

QNX Utilities

QNX is provided with a variety of utilities which aid in the management of files ,
the creating and formatting of diskettes, communicating with other computers, etc.

The following pages describe the standard QNX utilities and how to use them.
Each utility will be described separately, starting with a brief description of the
command syntax, followed by a list of all possible options and a few examples.
The command will then be described in more detail. References to other similar or
related utilities may be included.

In the following pages, the syntax of a utility may include a few of the following
characters :

[...]

*

- Square brackets are used to indicate OPTIONAL
fields or arguments.

- OR bar is used between ALTERNATIVES, one of which
must be selected.

- Asterisk following an argument indicates that a
REPETITION of that field is also allowed.

Any arguments which contain boldfaced characters may be abbreviated to the
boldfaced characters alone.

Italics are used to represent data which the user must supply, such as a filename or
number.

A few examples are included with every utility to help make the syntax of that
command more obvious.

1

Command Summary

QNX is shipped with a rich variety of commands. It is well worth the time to look
through all of this section, reading enough about each utility to get a good feel for
what it does and when you would use it. This way, you will know what to look for
later, when you need to refer to the manual for the precise details on a particular
utility.

Learning the commands available on an operating system is one of the first tasks
which confronts most new users. Depending upon your level of experience, this
can be a slow process. To aid you in this respect we have listed most commands
by category. The most frequently used and needed commands are marked with a
star (*).

Communjcation
COMM
QCP
QTALK
STTY

2

- Modem communication handler
- QNX Communications Protocol

* - Talk over Communications Line
* - Set TTY options

Commyn iration
COM M
QCP

- Modem communication handler
- QNX Communications Protocol

QTALK
STTY

* - Talk over Communications Line
* - Set TTY options

Con tigyration Ut i l it ies
ACCOUNTANT - Accounting Task
BOOT - Select an OS fi le for disk booting
CLOCK - Display Time and Date On Console
CLRHOUSE - A distributed database and name server
CRON - Schedule commands in background
DATE - Display or set date and time
DEF SERVER - Define id of g lobal name server
DEFPIPE - Define temp fi les for pipes
FDISK - Create QNX disk parti tion
K B D - Redefine keyboard layout
LOCKER - Implement record locking in QNX
MOUNT * - Mount disk drives, consoles or l ibraries
ONTTY - Create task on another tty
OSCONFIG - Change operating system parameters
PASSON - Tum on password protection
QUEUE - Implement queued message passing in QNX
RTC - Get Date from Real-time Clock
SEARCH - Define or Query the Disk Search Order
SHARON/SHAROFF - Do/don't share code segments
SLICE - Set the timesl ice rate
TCAP - M anage terminal capabi lity database
TIMER - Implement t iming faci l ity in QNX
TSET - Set terminal type
TZSET - Display or set timezone offset

Development Uti l i t ies
CC - Compi le Command (C, Basic, . . .)
DEBUG - Invoke the low level system debugger
LINK - Link object fi les
MAKE - Maintain and recreate fi les

3

Disk Utmties
CHKFSYS
DC HECK
DCOPY
DDUMP
DINIT
DMARK
FDFORMAT
PARK
QUERY

- Check entire file system for consistency
- Check a disk for bad blocks
- Copy entire disk to a second disk
- Dump the contents of a disk block
- Disk Initialization
- Mark bad tracks on a disk

* - Format floppy diskettes
- Park the heads of a hard disk

* - Query the utilization of a disk

Editing and Word Processing
ED * - Full screen editor
LED - Line Editor

File and Directory Manjoulatjon
CD * - Change current Directory
CHA TTR - Change Attributes of a file
CHGRP - Change group (group number) of a file
CHMOD - Change mode of a file
CHOWN - Change owner (member number) of a file
DREL - Release Directory
EO - Execute On a list of files
FREL * - Release File
MKDIR * - Make directory
PWD - Print Working Directory
RM * - Remove files
RMDIR - Remove directories
WS * - Walk directory Structure executing a command
ZAP - Zap damaged files out of existence

Graphics Utilities
BAR
DUMP_ffiM

4

- Dr::.w Bar Charts
- Make a hardcopy of Graphics Screen

Information Handling
CRYPT - Encrypt/Decrypt files
DIFF - Difference between two files
DUMP - Dump the contents of a file in hexadecimal format
EXPL - Explain
GREP - Search a file for a pattern
LOCATE * - Locate patterns of characters in a file
MORE * - Display a file or stdin by pages
MSORT - Merge sort utility
PACK - Pack a file to reduce its size
PATCH - Patch files
SIZE - Display the size of a file
SORT - Sort files
SPA TCH - Full screen patch utility
UNPACK - Unpack a packed file
WC - Word count
XLA T - Translate Characters

Listjng Directories and Fj!es
DIR * - Display directory tree
FILES * - List Files
FST AT - Display file status
LS * - List directory

Miscellaneous User Commands
APB - Send a Public Bulletin
BEEP - Beep a user on another terminal/machine
BREAK * - Break a task
CALC - A simple calculator
EC - Execute a shell file
ECHO - Echo arguments to standard output
KILL * - Kill a task
LOGIN * - Log-in to QNX
LOGOFF * - Terminate a QNX Session
PATH - Change command search path
PRI - Set priority
PROMPTT - Display tty number
PRTSC - Print Screen
SH * - Execute Shell Commands
SLAY * - Kill a task by name
SLEEP - Sleep for a number of seconds
STYPE - Type arguments on the terminal (no CR/LF)
TYPE - Type arguments

5

Moying Files
BACKUP
CAT
COPY
CP
FBACKUP
MY
SPLIT
TBACKUP

* - Backup Files to a backup diskette
- Concatenate input files into one larger file

* - Copy files
* - Copy files

- Archive files to floppy disk(s)
* - Move files

- Split a file into one or more files
- Archive files to QIC60 tape(s)

Network ONX Utilities
ALIVE - Set up/down status of a node
KILL_ VCS - Kill all virtual circuits to a node
NACC - Set network access to disks, devices and CPU
NET - Query machines on the network
NETBOOT - Service boot requests from the network
NETST A TS - Display network statistics
NETTEST - Check data transmission between two nodes
POLL - Poll nodes (network version only)

Printing Utilities
LIST
LPS
p
SPOOL
SPOOLDEV

System Information
ACCSTATS
DO PEN
FOPEN
SAC
TSK
WHO

6

* - List files on the line printer
- Postscript Laser Printer Filter

* - Print file contents on terminal
* - Spool files to a printer

- Create Pseudo-Printers

- Print Accounting Statistics
- Display open devices
- Display open files
- Display system activity at each priority level

* - Display task information
* - Who is logged-in to the system

ACCOUNTANT - Accounting Task

Syntax:

accountant [b=buf_limit] [£=file_ namel] [£=file_ name2] [t=ttys]
[+verbose] &

Options:

b=buf_limit - Number of accounting entries to buffer before switching
to secondary file (if it was specified).

f=file name] - Primary file to save accounting entries in.
f=Jile-name2 - Secondary file to save accounting entries in.
t=ttys- - List of tty 's to gather accounting information on.
+verbose - Print each login/logoff on the screen.

where: ttys = tty range[,tty range]
tty _range= tty_ num[:tty_num]

Examples:

accountant &
accountant t=0,2,3 :6 &
accountant f=3 :/accounting/log &
accountant f=3 :/accounting/logX &
accountant f=3 :/accounting/logX f=[4]3 :/accounting/logX b=50 &

Description:

ACCOUNT ANT i s a task which runs in background and collects accounting
information from the QNX TASK administrator. In a local area network you must
run ACCOUNTANT on each node for which you wish to collect accounting
information. If you do not specify which tty ' s to gather information on, then
information will be gathered on all tty ' s .

Accounting information is generated on each login and logoff of a user. Each
accounting entry is 48 bytes long and contains the following information.

struct accstat entry {
char aces-type; /* 0-Not Used 1-Login 2-Logoff >3-User defined */
char accs=tty;

Utilities [ACCOUNTANT]

ACCOUNTANT

unsigned aces nid ;
char aces group num;
char aces-user num;
unsigned accs time[2] ;
char aces name[16] ;
char accs-spare[48 - 16-4-6] ;
} ;

-

This program may be run in one of two modes, file mode or buffered mode (the
default).

FILE MODE

When you specify the name of a file using the f=Jilename option, accounting
information is immediately written to the file. If the filename ends in a capital X,
the X will be replaced by the year and month (eg: 8701 for January 1987). For
each record written the file is opened and closed. If the file is busy,
ACCOUNTANT will retry the open 10 times. If that fails it >will buffer the
information in memory. This procedure is followed for each accounting entry
received. When the file is successfully opened, all buffered accounting entries will
be written. There is room for about 1000 buffered entries, after which any new
ones will be lost.

If you have specified a secondary filename, ACCOUNTANT will switch over and
attempt to use it, after buffering a certain number of accounting entries. This limit
defaults to 100 but may be changed using the b=buffer _limit option. If you specify
two files, any program which prints reports will have to read from both files
removing accounting information in time order. ACCOUNTANT's ability to
buffer entries in memory allows a reporting program to open the file for read
(which locks out ACCOUNTANT), while it generates it' s report.

Adding a single record to the end of a file would result in a very fragmented file
over a long period of time. To reduce this fragmentation, ACCOUNT ANT will
pregrow the file by 200 accounting entries each time the file becomes full.

I 0 : 1 : 2 : 3 : 4 : 5 : 6 . : . . . pregrown . . . I
The first 4 bytes of record 0 contain the number of valid
data records (as a long). Use fget(&lval, 4, fp) in C.
The first accounting entry starts at record 1.
The end of the file is pregrown with zero's.

[ACCOUNTANT] Utilities

ACCOUNTANT

BUFFERED MODE

If you do not specify any filenames on the command line, ACCOUNT ANT will
buffer all accounting entries. In this mode the b= option (if present) is ignored . To
collect the accounting information you must write a program which sends
messages to ACCOUNT ANT, requesting the buffered accounting entries . The
message consists of a single byte containing a message code of 3. The reply will
consist of a msg_type followed by a 48 byte accounting entry.

struct user aces msg {
char msg type;
struct accstat entry aces data;
} ;

- -

The the msg_type will be one of the following:

Aces type
o -

Reason
Data returned ok.

-I
-2
-3

No more buffered accounting entries.
File mode, not buffered mode is running.
Unable to save request.

-4 Bad message code in msg.type field.

ACCOUNTANT registers the local name "account". This allows a task in a local
area network to find and poll each ACCOUNTANT in the system.

In both file and buffered mode, a task may send ACCOUNT ANT 48 byte
accounting entries . The msg_type code should be a 2 and the accs_type code must
be greater than 2. These are written to the file or buffered depending on the mode.
This allows special login/logoff programs to add extra accounting information.
The accs_date field is always filled in by ACCOUNT ANT. All other fields are left
untouched.

See Also:

ACCSTATS

Utilities [ACCOUNTANT]

ACCST ATS - Print Accounting Statistics

Syntax:

accstats file . . . [t=ttys] [u=userid] [-stats] [-verbose]

Options:

t=ttys
u=userid

-status
-verbose

- Only print accounting information on these ttys.
- Only print accounting information on this user.

The userid may be a pattern.
- Suppress the status information.
- Suppress the printing of each login/logoff.

where : ttys = tty range[,tty range]
tty _range = tty_ numl:tty _ num]

Examples:

cd /acclogs
accstats *
accstats 8701 t=0,2,3 :6
accstats 870 [1234] u=dtdodge

Description:

ACCST ATS i s a utility which will print a summary o f the accounting information
saved by the ACCOUNT ANT program. The above examples assume that file
names are in the form yearmonth. This is a standard option available with
ACCOUNT ANT.

See Also:

ACCOUNTANT

[ACCSTATS] Utilities

ALIVE - Set up/down status of a node

Syntax:

OR

alive [[+]nid list] * [-nid list]* [b=nid list] *
[a=nid]ist] * [e=nid_list]* [n=target_node]

alive [+busy] [+up] [+down] [+new boot] [n=target _node]

WHERE
nid list is nid range[,nid range[, . . .]] *
nid�range i s rnd[:nid] -

Options:

+nid list
-nid list
b=nTd list
a=nid-list

e=nid list

+busy
+Up
+down
+new boot
n=target _node

Examples:

alive

alive n=3
alive +2
alive -5,6,7:12
alive +2,3 b=6
alive -2 n=lO
alive +D

alive +b n=7

Utilities

- These nodes are UP.
- These nodes are DOWN.
- These nodes are BUSY.
- Allow these nodes network access

to this node.
- Don't allow these nodes network access

to this node (exclude).
- Inform POLLER that this node is BUSY.
- Inform POLLER that this node is UP.
- Inform POLLER that this node is DOWN.
- Inform POLLER that this node has booted.
- Node on which to change up/down

status (default: this node).

- Display current up/down status of all
nodes.

- Display current alive status of node 3.
- Node 2 is up.
- Nodes 5, 6 and 7 through 1 2 are down.
- Nodes 2 and 3 are up and 6 is busy.
- Inform node 10 that node 2 is down.
- Inform the POLLER that this node

has booted.
- Inform node 7 that this node is busy.

[ALIVE]

ALIVE

alive e=l:lO a=7 - Exclude nodes 1 through 10 except 7.

Description:

The ALIVE command may be used to manually indicate to your local machine
which nodes are up, down or busy. This command should not be needed if the
POLLER is running.

The first form of the alive command will set the local up/down status, unless the
n= option is used. The second form will inform the POLLER by default unless the
n= option is used.

The operating system will not initiate any communications with another node
unless it thinks that node is UP.

When a node changes from UP to DOWN, the operating system automatically
releases any resources which were being used by tasks on that node (usually files),
and unblocks any local tasks which were waiting for messages from tasks on that
node. This cleanup does not take place on the transition from UP to BUSY, or
BUSY to DOWN.

BUSY status is useful to temporarily remove a node from the network without
releasing any resources on other nodes. This might be done on a node before using
the debugger to prevent the POLLER from flagging the node as down.

alive +busy

When the debugging session has ended, the alive command can again be issued to
tell the poller that the node is now UP and ready to receive communications from
other nodes.

alive +up

When a node is first booted, it is usually a good idea to inform the poller that the
node is now up. The poller will then transmit this information to all other nodes in
the network. To achieve this, the following command can be included in the file
"/config/sys .init" for your node:

alive +n

The POLLER is responsible for scanning all nodes which are alive and ensuring
that they are capable of receiving communications. If a node fails to respond to the
poller in a reasonable amount of time, it is marked as DOWN and all other nodes
are informed. This has the effect of releasing any resources which this node may
have been using anywhere on the network.

[ALIVE] Utilities

ALIVE

The a= and e= options infonn the operating system on this node to prevent or
allow network accesses from the nodes specified in the list. This pennits "clusters"
of nodes to co-exist on the same physical network without interfering with each
other. This facility also provides a measure of security on larger networks.

The ALIVE command only applies to the network version of QNX.

See Also:

KILL VCS
NACC
POLL

Utilities [ALIVE]

APB - Send a Public Bulletin

Syntax:

apb message

Examples:

apb The pizza's here ! ! !
apb Cartridge disk two i s now mounted!

Description:

The APB command will try to display a message on every terminal of every node
in a QNX network. Each user will receive the message at the next convenient
time. The SHELL will print the message, for example, just before it prompts for a
new command.

If another APB is sent before the first one is printed on a terminal, the second
message will replace the first message.

See Also:

BEEP

[APB] Utilities

BACKUP - Backup Files to a backup diskette

Syntax:

backup src_directory dest_directory [options] *

Options:

c=O - Copy only those files which have not changed since the last
backup.

c=l - Copy only those files which have changed since last backup
(default).

c=x - Ignore change status.
d=date - Copy only files which have changed since this date. Date is

of the form dd-mm-yy (default date is 1 - 1 -80).
g=group - Copy only files which have the indicated group number

(decimal number from 0 to 255).
m=member - Copy only files which have the indicated member number

(decimal number from 0 to 255).
l=levels - Specifies how many levels of the specified source directory

will be copied. Typically "1= 1 " is used to cause only the
files at the current level to be copied. This option is
particularly necessary when copying a directory to some
sub-directory of itself (default is all levels).

p=["]pattern - Indicates that only files with names that match this pattern
are to be copied. Multiple "p=" options are allowed, in
which case files which match ANY of these patterns will be
copied. Also, if the pattern is preceded by an up-arrow (A) ,
then files which match this pattern will NOT be copied.

pd=["]pattern - Indicates that only directories with names that match (or
don't match) this pattern are to be copied.

s=[c] [d] [p] - Suppress the copying of the
date
permissions (includes group/user numbers)

and/or
clearing of the changed bit on source file.

t=time - Copy only files which have changed since this time on the
given date. Time is in the 24 hour format: hh:mm:ss
(default time is 0:0:0) .

+all - Equivalent to c=x
+before - Change the meaning of the date and time options to mean

before. The default is now or after. +newest - If

Utilities [BACKUP]

BACKUP

-cdirectory

-cfile

-error
-pause
-verbose

+Write
+quit

Examples:

the destination file is newer than the source, then do not
copy; keep the newest of the two.

- If the directory does not already exist on the backup disk,
prompt the user if he wishes to create it, skip it or retry after
changing diskettes. The default is to always create
directories as required.

- If the file does not already exist on the backup disk, prompt
the user if he wishes to create it, skip it or retry after
changing diskettes. The default is to always create files as
required.

- Suppress message and prompt upon error condition.
- Suppress prompt (don't pause to load disks) .
- Tum off verbose option. This stops the BACKUP command

from displaying the names of the files it is copying.
Overwrite READ-ONLY files as well.

- Abort on error.

backup 3:/ 1 :/ - Backup all files from drive 3 to drive 1 which
have been modified since last BACKUP.

backup 3 :/ 1 :/ -cf -cd - Backup from drive 3 to dnve 1. If files or
directories don't already exist on drive 1, then
ask user if they should be created.

backup /user/joe /user/bill +a s=c
- Copy all of joe 's files to bill 's directory

without changing the modified state of joe 's
files.

backup 2:/dir1 1 :/dir1 p=*.c p=Atest.c 1=1
- Copy files under /dirl on drive 2 to the same

directory on drive 1 . Only copy modified files
which end in " .c" except "test.c" . Don't copy
sub-directories.

backup 3:/user [2]1 :/user d=14-8-84 1=9:00

Description:

- Backup files from 3 :/user to 1 :/user on node 2.
Copy only modified files which have changed
since 9:00 am on 14-Aug-84.

BACKUP provides a mechanism for backing up files. The decision to back up a
file can be based on a number parameters. The default is to backup only those files
which have changed since the last time backup was used. The d=, g=, m=, p=,
pd= and t= options are by default don't care conditions.

[BACKUP] Utilities

BACKUP

Typically, a user will use the BACKUP command to copy all of the files which he
has changed onto a backup diskette. This eliminates the need to copy every file
onto the backup diskette at the end of every session. Only the changed files are
copied, which can be far less time consuming than an entire disk copy. This also
allows selective files or directories to be restored from a backup diskette. The
date, permissions and owner are be default copied to the backup files. The LS
command can be used to highlight those files which have been modified since the
last backup.

Is +modified

As an example of using the BACKUP utility, consider a user who is developing a
rather large application consisting of several C source programs. These programs
may all reside on one disk under a directory called "/work". During the course of
his day he will change many files, and create several object files as a result of
compiling these files. The object files need not be backed up since they can always
be created again from the source files . If he uses the naming convention that all C
source programs end with " .c", and all object files end with " .o" , the user could
backup only his C programs by typing:

backup /work /backup p=* .c

The backup command will by default only transfer the files which were changed
since the last backup. After backing up each file, BACKUP will clear the modified
bit on the file. If you wish to save every file you may specify either m=x or +all.

BACKUP is also handy for copying entire directories (with the +a option) on the
same disk. In this case it is desirable to suppress the clearing of the modified bit
since you are using backup more as a move command than a backup command.

backup /dirl /dir2 +all s=clear

Filename patterns can be any valid filename, with the following "wildcard"
characters :

*
?

will match any character, or run of characters
will match any one character

[ccc] will match any of the characters in the brackets

Some examples of filename patterns are:

P=*·*
p=*.[ch]
p=?a
p=[abc]*
p= ll*.o

Utilities

any file with a dot (.) in it.
any file ending in 'c ' or 'h '
any two character filename ending in 'a'
any file starting with 'a', 'b ' or 'c '
any file which doesn't end in '.o '

[BACKUP]

BACKUP

In cases where a directory is larger than the diskette, it is sometimes necessary to
backup the files to different physical diskettes. The p= option may be used to
select files.

backup /util 1 :/util p=[abcd�fghijkl]*
backup /util 1 :/util p=[mnopqrstuvwxyz]*

Once you have created a backup disk the -cf and -cd options will then allow all
files to be backed up, prompting the user to insert the proper backup diskette as
required.

See Also:

COPY
FBACKUP
TBACKUP

[BACKUP] Utilities

BAR - Draw Bar Charts

Syntax:

bar filename[field] * options*

Options:

field
-border
+grid
+high_res
+hres
+Hres
-legends
+line
+mres
+outline
-relative

+shade
+vstack
-ylabels
a=char_angle
b=baseline

- Which field to plot.
- No border around the graph.
- Draw horizontal grids.
- Use high resolution graphics mode.
- Force to CGA 640x200, 2 colour resolution.
- Force to EGA 640x350, 16 colour resolution.
- Don't include legends.
- Plot line graphs.
- Force to CGA 320x200, 4 colour resolution.
- Draw outlines around each bar.
- Don't draw relative to baseline if

b= option is specified.
- Shade bars instead of fill in colour.
- Stack bars vertically.
- Don't draw labels on the y axis.
- Angle of label characters (degrees)
- Draw a baseline at this value. Bars

will be drawn relative to this line
unless -r option is used.

c=colours - Only use this many colours.
f=Jield - Which field of the current file to plot.
g=gridscale - Only use this many colours.
l=labels Jile - Label x axis with labels in this file.
m=graphmode - Graphics mode to use.
p=print _ cmd - Create hard copy printout via this

t=text
x=xsize
y=ysize
n=legendn

Utilities

command:
- Label the Plot with this title.

Limit x axis to this size.
Limit y axis to this size.

- Replace legend n with this name.
(eg: " 1 =sales" "2=1985 YTD")

[BAR]

BAR

Examples:

bar graphl
bar apples peaches pears
bar pigs cow sheep +v +H +S

bar sales !=months

bar plotl -y -1
bar 1985 1986 b=37.6
bar t1 t2 t3 b=lO.O +r

bar data,l data,2 data,3 +I
bar test " p=dump_ibm [2]$1pt"

Description:

- Plot data in graphl
- Plot side-by-side
- High resolution shaded

plot stacked vertically
- Plot with labels on the

horizontal axis.
- Plot with no labels or legends.
- Plot 2 files with a baseline
- Plot 3 files showing deviation

from a baseline.
- Line graph of 3 fields.
- Plot graph and create hard

copy on node 2 's printer.

BAR is a business graphics utility which draws bar charts based on information in
one or more files .

BAR requires that a GRAPHICS LIBRARY and a FLOATING POINT LffiRARY
be mounted before using. The utility will determine the best dimensions and choice
of colours depending on the installed graphics library. Vertical and horizontal
dimensions can be reduced using the x= and y= options. BAR will attempt to use
the highest resolution mode which is supported by the currently mounted graphics
library. The +h, +m, and +H options can be used to force a particular resolution.
The m= option can also be used to force a resolution.

The information in each file is processed, using the FIRST field on each line of the
file (unless another field is requested) . The remainder of the line can be used for
comments. The number of bars to draw is determined from the file which contains
the maximum number of lines. The width of each bar is adjusted automatically to
provide the best plot. The plot is automatically scaled in the vertical dimension to
accommodate the largest entry.

A border is drawn around the plot unless ·b is specified, with appropriate grid
marks drawn on both left and right borders. The vertical axis is labeled
automatically with the minimum and maximum values unless -y is specified. If a
grid is requested (+g), then only the grid lines are labeled. The grid scale is
selected to best fit the data. Different grid scales may be chosen using the g=
option.

[BAR] Utilities

BAR

The orientation of the label characters can be changed with the a= option, although
this is seldom useful.

Each graph is assigned its own colour where possible unless shading is requested
(+s), in which case each graph will be assigned a unique style of shading. The
graphs are plotted horizontally by default (normal bar chart) unless the vertical
stacking option is specified (+v) in which case the graphs are stacked on top of
each other. The scale will be adjusted automatically for vertical stacking. Negative
values are forbidden in vertical stacking mode.

Legends will be drawn on the bottom of the graph, unless the -1 option is used. The
legends can be customized using the 1=, 2= and similar options. If no legend is
specified, the name of the file will be used.

Relative plots with respect to a baseline are drawn if a baseline is given (b=) and
the -relative option is NOT specified. Relative plots show the bars as either posi
tive or negative changes from the baseline. Relative plots are not allowed with
vertical stacking (+v).

The horizontal axis can be labeled by using the I= option to specify a file
containing horizontal labels . This could be, for instance, a file consisting of the
months of the year. Extra elements in the label file will be ignored.

Line graphs are plotted if the +line option is specified. Dashed lines will be used if
+shade is also specified.

Hard copy can be obtained by specifying the name of a command which will make
a copy of the graphics device, once the plot is completed. BAR pauses when the
plot is finished, and if a command has been specified with p=, will call that
command if the user types the character p (for print). Any other character will
cause BAR to terminate without creating hard copy (see the last example).

Most of the command line options can also be embedded within the file being
plotted. Any line which starts with an opening square bracket ([) will cause BAR to
parse the string within the brackets as if it were typed on the command line after
all the other arguments.

Any line starting with a double-quote (") is ignored, so can be used as a comment
line.

Any line which starts with characters enclosed in round brackets () will use those
characters as a label for that entry. The data within round brackets will otherwise
be ignored.

Utilities [BAR]

BAR

All remaining tokens on a line are treated as files to be plotted.

The simplest form of a data file is simply a list of numbers, in one or more
columns, such as shown below:

56.1 26.1 9.1
43.1 22.2 8.9
45.7 18.2 8.8
39.4 16.7 9.0
35.5 16.3 8.7
30.9 14.1 8.5
28.6 10.0 8.3
29.2 11.0 8.8
34.3 10.1 9.1
37.3 15.5 9.0
45.7 20.3 9.3
50.0 24.4 9.0

The 3 fields of this file could be plotted as a STACKED BAR graph using the
command:

bar file,1 file,2 file,3 +v +g " t=1987 Production" 1=WW 2=SIW 3=0ther

If this file is always plotted with the same arguments, you could choose to embed
the parameters within the file, by putting the following lines at the beginning of the
file:

" field 1 is plotted first
[f=2]
[f=3]
[+v]
[+g]
[t=1987 Production]
[1=WW]
[2=8/W]
[3=0ther]

With these extra lines, the same plot will result from the command:

bar file

In order to demonstrate the capabilities of BAR, the above data was used to
generate the following actual untouched graphs:

[BAR] Utilities

BAR

BAR GRAPH

bar file,l file,2 file,3 +g "t=1987 Production" l=HIW 2=SIW 3=0ther

Utilities [BAR]

BAR

STACKED BAR GRAPH

bar file,l file,2 file,3 +g +V " t=1987 Production" l=H/W 2=8/W 3=0ther

[BAR] Utilities

' Bl!i!l H/W ..

LINE GRAPH

.. • • ,w

BAR

D

bar file,l file,2 file,3 +g +I "t=1987 Production" l=HIW 2=SIW 3=0ther

See Also:
DUMP ffiM
MOUNT

Utilities [BAR]

BEEP - Beep a user on another terminaVmachine

Syntax:
beep userid [message]
beep [node] tty [message]

Options:
userid
node
tty
message

- A user signed on in the system.
- A node within a QNX network.
- The tty number to beep.
- Message to send.

Examples:
beep gord
beep gord Its time for lunch
beep 3 Please get off the modem port
beep 1 3 Please get off the modem port on node 1

Description:
BEEP will send a message to a user. The user may be logged in on the console or
any terminal in the network. A stand-alone system is considered as a single node
network. If the message is omitted, the user will only receive a series of beeps to
attract attention. The user might then drop into CHAT or MAIL. If a message is
specified, it will be printed at the current cursor position on the user's screen. This
may cause minor confusion if the user was running a full screen application like
ED. The beeps will be sent right after the message is displayed.

Note that BEEP opens the user's screen for write. If the user has partially typed in
a line, then BEEP will wait for a carriage return. If a user is signed on more than
once, the message will be delivered to each screen the user is logged onto.

See Also:
APB
WHO

[BEEP] Utilities

I
BOOT - Select an OS file for disk booting

Syntax:

boot os_file_name [options] *

Options:

-pause
+qnxloader
-qnxloader
c=config_file
d=disk driver

- Don't pause.
- Write the special QNX loader.
- Remove special QNX loader.
- A configuration file to bind into the OS.

A hard disk driver to bind into the OS.

ROM Boot options:

+Hard disk
+Floppy disk
+Partition

-Partition

Examples:

- The disk i s going to be a hard disk device.
- The disk is going to be a floppy disk device.
- Is a partitioned disk and the boot loader will

be made aware of this .
- Is not a partitioned disk and the boot loader will

be made aware of this .

boot 1 :/netboot/os.2. 10atp
boot 3 :/netboot/os.2. 1 0atp d=/drivers/disk.at +q
boot 3 :/netboot/os.2. 1 0atp

Description:

BOOT selects the name o f a file you wish to boot from disk. The disk may be a
floppy or a hard disk.

To understand the purpose of the +qnxloader, some background information on
hard disk booting is necessary.

Booting from hard disk is a two step procedure. The BIOS first reads in block one
of the hard disk and transfers to a bootstrap loader which decides which of the 4
partitions is active. This loader reads in the first block of the active partition and
transfers to another bootstrap loader. This loader is operating system specific, and
loads in the operating system for that partition.

Utilities © Quantum Software Systems Ltd. [BOOT]

BOOT

BJ.ock 1 P artition
of disk
+qnx1oad OS 1

J.evel. 1 J.evel. 2

J.oader J.oader

1 Partition

Os 2

J.evel. 2

J.oader

2

The first level bootstrap loader as provided by DOS will always boot the active
partition as set by the QNX or DOS FDISK program. If you specify the
+qnxloader option, we will replace this bootstrap with one that will still default to
the active partition, but will pause for several seconds and allow you to override
from the keyboard by typing a single digit from 1 to 4. This gives more
flexibility. If you have non-standard hardware, or are already using a special
loader, then this loader may cause you problems. For 99.9% of all installations we
recommend you use the QNX loader. You need only specify the +qnxloader op
tion once.

When you specify +q option, BOOT looks at the partition loader already on the
disk (probably DOS 's) and if it is different than the QNX loader, saves it away to a
file called !configlhdisk.ldr. Then, at any time in the future, if you use the new -q
option, you can restore the original loader back to the partition sector.

When QNX boots, it needs a hard disk driver in order to access the hard disk.
Unlike DOS it cannot use the BIOS driver which does not work in protected mode.
You must specify which hard disk driver to bind into a hard disk boot. This is
done using the d=disk _driver option. This option takes the name of a mountable
disk driver, and creates a file called /config/hdisk.cfg which will be loaded in from
hard disk along with the operating system file. You need only specify the d=driver
option the first time you configure for hard disk booting .

You may have several OS image files under the directory /netboot, and you may
use the BOOT command to select which one you wish to boot from. This is very
handy if you download a beta version of an OS from the QNX Update System and
wish to try it out.

boot /netboot/testos - Select a test version to boot.

The BOOT command also allows you to specify a configuration file which lets you
change some of the operating system defaults ; such as the number of open files
supported. This is specified as a c=filename option. You may select any file
name, however we recommend that you choose names like those shown below. If
you boot across a QNX network, then you must use a name as shown below.

[BOOT] Utilities

/config/sys.cfg
/config/sys.cfg.nn

- Single machine.
- Network machine.

BOOT

The sys.cfg file is created and maintained by the OSCONFIG command. It takes
the file name as an argument. For example

osconfig 3:/config/sys.cfg

would create a configuration file for a single non-networked machine. It does not
become active until you use the BOOT command to set it.

boot 3:/netboot/os.2.10pcat c=3:/config/sys.cfg

NOTE: Once booting from hard disk, you should not remove the 0/S file, the
driver file or the config file.

lnetboot/osname
/config/hdisk.cfg
/config/sys.cfg

You may copy a new file on top of them but NEVER remove them (FREL, RM,
. . .) and then create a new one, even if they have the same name. The BOOT
command saves away the absolute start blocks of each of these files, which will
change if the file is removed.

ROM BOOT options :

+Hard disk

The boot disk is going to be a hard disk device. This option conditions the boot
loader so that it uses the hard disk BIOS read call instead of the floppy disk BIOS
read call (ie: register dl has Ox80 'or'ed in for the read) .

+Floppy

The boot disk is going to be a floppy device. This option conditions the boot loader
so that it uses the floppy BIOS read call instead of the hard disk read call. (ie:
register dl does not have Ox80 ' or' ed in for the read) .

+Partition

The boot disk being prepared is a partitioned disk and the boot loader placed on the
disk will be made aware of this. Normally, floppy and ROM disks would not use
this option.

Utilities [BOOT]

BOOT

-Partition

The boot disk being prepared is not a partitioned disk and the boot loader placed on
the disk will be made aware of this. Normally, floppy and ROM disks would use
this option.

These options should be used to descibe what the ultimate ROM disk will boot as,
and should not necessarily describe the media the boot command is executed on.
For example, if you had a ROM disk driver that acted like a hard disk, you would
use the +H option, even though you were preparing the ROM image on a floppy
disk.

See Also:

NETBOOT
MOUNT
OSCONFIG

[BOOT] Utilities

BREAK - Break a task

Syntax:
break task-id

• This is a local shell command •

Description:
BREAK allows a task whose taskid is known to be killed gracefully. The taskid
can be found by using the TSK command. Only tasks which are created by
yourself can be broken. The super-user can break any task in the system with the
exception of the operating system and user administrator tasks.

BREAK is typically used for aborting background programs since they are no
longer associated with a terminal, and therefore cannot be terminated with the
BREAK key. A background LIST program is an example of a task which a user
may wish to break.

BREAK is the preferred method of killing tasks, since KILL will not allow a task
to terminate normally, so may result in devices or files being left in an
indeterminate state. BREAK will usually only kill a task which manages critical
resources at a time where it is safe to do so.

See Also:
KILL
SLAY
TSK

[BREAK] Utilities

CALC - A simple calculator

Syntax:
calc [+full_screen [rows columns])

Options:
+full_screen - Full-screen/interactive mode.
rows - Number rows for calculator "window".
columns - Number columns for calculator "window".

Examples:
calc
calc +f
calc +f 10 35

Description:

- Drop into calculator.
- Invoke full screen mode.
- Invoke CALC in 1 Ox35 window.

CALC performs a simple desk-top calculator function.

CAUTION: before CALC can be used, a floating-point shared library must have
been installed:

mount lib /config/float.slib
or

mount lib /config/float8087.slib

CALC evaluates expressions with internal double precision accuracy. This results
in 15 significant digits of accuracy, and values between 4. 19E-307 to 1 .67E308
being supported.

Numerical constants can be entered in standard arithmetic form, or as Octal,
Hexadecimal, or ASCII character constants:

10
1.1e-37
$123abc
@17777
'A

Utilities

- the number 10
- the number 1.1 x 10**37
- a Hexadecimal number
- an Octal number
- the ASCll character ' A' (0x41)

[CALC]

CALC

Within the calculator, expressions are entered in algebraic form (NOT reverse
Polish). Brackets may be used to group expressions . The following arithmetic
operators are supported:

+
*

Add
Subtract
Multiply
Divide

CALC supports 26 registers identified by the lower-case letters 'a' through 'z ' .
Values are stores into registers with the '= ' character. For example:

p = 3.1415926 / 2

Registers can be used anywhere a number can be used:

360 * (.707 + p)

While entering data, you are free to edit the line using the left arrow, right arrow,
ills, Del, and Rubout Keys. ill addition, the UP arrow key can be used to recall the
previous line, which can then be edited.

