thread_data[i].mutex);
check (status, "Mutex_unlock");

}

if (!output) printf ("No such command.\n");

printf ("\n");
}

}

(continued on next page)

Examples 6–23

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Thread routine that prints out the date.
*/
static void*
do_time (void* arg)
{

time_t clock_time; /* Julian time */
char *date_str; /* Pointer to string returned from ctime */
char time_str[8]; /* Piece of ctime string */

TRY {
/*
* Pretend that this task actually takes a long time to perform.
*/
do_delay ((int)arg);
clock_time = time ((time_t *)0);
date_str = ctime (&clock_time);
sscanf (date_str, "%*s %*s %*s %s", time_str);
printf ("%d) At the tone the time will be, %s.%c\n\n",

arg,
time_str,
’\007’);

}
CATCH (pthread_cancel_e) {

printf ("%d) Canceled.\n", arg);
do_cleanup ((int)arg, ST_CANCELED);
RERAISE;

}
CATCH_ALL {

printf ("%d) ", arg);
pthread_exc_report_np (THIS_CATCH);
do_cleanup ((int)arg, ST_ERROR);
RERAISE;

}
ENDTRY;

/*
* Perform exit actions (thread was not canceled).
*/
do_cleanup ((int)arg, ST_FINISHED);

(continued on next page)

6–24 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* All thread routines return a value. This program doesn’t check the
* value, however.
*/
return arg;

}

/*
* Wait for the completion of the specified command.
*/
static void
do_wait (int index)
{

int status;
void *value;

if ((index < 0) || (index >= THDNUM))
printf ("Bad command number %d.\n", index);

else {
status = pthread_join (thread_data[index].thread, &value);
check (status, "Pthread_join");

if (value == (void*)index)
printf ("Command %d terminated successfully.\n", index);

else if (value == PTHREAD_CANCELED)
printf ("Command %d was canceled.\n", index);

else
printf ("Command %d terminated with unexpected value %#lx",

index, value);

}

}

/*
* Find a free server thread to handle the user’s request.
*
* If a free thread is found, its index is written at the supplied address
* and the function returns true.
*/
static int
find_free_thread (int *index)
{

int i; /* Loop index */
int found; /* Free thread found */
int retry = FALSE; /* Look again for finished threads */
int status;

(continued on next page)

Examples 6–25

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

do {
/*
* We’re about to look for a free thread, so prevent the data state
* from changing while we are looking.
*
* Note that when attempting to lock more than one mutex at a time,
* always lock the mutexes in the same order everywhere in the code.
* The ordering here is the same as in "do_cleanup".
*/
status = pthread_mutex_lock (&free_thread_mutex);
check (status, "Mutex_lock");

/*
* Find a slot that doesn’t have a running thread in it.
*
* Before checking, lock the mutex to prevent conflict with the thread
* if it is running.
*/
for (i = 0, found = FALSE; i < THDNUM; i++) {

status = pthread_mutex_lock (&thread_data[i].mutex);
check (status, "Mutex_lock");
found = (thread_data[i].state != ST_RUNNING);
status = pthread_mutex_unlock (&thread_data[i].mutex);
check (status, "Mutex_unlock");

/*
* Now that the mutex is unlocked, break out of the loop if the
* thread is free.
*/
if (found) break;

}

if (found)
retry = FALSE;

else {
retry = get_y_or_n (

"All threads are currently busy, do you want to wait?",
’Y’);

if (retry) {
/*
* All threads were busy when we started looking, so clear
* the "free thread" flag.
*/
free_thread = FALSE;

(continued on next page)

6–26 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Now wait until some thread finishes and sets the flag
*/
while (!free_thread)

pthread_cond_wait (&free_thread_cv, &free_thread_mutex);
}

}
pthread_mutex_unlock (&free_thread_mutex);

} while (retry);

if (found) {
/*
* Request the Threads Library to reclaim its internal storage
* for this old thread before we use the handle to create a new one.
*/
status = pthread_detach (thread_data[i].thread);
check (status, "Pthread_detach");
*index = i;

}

return (found);
}

/*
* Get the next user command.
*
* Synchronize I/O with other threads to prevent conflicts if the stdio
* routines are not thread-safe.
*/
static char *
get_cmd (char *buffer, int size)
{

printf (PROMPT);
return fgets (buffer, size, stdin);

}

(continued on next page)

Examples 6–27

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Get a yes or no answer to a query. A "blank" answer uses default answer.
*
* Returns TRUE for "yes" and FALSE for "no".
*/
static int
get_y_or_n (char *query, char defans)
{

char buffer[MAXLINSIZ]; /* User’s answer */
int answer; /* Boolean equivalent */
int retry = TRUE; /* Ask again? */

do {
buffer[0] = ’\0’; /* Initialize the buffer */
flockfile (stdout);
flockfile (stdin);
printf ("%s [%c] ", query, defans);
fgets (buffer, sizeof (buffer), stdin);
funlockfile (stdin);
funlockfile (stdout);

if (buffer[0] == ’\0’) buffer[0] = defans; /* Apply default */

switch (buffer[0]) {
case ’y’:
case ’Y’:

answer = TRUE;
retry = FALSE;
break;

case ’n’:
case ’N’:

answer = FALSE;
retry = FALSE;
break;

default:
printf ("Please enter \"Y\" or \"N\".\n");
retry = TRUE;
break;

}
} while (retry);

return answer;
}

(continued on next page)

6–28 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Initialization routine;
*
* Called as a one-time initialization action.
*/
static void
init_routine (void)
{

int i;

for (i = 0; i < THDNUM; i++) {
pthread_mutex_init (&thread_data[i].mutex, NULL);
thread_data[i].time = 0;
thread_data[i].task = ’\0’;
thread_data[i].state = ST_INIT;

}

}

/*
* Print help text.
*/

static void
print_help (void)
{

printf ("Commands are formed by a verb and optional numeric argument.\n");
printf ("The following commands are available:\n");
printf ("\tCancel\t[command]\tCancel running command\n");
printf ("\tDate\t[delay]\t\tPrint the date\n");
printf ("\tHelp\t\t\tPrint this text\n");
printf ("\tQuit\t\t\tQuit (same as EOF)\n");
printf ("\tStatus\t[command]\tReport on running command\n");
printf ("\tTime\t[delay]\t\tPrint the time\n");
printf ("\tWait\t[command]\tWait for command to finish\n");
printf ("\n[command] refers to the command number.\n");;
printf ("[delay] delays command execution for some number of seconds.\n");
printf ("This delay simulates a command task that actually takes some\n");
printf ("period of time to execute. During this delay, commands may be\n");
printf ("initiated, queried, and/or canceled.\n");

}

Examples 6–29

Part II
POSIX.1 (pthread) Routines Reference

Part II provides detailed descriptions of routines that constitute the pthread
interface. These routines (with the prefix pthread_) implement the IEEE
POSIX 1003.1-1996 (or POSIX.1) standard, subject to the capabilities of the
host operating system.

Note

The pthread routines described here are based on the final POSIX.1
standard approved by the IEEE.

Threads Library users should be aware that applications that use the
obsolete d4 interfaces will require significant modifications to upgrade
to the pthread interface. (The obsolete d4 interface corresponds to the
IEEE POSIX 1003.4a/Draft 4 document.)

The global errno variable is not used by the pthread interface routines. To
indicate errors, the pthread routines return integer values to indicate the
error condition.

Routine names with the _np suffix denote that the routine is not portable, with
respect to the POSIX.1 standard. That is, the routine might not be available in
implementations of the POSIX.1 standard other than the Threads Library.

The Threads Library adds the extensions specified by The Open Group’s
(formerly X/Open) Single UNIX Specification, Version 2—also known as
UNIX98. Some of the pthread interface routines that UNIX98 specifies
are not present in the IEEE POSIX 1003.1-1996 standard; these routines
include pthread_attr_getguardsize(), pthread_attr_setguardsize(),
pthread_mutexattr_gettype(), and pthread_mutexattr_settype(). The
Threads Library does not designate these routines as nonportable—that is,
their names do not use the _np suffix naming convention. While portable
to other implementations of the Single UNIX Specification, Version 2, these
routines are not portable to other implementations of the POSIX.1 standard.

pthread_atfork

pthread_atfork

Declares fork handler routines to be called when the calling thread’s process
forks a child process.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_atfork(
prepare,
parent,
child);

Argument Data Type Access

prepare Handler read

parent Handler read

child Handler read

C Binding

#include <pthread.h>

int
pthread_atfork (

void (*prepare)(void),
void (*parent)(void),
void (*child)(void));

Arguments

prepare
Address of a routine that performs the fork preparation handling. This routine
is called in the parent process before creating the child process.

parent
Address of a routine that performs the fork parent handling. This routine
is called in the parent process after creating the child process and before
returning to the caller of fork(2).

pthread–3

pthread_atfork

child
Address of a routine that performs the fork child handling. This routine is
called in the child process before returning to the caller of fork(2).

Description

This routine allows a main program or library to control resources during a
Tru64 UNIX fork(2) operation by declaring fork handler routines, as follows:

• The fork handler routine specified in the prepare argument is called before
fork(2) executes.

• The fork handler routine specified in the parent argument is called after
fork(2) executes within the parent process.

• The fork handler routine specified in the child argument is called in the
new child process after fork(2) executes.

Your program (or library) can use fork handlers to ensure that program context
in the child process is consistent and meaningful. After fork(2) executes, only
the calling thread exists in the child process, and the state of all memory in
the parent process is replicated in the child process, including the states of any
mutexes, condition variables, and so on.

For example, in the new child process there might exist locked mutexes that
are copies of mutexes that were locked in the parent process by threads that do
not exist in the child process. Therefore, any associated program state might
be inconsistent in the child process.

The program can avoid this problem by calling pthread_atfork() to provide
routines that acquire and release resources that are critical to the child
process. For example, the prepare handler should lock all mutexes that you
want to be usable in the child process. The parent handler just unlocks those
mutexes. The child handler will also unlock them all—and might also create
threads or reset any program state for the child process.

To illustrate, if your library uses the mutex my_mutex, you might provide
pthread_atfork() handler routines coded as follows:

void my_prepare(void)
{
pthread_mutex_lock(&my_mutex);
}

void my_parent(void)
{
pthread_mutex_unlock(&my_mutex);
}

pthread–4

pthread_atfork

void my_child(void)
{
pthread_mutex_unlock(&my_mutex);
/* Reinitialize state that doesn’t apply...like heap owned */
/* by other threads */
}

{
.
.
.

pthread_atfork(my_prepare, my_parent, my_child);
.
.

fork();
}

If no fork handling is desired, you can set any of this routine’s arguments to
NULL.

Note

It is not legal to call pthread_atfork() from within a fork handler
routine. Doing so could cause a deadlock.

Return Values

If an error occurs, this routine returns an integer indicating the type of error.
Possible return values are as follows:

Return Description

0 Successful completion.
[ENOMEM] Insufficient table space exists to record the fork handler

routines’ addresses.

Associated Routines

pthread_create()

pthread–5

pthread_attr_destroy

pthread_attr_destroy

Destroys a thread attributes object.

Syntax

pthread_attr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_attr_t modify

C Binding

#include <pthread.h>

int
pthread_attr_destroy (

pthread_attr_t *attr);

Arguments

attr
Thread attributes object to be destroyed.

Description

This routine destroys a thread attributes object. Call this routine when a
thread attributes object will no longer be referenced.

Threads that were created using this thread attributes object are not affected
by the destruction of the thread attributes object.

The results of calling this routine are unpredictable if the value specified by
the attr argument refers to a thread attributes object that does not exist.

pthread–6

pthread_attr_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_init()
pthread_create()

pthread–7

pthread_attr_getdetachstate

pthread_attr_getdetachstate

Obtains the detachstate attribute of the specified thread attributes object.

Syntax

pthread_attr_getdetachstate(
attr,
detachstate);

Argument Data Type Access

attr opaque pthread_attr_t read

detachstate integer write

C Binding

#include <pthread.h>

int
pthread_attr_getdetachstate (

const pthread_attr_t *attr,
int *detachstate);

Arguments

attr
Thread attributes object whose detachstate attribute is obtained.

detachstate
Receives the value of the detachstate attribute.

Description

This routine obtains the detachstate attribute of a thread attributes object.
This attribute specifies whether threads created using the specified thread
attributes object are created in a detached state.

On successful completion, this routine returns a zero and the detachstate
attribute is set in detachstate. A value of PTHREAD_CREATE_JOINABLE indicates
the thread is not detached, and a value of PTHREAD_CREATE_DETACHED indicates
the thread is detached.

pthread–8

pthread_attr_getdetachstate

See the pthread_attr_setdetachstate() description for information about the
detachstate attribute.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr does not refer to an existing

thread attributes object.

Associated Routines

pthread_attr_init()
pthread_attr_setdetachstate()

pthread–9

pthread_attr_getguardsize

pthread_attr_getguardsize

Obtains the guardsize attribute of the specified thread attributes object.

Syntax

pthread_attr_getguardsize(
attr,
guardsize);

Argument Data Type Access

attr opaque pthread_attr_t read

guardsize size_t write

C Binding

#include <pthread.h>

int
pthread_attr_getguardsize (

const pthread_attr_t *attr,
size_t *guardsize);

Arguments

attr
Address of the thread attributes object whose guardsize attribute is obtained.

guardsize
Receives the value of the guardsize attribute of the thread attributes object
specified by attr.

Description

This routine obtains the value of the guardsize attribute of the thread
attributes object specified in the attr argument and stores it in the location
specified by the guardsize argument. The specified attributes object must
already be initialized at the time this routine is called.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The guardsize attribute of a thread attributes
object specifies the minimum size (in bytes) of the guard area for the stack of a
new thread.

pthread–10

pthread_attr_getguardsize

A guard area can help a multithreaded program detect overflow of a thread’s
stack. A guard area is a region of no-access memory that the Threads Library
allocates at the overflow end of the thread’s stack. When any thread attempts
to access a memory location within this region, a memory addressing violation
occurs.

Note that the value of the guardsize attribute of a particular thread attributes
object does not necessarily correspond to the actual size of the guard area of
any existing thread in your multithreaded program.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr does not refer to an existing

thread attributes object.

Associated Routines

pthread_attr_init()
pthread_attr_setguardsize()
pthread_attr_setstacksize()
pthread_create()

pthread–11

pthread_attr_getinheritsched

pthread_attr_getinheritsched

Obtains the inherit scheduling attribute of the specified thread attributes
object.

Syntax

pthread_attr_getinheritsched(
attr,
inheritsched);

Argument Data Type Access

attr opaque pthread_attr_t read

inheritsched integer write

C Binding

#include <pthread.h>

int
pthread_attr_getinheritsched (

const pthread_attr_t *attr,
int *inheritsched);

Arguments

attr
Thread attributes object whose inherit scheduling attribute is obtained.

inheritsched
Receives the value of the inherit scheduling attribute. Refer to the description
of the pthread_attr_setinheritsched() function for valid values.

Description

This routine obtains the value of the inherit scheduling attribute from the
specified thread attributes object. The inherit scheduling attribute specifies
whether threads created using the attributes object inherit the scheduling
attributes of the creating thread, or use the scheduling attributes stored in the
attributes object that is passed to pthread_create().

pthread–12

pthread_attr_getinheritsched

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_init()
pthread_attr_setinheritsched()
pthread_create()

pthread–13

pthread_attr_getname_np

pthread_attr_getname_np

Obtains the object name attribute from a thread attributes object.

Syntax

pthread_attr_getname_np(
attr,
name,
len,
mbz);

Argument Data Type Access

attr opaque pthread_attr_t read

name char write

len opaque size_t read

mbz void write

C Binding

#include <pthread.h>

int
pthread_attr_getname_np (

const pthread_attr_t *attr,
char *name,
size_t len,
void **mbz);

Arguments

attr
Address of the thread attributes object whose object name attribute is to be
obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

pthread–14

pthread_attr_getname_np

mbz
Reserved for future use. The value must be zero (0).

Description

This routine copies the object name attribute from the thread attributes object
specified by the attr argument to the buffer at the location specified by the
name argument. Before calling this routine, your program must allocate the
buffer indicated by name. A new thread created using the thread attributes
object is initialized with the object name that was set in that attributes object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified thread attributes object has not been previously set with an
object name, this routine copies a C language null string into the buffer at
location name.

This routine contrasts with pthread_getname_np(), which obtains the object
name from the thread object for an existing thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_getname_np()
pthread_attr_setname_np()
pthread_setname_np()

pthread–15

pthread_attr_getschedparam

pthread_attr_getschedparam

Obtains the scheduling parameters for an attribute of the specified thread
attributes object.

Syntax

pthread_attr_getschedparam(
attr,
param);

Argument Data Type Access

attr opaque pthread_attr_t read

param struct sched_param write

C Binding

#include <pthread.h>

int
pthread_attr_getschedparam (

const pthread_attr_t *attr,
struct sched_param *param);

Arguments

attr
Thread attributes object of the scheduling policy attribute whose parameters
are obtained.

param
Receives the values of scheduling parameters for the scheduling policy
attribute of the attributes object specified by the attr argument. Refer to
the description of the pthread_attr_setschedparam() routine for valid
parameters and their values.

Description

This routine obtains the scheduling parameters associated with the scheduling
policy attribute of the specified thread attributes object.

pthread–16

pthread_attr_getschedparam

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_init()
pthread_attr_setschedparam()
pthread_create()

pthread–17

pthread_attr_getschedpolicy

pthread_attr_getschedpolicy

Obtains the scheduling policy attribute of the specified thread attributes object.

Syntax

pthread_attr_getschedpolicy(
attr,
policy);

Argument Data Type Access

attr opaque pthread_attr_t read

policy integer write

C Binding

#include <pthread.h>

int
pthread_attr_getschedpolicy (

const pthread_attr_t *attr,
int *policy);

Arguments

attr
Thread attributes object whose scheduling policy attribute is obtained.

policy
Receives the value of the scheduling policy attribute. Refer to the description
of the pthread_attr_setschedpolicy() routine for valid values.

Description

This routine obtains the value of the scheduling policy attribute of the specified
thread attributes object. The scheduling policy attribute defines the scheduling
policy for threads created using the attributes object.

pthread–18

pthread_attr_getschedpolicy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_init()
pthread_attr_setschedpolicy()
pthread_create()

pthread–19

pthread_attr_getscope

pthread_attr_getscope

Obtains the contention scope attribute of the specified thread attributes object.

Syntax

pthread_attr_getscope(
attr,
scope);

Argument Data Type Access

attr opaque pthread_attr_t read

scope int write

C Binding

#include <pthread.h>

int
pthread_attr_getscope (

const pthread_attr_t *attr,
int *scope);

Arguments

attr
Address of the thread attributes object whose contention scope attribute is
obtained.

scope
Receives the value of the contention scope attribute of the thread attributes
object specified by attr.

Description

This routine obtains the value of the contention scope attribute of the thread
attributes object specified in the attr argument and stores it in the location
specified by the scope argument. The specified attributes object must already
be initialized at the time this routine is called.

pthread–20

pthread_attr_getscope

The contention scope attribute specifies the set of threads with which a thread
must compete for processing resources. The contention scope attribute specifies
whether the new thread competes for processing resources only with other
threads in its own process, called process contention scope, or with all
threads on the system, called system contention scope.

The Threads Library selects at most one thread to execute on each processor at
any point in time. The Threads Library resolves the contention based on each
thread’s scheduling attributes (for example, priority) and scheduling policy (for
example, round-robin).

A thread created using a thread attributes object whose contention scope
attribute is set to PTHREAD_SCOPE_PROCESS contends for processing resources
with other threads within its own process that also were created with
PTHREAD_SCOPE_PROCESS. It is unspecified how such threads are scheduled
relative to threads in other processes or threads in the same process that were
created with PTHREAD_SCOPE_SYSTEM contention scope.

A thread created using a thread attributes object whose contention
scope attribute is set to PTHREAD_SCOPE_SYSTEM contends for processing
resources with other threads in any process that also were created with
PTHREAD_SCOPE_SYSTEM.

Note that the value of the contention scope attribute of a particular thread
attributes object does not necessarily correspond to the actual scheduling
contention scope of any existing thread in your multithreaded program.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.
[ENOSYS] This routine is not supported by the implementation.

pthread–21

pthread_attr_getscope

Associated Routines

pthread_attr_init()
pthread_attr_setscope()

pthread–22

pthread_attr_getstackaddr

pthread_attr_getstackaddr

Obtains the stack address attribute of the specified thread attributes object.

Syntax

pthread_attr_getstackaddr(
attr,
stackaddr);

Argument Data Type Access

attr opaque pthread_attr_t read

stackaddr void write

C Binding

#include <pthread.h>

int
pthread_attr_getstackaddr (

const pthread_attr_t *attr,
void **stackaddr);

Arguments

attr
Address of the thread attributes object whose stack address attribute is
obtained.

stackaddr
Receives the value of the stack address attribute of the thread attributes object
specified by attr.

Description

This routine obtains the value of the stack address attribute of the thread
attributes object specified in the attr argument and stores it in the location
specified by the stackaddr argument. The specified attributes object must
already be initialized at the time this routine is called.

The stack address attribute of a thread attributes object points to the origin of
the stack for a new thread.

pthread–23

pthread_attr_getstackaddr

Note that the value of the stack address attribute of a particular thread
attributes object does not necessarily correspond to the actual stack origin of
any existing thread in your multithreaded program.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_getguardsize()
pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setguardsize()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()
pthread_create()

pthread–24

pthread_attr_getstackaddr_np

pthread_attr_getstackaddr_np

Obtains the stack address attribute of the specified thread attributes object.

Syntax

pthread_attr_getstackaddr_np(
attr,
stackaddr,
size);

Argument Data Type Access

attr opaque pthread_attr_t read

stackaddr void write

size size_t write

C Binding

#include <pthread.h>

int
pthread_attr_getstackaddr (

const pthread_attr_t *attr,
void **stackaddr,
size_t *size);

Arguments

attr
Address of the thread attributes object whose stack address attribute is
obtained.

stackaddr
Receives the address of the stack region of the thread attributes object specified
by attr.

size
The size of the stack region in bytes.

pthread–25

pthread_attr_getstackaddr_np

Description

This routine obtains the value of the stack address attribute of the thread
attributes object specified in the attr argument and stores it in the location
specified by the stackaddr argument. The specified attributes object must
already be initialized at the time this routine is called.

The stack address attribute of a thread attributes object points to the origin of
the stack for a new thread.

Unlike pthread_attr_getstackaddr(), this routine is a much more reliable
portable interface. With the POSIX standard pthread_attr_getstackaddr(),
a stack is specified using a single, undefined, address. An implementation of
the standard can only assume that the specified value represents the value
to which the thread’s stack pointer should be set when beginning execution.
However, this requires the application to know how the machine uses the
stack. For example, a stack may ‘‘grow’’ either up (to higher addresses) or
down (to lower addresses), and may be decreased (or increased) either before or
after storing a new value.

The Threads Library provides an alternative interface with
pthread_attr_getstackaddr_np(). Instead of returning a stack address, it
returns the base (lowest) address and the size.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_setstackaddr_np()

pthread–26

pthread_attr_getstacksize

pthread_attr_getstacksize

Obtains the stacksize attribute of the specified thread attributes object.

Syntax

pthread_attr_getstacksize(
attr,
stacksize);

Argument Data Type Access

attr opaque pthread_attr_t read

stacksize size_t write

C Binding

#include <pthread.h>

int
pthread_attr_getstacksize (

const pthread_attr_t *attr,
size_t *stacksize);

Arguments

attr
Thread attributes object whose stacksize attribute is obtained.

stacksize
Receives the value for the stacksize attribute of the thread attributes object
specified by the attr argument.

Description

This routine obtains the stacksize attribute of the thread attributes object
specified in the attr argument.

pthread–27

pthread_attr_getstacksize

Return Values

On successful completion, this routine returns a zero (0) and the stacksize
value in bytes in the location specified in the stacksize argument.

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid stack attributes

object.

Associated Routines

pthread_attr_init()
pthread_attr_setstacksize()
pthread_create()

pthread–28

pthread_attr_init

pthread_attr_init

Initializes a thread attributes object.

Syntax

pthread_attr_init(
attr);

Argument Data Type Access

attr opaque pthread_attr_t write

C Binding

#include <pthread.h>

int
pthread_attr_init (

pthread_attr_t *attr);

Arguments

attr
Address of a thread attributes object to be initialized.

Description

This routine initializes the thread attributes object specified by the attr
argument with a set of default attribute values. A thread attributes object is
used to specify the attributes of one or more threads when they are created.
The attributes object created by this routine is used only in calls to the
pthread_create() routine.

The following routines change individual attributes of an initialized thread
attributes object:

pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_attr_setstackaddr()

pthread–29

pthread_attr_init

pthread_attr_setstacksize()

The attributes of the thread attributes object are initialized to default values.
The default value of each attribute is discussed in the reference description for
each routine listed above.

When a thread attributes object is used to create a thread, the object’s attribute
values determine the characteristics of the new thread. Thus, attributes objects
act as additional arguments to thread creation. Changing the attributes of a
thread attributes object does not affect any threads that were previously
created using that attributes object.

You can use the same thread attributes object in successive calls to
pthread_create(), from any thread. (However, you cannot use the same
value of the stack address attribute to create multiple threads that might run
concurrently; threads cannot share a stack.) If more than one thread might
change the attributes in a shared attributes object, your program must use a
mutex to protect the integrity of the attributes object’s contents.

When you set the scheduling policy or scheduling parameters, or both,
in a thread attributes object, you must disable scheduling inheritance if
you want the scheduling attributes you set to be used at thread creation.
To disable scheduling inheritance, before creating the new thread use
the pthread_attr_setinheritsched() routine to specify the value
PTHREAD_EXPLICIT_SCHED for the inherit argument.

Return Values

If an error condition occurs, the thread attributes object cannot be used, and
this routine returns an integer value indicating the type of error. Possible
return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.
[ENOMEM] Insufficient memory exists to initialize the thread

attributes object.

pthread–30

pthread_attr_init

Associated Routines

pthread_attr_destroy()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()
pthread_create()

pthread–31

pthread_attr_setdetachstate

pthread_attr_setdetachstate

Changes the detachstate attribute in the specified thread attributes object.

Syntax

pthread_attr_setdetachstate(
attr,
detachstate);

Argument Data Type Access

attr opaque pthread_attr_t write

detachstate integer read

C Binding

#include <pthread.h>

int
pthread_attr_setdetachstate (

pthread_attr_t *attr,
int detachstate);

Arguments

attr
Thread attributes object to be modified.

detachstate
New value for the detachstate attribute. Valid values are as follows:

PTHREAD_CREATE_JOINABLE This is the default value. Threads are
created in ‘‘undetached’’ state.

PTHREAD_CREATE_DETACHED The created thread is detached
immediately, before it begins running.

pthread–32

pthread_attr_setdetachstate

Description

This routine changes the detachstate attribute in the thread attributes object
specified by the attr argument. The detachstate attribute specifies whether
the thread created using the specified thread attributes object is created in
a detached state or not. A value of PTHREAD_CREATE_JOINABLE indicates the
thread is not detached, and a value of PTHREAD_CREATE_DETACHED indicates the
thread is detached. PTHREAD_CREATE_JOINABLE is the default value.

Your program cannot use the thread handle (the value of type pthread_t
returned by the pthread_create() routine) of a detached thread because the
thread might terminate asynchronously, and a detached thread ID is not valid
after termination. In particular, it is an error to attempt to detach or join with
a detached thread.

When a thread that has not been detached completes execution, the Threads
Library retains the state of that thread to allow another thread to join with it.
If the thread is detached before it completes execution, the Threads Library
is free to immediately reclaim the thread’s storage and resources. Failing to
detach threads that have completed execution can result in wasting resources,
so threads should be detached as soon as the program is done with them. If
there is no need to use the thread’s handle after creation, such as to join with
it, create the thread initially detached.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by the attr argument is not a valid

threads attribute object or the detachstate argument is
invalid.

Associated Routines

pthread_attr_init()
pthread_attr_getdetachstate()
pthread_create()
pthread_join()

pthread–33

pthread_attr_setguardsize

pthread_attr_setguardsize

Changes the guardsize attribute of the specified thread attributes object.

Syntax

pthread_attr_setguardsize(
attr,
guardsize);

Argument Data Type Access

attr opaque pthread_attr_t write

guardsize size_t read

C Binding

#include <pthread.h>

int
pthread_attr_setguardsize (

pthread_attr_t *attr,
size_t guardsize);

Arguments

attr
Address of the thread attributes object whose guardsize attribute is to be
modified.

guardsize
New value for the guardsize attribute of the thread attributes object specified
by attr.

Description

This routine uses the value specified in the guardsize argument to set
the guardsize attribute of the thread attributes object specified in the attr
argument.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The guardsize attribute of a thread attributes
object specifies the minimum size (in bytes) of the guard area for the stack of a
new thread.

pthread–34

pthread_attr_setguardsize

A guard area, with its associated overflow warning area, can help a
multithreaded program detect overflow of a thread’s stack. A guard area
is a region of no-access memory that the Threads Library allocates at the
overflow end of the thread’s stack, following the thread’s overflow warning
area. If the thread attempts to write in the overflow warning area, a stack
overflow exception occurs. Your program can catch this exception and continue
processing as long as the thread does not attempt to write in the guard area.
When any thread attempts to access a memory location within the guard area,
a memory addressing violation occurs without the possibility of recovery.

A new thread can be created with a default guardsize attribute value. This
value is platform dependent, but will always be at least one ‘‘hardware
protection unit’’ (that is, at least one page). For more information, see this
guide’s platform-specific appendixes.

After this routine is called, due to platform-specific factors the Threads Library
might reserve a larger guard area for the new thread than was specified in
the guardsize argument. See this guide’s platform-specific appendixes for more
information.

The Threads Library allows your program to specify the size of a thread stack’s
guard area for two reasons:

• When a thread allocates large data structures on its stack, a guard area
with a size greater than the default size might be required to detect stack
overflow.

• Overflow protection of a thread’s stack can potentially waste system
resources, such as for an application that creates a large number of
threads that will never overflow their stacks. Your multithreaded program
can conserve system resources by ‘‘turning off’’ a thread’s stack guard
area—that is, by specifying a guardsize attribute of zero.

If a thread is created using a thread attributes object whose stackaddr
attribute is set (using the pthread_attr_setstackaddr() routine), this routine
ignores the object’s guardsize attribute and provides no thread stack overflow
warning or guard area for the new thread.

pthread–35

pthread_attr_setguardsize

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The argument attr is not a valid thread attributes object,

or the argument guardsize contains an invalid value.

Associated Routines

pthread_attr_init()
pthread_attr_getguardsize()
pthread_attr_setstacksize()
pthread_create()

pthread–36

pthread_attr_setinheritsched

pthread_attr_setinheritsched

Changes the inherit scheduling attribute of the specified thread attributes
object.

Syntax

pthread_attr_setinheritsched(
attr,
inheritsched);

Argument Data Type Access

attr opaque pthread_attr_t write

inheritsched integer read

C Binding

#include <pthread.h>

int
pthread_attr_setinheritsched (

pthread_attr_t *attr,
int inheritsched);

Arguments

attr
Thread attributes object whose inherit scheduling attribute is to be modified.

inheritsched
New value for the inherit scheduling attribute. Valid values are as follows:

pthread–37

pthread_attr_setinheritsched

PTHREAD_INHERIT_SCHED The created thread inherits the
scheduling policy and associated
scheduling attributes of the thread
calling pthread_create(). Any
scheduling attributes in the
attributes object specified by the
pthread_create() attr argument are
ignored during thread creation. This
is the default value.

PTHREAD_EXPLICIT_SCHED The scheduling policy and associated
scheduling attributes of the created
thread are set to the corresponding
values from the attribute object
specified by the pthread_create()
attr argument.

Description

This routine changes the inherit scheduling attribute of the thread attributes
object specified by the attr argument. The inherit scheduling attribute specifies
whether a thread created using the specified attributes object inherits
the scheduling attributes of the creating thread, or uses the scheduling
attributes stored in the attributes object specified by the pthread_create()
attr argument.

The first thread in an application has a scheduling policy of SCHED_OTHER. See
the pthread_attr_setschedparam() and pthread_attr_setschedpolicy()
routines for more information on valid priority values and valid scheduling
policy values.

Inheriting scheduling attributes (instead of using the scheduling attributes
stored in the attributes object) is useful when a thread is creating several
helper threads—that is, threads that are intended to work closely with
the creating thread to cooperatively solve the same problem. For example,
inherited scheduling attributes ensure that helper threads created in a sort
routine execute with the same priority as the calling thread.

pthread–38

pthread_attr_setinheritsched

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by the attr argument is not a valid

thread attributes object, or the inheritsched argument
contains an invalid value.

[ENOTSUP] An attempt was made to set the attribute to an
unsupported value.

Associated Routines

pthread_attr_init()
pthread_attr_getinheritsched()
pthread_attr_setschedpolicy()
pthread_attr_setschedparam()
pthread_attr_setscope()
pthread_create()

pthread–39

pthread_attr_setname_np

pthread_attr_setname_np

Changes the object name attribute in a thread attributes object.

Syntax

pthread_attr_setname_np(
attr,
name,
mbz);

Argument Data Type Access

attr opaque pthread_attr_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_attr_setname_np (

pthread_attr_t *attr,
const char *name,
void *mbz);

Arguments

attr
Address of the thread attributes object whose object name attribute is to be
changed.

name
Object name value to copy into the thread attributes object’s object name
attribute.

mbz
Reserved for future use. The value must be zero (0).

pthread–40

pthread_attr_setname_np

Description

This routine changes the object name attribute in the thread attributes object
specified by the attr argument to the value specified by the name argument.
A new thread created using the thread attributes object is initialized with the
object name that was set in that attributes object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

This routine contrasts with pthread_setname_np(), which changes the object
name in the thread object for an existing thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the length in characters of name exceeds 31.
[ENOMEM] Insufficient memory exists to create a copy of the object

name string.

Associated Routines

pthread_attr_getname_np()
pthread_getname_np()
pthread_setname_np()

pthread–41

pthread_attr_setschedparam

pthread_attr_setschedparam

Changes the values of the parameters associated with a scheduling policy of
the specified thread attributes object.

Syntax

pthread_attr_setschedparam(
attr,
param);

Argument Data Type Access

attr opaque pthread_attr_t write

param struct sched_param read

C Binding

#include <pthread.h>

int
pthread_attr_setschedparam (

pthread_attr_t *attr,
const struct sched_param *param);

Arguments

attr
Thread attributes object for the scheduling policy attribute whose parameters
are to be set.

param
A structure containing new values for scheduling parameters associated with
the scheduling policy attribute of the specified thread attributes object.

Note

The Threads Library provides only the sched_priority scheduling
parameter. See below for information about this scheduling parameter.

pthread–42

pthread_attr_setschedparam

Description

This routine sets the scheduling parameters associated with the scheduling
policy attribute of the thread attributes object specified by the attr argument.

Scheduling Priority
Use the sched_priority field of a sched_param structure to set a thread’s
execution priority. The effect of the scheduling priority you assign depends on
the scheduling policy specified for the attributes object specified by the attr
argument.

By default, a created thread inherits the priority of the thread calling
pthread_create(). To specify a priority using this routine, scheduling
inheritance must be disabled at the time the thread is created. Before calling
pthread_create(), call pthread_attr_setinheritsched() and specify the
value PTHREAD_EXPLICIT_SCHED for the inherit argument.

An application specifies priority only to express the urgency of executing the
thread relative to other threads. Do not use priority to control mutual exclusion
when accessing shared data. With a sufficient number of processors present,
all ready threads, regardless of priority, execute simultaneously. Even on a
uniprocessor, a lower priority thread could execute before or be interleaved
with a higher priority thread, e.g. due to page fault behavior. See Chapter 1
and Chapter 2 for more information.

Valid values of the sched_priority scheduling parameter depend on the
chosen scheduling policy. Use the POSIX routines sched_get_priority_min()
or sched_get_priority_max() to determine the low and high limits of each
policy.

Additionally, the Threads Library provides nonportable priority range
constants, as follows:

Policy Low High

SCHED_FIFO PRI_FIFO_MIN PRI_FIFO_MAX

SCHED_RR PRI_RR_MIN PRI_RR_MAX

SCHED_OTHER PRI_OTHER_MIN PRI_OTHER_MAX

SCHED_FG_NP PRI_FG_MIN_NP PRI_FG_MAX_NP

SCHED_BG_NP PRI_BG_MIN_NP PRI_BG_MAX_NP

The default priority varies by platform. On Tru64 UNIX, the default is 19 (that
is, the POSIX priority of a normal timeshare process). On other platforms, the
default priority is the midpoint between PRI_FG_MIN_NP and PRI_FG_MAX_NP.

pthread–43

pthread_attr_setschedparam

(Section 2.3.6 describes how to specify priorities between the minimum and
maximum values.)

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the value specified by param is invalid.
[ENOTSUP] An attempt was made to set the attribute to an

unsupported value.

Associated Routines

pthread_attr_init()
pthread_attr_getschedparam()
pthread_attr_setinheritsched()
pthread_attr_setschedpolicy()
pthread_create()
sched_yield()

pthread–44

pthread_attr_setschedpolicy

pthread_attr_setschedpolicy

Changes the scheduling policy attribute of the specified thread attributes
object.

Syntax

pthread_attr_setschedpolicy(
attr,
policy);

Argument Data Type Access

attr opaque pthread_attr_t write

policy integer read

C Binding

#include <pthread.h>

int
pthread_attr_setschedpolicy (

pthread_attr_t *attr,
int policy);

Arguments

attr
Thread attributes object to be modified.

policy
New value for the scheduling policy attribute. Valid values are as follows:

SCHED_BG_NP
SCHED_FG_NP (also known as SCHED_OTHER)
SCHED_FIFO
SCHED_RR

SCHED_OTHER is the default value. See Section 2.3.2.2 for a description of the
scheduling policies.

pthread–45

pthread_attr_setschedpolicy

Description

This routine sets the scheduling policy of a thread that is created using the
attributes object specified by the attr argument. The default value of the
scheduling attribute is SCHED_OTHER.

