

�per�ting System

QNX1M
Reference Guide

Version 2.2x

Copyright© 1982, 1994
QNX Software Systems, Ltd.
ALL RIGHTS RESERVED.

QNX Software Systems Ltd.
17 5 Terence Matthews Crescent

Kanata, Ontario K2M 1 W8
Canada

613-591-0931

© QNX Software Systems Ltd. 1982, 1994
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise without the prior written permission of QNX Software

Systems Ltd.

Although every precaution has been taken in the preparation of this book, we

a�sume no responsibility for any errors or omissions, nor do we assume liability for

damages resulting from the use of the information contained in this book.

Printing history:
May 1993
March 1994
September 1994

First edition

Reprint

Reprint

QNX and the � symbol are registered trademarks of QNX Software Systems Ltd.

All other trademarks or registered trademarks belong to their respective owners.

Printed in Canada.

IXII21Xl-03

QNX Manual Page

1. Introduction 1
1 . 1 What You Were Shipped 1
1 .2 Booting QNX 3

2. Installation Using The Install Command 5

3. Manual Installation 7
3 . 1 Background on Disks and disk drivers 7
3 . 1 . 1 XT Hard Disk Driver 9
3 . 1 .2 AT Hard Disk Driver 10
3 . 1 .3 PS2 Hard Disk Drivers (model 50 and up) 10
3 . 1 .4 HP NIGHTHAWK Hard Disk Driver 1 1
3 . 1 .5 BIOS Hard Disk Driver 1 1
3.2 Step-by�step Installation of Hard Disk 12
3.3 Creating A System Initialization File 20
3 .4 Summary 22
3.5 Creating A Login Password File 23
3.6 Mounting a DOS or Second QNX Partition 26
3 .7 More than One Physical Hard Disk 27
3.8 Changing Operating System Defaults 27
3.9 Removing the QNX loader 28

4. Network Installation 29
4 . 1 Hardware Installation 29
4.2 Software Installation 29
4.3 Summary 32
4.4 Starting the Poller 32
4.5 Recovery Without the Poller 33
4.6 Troubleshooting QNET Network Installation 34
U1 �p�� �
4.6.2 Symptom Checklist 35

5. Terminals, Modems and Printers 37
5 . 1 Serial 37
5 . 1 . 1 1/0 ports and Interrupts 37
5 . 1 .2 Baud Rates and Parity 38
5. 1 .3 Connecting Cables (DTE vs DCE) 39
5. 1 .4 Setting QNX Line Editing Options 41
5. 1 .5 Flow Control 41
5 . 1 .6 Logging In From A Tenninal 42

5 . 1 .7 Logging In From A Modem
5.2 Outgoing Calls
5.2. 1 Problems
5.3 Parallel
5.4 Smartcards

6. Devices
6. 1 Terminal Input
6. 1 . 1 Alt, Shift and Ctrl
6. 1 .2 Caps Lock, Num Lock
6. 1 .3 Type-Ahead
6. 1 .4 Line Editing
6. 1 .5 Compose Characters
6. 1 .6 Input Gate
6. 1 .7 Recalling Command Lines
6.2 Terminal Output
6.2. 1 Attributes
6.2.2 Output Escape Sequences

7. Full Screen Consoles
7 . 1 Mounting Consoles
7.2 Switching Consoles
7.3 Initiating Commands in Other Consoles
7.4 Consoles and Graphics

8. Files
8 . 1 File Names
8.2 Structure of Files
8.3 Directories
8.4 Pathnames
8.4. 1 Specifying a Drive as Part of Your Pathname
8.5 Your Current Directory
8.5. 1 Changing Your Current Directory
8.6 Moving Up the File Structure
8.7 File Attributes and Permissions
8.8 User Numbers
8.9 Device Names
8 . 10 Network Access to Files and Devices
8. 10. 1 Remote Search Order
8. 10.2 Automatic Remote Searching
8. 10.3 Remote Current Directory
8. 10.4 Mounting A Remote Disk
8. 10.5 Network Devices

ii

42
43
43
43
44

45
45
45
45
46
46
48
49
49
50
50
50

55
55
57
58
58

6 1
6 1
6 1
62
65
66
67
67
68
69
73
73
75
75
76
77
77
78

8. 10.6 Limiting Network Access

9. The Command Interpreter (Shell)
9.1 Shell Prompt
9.2 Command Input/Output Redirection
9.3 Quoting
9.4 Filename Generation
9.5 Querying
9.6 Background Tasks
9.7 Multiple Commands On a Line
9.8 Pipes
9.9 Comment Lines
9 . 10 Executing Commands on Another Node
9 . 1 1 Command Files
9 . 1 1 . 1 Built-In Shell Variables
9 . 1 1 .2 User Shell Variables
9 .1 1.3 Executing Shell Commands
9 . 12 Local Shell Commands
9 . 13 Quick Reference to the Shell

10. Tasks
10. 1 Introduction
10.2 System Tasks
10.3 Inter-task Communication
10.3 .1 Messages
10.3 .1a Death of a Task
10.3 .1b Messages Across the Network
10.3 . 1c Virtual Circuits
10.3.2 Ports
10.3.2a Identification - single node only
10.3.2b Semaphores
10.3.2c Signals
10.3.3 Exceptions
10.4 Global Names
10.5 Task States
10.6 Task Ids
10.7 Task Hierarchy
10.8 Task Creation
10.9 Terminal Ownership

11. QUICS - The QNX Update System
1 1 . 1 How To Phone U s
1 1 .2 X2S. Access

iii

78

79
79
80
8 1
82
83
83
84
84
85
85
86
86
87
88
89
90

93
93
94
95
96
99
99

100
100
101
102
102
103
106
106
108
108
109
109

1 1 1
1 12
1 13

12. Tips on Using QNX
12 . 1 !\1emory Requirements
12.2 Enabling Colour
12.3 Disabling Colour
12.4 The Mount Command
12.5 Ramdisk
12.6 Shared Libraries
12.7 Operating On Groups Of Files

Character Set and Keyboard Codes

iv

1 1 5
1 15
1 15
1 1 5
1 1 5
1 17
1 1 8
1 1 8

1 19

1. Introduction

BE SMART AND READ TillS

This chapter is written for the first time QNX user who wishes to install QNX on
an ffiM PC, AT, HP Vectra, PS/2 or compatible. The documentation will take you
step by step through the installation procedure. If you run into problems not
covered by the manual you may call the QNX technical support line.

Technical Support

(613) 591-0941 (9:30am to 5:30 pm EST)

The installation involves the execution of a number of QNX utility commands.
Over time you will become familiar with these commands but right now we will
only cover the basics needed to get started. Although you can execute the com­
mands directly, we have provided an install program which will invoke the neces­
sary commands from a user friendly menu.

It is your choice whether to install the system manually or through the install
command. Both are documented below (With Install - chapter 2, Manually -
chapter 3), however the manual method contains much more technical detail. This
detail is usually appreciated by the technical user and may be overpowering for the
novice. We recommend that you use the install program and read through the
manual installation which parallels the execution of the program. In any case, the
first step is to read the rest of this chapter.

If you are u__pgrading DO NOT use the INSTALL
command. It will destroy your existing QNX files.

Use the documentation provided with your upgrade.

1.1 What You Were Shipped
QNX is provided on several floppy diskettes. Depending on the configuration you
have ordered, you will have received some (or all) of the following diskettes:

360K Diskettes
.ui.sk Directories Contents

1 QNX 2.2x Boot
/cmds
/netboot

QNX Introduction

Essential commands
Operating system images

QNXI

2 QNX 2.2x Boot Util ities
/cmds Other commands
/config Configuration files
/drivers Disk and graphics drivers
/expl Explain files

3 Utilities l
/cmds Utility commands

4 Utilities 2
/cmds Utility commands

5 "C" Compiler l
/cmds Compiler, Assembler

and Linker ...
/samples Some C programs

6 "C" Compiler 2
/lib System library
/mathlib Floating point library
/mathlib8087 8087 floating point l ibrary

720K/l.2Meg Diskettes
Disk Directories Contents

QNX 2.2x Boot
/cmds
/netboot
/config
/drivers
/expl
/user/qnx

2 Utilit ies
/cmds

3 "C" Compiler
/cmds

QNX2

/lib
/math lib
/mathl ib8087
/samples

Commands
Operating system images
Configuration files
Disk and graphics drivers
Explain fi les
User directory

Uti lity commands

Compi ler, Assembler
and Linker ...
System library
Floating point library
8087 floating point l ibrary
Some C programs

Introduction

We always ship two versions of QNX. One which runs in real mode on PC's,
AT's and PS/2's and one which runs in protected mode on AT's and PS/2's . There
is also a special version for old style HP Vectras (earlier than Oct 87). You must
request the special Vectra version. The standard processor types are:

PCAT • PC, AT, VECTRA PS/2 or compatible running in real mode.
ATP • AT, VECTRA, PS72 or compatible running in protected mode.

OR

HV • Early HP Vectra running in real mode.
HVP • Early HP Vectra running in protected mode.

The PCAT and HV boot run in real mode (like DOS) and limits you to 640K of
memory. The A TP and HVP boot run in protected mode and allow up to 15
Megabytes of memory.

The same QNX utilities and applications will work on ALL of these versions of
QNX. Also, any application developed by yourself or others should work equally
well on each QNX version. The operating system is responsible for providing this
machine independence.

1.2 Booting QNX
To boot QNX, place the disk labeled "QNX 2.2x Boot" in drive 1 and tum on the
main power switch of your Personal Computer. If power was already switched on,
tum it off for at least 10 seconds then tum it back on.

On a PC, QNX will prompt you for today's date. You should enter it in the form
indicated by the prompt. For example, you could set the date and time to 12 Oc­
tober 1987 at 2:34 in the afternoon by typing:

12 oct 87 2 34 pm

On an AT or PS!l the date will be read from the built-in clock/calendar.

QNX will now prompt you to login with the following message:

QNX Version 2.2x Release x node n
Copyright c QNX Software Systems Ltd. 1982,1993
Login:

QNX Introduction QNX3

You should enter qnx followed by a carriage return at this point

Login: qnx
$

which will log you in as a super-user. The dollar sign ($) prompt indicates that
QNX is waiting for a command. You will now have to configure QNX for your
machine. If you have received a networked version of QNX, you should first
configure a single machine. After you have gained experience with it, you may
then configure the other machines in the network. These other machines will boot
over the network. This is explained in more detail later on.

You should now go to chapter 2 (install program) or chapter 3 (manual instal­
lation).

QNX4 Introduction

2. Installation Using The Install Command
Do not read on until you have read chapter 1.

If you are u_pgrading DO NOT use the INSTALL
command. It will destroy your existing QNX tiles.

Use the documentation provided with your upgrade.

This install program should cover 95% of all installations. The program does not
perform the installation itself but invokes a set of standard QNX utility commands
to perform each step. These steps are described in more detail in chapter 3 which
parallels the execution of the install program. You do not need to read it unless
you want more detail on what is going mi. This way you will learn a bit about
QNX during the installation. Each utility is described in detail in the Utilities area
of the manual (Utilities Tab).

At this point you should have booted QNX and have logged in as described in
section 1 .2. If you have booted from a 360K boot diskette, replace it with the boot
utilities diskette. Then at the dollar sign prompt type the command

$ install

and simply answer the questions presented to you. If you wish to install QNX on
more than one hard disk partition or on more than one hard disk in the same
machine you will have to read chapter 3. In this case you may still use the install
program to create your first QNX partition on your first hard disk.

If you wish to share you disk with DOS
we recommend that you install DOS first
leaving room on the hard disk for QNX.

QNX Menu-Driven Installation QNX 5

ONX6 Menu-Driven Installation

3. Manual Installation
Do not read on until you have read chapter 1.

This section describes in detail how to install QNX. If you consider yourself to be
a novice you should probably refer to chapter 2 for a menu-driven installation.
Even experienced users will like INSTALL.

The information in this section is useful and worth reading even if you do opt for
the menu driven install program. Each utility command involved is described in
greater detail in the Utilities area of the manual (Utilities Tab).

3.1 Background on Disks and disk drivers

____c::l Disk 21 (B2, T2, N2)

btrol.l.er I I Disk 11 (B1,T1,N1)
cabl.es

Bus

Disk drives are available in various sizes. QNX needs to know the following in­
formation about a drive:

Number of heads H
Number of tracks on each platter T
Number of sectors on each track N

The total size of the disk will be:

Total number of blocks is
Total number of bytes is

H*T*N
H*T*N * 512

Depending on the disk controller, one or more disk drives may be connected to it.

For QNX to communicate with a hard disk, an interface module called a driver
must be properly mounted into the operating system. A driver is specific to a par­
ticular disk controller and knows the following information about that controller:

- I/0 registers
- DMA Channels used
- Interrupt used

QNX Manual Installation QNX7

The MOUNT utility command is used to mount a driver. Each driver assumes a
default value for the number of tracks , heads and sectors on your disk. For ex­
ample, the XT driver assumes a 10 Meg disk while the AT driver uses the disk type
defined by your AT setup program to determine the size of the disk. If you have a
non-standard disk, the values for h, t and n can be overridden when you mount the
driver.

The number of heads and tracks should be provided by the vendor when you
receive your hard disk. Most drives contain 17 sectors per track. If you have an
RLL drive it may contain 25 sectors per track. If you have an ESDI drive it may
contain 34 or 35 sectors per track, although some ESDI controllers , for com­
patibility, pretend they have 17 sectors/ track but twice the number of heads.

A driver treats each drive as a consecutive series of physical 512 byte blocks,
starting at one and continuing to some number which is determined by the capacity
of the drive (H*T*N). The drivers will normally map blocks through sectors,
heads and then tracks with increasing block numbers. This minimizes head
movement.

Here is a partial syntax of the MOUNT command regarding hard disks. Further
information on this command can be found in the Utilities manual.

mount disk drive I drivers/ driver_ name pa=os _type
h=heads t=tracks n=sectors/track

NOTE: IF YOU MUST SPECIFY H, T or N YOU MUST SPECIFY ALL
THREE PARAMETERS

In this command you have indicated 4 separate pieces of information.

drive

QNX8

- The number of the drive from QNX's point
of view. QNX allows drive numbers from

1 to 8. Note that unlike DOS which uses
letters for drives, QNX uses numbers. Although
you may choose your own drive numbers, we
recommend you adopt the following scheme:

Disk Use
1 Floppy 1
2 Floppy 2 if present

continued ...

Manual Installation

3 Hard disk QNX partition #1
4 Hard disk partition #2
5 Ramdisk
6
7
8

driver _name - This identifies the software driver for a
particular controller. (xt, at, ...).

h, t and n - The physical structure of the hard disk. If
these parameters are omitted, the driver will
assume a default which may or may not be
correct. Please refer to the documentation
on each driver.

os_type - The name of the partition to use. This may be
the name qnx, qny, qnz, dos, or a number.

T)l)e
qnx
qny
qnz
dos
1 ... 255

Description
QNX partition (same as number 7)
QNX partition (same as number 8)
QNX partition (same as number 9)
DOS 2. 1 partition (same as number 1)
An explicit operating system os _type

When MOUNTING it is not necessary to specify the three key parameters of H, T
and N unless the driver is unable to determine them. The capabilities of each
driver we supply are described below.

3.1.1 XT Hard Disk Driver

A large number of drives now on the market boast an XT compatible hard disk
controller. This controller must be compatible at the physical hardware level.
Compatibility at the BIOS (ROM) level is not enough to use this driver. This
driver assumes the old 10 Meg disk shipped by IBM on their old XT. If you have a
20 meg disk or one which is not identical to the default you must specify the
proper number of tracks, heads and sectors.

QNX Manual Installation QNX 9

!Wul.a ll:aW � SIZE
XT 4 306 17 10M
mount disk 3 /drivers/disk.xt

Other 2 612 17 10M
mount disk 3 /drivers/disk.xt t=612 h=2 n=17

Other 4 612 17 20M
mount disk 3 /drivers/disk.xt t=612 h=4 n=17

3.1.2 AT Hard Disk Driver

<--Default

The AT driver uses the disk parameter table setup by the BIOS to determine the
size of the disk. This means that you should NOT have to specify H, T or N when
mounting the AT driver UNLESS you are using a drive other than that shipped by
the AT manufacturer AND which does not correspond to any of the manufacturers '
disk types as defmed by the AT SETUP program.

You would mount the AT driver as follows. The second example is for a drive
which the does not have a supported disk type in the AT setup program provided
with your machine. If you are using an unsupported drive, you must specify the
number of tracks, heads and sectors.

mount disk 3 /drivers/disk.at
or

mount disk 3 /drivers/disk.at t=tracks h=heads n=sectors

3.1.3 PS2 Hard Disk Drivers

The PS/2 driver(s) use the disk parameter table setup by the BIOS to determine the
size of the disk. This means that you should NOT have to specify H, T or N when
mounting the PS/2 driver.

The model25 and 30 use the driver in the system BIOS.

Model25,30
mount disk 3 /drivers/disk.bios

There are two controllers available for the PS/2 models 50 and up. One interfaces
to an ST506 type drive and one to an ESDI drive. The ESDI controller is not cur­
rently available for the model 50. These are high performance drivers which fea­
ture read-ahead and write-behind. You should read the technical note "Page

QNX lO Manual Installation

Caching Disk Drivers" in the technical notes section.

Model SO and up
ST506 Drive
mount disk 3 /drivers/disk.ps2

ESDI Drive (disks> 70 Megabyte)
mount disk 3 /drivers/disk.ps2esdi

read technical note

read technical note

3.1.4 HP NIGHTHAWK Hard Disk Driver

When you purchase an HP vectra there is an optional hard disk and controller
available for it. It is usually sold into process control markets and at this printing it
had a part number of 4581 6A. Within HP, it is sometimes referred to as the
"Nighthawk" hard disk controller.

You would mount the driver as follows.

mount disk 3 /drivers/disk.nighthawk

3.1.5 BIOS Hard Disk Driver

This driver uses the INT13 BIOS calls to perform hard disk l/0 and will only
work in REAL MODE versions of QNX. It will work on any controller card or
machine which supports INT1 3 hard disk I/0. These cards usually contain a ROM
which the BIOS fmds and executes when power is turned on. This allows us to
provide immediate support for the many new drives on the market. The BIOS
driver reads the disk configuration table set up by the BIOS to determine the
physical characteristics of the hard disk. This can be over-ridden (if required) by
specifying tracks, heads and sectors on the mount command. This driver should
only be used as a last resort.

This is a busy-wait driver and may cause a slight stutter effect in a multi-user en­
vironment. The BIOS driver will not work in protected versions of QNX (A TP)
nor can it be used with the DOS emulator.

mount disk 3 /drivers/disk.bios
or

mount disk 3 /drivers/disk.bios t=tracks h=heads n=sectors

QNX Manual Installation QNXll

3.2 Step-by-step Installation of Hard Disk
At this point you should have booted QNX and have logged in as described in
section 1.2. The procedure required to install QNX onto your hard disk is de­
scribed here in a step-by-step fashion.

NOTE that any QNX command will print a short usage message when a'?' is .
specified as the only command line argument. If you wish to know more about the
commands, please refer to the "Utilities" manual.

a QNX hard disk artition

To create a hard disk partition on your disk, you must use the commands outlined
below with the proper arguments.

Step 1a- Mounting a Hard Disk Driver

QNX supplies a number of drivers for hard disks under the directory '/drivers' on
your boot diskette. The following drivers are provided:

Description FileName
/drivers/disk.xt
/drivers/disk.at
/drivers/disk. bios
/drivers/disk.nighthawk

/drivers/disk.ps2
/drivers/disk.ps2esdi

XT hard disk driver
AT hard disk driver
BIOS hard disk driver
Hewlett-Packard nighthawk hard disk driver
A standard HP Vectra uses the AT driver
PS2 ST506 hard disk driver
PS2 ESDI hard disk driver

Once you have decided on the appropriate driver file, you must mount it into the
system using the MOUNT command. Until the driver is mounted you will be
unable to access your hard disk.

At this point you should mount the hard disk as one large volume. Once the
driver is loaded you will be able to read and write to block 1 of the disk which
contains the partition information. You will then use FDISK to set up a QNX
partition and immediately remount the driver specifying that it constrain itself to
block accesses within the created partition. Some examples follow:

QNX12 Manual Installation

XT with standard 10 Meg disk (default)
mount disk 3 /drivers/disk.xt

XT with 20 Meg Seagate ST255 disk
mount disk 3 /drivers/disk.xt h=4 n=17 t=612

AT with standard 20 Meg disk (disk type 2)
mount disk 3 /drivers/disk.at

AT with nonstandard 60 Meg disk (disk type unknown)
mount disk 3 /drivers/disk.at h=7 n=17 t=980

In the last example the user has installed a disk drive which does not match any of
the defined disk types known by the AT SETUP command.

Step 1 b - Partitioning Your Hard Disk

You will now have to partition all or part of your hard disk for the exclusive use of
QNX. Partitioning allows different operating systems to share a single hard disk
without conflicting with each other.

You should now run the FDISK command to set up a QNX partition on the newly
mounted disk.

fdisk 3

Look at the bottom of your screen and verify that the size of your disk and the
values for H=, T= and N= are reasonable. If they do not reflect what you believe
to be the size of your disk, then either the disk type is incorrect (AT, PS/2), the
default values are incorrect (XT) or the wrong values for h, t and n were provided
to the MOUNT command.

There are 4 partition slots. Use the up/down cursor keys to select one that is not in
use. Type the letter c to select the change option. You should now enter the OS
type (7 for QNX) and the start and end, cylinder to be used for the QNX partition.
Enter a carriage return after entering each number. The QNX partition may be any
size up to 1 terabyte which easily covers all disks on the market today.