To terminate CALC in interactive mode, type Ctrl-D.

ill full-screen mode, the following screen will be displayed:

I CAL CULATOR

U s e the fun c t i o n key s t o :

>

F l make t h e c a l c u l a t o r
i nvi s ib l e ;

F 9 move t h e c a l c u l a t o r u s i ng
t h e c u r s o r ke y s ;

F l O qu i t .

As shown, the Fl , F9, and FlO keys have special meaning.

[CALC] Utilities

CALC

When F9 is typed, CALC will indicate that it is in move mode with an asterisk in
the upper left comer of its "window". The keypad arrow keys can then be used to
move the window around the screen. When the "window" is where you want it,
type F9 again.

If the CALC window is hiding some part of the screen you wish to see, you can
type Fl to make CALC temporarily invisible. Typing Fl again will re-display the
CALC "window".

See Also:

PRTSC

Utilities [CALC]

CAT - Concatenate input files into one larger file

Syntax:

cat [input _file] * [>output _file]

Examples:

cat smalll small2 >big
cat filel file2 file3 file4 >massive
cat file
cat filel - file2 >new
cat >easy

Description:

CAT will concatenate a list o f files creating one larger file. The default output is
the standard output (usually the tenninal), which the user will typically redirect to
a file or line-printer.

The standard input (keyboard) can be specified with a dash (-) which will cause
CAT to insert data taken from the standard input until an end-of-file (Ctrl-d on
keyboard) is encountered (as shown in the example). Also, you can quickly
create a file without an editor by using CAT, as in the last example, which will
read data from standard input until end-of-file.

See Also:

SPLIT

[CAT] Utilities

CC - Compile Command (C, Basic, . . .)

Syntax:

cc file [options] *

Options:

+Asm

- �cote

-Core
-Exec
+Lc

- Do not run the asm command, and retain the
.a file (asm input).
Do not run the link command even if only one
source file is entered, and retain the .o file
(link input).

- Same as -core.
- Don't execute any commands (debug).
- Include any libraries needed for source modules

ending in the suffix c. (see +We option)
-Nested - Nested comments will all terminate on first "*{' .

Usually every nested level requires its own end sequence.
+Optimize- Run the "C" optimizer.
+Optimize - Run the "C" optimizer.
-preproc - Do not run the C preprocessor (CPP) (default).
+preproc - Run the C preprocessor (CPP).
+Preproc - Only run the C preprocessor leaving the output

in the same name with the suffix capitalized.
For example teste -> test.C

test.b -> test.B
+Qbug - Create symbol tables for a symbolic debugger.
-Remove - Don't remove the temporary files.
-Stackchk - Suppress the stack checking code produced by

-Tmp
the code generator. (same as +Wi,s=O)

- Do not use /tmp as the work directory.
Temporary files will be created in your current
directory.

-Verbose - Suppress the printing of each phase of
compilation.

+Verbose - Very verbose output.

Utilities [CC]

cc

+8087 - Force the code generator to produce native 8087
code for floating point operations. During link
the native 8087 system libraries will be
searched. The default is to generate software
interrupts into a floating point shared
library. Native code requires an 8087/80287
but can be as much as 500 times faster.

+Wc,arg - This option is used to pass the argument
(arg) to a sp_ecific processor (c) as follows:

? cpp C pre-processor
a asm assembler
b cbl basic parser
c eel C parser
i cc2 code generator
y yacc yacc

c=core - Specify name of compiled loadfile.
E=obj.o - Use the indicated object module in place of

the system one in /lib/entry.o.
O=objdir - Place all object modules in the indicated

directory rather than the current directory.
T=treesiz - The parsers and code generator build parse

trees in internal tables. Very complex
expression may require you to increase this
space. The default is 2500.

+386[/16] - Internal use only.

The following three arguments cause the optional C
preprocessor to be invoked (forcing +p), and are used
as follows :

de=name=value - Works as if "#define name value" was in
the source.

un=name - Removes any "#define name" implemented by the
C preprocessor.

in=dir - Adds dir to the automatic library search
for #include <name.h> files.

Examples:

cc hanoi.c
Compile hanoi.c and create an executable program in the current directory
with the name hanoi.

[CC] Utilities

cc

cc hanoi
One by one append the following suffixes to the file hanoi , { .c, .b, .y, .i, .a }
and on a match invoke the appropriate parser. If the file hanoi.c exists, then
this will have the same effect as the previous example.

cc clock.c -S
Compile clock.c and create an executable program in the current directory
with the name clock. The program will not contain stack checking code. This
will make it slightly smaller and faster.

cc clock.c + W c,e=errors
Compile clock.c and create an executable program in the current directory
with the name clock. Any errors detected during compilation will be placed in
the file errors.

cc prtsc.c c=/cmds/prtsc + V
Compile prtsc.c and create an executable program in the /cmds directory with
the name prtsc.

cc banner.c -c de=function=l
Compile banner.c using the optional preprocessor to add "#defme function 1 "
and retain the output banner.o in the current directory. (link was suppressed)

cc fastprog.a -c +Wa,+286
Assemble fastprog.a program and pass the argument +286 to the assembly.
The link was suppressed and an object module fastprog.o will be produced.

cc basic.b csilb.c
Compile basic.b and C function csub.c producing two object files (.o). The
two object files will be linked and, because a basic program was compiled, the
basic run time library "/blib" will be included during the link. Since more than
one file was specified, the executable will be in a file called core.

cc basic.b csub.c c=basic.test
Same as above but executable (core) placed in basic.test.

cc *.c /mylib/fun.o +Lb
Compile all C programs in the current directory. Object modules (.o) will be
produced for each C program. The object modules will be linked along with
/mylib/fun.o creating an executable load module called core. Search Basic
libraries.

cc *.o
Pass all object modules to the linker and produce an executable load module
called core. Don't forget the +8087 option if you wish inline 8087 code. You
may also need to specify the +Lc option to search language dependant

Utilities [CC]

cc

libraries .

cc x=ofiles
Invoke the linker with the option x=ofiles.

Description:

CC is the QNX compiler interface. It takes a list of source and object modules on
the command line and invokes the appropriate parser to compile each file. Object
modules are passed straight through to the linker. The choice of parser to use is
based upon the file suffix.

.c ·> C compiler

.b ·> Basic compiler

.a ·> Assembler

.y ·> Yacc

.i ·> Code generator

/cmds/ccl
/cmds/cbl
/cmds/asm
/cmds/yacc
/cmds/cc2

The parser must exist in order for you to use it. The CC command was designed to
work with potential future parsers and may contain entries for parsers which are
not yet available. If the suffix on a file is omitted, a scan for a file with each of the
possible suffixes is made. Upon a match the appropriate parser is invoked. The
suffixes are scanned in the following order .

. c -> .b -> .y -> .i -> .a

If only one source file is given, the linker will create an executable program in the
current directory, with the same name as the input file, but with the suffix stripped
off. If more than one file is specified, the executable will be placed in the file core.
You may use the linker option c=name to force the destination of the executable.

The -core option will suppress the LINK phase. This is a heavily used option by
developers which have many separate source files which they update and modify
individually.

There are special system libraries for each parser which will automatically be
included in the link when a source module for that parser is encountered. If only
object modules are specified, then only the standard C libraries will be searched.
You can include libraries using the + Lc or l=library option which is passed to the
linker.

cc *.o 1=/blib (or use +Lb option)
or

cc x=ofiles 1=/blib (or use +Lb option)

[CC] Utilities

cc

The code generator is capable of generating either native 8087 code or calls into a
mounted shared library for floating point operations. The default is to emit calls to
the shared library. This allows a program to run on a machine which does not
contain an 8087 co-processor. One of two shared libmries may be mounted.

mount lib /config/float.slib
or

mount lib /config/float8087.slib

(no 8087)

(8087)

The second shared library is an order of magnitude faster than the first. Note that
this approach allows you to distribute one program which can take advantage of
the 8087, if it exists, or use software emulation if it does not. For really time
critical opemtions, the overhead imposed by the shared library can be avoided
completely by specifying the +8087 option, which will cause the code generator to
produce native inline 8087 code. This switch will also link in the native 8087 math
libmries. No shared library need be mounted but an 8087 MUST be present.

The QNX C compiler contains a limited C preprocessor which should handle 98%
of all C programs. By building the preprocessor into the parser, it eliminates one
phase, resulting in a faster compilation. You may use the full implementation of
the C preprocessor by specifying the +p option. Very large programs may cause
the C parser (cc 1) to run out of memory due to a large number of #defines. Each
define takes up memory. In this case the preprocessor will strip the #defines,
giving the parser more memory to work with.

In some cases complex defines or macros may produce parser error messages
which are difficult to understand. By using the +P (capitalized) option, the
expanded output will be left in a file with the same name, but with the suffix
capitalized. You may examine this file with the editor.

The full implementation C preprocessor also implements a number of built-in
manifests including: i8086, qnx, quantum, _DATE_, _FILE_, and _LINE_.

DATE is a string containing the date the file was compiled. _FILE_ and
LINE are dynamic manifests containing the filename and linenumber of the
source.

You may occasionally wish to examine the assembly code produced by the code
generator, maybe in attempt at optimization or perhaps in tmcking down a
suspected code generator bug. The +Asm option will stop the compile after cc2,
leaving a file with the suffix .a.

The -Stackcheck option will suppress the generation of stack overflow code by
cc2. This typically results in slightly smaller and faster code. We recommend that
you leave stack checking on for files that contain recursive functions.

Utilities [CC]

cc

All arguments and options that are not listed above are assumed to be instructions
for the linker and will be passed to the LINK command. Object modules (files
ending in .o) are also passed directly through to the linker. The choice of upper
case options is deliberate to avoid confusion with options known by the processors
(parser, code generator, assembler and particularly the linker) invoked by CC. For
example, you can change the default stack size by specifying s=stacksize which
will be passed to the linker. The default of 2000 bytes may need to be increased for
recursive programs or programs which place large arrays on the stack. If possible
move arrays outside of functions to avoid having to override the stack size.

If you need to specify a parameter to any of the processors, you may use the
+ W c,option. Check the documentation on each processor to determine its options
or type its name followed by a question mark (?).

eel ?

The following charts illustrates the flow of control for the different parsers
invoked.

[CC]

WITHOUT THE PRE-PROCESSOR

. y . e . i . a . o
-- yaee -- eel -- ee2 -- asm -- link . b . i A A A � cbl I I

WITH THE PRE-PROCESSOR . y . e . C . i . a . o
-- yaee -- cpp -- eel -- ee2 -- asm -- link . b . 8 . i A A A =-:: _epp�

-

cb-1
_

_ I I
Utilities

cc

WITH THE " C" OPTIMIZER

. y . e . i . I . a . o
-- yaee -- eel -- eopt -- ee2 -- aBIII -- link

. a

. 0

See Also:

LINK

Utilities [CC]

CD - Change current Directory

Syntax:

cd [directory]

Options:

directory - Name of new directory.

Examples:

cd /user/bill
cd 3 :/expl
cd [4]3 :/user/dan
cd

Description:

• This is a local shell command •

CD allows the user to define his working directory. All file names which do not
start with a slash (/) or a drive number, are assumed to be relative to the current
working directory. The default working directory is defined when the user logs into
the system. Issuing CD with no arguments will restore the working directory to the
initial login directory.

CD allows the user to position himself anywhere in the QNX hierarchical file
system. If a QNX network is available, then this can be on any disk of any
computer in the network. CD eliminates the need to always specify complete
pathnames.

For example, if a user "bill" has a directory called "work" which contains several
files he is currently working on, he can specify the name of one such file as
"/user/bill/work/file 1 ". This is the complete pathname of that file.

Alternately, he could set his current directory by typing :

cd /user/bill/work

[CD] Utilities

He can now reference the file as simply "file l " . Since the user "bill" is initially
working at the directory "/user/bill" when he logs in, he could have typed:

cd work

to move himself down one level to the directory "work".

When he has finished working on the files under directory "work", he can move
back up to his previous working directory by issuing:

cd "

The PWD command can be used to display the current working directory.

CD

Every task which runs in QNX has its own current directory. When one program
(like the SHELL) creates another program, the created program will initially
inherit the current directory of its creator. This new program may then change its
current directory. Keep in mind however, that when this program terminates and
control returns to the creator, the new current directory will be lost, since the
original program has never changed its own current directory.

This fact is especially noticeable when SHELL files are invoked (BATCH files to
DOS users). The SHELL file is controlled by a new SHELL task which has its own
current directory (initially yours). H the SHELL file changes its current directory,
then it will be changed only as long as that SHELL file is running. When it has
finished, your current directory will be the same as it was before the SHELL file
was executed.

See Also:

PWD

Utilities [CD]

CHA TTR - Change Attributes of a file

Syntax:

chattr filename* options*

Options:

a=[+l-] [rwaem] - Change attributes of file.
a=[+I·] [rcbm] - Change attributes of directory.
g=group - Change the group number of a file.
m=member - Change the group member number of a file.
n=name - Change name of file.
pg=[+l·] [rwaem] - Change file permissions (for my group).
pg=[+I·] [rcbm] - Change directory permissions .
po=[+I·] [rwaem] - Change file permissions (for other users) .
po= [+l-] [rcbm] - Change directory permissions .
p=[+l-] [rwaem] - Same as combined po= and pg= (files).
p=[+l-] [rcbm] - Same as combined po= and pg= (directories).
s=[+l·] [bmu] - Change file status.
+date - Change date to current date.
-busy - Make un-busy (Caution: see text).

Examples:

chattr old n=new
chattr main.c g=12 m=4
chattr core p=·wa a=+e

chattr /user/bill +d
chattr file.dat s=·b

Description:

- Change name o f "old" to "new"
- Change ownership of file.
- Remove write and append permis-

sion from "core", add execute
attribute.

- Update date of file to today
- Unbusy a file (Caution: see text).

CHA TIR allows the status , attributes , permissions, date, owner, and name of a file
to be changed.

The status flags which can be changed on a file are

b - BUSY. Set when the file is opened for write. If the system crashes

[CHATIR] Utilities

CHATTR

without closing the file, this bit will be left set in the directory entry.
m- MODIFIED. Set whenever a file is modified (open for W, R/W or A)

and cleared by the BACKUP command.
u - USED. This flag can only be cleared. It is the equivalent of zapping the

file with the ZAP command.

The attributes and permissions which apply to files are :

r - READ. This capability allows files to be read or copied.
w - WRITE. This capability allows data to be written into a file. Old file

contents will be lost.
a - APPEND. This capability allows new data to be written at the end of a

file. The current contents of the file are not changed.
e - EXECUTE. This capability allows a file to be executed. All files created

by the linker are created with execute permission. Any copies of an
executable file will also need this permission before the file can be
executed.

/

m- MODIFY. This capability allows the CHATIR command to change the
attributes, permissions, name, owner, and date of a file. If this option is
ever turned off, the attributes can never again be changed. Modify permis
sion can only be turned off by specifying a=-m. Take care never to
remove modify permission from a file which doesn 't have write permis
sion, or it will remain forever!

The attributes and permissions which apply to directories are:

r - READ. This capability allows directories to be read or listed.
c - CREATE. Allow new files to be created under this directory.
b - BLOCK. Prevent directory searches below this directory.
m- MODIFY. Same as for files.

Attributes of a file or directory apply to the owner of the file and the super-user
(group 255). Permissions are those attributes which are permitted for other users .
There are two types of permissions

Group - these apply to members of the same group
Other - these apply to members of other groups

Careful setting of permissions on directories and files allows a user to "protect" his
files from other users of the system in a multi-user environment.

The owner of a file can be changed with the g= and m= options . These options will
usually be used by the operator when creating initial user directories. The group
and member number must be a number from 0 to 255 . The owner (group.member)
number is assigned to a user in the password file. Only the super-user can invoke

Utilities © Quantum Software Syst.ems Ltd. [CHATIR]

CHATTR

the g= option. The m= may be used by the super-user (group 255) or a group
leader (member 255 of a group).

Filenames can be changed using the n= option. New names refer only to the lowest
level of the complete pathname. For example, to change the name of the file
"/user/joe/dirl/bill" (which has the name "bill"), one would use:

chattr /user/joe/dirllbill n=fred

Valid filenames contain 1 to 16 characters, consisting of upper or lower case letters
(they are distinguishable), numbers, underscores (_), dots (.), and dollar signs ($),
provided that $ is not the first character.

The date and time of a file can be updated using the +d option, which changes the
date and time stamp of the file to the current date and time. This is especially use
ful for upgrading files which were created or changed during a session where the
user neglected to set the system date.

Busy files can be made unbusy with the -b option. The command CHKFSYS
should then be run to verify that the unbusied file is consistent. If not, the file
should be copied to another file and the original zapped using "chattr s=-u" or
ZAP. An inconsistent file should NEVER be left on a disk and should NEVER be
released by using FREL.

See Also:
CHKFSYS
ZAP

[CHATIR] Utilities

CH G RP - Change group (group number) of a file

Syntax:

chgrp group_ number file*

Examples:

chgrp 4 filel file2

Description:

CHGRP changes the group number of the specified files to group_ number. This
number must lie between 0 and 255 inclusive. Group 255 is a the super group.

Note that this is a shell file which invokes the CHA TIR command.

See Also:

CHATIR
CHOWN

Utilities [CHGRP]

CHKFSYS - Check entire file system for consistency

Syntax:

chkfsys drive [options]*

Options:

drive - Disk drive on which to check file system.
b=file - Fiie of bad blocks.(see DCHECK utility)
f=lpath - Check the indicated pathname only.
-stats - Suppress statistics calculation and display.
+rebuild - Suppress error messages relating to the bitmap.
-fix - Don't fix anything.
-pause - Don't ask user if errors should be fixed.
-verbose - Don't print names of files being checked.

Examples:

chkfsys 2
chkfsys 2 +r

Description:

- Check file system o n drive 2.
- Check file system on drive 2 in order

to rebuild the bitmap.

CHKFSYS will perform a consistency check of the file system on the requested
drive. It will recursively walk the file structure visiting every file on the disk.
During the walk checks are made on the directory entry of each file and the extents
that make up the file. A bitmap is constructed in memory which is consistent with
the block allocation of all files and directories on the disk. This bitmap is then
compared to the one on the disk. If they differ the user is given the option of
replacing the bitmap on disk with the one constructed in memory.

IMPORT ANT: CHKFSYS should only be used when the system is idle. There
should be NO open files when CHKFSYS is running.

CHKFSYS is usually used to recover blocks which were lost through the use of the
ZAP and CHA TIR command.

zap file
chattr s=-u file

Utilities [CHKFSYS]

CHKFSYS

In this case CHKFSYS will complain that there are blocks used in the bitmap
which are in fact NOT used by any file. These blocks may be recovered by writing
the reconstructed bitmap back to disk. CHKFSYS will attempt to read each of
these blocks and will NOT mark bad blocks as available.

The b= option may be used to inform CHKFSYS of known bad (or marginal)
blocks. Each line of the file should contain 1 hexadecimal block number. The
block numbers must be sorted in ascending order.

If b= is not specified, then CHKFSYS will use the file "/bad_blks" , if it exists on
the drive being checked. This file is created automatically by the command:

dcheck +mark

CHKFSYS will tell you if any files are using blocks which are now known to be
bad.

If CHKFSYS complains that a block is used by more than one file, it could
indicate one of two problems. If the b= option was specified, or "/bad_blks"
exists, then it probably indicates that the file uses a block which is bad and marked
as used in the bitmap. If there are no known bad blocks, then a multiple allocation
of a single block has occurred. In either case, the file should be saved on
ANOTHER disk (if possible) and then zapped. CHKFSYS should then be run
again to update the bitmap, after which the saved file may copied back onto the
disk.

In general, whenever the bitmap is replaced, CHKFSYS should be run a second
time to ensure that the file system is indeed consistent.

CHKFSYS may also be run after a system crash or power failure which has left
some files busy. The files may be made unbusy using the chattr command

chattr s=-b file

which may then be followed by a CHKFSYS to ensure that no damage to the file
system has occurred. QNX should be relatively immune to this type of damage. If
CHKFSYS complains, you may copy the unbusied files to another disk, zap them,
run CHKFSYS to recover lost blocks, then restore files . For example.

copy 2:/filel l :/filel

zap 2:/filel

chkfsys 2

Utilities [CHKFSYS]

CHKFSYS

copy 1:/file1 2:/file1

If you are crashing the system often while debugging a program, you may wish to
always save, zap and restore files and only run CHKFSYS occasionally to recover
bad blocks. If you are sure that no disk 1/0 was in progress, it is probably not even
necessary to zap the files.

If the f= option is specified, then only the indicated pathname will be checked.
The pathname must start with a slash. This is not a complete check in that it
cannot check for multiple allocations of the same block to more than one file. For
example:

chkfsys 1 f=/user/gord/data

will check the file 1 :/user/gord/data.

In the event of the complete loss of a file system due to the destruction of the root
directory and the bitmap (first few blocks of the disk) you should refer to the
technical note on file recovery in your QNX manual.

See Also:

DCHECK
ZAP
QUANTUM TECHNICAL NOTE ON FILE RECOVERY

[CHKFSYS] Utilities

CHKFSYS

copy 1 :/file1 2:/file1

If you are crashing the system often while debugging a program, you may wish to
always save, zap and restore files and only run CHKFSYS occasionally to recover
bad blocks. If you are sure that no disk 1/0 was in progress, it is probably not even
necessary to zap the files.

If the f= option is specified, then only the indicated pathname will be checked.
The pathname must start with a slash. This is not a complete check in that it
cannot check for multiple allocations of the same block to more than one file. For
example:

chkfsys 1 f=/user/gordldata

will check the file 1 :/user/gord/data.

In the event of the complete loss of a file system due to the destruction of the root
directory and the bitmap (first few blocks of the disk) you should refer to the
technical note on file recovery in your QNX manual.

See A lso:

DCHECK
ZAP
QUANTUM TECHNICAL NOTE ON FILE RECOVERY

Utilities [CHKFSYS]

CHKFSYS

In this case CHKFSYS will complain that there are blocks used in the bitmap
which are in fact NOT used by any file. These blocks may be recovered by writing
the reconstructed bitmap back to disk. CHKFSYS will attempt to read each of
these blocks and will NOT mark bad blocks as available.

The b= option may be used to inform CHKFSYS of known bad (or marginal)
blocks. Each line of the file should contain 1 hexadecimal block number. The
block numbers must be sorted in ascending order.

If b= is not specified, then CHKFSYS will use the file "/bad_blks", if it exists on
the drive being checked. This file is created automatically by the command:

dcheck +mark

CHKFSYS will tell you if any files are using blocks which are now known to be
bad.

If CHKFSYS complains that a block is used by more than one file, it could
indicate one of two problems. If the b= option was specified, or "/bad_blks"
exists , then it probably indicates that the file uses a block which is bad and marked
as used in the bitmap. If there are no known bad blocks, then a multiple allocation
of a single block has occurred. In either case, the file should be saved on
ANOTHER disk (if possible) and then zapped. CHKFSYS should then be run
again to update the bitmap, after which the saved file may copied back onto the
disk.

In general, whenever the bitmap is replaced, CHKFSYS should be run a second
time to ensure that the file system is indeed consistent.

CHKFSYS may also be run after a system crash or power failure which has left
some files busy. The files may be made unbusy using the chattr command

chattr s=-b file

which may then be followed by a CHKFSYS to ensure that no damage to the file
system has occurred. QNX should be relatively immune to this type of damage. If
CHKFSYS complains, you may copy the unbusied files to another disk, zap them,
run CHKFSYS to recover lost blocks, then restore files. For example.

copy 2:/filel l :/filel

zap 2 :/filel

chkfsys 2

[CHKFSYS] Utilities

CHM 0 D - Change mode of a file

Description:

Please refer to the documentation on the CHA TIR command.

See Also:

CHATIR
CHGRP
CROWN

Utilities [CHMOD]

CH 0 WN - Change owner (member number) of a file

Syntax:

chown member_ number file*

Examples:

chown 22 filel file2

Description:

CHOWN changes the member number o f the specified files to member_ number.
This number must lie between 0 and 255 inclusive. Member 255 is a group leader.

Note that this is a shell file which invokes the CHA TTR command.

See Also:

CHATTR
CHGRP

[CHOWN] Utilities

CLOCK - Display Time and Date On Console

Syntax:

clock [options] *

Options:

-date - Suppress display of the date.
-hour - Suppress display of the hour.
-seconds - Suppress display of the seconds.
-ampm - Suppress display of the AM or PM.
-key - Suppress display of keyboard shift status(s).
a=attr - Select display attributes (hex).

Examples:

clock a=f104 & (white on blue, then inverse)

Description:

This command will maintain a real time display of the date and time in the top
right hand corner of your console display. It will also display the current shift state
of the CAPS LOCK key, NUM LOCK key and the AL T key. This command
automatically adjusts its priority to level 15 so that it does not compete with other
tasks .

The display attribute bits are defined as follows.:

leBBBxFFFixxxxuihbl

b - enable blink
h - enable highlight

- enable inverse
u - enable underline
FFF - foreground colour (if enabled)
BBB - background colour (if enabled)
e - enable colour
x - don't care

Utilities [CLOCK]

CLOCK

This command is included in your "/config/sys.init" file. Should you wish to
remove the feature, you may edit "/config/sys.init" removing the invocation. The
command may also be killed at any time by typing the command "slay clock" .

Users with battery backup-up clock/calendar hardware may wish to use the RTC
command to set the date. This command would be placed in your "/config/sys.init"
file.

See Also:
DATE
RTC

[CLOCK] Utilities

CLRH 0 USE - A distributed database and name server

Syntax:

clrhouse start [-poll] [p=poll_sec] &
clrhouse poll [n=node] [+me]
clrhouse locate [n=node]
clrhouse stop n=node

Examples:

clrhouse start &
clrhouse locate n= l
clrhouse stop n=4

Description:

CLRHOUSE maintains a distributed database for the naming of tasks . Like the
TIMER task it may be required for some applications. Developers should read the
technical note mentioned in the SEE ALSO section below.

START
You may run CLRHOUSE on up to 3 nodes in the network. Upon starting, each
task will immediately poll each node in the network for it 's list of attached names.
It will then go into a slow poll mode to refresh this information. This slow poll
period may be changed using the p=poll_sec options . It defaults to 10 seconds.
You can suppress slow polling completely by specifying the -poll option. The
slow polling is not the major means by which the clearinghouse keeps informed of
task names in the network. Each time a name is attached or detached, the
clearinghouses are immediately informed. The slow poll is a safety net to handle
extraordinary error conditions which might cause it to miss an attach or detach
request from a task.

POLL
You can force all the clearinghouses to refresh their information on a node by
using the POLL option. If you specify a node using the n=node option then the
clearinghouses will immediately poll that node for it ' s list of names. The option
+me can be used as a short form for n=my _node. If you do not specify a node then
all nodes in the network will be quickly polled. This can be used to quickly update
the clearinghouses after a severe network disturbance (for example, a
clearinghouse node was disconnected from the network) where you believe their

Utilities [CLRHOUSE]

CLRHOUSE

data is not current. It is doubtful that this option will be needed unless you elect
not to slow poll.

STOP
You may kill the clearinghouse by using the SLAY command or the STOP option
to CLRHOUSE. If you use the stop option you will have to identify which
clearinghouse to stop using the n=node option. The command

tsk info

will list the nodes which are running a clearinghouse.

LOCATE
When a node boots over the network it inherits the list of nodes which are running
a clearinghouse. If you boot from disk you will not know this information. If the
clearinghouses are slow polling you can wait until you are polled (thus learning
each clearinghouse one by one) or you can execute the CLRHOUSE command
with the LOCATE option. This will poll each node requesting it' s list of
clearinghouse nodes. The first node to satisfy the request will stop the poll and
update your list. In a stable network this will typically be the first node polled.
You can force the poll of a specific node only by specifying the n=node option.

This command would typically be placed in the sys.init.nn file of a node booting
from disk.

See Also:

NAME functions in the C compiler binder.
Technical note on " Attaching and Locating Task Names"

[CLRHOUSE] Utilities

COMM
CO MM - Modem communication handler

Syntax:

comm [options] *

Options:

a=modem answer string- Command to force modem to answer.
h=baud - -

- Specify a baud rate to try. Multiple

B=default _baud

c=login command
d=start �delay

f=mail command
i=modem _init _string
l=log_yath
m=greeting message
M=greetingyle
n=net address
p=pickup _on _ring

q=quiet time limit
r=modem _ ok"�response
s=bbs command
t=modem timeout
-autopar
+A Tl 2400etc
-CTS=check
-drop line
+debug
+hayes
+locked_baudrate
+pass_exception
-prompt
-recycle

Utilities

b= options can be given from lowest to
highest. Default is: b=300 b=1200 b=2400.

- Default baud rate to select when the modem
responds with "CONNECT" and not a baud rate.
By default this is 300.

- Command to execute for normal login.
- Delay in seconds after the connect before

starting the selected login program. The default
is 2 seconds.

- Command to execute for mail transfer.
- Initialization string for modem.
- Name of directory for log files.

Initial greeting message to display.
- Initial greeting file to display.
- Mail network address to display on connect.
- Number of rings required for answer. This

can only be used with the a= option.
- Number of minutes without input before hangup.
- Modem response for command acceptance.
- Command to execute for bulletin board system.
- Modem timeout for response (in 50 msec tics).
- Supress automatic parity.
- Condition COMM to support this modem.
- Supress checking for CTS modem status.
- Supress drop line function.
- Enable output of debug messages to log file.
- Hayes compatible modem.
- Force locked baudrate to the modem.

Enable passing of hangup exception.
- Supress "Please type " message.
- Supress modem re-initialization after 10 minutes

of inactivity.

[COMM]

COMM

+verbose - Enable more detailed log messages.

Examples:

ontty 3 comm b=l200 +h i=ATSO=OI a=A T AI
ontty 3 comm c=zarcon b=2400 +h i=ATII " m=Welcome to zarcon2"
ontty 3 comm b=300 b=1200 b=2400

Description:

The purpose of COMM is to make a QNX system or network accessible by phone
with a modem. The reason for a special utility is that, unlike a serial link to a
terminal where the link settings are known, modems tend to operate with variable
link settings. COMM is able to communicate with the modem to determine these
settings and to detect when the modem hangs up the phone line so it can remove
any tasks created during the call. COMM performs the following functions:

1. Baud rate detection and selection.
- 300, 1200, 2400, etc.

2. Parity and bits I character detection and selection.
- even, odd, mark, space, none, 7 bit, 8 bit.

3. Initial welcome messages, a welcome line and/or a welcome screen.

4. The command to execute after baud and parity determination (eg: LOGIN).

5. Removal (killing) of all created tasks upon loss of carrier (hangup).

If possible, your modem should be configured to provide the CD (carrier detect)
RS232 signal to the computer so that COMM will be able to detect the modem
status (on or off line) . Likewise, the DTR (data terminal ready) RS232 signal
should be connected from the computer to the modem, so that COMM and other
programs can force a hangup if necessary. Your modem should be programmed to
force a hangup and reset itself when the computer "drops" DTR. For a Hayes
modem, this command is typically "AT&D2" , but check the manual for your
modem since this command may vary.

After COMM has answered the phone and determined the baud rate, COMM will
wait for the delay specified with the d=start _delay option (default of 2 seconds).
This delay exists to avoid the burst of noise characters that often occur when two
modems first connect. After the delay, if a single line message was specified with
the m=greeting_ message option, it will be displayed. COMM will then perform
various checks depending upon which command line options were specified. If a
mail handler was specified with the f=mail_command option, COMM will look for
the protocol characters that indicate an incoming mail packet is arriving and start

[COMM] Utilities

COMM

the specified mail handler. Similarily, if a BBS (Bulletin Board System) program
was named with the s=bbs command options, a request for the activation of the
BBS program will be checked for. Note that any commands specified must have
full paths, for example, the LOGIN default command is "/cmds/login" .

The input sequences COMM checks for are:

. . <Enter>
<Escape>
Mail Protocol

• Execute the LOGIN, or c=command command .
- Execute the BBS specified with s=bbs command.
- The f=mai! command mail handler will be started.

If COMM determines that a human caller is present, the file specified with the
M=greeting..file option will be displayed, after which either the LOGIN,
c=command or BBS system will be started. If no special commands have been
specified, LOGIN or the command specified with the c=command option will be
started as a son task, without any delayed checking for alternatives .

If the user doesn' t enter any characters for five seconds, COMM will default to
either the BBS program (if specified), or a command (specified with the
c=command option), or LOGIN.

As part of the baud rate determination, COMM will post an environment variable
called BAUD which is set equal to the baud rate for the modem connection. This
variable is useful because many high speed modems operate with the serial link
between the modem and the computer at a fixed, high speed (usually 9600 or
19200 baud) and then use hardware flow control to regulate the flow of data for
slower connections. Since the true baud rate cannot be determined by the stty
setting, COMM must post this information as an environment variable so that the
tasks started by the dial-up user can determine the true transfer rate. As an
example, QCP file transfers with fast modems benefit from having a packet size of
16K, rather than 2K. If the program detects that a high baud rate is in effect, it can
set the "s=16000" option on QCP to provide faster file transfers.

In addition to setting the baud rate in an environment variable, COMM can also
keep a log of modem events . The l=log_yath option can specify either a device
where modem logs are to go or the name of a directory where log files are to be
kept. If log_yath contains a '$ ' character, it is assumed to be a device and data is
written directly to that device. If the '$ ' character does not appear in log_yath, it is
assumed to be a directory path, in which case a '/' and a file name of the form:

881118 <-- Year, Month and Day

Utilities [COMM]

COMM

is appended to create a filename for the day ' s log. A directory of the name
"/commlog" is a good choice, since the COMM_REPORT utility will use this
directory by default. Note that the logging directory must be created before
COMM is started. The data written to the log file or device contains various
messages. For example:

7:53:55 am [1]$tty22, Connect 2400/MNP
7:54:00 am [1]$tty22, Executing: '/cmds/login' (Login)
8 :04:55 am [1]$tty19, Length: 17:47 (Caller Hung Up)
8:07:43 am [1]$tty19, Connect 1200/None
8 :07:46 am [1]$tty19, Executing: '/cmds/login' (Login)
8:21 :16 am [1]$tty22, Length: 27:21 (Call Done)
8:21:52 am [l]$tty19, Length: 14:08 (Call Done)
8:21:58 am [1]$tty22, Connect 14500/PEP
8:22:00 am [1]$tty22, Executing: '/cmds/login' (Login)

The LOCATE and WC commands can be used to extract various facts from these
logs. For example, the command:

locate 2400 /commlog/881118 I we

could be used to determine the number of 2400 baud calls for that day.

When the user has finished his call and exited from the program he was running (
with LOGOFF, D or a hangup), COMM will remove the tree of tasks created by
the user. If desired, COMM can be started with the +pass_exception option so that
hangup exceptions, rather than kill exceptions, are passed to the user' s tasks on
hangup.

For an organized shutdown of COMM, the command:

slay comm u=4000

will cause COMM to wait for the current dial-up session to complete before
terminating itself. This organized shutdown has some very important uses. If a
dial-up system must be taken down for maintenance, instead of waiting for a
chance when all the dial-up lines are inactive, or forcibly "evicting" people from
the system, setting the "shutdown" exception will cause COMM to terminate itself
on each line as the user on that line hangs up. Ultimately, there will be no COMM
sessions running and the system will be idle. A shell script which uses the

slay comm +t

[COMM] Utilities

COMM

option can loop with a timeout until all the active sessions are done before starting
a backup or other maintenance oriented function. When the backup is done, the
COMM sessions can be restarted. If COMM is being used with the
a=modem answer string option, the modems will not answer incoming calls while
COMM is-not present.

While COMM is operating, it makes itself an administrator task so that it cannot be
accidentally "killed". If necessary, the SLAY command can be used to forcibly kill
COMM. Note that any applications the dial-up user is running will also be killed.

slay comm u=8000

The q=quiet _time option can be used to limit how long COMM will tolemte a user
on-line without any input. Assuming q=l5 was specified, after detecting 15
minutes without user input, COMM would beep the user and display the message:

Please respond!

If another minute passed without user input, COMM would drop DTR, causing the
modem to hangup and terminate the user session.

COMM can operate in one of two modes. The first mode is designed explicitly to
work with Hayes compatible modems and the second is designed to work with
non-intelligent modems that do not provide connect messages. If your modem is
Hayes compatible, we recommend using COMM in the Hayes compatible mode.