By default, a created thread inherits the policy of the thread calling
pthread_create(). To specify a policy using this routine, scheduling
inheritance must be disabled at the time the thread is created. Before calling
pthread_create(), call pthread_attr_setinheritsched() and specify the
value PTHREAD_EXPLICIT_SCHED for the inherit argument.

Preemption is caused by both scheduling and policy. Never attempt to use
scheduling as a mechanism for synchronization. (Refer to Chapter 1 and
Chapter 2.)

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the value specified by policy is invalid.

Associated Routines

pthread_attr_init()
pthread_attr_getschedpolicy()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_create()

pthread–46

pthread_attr_setscope

pthread_attr_setscope

Sets the contention scope attribute of the specified thread attributes object.

Syntax

pthread_attr_setscope(
attr,
scope);

Argument Data Type Access

attr opaque pthread_attr_t write

scope int read

C Binding

#include <pthread.h>

int
pthread_attr_setscope (

pthread_attr_t *attr,
int scope);

Arguments

attr
Address of the thread attributes object whose contention scope attribute is to
be modified.

scope
New value for the contention scope attribute of the thread attributes object
specified by attr.

Description

This routine uses the value specified in the scope argument to set the
contention scope attribute of the thread attributes object specified in the
attr argument.

pthread–47

pthread_attr_setscope

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The contention scope attribute specifies the
set of threads with which a thread must compete for processing resources.
The contention scope attribute specifies whether the new thread competes
for processing resources only with other threads in its own process, called
process contention scope, or with all threads on the system, called system
contention scope.

Note

On Tru64 UNIX, the Threads Library supports both process contention
scope and system contention scope threads. On OpenVMS, the Threads
Library supports only process contention scope threads.

The Threads Library selects at most one thread to execute on each processor at
any point in time. The Threads Library resolves the contention based on each
thread’s scheduling attributes (for example, priority) and scheduling policy (for
example, round-robin).

A thread created using a thread attributes object whose contention scope
attribute is set to PTHREAD_SCOPE_PROCESS contends for processing resources
with other threads within its own process that also were created with
PTHREAD_SCOPE_PROCESS. It is unspecified how such threads are scheduled
relative to threads in other processes or threads in the same process that were
created with PTHREAD_SCOPE_SYSTEM contention scope.

A thread created using a thread attributes object whose contention
scope attribute is set to PTHREAD_SCOPE_SYSTEM contends for processing
resources with other threads in any process that also were created with
PTHREAD_SCOPE_SYSTEM.

Note that the value of the contention scope attribute of a particular thread
attributes object does not necessarily correspond to the actual scheduling
contention scope of any existing thread in your multithreaded program.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

pthread–48

pthread_attr_setscope

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

value, or the value specified by scope is not valid.
[ENOTSUP] An attempt was made to set the attribute to an

unsupported value.

Associated Routines

pthread_attr_destroy()
pthread_attr_init()
pthread_attr_getscope()
pthread_attr_setinheritsched()
pthread_create()

pthread–49

pthread_attr_setstackaddr

pthread_attr_setstackaddr

Changes the stack address attribute of the specified thread attributes object.

Syntax

pthread_attr_setstackaddr(
attr,
stackaddr);

Argument Data Type Access

attr opaque pthread_attr_t write

stackaddr void read

C Binding

#include <pthread.h>

int
pthread_attr_setstackaddr (

pthread_attr_t *attr,
void *stackaddr);

Arguments

attr
Address of the thread attributes object whose stack address attribute is to be
modified.

stackaddr
New value for the stack address attribute of the thread attributes object
specified by attr.

Description

This routine uses the value specified in the stackaddr argument to set the
stack address attribute of the thread attributes object specified in the attr
argument.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The stack address attribute of a thread attributes
object points to the origin of the stack for a new thread.

pthread–50

pthread_attr_setstackaddr

The default value for the stack address attribute of an initialized thread
attributes object is NULL.

Note

Correct use of this routine depends upon details of the target platform’s
stack architecture. Thus, this routine cannot be used in a portable
manner.

The size of the stack must be at least PTHREAD_STACK_MIN bytes (see
the pthread.h header file). However, because the Threads Library
must use a portion of this stack memory to begin thread execution and
to maintain thread state, your program’s ‘‘user thread code’’ cannot rely
on using all of the stack memory allocated.

For your program to calculate a value for the stackaddr attribute, note that:

• Your program must allocate the memory that will be used for the new
thread’s stack.

• On Tru64 UNIX, to create a new thread using a thread attributes object,
the stackaddr attribute must be an address that points to the high-memory
end of the memory region allocated for the stack. This address must point
to the highest even-boundary quadword in the allocated memory region.

Also note that:

• If you use the pthread_attr_setstackaddr() routine to set a thread
attributes object’s stack address attribute and use that attributes object to
create a new thread, the Threads Library ignores the attributes object’s
guardsize attribute and provides no thread stack guard area or overflow
warning area for the new thread.

• If you use the same thread attributes object to create more than one thread
and each created thread uses a nondefault stack address, you must use
the pthread_attr_setstackaddr() routine to set a unique stack address
attribute value for each new thread created using that attributes object.

pthread–51

pthread_attr_setstackaddr

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_getguardsize()
pthread_attr_getstackaddr()
pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setguardsize()
pthread_attr_setstacksize()
pthread_create()

pthread–52

pthread_attr_setstackaddr_np

pthread_attr_setstackaddr_np

Changes the stack address and size of the specified thread attributes object.

Syntax

pthread_attr_setstackaddr_np(
attr,
stackaddr,
size);

Argument Data Type Access

attr opaque pthread_attr_t write

stackaddr void read

size size_t read

C Binding

#include <pthread.h>

int
pthread_attr_setstackaddr_np (

pthread_attr_t *attr,
void *stackaddr,
size_t size);

Arguments

attr
Address of the thread attributes object whose stack address attribute is to be
modified.

stackaddr
New value for the address of the stack region of the thread attributes object
specified by attr.

size
The size of the stack region in bytes.

pthread–53

pthread_attr_setstackaddr_np

Description

This routine uses the values specified in the stackaddr and size arguments to
set the base stack address and size of the thread attributes object specified in
the attr argument.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The default value for the stack address attribute
of an initialized thread attributes object is NULL.

Unlike pthread_attr_setstackaddr(), this routine is a much more reliable
portable interface. With the POSIX standard pthread_attr_setstackaddr(),
a stack is specified using a single, undefined, address. An implementation of
the standard can only assume that the specified value represents the value
to which the thread’s stack pointer should be set when beginning execution.
However, this requires the application to know how the machine uses the
stack. For example, a stack may ‘‘grow’’ either up (to higher addresses) or
down (to lower addresses), and may be decreased (or increased) either before or
after storing a new value.

The Threads Library provides an alternative interface with
pthread_attr_setstackaddr_np(). Instead of specifying a stack address, you
specify the base (lowest) address and the size.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_getstackaddr_np()

pthread–54

pthread_attr_setstacksize

pthread_attr_setstacksize

Changes the stacksize attribute in the specified thread attributes object.

Syntax

pthread_attr_setstacksize(
attr,
stacksize);

Argument Data Type Access

attr opaque pthread_attr_t write

stacksize size_t read

C Binding

#include <pthread.h>

int
pthread_attr_setstacksize (

pthread_attr_t *attr,
size_t stacksize);

Arguments

attr
Threads attributes object to be modified.

stacksize
New value for the stacksize attribute of the thread attributes object specified
by the attr argument. The stacksize argument must be greater than or equal to
PTHREAD_STACK_MIN. PTHREAD_STACK_MIN specifies the minimum size (in bytes)
of the stack needed for a thread.

Description

This routine sets the stacksize attribute in the thread attributes object
specified by the attr argument. Use this routine to adjust the size of the
writable area of the stack for a new thread.

pthread–55

pthread_attr_setstacksize

The size of a thread’s stack is fixed at the time of thread creation. On
OpenVMS systems, only the initial thread can dynamically extend its stack.
On Tru64 UNIX systems, very large stacks can be created, but only a few
pages are committed.

Many compilers do not check for stack overflow. Ensure that the new thread’s
stack is sufficient for the resources required by routines that are called from
the thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the value specified by stacksize is less than
PTHREAD_STACK_MIN or exceeds a Threads Library-imposed
limit.

Associated Routines

pthread_attr_init()
pthread_attr_getstacksize()
pthread_create()

pthread–56

pthread_cancel

pthread_cancel

Allows a thread to request a thread to terminate execution.

Syntax

pthread_cancel(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

#include <pthread.h>

int
pthread_cancel (

pthread_t thread);

Arguments

thread
Thread that will receive a cancelation request.

Description

This routine sends a cancelation request to the specified target thread. A
cancelation request is a mechanism by which a calling thread requests the
target thread to terminate as quickly as possible. Issuing a cancelation request
does not guarantee that the target thread will receive or handle the request.

When the cancelation request is acted on, all active cleanup handler routines
for the target thread are called. When the last cleanup handler returns, the
thread-specific data destructor routines are called for each thread-specific data
key with a destructor and for which the target thread has a non-NULL value.
Finally, the target thread is terminated.

Note that cancelation of the target thread runs asynchronously with respect
to the calling thread’s returning from pthread_cancel(). The target thread’s
cancelability state and type determine when or if the cancelation takes place,
as follows:

pthread–57

pthread_cancel

1. The target thread can delay cancelation during critical operations by
setting its cancelability state to PTHREAD_CANCEL_DISABLE.

2. Because of communication delays, the calling thread can only rely on the
fact that a cancelation request will eventually become pending in the target
thread (provided that the target thread does not terminate beforehand).

3. The calling thread has no guarantee that a pending cancelation request
will be delivered because delivery is controlled by the target thread.

When a cancelation request is delivered to a thread, termination processing
is similar to that for pthread_exit(). For more information about thread
termination, see the Thread Termination section of pthread_create().

This routine is preferred in implementing an Ada abort statement and any
other language- or software-defined construct for requesting thread cancelation.

The results of this routine are unpredictable, if the value specified in thread
refers to a thread that does not currently exist.

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified thread is invalid.
[ESRCH] The thread argument does not specify an existing thread.

Associated Routines

pthread_cleanup_pop()
pthread_cleanup_push()
pthread_create()
pthread_exit()
pthread_join()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_testcancel()

pthread–58

pthread_cleanup_pop

pthread_cleanup_pop

(Macro) Removes the cleanup handler routine from the calling thread’s cleanup
handler stack and optionally executes it.

Syntax

pthread_cleanup_pop(
execute);

Argument Data Type Access

execute integer read

C Binding

#include <pthread.h>

void
pthread_cleanup_pop(

int execute);

Arguments

execute
Integer that specifies whether the cleanup handler routine specified in the
matching call to pthread_cleanup_push() is executed. A nonzero value causes
the cleanup handler routine to be executed.

Description

This routine removes the cleanup handler routine established by the matching
call to pthread_cleanup_push() from the calling thread’s cleanup handler
stack, then executes it if the value specified in this routine’s execute argument
is nonzero.

A cleanup handler routine can be used to clean up from a block of code
whether exited by normal completion, cancelation, or the raising (or reraising)
of an exception. The routine is popped from the calling thread’s cleanup
handler stack and is called with the arg argument (see the description for
pthread_cleanup_push()) when any of the following actions occur:

• The thread calls pthread_cleanup_pop() and specifies a nonzero value for
the execute argument.

pthread–59

pthread_cleanup_pop

• The thread calls pthread_exit().

• The thread is canceled.

• An exception is raised and is caught when the Threads Library unwinds
the calling thread’s stack to the lexical scope of the pthread_cleanup_push()
and pthread_cleanup_pop() pair.

This routine and pthread_cleanup_push() are implemented as macros and
must appear as statements and in pairs within the same lexical scope. You can
think of the pthread_cleanup_push() macro as expanding to a string whose
first character is a left brace ({) and pthread_cleanup_pop() as expanding
to a string containing the corresponding right brace (}). This routine and
pthread_cleanup_push() are implemented as exceptions, and may not work in
a C++ environment. (See Chapter 5 for more information.)

Return Values

None

Associated Routines

pthread_cancel()
pthread_cleanup_push()
pthread_create()
pthread_exit()

pthread–60

pthread_cleanup_push

pthread_cleanup_push

(Macro) Establishes a cleanup handler routine to be executed when the thread
exits or is canceled.

Syntax

pthread_cleanup_push(
routine,
arg);

Argument Data Type Access

routine procedure read

arg user_arg read

C Binding

#include <phtread.h>

void
pthread_cleanup_push(

void (*routine)(void *),
void *arg);

Arguments

routine
Routine executed as the cleanup handler.

arg
Argument passed to the cleanup handler routine.

Description

This routine pushes the specified routine onto the calling thread’s cleanup
handler stack. The cleanup handler routine is popped from the stack and
called with the arg argument when any of the following actions occur:

• The thread calls pthread_cleanup_pop() and specifies a nonzero value for
the execute argument.

• The thread calls pthread_exit().

• The thread is canceled.

pthread–61

pthread_cleanup_push

• An exception is raised and is caught when the Threads Library unwinds
the calling thread’s stack to the lexical scope of the pthread_cleanup_push()
and pthread_cleanup_pop() pair.

This routine and pthread_cleanup_pop() are implemented as macros and
must appear as statements and in pairs within the same lexical scope. You can
think of the pthread_cleanup_push() macro as expanding to a string whose
first character is a left brace ({) and pthread_cleanup_pop() as expanding
to a string containing the corresponding right brace (}). This routine and
pthread_cleanup_pop() are implemented as exceptions, and may not work in
a C++ environment. (See Chapter 5 for more information.)

Return Values

None

Associated Routines

pthread_cancel()
pthread_cleanup_pop()
pthread_create()
pthread_exit()
pthread_testcancel()

pthread–62

pthread_condattr_destroy

pthread_condattr_destroy

Destroys a condition variable attributes object.

Syntax

pthread_condattr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_condattr_t write

C Binding

#include <pthread.h>

int
pthread_condattr_destroy (

pthread_condattr_t *attr);

Arguments

attr
Condition variable attributes object to be destroyed.

Description

This routine destroys the specified condition variable attributes object. Call
this routine when a condition variable attributes object will no longer be
referenced.

Condition variables that were created using this attributes object are not
affected by the destruction of the condition variable attributes object.

The results of calling this routine are unpredictable if the value specified by
the attr argument refers to a condition variable attributes object that does not
exist.

pthread–63

pthread_condattr_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The attributes object specified by attr is invalid.

Associated Routines

pthread_condattr_init()

pthread–64

pthread_condattr_getpshared

pthread_condattr_getpshared

Obtains the process-shared attribute of the specified condition variable
attributes object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_condattr_getpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_condattr_t read

pshared int write

C Binding

#include <pthread.h>

int
pthread_condattr_getpshared (

const pthread_condattr_t *attr,
int *pshared);

Arguments

attr
Address of the condition variable attributes object whose process-shared
attribute is obtained.

pshared
Receives the value of the process-shared attribute of the condition variable
attributes object specified by attr.

pthread–65

pthread_condattr_getpshared

Description

This routine obtains the value of the process-shared attribute of the condition
variable attributes object specified by the attr argument and stores it in the
location specified by the pshared argument. The specified attributes object
must already be initialized at the time this routine is called.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE permits it to be operated upon by threads created
within the same process as the thread that initialized that condition variable.
If threads in other processes attempt to operate on such a condition variable,
the behavior is undefined.

The default value of the process-shared attribute of an initialized condition
variable attributes object is PTHREAD_PROCESS_PRIVATE.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_SHARED permits it to be operated upon by any thread
that has access to the memory where that condition variable is allocated, even
if it is allocated in memory that is shared by multiple processes.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

Associated Routines

pthread_condattr_destroy()
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_cond_init()

pthread–66

pthread_condattr_init

pthread_condattr_init

Initializes a condition variable attributes object.

Syntax

pthread_condattr_init(
attr);

Argument Data Type Access

attr opaque pthread_condattr_t write

C Binding

#include <pthread.h>

int
pthread_condattr_init (

pthread_condattr_t *attr);

Arguments

attr
Address of the condition variable attributes object to be initialized.

Description

This routine initializes the condition variable attributes object specified by the
attr argument with a set of default attribute values.

When an attributes object is used to create a condition variable, the values of
the individual attributes determine the characteristics of the new condition
variable. Attributes objects act as additional arguments to condition variable
creation. Changing individual attributes in an attributes object does not affect
any condition variables that were previously created using that attributes
object.

You can use the same condition variable attributes object in successive calls to
pthread_condattr_init(), from any thread. If multiple threads can change
attributes in a shared attributes object, your program must use a mutex to
protect the integrity of that attributes object.

Results are undefined if this routine is called and the attr argument specifies a
condition variable attributes object that is already initialized.

pthread–67

pthread_condattr_init

Currently, on OpenVMS systems, no attributes affecting condition variables are
defined; you cannot change any attributes in the condition variable attributes
object. On Tru64 UNIX systems, the PSHARED attribute is defined.

The pthread_condattr_init() and pthread_condattr_destroy() routines
are provided for future expandability of the pthread interface and to conform
with the POSIX.1 standard. These routines serve no useful function, because
there are no pthread_condattr_set*() type routines available at this time.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid condition variable

attributes object.
[ENOMEM] Insufficient memory exists to initialize the condition

variable attributes object.

Associated Routines

pthread_condattr_destroy()
pthread_cond_init()

pthread–68

pthread_condattr_setpshared

pthread_condattr_setpshared

Changes the process-shared attribute of the specified condition variable
attributes object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_condattr_setpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_condattr_t write

pshared int read

C Binding

#include <pthread.h>

int
pthread_condattr_setpshared (

pthread_condattr_t *attr,
int pshared);

Arguments

attr
Address of the condition variable attributes object whose process-shared
attribute is to be modified.

pshared
New value for the process-shared attribute of the condition variable attributes
object specified by attr.

pthread–69

pthread_condattr_setpshared

Description

This routine uses the value specified in the pshared argument to set the
process-shared attribute of the condition variable attributes object specified in
the attr argument.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE permits it to be operated upon by threads created
within the same process as the thread that initialized that condition variable.
If threads of differing processes attempt to operate on such a condition
variable, the behavior is undefined.

The default value of the process-shared attribute of an initialized condition
variable attributes object is PTHREAD_PROCESS_PRIVATE.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_SHARED permits it to be operated upon by any thread
that has access to the memory where that condition variable is allocated, even
if it is allocated in memory that is shared by multiple processes.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object,

or the value specified by pshared is outside the range of
legal value for that attribute.

Associated Routines

pthread_condattr_destroy()
pthread_condattr_init()
pthread_condattr_getpshared()
pthread_cond_init()

pthread–70

pthread_cond_broadcast

pthread_cond_broadcast

Wakes all threads that are waiting on the specified condition variable.

Syntax

pthread_cond_broadcast(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <pthread.h>

int
pthread_cond_broadcast (

pthread_cond_t *cond);

Arguments

cond
Condition variable upon which the threads (to be awakened) are waiting.

Description

This routine unblocks all threads waiting on the specified condition variable
cond. Calling this routine implies that data guarded by the associated mutex
has changed, so that it might be possible for one or more waiting threads to
proceed. The threads that are unblocked shall contend for the mutex according
to their respective scheduling policies (if applicable).

If only one of the threads waiting on a condition variable may be able to pro-
ceed, but one of those threads can proceed, then use pthread_cond_signal()
instead.

Whether the associated mutex is locked or unlocked, you can still call this
routine. However, if predictable scheduling behavior is required, that mutex
should then be locked by the thread calling the pthread_cond_broadcast()
routine.

pthread–71

pthread_cond_broadcast

If no threads are waiting on the specified condition variable, this routine takes
no action. The broadcast does not propagate to the next condition variable
wait.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.

Associated Routines

pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–72

pthread_cond_destroy

pthread_cond_destroy

Destroys a condition variable.

Syntax

pthread_cond_destroy(
cond);

Argument Data Type Access

cond opaque pthread_cond_t write

C Binding

#include <pthread.h>

int
pthread_cond_destroy (

pthread_cond_t *cond);

Arguments

cond
Condition variable to be destroyed.

Description

This routine destroys the condition variable specified by cond. This effectively
uninitializes the condition variable. Call this routine when a condition variable
will no longer be referenced. Destroying a condition variable allows the
Threads Library to reclaim internal memory associated with the condition
variable.

It is safe to destroy an initialized condition variable upon which no threads are
currently blocked. Attempting to destroy a condition variable upon which other
threads are blocked results in unpredictable behavior.

The results of this routine are unpredictable, if the condition variable specified
in cond does not exist or is not initialized.

pthread–73

pthread_cond_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.
[EBUSY] The object being referenced by cond is being referenced by

another thread that is currently executing
pthread_cond_wait() or pthread_cond_timedwait() on
the condition variable specified in cond.

Associated Routines

pthread_cond_broadcast()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–74

pthread_cond_getname_np

pthread_cond_getname_np

Obtains the object name from a condition variable object.

Syntax

pthread_cond_getname_np(
cond,
name,
len);

Argument Data Type Access

cond opaque pthread_cond_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_cond_getname_np (

pthread_cond_t *cond,
char *name,
size_t len);

Arguments

cond
Address of the condition variable object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

pthread–75

pthread_cond_getname_np

Description

This routine copies the object name from the condition variable object specified
by the cond argument to the buffer at the location specified by the name
argument. Before calling this routine, your program must allocate the buffer
indicated by name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified condition variable object has not been previously set with an
object name, this routine copies a C language null string into the buffer at
location name.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.

Associated Routines

pthread_cond_setname_np()

pthread–76

pthread_cond_init

pthread_cond_init

Initializes a condition variable.

Syntax

pthread_cond_init(
cond,
attr);

Argument Data Type Access

cond opaque pthread_cond_t write

attr opaque pthread_condattr_t read

C Binding

#include <pthread.h>

int
pthread_cond_init (

pthread_cond_t *cond,
const pthread_condattr_t *attr);

Arguments

cond
Condition variable to be initialized.

attr
Condition variable attributes object that defines the characteristics of the
condition variable to be initialized.

Description

This routine initializes the condition variable cond with attributes specified in
the attr argument. If attr is NULL, the default condition variable attributes
are used.

A condition variable is a synchronization object used in conjunction with
a mutex. A mutex controls access to data that is shared among threads; a
condition variable allows threads to wait for that data to enter a defined state.

pthread–77

pthread_cond_init

Condition variables are not owned by a particular thread. Any associated
storage is not automatically deallocated when the creating thread terminates.

Use the macro PTHREAD_COND_INITIALIZER to initialize statically allocated
condition variables to the default condition variable attributes. To invoke this
macro, enter:

pthread_cond_t condition = PTHREAD_COND_INITIALIZER

When statically initialized, a condition variable should not also be initialized
using pthread_cond_init(). Also, a statically initialized condition variable
need not be destroyed using pthread_cond_destroy().

Under certain circumstances it might be impossible to wait upon a statically
initialized condition variable when the process virtual address space (or some
other memory limit) is nearly exhausted. In such a case pthread_cond_wait()
or pthread_cond_timedwait() can return [ENOMEM]. To avoid this
possibility, initialize critical condition variables using pthread_cond_init().

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error, the condition variable is not initialized, and the contents of
cond are undefined. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize

another condition variable, or
The system-imposed limit on the total number of condition
variables under execution by a single user is exceeded.

[EBUSY] The implementation has detected an attempt to reinitialize
the object referenced by cond, a previously initialized, but
not yet destroyed condition variable.

[EINVAL] The value specified by attr is not a valid attributes object.
[ENOMEM] Insufficient memory exists to initialize the condition

variable.

pthread–78

pthread_cond_init

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–79

pthread_cond_setname_np

pthread_cond_setname_np

Changes the object name for a condition variable object.

Syntax

pthread_cond_setname_np(
cond,
name,
mbz);

Argument Data Type Access

cond opaque pthread_cond_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_cond_setname_np (

pthread_cond_t *cond,
const char *name,
void *mbz);

Arguments

cond
Address of the condition variable object whose object name is to be changed.

name
Object name value to copy into the condition variable object.

mbz
Reserved for future use. The value must be zero (0).

pthread–80

pthread_cond_setname_np

Description

This routine changes the object name in the condition variable object specified
by the cond argument to the value specified by the name argument. To set a
new condition variable object’s object name, call this routine immediately after
initializing the condition variable object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable object, or the length in characters of name exceeds
31.

[ENOMEM] Insufficient memory exists to create a copy of the object
name string.

Associated Routines

pthread_cond_getname_np()

pthread–81

pthread_cond_signal

pthread_cond_signal

Wakes at least one thread that is waiting on the specified condition variable.

Syntax

pthread_cond_signal(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <pthread.h>

int
pthread_cond_signal (

pthread_cond_t *cond);

Arguments

cond
Condition variable to be signaled.

Description

This routine unblocks at least one thread waiting on the specified condition
variable cond. Calling this routine implies that data guarded by the associated
mutex has changed, thus it might be possible for one of the waiting threads to
proceed. In general, only one thread will be released.

If no threads are waiting on the specified condition variable, this routine takes
no action. The signal does not propagate to the next condition variable wait.

This routine should be called when any thread waiting on the specified
condition variable might find its predicate true, but only one thread should
proceed. If more than one thread can proceed, or if any of the threads would
not be able to proceed, then you must use pthread_cond_broadcast().

The scheduling policy determines which thread is awakened. For policies
SCHED_FIFO and SCHED_RR, a blocked thread is chosen in priority order, using
first-in/first-out (FIFO) within priorities.

pthread–82

pthread_cond_signal

If the calling thread holds the lock to the target condition variable’s associated
mutex while setting the variable’s wait predicate, that thread can call
pthread_cond_signal() to signal the variable even after releasing the
lock on that mutex. However, for more predictable scheduling behavior,
call pthread_cond_signal() before releasing the target condition variable’s
associated mutex.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–83

pthread_cond_signal_int_np

pthread_cond_signal_int_np

Wakes one thread that is waiting on the specified condition variable (called
from interrupt level only).

Syntax

pthread_cond_signal_int_np(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <pthread.h>

int
pthread_cond_signal_int_np(

pthread_cond_t *cond);

Arguments

cond
Condition variable to be signaled.

Description

This routine wakes one thread waiting on the specified condition variable. It
can only be called from a software interrupt handler routine (such as from a
Tru64 UNIX signal handler or OpenVMS AST). Calling this routine implies
that it might be possible for a single waiting thread to proceed.

The scheduling policies of the waiting threads determine which thread is
awakened. For policies SCHED_FIFO and SCHED_RR, a blocked thread is chosen
in priority order, using first-in/first-out (FIFO) within priorities.

This routine does not cause a thread blocked on a condition variable to resume
execution immediately. A thread resumes execution at some time after the
interrupt handler routine returns. If no threads are waiting on the condition
variable at the time of the call to pthread_cond_signal_int_np(), the next
future waiting thread will be automatically released (that is, it won’t actually
wait). This routine establishes a ‘‘pending’’ wake if necessary.

pthread–84

pthread_cond_signal_int_np

You can call this routine regardless of whether the associated mutex is either
locked or unlocked. (Never lock a mutex from an interrupt handler routine.)

Note

This routine allows you to signal a condition variable from a software
interrupt handler. Do not call this routine from noninterrupt code. To
signal a condition variable from the normal noninterrupt level, use
pthread_cond_signal().

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_signal()
pthread_cond_sig_preempt_int_np()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–85

pthread_cond_sig_preempt_int_np

pthread_cond_sig_preempt_int_np

Wakes one thread that is waiting on the specified condition variable (called
from interrupt level only).

Syntax

pthread_cond_sig_preempt_int_np (cond)

Argument Data Type Access

cond opaque pthread_cond_t read

C Binding

void
pthread_cond_sig_preempt_int_np (

pthread_cond_t *cond);

Arguments

cond
Condition variable signaled.

Description

This routine wakes one thread waiting on a condition variable. It can only be
called from a software interrupt handler routine. Calling this routine implies
that it might be possible for a single waiting thread to proceed. Call this
routine when any thread waiting on the specified condition variable might find
its predicate true.

The scheduling policies of the waiting threads determine which thread is
awakened. For policies SCHED_FIFO and SCHED_RR, a blocked thread is chosen
in priority order, using first-in/first-out (FIFO) within priorities.

You can call this routine when the associated mutex is either locked or
unlocked. (Never try to lock a mutex from an interrupt handler.)

This routine allows you to signal a thread from a software interrupt handler.
Do not call this routine from noninterrupt code. If you want to signal a thread
from the normal noninterrupt level, use pthread_cond_signal.

pthread–86

pthread_cond_sig_preempt_int_np

Note

If a waiting thread has a preemptive scheduling policy and a
higher priority than the thread which was running when the
interrupt occurred, then the waiting thread will preempt the
interrupt routine and begin to run immediately. This is unlike
pthread_cond_signal_int_np() which causes the condition
variable to be signaled at a safe point after the interrupt has
completed. pthread_cond_sig_preempt_int_np() avoids the
possible latency which pthread_cond_signal_int_np() may
introduce; however, a side effect of this is that during the call
to pthread_cond_sig_preempt_int_np() other threads may run
if a preemption occurs; thus, once an interrupt routine calls
pthread_cond_sig_preempt_int_np() it can no longer rely on
any assumptions of exclusivity or atomicity which are typically
provided by interrupt routines. Furthermore, once the call to
pthread_cond_sig_preempt_int_np() is made, in addition to other
threads running, subsequent interrupts may be delivered at any
time as well (that is, they will not be blocked until the current
interrupt completes). For this reason, it is recommended that
pthread_cond_sig_preempt_int_np() be called as the last statement
in the interrupt routine.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_signal()
pthread_cond_signal_int_np()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–87

pthread_cond_timedwait

pthread_cond_timedwait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast, such that it will awake after a specified period of time.

Syntax

pthread_cond_timedwait(
cond,
mutex,
abstime);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

abstime structure timespec read

C Binding

#include <pthread.h>
int
pthread_cond_timedwait (

pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime);

Arguments

cond
Condition variable that the calling thread waits on.

mutex
Mutex associated with the condition variable specified in cond.

abstime
Absolute time at which the wait expires, if the condition has not been signaled
or broadcast. See the pthread_get_expiration_np() routine, which is used to
obtain a value for this argument.

pthread–88

pthread_cond_timedwait

The abstime argument is specified in Universal Coordinated Time (UTC). In
the UTC-based model, time is represented as seconds since the Epoch. The
Epoch is defined as the time 0 hours, 0 minutes, 0 seconds, January 1st, 1970
UTC. Seconds since the Epoch is a value interpreted as the number of seconds
between a specified time and the Epoch.

Description

This routine causes a thread to wait until one of the following occurs:

• The specified condition variable is signaled or broadcast.

• The current system clock time is greater than or equal to the time specified
by the abstime argument.

This routine is identical to pthread_cond_wait(), except that this routine can
return before a condition variable is signaled or broadcast; specifically, when
the specified time expires. For more information, see the pthread_cond_wait()
description.

This routine atomically releases the mutex and causes the calling thread
to wait on the condition. When the thread regains control after calling
pthread_cond_timedwait(), the mutex is locked and the thread is the owner.
This is true regardless of why the wait ended. If general cancelability is
enabled, the thread reacquires the mutex (blocking for it if necessary) before
the cleanup handlers are run (or before the exception is raised).

If the current time equals or exceeds the expiration time, this routine returns
immediately, releasing and reacquiring the mutex. It might cause the calling
thread to yield (see the sched_yield() description). Your code should check
the return status whenever this routine returns and take the appropriate
action. Otherwise, waiting on the condition variable can become a nonblocking
loop.

Call this routine after you have locked the mutex specified in mutex. The
results of this routine are unpredictable if this routine is called without
first locking the mutex. The only routines which are supported for use with
asynchronous cancelability enabled are those which disable asynchronous
cancelability.

pthread–89

pthread_cond_timedwait

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond, mutex, or abstime is invalid,

or:
Different mutexes are supplied for concurrent
pthread_cond_timedwait() operations or
pthread_cond_wait() operations on the same condition
variable, or:
The mutex was not owned by the calling thread at the
time of the call.

[ETIMEDOUT] The time specified by abstime expired.
[ENOMEM] The Threads Library cannot acquire memory needed to

block using a statically initialized condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_wait()
pthread_get_expiration_np()

pthread–90

pthread_cond_wait

pthread_cond_wait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast.

Syntax

pthread_cond_wait(
cond,
mutex);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

C Binding

#include <pthread.h>

int
pthread_cond_wait (

pthread_cond_t *cond,
pthread_mutex_t *mutex);

Arguments

cond
Condition variable that the calling thread waits on.

mutex
Mutex associated with the condition variable specified in cond.

Description

This routine causes a thread to wait for the specified condition variable to
be signaled or broadcast. Each condition corresponds to one or more Boolean
relations, called a predicate, based on shared data. The calling thread waits for
the data to reach a particular state for the predicate to become true. However,
the return from this routine does not imply anything about the value of the
predicate and it should be reevaluated upon return. Condition variables are
discussed in Chapter 2 and Chapter 3.

pthread–91

pthread_cond_wait

Call this routine after you have locked the mutex specified in mutex. The
results of this routine are unpredictable if this routine is called without first
locking the mutex.

This routine atomically releases the mutex and causes the calling thread
to wait on the condition. When the thread regains control after calling
pthread_cond_wait(), the mutex is locked and the thread is the owner. This
is true regardless of why the wait ended. If general cancelability is enabled,
the thread reacquires the mutex (blocking for it if necessary) before the cleanup
handlers are run (or before the exception is raised).

A thread that changes the state of storage protected by the mutex in such a
way that a predicate associated with a condition variable might now be true,
must call either pthread_cond_signal() or pthread_cond_broadcast() for
that condition variable. If neither call is made, any thread waiting on the
condition variable continues to wait.

This routine might (with low probability) return when the condition variable
has not been signaled or broadcast. When this occurs, the mutex is reacquired
before the routine returns. To handle this type of situation, enclose each
call to this routine in a loop that checks the predicate. The loop provides
documentation of your intent and protects against these spurious wakeups,
while also allowing correct behavior even if another thread consumes the
desired state before the awakened thread runs.

It is illegal for threads to wait on the same condition variable by specifying
different mutexes.

The only routines which are supported for use with asynchronous cancelability
enabled are those which disable asynchronous cancelability.

pthread–92

pthread_cond_wait

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond or mutex is invalid, or:

Different mutexes are supplied for concurrent
pthread_cond_wait() or pthread_cond_timedwait()
operations on the same condition variable, or:
The mutex was not owned by the calling thread at the
time of the call.

[ENOMEM] The Threads Library cannot acquire memory needed to
block using a statically initialized condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()

pthread–93

pthread_create

pthread_create

Creates a thread.

Syntax

pthread_create(
thread,
attr,
start_routine,
arg);

Argument Data Type Access

thread opaque pthread_t write

attr opaque pthread_attr_t read

start_routine procedure read

arg user_arg read

C Binding

#include <pthread.h>

int
pthread_create (

pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine) (void *),
void *arg);

Arguments

thread
Location for thread object to be created.

attr
Thread attributes object that defines the characteristics of the thread being
created. If you specify NULL, default attributes are used.

start_routine
Function executed as the new thread’s start routine.

pthread–94

pthread_create

arg
Address value copied and passed to the thread’s start routine.

Description

This routine creates a thread. A thread is a single, sequential flow of control
within a program. It is the active execution of a designated routine, including
any nested routine invocations.

Successful execution of this routine includes the following actions:

• The Threads Library creates a thread object to describe and control the
thread. The thread object includes a thread environment block (TEB)
that programs can use, with care. (See the <sys/types.h> header file on
Tru64 UNIX, or the pthread.h header file on other platforms.)

• The thread argument receives an identifier for the new thread.

• An executable thread is created with attributes specified by the attr
argument (or with default attributes if NULL is specified).

Thread Creation
The Threads Library creates a thread in the ready state and prepares
the thread to begin executing its start routine, the function passed to
pthread_create() as the start_routine argument. Depending on the presence
of other threads and their scheduling and priority attributes, the new thread
might start executing immediately. The new thread can also preempt its
creator, depending on the two threads’ respective scheduling and priority
attributes. The caller of pthread_create() can synchronize with the new
thread using the pthread_join() routine or using any mutually agreed upon
mutexes, condition variables or read-write locks.

For the duration of the new thread’s existence, the Threads Library maintains
and manages the thread object and other thread state overhead. A thread
exists until it is both terminated and detached. A thread is detached
when created if the detachstate attribute of its thread object is set to
PTHREAD_CREATE_DETACHED. It is also detached after any thread returns
successfully from calling pthread_detach() or pthread_join() for the thread.
Termination is explained in the next section (see Thread Termination).

The Threads Library assigns each new thread a thread identifier, which is
written into the address specified as the pthread_create() routine’s thread
argument. The new thread’s thread identifier is written before the new thread
executes.

pthread–95

pthread_create

By default, the new thread’s scheduling policy and priority are inherited
from the creating thread—that is, by default, the pthread_create()
routine ignores the scheduling policy and priority set in the specified
thread attributes object. Thus, to create a thread that is subject to
the scheduling policy and priority set in the specified thread attributes
object, before calling pthread_create() your program must use the
pthread_attr_setinheritsched() routine to set the inherit thread attributes
object’s scheduling attribute to PTHREAD_EXPLICIT_SCHED.

On Tru64 UNIX, the signal state of the new thread is initialized as follows:

1. The signal mask is inherited from the creating thread.

2. The set of signals pending for the new thread is empty.

If pthread_create() fails, no new thread is created, and the contents of the
location referenced by thread are undefined.

Thread Termination
A thread terminates when one of the following events occurs:

• The thread returns from its start routine.

• The thread calls the pthread_exit() routine.

• The thread is canceled.