If other partitions already exist, your QNX partition must NOT overlap them. If
the DOS partition takes up the entire drive you will have to reboot DOS, backup all
your DOS files and reduce the size of the DOS partition before creating a QNX
partition. If there is room for a QNX partition, then after you have made your

QNX Manual Installation QNX 1 3

changes you must type s to save them back to the disk. Then type q to quit. The
following is a typically partitioned hard disk as seen in FDISK.

Ignore Next Prev Change De lete Mount Boot Unboot S ave Quit

OS s t art End Number
Cyl i nder Cyli nder Cyl inders

1 . des 1) 1 3 5 0 3 5 0
--> 2 . qnx (7) 3 5 1 6 1 2 2 6 2

2 0 (---)
4 0 (---)

Use up/down arrows to s elect part it ion .
Type the letter c to change/add a part it ion .
Type the letter s to s ave your change s .
Type the letter q to quit.

B locks

2 3 8 6 7
1 7 8 1 6

Boot

QNX is os type 7 , 8 or 9 DOS is OS type 1 or 4 Unused is os type 0

F irst cylinder is 0 Last cyl i nder is 6 1 4

D i s k is 2 1, 4 11,8 4 0 byte s T=6 1 5 H=4 N=l 7

Step 1 c � Remount Disk to use the QNX Partition

Now that you have created a QNX partition you MUST re-issue the mount for
drive 3 , to restrict it to the new partition. This time we will not specify a driver, but
use the d=driver num option to tell mount to use the same driver as it is currently
using for drive 3:-For example:

mount disk 3 d=3 pa=qnx

mount disk 3 d=3 t=612 h=4 n=17 pa=qnx

You now have a fully functional disk driver mounted and can set up a QNX file
structure.

QNX 14 Manual Installation

This MOUNT with the d=drive num and the previous MOUNT and FDISK com­
mands need only be done this one time to set things up. From now on, each time
you boot QNX you will have to mount the disk driver with the pa=qnx option and
if necessary the h=, t= and n= options. For example:

mount disk 3 /drivers/disk.at pa=qnx

mount disk 3 /drivers/disk.xt t=612 h=4 n=17 pa=q�x

You will be shown a little later how to place this mount command in a system
initialization file which is automatically executed each time you boot.

Step 1 d - Format QNX partition (AT's only)

Unless you have mounted /drivers/disk.at you should skip this step.

Users installing QNX on an AT may gain a significant performance increase by
reformatting the QNX partition with a different interleave than that used by DOS.
This step is optional but highly recommended. Use the FDFORMAT utility with
the +hard option to reformat the QNX partition.

fdformat 3 +hard - Format partition for drive 3 with
the default interleave (s=6).

If you have a very fast machine (16 MHz 386) then you may wish to format with a
smaller interleave (also called stagger).

fdformat 3 +hard s=S - Format partition for drive 3 with
an interleave of 5.

If you attempt to format a non-AT hard disk you will receive errors and the disk
should not be affected.

QNX Manual Installation QNXIS

the QNX File Structure

To initialize the file structure for your disk, you must use the commands outlined
below with the proper arguments.

Step 2a - Create a QNX File System

Before you can use your QNX partition you must create an empty QNX file system
on it. This is done with the DINIT command. The command takes the drive
number of the disk and a flag to indicate that it is a hard disk. Type the following
command:

dinit 3 +hard

The DINIT command is also used to initialize the file system on floppy diskettes
and ramdisks. You will therefore use this command many times. The +hard
option is necessary only when initializing a hard disk and protects you should you
accidentally type in the wrong drive number when initializing a floppy.

Step 2b - Mark Tracks You know are Bad

If your hard disk was shipped with a sheet of paper containing a list of bad tracks
then you may use the DMARK command to explicitly mark the blocks on these
tracks as un-usable. If you are willing to trust the DCHECK command to find all
bad blocks you may skip this step. (On occasion, where blocks are intermittently
bad, DCHECK may miss them). The DMARK command takes a list of tracks and
heads. Each pair is separated by a space and the track and head are separated by a
comma. For example:

dmark 40,4 250,2 500,0 >3:/bad blks - mark track 40
250
500

head 4
2
0

We have redirected its output to 3:/bad _ blks so that it can be used with the
DCHECK utility.

Note that even if only a single block is bad, the entire track is sacrificed. This is
because interleaving of sectors on the disk locates blocks in different places,
beyond our control.

QNX 16 Manual Installation

Step 2c - Check for Bad Blocks

You should now check for bad blocks in your QNX partition. The DCHECK
command will attempt to read every block and will report any bad blocks it
discovers. We will invoke it with the +mark option which will set these blocks as
un-usable in the hard disk's allocation bitmap.

DCHECK will also look for /bad blks file on the specified drive. If there is one,
any block numbers it contains wiii be marked as un-usable in the bitmap. Any bad
blocks it has found during its reading of the disk are added to the /bad blks file.
Type the following command:

-

dcheck 3 +mark

This command may take a while on large disks.

Files from F ies to Hard Disk

To transfer the files from the floppies you have received to your hard disk, you
must use the commands outlined below with the proper arguments.

Step 3a - Copy Files From Boot Floppy to Hard Disk

You are now ready to copy the QNX files from your floppy diskettes to your hard
disk. This is done with the BACKUP utility command which copies files and
directories from one location to another. It takes as arguments, the source direc­
tory and the destination directory, followed by options. Place the disk labeled
QNX Boot in drive 1 and type the following command:

backup 1:/ 3:/ +all s=c

l l l L Suppress clearing the modify bit.
Copy all files.

Destination is root directory on hard disk.
Source is root directory on floppy diskette.

Step 3b - Take Commands From Hard Disk

QNX Manual installation QNX17

You now have enough commands on the hard disk to switch over to it. This is
done with the SEARCH command which tells QNX which drives to search when
looking for commands. Currently your search order is I (single floppy) or 1 2 (two
floppies). Type the following command:

search 3

Step 3c - Copy Other Floppies to Hard Disk

You should now copy the files on your other floppy diskettes to the hard disk.
Type the following command for each floppy diskette you received.

backup 1 :/ 3:/ +all s=c
backup 1 :/ 3:/ +all s=c

- utilities diskette
- c compiler diskette

etc.

The backup command is the easiest way to move the files on any diskette you
receive from QNX Software Systems Ltd. to your hard disk. Pressing the up-arrow
key recalls the last line and allows you to easily issue multiple BACKUP com­
mands.

Boot From Hard Disk

The following describe the steps you will need to take to get a QNX hard disk
partition to boot from hard disk.

Step 4a - Set OS image file to boot

You will need to use the BOOT command to enable hard disk booting. Its syntax
is of the form:

boot os_Jile_name [c=config_Jile] [d=disk_driver] [-pause] [+qnxloader]

QNX 18 Manual Installation

os_jile_name
If you have properly backed up the floppies, you now have at least two OS
image files (os Jile name) under the /net boot directory on your disk. One is
os.2.10pcat (REACMODE), the other is os.2.10atp (PROTECTED MODE).
If you have the special HP Vectra version, they will be os.2.10hv and
os.2.10hvp. One of these needs to be specified as the first argument to the
BOOT command. This mechanism allows you to easily change whether you
want to boot real or protected mode. It is also handy if you download a beta
version of an OS from QUICS, our online update system, and wish to try it
out.

[c=config_jile] and [-pause]
These are not described here. See the section called "Changing Operating
System Defaults", as well as the "Utilities" manual for more details.

[d=disk_driver]
When QNX boots , it needs a hard disk driver in order to access the hard disk.
Unlike DOS, it cannot use the BIOS driver which does not work in protected
mode. You must specify which hard disk driver to bind into a hard disk boot.
The d=disk_driver option creates a file called /config/hdisk.cfg which is
loaded in from hard disk along with the operating system file os _file_ name.

[+qnxloader]
To boot QNX you must create a hard disk boot loader. You have two choices.
You can use the default loader used by DOS or you can use a special QNX
loader. The former will always boot the active partition as set by the QNX or
DOS FDISK program. The latter will default to the active partition (which
can be DOS) but will pause for several seconds and allow you to override it
with another partition number which you may specify by typing in a single
digit from 1 to 4. This gives more flexibility. However, if you have non­
standard hardware or are already using a special loader then the QNX loader
may cause you problems. For 99.9% of all installations we recommend you
use the QNX loader.

IF YOU DO NOT HAVE A BOOT ABLE DOS PARTITION
YOU SHOULD SPECIFY THE QNX LOADER

You need only specify the d=disk_driver and +qnxloader options the first time
you configure for hard disk booting. Later, if you wish to boot a different operating
system (OS), simply specify the os_file_name argument to the BOOT command
and nothing else. Here are some examples:

1) Boot real mode on an XT, using the DOS loader.
boot /netboot/os.2.10pcat d=/drivers/disk.xt

QNX Manual Installation QNX 19

2) Boot protected mode on an AT, using the QNX loader.
boot /netboot/os.2.10atp d=ldrivers/disk.at +qnxloader

3) Specify a different OS to boot, leave the driver and loader intact.
boot /netboot/testos

NOTE: Regarding the lnetboot/os_Jile_name and /config/hdisk.cfg files, you
may copy a new file on top of them but NEVER remove them (FREL, RM, . . .) and
then create a new one even if they have the same name. The BOOT command
saves away the absolute start blocks of each of these files which will change once
the file is removed. The BOOT command will always reset the proper starting
block.

Step 4b - Make partition bootable

Your last step is to make the QNX partition the active, boatable partition. Type in
the FDISK 3 command again, use the arrow keys to point to the QNX partition and
type the letter 'b' for boot,(this will put a ' * ' under the "boot" heading) , the letter
' s ' for save and finally the letter 'q' to quit.

fdisk 3
Select QNX with up/down arrows
Type the letter b
Type the letter s
Type the letter q

- Make bootable.
- Save.
- Quit.

You should now be able to boot from hard disk. Open the door to your floppy and
simultaneously press the following 4 keys:

CTRL ALT SHIFT DEL

3.3 Creating A System Initialization File

Each time QNX is booted it will execute the commands in a file called

/config/sys.init.nnnn
or

/config/sys.init

- Specific to node nnnn, initial choice.

- Default.

where nnnn is the node number of the node which is booting (if you do not have a
networking card, QNX will look for "sys.init.O"). If that file does not exist then it
will try /config/sys.init (no node postfix).

·

QNX 20 Manual installation

I
sys.init

default
I

sys.init.O
I

sys.init.l
I

sys.init.3

The message which greets you each time you log in is currently in the sys.init file.
As you become acquainted with QNX, you will probably wish to add commands to
this file which will customize QNX to your needs. This file typically contains
commands to mount special disk drivers, set terminal options and perhaps read the
date from a clock/calendar card. We will quickly illustrate a typical system
initialization file. These files can be created, and may be modified with the editor
(ED) . You may want to refer to the section called "Tips on Using QNX".

rtc at
mount bmcache d=3
mount cache d=3 s=32k
mount xcache s=4k
mount float
mount lib /drivers/glib.ega

mount console $con2
cp /expl/Iogo $con
clock a=f104 &

QNX Manual Installation

Set QNX's date. (AT's only)
Mount a bitmap cache
Mount a directory cache
Mount an extent header cache
Mount a floating point library
Mount graphics and 43 line console
library
Mount a second virtual console
Print QNX logo
Put a clock in top right corner

QNX21

3.4 Summary

The following chart summarizes the steps necessary to install QNX on an AT hard
disk.

I
I Mount the driver as disk 3
I

mount disk 3 /drivers/disk.at
I
I Create a QNX partition
I

fdisk 3
I
I Re-mount the QNX partition
I

mount disk 3 d=3 pa=qnx
I
I Format QNX partition (AT's only)
I

fdformat 3 +hard
I
I Initialize the hard disk
I

dinit 3 +hard
I
I Check and mark bad blocks
I

dmark 3 track,head >3:/bad blks
dcheck 3 +mark -

I
I Backup the contents of your BOOT floppy
I

backup 1 :/ 3 :/ +all s=c BOOT disk in drive I
I
I Change your search order
I

search 3
I
I Backup the remaining diskettes
I

backup 1 :/ 3:/ +all s=c Repeat for each floppy
I
I Set OS image file to boot and hard disk driver to use
I

QNX 22 Manual Installation

boot 3:/netboot/osname d=/drivers/disk.at
I
I Make QNX partition bootable
I

fdisk 3

3o5 Creating A Login Password File
QNX has the capability of supporting more than one user at a time, many of which
may be located at remotely attached terminals. For this reason you may wish to
restrict access to the system and its files by creating a file of allowable userids and
passwords. This capability is activated by the command

"passon"

NOTE: Passwords are automatically turned on when a machine is booted from
the network. This means you will have to create a password file if you are booting
from the network.

After prompting for the login and password

Login: john
Password:

QNX attempts to open the file "/config/pass". If it does not exist then access will
be denied.

Users are identified by a userid and a group and member number which determines
their permissions. QNX supports up to 256 groups each with a maximum of 256
user numbers ranging from 0 to 255. Group number 255 is privileged. For ex­
ample, user number 0.21 has unrestricted access to all his own files but may only
access the files of other users according to the permission fields of the file. This
field is displayed by the FILES command when invoked with the +verbose option.

files +v

The default permission assigned to a file when it is created is "read". This allows
other users to read it, but they may not write to it, append to it or delete it. If de­
sired, you may remove the read permission by using the CHA TIR command as
follows.

chattr filename p=-r

QNX Manual Installation QNX23

The file "/config/pass" is created and updated using the editor (ED). This file
should be created by the super-user (member of group 255) and should have read
permission removed from it. It consists of a five line entry for each userid. All
lines except the USERID line should be indented by ONE tab.

USERID
.. b PASSWORD
IIJb USER NUMBER (Group.Member)
.,b LOGIN DIRECTORY
.,b LOGIN COMMAND

The USERID is the character string which must be entered in response to the
"Login:" prompt. It may contain any characters including blanks and control
characters.

The PASS WORD is the character string which must be entered in response to the
"Password:" prompt. If this field is left blank, then this userid does not have a
password and may be logged in without one. The password may also contain any
characters including blanks and control characters. NOTE: the leading tab is still
needed even if the password itself is absent.

The USER NUMBER is a pair of numbers between 0 and 255. The first number is
the group, the second is the member of that group. These numbers identify the user
to the system and determines his/her file access capabilities. Each userid will
typically be assigned a unique user number. However, you may assign more than
one userid the same user number if you wish them to have the same file
capabilities.

The LOGIN DIRECTORY is the name of the directory to place the user at, after
successfully logging in.

Finally, the LOGIN COMMAND is any QNX command. which will be executed
upon logging in. In a student environment this should be kept consistent for all
students. Executing a user profile like "ec user.init" is a good choice.

Typical user .init

fortune
ap waiting list alarm
umail waiting
path !/cmds/!/cmdsl/! !

QNX 24 Manual Installation

An exclamation mark(!) at the beginning of the LOGIN command will transfer
directly to that command. This allows custom applications to be called directly
when the user logs in without allowing them to return to a shell when the program
terminates.

The following example illustrates a simple four user file.

superman
I<Jb clark kent
tab 255.255
I<Jb /user/superman
I<Jb Is

jasmith
I<Jb qwerty
I<Jb 0.1
tab /user/jasmith
I<Jb ec user.init

jqpublic
tab
I<Jb 0.2
tab /user/jqpublic
I<Jb

dbase
I<Jb abc
I<Jb 1.0
tab /dbase/data
tab dbase

superman has been assigned group number 255 and can do anything. Userid
jqpublic has no password, and may be logged into by anyone. It also has no initial
command to execute.

In an environment where there are many users it is convenient to assign userids
based upon first and second initial followed by the last name. Mr. Jim A. Smith
would be jasmith as in the example above.

The password file must be accessible to all users when they login. In a network, it
is usually placed on the boot server node. Keep in mind that once this file exists
then you must live by its login rules. Should you corrupt it you may not be able to
log into the system. It should be pointed out that this security system is only effec­
tive once QNX has been booted, the disk containing the password file mounted,
and the PASSON command executed (unless you booted from network). For this
reason, access to the system unit should be restricted.

QNX Manual Installation QNX 25

By convention, QNX places user directories under the directory "/user". There will
typically be one directory for each user. The directory "/user" should be owned by
the super user and only he may create new user directories directly under it. Each
sub-directory under "/user" should be owned by the user assigned to it. The fol­
lowing procedure for adding a new user may be followed. In the example we will
add a new user with name "jasmith" and user number 0.12.

1. Login to the super user.

2. Create the new user directory under "/user" .

mkdir /user/jasmith

3. Assign the new user a number and give him ownership.

chattr /user/jasmith g=O m=l2

4. Read the file "/conflg/pass" into the editor and add
a password entry for the new user.

jasmith
.. b xyz
IIJb 0.12
.. b /user/jasmith
IIJb ec user .init

5. Write the file back and you should have successfully
added a new user to the system.

3.6 Mounting a DOS or Second QNX Partition
You can mount more than one hard disk partition at a time. When you mount the
second or third partitions you replace the name of the driver with a d=drive op­
tion. The drive is the drive number of an already mounted partition. The partition
to mount is selected using the pa=os _type option. For example, the following will
mount two QNX partitions and one DOS partition on an AT.

mount disk 3 /drivers/disk.at pa=qnx
mount disk 4 d=3 pa=qny
mount disk 6 d=3 pa=dos

The DOS partition can only be accessed by the DOS emulator or DFS package.

QNX26 Manual Installation

We have reserved the os type numbers 7, 8 and 9 for QNX. When you mount a
disk you may either specify its number or one of the following symbolic names.

pa=qnx same as pa=7
pa=qny same as pa=8
pa=qnz same as pa=9
pa=dos same as pa=l or pa=4

3. 7 More than One Physical Hard Disk
Most of the hard disk controllers can support more than 1 physical hard disk. To
mount a second disk use the d= and p= option on the mount command. For ex­
ample, assume that an AT controller has two 20 Meg disks attached to it, and both
have QNX partitions on them.

mount disk 3 /drivers/disk.at pa=qnx - disk 1
mount disk 4 d=3 p=2 pa=qnx - disk 2

The p= option specifies which physical_ drive to use. The default is to use physical
drive 1 , which is why it was not required in the initial installation.

3.8 Changing Operating System Defaults
The BOOT command allows you to specify a configuration file ([c=config_file])
which lets you change some of the operating system defaults such as the number of
open files supported.

A conjigJile is created and maintained by the OSCONFIG command. It is de­
scribed in detail in the "Utilities" manual. It takes a file name as an argument. For
example:

osconfig 3:/config/sys.cfg

would create a configuration file for a single non-networked machine. It does not
become active until you use the BOOT command to set it. For example:

boot 3:/netboot/os.2.10pcat c=3:/config/sys.cfg

You may select any file name, however, when booting over the network QNX will
automatically look for /config/sys.cfg.nn with nn replaced by your node number.
For this reason we recommend you adopt this convention, even on a single
machine, although on a single machine you may omit the ".nn" extension.

QNX Manual Installation QNX27

/config/sys.cfg
/config/sys.cfg.nn

- Single machine.
- Network machine.

NOTE: When booting from hard disk you should not remove the os filename,
the driver filename or the config file name.

/netboot/osname
I config/hdisk.cfg
/config/sys.cfg

You may copy a new file on top of them but NEVER remove them (FREL, RM,
. . .) and then create a new one even if they have the same name. The BOOT com­
mand saves away the absolute start blocks of each of these files which will change
once the file is removed.

3.9 R.emovhug the QNX Roadler

The bootstrap loader created by the [+qnxloader] option of the BOOT command is
compatible with that created by the DOS FDISK utility when a hard disk is par­
titioned for the first time. However, some compatible PC's or AT' s may have a
different bootstrap loader placed in block 1 of the disk.

lf you have used the [+qnxloader] option with the BOOT command, and now find
that DOS no longer boots and you wish it to, you can use the QNX FDISK com­
mand to remove the special signature (55AA) from the boot block. This will en­
able the FDISK command under DOS or QNX to re-write a new loader. For exam­
ple:

fdisk 3 +r

The +remove option to FDISK should rarely be used and is not documented
elsewhere. ·

QNX 28 Manual Installation

4. Network Installation
Do not attempt network installation until you have read chapter 1

and
completed the single machine installation in chapter 2 or 3.

Now that you are successfully running QNX on one machine you can start to con­
nect several machines in a local area network. You will need a local area network
card for each machine in the network and a version of QNX configured for the
proper number of computers (nodes) .

4.1 Hardware Installation

Please refer to the documentation which was provided with

the networking card. It should have been supplied as an

insert to be added to the standard manual.

4.2 Software Installation
Your first machine (the boot server) must boot from disk. Each other machine in
the network may optionally boot from disk or over the network, from the disk of a
boot server. It is possible to configure work stations without any disks what-so­
ever, using only remote disk storage.

If you have three or more networking cards we recommend that you first attempt to
connect only two machines together.

In the following sections you will want to place the indicated commands in the
system initialization file of the boot server. More information on the commands
may be found in the "Utilities" manual.

ure Network Size

When booted from floppy disk, QNX will not communicate on the network. The
netsize utility must first be executed to configure the size of your network. This

QNX Network Installation QNX29

utility will prompt you to insert your boot disk, and any network expansion disks
which you have purchased. A total network size will be calculated and recorded
onto the hard disk. A directory of files will also be maintained on the hard disk (in
the /netdisks directory) for informational purposes. To use netsize, you simply
type:

$ netsize

and insert boot or network expansion disks when prompted.

For details about unusual network configurations, please refer to the documenta­
tion on NETSIZE in the utilities section of this manual.

Node Num bers

From QNX's point of view, each card must have a unique network address. QNX
node id's may lie between 1 and 255. You should configure your node id's to start
at 1 and attempt to setup the node id's to be consecutive. Most users select node 1
to be their main machine (boot server).