Hayes Mode
The +hayes option configures COMM to understand the messages output by a
Hayes compatible modem. COMM can be configured to initially program the
Hayes modem to answer incoming calls and then wait for the CONNECT message
to determine the incoming baud mte.

You can change the modem initialization string user by COMM with the the i=
option. The default string is "A Tt", but a suggested string could be:

Utilities [COMM]

COMM

Return to cmd mode after loss of DTR.

AT 0=1 1 !0 r1 11 tC1 tD2

DCD indicates carrier detected.
Extended status set.

. English result codes.
Result codes sent.

Command char echo enabled.
Answer after 1 ring.

With a 2400 baud (or better) modem, these settings can usually be programmed
into the non-volatile RAM in the modem with the "AT&W" command. If so, you
can set the modem initialization string to "ATZI", causing the modem to program
itself to the internally saved state. Also, the modem can usually be programmed to
reset itself to the internally saved settings on loss of carrier, or hangup forced by
DTR driven low by the computer.

The modem initialization string supports a number of special characters that are
processed by COMM rather than being passed to the modem. These characters,
and their actions, are:

- Carriage return
- Ignored, usually part of a phone number
- 1 second delay

11 - Raise DTR
v - Drop DTR (forces a modem hangup and reset)

- 100 millisecond delay

As the modem initialization string is processed, any characters not in this special
set are passed through to the modem, unmodified. Using these special characters,
modem initialization strings that perform many steps can be easily constructed. For
example:

would force a hangup of the modem with DTR (with 3 second delays around each
change of DTR) and then program it to answer after the first ring.

To accept incoming calls your modem need not necessarily be programmed for
auto-answer. Another alternative is to provide COMM with an answer string. If the
answer string is provided, the modem can be set to not auto answer (A TSO=O) .
What will happen is that the modem will emit "RING" statements when an
incoming call is detected and COMM will detect the "RING" and provide the
answer string (typically "AT AI") to force the modem to answer. This has the
added advantage that your system will not answer the phone unless it is powered

[COMM] Utilities

COMM

up and the COMM task is ready for the incoming call. We recommend operating
your modem in this mode.

If your modem answers with other than "OK" to commands, COMM can adapt to
this with the r=modem_ok_response command line option.

We also recommend you default your serial ports to 8 bits, no-parity and one stop
bit for communication with other QNX systems.

The following are some typical invocations of COMM for a Hayes modem.

ontty $mdm comm +h b=2400
ontty 19 comm M=/nollmsg +h +1 b=l9200 i=ATSO=OI a=AT AI 1=/commlog

Non-Hayes Mode
COMM can also handle non-intelligent, or non-Hayes mode, modems. When these
modems answer the phone, COMM will begin to receive the incoming data that the
remote user is typing. Starting at a previously specified baud rate (default of 2400
), COMM detects this incoming data and prints the message:

Please enter two periods (• •) and press <Enter>

If the baud rate is incorrect, any character typed by the user will generate a
communication error causing COMM to switch its baud rate and redisplay the
above message. The periods (..) and carriage return must be typed in order without
any mix of other characters. Every three characters entered will redisplay the
above message. Often, the sequence "ab . . " seems to be most efective at generating
enough exceptions for COMM to be able to detennine the line settings. Space
parity is treated as 8 bit, no parity by COMM.

After the caller has hung up, the baud rate is then switched back to the highest rate
and the process starts over, waiting for the next call.

If your non-hayes modem has a feature to print a string when a call arrives, you
should TRY to disable it since this may confuse COMM working in the non-hayes
mode. This is especially true if the string contains either a carriage return or a
period. You should also try to disable ECHO from the modem and any status
messages.

This is a typical invocation of COMM for a non-intelligent modem.

ontty 22 comm M=/nol/msg b=300 b=l200 b=2400 1=/commlog

Utilities [COMM]

COMM

Recognizing the fact that COMM is a utility that many people would like to
modify for custom applications, the source for COMM is available on the QNX
Update System and is also shipped as a sample C program with the QNX C
compiler. There are also a number of technical notes downloadable from the
update system that detail how to configure various modems for use with QNX and
COMM.

See Also:

LOGIN
LOGOFF
STTY

[COMM] Utilities

COPY - Copy files

Syntax:

copy source_file destination_file [options] *
OR

copy file* directory [options]*

Options:

-date - Don't copy the date.
+pause - Pause before copying (to change diskettes).
+verbose - Display filenames as they are being copied.

Examples:

copy *.c /c_source

cp test.c $1pt

Description:

- Copy all c files to the directory
/c_source.

- Copy file test.c to the line printer.

Copy is now identical in operation to the CP command. Please refer to the CP
utility for details on it's operation.

See Also:

BACKUP
CHATIR
CP

[COPY] Utilities

I

CP - Copy files

Syntax:

cp source_jile destination_jile [options]*
OR

cp file* directory [options] *

Options:

-date - Don't copy the date.
+pause - Pause before copying (to change diskettes).
+verbose - Display filenames as they are being copied.
+newest - If the destination file is newer than the source, then do

not copy; keep the newest of the two.

Examples:

cp *.c /c source

cp test.c $lpt

Description:

- Copy all c files to the directory
/c source.

- Copy file test.c to the line printer.

The first form CP will copy a source file to a destination file. If no destination file
is given, the standard output is used. If no source file is given, the standard input is
used.

The second form of CP will copy multiple source files to a destination directory.
This provides a convenient method of moving files in one simple operation. The
SHELL special characters *, ? , and [. . .] are useful for selecting the set of files to be
copied. If the error

LINE TOO LONG

is displayed, you will have to restrict the number of files copied and issue two or
more commands.

cp *.[co] dir -->

[CP]

cp *.c dir
cp *.o dir

Utilities

The following two commands achieve the same effect using the two forms

cp 2:/dodreport 1 :/doc backup/report
cp 2:/dodreport 1 :/doc=backup

A dash (-) may be used to force the source input from standard input, or to force
output to standard output.

CP

CP copies as much of the source file as it can into memory, then flushes the
memory buffer to the destination file. This is repeated until the entire file is copied.

The +p option allows the user to change diskettes (in a floppy only system) before
actually transferring the files (so that the destination diskette can be inserted into
drive 1 for example, where the commands disk which contains the CP command
usually resides) . CP will prompt the user for a carriage return before initiating the
copy operation when +p is specified.

The -d option will use todays date for the destination file. The default is to copy
the date from the source file to the destination file. The default form of the CP
command requires that the destination file have "modify" permission, since the
date of the destination file is being modified. If modify permission is missing, you
will have to use the -date option.

See Also:

BACKUP
CHATIR

Utilities [CP]

CR 0 N - Schedule commands in background

Syntax:

cron [-logfile] [l=logfile] [t=tablefile] &+

Options:

-logfile

I=logfile

t=tablefile

Examples:

timer &

- Do not append status infonnation to
any log file.

- Use the indicated log file in place of
the default logfile /config/cronlog.

- Use the indicated table file in place of
the default table file /config/crontab.

cron -1 t=/etc/crontab &+

Description:

The CRON command provides a convenient method for executing commands at
specific times without operator intervention. It requires that the timer administrator
be running in background.

Cron is a resident program that uses a list of times and program names contained in
the file /config/crontab. This file has a single line entry for each program to be
executed that contains the following six fields :

1. The minute in the hour
2. The hour of the day
3. The day of the month
4. The month of the year

5. The day of the week

(0-59).
(24 hour clock).
(1-31).
(1-12) OR
(a 3 letter monthname).
(0-6 where 0 is Sunday) OR
(a 3 letter dayname).

6. A command to be executed in the background

Utilities [CRON]

CRON

Any of the time fields may have :

a single value
an upper and lower boundary
a series of values
a " * " to mean all values

3
10-15
2,5,11,33
*

exact
range
list
all

Each element of a list may of course be a range. The following examples illustrate
some typical cron table lines. The indented comment text is NOT part of the cron
table file.

15 * * * 1-5 who »letc/wholog
OR

15 * * * mon-fri who >>letc/wholog

At 15 minutes after the hour on Monday
thru Friday append the output of the who
command to the file /etc/who log.

0 1 * * * /cmds/diskuse

At 1 AM each day run the shell command
file diskuse.

0 4 1,15 * * payroll_ startup

At 4 AM on the first and the fifteenth
run the program payroll_startup.

55 7 * * 1,2,3,4,5 ontty 3 comm

At 7:55 AM Monday thru Friday start the
dialup access routine. This assumes a reboot
every morning or multiple COMM programs will
start to stack up.

0 0 1 jan * mail s %users <newyear _ msg

On the first of january every year send mail
to everyone in the file users .

[CRON] Utilities

CRON

The command which is scheduled to run will be run in background. Its standard
input will be the device $null and its standard output and error will point to the
console on which CRON was run in background.

Each time the cron table is read by CRON, or CRON schedules a program to run, a
status message is appended to the cron logfile unless the -Iogfile option was
specified. It is possible to run a command from CRON which prints then deletes
this file once a week.

If a time in the cron table has already passed when CRON is started, that command
will not be run. CRON reads the cron table file once (within 1 minute) when it is
started. If you modify the table file you may force CRON to reread this file by
setting a break exception on CRON. For example.

slay cron +break

Utilities [CRON]

CRYPT - Encrypt/Decrypt files

Syntax:

crypt [key] <input Jile >output Jile

Options:

key - Encryption key to use.
input Jile - Source file to encrypt.
output Jile - File to place encrypted output.

Examples:

crypt secret <table >table.x
ws " crypt qwerty <@ >@.x" p=*.c

Description:

- Encrypt all C files
in current directory

CRYPT reads from the standard input and writes an encrypted version of the data
to the standard output. The KEY selects a particular transformation of the data. If
no key is specified, CRYPT will prompt for a key from the terminal (without
echoing it). CRYPT encrypts and decrypts with the same key. After executing
these two commands

crypt abc <filel >file2
crypt abc <tile2 >file3

file3 will be identical to filel .

CRYPT implements a one rotor machine with a 512 byte rotor. Such an encryp
tion scheme can be broken, however, the amount of work required is likely to be
large and not generally known.

Since the encryption relies heavily on the key, small keys (3 characters or so)
should be avoided.

CRYPT flushes all input to prevent users from recalling command lines in order to
redisplay the key.

[CRYPT] Utilities

; I

DATE - Display or set date and time

Syntax:

date [day [month [year [hour [min [sec]]]]]] [amlpm]

Options:

day - 1 -32
month - 1 - 12 or jan-dec
year - 80-99 or 1 980-99
hour - 1 - 12 or 0-23
min - 0-59
sec - 0-59
am - (used with 12 hour time)
pm - (used with 1 2 hour time)

Examples:

date
date 22 2 82
date 16 july 1982 4 30 pm

Description:

If n o arguments are given, the DATE command allows the user to display the date
and time on his terminal. When changing the date, day is entered first followed
optionally by month and year. The current time can also be set by following the
date with the hour, minute, and second. 24 hour or 1 2 hour time (am or pm) can be
used. All arguments must be separated by spaces. Any missing arguments will
default to the current value.

For details of setting the QNX date from a battery backed-up clock/calendar, see
the RTC command.

See Also:

CLOCK RTC

Utilities [DATE]

DCHECK - Check a disk for bad blocks

Syntax:

dcheck drive [options]*

Options:

b=num blks

+mark
-verbose
+Verbose
-pause
f=first_blk

Examples:

- Number of blocks (in decimal) to check
(default: all blocks) .

- Mark bad blocks as used in the bitmap.
- Don ' t display progress information.
- Display every bad block on the disk.
- Don't wait for a disk to be inserted.
- Start the check at this block number.

dcheck 2 +m - Check all blocks on disk 2 and
mark bad blocks in the bitmap

dcheck 1 b=640
dcheck [3]1

Description:

- Check first 640 blocks o n disk 1
- Check all blocks on disk 1 of node 3

DCHECK allows the user to verify that a disk has been formatted properly. The
utility will do this by attempting to read every block on the disk. Any blocks which
cannot be read will be displayed on the standard output (which may be redirected
to a file) . Bad block numbers are displayed in hex. A summary of the number of
bad blocks will always be printed on the terminal.

If the number of blocks to check is not specified, then DCHECK will obtain the
correct number from the file system and check ALL blocks on that disk.

DCHECK can be used to check any formatted disk, including disks which contain
files. These files will not be damaged. If the disk has been initialized using
DINIT, the +mark option should be used to remove any bad blocks from the disk
allocation bitmap. This is especially true for hard disks.

IMPORTANT: DCHECK with the the +mark option should only be used when
the system is idle. There should be NO open files when DCHECK is running.

[DCHECK] Utilities

DCHECK

When mark is specified, DCHECK will attempt to read the file !bad_blks from
that disk. If found, DCHECK will read in the file which contains a list of all known
bad blocks, in sorted order. When DCHECK finishes, it will re-create the file
/bad_blks, after it has updated the bitmap. DCHECK will only add to this file,
allowing transient or marginal disk blocks to be detected, and avoided, by
repeatedly calling DCHECK:

dcheck 3 +mark
dcheck 3 +mark
etc.

The /bad_blks file is also recognized by the CHKFSYS utility.

DCHECK may be used to check a disk on another node. The disk may be
indicated explicitly via a [node] prefix or implicitly by specifying a remdisk which
you have mounted.

The file created by redirecting the output of DCHECK may be used as a data file
for the CHKFSYS command. This allows you to detect which file (if any)
contains bad blocks.

dcheck 3 >had blocks
chkfsys 3 b=bad _blocks

See Also:

CHKFSYS
DINIT
FDFORMAT
MOUNT

Utilities [DCHECK]

DCO PY - Copy entire disk to a second disk

Syntax:

dcopy [source [destination]] [options]*

Options:

source
destination
+hard
-verify
k=size

b=nblocks
so=offset
do=offset
+repeat
-pause

- Source drive (default: 1) .
- Destination drive (default: 2) .
- Allow copying to a hard disk.
- Don't verify after copying.
- Size of disk to copy in Kbytes

(default: ALL blocks).
- Size of disk to copy in blocks.
- Offset on source disk in blocks.
- Offset on destination disk in blocks.
- Continue copying until user types BREAK.
- Don't pause for non-floppy disks.

Examples:

dcopy 1 2
dcopy 1 1
dcopy -v +r

dcopy 2 1 b=160

dcopy 3 1 so=640 k=320

- Copy all of disk 1 to disk 2.
- Copy a disk using a single drive.
- Make multiple copies of disk 1

without verifying.
- Copy disk 2 to 1 . Only copy

160Kbytes.

- Copy the second 320Kbytes of
drive 3 to drive 1 .

dcopy 1 3 b=640 do=640 +h
- Restore the second 320Kbytes

of drive 3 from drive 1 .
dcopy [4]1 [6]1 - Copy disk 1 on node 4 to

disk 1 on node 6.

Description:

[DCOPY] Utilities

DCOPY

DCOPY allows the user to make an exact copy of the diskette in the source drive
(default 1) onto the diskette in the destination drive (default 2).

CAUTION: This utility is NOT meant for copying files. It is meant for copying
exact disk images. Use CP, or BACKUP for copying files.

DCHECK will prompt the user to load the diskettes into the appropriate drive and
type CR when ready. DCOPY will read as many blocks as it can from the source
drive into memory, then write them onto the second drive. This will be repeated
until the entire diskette has been copied.

Normally the data on the destination drive will be read back and compared with the
memory buffer to ensure that the data has been copied correctly. This can be
suppressed (to speed up disk copying) with the -v option.

The b= and k= options allows the user to make copies of only a portion of a disk.
The +r option allows multiple disk copies to be made without the need to key in
the DCOPY command every time. The so= option permits the first part of the
source disk to be ignored. Offset is specified in blocks. The do= option allows an
offset to be specified on the destination drive.

Note that a blank floppy diskette must be formatted before it can be copied to.

Although DCOPY is normally used to copy floppy diskettes, a ramdisk or a hard
disk can also be copied to/from floppies. The k=, so=, and do= options allow an
entire Hard disk to be copied onto several floppy diskettes. Command files
consisting of several DCOPY commands could be built to make this more
convenient. The -p option can be used to avoid the prompt message which results
when one of the disks is not a floppy.

For your protection, copying to a hard disk is not allowed unless you specify the
+hard option. This should protect against any typing errors.

You may DCOPY to disks on different machines. This may may be indicated
explicitly via a [node] prefix or implicitly by specifying a remdisk which you have
mounted.

See Also:

BACKUP
FDFORMAT
MOUNT

Utilities [DCOPY]

D DUMP - Dump the contents of a disk block

Syntax:

ddump drive block [-verbose]

Options:

drive - Disk drive number (l . .F) .
block - Disk block number in hexadecimal (1 . .?).
-verbose - Don't display as ASCII characters

Examples:

ddump 3 I
ddump I lOA -v
ddump [4]3 2

Description:

- Dump block 1 of disk 3
- Dump block lOA (hex) of disk 1
- Dump block 2 of disk 3 on node 4

DDUMP will display the contents of a disk block 1 6 hexadecimal bytes per line,
with the ASCII equivalent (if printable) displayed to the right of the line. If the
ASCII character is not printable, it is replaced with a dot (.).

The disk block is specified as a hexadecimal number.

Subsequent disk blocks can be displayed by typing CR for each new block. Any
other typed character will terminate DDUMP.

DDUMP may be used to dump a disk on another node. The disk may be indicated
explicitly via a [node] prefix or implicitly by specifying a remdisk which you have
mounted.

See Also:

MOUNT
NACC

[DDUMP] Utilities

DEBUG - Invoke the system debugger

Syntax:

debug [command line]

Examples:

debug
debug test argl >$1pt

- Drop into the debugger.
- Debug the program "test"

Description:

If you wish to do source level debugging please refer to QDB in the C compiler
manual. This is a low level debugger suitable for debugging interrupt handlers .

DEBUG allows the system debugger to be used, provided that it has been first
mounted into the system. This should only be done once.

mount debug

The debugger is an absolute (hex) debugger which allows breakpoints to be set in
user programs, memory to be displayed and edited, code to be disassembled, and
I/0 ports to be examined.

The debugger can only be invoked from the console. The debugger should never
be used in a multi-user environment. It disables interrupts and freezes the entire
system. It may be used to debug application programs as well as interrupt routines.

With no arguments, DEBUG will be entered with a 4K memory buffer at its
disposal. If a command line follows the keyword debug, then that command will
be loaded into memory before the debugger is called. In this case, the debugger
will have its default code and data segments initialized to those of the command
being debugged.

Breakpoints can be set on functions whose addresses have been determined from
the map which can be generated by the linker.

cc test m=.map.
cc x=ofiles m=.map.

Utilities [DEBUG]

DEJ3UG

Similarly, the addresses of memory variables can be determined from the linker
map and displayed in the debugger.

The debugger does not support line editing. If you make a typing mistake you may
cancel the entire line by typing a Ctrl c. When entering addresses, etc. all data is
assumed to be hexadecimal. Only the last 4 digits are valid (2 for byte data) so
typing mistakes can be corrected by continuing to type the number such that the
last 4 digits are the ones you want.

lb34ld44 results in ld44

If you type a simple DEBUG, perhaps to examine an I/0 port, you may return back
to the shell by typing the g command. If you debug a command, then your default
code (@ @) and data (@) segment will be set up to point to your program. Note
that the CS register displayed when you first enter debug will be pointing into the
shared library, NOT your program. All breakpoints will be placed in your real code
segment which the shared library will return to when you resume via the g
command.

A WORD OF WARNING. If your program allocates considerable memory via the
ALLOC, CALLOC, MALLOC or OPEN routines, then QNX may relocate your
data segment without updating the default data segment memorized by the
debugger when your program began execution. As a rule of thumb, the stack seg
ment (ss :) will be your real data segment which should agree with the value printed
for ds= when you type ? . If not, you may change your default data segment using
the @ command. Note that the default data segment is ONLY used for displaying,
examining and changing memory. Changing it does not affect the data segment of
your program. It is there to save you from having to type in a segment prefix.
When debugging multiple tasks, you may wish to change your default code and
data segment many times for convenience.

[DEBUG] Utilities

Debug Command Summazy

b address
b seg:address
b r
b

Set breakpoint at address

Set breakpoint at return from C function
Display breakpoints

c start finish destination
c seg:start finish seg :dest

Copy memory

d address
� seg:address

D address
D seg:address

e address
e seg:address

Display memory. CR ends display
and SPACE displays another line

Disassemble memory

Edit Memory

EDIT commands

hex number
'c
CR
SPACE
=

'
:data
;data
r
R
I

f seg:startfinish data
f start finish data

g address
g seg:address
g

Utilities

Changes contents of memory
Changes to ascii character c
Leaves edit
Goes to next byte
Redisplays this byte
Displays previous address
Displays 8 bit 10 port
Displays 16 bit 10 port
Output to 8 bit 10 port
Output to 16 bit 10 port
Goes to short relative address
Goes to long (16 bit) relative address
Goes to the address found in memory

Fill memory with data

Go to address (begin execution)

Continue execution (or exit debug)

DEBUG

[DEBUG]

DEBUG

=

I start finish data
I seg:startfinish data

r reg

r reg data

s

s count

t n

T n

u address

u

v

?

@ segment

@ @ segment

@ i mask

@ p data

@ s data

[DEBUG]

Continue execution, but reset a breakpoint
at the same address

Locate data in a range. Up
to 8 bytes may be searched for.

Examine contents of register
reg : ax bx ex dx si di bp es ds cs ss

Change contents of register

Single step from last instruction. You may
type the space bar to step through your
code, one instruction at a time.

Execute count instructions or until
next breakpoint

Display last n C stackframes

Display last n instructions executed
while single stepping

Unbreak (remove break) at this address

Remove all breakpoints

Trap all Protected-mode interrupts.

Display registers

Define default data segment
used by d e f c commands

Define default code segment
used by D b u s g commands

Define interrupt mask which will be
restored when program resumes.

Change stack pointer

Change stack segment

Utilities

See Also:

LINK
MOUNT
QDB Symbolic Debugger

Utilities

DEBUG

[DEBUG]

DEF _SERVER - Define id of global name server

Syntax:

def _server node task _id [+local]

Options:

node - Node number where the server task resides.
task id - Task-id of the server task.
+local - Only change server on local node.

Examples:

def server 3 1

Description:

- make TASK_ADMIN on node 3 a
global name server.

The DEF _SERVER command defines the node and task id of a global name
server task. This may be a user defined task or a T ASK ADMINISTRATOR on
any node. Global names are used by administrator tasks which provide network
wide services. The SPOOLER is an example of such a task. This command may
be executed on any machine and all machines in the network will be updated with
the information.

DEF _SERVER will attempt to update the global name server information on every
node in the network, unless the +local option is used. If it is, then only your node
will change its value for global name server.

This command is only useful with the networking version of QNX.

The default name server in a QNX network is task-id 0001 on node 1 . Most users
will NOT need to change this.

See Also:

CLRHOUSE
SPOOL
TSK

[DEF _SERVER] Utilities

D EFPIPE - Define temp files for pipes

Syntax:

defpipe path

• This is a local shell command •

Description:

The DEFPIPE command allows you to change the pathname where temporary pipe
files are placed.

defpipe my _pipe

The default is

defpipe /tmp/ . . #n#$

Utilities [DEFPIPE]

D IFF - Difference between two files

Syntax:

diffji/el file2 [options] *

Options:

+editor - Creates a script of line edit commands
which can convert filel into file2 .
(see the LED command)

+matching - Produces a script of matching lines in
the two files rather than the difference.

+raw - Causes a character by character
comparison of the two files. A file
match or mismatch statement will be
issued if necessary indicating the
characters (and character number) where
the mismatch occurred. The -v option
may not be used with +raw. This option
must be used when comparing binary files
such as commands.

-blanks - Causes multiple blanks or white
characters to be ignored in line
comparisons.

-case - Causes case distinction to be ignored.

+heading - Displays the names of the files being
compared. This may be useful without any
other option or the +m and +r options.

-null - Causes null lines to be ignored. This
option should not be used with the +e
or +r options.

[DIFF] Utilities

r=resync

s=max_diff

t=string

-verbose

-write

- Changes the minimum number of lines
required to match before the two files
resynchronize. The default is two, the
new value must between one and one
hundred.

- Changes the maximum number of lines
the files may differ by at any time before
being declared incomparable. The default
is one hundred.

- Define terminator string to print between
sections of text.

- Disables the "The two files compared
equal" message.

Suppress "w" command in LED script
created by the +e option.

DIFF

Examples:
diff versionl version2

- Creates a meaningful script of differences between the
files.

diff old new +e >chgs

diff corel core2 +r

diff filel file2 +m

Description:

Utilities

- Compares the original file to the new version creating
changes which will convert the old file into the new
version. To recreate the new version use:

led old <chgs

- Allows text or non-text files to be compared character by
character.

- Displays the similar text segments between the given
files.

[DIFF]

DIFF

DIFF compares two files line by line searching for differences between them. It
can illustrate these differences by producing a meaningful script of edit-like
commands. The commands are of the form:

range] C range2
[< file I text] *
[> filei�text] *

Where:
range] is line number range in file 1
range2 is line number range in file 2
C is the LED command append, delete or change
< indicates a line of text affected in filel
> indicates a line of text affected in file2

In many situations, several versions of a file may exist. You may reduce file space
requirements by saving diff files rather than multiple similar copies. When you
update a file, DIFF +e can summarize the session as a series of line editor
commands. Typically a file containing the LED commands will be much smaller
than the updated version of an original file. Thus, if several versions of a file are
necessary, a great deal of disk space can be saved by keeping one original file and
several difference files.

If similarities between the files are required, the +m option will display the files
corresponding line numbers followed by similar lines of text.

When it is necessary to compare files character by character (binary files), instead
of as lines of text, use the +r option. The output will state if the files are equal. If
not, the character position and corresponding characters will be given.

See Also:

LED
LOCATE

[DIFF] Utilities

D INIT - Diskette Initialization

Syntax:

dinit drive [+hard] [k=size] [p=lprefzx] [+suppress] [-pause]

Options:

+hard
k=size
p=lprefix

- Required if the disk is a hard disk.
- Size of diskette in Kbytes.
- Name to give the root of the file system on that

disk (default is "/")
-pause - Don't pause for diskette to be loaded.
+suppress - Suppress the writing of the root directory.

Examples:

dinit 3 +hard
dinit 1
dinit 1 p=/user

dinit 5 -p

dinit [3]1

Description:

- Initialize a hard disk in drive 3 .
- Initialize a disk in drive 1 .
- Initialize disk in drive 1 to

have a root name of "/user" .
- Initialize disk in drive 5 without

pausing (perhaps a ramdisk).
- Initialize disk in drive 1 on node 3 .

DINIT will initialize a formatted diskette so that i t may be used in the QNX file
system environment. The default values are determined from the current configura
tion of the specified drive. This configuration can be changed with the MOUNT
command.

The prefix (if specified) is the name of the "root" of the file structure on that drive.
The default prefix is "/" which allows any directory names to be placed at the
highest directory level on that diskette (eg. the drive could contain the directories
/cmds, /lib, /expl, etc . . .). If a diskette is known only to contain one directory at the
highest level (eg. /user), then this prefix can be given. The prefix must start with a
slash (/). In practice, this option is rarely used.

Utilities [DINIT]

DIN IT

A diskette which is given a prefix other than "/" cannot be accessed without giving
the exact name of the disk. A user could name a diskette with a unique name
known only to himself which would prevent other users from looking at the files
on that diskette.

The -p option can be used to bypass the prompting for a diskette to be loaded.

In the case of a hard disk the DINIT should be followed by a DCHECK to remove
any bad blocks from the disk allocation bitmap.

dinit 3 +hard
dcheck 3 +mark

The +hard option is required if the disk is not a floppy or ramdisk. This option is
there to protect you against accidental typing errors which might attempt to DINIT
your hard disk.

The +suppress option is only used after a disaster which has destroyed the first
few blocks of your disk. Please read the technical note on "Recovering Your Hard
Disk" .

The k= option will rarely be required. It may be used to create a bitmap which is
smaller than the physical disk. This will prevent QNX from touching blocks at the
end of the disk.

dinit 1 k=252 - 28 tracks * 2 heads * 9 sectors
reserve inner 12 tracks

DINIT may be used to initialize a disk on another node. The disk may be indicated
explicitly via a [node] prefix or implicitly by specifying a remdisk which you have
mounted.

See Also:

DC HECK
FDFORMAT

[DINIT]

MKDIR
MOUNT

Utilities

D IR - Display directory tree

Syntax:

dir [directory] [options] *

Options:

+count
-files
+modified

-sort
d=max dirs

f=maxJiles

l=levels
p= [A]pattern

m=memory

w=line width

Utilities

- Display a count of the number of files in each directory.
- List only directories, not files.
- Display any directories that contain modified files with the

enhanced video attribute (or with a preceding ' * ' character
for output devices without enhanced mode). The only files
that will be listed while this option is in effect will be those
that are modified. Thus, a command like

dir 3 :/ +m

will create a display of the complete directory tree and only
those files that have been modified since the last backup will
appear within the tree.

- Do not sort the output.
- Maximum number of sub directories allowed in a single

directory. The program will halt if there are too many. The
default is 60.

- Sets the maximum number of files that will be printed within
a single directory. The error message "too many files" will
appear if more are present. The default is 650.

- Limit the depth of the directory tree. Default is 9999 .
- Specify a pattern to select which files are listed. This pattern

match facility applies only to file names and not to directory
names and is applied only to files that make it through the
flag settings, such as the +modified flag. The 'A ' character
can be used to negate the pattern match.

- Amount of memory (bytes) used to store directory and file
names while processing. The default is 25 Kbytes.

- This option can be used to manually specify the output
width. The default width is 80. This is useful when printing
a directory with +files to a 132 column printer.

Examples:

[DIR]

DIR

Description:

dir
dir 3 :/ w=132 >$1pt
dir +m +c 1=2

This utility displays a hierarchical view of the directory system. If no directory is
named, the directory tree from the current directory down is displayed.

The output of this command uses the tcap library for the line drawing characters
and can thus be used to print directory trees on the printer or attached terminals as
well as on the screen.

See Also:

CD
FILES

[DIR]

LS
PWD

Utilities

D MARK - Mark bad blocks on a disk

Syntax:

mark drive [cylinder,head]*

Options:

drive
cylinder

head

Examples:

- Which QNX drive is to be marked.
- Which Cylinder is bad.

Values range from 0 to T - 1 .
- Which head, o r platter i s bad.

Values range from 0 to H- 1 .

dmark 3 40,4 250,2 500,0 - mark track 40, head 4
and track 250, head 2
and track 500, head 0

dmark 3 20,1 >3:/bad_blks

Description:

If your hard disk was shipped with a sheet of paper containing a list of bad tracks,
then you may use the DMARK command to explicitly mark the blocks on these
tracks as un-usable.

DMARK will display a list of QNX block numbers on the screen corresponding to
the bad blocks. This may be re-directed into a file, which can be used by
CHKFSYS to update the bitmap on that disk.

If DMARK is used immediately after using DINIT on a new hard disk, you could
direct the output into the file /bad_blks on that disk. The DCHECK and CHKFSYS
utilities will then maintain that file as new bad blocks are discovered.

The DMARK command takes a list of cylinders and heads. Each pair is separated
by a space, with the cylinder and head separated by a comma.

Note that even if only a single block is bad, the entire track is sacrificed. This is
because interleaving of sectors on the disk locates blocks in different places,
beyond our control.

Utilities [DMARK]

DMARK

DMARK is best used in conjunction with DCHECK, which will find any blocks
which have failed since the disk was originally manufactured.

See Also:
CHKFSYS
DCHECK
DINIT
FDFORMAT
MOUNT

[DMARK] Utilities

DO PEN - Display open devices

Syntax:

dopen [node]

Options:

node - The node whose devices you wish to query.
The default is your local node.

Return Value:

Number of devices open
- 1 on a critical error.

Description:

DO PEN will print out the names of any tasks which have a device open for read.
It does not list tasks which have a device open for write only. This command is
frequently used to determine who has the modem port open.

DOPEN only lists the devices open on one node at a time. It defaults to your
current node. You can specify a node using the node option.

dopen 4

See Also:

FOPEN

Utilities [DO PEN]

DREL - Release Directory

Syntax:

drel directory

Examples:

drel /test
drel /user/billlcatl
drel 2 :/user
drel [2]3:/user

Description:

DREL will remove a directory from the disk. Only empty directories can be
released. If the DREL command verifies that the directory is empty, then the space
used by the directory will be reclaimed.

If a directory is to be removed which is at the top level (root), it is usually
necessary to specify the correct drive prefix as in the last two examples.

See Also:

FREL
RM
RMDIR

[DREL] Utilities

DUMP - Dump the contents of a file in hexadecimal format

Syntax:

dump file [start_offset [end_offset]]

Options:

start_offset

end_offset

Examples:

- First byte to display (decimal)
default: 0.

- Last byte to display (decimal)
default: last byte of the file.

dump test.o
dump core 0 120
dump $tty3

- Dump an entire file.
- Dump the first 121 bytes of "core".
- Dump data from $tty3 (At least 80 chars

need to be sent before being displayed) .

Description:

DUMP will display the exact contents of a file, 16 bytes per line (hexadecimal),
with the ASCII equivalent (if printable) displayed to the right of the line. If the
ASCII character is non-printable, it is replaced with a dot (.).

DUMP is useful for displaying non-text files such as object files and core files.

The start and end offsets are specified as decimal numbers.

See Also:

p
SPATCH

Utilities [DUMP]

DUMP_ IBM - Make a hardcopy of Graphics Screen

Syntax:

dump_ibm [options] *

Options:

device name
+high -res
+mediUm res

Examples:

- Name of printer to use if not $lpt.
- dump high resolution screen (640 x 480)
- dump medium resolution screen

dump ibm - Make hardcopy of graphics screen.
dump =ibm [7]$lpt - Make hardcopy on node 7' s printer.

Description:

This command will make a hardcopy o f the IBM colour graphics screen onto an
IBM compatible graphics printer.

It is typically called from other programs (such as BAR) to print the graphics
screen since issuing the command by hand would alter the display.

See A lso:

BAR
MOUNT

Utilities [DUMP_IBM]

EC - Execute a shell file

Syntax:

ec shell _file_ name

• This is a local shell command •

Description:

The E C command causes the shell to temporarily take its input from the indicated
file. Since the execution of commands in the file is performed by the current shell,
it is possible to execute commands like CD, PATH, PRI, PROMPTT etc . . . , which
affect the environment of the shell which executes them.

This is especially useful in the password file where you will often see a line such
as

ec user.init

EC commands cannot be nested.

See Also:

SH

Utilities [EC]

ECH 0 - Echo arguments to standard output

Syntax:

echo [arguments] *

Examples:

echo Hello world! ! !
echo abc >$tty3

Description:

ECHO will echo its arguments to the terminal. ECHO i s used within command
files to display progress information. The last argument will be followed by a
carriage-return/line-feed.

Unlike TYPE and STYPE, the output of ECHO can be redirected since it is a
executable program and not a SHELL command.

See Also:

STYPE
TYPE

[ECHO] Utilities

EO - Execute On

Syntax:

eo [file] "command" [options] *

Options:

+con cat

-error

o=offset

p=pattern

+repeat

+verbose
dc=del char

pc=path _char

Examples:

- Each line in the input file is concatenated
and separated by a space. The indicated command
is called only once with multiple arguments
rather than many times with a single argument

- Don' t stop if a command returns back a non-zero
status. This includes a command stopped via break.

- Skip this many characters at beginning
of each line before executing.

- Skip any line which does not match
this pattern (before applying o=) .

- This is only used in conjunction with the +Concat
option. If during concatenation of the input
lines into multiple arguments the maximum line
size of 256 characters is exceeded, then the
command will be executed with as many items on
the line which will fit. This process is repeated
until there are no input lines left or line
greater than 256 characters is read.