When a thread terminates, the following actions are performed:

1. A return value (if one is available) is written into the terminated thread’s
thread object, as follows:

• If the thread has been canceled, the value PTHREAD_CANCELED is written
into the thread’s thread object.

• If the thread terminated by returning from its start routine, the return
value is copied from the start routine (if one is available) into the
thread’s thread object. Alternatively, if the thread explicitly called
pthread_exit(), the value received in the value_ptr argument (from
pthread_exit()) is stored in the thread’s thread object.

Another thread can obtain this return value by joining with the terminated
thread (using pthread_join()). See Section 2.3.5 for a description of
joining with a thread.

Note

If the thread terminated by returning from its start routine normally
and the start routine does not provide a return value, the results

pthread–96

pthread_create

obtained by joining with that thread are unpredictable.

2. If the termination results from a cancelation request or a call to
pthread_exit(), the Threads Library calls, in turn, each cleanup handler
that this thread declared (using pthread_cleanup_push()) and that is not
yet removed (using pthread_cleanup_pop()). (The Threads Library also
transfers control to any appropriate CATCH, CATCH_ALL, or FINALLY blocks ,
as described in Chapter 5 .)

The Threads Library calls the terminated thread’s most recently pushed
cleanup handler first. See Section 2.3.3.1 for more information about
cleanup handlers.

For C++ programmers: At normal exit from a thread, your program will
call the appropriate destructor functions, just as if an exception had been
raised.

3. To exit the terminated thread due to a call to pthread_exit(), the
Threads Library raises the pthread_exit_e exception. To exit the
terminated thread due to cancelation, the Threads Library raises the
pthread_cancel_e exception.

Your program can use the exception package to operate on the generated
exception. (In particular, note that the practice of using CATCH handlers in
place of pthread_cleanup_push() is not portable.) Chapter 5 describes the
exception package.

4. For each of the terminated thread’s thread-specific data keys that has a
non-NULL value:

• The thread’s value for the corresponding key is set to NULL.

• Call each thread-specific data destructor function in this multithreaded
process’ list of destructors.

Repeat this step until all thread-specific data values in the thread are
NULL, or for up to a number of iterations equal to
PTHREAD_DESTRUCTOR_ITERATIONS. This destroys all thread-specific
data associated with the terminated thread. See Section 2.6 for more
information about thread-specific data.

5. Awaken the thread (if there is one) that is currently waiting to join with
the terminated thread. That is, awaken the thread that is waiting in a call
to pthread_join().

pthread–97

pthread_create

6. If the thread is already detached, destroy its thread object. Otherwise,
the thread continues to exist until detached or joined with. Section 2.3.4
describes detaching and destroying a thread.

Return Values

If an error condition occurs, no thread is created, the contents of thread are
undefined, and this routine returns an integer value indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to create another

thread, or the system-imposed limit on the total number of
threads under execution by a single user is exceeded.

[EINVAL] The value specified by attr is not a valid attributes block.
[ENOMEM] Insufficient memory exists to create a thread.
[EPERM] The caller does not have the appropriate permission to

create a thread with the specified attributes.

Associated Routines

pthread_atfork()
pthread_attr_destroy()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setstacksize()
pthread_cancel()
pthread_detach()
pthread_exit()
pthread_join()

pthread–98

pthread_delay_np

pthread_delay_np

Delays a thread’s execution.

Syntax

pthread_delay_np(
interval);

Argument Data Type Access

interval struct timespec read

C Binding

#include <pthread.h>

int
pthread_delay_np (

const struct timespec *interval);

Arguments

interval
Number of seconds and nanoseconds to delay execution. The value specified for
each must be greater than or equal to zero.

Description

This routine causes a thread to delay execution for a specific interval of time.
This interval ends at the current time plus the specified interval. The routine
will not return before the end of the interval is reached, but may return an
arbitrary amount of time after the end of the interval is reached. This can be
due to system load, thread priorities, and system timer granularity.

Specifying an interval of zero (0) seconds and zero (0) nanoseconds is allowed
and can be used to force the thread to give up the processor or to deliver a
pending cancelation request.

The timespec structure contains the following two fields:

• tv_sec is an integral number of seconds.

• tv_nsec is an integral number of nanoseconds.

pthread–99

pthread_delay_np

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by interval is invalid.

pthread–100

pthread_detach

pthread_detach

Marks a thread object for deletion.

Syntax

pthread_detach(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

#include <pthread.h>

int
pthread_detach (

pthread_t thread);

Arguments

thread
Thread object being marked for deletion.

Description

This routine marks the specified thread object to indicate that storage for
the corresponding thread can be reclaimed when the thread terminates. This
includes storage for the thread argument’s return value, as well as the thread
object. If thread has not terminated when this routine is called, this routine
does not cause it to terminate.

When a thread object is no longer referenced, call this routine.

The results of this routine are unpredictable if the value of thread refers to a
thread object that does not exist.

A thread can be created already detached by setting its thread object’s
detachstate attribute.

The pthread_join() routine also detaches the target thread after
pthread_join() returns successfully.

pthread–101

pthread_detach

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by thread does not refer to a joinable

thread.
[ESRCH] The value specified by thread cannot be found.

Associated Routines

pthread_cancel()
pthread_create()
pthread_exit()
pthread_join()

pthread–102

pthread_equal

pthread_equal

Compares one thread identifier to another thread identifier.

Syntax

pthread_equal(
t1,
t2);

Argument Data Type Access

t1 opaque pthread_t read

t2 opaque pthread_t read

C Binding

#include <pthread.h>

int
pthread_equal (

pthread_t t1,
pthread_t t2);

Arguments

t1
The first thread identifier to be compared.

t2
The second thread identifier to be compared.

Description

This routine compares one thread identifier to another thread identifier.

If either t1 or t2 are not valid thread identifiers, this routine’s behavior is
undefined.

pthread–103

pthread_equal

Return Values

Possible return values are as follows:

Return Description

0 Values of t1 and t2 do not designate the same object.
Non-zero Values of t1 and t2 designate the same object.

pthread–104

pthread_exc_get_status_np

pthread_exc_get_status_np

(Macro) Obtains a system-defined error status from a status exception object.

Syntax

pthread_exc_get_status_np(
exception,
code);

Argument Data Type Access

exception EXCEPTION read

code unsigned long write

C Binding

#include <pthread_exception.h>

int
pthread_exc_get_status_np (

EXCEPTION *exception,
unsigned long *code);

Arguments

exception
Threads Library status exception object whose status code is obtained.

code
Receives the system-specific status code associated with the specified status
exception object.

Description

This routine obtains and returns the system-specific status value from the
status exception object specified in the exception argument. This value
must have already been associated with the exception object using the
pthread_exc_set_status_np() routine.

In a program that uses Threads Library status exceptions, use this routine
within a CATCH or CATCH_ALL code block to obtain the status code value
associated with a caught exception. Note that any exception objects set to the
same status value are considered equivalent by the Threads Library.

pthread–105

pthread_exc_get_status_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. If the routine’s exception object argument is a status exception,
it sets the code argument and returns zero (0). Possible return values are as
follows:

Return Description

0 Successful completion.
[EINVAL] The exception argument is not a valid status exception

object.

Associated Routines

pthread_exc_set_status_np()

pthread–106

pthread_exc_matches_np

pthread_exc_matches_np

(Macro) Determines whether two Threads Library exception objects are
identical.

Syntax

pthread_exc_matches_np(
exception1,
exception2);

Argument Data Type Access

exception1 EXCEPTION read

exception2 EXCEPTION read

C Binding

#include <pthread_exception.h>

int
pthread_exc_matches_np (

EXCEPTION *exception1,
EXCEPTION *exception2);

Arguments

exception1
Threads Library exception object.

exception2
Threads Library exception object.

Description

This routine compares two exception objects, taking into consideration whether
each is an address exception or status exception.

This routine returns either the C language value TRUE or the C language value
FALSE, indicating whether the two exception objects specified in the arguments
exception1 and exception2 are identical.

pthread–107

pthread_exc_matches_np

Return Values

The C language value TRUE if the exception objects are identical, or the C
language value FALSE if not.

Associated Routines

pthread_exc_get_status_np()
pthread_exc_report_np()
pthread_exc_set_status_np()

pthread–108

pthread_exc_report_np

pthread_exc_report_np

Produces a message that reports what a specified Threads Library status
exception object represents.

Syntax

pthread_exc_report_np(
exception);

Argument Data Type Access

exception EXCEPTION read

C Binding

#include <pthread_exception.h>

void
pthread_exc_report_np (

EXCEPTION *exception);

Arguments

exception
Threads Library exception object that has been set with a status value.

Description

This routine produces a text message on the stderr device (Tru64 UNIX
systems) or SYS$ERROR device (OpenVMS systems) that describes the
exception whose exception object is specified in the exception argument.

In a program that uses status exceptions, use this routine within a CATCH
or CATCH_ALL code block to produce the message associated with a caught
exception. Note that any exception objects set to the same status value are
considered equivalent by the Threads Library.

Return Values

None

pthread–109

pthread_exc_report_np

Associated Routines

pthread_exc_get_status_np()
pthread_exc_set_status_np()

pthread–110

pthread_exc_set_status_np

pthread_exc_set_status_np

(Macro) Imports a system-defined error status into a Threads Library address
exception object.

Syntax

pthread_exc_set_status_np(
exception,
code);

Argument Data Type Access

exception EXCEPTION write

code unsigned long read

C Binding

#include <pthread_exception.h>

void
pthread_exc_set_status_np (

EXCEPTION *exception,
unsigned long code);

Arguments

exception
Threads Library address exception object into which the specified status code
is imported.

code
System-specific status code to be imported.

Description

This routine associates a system-specific status value with the specified address
exception object. This transforms the address exception object into a status
exception object.

The exception argument must already have been initialized with the exception
package’s EXCEPTION_INIT macro.

pthread–111

pthread_exc_set_status_np

Use this routine to associate any system-specific status value with the specified
address exception object. Note that any exception objects set to the same
status value are considered equivalent by the Threads Library.

Return Values

None

Associated Routines

pthread_exc_get_status_np()

pthread–112

pthread_exit

pthread_exit

Terminates the calling thread.

Syntax

pthread_exit(
value_ptr);

Argument Data Type Access

value_ptr void * read

C Binding

#include <pthread.h>

void
pthread_exit (

void *value_ptr);

Arguments

value_ptr
Value copied and returned to the caller of pthread_join(). Note that void * is
used as a universal datatype, not as a pointer. The Threads Library treats the
value_ptr as a value and stores it to be returned by pthread_join().

Description

This routine terminates the calling thread and makes a status value (value_
ptr) available to any thread that calls pthread_join() and specifies the
terminating thread.

Any cleanup handlers that have been pushed and not yet popped from the
stack are popped in the reverse order that they were pushed and then executed.
After all cleanup handlers have been executed, appropriate destructor functions
are called in an unspecified order if the thread has any thread-specific data.
Thread termination does not release any application-visible process resources,
including, but not limited to mutexes and file descriptors, nor does it perform
any process-level cleanup actions, including, but not limited to calling any
atexit() routine that may exist.

pthread–113

pthread_exit

An implicit call to pthread_exit() is issued when a thread returns from
the start routine that was used to create it. The Threads Library writes the
function’s return value as the return value in the thread’s thread object. The
process exits when the last running thread calls pthread_exit().

After a thread has terminated, the result of access to local (that is, explicitly
or implicitly declared auto) variables of the thread is undefined. So, references
to local variables of the existing thread should not be used for the value_ptr
argument of the pthread_exit() routine.

Return Values

None

Associated Routines

pthread_cancel()
pthread_create()
pthread_detach()
pthread_join()

pthread–114

pthread_getconcurrency

pthread_getconcurrency

Obtains the value of the concurrency level global variable for this process.

Syntax

pthread_getconcurrency(
);

C Binding

#include <pthread.h>

int
pthread_getconcurrency (

void);

Description

This routine obtains and returns the value of the ‘‘concurrency level’’ global
setting for the calling thread’s process. Because the Threads Library
automatically manages the concurrency of all threads in a multithreaded
process, it ignores this concurrency level value.

The concurrency level value has no effect on the behavior of a multithreaded
program that uses the Threads Library. This routine is provided for Single
UNIX Specification, Version 2, source code compatibility and has no other effect
when called.

The initial concurrency level is zero (0), indicating that the Threads Library
controls the concurrency level.

The concurrency level can be set using the pthread_setconcurrency() routine.

Return Values

This routine always returns the value of this process’ concurrency level global
variable. If this process has never called the pthread_setconcurrency()
routine, this routine returns zero (0).

pthread–115

pthread_getconcurrency

Associated Routines

pthread_setconcurrency()

pthread–116

pthread_getname_np

pthread_getname_np

Obtains the object name from the thread object for an existing thread.

Syntax

pthread_getname_np(
thread,
name,
len);

Argument Data Type Access

thread opaque pthread_thread_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_getname_np (

pthread_thread_t thread,
char *name,
size_t len);

Arguments

thread
Thread object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

pthread–117

pthread_getname_np

Description

This routine copies the object name from the thread object specified by the
thread argument to the buffer at the location specified by the name argument.
Before calling this routine, your program must allocate the buffer indicated by
name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified thread object has not been previously set with an object name,
this routine copies a C language null string into the buffer at location name.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ESRCH] The thread specified by thread does not exist.

Associated Routines

pthread_setname_np()

pthread–118

pthread_getschedparam

pthread_getschedparam

Obtains the current scheduling policy and scheduling parameters of a thread.

Syntax

pthread_getschedparam(
thread,
policy,
param);

Argument Data Type Access

thread opaque pthread_t read

policy integer write

param struct sched_param write

C Binding

#include <pthread.h>

int
pthread_getschedparam (

pthread_t thread,
int *policy,
struct sched_param *param);

Arguments

thread
Thread whose scheduling policy and parameters are obtained.

policy
Receives the value of the scheduling policy for the thread specified in thread.
Refer to the description of the pthread_setschedparam() routine for valid
policies and their meanings.

param
Receives the value of the scheduling parameters for the thread specified in
thread. Refer to the description of the pthread_setschedparam() routine for
valid values.

pthread–119

pthread_getschedparam

Description

This routine obtains both the current scheduling policy and associated
scheduling parameters of the thread specified by the thread argument.

The priority value returned in the param structure is the value specified in
the attr argument passed to pthread_create() or by the most recent call to
pthread_setschedparam() that affects the target thread.

This routine differs from pthread_attr_getschedpolicy() and
pthread_attr_getschedparam(), in that those routines get the scheduling
policy and parameter attributes that are used to establish the priority and
scheduling policy of a new thread when it is created. This routine, however,
obtains the scheduling policy and parameters of an existing thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ESRCH] The value specified by thread does not refer to an existing

thread.

Associated Routines

pthread_attr_getschedparam()
pthread_attr_getschedpolicy()
pthread_create()
pthread_self()
pthread_setschedparam()

pthread–120

pthread_getsequence_np

pthread_getsequence_np

Obtains the unique identifier for the specified thread.

Syntax

pthread_getsequence_np(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

#include <pthread.h>

unsigned long
pthread_getsequence_np (

pthread_t thread);

Arguments

thread
Thread whose sequence number is to be obtained.

Description

This routine obtains and returns the thread sequence number for the thread
identified by the thread object specified in the thread argument.

The thread sequence number provides a unique identifier for each existing
thread. A thread’s thread sequence number is never reused while the thread
exists, but can be reused after the thread terminates. The debugger interfaces
use this sequence number to identify each thread in commands and in display
output.

The result of calling this routine is undefined if the thread argument does not
specify a valid thread object.

pthread–121

pthread_getsequence_np

Return Values

No errors are returned. This routine returns the thread sequence number for
the thread identified by the thread object specified in the thread argument.
The result of calling this routine is undefined if the thread argument does not
specify a valid thread.

Associated Routines

pthread_create()
pthread_self()

pthread–122

pthread_getspecific

pthread_getspecific

Obtains the thread-specific data associated with the specified key.

Syntax

pthread_getspecific(
key);

Argument Data Type Access

key opaque pthread_key_t read

C Binding

#include <pthread.h>

void
*pthread_getspecific (

pthread_key_t key);

Arguments

key
The context key identifies the thread-specific data to be obtained.

Description

This routine obtains the thread-specific data associated with the specified key
for the current thread. Obtain this key by calling the pthread_key_create()
routine. This routine returns the value currently bound to the specified key on
behalf of the calling thread.

This routine may be called from a thread-specific data destructor function.

Return Values

No errors are returned. This routine returns the thread-specific data value
associated with the specified key argument. If no thread-specific data value is
associated with key, or if key is not defined, then this routine returns a NULL
value.

pthread–123

pthread_getspecific

Associated Routines

pthread_key_create()
pthread_setspecific()

pthread–124

pthread_get_expiration_np

pthread_get_expiration_np

Obtains a value representing a desired expiration time.

Syntax

pthread_get_expiration_np(
delta,
abstime);

Argument Data Type Access

delta struct timespec read

abstime struct timespec write

C Binding

#include <pthread.h>

int
pthread_get_expiration_np (

const struct timespec *delta,
struct timespec *abstime);

Arguments

delta
Number of seconds and nanoseconds to add to the current system time. (The
result is the time in the future.) This result will be placed in abstime.

abstime
Value representing the absolute expiration time. The absolute expiration time
is obtained by adding delta to the current system time. The resulting abstime
is in Universal Coordinated Time (UTC).

Description

This routine adds a specified interval to the current absolute system time and
returns a new absolute time. This new absolute time is used as the expiration
time in a call to pthread_cond_timedwait().

The timespec structure contains the following two fields:

• tv_sec is an integral number of seconds.

pthread–125

pthread_get_expiration_np

• tv_nsec is an integral number of nanoseconds.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by delta is invalid.

Associated Routines

pthread_cond_timedwait()

pthread–126

pthread_join

pthread_join

pthread_join32(), pthread_join64()

The pthread_join32() and pthread_join64() forms are only valid
in 64-bit pointer environments for OpenVMS Alpha. For information
regarding 32- and 64-bit pointers, see Appendix B. Ensure that your
compiler provides 64-bit support prior to using pthread_join64().

Causes the calling thread to wait for the termination of a specified thread.

Syntax

pthread_join(
thread,
value_ptr);

Argument Data Type Access

thread opaque pthread_t read

value_ptr void * write

C Binding

#include <pthread.h>

int
pthread_join (

pthread_t thread,
void **value_ptr);

Arguments

thread
Thread whose termination is awaited by the calling routine.

value_ptr
Return value of the terminating thread (when that thread either calls
pthread_exit() or returns from its start routine.)

pthread–127

pthread_join

Description

This routine suspends execution of the calling thread until the specified target
thread thread terminates.

On return from a successful pthread_join() call with a non-NULL value_ptr
argument, the value passed to pthread_exit() is returned in the location
referenced by value_ptr, and the terminating thread is detached.

If more than one thread attempts to join with the same thread, the results are
unpredictable.

A call to pthread_join() returns after the target thread terminates. The
pthread_join() routine is a deferred cancelation point: the target thread will
not be detached if the thread blocked in pthread_join() is canceled.

If a thread calls this routine and specifies its own pthread_t, a deadlock can
result.

The pthread_join() (or pthread_detach()) routine should eventually be
called for every thread that is created with the detachstate attribute of its
thread object set to PTHREAD_CREATE_JOINABLE, so that storage associated with
the thread can be reclaimed.

Note

For OpenVMS Alpha systems:
The pthread_join() routine is defined to pthread_join64() if
you compile using /pointer_size=long. If you do not specify
/pointer_size, or if you specify /pointer_size=short, then
pthread_join() is defined to be pthread_join32(). You can call
pthread_join32() or pthread_join64() instead of pthread_join().
The pthread_join32() form returns a 32-bit void * value in the
address to which value_ptr points. The pthread_join64() form
returns a 64-bit void * value. You can call either, or you can call
pthread_join(). Note that if you call pthread_join32() and the
thread with which you join returns a 64-bit value, the high 32 bits of
which are not 0 (zero), the Threads Library discards those high bits
with no warning.

pthread–128

pthread_join

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by thread does not refer to a joinable

thread.
[ESRCH] The value specified by thread does not refer to an existing

thread ID.
[EDEADLK] A deadlock was detected, or thread specifies the calling

thread.

Associated Routines

pthread_cancel()
pthread_create()
pthread_detach()
pthread_exit()

pthread–129

pthread_key_create

pthread_key_create

Generates a unique thread-specific data key.

Syntax

pthread_key_create(
key,
destructor);

Argument Data Type Access

key opaque pthread_key_t write

destructor procedure read

C Binding

#include <pthread.h>

int
pthread_key_create (

pthread_key_t *key,
void (*destructor)(void *));

Arguments

key
Location where the new thread-specific data key will be stored.

destructor
Procedure called to destroy a thread-specific data value associated with the
created key when the thread terminates. Note that the argument to the
destructor for the user-specified routine is the non-NULL value associated with
a key.

Description

This routine generates a unique, thread-specific data key that is visible
to all threads in the process. The variable key provided by this routine is
an opaque object used to locate thread-specific data. Although the same
key value can be used by different threads, the values bound to the key by
pthread_setspecific() are maintained on a per-thread basis and persist

pthread–130

pthread_key_create

for the life of the calling thread. The initial value of the key in all threads is
NULL.

The Threads Library imposes a maximum number of thread-specific data keys,
equal to the symbolic constant PTHREAD_KEYS_MAX.

Thread-specific data allows client software to associate ‘‘static’’ information
with the current thread. For example, where a routine declares a variable
static in a single-threaded program, a multithreaded version of the program
might create a thread-specific data key to store the same variable.

This routine generates and returns a new key value. The key reserves a cell
within each thread. Each call to this routine creates a new cell that is unique
within an application invocation. Keys must be generated from initialization
code that is guaranteed to be called only once within each process. (See the
pthread_once() description for more information.)

When a thread terminates, its thread-specific data is automatically destroyed;
however, the key remains unless destroyed by a call to pthread_key_delete().
An optional destructor function can be associated with each key. At thread
exit, if a key has a non-NULL destructor pointer, and the thread has a
non-NULL value associated with that key, the destructor function is called
with the current associated value as its sole argument. The order in which
thread-specific data destructors are called at thread termination is undefined.

Before each destructor is called, the thread’s value for the corresponding key is
set to NULL. After the destructors have been called for all non-NULL values
with associated destructors, if there are still some non-NULL values with
associated destructors, then this sequence of actions is repeated. If there are
still non-NULL values for any key with a destructor after four repetitions
of this sequence, the thread is terminated. At this point, any key values
that represent allocated heap will be lost. Note that this occurs only when a
destructor performs some action that creates a new value for some key. Your
program’s destructor code should attempt to avoid this sort of circularity.

pthread–131

pthread_key_create

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacked the necessary resources to create

another thread-specific data key, or the limit on the total
number of keys per process (PTHREAD_KEYS_MAX) has been
exceeded.

[ENOMEM] Insufficient memory exists to create the key.

Associated Routines

pthread_getspecific()
pthread_key_delete()
pthread_once()
pthread_setspecific()

pthread–132

pthread_key_delete

pthread_key_delete

Deletes a thread-specific data key.

Syntax

pthread_key_delete(
key);

Argument Data Type Access

key opaque pthread_key_t write

C Binding

#include <pthread.h>

int
pthread_key_delete (

pthread_key_t key);

Arguments

key
Context key to be deleted.

Description

This routine deletes the thread-specific data key specified by the key argument,
which must have been previously returned by pthread_key_create().

The thread-specific data values associated with key need not be NULL at the
time this routine is called. The application must free any application storage
or perform any cleanup actions for data structures related to the deleted key or
associated thread-specific data in any threads. This cleanup can be done either
before or after this routine is called.

Attempting to use the key after calling this routine results in unpredictable
behavior.

No destructor functions are invoked by this routine. Any destructor functions
that may have been associated with key shall no longer be called upon thread
exit. pthread_key_delete() can be called from within destructor functions.

pthread–133

pthread_key_delete

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The key value is not a valid key.

Associated Routines

pthread_exit()
pthread_getspecific()
pthread_key_create()

pthread–134

pthread_key_getname_np

pthread_key_getname_np

Obtains the object name from a thread-specific data key object.

Syntax

pthread_key_getname_np(
key,
name,
len);

Argument Data Type Access

key opaque pthread_key_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_key_getname_np (

pthread_key_t *key,
char *name,
size_t len);

Arguments

key
Address of the thread-specific data key object whose object name is to be
obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

pthread–135

pthread_key_getname_np

Description

This routine copies the object name from the thread-specific data key object
specified by the key argument to the buffer at the location specified by the
name argument. Before calling this routine, your program must allocate the
buffer indicated by name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified thread-specific data key object has not been previously set with
an object name, this routine copies a C language null string into the buffer at
location name.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by key is not a valid key.

Associated Routines

pthread_key_setname_np()

pthread–136

pthread_key_setname_np

pthread_key_setname_np

Changes the object name in a thread-specific data key object.

Syntax

pthread_key_setname_np(
key,
name,
mbz);

Argument Data Type Access

key opaque pthread_key_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_key_setname_np (

pthread_key_t *cond,
const char *name,
void *mbz);

Arguments

key
Address of the thread-specific data key object whose object name is to be
changed.

name
Object name value to copy into the key object.

mbz
Reserved for future use. The value must be zero (0).

pthread–137

pthread_key_setname_np

Description

This routine changes the object name in the thread-specific data key object
specified by the key argument to the value specified by the name argument.
To set a new thread-specific data key object’s object name, call this routine
immediately after initializing the key object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by key is not a valid key, or the length

in characters of name exceeds 31.
[ENOMEM] Insufficient memory exists to create a copy of the object

name string.

Associated Routines

pthread_key_getname_np()

pthread–138

pthread_kill

pthread_kill

Delivers a signal to a specified target thread.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_kill(
thread,
sig);

Argument Data Type Access

thread opaque pthread_t read

sig integer read

C Binding

#include <pthread.h>

int
pthread_kill (

pthread_t thread,
int sig);

Arguments

thread
Thread to receive a signal request.

sig
A signal request.

Description

This routine sends a signal to the specified target thread thread. Any signal
defined to stop, continue, or terminate will stop or terminate the process,
even though it can be handled by the target thread. For example, SIGTERM
terminates all threads in the process, even though it can be handled by the
target thread.

Specifying a sig argument of 0 (zero) causes this routine to validate the thread
argument but not to deliver any signal.

pthread–139

pthread_kill

The name of the ‘‘kill’’ routine is sometimes misleading, because many signals
do not terminate a thread.

The various signals are as follows:

SIGHUP SIGPIPE SIGTTIN
SIGINT SIGALRM SIGTTOU
SIGQUIT SIGTERM SIGIO
SIGTRAP SIGUSR1 SIGXCPU
SIGABRT SIGSYS SIGXFSZ
SIGEMT SIGURG SIGVTALRM
SIGFPE SIGSTOP SIGPROF
SIGKILL SIGTSTP SIGINFO
SIGBUS SIGCONT SIGUSR1
SIGSEGV SIGCHLD SIGUSR2

If this routine does not execute successfully, no signal is sent.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value of sig is invalid or an unsupported signal value.
[ESRCH] The value of thread does not specify an existing thread.

pthread–140

pthread_lock_global_np

pthread_lock_global_np

Locks the Threads Library global mutex.

Syntax

pthread_lock_global_np();

C Binding

#include <pthread.h>

int
pthread_lock_global_np (void);

Arguments

None

Description

This routine locks the Threads Library global mutex. If the global mutex is
currently held by another thread when a thread calls this routine, the calling
thread waits for the global mutex to become available and then locks it.

The thread that has locked the global mutex becomes its current owner and
remains the owner until the same thread has unlocked it. This routine returns
with the global mutex in the locked state and with the current thread as the
global mutex’s current owner.

Use the global mutex when calling a library package that is not designed
to run in a multithreaded environment. Unless the documentation for a
library function specifically states that it is thread-safe, assume that it is not
compatible; in other words, assume it is nonreentrant.

The global mutex is one lock. Any code that calls any function that is not
known to be reentrant should use the same lock. This prevents problems
resulting from dependencies among threads that call library functions and
those functions’ calling other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global
mutex can relock it without deadlocking. The locking thread must call
pthread_unlock_global_np() as many times as it called this routine, to allow
another thread to lock the global mutex.

pthread–141

pthread_lock_global_np

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.

Associated Routines

pthread_unlock_global_np()

pthread–142

pthread_mutexattr_destroy

pthread_mutexattr_destroy

Destroys the specified mutex attributes object.

Syntax

pthread_mutexattr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

C Binding

#include <pthread.h>

int
pthread_mutexattr_destroy (

pthread_mutexattr_t *attr);

Arguments

attr
Mutex attributes object to be destroyed.

Description

This routine destroys a mutex attributes object—that is, the object becomes
uninitialized. Call this routine when your program no longer needs the
specified mutex attributes object.

After this routine is called, the Threads Library may reclaim the storage used
by the mutex attributes object. Mutexes that were created using this attributes
object are not affected by the destruction of the mutex attributes object.

The results of calling this routine are unpredictable, if the attributes object
specified in the attr argument does not exist.

pthread–143

pthread_mutexattr_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

Associated Routines

pthread_mutexattr_init()

pthread–144

pthread_mutexattr_getpshared

pthread_mutexattr_getpshared

Obtains the value of the process-shared attribute of the specified mutex
attributes object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_mutexattr_getpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_mutexattr_t read

pshared int write

C Binding

#include <pthread.h>

int
pthread_mutexattr_getpshared (

const pthread_mutexattr_t *attr,
int *pshared);

Arguments

attr
Address of the mutex attributes object whose process-shared attribute is
obtained.

pshared
Value received from process-shared attribute of the mutex attributes object
specified in attr.

pthread–145

pthread_mutexattr_getpshared

Description

This routine obtains the value of the process-shared attribute of the mutex
attributes object specified by the attr argument and stores it in the location
specified by the pshared argument. This attributes object must already be
initialized at the time this routine is called.

Setting the process-shared attribute to PTHREAD_PROCESS_PRIVATE permits a
mutex to be operated upon by threads created within the same process as the
thread that initialized the mutex. If threads of differing processes attempt to
operate on such a mutex, the behavior is undefined.

The default value of the process-shared attribute of a mutex attributes object
is PTHREAD_PROCESS_PRIVATE.

Setting the process-shared attribute to PTHREAD_PROCESS_SHARED permits a
mutex to be operated upon by any thread that has access to the memory where
the mutex is allocated, even if the mutex is allocated in memory that is shared
by multiple processes.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

Associated Routines

pthread_mutex_init()
pthread_mutexattr_destroy()
pthread_mutexattr_init()
pthread_mutexattr_setpshared()

pthread–146

pthread_mutexattr_gettype

pthread_mutexattr_gettype

Obtains the mutex type attribute in the specified mutex attribute object.

Syntax

pthread_mutexattr_gettype(
attr,
type);

Argument Data Type Access

attr opaque pthread_mutexattr_t read

type integer write

C Binding

#include <pthread.h>

int
pthread_mutexattr_gettype (

const pthread_mutexattr_t *attr,
int *type);

Arguments

attr
Mutex attributes object whose mutex type attribute is obtained.

type
Receives the value of the mutex type attribute. The type argument specifies
the type of mutex that can be created. Valid values are:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_DEFAULT (default)
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_ERRORCHECK

pthread–147

pthread_mutexattr_gettype

Description

This routine obtains the value of the mutex type attribute in the mutex
attributes object specified by the attr argument and stores it in the location
specified by the type argument. See the pthread_mutexattr_settype()
description for information about mutex types.

Return Values

On successful completion, this routine returns the mutex type in the location
specified by the type argument.

If an error condition occurs, this routine returns an integer value indicating
the type of the error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid mutex attributes

object.

Associated Routines

pthread_mutexattr_init()
pthread_mutexattr_settype()
pthread_mutex_init()

pthread–148

pthread_mutexattr_init

pthread_mutexattr_init

Initializes a mutex attributes object.

Syntax

pthread_mutexattr_init(
attr);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

C Binding

#include <pthread.h>

int
pthread_mutexattr_init (

pthread_mutexattr_t *attr);

Arguments

attr
Address of the mutex attributes object to be initialized.

Description

This routine initializes the mutex attributes object specified by the attr
argument with a set of default values. A mutex attributes object is used
to specify the attributes of one or more mutexes when they are created.
The attributes object created by this routine is used only in calls to the
pthread_mutex_init() routine.

When a mutex attributes object is used to create a mutex, the values of the
individual attributes determine the characteristics of the new mutex. Thus,
attributes objects act as additional arguments to mutex creation. Changing
individual attributes in an attributes object does not affect any mutexes that
were previously created using that attributes object.

You can use the same mutex attributes object in successive calls to
pthread_mutex_init(), from any thread. If multiple threads can change
attributes in a shared mutex attributes object, your program must use a mutex
to protect the integrity of the attributes object’s contents.

pthread–149

pthread_mutexattr_init

Results are undefined if this routine is called and the attr argument specifies a
mutex attributes object that is already initialized.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOMEM] Insufficient memory to create the mutex attributes object.

Associated Routines

pthread_mutexattr_destroy()
pthread_mutexattr_gettype()
pthread_mutexattr_settype()
pthread_mutex_init()

pthread–150

pthread_mutexattr_setpshared

pthread_mutexattr_setpshared

Changes the value of the process-shared attribute of the specified mutex
attributes object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_mutexattr_setpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

pshared int read

C Binding

#include <pthread.h>

int
pthread_mutexattr_setpshared (

pthread_mutexattr_t *attr,
int pshared);

Arguments

attr
Address of the mutex attributes object whose process-shared attribute is to be
modified.

pshared
Value to set in the process-shared attribute of the mutex attributes object
specified by attr.

pthread–151

pthread_mutexattr_setpshared

Description

This routine uses the value specified in the pshared argument to set the
value of the process-shared attribute of an initialized mutex attributes object
specified in the attr argument.

Setting the process-shared attribute to PTHREAD_PROCESS_PRIVATE permits a
mutex to be operated upon by threads created within the same process as the
thread that initialized the mutex. If threads of differing processes attempt to
operate on such a mutex, the behavior is undefined.

The default value of the process-shared attribute of a mutex attributes object
is PTHREAD_PROCESS_PRIVATE.

Setting the process-shared attribute to PTHREAD_PROCESS_SHARED permits a
mutex to be operated upon by any thread that has access to the memory where
the mutex is allocated, even if the mutex is allocated in memory that is shared
by multiple processes.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid mutex attributes

object, or the new value specified for the attribute is
outside the range of legal values for that attribute.

Associated Routines

pthread_mutex_init()
pthread_mutexattr_destroy()
pthread_mutexattr_init()
pthread_mutexattr_getpshared()

pthread–152

pthread_mutexattr_settype

pthread_mutexattr_settype

Specifies the mutex type attribute that is used when a mutex is created.

Syntax

pthread_mutexattr_settype(
attr,
type);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

type integer read

C Binding

#include <pthread.h>

int
pthread_mutexattr_settype (

pthread_mutexattr_t *attr,
int type);

Arguments

attr
Mutex attributes object whose mutex type attribute is to be modified.

type
New value for the mutex type attribute. The type argument specifies the type
of mutex that will be created. Valid values are:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_DEFAULT (default)
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_ERRORCHECK

pthread–153

pthread_mutexattr_settype

Description

This routine sets the mutex type attribute that is used to determine which type
of mutex is created based on a subsequent call to pthread_mutex_init(). See
Section 2.4.1 for information on the types of mutexes.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr or type is not a valid mutex

attributes type.
[ESRCH] The value specified by attr does not refer to an existing

mutex attributes object.

Associated Routines

pthread_mutexattr_init()
pthread_mutexattr_gettype()
pthread_mutex_init()

pthread–154

pthread_mutex_destroy

pthread_mutex_destroy

Destroys a mutex.

Syntax

pthread_mutex_destroy(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t write

C Binding

#include <pthread.h>

int
pthread_mutex_destroy (

pthread_mutex_t *mutex);

Arguments

mutex
The mutex to be destroyed.

Description

This routine destroys the specified mutex by uninitializing it, and should be
called when a mutex object is no longer referenced. After this routine is called,
the Threads Library may reclaim internal storage used by the specified mutex.

It is safe to destroy an initialized mutex that is unlocked. However, it is illegal
to destroy a locked mutex.

The results of this routine are unpredictable if the mutex object specified in the
mutex argument does not currently exist, or is not initialized.

pthread–155

pthread_mutex_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] An attempt was made to destroy the object referenced by

mutex while it is locked.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

pthread–156

pthread_mutex_getname_np

pthread_mutex_getname_np

Obtains the object name from a mutex object.

Syntax

pthread_mutex_getname_np(
mutex,
name,
len);

Argument Data Type Access

mutex opaque pthread_mutex_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_mutex_getname_np (

pthread_mutex_t *mutex,
char *name,
size_t len);

Arguments

mutex
Address of the mutex object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

pthread–157

pthread_mutex_getname_np

Description

This routine copies the object name from the mutex object specified by the
mutex argument to the buffer at the location specified by the name argument.
Before calling this routine, your program must allocate the buffer indicated by
name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified condition variable object has not been previously set with an
object name, this routine copies a C language null string into the buffer at
location name.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

pthread_mutex_setname_np()

pthread–158

pthread_mutex_init

pthread_mutex_init

Initializes a mutex.

Syntax

pthread_mutex_init(
mutex,
attr);

Argument Data Type Access

mutex opaque pthread_mutex_t write

attr opaque pthread_mutexattr_t read

C Binding

#include <pthread.h>

int
pthread_mutex_init (

pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

Arguments

mutex
Mutex to be initialized.

attr
Mutex attributes object that defines the characteristics of the mutex to be
initialized.

Description

This routine initializes a mutex with the attributes specified by the mutex
attributes object specified in the attr argument. A mutex is a synchronization
object that allows multiple threads to serialize their access to shared data.