Q . . . max machines

a Remote Search Order

When a machine boots over the network i t will have its search order set to the
machine it booted from. It will also inherit the date. Since all commands and files
are coming from the boot machine you must define a remote search order for the
boot server using the SEARCH command.

search 3 +remote

You should place the remote search command in the system initialization file for
the boot server (eg. /config/sys.init. 1).

QNX 30 Networlc Installation

If you wish non-super-users to use the hard disk you must use the NACC com­
mand to allow network access. This command takes a list of drive numbers and
device names to allow/disallow. To allow read/write on disk 3 enter the command.

nacc 3 +read +write

Since the search order of a node which is booting over the network will be to the
boot server, you should place the network access command in the system initializa­
tion file for the boot server. Otherwise machines will hang when they boot
because they can't find an appropriate sys.init.nn file in their search order.

stem In itial ization Fi les

As each machine in the network boots it will attempt to execute the file
/config/sys.init.nn where nn is the node number of the machine. If that file does
not exist then it will try /config/sys.init (no node postfix).

I

sys . init
default

I

sys . init . l
I

sys . init . 2
I

sys . init . 3

We recommend that sys.init be a relatively harmless set of generic commands
similar to the one shipped on your boot diskette. This allows you to quickly boot a
new machine on the network. Once that machine is booting successfully you can
then create a custom sys.init.nn for it.

See the description on "Creating a System Initialization File" in chapter 3.

Create a Password Fi le

Since any machine which has booted over the network from a boot server always
has passwords enabled, it is necessary that a password file /config/pass exists
somewhere in the search order.

QNX Networic Installation QNX 31

See the description on "Creating a Password File" in chapter 3.

the Netboot Task

Before a machine (boot server) can boot other machines, you must run a back­
ground task which accepts boot requests from the network and downloads the
contents of operating system image files (os Jile _names) to the requesting
machines. This task is called NETBOOT and should be started by typing its name
followed by an ampersand (&) on the command line.

netboot &

You will probably wish to place this command near the end of the system
initialization file for the machine acting as the boot server.

QNX operating system boot image files (os Jile _names) are kept under the direc­
tory /net boot. To prevent confusion, the names of the files in this directory have
been chosen to reflect the operating system they represent.

os. n.n r type

where n.n - is the version number (2.1)
r - is the release number

single digit 0 .. 9
type - is a hardware machine type:

peat - ffiM PC, AT, PS/2 or compatible
atp - mM AT, PS/2 or compatible running in protected mode

The following are typical boot filenames.

os.2.10pcat
os.2.10atp

- PC or AT, real mode, release 0.
- AT, protected mode, release 0.

4.3 Summary
The following chart summarizes the steps necessary to install QNX on a network.

QNX 32 Network Installation

I Configure Network Size
I

netsize
I
l lnsltlll Networking Cards
I
I Set a Remote Search Order
I

search 3 +remote
I
I Allowing Non-super-user Access
I

nacc 3 +read +write
I
I Create System Initialization Files /configlsys.init.nn
I
I Create a Password File If One Does not Exist
I
I Sltlrt the Netboot Task
I

netboot &

4.4 Starting the Poller

A poller is a program which continually sends poll messages to all active nodes in
the network to verify their sanity. This poll message contains a list of all nqdes
which the poller believes are functional. When a node receives a poll message, it
updates its list of UP nodes and replies with a positive acknowledgement. If the
poller does not receive a positive acknowledgement back after several poll cycles,
then that node is removed from the UP list. This updated list will then be sent to
all nodes during the next poll cycle.

When a node detects the transition from UP to DOWN on a poll cycle it will
automatically close all virtual circuits set up between itself and that node. This has
the effect of informing the associated QNX tasks in communication with tasks on
that node that the remote task has died. They will then reclaim resources (close
files, release memory, ...) which may have been tied up by that remote task.

The poller is not necessary for the network to function. Its purpose is to provide
network wide resource reclamation in the event of a catastrophic error (machine
crash, power failure, ...) at a time when that machine has allocated resources across
the network. The most common example would be the opening of files on a disk
on another node. Turning the power off on a machine which is sitting idle would
not require the poller.

QNX Networlt Installation QNX33

Any node in a QNX network is capable of being a poller, however you should
only run ONE poller in the network at a time.

poll & - start poller

You may wish to place the command

alive +newboot

in the system initialization file of each node which boots over the network. This
will cause all nodes in the network to close all virtual circuits open to your node
then mark your node as UP. It is effectively like a crash followed by an instant
boot. The POLL command is documented in the Utilities section of this manual.

4.5 Recovery Without the Poller
If you elect not to run the poller, or if the poller node crashes you may close all
virtual circuits from your node to the crashed node using the KILL_ VCS com­
mand. This command takes a single argument which is the node which crashed.
The command

kill VCS 3

tells the node on which the command is executed that node 3 has crashed.

You may tell your own network administrator that a node is up or down using the
ALIVE utility. Your local network administrator will refuse to attempt to set up a
virtual circuit to any node it believes is down.

alive +2 +4 -3 - set status of node
2 and 4 as UP
3 as DOWN

Both the ALIVE and POLLER command contain many options which you should
read about in the Utilities section of this manual.

4.6 Troubleshooting QNET Network Installation
During your first attempt at setting up the network, you may encounter some dif­
ficulty. The following are some tips which can aid you in diagnosing problems:

QNX 34 Network Installation

For purposes of example, we will assume the boot server is node 1. This means:

• That the operating system image files (os_file_names) are in the /netboot
directory somewhere in its search order (most probably on its hard disk).

• You have a remote search order defmed, given proper network access, and
have at least a "/config/sys.init" file.

• The NETBOOT task is running in the background.

Let's describe what should happen when you try to boot node 2:

• The "Node 2" message appears in the center of the screen on node 2.

• A flashing ' . ' appears just to the right of the " Node 2" .
(while it flashes, an operating system image is being downloaded)

• The screen will clear.

• Either [1]/config/sys.init.2 will be executed on node 2, or if it was not
found, [1]/config/sys.init will run.

• The "Login:" prompt will appear.

QNX Network Installation

4.6.1 Diagnostic Tips

Although you may not want to do the following all the time, you may need to use
them as indicators during diagnostic sessions :

1) If you run the NETBOOT command (on the boot server) with the verbose
option, it will indicate on the boot server' s console when a boot request has
occurred, by which node, for which operating system image, and also if NET­
BOOT believes it was able to transmit it properly. For example:

netboot +V &

2) When you first try to get a node to boot, the contents of the /config/sys.init.nn
file should be kept very simple. Try using the sys.init shiped on the QNX boot
diskette or a one liner like:

type "I love QNX"

3) Later, when creating more complex /config/sys.init.nn files, place the word
verbose as the first command to execute. This will echo each command to the
console as it executes. If the booting process stops somewhere during the ex­
ecution of this file, then you will see which command is at fault.

4) If you suspect a particular card is not functioning properly, replace it with
another (if you can) and observe if the behavior remains the same or not. In
this s ituation you should also remove any non-essential cards from your com­
puter in case there is a conflict which you might not be aware of. In some cases
you may even wish to test the card in another computer.

5) If you are setting up a card on an existing network, you can use the TSK and
ALIVE (if the poller is running) commands on the other nodes to see if they can
communicate with this node.

4.6.2 Symptom Checkllist

SYMPTOM: The machine boots from disk instead from the network.

REASON: The card is not programmed correctly. You should select the "Boot
from Network" option.

SYMPTOM: The screen does not clear, and the "Node nn" never comes up.

QNX Network Installation QNX 35

REASON: The networking card was not found during the power-up ROM scan
performed by the B IOS . You should try another card if you can, or
perhaps another machine . You may need need to upgrade the ROM
BIOS in your computer.

SYMPTOM: The "Node nn" comes up, but is wrong.

REASON: The card is not programmed correctly .

SYMPTOM: The "Node nn" is OK, but the ' . ' never comes up.

REASON: Run NETBOOT in verbose mode to see if the boot server gets the
request and if it thinks it was sent properly (indicated by an
"OK").If NETBOOT cannot find the operating system image file,
"Boot file not found" i s printed on the console of the booting node.

If NETBOOT does think the OS was sent properly, then the interrupt
configuration on the card may be a problem. Try programming the
card to use a different interrupt.

SYMPTOM: The "Node nn" comes up, the ' . ' flashes, the screen clears , but the
machine hangs.

REASON: Since the screen cleared, the operating system was most probably
downloaded. If your characters are echoed back to you when you
type at the keyboard, then the system is alive, but most likely hung
either trying to find the "/config/sys.init.nn"file, or if it found it,
then it might have hung on a command within it.

If it hung trying to find it, then verify that the boot server has
properly defined the remote search order and given network
access for the drive on which the system initialization file resides.

If it hung during execution of the system initialization file, try put­
ting the "verbose" command at the beginning of it to have the com­
mands echoed as they execute.

Another possibility is the wrong operating system for the type of
machine has been downloaded.

SYMPTOM: You can ' t login.

REASON: This is probably because the password file "/config/pass" cannot be
found. Either it does not exist, or if one does exist, it is not in your
current search order.

QNX 36 Network Installation

So Terminals, Modems and Printers
This chapter will cover serial and parallel ports on your computer. There is also a
special discussion on smart serial cards. You may wish to refer to the Technical
Note called "Operating System Limits" .

5.1 Serial
Terminals, modems and serial printers are connected to your computer using a
serial port. This serial connection is referred to as an RS-232C asynchronous link.
Some computers have 1 or 2 ports built-in while others require you to plug in an
additional adapter card. Most manuals refer to the first two serial ports as COM l
and COM2. There are a number of multi-port cards on the market which have as
many as 8 serial ports on one card. With QNX, these cards allow you to support
many users on a single machine. You can also have one or more tasks monitor
these lines for use in a process control application.

This section deals with "dumb" serial cards. Smartcards are described at
the end of this technical note.

5.1.1 I/0 ports and Interrupts

After booting, QNX scans for serial ports at the following IO port addresses in the
following order;

3F8 (coml)
2F8 (com2)
280 288 290 298 2AO 2A8 2BO 2B8 3E8 2E8

Note: This is the default list and may be changed by running
the OSCONFIG program.

QNX will assign device numbers and names to each port found as follows.

1 st - $mdm
2 nd - $terml
3 rd - $term2

.. . ..

Use the MOUNT command with no arguments to see the names and
tty numbers recognized by the system.

QNX Terminals QNX 37

QNX does NOT poll serial lines but runs them in interrupt mode. COM1 (port
3F8) uses interrupt 4 while COM2 (port 2F8) uses interrupt 3. A multi-port card
generates a single interrupt for all (4 to 8) ports. You can usually select which
interrupt is generated. QNX has built in support for most multi-port serial cards.
The technical support group can advise you on cards which are in use by existing
QNX customers.

Note that some multi-function cards have two serial ports on one card.
These are usually COMJ and COM2 and each port uses its own interrupt (4 or
3) . They do not share a single interrupt like a 4 or 8 port serial card.

In a PC/ AT each card must be assigned a unique interrupt, they cannot be
shared. In a PS/2, interrupt sharing is allowed.

By default, QNX only enables interrupt 4. To use a serial adapter which has been
configured for interrupt 3, you must explicitly turn on interrupt 3 with the STTY
command.

stty inton=3

If you wish to use an interrupt other than 3 or 4 you must tell QNX to map that
interrupt to the serial handler by copying vector 4 into the vector selected. To
configure a card on the AT to use interrupt 5 you would execute the command:

stty intcp=4,5 inton=S

If a 4 or 8 port serial card is installed, try to configure it to respond to 1/0 address
280h. The 4/8 port card will only generate one interrupt for all ports .

If you run across a card which uses 1/0 ports other than those scanned by QNX,
you can change QNX's list by running the OSCONFIG command described in the
QNX manual.

5.1.2 Baud Rates and Parity

When QNX boots, it sets the baud rate and parity on all serial ports to 1200 baud, 8
bits and no parity. You will have to set the baud rate of your serial card to match
that set by the terminal, modem or serial printer. For terminals and printers we
recommend 9600 baud if possible. Modems will typically be 300, 1 200 or 2400
baud. You must also set the number of data bits to 7 or 8 and the parity to one of
even, odd, mark, space or none.

QNX 38 Tenninals

Data Bits
7
7
7
7
8

Parity
even
odd
mark
space
none Allows 8 bit data transmission

These parameters are changed using the STTY command. For example:

stty baud=2400 >$mdm
stty baud=9600 >$terml
stty baud=9600 par=even bits=7 >$term2

5.1.3 Connecting Cables (DTE vs DCE)

Most serial cards have been configured as a DTE (Data Terminal Equipment). This
means that the electrical interface thinks that it is a terminal and it can not be
directly connected to another terminal. It was meant to connect to a modem or a
printer. If you wish to connect a terminal to a DTE serial port you must make a
special cable that makes your port look like a DCE (Data Communication Equip­
ment). Some cards have options to allow this . Most of the single port cards do
not. If the card does not have this option then you must connect what is sometimes
called a NULL modem in the serial line between your PC and the terminal.

A NULL MODEM is a cable which interchanges some of the lines . You can make
a NULL modem for a 25 pin serial connector as follows. Remember that to con­
nect a modem or a printer you can use a straight through cable.

The signals on the following pins must be exchanged on one of the two connectors
to make a NULL MODEM:

pins 2 &3
pins 4 & 5
pins 6 & 20

Transmit and Receive data
Clear-to-send and Request-to-send
Data-set-ready and Data-terminal-ready

The remaining pins should be connected directly from one connector to the other.
NOTE that in most instances, not all 25 pins need to be connected. For most
RS-232-C terminals (NOT Current Loop), only pins 2 through 8 and pin 20 need to
be connected.

QNX Tenninals QNX 39

25 PIN to 25 PIN

Terminal PC
1 --------- 1
3 <--------- 2
2 ---------> 3
5 <--------- 4
4 ---------> 5

20 ---------> 6
7 --------- 7
8 ---------> 8
6 <--------- 20

25 PIN
ground
tx data
rx data
rts
cts
dsr
ground
carrier
dtr

NULL MODEM CABLE

PC Modem
1 --------- 1
2 ---------> 2
3 <--------- 3
4 ---------> 4
5 <--------- 5
6 <--------- 6
7 --------- 7
8 <--------- 8

20 ---------> 20

STRAIGHT THROUGH CABLE

There are a number of serial cards on the market that have a 9 pin connector. The
pin assignments are as follows.

Pin Signal
1 carrier
2 rx data
3 tx data
4 dtr
5 ground
6 dsr
7 rts
8 cts
9 ring

If you must connect a serial port to a device which provides only tx data, rx data
and ground, it is a good practice to jumper the handshake lines as follows:

ground 1 =-oJ ground 7
tx data 2
rx data 3
rts 4 =-oJ cts 5
dsr

2i � carrier
dtr

QNX 40 Terminals

This jumpering will only allow software flow control to be used.

5.1.4 Setting QNX Line Editing Options

QNX can be configured to perform line editing on input and the expansion of
certain characters on output. The default settings are suitable for connecting a
terminal to QNX and having a user login.

If you wish to connect a serial printer you should disable line editing and echoing
of input characters.

stty -edit -echo >$printer _device_name

You may also wish to disable one or more character expansions using the fol­
lowing options to STTY:

-etab Expand tabs to spaces set every 4.
-ers Expand a record separator to a carriage return linefeed.
-edel Expand a rubout to a space, backspace, space.

Many programs, such as LIST, will automatically reset and restore these expan­
sions as needed. If you leave them enabled this has the advantage of allowing you
to directly copy text files to the printer and have them come out looking OK.

QNX separates text lines in files with a single record separator character
(hex 1 e). If you do not have the ERS option enabled then this character will
not be expanded into a carriage return linefeed resulting in output which is
difficult to read.

When connecting a modem for outgoing calls only, you should disable both edit
and echo as with a printer. If you wish to support incoming calls, then leave the
options in their default state for a terminal. You may wish to use the COMM
program for incoming calls . It is described later on in this technical note.

5.1.5 Flow Control

QNX supports both software and hardware flow control on input or output. This
can be explained with an example.

Assume that a serial printer is connected which can print at 120 cps. A QNX
program can send data to the printer at 9600 baud which is about 960 cps . To
prevent loss of data the printer will tell QNX to stop sending just before its input
buffer is full. It can do this in one of two ways. With software flow control it will
send an XOFF (Ctrl s) character telling QNX to stop sending. When it is ready for

QNX Tenninals QNX 41

more data it will send an XON (Ctrl q) telling QNX to resume output. With hard­
ware flow control it disables one or both of the hardware signal lines called CTS
(clear to send) and DSR (data set ready). When it is ready for more data these
lines are re-enabled. Most terminals and printers can be set to use either hardware
or software flow control. On a terminal, software flow control is nice in that you
can type Ctrl s at the keyboard to stop QNX output and then a Ctrl q to resume.
This is the default set on the console/keyboard. With a printer there is a small
danger that you might get an XOFF but not an XON. This can be fixed by turning
the printer off and on line (the printer should send an XON when it goes online) or
by telling QNX to continue anyway using the STIY command.

stty -paged >device_name

When QNX is blocked on output because of flow control, it is referred to as
"paged".

Input flow control is the same process , but in the oposite direction. QNX will send
an XOFF/XON (software) or toggle RTS/DTR (hardware) to prevent its input
buffer from overflowing if data is received faster than a QNX application can
process it.

The defaults at power up are software flow control on output only. You can
change these using the following STIY options.

+1 -hflow
+1 -iflow
+1-oflow

- Select software or hardware flow control.
- Enable/disable input flow control.
- Enable/disable output flow control.

5.1.6 Logging In From A Terminal

To login on a terminal, you must ensure that the parity and baud rates are set cor­
rectly, then type a Ctrl-z. If you do not get a login prompt, try typing a Ctrl-x
(delete any garbage in the input buffer) and a Ctrl-q (unpage incase a Ctrl-s has
paged output). If this fails, then type some letters. If they fail to echo, you may not
have properly configured your serial port(s) .

5.1. 7 Logging In From A Modem

You must configure your modem to auto-answer mode and simply follow the
procedure for logging in to a terminal. While this works it has two major disad­
vantages .

1 . If you hang up, or the line drops, you will not be logged off.
2. You must always access the modem at the correct baud rate.

QNX 42 Terminals

With 300/1200/2400 baud modems popular, you may not know which
baud rate to select.

To solve these problems, you may wish to run the COMM command. This
program will determine and set the baud rate and parity for the remote user. The
COMM command is described in the utilities section of your QNX manual. It
supports both dumb modems and hayes compatible modems. When carrier is lost,
COMM will kill off your program, effectively logging you off. To detect loss of
carrier it is important that the modem raise and lower the carrier detect line (pin 8)
and that your modem cable connect that line.

5.2 Outgoing Canns
To place an outgoing call you will use the QT ALK program. Please refer to the
QT ALK documentation for details. If you require a more advanced terminal
emulator you may wish to purchase an extremely slick product called QTERM.

5.2.1 Problems

Most problems connecting serial ports can be traced to one of the following:

1 . Interrupts on the serial card are not configured
properly or two cards are sharing an interrupt.

2. The VO port on the serial card is not configured
properly or two cards are sharing an I/0 port.

3. The cable is incorrect. You may need a straight through
cable or one that crosses some of the signal lines.

4. The baud rate is not correct.
stty baud=baud_rate >$device_name

5. You have not enabled interrupts if the card uses an
interrupt other than 4. The symptom of this is a single
character being echoed.

stty inton=int_num

53 Paranen
Connecting a parallel printer to QNX is very easy. You do not need to worry about
interrupts, flow control or special cables as you do for serial connections . QNX
supports up to 2 parallel ports which are called

$lpt, $lpt2

QNX Terminals QNX 43

It is rare to see more than one or two in a system.

5.4 Sma11rtcaurds

A smartcard is a multi-port serial card with an onboard processor and a large
amount of memory for buffering incoming and outgoing data. There are no inter­
face standards for smartcards, as there are for dumb cards, and you must run a
custom driver to use these cards . These cards may be more expensive than dumb
serial cards. They should be considered when :

• You have more than one channel of input data at 9600 baud.
• You have input data which cannot be flow controlled and comes

in bursts greater than 250 characters.
• You are performing nearly cont inuous output at 9600 baud and

must maintain that data rate on several channels.
• You need to support more than 10 serial ports. The smartcards

typically allow up to 4, S-port cards in a system, for a total of
32 possible serial ports.

If you are only connecting terminals to QNX, then you probably do not need a
smartcard. If you are unsure, contact QNX technical support for some guide lines
as well as an up-to-date list of supported smartcards. The smartcard drivers are
available from the manufactures (the best choice) or from QUICS (the QNX up­
date system) for download. In many cases, full source code for the driver is also
available. The driver runs as a background. task. A typical invocation of a driver
would look like this :

smartcard a=dOOO i=5 p=300 &

Start driver to talk to a card with :
dual ported memory at segment dOOO
interrupt 5
I/0 port 300

Wait a few seconds for the card to be initialized and type the MOUNT command
with no arguments to see the new set of device names.

QNX 44 Terminals

6. Devices
QNX provides a sophisticated tem1inal hand ler for al l character devices attached to
it (keyboard, display, serial communication ports) . This chapter is a summary
suitable for end users.

6.1 Terminal Input

The following information concerns itself with the defau l t options set up for both
the console keyboard and attached terminals in a multi-tasking system. Due to
keyboard limitations of many terminals , some keys and options wi l l apply to the
console keyboard only.

6.1.1 Alt, Shift and Ctrl

These three keys do not generate data themselves, but modify the data generated
by other keys.