- Display commands as they are being executed.
- This character when present in command

will delete the last character of the current.
pathname (default is a backquote)

- This character when present in command
will be replaced by the current pathname.
If omitted, then the argument will be
appended after the command. Note that the
path_char is consumed by the first argument
when used with the +Concat option.
(default is an at-sign @)

eo my _files " list -b" +c

Utilities

rEO

[EO]

EO

- List all files named in my _files
eo cfiles " ed @" +v

- Edit all files named in cfiles
files -v p=*.o I eo " frel'' +C +r

- Release all files ending ".o"

Description:

EO, like WS, is a utility which increases the power of existing QNX commands. It
takes a command and a file containing a list of filenames with one filename per
line. The command will be executed once for each line in the specified file, with
the line being appended as an argument to the command. Given a set of filenames,
EO allows a convenient mechanism of executing a command across all those files.
The file list will typically be generated using the editor or from the output of the
FILES command.

files >cfiles p=*.c -v
eo cfiles " crypt key <@ >@.z"

If the file of filenames is omitted, then the filenames will be read from the standard
input. This allows EO to be used as a filter in a pipe. The above command could
be shortened to a single step as

files p=* .c -v I eo " crypt key <@ >@.z"

Some commands are capable of accepting multiple arguments. In these cases it is
more efficient (and sometimes necessary) to execute the command once with many
arguments rather than many times with one argument. The +con cat option will
take each input line and concatenate them together, separated by spaces. The
command will then only be executed once. For example

eo my _files " size" +C

The +repeat option handles the case where the number of input lines when
concatenated will exceed the maximum line size of 5 1 2. In this case the command
will be executed with as many items on the line which will fit. This process is
repeated until there are no input lines left, or a line greater than 5 1 2 characters is
read.

See Also:

FILES
ws

[EO] Utilities

I L...--_ _______;, ___ lE�_[Rl----�· · · I
EXPL - Explain

Syntax:

expl [command [subcommand]*] [options] *

Options:

+qnx - Force QNX display character set and
escape sequences to be used.

m=menu - Go immediately to indicated menu item.
p=lines - Pause after this many lines.

default is 24. p=O disables pausing.

Examples:

expl inform m=B
expl led command summary p=O >$lpt

Description:

The EXPL command provides a convenient method of indexing into the directory
of files found under the directory "/expl" .

The explain files provide detailed information about commands. If the required
explain file cannot be found, but a file called "index" is present in "/expl", EXPL
will ask if an explain index is wanted. If the user responds with 'y ' , then the file
/expl/index is printed (if it exists). Typing "expl index" on the command line will
also print this file.

The disk containing the directory "/expl" must be inserted into one of the disk
drives before using the EXPL command. EXPL searches for an explain command
as follows.

expl mail
/expl/mail
/cmds/mail.hlp
/expllmaillexpl
/expllindex

Utilities

look here first
then here
then here
look here last

[EXPL]

EXPL

In many instances, the user may only wish to be reminded of the syntax of a
command. All QNX commands explain their own syntax when the command is
followed by a single question mark.

expl ?

You may use lines containing a formfeed (Ctrl-L) to cause EXPL to pause for
input. Upon receiving a carriage return the screen will be cleared and EXPL will
continue.

The expl command will strip all escape sequences which apply to the system
console when output is redirected. The +qnx option can be used to force the
sequences to be printed when the user is logged in to QNX via a modem on a PC
using QTALK.

It is possible to construct a file which implements a single level menu using
EXPL. The file will consist of a menu followed by two formfeeds on a line by
themselves. Following this will be one section terminated by two formfeeds for
each menu section. Each section may contain several single formfeeds to cause
EXPL to pause at appropriate places. A formfeed may be entered using ED by
typing a Ctrl-L.

FF - one formfeed
text

FF FF
text

FF FF
text

- this section contains a menu
- two formfeeds

- menu item '1 ' or 'a' or 'A' or Fl
- two formfeeds

• menu item '2' or 'b ' or 'B' or F2

Please refer to the file /expllinform for an example of a menu driven explain file.

[EXPL] Utilities

FBACKUP - Archive files to floppy disk(s)

Syntax:

fbackup [drive] INit max-numr-files [c=360K 1 720K 1 1 .2M I 1 .4M]
["v=vol name"]
[f=fornUit_command] [-format]

fbackup [drive] Files [arch_dir] [+summary] [+!-verbose] [options] *

fbackup [drive] NAme

fbackup [drive] SAve save_spec* [+all] [-clr] [l=levels] [options] *

fbackup [drive] REstore [disk_dir[,arch_dir]] [-create] [options]*

fbackup [drive] VErify [disk_dir[,arch_dir]] [options] *

save_spec: disk_ dir[,arch _ dir] x=index Jile filename[,arch _ dir]

options: +pause -verbose -multi_sector +list-only +write
pf= [lfile_pattern pd=[]dir _pattern pp=[]path_pattern
+before d=dd-mm-yy t=hh:mm:ss (Use digits)
+Force (allow use of non-floppy disks)
g=group m=member
e=error Jile
"v=volume name" (Use quotes if name contains spaces)

Description:

The FBACKUP command is used to archive large files to one or more floppy
disks. This command was created to solve the need for saving files which are
larger than a floppy disk (such as files used in most data base applications. Each
time a file is saved it is appended to the end of the archive which may span many
diskettes. Earlier versions of the same file will NOT be overwritten. You may
restore any version of a file on the archive.

The FBACKUP command should not be used as a general substitute for the
BACKUP command. Performing an archive of all files which changed each day
will rapidly consume large quantities of disks due to duplication.

[FBACKUP] Utilities

FBACKUP

When saving a smaller number of files, FBACKUP is dramatically faster than
BACKUP and does not suffer the problems of disk overflow. FBACKUP will
prompt for new disks as required. If FBACKUP is being used with the +Force
option that allows archiving to hard disks, the CRON utility should also be
investigated, as CRON can cause this backup to automatically occur overnight.

There are many options for this command and to properly use it, the Floppy and
Tape Backup technical note at the back of this manual should be read.

See Also:

BACKUP CRON TBACKUP
Floppy and Tape Backup Technical Note

Utilities [FBACKUP]

FD FORMAT - Format floppy diskettes

Syntax:

fdformat drive [options] *

Options:

f=ftrst track
h=heaas

l=last track

n=sectorsltrack

s=stagger

t=tracks

-stagger
+patch

-pause

+other

b=sector base
+hard

-

+abort
+360k
+720k
+1.2meg
+1.4meg

Examples:

- First track to format (default: 0).
- Number of heads

(default 2).
- Last track to format

(default: last track on drive).
- Number of sectors per track

(8, 9, 10, . . .) .
- Stagger factor (sector interleave)

default stagger is 3 for n=8
4 for n=9,10
2 for n=15 .

- Number of tracks on diskette
(40 or 80 for diskettes).

- Suppress the staggering of sectors.
- Write the diskette size information

indicated by h=, n=, t= onto block
one of the diskette.

- Suppress the prompt to load the
disk.

- Not a QNX style disk ("other") - do not put the
QNX size information in block 1 .

- block number to start sectors at. Usually 1 .
- Allow formatting of an AT hard disk.
- Abort on error.
- Assume 360K floppy (h=2, n=9, t=40).
- Assume 720K floppy (h=2, n=9, t=80).
- Assume 1 .2M floppy (h=2, n=l5 , t=80).
- Assume 1 .4M floppy (h=2, n=1 8, t=80).

fdformat 2

fdformat 1 +1.2

- Format diskette in drive 2
using defaults.

- Format 1 .2M diskette in drive 1

[FDFORMAT] Utilities

fdformat [3]2 t=80

fdformat 3 +h s=6

overriding defaults .
- Format 80 track diskette

in drive 2 of node 3 .

FDFORMAT

- Format partition mounted as disk 3
with a stagger factor of 6.

fdformat 3 +h s=6 f=l 1=152

Description:

- Format first 153 tracks of
hard disk 3 with a stagger
factor of 6. Skip track 0.

FDFORMAT allows diskettes to be physically formatted using the floppy disk
controller hardware. New diskettes must be formatted before they can be read or
written to by the disk hardware. In addition, a newly formatted diskette will
typically have to be initialized using the DINIT command before it can be used by
the QNX file system, unless DCOPY is being used to make copies of already
initialized diskettes.

FDFORMAT will format the diskette according to how the drive is currently
MOUNTed. You can override the defaults by specifying parameters to the
command. Floppy disk drives have three physical parameters of interest. The
number of sides (single or double), the number of sectors (8, 9, 10 or 15) and the
number of tracks (40 or 80).

The t=tracks option allows you to format a diskette with 40 tracks or 80 tracks .
Note that 80 track floppy drives are mechanically different than 40 track drives .
You can read a floppy diskette formatted with 40 tracks on an 80 track drive by
double stepping, but you can NOT format or read an 80 track diskette on a 40 track
drive.

The n=sectorsltrack option allows you to format a diskette to hold more or less
information than the default size. For example a 360K floppy diskette (40 tracks, 2
heads , 9 sectors/track) can be formatted to hold 320K or 400K by specifying n=S
or n=lO sectors/track. This option is independent of whether the drive is single
sided or has 40 or 80 tracks. You should use high quality floppy disks if you use 10
sectors/track. A value of n=l5 may only be used on special high performance
drives which may contain 1 .2 Meg (2 heads * 80 tracks * 15 sectors/track).

Utilities [FDFORMAT]

FDFORMAT

The following table may clarify things.

Sides
1
2
1
2

tracks
40
40
80
80

8
160K
320K
320K
640K

Sectors/Track
9 10

180K 200K
*360K 400K
360K 400K
720K 800K

15
+300K
+600K
+600K
+1200K

• - Default if no parameters are specified
+ - Requires high performance AT disk drive and

special high capacity floppy diskettes.

This formatting information is encoded on the diskette and is queried each time a
file is opened. This allows QNX to read differently formatted diskettes in a single
drive without having to remount the disk. This encoded information overrides
those that are specified by the MOUNT command. Diskettes formatted with
VERY old versions of FDFORMAT (QNX 1 . 1) , or perhaps other operating
systems will not contain this encoded information. In this case the defaults
specified by the MOUNT command will be used. You may use the +patch option
to place the mount information on a diskette which for one reason or another does
not contain it. The disk will NOT be re-formatted.

The -stagger option disables the staggering of sectors formatted on the diskette.
By staggering sectors by 3, a program will have two sector times (about 1 2 msec)
to process one sector of data and still be able to read the next sequential sector on
the same revolution of the disk. Although this slows down program load time from
the disk, it can significantly increase program throughput!

FDFORMA T may be used to format a floppy disk on another node. The disk may
be indicated explicitly via a [node] prefix or implicitly by specifying a remdisk
which you have mounted.

Hard disks may be formatted if the +hard option is specified and the hard disk
driver supports formatting.

See Also:

DCOPY
DINIT
MOUNT

[FDFORMAT] Utilities

FDISK - Create QNX disk partition

Syntax:

fdisk drive

Options:

drive - Disk drive to partition.

Examples:

fdisk 3

Description:

FDISK allows you to partition a hard disk. The partition information matches that
used by DOS. It is kept on the first physical block on the disk.

IMPORT ANT: FDISK must only be used when the file system is idle. No
other users or programs can have open files when this utility is used.

To create a QNX partition for the first time you must first mount a hard disk
driver. For example:

mount disk 3 /drivers/disk.xt

This is explained in a technical note in your QNX manual. You do not need to
specify an offset or size. You should now execute the FDISK command from the
floppy.

fdisk 3

and partition your disk. QNX does NOT automatically mount any partition. Once
you have created the partition, you should remount the disk using this partition. For
example:

mount disk 3 /drivers/disk.xt pa=qnx

[FDISK] Utilities

�I

FDISK

Specifying the pa= option will cause the MOUNT command to read the partition
block, locate the first QNX partition, then mount the drive with the correct offset
and size. You will probably wish to place this mount command in your sys.init so
that it is executed each time you boot. If you are running the QNX-DOS file
system task, you may also wish to mount a DOS partition as another drive. For
example:

mount disk 4 d=3 pa=dos

Note that you should NOT remount the driver. The d= option indicates that the
existing driver which has already be mounted for disk 3 should be used.

It is important to realize that the FDISK command only displays and updates the
partition information on the disk. It does NOT directly affect your access to the
drive. You must still issue the MOUNT command separately.

FDISK is a full-screen, interactive program which is fairly self explanatory. When
fdisk is invoked, it will display a screen similar to that shown below:

Ignore Next Prev Change Delete Mount Boot Unboot S ave Quit

OS start End Number
name t ype C y l i nder C y l i nder Cylinde r s

- - > 1 . de s 1) 0 1 3 9 1 4 0
2 . qnx 7) 1 4 0 2 7 9 1 4 0
3 . qny 8) 2 8 0 4 1 9 1 4 0
4 . qn z 9) 4 2 0 6 3 9 2 2 0

U s e up / down arrows t o s e l e ct p a r t i t i o n .
Type t h e l e t t e r c to change/ add a partit i o n .
Type t h e l e t t e r s to s ave your change s .
Type t h e l e t t e r q to quit .

Blocks

1 9 0 3 9
1 9 0 4 0
1 9 0 4 0
2 9 9 2 0

Boot

*

QNX is os type 7 , 8 or 9 DOS i s OS t ype 1 or 4 Unused is os t ype 0

F i r s t c y l i nder is 0 L a s t c y l inder is 6 3 9

D i s k i s 4 4 , 5 6 4 , 4 8 0 byt e s H= 8 T=6 4 0 N= 1 7

Utilities [FDISK]

FDISK

The Possible commands are displayed along the top line. They can be selected by
typing the first letter of the command, or by moving the cursor to the appropriate
command (with the arrow keys), and typing Enter.

The commands are described below:

BOOT
Make the selected partition the boot partition.

CHANGE
Change the selected partition. You must input an OS type, a start cylinder and an
end cylinder.

DELETE
Delete the selected partition.

IGNORE
This menu item does nothing. It is a safeguard against accidental carriage returns
which select the current menu item.

MOUNT
Display the parameters which you would give to the MOUNT utility for this
partition.

NEXT
Select the next partition. The down arrow key may also be used.

PREV
Select the previous partition. The up arrow key may also be used.

QUIT
Leave the FDISK command. Remember to Save first, if you have changed
anything.

SAVE
Save any changes made to the partition back to the disk. Unless this command is
executed, your changes will be ignored. This allows you to quit without saving if
you mess things up.

UNBOOT
Clear the boot indicator from the selected partition.

NOTE: If you wish your disk to contain both QNX and DOS partitions, be
sure to create the DOS partition FIRST (using DOS)

[FDISK] Utilities

FDISK

See Also:

MOUNT

Utilities [FDISK]

FILES - List Files

Syntax:

files [directory] [options] *

Options:

+busy
+directory
+current
+modified

-sort
-used
-verbose
+Verbose
+totals_only
t=hh:mm:ss

- Display only files which are busy.
- Display directories instead of files.
- Only display files at the current level.
- Display files which have been modified

since the last backup.
- Don't sort filenames.
- List files which have been FRELed or ZAPped.
- List only the name of each file.
- List detailed information .about each file.
- Only print totals of blocks and files.
- Only print files which have a date later than

this time on the given date.
d=dd-mon-yy - Only print files which have a date later than

this date.
+Before - Applies to the t= and d= options.
a=[& l A]attr_list

- List files whose attributes correspond to attr list
where attr list is one of maewrc.

-

p=pattern - Only display files whose name matches
this pattern.

Examples:

files
files /cmds -s
files +v

files 3:/ a=&rw

files 3 :/ a= Aw
files +d -v >index

- List files at current directory.
- Unsorted list of files in /cmds.
- List ALL information on files

at current directory.
- List all files which have the READ and

WRITE attributes set.
- List all files which are not WRITEable
- List directories, don' t sort, then

place output in the file index.
- List files on drive 3 which end in .c. files 3:/ p=* .c +v

files 3:/ d=l0-06-90 - List files with dates later than 10-June 1990.

Utilities [FILES]

FILES

Description:

The FILES command allows the user to list the files a t or below any point in the
file structure. If no directory is specified, then the current directory is listed. The
FILES command will walk the entire tree structure recursively, displaying all files
at the specified (or current) directory followed by all files at lower levels . The +C
option prevents the recursive walk of the file "tree" , causing only those files at the
current level to be displayed.

Normally, file names will be sorted before being displayed. This feature can be
turned off by specifying the -s option, in which case file names and directories will
be displayed in the order they are found. When sorting, files at the current
directory will be displayed first, followed by any files at lower levels in the
directory.

Directories are just special files in the QNX file system. The Files command will
normally not print directories. If the user wishes to examine the directories which
exist at this and lower levels, he can use the +d option. The -s and +C options apply
to directories as well as to files .

If desired, only files whose filename matches a pattern may be displayed. The
pattern is specified using the p= option. A pattern can be any valid filename, and
may include the following wildcards:

*

?
[]

matches any run of characters
matches any one character
will match any of the characters enclosed in the square brackets

An example pattern which will match any file which ends in " .c" or " .h" is
"p=*. [ch] " .

The +V option can be used to display the information about each file which is kept
in the directory. One line of information will be displayed for each file, with the
filename displayed last. The following information will be presented:

Blk - Number of disk blocks in the file (5 1 2 bytes per block)
X - Number of Extents in the file (indicates degree of disk

fragmentation). A contiguous file will consist of one extent.
Loc - Starting location of the file (hex block number)
Grp - Group number of file owner. (1 . . . 255)
Mem - Member number of file owner. (1 ... 255)
Attr - Attributes of the file. These are the access methods permitted for the

owner of the file (or the super-user and privileged commands)
Perm - Permissions. These are the access methods available to users other

than the owner of the file. G-perms apply to other members of the
same group. 0-perms apply to to all other users .

[FILES] Utilities

Date - Date that the file was created or last changed.
Time - Time that the file was created or last changed.

FILES

Name - File name (relative to the specified directory). As deeper levels of
the file structure are displayed, the complete hierarchical pathname is
displayed.

Attributes and Permissions for FILES may be:

r READ permission. The file can be read.
w WRITE permission. This file can be written to. User programs can

therefore change the file contents and even delete the file (since null files
are removed)

a APPEND permission. The file can be written to, but only new information
can be added to the end of the file. The file cannot be deleted.

e EXECUTE permission. This file can be executed. If the file contains
executable code, it can be executed directly. If instead it contains text, then
the file will be treated as a command file, and the text lines will be given to
the shell for interpretation.

m MODIFY permission. This allows the permissions and attributes of the
file to be changed (using CHATTR)

Attributes and Permissions for DIRECTORIES may be:

r READ permission. The directory can be read (listed) .
c CREATE permission. New files may be created under this directory.
b BLOCK access . Prevent any files or directories below this directory from

being accessed.
m MODIFY permission. This allows the permissions and attributes of the

directory to be changed (using CHATTR).
d DIRECTORY. The file is a directory.

If a file is BUSY, it will be flagged in the attribute column with a ' B ' character.

The FILES command is a very useful tool for creating command files. A typical
use of this function could be iiJ. the generation of a command file which is to delete
all of the files at and below the current directory level. The user could start by
typing:

files -v >command

which would create the file "command" containing a list of all the files at and
below the current directory level. He could then edit this file and substitute the
beginning of every line with "frel " , and save the file away:

led command " *s/11/frel /" w q

Utilities · [FILES]

FILES

He could then execute the command file by typing:

sh command

This example might be better accomplished using either the wild card syntax of the
shell or the WS command.

frel *
or

ws " frel @" 1=12

A better use for such a file is on the creation of an index file for commands like
LIST and LINK which support the x=index option. These commands expect to be
provided with an index file of the form created by the FILES command.

See Also:

CHATTR
DIR
LED
LS

[FILES] Utilities

FO PEN - Display open files

Syntax:

fopen [node] [+userid]

Options:

node
+userid

- The node whose files you wish to query (default is your node).
- Display a userid instead of the program which has a file open.

Return Value:

The return status is the number of files open
or - 1 on a critical error.

Description:

FOPEN will print out the names of any tasks which have a file open. I t not only
indicates the program which opened the file, but also the open mode and the
current location within the file. The location can be used to judge a programs
progress in processing a file by invoking FOPEN several times. The location is
shown as two numbers as follows:

current block I last block

This command can be used in a shell script to check if any files are open before
shutting the system down.

fopen
if ne #? 0000 type 11 You have #? files open. Do not shut down the system. 11

FOPEN only lists the files open on one node at a time. It defaults to your current
node. You can specify a node using the node option.

fopen 4

See Also:

DO PEN

[FOPEN] Utilities

FREL - Release File

Syntax:

frel file [file] *

Examples:

frel junk
frel stuff oldjunk test.o
frel [2]1 :/config/sys.init

Description:

FREL will remove a file from the disk. The space used by that file i s reclaimed for
use by other files, and the directory entry is removed. One or more files can be
specified on the command line.

If the file exists at the root of a disk, or if the same directory exists on multiple
drives, then the filename should be preceded by the correct drive prefix to remove
ambiguity. For example, use:

frel 3 :/test

to remove the file "test" from the top level of the disk in drive 3.

See Also:

DREL
RM
RMDIR

Utilities [FREL]

FST AT - Display file status

Syntax:

fstat file* [+xtnts]

Options:

file
+xtnts

- A QNX filename.
- Display the disk extents which

are allocated to this file.

Description:

In its simplest form, FST AT can be used to display the date of one or more QNX
files.

fstat /user/Iuc/test.c
fstat *.c

If the +x option is used, then FST AT will also give a complete list of all the disk
blocks which are allocated to this file. This option is a useful debugging tool.

See Also:

DIR
FILES
LS

[FSTAT] Utilities

G REP - Search a file for a pattern

Description:

Please refer to the documentation on the LOCATE command.

See Also:

LOCATE

Utilities [GREP]

KBD - Redefine keyboard layout

Syntax:

kbd kbd type [f=user Jile]
kbd list - [f=user Jile]

Options:

kbd type
list -

f=user Jile

Examples:

kbd 102.GE

- Keyboard type to use
- List all keyboard types
- alternate file to use (default: /config/kbd.dbase)

kbd 84.FR f=/config/kbd.db.ours
kbd list
kbd list f=lconfig/kbd.db.ours

Description:

The KBD command remaps the character codes that are produced b y your
keyboard, using a binary data file (lconfig/kbd.dbase) . You will only need to run
this command if you are using a non-US keyboard. Users who require this
command will likely execute it in their sys.init files.

To find out what keyboard remappings are available, use the list option. The
naming convention for a keyboard remapping is number keys.country code
where number keys is the number of physical keys on your keyboard, and
country _code IS typically a two letter abbreviation for a particular country.

First, you need to figure out which keyboard you have. Specifically, you need to
determine number_ keys. The simplest method is to count the number of key caps
on your keyboard. Following is a brief description of each keyboard, and a picture
of the default character mapping for it.

Utilities [KBD]

KBD

Below is the IBM PC/XT 83 key keyboard. It has ten function keys along the left
side, and an integrated numeric/arrow keypad on the right side.

E
T
R

Below is the original IBM PC AT 84 key keyboard. It has ten function keys along
the left side, and an integrated numeric/arrow keypad on the right side.

Below is the "enhanced" 101 key keyboard. It has twelve function keys along the
top, and separate numeric and arrow keypads on the right side. It was first avail
able on the IBM PC AT, and later used on the IBM PS/2. This keyboard is only
available with the US keyboard layout.

[KBD] Utilities

KBD

Below is the "enhanced" 102 key keyboard. It has twelve function keys along the
top, and separate numeric and arrow keypads on the right side. It was first avail
able on the IBM PC AT, and later used on the IBM PS/2. This keyboard is only
available with non-US keyboard layouts.

Once you have determined which physical keyboard you have, you need to
determine which character remapping to use with it. Following is a current
alphabetical list of the abbreviations for country_ code, and their meanings.

BE Belgian
CF Canadian French
DA Danish
DU Dutch
FR French
GE German
IT Italian
LA Latin American
NO Norwegian
PO Portugese
SE Swedish
SI Swiss
SP Spanish
UK United Kingdom
US United States

If you do not specify an alternate file using the f= option, the file
lconjiglkbd.dbase will be used. You may create an alternate file by copying the
original /conjig/kbd.dbase file, and possibly modifying the copy using the
KBD_EDIT command, which is available from the update service. The f= option
allows a user to avoid having their modified keyboard layouts overwritten by an
updated /conjig/kbd.dbase file from QNX Software Systems Ltd. The keyboard
remappings in /conjig/kbd.dbase should be accurate, and thus this option should
rarely be used.

Utilities [KBD]

IIK�ll
KILL - Kill a task

Syntax:

kill task-id

Description:

• This is a local shell command •

The indicated tasks will be killed. You may obtain the tasks identity with the TSK
command. KILL is supported by the shell to allow you to kill a task even when
there are no free task descriptors in the system to create a new task. The escape
sequence #& refers to the last background task you created.

kill #&

If the first argument starts with a plus sign (+) it is taken as a system exception to
set on the remaining taskid 's specified. For example

kill +0001 OSOc -set exception hangup on task OSOc

Refer the to chapter on MULTI-TASKING in the QNX manual for more informa
tion on exceptions.

You may wish to refer to the SLAY command to remove a task by it' s name
rather than it' s task id.

See Also:

BREAK
SLAY

[KILL] Utilities

�I

KILL VCS - Kill all virtual circuits to a node

Syntax:

kill vcs node id - -

Options:

node id - Node number of crashed node.

Examples:

kill vcs 3 - Kill virtual circuits to node 3

Description:

The KILL_ VCS command will kill all virtual circuits between your node and a
node which has crashed. This allows manual recovery without using the poller.
Please refer to the QNX manual on setting up your network.

If a poller is running somewhere on the network, then this command should not be
needed.

See Also:

ALIVE
POLL
TSK

Utilities [KILL_VCS]

LED - Line Editor

Syntax:

led [file [commands]]

Examples:

led
led junk
led test.c *s/bill/joe/ w q

Description:

The editor i s a line oriented text editor which supports a number o f powerful
pattern matching facilities. Only text files can be edited, which means any files
containing regular ASCII characters on lines which are terminated with a newline
character (hex I E) . Null characters (hex 00) are not allowed within the file.

Lines are numbered sequentially starting from 1. Line numbers change
dynamically as new lines are created and lines which are not needed are deleted.
Lines can be referred to by specifying the line number explicitly, or relative to the
current line (which is referred to by the character ". "). A line can also be referred to
by specifying a pattern of characters which is found on that line. Some commands
support ranges of lines, which may begin and end with line numbers, relative line
numbers, or lines containing patterns.

Files are edited by first reading the entire file into a memory buffer. This provides
for a very fast editor, and minimizes the dangers of having files open while editing.
Unfortunately, very large files cannot be handled by this editor. It is recommended
that large files be divided into several smaller files before editing.

Files can be inserted anywhere into the editing buffer with the "r" command, and
portions of the buffer can be written to any file (default being the current working
file).

[LED] Utilities

I

Features supported by the editor are :
- insertion before a line
- append after a line
- delete line(s)
- write a group of lines to a file
- append a file after the current line
- character substitution on a range of lines
- global command execution on a group of lines
- join two lines
- print a group of lines
- change current line
- location of lines containing patterns
- moving a range of lines to another position
- copying a range of lines to another position

Editor Command Syntax:

The format of an editor command is typically of the form:

line range command parameters

where:

command
parameters
linerange

linerange can be :

is the command character (described below)
are arguments to the command
is the range of lines which are to have
the command applied to them.

or
or

line
line,line
*

line can be:

Utilities

line no

$
/pattern/
line+nn
line-nn

LED

[LED]

LED

The character " . " represents the current line. The character "$" represents the last
line. The character "*" represents ALL lines which is the same as " 1 ,$" . The
character "&" represents the lines from the current line to the current line plus page
size (ie. one screen).

Patterns represent a line which is found to contain that pattern. Patterns enclosed in
slashes (j) mean the next line AFTER the current line which contains the pattern.
Patterns enclosed in question marks mean the closest line BEFORE the current line
which contains the pattern, scanning backwards. In both cases, scanning wraps
around the beginning and end of the file and will terminate when the current line is
again reached.

Example line numbers and lineranges are:

3
1,10

.+25

.-10,.+5

/joe/
1,/loop :/+4

1,$
*

Editor Patterns:

- line 3
- lines 1 to 10
- the current line
- 25 lines past the current line
- all lines from 10 lines before the current

line to 5 lines past the current line
- the next line which contains the string "joe"
- all lines from line 1 to 4 lines past the next

line containing the string "loop: "
- all lines
- all lines

The text editor allows pattern arguments to be used when locating line numbers,
and when substituting strings.

Several metacharacters are used when specifying a pattern. these are :

- represents the null character at the beginning of a line
- represents the null character at the end of a line

II

$
• - matches any character
[ccc] - where "c" can be any characters, will match any one of the enclosed

characters. (eg. [abc] will match any of "a", "b", or "c"
[c-c] - where "c" is any character, will match any of the characters in the

range of ASCII characters. (eg. [a-z] will match any letter)
[11ccc] - where "c" is any character, will match all characters EXCEPT those

in the square brackets
@(nn) - which represents the null character before character position nn.

[LED] Utilities

LED

Any of the above pattern characters may be followed by a star (*), which means
zero or more occurrences of that pattern character. (eg. "a*" will match a null
character, a, aa, aaa, etc ". *" is useful in matching a run of any characters)

Preceding any character (including the metacharacters) with a backslash (\) will
indicate that that character is to be taken literally. (eg. '*" will match the character
"*" , and '\'\' will match the character '\") .

All other characters in a pattern are treated literally (ie. they will match only that
character.

Examples :

/abc/
/"abc/
/abc$/
/.abc/
/.*abc/

/" .*$/
/[0-9]*/

/[0-9][0-9]*/
/["123]/

- will match "abc" anywhere in a line
- will match "abc" at the beginning of a line
- will match "abc" at the end of a line
- will match any character followed by "abc"
- will match any run of characters followed

by "abc"
- will match everything on a line
- will match the largest run of characters

consisting only of numbers (which may
be the null string)

- will match a number
- will match the largest run of characters

which does not contain the digits 1 , 2 or 3

In string substitutions , two patterns are specified separated by delimeters . (eg.
s/fred/bilV or s ,ed/,edit/,). The special metacharacter ampersand (&) is used to
represent the portion of the line which was matched by the first pattern. This
allows some very powerful editing operations.

For example:

s/[0-9][0-9]*/ <&>I - will tum the line " 1 23 men on 3 horses"
into the line "<123> men on <3> horses"

s,".*$,copy & dir/&, - will tum the line "junk.c" into the line
"copy junk.c dir/junk.c"

When these pattern substitutions are combined with the global command (g), some
very powerful editing operations can be performed.

Editor Command Summary:

Utilities [LED]

LED

[line] a - Append new input after the line.
End with a line containing
a single " . "

[range] c - Change these lines to new input.
End with a line containing
a single " , "

[range] d - Delete these lines
efile - Edit new file . . . delete all lines,

read in new file,
and change current file name.

f [file] - Change current file. If no file,

[range]
then display current file name.

g/patternl commands
- Globally execute these ed commands

on this group of lines.
[line] Insert new input before the line

End with a line containing
a single " . "

[line] j Join this line with the next line.
[range] kline - Make a copy of these lines

behind the indicated line.
[range] mline - Move these lines behind

the indicated line.
oclchar - Defines the command-line prompt

character to be this char.
oc2char - Defines the input prompt to be

this char.
oc3char - Defines the character to print when

a null-line is entered.
od - Dual-case is recognized in patterns.
odr - Dual-case not recognized.

Upper and lower case are the same.
of - Display special symbols in expanded

form 'hh where "hh" is the hex value
of that character.

ofr - Tum off expansion of special symbols.
opnumber - Define page size (for "&").
osnumber - Auto-save into file "autosave" after

this many lines has been entered
in input mode.

ov - Display error messages upon error.
ovr - Tum off error messages. Only display

error number.
[range] p - Print these lines.

q - Quit if file not altered.

[LED] Utilities

[line]

[range]

[range]

[range]

[range]

[line]

Utilities

qq - Quit anyway.
r file - Read the file and put in buffer AFTER

this line.
s/pattern/new/

- Substitute all occurrences of this
pattern for the new pattern within
this line range.

snumber/pattern/new/
- Substitute the Nth occurrence of the

pattern.
v /pattern/commands

w [file]
&

=
CR

- Execute the ed commands on all lines
EXCEPT those with this pattern.

- Write these lines to the file
- Print a page (size defined by

"op" command).
Display this line number (eg. "

. =
") .

- Display next line.

LED

[LED]

LINK - Link object files

Syntax:

link [o=new_objectJile] ob.ifile* [options] *

Options:

+i - Intel addressing mode (default).
+m - Motorola addressing mode.
+v - Verbose.
m=mapfile - Create a map and put in mapfile.
o=objJile - Create a new object file.
u=sym - Use the symbols found in sym

sl=hhhh
s2=hhhh
s3=hhhh
s4=hhhh
sl=$n
s2=$n
s3=$n
s4=$n
s=stack
c=loadfile

but do not include the code or data.
- Segment 1 starts at hhhh (hex).
- Segment 2 starts at hhhh (hex) .
- Segment 3 starts a t hhhh (hex) .
- Segment 4 starts a t hhhh (hex) .
- Segment 1 starts AFTER segment n.
- Segment 2 starts AFTER segment n.
- Segment 3 starts AFTER segment n.
- Segment 4 starts AFTER segment n.
- Increment to minimum stack size.
- Put output file into loadfile

(default is "core").
x=index - Link the object files in index.
l=library - Search directory library for

any unresolved functions and variables .
A file named " library/directory" must be found
which lists symbols defined in each object file.

n=namelen - Maximum length of a name (default: 66).
b=bufsize - Size of symbol buffer (default: 32000).

Examples:

link /lib/entry.o test.o
link x=edfiles m=.map. 1=/lib s=4000
link o=ed.o x=ofiles +V
link u=rom.map rom.o m=map sl=ffcO s2=1000 s3=$2
link o=$null test.o +V

[LINK] Utilities

LINK

Description:

The routine CC should be used instead of LINK for linking programs to run on
QNX. CC will invoke LINK with the proper arguments to create a load file for the
QNX environment. Any arguments to CC are passed on to LINK. The same is
true for any extra arguments passed to the CC command. LINK may be called
directly to link programs for environments other than QNX.

The Linker will link together object files which are created by one of the compilers
or the assembler. A load file is produced which is in a form to be executed directly
(by typing its name on the command line). All external references are resolved, and
warning messages are printed if any object module references a symbol which is
not defined in any other module.

The default values for the 4 segments which are allowed by the assembler are such
that if no overriding values are specified, the command will execute properly.
Overriding segment starts and offsets are typically only used when linking together
object files which are not to be executed as a command. For example, a program
which is to be placed in ROM would need to be linked outside of the default
memory segments.

The x= option accepts a file list in the form which would be created by the FILES
command, allowing convenient linking of commands which consist of a large
number of object files. Therefore the format of an index file is with one object
filename per line.

The I= option invokes a search for unresolved symbols under the specified
directory. A file named "directory" is used to define the contents of this library of
object files. The format of this file is one object file name on a line by itself,
followed by any number of lines which begin with a TAB character followed by
one symbol which is defined in that object module (see the file "/lib/directory" as
an example). Any number of object files may be described in the library file.
Multiple I= options are allowed so that many libraries can be searched. All library
references must be forward. Refer to the documentation on QNX compilers in
your C binder for more information.

Program execution begins with the first address in segment 1 which is typically the
code segment.

By default, all commands are given a l K stack by the operating system. The s=
option in the linker allows additional stack space to be allocated.

The linker will create a map file if the m= option is used. This map is useful when
debugging programs. The address (hex) of all functions and variables is included in
the map. Typically the map should be sorted with the SORT command if it is to be

Utilities [LINK]

LINK

used in debugging a program.

sort map _file s=l,3 +r
or

sort map _file s=1,2 +r

(sort by name)

(sort by address)

The linker can take a collection of object files and combine them into one large
object file using the o= option. It must immediately follow the LINK command.
The sl=, s2= , s3= and c= options are not used.

link o=ed.o main.o command.o output.o input.o +v

Note that this option may be used to determine the size of an object module. In
this case the output is thrown away.

link o=$null obj_file.o +verbose

There is no limit to the number of object files which can be linked together
provided that the resulting command will fit within the address limitations of the
processor (64K code + 64K data). If the code segment is exceeded, you will need
to refer to the the technical notes in the C Compiler b inder.

LINK maintains its symbols in an allocated buffer. This buffer defaults to 32,000
bytes, but may be changed with the b= option. If LINK complains that it has run
out of symbol space (for very LARGE programs), try again with a bigger buffer. If
memory is tight on your machine, you may wish to decrease this value. Valid sizes
are 2000 to 65,520.