The mutex is initialized and set to the unlocked state. If attr is set to NULL,
the default mutex attributes are used. The pthread_mutexattr_settype()
routine can be used to specify the type of mutex that is created (normal,
recursive, or errorcheck).

pthread–159

pthread_mutex_init

See Chapter 2 for more information about mutex usage.

Use the PTHREAD_MUTEX_INITIALIZER macro to statically initialize a mutex
without calling this routine. Statically initialized mutexes need not be
destroyed using pthread_mutex_destroy(). Use this macro as follows:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER

Only normal mutexes can be statically initialized.

A mutex is a resource of the process, not part of any particular thread. A
mutex is neither destroyed nor unlocked automatically when any thread exits.
If a mutex is allocated on a stack, static initializers cannot be used on the
mutex.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error, the mutex is not initialized, and the contents of mutex are
undefined. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize the

mutex.
[EBUSY] The implementation has detected an attempt to reinitialize

the mutex (a previously initialized, but not yet destroyed
mutex).

[EINVAL] The value specified by mutex is not a valid mutex.
[ENOMEM] Insufficient memory exists to initialize the mutex.
[EPERM] The caller does not have privileges to perform this

operation.

Associated Routines

pthread_mutexattr_init()
pthread_mutexattr_gettype()
pthread_mutexattr_settype()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

pthread–160

pthread_mutex_lock

pthread_mutex_lock

Locks an unlocked mutex.

Syntax

pthread_mutex_lock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <pthread.h>

int
pthread_mutex_lock (

pthread_mutex_t *mutex);

Arguments

mutex
Mutex to be locked.

Description

This routine locks a mutex with behavior that depends upon the type of mutex,
as follows:

• If a normal or default mutex is specified, a deadlock can result if the
current owner of the mutex calls this routine in an attempt to lock the
mutex a second time. (The deadlock is not detected or reported.)

• If a recursive mutex is specified, the current owner of the mutex can relock
the same mutex without blocking. The lock count is incremented for each
recursive lock within the thread.

• If an errorcheck mutex is specified and the current owner tries to lock the
mutex a second time, this routine reports the [EDEADLK] error. If the
mutex is locked by another thread, the calling thread waits for the mutex
to become available.

pthread–161

pthread_mutex_lock

Use the pthread_mutexattr_settype() routine to set the type of the mutex to
normal, default, recursive, or errorcheck. For more information about mutexes,
see Chapter 2.

The thread that has locked a mutex becomes its current owner and remains
its owner until the same thread has unlocked it. This routine returns with the
mutex in the locked state and with the calling thread as the mutex’s current
owner.

A recursive or errorcheck mutex records the identity of the thread that locks
it, allowing debuggers to display this information. In most cases, normal and
default mutexes do not record the owning thread’s identity.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EDEADLK] A deadlock condition is detected.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

pthread_mutexattr_settype()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_trylock()
pthread_mutex_unlock()

pthread–162

pthread_mutex_setname_np

pthread_mutex_setname_np

Changes the object name in a mutex object.

Syntax

pthread_mutex_setname_np(
mutex,
name,
mbz);

Argument Data Type Access

mutex opaque pthread_mutex_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_mutex_setname_np (

pthread_mutex_t *mutex,
const char *name,
void *mbz);

Arguments

mutex
Address of the mutex object whose object name is to be changed.

name
Object name value to copy into the mutex object.

mbz
Reserved for future use. The value must be zero (0).

pthread–163

pthread_mutex_setname_np

Description

This routine changes the object name in the mutex object specified by the
mutex argument to the value specified by the name argument. To set a new
mutex object’s object name, call this routine immediately after initializing the
mutex object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by mutex is not a valid mutex, or the

length in characters of name exceeds 31.
[ENOMEM] Insufficient memory exists to create a copy of the object

name string.

Associated Routines

pthread_mutex_getname_np()

pthread–164

pthread_mutex_trylock

pthread_mutex_trylock

Attempts to lock the specified mutex. If the mutex is already locked, the calling
thread does not wait for the mutex to become available.

Syntax

pthread_mutex_trylock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <pthread.h>

int
pthread_mutex_trylock (

pthread_mutex_t *mutex);

Arguments

mutex
Mutex to be locked.

Description

This routine attempts to lock the mutex specified in the mutex argument.
When a thread calls this routine, an attempt is made to immediately lock the
mutex. If the mutex is successfully locked, this routine returns zero (0) and
the calling thread becomes the mutex’s current owner. If the specified mutex is
locked when a thread calls this routine, the calling thread does not wait for the
mutex to become available.

The behavior of this routine is as follows:

• For a normal, default, or errorcheck mutex: if the mutex is locked by
any thread (including the calling thread) when this routine is called, this
routine returns [EBUSY] and the calling thread does not wait to acquire
the lock.

• For a normal or errorcheck mutex: if the mutex is not owned, this routine
returns zero (0) and the mutex becomes locked by the calling thread.

pthread–165

pthread_mutex_trylock

• For a recursive mutex: if the mutex is owned by the current thread, this
routine returns zero (0) and the mutex lock count is incremented. (To
unlock a recursive mutex, each call to pthread_mutex_trylock() must be
matched by a call to pthread_mutex_unlock().)

Use the pthread_mutexattr_settype() routine to set the mutex type attribute
(normal, default, recursive, or errorcheck). For information about mutex types
and their usage, see Chapter 2.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The mutex is already locked; therefore, it was not

acquired.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

pthread_mutexattr_settype()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_unlock()

pthread–166

pthread_mutex_unlock

pthread_mutex_unlock

Unlocks the specified mutex.

Syntax

pthread_mutex_unlock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <pthread.h>

int
pthread_mutex_unlock (

pthread_mutex_t *mutex);

Arguments

mutex
Mutex to be unlocked.

Description

This routine unlocks the mutex specified by the mutex argument.

This routine behaves as follows, based on the type of the specified mutex:

• For a normal, default, or errorcheck mutex: if the mutex is owned by the
calling thread, it is unlocked with no current owner. Further, for a normal
or default mutex: if the mutex is not locked or is locked by another thread,
this routine can also return [EPERM], but this is not guaranteed. For an
errorcheck mutex: if the mutex is not locked or is locked by another thread,
this routine returns [EPERM].

• For a recursive mutex: if the mutex is owned by the calling thread, the
lock count is decremented. The mutex remains locked and owned until the
lock count reaches zero (0). When the lock count reaches zero, the mutex
becomes unlocked with no current owner.

pthread–167

pthread_mutex_unlock

If one or more threads are waiting to lock the specified mutex, and the mutex
becomes unlocked, this routine causes one thread to unblock and to try to
acquire the mutex. The scheduling policy is used to determine which thread to
unblock. For the SCHED_FIFO and SCHED_RR policies, a blocked thread is chosen
in priority order, using first-in/first-out within priorities. Note that the mutex
might not be acquired by the awakened thread, if any other running thread
attempts to lock the mutex first.

On Tru64 UNIX, if a signal is delivered to a thread waiting for a mutex, upon
return from the signal handler, the thread resumes waiting for the mutex as if
it was not interrupted.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified for mutex is not a valid mutex.
[EPERM] The calling thread does not own the mutex.

Associated Routines

pthread_mutexattr_settype()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()

pthread–168

pthread_once

pthread_once

Calls a routine that is executed by a single thread, once.

Syntax

pthread_once(
once_control,
routine);

Argument Data Type Access

once_control opaque pthread_once_t modify

routine procedure read

C Binding

#include <pthread.h>

int
pthread_once (

pthread_once_t *once_control,
void (*routine) (void));

Arguments

once_control
Address of a record that controls the one-time execution code. Each one-time
execution routine must have its own unique pthread_once_t record.

routine
Address of a procedure to be executed once. This routine is called only once,
regardless of the number of times it and its associated once_control block are
passed to pthread_once().

Description

The first call to this routine by any thread in a process with a given once_
control will call the specified routine with no arguments. Subsequent calls
to pthread_once() with the same once_control will not call the routine. On
return from pthread_once(), it is guaranteed that the routine has completed.

pthread–169

pthread_once

For example, a mutex or a per-thread context key must be created exactly
once. Calling pthread_once() ensures that the initialization is serialized
across multiple threads. Other threads that reach the same point in the code
would be delayed until the first thread is finished.

Note

If you specify a routine that directly or indirectly results in a recursive
call to pthread_once() and that specifies the same routine argument,
the recursive call can result in a deadlock.

To initialize the once_control record, your program can zero out the entire
structure, or you can use the PTHREAD_ONCE_INIT macro, which is defined
in the pthread.h header file, to statically initialize that structure. If using
PTHREAD_ONCE_INIT, declare the once_control record as follows:

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Note that it is often easier to simply lock a statically initialized mutex, check
a control flag, and perform necessary initialization (in-line) rather than using
pthread_once(). For example, you can code an initialization routine that
begins with the following basic logic:

init()
{
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static int flag = FALSE;

pthread_mutex_lock(&mutex);
if(!flag)
{
/* initialization code goes here */
flag = TRUE;
}

pthread_mutex_unlock(&mutex);
}

pthread–170

pthread_once

Return Values

If an error occurs, this routine returns an integer indicating the type of error.
Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] Invalid argument.

pthread–171

pthread_rwlockattr_destroy

pthread_rwlockattr_destroy

Destroys a previously initialized read-write lock attributes object.

Syntax

pthread_rwlockattr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_rwlockattr_t write

C Binding

#include <pthread.h>

int
pthread_rwlockattr_destroy (

pthread_rwlockattr_t *attr);

Arguments

attr
Address of the read-write lock attributes object to be destroyed.

Description

This routine destroys the read-write lock attributes object referenced by attr;
that is, the object becomes uninitialized.

After successful completion of this routine, the results of using attr in a call to
any routine (other than pthread_rwlockattr_init()) are unpredictable.

pthread–172

pthread_rwlockattr_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes block.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()

pthread–173

pthread_rwlockattr_getpshared

pthread_rwlockattr_getpshared

Obtains the value of the process-shared attribute of a read-write lock attributes
object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_rwlockattr_getpshared(attr,
pshared);

Argument Data Type Access

attr opaque pthread_rwlockattr_t read

pshared int write

C Binding

#include <pthread.h>

int
pthread_rwlockattr_getpshared (

const pthread_rwlockattr_t *attr,
int *pshared);

Arguments

attr
Address of the read-write lock attributes object whose process-shared attribute
is to be obtained.

pshared
Receives the value of the process-shared attribute of the read-write lock
attributes object specified by attr.

Description

This routine obtains the value of the process-shared attribute from the read-
write lock attributes object specified by the attr argument and stores it in
the location specified by the pshared argument. This attributes object must
already be initialized at the time this routine is called.

pthread–174

pthread_rwlockattr_getpshared

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

Associated Routines

pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()

pthread–175

pthread_rwlockattr_init

pthread_rwlockattr_init

Initializes a read-write lock attributes object.

Syntax

pthread_rwlockattr_init(
attr);

Argument Data Type Access

attr opaque pthread_rwlockattr_t write

C Binding

#include <pthread.h>

int
pthread_rwlockattr_init (

pthread_rwlockattr_t *attr);

Arguments

attr
Address of the read-write lock attributes object to be initialized.

Description

This routine initializes the read-write lock attributes object referenced by attr
and sets its attributes with default values.

The results of calling this routine are undefined if attr references an already
initialized read-write lock attributes object.

After an initialized read-write lock attributes object has been used to initialize
one or more read-write lock objects, any operation on that attributes object
(including destruction) has no effect on those read-write lock objects.

pthread–176

pthread_rwlockattr_init

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOMEM] Insufficient memory exists to initialize the read-write lock

attributes object.

Associated Routines

pthread_rwlockattr_destroy()
pthread_rwlock_init()

pthread–177

pthread_rwlockattr_setpshared

pthread_rwlockattr_setpshared

Sets the value of the process-shared attribute of a read-write lock attributes
object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_rwlockattr_setpshared(attr,
pshared);

Argument Data Type Access

attr opaque pthread_rwlockattr_t write

pshared int read

C Binding

#include <pthread.h>

int
pthread_rwlockattr_setpshared (

pthread_rwlockattr_t *attr,
int pshared);

Arguments

attr
Address of the read-write lock attributes object whose process-shared attribute
is to be modified.

pshared
New value for the process-shared attribute of the read-write lock attributes
object specified by attr.

Description

This routine uses the value specified in the pshared argument to set the
process-shared attribute of the read-write lock attributes object specified by the
attr argument. This attributes object must already be initialized at the time
this routine is called.

pthread–178

pthread_rwlockattr_setpshared

If the process-shared attribute is set to PTHREAD_PROCESS_PRIVATE, the read-
write lock object can only be operated upon by threads created within the same
process as the thread that initialized the read-write lock object. If threads of
differing processes attempt to operate on such a read-write lock object, the
behavior is undefined.

The default value of the process-shared attribute of a read-write lock attributes
object is PTHREAD_PROCESS_PRIVATE.

If the process-shared attribute of a read-write lock attributes object is set to
PTHREAD_PROCESS_SHARED, the read-write lock object can be operated upon by
any thread that has access to the memory where that object is allocated, even
if that object is allocated in memory that is shared by multiple processes.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object,

or the value pshared is outside the range of legal values
for that attribute.

Associated Routines

pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_init()
pthread_rwlockattr_getpshared()

pthread–179

pthread_rwlock_destroy

pthread_rwlock_destroy

Destroys a read-write lock object.

Syntax

pthread_rwlock_destroy(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_destroy (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to be destroyed.

Description

This routine destroys the specified read-write lock object by uninitializing it,
and should be called when the object is no longer referenced in your program.
After this routine is called, the Threads Library may reclaim internal storage
used by the specified read-write lock object. The effect of subsequent use
of the lock is undefined until the lock is reinitialized by another call to
pthread_rwlock_init().

It is illegal to destroy a locked read-write lock.

The results of this routine are unpredictable if the specified read-write lock
object does not currently exist or is not initialized. This routine destroys
the read-write lock object specified by the rwlock argument and releases any
resources that the object used.

A destroyed read-write lock object can be reinitialized using the
pthread_rwlock_init() routine. The results of otherwise referencing a
destroyed read-write lock object are undefined.

pthread–180

pthread_rwlock_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] An attempt was made to destroy the object referenced by

rwlock while it is locked or referenced.

Associated Routines

pthread_rwlock_init()

pthread–181

pthread_rwlock_getname_np

pthread_rwlock_getname_np

Obtains the object name from a read-write lock object.

Syntax

pthread_rwlock_getname_np(
rwlock,
name,
len);

Argument Data Type Access

rwlock opaque pthread_rwlock_t read

name char write

len size_t read

C Binding

#include <pthread.h>

int
pthread_rwlock_getname_np (

pthread_rwlock_t *rwlock,
char *name,
size_t len);

Arguments

rwlock
Address of the read-write lock object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

pthread–182

pthread_rwlock_getname_np

Description

This routine copies the object name from the read-write lock object specified
by rwlock to the buffer at the location name. Before calling this routine, your
program must allocate the buffer indicated by name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified read-write lock object has not been previously set with an object
name, this routine copies a C language null string into the buffer at location
name.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by rwlock is not a valid read-write

lock.

Associated Routines

pthread_rwlock_setname_np()

pthread–183

pthread_rwlock_init

pthread_rwlock_init

Initializes a read-write lock object.

Syntax

pthread_rwlock_init(rwlock,
attr);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

attr opaque pthread_rwlockattr_t read

C Binding

#include <pthread.h>

int
pthread_rwlock_init (

pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr);

Arguments

rwlock
Read-write lock object to be initialized.

attr
Read-write lock attributes object that defines the characteristics of the read-
write lock to be initialized.

Description

This routine initializes a read-write lock object with the attributes specified
by the read-write lock attributes object specified in attr. A read-write lock is a
synchronization object that serializes access to shared information that needs
to be read frequently and written only occasionally. A thread can acquire a
read-write lock for shared read access or for exclusive write access.

pthread–184

pthread_rwlock_init

Upon successful completion of this routine, the read-write lock is initialized
and set to the unlocked state. If attr is set to NULL, the default read-write
lock attributes are used; the effect is the same as passing the address of a
default read-write lock attributes object. Once initialized, the lock can be used
any number of times without being reinitialized.

Results of calling this routine are undefined if attr specifies an already
initialized read-write lock or if rwlock is used without first being initialized.

If this routine returns unsuccessfully, rwlock is not initialized and the contents
of rwlock are undefined.

A read-write lock is a resource of the process, not part of any particular thread.
A read-write lock is neither destroyed not unlocked automatically when any
thread exits. Because read-write locks are shared, they may be allocated in
heap or static memory, but not on a stack.

In cases where default read-write lock attributes are appropriate, you may use
the PTHREAD_RWLOCK_INITIALIZER macro to statically initialize the lock object
without calling this routine. The effect is equivalent to dynamic initialization
by a call to pthread_rwlock_init() with attr specified as NULL, except that
no error checks are performed. Statically initialized read-write locks need not
be destroyed using pthread_rwlock_destroy().

Use the PTHREAD_RWLOCK_INITIALIZER macro as follows:

pthread_rwlock_t rwlock= PTHREAD_RWLOCK_INITIALIZER;

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize the

read-write lock.
[EBUSY] The Threads Library has detected an attempt to

reinitialize the read-write lock (a previously initialized,
but not yet destroyed, read-write lock object).

[EINVAL] The value specified by attr is not a valid attributes block.
[ENOMEM] Insufficient memory exists to initialize the read-write lock.

pthread–185

pthread_rwlock_init

Return Description

[EPERM] The caller does not have privileges to perform this
operation.

Associated Routines

pthread_rwlock_destroy()

pthread–186

pthread_rwlock_rdlock

pthread_rwlock_rdlock

Acquires a read-write lock object for read access.

Syntax

pthread_rwlock_rdlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_rdlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for read access.

Description

This routine acquires a read-write lock for read access. If no thread already
holds the lock for write access and there are no writers waiting to acquire the
lock, the lock for read access is granted to the calling thread and this routine
returns. If a thread already holds the lock for read access, the lock is granted
and this routine returns.

A thread can hold multiple, concurrent locks for read access on the same read-
write lock. In a given thread, for each call to this routine that successfully
acquires the same read-write lock for read access, a corresponding call to
pthread_rwlock_unlock must be issued.

If some thread already holds the lock for write access, the calling thread will
not acquire the read lock. If the read lock is not acquired, the calling thread
blocks until it can acquire the lock for read access. Results are undefined if the
calling thread has already acquired a lock for write access on rwlock when this
routine is called.

pthread–187

pthread_rwlock_rdlock

If the read-write lock object referenced by rwlock is not initialized, the results
of calling this routine are undefined.

If a thread is interrupted (via a Tru64 UNIX signal or an OpenVMS AST)
while waiting for a read-write lock for read access, upon return from the
interrupt routine the thread resumes waiting for the lock as if it had not been
interrupted.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion; the read-write lock object was
acquired for read access.

[EINVAL] The value specified by rwlock does not refer to an
initialized read-write lock object.

[EDEADLCK] The calling thread already owns the specified read-write
lock object for write access.

[EAGAIN] The lock for read access could not be acquired because the
maximum number of read lock acquisitions for rwlock has
been exceeded.

Associated Routines

pthread_rwlock_init()
pthread_rwlockattr_init()
pthread_rwlock_tryrdlock()
pthread_rwlock_wrlock()
pthread_rwlock_unlock()

pthread–188

pthread_rwlock_setname_np

pthread_rwlock_setname_np

Changes the object name in a read-write lock object.

Syntax

pthread_rwlock_setname_np(
rwlock,
name,
mbz);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_rwlock_setname_np (

pthread_rwlock_t *rwlock,
const char *name,
void *mbz);

Arguments

rwlock
Address of the read-write lock object whose object name is to be changed.

name
Object name value to copy into the read-write lock object.

mbz
Reserved for future use. The value must be zero (0).

pthread–189

pthread_rwlock_setname_np

Description

This routine changes the object name in the read-write lock object specified
by rwlock to the value specified by name. To set a new read-write lock object’s
object name, call this routine immediately after initializing the read-write lock
object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion; the read-write lock object was
acquired for read access.

[EINVAL] The value specified by rwlock is invalid, or the length in
characters of name exceeds 31.

[ENOMEM] Insufficient memory exists to create a copy of the object
name string.

Associated Routines

pthread_rwlock_getname_np()
pthread_rwlock_init()

pthread–190

pthread_rwlock_tryrdlock

pthread_rwlock_tryrdlock

Attempts to acquire a read-write lock object for read access without waiting.

Syntax

pthread_rwlock_tryrdlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_tryrdlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for read access.

Description

This routine attempts to acquire a read-write lock for read access, but does not
wait for the lock if it not immediately available.

If no thread already holds the lock for write access and there are no writers
waiting to acquire the lock, the lock for read access is granted to the calling
thread and this routine returns. If a thread already holds the lock for read
access, the lock is granted and this routine returns.

If some thread already holds the lock for write access, the calling thread will
not acquire the read lock. Results are undefined if the calling thread has
already acquired a lock for write access on rwlock when this routine is called.

A thread can hold multiple, concurrent locks for read access on the same read-
write lock. In a given thread, for each call to this routine that successfully
acquires the same read-write lock for read access, a corresponding call to
pthread_rwlock_unlock() must be issued.

pthread–191

pthread_rwlock_tryrdlock

If the read-write lock object referenced by rwlock is not initialized, the results
of calling this routine are undefined.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion; the read-write lock object was
acquired for read access.

[EAGAIN] The lock for read access could not be acquired because the
maximum number of read lock acquisitions for rwlock has
been exceeded.

[EBUSY] The read-write lock could not be acquired for read access
because another thread already acquired it for write access
or is blocked and waiting for it for write access.

[EDEADLCK] The current thread already owns the read-write lock for
writing.

[EINVAL] The value specified by rwlock does not refer to an
initialized read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()

pthread–192

pthread_rwlock_trywrlock

pthread_rwlock_trywrlock

Attempts to acquire a read-write lock object for write access without waiting.

Syntax

pthread_rwlock_trywrlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_trywrlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for write access.

Description

This routine attempts to acquire the read-write lock referenced by rwlock for
write access. If any thread already holds that lock for write access or read
access, this routine fails and returns [EBUSY] and the calling thread does not
wait for the lock to become available.

Results are undefined if the calling thread holds the read-write lock (whether
for read or write access) at the time this routine is called.

If the read-write lock object referenced by rwlock is not initialized, the results
of calling this routine are undefined.

Realtime applications can encounter priority inversion when using read-
write locks. The problem occurs when a high-priority thread acquires a
read-write lock that is about to be unlocked (that is, posted) by a low-priority
thread, but the low-priority thread is preempted by a medium-priority thread.
This scenario leads to priority inversion in that a high-priority thread is
blocked by lower-priority threads for an unlimited period of time. During

pthread–193

pthread_rwlock_trywrlock

system design, realtime programmers must take into account the possibility of
priority inversion and can deal with it in a number of ways, such as by having
critical sections that are guarded by read-write locks execute at a high priority,
so that a thread cannot be preempted while executing in its critical section.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion; the read-write lock object was
acquired for write access.

[EBUSY] The read-write lock could not be acquired for write access
because it was already locked for write access or for read
access.

[EDEADLCK] The current thread already owns the read-write lock for
write or read access.

[EINVAL] The value specified by rwlock does not refer to an
initialized read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()

pthread–194

pthread_rwlock_unlock

pthread_rwlock_unlock

Unlocks a read-write lock object.

Syntax

pthread_rwlock_unlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_unlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to be unlocked.

Description

This routine releases a lock acquisition held on the read-write lock object
referenced by rwlock. Results are undefined if rwlock is not held by the calling
thread.

If this routine is called to release a lock for read access on rwlock and the
calling thread also currently holds other locks for read access on rwlock, the
read-write lock object remains in the read locked state. If this routine releases
the calling thread’s last lock for read access on rwlock, the calling thread is no
longer one of the owners of the lock object.

If this routine is called to release a lock for write access on rwlock, the lock
object is put in the unlocked state with no owners.

pthread–195

pthread_rwlock_unlock

If a call to this routine results in the read-write lock object becoming unlocked
and there are multiple threads waiting to acquire that lock for write access,
the Threads Library uses the scheduling policy of those waiting threads to
determine which thread next acquires the lock object for write access. If there
are multiple threads waiting to acquire the read-write lock object for read
access, the Threads Library uses the scheduling policy of those waiting threads
to determine the order in which those threads acquire the lock for read access.
If there are multiple threads waiting to acquire the read-write lock object for
both read and write access, it is unspecified whether a thread waiting for read
access or for write access next acquires the lock object.

If the read-write lock object referenced by rwlock is not initialized, the results
of calling this routine are undefined.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The values specified by rwlock does not refer to an

initialized read-write lock object.
[EPERM] The calling thread does not hold the read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_wrlock()

pthread–196

pthread_rwlock_wrlock

pthread_rwlock_wrlock

Acquires a read-write lock for write access.

Syntax

pthread_rwlock_wrlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_wrlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for write access.

Description

This routine attempts to acquire a read-write lock for write access. If any
thread already has acquired the lock for write access or read access, the lock
is not granted and the calling thread blocks until it can acquire the lock. A
thread can hold only one lock for write access on a read-write lock.

Results are undefined if the calling thread holds the read-write lock (whether
for read or write access) at the time this routine is called.

If the read-write lock object referenced by rwlock is not initialized, the results
of calling this routine are undefined.

If a thread is interrupted (via a Tru64 UNIX signal or an OpenVMS AST)
while waiting for a read-write lock for write access, upon return from the
interrupt routine the thread resumes waiting for the lock as if it had not been
interrupted.

pthread–197

pthread_rwlock_wrlock

Realtime applications can encounter priority inversion when using read-
write locks. The problem occurs when a high-priority thread acquires a
read-write lock that is about to be unlocked (that is, posted) by a low-priority
thread, but the low-priority thread is preempted by a medium-priority thread.
This scenario leads to priority inversion in that a high-priority thread is
blocked by lower-priority threads for an unlimited period of time. During
system design, realtime programmers must take into account the possibility of
priority inversion and can deal with it in a number of ways, such as by having
critical sections that are guarded by read-write locks execute at a high priority,
so that a thread cannot be preempted while executing in its critical section.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion; the read-write lock object was
acquired for write access.

[EDEADLCK] The calling thread already owns the read-write lock for
write or read access.

[EINVAL] The value specified by rwlock does not refer to an
initialized read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()

pthread–198

pthread_self

pthread_self

Obtains the identifier of the calling thread.

Syntax

pthread_self();

C Binding

#include <pthread.h>

pthread_t
pthread_self (void);

Arguments

None

Description

This routine returns the address of the calling thread’s own thread identifier.
For example, you can use this thread object to obtain the calling thread’s own
sequence number. To do so, pass the return value from this routine in a call to
the pthread_getsequence_np() routine, as follows:

.

.

.
unsigned long this_thread_nbr;
.
.
.
this_thread_nbr = pthread_getsequence_np(pthread_self());
.
.
.

The return value from the pthread_self() routine becomes meaningless after
the calling thread is destroyed.

pthread–199

pthread_self

Return Values

Returns the address of the calling thread’s own thread object.

Associated Routines

pthread_cancel()
pthread_create()
pthread_detach()
pthread_exit()
pthread_getsequence_np()
pthread_join()
pthread_kill()
pthread_sigmask()

pthread–200

pthread_setcancelstate

pthread_setcancelstate

Sets the calling thread’s cancelability state.

Syntax

pthread_setcancelstate(
state,
oldstate);

Argument Data Type Access

state integer read

oldstate integer write

C Binding

#include <pthread.h>

int
pthread_setcancelstate (

int state,
int *oldstate);

Arguments

state
State of general cancelability to set for the calling thread. The following are
valid cancel state values:

PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

oldstate
Previous cancelability state for the calling thread.

Description

This routine sets the calling thread’s cancelability state and returns the calling
thread’s previous cancelability state in oldstate.

When cancelability state is set to PTHREAD_CANCEL_DISABLE, a cancelation
request cannot be delivered to the thread, even if a cancelable routine is called
or asynchronous cancelability type is enabled.

pthread–201

pthread_setcancelstate

When a thread is created, its default cancelability state is PTHREAD_CANCEL_ENABLE.

Possible Problems When Disabling Cancelability
The most important use of thread cancelation is to ensure that indefinite wait
operations are terminated. For example, a thread that waits on some network
connection, which can possibly take days to respond (or might never respond),
should be made cancelable.

When a thread’s cancelability is disabled, no routine in that thread is
cancelable. As a result, the user is unable to cancel the operation performed by
that thread. When disabling cancelability, be sure that no long waits can occur
or that it is necessary for other reasons to defer cancelation requests around
that particular region of code.

Return Values

On successful completion, this routine returns the calling thread’s previous
cancelability state in the location specified by the oldstate argument.

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or

PTHREAD_CANCEL_DISABLE.

Associated Routines

pthread_cancel()
pthread_setcanceltype()
pthread_testcancel()

pthread–202

pthread_setcanceltype

pthread_setcanceltype

Sets the calling thread’s cancelability type.

Syntax

pthread_setcanceltype(
type,
oldtype);

Argument Data Type Access

type integer read

oldtype integer write

C Binding

#include <pthread.h>

int
pthread_setcanceltype (

int type,
int *oldtype);

Arguments

type
The cancelability type to set for the calling thread. The following are valid
values:

PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_ASYNCHRONOUS

oldtype
Returns the previous cancelability type.

pthread–203

pthread_setcanceltype

Description

This routine sets the cancelability type and returns the previous type in
location oldtype.

When a thread’s cancelability state is set to PTHREAD_CANCEL_DISABLE, (see
pthread_setcancelstate()), a cancelation request cannot be delivered to that
thread, even if a cancelable routine is called or asynchronous cancelability type
is enabled.

When the cancelability state is set to PTHREAD_CANCEL_ENABLE,
cancelability depends on the thread’s cancelability type, as follows:

• If the thread’s cancelability type is PTHREAD_CANCEL_DEFERRED, the thread
can only receive a cancelation request at a cancelation point (including
condition waits, thread joins, and calls to pthread_testcancel()).

• If the thread’s cancelability type is PTHREAD_CANCEL_ASYNCHRONOUS, the
thread can be canceled at any point in its execution.

When a thread is created, the default cancelability type is
PTHREAD_CANCEL_DEFERRED.

Caution

If the asynchronous cancelability type is set, do not call any
routine unless it is explicitly documented as ‘‘safe for asynchronous
cancelation.’’ Note that none of the general run-time libraries and none
of the POSIX Threads libraries are safe for asynchronous cancelation
except for pthread_setcanceltype() and pthread_setcancelstate().

Use asynchronous cancelability only when you have a compute-bound
section of code that carries no state and makes no routine calls.

Return Values

On successful completion, this routine returns the previous cancelability type
in oldtype.

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

pthread–204

pthread_setcanceltype

Return Description

0 Successful completion.
[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or

PTHREAD_CANCEL_AYNCHRONOUS.

Associated Routines

pthread_cancel()
pthread_setcancelstate()
pthread_testcancel()

pthread–205

pthread_setconcurrency

pthread_setconcurrency

Changes the value of the concurrency level global variable for this process.

Syntax

pthread_setconcurrency(
level);

Argument Data Type Access

level int read

C Binding

#include <pthread.h>

int
pthread_setconcurrency (

int level);

Arguments

level
New value for the concurrency level for this process.

Description

This routine stores the value specified in the level argument in the
‘‘concurrency level’’ global setting for the calling thread’s process. Because
the Threads Library automatically manages the concurrency of all threads in a
multithreaded process, it ignores this concurrency level value.

‘‘Concurrency level’’ is a parameter used to coerce ‘‘simple’’ 2-level schedulers
into allowing application concurrency. The Threads Library supplies the
maximum concurrency at all times, automatically. It has no need for coersion,
and calls pthread_setconcurrency() merely to determine the value returned
by the next call to pthread_getconcurrency().

The concurrency level value has no effect on the behavior of a multithreaded
program that uses the Threads Library. This routine is provided for Single
UNIX Specification, Version 2 source code compatibility and has no other effect
when called.

pthread–206

pthread_setconcurrency

After calling this routine, subsequent calls to the pthread_getconcurrency()
routine return the same value, until another call to pthread_setconcurrency()
changes that value.

The initial concurrency level is zero (0), indicating that the Threads Library
manages the concurrency level. To indicate in a portable manner that the
implementation is to resume control of concurrency level, call this routine with
a level argument of zero (0).

The concurrency level value can be obtained using the pthread_getconcurrency()
routine.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The value specified by new_level would cause a system

resource to be exceeded.
[EINVAL] The value specified by new_level is negative.

Associated Routines

pthread_getconcurrency()

pthread–207

pthread_setname_np

pthread_setname_np

Changes the object name in the thread object for an existing thread.

Syntax

pthread_setname_np(
thread,
name,
mbz);

Argument Data Type Access

thread opaque pthread_thread_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_setname_np (

pthread_thread_t thread,
const char *name,
void *mbz);

Arguments

thread
Thread object whose object name is to be changed.

name
Object name value to copy into the thread object.

mbz
Reserved for future use. The value must be zero (0).

pthread–208

pthread_setname_np

Description

This routine changes the object name in the thread object for the thread
specified by the thread argument to the value specified by the name argument.
To set an existing thread’s object name, call this routine after creating the
thread. However, with this approach your program must account for the
possibility that the target thread has already exited or has been canceled
before this routine is called.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

This routine contrasts with pthread_attr_setname_np(), which changes the
object name attribute in a thread attributes object that is used to create a new
thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The length in characters of name exceeds 31.
[ENOMEM] Insufficient memory exists to create a copy of the object

name string.
[ESRCH] The thread specified by thread does not exist.

Associated Routines

pthread_attr_getname_np()
pthread_attr_setname_np()
pthread_getname_np()

pthread–209

pthread_setschedparam

pthread_setschedparam

Changes a thread’s scheduling policy and scheduling parameters.

Syntax

pthread_setschedparam(
thread,
policy,
param);

Argument Data Type Access

thread opaque pthread_t read

policy integer read

param struct sched_param read

C Binding

#include <pthread.h>

int
pthread_setschedparam (

pthread_t thread,
int policy,
const struct sched_param *param);

Arguments

thread
Thread whose scheduling policy and parameters are to be changed.

policy
New scheduling policy value for the thread specified in thread. The following
are valid values:

SCHED_BG_NP
SCHED_FG_NP
SCHED_FIFO
SCHED_OTHER
SCHED_RR

See Section 2.3.2.2 for a description of thread scheduling policies.

pthread–210

pthread_setschedparam

param
New values of the scheduling parameters associated with the scheduling policy
for the thread specified in thread. Valid values for the sched_priority field
of a sched_param structure depend on the chosen scheduling policy. Use the
POSIX routines sched_get_priority_min() or sched_get_priority_max() to
determine the low and high limits of each policy.

Additionally, the Threads Librray provides nonportable priority range
constants, as follows:

Low High

PRI_FIFO_MIN PRI_FIFO_MAX

PRI_RR_MIN PRI_RR_MAX

PRI_OTHER_MIN PRI_OTHER_MAX

PRI_FG_MIN_NP PRI_FG_MAX_NP

PRI_BG_MIN_NP PRI_BG_MAX_NP

The default priority varies by platform. On Tru64 UNIX, the default is 19 (that
is, the POSIX priority of a normal timeshare process). On other platforms the
default priority is the midpoint between PRI_FG_MIN_NP and PRI_FG_MAX_NP.
(Section 2.3.6 describes how to specify priorities between the minimum and
maximum values.)

Description

This routine changes both the current scheduling policy and associated
scheduling parameters of the thread specified by thread to the policy and
associated parameters provided in policy and param, respectively.

All currently implemented scheduling policies have one scheduling parameter
called sched_priority. For the policy you choose, you must specify an
appropriate value in the sched_priority field of the sched_param structure.

Changing the scheduling policy or priority, or both, of a thread can cause it
to start executing or to be preempted by another thread. A thread changes
its own scheduling policy and priority by using the handle returned by the
pthread_self() routine.

This routine differs from pthread_attr_setschedpolicy() and
pthread_attr_setschedparam(), in that those routines set the scheduling
policy and parameter attributes that are used to establish the scheduling
priority and scheduling policy of a new thread when it is created. However,
this routine changes the scheduling policy and parameters of an existing
thread.

pthread–211

pthread_setschedparam

Return Values

If an error condition occurs, no scheduling policy or parameters are changed
for the target thread, and this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by policy or param is invalid.
[ENOTSUP] An attempt was made to set the scheduling policy or a

parameter to an unsupported value.
[EPERM] The caller does not have the appropriate privileges to set

the scheduling policy or parameters of the specified thread.
[ESRCH] The value specified by thread does not refer to an existing

thread.

Associated Routines

pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_create()
pthread_self()
sched_yield()

pthread–212

pthread_setspecific

pthread_setspecific

Sets the thread-specific data value associated with the specified key for the
calling thread.

Syntax

pthread_setspecific(
key,
value);

Argument Data Type Access

key opaque pthread_key_t read

value void * read

C Binding

#include <pthread.h>

int
pthread_setspecific (

pthread_key_t key,
const void *value);

Arguments

key
Thread-specific key that identifies the thread-specific data to receive value.
This key value must be obtained from pthread_key_create().

value
New thread-specific data value to associate with the specified key for the
calling thread.

Description

This routine sets the thread-specific data value associated with the specified
key for the current thread. If a value is defined for the key in this thread (the
current value is not NULL), the new value is substituted for it. The key is
obtained by a previous call to pthread_key_create().

pthread–213

pthread_setspecific

Different threads can bind different values to the same key. These values are
typically pointers to blocks of dynamically allocated memory that are reserved
for use by the calling thread.

Do not call this routine from a thread-specific data destructor function.

Note that although the type for value (void *) implies that it represents an
address, the type is being used as a ‘‘universal scalar type.’’ The Threads
Library simply stores value for later retrieval.

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified key is invalid.
[ENOMEM] Insufficient memory exists to associate the value with the

key.