The shift key is used to type upper case letters and the symbols shown on the upper
positions of the keys with dual markings.

The Ctrl key is used to generate the control codes defined in the ascii character set.

The Alt/Compose key, when used as a shift, will tum on the eighth data bit for any
key combination pressed. When typed as a data key it sets up a two character
compose sequence. Compose characters allow you to enter extended codes for
foreign language characters and special symbols . This is described later in this
section. This key is only avai lable on the console keyboard and special QNX com­
patible terminals .

The entire character set for the console keyboard is contained in appendix A. The
first table will apply for most terminals. The second table is specific to the console
keyboard and special QNX compatible terminals .

Users with a foreign language keyboard on their PC should refer to the KEY­
BOARD command in the utilities section of this manual.

6.1.2 Caps Lock, Num Lock

These three keys are used to select a particular input mode.

The Caps Lock key converts all lower case letters to capital letters until you press
it again. This key is available on most terminals .

QNX Devices QNX 45

The Num Lock key lets you type the numbers on the keypad without having to
shift. If you do use the shift key in this mode, it will allow you to access the scroll
(arrow) codes on the bottom of the keys. This key exists on PC keyboards which
share the keypad for numbers and cursor keys. Like the Caps Lock key, Num Lock
key is a toggle. Typing the key a second time will tum off Num lock mode.

If you run the CLOCK program, it will display the state of the Caps Lock, Num
Lock and Alt key in the upper right hand comer of your console display.

6.1.3 Type-Ahead

The QNX Operating System provides full type-ahead with echo and line editing.
As long as QNX is functional, your input keys will be seen and remembered. As a
general rule, whenever you enter a line, there will be a program waiting for input
which will consume it. You act as the producer and the program acts as the con­
sumer of input lines. If there is not a program waiting on the keyboard, you may
still continue to type input lines which will be saved until a program (usually the
command interpreter(SH)) asks for them. For example, if you wanted to execute 4
programs, and each program took between 1 and 5 minutes, you could type all four
commands one after another and go for a coffee while they finish.

The operating system has a limit of 254 characters in the type-ahead buffer. QNX
will stop echoing your characters if this limit is exceeded. This can be mistaken
for a software crash. If you keyboard does not echo, first try typing a Ctrl-x to
delete the last line in the input buffer. If you get echo but no command output try
typing a Ctrl-q to cancel output flow control. This can occur if you type or your
terminal sends a ctrl-s . If this does not help, refer to the chapters on "Connecting
Terminals To QNX" and "Tips On Using QNX".

6.1.4 Line Editing

Your keyboard/terminal can operate in one of two modes called EDIT mode and
RAW mode. In RAW mode, every character typed is immediately given to the
program asking for input. The program itself acts on each character received. The
full screen editor runs in this mode. In EDIT mode, when you enter characters on
a line, they are not passed to any program waiting for input until you type the car­
riage return key. This allows you to correct any typing mistakes you may make.
The keyboard (terminal) input routine examines each character you type and
recognizes several keys as special. The command line interpreter (SH) runs in
EDIT mode. The following keys are special in EDIT mode. They are summarized
in appendix A.

RUB OUT (PC: back-arrow TERMINAL: Del or Rubout)
This key deletes the last character typed. The cursor will move one position to the
left, erasing the character at that position. Only characters which are typed by the
user will be erased. The cursor will not back up over a system prompt.

QNX 46 Devices

CANCEL (Ctrl-x)
This key deletes the entire line.

LEFT/RIGHT (PC: left, right arrows TERMINAL: backspace, n/a)
These two keys allow you to move your cursor back and forth over any text on
your line, changing it if desired. On a terminal these keys must be defined using
the STTY command since there is no clear standard. Most terminals support a
backspace key but some may not support a non-destructive forward space.

DELETE (PC: Del key TERMINAL: Ctrl-k)
This key deletes the character at the current cursor position. The rest of the line
will slide over to fill the gap. On a terminal this key must be defined using the
STTY command.

INSERT (PC: Ins key TERMINAL: Ctrl-n)
This key toggles insert mode. In insert mode any characters that you enter will be
inserted before the character at the cursor. Insert mode is always turned off when
you enter a CARRIAGE RETURN a BREAK or a CANCEL. On a terminal this
key must be defined using the STTY command.

TAB (tab key or Ctrl-i)
This key will enter a tab character in your buffer, and echo the required number of
spaces to move you to the next tab stop. In QNX, tab stops are set every four
columns with the first stop set in column five. If you try to RUBOUT a tab
character, you wil l only remove one displayed space on your screen even though
the TAB may have been displayed as several spaces . The TAB character in your
buffer will have been deleted. It is your display which expanded the TAB but
failed to un-expand it on the RUBOUT.

CARRIAGE-RETURN
This key causes the entered line to be made available to the user program. Carriage
returns are automatically mapped into RECORD SEPARATORS (hex I e) by
default. QNX separates lines by a single record separator character in text files .
This differs from DOS which separates lines will two characters (carriage return
and linefeed) and Unix which uses a single linefeed.

PAUSE (Ctrl-s)
Suspend further system output to the terminal (until Ctrl-q).

CONTINUE (Ctrl-q)
Continue allowing any system output to be displayed .

BREAK (PC: Ctrl-Break TERMINAL: Ctrl-c or BREAK key)
This key halts execution of the currently running program which is associated with
the terminal. Any opened files will be closed, and all memory will be returned to

QNX Devices QNX 47

the operating system. Note that some programs (such as the full screen editor) are
capable of trapping BREAK, preventing program termination via this key.

ESCAPE (Ctrl-z)
This key suspends (but does not kill) all running tasks associated with this terminal
and creates a new shell allowing you to enter commands. This key allows you to
escape from any program which has not defined its input stream to be RAW.
When you terminate the shell with a Ctrl-d you will return to the program you
suspended. Do not use Ctrl-z as a break even though the immediate effect (you get
a $ prompt) is similar. You will eventually run out of task entries or memory since
the suspended programs remain around. Programs which do run unedited (ED)
may have been designed to look for the Ctrl-z and invoke a shell.

REBOOT (PC: Ctri-Alt-Shift-Del - 4 keys held down)
This combination will cause QNX to reboot itself. Your open files are NOT
closed, and any which were open for write will be left busy. You can get rid of
them by using the ZAP command. This method of restart should only be used
when you have no running programs or in the rare event that QNX should "check
out" (CRASH).

DEBUG (PC: Ctrl-Alt-Esc - 3 keys held down)
This combination will suspend execution of your program and invoke the low level
assembly debugger if it has been loaded. If the debugger has not been loaded then
this key combination is ignored.

6.1.5 Compose Characters

The Alt/Compose key on your PC is a dual function key. When used as a shift it
will turn on the 8th data bit of the shifted character. For example

a - generates hex code 61
Alt a - generates hex code E1

If it i s depressed then released, WITHOUT typing any other key, it sets up for a
two character compose sequence. The next two characters are combined into a
single 8 bit character code. Appendix A contains a list of compose key trans­
lations. The following brief table lists a few.

Alt (release) p i
Alt (release) + -
Alt (release) e '
Alt (release) 1 2
Alt (release) b a

QNX 48

--> pi symbol
··> plus or minus symbol
-·> e accent grave symbol
··> hex 12 character
--> hex ba character

Devices

The last two illustrate the inputting of exact hex values .

If a program wishes to accept compose characters and differentiate them
from function and cursor keys it should enable option EFUNC. This will
precede all function and cursor keys with a hex FF. This is necessary since
the codes returned for function and cursor keys overlap the composed charac­
ters. Programmers should refer to the documentation on the GET OPTION
library routine in the C compiler manual.

-

6.1.6 Input Gate

A unique feature of the QNX terminal handling software is termed the INPUT
GATE, which prevents output from being mixed with user input on the display.

If the INPUT GATE option is enabled, the operating system will stop all program
output to the display while you are entering a line of text. When the line is ended
with a carriage return, or the user deletes the entire line (via CANCEL or
RUBOUT), system output to the terminal will again be allowed. This option may
be turned off using the STTY command.

stty -igate

Programmers should note that this option is ignored when you turn off the
EDIT option. The option is meant for the console and users connecting to
terminals. It is not used for serial ports configured as raw communication
lines.

6.1. 7 Recalling Command Lines

Due to QNX' s circular 256 character buffering scheme on input, i t is possible to
back up or move forward in the buffer recall ing previously entered lines. The
number of lines you may back up is determined by the length of each input line .
Editing a line you have backed up to may overwrite part of the following line. You
should think of the up and down arrow as a means of rol l ing backward and forward
through your typed lines. On a terminal you will have to define these keys using
the STTY command.

QNX Devices QNX 49

RECALL PREVIOUS LINE (PC: up arrow TERMINAL: Ctrl-u)
This key will redisplay the previously entered line, allowing you to edit it if neces­
sary. Typing it again will recall the line previous to this and so forth. Warning:
Attempting to recall a line after a command which runs without line editing (Full
Screen Editor, Talk) may result in garbage being displayed.

RECALL NEXT LINE (PC: down arrow TERMINAL: Linefeed or Ctrl-j)
This key is the opposite of the up arrow and moves you forward through your type
ahead buffer. These keys must be defined using the STTY command if they are to
be used on an attached terminal.

6.2 Terminal Output

6.2.1 Attributes

Your console display supports several special attributes.

- inverse video
- underline
- blinking
- intensify
- colour

These attributes may be accessed in QNX by sending special control character
sequences to the display. These sequences apply to the console only. It is unlikely
that an attached terminal on QNX will support the same escape sequences to access
their special attributes. QNX' s escape sequences were chosen to provide a user
friendly interface, not for compatibility with any manufacturer's line of terminal
equipment.

Users interested in writing programs which are terminal independent should
read the documentation on the TCAP utility and library.

Not all machines which QNX supports will have the same set of display at­
tributes. QNX will map and support these attributes in a machine independent
manner. Selecting an attribute which does not exist will have no effect.

6.2.2 Output Escape Sequences

The QNX video display driver treats the Ascii ESC code (hex character l b) as a
special control code. The character following an ESC is examined, and if recog­
nized will cause some control function to be performed. An unrecognized
character following an ESC will be passed to the display unmodified, so to print a
real ESC character on the screen, you may send two ESC codes.

QNX SO Devices

Following is a list of the ESC sequences which are recognized by the QNX display
driver. Note that due to hardware limitations some combinations may not be pos­
sible. In particular inverse and underline are mutually exclusive on the IBM
monochrome display. Since the QNX shell echoes each received character you can
experiment with these sequences by simply typing them in. The most commonly
typed sequence is a Ctrl- 1 which will clear the screen.

QNX Devices QNX 5 1

Esc (

Esc)
Esc [
Esc]
Esc {
Esc }
Esc <
Esc >
Esc A
Esc B
Esc C
Esc D
Esc E
Esc F
Esc H
Esc I
Esc J
Esc K
Esc 1
Esc 2

Esc 8
Esc S
Esc R
Esc @fe be

Esc ! je be

Esc = r e

Esc Y r e

QNX 52

Tum on inverse v ideo mode. Thi s wi l l
a l so swap the foreground and background
colours set by the ESC @ sequence
Tum off inverse v ideo mode
Tum on underline mode
Tum off underl ine mode
Tum on bl inking mode
Tum off bl inking mode
Tum on high intensity mode
Tum off high intensity mode
Move cursor UP (no wrap)
Move cursor DOWN (no wrap)
Move cursor R IGHT (no wrap)
Move cursor LEFT (no wrap)
Insert l ine
Delete line
Move cursor HOME
Reverse l inefeed
Clear to end of screen
Clear to end of l ine
Switch to console I
Switch to console 2

etc . . .
Switch t o console 8
Save colour and attribute information
Restore colour and attribute information
Define the foreground and background colour
of displayed characters . Bothfc and be
represent a single digit taken from the
colour table below.
Sets the fil l colour which is used for
the bottom l ine when scro l ling and the entire
screen when c learing v ia form feed.
fc i s the colour of the cursor, be is
the fi l l colour
Posit ion cursor at the screen coord inates
(r, c) which are given by the two characters
following the ' = ' . R is the row (0-24)
and c is the column (0-79) . Both r and c are
offset by hexadecimal 20 (a space) . Therefore ,
rc = <SPA CE> <SPACE> is row zero , column zero
Same as ESC =

Devices

As an example, the sequence

Esc@71Esc!71

will set your character and fill attribute to white on blue.

COLOUR CODES
.diJill mlm!r. digit

0 black 4
1 blue 5
2 green 6
3 cyan 7

colour
red
magenta
brown
white

You should set your colour preference using ESC @ and ESC ! in your sys.init file
and follow it with an ESC S to save it away. All QNX applications which play
with the colour will print an ESC R to restore the saved colour before exiting.

QNX Devices QNX 53

fu addition, the following characters will cause some special action to be per­
formed, rather than printing a character on the display . . .

CR

LF

FF

BS

BELL

HOME
up-arrow

down-arrow

left-arrow

right-arrow

QNX 54

Carriage-return.
Move cursor to column 0 of current line
Line-feed.
Move cursor down 1 position, and scroll the
screen up 1 row if necessary.
Form-feed.
Clear the display to the background attribute
defined by ESC ! sequence. Cursor returns to top left
comer (0,0).
Back-space.
Move the cursor left 1 position. Wrap around
to the previous line if necessary.
Bell.
Generate a tone for a fraction of a second.
Move cursor to top left comer of screen.
Move cursor up one position.
Wrap around to bottom if necessary.
Move cursor down one position.
Wrap around to top if necessary.
Move cursor left one position.
Wrap to end of previous line end if necessary.
Move cursor right one position.
Wrap to beginning of next line if necessary.

Devices

7 o Fun Screen Consoles
Virtual consoles give you the ability to switch between several tasks, each running
on a different virtual console. For example, a developer may choose to edit
programs in one console, compile programs in another console and execute them in
yet a third console. Multiple consoles offer a definite advantage over running
programs in background in that you may examine your output and gain control at
any time. An advanced work station might run a VT100 emulator, 3278 emulator
and another QNX application in three consoles , all concurrently, with the ability to
rapidly switch between applications.

QNX can support several virtual consoles on your PC' s physical screen. Each
virtual console is one full screen and may be thought of as a console to which you
may attach your keyboard. Your keyboard is always attached to the console which
is being displayed. The other consoles may still receive output data from tasks.

7.1 Moul!llting Consoles

When QNX boots, it assumes only one console. You must explicitly MOUNT
every other console you wish to use.

By default, QNX has a built-in Console Driver which will work with CGA and
EGA in text mode. Other Console/Graphics Libraries are available which support
text consoles in 43x80 mode, these are:

I drivers/glib.ega
/drivers/glib. vga

- IBM Enhanced Graphics Adapter.
- IBM Video Graphics Array.

If you wish to use consoles in these non-standard text modes you must mount the
proper Console/Graphics Library before you mount any of your extra consoles.
If you mount them afterwards you will be limited to a screen size of 25 by 80.

The operating system allocates system memory to store each of the consoles that
have been mounted when they are not displayed. When you mount your first
extra console, QNX will query the Console/Graphics Library which is mounted at
that time, to find out what maximum amount of space is required to store a console
(for example, the default 25x80 needs 4K, while 43x80 requires 6.8K). Once the
buffer size has been determined, it is memorized and used for all other subsequent
console mounts .

QNX Full Screen Consoles QNX 55

QNX supports many standard devices. To determine exactly how many devices
your current version supports you should refer to the Technical Note called
"Operating System Limits" . Each device has two names. A $ttynn which iden­
tifies device nn and a symbolic name like $mdm which can also be used to
reference the device. For example, $tty3 is usually associated with $mdm. The
following i llustrates how the device entries are intended to be used with physical
devices :

0 $con - keyboard
1 $1pt - parallel l
2 $Iptl - parallel 2
3 $mdm - serial 1
4 $terml I
5 $term2 I
6 $term3 - serial 4

7 $term4 - serial 5
8 $termS I
9 $term6 I

10 $term7 I
1 1 $termS I
12 $term9 - serial lO

In practice, not all devices are used. These unused device entries may be con­
verted into virtual consoles using the MOUNT command.

For example, the following commands will create three new consoles for a total of
four including $con. The device number of the device entry to re-use may be given
(eg. 2 for $Ipt2, 5 for $tenn2, etc) followed by a new name to assign to the con­
sole. If you do not specify the device, then a free one will be selected for you. If
you specify a device, be VERY careful to specify only unused device numbers .
Typing the MOUNT command with no arguments will display the devices in your
system.

mount

The new name may be up to five characters in length.

Deyice not specified

mount console $coni
mount console $con2
mount console $con3

Deyice specified

mount console 2 $cool
mount console 11 $con2
mount console 12 $con3

You will wish to place MOUNT CONSOLE commands in your system initializa­
tion file so they will be executed automatically each time you boot.

QNX 56 Full Screen Consoles

7.2 Switching Consoles

Holding down the Ctrl key, the Alt key and then pressing the large plus key on the
keypad will step you to the next console while a Ctrl-Alt minus (keypad) will step
you to the previous console.

People may enter a particular console by holding down the Ctrl key, the Alt key
and then typing the console number (1 through 8) .

Programs may switch the displayed console by writing an escape sequence to any
of the consoles :

ESC 1 - displays the first console $con
ESC 2 - displays the second console
ESC 8 - displays the eighth console
etc .. .

NOTE: This second scheme may seem to work if typed in by users , but data
characters are left in the device buffer, which usually confuses the application that
reads them.

At the time of this printing, certain EGA video cards on the market perform a
bit of magic allowing them to auto-switch between several graphics modes.
They also allow you to connect a monochrome or CGA monitor to the con­
troller while in EGA compatability mode. The card does all the gray-scale
interpretation required to make it work. They implement this cleverness by
generating an 110 check which generates a NMI (non-maskable-interrupt)
which they vector into their ROM BIOS on the card. This trick does NOT
work in protected mode and will cause the operating system to fault, usually
the first time you attempt to switch consoles.

Fortunately, you can usually disable the INTELLIGENT capability of these
cards and make them BE a MDA, CGA, HGA or EGA controller connected
to the appropriate monitor type.

Any program may be executed in the active (displayed) console and will behave
as expected. However, some programs which write directly to the screen memory
or use the BIOS calls (int lOb) may cause problems if you switch to another con­
sole while they are executing. The rule of thumb to use in these cases is never
switch to another console unless you are sure these programs are not going to try to
print to the screen while you are in the other console. Programs which use the
QNX l/0 facilities or the high speed video interface will not have a problem. This
includes all QNX Software Systems ' utilities and products .

QNX Full Screen Consoles QNX 57

The stty command supports a +hold option which will hold a task from
running unless it is the active console. This may be useful for a console in
graphics mode where applications always write directly to the screen memory.
Programmers can control this option from within their programs.

7.3 Initiating Commands in Other Consoles

Typing a Ctrl-z in a new console will cause the login prompt to be displayed just as
it would for any terminal.

Occasionally it may be necessary or convenient to automatically initiate a com­
mand in the other console. This can be accomplished using the ONTTY command.

mount console 2 cool

ontty 2 login
OR

ontty 2 application

7.4 Consoles and Graphics
The default Console Driver which is part of the operating system, does not support
any graphics. However, as mentioned above, there are several Console/Graphics
Libraries which can be mounted to replace and/or augment its capabilities. These
support graphics capabilities through the compiler library interface.

These allow you to have 1 console in graphics mode at any one time, and some
allow you to switch consoles when in graphics mode, while others prevent it:

/drivers/glib.hga

/drivers/glib.cga

/drivers/glib.ega

QNX SS

- Hercules Graphics Adapter.
• Text mode [25 by 80 monochrome] .
• Graphics mode [720 by 348 monochrome].

- mM Colour Graphics Adapter.
• Text mode [25 by 80 with 16 colours].
• Graphics mode [320 by 200 with 4 colours].

[640 by 200 with 2 colours].

- mM Enhanced Graphics Adapter. *
• All modes from CGA Library.
• Text mode [43 by 80 with 16 colours].

Full Screen Consoles

/drivers/glib. vga

• Graphics mode [640 by 350 with 16 colours).

• ffiM Video Graphics Array. *
• All modes from EGA Library.
• Text mode [43 by 80 with 16 colours).
• Text mode [50 by 80 with 16 colours].
• Graphics mode [320 by 200 with 256 colours].
• Graphics mode [640 by 480 with 16 colours].

• Cannot switch consoles when in graphics mode.

For more information see the Technical Note called "Console Shared Library" .

QNX Full Screen Consoles QNX S9

8. Files

8.1 File Names
Like most operating systems, QNX stores information on disks in files . You iden­
tify a file by its name. On QNX, a filename may be from 1 to 16 characters chosen
from the set of:

- the letters of the alphabet
- the numbers 0 through 9
- the period ' . ' and the underscore ' '
- hex characters 80 through AF (foreign characters)

Upper and lower case letters are distinct. The file "Report" does not have the same
name as the file "report" . Some examples of good and bad filenames follow:

John Doe
27-d
John Doe
12.3.7

test.c

Bad: contains a space
Bad: contains a dash
Ok
Ok
Ok
Ok

Unlike some operating systems, the period ' . ' is not treated as an extension se­
parator by the QNX file system. It is just another possible character making up a
filename. To improve clarity, the user may adopt the convention of suffixing
filenames with an extension (a period followed by a few characters) . The exten­
sion is NOT enforced by the file system, only the user and perhaps the commands
that operate on files. In particular, the C compiler assumes that a C program that it
has been asked to compile ends in " .c" . If asked to generate an object file it creates
a file with the " .c" replaced by a " .o".