See Also:

ASM
SORT

[LINK]

cc
Technical Notes (C)

Utilities

LIST - List files on the line printer

Syntax:

list [options] * [file] *

Options:

b=banner
d=device

i=file

!=page _length
n=name

o=offset
p=port
s=vert _spacing
w=line width
t=tab[,tab] *
x=index Jile

+numberlines
+reset
+gap
+assembly
+listing(assembly)
+emphasized
-emphasized
+double_print
-double_print
-pagination
-header
+banner
+user

Examples:

Jist test.c

- Name of banner on first page.
- Name of $device to use for output

(default: taken from prt.init).
- Printer configuration file

(default: /cmds/prt.init).
- Define page len in inches (default 1 1) .
- Name to print in header

(default: filename).
- Offset from left hand margin.
- Define semaphore port (default 1 6) .

Vertical spacing (lines per inch).
- Characters per line.
- Defme tab stops.
- File containing list of files to

print.
- Print line numbers with listing.
- Reset page number to 1 for new files.
- Feed a gap for a new banner.
- Set tabs for assembly source program.
- Set tabs for assembly listing.
- Tum on emphasized printing.
- Tum off emphasized printing.
- Tum on double printing.
- Tum off double printing.

Tum off pagination (and headers) .
- Tum off header (date and page no.).
- Print a banner page.
- Print user numbers on each page.

list s=8 w=80 o=lO report

Utilities [LIST]

LIST

list +a "n=ASM Files" x=assembly_index
list +g
list +b -p -h w=80 s=6 +e good_ document
files +v I list &

Description:

LIST provides a means of printing paginated output on a line printer. The date,
time, filename, and page number are printed at the top of every page. More than
one file can be specified on the command line. Index files may also be used which
contain a list of files to print with the current option settings. More than one index
file can be specified. The format of an index file is that of the output of the FILES
command (with the -v option).

Tabs are expanded into spaces by the LIST program. The default tab stops are at
every 4th character position. This can be changed with the t= option. If more than
one tab stop is given, then LIST will assume that tabs past the last specified tabs top
will have the same spacing as the gap between the last two given tabs tops. For
example "t=4,7" will put tab stops at position 4, 7 and then every 3 positions
afterwards since the difference between the last tabstop (7) and the previous one
(4) is 3 spaces.

For printers which support different line spacings , the s= option allows the user to
select the line spacing (eg "s=6" for 6 lines per inch, "s=8" for 8 lines per inch).
Some printers also support different character widths. Character widths can be
changed using the w= option. Examples are "w=80" for 80 characters per line and
"w=1 32" for 1 32 characters per line (on an 8 1/2 inch page).

Some printers (such as the MX-80) allow special print modes such as emphasized
printing (use +e) or double printing (use +d).

If listings are to be placed in binders, a margin is often desired on the left side of
the page. The o= option will offset all output the specified number of spaces to the
right to leave such a margin.

When used with the banner option (+banner) the first page of a listing contains a
"banner" which gives the current date and time as well as the name of the first file
being listed. A different banner can be specified with the b= option. In this case the
LIST program will always feed enough spaces after the last file has been printed to
allow the user to remove his listing without needing to feed the paper himself. The
resulting gap is used by the next LIST command for its banner. This mechanism
works well provided that the user only uses the LIST program to generate output
on his line printer. To initially position the paper at the correct position for printing
banners, the user should position the paper to the top of a new page, then issue a
" list +g" command which will feed the proper number of spaces. Subsequent LIST

[LIST] Utilities

LIST

commands will then be positioned properly. This procedure is especially useful for
printers which don' t support formfeeds.

The LIST program also provides a means of turning off the printing of the top-of
page header (·h), and/or the automatic spacing between pages (-p) . This allows the
user to print documents which don' t require these features, but still be able to
specify line spacings , print modes, etc.

·

The LIST command will automatically wait for other LISTs to finish before
printing. This automatic spooling is especially useful in multi-user installations
where many users wish to print files at the same time. So long as everyone uses
LIST to print their files, the listings will not be mixed together.

The characteristics of the line printer are found in the file "/cmds/prt.init". This file
name may be over-ridden using the i= option. If no configuration file exists, then
the LIST program assumes that it is talking to a printer which prints 80 characters
per line at 6 lines per inch. An example format of the file "/cmds/prt.init" is shown
below for the EPSON MX-80 printer. All numbers are decimal unless followed by
the character 'h ' or 'H ' in which case they are hexadecimal. These numbers often
represent ASCII characters. Note that the comments in the following example
should not be included in the file.

$1pt
12
132
8
80
80
6
80
20 18
132
20 IS
0
6
27 50
8
27 48
0
27 69
27 70
27 71
27 72

Utilities

name of printer (may be overridden using d=)
form-feed character (0 if not supported)
default width for listing (characters per line)
default spacing for listing (lines/inch)
default width for headers
default width for banners
default spacing for banner page
WIDTH #I (characters per line, 8 1/2" page)
string to print to cause this line width
WIDTH #2
string for width #2
END of widths
SPACING #1 (lines per inch)
string to print for spacing #1
SPACING #2
string for spacing #2
END of spacings
string to print for +e
string to print for -e
string to print for +d
string to print for -d

[LIST]

LIST

See Also:

p
SPOOL

[LIST] Utilities

LOCATE - Locate patterns of characters in a file

Syntax:

locate "pattern" ffile I x=file] * [options] *

Options:

c=context - Number of lines to print for each match.
b=bytes _to _skip - Number of bytes to skip before starting the locate.
w=pattern - After a match continue output while following

x=file
+dualcase
+count
-verbose

Examples:

lines match pattern.
- Index file containing list of files to search.
- Distinguish between upper and lower case.
- Exit with number of finds.
- Don't display filename and line number.

locate array test.c
locate INV main.c support.c x=index junk.c +d
locate " ([a-z] [a-z]*)" *.c -v

Description:

LOCATE will find patterns of characters in a given file (or files). The name of the
file, and line number will be displayed along with the entire line, for each line in
the file which contains the pattern. Patterns are the same as those used in the LED
command.

Index files may be used to avoid typing long strings of file names on the command
line. The format of these index files is the same as the output format of the "files
-v" command.

Consider a directory called /application which contains several C source programs,
and perhaps several object files as well. To find all the C source files which
contain a call to the function "sort" , the user could use the following:

files /application -v p=*.c >index
locate sort(x=index

OR
locate sort(* .c

[LOCATE] Utilities

LOCATE

This will produce one line of output for every occurrence of the pattern "sort(" in
all these files. The LOCATE command will also supply the filename and line
numbers where these patterns occur. The WS command is often used with locate
for the same purpose.

ws " locate sort(@" p=*.c

Normally, upper and lower case letters are treated identically. The user can specify
+d which will then distinguish between upper and lower case letters.

The -v option turns off the display of filename and line number at the beginning of
each output line.

The w= option permits simple lookup databases to be implemented with simple
text files created by the editor. For example, a file could be created with keywords
followed by lines of descriptive text which are indented by one or more spaces. To
print the text associated with a keyword "QNX", one could issue the following
command:

locate 11QNX "w= 11 " -v

The LOCATE COMMAND can be used in SHELL scripts to count the number of
occurrences of a string in a file. The +count option is useful for this.

The c= option allows some context to be printed around each matching line. For
example, specifying c=5 would print each line containing the pattern, along with
the next 4 lines (5 lines of context). The c= and w= options cannot be used at the
same time.

See Also:

FILES
LED

Utilities [LOCATE]

LOCKER - Implement record locking in QNX

Syntax:

locker [options]* &

Options:
s=cache size - Number of l K blocks to allocate for the cache. Default is 64,

minimum is 32, maximum is 1000.
p=port
b=buffers
f=files
+debug
+Sync

- Port to attach to. Used for timing purposes to age the cache.
- Maximum data segment buffers to be used.
- Max number of simultaneous open files.
- Internal use only.
- Force O_SYNC option on all OPEN() 's. (See the C compiler

manual for details)

Description:
LOCKER implements a record locking facility in QNX. To make use of it,
applications must have been written specifically to use LOCKER. LOCKER is
usually started from the sys.init at boot time, and left running always. The
b=buffers option us used to set the number of data segment buffers to be used by
LOCKER (max approx 30). The larger this value the less room there is for locks,
task entries etc.

If you need to terminate LOCKER, use tJ:le SLAY command:

slay locker

Although no QNX Software Systems applications are using LOCKER (as of
January, 1988), this may not always be true. However, a number of 3rd party
applications (notably database products) are using locker. If you have any doubt as
to whether or not you should run locker, check the documentation for the applica
tions you wish to run, or contact the vendor or QNX Software Systems' technical
support.

LOCKER requires the presence of TIMER. Before starting LOCKER, you must
invoke TIMER (it is used to age the cache). For example:

timer &
locker s=100 &

Utilities [LOCKER]

LOCKER

See Also:

TIMER
Record Locking in QNX in the C manual Technical Notes

[LOCKER] Utilities

LOGIN - Log-in to QNX

Syntax:
login [userid [password]] [+stack]

Options:
userid
password

+Stack

Examples:
login

- Name of user: (Max 16 characters).
- Unique password for that user.

(Max 20 characters).
- Stack logins, freeze current user.

login bill secret
login john +s

Description:
LOGIN allows a user to log-in to a QNX system. QNX will invoke LOGIN on the
console automatically when the system boots. LOGIN will also be invoked if a
user types Ctrl-Z on any idle terminal or console.

If invoked with no arguments (such as with automatic invocation by QNX),
LOGIN will prompt the user for his user-id and password. The user will be greeted
with a message of the form:

QNX version x.xx (Release x)
Copyright © QNX Software Systems Ltd. 1982, 1993
Login:

The user-id supplied by the new user is checked against all valid user-ids found in
the file '/config/pass ' . If a match is NOT found, then LOGIN will re-issue the
message:

Login:

[LOGIN] Utilities

LOGIN

If the user-id DOES match one of the entries in the password file, then LOGIN
will prompt the user for a password:

Password:

This password must match the one found in '/config/pass ' . If i t does not, then
LOGIN will re-issue the login message. If the password was found to be correct,
then LOGIN will create the user. The user' s number (group.member) is assigned
from the password file, as is his home directory. An initial command is also
executed automatically, if one exists in the password file. Finally, LOGIN will
create a SHELL on the terminal for the user to use.

Once a user has successfully logged-in, he may use LOGIN to log-in to another
user. If +stack is not specified, then LOGOFF will be called automatically. If a
valid user-id and correct password are given to LOGIN, then that user will be
logged-in without prompting for these values. If both fields aren't supplied (or are
incorrect), then LOGIN will issue the login prompt and wait for a valid user-id.

See Also:

LOGOFF
SH
QNX Manual

Utilities [LOGIN]

!lOGOff
LOGOFF - Terminate a QNX Session

Syntax:

logoff [-z]

Options:

-z - Don't print message regarding Ctrl-Z.

Examples:

logoff
logoff -z

Description:

LOGOFF is called by a user to terminate his session with QNX. All resources
which were used by the user will be reclaimed by the operating system and his
accounting entry will be deleted.

If the -z option is not specified, a message of the form:

--------- Type a Ctrl z to login ---------

will be displayed to remind the next user of that terminal to type a Ctrl-Z to log in.

See A lso:

LOGIN
SH
QNX Manual

[LOGOFF] Utilities

LPS - List Postscript Laser Printer Filter

Syntax: .

Ips [file]* [options]*
options: +align +(crt) +duplex +Duplex +header +landscape

+Landscape +pchars +verbose +quad +Quad +Octal +Octal
a=alignfactor[440] A=align char c=columns[l] f=font[4]
i=ignored _pages k=copies l;;maxlines n=pages _to _print
o=offset O=offset p=cur _psize[12] r=rightmargin
s=extra _spacing sx=x _scale sy=y _scale

Options:

+align
+(crt)

+duplex

+Duplex

+header
+landscape

+Landscape

+pchars

+verbose

+quad

+Quad

+Octal

+Octal

a=alignfactor

Utilities

- Turn on auto-alignment feature.
- For each letter entered, map that letter when enclosed by

parentesis into the symbols (• c)->© , (• r)->® and (• t)->,... .
- Print two pages on one physical page in landscape mode. The

logical pages are scaled, rotated and translated to fit.
- Same as +d except the page offset is applied to the logical

page printed on the right side of the physical page.
- Display the filename as a header on each page printed.
- Rotate the logical page to print sideways on the physical

page. If more than one column is printed the page offset is
only applied to the first column.

- Same as +I except the page offset is applied to each extra
column printed when c=columns is specified.

- Support the codes for the PC line drawing characters. These
characters are defined in the file /config/pcfont.ps.

- Print a comma (,) for each logical page skipped and a period
(.) for each logical page printed. Remember that several
logical pages may be printed on one physical page.

- Print four pages on one physical page in portraite mode. The
logical pages are scaled and translated to fit.

- Same as +q except the page offset is applied to the logical
pages printed on the right side of the physical page.

- Print eight pages on one physical page in landscape mode. The
logical pages are scaled and translated to fit.

- Same as +o except the page offset is applied to each logical
page.

- Set the width of the alignment character in 100 * points. The

[LPS]

LPS

default is 440.
A=align _char - Two character hex value which represents the alignment

char. The default is the backquote (') , hex 60.
c=columns - Select the number of columns to place on a physical page.

Each logical page starts a new column.
f=font - Select the font to start printing with. It defaults to Times

Roman.
i=numpages - Ignore (skip) this number of logical pages. Note that several

logical pages may print on one physical page (ie: +dual,
c=columns . . .).

k=copies - Number of copies to print for each page. The default is 1 .
l=maxlines - Force a new logical page after receiving this number of lines.

Useful when text is pre-formated without formfeed
characters.

n=numpages - Only print this number of logical pages . Note that several
logical pages may print on one physical page (ie : +dual,
c=columns . . .).

o=offset - Specify a page offset (left margin) in points . Defaults to 36
points (1/2 inch).

O=offset - Same as o= except the offset is applied to all columns and not
just the first column.

p=points - Select the pointsize to start printing with. This set the
pointsize for a logical (full size page) . The +dual and
+quad options scale it. It defaults to 12 point.

r=rightmargin - Specify a right margin in points. Used for justification only,
lines are not broken. Defaults to 468 points (6 1/2 inches)
from left page border.

s=spacing - Specify extra points (1n2 inch) of space between printed
lines.

sx=scale - Floating point number to scale charcater width. Do not use
with the +d or +q options.

sy=scale - Floating point number to scale character heigth. Do not use
with the +d or +q options.

Examples:

Ips text o=72 >$mdm
Ips text +d >$mdm
lps text +q >$mdm
lps text +1 c=4 f=O p=8
Ips text +1 c=4 f=O p=8 sx=.75

Description:

[LPS] Utilities

lLPS

The LPS utility takes a text file and converts it into a set of postscript commands
which will display it on a laser printer supporting postscript. There are a number
of command line options which provide considerable flexability in the formating of
the output. The utilty also recognizes a large set of escape sequences which can be
embeded within the text to further enhance your output. For example, there are
sequences to changes fonts , pointsize, attributes and underline to mention only a
few. These escape sequences allow word processors and the QNX list command
which do not support postscript to be used with a postscript laser printer. To find
which fonts are supported by LPS type.

Ips ?

Note: Your printer may support fewer or more than those fonts listed.

The size tables for all these characters are kept in the file lconfig/lPSwidths.
Programmers may use these tables for their word processors . It is structured as

struct font entry {
char font name[32]
unsignedl'ont widths[256]
} font_file[NUM_FONTS] ;

with each value containing the characters width at pointsize 1000. Keeping the
width as scaled integers saves the application from having to use floating point
which is much slower. LPS also uses the following two files.

I config/Prolog.ps
I config/LineChars.ps

- JPre-pended to each job.
- A line drawing character set.

If you are familure with Postscript, you may edit and modify these files . In
particular you may wish to add to the line drawing character set.

LPS takes as input a series of logical pages and from them produces one or more
physical pages. A logical page is what you would consider to be a full page of
text. The end of a page is usually marked by a formfeed character or the end of
file. If your text does not separate it pages with formfeeds but instead expects the
printer to start a new page every nn (say 66) lines then you can specify a 1=66
parameter to LPS to cause it to paginate based on this number. If your pointsize is
too large for a logical page to fit on the physical page LPS will itself break the
page when you run off the bottom. This allows you to take a completely
unformated piece of text and run it through LPS without any options knowing that
it will be paginated properly reguardless of the pointsize used. If you text contains
formfeeds and you select too large a pointsize LPS will paginate on page overflow
then again when it sees the formfeed character resulting in a second page which
contains only a few lines of text. In this case you should reduce your pointsize.

Utilities [LPS]

LPS

Unlike a daisy wheel or dot matrix printer which maps one logical page to one
physical page, the LPS utility can map several logical pages to one physical page.
It does this by scaling the text, and then translating it to different area's of the page
instead of starting a new page. For example the +quad option puts 4 logical pages
onto 1 physical page by scaling the x and y size by 0.5 and treating the physical
page as 4 small pages by translating the output. The mapping looks like this.

Logical Logical
Page 1 Page 2

Logical Logical
Page 3 Page 4

Physical Page

This has two advantages, for drafts it saves paper and on a 7 page/minute laser
printer you can often achieve 20 logical pages/minute throughput. Each logical
page displayed will also look the same as that produced when you go for a full
page master of each logical page. The +dual option rotates the page and placed 2
logical pages on one physical page. Each logical page is the same size as used in
our manuals. When producing a master for a printer it is best to produce pages at
full size and have the printer reduce them when he makes the plates. In the case of
pages of the size you are now reading this reduction has the side effect of
increasing you laser printers resolution from 300 dots/inch to over 400 dots/inch.

Logical Logical
Page 1 Page 2

Physical Page

[LPS] Utilities

LPS

For those with good eye sight there is also a +octal mode which prints 8 logical
pages per physical page. The output is still quite readable (heh, heh) and if your
laser printer can keep up, you can print at an effective rate of 8 times your laser
printer's page output rate.

You can also place mutiple logical pages on the physical page by using the
c=columns option which will divide the page into the indicated number of
columns. Each logical page will start at the start of the next column. In this case
you have to select a pointsize which fit the text in the columns. Scaling is NOT
performed automatically as it is with the dual and qaud options. You can also
specify landscape mode to rotate the page. The options of +I and c=3 would
produce a physical page of.

DOD
Physi cal P age

3 logical
pages

The +dual and +quad options start the logical pages which are printed on the right
side of the physical page exactly at in the middle. The page offset is only applied
to the left side. If you specify a capital letter (+ D, +Q) then the offset will be
applied to the right side as well. In the case of dual printing this provides for a
margin if you wish to cut the page in half and place it in a binder.

+dual option +Dual option

When producing tables with a variable width font they seldom line up. Each
character has a differrent width. You can force alignment by adding a backquote.
The +align option can be used to automatically add them for you. However, it
makes certain assuptions and guesses which may not be what you want. When
enabled, for each line LPS reads. it will add them after a run of two or more spaces
not preceeded by by a . , ? or ! and around dashes (-) and o' s (o) which are often

Utilities [LPS]

LPS

used for points .

aiaiaia - Without alignment char on any of
these lines.

axaxaxa - Without alignment char on any of
these lines.

aiaiaia With alignment chars on each side
of the dash (-) and the start of
text on each these lines.

axaxaxa - With alignment chars on each side
of the dash (-) and the start of
text on each these lines.

Please note that a space is a very narrow character while a capital A is very large.
Alignment is based upon an average which assumes that all characters are about
the width of a small a. This will be true on average but fails badly when presented
with all capitals. The line.

AAAAAAAAAAAA 'point one

will actually slide the text "point one" to the left resulting in an overprint as
follows :

AAAAAAAAA'-Itmt one

This can be corrected by simply increasing the number of spaces before the point.

AAAAAAAAAAAA 'point one

which produces

AAAAAAAAAAAA point one

You can use simple shell files to interface utilities like LIST to your laser printer.
For example, the following shell file is suitable for producing listing of C programs
on your laser printer. To conserve paper it prints with the +dual option and uses
the courier font. Note that you will have to create a list initialization file which
uses the escape sequences supported by LPS.

list #* >ltmp/#n#t.lst i=/config/ps.init
lps /tmp/#n#t.lst f=O +d >$mdm

[LPS] Utilities

If this file was called LLIST you can use it in place of LIST.

llist file1.c file2.c ...

LPS

Your laser printer is going to be very popular and you will want to share it amoung
many users . This is most easily acomplished using the SPOOLER and SPOOL
command. If your printer is attached to $mdm you should run the spooler as
follows.

spooler 11 c=lps >$mdm11 t=/tmp/ &

You may wish to place this command in your system initialization me. You can
now submit files using the SUBMIT command.

spool su file any Ips options

In the example of the LLIST shell command above you would replace the second
line with LPS to a SPOOL SUBMIT command.

Escape Sequences

In the following tables some of the escape sequence take one or more ascii digits as
parameters. They will be represented as italic d's.

d • A single digit.
dd • Up to 2 digits.
ddd · Up to 3 digits.
dddd • Up to 4 digits.

If several digits are expected you can supply fewer as long as you terminate them
with a non-digit. For example if dd was expected then input would be intetpreted
as

lxyz
12xyz
123xyz
123xyz

• Read a 1 followed by 11XYZ11
- Read a 12 followed by 11 XYZ11
• Read a 12 followed by 11 3xyz11
• Read a 12 followed by 11 3xyz11

You may also enter a leading plus or minus sign to indicate a relative rather than
an absolute change.

ESC p 12
ESC p +3

Utilities

- Set pointsize to 12 points.
• Add 3 to current pointsize.

[LPS]

LPS

ESC p -3 - Sub 3 from current pointsize.

There are two classes of escape sequences , single character and muti-character.
The multi-character sequences always start with an ESC code (hex 1 b, dec 27).
You will note that LPS supports the escape sequences supported by the system
console. A file which highlights , underlines . . . text on the console will do the same
on the laser printer. Inverse is mapped to italics and blink to larger characters.
The console colour escape sequences are ignored.

Note that center, fully justify and right justify are easily remembered by there first
letter with a control key. The text following these codes extendes to another code
or a code which forces a repositioning of the text (typically a newline).

Single Character Sequences
Name Ctrl Hex Action
TAB ctrl i 09 Move to next tab stop. Tabs fixed every 4.
RS ctrl " le Move to start of next line.
CR ctrl m Od Move to begining of this line.
LF ctrl j Oa Move down a line (same column).
ETX ctrl c 03 Center following text between margins.
ACK ctrl f 06 Fully justify following text between margins.
DC2 ctrl r 12 Right justify following text between margins.
ETB ctrl w 17 Force a current position (moveto command) to printer.
EOT ctrl d 04 Ignored and striped from the text.
FF ctrl l Oc End of a logical page (formfeed).

The following will create a line with three parts. One part left justified, one part
centered and one right justified. Text in < > ' s represent a single character.

Utilities<ETX>© QNX Software Systems<DC2>LPS<RS>

Multi Character Sequences
Sequence Action
ESC (Italics on.
ESC) Italics otT.
ESC < Bold on.
ESC > Bold off.
ESC [Underline on.
ESC] Underline off.
ESC { Increase pointsize 113.
ESC } Decrease pointsize 1/3.
ESC # Pattern mask on.
ESC : Pattern mask off.
ESC d Subscript (move down 1/4).

[LPS] Utilities

ESC f dd
ESC p ddd
ESC u
ESC m ddd
ESC '
ESC g ddd
ESC z d
ESC z 4 cmd .
ESC o ddd
ESC a d
ESC F d
ESC M ddd
ESC S
ESC R
ESC b dd dd
ESC y ddd , ddd

Set font.
Set pointsize in points.
Superscript (move up 1/4).
Set right margin in points.
Display the quote char.
Set gray level. 0 (black) to 100 (white).
Add zing to text. 0 to 3 supported.
Use postscript command to show text.
Set page offset in points.
Set auto-align on (d=1) or off (d=O).
Expand mask (Esc #, :) to right margin if d=l.
Manual feed the next ddd sheets of paper.
Save font, pointsize, attributes and zing.
Restore from last save (ESC S).
Draw a box. If gray level != 0 then it is filled.
Move by points by x (col) and y (row). This
is usually done as a relative move.

LPS

The following sequences impliment the console cursor movement escape
sequences. To be useful you should use the courier fixed point point. Proportional
fonts may not line up as expected.

Cursor Movement Sequences
Sequence Action
ESC A Cursor up.
ESC B Cursor down.
ESC C Cursor right
ESC D Cursor left.
ESC H Cursor home.
ESC Y cc Direct cursor addressing.

For special situations you may pass postscript commands directly to the laser
printer by enclosing them in the follow escape sequence.

SYN SYN postscript commands SYN

In conclusion, the following escape sequence can be used to create the shaded
blocks with which each of our utilities start With. You will have to supply a 2 digit
number for you right margin (rmargin) and the text to be outlined (your text).
Both need to be provided twice. The right margin is provided in character posi
tions NOT points . The last two lines of the escape sequence vary depending on
wheather you wish an odd or even page.

Utilities [LPS]

LPS

ESC S ESC B
ESC g 095 CR ETB ESC b rmargin +04
ESC g 000 ESC b rmargin +04
ESC A

Odd page (right justify)
ESC f08 ESC p +20 ESC g 100 DC2 your text CR
ETB ESC g 000 ESC z 1 DC2 your text ESC R

Even Page
ESC f08 ESC p +20 ESC g 100 your text CR
ETB ESC g 000 ESC z 1 your text ESC R

See Also:

SPOOL
SPOOLER

[LPS]

Save state and position
Draw shaded rectangle
Draw box outline
Position

Put text in white
Put text in outline

Put text in white
Put text in outline

Utilities

lS
LS - List directory

Syntax:

Is [directory] [options] *
+modified -sort p=[A]pattern +unused -dir_off +dir_on
+age_sort +Size_sort +reverse_sort +Size +blocks -All
c=columns -columns_ off +file_list +horizontal +verbose
+executable -executable +Modified_only +clear_screen
w=column _width +tx_time b=baud _rate -modified l=line _length

Examples:

Is +v
Is /cmds
Is /user/biii/dirl -s
Is +M P=*.c +C

Description:

LS displays a sorted list of all the files and directories which reside a t the current
(or specified) directory level. Directory names are preceded by a plus sign (+)
indicating that there is a substructure below it.

There are an almost unbelievable number of options :

Options:

+modified

-modified

+Modified

-sort

+unused

Utilities

- Highlight files that have been modified since last backup.
These files are shown with enhanced video mode or with a
leading star (*) if enhanced is not available. The other files
are also shown.

- Show only files that have not been modified since last
backup. Setting this flag also supresses the display of
directories .

- Show only those files that have been modified since last
backup. Setting this flag also supresses the display of
directories .

- Supress all sorting of the output. Files appear in the order in
which they exist in the directory file.

- List all file entries which are unused. These files may be

[LS]

LS

-All
recoverable if they were recently deleted.

- Don' t list all files. Files beginning with a ' . ' character will be
excluded from the file list.

+directories - Directories on. List only directory files in the output.
-directories - Directories off. Do not include directory files in the output.
+age_sort
+Size_sort

- Sort by age (most recent first) rather than by file name.
- Sort by file size (largest first) rather than by file name.

+reverse_sort - Reverse the sort order to get reverse alphabetic, oldest first, or

+size

+blocks

c=columns

-columns

+file_list

smallest first, as appropriate.
Show file sizes. This mode is active whenever verbose mode
is turned on. If verbose is off, then the file size display must
be selected with this flag.

- Show block counts. If file sizes are being displayed, this flag
will cause the file size to be displayed in blocks rather than
in bytes.

- Used to manually set the number of columns in the output.
If the number of columns is set to a large number, then a
stream of file names will result. A column setting of 0 has no
effect.

- Tum all multi column output off. This forces the output to be
displayed as one column. This has the side effect of asserting
horizontal output mode, which forces the '\n' after each file
name is output.

- Display a list of files, excluding any directory files , modified
notation or file sizes in one column. This command is
synonymous with "Is -v -c -d +h" and is used as a short hand
notation for it. This option is useful to prepare lists of files
for other commands to process. Executing "ls +f p=*. [ch] " is
a quick way to get a list of all the source files in a directory.

+horizontal - Horizontal file list. This causes the file names to be listed

+verbose
across the columns rather than down the columns.

- Display the output complete with directory name, file sizes
and a usage summary.

+executable - Executable files on. List only executable files in the output.
-executable - Executable files off. Do not include executable files in the

output.
+clear screen - The screen is cleared before the directory is displayed.
w=width - Used to manually set the width of the columns in the

output. Changing the column width causes the number of
columns displayed to also be recalculated. This recalculation
can be supressed by manually setting a column count with
the c= option. A column width of 0 is quietly ignored.

l=line_length - Used to manually specify line length. This is useful for
sending the output of this command to a printer that may
have a 132 or 240 character line. Also useful for squeezing

[LS] Utilities

LS

the output onto a 40 column screen if necessary.
+tx_time - Used to cause the transmission time of a file to be displayed.

The default baud rate used for this calculation is 1200 baud.
The b= option can be used to specify a baud rate. While this
mode is active, directory display is turned off.

b=baud rate - Used to manually set the baud rate used for transmission
time calculations. If a b= option is specified on the command
line, the time display mode is automatically selected without
+t having to be specified.

p=["]pattern - List all files matching the pattern described. This pattern
match is applied to the files that make it through the flag
settings. For example, if the -d option is set, even directory
files which match the pattern will not be included in the
output. The '" ' character can be used to negate the pattern
match. Character ranges can be specified in the form [a-e).
This would be expanded to [abcde] for matching purposes.
Multiple ranges and the '"' option also work. Filename
patterns can be any valid filename, with the following
"wildcard" characters :

See Also:

CD
DIR

Utilities

*
?
[CCC)

will match any character, or run of characters
will match any one character
will match any of the characters in the brackets

Some examples of filename patterns are:

p=*·*
p=*.[ch]
p=?a
p=[a-e]*
p= "*.o

FILES
PWD

any file with a dot (.) in it.
any file ending in 'c' or 'h'
any two character filename ending in 'a'
any file starting with 'a' , 'b' , 'c' , 'd' or 'e'
any file which doesn't end in ' .o'

[LS]

MAKE - Maintain and recreate files

Syntax:

make [target I option I macro_definition] *

Options:

f=filename - Use filename as the description file. The default is makefile
or Makefile in the current directory.

+print Print the complete set of macro definitions, rules and
dependency descriptions.

+ignore_errors - Ignore error codes returned by invoked commands.
-verbose - Do not print command lines before executing.
-execute - Print all command lines (even those beginning with an "@ ")

but don 't execute them.
+touch - Change the dates of the target files instead of executing the

usual commands.
+unconditional - Ignore the file dates (assume every target file and dependent

is out of date) and recreate everything.
d=directory - Change directory to directory before doing anything else.

This allows MAKE to be used recursively in other
directories.

+debug - Debug mode. Print out detailed information on files and
times examined. (This is usually used when the description
file is not performing as desired).

All other arguments are treated as target files to be "made", unless they contain
an "

=
" sign, in which case they are a macro definition (see the section on

macros for more details).

Examples:

make ·
make -e f=my makefile
make +t x.o y:o core

Description:

[MAKE] Utilities

MAKE

MAKE is used to maintain up-to-date versions of target files by ensuring that all of
the files on which the target file depends exist and are up-to-date. If any of the
dependents have been modified more recently than the target file, it is (re)created
using specified commands or internal rules. MAKE performs a depth-first search
of the dependencies, examining the date and time that the files were last modified.

MAKE reads a description file that defmes the way that the components of a
program depend upon each other, and what commands must be executed to
recreate each component.

If no f=file option is given, the files makefile and Makefile in the current directory
are tried in order.

Description Files

A description file consists of the following information:

- macro definitions
- dependency information
- executable commands.

The basic form of a simple description file is :

dependency line
command line
command line

This may be repeated as many times as needed.

The syntax of a dependency line is one or more target file names , followed by a
colon (:) , followed by the names of zero or more files on which the target(s)
depend. This can be expressed as:

target [target]* : [dependent]*

Some examples of dependency lines are:

x.o : x.c header.h /dir/file.h
core : a.o b.o c.o

Utilities [MAKE]

MAKE

If you wish to use a full path name for one of the targets , the colon between the
drive and path must be escaped using a backslash (\), such as:

3\:/user/ . • • : dependents

Zero or more command lines follow dependency lines . Command l ines consist of
a tab, optionally followed by an "@ " sign or a "-" or both (in any order) , followed
by an executable shell command. The printing of a specific command is
suppressed if the command line begins with an "@ " sign, unless the -execute op
tion is specified. MAKE normally terminates if any command returns an error
code, unless the -ignore_errors options is specified, or the command line begins
with a "-" . The "@ " or "-" is not part of the command.

The syntax of a command line can be expressed as:

tab[@1-]*command _line

Because each command line is passed to a separate invocation of the shell, care
must be taken with certain commands (e.g. cd and shel l control commands such as
path) that have meaning only within a single shell process. The effects of these
command are forgotten before the next line is executed. However, you can place
multiple commands on the same line, separated by a semi-colon (;) . For example:

cd my_ dir;cc myprog

All commands on a line such as the one above, will be executed by the same shell,
so cd and path commands will take effect, for the other commands on that line.

The comment convention is that a sharp (#) and all characters on the same line
after a sharp are ignored. A comment cannot be placed at the end of a command
line. Blank lines and lines beginning with a sharp (#) are totally ignored. If a
noncomment line is too long, the line can be continued by using a backslash (\) as
the last character of the line. In that case, the backslash, the new line, and all
following blanks and tabs are replaced by a single blank.

A target can appear on more than one dependency line, with the dependents on the
additional lines adding to the previously defmed dependents. Although not as
useful, any commands related to the additional dependency lines also add to the
end of the list of previously defined commands for that target flle.

[MAKE] Utilities

An example of this is :

x.o y.o : a.h
x.o : b.h

which is the same as :

x.o : a.h b.h
y.o : a.h

MAKE

The following description file example says that print_setup depends upon three
object files: print setup.o, small.o, normal.o; each of the objects depend upon
their source files and, in addition, print_setup.o and small.o depend on the header
files setup.h and print.h.

Description file for print_setup program

print setup: print setup.o small.o normal.o
cc print_setup.o-small.o normal.o

print setup.o: print setup.c setup.h print.h
cc -c print_setup.c

small.o: small.c setup.h print.h
cc -c small.c

normal.o: normal.c
cc -c normal.c

To make the file print setup, assuming that the above description file is in a file
with the name makefiie or Makefile, you would enter:

make print_setup
or

make

The second example will use the first target mentioned in the description file
(print_setup). It is also possible, though less common to type:

make small.o

to only remake a single object file.

Utilities [MAKE]

MAKE

As more features of MAKE are described, you will be shown how to simplify this
description file.

MAKE has a limited form of macro processing that includes string substitution.
Macros are defined in the description file by:

macro_name = value_string

Macros may also be defined in the argument list passed to MAKE. Any argument
that contains an "=" is assumed to be a macro definition, with the exception of the
f= and d= options. Special care must be exercised when defining macros in the
arguments. The following guidelines should be followed:

1) No spaces are allowed between the first '= ' and the macro
name or the value.

2) When the macro definition includes imbedded blanks, the
entire macro definition should be enclosed within quotes.

3) The macro name is all of the characters before the first
'= ' and the value is all of the characters after the first
'='

For example :

make CC=cppo " LFLAG=+v l=mylib"

This command will define two macros CC and LFLAG with the following values
"cppo" and "+v l=mylib".

Macros may be used in any of the dependency, command or macro definition lines
(resulting in nesting of macros) and are recognized whenever $(macro name)
appears in the input. If the macro name is one character the parentheses are not
required. The following are all valid macro invocations :

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. A $$ is a simple dollar sign ($). Care must
be taken when using macro nesting; recursion (repeatedly nesting the same macro)
is not tested for.

[MAKE] Utilities

The following is an example of a use of nested macros:

HEADERSl = x.h y.h z.h
HEADERS2 = a.h b.h c.h
ALL_ HEADERS = $(HEADERS1) ($HEADERS2)

MAKE

There are a number of macros built into MAKE which are initialized when MAKE
is started. They may all be redefined within a makefile or on the command line.
Most of these initialized macros are used for the transformation rules (discussed
later) , but two of them deserve special attention: CWD and SHELL.