Associated Routines

pthread_getspecific()
pthread_key_create()
pthread_key_delete()

pthread–214

pthread_sigmask

pthread_sigmask

Examine or change the calling thread’s signal mask.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_sigmask(
how,
set,
oset);

Argument Data Type Access

how integer read

set sigset_t read

oset sigset_t write

C Binding

#include <pthread.h>

int
pthread_sigmask (

int how,
const sigset_t *set,
sigset_t *oset);

Arguments

how
Indicates the manner in which the set of masked signals is changed. The
optional values are as follows:

SIG_BLOCK The resulting set is the union of the current set and
the signal set pointed to by the set argument.

SIG_UNBLOCK The resulting set is the intersection of the current set
and the complement of the signal set pointed to by the
set argument.

pthread–215

pthread_sigmask

SIG_SETMASK The resulting set is the signal set pointed to by the set
argument.

set
Specifies the signal set by pointing to a set of signals used to change the
blocked set. If this set value is NULL, the how argument is ignored and the
process signal mask is unchanged.

oset
Receives the value of the current signal mask (unless this value is NULL).

Description

This routine examines or changes the calling thread’s signal mask. Typically,
you use the SIG_BLOCK option for the how value to block signals during a
critical section of code, and then use this routine’s SIG_SETMASK option to
restore the mask to the previous value returned by the previous call to the
pthread_sigmask() routine.

If there are any unblocked signals pending after a call to this routine, at least
one of those signals will be delivered before this routine returns.

This routine does not allow the SIGKILL or SIGSTOP signals to be blocked. If
a program attempts to block one of these signals, pthread_sigmask() gives no
indication of the error.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified for how is invalid.

pthread–216

pthread_testcancel

pthread_testcancel

Requests delivery of a pending cancelation request to the calling thread.

Syntax

pthread_testcancel();

C Binding

#include <pthread.h>

void
pthread_testcancel (void);

Arguments

None

Description

This routine requests delivery of a pending cancelation request to the calling
thread. Thus, calling this routine creates a cancelation point within the calling
thread.

The cancelation request is delivered only if a request is pending for the
calling thread and the calling thread’s cancelability state is enabled.
(A thread disables delivery of cancelation requests to itself by calling
pthread_setcancelstate().)

When called within very long loops, this routine ensures that a pending
cancelation request is noticed by the calling thread within a reasonable
amount of time.

Return Values

None

Associated Routines

pthread_setcancelstate()

pthread–217

pthread_unlock_global_np

pthread_unlock_global_np

Unlocks the Threads Library global mutex.

Syntax

pthread_unlock_global_np();

C Binding

#include <pthread.h>

int
pthread_unlock_global_np (void);

Arguments

None

Description

This routine unlocks the Threads Library global mutex. Because
the global mutex is recursive, the unlock occurs when each call to
pthread_lock_global_np() has been matched by a call to this routine.
For example, if you called pthread_lock_global_np() three times,
pthread_unlock_global_np() unlocks the global mutex when you call it
the third time.

If no threads are waiting for the global mutex, it becomes unlocked with no
current owner. If one or more threads are waiting to lock the global mutex,
this routine causes one thread to unblock and try to acquire the global mutex.
The scheduling policy is used to determine which thread is awakened. For the
policies SCHED_FIFO and SCHED_RR, a blocked thread is chosen in priority order,
using first-in/first-out (FIFO) within priorities.

pthread–218

pthread_unlock_global_np

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EPERM] The mutex is unlocked or owned by another thread.

Associated Routines

pthread_lock_global_np()

pthread–219

pthread_yield_np

pthread_yield_np

Notifies the scheduler that the current thread is willing to release its processor
to other threads of the same or higher priority.

Syntax

pthread_yield_np();

C Binding

int
pthread_yield_np (void);

Arguments

None

Description

This routine notifies the thread scheduler that the current thread is willing
to release its processor to other threads of equivalent or greater scheduling
precedence. (A thread generally will release its processor to a thread of a
greater scheduling precedence without calling this routine.) If no other threads
of equivalent or greater scheduling precedence are ready to execute, the thread
continues.

This routine can allow knowledge of the details of an application to be used to
improve its performance. If a thread does not call pthread_yield_np(), other
threads may be given the opportunity to run at arbitrary points (possibly even
when the interrupted thread holds a required resource). By making strategic
calls to pthread_yield_np(), other threads can be given the opportunity to
run when the resources are free. This improves performance by reducing
contention for the resource.

As a general guideline, consider calling this routine after a thread has released
a resource (such as a mutex) which is heavily contended for by other threads.
This can be especially important if the program is running on a uniprocessor
machine, or if the thread acquires and releases the resource inside a tight loop.

pthread–220

pthread_yield_np

Use this routine carefully and sparingly, because misuse can cause unnecessary
context switching which will increase overhead and actually degrade
performance. For example, it is counter-productive for a thread to yield
while it holds a resource which the threads to which it is yielding will need.
Likewise, it is pointless to yield unless there is likely to be another thread
which is ready to run.

Note

pthread_yield_np() is equivalent to sched_yield(). It is
recommended to use sched_yield() since it is part of the standard
portable POSIX threads library.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOSYS] The routine pthread_yield_np() is not supported by this

implementation.

Associated Routines

pthread_attr_setschedparam()
pthread_getschedparam()
pthread_setschedparam()

pthread–221

sched_get_priority_max

sched_get_priority_max

Returns the maximum priority for the specified scheduling policy.

Syntax

sched_get_priority_max(
policy);

Argument Data Type Access

policy integer read

C Binding

#include <sched.h>

int
sched_get_priority_max (

int policy);

Arguments

policy
One of the scheduling policies, as defined in sched.h.

Description

This routine returns the maximum priority for the scheduling policy specified
in the policy argument. The argument value must be one of the scheduling
policies (SCHED_FIFO, SCHED_RR, or SCHED_OTHER), as defined in the sched.h
header file.

No special privileges are required to use this routine.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

pthread–222

sched_get_priority_max

Return Description

0 Successful completion.
[EINVAL] The value of the policy argument does not represent a

defined scheduling policy.

pthread–223

sched_get_priority_min

sched_get_priority_min

Returns the minimum priority for the specified scheduling policy.

Syntax

sched_get_priority_min(
policy);

Argument Data Type Access

policy integer read

C Binding

#include <sched.h>

int
sched_get_priority_min (

int policy);

Arguments

policy
One of the scheduling policies, as defined in sched.h.

Description

This routine returns the minimum priority for the scheduling policy specified
in the policy argument. The argument value must be one of the scheduling
policies (SCHED_FIFO, SCHED_RR, or SCHED_OTHER), as defined in the sched.h
header file.

No special privileges are required to use this routine.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

pthread–224

sched_get_priority_min

Return Description

0 Successful completion.
[EINVAL] The value of the policy argument does not represent a

defined scheduling policy.

pthread–225

sched_yield

sched_yield

Yields execution to another thread.

Syntax

sched_yield();

C Binding

#include <sched.h>
#include <unistd.h>

int
sched_yield (void);

Arguments

None

Description

In conformance with the IEEE POSIX.1b-1995 standard, the sched_yield()
function causes the calling thread to yield execution to another thread. It
is useful when a thread running under the SCHED_FIFO scheduling policy
must allow another thread at the same priority to run. The thread that is
interrupted by sched_yield() goes to the end of the queue for its priority.

If no other thread is runnable at the priority of the calling thread, the calling
thread continues to run.

Threads with higher priority are allowed to preempt the calling thread, so
the sched_yield() function has no effect on the scheduling of higher- or
lower-priority threads.

The sched_yield() routine takes no arguments. No special privileges are
needed to use the sched_yield() function.

pthread–226

sched_yield

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOSYS] The routine sched_yield() is not supported by this

implementation.

Associated Routines

pthread_attr_setschedparam()
pthread_getschedparam()
pthread_setschedparam()

pthread–227

sigwait

sigwait

Suspends a calling thread until a signal arrives.

This routine is for Tru64 UNIX systems only.

Syntax

sigwait(
set,
signal);

Argument Data Type Access

set sigset_t read

signal integer write

C Binding

#include <signal.h>

int
sigwait (

sigset_t *set,
int *signal);

Arguments

set
Set of signals to wait for.

signal
Signal number obtained for the selected signal.

Description

This routine blocks the calling thread until at least one of the signals in the
set argument is in the caller’s set of pending signals. When this happens, one
of those signals is automatically selected and removed from the set of pending
signals. The signal number identifying that signal is then returned.

This routine stores the signal number obtained in the address specified in the
signal argument.

pthread–228

sigwait

The effect of calling this routine is unspecified if any signals in the set
argument are not blocked at the time of the call.

The set signal set object is created using the set manipulation routines
sigemptyset(), sigfillset(), sigaddset(), and sigdelset().

If, while this routine is waiting, a signal occurs that is eligible for delivery
(that is, not blocked by the signal mask), that signal is handled asynchronously
and the wait is interrupted.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value of the set argument contains an invalid or

unsupported signal number.
[EINTR] The wait was interrupted by an unblocked, caught signal.

pthread–229

Part III
Compaq Proprietary Interfaces: tis

Routines Reference

Part III provides detailed descriptions of the Compaq proprietary thread-
independent services (or tis) interface routines.

These routines are designed to provide efficient tools for thread safety in
libraries whose routines do not themselves use threads. The tis interface
provides functions similar to the pthread functions for synchronization.
In a program that creates or uses threads, the tis functions provide full
thread synchronization and coherence of memory access. But, in a program
that does not use threads, the same tis calls provide low-overhead ‘‘stub’’
implementations of pthread features.

The objects created using tis interface routines are the same as pthread
interface objects.

The variable errno is not used by the tis routines. Like the pthread routines,
the tis routines return integer values indicating the type of error.

Note

Never use tis_cond_wait() in a nonthreaded environment. It cannot
wait, as there would be no thread able to awaken the waiter. The tis
‘‘stub’’ will abort your program.

When threads are present, the guidelines for using pthread routines apply to
using the corresponding tis routines.

tis_cond_broadcast

tis_cond_broadcast

Wakes all threads that are waiting on a condition variable.

Syntax

tis_cond_broadcast(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <tis.h>

int
tis_cond_broadcast (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) on which to broadcast.

Description

When threads are not present, this routine has no effect.

When threads are present, this routine unblocks all threads waiting on the
specified condition variable cond.

For further information about actions when threads are present, refer to the
pthread_cond_broadcast() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

tis–3

tis_cond_broadcast

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.

Associated Routines

tis_cond_destroy()
tis_cond_init()
tis_cond_signal()
tis_cond_wait()

tis–4

tis_cond_destroy

tis_cond_destroy

Destroys the specified condition variable.

Syntax

tis_cond_destroy(
cond);

Argument Data Type Access

cond opaque pthread_cond_t write

C Binding

#include <tis.h>

int
tis_cond_destroy (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) to be destroyed.

Description

This routine destroys the condition variable specified by cond. After this
routine is called, the Threads Library may reclaim internal storage used by the
condition variable object. Call this routine when a condition variable will no
longer be referenced.

The results of this routine are unpredictable if the condition variable specified
in cond does not exist or is not initialized.

For more information about actions when threads are present, refer to the
pthread_cond_destroy() description.

tis–5

tis_cond_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The object being referenced by cond is being referenced by

another thread that is currently executing a
tis_cond_wait() on the condition variable specified
in cond. (This error can only occur when threads are
present.)

[EINVAL] The value specified by cond is not a valid condition
variable.

Associated Routines

tis_cond_broadcast()
tis_cond_init()
tis_cond_signal()
tis_cond_wait()

tis–6

tis_cond_init

tis_cond_init

Initializes a condition variable.

Syntax

tis_cond_init(
cond);

Argument Data Type Access

cond opaque pthread_cond_t write

C Binding

#include <tis.h>

int
tis_cond_init (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) to be initialized.

Description

This routine initializes a condition variable (cond) with the Threads Library
default condition variable attributes.

A condition variable is a synchronization object used in conjunction with a
mutex. A mutex controls access to shared data. When threads are present, a
condition variable allows threads to wait for data to enter a defined state.

For more information about actions taken when threads are present, refer to
the pthread_cond_init() description.

Your program can use the macro PTHREAD_COND_INITIALIZER to initialize
statically allocated condition variables to the default condition variable
attributes. Static initialization can be used only for a condition variable with
storage class ‘‘extern’’ or ‘‘static’’ — ‘‘automatic’’ (stack local) objects must be
initialized by calling tis_cond_init(). Use this macro as follows:

pthread_cond_t condition = PTHREAD_COND_INITIALIZER;

tis–7

tis_cond_init

When statically initialized, a condition variable should not also be initialized
using tis_cond_init().

Return Values

If there is an error condition, the following occurs:

• The routine returns an integer value indicating the type of error.

• The condition variable is not initialized.

• The contents of condition variable cond are undefined.

The possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize

another condition variable, or:
The system-imposed limit on the total number of condition
variables under execution by a single user is exceeded.

[EBUSY] The implementation has detected an attempt to reinitialize
the object referenced by cond, a previously initialized, but
not yet destroyed condition variable.

[EINVAL] The value specified by cond is not a valid condition
variable.

[ENOMEM] Insufficient memory exists to initialize the condition
variable.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_signal()
tis_cond_wait()

tis–8

tis_cond_signal

tis_cond_signal

Wakes at least one thread that is waiting on the specified condition variable.

Syntax

tis_cond_signal(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <tis.h>

int
tis_cond_signal (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) on which to signal.

Description

When threads are present, this routine unblocks at least one thread that is
waiting on the specified condition variable cond. When threads are not present,
this routine has no effect.

For more information about actions taken when threads are present, refer to
the pthread_cond_signal() description.

tis–9

tis_cond_signal

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_init()
tis_cond_wait()

tis–10

tis_cond_timedwait

tis_cond_timedwait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast, such that it will awake after a specified period of time.

Syntax

tis_cond_timedwait(
cond,
mutex,
abstime);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

abstime structure timespec read

C Binding

#include <tis.h>

int
tis_cond_timedwait (

pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime);

Arguments

cond
Condition variable that the calling thread waits on.

mutex
Mutex associated with the condition variable specified in cond.

abstime
Absolute time at which the wait expires, if the condition has not been signaled
or broadcast. See the tis_get_expiration() routine, which is used to obtain
a value for this argument.

tis–11

tis_cond_timedwait

The abstime argument is specified in Universal Coordinated Time (UTC). In
the UTC-based model, time is represented as seconds since the Epoch. The
Epoch is defined as the time 0 hours, 0 minutes, 0 seconds, January 1st, 1970
UTC. Seconds since the Epoch is a value interpreted as the number of seconds
between a specified time and the Epoch.

Description

If threads are not present, this function is equivalent to sleep().

This routine causes a thread to wait until one of the following occurs:

• The specified condition variable is signaled or broadcast.

• The current system clock time is greater than or equal to the time specified
by the abstime argument.

This routine is identical to tis_cond_wait(), except that this routine can
return before a condition variable is signaled or broadcast; specifically, when
the specified time expires. For more information, see the tis_cond_wait()
description.

This routine atomically releases the mutex and causes the calling thread
to wait on the condition. When the thread regains control after calling
tis_cond_timedwait(), the mutex is locked and the thread is the owner. This
is true regardless of why the wait ended. If general cancelability is enabled,
the thread reacquires the mutex (blocking for it if necessary) before the cleanup
handlers are run (or before the exception is raised).

If the current time equals or exceeds the expiration time, this routine returns
immediately, releasing and reacquiring the mutex. It might cause the calling
thread to yield (see the sched_yield() description). Your code should check
the return status whenever this routine returns and take the appropriate
action. Otherwise, waiting on the condition variable can become a nonblocking
loop.

Call this routine after you have locked the mutex specified in mutex. The
results of this routine are unpredictable if this routine is called without
first locking the mutex. The only routines which are supported for use with
asynchronous cancelability enabled are those which disable asynchronous
cancelability.

tis–12

tis_cond_timedwait

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond, mutex, or abstime is invalid,

or:
Different mutexes are supplied for concurrent
tis_cond_timedwait() operations or
tis_cond_wait() operations on the same condition
variable, or:
The mutex was not owned by the calling thread at the
time of the call.

[ETIMEDOUT] The time specified by abstime expired.
[ENOMEM] The Threads Library cannot acquire memory needed to

block using a statically initialized condition variable.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_init()
tis_cond_signal()
tis_cond_wait()
tis_get_expiration()

tis–13

tis_cond_wait

tis_cond_wait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast.

Syntax

tis_cond_wait(
cond,
mutex);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

C Binding

#include <tis.h>

int
tis_cond_wait (

pthread_cond_t *cond,
pthread_mutex_t *mutex);

Arguments

cond
Address of the condition variable (passed by reference) on which to wait.

mutex
Address of the mutex (passed by reference) that is associated with the condition
variable specified in cond.

Description

When threads are present, this routine causes a thread to wait for the specified
condition variable cond to be signaled or broadcast.

Calling this routine in a single-threaded environment is a coding error.
Because no other thread exists to issue a call to tis_cond_signal() or
tis_cond_broadcast(), using this routine in a single-threaded environment
forces the program to exit.

tis–14

tis_cond_wait

For further information about actions taken when threads are present, refer to
the pthread_cond_wait() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition

variable or the value specified by mutex is not a valid
mutex, or:
Different mutexes are supplied for concurrent
tis_cond_wait() operations on the same condition
variable, or:
The mutex was not owned by the calling thread at the
time of the call.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_init()
tis_cond_signal()

tis–15

tis_getspecific

tis_getspecific

Obtains the data associated with the specified thread-specific data key.

Syntax

tis_getspecific(
key);

Argument Data Type Access

key opaque pthread_key_t read

C Binding

#include <tis.h>

void *
tis_getspecific (

pthread_key_t key);

Arguments

key
Identifies a value returned by a call to tis_key_create(). This routine
returns the data value associated with the thread-specific data key.

Description

This routine returns the value currently bound to the specified thread-specific
data key.

This routine can be called from a data destructor function.

When threads are present, the data and keys are thread specific; they enable a
library to maintain context on a per-thread basis.

Return Values

No errors are returned. This routine returns the data value associated with
the specified thread-specific data key key. If no data value is associated with
key, or if key is not defined, then a NULL value is returned.

tis–16

tis_getspecific

Associated Routines

tis_key_create()
tis_key_delete()
tis_setspecific()

tis–17

tis_get_expiration

tis_get_expiration

Obtains a value representing a desired expiration time.

Syntax

tis_get_expiration(
delta,
abstime);

Argument Data Type Access

delta struct timespec read

abstime struct timespec write

C Binding

#include <tis.h>

int
tis_get_expiration (

const struct timespec *delta,
struct timespec *abstime);

Arguments

delta
Number of seconds and nanoseconds to add to the current system time. (The
result is the time in the future.) This result will be placed in abstime.

abstime
Value representing the absolute expiration time. The absolute expiration time
is obtained by adding delta to the current system time. The resulting abstime
is in Universal Coordinated Time (UTC).

Description

If threads are not present, this routine has no effect.

This routine adds a specified interval to the current absolute system time and
returns a new absolute time. This new absolute time is used as the expiration
time in a call to tis_cond_timedwait().

tis–18

tis_get_expiration

The timespec structure contains the following two fields:

• tv_sec is an integral number of seconds.

• tv_nsec is an integral number of nanoseconds.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by delta is invalid.

Associated Routines

tis_cond_timedwait()

tis–19

tis_io_complete

tis_io_complete

AST completion routine to VMS I/O system services.
This routine is for OpenVMS systems only.

Syntax

tis_io_complete();

C Binding

#include <tis.h>

int
tis_io_complete (void);

Description

When performing thread-synchronous ‘‘wait-form’’ system service calls on
OpenVMS such as $QIOW, $ENQW, $GETJPIW, etc., this routine and tis_sync()
should be used along with the asynchronous form of the service (i.e. without
the ‘‘W’’), and should specify the address of tis_io_complete() as the
completion AST routine (the AST argument if any is ignored). That must
also specify an IOSB (or equivalent, such as an LKSB) and if possible a unique
event flag (see lib$get_ef). Once the library code is ready to wait for the I/O,
it simply calls tis_sync() (just as if it were calling $SYNC).

Return Values

None.

Associated Routines

tis_sync()

tis–20

tis_key_create

tis_key_create

Generates a unique thread-specific data key.

Syntax

tis_key_create(
key,
destructor);

Argument Data Type Access

key opaque pthread_key_t write

destructor procedure read

C Binding

#include <tis.h>

int
tis_key_create (

pthread_key_t *key,
void (*destructor)(void *));

Arguments

key
Address of a variable that receives the key value. This value is used in calls
to tis_getspecific() and tis_setspecific() to get and set the value
associated with this key.

destructor
Address of a routine that is called to destroy the context value when a thread
terminates with a non-NULL value for the key. Note that this argument is
used only when threads are present.

tis–21

tis_key_create

Description

This routine generates a unique thread-specific data key. The key argument
points to an opaque object used to locate data.

This routine generates and returns a new key value. The key reserves a cell.
Each call to this routine creates a new cell that is unique within an application
invocation. Keys must be generated from initialization code that is guaranteed
to be called only once within each process. (See the tis_once() description for
more information.)

Your program can associate an optional destructor function with each key.
At thread exit, if a key has a non-NULL destructor function pointer, and the
thread has a non-NULL value associated with that key, the function pointed to
is called with the current associated value as its sole argument. The order in
which data destructors are called at thread termination is undefined.

When threads are present, keys and any corresponding data are thread
specific; they enable the context to be maintained on a per-thread basis.
For more information about the use of tis_key_create() in a threaded
environment, refer to the pthread_key_create() description.

The Threads Library imposes a maximum number of thread-specific data keys,
equal to the symbolic constant PTHREAD_KEYS_MAX.

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacked the necessary resources to create

another thread-specific data key, or the limit on the total
number of keys per process (PTHREAD_KEYS_MAX) has been
exceeded.

[EINVAL] The value specified by key is invalid.
[ENOMEM] Insufficient memory exists to create the key.

tis–22

tis_key_create

Associated Routines

tis_getspecific()
tis_key_delete()
tis_setspecific()
tis_once()

tis–23

tis_key_delete

tis_key_delete

Deletes the specified thread-specific data key.

Syntax

tis_key_delete(
key);

Argument Data Type Access

key opaque pthread_key_t write

C Binding

#include <tis.h>

int
tis_key_delete (

pthread_key_t key);

Arguments

key
Thread-specific data key to be deleted.

Description

This routine deletes a thread-specific data key key previously returned by a
call to the tis_key_create() routine. The data values associated with key
need not be NULL at the time this routine is called. The application must
free any application storage or perform any cleanup actions for data structures
related to the deleted key or associated data. This cleanup can be done before
or after this routine is called. If the cleanup is done after this routine is
called, the application must have a private mechanism to access any and all
thread-specific values, contexts, etc.

Attempting to use the thread-specific data key key after calling this routine
results in unpredictable behavior.

No destructor functions are invoked by this routine. Any destructor functions
that may have been associated with key will no longer be called upon thread
exit.

This routine can be called from destructor functions.

tis–24

tis_key_delete

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value for key is invalid.

Associated Routines

tis_getspecific()
tis_key_create()
tis_setspecific()

tis–25

tis_lock_global

tis_lock_global

Locks the Threads Library global mutex.

Syntax

tis_lock_global();

C Binding

#include <tis.h>

int
tis_lock_global (void);

Arguments

None

Description

This routine locks the global mutex. The global mutex is recursive. For
example, if you called tis_lock_global() three times, tis_unlock_global()
unlocks the global mutex when you call it the third time.

For more information about actions taken when threads are present, refer to
the pthread_lock_global_np() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.

Associated Routines

tis_unlock_global()

tis–26

tis_mutex_destroy

tis_mutex_destroy

Destroys the specified mutex object.

Syntax

tis_mutex_destroy(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t write

C Binding

#include <tis.h>

int
tis_mutex_destroy (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex object (passed by reference) to be destroyed.

Description

This routine destroys a mutex object by uninitializing it, and should be called
when a mutex object is no longer referenced. After this routine is called, the
Threads Library can reclaim internal storage used by the mutex object.

It is safe to destroy an initialized mutex object that is unlocked. However, it is
illegal to destroy a locked mutex object.

The results of this routine are unpredictable if the mutex object specified in the
mutex argument does not currently exist or is not initialized.

tis–27

tis_mutex_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] An attempt was made to destroy the object referenced by

mutex while it is locked or referenced.
[EINVAL] The value specified by mutex is not a valid mutex.
[EPERM] The caller does not have privileges to perform the

operation.

Associated Routines

tis_mutex_init()
tis_mutex_lock()
tis_mutex_trylock()
tis_mutex_unlock()

tis–28

tis_mutex_init

tis_mutex_init

Initializes the specified mutex object.

Syntax

tis_mutex_init(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t write

C Binding

#include <tis.h>

int
tis_mutex_init (

pthread_mutex_t *mutex);

Arguments

mutex
Pointer to a mutex object (passed by reference) to be initialized.

Description

This routine initializes a mutex object with the Threads Library default mutex
attributes. A mutex is a synchronization object that allows multiple threads to
serialize their access to shared data.

The mutex object is initialized and set to the unlocked state.

Your program can use the PTHREAD_MUTEX_INITIALIZER macro to statically
initialize a mutex object without calling this routine. Static initialization
can be used only for a condition variable with storage class ‘‘extern’’ or
‘‘static’’ — ‘‘automatic’’ (stack local) objects must be initialized by calling
tis_mutex_init(). Use this macro as follows:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

tis–29

tis_mutex_init

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error, the mutex is not initialized, and the contents of mutex are
undefined. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize a

mutex.
[EBUSY] The implementation has detected an attempt to reinitialize

mutex (a previously initialized, but not yet destroyed,
mutex).

[EINVAL] The value specified by mutex is not a valid mutex.
[ENOMEM] Insufficient memory exists to initialize the mutex.
[EPERM] The caller does not have privileges to perform this

operation.

Associated Routines

tis_mutex_destroy()
tis_mutex_lock()
tis_mutex_trylock()
tis_mutex_unlock()

tis–30

tis_mutex_lock

tis_mutex_lock

Locks an unlocked mutex.

Syntax

tis_mutex_lock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <tis.h>

int
tis_mutex_lock (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex (passed by reference) to be locked.

Description

This routine locks the specified mutex mutex. A deadlock can result if the
owner of a mutex calls this routine in an attempt to lock the same mutex a
second time. (The Threads Library may not detect or report the deadlock.)

In a threaded environment, the thread that has locked a mutex becomes its
current owner and remains the owner until the same thread has unlocked it.
This routine returns with the mutex in the locked state and with the current
thread as the mutex’s current owner.

tis–31

tis_mutex_lock

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EDEADLK] A deadlock condition is detected.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

tis_mutex_destroy()
tis_mutex_init()
tis_mutex_trylock()
tis_mutex_unlock()

tis–32

tis_mutex_trylock

tis_mutex_trylock

Attempts to lock the specified mutex.

Syntax

tis_mutex_trylock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <tis.h>

int
tis_mutex_trylock (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex (passed by reference) to be locked.

Description

This routine attempts to lock the specified mutex mutex. When this routine
is called, an attempt is made immediately to lock the mutex. If the mutex is
successfully locked, zero (0) is returned.

If the specified mutex is already locked when this routine is called, the caller
does not wait for the mutex to become available. [EBUSY] is returned, and the
thread does not wait to acquire the lock.

tis–33

tis_mutex_trylock

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The mutex is already locked; therefore, it was not

acquired.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

tis_mutex_destroy()
tis_mutex_init()
tis_mutex_lock()
tis_mutex_unlock()

tis–34

tis_mutex_unlock

tis_mutex_unlock

Unlocks the specified mutex.

Syntax

tis_mutex_unlock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <tis.h>

int
tis_mutex_unlock (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex (passed by reference) to be unlocked.

Description

This routine unlocks the specified mutex mutex.

For more information about actions taken when threads are present, refer to
the pthread_mutex_unlock() description.

tis–35

tis_mutex_unlock

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by mutex is not a valid mutex.
[EPERM] The caller does not own the mutex.

Associated Routines

tis_mutex_destroy()
tis_mutex_init()
tis_mutex_lock()
tis_mutex_trylock()

tis–36

tis_once

tis_once

Calls a one-time initialization routine that can be executed by only one thread,
once.

Syntax

tis_once(
once_control,
init_routine);

Argument Data Type Access

once_control opaque pthread_once_t modify

init_routine procedure read

C Binding

#include <tis.h>

int
tis_once (

pthread_once_t *once_control,
void (*init_routine) (void));

Arguments

once_control
Address of a record (control block) that defines the one-time initialization code.
Any one-time initialization routine in static storage specified by once_control
must have its own unique pthread_once_t record.

init_routine
Address of a procedure that performs the initialization. This routine is called
only once, regardless of the number of times it and its associated once_control
are passed to tis_once().

tis–37

tis_once

Description

The first call to this routine by a process with a given once_control calls the
init_routine with no arguments. Thereafter, subsequent calls to tis_once()
with the same once_control do not call the init_routine. On return from
tis_once(), it is guaranteed that the initialization routine has completed.

For example, a mutex or a thread-specific data key must be created exactly
once. In a threaded environment, calling tis_once() ensures that the
initialization is serialized across multiple threads.

Note

If you specify an init_routine that directly or indirectly results in a
recursive call to tis_once() and that specifies the same init_block
argument, the recursive call results in a deadlock.

The PTHREAD_ONCE_INIT macro, defined in the pthread.h header file, must be
used to initialize a once_control record. Thus, your program must declare a
once_control record as follows:

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Note that it is often easier to simply lock a statically initialized mutex, check
a control flag, and perform necessary initialization (in-line) rather than using
tis_once(). For example, you can code an ‘‘init’’ routine that begins with the
following basic logic:

init()
{
static pthread_mutex_t mutex = PTHREAD_MUTEX_INIT;
static int flag = FALSE;

tis_mutex_lock(&mutex);
if(!flag)
{
flag = TRUE;
/* initialize code */
}

tis_mutex_unlock(&mutex);
}

tis–38

tis_once

Return Values

If an error occurs, this routine returns an integer indicating the type of error.
Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] Invalid argument.

tis–39

tis_read_lock

tis_read_lock

Acquires a read-write lock for read access.

Syntax

tis_read_lock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_read_lock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock.

Description

This routine acquires a read-write lock for read access. This routine waits for
any existing lock holder for write access to relinquish its lock before granting
the lock for read access. This routine returns when the lock is acquired. If the
lock is already held simply for read access, the lock is granted.

For each call to tis_read_lock() that successfully acquires the lock for read
access, a corresponding call to tis_read_unlock() must be issued.

tis–40

tis_read_lock

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–41

tis_read_trylock

tis_read_trylock

Attempts to acquire a read-write lock for read access. Does not wait if the lock
cannot be immediately granted.

Syntax

tis_read_trylock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_read_trylock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be acquired.

Description

This routine attempts to acquire a read-write lock for read access. If the lock
cannot be granted, the routine returns without waiting.

When a thread calls this routine, an attempt is made to immediately acquire
the lock for read access. If the lock is acquired, zero (0) is returned. If a holder
of the lock for write access exists, [EBUSY] is returned.

If the lock cannot be acquired for read access immediately, the calling program
does not wait for the lock to be released.

tis–42

tis_read_trylock

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion; the lock was acquired.
[EBUSY] The lock is being held for write access. The lock for read

access was not acquired.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–43

tis_read_unlock

tis_read_unlock

Unlocks a read-write lock that was acquired for read access.

Syntax

tis_read_unlock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_read_unlock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be unlocked.

Description

This routine unlocks a read-write lock that was acquired for read access. If
there are no other holders of the lock for read access and another thread is
waiting to acquire the lock for write access, that lock acquisition is granted.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

tis–44

tis_read_unlock

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–45

tis_rwlock_destroy

tis_rwlock_destroy

Destroys the specified read-write lock object.

Syntax

tis_rwlock_destroy(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_rwlock_destroy (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock object to be destroyed.

Description

This routine destroys the specified read-write lock object. Prior to calling this
routine, ensure that there are no locks granted to the specified read-write lock
and that there are no threads waiting for pending lock acquisitions on the
specified read-write lock.

This routine should be called only after all reader threads (and perhaps one
writer thread) have finished using the specified read-write lock.

tis–46

tis_rwlock_destroy

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The lock is in use.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–47

tis_rwlock_init

tis_rwlock_init

Initializes a read-write lock object.

Syntax

tis_rwlock_init(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_rwlock_init (

tis_rwlock_t *lock);

Arguments

lock
Address of a read-write lock object.

Description

This routine initializes a read-write lock object. The routine initializes the
tis_rwlock_t structure that holds the object’s lock states.

To destroy a read-write lock object, call the tis_rwlock_destroy() routine.

Note

The tis read-write lock has no relationship to the Single UNIX
Specification, Version 2 (SUSV2, or UNIX98) read-write lock routines
(pthread_rwlock_init(), etc.). The tis_rwlock_t type, in particular,
cannot be used with the pthread read-write lock functions; nor can a
pthread_rwlock_t type be used with the tis read-write lock functions.

tis–48

tis_rwlock_init

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.
[ENOMEM] Insufficient memory exists to initialize lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–49

tis_self

tis_self

Returns the identifier of the calling thread.

Syntax

tis_self(
void);

C Binding

#include <tis.h>

pthread_t
tis_self (void);

Arguments

None

Description

This routine allows a thread to obtain its own thread identifier.

This value becomes meaningless when the thread is destroyed.

Note that the initial thread in a process can ‘‘change identity’’ when thread
system initialization completes—that is, when the multithreading run-time
environment is loaded.

Return Values

Returns the thread identifier of the calling thread.

Associated Routines

pthread_create()

tis–50

tis_setcancelstate

tis_setcancelstate

Changes the calling thread’s cancelability state.

Syntax

tis_setcancelstate(
state,
oldstate);

Argument Data Type Access

state integer read

oldstate integer write

C Binding

#include <tis.h>

int
tis_setcancelstate (

int state,
int *oldstate);

Arguments

state
State of general cancelability to set for the calling thread. Valid state values
are as follows:

PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

oldstate
Receives the value of the calling thread’s previous cancelability state.

Description

This routine sets the calling thread’s cancelability state to the value specified
in the state argument and returns the calling thread’s previous cancelability
state in the location referenced by the oldstate argument.

tis–51

tis_setcancelstate

When a thread’s cancelability state is set to PTHREAD_CANCEL_DISABLE, a
cancelation request cannot be delivered to the thread, even if a cancelable
routine is called or asynchronous cancelability is enabled.

When a thread is created, its default cancelability state is PTHREAD_CANCEL_ENABLE.
When this routine is called prior to loading threads, the cancelability state
propagates to the initial thread in the executing program.

Possible Problems When Disabling Cancelability
The most important use of a cancelation request is to ensure that indefinite
wait operations are terminated. For example, a thread waiting on some
network connection, which might take days to respond (or might never
respond), should be made cancelable.

When a thread’s cancelability state is disabled, no routine called within that
thread is cancelable. As a result, the user is unable to cancel the operation.
When disabling cancelability, be sure that no long waits can occur or that it is
necessary for other reasons to defer cancelation requests around that particular
region of code.

Return Values

On successful completion, this routine returns the calling thread’s previous
cancelability state in the oldstate argument.

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or

PTHREAD_CANCEL_DISABLE.

Associated Routines

tis_testcancel()

tis–52

tis_setspecific

tis_setspecific

Changes the value associated with the specified thread-specific data key.

Syntax

tis_setspecific(
key,
value);

Argument Data Type Access

key opaque pthread_key_t read

value void * read

C Binding

#include <tis.h>

int
tis_setspecific (

pthread_key_t key,
const void *value);

Arguments

key
Thread-specific data key that identifies the data to receive value. Must be
obtained from a call to tis_key_create().

value
New value to associate with the specified key. Once set, this value can be
retrieved using the same key in a call to tis_getspecific().

Description

This routine sets the value associated with the specified thread-specific data
key. If a value is defined for the key (that is, the current value is not NULL),
the new value is substituted for it. The key is obtained by a previous call to
tis_key_create().

Do not call this routine from a data destructor function. Doing so could lead to
a memory leak or an infinite loop.

tis–53

tis_setspecific

Return Values

If an error condition occurs, this routine returns an integer indicating the type
of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by key is not a valid key.
[ENOMEM] Insufficient memory exists to associate the value with the

key.

Associated Routines

tis_getspecific()
tis_key_create()
tis_key_delete()

tis–54

tis_sync

tis_sync

Used as the synchronozation point for asynchronous I/O system services. This
routine is for OpenVMS systems only.

Syntax

tis_sync(
efn,
iosb);

Argument Data Type Access

efn unsigned long read

iosb void * read

C Binding

#include <tis.h>

int
tis_sync (

unsigned long efn,
void *iosb);

Arguments

efn
The event flag specified with the OpenVMS system service routine.

iosb
The IOSB specified with the OpenVMS system service routine.

Description

When performing thread-synchronous ‘‘wait-form’’ system service calls
on OpenVMS such as $QIOW, $ENQW, $GETJPIW, etc., this routine and
tis_io_complete() should be used along with the asynchronous form of
the service (i.e. without the ‘‘W’’ and specify the address of tis_io_complete()
as the completion AST routine (the AST argument, if any, is ignored). The call
must also specify an IOSB (or equivalent, such as an LKSB) and if possible a

tis–55

tis_sync

unique event flag (see lib$get_ef). Once the library code is ready to wait for
the I/O, it simply calls tis_sync() (just as if it were calling $SYNC).

Return Values

This routine has the same return values as the OpenVMS $SYNC() routine.

Associated Routines

tis_io_complete()

tis–56

tis_testcancel

tis_testcancel

Creates a cancelation point in the calling thread.

Syntax

tis_testcancel();

C Binding

#include <tis.h>

void
tis_testcancel (void);

Arguments

None

Description

This routine requests delivery of a pending cancelation request to the
calling thread. Thus, this routine creates a cancelation point in the calling
thread. The cancelation request is delivered only if a request is pending for
the calling thread and the calling thread’s cancelability state is enabled.
(A thread disables delivery of cancelation requests to itself by calling
tis_setcancelstate().)