8.2 Structure of Files
A file is regarded by QNX as a featureless, randomly addressable sequence of
bytes. No other structure of files is assumed by the operating system. Commands
which operate on files will in general impose their own structure. For example,
commands which operate on text files (p, ed, size etc . . .) assume that a file consists
of variable length lines, with each line terminated by an ascii RECORD SE­
PARATOR character (hexadecimal value IE).

A file may vary in size from 1 to 1 ,099,5 1 1 ,627,77 1 bytes (about 1 terabyte). A file
cannot be larger than the disk which contains it.

QNX Files QNX 61

The smallest unit of storage allocation for a file is one 5 1 2 byte disk sector. Files
need not be contiguous or preallocated to their maximum foreseeable size. QNX
will enlarge a file 's size as required and if possible, allocate contiguous space for
it.

There is a file called "bitmap" on each disk which contains the sector allocation of
the disk. You may display this file in hexadecimal format using the "dump" com­
mand or pictorially using the query command.

dump 3 :/bitmap
OR

query 3
query 3 +d

The total number of files a user may have on a disk is only bounded by available
disk storage.

8.3 Directories
There is a type of file maintained by the operating system called a directory.
Directories contain the mapping between the names of files and the files them­
selves and thus impose a structure on the file system as a whole. Each user has a
directory of files and is free to create subdirectories to contain groups of files
which are related. A directory may be read by the user, but may only be written by
privileged programs and as such, is controlled by the operating system. A direc­
tory may contain a maximum of 32,000 files, however, if it contains subdirectories
then each subdirectory may also contain 32,000 files. This rule is then applied to
the subdirectories. For all practical purposes the number of files you create will
only be limited by the amount of disk space you have available to save their data.

The structure of the file system is hierarchical and is often called "tree structured"
since diagrams depicting it look like inverted trees with their root at the top. To
clarify this , lets consider an example where a user (gord) has three directories; one
for C programs, one for Basic programs and one for business documentation. His
file structure would look like Diagram 3 . 1 .

QNX 62 Files

gor I
bare

I I I l
test gamel game2 mortgage reportl report2

Diagram 3 . 1

Th e "leaves" (teste gamel , etc . .) are files and the internal nodes (gord, c , basic,
and doc) are directories. Let 's complicate our example and assume the user wants
to separate his C game programs from his C business programs. The user also
generates a series of reports each month and wants each of the monthly reports
kept separate. This may be achieved by the structure in diagram 3 .2.

test

gamel

QNX Files

go d

I
game2

I
bustness

mortgage

Diagram 3.2

month_end

QNX 63

Finally, let 's also subdivide the directory doc into years (diagram 3.3) .

month end month end month end month end month_end month_end

Diagram 3 .3

Note that you can use the same filename for different files under different direc­
tories. The file system allows you to structure your files in a natural hierarchical
arrangement. To achieve this with a flat file system would be very awkward.

The previous examples have dealt with userid "gord" . Since a disk may contain
many userids, "gord" is in fact just a directory under another directory called
"user" . A three user disk is illustrated in Diagram 3 .4.

QNX 64

I
dan gord

Diagram 3.4

1
I

bHl

. . . other directories

Files

The '/' at the top is a very special directory called the ROOT directory and each
disk has one. Your Boot diskette contains directories under the root as illustrated
in Diagram 3.5.

,-I:_ I I
1s . . . sys . init . . . inform . . . disk . at . . .

Diagram 3.5

Executable commands are kept under the directory "cmds" and configuration files
are kept under the directory "config" . Explain files are kept under the directory
"expl" . Disk drivers are under "drivers" .

8.4 Pathnames
When you specify a file to QNX, you must present it in a form which uniquely
identifies it within the hierarchical directory structure. This form is called a
pathname and consists of a sequence of directory names separated by slashes, '/' ,
and ending in a filename. For example the file "ls" under the directory "cmds"
could be written as the pathname

/cmds/ls

Likewise, the file "month_end" under the directory " 1 987" under the directory
"jan" in diagram 3.3 could be written as the pathname

/user/gord/dod1987/jan/month _end

The leading slash indicates to QNX that it should begin its search at the ROOT of
the file system on your disks. In the "month_ end" example, it will start its search
on the first drive in your search order and look for the directory "user" . H it fails to
find it, it will then look on the next drive and so on for each drive in your search
order. Once it locates "user" at the ROOT of a disk, it will look in that directory
for the directory "gord", and if successful, it will look in directory "gord" for direc­
tory "doc" and so on until it finally locates the file "month_ end" .

QNX Files QNX 65

If you are opening a file for write, once the system has matched a directory on a
disk (ie: "user" in this case), it will not restart its search on another drive if it fails
to find a subdirectory or the file on its search down the tree. This behavior is only
important if you have two disks with a directory by the same name at the ROOT.
QNX solves this ambiguity by always stopping its search on the first disk on which
it finds a match at the ROOT. This is not true for files being opened for read,
read/write or execute. In these cases, the search will continue across all drives
looking for an exact match.

The default search order of your drives depends on how you boot.

Boot
floppy
hard disk
network

Search Path
1st floppy, 2nd floppy if present
hard disk only
node from which you booted.

You may change this using the SEARCH command. For example if you had a
ramdisk as drive five and a hard disk as drive three you could tell QNX to search
drive five first by issuing the command:

search 5 3

Refer to the SEARCH command in the utilities section of your binder for more
information.

8.4.1 Specifying a Drive as Part of Your Pathname

You can override QNX's sequential search of your disk drives and lock onto a
particular drive by prefixing your filename with a drive number followed by a
colon (:) . As an example

backup 2:/user 1 :/user

would invoke the backup command with the directory "user" on drive 2 as the
source and the directory "user" on drive 1 as the destination. The command

backup 1 :/ 2:/ +all

would back up all structure on the disk in drive 1 onto the disk in drive 2. Finally,
the command

dump 2:/bitmap

would only look on drive 2 for the file "bitmap" under the ROOT.

QNX 66 Files

8.5 Your Current Directory
The previous pathnames all began with a slash and cause a search to be made star­
ting at the ROOT of the disk. If you leave off the leading slash, the search will be
made starting at your current directory. When you log in, your current directory is
set to point to the directory you logged into. For example, if you logged into "gord"
and gord had a file named "costs", you could name it via its full pathname starting
from the root

/user/gord/costs

or its relative pathname starting at your current directory

costs

When QNX memorizes your current directory, it does more than just remember a
pathname. It remembers the drive and block number on the disk of your current
directory. In a QNX network the node number is also remembered. This results in
very fast access to files accessed by this method. In practice you will fmd that
90% of your pathnames will be relative, NOT absolute from the ROOT.

If at any time you need to specify your correct directory in a utility (such as
BACKUP), it may be indicated with a null string (""). This is also true when
opening the current directory from a program.

backup 1 1 11 /dir - backup current directory to /dir

8.5.1 Changing Your Current Directory

QNX provides a command to allow you to change your current directory to point
to any directory on a disk. The command is

cd pathname

where "cd" stands for "change directory". The pathname should end in a directory
NOT a filename. For example, lets say you wanted to work on your 1 987 month
end report for January. Using the structure illustrated in Diagram 3.3 you could
reference the file "month_end" by

/user/gord/doc/1987/jan/month _end

or if you had logged into use rid "gord" , you could access it relative to your current
directory by

QNX Files QNX 67

doc/1987 /jan/month_ end

If you intend on typing this pathname more than once you should probably change
your current directory to

cd doc/1987/jan

and reference the file as

month end

At any time you may return to the directory you logged into by executing the CD
command with no argument.

cd - will return to login directory

You can print your current directory using the PWD command.

pwd - will print current directory on your screen

8.6 Moving Up the File Structure
QNX allows you to move up the file structure by preceding your pathname with
up-arrows (") . Each up-arrow moves you up one directory level. If your current
directory was at

/user/gord/ doc/1987 /jan

you could reference your February month_ end file as

"feb/month end

and your 1986 jan month_end file as

" " 1986/jan/month _end

Finally, you could "cd" yourself to "gord" with

cd " " "

which will move you up three levels.

QNX 68 Files

8. 7 File attributes and Permissions

Each QNX file has an attribute field and two permission fields associated with it.
Each field acts as a mask or a filter limiting access to a file.

The attribute field limits the access modes which may be applied to the file by any
user INCLUDING the OWNER of the file, the GROUP LEADER and the SUPER
USER.

The group permission field limits the access modes which may be applied to the
file by users which are in your group.

The other permission field limits the access modes which may be applied to the
file by other users.

Changing permissions allows you to control access to include

• yourself only
• users which are in your group
• users which are not in your group
· all users

Opening a file performs the attribute and permission checks. If any check fails,
then the open will fail with a "permission denied" violation. The following
diagrams illustrate the sequence of checks made.

QNX Files QNX 69

ACCESS BY
OWNER I OF FILE

I_Y_ attr . grant access

deny access

ACCESS BY
USER fN SAME GROUP

attr I_Y_ I . . group permissions

deny acces s deny access

ACCESS BY
USER � ANOTHER GROUP

I_Y
. grant access

I attr 1--Y __ rl _o_t_h_e_r_p_e_rm>. ___ s_s_i_o_n_s--,1 --Y- grant access

I N I N
deny access deny acces s

QNX 70 Files

The attributes/permissions of a file are :

READ
WRITE

- You may open the file for read.
- You may open the file for write.

Previous contents are lost. If you
do not write to the file it will be
removed when you close it. This
also gives delete capability. Files
may be opened for read/write in which
case the previous contents are not
affected by the open operation.

APPEND - You may open the file for append.
Any new information you write will
not overwrite any current information
but will be added to the end.

EXECUTE - You may open the file for execute.
This allows you to execute the file
as a load module or a command file
without the sh. All QNX commands
have the attribute of execute.

MODIFY - You may modify the attributes/permissions
of the file.

When a new file is created it will by default have the attributes and permissions of:

attributes: READ WRITE APPEND MODIFY
permissions: READ

In addition, if the file is created by the linker and is executable, then both the at­
tribute and permission field will also have EXECUTE capability set.

The access capabilities on a directory are quite different from those on files. Direc­
tories are maintained by the operating system and a few specialized privileged
commands. A user should never be allowed to write to a directory, and executing a
directory is absurd. The following access capabilities exist for directories :

QNX Files © Quantum Software Systems Ltd. QNX 7 1

READ

CREATE
BLOCK

MODIFY

- You may open the directory for read.
This allows you to discover the names of
the files it contains. For example, the
'Is' command opens the indicated directory
for read to list its contents.

- You may create new files under this directory.
- You may not pass through this directory when

matching a pathname.
- You may modify the attributes/permissions of

the directory.
DIRECTORY - This bit indicates that the file is a directory.

It is controlled by the operating system and a
few privileged commands.

'
When a new directory is created it will by default have the attributes and permis­
sions of:

attributes: READ CREATE MODIFY DIRECTORY
permissions: READ DIRECTORY

The uses of these access capabilities are best explained by some examples .

1 . As a user you do not want other users creating new files under your directories .
Once created they could remove write permission and you the owner of the
directory could not remove them. You can stop this by ensuring that CREATE
permission does not exist on your directories . This is the default. Shared direc­
tories like '/tmp' must be available for creating new files by all users and
should therefore have CREATE permission.

2. You do not want users to be able to access any of your files regardless of the
permissions on the files . S imply ensure that BLOCK permission is set on the
directory and users will be blocked from accessing all files (or sub-directories).

3 . You do not want users to see the names of your files. However, you do want
one or two users or special commands to be able to access files they know the
name of. Simply remove READ and BLOCK from the directory. Adding
BLOCK would not only prevent users from seeing your files , but they could not
even access them if they guessed their names.

4. You wish all members of your group to be able to read and write a file you
own. Simple add READ and WRITE group permission to the file.

The capability of MODIFY is the most powerful since it allows you to change the
other capabilities of the file. You must have MODIFY to use the CHA TTR com-

QNX 72 Files

mand on a file. Note that if you remove MODIFY from the attributes , then the file
will be fixed for all time at its current capability set. For this reason the CHA TfR
command takes care never to remove MODIFY unless explicitly told to do so !

8.8 User Numbers
The owner of a file is indicated by a group number and a member number between
0 and 255 inclusive. All members of group 255 are SUPER USERS and are
privileged in the sense that they are not restricted by the permissions field of any
file, only the attributes. They can therefore read/write/execute/append/modify other
users files , regardless of the file 's permissions. Likewise, member 255 of each
group is a GROUP LEADER and may access the files of all members in that group
regardless of the permissions. All other users are constrained to access privileges
determined by both the attribute and permission fields of any files they do not
own. The owner of a file as well as its permissions are listed by the FILES com­
mand with the +V (verbose) option.

You will be assigned the group number of the super user if there is no password
file. If a password file exists (see section ' Using QNX') then you will be assigned
a group and member number from that file when you login.

In a multi-user system, all system directories should be owned by the super-user.
This includes the directory "/user" . However, each directory under "/user" should
be owned by the user assigned to it. S ince the super-user owns "/user" , only he
may create new user directories under it. To change the ownership, the g= and m=
option of CHA TTR should be used. For example

mkdir /user/jsmith
chattr /user/jsmith g=2 m=21

will give ownership of directory /user/jsmith to user number 2.21 .

If you wish t o restrict access o f potentially dangerous commands , you should
remove general execute and read permission from them. For example

chattr p=-er /cmds/mount

would prevent anyone but a super-user from executing the mount command, as­
suming that /cmds/mount is owned by user 255.255 .

8.9 Device Names
Until now a pathname has referred to devices which are capable of maintaining a
directory structure, the most common being a disk drive. QNX also supports
devices which contain no internal structure and communicate a character at a time.

QNX Files QNX 73

These are referred to as character devices and consist of

- terminals
- line printers
- modems and serial communication lines

On the Personal Computer, the keyboard and display will normally act as your
terminal. The display is not strictly a character device, but for convenience it is
treated that way by the software.

Some devices are read or write-only while other devices may be read from and
written to. Your display is an output device and your keyboard is an input device.
QNX pairs closely related devices like this and refers to them by a single name. To
identify a character device you start your pathname with a dollar ' $ ' . The devices
supported by QNX are

$con
$1pt
$1pt2
$mdm
$terml
$term2

$null

- Your keyboard/display (console)
- Your line printer
- A second line printer
- First serial port (COM 1)
- Second serial port (COM 2)
- Third serial port

- Returns end of file on input and throws
characters away on output.

These may also be referred to as $tty0, $tty l . . . etc. There may be more or less
devices configured depending on the version of QNX you have running on a par­
ticular machine. The MOUNT command with no arguments will list those devices
you have configured and are installed.

mount

QNX goes to some length to treat character devices and files as similarly as pos­
sible. This is called device independent I/0. What this means is that any com­
mand which expects to read or write to a device may also read or write to a file
without modification. The reverse is also true. As an example the CP (copy)
command is typically used to copy files .

cp sourceJile destination_file

Either or both pathnames may be a character device.

QNX 74 Files

cp sourceJile $lpt

Anyplace where a pathname is acceptable, you may usually enter a device name. A
device name is considered a subset of the class of pathnames.

8.10 Network Access to Files and Devices
The QNX network links all machines together. Each node (machine) contains a
file system which handles all file requests to disks attached to it. These requests
may come from local tasks or remote tasks running on other nodes. The network
extends the syntax for a pathname to include the node number on which the file or
device exists. The node number is enclosed in square brackets and precedes the
pathname. For example, the P command

p 3:/user/dtdodge/data

would look on disk drive 3 on my node while

p [4]3 :/user/dtdodge/data

would look on disk drive 3 of node 4. This represents a totally specified path­
name. It should be noted that there are no artificial restrictions placed on the in­
dicated drive. Drive 3 may be a floppy, hard disk or ramdisk. If a driver exists , it
may be an optical disk or x.25 linking servicing the entire network.

A missing node number will always default to your local node.

8.10.1 Remote Search Order

If the drive is omitted then

p /user/dtdodge/data

would use the search order on my node to search for the file on my drives. When a
node is specified

p [4]/user/dtdodge/data

then the search order on node 4 is used and a search is made across it 's drives.
Each node maintains two search orders , one for local requests and one for remote
requests.

search 5 3 - search drive 5 then drive 3
search 3 +remote - search drive 3 for remote access

QNX Files QNX75

ill the above example, assume drive 3 is a hard disk and drive 5 is a ramdisk. The
local users will search their ramdisk then their hard disk. A user on another node
will only search the hard disk.

8.10.2 Automatic Remote Searching

You may specify a node in place of a drive to the SEARCH command. The com­
mand

search 5 [4]

would search drive 5 (probably a ramdisk) then search on node 4 using its remote
search order. This would be a typical search order for a node without it' s own hard
disk. Node 4 would probably contain a hard disk and be thought of as a file ser­
ver. It is possible for node 4 to also specify a node in its search command.

search 3 [5] +remote

This would cause another indirection to node 5 and a search through its drives
using its remote search order. If node 5 contains a node in it 's search order it is
skipped. Only two levels of indirection are allowed. The second level allows a
means of redirecting all file system requests to another node in one operation.
Assume that node 1 was a file server and node 32 is a backup file server. The
normal remote search order for node 1 might be

search 3 +remote

All requests could be referred to node 32 with the command

search [32] +remote

The following diagram illustrates a complex search across several nodes.

NODE !
search 3 [2] [3] 1 - local search

NODE 2
search 2 3 +remote - remote search

NODE 3
search 2 [4] +remote - remote search

NODE 4
search 2 +remote - remote search

QNX 76 Files

An access to /path on node 1 would attempt to open the following files:

3:/path
[2]2:/path
[2]3:/path
[3]2:/path
[4]2:/path

1 :/path

8.10.3 Remote Current Directory

Your current directory may be on any drive on any node in the network. Simply
precede the CD command with a node number

cd [4]/user/dtdodge

The PWD command will print out the pathname of your complete current direc­
tory, indicating both the node and drive.

pwd

8.10.4 Mounting A Remote Disk

There are a small subset of QNX commands and library routines which take a
drive number as an argument. Their syntax does not allow for the specification of­
a node number. To overcome this restriction the MOUNT command allows you to
mount a virtual disk. The command

mount remdisk 7 n=4 d=3

will map all requests to disk 7 into node 4 disk 3. You may remap a virtual drive
at any time.

mount remdisk 7 n=4 d=3
dcheck 7
mount remdisk 7 n=6 d=l
dcheck 7

The concept of virtual disks is in fact the only means of remote access offered by
most other networking systems. You might wish to consider it as an alternative to
node numbers in your search command. The following will give you your own
ramdisk and equivalence virtual drive 3 to the hardisk on node 1 .

QNX Files QNX 77

mount remdisk 3 n=l d=3
mount ramdisk 5 s=64k
search 5 3

8.10.5 Network Devices

- remote hardisk
- local ramdisk

A device name may be prefixed by a node number in the same manner as a path­
name.

cp file $1pt
cp file [4]$1pt

- local line printer
- line printer on node 4

8.10.6 Limiting Network Access

Now that we have given you the syntax and mechanism for completely generalized
access to any device in the system, it becomes necessary to restrict access. You
may not wish to share your local ramdisk and floppy with another work station.
Likewise, you may consider a dot matrix line printer connected to your computer
as your exclusive property. The NACC command can be used to control every
device attached to your machine. The default is NOT to grant access. You may
enable READ and or WRITE permission as desired. For example

nacc 2 $mdm +read +write

nacc 3 +read
nacc CPU +write

- read and write for drive 2
and $mdm

- read access only for drive 3
- allow remote task creates

The last example allows other nodes to create and execute programs on your node.
This very advanced feature separates QNX as a true fifth generation operating
system. Please refer to the documentation on the NACC command for further
information.

QNX 78 Files

9. The Command Interpreter (Shell)
The command interpreter, referred to as the "shell" , acts as the interface between
the user and QNX. To the shell, a command is a sequence of words separated by
spaces.

command argl arg2 ... argn

The first word is treated as the name of an executable file (the command name) and
all other words are considered as arguments to the command. Upper and lower
case letters are different. If the command name begins with a slash then a search is
made for the pathname exactly as specified, otherwise, the string "/cmds/" is
prefixed to the pathname first. If after prefixing with "/cmds/" the pathname can
not be found then the prefix is removed and a search is made under your current
directory. For example, the--command

p data

would cause a search for the executable file

/cmds/p

and only if that failed would it look for

p

under your current directory.

This default search path may be changed by the PATH command which is
described later in this chapter.

The arguments are collected by the shell and passed to the command as strings .

9.1 Shell Prompt
The shell will prompt for input with a character followed by a space . The
character prompt is different for the three classes of QNX users .

$ - Super User
- Group Leader
% - Regular User

QNX Shell QNX 79

The PROMPTT shell command may be used to precede the prompt with your tty
number. This is useful on the console with multiple consoles .

9.2 Command Input/Output Redirection
When a command begins execution, it opens three files referred to as its standard
input, standard output and standard error output. By default these all refer to your
terminal. The shell is able to change these default assignments by recognizing the
constructs :

>pathname
>*pathname
>>pathname
>>*pathname
<pathname

- redirect standard output to pathname
- redirect error output to pathname
- redirect and append standard output to pathname
- redirect and append error output to pathname
- redirect input from pathname

As an example, the command "Is" ordinarily lists on your terminal the names of the
files in your current directory. The command

Is >my _files

would redirect the output to the file "my_files" . Likewise

Is >$lpt

would print them on the line printer. An interesting example of redirecting your
standard input allows you to invoke the line editor with a script of editor com­
mands.

led file <script_jile

Although the redirection character and following pathname appear to be an argu­
ment to the command, they are in fact interpreted completely by the shell and not
passed to the command at all. Thus no special coding is required within the com­
mand to handle input/output redirection. The redirection applies only to the com­
mand executed and not subsequently executed commands.