The macro CWD is initialized to the current working directory in effect after
MAKE processes its command line options (to give the "d=" option time to take
effect). It is occasionally useful within command lines.

The macro SHELL is initialized to the default shel l in use by the user. However,
it may be reset to indicate which shell should be used for interpreting command
lines when executed. For example, if you are using shell (user interface) other than
the default shell supplied with QNX, it may not be able to interpret certain
command sequences (such as "#u" - your userid) used in a particular makefile,
which expects that you are using the default shell. To condition make to always
use a particular shell (for example, the QNX default) instead of the user default,
include a line like :

SHELL = /cmds/sh

The previous description file example can now be simplified to:

Description file for print_setup program

OBJECTS = print_setup.o small.o normal.o
HEADERS = setup.h print.h

print setup: $(OBJECTS)
cc $(OBJECTS)

print_setup.o: print_setup.c $(HEADERS)
cc -c print_setup.c

small.o: small.c $(HEADERS)
cc -c small.c

normal.o: normal.c
cc -c normal.c

Utilities [MAKE]

MAKE

Invocations of macros in dependency lines are expanded immediately. Macros in
macro definitions are expanded when used. Macros in command lines are
expanded immediately before the command is executed.

A macro that has never been assigned, expands to a null string on invocation.

Macro Redirection

In QNX, it is frequently useful to have a list of file names stored in a file (an index
file). For example, a list of object files to be linked together may be stored in a file
called ofiles. However, this same list of objects may be needed by MAKE, so they
can be made before linking. To avoid the need to maintain the list in the index file
and the MAKE description file, it is possible to have the contents of a macro read
from a file. The syntax for this is:

macro = @filename

An example is :

OBJECTS = @ofiles

Suffixes. Imolied Dependencies and Internal Macros

The only thing MAKE knows about file name suffixes, is that they begin with a
" . " . To compensate for this lack of understanding, it has an internal table of
suffixes for files which are frequently used with MAKE. As MAKE examines the
file dates and times, it also matches the suffixes in the table against the file names
to try and extrapolate from the dependencies in the description file to other
(implied) dependents. The information extracted and built is placed in a series of
internal macros.

The suffix table has the form of a dependency line where the target is .SUFFIXES
and the dependencies are the suffixes. Naturally, there are no command lines for
.SUFFIXES.

The default suffix table looks like:

.SUFFIXES: .o .c .c""' .h .h a .a"" .y .y""' .b .b exe

[MAKE] Utilities

where the suffixes represent:

.o Object file

.c C source file

.c- C source file in an archive

.h Header file

.h- Header file in an archive

.a Assembler source file

.a- Assembler source file in an archive

.y Yacc-C source grammar

.y- Yacc-C source grammar in an archive

.b BASIC source file

.b- BASIC source file in an archive

.exe DOS .exe file

MAKE

As QNX supports more languages, this table will be extended. MAKE will list the
internal tables , macros , etc. if make +p is entered.

Suffixes ending with a tilde (-) exist to support a source code revision control
system, that may appear in the future.

The order of the suffix list is important, since the list is scanned from left to right.
New suffixes can be appended to the table placing an entry for .SUFFIXES in the
description file, such as :

.SUFFIXES: .xyz

This will add the new suffix " .xyz" to the usual list. A .SUFFIXES line without
any dependent suffixes deletes the current list. It is necessary to do this to remove
suffixes from the table, or to change the order of search. An example is:

.SUFFIXES:

.SUFFIXES : .o .c

By reducing the number of suffixes in the table, it is possible to improve the
performance of MAKE when working with very large systems. When it is poss
ible to define new rules, this facility will be useful for adding suffixes for new
languages which MAKE is not already programmed to handle.

The current target file name is placed in the macro $@, and the stem (the portion
of the target file name, less the suffix as found in .SUFFIXES) is placed in $*. If
no suffix was matched to the target file name, $* contains a null string ("") .

Utilities [MAKE]

MAKE

Once a stem has been identified, in tum, each of the suffixes are concatenated to
the stem and the resulting filename is matched against the dependents specified in
the description file, to try to find the name of the "source" dependent. If an explicit
"source" dependent isn ' t found, the same procedure is tried against the file names
in the same directory as the target file in an attempt to find an implicit "source"
dependent. If a "source" dependent is found, its name is placed in the macro $<,
else it will expand to a null string.

As MAKE checks each of the explicitly stated dependents, it places the names of
the dependents younger than the target file in the macro $?.

The following table summarizes the internal macros :

$@ - The target file name.
$* - The target stem (the file name less the suffix).
$< - The " source" dependent (the stem plus a suffix).
$? - The explicitly stated dependents, younger than the target.

With the search for implied dependencies and the internally maintained macros , it
is now possible to reduce the example above to :

Description file for print_setup program

OBJECTS = print setup.o small.o normal.o
HEADERS = setup.h print.h

print setup: $(OBJECTS)
cc $(OBJECTS)

print setup.o small.o : $(HEADERS)
cc -c $<

normal.o:
cc -c $<

Notice that the source file names are never mentioned, but are implied by the
suffixes.

When MAKE scans the arguments it is passed, the options specified (with the
exception of f=, +P and d=, the target names and macro definitions) are placed in
the internal macro $(MAKEFLAGS). This is for use with hierarchical makefiles.
See the section on Recursive Makefiles for details.

[MAKE] Utilities

MAKE

Extensions to $*, $@. and $<

To the list of internally generated macros, the following related macros have been
added: $(*F), $(*D), ${@F), $(@D), $(<F), $(<D) . The "D" refers to the directory
portion of the single letter macro. The "F" refers to the file name part of the single
letter macro. They are useful for maintaining source and objects in different
directories, or in conjunction with hierarchical makefiles, as in:

$(MAKE) $(MAKEFLAGS) d=$(<D) $(<F)

An alternative to the above, would be the line:

cd $(<D);$(MAKE) $(MAKEFLAGS) $(<F)

Both of these examples will cause MAKE to change directory to the directory
$(<D) before reading the description file and making the target $(<F) . The second
example (with the cd command) will temporarily change directory at the shell
level. The current working directory will revert to the original directory MAKE is
being run in at the end of the line. See the section on Recursive Makefiles for
details on MAKE invoking MAKE.

Transformation Rules (Implied Commands)

If a "source" dependent (the macro $<) was identified and there are no commands
associated with the current target (the macro $*), a transformation rule is selected
based on the suffixes of the target and dependent file names. The name of the rule
is made by concatenating the suffix of the source to the suffix of the dependent (i.e.
the rule to transform a .c file to a .o file is .c.o) .

Rules have the syntax of a dependency line and command line(s), where the target
name is the rule name and the command line(s) are the commands to be executed if
the rule is invoked. Naturally, a rule has no dependencies. MAKE version 2 . 1 and
beyond will allow rules to be redefined and new rules to be created, but this facility
is not yet supported.

The .c.o rule is expressed as:

.c.o :
$(CC) $(CFLAGS) -c $<

This means, execute the command in the ${CC) macro (default: "cc") with the
arguments in the $(CFLAGS) macro (default: ""), as well as the argument "-c"
(don't produce a core file) on the file whose name is in the macro $<.

Utilities [MAKE]

MAKE

An example of a complex description file follows. This is the file used to maintain
the MAKE command. The only transformation rule it uses is the .c.o rule
described above. The file contains :

Create the make command in the current directory

+optimize CFLAGS =

SOURCES =
HEADERS =
OBJECTS =
INSDIR =

main.c make.c misc.c read _file.c input.c rules.c definitions.c
manif.h struct.h extern.h
main.o make.o misc.o read file.o input.o rules.o definitions.o
/cmds -

core: compile date.o
$(LD) $(LDFLAGS) $(OBJECTS) compile date.o
@patch core +p -

install :
copy core $(1NSDRIVE)$(1NSDIR)/make

print: $(SOURCES) $(HEADERS)
list w=80 +r $?
chattr $@ +d s=+m

compile date.o : $(OBJECTS)
$(CC) +P -c $<

$(OBJECTS) :
make.o :
misc.o:
rules.o :

[MAKE]

$(HEADERS)
/lib/task msgs.h
/lib/io.h 7lib/lfsys.h /lib/dev.h
/lib/account.h /lib/task_ msgs.h /lib/systids.h

Utilities

MAKE

The following output results from typing make in a directory containing only the
source and description file:

MAKE: cc -c definitions.c
MAKE: cc -c rules.c
MAKE: cc -c input.c
MAKE: cc -c read file.c
MAKE: cc -c misc.c
MAKE: cc -c make.c
MAKE: cc -c main.c
MAKE: cc +p -c compile_ date.c
MAKE: cc main.o make.o misc.o read file.o input.o rules.o
definitions.o compile_ date.o -

Although none of the source files were explicitly mentioned in the description file
as being dependencies of the target core, MAKE found them using its suffix rules
and issued the needed commands. The printing of the patch core +p command
was suppressed by an "@ " sign.

The "print" and "install" entries in the description file are useful maintenance
sequences. The "print" entry prints only the files changed since the last make
print command. A short file print is maintained to keep track of the time of the
printing. The $? macro in the command line then picks up only the names of the
files changed since the file date and time of print was changed (via chattr +d).

In the "install" sequence, MAKE can be installed into different directories or on
specific drives as follows:

make install INSDRIVE=l :
or

make install INSDIR=/free

Utilities [MAKE]

MAKE

The following is a listing of all the internal macros and default rules :

LIST OF SUFFIXES

.SUFFIXES: .o .c .c"' .h .h"' .a .a"' .y .y"' .b .b"' .exe

PRESET VARIABLES

MAKEFLAGS=-e
MAKE=make
YACC=yacc
YFLAGS=
LD=cc
LDFLAGS=
CC=cc
CFLAGS=
AS=asm
AS FLAGS=
GET=co
GFLAGS=
CWD=3:/man/util
SHELL=/cmds/sh

INTERNAL RULES

.c.o :

.c---.o:

.h---.h:

.a.o:

.a---.o:

.y.c:

.y.o:

[MAKE]

$(CC) $(CFLAGS) -c $<

$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $*.c
rm $<

$(GET) $(GFLAGS) $@

$(AS) $(ASFLAGS) $< $@

$(GET) $(GFLAGS) $<
$(AS) $(ASFLAGS) $< $@
rm $<

$(Y ACC) $(YFLAGS) +d $<

$(Y ACC) $(YFLAGS) +d $<
$(CC) $(CFLAGS) -c $*.c
rm $*.c

Utilities

.y-.o:

.b.o:

.b-.o:

.o.exe:

.c.exe:

.c-.exe:

$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) +d $<
$(CC) $(CFLAGS) -c $*.c
rm $*.c $<

$(CC) $(CFLAGS) -c $<

$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $<
rm $<

$(CC) $(CFLAGS) +D $<

$(CC) $(CFLAGS) +D $<

$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) +D $<
rm $<

MAKE

This table may be reproduced, with the output appearing on the standard output, by
the following command:

make +p f=$null

Given all of the above capabilities, the description file for the print_setup program
can be reduced to the following:

Description file for print_setup program

OBJECTS = print setup.o small.o normal.o
HEADERS =setup:h print.h

print_ setup:
cc $(OBJECTS)

$(OBJECTS)

print _setup.o small.o: $(HEADERS)

Because normal.o is dependent only on its source file, it needn' t be mentioned as a
target anywhere in the description file. Its source file will be found by the use of
the suffix table and will be made (if necessary) using the transformation rules.

Utilities [MAKE]

MAKE

Alternate Implied Source Directories

By default, MAKE expects that the source dependent be in the same directory as
the target. However, this is not always the case. It is sometimes useful to have the
source "scattered" across a number of directories and have MAKE search these
directories to find the source. The alternate directories are specified using the
pseudo-target .AL T _ DIRS, as fol lows:

.AL T DIRS : ver2.0 ver1.2 verl.l verl.O

Placing the above line in your makefile will cause MAKE to search the alternate
directories in specified order for an implicit source dependent after first searching
the directory of the target. This example will give you some ideas as to how
MAKE may be used for simple version control. (The current directory is the most
recent source. If the source isn ' t here, start looking back at the earlier version
archives).

If you are working with C source in the above scenario, you must tell the CC
command where to place the object files it compiles (they default to the same
directory as the source) . If you specify the following C compiler flag:

0=$(@D)

for example:

CFLAGS = 0=$(@D)

then when C source is compiled to object, it will automatically be placed in the
"target" objects directory (usually the current directory).

Recursive Makefiles

Another feature of MAKE is the ability to have make invoke itself. This is useful
if the description file is too complicated (or too large). If a command line contains
the sequence "$(MAKE)" anywhere, the line will be executed even if the -execute
flag is set. Since the -execute flag can be carried across invocations of MAKE via
the $(MAKEFLAGS) macro, the only command that will actually be executed is
the MAKE command itself. For testing purposes, make -e can be executed and
everything that would have been done will be printed, including output from lower
level invocations of MAKE.

An example of a command line invoking another level of MAKE is :

$(MAKE) $(MAKEFLAGS) f=makefile2

[MAKE] Utilities

MAKE

It is also occasionally useful to have a target dependent on a file which is
maintained by a makefile in another directory. The usage of the d= option to
facilitate this is described in the section on Extensions to $*, $@ and $<.

See Also:

cc

Utilities [MAKE]

MKD IR - Make directory

Syntax:

mkdir directory [size]

Options:

size - Initial size of directory (default: 10 entries)

Examples:

mkdir dirl
mkdir 3 :/cmds/backup 20

Description:

MKDIR will create a directory with the given name. If a simple name is given, the
directory will be at the current directory level. If the name starts with a slash (/),
then the complete pathname from the root of the file system is specified. A drive
number followed by a colon (:) can precede the pathname which forces the
directory to be made on the given drive. Otherwise, the directory will be made on
the first drive it finds which matches the prefix. For instance, the second example
above will create a directory "/user" on drive 3. Without the "3 : " , the directory
would be created on the first drive searched, which is often a ramdisk.

Space is initially reserved for 10 files if no size is given. Note that directories, like
files, will grow so that this size parameter does not limit the size of a directory.
Directories can contain any number of files, but may become fragmented if the
initial size is not made large enough which often implies a speed penalty when
opening files.

mkdir 2 :/cmds 100

See Also:

DREL FREL RMDIR RM

[MKDIR] Utilities

M 0 RE - Display a file or stdin by pages

Syntax:

more [<stdin I filename I x=filename]* [options] *
options: +numbers +raw -tab

Options:

filename
x=filename
+numbers
+raw
-tab

- Name of file to print (default: keyboard)
- Name of index file that names files to browse
- Display line numbers
- Don't interpret escape sequences
- Don't expand tab characters

Description:

MORE is a file browser that uses the high speed terminal display routines to
display a file on the console. While the file is being viewed on the console, it is
also being stored in a large, dynamically allocated buffer. This buffer allows text
that has scrolled off the screen to be "rolled back" for later review. Note that only
the last 60K (approximately) of viewed text can be reverse scrolled.

After the first page of output has been displayed, various commands are available.
The most used of these commands would be those that cause the display of more
text to be started and stopped. This can be done a number of ways . The space bar
can be pressed to start and stop output, the XON I XOFF ("S and "Q) characters
can be used, the space bar, or the large plus key. Once the scrolling has been
stopped, a menu appears at the bottom of the screen to prompt for further
commands.

Fl or '? ' - These keys can be pressed to display a help menu.

Left and Right cursor keys - These keys allow the text to be scrolled to the left and
right.

Up and Down cursor keys - These keys allow forward or reverse scrolling a line at
a time. New text from the file will be loaded and displayed if viewing past the end
of buffered text is attempted.

Utilities [MORE]

MORE

Control Up and Down - Depressing the control key while typing the up or down
arrows will cause the text to jump up or down by four lines. This is intended to
mimic the action of the same keys in the QNX editor.

PgUp and PgDn keys - These keys allow viewing text in a forward or reverse
direction a page at a time. New text from the file will be loaded and displayed if
viewing past the end of buffered text is attempted.

Home - This key restarts the display at the top of the buffered file. If the amount of
text buffered has exceeded the buffer size, then the earliest text still in the buffer
will be used as the starting point for the display.

End - This key causes the text in the last page of the buffer to be displayed. Only if
the actual end of file has been reached, will the text at the end of the file be
displayed. If the end of file has not yet been reached, pressing the space bar will
cause output to resume at that point.

'n' - This key causes the currently displayed page to be redisplayed with line
numbers along the left column.

Digits ' 1 ' through '9' cause the text to be advanced by the corresponding number
of lines.

'F' or '/' - MORE will prompt for a pattern to fmd within the buffered text. Once
the text has been found, the screen will be updated such that the located text
appears in the top line of the screen. Executing the find again will cause the next
pattern to be found. The pattern describes a template which the filename must fit.
Two special wildcard characters '* ' and ' ? ' may be used in defining the pattern.
'* ' will match any run of characters (or none at all), whereas '? ' will match any
single character. In addition, any characters enclosed in square brackets ([])
indicate that any one of those characters will match. The escape '\' character can
be used to match the wildcard characters. A ' ' character can be used as the first
character in the string to indicate that all names NOT matching the pattern are to
return a match condition.

'r ' - This key toggles "raw" mode on or off. MORE will by default attempt to
display escape sequences in a file with the appropriate display attributes. For
example, an Escape followed by a '<' character would tum BOLD on. See the
operating system manual for other escape sequences. With raw mode turned on,
the actual escape characters will be displayed rather than interpreted into the
appropriate visual modes.

Tab or 't' - This key toggles the display of tab characters in the viewed text.

[MORE] Utilities

MORE

Escape key, 'e' or 'x' - These keys exit the file browser.

Enter key or ' q ' - These keys advance the file browser to the next named file if
multiple files were specified. If only one file was specified, this key exits the
browser.

The 'z' key flips the screen through the various screen resolutions. For example, on
an system equipped with an EGA display card and the appropriate graphics driver
mounted, the zoom command will toggle the screen between 80 by 25 line mode
and 80 by 43 line mode. When an exit from the MORE command is performed, the
original display mode is automatically reselected.

Note : Browsing multiple files from a single invocation of MORE causes the
displayed line numbers to count from one for the first file and continue from that
point for each successive file.

See Also:

p
CAT

Utilities [MORE]

M 0 UNT - Mount a new disk drive or new memory

Syntax:

mount disk drive[d=driver _num] [load _file] [+v]
[s=size] or [pa=os_type]
[h=heads t=tracks n=sectors/track]
[p=physica/ drive] [c=ctl addr] [i=interrupt]
[u=user_dati] [w=write_precomp_cyl]
[+large_xtnts] [-large_xtnts]

mount cache d=drive number s=size[k]
mount xcache s=size[k)
mount bmcache d=drive number
mount ramdisk drive [load _file] [s=size] [-v] [+v]
mount remdisk drive n=node number d=drive number
mount console [device number] new name -
mount lib load _fife [+v]

-

mount file load _file [+v]
mount debug [load _file] [+v]
mount mem m=segment s=size
mount float
mount

Options:

load _file - Specifies the name of a disk driver load file which can be used
to control this drive. If none is specified, the floppy drivers
will be used. In the case of MOUNT DEBUG, load _file is

s=size

Utilities

the name of the debugger to use which defaults to
"/cmds/sys.debug". If MOUNT Fll..E or MOUNT LIB is
used, then load _file is the name of the file to load.
Specify the storage capacity of the disk if different from the
default value specified in the driver load file. This option is a
short form useful when mounting special floppy diskettes. It
is also used when mounting special memory. Always use the
h=, t= and n= options (and never s=) for hard disks. The
letters "k", "K", "m", M", ' t ' or 'T' may follow the size to
indicate sizes in Kbytes, Megabytes or Tracks. Otherwise,
the number refers to the number of 5 1 2 byte disk blocks (or
16 byte memory blocks for MOUNT MEM). The postfix M
should be avoided since it provides only a very course
resolution of size. The postfix T refers to the number of

[MOUNT]

MOUNT

tracks under one head. It is often referred to as cylinders as
well.

m=segment - Starting segment of new memory being added. (top 16 bits
of 20 bit memory address). This will not work in protected
mode.

p=drive - Use this physical drive rather than drive 1 .
pa=os_type - Use the partition information to determine the correct offset

and size to mount the disk. You may still need to specify the
correct t=, h= and n=. The os_type may be the characters
qnx, dos or a number between 1 and 255. The characters
qnx are the same as the number 7 and dos is the same as the
number 1 . To use this option you must have set up a partition
using the FDISK command.

c=ctl addr - 1/0 control address used by driver. This option will rarely be
used since this information is in the supplied driver.

i=interrupt - Interrupt used by driver. This option will rarely be used since
this information is in the supplied driver.

-verbose - Don't display any messages.
+verbose - Display extra information about where the driver or file is

mounted.
u=user_data - Internal use.
+large_xtents - used with QNX versions < 2.06
-large_xtents - used with QNX versions < 2.06
w=write _precomp _ cyl

- used as options to specify your own user data space when
writing a disk driver.

Examples:

mount disk 2 t=80 h=2 n=8 - Mount drive 2 as a 640K floppy.
mount disk 2 s=640k - Also Mount drive 2 as a 640K floppy
mount disk 3 /drivers/disk.xt pa=qnx

mount ramdisk 5 s=128k

- Mount drive 3 as a hard disk using the
driver found in the file "/drivers/disk.xt" .
Mount the QNX partition.

- Mount drive 5 as a high speed memory
disk with 1 28Kbytes of storage (data is
stored in RAM instead of on a disk).
(Remember to DINIT the ramdisk before
using)

mount mem m=DOOO s=128k - Add 128K of memory starting at hex

mount debug
mount console $con2
mount xcache
mount cache d=3 s=48k

[MOUNT]

address DOOO.
- Load the system debugger into memory.
- Mount another console
- Mount a 2k extent cache (default)
- Mount a 48k cache on disk 3

Utilities

mount bmcache d=3
mount lib /config/qdb.slib
mount float
mount

Description:

MOUNT

- Mount a bitmap cache on disk 3
- Mount a shared library
- Mount a floating point library
- Query mounted disks and devices

MOUNT allows the user to add new disk drives and custom disk drivers into the
system. In addition, memory which is not normally recognized when the system
boots may be included. The MOUNT command may also be used to load the
system debugger into memory, or to load any core file into memory.

If MOUNT is executed without any arguments it will print out what disks are
mounted in the system, all devices which are present, and any mounted libraries.

When QNX boots for the first time, it assumes that the setting of the DIP switches
within the PC correctly indicate how many floppy drives are connected to the
system, and how much memory is installed. All floppies are initially assumed to be
the same size as drive 1 unless you are on an AT, in which case the setup informa
tion in the CMOS ram is used. MOUNT can be used to change the "sizes" of the
remaining disk drives if they differ. As in the first and second example, the number
of disk blocks which can be stored on a particular drive can be changed. Only
users which have a non-standard disk drive need to remount their floppy drives.

In the case of a floppy, MOUNT provides two pieces of information,

1 . The physical characteristics of the floppy drive. This consists of two
parameters, the number of tracks (40 or 80) and the number of heads (1 or 2).
The number of sectors/track is a function of the floppy diskette, NOT the
drive.

2. The default diskette format to be assumed for NON-QNX diskettes and QNX
diskettes formatted with early versions of the FDFORMAT command (QNX
1 . 1).

The FDFORMAT command places a table in block one of the diskette which
describes how the diskette was physically formatted. This information will always
override that specified by the MOUNT command. In the case where a drive is
mounted with 80 tracks and a diskette with 40 tracks is inserted (which contains an
override table) the system will perform double stepping to correctly read the
diskette.

Disk drives other than floppy disks require that a special driver be written to
handle them. The MOUNT command can be used to include these drivers into the
operating system. Special disk drivers are normally found on the boot disk under
the directory /config.

Utilities [MOUNT]

MOUNT

The MOUNT command allows a user to create up to 15 logical disks. Only the
first 8 may be real physical disks. The others may be REMOTE or adopted disks.
For example, the fllename "3 :/tmp/test" is found on LOGICAL drive 2.

A hard disk can be partitioned into several logical volumes. The first logical
volume on the hard disk must be mounted first, specifying the name of a disk
driver file. Subsequent logical volumes on that physical disk can then be mounted
by specifying that the same driver is to be used (d=). The following will mount a
QNX and a DOS partition. The DOS partition would be accessed by a QNX-DOS
file system task (DFS).

mount disk 3 /drivers/disk.xt pa=qnx
mount disk 4 d=3 pa=dos

If a driver is capable of supporting more than one physical drive, then the p= op
tion can be used to force a particular physical drive to be used. For convenience,
the "MOUNT DISK" form of the command with no driver specified will use the
floppy driver, implicitly using the same physical drive as logical drive. Thus
"mount disk 2" will mount a logical disk 2 on physical floppy drive 2.

The mount mem form of the command is useful in systems where non-standard
memory cards are being used which may require some initialization before being
included into the system. In systems with large amounts of memory, the system
may take a long time to power-up due to the automatic memory check which is
performed by the firmware. Some people prefer to set the DIP switches to indicate
some smaller amount of memory which reduces the time required for power-up.
The MOUNT command can then be used to install the extra memory into the
system. However, it is recommended that if this practice is followed, regular
memory diagnostics should be performed to safeguard against memory failure. On
8088 based PCs or XTs, it can be useful to install an extra 1 28K of ram above the
video card (at DOOO) and an additional 64K just below the video card (at AOOO)
for a total of 832K (640K + 1 28K + 64K). Many PCs have this RAM already
installed on the motherboard, just waiting to be used. The commands

mount mem m=dOOO s=l28k

mount mem m=aOOO s=64k

will "mount" this memory into QNX, ready for use by tasks or ramdisk.

The mount debug form of the command is used to load the system debugger into
memory. The name of a different debugger file may be given as an option.
Memory will be allocated for the debugger which will remain resident in memory.

[MOUNT] Utilities

MOUNT

The mount file and mount lib form of the command are provided to allow user
compiled and linked programs to be loaded into a block of memory which is
allocated by the operating system. How the file is mounted depends on the first
byte of the linked loadfile. The LINKER will by default create loadfiles with a first
byte equal to 1 . This byte can be changed with the PATCH utility. MOUNT
interprets this byte as follows:

1 : Common Code and Data (invalid in ATP) 2 : Not used 3 : Data Only 4 :
Code Only 5 : Common Code and Data (CS:OOOO = DS) 6 : Split Code and Data
(CS:OOOO = DS)

Type 4 is recommended for mounted libraries consisting of pure code (only seg 1
used in the assembler). Type 6 is recommended for libraries requiring local data
(MOUNT will put the data segment to use in byte 0000 of the code segment). The
+verbose option causes MOUNT to display the memory segments it has allocated
for loading.

Mounting a cache on a disk will usually speed up accesses to that media. A good
size for a cache is 48K. Mounting an xcache will cause the file system to cache the
linkage information which connects the extents within files. As a rule of thumb,
each xcache entry requires 1 6 bytes. Thus, only a few Kbytes of xcache can store
many extent headers. The FILES command will display how many extents each
file has, allowing you to judge how large an xcache might be useful. Xcache can
significantly increase performance for large data base files.

Normally the MOUNT command will be used in system initialization, and may be
conveniently included into the file "/config/sys.init" which is automatically
executed when QNX is booted.

Only SUPER users can use the MOUNT command with options .

See A lso:

FDFORMAT
FDISK
NACC
PATCH

Utilities

SEARCH
SH
STIY

[MOUNT]

MSORT - Merge sort utility

Syntax:

msort (file] [options] *

Options:

f=field[,field] *
I=max lines

+descending
+replace
r=outputJile
p=directory

-verbose

Where:

- Define sort fields
- Maximum number of lines to buffer in

memory
- Sort in descending order
- Replace file with sorted output
- Place sorted output in output file
- Pathname of a directory where temporary

files are to be placed. The default is the
current directory. .

- Suppress sort and merge phase messages

field is field offset . field width
left column is 0 -

Examples:

msort inventory f=0.10,10.4 +r
msort data f=10.5,4.3 r=sort_data p=/tmp

Description:

MSORT will sort files based on fixed fields in fixed records. Each record (line) is
terminated by a record separator (hex I E, '\n' in C programs) and all records
MUST be the same size.

The sort is accomplished in two phases. The sort phase reads and sorts the input
file in large chunks, appending the sorted chunks into two temporary files. The
merge phase merges the sorted chunks from the two files into larger chunks in two
other files. This is repeated until only one chunk remains. Unless -verbose is
specified a dot will be printed as each chunk is processed in each phase.

Utilities [MSORT]

MSORT

Sorting is based on the ASCII values of the characters in the file . The order and
definition of the fields is specified with the f= option. The offset is based at zero
which is the left hand column. The width is based at one which will sort a single
character.

The +r option causes the output of the sort to replace the contents of the original
file. The output may be redirected to another file using the r= option. If neither the
+r nor r= options are used, the output will go to the standard output which defaults
to the screen.

The sorted output will normally be in ascending order. This can be reversed to
descending order by specifying +d.

The I= option will limit the number of records MSORT will attempt to buffer in
memory. It can be used to keep MSORT small at the price of efficiency. If not
specified, MSORT will attempt to buffer the maximum number of records which
will result in a data segment of close to 64K.

During the sort and merge phase, MSORT will create temporary files with the
names

MSORT.n.nid.tid

where: n is 0, 1 , 2 or 3
nid is the nodeid of machine MSORT is running on
tid is the taskid of MSORT

These files will be removed if MSORT terminates normally. Users with a large
ramdisk may wish to place the temporary files there to increase performance. This
may be accomplished using the p= option.

See Also:

SORT

[MSORT] Utilities

MV - Move files

Syntax:

mv source Jile destination Jile
OR

mv file* directory

Examples:

mv *.c /c source

mv test.c good.c

Description:

- Move all c files to the directory
/c source.

- Rename the file test.c to good.c

The first form of MV will move a source file to the destination file. This form of
MV allows the file to be renamed as it is moved. If the directory of the destination
file is the same as directory of the source file, the file is simply renamed in place.

The second form of MV will move multiple files to the specified directory. This
provides a convenient method of moving multiple files in one simple operation.
The SHELL special characters *, ?, and [. . .] are useful for selecting the set of files
to be copied. If the error

LINE TOO LONG

is displayed, you will have to restrict the number of files moved and issue one or
more commands.

mv *.[co] dir - -> mv *.c dir
mv *.o dir

The utility WS is also useful for getting around this problem. For example:

ws " mv @ dir" p=*.[co]

Utilities [MV]

MV

The following two commands achieve the same effect using the two forms of MV:

mv /testlfile /release/file
mv /testlfile /release

- destination is a file
- destination is a directory

For all forms of MV, if the directory the source file is in is the same as the final
directory , then MV acts only to rename the file. If the destination directory is on
another device (e.g. moving across a network or from floppy to hard disk), MV
acts by copying the contents of the source file, then deleting it. If the directory is
on the same device, the file is logically moved, with no data actually being copied.

See A lso:

CP

[MV] Utilities

NACC - Set network access to disks , devices and CPU

Syntax:

nacc [cpu] [$device] * [drive] * [+read] [+write]
[-read] [-write]

Options:

cpu - Control access to CPU.
device - Control access to $device.
drive - Control access to disk drive.
+read - Allow read access.
-read - Disallow read access.
+write - Allow write access.
-write - Disallow write access.

Examples:

nacc cpu +write

nacc 1 $1pt $mdm -w -r

nacc 2 +read

Description:

- Allow non-superusers on other
nodes to execute commands on
this node.

- Remove network access from
drive 1 , $lpt and $mdm.

- Allow network access to drive 2.

NACC may be used to control network access to your local disks, devices and
CPU. If you remove both read and write, then network access will be denied. The
NACC command only affects network access. It has no effect on requests which
originate from the local machine.

Allowing CPU write access allows non super-users to execute tasks remotely on
your machine. CPU read access is not currently defined. The default at boot time
is to disallow everything.

Network access permissions do not apply to super-users (group 255) .

Utilities [NACC]

NACC

If a non super-user tries to execute a task on a remote node, he must have
previously allowed read I write access to his console. This is because his remote
task will try to access his console from across the network. For example, if the
command:

[4] mount

is executed from node 2, the user on node 2 must first have executed the command

nacc $con +r +W

to grant the mount command running on node 4 permission to display its output on
the user's console from across the network.

See Also:

ALIVE
MOUNT
SEARCH
STTY

[NACC] Utilities

NE 'f - Query machines on the network

Syntax:

net [node _id] options*

Options:

node id
-clear
+horizontal
+vertical
+repeat
p=priority
s=node id
e=node-id

Examples:

net
net 3

- Only display information on this node.
- Don' t clear the screen first.
- Horizontal display option.
- Vertical display option.
- Repeat until a key is typed.

Priority to run net (used with repeat).
- Start display at the indicated node.
- End display at the indicated node.

net s=6 e=15 +v
net -c +r

Description:

NET may be used to examine the resources o f machines connected together in the
local area network. NET may only be used with networking versions of QNX.

In the full screen display modes (+h or +V option), many nodes are displayed and,
if +repeat option is specified, continuously updated on the screen. Pressing any
key will cause NET to exit from repeat mode.

The s= option may be used to start the display at a particular node.

Note that NET will use the TCAP database to define the terminal characteristics
for full screen mode. If the terminal has not been defined, NET will display:

Can't find terminal type (see TCAP utility).

Utilities [NET]

NET

You must then define or set the terminal type using the TCAP command. Not using
the +h or +v option removes the need for the TCAP database.

NET displays the system resources which are free (out of total available) for each
node in the network. Free memory and available tasks virtual circuits are displayed
in all display modes.

The default, non full-screen mode of NET will also display the QNX version
number, free memory, CPU speed, number of ttys on that node, number of
signaling ports, maximum number of open files and the CPU flags for that machine
(same definition as for the TSK command).

See Also:

TSK
WHO

[NET] Utilities

NETBOOT - Service boot requests from the network

Syntax:

netboot [options] * &

Options:

- Broadcast boot packets.
- Print boot requests on the screen.
- Default boot file.

Number of retries on a network error.

+broadcast
+verbose
f=bootJile
r=retries
s=slow down - Pause between dumping boot packets on the network.

Examples:

netboot f=os.2. 1 0pcat &
netboot +v &
netboot +b s=3 &

Description:

NETBOOT accepts boot requests from machines which wish to boot over the
network. It must be running as a background task on the boot machine before
another (booting) machine can boot. Upon receiving boot requests it supplies boot
records to the requesting machines.

QNX operating system boot image files are kept under the directory /netboot. To
prevent confusion, the names of the files in this directory have been chosen to
indicate the operating system they represent.

os. n.n r type

where n.n
r

type

Utilities

- is the version number (eg: 2.1)
- is the release number (single digit 0 .. 9)
- is a hardware machine type

peat - IBM PC, AT, PS/2 or compatible
atp - IBM AT, PS/2 or compatible runing in protected mode
hv - HP Vectra (before the ES or GR series)
hvp - HP Vectra running in protected mode

(before the ES or GR series)

[NETBOOT]

NETBOOT

The following are typical boot files.

os.2.10pcat
os.2.10atp

- PC or AT, real mode, release 0.
- AT, protected mode, release 0.

The name of the file to boot from is set in a non-volatile ram on your network
card. If the boot file name in the card is left blank NETBOOT will default to the
file specified with the f=boot Jile option.

Unless requested, NETBOOT will only boot one machine at a time. If you select
the +broadcast option, NETBOOT will send boot requests to all machines in the
network. This allows more than one requesting machine to boot in parallel. There
is a danger in using broadcast. It will place a load on machines which are already
running and it is possible for a very fast server to overrun the network input buffer
of a slow machine which is trying to boot. To avoid this you may have to to slow
down NETBOOT with the s=slow _down option. You will have to experiment but
we recommend numbers between 1 and 100. The +broadcast option should be
avoided unless you really have a need for it.

You will probably wish to place this command near the end of the system
initialization file for the machine acting as the boot server.

[NETBOOT] Utilities

I�ElfS�ZE
NETSIZE - Configure Network Size

Syntax:

netsize [f=ifloppy] [h=harddisk]

Options:

f=Jloppy - Floppy disk drive to read from. Default = 1 .
h=harddisk - Hard disk drive t o write to. Default = 3 .