This routine, when called within very long loops, ensures that a pending
cancelation request is noticed within a reasonable amount of time.

Return Values

None

Associated Routines

tis_setcancelstate()

tis–57

tis_unlock_global

tis_unlock_global

Unlocks the Threads Library global mutex.

Syntax

tis_unlock_global();

C Binding

#include <tis.h>

int
tis_unlock_global (void);

Arguments

None

Description

This routine unlocks the global mutex. Because the global mutex is recursive,
the unlock occurs when each call to tis_lock_global() has been matched by
a call to this routine. For example, if your program called tis_lock_global()
three times, tis_unlock_global() unlocks the global mutex when you call it
the third time.

For more information about actions taken when threads are present, refer to
the pthread_unlock_global_np() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EPERM] The global mutex is unlocked or locked by another thread.

tis–58

tis_unlock_global

Associated Routines

tis_lock_global()

tis–59

tis_write_lock

tis_write_lock

Acquires a read-write lock for write access.

Syntax

tis_write_lock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_write_lock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be acquired for write access.

Description

This routine acquires a read-write lock for write access. This routine waits for
any other active locks (for either read or write access) to be unlocked before
this acquisition request is granted.

This routine returns when the specified read-write lock is acquired for write
access.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

tis–60

tis_write_lock

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_trylock()
tis_write_unlock()

tis–61

tis_write_trylock

tis_write_trylock

Attempts to acquire a read-write lock for write access.

Syntax

tis_write_trylock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_write_trylock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be acquired for write access.

Description

This routine attempts to acquire a read-write lock for write access. The routine
attempts to immediately acquire the lock. If the lock is acquired, zero (0) is
returned. If the lock is held by another thread (for either read or write access),
[EBUSY] is returned and the calling thread does not wait for the write-access
lock to be acquired.

Note that it is a coding error to attempt to acquire the lock for write access if
the lock is already held by the calling thread. (However, this routine returns
[EBUSY] anyway, because no ownership error-checking takes place.)

tis–62

tis_write_trylock

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion; the lock is acquired for write access.
[EBUSY] The lock was not acquired for write access, as it is already

held by another thread.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_unlock()

tis–63

tis_write_unlock

tis_write_unlock

Unlocks a read-write lock that was acquired for write access.

Syntax

tis_write_unlock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_write_unlock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be unlocked.

Description

This routine unlocks a read-write lock that was acquired for write access.

Upon completion of this routine, any thread waiting to acquire the lock for
read access will have those acquisitions granted. If no threads are waiting to
acquire the lock for read access, then a thread waiting to acquire it for write
access will have that acquisition granted.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type error. Possible return values are as follows:

tis–64

tis_write_unlock

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_init()
tis_rwlock_destroy()
tis_write_lock()
tis_write_trylock()

tis–65

tis_yield

tis_yield

Notifies the scheduler that the current thread is willing to release its processor
to other threads of the same or higher priority.

Syntax

tis_yield();

C Binding

int
tis_yield (void);

Arguments

None

Description

When threads are not present, this routine has no effect.

This routine notifies the thread scheduler that the current thread is willing
to release its processor to other threads of equivalent or greater scheduling
precedence. (A thread generally will release its processor to a thread of a
greater scheduling precedence without calling this routine.) If no other threads
of equivalent or greater scheduling precedence are ready to execute, the thread
continues.

This routine can allow knowledge of the details of an application to be used to
improve its performance. If a thread does not call tis_yield(), other threads
may be given the opportunity to run at arbitrary points (possibly even when
the interrupted thread holds a required resource). By making strategic calls
to tis_yield(), other threads can be given the opportunity to run when the
resources are free. This improves performance by reducing contention for the
resource.

As a general guideline, consider calling this routine after a thread has released
a resource (such as a mutex) which is heavily contended for by other threads.
This can be especially important if the program is running on a uniprocessor
machine, or if the thread acquires and releases the resource inside a tight loop.

tis–66

tis_yield

Use this routine carefully and sparingly, because misuse can cause unnecessary
context switching which will increase overhead and actually degrade
performance. For example, it is counter-productive for a thread to yield
while it holds a resource which the threads to which it is yielding will need.
Likewise, it is pointless to yield unless there is likely to be another thread
which is ready to run.

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOSYS] The routine tis_yield() is not supported by this

implementation.

tis–67

Part IV
Appendixes

Part IV contains appendixes that provide supporting information about
the POSIX Threads Library, such as operating system-specific information,
debugging information, and additional reference information.

A
Considerations for Tru64 UNIX Systems

This appendix discusses Threads Library issues specific to Tru64 UNIX
systems.

A.1 Overview
The Tru64 UNIX operating system supports multiple concurrent ‘‘execution
contexts’’ within a process. The Threads Library uses these kernel execution
contexts to implement user threads. One important benefit of this is that user
threads can run simultaneously on separate processors in a multiprocessor
system. Review Section 3.1 for tips for ensuring that your application will
work correctly with kernel threads and multiprocessing.

A.2 Building Threaded Applications
The following sections discuss points to consider when building using the
Threads Library.

A.2.1 Including Threads Header Files
Include one of the Threads Library header files shown in Table A–1 in your
program to use the appropriate Threads library.

Table A–1 Header Files

Header File Interface

pthread.h POSIX routines

tis.h Thread-independent services routines

Do not include more than one of these header files in your module.

Considerations for Tru64 UNIX Systems A–1

Considerations for Tru64 UNIX Systems
A.2 Building Threaded Applications

A.2.2 Building Multithreaded Applications from Threads Libraries
Multithreaded applications are built using shared libraries. For a description
of shared libraries, see the Tru64 UNIX Programmer’s Guide.

Table A–2 contains the libraries supported for multithreaded programming.

Table A–2 Tru64 UNIX Shared Libraries for Multithreaded Programs

libpthreads.so Shared version of Threads Library ‘‘legacy’’ package,
implementing the Compaq-proprietary CMA (or cma) and
POSIX 1003.4a/Draft 4 (d4 or DCEthreads) interfaces.

libpthread.so Shared version of the POSIX threads package. Requires
libexc.so and libc.so

libexc.so Shared version of Tru64 UNIX exception support package.

libc.so Shared version of the C language run-time library
(libc.so).

Build a multithreaded application using shared versions of libexc, libpthread,
and libc using this command:

% cc -o myprog myprog.c -pthread

If you use a compiler front-end or other (not C) language environment that
does not support the -pthread compilation switch, you must provide the -
D_REENTRANT compilation switch (or equivalent) at compilation, and link as
shown in Section A.2.3.

A.2.3 Linking Multithreaded Shared Libraries
The ld command does not support the -pthread or -threads switch. Normally,
programs can be compiled and linked from the cc command. If you must
link using the ld command, you must list the shared libraries in the proper
order. The libc library should be the last library referenced, libexc should
immediately precede libc, and the thread libraries should precede libexc.

For libraries that use only the pthread interface, use the following:

ld <...> -lpthread -lexc -lc

If using the cma or d4 interfaces, use the following:

ld <...> -lpthreads -lpthread -lexc -lc

A–2 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.2 Building Threaded Applications

Also, cc -pthread (or cc -threads) causes the compiler to replace any libraries
that have special thread-safe alternatives. These libraries have the same name
ending in -r. For example, cc -pthread -o foo -lbar, if there is a libbar.so
and libbar_r.so, would use the latter. When linking with the ld command,
you must perform that search and replacement yourself.

Note

If you build software (whether applications or libraries) that links
against the static version of a Threads library, you must not require
developers who use your software to link against any library that
dynamically loads any Threads shared library, such as libpthread.so.

A.2.4 Compiling Applications With the tis Interface
Applications that use the Compaq-proprietary thread-independent services (or
tis) interface should include the tis.h header file and link against the shared
C run-time library (libc.so).

A.3 Two-Level Scheduling on Tru64 UNIX Systems
Under Tru64 UNIX Version 4.0 and later, the Threads Library implements a
two-level scheduling model. The thread library schedules ‘‘user threads’’
onto kernel execution contexts (often known as ‘‘kernel threads’’ or ‘‘virtual
processors’’), just as Tru64 UNIX schedules processes onto the processors of a
multiprocessing machine.

A user thread is executed on a kernel thread until it blocks or exhausts its
timeslice quantum. Then, the Threads Library schedules a new user thread
to run. While the Threads Library is scheduling user threads onto kernel
threads, the Tru64 UNIX kernel is independently scheduling those kernel
threads to run on physical processors. The term ‘‘two-level scheduling’’ refers
to this relationship.

This division allows most thread scheduling to take place completely in
user mode, without the intervention of the kernel. Since a thread context
switch does not involve any privileged information, it can be done much more
efficiently in user mode.

The key to making the two-level scheduling model work is efficient two-way
communication between the Threads Library and the Tru64 UNIX kernel.
When a thread blocks in the kernel, the Threads Library scheduler is notified
so that it can schedule another thread to take advantage of the idle kernel
thread. This mechanism, sometimes referred to as an upcall, is inspired by

Considerations for Tru64 UNIX Systems A–3

Considerations for Tru64 UNIX Systems
A.3 Two-Level Scheduling on Tru64 UNIX Systems

original research on scheduler activations at the University of Washington.
(See Scheduler Activations: Effective Kernel Support for the User-Level
Management of Parallelism by Anderson, Bershad, Lazowska, and Levy; ACM
Operating Systems Review Volume 25, Number 5, Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, October 13-16, 1991).

A.3.1 Use of Kernel Threads
Tru64 UNIX kernel threads are created as they are needed by the application.
The number of kernel threads that the Threads Library creates is limited by
normal Tru64 UNIX configuration limits regarding user and system thread
creation. Normally, however, the Threads Library creates one kernel thread for
each actual processor on the system, plus a ‘‘manager thread’’ for bookkeeping
operations.

The Threads Library does not delete these kernel threads or let them
terminate. Kernel threads not currently needed are retained in an idle
state until they are needed again. (These idled kernel threads are deleted by
the kernel if they remain idle for a long time.) When the process terminates,
all kernel threads in the process are reclaimed by the kernel.

The Threads Library scheduler can schedule any user thread onto any kernel
thread. Therefore, a user thread can run on different kernel threads at
different times. Normally, this should pose no problem. However, for example,
the kernel thread ID as reported by the dbx or Ladebug debuggers (in ‘‘native’’
$threadlevel) can change at any time.

A.3.2 Support for Real-Time Scheduling
The Threads Library supports Tru64 UNIX real-time scheduling. This allows
you to set the scheduling policy and priority of threads. By default, threads
are created using process contention scope. This means that the full range of
POSIX.1 scheduling policy and priority is available. However, threads running
in process contention scope do not preempt lower-priority threads in another
process. For example, a thread in process contention scope with SCHED_FIFO
policy and maximum priority 63 will not preempt a thread in another process
running with SCHED_FIFO and lower priority.

In contrast, system contention scope means that each thread created by the
program has a direct and unique binding to one kernel execution context. A
system contention scope thread competes against all threads in the system and
will preempt any thread with lower priority. For this reason, the priority range
of threads in system contention scope is restricted unless running with root
privilege.

A–4 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.3 Two-Level Scheduling on Tru64 UNIX Systems

Specifically, a thread with SCHED_FIFO policy cannot run at a priority higher
than 18 without privilege, since doing so could lock out all other users on
the system until the thread blocked. Threads at any other scheduling policy
(including SCHED_RR) can run at priority 19 because they are subject to periodic
timeslicing by the system. For more information, see the Tru64 UNIX Realtime
Programming Guide.

If your program lacks necessary privileges, attempting to call the following
routines for a thread in system contention scope returns the error value
[EPERM]:

pthread_attr_setschedpolicy() (Error returned by pthread_create() at
thread creation)

pthread_attr_setschedparam() (Error returned by pthread_create() at
thread creation)

pthread_setschedparam()

Prior to Tru64 UNIX Version 4.0, all threads used only system contention
scope. In Tru64 UNIX Version 4.0, all threads created using the pthread
interface, by default, have process contention scope.

A.4 Thread Cancelability of System Services
Tru64 UNIX supports the required system cancelation points specified by the
POSIX.1 standard and by the Single UNIX Specification, Version 2 (UNIX98).

For legacy multithreaded applications, note that threads created using the cma
or d4 interfaces will not be cancelable at any system call. (Here ‘‘system call’’
means any function without the pthread_ prefix.) If system call cancelation is
required, you must write code using the pthread interface.

Note

It is not legal, or supported, to call any Tru64 UNIX system function
with asynchronous cancelability type. You cannot ‘‘work around’’ the
lack of system call cancelation using asynchronous cancelability.

For more information, see Section 2.3.7.

Considerations for Tru64 UNIX Systems A–5

Considerations for Tru64 UNIX Systems
A.4 Thread Cancelability of System Services

A.4.1 Cancelation Points
The following functions are cancelation points (as defined by the Single UNIX
Specification, Version 2 (SUSV2)):

accept()
aio_suspend()
close()
connect()
creat()
fcntl() (for cmd F_SETLKW)
fsync()
getmsg()
getpmsg()
lockf()
mq_receive()
mq_send()
msgrcv()
msgsnd()
msync()
nanosleep()
open()
pause()
poll()
pread()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_delay_np()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()
select()
sem_wait()

send()
sendmsg()
sendto()
shutdown()
sigpause()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
t_close()
t_connect()
t_listen()
t_rcv()
t_rcvconnect()
t_rcvrel()
t_rcvreldata()
t_rcvudata()
t_rcvv()
t_rcvvudata()
t_snd()
t_sndrel()
t_sndreldata()
t_sndudata()
t_sndv
t_sndvudata()
usleep()
wait()
wait3()
waitid()
waitpid()
write()
writev()

A–6 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.4 Thread Cancelability of System Services

A.4.2 Conditional or Future Cancelation Points
These functions may not cause delivery of a pending cancel, and cancelation
may not interrupt a blocking state. Some will recognize cancelation only under
some conditions (for example, if printf() flushes a standard I/O buffer to
the file stream). Others may currently not be coded to recognize cancelation,
but may be changed in the future. All code should be prepared to handle
cancelation at these calls, but must not depend on cancelation at these calls.

Considerations for Tru64 UNIX Systems A–7

Considerations for Tru64 UNIX Systems
A.4 Thread Cancelability of System Services

closedir()
closelog()
ctermid()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
fclose()
fcntl() (for any cmd)
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fopen()
fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
ftell()
ftello()
ftw()
fwprintf()
fwrite()
fwscanf()
getc()
getc_unlocked()

getchar()
getchar_unlocked()
getcwd()
getdate()
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostbyaddr()
gethostbyname()
gethostent()
gethostname()
getlogin()
getlogin_r()
getnetbyaddr()
getnetbyname()
getnetent()
getprotobynumber()
getprotobyname()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
getw()
getwc()
getwchar()
getwd()
glob()
iconv_close()
iconv_open()
ioctl()
lseek()
mkstemp()
nftw()
opendir()
openlog()
pclose()

perror()
popen()
printf()
putc()
putc_unlocked()

putchar()
putchar_unlocked()

puts()
pututxline()
putw()
putwc()
putwchar()
readdir()
readdir_r()
remove()
rename()
rewind()
rewinddir()
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
strerror()
syslog()
tmpfile()
tmpname()
ttyname()
ttyname_r()
ungetc()
ungetwc()
unlink()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wprintf()
wscanf()

A–8 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.4 Thread Cancelability of System Services

Note that appropriate non-standard functions that do not appear in the
preceding list might become cancelation points in the future. Tru64 UNIX will
also implement new cancelation points, as specified by future revisions of the
relevant formal or consortium standard bodies.

A.5 Using Signals
This section discusses signal handling based on the POSIX.1 standard.

Tru64 UNIX Version 4.0 introduced the full POSIX.1 signal model. In previous
versions, ‘‘synchronous’’ signals (those resulting from execution errors, such
as SIGSEGV and SIGILL) could have different signal actions for each thread.
Prior to Tru64 UNIX Version 3.2, all threads shared a common, processwide
signal mask, which meant one thread could not receive a signal while another
had the signal blocked.

Under Tru64 UNIX Version 4.0 and later, all signal actions are processwide.
That is, when any thread uses sigaction or equivalent to set a signal handler,
or to modify the signal action (for example, to ignore a signal), that action will
affect all threads. Each thread has a private signal mask so that it can block
signals without affecting the behavior of other threads.

Prior to Tru64 UNIX Version 4.0, asynchronous signals were processed only in
the main thread. In Tru64 UNIX Version 4.0, any thread that doesn’t have the
signal masked can process the signal.

Note

To support binary compatibility, for a thread created by a cma or
d4 interface routine, the thread starts with all asynchronous signals
blocked.

A.5.1 POSIX sigwait Service
The POSIX 1003.1 sigwait() service allows any thread to block until one
of a specified set of signals is delivered. A thread can wait for any of the
asynchronous signals except for SIGKILL and SIGSTOP.

For example, you can create a thread that blocks on a sigwait() routine for
SIGINT, rather than handling a Ctrl/C in the normal way. This thread could
then cancel other threads to cause the program to shut down the current
activities.

Following are two reasons for avoiding signals:

• Signals cannot be used in a modular way in a multithreaded program.

Considerations for Tru64 UNIX Systems A–9

Considerations for Tru64 UNIX Systems
A.5 Using Signals

• Signals, used as an asynchronous programming technique, are unnecessary
in a multithreaded program.

In a multithreaded program, signal handlers cannot be used in a modular way
because there is only one signal handler routine for all of the threads in an
application. If two threads install different signal handlers for the signal, all
threads will dispatch to the last handler when they receive the signal.

Most applications should avoid using asynchronous programming techniques
in conjunction with threads. For example, techniques that rely on timer and
I/O signals are usually more complicated and errorprone than simply waiting
synchronously within a thread. Furthermore, most of the thread services are
not supported for use in signal handlers, and most run-time library functions
cannot be used reliably inside a signal handler.

Some I/O intensive code may benefit from asynchronous I/O, but these
programs will generally be more difficult to write and maintain than ‘‘pure’’
threaded code.

A thread should not wait for a synchronous signal. This is because
synchronous signals are the result of an error during the execution of a
thread, and if the thread is waiting for a signal, then it is not executing.
Therefore, a synchronous signal cannot occur for a particular thread while it is
waiting, and the thread will wait forever.

The POSIX.1 standard requires that the thread block the signals for which it
will wait before calling sigwait(). For reliable operation, the signals should
be blocked in all threads. Otherwise, the signal might be delivered to another
thread before the sigwait thread calls sigwait(), or after it has returned with
another signal.

A.5.2 Handling Synchronous Signals as Exceptions
For the signals traditionally representing synchronous errors in the program,
the Threads Library catches the signal and converts it into an equivalent
exception. This exception is then propagated up the call stack in the current
thread and can be caught and handled using the normal exception catching
mechanisms.

Table A–3 lists Tru64 UNIX signals that are reported as exceptions by default.
If any thread declares an action for one of these signals (using sigaction(2)
or equivalent), no thread in the process can receive the exception.

A–10 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.5 Using Signals

Table A–3 Signals Reported as Exceptions

Signal Exception

SIGILL pthread_exc_illinstr_e

SIGIOT pthread_exc_SIGIOT_e

SIGEMT pthread_exc_SIGEMT_e

SIGFPE pthread_exc_aritherr_e

SIGBUS pthread_exc_illaddr_e

SIGSEGV pthread_exc_illaddr_e

SIGSYS pthread_exc_SIGSYS_e

SIGPIPE pthread_exc_SIGPIPE_e

A.6 Thread Stack Guard Areas
When creating a thread based on a thread attributes object, the Threads
Library potentially rounds up the value specified in the object’s guardsize
attribute. The Threads Library does so based on the value of the configurable
system variable PAGESIZE (see <sys/mman.h>. The default value of the
guardsize attribute in a thread attributes object is a number of bytes equal to
setting of PAGESIZE.

A.7 Thread Stack and Backing Store Allocation
Starting in Version 5.0, for threads that accept the default stack address
attribute, the Threads Library allocates a thread’s writable stack area
from uncommitted virtual memory, then commits predefined increments
of the writable stack area to the thread only as it is needed. The stack’s
corresponding backing store is also reserved incrementally as the stack is
committed. In this way, no more backing store is reserved than the stack
actually requires.

Because Tru64 UNIX 5.0 does not commit backing store (or physical pages) for
stacks until the pages are used by the program, the default stack size has been
increased. The previous default of about 24Kb (3 pages) has been increased to
5Mb.

Considerations for Tru64 UNIX Systems A–11

Considerations for Tru64 UNIX Systems
A.8 Dynamic Activation

A.8 Dynamic Activation
Dynamic activation of the Threads Library run-time environment, or of code
that depends on the Threads Library, is currently not supported.

A.9 Pagefaults and Realtime Scheduling
Like normal file I/O operations, pagefaults are ‘‘thread synchronous’’. A thread
that incurs a ‘‘hard’’ pagefault (reading the page from backing store) will
be blocked while other threads continue to run on the ‘‘virtual processor’’
(or on others). This has implications for realtime scheduling, especially of
SCHED_FIFO policy threads, that do not expect to block except for explicit I/O
synchronization. To write a SCHED_FIFO thread that cannot block unexpectedly,
you must use mlockall to lock the application into memory, preventing
pagefaults.

A–12 Considerations for Tru64 UNIX Systems

B
Considerations for OpenVMS Systems

This appendix discusses POSIX Threads Library issues and restrictions specific
to the OpenVMS operating system.

B.1 Overview
The OpenVMS Alpha operating system supports multiple concurrent ‘‘execution
contexts’’ within a process. The Threads Library uses these kernel execution
contexts to implement user threads. One important benefit of this is that user
threads can run simultaneously on separate processors in a multiprocessor
system. Review Section 3.1 for tips for ensuring that your application will
work correctly with kernel threads and multiprocessing. Even without kernel
threads, OpenVMS Alpha ‘‘upcalls’’ support smooth integration between the
Threads Library and kernel scheduler. See Section B.12 for more information,
including how to enable kernel threads and upcalls in your application.
OpenVMS VAX supports neither kernel threads nor upcalls.

B.2 Compiling Under OpenVMS
The C language header files shown in Table B–1 provide interface definitions
for the pthread and tis interfaces.

Table B–1 Header Files

Header File Interface

pthread.h POSIX.1 style routines

tis.h Compaq proprietary thread-independent services
routines

Include only one of these header files in your module.

Special compiler definitions are not required when compiling threaded
applications that use the pthread interface or the tis interface.

Considerations for OpenVMS Systems B–1

Considerations for OpenVMS Systems
B.3 Linking OpenVMS Images

B.3 Linking OpenVMS Images
The Threads Library is supplied only as shareable images. It is not supplied
as object libraries.

When you link an image that calls Threads Library routines, you must link
against the appropriate images listed in Table B–2.

Table B–2 Threads Library Images

Image Routine Library

PTHREAD$RTL.EXE POSIX.1 style interface

CMA$TIS_SHR.EXE Thread-independent services

The image files PTHREAD$RTL.EXE, CMA$TIS_SHR.EXE, CMA$RTL.EXE,
and CMA$LIB_SHR.EXE are included in the IMAGELIB library, making it
unnecessary to specify those images (unless you are using the /NOSYSLIB
switch with the linker) in a Linker options file.

When you link an image that utilizes the CMA$OPEN_LIB_SHR.EXE and
CMA$OPEN_RTL.EXE images, they must be specified in a Linker options file.

Note

While this version of the POSIX Threads Library for OpenVMS
supports upward compatibility of source and binaries for the d4
interface, it does not support upward compability for object files.

For instance, under OpenVMS V7.0 and higher, to link object files that
were compiled under OpenVMS V6.2, follow these steps:

1. Copy CMA$OPEN_RTL.EXE from SYS$SHARE for OpenVMS
V6.2 into the directory with your object files compiled under the
current OpenVMS version. During linking, it provides the locations
of the transfer vector entries (OpenVMS VAX) or symbol vector
entries (OpenVMS Alpha) in CMA$OPEN_RTL.EXE for the older
OpenVMS version.

2. Instead of specifying SYS$SHARE:CMA$OPEN_RTL/SHARE in your link
options files, specify CMA$OPEN_RTL/SHARE. Be careful about the
placement of this option in the options file—it should perhaps be
placed at the beginning, or close to it, if you are including other
images that link against PTHREAD$RTL.

3. Link your program.

B–2 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.3 Linking OpenVMS Images

4. Delete CMA$OPEN_RTL.EXE from your object directory for the
current OpenVMS version.

B.4 Using the Threads Library with AST Routines
An asynchronous system trap, or AST, is an OpenVMS mechanism for
reporting an asynchronous event to a process. The following are restrictions
concerning the use of ASTs with the Threads Library:

• Avoid blocking ASTs using any mechanism other than $SETAST.

• Be aware that blocking ASTs in one thread may prevent delivery of ASTs
that are actually intended for other threads. Therefore, it is best to avoid
blocking ASTs for an extended period of time. Also, it is best to avoid
calling Threads Library functions that may block the thread while it has
disabled ASTs.

• Do not call Threads Library routines, except those that have the _int
(interrupt) suffix in their names, from within an AST routine. Calling
any other Threads Library routines from code running in an AST can be
unreliable or cause unexpected behavior.

• For OpenVMS Alpha, ASTs are handed off to teh Threads Library by the
operating system. This allows ASTs to be delivered in the context of the
appropriate thread. On a multiprocessor machine it may be possible to
have a thread executing an AST routine in parallel with another thread’s
execution. When a thread disables ASTs, not only does it block out its own
ASTs, but it prevents delivery of any ASTs that do not specifically belong to
a particular thread as well.

• For synchronous I/O completion, use the asynchronous variant of the
system service routine and the tis_io_complete() and tis_sync()
routines.

B.5 Dynamic Activation
Certain run-time libraries use conditional synchronization mechanisms. These
mechanisms typically are enabled during image initialization when the run-
time library is loaded, and only if the process is multithreaded (that is, if the
core run-time library PTHREAD$RTL has been linked in). If the process is not
multithreaded, the synchronization is disabled.

Considerations for OpenVMS Systems B–3

Considerations for OpenVMS Systems
B.5 Dynamic Activation

If your application were to dynamically activate PTHREAD$RTL, any run-
time library that uses conditional synchronization may not behave reliably.
Thus, dynamic activation of the core run-time library PTHREAD$RTL is not
supported.

If your application must dynamically activate an image that depends
upon PTHREAD$RTL (that is, the image must run, or can be run,
in a multithreaded environment), you must build the application by
explicitly linking the image calling LIB$FIND_IMAGE_SYMBOL against
PTHREAD$RTL.

Use the OpenVMS command ANALYZE/IMAGE to determine whether
an image depends upon PTHREAD$RTL. For more information see your
OpenVMS documentation.

Libraries that wish to use thread-safe synchronization only when threads
are present should use the tis functions instead of dynamically activating
PTHREAD$RTL.EXE.

B.6 Default and Minimum Thread Stack Size
As of OpenVMS Version 7.2, the Threads Library has increased the default
thread stack size for both OpenVMS Alpha and OpenVMS VAX. Applications
that create threads using the default stack size (or a size calculated from the
default) will be unaffected by this change.

As of OpenVMS Version 7.2, the Threads Library has increased the minimum
thread stack size (based on the PTHREAD_STACK_MIN constant) for OpenVMS
VAX only. Existing applications that were built using a version prior to
OpenVMS Version 7.2 and that base their thread stack sizes on this minimum
must be recompiled.

B.7 Requesting a Specific, Absolute Thread Stack Size
Prior to OpenVMS Version 7.2, when an application requested to allocate a
thread stack of a specific, absolute size, the Threads Library would increase
the size by a certain quantity, then round up that sum to an integral number of
pages. This process resulted in the actual stack size being considerably larger
than the caller’s request, possibly by more than one page.

Starting with OpenVMS Version 7.2, when an application requests the Threads
Library to allocate a thread stack of a specific, absolute size, no additional
space is added, but the allocation is still rounded up to an integral number of
pages.

B–4 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.7 Requesting a Specific, Absolute Thread Stack Size

Any application that uses default-sized stacks is unlikely to experience
problems due to this change. Similarly, any application that sets its thread
stack allocations in terms of either the default or the allowable minimum stack
size is unlikely to experience problems due to this change; however, depending
on the allocation calculation used, the application might receive more memory
for thread stacks.

Starting with OpenVMS Version 7.2, any thread that is created with a stack
allocation of a specific, absolute size might fail during execution because
of insufficient stack space. This failure indicates an existing bug in the
application that was made manifest by the change in the Threads Library.

When the application requests to allocate a thread stack of a specific size, it
must allow for not only the space that the application itself requires, but also
sufficient stack space for context switches and other activity. The Threads
Library only occasionally uses this additional stack space, such as during
timeslice interruptions. A thread with inadequate stack space might encounter
no problems during development and testing because of timing vagaries—for
instance, a thread might not experience problems until a timeslice occurs while
the thread is at its maximum stack utilization—and this situation might never
arise during in-house testing. In a different system environment, such as in
a production environment, the timing might be different, possibly resulting in
occasional failures when certain conditions are met.

B.8 Declaring an OpenVMS Condition Handler
This section discusses a restriction on declaring an OpenVMS condition
handler while using exceptions, and behavior when a condition is signaled.

The following are three ways to declare an OpenVMS condition handler:

• Calling VAXC$ESTABLISH (from a program written in C)

• Calling LIB$ESTABLISH

• Placing the address of the condition handler directly into the stack frame
(from a program written in VAX MACRO or VAX BLISS)

Do not declare an OpenVMS condition handler within a TRY/ENDTRY exception
block. Doing so deletes without notification any handler that exists for the
current procedure. If your code declares a condition handler within the TRY
/ENDTRY block, exceptions will not be handled correctly until the next TRY
statement is executed. The TRY statement restores the condition handler.

Considerations for OpenVMS Systems B–5

Considerations for OpenVMS Systems
B.8 Declaring an OpenVMS Condition Handler

On OpenVMS VAX, you can declare a condition handler outside of a TRY
/ENDTRY block with no restrictions. If a condition handler has already been
declared when you execute a TRY statement, the Threads Library saves the
previous handler address. When the Threads Library receives a condition it
does not handle (including SS$_UNWIND, SS$_DEBUG, or a condition code
that does not have a SEVERE severity), it invokes the saved condition handler.
The condition handler will be reestablished when the TRY block exits.

B.9 Thread Cancelability of System Services
On OpenVMS Alpha, system calls are now cancelation points for threads
created using the POSIX 1003.1 style interface. System calls are not
cancelation points for threads in legacy multithreaded applications that
were created using the Compaq proprietary CMA (or cma) or POSIX 1003.4a
/Draft 4 (d4 or DCEthreads) interfaces. None of the system calls should be
called with asynchronous cancelation enabled. For more information, see
Section 2.3.7.

B.10 Using OpenVMS Alpha 64-Bit Addressing
On OpenVMS Alpha, the Threads Library supports the use of 64-bit addressing
in the pthread interface only. When compiling with the following command,
the pthread_join() function returns a 64-bit void * value as the result:

$ CC/POINTER_SIZE=LONG

You can also use pthread_join64() or pthread_join32() to specify the length
in bits of the return value.

Note that no other Threads Library functions have special 64-bit versions
because the OpenVMS Alpha calling standard always supports 64-bit
arguments and return values.

B.11 Condition Values
Table B–3 lists the condition values for OpenVMS systems and provides an
explanation and user action.

B–6 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.11 Condition Values

Table B–3 Condition Values

Condition Value Explanation and User Action

CMA$_EXCCOP Exception raised; OpenVMS condition code follows.

Explanation: One of the exception commands (RAISE
or RERAISE) raised or reraised an exception condition
originating outside the Threads Library. The secondary
condition code in the signal vector will be the original code.

User Action: See the documentation for the software that
your program is calling to determine the reason for this
exception.

CMA$_EXCCOPLOS Exception raised; some information lost.

Explanation: CMA$_EXCCOPLOS is nearly the same
as CMA$_EXCCOP except that the Threads Library
determined that the copied signal vector may contain
address arguments. However, the address arguments may
not be valid when the stack is unwound and the condition
is resignaled. Therefore, the Threads Library clears the
condition codes’ arguments in the resignaled vector. In most
cases, the Threads Library knows that SS$_ code arguments
are ‘‘safe’’ and will not clear them. Most other codes with
arguments will result in CMA$_EXCCOPLOS.

User Action: See the documentation for the software that
your program is calling to determine the reason for this
exception.

CMA$_EXCEPTION Exception raised; address of exception object is object-
address.

Explanation: This condition is used as the primary
condition to RAISE an address-type exception. The
condition is signaled with a single argument containing
the address of the EXCEPTION structure. There is no
support for interpreting this value. It is only meaningful
to the facility that defined the EXCEPTION. It is not good
programming practice to let an address exception propagate
outside the facility that raised it. There is no support for
getting message text, and it cannot be interpreted by other
facilities.

User Action: None.

Considerations for OpenVMS Systems B–7

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

B.12 Two-Level Scheduling on OpenVMS Alpha Systems
This section applies to OpenVMS Alpha systems only.

Under OpenVMS Alpha Version 7.0 and later, the Threads Library implements
a two-level scheduling model. This model is based on the concept of virtual
processors. Virtual processors are implemented as a result of using kernel
thread technology in the OpenVMS Alpha operating system.

The Threads Library schedules threads onto virtual processors similar
to the way that OpenVMS schedules processes onto the processors of a
multiprocessing machine. Thus, to the runtime environment, a scheduled
thread is executed on a virtual processor until it blocks or until it exhausts its
timeslice quantum; then the Threads Library schedules a new thread to run.

While the Threads Library schedules threads onto virtual processors, the
OpenVMS scheduler also schedules virtual processors to run on physical
processors. The term ‘‘two-level scheduling’’ derives from this relationship.

The two-level scheduling model provides these advantages:

• It allows most thread scheduling to take place completely in user mode–
that is, without the intervention of the OpenVMS scheduler. Because a
thread context switch does not involve any privileged information (rather,
only a swapping of registers), it can be done much more efficiently in user
mode than a context switch involving the operating system.

• It allows the OpenVMS scheduler to schedule virtual processors onto
separate processors of a multiprocessing machine. This allows a process
using the Threads Library to take advantage of the full resources of a
multiprocessor machine.

The key to making the two-level scheduling model work is the upcall
mechanism. An upcall is a communication between the OpenVMS scheduler
and the Threads Library scheduler. When an event occurs that affects the
scheduling of a thread, such as blocking for a system service, the OpenVMS
scheduler calls ‘‘up’’ to the Threads Library scheduler to notify it of the change
in the thread’s status.

This upcall gives the Threads Library the opportunity to schedule another
thread to run on the virtual processor in place of the blocking thread, rather
than to allow the virtual processor itself to block, which would deny that
resource to other threads in the process.

B–8 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

Upcalls are typically arranged in pairs, with an ‘‘unblock’’ upcall corresponding
to each ‘‘block’’ upcall. The unblock upcall notifies the Threads Library
that a previously blocked thread is now eligible to run again. The Threads
Library schedules that thread to run when it is appropriate, given the thread’s
scheduling policy and priority.

B.12.1 Linker Options to Specify Image’s Use of Kernel Threads
In OpenVMS Alpha Version 7.1 and later, the linker supports the /THREADS_
ENABLE (or /NOTHREADS_ENABLE) qualifier for specifying the role of
kernel threads in the resulting image. Use this qualifier to specify whether the
process can create multiple kernel threads and whether the OpenVMS Alpha
kernel’s support for upcalls is enabled. If this qualifier is not specified, the
default linker setting is /NOTHREADS_ENABLE, which results in an image
that behaves as under OpenVMS Alpha Version 6.

The /THREADS_ENABLE qualifier takes two keyword arguments,
MULTIPLE_KERNEL_THREADS and UPCALLS. Table B–4 summarizes
the allowable combinations of these keywords and their effects. This qualifier
must be applied to a ‘‘main’’ image. If used on a shared library image, it will
be ignored.

The use of kernel threads and upcalls is also limited by the kernel sysgen
parameter MULTITHREAD. If set to 0, no process may use upcalls or create kernel
threads. A value of 1 allows upcalls, but not kernel threads. A higher value
represents the maximum number of kernel threads each process may use. (You
cannot have multiple kernel threads without upcalls.)

Table B–4 Results of Keyword Arguments to /THREADS_ENABLE Qualifier

Keywords Specified Result

/NOTHREADS_ENABLE No kernel threads support

/THREADS_ENABLE
or:
/THREADS_ENABLE=(MULTIPLE_
KERNEL_THREADS,UPCALLS)

Full kernel threads support, including the ability
to run multiple user threads simultaneously on
different CPUs on a multiprocessor machine

(continued on next page)

Considerations for OpenVMS Systems B–9

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

Table B–4 (Cont.) Results of Keyword Arguments to /THREADS_ENABLE Qualifier

Keywords Specified Result

/THREADS_ENABLE=MULTIPLE_KERNEL_
THREADS

Same behavior as if /NOTHREADS_ENABLE
is specified (without support for upcalls, the
Threads Library cannot reliably use multiple
kernel threads)

/THREADS_ENABLE=UPCALLS Upcall support (such as making system calls
thread-synchronous), but restricts the process’
threads to one CPU on a multiprocessor machine

Note

Under no circumstances should a process explicitly create kernel
threads. The Threads Library creates them as needed when allowed
to do so. Explicit creation of kernel threads by an application disrupts
the operation of the runtime environment and causes incorrect and/or
unreliable application behavior.

B.12.2 Setting Kernel Threads Support in Existing Images
Under OpenVMS Alpha only, use the THREADCP tool to set or show the
kernel threads features described above for an existing main image. The tool
provides the ability to enable, disable, and show the state of the thread control
bits in an image’s header.

The THREADCP command verb is not part of the normal set of DCL
commands. To use the tool, you must define the command verb before invoking
it, as shown in the example below.