Programs which are started in the /config/sys.init.nn files have their standard input
set to $null. This means that programs which read data from standard input will
get EOF. If you wish to start a task which can read from standard input you must
redirect it. For example :

myprog < $tty0

QNX SO Shell

You can also use the ONTIY command :

ontty $tty0 myprog
on tty $tty5 my_ other _prog

C programmers may note that redirected 110 pathnames are passed to their
program as argv[argc] thru argv[argc + 2]. The current path is in argv[argc
+ 3]. A value of zero indicates no redirection.

9.3 Quoting
Since arguments are separated by spaces it is not directly possible to pass spaces as
arguments or a single argument containing a space to a command. To overcome
this limitation the shell allows you to enclose in double quotes any argument which
you want passed to a command as is. Some examples of quoting follow:

cmd " " - invoke command with one argument
consisting of a space

cmd " " - invoke command with one argument
consisting of a null string

cmd " >file" - invoke command with one argument
consisting of the string ">file"

cmd " abc der' ghi - invoke command with two arguments
consisting of " abc der' and " ghi" .

In the third example the '>' is protected from the shell and cmd will not have its
output redirected. In the fourth example the string "abc def' with an embedded
space is passed as one argument, not two. In all cases the double quotes are
stripped off the argument before passing it to the command.

There are cases where you may only wish to protect one character (perhaps a
leading '>' or '<' on an argument) or the quote character itself. The shell under­
stands the backslash character as a character which protects the character following
it from the shell. The backslash character is NOT passed as part of the argument.
You may pass a backslash to a command by entering two of them side by side.
The first simply protects the second. Therefore the cmd line

cmd \"hello" \\ \>tile

QNX Shell QNX 81

would pass three arguments to cmd.

" hello"
\
>file

A backslash does not lose it special significance when in double quotes.

9.4 Filename Generation
The shell treats the characters star (*) and question mark (?) special in the context
of a filename. They are often referred to as global filename characters. A ? in a
filename indicates that any character may occupy that position. A * in a filename
indicates that zero or more characters may occupy that position. A search is made
of all filenames in the current directory. Any files which match will replace the
filename which contains the * and or ? . It is often convenient to think of the * and
? forming a pattern which may match zero or more filenames. Since the pattern
may be expanded into many filenames there is the possibility that you may over­
flow the 5 1 2 byte maximum command line. If this happens you will get the mes­
sage LINE TOO LONG. The following examples will illustrate a few simple
expansions.

type *
type *.c
type a*
type *a*
type *.?
type p=*

- list all files in current directory
- list files which end in ' .c'
- list files which start with an 'a'
- list files which contain an 'a'
- list files with a one character dot extension
- type the string 'p=* '

The last example illustrates that a filename will only be expanded i f the characters
around it are valid filename characters. The equals (=) is an invalid filename
character, so no expansion was attempted. This check allows commands like WS,
FILES etc to accept an argument of the form

p=pattern

without having to worry about the shell interpreting and expanding the pattern
itself. Note that the shell can not handle an embedded * in a pathname.

type /dir/* - not supported

You should use extreme caution when using *. The innocent looking command

QNX 82 Shell

frel *

will release ALL files at your current directory level !

9.5 Querying
When a command is followed by a question mark ' ? ' , it indicates that the com­
mand should explain itself.

In C programs, the command is informed by setting the number of arguments
passed to it to zero. Each command normally receives at least one argument
which is the command name itself

All commands supplied by QNX have adopted this convention. The command

Is ?

will inform the LS command to print a terse usage message . This will often save
you from pulling out your utilities manual when you are unsure of a command ' s
syntax. The ? should be the last character o n a line.

9.6 Background Tasks
In QNX, the ampersand ' & ' character is used to run commands in background
(deferred). The task will be detached from your console and both the new com­
mand and your command shell will run concurrently. The task-id of the new task
will be displayed on your console (this can be disabled) followed by the $,# or %
prompt from the shell indicating that you may continue to execute more com­
mands. If you do not redirect the standard input for the new command it wi l l be
changed to the device $null, NOT your keyboard. The new task created will be
immune from keyboard breaks. If you wish to explicitly kill it before it terminates,
you may use the BREAK, KILL or SLAY command. For example

slay dragon

will kill the task with task name "dragon" . If you are not the SUPER USER you
may only kill tasks which you yourself have created.

The priority of the new task may be decreased by following the ' & ' with a minus
' - ' sign. This is often used for programs you do not want to interfere with your
keyboard response. Thi!! is especially true when you are in the full screen editor.

cc cprog &-

QNX Shell QNX 83

The LIST command is an excellent example of a command which can be run
background to increase your productivity. Issuing more than one LIST command
(from one or more terminals) will result in the requests being queued up waiting
for the printer. The following would queue up 3 list requests.

list cprog.c &
list x=myfiles &
list * .c &

In a network system or even a large single machine multi-user system you
· should consider using the spooler instead of direct calls to list.

9.7 Multiple Commands On a Line

You can place several commands on a line by separating them with a semicolon
(;) . For example.

Is ; task

If you wish to pass a real semicolon to a program you must quote it with double
quotes or a backslash.

9.8 Pipes
The or-bar (I) character is used to set up pipes between commands. This connects
the standard output of one command into the standard input of the next command.
The effect of the command

files I sort f=l

is the same as

files >file
sort <file f=l

The commands are connected by a pipe, implemented in QNX as a temporary file.
The file used will be placed under the directory '/tmp' . When the shell dies it will
remove any pipe files it may have created. You may change the names of the
temporary files used with the 'defpipe' command. For example, the command:

QNX 84 Shell

defpipe #$

will use a temporary file under the current directory with the name of the task
number of the shell. A simpler example

defpipe my _pipe

will use temporary files

my _pipet and my _pipe2

at the current directory level. Placing the temporary files on RAMDISK has the
advantage of speed.

Commands which are designed to read their standard input, transform the data in
some way, then write to their standard output are often referred to as filters. You
may connect several of these commands together via pipes in which each com­
mand performs one operation on the data stream.

9.9 Comment Lines

Any input line to the shell which begins with a control character or a double quote
will be ignored. These lines may be used for comments.

9.10 Executing Commands on Another Node

If a line is preceded with a node number in square brackets, the shell will attempt
to run the following command on the indicated node. The default standard input,
output and error will all be directed back to your terminal. The closing square
bracket must be followed by a space to prevent confusion with a pathname.

[4] task
[4]task

[2) [4]task

[2] cc [5]/dir/prog

[1) list data
[1] ontty 3 comm

- Run the task command on node 4
- Load the task command from node

4 and run it on this node
- Load the task command from node

4 and run in on node 2
- Compile on node 2 the program

'/dir/prog.c' found on node 5.
- Run the list command on node 1.
- Run comm on node 1 and have it

attach to $tty3 on that node.
[1] ontty 3 db admin &

- - Run db_admin on node 1 in background.

QNX Shell

All messages will go to $tty3 on that
node. No vc's back to originating node.

QNX SS

[1] login - Create LOGIN on node 1.

The last example would allow you to effectively login to node 1 as a virtual con­
sole. All subsequently executed commands would now be run on node 1. Typing
a Ctrl-d would log you off and return you back to the shell on your current node.
You may only create tasks on other nodes if

- You are the Network Super User (255.255).
OR - That node has CPU write set using the NACC command.
OR - The command is owned by the Super User and has

been patched to have overriding remote create.

Make sure you have NACC permission to write to your own console
from the remote node!

9.11 Command Files
The command interpreter normally takes its input from the terminal. In the case of
a command file it will take its input from a file containing QNX commands.
During the processing of a command file a question mark (?) at the start of a com­
mand line will stop execution of the command file if that command returns a non­
zero status. A command file can call other command files.

9.11.1 Built-In Shell Variables

The shell has a number of built in variables which may be referenced as #c where c
is a single character. The #c sequence is replaced by a character string. If there is
no #c replacement then then #c is replaced with the null string. All built-in shell
variables with the exception of #u are expanded as numbers in the current base. If
the base is 1 6 they are expanded as 4 hexadecimal digits and if the base is 10 they
are expanded as a 5 digit unsigned number. The default base is 16 . For example:

Base 16
0000
OOOc
8000

�
00000
00012
32768

You may turn the leading zeros on or off using
the "zeros on/off'' command.

The built in variables are :

#%

QNX 86

- number of arguments
- task number of shell

Shell

#$
#?
#&
#c
#g
#k
#m
#n
#t
#u
#v
#0
#1 to #9
#*

- task id of shell
- exit status of last command
- task id of last background task
- cyclic number which changes each second
- group number of user
- accept a line from the keyboard
- member number of user
- node number
- tty number
- userid of user
- qnx version number
- name of shell command
- arguments passed to shell command
- all arguments #1 ... #nn

9.11.2 User Shell Variables

The shell supports 10 integer and 10 string variables which may be read and
modified by the user. Integer variables by default expand as numbers in the cur­
rent base (same manner as built in variables) and string variables expand as text
strings. You can force an integer variable to expand in any base by placing a ' t ' or
'x ' in the name as follows.

#iO - expand iO using current base
#itO - expand iO using base 10
#ixO - expand iO using base 16

You can perform arithmetic on the integer variables. They are modified using the
SETV AR shell command and expanded using the following # notation:

#iO to #i9
#sO to #s9

- integer user variable
- string user variable

For example, the following line would read a line of text from the terminal and
save it in a string variable.

setvar = sO #k

Assignment and arithmetic is also straight forward.

setvar = iO 123
setvar = iO Otl23
setvar = iO Ox123
setvar + i1 #iO

QNX Shell

- set iO to 123 using current base
- set iO to 123 using base 10
- set iO to 123 using base 16
- add iO to i1 updating i1

QNX 87

Please refer to the SETV AR command in the UTILITIES section of the manual
under the SH utility.

9.11.3 Executing Shell Commands

Command files may be executed explicitly using the SH command

sh cmd_file argl arg2 ... arg9

or implicity by placing execute permission on the file and typing its name as a
command.

chattr a=+e p=+e cmd file
cmd _file argl arg2 .. : arg9

• need only do this once

The arguments arg l , . . . arg9 may be referenced as # 1 , . . . #9 in the command file.
For example a command file called rename, containing the line

chattr n=#2 #1

would be invoked by either

rename newname oldname
OR

sh /cmds/rename newname oldname

The first example requires that the file have execute permission.

chattr /cmds/rename a=+e p=+e

QNX 88 Shell

9.12 Local Shell Commands
The shell examines each command entered and interprets a few special ones itself,
rather than passing them off to the operating system to execute. These commands
either modify the shell ' s interface or are inconvenient to implement as regular
system commands. Each command is described in the "Utilities" section of this
manual. The following list summarizes each command's function.

back
base base
break task_id
cd [directory]
debug [text]
defpipe path
ec shell _file
else
endif
exit [status]
goto label
if test cmd
kill task_id .••

ontty tty cmd
passon
path searchpath
pause
pri [+I·]number
promptt
setvar op var val
sharoff
sharon
shift
stype [text]*
sysop
then
trap [label]
type [text]*
verbose
zeros on/off

QNX Shell

- suppress background tid
- base for number expansions
- break a task
- change directory
- debug a command
- pipe temp files
- execute sh file
- conditional
- end a block if
- exit shell with status
- transfer control
- conditional
- kill a task
- create task on another tty
- password protection
- change command search path
- pause for carriage return
- set priority
- display tty number
- set variable
- don't share code segments
- share code segments
- shift # args down one
- type arguments
- set system up flag
- conditional
- trap keyboard breaks
- type arguments
- toggle verbose mode
- toggle verbose mode

QNX 89

9.13 Quick Reference to the Shell
The syntax of a shell command line is

[?] [!] [node] command argl arg2 ...

The ? option will abort the shell on a bad exit status. The ! option will transfonn
into the command instead of creating an extra shell for its execution. If you do this
in a shell file, no commands beyond the one transfonned into will be executed.

QNX 90 Shell

SHELL VARIABLES
All number expansions are 4 digit
leading zero hexadecimal by default
- number of arguments
#? - last exit status
#$ - shell msk id
#% - shell msk number
#& - last background msk id
#0-9 - argument 0 to 9
#c - cyclic number
#g - group number
#k - mke 1 line from keyboard
#m - member number
#n - node number
#t - tty number
#u - user name
#v - qnx version number
#* - ALL arguments
#i0-9 - integer variable
#s0-9 - string variable

LABEL
:name

10 REDIRECTION
< - smndard input
> - smndard output
>> - smndard output (append)
>* - smndard error
>>* - smndard error (append)
I - pipe (uses tmp files)

- cmd separator

Leading TABS and SPACES are
ignored and may be used for
indenmtion

QNX Shell

USER COMMANDS
base base
break task id
cd path-
debug [command]
defpipe path
ec command _file
else
end if
exit [hex number]
goto label
if +f filename [cmd I then]
if +d dirname [cmd I then]
if +m filename [cmd I then]
if +a nodeid [cmd I then]
if eq str pat [cmd I then]
if ne str pat [cmd I then]
if lt str str [cmd I then]
if ge str str [cmd I then]
kill task id
ontty ttyniim command
pas son
path
pause

!path !path !

pri [+1-]number
promptt
setvar
setvar
setvar
setvar
setvar
setvar
setvar
shift

var value
var value

+ var value
- var value
x var value
I var value
% var value

stype [text] *
sysup
type [text] *
trap [label]
verbose

QNX 91

QNX 91 Shell

10. Tasks
This section is an overview of the concept of multi-tasking in the QNX operating
system. The discussion starts off very simply and progresses to the more complex
issues and mechanisms within the operating system.

10.1 I:n.t�rodluctiollll

It is by no means necessary to understand the underlying principles on which QNX
is based in order to use QNX. For most users in a multi-user system, QNX will
simply be an environment in which to run an application program on the same
personal computer at the same time as someone else. How this is accomplished
need not be known. However, a basic understanding is a definite asset.

In its simplest form, a task may be thought of as a program which accomplishes a
particular task. In a multi-tasking operating system it is possible for several dif­
ferent tasks (programs) to be executing (running) at the same time. The operating
system accomplishes this by sharing the computer among the various tasks compe­
ting for it. In a single tasking system the computer spends most of its time waiting
on the user. At the speed at which most users enter characters, the computer could
easily have read a thousand times that many characters. It is this speed that allows
a multi-tasking system to appear to run more than one program at once. In fact the
system takes turns running the various programs. The rules governing which task
to run and when are complex but can be summarized as follows.

1. No task which is blocked (typically for input or output) will run. This means
that a user program waiting for input will NOT compete with other tasks which
are ready to run.

2. No task is allowed to run continuously for more than a fraction of a second (set
by SLICE utility) if there is another task waiting. This prevents one task which
is performing long complex calculations from locking all others out. Unlike
point 1 above, the other tasks will be affected since they may now have to wait
a fraction of a second for their turn to execute. In a multi-user system this is
seen as a slight delay in response to commands. Should an appreciable number
of tasks all consume their maximum time limit then response may suffer
noticeably. In QNX, if eight users run a program which takes several seconds
of dedicated processor time, then each program will appear to take eight times
as long. Typically this does not occur because most tasks frequently request
input/output.

3. Tasks may be assigned priorities such that higher priority tasks will never relin­
quish the processor to lower priority tasks . The time sharing of point 2 only
applies to tasks at the same priority.

QNX Tasks QNX 93

10.2 System Tasks
When QNX is booted, five system tasks are created. These tasks run at a priority
which is higher than any user created tasks. Each system task performs a well
defined function as follows.

TASK ADMINISTRATOR
This task is responsible for creating and destroying tasks. It is also respons­

ible for allocating memory for the tasks. This task runs at priority one, which is
the highest task priority in the system.

FILE SYSTEM ADMINISTRATOR
This task is responsible for the file system. It handles all requests to open,

close, read and write to files . This task runs at priority three.

DEVICE ADMINISTRATOR
This task is responsible for all character devices attached to the system. This

includes your terminal, the line printer, etc. It handles all requests to open, close,
read and write to devices. This task runs at priority two.

IDLE ADMINISTRATOR
This task simply consumes any spare processor time. Since this task runs at

the lowest possible priority in the system (15) , it only runs when QNX has nothing
else to do. It therefore does not affect system performance.

NETWORK ADMINISTRATOR
This task is responsible for communication over the local area network. It

handles all data requests which must be transmitted over the network. This task
runs at priority 3. If you do not have a networking card installed, this task is not
needed and will terminate itself.

There are a other tasks which may be created after the system is running. Al­
though not essential for the system to run, they provide valuable services. They
are described below.

TIMER ADMINISTRATOR
This task is responsible for running a wakeup service. Any .task can request

to go to sleep for a specified period of time and this task will wake it up when that
period elapses . It is also capable of signaling ports , setting exceptions and forcing
a task ready. C programmers are referred to the file "/lib/timer.h" and the library
routine set_timerO . The timer administrator may be started by typing (or placing
in your "/config/sys.init" file) the command.

timer &

QNX 94 Tasks

SPOOLDEV ADMINISTRATOR
This task creates virtual devices which spool information away to disk. This

allows several people to use the device at the same time. When they close the
device, the file is submitted to a real device in a first come first served order.

LOCKER ADMINISTRATOR
This task supports record locking and concurrent file sharing. The record

locking is compatible with that found in Unix System V.

QUEUE ADMINISTRATOR
This task supports named queues which supplement QNX's normal methods

of intertask messaging.

User tasks request services from these system tasks by sending messages to them.
Upon sending a message the user task blocks waiting for the system task to receive
the message, process it, then reply with some result. System tasks NEVER send to
user tasks. The life of a system task can be summarized as follows.

- Block awaiting a message.
- When a message arrives, process the request and

if the request can be satisfied reply indicating
the result.

- If the request can not be satisfied immediately, then
remember it and wait for another message.
When the request can be satisfied, often as the
result of another received message, reply to the
waiting task at that point.

When running in a network, these messages may originate from other nodes on the
network. The receiving task need not differentiate between local and remote mes­
sages.

10.3 Inter-task Communication
QNX supports three types of inter-task communication.

1. Messages
send (tid, snd _ msg, rep_ msg, size)
receive (tid, rev_ msg, size)
reply (tid, rep msg, size)
read msg (tid, rev-msg, size)
writ�msg (tid, rep=msg, size)
vc_create (nid, tid, size)

2. Ports

QNX Tasks QNX 95

attach (port)
detach (port)
signal (port)
csignal (port)

3. Exceptions
set_ exception (tid, sys _ exc, usr _ exc)

10.3.1 Messages

A message consists of a sequence of data bytes from 0 to 65,535 bytes in length.
Messages between nodes on a network are limited to the size of the virtual circuit
buffer which was created for this communication.

The contents of a message will usually fit a predefined structure agreed upon by
both the sender of a message and the receiver. A receiving task may receive more
than one type of message, with each message having a different structure. In this
case the first byte of the message will usually indicate its type. Based upon this
message type the receiver may then apply the proper structure for extracting the
various fields within the message. The operating system does NOT check for
consistency in message types between tasks. It considers a message to be a se­
quence of data bytes and does not examine or assume any structure on the message
itself. This view is consistent with that taken by the file system concerning the
contents of files. The convention of using the first byte of the message to indicate
message type may (or may not) be adopted by the communicating tasks themsel­
ves.

When a task SENDS a message to another task it will block until the receiving task
RECEIVES the message and then REPLIES. When a task does a RECEIVE
waiting for a message it will block until one is SENT to it. The operation of
REPLY does not block. This presents two scenarios depending upon whether the
send occurs before or after the receive.

QNX 96 Tasks

TASK A
A sends to B

.

. - A blocked

• - A continues

TASK A

A sends to B

• - A blocked

. B
• - A continues

TASK B

B RECEIVES from A
.
• - B processes the message

B REPLYS to A

Diagram 10.1

TASK B

B RECEIVES from A

• - B blocked

.

. - B continues

.

. - B processes the message

REPLYS to A

Diagram 10.2

A physical transfer occurs at the point of the receive in Diagram 10. 1 and at the
point of the send in Diagram 10.2. This can be thought of as the synchronized
connection point between the two tasks. Messages implement a totally syn­
chronized communication.

During the REPLY operation the receiver may also reply with 0 to 65,535 bytes of
information back to the sender. The transfer occurs immediately and does not
block since the sender is already blocked awaiting a reply.

There are two types of receives, general and specific. A general receive may be
satisfied by any sending task while a specific receive will only be satisfied by the
one task indicated in the receive. All operating systems tasks perform general

QNX Tasks QNX 97

receives since they do not know beforehand the identity of the user tasks sending
to them. Sending to a task which does not exist or dies before replying will un­
block the sending task. Likewise, performing a specific receive on a task which
does not exist or dies before sending will unblock the receiver.

Should more than one task send to the same receiving task, they will each block
and queue up on the receiving task. As the task performs RECEIVE operations it
will receive the messages in the time order that they were sent except in the case of
a specific receive. In this case it will receive from that task only, regardless of it' s
position i n the queue.

Should two tasks send to each other at the same time, they will both block on each
other resulting in a deadlock situation. This can be easily avoided by careful de­
sign and by following these guide lines.

1. If possible, design your programs such that
one task is a producer (sender) and the other
a consumer (receiver).

2. If two tasks MUST send to each other, insist on
a very rigid protocol stating when each may send
and the other receive. A much better solution
would be to create a third task which only performs
receives, and have the other tasks send to it.
The middle task would then reply appropriately
to each task. This middle task is often referred
to as an agent. The QUEUE manager is an example of
a generalized agent task.

The queueing of sending tasks provides a mechanism for controlled, sequential
access to a resource. Complex issues of synchronization, critical sections and
semaphores are handled in a clear and uniform manner. For example, the classic
problem of providing secure, controlled access to a database from multiple tasks
(users) may be greatly simplified by placing a task between the files making up the
database and the requesting tasks. The database administrator would now receive
synchronized sequential requests to act upon the database. It would provide the
intelligent interface to the file system. The file system need not contain complex
record locking facilities. These are provided by the administrator task in a manner
which is in harmony with the structure of the data. The task can also resolve ques­
tions of access permissions, access statistics , access billing etc. , a job which should
not be performed by the file system or operating system.