Examples:

netsize
netsize f=2
netsize f=[2]1 h=[5]3
netsize h=[2]3

Description:

NETSIZE i s used to configure the size of the network. I t does this by prompting
the user to insert each Boot disk and Network Expansion disk purchased into the
indicated floppy drive. For each floppy disk inserted, NETSIZE copies the network
size information to the indicated hard disk. The defaults are to read from floppy
disk 1 and to write to hard disk 3, but these can be otherwise specified with the
f=Jloppy and h=harddisk options. If the local disk drive is not compatible with the
media (for example, 3 .5" and 5 .25" disks), a network remote floppy drive can be
specified as:

$ netsize f=[3]1

This causes NETSIZE to read from floppy drive 1 on node 3 and to write the
network size information to the hard disk 3 on the local machine. NETSIZE should
be run such that it writes to the 3 :lnetdisks directory on each hard disk in the
network that a machine will be booting from.

Every QNX Boot disk is worth 1 node on the network and Network Expansion
disks are worth various numbers of nodes. NETSIZE makes it possible to to
combine these various disks into a larger network license. If you currently have a
10 node network, and wish to add 5 more nodes, all you need to do is to purchase 5

[NETSIZE] Utilities

NETSIZE

more network cards and a network expansion disk which is good for 5 nodes. Re
running the NETSIZE utility, and inserting the new network expansion disk when
prompted will automatically upgrade your hard disk to reflect the new network
size. Rebooting QNX from this hard disk will cause the new network size to take
effect.

The BACKUP and TBACKUP utilities will copy the files stored within the
lnetdisks directory but the copied files are not useful for network configuration.
You should specify that TBACKUP and BACKUP not copy the contents of the
lnetdisks directory (at least for the restore). If you are restoring from a backup to a
hard disk, you will need to re-run NETSIZE with your various disks to have the
node boot from its own hard disk and also participate on the network. This also
protects the network from network workstations booting from floppy disk and
accessing the network, since only a hard disk boot from a disk where NETSIZE
has been run can participate on the network.

For a first time installation, the 3 :lnetdisks directory is automatically created by the
INSTALL utility before it attempts to run the NET SIZE utility. If you are
manually running the NETSIZE utility it is important that the 3 :lnetdisks directory
be manually created first. Manually creating this directory helps to ensure that the
local !netdisks directory will be updated, and not another one on the network.

If at any time things appear to not work, ZAP the 3 :lnetdisks directory on the hard
disk, use MKDIR to create a new 3 :lnetdisks directory and re-run NETSIZE. Also
run CHKFSYS to reclaim the disk space lost by using ZAP.

See Also:

Network Installation section of the QNX Manual

Utilities [NETSIZE]

I ·. ·:-. . :·.-:·: . : :-. : :-. · . : · -: : :-:· · ' ' ' '' -:-

�tst�t�nPS
NETSTATS - Display network statistics

Syntax:

netstats [options]*

Options:

n=node - The node whose statistics you wish to query. The default
is your local node.

+clear - Clear the statistics after returning their current values.
+report - Generate report style output
+all_nodes - Display statistics of all nodes on the network.
+monitor Enables monitering of network.
o=oftset - Offset in minutes for displaying logged information.
dl=dd-mon-yy - Start date for displaying logged information.
d2=dd-mon-yy - End date for displaying logged information.
tl=hh:mm:ss - Start time for displaying logged information.
t2=hh:mm:ss - End time for displaying logged information.
d=monitor depth -

- Monitor sample size. Default is 1000 samples.
m=monitor mask -

- Mask of bits to monitor (hex).

Description:

NETST A TS will print out network statistics on a node in the network. These
values can be used to detect network errors and network load experienced by a
node. Unless you use the +clear option, the counters used for the statistics will
continue to increase in size over time. You must be a super-user to clear the
counters.

The following information will be displayed:

Min Packet Queue: 97
Each outgoing message is placed in an outgoing packet queue. Messages will be
lost if this queue goes to zero. This field displays the minimum number of free
entries the queue has experienced.

Packet Queue Overruns : 0
Each time the packet queue goes to zero and a message is lost this number is
incremented. This number should remain at zero.

Utilities [NETSTATS]

NETSTATS

Network Rx Packets : 24,795
The number of packets transmitted by this node.

Network Tx Packets : 22,257
The number of packets received by this node.

Recmnfigwratiorns: 32
How many times the physical network has reconfigured since your node was
booted. This value will increase every time a new node enters the network, and
should not be considered an error. If this value increases when no node enters or
leaves the network, it could indicate faulty networking hardware or noise on the
cables (possibly caused by passive hubs).

Network Tx Errors: 7
This value indicates the number of packets which were corrupted while
transmitting, or which were sent to non-existent node-ids. Non-zero values should
not necessarily be considered an error, since QNX will retry several times. Every
network reconfiguration COULD cause this value to increase. A poller will cause
this value to increase every time a non-existent node is polled.

Network Tx Timeouts : 0
This value indicates the number of times packets were unable to be sent to another
node which has a working network card, but whose software is not responding.
This should be considered an error unless a poller is running on your machine.

Network Tx Aborts : 1
This value indicates the number of times QNX gave up when trying to transmit a
packet. This should be considered an error unless the poller is running on your
node.

Network Rx Errors: 0
This indicates how many bad packets were received. This value should always be
zero.

Network Rx Duplicates: 0
This value indicates how many duplicate packets were received and rejected. There
is a possibility of receiving a duplicate packet whenever a new node enters the
network, or whenever the network is noisy. Non-zero values are not necessarily an
error, but could indicate faulty hardware if excessive.

Network Monitor Mode

The Network Monitor Mode can be very useful for examining and diagnosing
your network. It will keep track of a series of events related to your node in rela-

Utilities [NETSTATS]

NETSTATS

tion to the rest of the network. Here is a list of the events which are logged :

Event

TX Retry
TX-Failed
RX-Duplicate
RX-Invalid
Reconfig
RX Failed
Timeout
Netboot begin
NetbooCend
Net_po(_fail
Net _poll_ down
Net _poll_ up

Mask Bit

OOOlh
0002h
0004h
0008h
OOlOh
0020h
0040h
0080h
OlOOh
0200h
0400h
0800h

Each entry is time stamped. To enable logging, enter the following at the command
line (or put in your sys.init.nn file) :

netstats +monitor

Then at any time in the future, you may query the current in memory log of events
by entering :

nets tats

The m=monitor _mask option can be used to select (mask) which events you wish
to monitor/log. See the above table for the mask bit definitions.

The following options can be used for displaying the logged information :

o=offset
dl=dd-mon-yy
d2=dd-mon-yy
tl=hh:mm:ss
t2=hh:mm:ss

See Also:

NETTEST

Utilities [NETSTATS]

NET'fEST - Check data transmission between two nodes

Syntax:

nettest node [min [max]]

Options:

node - The destination node to test. You local node is
always the source.

min The minimum number of 16 bit words to send. Default 1 .
max - The maximum number of 1 6 bit words to send. Default 500.

Description:

NETTEST will send data between your local node and a specified destination node
checking the data at both ends. To accomplish this, NETTEST creates a remote
task on the destination node. If you do not specify the minimum and maximum
number of 16 bit words to send they default to 1 and 500. Messages of random
size between these two values are generated for the test.

NETTEST should run without errors for millions of messages. Errors can occur
when cables are disconnected from machines connected to a passive hub.

See Also:

NETSTATS

Utilities [NETTEST]

0 NTTY - Create task on another tty

Syntax:

ontty ttynum command-line
ontty ttyname command-line

• This is a local shell command •

Description:

The ONTIY command executes the indicated command on the indicated tty. The
command is detached from your terminal and inherits your accounting imormation
and current directory. After mounting a console you may wish to create a SHELL
or LOGIN on that console.

mount console $con2
ontty $con2 sh

. OR
ontty $con2 login

If this command is combined with the syntax of remote task creation, then the
remote node should precede the ONTIY. You may also specify the node number
as part of the device name.

[4] ontty $con2 ed file

ontty [4]$con2 ed file

These will create the editor on $con2 of node 4. The editor will attempt to read the
indicated file using the search order on node 4.

If you know the device number you may directly reference it.

ontty 3 login

See Also:

MOUNT

[ONTIY] Utilities

OSCO NF][G - Change operating system parameters

Syntax:

osconfig filename [+1-dos]*

Options:

filename - The name of the configuration file.
+dos - Enable the reserving of base memory for DOS
-dos - Disable the reserving of base memory for DOS

Examples:

osconfig 3 :/config/sys.cfg
osconfig 3 :/config/sys.cfg.4 +dos

Description:

OSCONFIG allows you to specify a configuration file which lets you change some
of the operating system defaults such as the number of open files supported.

An operating system may boot from 1 of three sources .

1. Floppy
2. Hard Disk
3. Network

When booting over the network, the NETBOOT command attempts to open a file
by the name

/config/sys.cfg.nn

where nn is replaced by the node number of the booting machine. If successful,
the operating system will use the parameters in this file, otherwise it will use it 's
defaults.

Booting from disk is a little different. The configuration file must be explictly
bound into the operating system using the BOOT command. This is specified as a
c=3:/config/sys.cfg.nn option to the BOOT command. You may select any file
name, however, we suggest you use the same convention as that used by
NETBOOT. On a single machine you may omit the ".nn".

Utilities [OSCONFIG]

OSCONFIG

/config/sys.cfg - Single machine.

/config/sys.cfg.nn - Network machine.

The sys.cfg file is created and maintained by the OSCONFIG command. For
example

osconfig 3 :/config/sys.cfg

would create a configuration file for a single non-networked machine. It is active
for network booting but does not become active for disk booting until you use the
BOOT command to set it.

NOTE: When booting from hard disk you should not remove the config file
name after you have selected it with the BOOT command. You may copy a new
file on top of it but NEVER remove it (FREL, RM, . . .) and then create a new one
even if it has the same name. The BOOT command saves away the absolute
starting block numbers of each of these files which will change once the file is
removed. When booting over the network, the NETBOOT command opens the
file through regular means and this is not a concern.

See Also:

BOOT
NETBOOT

[OSCONFIG] Utilities

P - Print file contents on terminal

Syntax:

p [file] [+raw]

Options:

file - Name of file to print (default: keyboard)
+raw - Don' t expand control characters

Examples:

p joe
p picture +r
p filel >$1pt

Description:

The P command prints the contents o f a file. Output i s sent to the standard output.
If no input file is specified, it will default to the standard input. Any unprintable
characters will be expanded into Vzh where hh is the hex value of that character.
This expansion can be turned off by specifying the +r option.

See Also:

COPY
DUMP

Utilities [P]

PACK - Pack a file to reduce its size

Syntax:

pack file* [-remove] [-verbose] [-time]
or

pack <infile >outfile [-verbose]

Options:

-remove - Suppress the removal of input files.
-verbose - Suppress status messages.
-time - Retain original file time. Set to current time by default.

Examples:

pack *.c

unpack *.z

pack <text >packed

Description:

- Pack all C files
in current directory

- Unpack all packed files
in current directory

- Pack file "text" and put
packed file in "packed"

PACK compresses files into a more compact form. Any file can be packed, but
program source files and text files benefit the most, typically shrinking by 35%.
Files containing only a limited character set, such as dictionary files, may shrink as
much as 48%. Packed files look like gibberish and must be unpacked before they
can be used.

The unpacker, UNPACK, expands packed files into exact duplicates of the
original.

As each file is packed, a of message of the form:

Analyzing " filename" ... packing ... size = 70% of original

will be displayed. This can be suppressed by specifying the -verbose option.

Utilities [PACK]

PACK

When the first form of PACK is used each file will be replaced by a file with the
same name and a .z appended. A filename may not exceed 1 6 characters so you
should limit the name length of input files to 14 characters. The input file will by
default be removed. You can suppress the removal by specifying the -remove
option.

When the second form of PACK is used it will read from the standard input and
write to the standard output. In this case the input file will never be removed and
you have control over the name of the output file.

The data in the file is treated at the byte level rather than the word level, and can
contain absolutely anything. The compression is in two stages: first repeated byte
values are compressed and then a Huffman code is dynamically generated to match
the properties of each particular file. This requires two passes over the source data.

The decoding table is included in the packed file, so packing short files can
actually lengthen them. Fixed decoding tables are not used because English and
various computer languages vary greatly as to upper and lower case proportions
and use of special characters. Much of the savings comes from not assigning codes
to unused byte values.

See Also:
UNPACK

[PACK] Utilities

PARK - Park the heads of a hard disk

Syntax:

park drive

Options:

drive - QNX drive number of disk to park.

Examples:

park 3 - Park heads of dive 3 .

Description:

PARK is called to park the heads of a hard disk prior to turning power off the
machine. A disk with parked heads will have a much smaller chance of being
damaged should power fail, or if the unit is being moved.

The PARK utility will determine the actual size of the hard disk and attempt to
move the heads to the inner-most track of the disk.

IMPORTANT: The PARK utility remounts the hard disk to position the heads, so
should only be called when the system is idle. No other users or programs should
have any open files when PARK is issued.

[PARK] Utilities

PASS 0 N - Tum on password protection

Syntax:

pass on

• This is a local shell command •

Description:

The PASSON command will cause the LOGIN command to look for the file
"/config/pass" and enforce password protection on login. If this file does not exist
you will be unable to login. Systems that have booted from a QNX network will
have passwords on by default.

Once passwords are enabled, they cannot be turned off.

Utilities [PASSON]

PATCH - Patch files

Syntax:

patchjile [options] *

Options:

o=offset - Specify offset in file to patch (hex) .
b=byte - Specify new byte at this offset (hex).
s=stack size - Set the stack size for an executable program.
+change_user - Make command run with effective user

of user which owns the file.
-change_user - Remove change _owner flag.
+high_load - Force command to be loaded into high

-high_load
+privileged
-privileged
+remote_ok

memory.
- Remove high load flag.
- Make commalid privileged.
- Remove privileged flag.
- Allow command to be executed on a

remote node.
-remote_ok - Don't allow command to be executed

+shared
-shared
+8087
-8087

Examples:

patch program

patch core +p

on a remote node.
- Make command sharable.
- Remove shared flag.
- Indicate that command needs an 8087.
- Pretend that the command doesn't

need an 8087.

- Display the current patch status of the file.

- Make the file "core" privileged.
patch my _prog +S

- Make "my _prog" sharable.
patch data o=2 b=2a

- Patch the 3rd byte of the file "data" replacing it with the byte
2a hex.

[PATCH] Utilities

PATCH

Description:

PATCH can be used to modify the attributes of an executable file or i t can be used
to patch any byte in the file.

Setting the change_ user flag will cause the command to assume an effective user
number which is the same as the file. If the file is owned by the super-user, then
the command will run with super user privileges regardless of who executes it. For
example,

patch /cmds/date +c

will allow anyone to set the date.

Setting the high load flag causes the code segment to be allocated at the top of
memory. Normally code and data are allocated at the low end of memory. This
flag may be set on tasks which remain in memory for long periods of time (such as
CLOCK). By keeping these long lived code segments high in memory, memory
fragmentation problems are reduced.

Setting the privileged flag allows the privileged system functions to be used. Only
files which are created by the super-user AND which have been made privileged
will be allowed access to these functions. The absolute disk block 1/0 functions of
DISK_READ_BLK and DISK_ WRITE_BLK require that the task be privileged.

Setting the remote_ ok flag allows a command to be executed on a remote node
even if remote task creation has be disallowed on that node. This allows informa
tion programs to be run remotely by a non super-user.

Setting the shared flag allows multiple instances of this command to be created
without going to the disk. Instead, the code is shared and any constant data is
copied form the data segment of an existing task. Each task will still have its own
data segment. For example, the SHELL and the EDITOR have been made
sharable. The program must not have have any initialized global variables.

Setting the +8087 flag _will cause th!! system to refuse execution if there is NOT an
8087 installed in the system. Any programs which contain 8087 opcodes will
automatically cause this flag to be set. However, in some instances, the majority of
a program may never use the 8087 and can still be used on systems which do not
have an 8087 so long as these opcodes are avoided. For these programs, the -8087
option allows the USES_8087 flag in the load file to be turned off. It is the user' s
responsibility to assure that these opcodes are never used on machines which do
not have an 8087, as the hardware will hang forever!

Utilities [PATCH]

PATCH

See Also:

DUMP
SPATCH

[PATCH] Utilities

PATH - Change command search path

Syntax:

path searchpath

• This is a local shell command •

Description:

Each time a command which does not start with a slash i s executed b y the shell, a
list of directories is searched for an executable file. The default is "/cmds/"
followed by the current directory. This may be changed using the PATH
command followed by a list of directories surrounded by exclamation marks. For
example, to search the current directory followed by "/cmds" followed by
"/user/cmds"

path ! !lcmds/!/user/cmds/!

and to return to the default

path !/cmds/ ! ! OR path

You may print your current search path with

path ?

Utilities [PATH]

lfPOll
POLL - Poll nodes (network version only)

Syntax:

poll [+verbose] [-verbose] [l=logJile]
[p=poll _yeriod] [r=retries] [s=slow _yo!! _yeriod]

Examples:

poll &
poll +V
poll l=poll.log &
poll p=20 &

Description:

- Run the poller.
- Run poller with full screen display.
- Create a log of status changes.
- Poll nodes every 20 ticks (1 second).

The POLLER is responsible for ensuring that resources are reclaimed when a node
goes down. It should be run on a node which is always UP, probably the node
which is used to download other nodes, or acts as a fileserver to other nodes.

The POLLER scans all nodes which are alive and ensures that they are capable of
receiving communications. If a node fails to respond to the poller in a reasonable
amount of time, it is marked as DOWN and all other nodes are informed. This has
the effect of releasing any resources which this node may have been used
anywhere on the network.

The POLLER will also poll one DOWN node for every complete cycle of polling
UP nodes. This is called the slow poll and may be eliminated by specifying "s=O" .
The slow poll will discover nodes which have recently booted, but at a much
slower rate than it finds nodes which have crashed. The s= option can also be used
to reduce the rate of slow polls if discovering newly booted nodes is not critical.

The POLLER will poll a node every 5 ticks which amounts to 4 polls per second.
The p= option can be used to alter this rate, but the default rate provides good
results for most network configurations. The POLLER decides that a node has
crashed when it has attempted to poll the same node 3 times without receiving a
response. The number of retries can be changed with the r= option, but 3 retries
should be sufficient since QNX will always reply to poll messages immediately if
it is UP, and the network should never be so busy that a poll message can't be sent
and a reply received within 1 second.

[POLL] Utilities

POLL

The operating system will not initiate any communications with another node
unless it thinks that node is UP.

When a node changes from UP to DOWN, the operating system automatically
releases any resources which were being used by tasks on that node (usually files),
and unblocks any local tasks which were waiting for messages from tasks on that
node. This cleanup does not take place on the transition from UP to BUSY, or
BUSY to DOWN.

BUSY status is useful to temporarily remove a node from the network without
releasing any resources on other nodes. This might be done on a node before using
the debugger to prevent the POLLER from flagging the node as down.

alive +b

When the debugging session has ended, the alive command can again be issued to
tell the poller that the node is now UP and ready to receive communications from
other nodes.

alive +up

When a node is first booted, it is usually a good idea to inform the poller that the
node is now up rather than waiting for the slow poll to discover the fact. The poller
will then broadcast this information to all other nodes in the network. To achieve
this, include the ALIVE command in the "/config/sys.init" file.

alive +n

NOTE: For proper operation, only ONE poller should be running on a QNX
Network.

See Also:

ALIVE CLRHOUSE KILL_ VCS NACC

Utilities [POLL]

PRI - Set priority

Syntax:

pri number
pri +number
pri -number

Description:

• This is a local shell command •

Set the priority of commands executed by the shell. A '+' increases it while a ' - '
decreases it. I f no argument is given the priority i s set to the default of eight. The
priority must lie within 4 and 1 5 with 4 being the highest priority. Smaller values
have higher priority. The command.

pri -1

will ADD one to your priority number which will cause the command to run at
LOWER priority. The priority number may be seen by using the tsk command and
noting it's priority. This command does not affect the priority of the shell itself,
only the commands executed by the shell.

[PRI] Utilities

PR 0 MPTT - Display tty number

Syntax:

promptt

• This is a local shell command •

Description:

The PROMPTT command will toggle the display of your tty number before the
standard shell prompt. It is useful when you have several windows mounted on the
console which may be difficult to tell apart.

3 $ will be displayed if you are logged into $tty3

Utilities [PROMPTT]

PRTSC - Print Screen

Syntax:

prtsc

Options:

none

Description:

PRTSC saves the console screen, then pops-up a menu in a full screen window
which allows you to select one of several options. One of these choices allows you
to make a hardcopy of the saved screen. Another allows you to save the screen
contents in a file.

This command is invoked automatically by QNX whenever the user types
Ctrl-Alt-PrtSc on the console keyboard. The screen is restored automatically when
PRTSC terminates . PRTSC can therefore be used as a means of executing
commands without destroying the contents of the screen.

A file of additional menu items can be created by the user, which will be added to
the menu already supported by PRTSC. This file is called /config/prtsc.cfg and
consists of one or more text lines. The first 1 2 characters are used as the menu
identifier. The command which starts in the 14th column will be executed when
this menu item is selected. A sample file would look like :

Calculator
Mail
Cardfile
AP
Chat

[PRTSC]

cal c + f
mail
cardfile
ap
chat

Utilities

PRTSC

With the above data in the file /contig/prtsc.cfg, PRTSC would display a menu
like:

a) D o Not h i ng
b) P r i n t S c r e e n
c) S ave S c r e e n
d) C a l c u l a t o r
e) Ma i l
f) C a r d f i l e
g) AP
h) C h a t

Typing the indicated letter will perform the associated function. Also, an inverse
video cursor can be moved with the UP and DOWN arrow keys. Typing Enter will
select the highlighted function.

See Also:

CALC

Utilities [PRTSC]

PWD - Print Working Directory

Syntax:

pwd

Options:

nont

Description :

The PWD command will display the complete pathname of the current directory.
Under the network version of QNX, the pathname will be preceded by your node
number in square brackets.

See Also:

CD
LS

[PWD] Utilities

Q CP - QNX Communications Protocol

Syntax:

qcp [device] SEnd [options] * src_file[,dstJile] [x=index_file]
qcp [device] REceive [options] * [f=forcedJilename I p=prefzx]

Options:

device - Name of QNX device to use (default: current device).
-mak.e_dir - Suppress making directories for received files.
+newest - Receive only files that are newer than existing files.
+relaxed_timing - Double timeouts and quadruple retry counts.
+today's_date - Place today' s date on received files.
+verbose - Display error status while transferring files.
-verbose - Display nothing during the transfer.
f=filename - Force received files to have this name.
p=prefix - Place this prefix on the names of any received files.
s=packet _size - Set size of transmitted data bursts (default: 2048).

Description:

QCP provides the error checked file transfer protocol needed by Qtalk, Qterm or
QCL (QNX Communications Language) to transmit or receive files. The QCP
protocol achieves both high efficiency on packet switched networks and high
reliability due to the use of 16 bit CRCs (Cyclic Redundancy Check). QCP is
specific to the QNX environment and automatically sends files with their path
name, attribute, permissions and date fields intact.

QCP is another one of those commands that needs the timer administrator task
running in the background. This can be accomplished by executing the command:

timer &

or by placing it in the sys.init file so that it is always present.

When connected to another QNX system through a serial port and running Qtalk or
Qterm, files can be transferred from the remote system to the local system by
giving the remote system a command of the form:

Utilities [QCP]

QCP

qcp se filet file2,file3 x=file4

This example would send file l , send file2 and cause it to be received with the
filename "file3" and then send all the files named in the index file "file4". Index
files are easily created with the LS or FILES command. The Qtalk. and Qterm
programs will automatically start QCP on the local side to receive the file. To
explicitly invoke QCP to receive a file, a command of the form:

qcp $mdm re

should be given. This would start up the QCP task such that it would receive the
file from the $mdm device.

To send files to the remote system, Qtalk or Qterm can be commanded to invoke
QCP with the appropriate options to send the file. Before starting the QCP send,
the remote side must have a QCP task in a receive state. This can be accomplished
by giving the remote system the command:

qcp re

If the send side of the QCP file transfer is being explicitly started from another
task, rather than automatically from within Qtalk or Qterm, the send command
would look like:

qcp $mdm se filename

This would send the named file(s) through the $mdm device using the QCP
protocol.

While a QCP file transfer is in progress, it can be aborted by pressing the space bar
or the escape key. QCP will provide a prompt to which a 'y ' can be supplied to
abort QCP. If a remote QCP in a receive state must be shut down, the control
character sequence "V "X "X will abort it.

See Also:

FILES LS QTALK

[QCP] Utilities

QT ALK - Talk over Communications Line

Syntax:

qtalk [system] [options]*

Options:

- The name of a system you wish QT ALK to call.
- Local echo.
- Support flow control on the incoming data.
- Ignore 8th bit of received characters.

system
+echo
+iflow
-parity
c=hh - Specify character which invokes QT ALK commands.

d=delchar
l=logfile
m=modem
b=buf size
k=hh -
p=hh
o=option

Examples:

qtalk home
qtalk +e d=08

(Default is CTRL-A).
- Replace ASCII RUBOUT with de/char.
- Log session into "logfile" .
- Name of async device (Default: $mdm).
- Size of receive buffer. (Default: 4000).
- Kick character.
- Pause or turnaround character.
- Option(s) to be used for file transfer protocol.

- Phone home. (Pretend you are E.T.).
- Communicate with a machine which does not echo (half

duplex) and expects an ASCII BACKSPACE to delete
characters.

qtalk l=$1pt
qtalk k=ll p=Od

- Communicate with another system with hardcopy record.
- Prepare to send a file to a mainframe which sends Ctl-Q

qtalk m=[l]$tty6
when ready for input.

- Use the $tty6 serial port on node- I .

Utilities [QTALK]

QTALK

Description:

QT ALK allows QNX users to communicate with other computers via a modem.
The destination may be another host computer (mainframe) in which case QT ALK
allows your computer to be used as a terminal. QT ALK also allows two QNX
users to communicate and transfer files.

QT ALK will send any characters typed on the keyboard to the other system over
the modem. Any characters received by the modem are displayed. In local-echo
mode, typed characters are echoed on the display as well as being sent over the
modem.

A recording of a QT ALK session can be filed using the I= option.

l=$lpt
or

1=/tmp/Iogfile

A special COMMAND character allows special modes and options to be set while
within the QT ALK environment. This special character defaults to control A
(Ctrl-A), unless changed with the c= option before entering QTALK. The character
following the COMMAND character is interpreted by QTALK to perform some
special function. If the next key is not a valid QTALK command, then it will be
echoed to the modem. Hence Ctrl-A Ctrl-A will send a single Ctrl-A to the
modem.

The QT ALK commands can be one of the following:

b - BREAK
Send a break over the modem. Breaks may also be sent by pressing the
BREAK key (Ctrl-BREAK on the console keyboard). NOTE: if you
press the break key four times in a row, without typing any intervening
characters, QTALK will terminate, as if you had invoked the x (exit)
command.

c · CHANGE DIRECTORY

[QTALK]

QT ALK will prompt you for a new directory name, and will attempt to
change directory to it. If successful, the specified directory will become
the current "working directory" (see the command PWD), for the dura
tion of QT ALK, or until you change directory again. When QT ALK
terminates, your current working directory will revert to the directory
you were in when QTALK was invoked.

Utilities

QTALK

d - DIAL SYSTEM
QTALK wi l l prompt you to enter a system name. I f that name i s found
in the dia l .d ir fi le, the associated string (usual ly a modem dial ing
command) wi l l be sent to the modem. I f you enter a question mark (?)
for the system name, the contents of the dial ing directory wi l l be
displayed, and you will re-prompted for the system name. Pressing
return, without entering a system name will abort the dialing command,
and return you to normal communications mode.

Dial ing is imp lemented by looking up the system name (which can also
be specified on the command l ine when QT ALK is invoked) in a fi le
/configldial.dir. This fi le is of the form :

system-name dialing-command

The system name may be any string of characters (except for spaces and
tabs) of imy length. The dial ing command is any characters (including
spaces and tabs) which are sent to the modem. Typical ly this would be
the dial ing command for your modem, and the phone number to dial .
The system name and the dial ing command are separated by one or
more spaces and/or tabs . An example d ia l ing directory entry that
instructs a Hayes-compatible modem to ca l l the QU ICS update system
would be :

quics ATD 1 6 1 359 1 0934

e - ECHO
The local echo feature is toggled. Some mainframes expect the
"terminal" to perform local echoing.

h - HANGUP
The CTS!RTS l ines wi l l be lowered for approx imate ly 1 /2 a second.
This permi ts modems which support hardware hangup to do so.

- LOG
Begin or end logging of th is sess ion . I f no log fi le is open, then QT ALK
wi l l ask for the name of a fi le to log into . I f logging is a lready in
progress, then i t wil l be terminated and the log fi le c losed. LOG wi l l
record every character which is sent OR received in the log fi le.

o - TRANSFER OPTIONS

Ut i l ities

QTA LK prompts for the options to use when invoking a fi le transfer
protocol . Often, the QCP "+newer" option i s used to condit ion the
transfer to ignore fi les which are older than the copy you a lready have
on disk . This can be a real t ime-saver when downloading an update
from QU ICS (the QNX Software Update system) .

I QTALK]

QTALK

For example :

Transfer options: +n

p - PARITY
Ignore parity (top bit) of received characters. If this option is already
set, then tum it off.

q - QUIT and HANGUP
This does a hangup command (see above) before exiting from QTALK.

s - SEND A FILE

[QTALK]

Send a file using the QCP file transfer protocol. This sends a file to
another system running the same protocol, which is far more secure
than simply writing the file to the modem.

QCP is a very secure, fast protocol specifically designed for QNX. It
permits information about the file (the file date, attributes and
permissions) to be transferred, as well as the file contents. QCP is
ideally suited for use over public packet switch (X.25) networks, as well
as direct modem-to-modem connections. If communication errors are
encountered, portions of the file will automatically be resent until the
far end acknowledges correct reception of the file.

More than one file can be sent by specifying x=filename when QT ALK
asks for the file to send. This file will contain a list of files to send, one
per line. You can also specify more than one filename, separated by
spaces.

QT ALK allows you to follow the name of the file to send with the name
of the destination file separated by a comma. This is also true for file
names within an index files (x=). For example :

Send file(s)? filel main.c,new _ main.c

will send the file "file ! " as "file ! " and the file "main.c" with the name
"new _main.c" . If no new name is given, then QT ALK will create a file
with the same name as the file which is sent.

Files received by QT ALK using the QCP protocol will have the same
attributes and date as the file on the sending machine.

Protocol transfers require that the modem port be configured for 8 bit
data (see the STTY command).

Utilities

QTALK

u - UPLOAD TEXT
Upload text to another system. This permits text files to be sent to
another computer using a simple handshaking protocol based on the
pause and kick characters, specified on the command line. If local-echo
is not enabled (see the e command, above), QT ALK will wait for the
character to be echoed by the remote system, before sending the next
character. If local-echo is enabled, the text will be written to the
modem with pauses only when the pause character is encountered.

A text upload may be aborted at any time by pressing the Escape key
(ESC), or by pressing BREAK (Ctrl-BREAK on the console keyboard).

NOTE: you must specify both the pause and kick characters to use the
upload handshaking protocol. If either (or both) characters are not
defined, then it is the same as issuing a w (write) command (see below).

w - WRITE
Write a file to the modem. The file will be transmitted over the modem,
and also echoed on the display if local echo is enabled. WRITE also
allows files to be transferred to mainframes or other users with
handshaking, but no error checking (described below).

Writing to the modem may be aborted at any time by pressing the
Escape key (ESC), or by pressing BREAK (Ctrl-BREAK on the console
keyboard).

The primary difference between upload and write is whether or not to
wait for the character to be echoed by the remote system, before sending
the next character.

x - EXIT
Exit from QT ALK without performing a hangup. It is probably a good
idea to get in the habit of using the q (quit and hangup) command for
leaving QTALK, unless you really mean to not perform a hangup.

- Execute a shell command
This permits you to execute any command from within QT ALK.
Typical usage of this would be to execute the ls command to discover
what files are in your current directory prior to uploading or sending
some of them, or to execute non-native file transfer protocols (such as
Xmodem or Kermit) from within QT ALK.

When communicating at high baud rates, the logging facilities may interfere with
apparent response. The QNX operating system internally buffers up to 256
characters while data is being written to a file or printer. QT ALK adds another

Utilities [QTALK]

QTALK

level of input buffering which can hold a larger number of characters. This buffer
size can be changed with the b= option on the command line. The default buffer
size is 4000 characters. Very high speed modems, or logging on slow printers or
floppy disks may cause this buffer to be overrun, in which case some characters
may be lost. Input flow control can be enabled (see STIY) prior to invoking
QTALK, or at the time QTALK is invoked using the "+i" option, to prevent
characters from being lost in these cases, provided that the machine which is
sending the data supports flow control of its output.

Two methods are supported by the QT ALK utility which allow users to transfer
files. The simplest method is invoked using the upload, write and log commands
to send and receive text files to/from another system. No error checking is
performed so this method should only be used when communication lines are good
(ie. direct connect lines ()r local modem connections). The send and receive
commands use a more sophisticated protocol which includes error checking and
re-transmission when transferring files to other systems.

Two parameters can be specified on the command line to select the protocol which
is used by the upload command. These parameters are:

p=hh - PAUSE or turnaround character (hex). If upload detects this
character in the file it is sending, it will be sent and QT ALK will
pause waiting for a KICK character to be received. Setting PAUSE to
a CR (OD hex) will cause upload to send one line at a time.

k=hh - KICK character (hex). This character is used in conjunction with the
PAUSE character by upload to handshake with other computers
when transferring files .

These parameters allow the protocol to be adjusted according to the characteristics
of the hardware at each end.

The write command can be used to transfer files to other systems which can accept
input without needing to pause for any form of handshaking. For slower systems
(especially systems running full-duplex), the upload command is more
appropriate. The log command can be used to take "snapshots" of data from a host
mainframe at slow speed.

To send a file to a mainframe, the user can use QT ALK to enter into input mode of
the mainframe's editor. The upload or write command can then be used to send a
QNX file to the mainframe. QT ALK should be invoked with p=Od to cause one
line at a time to be sent. KICK should be the prompt character which is printed by
the mainframe editor whenever it is ready to receive a new line. On some
mainframes this may be a Ctl-Q or it may be a prompt character such as a dot (.).

[QTALK] Utilities

QTALK

The d= option is very useful when communicating with mainframes which have a
different RUB OUT character than you are used to. Many mainframes use the
backspace key (hex 08) to erase a character. QNX systems default to the ASCII
RUBOUT character (hex 7F). Typing:

qtalk d=08

will cause QTALK to translate your RUBOUT key into backspace automatically.

See Also:

CHATTR
QCP
STTY

Utilities [QTALK]

QUERY - Query the utilization of a disk

Syntax:

query [[node]drive] [-address] [+display] [+hex] [+visual]

Options:

-address - Don't print addresses at the side of the bitmap
displayed with the +display option.

+display - Display bitmap using character graphics and decimal addresses.
+hex - Use hexadecimal notation for the +display option.
+visual - Maintain a real time bitmap display.

Examples:

query
query 3
query 3 +d
query [2] 1 +V

Description:

QUERY allows the user to determine how much room is free on a disk. QUERY
will examine the bitmap of the disk on the indicated drive and report how many
blocks are used and what percentage of the total available blocks this corresponds
to.

The +Visual option is useful for monitoring how much space is left on a ramdisk or
floppy disk while files are being copied to it. If the bitmap is too large to display
on a single screen, the visual update is terminated. To exit from the continuous
display mode, press any key.

See A lso:

CHKFSYS

[QUERY] Utilities

QUEUE - Implement queued message passing in QNX

Syntax:
queue [+global] [p=signa/ _port] &

Options:
+global - Globally register the queue manager.
p=signa/ _port - Specify which port to use. If unspecified, the

first free port will be used.

Description:
QUEUE implements queued message passing in QNX. It should only be started if
needed by applications. Although no QNX Software Systems applications are
using QUEUE (as of January, 1 988), this may not always be true. A number of 3rd
party application developers are using QUEUE. If you have any doubt as to
whether or not you should run QUEUE, check the documentation for the applica
tions you wish to run, or contact the vendor or QNX Software Systems technical
support.