In a THREADCP command, an image file name is a required parameter for
use with all supported qualifiers. THREADCP supports abbreviations to the
first character for all qualifiers and parameters. When the SHOW qualifier is
used alone with the THREADCP command, the file name can contain wildcard
characters.

After you define the THREADCP command verb, an image’s thread control
bits can be set or cleared using the /ENABLE and /DISABLE qualifiers,
respectively. To do so, specify the name of each thread control bit to be
enabled, disabled, or shown. One or both thread control bits can be specified.
The user must have write access to the image file.

B–10 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

If no thread control bit is specified, the THREADCP default is to operate on
both bits. If the image is currently being executed or is installed, it cannot be
modified.

B.12.2.1 Examples
This command defines the THREADCP command verb:

$ SET COMMAND SYS$UPDATE:THREADCP.CLD

This command displays the current settings of both thread control bits for the
image TEST.EXE:

$ THREADCP/SHOW TEST.EXE

This command displays the current settings of both thread control bits for all
SYS$SYSTEM images:

$ THREADCP/SHOW SYS$SYSTEM:*

This command sets both thread control bits explicitly for the image TEST.EXE:

$ THREADCP/ENABLE=(MULTIPLE_KERNEL_THREADS, UPCALLS) TEST.EXE

This command clears both thread control bits explicitly for the image
TEST.EXE:

$ THREADCP/DISABLE=(MULTIPLE_KERNEL_THREADS, UPCALLS) TEST.EXE

B.12.3 Querying and Setting Kernel Threads Features
On OpenVMS Alpha systems, a program can call the $GETJPI system service
and specify the appropriate MULTITHREAD item code to determine whether
kernel threads are in use. The return values have the same meanings as
are defined for the MULTITHREAD system parameter, as summarized in
Table B–5.

Table B–5 Return Values from $GETJPI System Service

Value Description

0 Both upcalls and the creation of multiple kernel threads are
disabled.

(continued on next page)

Considerations for OpenVMS Systems B–11

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

Table B–5 (Cont.) Return Values from $GETJPI System Service

Value Description

1 Upcalls are enabled; the creation of multiple kernel threads is
disabled.

2 through 16 Both upcalls and the creation of multiple kernel threads are enabled.
The number specified represents the maximum number of kernel
threads that can be created for a single process.

B.12.4 Creation of Virtual Processors
Virtual processors are created as they are needed by the application. For a
multithreaded application, the number of virtual processors that the Threads
Library creates is limited by the SYSGEN parameter MULTITHREAD. This
parameter is typically set to the number of processors present in the system.

In general, there is no reason to create more virtual processors than there are
physical processors; that is, the virtual processors would contend with each
other for the physical processors and cause unnecessary overhead. Regardless
of the value of the MULTITHREAD parameter, the Threads Library creates
no more virtual processors than there are user threads (excluding internal
threads).

The Threads Library does not delete virtual processors or let them terminate.
They are retained in the HIB idle state until they are needed again. During
image rundown, they are deleted by OpenVMS.

The Threads Library scheduler can schedule any user thread onto any virtual
processor. Therefore, a user thread can run on different kernel threads at
different times. Normally, this should pose no problem; however, for example, a
user thread’s PID (as retrieved by querying the system) can change from time
to time.

B.12.5 Delivery of ASTs
When a user mode AST becomes deliverable to a Threads Library process,
the OpenVMS scheduler makes an upcall to the Threads Library, passing
the information that is required to deliver the AST (service routine address,
argument, and target user thread ID). The Threads Library stores this
information and queues the AST to be delivered to the appropriate user thread.
That thread is made runnable (if it is not already), and executes the AST
routine the next time it is scheduled to run. This means the following:

B–12 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

• A per-thread AST will interrupt the user thread that requested it,
regardless of on which virtual processor the thread is running.

• The AST will be run at the priority of the target thread, so that low-
priority threads’ ASTs do not preempt or interfere with the execution of
high-priority threads.

• The AST routine executes in the context of the target thread, so that the
danger of surprise stack overflows is diminished, and stack-walks and
exception propagation work as they should.

In addition to per-thread ASTs, there are also user mode ASTs that are
directed to the process as a whole, or to no thread in particular, or to a thread
that has since terminated. These ‘‘process’’ ASTs are queued to the initial
thread, making the thread runnable in a fashion similar to per-thread ASTs.
They are executed in the context of the initial thread, for the following reasons:

• The initial thread has an expandable stack, unlike the other threads, which
minimizes the danger of stack space problems.

• Any code that is making assumptions about specific characteristics of AST
delivery is most likely running in the initial thread, so delivering the AST
to the initial thread is least likely to cause problems.

• To ensure that the process ASTs are executed promptly, the initial thread
gets a boost to the top scheduling priority. Because these ASTs cannot
be associated with a particular thread, their priority cannot be assessed,
so it is important that they be delivered promptly in the event that a
high-priority thread is waiting to be signaled by one of them.

Note

In all OpenVMS releases to date, all ASTs are directed to the process
as a whole. In future releases, AST delivery will be made per thread as
individual services are updated.

The following implications must be considered for application development:

• If an application makes heavy use of ASTs, it can starve the initial thread
to a degree, because only that thread executes the ASTs that are directed to
the entire process. (This is in contrast with the behavior prior to OpenVMS
Version 7.0 of starving all threads equally).

Considerations for OpenVMS Systems B–13

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

• There are also implications for controlling AST delivery. $SETAST
generates an upcall similar to the one for AST delivery. This allows
the Threads Library to note the request by a thread to block (or unblock)
AST delivery. When a thread has requested that ASTs be blocked, it will
not receive delivery of any per-thread ASTs; nor will the process receive
delivery of any process ASTs. This is, in effect, the behavior of prior to
OpenVMS Version 7.0, except that a second thread cannot undo a block
requested by a previous thread. Avoid using any mechanism other than
$SETAST to block ASTs; it will interfere with the process as a whole and
may produce undesirable results.

• Another implication is that it is possible for a thread to be executing on
one virtual processor at the same time that an AST is executing on another
virtual processor. In general, this should not pose a significant problem
for multithreaded applications. Such applications should have already
minimized their AST use, since ASTs and threads can be difficult to use
together reliably.

In addition, AST routines should already be performing only atomic
operations, since thread synchronization is not available to code executing
at AST level. Any ‘‘legacy’’ code (such as a nonthreaded application using
threaded libraries) is executed in the initial thread, where the normal
assumptions about AST delivery are maintained. If a piece of code cannot
tolerate concurrent execution with an AST routine, it should disable AST
delivery during its execution.

B.12.6 Blocking System Services
In OpenVMS Alpha Version 7.0 and later, with few exceptions a blocking
system service call is thread synchronous—that is, only the calling thread is
blocked. The exceptions are services that don’t block in user mode and services
that set common event flags. (See also Section B.12.8.)

When a thread calls a system service that must block, the OpenVMS scheduler
makes an upcall to allow the Threads Library to schedule another user thread
to execute. Therefore, only the calling thread is blocked, all other threads are
unaffected, and the process continues running. When the service completes,
the thread is awakened by means of another upcall, and the Threads Library
schedules it to run again at the thread’s next opportunity.

This applies to all ‘‘W’’ forms of system services. For example, $QIOW, $END_
TRANSW, and $GETJPIW. Additionally, this applies to the following event flag
services: $WAITFR, $WFLAND, and $WFLOR.

B–14 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

B.12.7 $HIBER and $WAKE
$HIBER and $WAKE result in upcalls to the Threads Library. When a user
thread calls $HIBER, only that thread is blocked; all other threads continue
running. The blocking thread is immediately unscheduled and another thread
is scheduled to run instead. When a thread (or another process) calls $WAKE,
all hibernating threads are awakened.

Prior to OpenVMS Version 7.0, a thread that called a $HIBER (or called a
library routine that eventually resulted in a call to $HIBER) would cause
the whole process to hibernate for a brief period whenever that thread
was scheduled to ‘‘run.’’ Also, with multiple threads in calls to $HIBER
simultaneously, there was no reliable way to wake the threads (or a specific
thread); the next hibernating thread to be scheduled would awaken, and any
other threads would continue to sleep.

In OpenVMS Alpha Version 7.0 and later, these problems have been resolved.
However, this new behavior has some other effects. For instance, hibernation-
based services, such as LIB$WAIT and the C RTL sleep() routine, may be
prone to premature completion. If the service does not validate its wakeup
(that is, ensure that enough time has passed or that there is some other reason
for it to return), then it will be prone to this problem, as are the above services,
since they do not perform such wake-up validation. (The sleep() routine does
this deliberately to mimic the ANSI C required behavior of returning when
interrupted by a signal. Though OpenVMS does not have UNIX signals, an
asynchronous $WAKE is similar in intent.)

B.12.8 Event Flags
All event flags are shared by all threads in the process. Therefore, it is possible
for different threads’ use of the same event flag to cause interference.

If two threads use the same event flag in calls to different system services,
whichever service completes first will cause both threads to awaken, even
though the other service has not completed. This situation can be resolved by
specifying an I/O status block (IOSB) for those system services that use them.
When an IOSB is present, the blocked thread will not be awakened when the
event flag is set, unless the IOSB has also been written.

A Threads Library process is rarely in LEF state. In general, instead of
blocking for an event flag wait, the Threads Library schedules another thread
to be run. However, if no threads are available, the Threads Library schedules
a ‘‘null’’ thread, which places the virtual processor in HIB state until it is
needed to execute a thread.

Considerations for OpenVMS Systems B–15

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

Note

If a thread calls a system service that uses a common event flag, the
calling thread’s virtual processor blocks until the wait is satisfied.
(That is, no upcall is made to the OpenVMS kernel to schedule another
thread.) On a uniprocessor, such a system service call will most likely
cause all threads in the process to block.

B.12.9 Interactions with OpenVMS
There are several interactions with the OpenVMS operating system that
should be noted:

• Like system service calls, pagefault waits are thread synchronous. When
a thread incurs a ‘‘hard’’ pagefault (reading the page from disk), an upcall
to the Threads Library takes place, and the Threads Library places the
thread in a blocked state. The Threads Library schedules another thread
to run in its place.

When the pagefault resolution is complete, another upcall occurs, and the
Threads Library schedules it to run at its next opportunity. It is possible
for multiple threads to take faults on the same page at approximately the
same time. Each thread is blocked, in turn, and becomes unblocked when
the page becomes valid.

• Most OpenVMS system services cannot themselves support being
called by multiple threads concurrently. Therefore, calls to OpenVMS
system services are serialized using a mechanism called the inner-mode
semaphore. If one thread attempts to call a system service while another
thread is in the middle of calling a system service, the second thread is
blocked by an upcall until the first thread completes its service call.

• Threads Library timeslicing changed slightly for OpenVMS Alpha Version
7.0 and later. Prior to Version 7.0, the Threads Library timeslicer
was implemented using an OpenVMS timer. This caused a Threads
Library scheduler AST to be delivered to the process at regular wall-
clock time intervals. While running on wall-clock time was a necessary
evil (to support the interruption of system service blocks), this timeslice
mechanism had several drawbacks.

In OpenVMS Version 7.0 and later, timeslicing is implemented as an upcall
to the Threads Library that is delivered after the thread has consumed a
sufficient amount of CPU time. Thus, when no threads are running, no
timeslicing takes place.

B–16 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

B.12.10 Image Exit
In multithreaded processes, image exit occurs as follows: $EXIT does not
immediately invoke exit handler routines. Instead, it results in an upcall that
causes the Threads Library to schedule a special thread to execute the exit-
handler routines. $EXIT then calls pthread_exit() to terminate the calling
thread. This allows the calling thread to release any resources that it might be
holding.

To avoid possible deadlocks, the exit-handler routines are executed in a
separate thread. For example, if a thread calls $EXIT while holding a mutex
that is required by an exit-handler routine, then that routine causes the thread
to block forever, as it waits for a mutex that it already holds. Because the exit-
handler routine executes in a separate thread, it can block while the thread
holding the mutex cleans up.

$FORCEX works in an analogous fashion. Instead of invoking $EXIT directly,
it causes an upcall that allows the Threads Library to release the exit-handler
thread.

DCL Ctrl/Y continues to work as it always has on multithreaded applications.
However, typing EXIT or issuing any other command that invokes a new image
causes the $FORCEX upcall. While this is an improvement in many cases over
the behavior prior to OpenVMS Version 7.0, it does not guarantee that the
multithreaded application will exit.

For example, if the application is deadlocked, holding a resource required
by one of the exit handler’s routines, the application will continue to hang,
even after typing Ctrl/Y and EXIT. In these cases, type Ctrl/Y and STOP to
terminate the application without running exit handlers. Note that doing so
causes the application to be unable to clean up, and it may leave data files and
the terminal in an inconsistent state.

B.12.11 SYSGEN Parameter MULTITHREAD
The SYSGEN parameter MULTITHREAD limits the maximum number of
kernel threads per process. It is set by AUTOGEN to the number of CPUs on
the system. If MULTITHREAD is set to zero (0), two-level scheduling support
is disabled, and the Threads Library reverts to its behavior prior to OpenVMS
Version 7.0—that is, no upcalls can occur, and it does not use all processors in
multiprocessor systems.

Considerations for OpenVMS Systems B–17

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

B.12.12 Process Control System Services and DCL Commands
OpenVMS system services and DCL commands are either process based or
operate on a per-thread basis. This section identifies several system services
on this basis.

B.12.12.1 Process-Level System Services
The following system services continue to be process based: $SUSPEND,
$RESUME, and $DELPRC. These services will operate on an entire process;
they are not thread based. For example, $SUSPEND issued by a thread will
suspend all of the virtual processors in process, not just the calling thread.

Under OpenVMS Version 7.0 or later, it is possible to see all but one of your
kernel threads in SUSP state, such as when at a breakpoint in the debugger.
This effect is a part of the debugging support and is not the result of calling
$SUSPND.

B.12.12.2 Kernel-Level System Services
The following system services now operate on a per-thread basis: $HIBER,
$SCHDWK, and $SYNCH. These services will not operate on an entire process;
they are thread based. For example, $HIBER will cause the calling thread to
become inactive but will not affect other threads in the process.

B.12.12.3 DCL Commands
The following DCL commands operate as indicated:

• STOP/IDENTIFICATION—This command continues to work on a process
basis.

• SET PROCESS—This command continues to work on a process basis
except for SET PROCESS/PRIORITY.

• SET PROCESS/PRIORITY—This command now sets the priority of a
kernel thread. Avoid setting different priorities for kernel threads in the
same process. Refer to Section B.12.4 for more information.

B.13 Interoperability with POSIX for OpenVMS
Previous releases of the POSIX for OpenVMS layered product had very limited
interoperability with the Threads Library. Under OpenVMS Version 7.0 and
later, using the Threads Library with the POSIX for OpenVMS layered product
is not supported.

B–18 Considerations for OpenVMS Systems

C
Debugging Multithreaded Applications

The debugging information in this appendix is specific to applications that use
the POSIX Threads Library.

C.1 Using PTHREAD_CONFIG
During initialization of the Threads Library run-time environment, the
PTHREAD_CONFIG environment variable (on Tru64 UNIX systems) or logical
symbol (on OpenVMS systems), if defined, is used to set static options for
the multithreaded program. You can set PTHREAD_CONFIG to assist you in
debugging a Threads Library application.

C.1.1 Major and Minor Keywords
As summarized in Table C–1, PTHREAD_CONFIG takes ‘‘major keywords’’ as
arguments. Use a ‘‘minor keyword’’ to specify a value for each major keyword.

Table C–1 PTHREAD_CONFIG Settings

Major keyword Minor keyword Meaning

dump= file-path Path of bugcheck file (OpenVMS
only)

meter= condition Meter condition variable
operations

mutex Meter mutex operations

stack
Record thread greatest stack
extent

all Meter all available operations

none No metering

(continued on next page)

Debugging Multithreaded Applications C–1

Debugging Multithreaded Applications
C.1 Using PTHREAD_CONFIG

Table C–1 (Cont.) PTHREAD_CONFIG Settings

Major keyword Minor keyword Meaning

width= bugcheck_output_width Width of output from bugcheck
output

C.1.2 Specifying Multiple Values
When setting PTHREAD_CONFIG, use a semicolon to separate major keyword
expressions and use a comma to separate minor keyword values. For example,
using DCL under OpenVMS, you can set PTHREAD_CONFIG as follows:

$ define PTHREAD_CONFIG "meter=(stack,mutex);dump=/tmp/dump-d.dmp;width=132"

C.2 Running in Metered Mode
Metering tells the Threads Library to collect statistical and historical
information about the use of synchronization objects within your program.
This affects all synchronization within the program, including that within the
Threads Library itself and any other libraries that use threads. Therefore,
metering provides a very powerful tool for debugging multithreaded code.

To enable metering, define PTHREAD_CONFIG prior to running any threaded
application. The variable should have a value of meter=all to enable metering.
This causes the Threads Library to gather and record statistics and history
information for all synchronization operations.

Programs running in metered mode are somewhat slower than unmetered
programs. Also, normal mutexes that are metered can behave like errorcheck
mutexes in many ways. This does not affect the behavior of correct programs,
but you should be aware of some differences between normal and errorcheck
mutexes. The most important difference is that normal mutexes do not report
a number of usage errors, while errorcheck mutexes do.

Because it can be expensive to detect these conditions, a normal mutex may
not always report these errors. Regardless of whether the program seems
to work correctly under these circumstances, the operations are illegal. A
metered normal mutex will report these errors under more circumstances than
will an unmetered normal mutex.

We recommend Visual Threads to debug Threads Library applications on Tru64
UNIX systems. Refer to the online Visual Threads documentation for more
information.

C–2 Debugging Multithreaded Applications

Debugging Multithreaded Applications
C.3 Using Ladebug on Tru64 UNIX Systems

C.3 Using Ladebug on Tru64 UNIX Systems
The Compaq Ladebug debugger provides commands to display the state of
threads, mutexes, and condition variables.

Using the Ladebug commands, you can examine core files and remote debug
sessions, as well as run processes.

The basic commands are:

• thread n — Sets the current thread context to n.

• show thread [n ...] — Displays thread state (more information displayed
if $verbose=1)

• show mutex [n ...] — Display mutex state.

• show condition [n ...] — Display condition variable state.

Refer to the Ladebug documentation for further details.

C.4 Debugging Threads on OpenVMS Systems
This section presents particular topics that relate to debugging a multithreaded
application under OpenVMS.

C.4.1 Display of Stack Trace from Unhandled Exception
When a program incurs an unhandled exception, a stack trace is produced
that shows the call frames from the point where the exception was raised or,
if TRY/CATCH, TRY/FINALLY, or POSIX cleanup handlers are used, from the point
where it was last reraised to the bottom of the stack.

Debugging Multithreaded Applications C–3

D
Migrating from the cma Interface

This appendix presents information that helps you migrate existing programs
and applications that use the Compaq proprietary CMA (or cma) interface to
use the pthread interface, based on the IEEE POSIX 1003.1c-1995 standard.

Note

In future releases, the cma interface will continue to exist and
be supported, but it will no longer be documented or enhanced.
Therefore, it is recommended that you port your cma-based programs
and applications to the pthread interface as soon as possible.
The pthread interface is the most portable, efficient, and robust
multithreading run-time library offered by Compaq.

D.1 Overview
The pthread interface differs significantly from the cma interface, though
there are many similarities between the functions that individual routines
perform. This section gives hints about the relationship between the two sets
of routines, to assist you in migrating applications.

Note that routines whose names have the _np suffix are not portable—that is,
the routine might not be available except in the POSIX Threads Library.

You should include the C language pthread.h header file for prototypes of the
pthread routines.

Migrating from the cma Interface D–1

Migrating from the cma Interface
D.2 cma Handles

D.2 cma Handles
A cma handle is storage, similar to a pointer, that refers to a specific Threads
Library object (thread, mutex, condition variable, queue, or attributes object).

Handles are allocated by the user application. They can be freely copied by
the program and stored in any class of storage; objects are managed by the
Threads Library.

In the cma interface, because objects are accessed only by handles, you can
think of the handle as if it were the object itself. Threads Library objects are
accessed by handles (rather than pointers), because handles allow for greater
robustness and portability. Handles allow the Threads Library to detect the
following types of run-time errors:

• Using an uninitialized handle

• Using a corrupted handle

• Using a handle whose object no longer exists (a dangling handle)

Handles are not supported in the pthread interface. Although this provides
less robustness due to more limited error checking, it allows better performance
by decreasing memory use and memory access. (That is, handles result in
pointers to pointers.)

D.3 Interface Routine Mapping
As summarized in Table D–1, many cma routines perform functions nearly
identical to corresponding routines in the pthread interface. The syntax and
semantics differ, but the similarities are also notable.

Table D–1 Corresponding cma and pthread Routines

cma Routine pthread Routine Notes

cma_alert_disable_asynch() pthread_setcancelstate()
/pthread_setcanceltype()

cma_alert_disable_general() pthread_setcancelstate()
/pthread_setcanceltype()

cma_alert_enable_asynch() pthread_setcancelstate()
/pthread_setcanceltype()

(continued on next page)

D–2 Migrating from the cma Interface

Migrating from the cma Interface
D.3 Interface Routine Mapping

Table D–1 (Cont.) Corresponding cma and pthread Routines

cma Routine pthread Routine Notes

cma_alert_enable_general() pthread_setcancelstate()
/pthread_setcanceltype()

cma_alert_restore() pthread_setcancelstate()
/pthread_setcanceltype()

cma_alert_test() pthread_testcancel()

cma_attr_create() pthread_attr_init()

cma_attr_delete() pthread_attr_destroy()

cma_attr_get_guardsize() pthread_attr_getguardsize_np()

cma_attr_get_inherit_sched() pthread_attr_getinheritsched()

cma_attr_get_mutex_kind() pthread_mutexattr_gettype_np()

cma_attr_get_priority() pthread_attr_setsched_param()

cma_attr_get_sched() pthread_attr_getschedpolicy()

cma_attr_get_stacksize() pthread_attr_getstacksize()

cma_attr_set_guardsize() pthread_attr_setguardsize_np()

cma_attr_set_inherit_sched() pthread_attr_setinheritsched()

cma_attr_set_mutex_kind() pthread_mutexattr_settype_np()

cma_attr_set_priority() pthread_attr_setsched_param()

cma_attr_set_sched() pthread_attr_setschedpolicy()

cma_attr_set_stacksize() pthread_attr_setstacksize()

cma_cond_broadcast() pthread_cond_broadcast()

cma_cond_create() pthread_cond_init()

cma_cond_delete() pthread_cond_destroy()

cma_cond_signal() pthread_cond_signal()

cma_cond_signal_int() pthread_cond_signal_int_np()

cma_cond_timed_wait() pthread_cond_timedwait()

cma_cond_wait() pthread_cond_wait()

cma_delay() pthread_delay_np()

(continued on next page)

Migrating from the cma Interface D–3

Migrating from the cma Interface
D.3 Interface Routine Mapping

Table D–1 (Cont.) Corresponding cma and pthread Routines

cma Routine pthread Routine Notes

cma_handle_assign() none Use
Language
assign-
ment
operator.

cma_handle_equal() pthread_equal()

cma_init() none Not nec-
essary.

cma_key_create() pthread_key_create()
(Note: pthread_key_delete() is
available as well.)

cma_key_get_context() pthread_getspecific()

cma_key_set_context() pthread_setspecific()

cma_lock_global() pthread_lock_global_np()

cma_mutex_create() pthread_mutex_init()

cma_mutex_delete() pthread_mutex_delete()

cma_mutex_lock() pthread_mutex_lock()

cma_mutex_try_lock() pthread_mutex_trylock()

cma_mutex_unlock() pthread_mutex_unlock()

cma_once() pthread_once()

cma_stack_check_limit_np()

cma_thread_alert() pthread_cancel()

cma_thread_bind_to_cpu() none

cma_thread_create() pthread_create()

cma_thread_detach() pthread_detach()

cma_thread_exit_error() pthread_exit() With
Status.

cma_thread_exit_normal() pthread_exit() With
Status.

cma_thread_get_priority() pthread_getschedparam()

cma_thread_get_sched() pthread_setschedparam()

cma_thread_get_self() pthread_self()

(continued on next page)

D–4 Migrating from the cma Interface

Migrating from the cma Interface
D.3 Interface Routine Mapping

Table D–1 (Cont.) Corresponding cma and pthread Routines

cma Routine pthread Routine Notes

cma_thread_join() pthread_join()

cma_thread_set_priority() pthread_setschedparam()

cma_thread_set_sched() pthread_setschedparam()

cma_time_get_expiration() pthread_get_expiration_np()

cma_unlock_global() pthread_unlock_global_np()

cma_yield() pthread_yield_np()

Notice that the cma routine cma_cond_timed_wait() requires the time
argument expiration to be specified in local time; whereas the pthread routine
pthread_cond_timedwait() requires the time argument abstime to be specified
in Universal Coordinated Time (UTC).

D.4 New pthread Routines
The following are pthread interface routines that have no functional
similarities in the cma interface:

pthread_atfork() (Tru64 UNIX only)
pthread_attr_getdetachstate()
pthread_attr_getscope()
pthread_attr_setdetachstate()
pthread_attr_setscope()
pthread_condattr_getpshared()
pthread_condattr_setpshared()
pthread_key_delete()
pthread_kill() (Tru64 UNIX only)
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
All pthread_rwlockattr_ and pthread_rwlock_ routines
pthread_sigmask() (Tru64 UNIX only)
sigwait()

Migrating from the cma Interface D–5

E
Migrating from the d4 Interface

This appendix provides migration information for the routines in the POSIX
1003.4a/Draft 4 (or d4) interface.

Note

Applications that use the d4 routines require significant modification
to be migrated to the pthread interface described in Part II.

E.1 Overview
Routines in the pthread interface differ significantly from the original POSIX
1003.4a/Draft 4 implementation. This section describes the major changes
between the interfaces.

E.2 Error Status and Function Returns
The pthread interface does not use the global variable errno. (Note that
the Threads Library provides a thread-specific errno for use by libraries and
application code, but the pthread interface does not write to it.)

If an error condition occurs, a pthread routine returns an integer value
that indicates the type of error. For example, a call to the d4 interface’s
implementation of pthread_cond_destroy() that returned a –1 and set errno
to [EBUSY], returns [EBUSY] as the routine’s return value in the pthread
interface implementation.

On successful completion, most pthread interface routines return zero (0).

Migrating from the d4 Interface E–1

Migrating from the d4 Interface
E.3 Replaced or Renamed Routines

E.3 Replaced or Renamed Routines
Many routines in the d4 interface have been replaced or renamed in the
pthread interface, as shown in Table E–1.

Table E–1 pthread Routines That Replace d4 Routines

d4 Routine Replacement pthread Routine

pthread_attr_create() pthread_attr_init()

pthread_attr_delete() pthread_attr_destroy()

pthread_attr_set/getdetach_np() pthread_attr_set/getdetachstate()

pthread_attr_set/getguardsize_np()pthread_attr_set/getguardsize()

pthread_attr_set/getprio() pthread_attr_set/getschedparam()

pthread_attr_set/getsched() pthread_attr_set/getschedpolicy()

pthread_condattr_create() pthread_condattr_init()

pthread_condattr_delete() pthread_condattr_destroy()

pthread_keycreate() pthread_key_create()

pthread_mutexattr_create() pthread_mutexattr_init()

pthread_mutexattr_delete() pthread_mutexattr_destroy()

pthread_mutexattr_get/setkind_np()pthread_mutexattr_get/settype()

pthread_setasynccancel() pthread_setcanceltype()

pthread_setcancel() pthread_setcancelstate()

pthread_set/getprio() pthread_set/getschedparam()

pthread_set/getscheduler() pthread_set/getschedparam()

pthread_yield() sched_yield()

E.4 Routines with No Changes to Syntax
Except for the return value, the following routines in the d4 interface have no
changes to syntax in the pthread interface:

pthread_attr_setinheritsched()
pthread_cancel()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_signal()
pthread_cond_signal_int_np()
pthread_cond_timedwait()
pthread_cond_wait()

E–2 Migrating from the d4 Interface

Migrating from the d4 Interface
E.4 Routines with No Changes to Syntax

pthread_delay_np()
pthread_equal()
pthread_exit()
pthread_get_expiration_np()
pthread_join() (now detaches the thread)
pthread_mutex_destroy()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_once()

The following routines have no changes in syntax or return value:

pthread_self()
pthread_testcancel()

Notice that the d4 routine pthread_cond_timedwait() requires the time
argument abstime to be specified in local time; whereas the pthread routine
pthread_cond_timedwait() requires the time argument abstime to be specified
in Universal Coordinated Time (UTC).

E.5 Routines with Prototype or Syntax Changes
Table E–2 shows the routines in the d4 interface that have changes to their
argument syntax in the pthread interface.

Table E–2 d4 Routines With Syntax Changes as pthread Routines

Old Syntax New Syntax

int pthread_attr_getinheritsched(
pthread_attr_t attr)

int pthread_attr_getinheritsched(
const pthread_attr_t *attr,
int *inheritsched)

unsigned long pthread_attr_getstacksize(
pthread_attr_t attr)

int pthread_attr_getstacksize(
const pthread_attr_t *attr,
size_t *stacksize)

unsigned long pthread_attr_setstacksize(
pthread_attr_t *attr,
long stacksize)

int pthread_attr_setstacksize(
const pthread_attr_t *attr,
size_t stacksize)

int pthread_cleanup_pop(
int execute)

void pthread_cleanup_pop(
int execute)

(continued on next page)

Migrating from the d4 Interface E–3

Migrating from the d4 Interface
E.5 Routines with Prototype or Syntax Changes

Table E–2 (Cont.) d4 Routines With Syntax Changes as pthread Routines

Old Syntax New Syntax

int pthread_cond_init(
pthread_cond_t *cond,
pthread_condattr_t attr)

int pthread_cond_init(
pthread_cond_t *cond,
pthread_condattr_t *attr)

int pthread_create(
pthread_t *thread,
pthread_attr_t attr,
pthread_startroutine_t start_routine,
pthread_addr_t arg)

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void* (*start_routine)(void

*),
void *arg)

int pthread_detach(
pthread_t *thread)

int pthread_detach(
pthread_t thread)

int pthread_getspecific(
pthread_key_t key, void **value)

void *pthread_getspecific(
pthread_key_t key)

void pthread_lock_global_np() int pthread_lock_global_np(void)

void pthread_unlock_global_np() int pthread_unlock_global_np(void)

int pthread_mutex_init(
pthread_mutex_t *mutex,
pthread_mutexattr_t attr)

int pthread_mutex_init(
pthread_mutex_t *mutex,
const pthread_mutexattr_t

*attr)

Table E–3 shows routines in the d4 interface that have a corresponding
pthread routine that does not support the obsolete d4-style datatypes. These
datatypes were documented for previous releases of the Threads Library.

If your original code used the standard Threads Library datatypes, then this
migration requirement might not impact your code.

Table E–3 d4 Routines Whose pthread Counterpart Uses Standard Datatypes

New Standard Datatype Syntax Nonstandard Datatype Syntax

void pthread_cleanup_push(
void (*routine)(void *), void *arg)

int pthread_cleanup_push(
pthread_cleanup_t *routine,
pthread_addr_t arg)

(continued on next page)

E–4 Migrating from the d4 Interface

Migrating from the d4 Interface
E.5 Routines with Prototype or Syntax Changes

Table E–3 (Cont.) d4 Routines Whose pthread Counterpart Uses Standard Datatypes

New Standard Datatype Syntax Nonstandard Datatype Syntax

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg)

int pthread_create(
pthread_t *thread,
pthread_attr_t attr,
pthread_startroutine_t

start_routine,
pthread_addr_t arg)

int pthread_exit(
void *value_ptr)

int pthread_exit(
pthread_addr_t status)

void *pthread_getspecific(
pthread_key_t key)

int pthread_getspecific(
pthread_key_t key,
pthread_addr_t *value)

int pthread_join(
pthread_t thread, void **value_ptr)

int pthread_join(
pthread_t thread,
pthread_addr_t *status)

int pthread_once(
pthread_once_t *once_control,
void (*init_routine)(void))

int pthread_once(
pthread_once_t *once_block,
pthread_initroutine_t

init_routine)

int pthread_setspecific(
pthread_key_t key, const void *value)

int pthread_setspecific(
pthread_key_t key,
pthread_addr_t value)

E.6 New Routines
The following are routines in the pthread interface that did not exist at the
time of the implementation of the d4 interface:

pthread_atfork() (Tru64 UNIX only)
pthread_attr_getscope()
pthread_attr_setscope()
pthread_key_delete()
pthread_kill() (Tru64 UNIX only)
All pthread_rwlockattr_ and pthread_rwlock_ routines
pthread_sigmask() (Tru64 UNIX only)
All _getpshared and _setpshared routines

Migrating from the d4 Interface E–5

Glossary

actual granularity

Granularity for a program; limited by the granularities made available by
the processor, but determined by the code produced by the compiler. See also
granularity, natural granularity, and system granularity.

address exception

An exception whose identity is based on where in the program it was raised.
See also exception and status exception.

alert

See cancelation request.

alertable routine

See cancelable routine.

AST

Mechanism that signals an asynchronous event to a process.

asynchronous cancelability

If enabled, allows a thread to receive a cancelation request at any time (not
only at cancelation points). See also general cancelability.

asynchronous signal

Signal that is the result of an event that is external to the process and is
delivered at any point in a thread’s execution when such an event occurs. See
also synchronous signal.

attributes

Individual components of the attributes object. Attributes specify detailed
properties about the objects to be created. See also attributes object.

Glossary–1

attributes object

Object used to describe Threads Library objects (thread, mutex, condition
variable, or queue). This description consists of the individual attribute values
that are used to create an object. See also attributes.

bugcheck

An error condition internal to the Threads Library run-time environment
that causes it to produce a specially formatted error message. Output of this
message can be controlled using the PTHREAD_CONFIG environment variable or
logical symbol.

cancelability state

Attribute of a thread that determines whether it currently receives cancelation
requests.

cancelability type

Attribute of a thread that determines whether it responds to a cancelation
request at cancelation points (synchronous cancelation) or at any point in its
execution (asynchronous cancelation).

cancelation point

A routine that, when called, determines whether a cancelation request is
pending for this thread.

cancelation request

Mechanism by which one thread requests termination of another thread (or
itself).

condition variable

Object that allows a thread to block its own execution until some shared data
reaches a particular state.

condition variable attributes object

Object that allows you to specify values for condition variable attributes when
you create a condition variable.

contention scope

Attribute of a thread that specifies the set of threads with which it competes
for processing resources. See also process contention scope and system
contention scope.

Glossary–2

deadlock

Condition involving one or more threads and a set of one or more resources
in which each of the threads is blocked waiting for one of the resources and
all of the resources are held by the threads such that none of the threads can
continue. For example, a thread will enter a self-deadlock when it attempts
to lock a normal mutex a second time. Likewise, two threads will enter a
deadlock when each attempts to lock a second mutex that is already held by
the other. The introduction of additional threads and synchronization objects
allows for more complex deadlock configurations.

dynamic memory

Memory that is allocated by the program as a result of a call to some memory
management function, and that is referenced through pointer variables. See
also static memory and stack memory.

epilogue code

Block of code, associated with a Threads Library exception scope, that finalizes
the context of an exception scope. Epilogue code is always executed, regardless
of whether the code in the associated exception scope raised an exception.

errorcheck mutex

Mutex that can be locked exactly once by a thread, like a normal mutex. If
a thread tries to lock the mutex again without first unlocking it, the thread
receives an error instead of deadlocking. See also deadlock, mutex, normal
mutex, and recursive mutex.

exception

Object that describes an error condition.

exception scope

Block of code where exceptions are handled.

finalization code

See epilogue code.

general cancelability

If enabled, allows a thread to receive a cancelation request at specific
cancelation points. If disabled, the thread cannot be canceled. See also
asynchronous cancelability.

Glossary–3

global lock

Single recursive mutex provided by the Threads Library for use by all threads
in a process when calling routines or code that is not thread-safe to ensure
serialized, exclusive access to the unsafe code.

granularity

Smallest unit of storage (that is, bytes, words, longwords, or quadwords) that
a computer can load or store in one machine instruction. See also actual
granularity, natural granularity, and system granularity.

guard area

Area at the overflow end of a thread’s writable stack and the stack overflow
warning area that is inaccessible to the thread. If the thread attempts
to access a memory location within the guard area, a memory addressing
violation occurs. See also overflow warning area.

guard pages

Low-level memory regions that form a stack guard region.

guardsize attribute

Attribute of a thread that specifies the minimum size (in bytes) of the guard
area for a thread’s stack.

handle

Storage, similar to a pointer, that refers to a specific Threads Library object.

inherit scheduling attribute

Attribute of a thread that specifies whether a newly created thread inherits
the scheduling attributes (scheduling priority, policy and contention scope) of
the creating thread or uses the scheduling attributes stored in the attributes
object. See also thread attributes object.

kernel execution context

Entity managed by the operating system kernel that uses processing resources.
Also known as a kernel thread or virtual processor.

lifetime

Length of time memory is allocated for a particular purpose.

lock acquisition

Each instance of acquiring a mutex or read-write lock.

Glossary–4

multithreaded programming

Division of a program into multiple threads that execute concurrently.

mutex

Mutual exclusion, an object that multiple threads use to ensure the integrity of
a shared resource that they access (most commonly shared data) by allowing
only one thread to access it at a time. See also normal mutex, errorcheck
mutex, and recursive mutex.

mutex attributes object

Object that allows you to specify values for mutex attributes when you create a
mutex.

mutex kind attribute

Mutex attribute that specifies whether its kind is normal, recursive, or
errorcheck.

natural granularity

Granularity of a processor; determined by the processor’s architecture, cache
architecture, and instruction set. See also actual granularity, granularity, and
system granularity.

nonterminating signal

Signal that does not result in the termination of the process by default. See
also terminating signal.

normal mutex

A kind of mutex that can be locked exactly once by a thread. It does not
perform error checks. If a thread tries to lock the mutex again without first
unlocking it, the thread waits for itself to release the lock and deadlocks. In
the Threads Library, this kind of mutex offers the best performance. See also
mutex, errorcheck mutex, and recursive mutex.

overflow warning area

Area between the overflow end of the thread’s writable stack and the stack
guard area. If the thread attempts to access a memory location within the
overflow warning area, a stack overflow exception occurs. The program can
catch this exception and continue processing. See also guard area.

per-thread context

See thread-specific data.