The following example is perhaps the most common occurrence in the QNX
operating system.

QNX 98 Tasks

1 . User task A sends a message to the device administrator requesting a line of
input. At this point task A is SEND blocked and will not compete for the
processor.

2. The device administrator receives the message from task A and starts to run.
Just before it received the message it would probably have been RECEIVE
blocked awaiting a message.

3. Task A goes from the SEND blocked state to a REPLY blocked state. It' s mes­
sage has been received but it is still blocked awaiting a reply.

4. The device administrator checks to see if there is a line waiting from the ter­
minal indicated in the message. Lets assume that there is not. The device ad­
ministrator will then remember task A's request and again RECEIVE block
waiting for another message.

5 . Sometime later, a user types carriage return on the terminal Task A has reque­
sted a line from. The driver associated with that device sends a signal to the
device administrator saying a line is available.

6. The device administrator unblocks, and replies to task A with a message con­
taining the line. It then RECEIVE blocks waiting for another message.

7. Task A unblocks and starts running with a message containing the line.

10.3. la Death of a Task

When a task dies (for any reason) it sends a message to each QNX administrator
informing it of it ' s death. This allows the administrator to clean up any resources
allocated by the task before its death. Users who write their own system tasks may
request that they also receive this message when tasks die.

10.3. 1b Messages Across the Network

The QNX network extends the range of the message primitives across a local area
network. It is this capability which truly separates QNX from other operating
systems which claim local area network support. QNX integrates the local area
network right into the heart of the operating system, at the fundamental level of
inter-task communication.

In the above example, TASK A sent a message to the device administrator to get a
line of input from a device. There is no need for the two tasks to be on the same
node. This means that a task on one node may communicate directly with any
device on any node in the system. It just has to send to the appropriate device
administrator task. This also applies to the file system administrator and the task
administrator.

To open a file, a user task sends an open message followed by read and write mes­
sages to the file system task. The user task may therefore access any floppy, hard
or ramdisk on any node by sending messages to the file system task on any node.

QNX Tasks QNX 99

To create a new task, a user task sends a create message to the task administrator.
By sending this message to the task administrator on another node you may ex­
ecute remote task creations across the network.

10.3.1c Virtual Circllllits

In these examples, the receiving task did not have to perform any special action to
receive or reply to messages from remote tasks . It is the responsibility of the sen­
ding task to set up the communication path to the receiver. This is accomplished
by a QNX primitive which establishes a VIRTUAL CIRCUIT between the sending
and receiving task. This primitive

vid = vc_create(node_id, task_id, message_size)

returns the task-id of a virtual task which represents the task on the far node.
There is a virtual task created at each node. You many now refer to the vid as
though it were a local task, sending to it, receiving from it, etc . . . The operating
system will ensure that all requests will be transparently sent over the network.

The virtual circuit provides the necessary mapping between two tasks . It also en­
sures that resources can be cleanly recovered across the network when a task dies .
For example, assume that TASK A is a very nosy task and opened files on a large
number of different nodes and being an irresponsible task, killed itself without
closing any of its files. Upon the tasks death, the local task administrator would
examine the virtual circuits set up by TASK A and send control messages to the
destination nodes killing the virtual tasks at the other end. The death of these
virtual tasks will be perceived as the death of TASK A to the remote tasks. They
will then clean up in the same manner as the death of a local task, closing off
TASK A's files. Without the virtual circuit, the death of any task would have to be
sent to every task on every node in the network just to be safe ! This action would
bring a local area network to it knees.

If the poller is running and a node crashes, all nodes will be informed. They will
check if any of their tasks have a virtual circuit setup to the crashed node. If they
do, the local virtual task is killed and again the local tasks will perceive the death
of the remote task on the crashed node.

10.3.2 Ports

Ports provide the important capabilities of

- interrupt handler communications
- simple non-blocking communication

as well as the less important capabilities (due to names and messages) ·of

QNX lOO Tasks

- identification of unrelated tasks on the same node
- semaphores

10.3.2a Identification - single node only

Knowing the identity of another task gives a task the ability to communicate with
it. The task identities of the system tasks are fixed and thus known to all tasks.
When a task creates a new task (son), both the father and the son are informed of
each others task identities . In each of these cases the knowledge of identity enables
communication by messages. The above message primitives do not satisfy the
requirements of communication between unrelated tasks .

A port is a globally known name to which a task may attach in order to com­
municate with unknown tasks . QNX provides a minimum of 32 ports which are
identified by number. The first 16 are reserved by the operating system of which
the first eight are privileged. A task may attach, detach or obtain the identity of a
task connected to a port. The following table summarizes the the action of the
attach and detach primitives on a port. For each primitive the port may be free or
already attached by another task.

PORT IS FREE PORT ALREADY ATTACHED

ATTACH return zero

DETACH return zero

return task identity
of attached task

return task identity
of attached task

Attaching to a free port claims the port, while detaching from an owned port frees
it. Detaching from a port you do not own will return a value as above but it will
not detach another task. It can therefore be used to obtain the identity of a task
connected to a port.

In the database example above, the database administrator would immediately
attach to an agreed upon port. All tasks wishing to communicate with it would
detach that port to obtain the task identity to which they must send.

The use of ports for name serving is only suitable on a single machine. Under the
network version of QNX the section on NAMES provides a better mechanism for
identification which will work on a single machine as well as a network.

QNX Tasks QNX 101

The major purpose of ports is to allow interrupt handlers to communicate with
tasks. The interrupt handler signals a port which a task as attached to. The signal
will wake the task up allowing it to process the interrupt.

10.3.2b Semaphores

The operations of A TI ACH and DETACH implement a semaphore which may be
used to gain controlled access to a resource. QNX' s LIST command currently uses
port 16 to gain access to the line printer. In a multi-tasking and multi-user system
it is quite possible for several instances of the LIST command to be invoked con­
currently. If they each wrote indiscriminately to the printer, you would end up
with an intermixing of output. Instead, the LIST command attempts to attach to
port 16 before opening the line printer for output. If successful, the LIST com­
mand continues and starts outputting to the printer. If unsuccessful, then the
printer is already in use by another task. In this case the LIST command sends a
message to the LIST task which owns the port. Since LIST never does a receive,
the sending LIST will block. When the attached LIST fmishes and dies, it is de­
tached from the port and all tasks send-blocked on it are unblocked. The sending
LIST(s) will then again attempt to attach to the port. The code in LIST to imple­
ment this consists of 2 lines of C code.

These semaphores will only work on a single machine and not across a local area
network.

10.3.2c Signals

A task may SIGNAL a port resulting in that port sending a message to the task
attached to it. This form of communication is special in that

1. The task performing the signal does not block.
2. The message sent by the port contains no data.
3. The signal may be performed by an interrupt

handler.
4. Messages sent by ports are queued ahead of

regular messages and will be received first
even if sent second.

The first point permits a form of non-blocking communication. The task as­
sociated with the port will receive the message when it does a RECEIVE operation
from anyone or an AWAIT operation on a specific port. The task identity returned
by the receive will be that of the port and is clearly distinguishable from any task
identity. If a task sends multiple signals before they are received, they will all be
remembered. The conditional signal (CSIGNAL) will not signal a port if there is
already a pending signal.

QNX 102 Tasks

The identity of the port which sent the signal is the only information which the
attached task receives. It is not even aware of the task which performed the sig­
nal. This is much more limiting than the SEND primitive but adequately serves the
purpose of informing the task that a particular event has occurred. For example, if
a task was waiting upon the event of a game paddle switch being closed it could
attach itself to a port and wait for a signal from that port. The signal would in­
dicate the event. No extra data is necessary.

Point three allows interrupt handlers to inform tasks of external hardware events.
The game paddle example above would signal the event within the interrupt han­
dler causing the task responsible for that piece of hardware to unblock and service
it. The device administrator and file system administrator are both informed by
signals when a line is available or a disk operation has completed.

The final point simply gives communication by signals priority over that by mes­
sages. When used in conjunction with signals from interrupt handlers, this gives
hardware events priority over software requests from other tasks.

10.3.3 Exceptions

So far, all communication between tasks has been synchronous with the receiver.
The receiver explicitly had to perform a receive operation and thus was expecting a
communication. Exceptions on the other hand are asynchronous with the receiving
task. They are usually generated by some abnormal event and may occur at any
time during the task execution. The best example is the exception associated with
a keyboard BREAK. When you run a program, you may type a keyboard BREAK
(Ctrl Scroll Lock on PC keyboard) at any time. This has the effect of setting an
exception on the task associated with the keyboard. There is NO way for the task
to know if or when the exception will occur. If the task has not protected itself
against this exception, then the default action is to kill the task.

There are a total of 32 exceptions which you may set on the task. These corre­
spond to bit positions within two 1 6 bit words. The operating system reserves the
first 16 exceptions. User tasks may freely choose meanings for the second 1 6
exceptions. Those currently defined by the operating system are

QNX Tasks QNX 103

EXCEPTION
modem hangup
keyboard break

HEXADECIMAL VALUE
0001

quit
communication error
missing shared l ibrary
floating point error
kill
memory violation
privileged
alarm clock
task termination
divide by zero

0002
0004
0010
0040
0080
0100
0400
0800
2000
4000
8000

The 'kill ' and ' task term' exceptions may not be protected against and always
results in the task being killed. The 'task termination' exception is the means by
which a task terminates itself (normally or via an explicitly coded abort).

Certain tasks, like the editor, do not want to be destroyed by exceptions like
BREAK. Therefore, the operating system provides the ability for a task to either
ignore exceptions or execute a user provided routine to handle them. In the case of
the editor, it terminates the current operation and returns to command level. Note
that due to the asynchronous nature of an exception it is necessary for the editor to
protect itself by ignoring exceptions during certain critical operations. In these
cases the exception is left pending until the editor re-allows it at which point the
exception occurs. What the editor has done is to force synchronization of the ex­
ception during these critical places.

The capabilities of user tasks handling exceptions is best described using diagram
10 .3 . For simplicity we will assume a single exception being set (one bit set in the
exception word).

QNX 104 Tasks

(2)

allow mask

(4)

set exc bits
call function ()

kil l task

set pending bit s

ki l l task

Diagram 10.3

The exception fields of PERMIT, ALLOW, PENDING and FUNCTION are all
maintained in the user task 's address space and may be manipulated directly.
From within a C program they are referenced as

extern unsigned Exc_perrnit[2], Exc_allow[2] ;
extern unsigned Exc_pending[2], Exc_bits[2] ;

The PERMIT field may be thought of as a bit mask against which an exception is
applied. If an exception bit is set where a permit bit is not, then the task is not
permitted to handle that exception and is killed (1). Once the exception makes it
past this first mask, it is applied to the second mask called ALLOW (2). If this bit
is clear then the task is not allowing this exception at this time and the exception
bit is placed in the PENDING field (3). No other action occurs. The task may
exrup:ine the pending field at any time in order to see if any permitted but disal­
lowed exceptions have occurred. This allows the task to poll the bits at its con­
venience. If all bits are disallowed then the bits can be treated as a 16 bit number
which can be set by another task. Finally, if the bit in allow had been set, then the
function whose address is in the FUNCTION() field would be invoked (4). In this
case if there is not a function set up to handle the exception, the task is killed (5).

It is possible for multiple exceptions to be set upon a task by setting more than one
bit in the indicated exception. The above explanation operates on all 32 bits in
parallel. Killing the task (no permit) followed by invoking the exception function
(an allow) take precedence when considering multiple exceptions. The operating
system tasks do not set multiple exceptions on a task.

QNX Tasks QNX 105

The following table summarizes the actions for a single exception, permit and
allow, bit path.

PERMIT ALLOW
clear clear
clear set
set clear
set set

ACTION
kill task
kill task
set proper pending bit
invoke exception function

If a task sets an exception on a virtual task (vc_create) , the operating system will
forward the request to the node which contains the real task. The real task will
have the exception placed upon it.

A word of warning . . . If an allowed exception occurs, the task will become UN­
BLOCKED before executing the exception function. This has the unfortunate side
effect of causing errors if the program was waiting for input from the keyboard for
example. User programs which l:landle exceptions should be prepared to handle
errors at any point in their program. Please refer to the documentation on the C
library routine EXC_HANDLER.

10.4 Global Names
As stated earlier, for a task to communicate, it needs to know the task id of the task
it wishes to communicate with. QNX offers a mechanism where a task may attach
a symbolic name of up to 8 characters which may be queried by other tasks. As­
sociated with the name will be the node number and task id of the attaching task.
A task may attach its name as local to a single machine or global across the entire
network.

The first type of attaching is handled by a table in the local task administrator. The
second type is handled with the assistance of a server task which must be running
on a node in the network. This is described in the technical note " Attaching and
Locating Task Names" in the C binder.

Attaching a name is similar to the attach and detach primitives on ports.

10.5 Task States

The previous sections have talked about tasks blocking. In QNX a task is always
in one of six states.

DEAD

READY
SEND BLOCKED

QNX 106

- Task does not exist or is
being killed

- Task is ready to run
- Task has done a SEND which

Tasks

RECEIVE BLOCKED

REPLY BLOCKED

HELD

NETWORK BLOCKED

has not been received
- Task has done a RECEIVE with

no waiting send
- Task has done a SEND which has

been received but not replied to
- Task is ready but has been

·explicitly held
- Task is blocked on a network

request

The three blocked states are all tied to the message communication primitives. The
state of HELD indicates that the task is ready to run (not blocked) but is being
prevented from running due to a HOLD operation on it. Performing a hold on a
blocked task does not change its state. However, as soon as the task unblocks, its
state will change to HELD, not READY.

The highest priority task that is ready will be the task which is running. If there is
more than one task ready at the highest priority level, then they will be time-sliced
every fraction of a second.

The possible state changes are indicated graphically in diagram 10.4. The arrows
indicate a state transition caused by the indicated reason.

l. Task sends message 4. Task waits for message
2. Target task receives message 5. Message received
3. Target task replies

Diagram 10.4

QNX Tasks QNX 107

10.6 Task Ids
A task id consists of a 16 bit word in which the lower 8 bits is a task number and
the upper seven bits is a version number. Each time a task is created, it is assigned
the task number of a dead task and the version number of that task is incremented
by one. The version number ensures that a particular task number may be reused
128 times before reusing a given task name. The telephone company follows a
similar policy in not immediately re-using canceled numbers. By holding off on
reassignment, there is less possibility of someone phoning the old number and
getting an answer. Instead they get a number out of service. Similarly, in QNX, a
send to an old task will usually fail. The top bit indicates whether the task is local
or remote (virtual task).

The task number must lie in the range of I to 254. The maximum number of tasks
allowed and other system information may be obtained by using the TSK com­
mand.

tsk info

The return values of system calls which return task names is summarized in the
following table.

HEXADECIMAL
TASK NAME
0000
0100 to ffOO
xx01 to xxfe
ffff

MEANING
Task does not exist
Valid port name
Valid task name
System call failed

where xx is any combination (00 to fl) and
the top bit indicates if the task is

0 - local (real) task
1 - remote (virtual) task

Examples
0500 - port five
0508 • local task (number 8, 5th incarnation)
8728 - virtual task (number 28, 7th incarnation)

10.7 Task Hierarchy
Tasks running in the system have a hierarchical (tree) structure which very closely
parallels that of the file system. Each task has one father and zero or more sons
and brothers. Two examples are shown in diagram 10.5.

QNX 1 08 Tasks

doc
I

playerl

r
player2

Diagram 10.5

I
player3

When a task dies, all its children are also killed. This may seem harsh, but it is
necessary to maintain a consistent task hierarchy. Imagine removing a directory
without first removing the files under it!

10.8 Task Creation

When a task creates a son task, there are three major options available to it.

1. It may wait upon the sons death before
continuing to execute itself.

2. It may continue executing in parallel
with the son (concurrent).

3. It may continue to execute in parallel
with the new task but not preserve the
father son relationship (background).
As a result the death of the father
task will NOT kill the new son task.

The command interpreter (shell) by default always chooses option 1 unless you
explicitly tell it to run the task background (option 3). Option 2 is not a common
occurrence. One might imagine a large application program which consists of one
father task which creates several son tasks, all performing a separate function, and
running concurrently. Killing the father will remove (kill) all sons.

In addition the father task may also set the priority of the son at creation.

10.9 TerminaR Ownership

At any one time, only one task is associated with a terminal. This will be the most
recent task to open the terminal for read. Besides receiving all input the task will
also catch keyboard BREAKS. Each open stacks on top of the last open. Only the
last open on the top of the stack is active. Closing a terminal will remove it from
the stack. This may move a previous open to the top of the stack making it active

QNX Tasks QNX 109

again. If a task which is not on top of the stack attempts to read from a terminal,
the request will be queued until that tasks open becomes active. A remote task
may take active control of the terminal by opening it in the same manner as a local
task. This scheme has no ambiguity.

When a task is created it may optionally be "handed" down responsibility for hand­
ling breaks on the device. It is possible for a son task to process data from a ter­
minal, but have breaks still be set on the father task.

QNX 1 10 Tasks

11 . QUICS - The QNX Update System
The QNX update system, called Quics, is a computer which runs 24 hours/day
which you may call (using a modem) to:

• Download fixes and changes to the operat ing system, utilities
and libraries.

• Download a variety of free software from various sources.
• Send us electronic mail.
• Engage in a conference with other QNX users on a large

variety of topics.

The first point allows us to provide you with a level of customer service which is
second to none in this industry. For example, if you report a bug, perhaps in a
utility or library routine, you can often download a revised version within hours of
reporting the problem. We maintain on line , the most current versions of all
programs including the operating system itself for download. Along with these we
provide a list of all changes made to the system. You may wish to sign on once a
month and make a log of this list.

We also maintain a growing list of free software which may be of interest to you.
It includes games, nifty utilities and a megabytes of source provided by ourselves
and our customers . This source can be an invaluable aid in helping you to under­
stand some of the intricacies of QNX. For example, the QUEUE manager shipped
in binary form with your system is avai lable in fu ll source under the free software.
The same is true for all disk and graphics drivers .

If you are not in a hurry for an answer you can send us electronic mail which we
will answer within a day or two.

Lastly, if you would like to comment or ask a question which you feel other users
may be interested in, then you will want to use our conference system. It has a
command structure which is very s imilar to that used by Byte magazine ' s con­
ferencing system. All the QNX developers are members of the conferencing
system as well as most of our more active developers . It is not unusual to pose a
question and have several comments on it within an hour or so. There are topics
on real time, hardware, utilities , c compiler, . . . and so on. You do not need to be a
QNX customer to use the conferencing system. It can be accessed from a terminal
or a terminal emulation program running under DOS .

The machine you are calling is node I of a large QNX network. It is our boot node
and the node from which most of our users get all their commands . While signed
on, you are in fact sharing the machine with quite a few users. At the time of this
printing the boot node is an 8 Mhz AT with 3 modem lines and an X.25 line into
the Datapac public network which supports 4 (expandable to 32) additional users .

QNX Quics QNX I l l

All three modems will support both 300 and 1200 baud service. We are always
upgrading our equipment and some (if not all) of the modems will support 2400
baud and we are looking to provide 9600 baud service as well. The 3 modems are
on a hunt group with the primary number being.

(613) 591-0934 • First number of the hunt group.

An up to date configuration on the number of modems, their types and phone num­
bers is maintained on the update system. You can read this when you give us a
call.

As stated above, we are also connected via an X.25 link to the Datapac public
network. An X.25 card plugs into our AT and interfaces with X.25 software which
runs under QNX. The X.25 l ink can support several user calls at one time. To
connect with us via X.25 you will have to make a pre-paid call or register with us
for an X.25 account number allowing you to make collect calls. Our network
address is i020 15701416

l Our datapac address.
Datapac's network code.

11.1 How To Phone Us

To call us you will have to use one of QNX's terminal emulation programs.

qtalk
qterm

• A simple terminal program which comes with the system.
• A very slick, full featured terminal program which is

separately purchased.

Since QT ALK is shipped with every system we will describe how to contact us
using it. We will assume that your modem is connected to the QNX device
$mdm. If it is not, you will have to specify to QT ALK which tty device it is on.

Step 1 Set your baud rate to conform to your modem as follows:

QNX 112

stty baud=2400 par=none bits=8 >$mdm
stty baud=1200 par=none bits=8 >$mdm (QNX default at boot)
stty baud=300 par=none bits=8 >$mdm

Qulcs

Step 2 Start QT ALK and cause your modem to dial us. If you are in north
america and have a hayes compatible modem you can use QT ALKS's
dialing directory capability. We provide an entry with our phone number
and the name "quics". Refer to the documentation on QT ALK in the
utilities section of the operating system manual for more information.

qtalk quics [m=modem_device]
qtalk [m=modem_device]

• Hayes compatible modem.
• Other modem.

The option m=modem device is only necessary of your modem is not
connected to the device $mdm.

Step 3 When the word CONNECT is printed, wait one second. If you do not get
a login message type the following 5 characters

ab •• carriage-return
t: this is the <enter> key

and repeat if necessary. You should get a screen of information telling
you what to do next. One of your options will allow you to download an
up-to-date manual on how to use Quics, the update system.