Glossary–5

predicate

Boolean expression that defines a particular state of shared data; threads wait
on a condition variable for shared data to enter the defined state. See also
condition variable.

priority inversion

Occurs when interaction among three or more threads blocks the highest-
priority thread from executing until after the lowest-priority thread can
execute.

process contention scope

Setting for the contention scope attribute of a thread. Specifies that a thread
competes for processing resources only with other threads in the same process.
See also contention scope and system contention scope.

race condition

Occurs when two or more threads perform an operation, and the result of the
operation depends on unpredictable timing factors.

read-write lock

An object that serializes access, in a thread-safe manner, to a data object
that is shared among threads and that is frequently read but less frequently
written.

recursive mutex

Mutex that can be locked more than once by a given thread without causing
a deadlock. The thread must call the pthread_mutex_unlock() routine the
same number of times that it called the pthread_mutex_lock() routine before
another thread can lock the mutex. See also deadlock, mutex, normal mutex,
and errorcheck mutex.

reentrant

Refers to a routine that functions normally despite being called simultaneously
or sequentially in different threads.

scheduling policy attribute

Attribute of a thread that describes how the thread is scheduled for execution
relative to the other threads in the program. See also thread attributes object.

Glossary–6

scheduling precedence

The set of characteristics of threads and the Threads Library scheduling
algorithm that, in combination, determine which thread will be allowed to
run when a scheduling decision is made. Scheduling decisions are made when
a thread becomes ready to run (for example, when a mutex on which it was
waiting is unlocked, or a condition variable on which it was waiting is signaled
or broadcast), or when a thread is blocked (for example, when it attempts to
lock a locked mutex or when it waits on a condition variable).

scheduling priority attribute

Attribute of a thread that specifies the execution priority of a thread, expressed
relative to other threads in the same policy. See also thread attributes object.

scope

Areas of a program where code can access memory.

software interrupt handler

A routine that is executed in response to an interrupt generated by the
operating system or equivalent support software. For example, an AST service
routine handles interrupts on OpenVMS systems; a signal handler routine
handles interrupts on Tru64 UNIX systems.

stack memory

Memory that is allocated from a thread’s stack area at run time by code
generated by the language compiler, generally when a routine is initially
called. See also dynamic memory and static memory.

stacksize attribute

Attribute of a thread that specifies the minimum size (in bytes) of the memory
required for its stack.

start routine

Routine in your program where a newly created thread begins executing.

static memory

Any variable that is permanently allocated at a particular address for the life
of the program. See also dynamic memory and stack memory.

status exception

An exception whose identity is based on the status value it contains. See also
exception and address exception.

Glossary–7

synchronous signal

Signal that is the result of an event that occurs inside a process and is
delivered synchronously with respect to that event. See also asynchronous
signal.

system contention scope

Setting for the contention scope attribute of a thread. Specifies that a thread
competes for processing resources with all other threads in the system. See
also contention scope and process contention scope.

system granularity

Granularity provided by an operating system’s run-time libraries, to provide
a consistent and coherent environment for applications. See also actual
granularity, granularity, and natural granularity.

terminating signal

Signal that results in the termination of the process by default. See also
nonterminating signal.

thread

Single, sequential flow of control within a program. Within a single thread,
there is a single point of execution.

thread attributes object

Object that allows you to specify values for thread attributes when you create
a thread.

thread object

Data structure that describes a thread.

thread-safe

Refers to a routine that can be called simultaneously from multiple threads
without risk of corruption. Refers to a library that typically consists of routines
that do not themselves create or use threads but which can be called safely
from applications that use threads.

thread-independent services

Routines in the Threads Library tis interface that support building thread-safe
libraries.

Glossary–8

thread-specific data

User-specified fields of arbitrary data that can be added to a thread’s context.

time slicing

Mechanism that ensures that every thread is allowed time to execute by
preempting running threads at fixed intervals.

tis condition variable

Condition variable object that can be created using the Threads Library tis
interface routines.

tis mutex

Mutex object that can be created using the Threads Library tis interface
routines.

two-level scheduling

Thread scheduling model that schedules user threads onto kernel execution
contexts, just as the operating system schedules processes onto the processors
of a multiprocessor machine.

upcall

Technique for the operating system kernel to inform the Threads Library
that a kernel execution context is available. When a kernel execution context
becomes available, the Threads Library scheduler schedules the thread with
highest scheduling precedence that is ready to run onto the available kernel
execution context.

word tearing

Form of race condition in a multithreaded program where two or more threads
independently read the same granule of memory, update different portions
of that granule, then independently (that is, asynchronously) store their
respective copies of that granule. Can occur due to programmer’s inattention
to granularity considerations.

Glossary–9

Index

A
Address exceptions, 5–8
Addressing

64-bit, B–6
API

See Application Programming Interface
(API)

Application programming interface (API)
POSIX Threads error conditions from,

3–23
ASTs (asynchronous system traps)

POSIX Threads’ delivery of, B–12
restrictions on use with POSIX Threads,

B–3
Asynchronous programming techniques

in a multithreaded program, A–10
Asynchronous thread cancelation, 2–20

cleanup from, 2–22
Asynchronous user interface example

program, 6–10
Attributes

of condition variables, 2–35
of mutexes, 2–29

mutex type, 2–29
of threads, 2–3

contention scope, 2–9
guardsize, 2–9
inherit scheduling, 2–4
scheduling policy, 2–4
scheduling priority, 2–7
stack address, 2–8
stack size, 2–8

Attributes objects, 2–2
creating, 2–2
destroying, 2–2

B
Background scheduling policy, 2–4
Boss/worker functional model, 1–5

work queue variation, 1–5
Bugchecks, 3–23

configuring output, 3–23
contents of dump file, 3–24
interpreting output, 3–24

C
Cancelability state, 2–20
Cancelability state attribute

of thread attributes object, 2–20
setting, pthread–201, tis–51

Cancelability type, 2–20
Cancelability type attribute

of thread attributes object, 2–20
setting, pthread–203

Cancelation points
in multithreaded code, 2–21
POSIX Threads routines that provide,

2–21, 4–2
system service routines that provide

under OpenVMS Alpha, B–6
under Tru64 UNIX, A–6

Cancelation requests
delivering, pthread–57, pthread–217,

tis–57
sending, pthread–57

Index–1

CATCH macro, 5–13
CATCH_ALL macro, 5–14
Cleanup handlers, 2–14

executing, pthread–59
registering, pthread–61

cma interface
See Compaq-proprietary CMA (cma)

interface
CMA interface, D–1
Compaq proprietary CMA (cma) interface,

1–26, D–1
Compiling applications

under OpenVMS, B–1
under Tru64 UNIX, A–1

Concurrency level
of threads

getting, pthread–115
setting, pthread–206

Condition handlers (OpenVMS)
declaring, B–5

Condition values (OpenVMS)
used by POSIX Threads, B–6

Condition variable attributes objects, 2–2,
2–35

creating, pthread–67
destroying, pthread–63
initializing, pthread–67
obtaining process-shared attribute value,

pthread–65
setting process-shared attribute value,

pthread–69
Condition variables, 2–30

creating, pthread–77, tis–7
destroying, pthread–73, tis–5
distinguishing from mutexes, 3–10
initializing, pthread–77, tis–7
naming, pthread–75, pthread–80
process-shared, 2–38
signaling, 2–30, 3–11
under the thread-independent services

(tis) interface, 4–3
using in thread-safe library code, 4–3
waiting a specified time interval for,

2–35, pthread–88, tis–11

Condition variables (cont’d)
waiting indefinitely for, 2–30,

pthread–91, tis–14
wakeups for waiting threads, pthread–71,

pthread–82, pthread–84, tis–3, tis–9
spurious, 2–31

Contention scope, 2–9
interaction with thread scheduling

attributes, 3–9
Contention scope attribute

of thread attributes object, 2–9
getting, pthread–20
setting, pthread–47

D
d4 interface

See POSIX 1003.4a/Draft 4 (d4) interface
Data

See Thread-specific data
Deadlocks, 1–8, 3–11

avoiding, 3–11
Debugging tools

for POSIX Threads applications, C–1
metered mode, C–2
under OpenVMS, C–3
under Tru64 UNIX, C–3

Default mutexes, 2–27
Deferred thread cancelation

cleanup from, 2–21
Detachstate attribute

of thread attributes object
getting, pthread–8
setting, pthread–32

Dynamic activation
of POSIX Threads

under OpenVMS, B–3
under Tru64 UNIX, A–12

Dynamic memory, 3–6
using from threads, 3–6

Index–2

E
errno variable, pthread–1, tis–1
Error conditions

detecting, 3–23
from POSIX Threads application

programming interface, 3–23
internal to POSIX Threads, 3–23

Errorcheck mutexes, 2–28
Event flags (OpenVMS), B–15
Example programs

asynchronous user interface, 6–10
prime number search, 6–1

Exception scopes, 5–9
Exceptions

address, 5–8
cancelation of threads, 2–19
CATCH macro, 5–13
catching

all, 5–14
specific, 5–13

CATCH_ALL macro, 5–14
debugging when unhandled (OpenVMS),

C–3
epilogue actions for, 5–15
exceptions package, 5–1
failing

due to condition handlers, B–5
FINALLY macro, 5–15, 5–21
importing error status into, pthread–111
interoperability of, 5–27
language-specific, 5–27
matching two, 5–19, pthread–107
naming conventions for, 5–20
obtaining error status from, 5–18,

pthread–105
operations on, 5–16
POSIX Threads exceptions package, 1–11
POSIX Threads-defined objects, 5–25
programming for, 5–3
programming languages supported for,

5–1
pthread_exc_get_status_np() routine,

5–18, pthread–105

Exceptions (cont’d)
pthread_exc_matches_np() routine, 5–19,

pthread–107
pthread_exc_report_np() routine, 5–18,

pthread–109
pthread_exc_set_status_np() routine,

5–17, pthread–111
purpose of, 5–2
RAISE macro, 5–11
raising, 5–11
referencing when caught, 5–17
relation to return codes and signals, 5–2
reporting, pthread–109
reporting when caught, 5–18
RERAISE macro, 5–15, 5–24
reraising, 5–15
scope of, 5–9
setting error status in, 5–17
status, 5–8
synchronous signals reported as, A–10
termination of, 5–9
THIS_CATCH exception object, 5–17
TRY macro, 5–9
unhandled, C–3
using, 5–20

Expiration time
obtaining, pthread–125, tis–18

F
FINALLY macro, 5–15, 5–21
First-in/first-out (FIFO) scheduling policy,

2–4
Foreground scheduling policy, 2–4
Fork handlers (Tru64 UNIX), pthread–3
Functional models

for multithreaded programming, 1–5
boss/worker, 1–5
combinations, 1–7
pipelining, 1–6
work crew, 1–6

Index–3

G
$GETJPI system service (OpenVMS)

MULTITHREAD item code, B–11
Global lock

See POSIX Threads, global lock
Granularity

avoiding errors, 3–17
compiler support for, 3–16
defined, 3–13
determinants of, 3–14
members of composite data objects, 3–17
word tearing, 3–16

Guardsize attribute
of thread attributes object, 2–9, 3–7

getting, pthread–10
setting, pthread–34

H
Handlers

cleanup, 2–14
condition (OpenVMS), B–5
fork (Tru64 UNIX), pthread–3
interrupt, pthread–84, pthread–86

$HIBER system service (OpenVMS), B–15

I
I/O completion, tis–20, tis–55
Images (OpenVMS)

compiling for POSIX Threads, B–1
linking POSIX Threads-based, B–2

Inherit scheduling attribute
of thread attributes object, 2–4

getting, pthread–12
setting, pthread–37

Interfaces
to POSIX Threads, 1–8

Compaq proprietary CMA (cma),
1–26, D–1

in C language, 1–9
in languages other than C, 1–9
obsolete, 1–26

Interfaces
to POSIX Threads (cont’d)

POSIX 1003.4a/Draft 4 (d4), 1–27,
E–1

POSIX.1 (pthread), 1–10
thread-independent services (tis),

1–23, 4–1, tis–1
undocumented but supported, 1–26

Interrupt handlers
for threads, pthread–84, pthread–86

K
Kernel threads

enabling in existing OpenVMS images,
B–10

OpenVMS linker options, B–9
querying use of (OpenVMS), B–11
relation to user threads

under OpenVMS, B–8
under Tru64 UNIX, A–4

virtual processors for (OpenVMS), B–12

L
Ladebug debugger (Tru64 UNIX), C–3
Libraries

for POSIX Threads, 1–8
lacking thread safety, 1–8, 3–22
shared (Tru64 UNIX)

linking with POSIX Threads, A–2
using with POSIX Threads, A–2

thread-safe, 3–21, 4–1
Linking applications

under OpenVMS, B–2
under Tru64 UNIX, A–2

Lock acquisition, 2–1
Locks

global
See POSIX Threads, global lock

read-write, 4–4

Index–4

M
Macros

CATCH, 5–13
CATCH_ALL, 5–14
FINALLY, 5–15, 5–21
PTHREAD_COND_INITIALIZER, 4–3,

pthread–78
PTHREAD_COND_INITWITHNAME_NP,

4–3
PTHREAD_MUTEX_INITIALIZER, 4–3,

pthread–160
PTHREAD_MUTEX_INITWITHNAME,

4–3
PTHREAD_ONCE_INIT, pthread–170
RAISE macro, 5–11
RERAISE, 5–15, 5–24
TRY, 5–9

restrictions, B–5
Memory

dynamic, 3–6
sharing, 3–4
stack, 3–5

identifying overflow, 2–9
static, 3–5
synchronizing threads’ access to, 3–4

Multiprocessing systems, 1–2
Multithreaded programming

asynchronous programming techniques,
A–10

asynchronous thread execution, 3–1
cancelation point routines, 4–2
cancelation points, 2–21
dependencies upon other libraries, 3–20

multiple thread libraries unsupported,
3–23

not thread-safe, 3–22
reentrant, 3–21
thread-safe, 3–21

detecting error conditions, 3–23
example programs

asynchronous user interface, 6–10
prime number search, 6–1
thread cancelation, 2–23

Multithreaded programming (cont’d)
functional models, 1–5

boss/worker, 1–5
combinations, 1–7
pipelining, 1–6
work crew, 1–6

managing a thread’s stack, 3–6
one-time initialization, 3–20,

pthread–169, tis–37
potential issues, 1–7

deadlocks, 1–8
dependence upon nonreentrant

software, 1–8, 3–21
priority inversion, 1–8
program complexity, 1–8
race conditions, 1–8

programming errors
initializing objects after thread

creation, 3–2
passing stack local data, 3–2
thread scheduling as thread

synchronization, 3–3
scheduling threads, 3–8

interaction with thread contention
scope, 3–9

priority inversion, 3–9
real-time, 3–8

sharing memory, 3–4
signals (Tru64 UNIX)

avoiding use of, A–10
synchronizing memory access, 3–4, 3–10

avoiding deadlocks, 3–11
avoiding race conditions, 3–10
distinguishing mutexes and condition

variables, 3–10
signaling a condition variable, 3–11

using memory
dynamic, 3–6
stack, 3–5
static, 3–5

writing thread-safe libraries, 4–1
yielding thread execution, pthread–220,

pthread–226, tis–66

Index–5

Mutex attributes objects, 2–2, 2–29
creating, pthread–149
destroying, pthread–143
initializing, pthread–149
mutex type attribute, 2–29

getting, pthread–147
setting, pthread–153

obtaining the value of the process-shared
attribute, pthread–145

setting the value of the process-shared
attribute, pthread–151

Mutex type attribute
of mutex attributes object, 2–29

Mutexes, 2–26
creating, pthread–159, tis–29
destroying, pthread–155, tis–27
distinguishing from condition variables,

3–10
in thread-safe library code, 4–3
initializing, pthread–159, tis–29
locking, pthread–161, pthread–165,

tis–31, tis–33
locking, before signaling a condition

variable, 3–11
naming, pthread–157, pthread–163
operations on, 2–28
POSIX Threads global

locking, pthread–141, tis–26
unlocking, pthread–218, tis–58

process-shared, 2–38
protecting call to code lacking thread

safety, 3–22
types of

default, 2–27
errorcheck, 2–28
normal, 2–27
recursive, 2–27

under the thread-independent services
(tis) interface, 4–3

unlocking, pthread–167, tis–35
using static data before release of, 3–22

N
Naming conventions

for exception objects, 5–20
Normal mutexes, 2–27

O
Object names

obtaining, pthread–14, pthread–75,
pthread–117, pthread–135,
pthread–157

setting, pthread–40, pthread–80,
pthread–137, pthread–163,
pthread–208

One-time initialization of threads, 3–20
OpenVMS operating system

64-bit addressing, B–6
condition values used by POSIX Threads,

B–6
DCL command operation with POSIX

Threads, B–18
debugging POSIX Threads applications,

C–3
interactions with POSIX Threads, B–16
linker options for kernel threads, B–9
linking POSIX Threads-based images,

B–2
system services

blocking, B–14
using POSIX Threads with, B–1

P
Pagefaults

of POSIX Threads
under Tr64 UNIX, A–12

PAGESIZE environment variable (Tru64
UNIX)

relation to size of thread stack guard
region, A–11

Pipelining functional model, 1–6
POSIX 1003.1-1996 standard

See POSIX.1 standard

Index–6

POSIX 1003.4a/Draft 4 (d4) interface, 1–27,
E–1

POSIX for OpenVMS layered product
interoperability with POSIX Threads,

B–18
POSIX Threads

64-bit addressing, B–6
blocking OpenVMS system services, B–14
bugcheck feature

See Bugchecks
cancelability of system services, A–5, B–6
compiling applications

under OpenVMS, B–1
under Tru64 UNIX, A–1

condition values used, B–6
debugging applications, C–1
declaring OpenVMS condition handlers,

B–5
delivery of OpenVMS ASTs, B–12
dynamic activation

under OpenVMS, B–3
under Tru64 UNIX, A–12

effects of OpenVMS DCL commands,
B–18

error conditions
application programming interface

level, 3–23
internal, 3–23

exiting from OpenVMS images, B–17
global lock

avoiding software that lacks thread
safety, 3–22

using from the tis interface, 4–3
header files

under OpenVMS, B–1
under Tru64 UNIX, A–1

interactions with OpenVMS, B–16
interfaces, 1–8

Compaq proprietary CMA (cma),
1–26

in C language, 1–9
in languages other than C, 1–9
obsolete, 1–26
POSIX 1003.4a/Draft 4 (d4), 1–27
POSIX.1 (pthread), 1–10

POSIX Threads
interfaces (cont’d)

thread-independent services (tis),
1–23

undocumented but supported, 1–26
interoperability

with errno variable, pthread–1, tis–1
with POSIX for OpenVMS layered

product, B–18
with signals (Tru64 UNIX), A–9

libraries, 1–8
linking applications

under Tru64 UNIX, A–2
linking with shared libraries (Tru64

UNIX), A–2
pagefaults

under Tru64 UNIX, A–12
platform dependencies

for OpenVMS, B–1
for Tru64 UNIX, A–1

POSIX.1 (pthread) interface, pthread–1
POSIX.1003.4a/Draft 4 (d4) interface,

pthread–1
real-time scheduling, A–4
realtime scheduling

under Tru64 UNIX, A–12
thread-independent services (tis) interface,

1–23, 4–1, tis–1
two-level scheduling

under OpenVMS Alpha, B–8
under Tru64 UNIX, A–3

use of kernel threads
under OpenVMS Alpha, B–8
under Tru64 UNIX, A–4

virtual processors (OpenVMS), B–12
POSIX Threads exceptions package, 1–11
POSIX Threads global mutex

locking, pthread–141, tis–26
unlocking, pthread–218, tis–58

POSIX.1 (pthread) interface, 1–10,
pthread–1

optionally implemented routines, 1–22
summary of routines, 1–10

Index–7

POSIX.1 standard, 1–8, pthread–1
optionally implemented routines, 1–22

POSIX.1003.4a/Draft 4 (d4) interface,
pthread–1

POSIX.1003.4a/Draft 4 document,
pthread–1

Prime number search example program, 6–1
Priority inversion, 1–8, 3–9

avoiding, 3–9
Process contention scope, 2–10, A–5
Process-shared synchronization objects,

2–37
programming considerations, 2–38

Processes
child

creating, pthread–3
Processors

causing thread to release control of,
pthread–220, tis–66

pthread interface
See POSIX.1 (pthread) interface

pthread.h header file, 1–9, A–1, B–1
pthread_atfork() routine, pthread–3
pthread_attr_destroy() routine, pthread–6

using, 2–2
pthread_attr_getdetachstate() routine,

pthread–8
pthread_attr_getguardsize() routine,

pthread–10
using, 2–9

pthread_attr_getinheritsched() routine,
pthread–12

pthread_attr_getname_np() routine,
pthread–14

pthread_attr_getschedparam() routine,
pthread–16

pthread_attr_getschedpolicy() routine,
pthread–18

pthread_attr_getscope() routine, pthread–20
using, 2–10

pthread_attr_getstackaddr() routine,
pthread–23

using, 2–8

pthread_attr_getstackaddr_np() routine,
pthread–25

pthread_attr_getstacksize() routine,
pthread–27

pthread_attr_init() routine, pthread–29
using, 2–2

pthread_attr_setdetachstate() routine,
pthread–32

using, 2–3
pthread_attr_setguardsize() routine,

pthread–34
using, 2–9

pthread_attr_setinheritsched() routine,
pthread–37

using, 2–4
pthread_attr_setname_np() routine,

pthread–40
pthread_attr_setschedparam() routine,

pthread–42
using, 2–7

pthread_attr_setschedpolicy() routine,
pthread–45

using, 2–5
pthread_attr_setscope() routine, pthread–47

using, 2–10
pthread_attr_setstackaddr() routine,

pthread–50
using, 2–8

pthread_attr_setstackaddr_np() routine,
pthread–53

pthread_attr_setstacksize() routine,
pthread–55

using, 2–8, 3–8
pthread_cancel() routine, pthread–57

using, 2–11, 2–19
PTHREAD_CANCELED return value, 2–19
pthread_cleanup_pop() routine, pthread–59

using, 2–12, 2–14, 2–21
pthread_cleanup_push() routine,

pthread–61
using, 2–12, 2–14, 2–19, 2–21

pthread_condattr_destroy() routine,
pthread–63

using, 2–2

Index–8

pthread_condattr_init() routine, pthread–67
using, 2–2

pthread_cond_broadcast() routine,
pthread–71

using, 2–35, 3–4
pthread_cond_destroy() routine, pthread–73

using, 2–35
pthread_cond_getname_np() routine,

pthread–75
pthread_cond_init() routine, pthread–77

using, 2–34
PTHREAD_COND_INITIALIZER macro,

4–3, pthread–78
PTHREAD_COND_INITWITHNAME_NP

macro, 4–3
pthread_cond_setname_np() routine,

pthread–80
pthread_cond_signal() routine, pthread–82

using, 2–32, 2–35, 3–4
pthread_cond_signal_int_np() routine,

pthread–84
using, 2–35, 3–24

pthread_cond_sig_preempt_int_np() routine,
pthread–86

using, 2–35
pthread_cond_timedwait() routine,

pthread–88
using, 2–28, 2–35, 3–4

pthread_cond_wait() routine, pthread–91
using, 2–28, 2–32, 2–34, 3–4

PTHREAD_CONFIG, C–1
configuring bugcheck output, 3–23
major and minor keyword settings, C–1
specifying multiple values, C–2

pthread_create() routine, pthread–94
using, 2–3, 3–4

pthread_delay_np() routine, pthread–99
pthread_detach() routine, pthread–101

using, 2–15
pthread_equal() routine, pthread–103
pthread_exceptions.h header file, 1–11
pthread_exc_get_status_np() routine,

pthread–105
using, 5–18

pthread_exc_matches_np() routine,
pthread–107

using, 5–19
pthread_exc_report_np() routine,

pthread–109
using, 5–18

pthread_exc_set_status_np() routine,
pthread–111

using, 5–17
pthread_exit() routine, pthread–113

using, 2–11, 2–12
pthread_getconcurrency() routine,

pthread–115
pthread_getname_np() routine, pthread–117
pthread_getschedparam() routine,

pthread–119
pthread_getsequence_np() routine,

pthread–121
pthread_getspecific() routine, pthread–123

using, 2–39
pthread_get_expiration_np() routine,

pthread–125
pthread_join() routine, pthread–127

using, 2–15, 3–4
pthread_key_create() routine, pthread–130

using, 2–39
pthread_key_delete() routine, pthread–133
pthread_key_getname_np() routine,

pthread–135
pthread_key_setname_np() routine,

pthread–137
pthread_kill() routine, pthread–139
pthread_lock_global_np() routine,

pthread–141
using, 3–22

pthread_mutexattr_destroy() routine,
pthread–143

using, 2–2
pthread_mutexattr_gettype() routine,

pthread–147
using, 2–29

pthread_mutexattr_init() routine,
pthread–149

using, 2–2

Index–9

pthread_mutexattr_settype() routine,
pthread–153

using, 2–29
pthread_mutex_destroy() routine,

pthread–155
using, 2–29

pthread_mutex_getname_np() routine,
pthread–157

pthread_mutex_init() routine, pthread–159
using, 2–26

PTHREAD_MUTEX_INITIALIZER macro,
4–3, pthread–160

PTHREAD_MUTEX_INITWITHNAME
macro, 4–3

pthread_mutex_lock() routine, pthread–161
using, 2–27, 2–28, 3–4

pthread_mutex_setname_np() routine,
pthread–163

pthread_mutex_trylock() routine,
pthread–165

using, 2–28, 3–4
pthread_mutex_unlock() routine,

pthread–167
using, 2–27, 2–28, 3–4

pthread_once() routine, pthread–169
using, 3–2, 3–20

PTHREAD_ONCE_INIT macro,
pthread–170

pthread_once_t data structure, pthread–169,
tis–37

pthread_rwlockattr_destroy() routine
using, 2–2

pthread_rwlockattr_init() routine
using, 2–2

pthread_self() routine, pthread–199
pthread_setcancelstate() routine,

pthread–201
using, 2–20

pthread_setcanceltype() routine,
pthread–203

using, 2–20
pthread_setconcurrency() routine,

pthread–206

pthread_setname_np() routine, pthread–208
pthread_setschedparam() routine,

pthread–210
using, 2–5, 2–7

pthread_setspecific() routine, pthread–213
using, 2–39

pthread_sigmask() routine, pthread–215
pthread_testcancel() routine, pthread–217

using, 2–20
pthread_unlock_global_np() routine,

pthread–218
using, 3–22

pthread_yield_np() routine, pthread–220

R
Race conditions, 1–8

avoiding, 3–10
word tearing, 3–16

RAISE macro, 5–11
Read-write lock attributes objects

creating, pthread–176
destroying, pthread–172
get process-shared attribute value,

pthread–174
initializing, pthread–176
set process-shared attribute value,

pthread–178
Read-write locks, 2–36, 4–4

attributes, 2–37
changing object name in, pthread–189
creating, pthread–184, tis–48
destroying, 2–37, pthread–180, tis–46
initializing, 2–37, pthread–184, tis–48
locking

for read access, pthread–187, tis–40,
tis–42
without waiting, pthread–191

for write access, pthread–197, tis–60,
tis–62
without waiting, pthread–193

obtaining object name, pthread–182
process-shared, 2–39
thread priority, 2–36

Index–10

Read-write locks (cont’d)
under the thread-independent services

(tis) interface, 4–4
unlocking, pthread–195

for read access, tis–44
for write access, tis–64

using in thread-safe library code, 4–4
writer precedence, 2–36

Realtime scheduling
of POSIX Threads

under Tru64 UNIX, A–12
Recursive mutexes, 2–27
Reentrant code, 3–21

required for multithreaded programming,
1–7

required for thread-safe code, 4–2
RERAISE macro, 5–15, 5–24
Round-robin (RR) scheduling policy, 2–4

S
Scheduling parameters

of threads
getting, pthread–119
setting, pthread–210

Scheduling parameters attribute
of thread attributes object

getting, pthread–16
setting, pthread–42

Scheduling policy attribute
of thread attributes object, 2–4

getting, pthread–18
setting, pthread–45

Scheduling priority attribute
of thread attributes object, 2–7

sched_get_priority_max() routine,
pthread–222

sched_get_priority_min() routine,
pthread–224

sched_yield() routine, pthread–226
Sequence numbers

See Thread sequence numbers
Sharing memory

between threads, 3–4

Signal masks (Tru64 UNIX)
See Thread signal masks

Signals (Tru64 UNIX)
per-thread usage, A–9
synchronous

reported as exceptions, A–10
sigwait() routine, pthread–228, A–9
Spurious wakeups, 2–31
Stack address attribute

of thread attributes object, 2–8
getting, pthread–23, pthread–25
setting, pthread–50, pthread–53

Stack memory, 3–5
using from threads, 3–5

Stacks
of threads

See Thread stacks
Stacksize attribute

of thread attributes object, 2–8
getting, pthread–27
setting, pthread–55

Static memory, 3–5
using before release of mutex, 3–22
using from threads, 3–5

Status exceptions, 5–8
$SYNC, tis–55
Synchronization objects

condition variables, 2–30
mutexes, 2–26
read-write locks, 2–36
stack-based

static initialization inappropriate for,
3–13

Synchronizing I/O completion, tis–20, tis–55
Synchronous thread cancelation, 2–20
SYSGEN (OpenVMS)

MULTITHREAD parameter, B–17
System contention scope, 2–10, A–4
System services

cancelability from POSIX Threads, A–5,
B–6

Index–11

T
THIS_CATCH exception object, 5–17
Thread attributes objects, 2–2

cancelability state attribute, 2–20
setting, pthread–201, tis–51

cancelability type attribute, 2–20
setting, pthread–203

contention scope attribute, 2–9,
pthread–20, pthread–47

creating, pthread–29
destroying, pthread–6
detachstate attribute, pthread–8,

pthread–32
guardsize attribute, 2–9, 3–7,

pthread–10, pthread–34
inherit scheduling attribute, 2–4,

pthread–12, pthread–37
initializing, pthread–29
naming, pthread–14, pthread–40
scheduling parameters, pthread–16,

pthread–42
scheduling policy attribute, 2–4,

pthread–18, pthread–45
scheduling priority attribute, 2–7
setting attributes in, 2–3
stack address attribute, 2–8, pthread–23,

pthread–25, pthread–50, pthread–53
stacksize attribute, 2–8, pthread–27,

pthread–55
Thread objects

naming, pthread–117, pthread–208
Thread sequence numbers

getting, pthread–121
Thread signal masks (Tru64 UNIX)

getting, pthread–215
setting, pthread–215

Thread stacks, 3–5
default size of

under OpenVMS, B–4
diagnosing overflow, 3–8
identifying overflow of, 2–9, 3–7
incremental allocation

under Tru64 UNIX, A–11

Thread stacks (cont’d)
managing, 3–6
minimum size of

under OpenVMS, B–4
setting the origin address, 2–8
size of

determining, 3–7
requesting absolute, B–4

tracing, C–3
using a stack guard area, 2–9, 3–7

under Tru64 UNIX, A–11
using a stack overflow warning area, 2–9,

3–7
Thread-independent services (tis) interface,

1–23, tis–1
condition variables, 4–3
features of, 4–1
mutexes, 4–3
performance of routines, 4–2
read-write locks, 4–4
run-time linkages to routines, 4–2
summary of routines, 1–23
thread-specific data, 4–4

Thread-reentrant code
See Reentrant code

Thread-safe code, 3–21
in libraries, 4–1
requires reentrant compilation, 4–2
using condition variables, 4–3
using mutexes, 4–3
using read-write locks, 4–4
using thread-specific data, 4–4

Thread-specific data, 2–39
keys

creating, pthread–130, tis–21
destroying, pthread–133, tis–24
getting, pthread–123, tis–16
naming, pthread–135, pthread–137
setting, pthread–213, tis–53

under the thread-independent services
(tis) interface, 4–4

using in thread-safe library code, 4–4
THREADCP tool (OpenVMS), B–10

Index–12

Threads
See also Multithreaded programming
advantages of, 1–1
attributes of, 2–3
avoiding nonreentrant routines, 1–8
cancelability state, 2–20
cancelability type, 2–20
canceling, 2–19, pthread–57

asynchronously, 2–20
code example, 2–23
control of, 2–20
delivery of cancelation request,

pthread–217
exception-based implementation,

2–19
PTHREAD_CANCELED return value,

2–19
synchronously, 2–20
whether enabled, 2–20

changes of state, 1–4
cleanup

from asynchronous cancelation, 2–22
from deferred cancelation, 2–21

cleanup handlers, 2–14, pthread–59,
pthread–61

concurrency level, pthread–115,
pthread–206

contention scope, 2–9
context-switching

in user mode, 3–2
creating, 2–3, pthread–94
deadlocks among, 1–8
delaying execution of, pthread–99
delivering cancelation requests, tis–57
destroying, 2–14, pthread–101
detaching, 2–14, pthread–101
executing, 1–4
granularity considerations, 3–13
identifiers

comparing, pthread–103
getting, pthread–199, tis–50

joining with another thread, 2–15,
pthread–127

locking mutexes, pthread–165, tis–33
on multiprocessor systems, 1–2

Threads (cont’d)
one-time initialization of, 3–20,

pthread–169, tis–37
overview of, 1–2
priority inversion among, 1–8
process contention scope, A–5
race conditions among, 1–8
reentrant code for, 1–7
releasing processor, pthread–220, tis–66
scheduling, 2–16

alternative policies, 2–4
alternative priorities, 2–7
calculating priority, 2–16
effects of scheduling policy, 2–17
inheriting attributes, 2–4
issues, 3–8
real-time (Tru64 UNIX), A–4

scheduling parameters
getting, pthread–119
setting, pthread–210

sending signals to, pthread–139
sequence numbers

getting, pthread–121
sharing memory, 3–4
signal masks for (Tru64 UNIX)

getting, pthread–215
setting, pthread–215

synchronizing memory access, 3–4
system contention scope, A–4
terminating, 2–11

due to error, pthread–94
normally, pthread–94
series of actions, 2–11, pthread–96
via pthread_exit() routine,

pthread–113
thread-specific data, 2–39
time slicing, 2–5
unlocking mutexes, pthread–167, tis–35
unlocking POSIX Threads global mutex,

pthread–218
unlocking the POSIX Threads global

mutex, tis–58
using a stack guard area, 2–9
using a stack overflow warning area, 2–9
using dynamic memory, 3–6

Index–13

Threads (cont’d)
using stack memory, 3–5
using static memory, 3–5
waiting for another thread to terminate,

2–15, pthread–127
waiting on mutexes, pthread–161
wakeups for

broadcasting, pthread–71, tis–3
signaling, pthread–82, pthread–84,

pthread–86, tis–9
yielding processor to another thread,

pthread–220, tis–66
yielding to another thread, pthread–226

Throughput scheduling policy, 2–4
Time

expiration
obtaining, pthread–125, tis–18

Time slicing
of threads, 2–5

tis interface
See Thread-independent services (tis)

interface
tis_cond_broadcast() routine, tis–3
tis_cond_destroy() routine, tis–5
tis_cond_init() routine, tis–7
tis_cond_signal() routine, tis–9
tis_cond_timedwait() routine, tis–11
tis_cond_wait() routine, tis–14

using, 4–2
tis_getspecific() routine, tis–16
tis_get_expiration() routine, tis–18
tis_io_complete() routine, tis–20
tis_key_create() routine, tis–21
tis_key_delete() routine, tis–24
tis_lock_global() routine, tis–26

using, 4–3
tis_mutex_destroy() routine, tis–27
tis_mutex_init() routine, tis–29

using, 4–3
tis_mutex_lock() routine, tis–31
tis_mutex_trylock() routine, tis–33
tis_mutex_unlock() routine, tis–35
tis_once() routine, tis–37

tis_read_lock() routine, tis–40
using, 4–5

tis_read_trylock() routine, tis–42
using, 4–5

tis_read_unlock() routine, tis–44
tis_rwlock_destroy() routine, tis–46

using, 4–5
tis_rwlock_init() routine, tis–48

using, 4–4
tis_self() routine, tis–50
tis_setcancelstate() routine, tis–51
tis_setspecific() routine, tis–53
tis_sync() routine, tis–55
tis_testcancel() routine, tis–57

using, 4–2
tis_unlock_global() routine, tis–58

using, 4–3
tis_write_lock() routine, tis–60

using, 4–5
tis_write_trylock() routine, tis–62

using, 4–5
tis_write_unlock() routine, tis–64
tis_yield() routine, tis–66
Tru64 UNIX operating system

using POSIX Threads with, A–1
TRY macro, 5–9

restrictions, B–5
Two-level scheduling

under OpenVMS Alpha, B–8
under Tru64 UNIX, A–3

U
Upcalls

under OpenVMS, B–8
due to $HIBER and $WAKE system

services, B–15
under Tru64 UNIX, A–3

User threads, A–3
relation to kernel threads

under OpenVMS, B–8, B–12
under Tru64 UNIX, A–4

Index–14

V
Virtual processors (OpenVMS)

for kernel threads, B–12

W
$WAKE system service (OpenVMS), B–15
Wakeups

for threads
broadcasting, pthread–71, tis–3

signaling, pthread–82, pthread–84,
pthread–86, tis–9

spurious, 2–31
Word tearing, 3–16

identifying scenarios, 3–17, 3–19
Work crew functional model, 1–6
Work queues

variation of boss/worker functional model,
1–5

Y
Yielding to another thread, pthread–220,

tis–66

Index–15