11.2 X25 Access
Quics is also connected to the Datapac packet network via an X.25 link.
Customers may access the system by using a public dial-up port. Instead of
placing a long distance phone call directly to one of QNX's modem lines, you
place a local call to a modem line on a packet network. Once connected to the
packet network rou will have to place a call to QNX's X.25 link. This is accom­
plished by entenng a multi-digit number (referred to as a DNA, destination ne­
twork address) to identify who you wish to call. Once a successful call is made,
you will be connected to QNX's update computer and all data will be routed
through the packet network. Each country tends to have its own packet network
with gateways connecting the many networks. Due to agreed upon standards, you
should be able to access our update computer from nearly any country/network in
the world. The standards, unfortunately, do not apply to the user interface pre­
sented to the user when he wishes to place his call. At this point, you are com­
municating with the network (this is similar to the method by which you com­
municate with a hayes modem when you wish to place a call) and each network has
it's own command language. Once the call has been established you are then
communicating with QNX and the network should pass all data transparently.
There are two major advantages of accessing the update system via X.25.

QNX Qulcs QNX 1 13

First, the networks communicate at very high speed and pass data to each other in a
completely error-free manner. The only place a communication error is possible is
between your modem and the network's modem over the phone line on which you
called. This will typically be a local phone call. Those of you who have tried to
access the update computer directly using long distance may have discovered that
the lines are often very noisy. It seems to depend on the time of day, phase of the
moon and how badly you need the data. Our European customers have found the
long distance line pretty much unusable. Our X.25 l ink has changed all this and
for the first time we have a global update system.

Second, access via the packet networks is often cheaper than the cost of a long
distance phone call. This is especially true when you consider the re-transmission
time caused by data errors. The cost is based upon both connection time and the
amount of data transferred. Each network has it 's own rate schedule with some
networks being more expensive than others . The different networks have agreed
upon inter-network costs in much the same fashion as the international phone
companies.

You still have to use a QT ALK or QTERM to contact us as described above,
however, you will call your local public network and then use it's commands to
place a call to us .

Contact QNX Software Systems Ltd ' s marketing department for an application for
an X.25 account which will allow you to place col lect calls.

QNX 1 1 4 Quics

12. Tips on Using QNX
This section consists of a few tips in getting started on QNX.

12.1 Memory Requirements
To boot QNX you need a minimum of 256K of memory. This can be expanded to
640K in real mode and 15 Megabytes in protected mode.

12.2 Enabling Colour
You may change the colour of your text and screen by issuing escape sequences to
your screen. As an example, the sequence

Esc@71Esc!71 (Esc is the single Esc key)

will set your character and fill attribute to white on blue.

COLOUR CODES

.dW.t
0
1
2
3

Du.t
black
blue
green
cyan

.dW1
4
5
6
7

.tlliWII
red
magenta
brown
white

You should set your colour preference using ESC @ and ESC ! in your sys.init file
and follow it with an ESC S to save it away. All QNX applications which play
with the colour will print an ESC R to restore the saved colour before exiting.

type Esc@71Esc!71EscS (Esc is the single Esc key)

12.3 Disabling Colour
If you have a colour card, but a black and white monitor, you may wish to suppress
all colour since it makes text very hard to read. You can disable colour using the
stty +nocolour command.

12.4 The Mount Command
The MOUNT command allows you to dynamically reconfigure QNX. You may

1. Install custom disk drives.
2. Install consoles.

QNX Tips QNX llS

3. Install shared libraries.
4. Install disk caches.

By default QNX assumes a 360K (40 track) floppy disk drive for drive one and the
same for drive two if it exists . On machines like the AT, QNX will automatically
configure itself to support the 1 .2M high capacity drives. On a PC, users may have
an 80 track floppy for drive 2. To configure your 80 track drive, you would issue
the command

mount disk 2 t=80 n=9 h=2

If you can spare the memory, a great improvement in hard disk access time can be
made by installing a disk cache. For example, we could add a cache to disk 3 by
issuing :

mount cache d=3 s=32k

If you are going to accessing large files in a random access mode (data bases), then
a tremendous improvement in performance can be had by mounting an X CACHE.
A file in QNX consists of one or more extents. Each extent is a contiguous series
of blocks within the file.

extent 1 extent 2 extent 3
I I I I I 1-ITIJ-1 I I I I I I I I I I

An XCACHE caches the information on how these extents are connected. This
saves you from having to chain through extents when seeking within a file. Each
extent connection requires 20 bytes. This cache is shared by all disks.

mount xcache s=lOk - enough for 512 extents

Finally, you can speed up disk writes by mounting a bitmap cache. This cache
takes up very little room and yet it can add significant performance when growing
files.

mount bmcache d=3

Virtual consoles an extremely useful extension to QNX and can be added to the
system (at the expense of another device entry which is hopefully not required) by
a command such as:

QNX 1 1 6 Tips

mount console cool

Shared libraries such as graphics libraries or floating point math libraries can be
installed with commands such as :

mount lib /drivers/glib.ega
mount lib /config/qdb.slib

The use of shared libraries allows application programs which run under QNX to
be independent of hardware.

12.5 Ramdisk
One form of the mount command allows you to create a virtual disk in memory.
This disk behaves exactly like a real disk in all respects except speed where it is
much faster. To create a 200K ramdisk as drive five issue the command

mount ramdisk 5 s=200k

The ramdisk loads a driver into memory. As a result, the above command would
require just a little bit more than 200K of memory to create the ram disk. You can
only mount a single ramdisk.

You must now initialize the disk using the dinit command as follows

dinit 5

QNX will not look on the ramdisk until you include it in its search order using the
search command

search 5 3

In this example we have indicated that we wish to always look on the ramdisk first,
followed by drive 3. We will not look on drive 1 unless that drive number is ex­
plicitly prefixed to the file name (1 :().

Once the ramdisk has be initialized you may create directories and files on it.
Creating the directory /tmp on it gives you a place to put all temporary files you
wish to go away when you power off. The compiler places it 's temporary files
under /tmp as well.

mkdir 5 :/tmp
chattr 5 :/tmp p=+C

QNX Tips QNX 117

Don' t forget to add general create permission on the /tmp directory if other users
are going to be using temporary files . Ramdisks may be reinitialized by using
DINIT and starting again ! If you have sufficient memory, you may wish to create
a larger ramdisk and place a /cmds directory on it. Copy down the editor and its
macro file as well as any other commonly used commands.

cp 3:/cmds/ed 5:/cmds/ed
cp 3:/cmds/ed.macros 5:/cmds/ed.macros

... any other commonly used commands .. .

Ramdisk is also convenient for data logging over a high speed communication
line. The pause going to a disk is eliminated.

Once they get used to the speed, most users find it hard to work without a ram­
disk! A ramdisk can be created from your sys.init.nn file.

12.6 Shared. Libraries

Rather than duplicate code in many applications, or increase the size of the
operating system, QNX has adopted the technique of dynamically mounting
software libraries of code which can be shared. This technique can also be used
provide machine independent interfaces to hardware. For example, a different
Graphics library may be mounted for each type of graphics card. The user 's ap­
plication program does not change. It makes calls into the shared library to ac­
complish a function. The standard shared libraries are.

/config/float.slib
I config/float8087 .slib
/drivers/glib.ega

• software floating point
- 8087 floating point
- Console/Graphics for ega card

12.7 Operating On Groups Of Files

QNX provides two very useful commands which allows you to execute a com­
mand on a group of files. They are the EO (execute on) and WS (walk structure)
commands . These routines may seem confusing to the novice, however, they will
quickly become indispensible as you become familiar with the system. Please
keep them in mind and refer to the documentation in the utilities manual.

QNX 1 1 8 Tips

Appendix A

Character Set and Keyboard! Codles

QNX Tips QNX 1 19

� ����:t • 0 1 6 3 2 4 8 6 4 80 9 6 I 1 2
H E X A

• D E C IM A L 0 I I V A L U E
2 3 4 5 6 7

0 0 B L A N K B L A N K 0 @ p '
p I N U L L I ISP A C E I

I I (;;) I 1 A Q a q .

2 2 • t I I 2 B R b r

3 3 • I I * 3 c s c s . .

4 4 • CfT $ 4 D T d t
5 5 � § CJ'o 5 E u e u

6 6 • - & 6 F v f v

7 7 ® ! ' 7 G w g w

8 8 i (8 H X h X

9 9 0 !) 9 I y .
y 1

[!] J z .
1 0 A * 0

J ___. . z

I I B cf ...-- +
. K [k { '

1 2 c Q L < L " 1
I

' I

1 3 D j) ._._.. - - M] m }
1 4 E � A . > N 1\ n �

1 5 F -¢- 'Y / � 0 0 6
0 -

St andard Co n s o l e Ch a r act e r S et

��', \ l

.. 1 2 8 1 44 l o O 1 7 6 1 9 2 2 0 8 2 2 4 2 40
H(X A

• D E C I M A l 8 9 A
V A t U [

B c D E F

c; E , . . . I 0 0
. . . -

a
. . . <X -
. . . -
. . .
. . .

. . ,
��;�� fJ + I I u CE 1
·:·:·

-

2 2
, JE ,

t r > e 0 I -

3 3
1\

0
, lL rr < a u f--

-

4 4
. . . . ___.,., b L r a 0 n - f---

' ' .--...;

) 5 5 a 0 N = --
F u

6 6
0 I\

a = y a u r-i - -

-

7 7 <;
'

0 T ""--'
u 11 ""--'

A . . .

Q 0
8 8 e y (, ===!

. .
. . ::::J •

9 9 e 0 I rr= - 8
' . . � n 1 0 A e u I •

I I 8
. .

1 c Y2 =n = 0 "

1 2 c 1\ £ � d (X) n
1

1 3 D
'

¥
. _jJ cp 2

1 '

1 4 E A R « d � E I
1 5 F A f » I (I B L A N K

' F f .

St andard Conso l e Ol.aract er Set

ASCII Code to ASCII Character Table

0 1

0 NUL DLE

1 SOH DCl

2 STX DC2

3 ETX DC3

4 EOT DC4

5 ENQ NAK

ACK SYN

7 BEL ETB

8 BS CAN

9 HT EM

A LF SUB

B VT ESC

c FF FS

D CR GS

E so RS

F SI us

CONTROL CODES

NUL - Ctrl @
SOH - Ctrl a
STX - Ctrl b
ETX - Ctrl c
EOT - Ctrl d
ENQ - Ctrl e
ACK - Ctrl f
BEL - Ctrl g

2

SP

!

..

II

$

"'

&

'

(

)

*

+

'

-

I

BS - Ctrl h
HT - TAB
LF - Ctrl j
VT - Ctrl k
FF - Ctrl 1
CR - Enter
SO - Ctrl n
SI - Ctrl o

Upper 4 bits
3

0 @

1 A

2 B

3 c

4 D

5 E

6 F

7 G

8 H

9 I

: J

; K

< L

= M

> N

? 0

DLE - Ctrl p
DCl - Ctrl q
DC2 - Ctrl r
DC3 - Ctrl 8
DC4 - Ctrl t
NAK - Ctrl u
SYN - Ctrl v
ETB - Ctrl w

5 6

p '

Q a

R b

s c

T d

u e

v f

w g

X h

y i

z j

[k

\ 1

1 m

,. n

0

CAN - Ctrl X
EM - Ct rl y
SUB - Ctrl z
ESC - Esc
FS - Ctrl I
GS - Ctrl 1
RS - Ctrl "'
US - Ctrl

7

p

q

"

8

t

u

v

w

X

y

z

(

I

I

�

DEL

QNX Keyboard Codes

A

S h i f t S h i f t
TAB F6 Home

S h i f t
1 F1 F7 up

S h i f t
2 F2 FB PgUp

S h i ft
3 F3 F9 minus

S h i ft
F4 FlO left

C t r l
5 FS Fl .five

Ct r l
F6 F2 right

C t r l
7 F7 F3 plus

C t r l
F8 F4 End

C t r l
F 9 F S down

C t r l
A F l O F6 PgDn

S h i f t C t r l
B Fl F7 Ins

S h i f t C t r l
c F2 F8 Del

S h i f t C t r l
D F3 F9 PrtSc

S h i f t C t r l
E F4 FlO Fll

Shift Ctrl
F FS TAB F12

Note:

Upper bits

B c

C t r l A l t
Home Home

C t r l Alt
up up

Ct r l Alt
PgUp PgUp

C t r l A l t
minus minus

C t r l A l t
left left

Ct r l Alt
Live five

C t r l A l t
right right

C t r l A l t
plus pl us

C t r l A l t
End End

Ct r l Alt
down down

Ct rl Alt
PgDn PgDn

C t r l A l t
Ins Ins

C t r l A l t
Del Del

C t r l A l t
PrtSc PrtSc

Ctrl Alt
Fll Fll

C t r l A l t
F 1 2 F12

D E F

Alt
p

Alt Alt Alt
Fl a q

Alt Alt Alt
F2 b r

Alt Alt Alt
F3 c s

Alt Alt Alt
F4 d t

Alt Alt Alt
F5 e u

Alt Alt Alt
F6 f v

Alt Alt Alt
F7 g w

Alt Alt Alt
FB h X

Alt Alt Alt
F9 i y

Alt Alt Alt
FlO j z

S h i f t Alt
Fll k

S h i f t Alt
Fl2 1

Alt
SysRq m

Alt
n

Alt
0

The above codes are preceded by a hex FF code, if the option EXPAND_FUNC is turned on, and the indicated
function keys are pressed.

The above codes can also be generated as a compose character, which results when the ALT key is pressed and
released, then 2 more characters are typed. compose characters are NEVER preceded with an FF code.

<; E ,

Al t c ' Al t E , Al t a a Al t g a <X
, . . 1 f3 A l t U I I u Al t A e .E Al t i , Al t g b

,
A E .i.E

,
Al t e e Al t Al t o

, 0 Al t g g r
" "

,

Al t a a Al t o 0 Al t u u Al t p i rr
. . --v

Al t a I I a Al t o I I

0 Al t n - n Al t g e � -..;
' ' N Al t a a Al t o 0 Al t N - Al t g s a

0 1\ a
Al t a o a Al t u u Al t a Al t g u y

c;
' 0

Al t c , Al t u u Al t o Al t g t T
" . .

Al t e e Al t y y Al t ? ? & Al t o I Q
. . 0 I

Al t e e Al t Q I I Al t + Al t 0 - e
' 0 -, n Al t e e Al t u I I Al t + Al t g w
. . � 0 Al t f I I 1 Al t c

¢ Al t I 2 Al t g d

Al t i • 1 Al t L - £ Al t I 4 JA Al t
00

0 0
'

Al t i ' 1 Al t y = ¥ Al t Al t o I cf>

A I I A R « E Al t Al t p t Al t < < Al t E E
0

Al t A o A Al t f - f' Al t > >))
Al t u u n

Al t
R e l eas e Al t b e f o r e t y p i ng 2 c h a r a c t e r

+
Al t + - i nput s eq u enc e s

Al t > =
>

Al t < =
<

Al t

Al t
� �

Al t 0 •

Al t •

Al t s q ...r

Al t g n n

Al t
. 2 2

AT disk 10
Alive 33
Argv 8 1
Attach 101
Attributes 69
BIOS disk 1 1
Background 83, 109
Backslash 8 1
Backup 17
Bad blocks 1 6, 17
Baud rate 38
Bios driver 1 9
B itmap 62
Blocking 93
Bmcache 21
Booting

Sys . init 20
floppy 3
hard disk 18, 20
network 3 1

COM1 37
Cache 2 1 , 1 1 6
Carrier detect 43
Cd 67
Change directory 89
Characters, foreign 45 , 48
Chattr 73
Colour 1 15
Comm 4 1 , 43
Command files 86
Command interpretor 79
Communication 95
Compose characters 45, 48
Concurrent 109
Conference system 1 1 1
Configuration, os 27
Consoles

colour 1 1 5
graphics 58
memory 55
mounting extra ones 55

Ctrl-z 48
Current directory 67 , 77, 89
DCE/DTE 39
Datapac 1 12

Index

Date 3
Dcheck 17
Death 99, 100, 109
Detach 101
Device

editing 41
escape sequences 50
input 45
input gate 49
line editing 46
line recall 49
output 50
smartcards 44
type-ahead 46

Device admin 94
Device names 73, 74, 78
Devices 45
Dinit 1 6
Directories

moving up 68
Directory 62

changing 67
current 67
number files 62
printing 68
structure 62

Disks 7
at 10
bios 1 1
booting 3 , 1 8 , 20
booting from 1 8
cache 2 1
controller 7
drivers 7
formating 1 5
hdisk.cfg 1 9
installation 1 2
mounting 8, 14
nighthawk 1 1
partition 12, 14
ps/2 1 1
second physical 27
xt 9

Dmark 16
Dos partition 1 3 , 26

Index

Download 1 1 1
Drive numbers 66
EGA

smart cards crashing 57
switching consoles 57

Ega 1 1 7
Exceptions 95 , 103

actions 106
catching 104, 105
list of 103
network 106

Execute permission 88
Fdformat 15
Fdisk 14, 20
File admin 94
File system

attributes 69
bitmap 62
commands 65
current directory 67, 77
device names 73
directories 62
drive numbers 66
file names 61
max file size 61
network 75
network access 78
node numbers 75
pathnames 65
permissions 69, 73
ramdisk 1 17
remdisks 77
search order 66, 75
structure 61
text files 41 , 61
user numbers 73

Flashing text 5 1
Flow control 4 1
Foreign characters 45 , 48
Free software 1 1 1
Graphics

Libraries 58
consoles 58

Group 73
Group permissions 69

Index

Hard disks
see Disks 7

Hdisk.cfg 19
Hierarchical 62
Highlighted text 5 1
Input 45
Installation

command 5
manual ?
network 29
summary 22, 32

Inter-task communication 95
Interrupt handlers 103
Inverse text 5 1
Keyboard

input gate 49
line editing 46
line recall 49
shift keys 45
type-ahead 46

Kill vcs 33
Line editing 46
Line recalling 49
Locker admin 95
Login 3, 42

modem 42
Macros 86
Member 73
Memory

Requirements 1 1 5
Used by consoles 55

Message deadlock 98
Message example 98
Message queuing 98
Messages 95, 96, 99, 100
Mkdir 73
Modem 42
Modems 37, 4 1
Mount 1 1 5

consoles 55
Multi-tasking 93
Multi-user 93
Nacc 30, 78
Names 106
Netboot 3 1

Index

Netboot directory 18
Network 94

access 30, 78
booting 3 1
diagnostic tips 35
exceptions 106
hardware 29
installation 29
installation summary 32
messages 99
poller 32, 100

Network admin 94
Nighthawk disk 1 1
Node numbers 30, 75
Nodes 85
Non-blocking 102
Null modem 39
Or-bar 84
Osconfig 27
Other permissions 69
PS/2 disk 1 1
Parallel 43
Parity 38
Partition 5, 12, 1 4

dos 26
more than one 26

Passwords 3 1 , 73
Pathnames 65

absolute 65, 66, 67
network 75, 78
relative 67

Patterns 82
Permissions 69, 73

access chart 69
default 7 1 , 72
examples 72
types of 70, 7 1

Phone numbers 1 , 1 1 2
Pipes 84
Poller 32, 1 00
Port

ids 108
Ports 95, 100

identification 101
interrupt handlers 1 0 1 , 103

Index

semaphores 102
signals 102

Printer 4 1
Printers 37, 43
Priority 83, 89, 93
Pwd 68
QNX loader 1 8
QNX partition 12, 1 4
QUICS 1 1 1
Qtalk 43, 1 12
Qterm 43
Queue admin 95
Quics 1 1 1

phone numbers 1 12
x.25 1 1 3

RS-232C
see serial 37

Ramdisk 1 17
Rebooting 48
Receive 96
Record locking 95
Record separator 6 1
Redirection o f 1/0 80
Remote Disks 77
Remote execution 85
Remote search 75
Reply 96
Root 62, 65
Scheduling 93
Screen

colour 5 1 , 52, 53
cursor addressing 5 1
escape sequences 50

Search 17
remote 30

Search order 65, 66, 76
example 76
indirect 76
remote 75

Semaphores 1 02
Send 96
Serial 37

4/8 port cards 38
baud rate, parity 38
cables 39, 40

Index

coml , com2 38
flow control 41
i/o ports 37
interrupts 37, 38
login 42
modem 42
modems 41
outgoing calls 43
printer 4 1
problems 43
ps/2 38
smartcards 44

Server 98
Setvar 87
Shared libraries 1 1 8
She11 79

Variables 86, 87
background tasks 83
command files 86, 88
commands 89
comment lines 85
multiple commands 84
pipes 84
prompt 79
quoting 8 1
redirection 80
reference chart 90
remote execution 85
sys. init 80
useage message 83
variables 86
wildcards 82

Signals 1 02
Smartcards 44
Spooldev admin 94
Standard l/0 80
Star 82
States 106
Stty 38
Super user 4, 73, 83
Sys.cfg 27
Sys.init 30

Standard l/0 80
sample contents 20

System tasks 94

Index

Sytem initialization file 30
Task

background 83
code sharing 89
communication 95
creation 48, 109
death 99, 100, 109
exceptions 95, 103, 104
hierarchy 108
ids 108
messages 95, 96, 97, 98, 99
names 106
ports 95, 100, 1 02
priority 83, 89, 93
scheduling 93
states 106, 107
system 94, 95
tty 109
virtual circuits 100

Task admin 94
Technical support 1
Terminals 109
Text files 41 , 6 1
Time slice 93
Timer admin 94
Tips 1 1 5
Tree structure 62
Underline text 5 1
Update system 1 1 1
Usage message 83
User directory 62, 73
User numbers 73
Variables 86, 87
Vc create 100
Virtual circuits 100
Warm boot 48
Wildcard 82
X.25 1 1 1 , 1 13

address 1 12
phone numbers 1 1 1

XON/XOFF 4 1
XT disk 9
Xcache 21

Index

	Blank Page
	Blank Page
	Blank Page
	TECHNICAL NODES