If you ever need to terminate QUEUE, use the SLAY command:

slay queue

See Also:
Queue management routines in the QNX C compiler manual

Utilities [QUEUE]

I�M
RM - Remove files

Syntax:

rm file* [+interactive] [+recursive]

Options:

+interactive - Display each file and ask whether
to remove.

+recursive If a passed file is a directory

Examples:

the entire contents of the directory
(including subdirectories) will be
removed.

rm *.o - Remove all object files.
rm dirl dir2 +r +i

- Remove dirl and dir2. If they are
directories remove all files and
directories under them.
Query for each file.

rm * +i Query whether to remove each
file in the current directory.

rm *test* - Remove all files containing the
word ' test' in their name.

Description:

RM removes one or more files from a directory. Removal of a file requires write
permission on the file itself.

If a designated file is a directory, an error is printed unless the +recursive option is
specified. In that case, RM recursively deletes the contents of the specified
directory and then the directory itself. Note that RM invokes the WS command for
recursive removal. Placing the RM command in ramdisk can speed this process.

The +interactive option will cause RM to print the name of each file it is about to
remove. A single character response of the letter 'y' (for yes) will remove the file.
Any other response will leave the file untouched. This option may be combined
with the +recursive option.

[RM] Utilities

RM is a more advanced version of the command FREL.

See Also:
DREL FREL
RMDIR WS

RM

Utilities [RM]

RMD IR - Remove directories

Syntax:

rmdir directory* [+interactive]

Options:

+interactive - Display each directory and ask
whether to remove.

Examples:

rmdir test
rmdir test 3 :/tmp

Description:

RMDIR will remove a directory from the disk. Only empty directories can be
released. If the RMDIR command verifies that the directory is empty, then the
space used by the directory will be reclaimed.

If a directory is to be removed which is at the top level (root), it is usually
necessary to specify the correct drive prefix as in the last example.

The +interactive option will cause RMDIR to print the name of each directory it is
about to remove. A single character response of the letter 'y' (for yes) will remove
the directory. Any other response will leave the directory untouched.

See A lso:

DREL
FREL
RM

[RMDIR] Utilities

I.�TC
RTC - Get Date from Real-time Clock

Syntax:

rtc type [+set] [+localtime]

Options:

type - Type of clock/calendar card.
+set - Set date/time of card.
+localtime - Use localtime. The default is GMT time.

Examples:

rtc at
rtc at +set
rtc ?

Description:

- Get QNX date from AT clock.
- Set AT clock with QNX date.
- Display supported cards.

This command will set the QNX date and time from a battery backed-up
clock/calendar card.

PLEASE NOTE: The types of cards supported by this program were verified at
the time they were created. We do not warrant in any manner that they will
necessarily work on newer versions of these cards or cards similar in design.

This command should be included in your "/config/sys.init" file if you have one of
these clock/calendar cards, or if your machine has a built-in clock/calendar (such
as the ffiM AT):

rtc at

If the time in your clock/calendar card is incorrect (perhaps the battery has been
replaced), it can be set using the +set option of RTC. First, set the QNX time with
the DATE command, then issue the RTC command:

date 10 Mar 86 12 38 pm
rtc ast +set

[RTC] Utilities

RTC

The RTC command supports many different types of clock/calendar cards. To find
out which cards are supported by your version of RTC, type:

rtc ?

In some cases a hardware vendor has sold many versions of the same card, such as
the Quadram and AST cards. The RTC command will identify the versions with a
number after the name. In general, the smaller the number, the older the card.

quadl Oldest style quad card
quad2 More recent quad card

and so on . . .

See Also:

CLOCK
DATE

Utilities [RTC]

SAC - Display system activity at each priority level

Syntax:

sac [-repeat] [+Scale) [+vertical] [r=sec] [i=inertia]

Options:

-repeat
+scale
+verticle
r=sec
i=inertia

- Suppress continuious update of display.
- Scale largest bar to screen size.
- Run bars verticaly (this is slower).
- Repeat rate (screen update period). Default 1 .

Sensitivity to changes. Default 5 .

Examples:

mount lib /config/sac.slib Shared lib must be mounted.

sac
sac i=8

Description:

SAC will display a bar graph showing the amount o f processor activity at each
priority level. In an idle system you should see one large bar at priority 15 . The
sum of all the bars should add up to 100% unless the -scale option is specified.
This option expands the largest bar to fill the screen, scaling all other bars resulting
in a finer resolution.

Unless you request the -repeat option, SAC will continuiously update the screen at
the requested poll period. SAC itself will cause some processor activity. This
activity will be greater if the +verticle option is selected. On the console, your
TCAP entry should be set to qnx to minimize SAC's cpu useage. In general, your
console should always be type qnx.

tcap set qnx

To use SAC you must mount a shared library which collects statistics on processor
activity at each priortity level. This shared library integrates these numbers over
time. What is displayed is the average over the integration time. Smaller values of

Utilities [SAC]

SAC

inertia average over shorter periods resulting in a faster response to changes in
system activity. Larger values allow you to monitor average activity over a longer
period of time. The averaging periods are as follows:

i= Time i= Time
5 1 . 5 sec 1 1 1 0 2 sec
6 3 sec 12 3 min
7 6 sec 13 6 min
8 1 3 sec 1 4 1 3 mi n
9 2 5 sec 15 27 min

1 0 51 sec

The value of i must lie between 5 and 15 inclusive.

See Also:

[SAC] Utilities

SEARCH - Define or Query the Disk Search Order

Syntax:

search drive* [+remote]

Options:

+remote - Defme search order for requests from
other nodes on the network.

Examples:

search - Query the current disk search order
search 5 3

- Define the disk search order such that drive 5 is searched
first, followed by drive 3 .

search 3 + r - Set remote search order to be drive 3 .
search 3 [5]

- Search drive 3 then use node 5 ' s remote search order.

Description:

SEARCH defines the "order" in which the operating system scans disk drives
while opening files.

A default disk search order is setup at boot time by the operating system. If you
boot from floppy diskette the disk search order is linear over your floppy drives.

search 1
or

search 1 2

if you booted from hard disk your search order will be disk 3 which is mapped to
the the disk partition you booted from. Please read the section on hard disk
booting for more details.

search 3

Utilities [SEARCH]

SEARCH

If you boot over the network your search order will the remote node you booted
from.

search [node_bootedJrom_j

It is usually desirable to change the search order to include mounted ramdisks and
hard disks. Most users do not search the floppy drives at all.

Adding new drives to the system with the MOUNT command will not
automatically include the drive into the system search order. SEARCH must be
used before these drives will be automatically scanned when looking for files. Files
can still be accessed on drives which are not included in the search order by
preceding the filename with a drive prefix.

If a number in square brackets is included, then the remote search order on that
node is used.

Requests for files on a local hard disk can come from two sources. They can
originate locally from tasks on the same machine or remotely from tasks on other
machines. The +remote option determines the search order which will be used for
remote requests . A local ramdisk is usually excluded from the remote search
order.

See Also:

MOUNT
NACC
PATH

[SEARCH] Utilities

SH - Execute Shell Commands

Syntax:

sh [options] * filename [arguments]*

Options:

+back
+menu
+qdb
+initial

- Suppress the display of background task ids.
- Internal use only.
- Internal use only.
- Execute the next argument as a command using

the EC command, then accept input from the
keyboard.

+restrict Restrict the commands and command line syntax allowed.
The commands cd, path and the characters > , I and "
become invalid.

+string - Execute the next argument as a command then terminate.
+transform - Cause the shell to transform itself into

the first command it executes.
+verbose - Print each command line before executing.

Examples:

sh commands
sh /cmds/mycc test.o c=test 1=/lib

Description:

S H i s the command interpreter (referred t o a s the "shell") and acts a s the interface
between the user and QNX. SH can take commands interactively from the
keyboard or from a batch file. The following documentation concerns itself mainly
with batch file operation. Interactive operation is described in a chapter in the
QNX manual. This chapter also contains background information on the shell
which is recommended reading.

SH allows the user to execute the commands found in a file as if they were typed
on the keyboard by the user. Each line in the file will be executed as a command
by the shell. The shell ' s arguments can be included into these commands by
referencing them as #1 #2 . . . #9. Any instance of #1 will be replaced by the 1 st
argument on the command line. For example, in the second example above, #1 is
replaced with "test.o", #2 will be replaced with "c=test" and #3 will be replaced

[SH] Utilities

SH

with "1=/lib" before the commands are executed. #4 through #9 in this example
will be replaced with the null string. The complete list of # macros are as follows:

#%
#$
#?
#&
#c
#g
#k
#m
#n
#p
#t
#u
#v
#0
#1 to #9
#*

- number of arguments
- task number of shell
- task id of shell
- exit status of last command
- task id of last background task
- cyclic number which changes each second
- group number of user
- accept a line from the keyboard
- member number of user
- node number
- cpu type
- tty number
- userid of user
- qnx version number
- name of shell command
- arguments passed to shell command
- all arguments #1 ... #nn

The #p macro contents is defined as follows :

PC 1
AT real mode 2
PS2 4
old HP Vectra 5
PS2 model 30 6
AT Protected mode 42h
PS2 protected mode 44h
old HP Vectra Protected mode 45h

SH allows a user to define his own commands. Commonly repeated sequences of
commands can be grouped into one command file thereby allowing the user to
execute this group of commands with a single command.

An example of a command file would be a file called "rename" which contains the
following line:

chattr #1 n=#2

The user would then type

sh rename bill joe

Utilities [SH]

SH

to change the name of file "bill" to "joe" . If the command is used quite often, the
user can remove the need for typing "sh" every time by giving the command file
execute permission with the CHA TIR command (use: "chattr rename a=+e") .
The user can now type:

rename bill joe

Each command will return a value when it terminates. This value will usually be
zero if the command terminates normally.

The +i option is used by the LOGIN command to pass the initial command to
execute which was read from the password file.

If you type a Ctrl-d to the shell it will terminate. This is useful when invoking the
shell from within the editor (or any command) by typing a Ctrl-z. Typing a Ctrl-d
will return you to your application.

The complete list of shell batch commands follows :

back - suppress background tid
When you run a program in background using the & symbol the shell will
normally display the taskid of the background task created. In shell files this may
not be desirable. The BACK command suppresses this display.

base number - base for number expansions
When an integer shell variable is displayed it will be displayed as either a 4 digit
hexadecimal number or a 5 digit unsigned number. The argument for base should
be either 10 or 16.

break task id - break a task
The indicatertask will be killed by setting a break exception on it. You may
obtain the tasks identity with the TSK command.

cd [directory] - change directory
Since each task has its own directory this command must be handled by the shell.
Placing it in a command which loaded off the disk would change the directory of
the new task loaded but NOT the directory of the shell. This should be kept in
mind when escaping from a command via Ctrl-z. You can NOT change your
directory then return back with the new directory in effect. This is documented in
detail in the utilities section of your binder.

debug [text] - debug a command
If text is missing then the debugger is invoked with the data and code segments
pointing to 4K of free memory. If text is present then the debugger is invoked after
loading the command indicated.

[SH] Utilities

debug Is

The debugger must be mounted or the request for debug is ignored. Please read
the debugger documentation first! If you don't, simply type 'g' followed by a
carriage return to return from the debugger.

SH

defpipe path - pipe temp files
The DEFPIPE command allows you to change the pathname where temporary pipe
files are placed.

defpipe my _pipe

The default is

defpipe /tmp/ • . #n#$

ec shell_Jile - execute sh file
The EC command causes the shell to temporarily take its input from the indicated
file. Since the execution of commands in the file is performed by the current shell,
it is possible to execute commands like CD, PATH, PRI, PROMPTT etc . . . , which
affect the environment of the shell which executes them.

This is especially useful in the password file where you will often see a line such
as

ec user .init

EC commands cannot be nested.

else - conditional
The ELSE command precedes a group of one or more commands terminated by an
END IF which are to be executed if the preceding IF condition was false. An ELSE
must be within the scope of a preceding block IF command. For example

if +f #l.c then
cc #1 m=map
sort map f=1,3 +r

else
type File #l.c does not exist

endif

endif - end a block if
The END IF statement ends a list of statements following a block IF or an ELSE.

Utilities [SH]

SH

exit [number] - exit shell with status
The EXIT command will exit the shell and return back either the indicated status
or the status of the last executed command if status is omitted. The status argu
ment is assumed to be in the current base set by the BASE command.

goto label - transfer contro•
The GOTO command transfers control to the line following the one containing the
indicated label. A label is entered as a colon (:) followed by label name of up to 8
characters. For example

:loop
type This is a loop
goto loop

If the label does not exist then the shell file will terminate.

if test cmd - conditional
The IF command allows conditional execution of QNX commands. There are two
forms of this command. If the argument command is the keyword THEN, then
commands on the following lines until an ENDIF are considered to be within the
scope of the IF. This is called a block IF. Otherwise, only the indicated command
is conditionally executed. There can be no ELSE or END IF. If the TEST is true
then the command is executed.

if +f pathname

if +d pathname

if +m pathname

if +a nodeid
if eq argl arg2
if ne argl arg2
if It argl arg2
if ge argl arg2

command - true if pathname is a file
and exists

command - true if path name is a directory
and exists

command - true if pathname has the modified
bit set

command - true if node is alive
command - true if argl is identical to arg2
command - true if argl is different from arg2
command - true if argl is less than arg2
command - true if argl is greater than or equal

to arg2

The arguments in the last two forms may NOT contain an embedded blank unless
the argument is enclosed in double quotes.

if eq "#1" " Clarke Kent" frel

You may match a null (or missing) argument using the following trick.

if eq abc #labc type Argument missing

[SH] Utilities

SH

As a final warning, remember that the # shell variables which result in a number
are always expanded to 4 places if hexadecimal and 5 places if decimal.

if eq #& 0000 exit

It is possible to nest block IF's .

if eq #1 abc then

else

if eq #2 def then
type abc def

else
type abc NOT def

endif

if eq #2 def then
type NOT abc def

else
type NOT abc NOT def

end if
endif

kill task id • . . - kill a task
The indicated tasks will be killed. You may obtain the tasks identity with the
TASK command� This is included in the shell to allow you to kill a task even
when there are no free task descriptors in the system to create a new task. The
escape sequence #& refers to the last background task you created.

kill #&

If the first argument starts with a plus sign (+) it is taken as a system exception to
set on the remaining taskid's specified. For example

kill +0001 050c -set exception hangup on task 050c

Refer the to chapter on MULTI-TASKING for more information on exceptions.

You may wish to refer to the SLAY command to remove a task by it' s name
rather than it's task id.

ontty tty cmd - create task on another tty
The ONTTY command executes the indicated command on the indicated tty. The
command is detached from your terminal and inherits your accounting information
and current directory. After mounting a console you may wish to create a SHELL

Utilities [SH]

SH

or LOGIN on that console.

mount console $con2
ontty $con2 sh

OR
ontty $con2 login

If this command is combined with the syntax of remote task creation, then the
remote node should precede the ONTIY. You may also specify the node number
as part of the device name.

[4] on tty $con2 ed file
on tty [4]$con2 ed file

These will create the editor on $con2 of node 4. The editor will attempt to read the
indicated file using the search order on node 4.

passon - password protection
The PASSON command will cause the LOGIN command to look for the file
"/config/pass" and enforce password protection on login. If this file does not exist
you will be unable to login.

Once passwords are enabled, they cannot be turned off.

path searchpath - change search path
Each time a command which does not start with a slash is executed by the shell a
list of directories is searched for an executable file. The default is "/cmds/"
followed by the current directory. This may be changed using the PATH
command followed by a list of directories surrounded by exclamation marks. For
example, to search the current directory followed by "/cmds" followed by
"/user/cmds"

path ! !/cmds/!/user/cmds/!

and to return to the default

path !/cmds/!! OR path

You may print your current search path with

path ?

pause - pause for carriage return
The PAUSE command will pause and wait for you to type a carriage return. When
used with the TYPE command it gives you the opportunity to change disks or
perform some other action before executing the next command.

[SH] Utilities

SH

pri [+I-]number - set priority
Set the priority of commands executed by the shell. A '+ ' increases it while a ' - '
decreases it. If no argument is given the priority is set to the default of eight. The
priority must lie within 4 and 1 5 with 4 being the highest priority. Smaller values
have higher priority. The command.

pri -1

will ADD one to your priority number which will cause the command to run at
LOWER priority. The priority number may be seen by using the task command
and noting it 's priority. This command does not affect the priority of the shell
itself, only the commands executed by the shell.

prompU - display tty number
The PROMPT command will toggle the display of your tty number before the
standard shell prompt. It is useful when you have several windows mounted on the
console which may be difficult to tell apart.

3 $ will be displayed if you are logged into $tty3

setvar op var val - set variable
The user variable is set to a new value based upon the op type.

String Variables
setvar = Sn value
setvar I Sn value

setvar = oranges
setvar I " , apples"

Integer Variables
setvar = in number
setvar + in number
setvar - in number
setvar x in number
setvar I in number
setvar % in number

Utilities

setvar = iO 123
setvar = iO Otl23
setvar = iO Ox123
setvar + il #iO

setvar = sO a#k

- assign string
- concatenate string

- assign number
- add by number
- subtract by number
- multiply by number
- divide by number
- modulus by number

- set iO to 123 using current base
- set iO to 123 using base 10
- set iO to 123 using base 16
- add iO to i1 updating i1

- get line from keyboard, the 'a'is
to ensure some data is assigned in

[SH]

SH

case a blank line is entered.

sharoff - don 't share code segments
This option will stop the sharing of code. See SHARON for details.

sharon - share code segments
This option will cause the task admin to scan the code table and check if a task is
already loaded into memory. If so, it will link to the existing code and only load
the data from the file. Note that this code sharing only occurs for commands under
'/cmds ' or those specified with a leading '/' . This the default when the system
boots.

shift - shift # args down one
The SHIFf command allows shell commands access to arguments beyond #9.
Each argument is shifted one position to the left. #0 becomes #1 , #1 becomes #2,
. . . and #9 becomes what would have been #10. The following shell command will
print any number of arguments passed to it.

:loop
if eq ## 0000 exit 0
type #1
shift
goto loop

stype [text]* - type arguments
Identical to TYPE, however, no carriage/linefeed is printed.

sysup - set system up flag
The SYSUP command will set the system up flag. Until this flag is set, Ctrl-z and
Breaks will be ignored on terminals, preventing anyone from logging in, or
terminating execution of the sys.init file. This flag is automatically set after the
'/config/sys.init' file has run to completion. In some cases a user may wish to
invoke a command in the ' sys.init ' file (like a menu shell) which prevents it from
finishing. In this case you may force the system up placing the SYSUP command
in your ' sys.init' file before this command is invoked.

then - conditional
The THEN command can only be used on a line containing an IF command. It
signals the start of a block IF.

trap [label] - trap keyboard breaks
The TRAP command allows a shell file to trap keyboard breaks. After executing
each statement the shell checks to see if a keyboard break has been typed. If so,
execution is transferred to the indicated label as though a GOTO statement had

[SH] Utilities

been executed. If the label argument is missing then the break is ignored. If the
indicated label does not exist then the shell command will terminate.

trap
trap +

trap loop

- ignore keyboard breaks
- since label + will never occur

this will cause the shell command
to terminate on a break

- transfer control to the label :loop

The following will print out a message until a break is typed.

trap stop
:loop
type Type break to stop me
goto loop
:stop
type Ok, you stopped me!

type [text]* - type arguments

SH

The arguments following the command are displayed on the terminal, followed by
a carriage return. This is often used within command files for informational
purposes.

verbose - to2gle verbose mode
The VERBOSE command toggTes verbose mode of the shell. In verbose mode the
shell will echo each line it reads to your screen before it executes it.

zeros on/off - toggle verbose mode
The ZEROS command turns on or off the printing of leading zeros when
expanding numbers from shell variables. By default they are on to allow correct
string comparisons in the IF command. They are usually turned off to generate
text or pathnames which is more readable. For example.

base 10
zeros off
type " You are on tty #t"

See Also:

LOGIN
LOGOFF
QNX Manual

Utilities [SH]

SHARON/SHAROFF - Do/don't share code segments

Syntax:

sharon
sharoff

Description:

• This is a local shell command •

When SHARON has been enabled, the task admin will scan the code table to check
if a task is already loaded into memory. If so, it will link to the existing code and
only load the data from the file. Note that this code sharing only occurs for
commands under '/cmds ' or those specified with a leading '/' . This is the default
when the system boots. SHAROFF disables code sharing.

Utilities [SHARONSHAROFF]

SIZE - Display the size of a file

Syntax:

size ffile I x=file] *

Options:

file - Name of a file to size
x=file - Index file containing a list of files to size

Examples:

size test.c
size inventory mailing_list x=misc_files

Description:

SIZE will calculate the total number of characters in each of the given files.

If more than one filename is given, then SIZE will also report the total number of
characters and lines in all the files.

The x= option allows a file containing a list of filenames to specify the files to
count. This "index" file may be the result of redirecting the output of the FILES
command (with -v option) or the LS command (with the +f option).

See Also:

FILES
we

[SIZE] Utilities

SLAY - Kill a task by name

Syntax:

slay [task_name] [options]*

Options:

+break_ only - Set only a break exception on the named task.
+dump - Force task to perform a dump.
+hold - Hold the named task.
-hold - Unhold the named task.
+query _always - Always query before killing a task.
-query - Don't query before killing tasks.
+remote - Also kill tasks started by remote nodes.
-son_kill - Don't kill tasks which have son tasks running.
+tid - Don't kill the task, return it' s task id to the shell.
-verbose - Suppress messages about missing tasks.
i=task_id - Select task based on task id.
n=node num - Search for named task on

-
this node.

t=tty _ niim - Limit task search to this tty.
s=system_exc - System exception bits value (hex)
u=user exc - User exception bits value (hex)
p=priority Assign new priority to selected task(s)

Examples:

- Kill spooler task on node 2. slay spooler n=2
slay dragon t=3 -q
slay test +d

- Kill dragon task on tty3 without querying first.
- Force memory dump on a test program.

Description:

SLAY i s used to kill a task by name rather than by the task identification number
(tid). This saves the user from having to first run the TSK utility before issuing a
KILL command. Task names are specified without the path. An example would be
a task called "/cmds/list" that the user wished to kill. Entering "list" as the task
name would be sufficient to allow SLAY to find and kill it.

There are many forms of this command. The simplest (and probably most often
used) form of the command is of the form:

Utilities [SLAY]

SLAY

slay task_ name

This command will locate the task bearing the specified name and if only one is
found both the KILL and BREAK exceptions will be set on it. If more than one
task bears the specified name, the user will be prompted for a yes I no response for
each task. When each task is listed in this form, the task name, tid, node number,
tty and user group I member numbers will also be displayed to help the user make
a selection. If no task name is specified, all tasks in the system will be matched and
the user will be prompted for each of them. Answering the prompt with any
character other than a 'y ' or 'n ' (with 'q ' , for example) will cause an exit from
SLAY.

By default, tasks that are running remotely from other nodes in a network will not
be included in the scan for matching tasks. If these tasks must also be killed, use
the +remote option.

In more detail, the options supported by SLAY are :

+break_ only - Normally, SLAY will place both a break and a kill exception
on the named task. This option will cause only the break
exception to be set on the named task.

+dump - This option sets a quit exception on the named task. If the
dumper task has been installed a "snapshot" of the segments
that make up the named task will be written to disk. QDB,
the QNX Source level debugger, can then be used to browse
through the execution environment at the moment of the
dump. Please consult the QDB documentation for details on
dumper.

+hold -hold - The hold option allows this utility to set or remove a hold
status on the named task. One particularly useful example of
this option is for a program which wishes to temporarily not
have the CLOCK program display the time in the upper right
corner of the screen. Issuing the command:

+query

[SLAY]

slay clock +h

would stop the time display. Once the application was
finished, it could resume the time display with the command:

slay clock -h

- This option forces SLAY to query before killing the task
even if only one task is found with a matching name. This
option is useful for viewing the other task information that
SLAY will present before killing it.

Utilities

-query

+remote

-son_kill

+tid

-verbose

n=node num

t=tty _number

s=system _ exc

u=user exc

Utilities

SLAY

- Force SLAY to not query if multiple occurrences of the same
task name exist. This makes SLAY useful in shell
commands if the environment is known to be appropriate for
running SLAY in this manner.

- This option will allow killing local tasks that were started
from another node. This option is needed to allow a user on
his workstation to kill tasks that other network users have
started on his node.

- This option will suppress killing tasks that have son tasks. A
typical usage of this command would be within a shell
command that shuts down shells on other tty devices. Setting
this option would prevent SLAY from killing those shells if
they had other tasks (such as editors) running. Running
SLAY with the +query option also set, will cause SLAY to
prompt for a forced kill even if the named task has sons.

- This option will cause SLAY to return the task id of the first
task which bears the requested name. If the named task does
not exist, a task id of zero will be returned. This option then
makes SLAY useful for shell scripts and C programs which
wish to determine the task id of a task without having to
resort to elaborate programming. Within a shell program, the
usage would be:

slay task_ name +t -v
type #?

Within a C program, the SHELL library routine could be
used to invoke SLAY to obtain the task id of a task as
follows:

tid = shell(" slay task_ name +t -v") ;

- Suppress messages about a task not being found or having
sons preventing the removal of the task. If the +query option
is set, the prompts will not be suppressed. This option is
useful within shell commands to suppress unwanted output.

- This option specifies the network node from which tasks
are to be killed. This option allows convenient removal of
tasks from a remote node without having to have a shell
running on that node.

- This option specifies the tty from which tasks are to be
killed. Tasks running from other ttys will not be affected.

- Set the specified SYSTEM exception bits on the selected
tasks. See the '/lib/exc.h' file for exception bit defmitions.

- Set the specified USER exception bits on the selected tasks.
See the '/lib/exc.h' file for exception bit definitions.

[SLAY]

SLAY

p=priority - Change the priority of the the selected tasks to priority.

Using the SLAY command, a very useful shell program can be created to allow a
user at the console to position the first virtual console ($con0) to a particular
directory, execute the shell command and cause all the other virtual consoles to
also be positioned to the same directory. This is an ideal way to begin working
within a particular directory.

11 This shell script removes shells from other consoles and starts up shells in
11 the same directory as the current shell. This command can only be run from
11 $con0, the first virtual console. It assumes that the virtual consoles
1 1 represent tty devices 0, 7 and 8.
if eq #t 0000 then

slay sh t=7 -q -s
if eq #? 0000 then

ontty 7 sh
end if
slay sh t=8 -q -s
if eq #? 0000 then

ontty 8 sh
end if

endif

See A lso:

TSK

[SLAY] Utilities

SLEEP - Sleep for a number of seconds

Syntax:

sleep time

Options:

time - Number of seconds to sleep.

Examples:

sleep 60

Description:

SLEEP suspends execution for time seconds. I t i s useful in shell files where a delay
is needed. For example

"Take a snap shot of all users signed on every 10 minutes.
:loop

sleep 600
who net >>users
goto loop

The SLEEP command requires that the timer administrator be running.

timer &

See Also:

TIMER

Utilities [SLEEP]

SLICE - Set the timeslice rate

Syntax:

slice [num _ticks [tick _size]]

Options:

num ticks - Number of clock ticks to allow a
task to run before timeslicing (1 . .255).
The default is 1 .

tick size - Time duration represented by each clock
tick. Valid numbers are 1 , 2, 5, 10, 25 or 50
milliseconds. The default is 50.

Examples:

slice
slice

20 so
so 1

Description:

- Timeslice every 1 second
- Timeslice every 1/20 second, but provide

a fast timer tick rate of 1 millisecond.

SLICE allows the rate at which QNX will timeslice tasks to be altered. A large
timeslice count will allow each task to have a large amount of processor time
before being interrupted by the operating system to run a new task. Large timeslice
counts favor tasks which require a lot of processor time and which perform little
1/0.

Small timeslice values improve interactive response.

The default value of 1 results in task switching at least as fast as every 50 msec
(1/20 sec), which usually provides pleasing interactive response with commands
such as the editor, while still allowing background tasks a fair percentage of the
processor.

User written tasks are able to take advantage of fast timer ticks by setting tick _size
to a value representing the desired fast _tick duration. By requesting timeouts in
units of tick _size, where tick _size has been appropriately adjusted, short duration
timeouts can be easily implemented.

[SLICE] Utilities

The current timeslice is displayed by the command:

tsk info

See Also:

TIMER
TSK

Utilities

SLICE

[SLICE]

S 0 RT - Sort files

Syntax:

sort [file] [options] *

Options:

f=field[,fieldj *
l=nn
t=termination characters
+bubble sort

+descending
+float
+hex
+integer
+replace
-skip_leading_delimiters
+unique

Where:

- Define sort fields (max 20).
- Max lines to sort (default: lOOO).
- Characters which isolate fields.
- Use bubble sort.
- Sort in descending order.
- Fields are floating point numbers.
- Fields are hexadecimal numbers.
- Fields are integer numbers.
- Replace file with sorted output.
- Don't ignore leading spaces.
- Remove duplicate lines.

field isfield_number [. offset [. width]]

Examples:

sort mailing list
sort inventory f=l,3.2.2,2,7.1 >$lpt
sort data " t= .-," +r +d -s +u
sort keyword +b +r
sort file _list t=/ f=- 1

Description:

SORT will sort text files based on fields . Lines can be of varying lengths but
cannot exceed 300 characters . SORT uses an in-memory sort and is limited to files
of about 55K characters. For larger files the utility MSORT (merge sort) should be
considered.

[SORT] Utilities

SORT

A field is by default assumed to be a string of characters which are delimited by
spaces or tab characters. The delimiter characters can be changed with the t=
option. The fields can be specified with the f= option, otherwise sorting will be
based on field 1 ONLY. The sorting is based on the ASCII values of the characters
in the file unless the +f, +i or +h options are used. If a one of these numeric op
tions is specified all fields are considered numeric. To sort on a mix of fields you
should run several sorts. For example:

sort file f=l,2 +r
sort file f=3 +f +r

The order and definition of the fields is specified with the f= option. If the field
number is negative it is taken as the nth field from the right (not the left) . A value
of -1 with a terminator of '/ ' allow you to sort a list of pathnames (output of FILES
command) by their filename only. An offset nn (if given) allows the first nn
characters of the field to be ignored in the comparison. If a width is given as well,
then only a maximum of that many characters will be compared. Offset and width
allow sorting of files which have well defined formats.

If no input file is specified, the SORT utility will take its input from the standard
input. The default output of the SORT utility is the standard output. This can be
redirected to a file or device such as the line printer if desired. The +r option
causes the output of the sort to replace the contents of the original file instead of
sending the output to the standard output.

The sorted output will normally be in ascending order. This can be reversed to
descending order by specifying +d.

The -s option allows the user to suspend the automatic skipping of leading fill
characters. This is particularly useful if the user wishes to distinguish between lines
which start with fill characters (eg. spaces) and those which do not.

The +b option will specify that a bubble sort rather than the much faster shell sort
be used. Bubble sorts have the advantage that order is preserved for identical items.
This may be important for sorting keyword or "index" files .

See Also:

MSORT

Utilities [SORT]

SPA TCH - Full screen patch utility

Syntax:

spatch file filename
spatch disk drive block
spatch mem segment offset

Examples:

spatch file /cmds/ls
spatch disk 1 1
spatch mem bOOO 0

Description:

SPA TCH i s a utility that allows full screen editing of files, disk blocks and
memory. The screen will display a 16 by 1 6 (256) byte image of the data being
examined, similar to that shown below:

Edit Next P rev Home Goto F i n d Continue S a ve Addr Quit Nov 28 9 : 3 7 : 02 am

0 0 0 0 0 0 0 0 0 :
0 0 0 0 0 0 0 1 0 :
0 0 0 0 0 0 0 2 0 :
0 0 0 0 0 0 0 3 0 :
0 0 0 0 0 0 0 4 0 :
0 0 0 0 0 0 0 5 0 :
0 0 0 0 0 0 0 6 0 :
0 0 0 0 0 0 0 7 0 :
0 0 0 0 0 0 0 8 0 :
0 0 0 0 0 0 0 9 0 :
O O O O O O O a O :
O O O O O O O b O :
O O O O O O O c O :
O O O O O O O dO :
O O O O O O O e O :
O O O O O O O f O :

[SPATCH]

2E 2 8 6E 65 77 2 9 20 53 50 41 54 43 48 20 22 4 6
7 5 6 C 6 C 2 0 7 3 6 3 7 2 6 5 6 5 6 E 2 0 7 0 6 1 7 4 6 3 6 8
2 0 7 5 7 4 6 9 6 C 6 9 7 4 7 9 2 2 1 E 2 E 2 8 7 3 7 9 6 E 7 4
6 1 7 8 2 9 1 E 0 9 1 1 7 3 7 0 6 1 7 4 6 3 6 8 1 0 2 0 2 0 1 1
6 6 6 9 6 C 6 5 1 0 2 0 2 0 A E 6 6 6 9 6C 6 5 6 E 6 1 6D 6 5
A F 1 E 0 9 1 1 7 3 7 0 6 1 7 4 6 3 6 8 1 0 2 0 2 0 1 1 6 4 6 9
7 3 6 8 1 0 2 0 2 0 AE 6 4 7 2 6 9 7 6 6 5 AF 2 0 2 0 AE 62
6C 6F 6 3 68 AF 1 E 09 11 73 70 6 1 74 6 3 6 8 10 20
20 11 6D 6 5 6D 10 20 20 AE 73 6 5 6 7 6D 6 5 6E 74
AF 20 2 0 AE 6F 66 66 7 3 6 5 74 AF 1 E 2 E 28 6 5 7 8
6 1 6 D 7 0 6 C 6 5 7 3 2 9 1 E 0 9 1 1 7 3 7 0 6 1 7 4 6 3 6 8
2 0 2 0 6 6 6 9 6 C 6 5 2 0 2 0 2 F 6 3 6 D 6 4 7 3 2 F 6C 7 3
1 E 0 9 7 3 7 0 6 1 7 4 6 3 6 8 2 0 2 0 6 4 6 9 7 3 68 2 0 2 0
3 1 2 0 20 3 1 1E 0 9 7 3 7 0 6 1 7 4 63 6 8 2 0 2 0 6D 6 5
6D 2 0 2 0 6 2 3 0 3 0 3 0 2 0 2 0 3 0 1 0 1 E 2 E 2 8 7 3 7 4
6 1 7 2 7 4 2 9 1 E 5 3 5 0 4 1 5 4 4 3 4 8 2 0 6 9 7 3 2 0 6 1

. (ne w) S PATCH " F
u l l s creen patch

ut i l ity" . . (synt
ax) . . . spat c h .
f i l e . . fi lename
. . . . spatch . . di
s k . . dr ive . . b
lock spatch .

. mem . . segment
. o f fset . . . (e x

amples) . . . spatch
file / cmds / l s

. . spatch d i s k
1 1 . . spatch me
m b O O O 0 • . . (s t
a rt) . SPATCH i s a

Utilities

SPATCH

The menu at the top of the screen can be used to select one of the options listed
below. You can either position the inverse cursor to the desired menu item with the
arrow keys and type Enter, or simply type the first letter of the command.

EDIT
Enter the data area. The TAB key will switch between hex and character data
entry. The SELECT (large +) key will return you to the menu. The changed data
is NOT updated to the disk or memory.

NEXT
Move forward 256 bytes. The PgDn key may also be used.

PREV
Move backward 256 bytes. The PgUp key may also be used.

HOME
Go to the the start of the file, disk or memory. The Home key may also be used.

GOTO
You will be prompted for an address. The type of address will depend on the the
source of the data (file, disk, mem) and the address type. Moving past end-of-file
in a FILE may produce unexpected results.

FIND
You will be prompted for a pattern to search for. The pattern may consist of single
characters or two hex digits separated by a space .

61 62 63 d e
a b c d e

- match the 5 characters 'abcde'
- match the 5 characters 'abcde'

Typing any key during the search will stop it. CONTINUE
Find the next occurrence of the last pattern found. Usually used after a FIND when
searching.

SAVE
Save the current screen back to the source. Without issuing this command all
changes made using EDIT will be lost as soon as you leave the current screen of
data.

ADDR
Toggle through three address types .

Absolute
Disk Block:Offset
Segment :Offset

Utilities

- Default for FILE
- Default for DISK
- Default for MEM

[SPATCH]

SPATCJH

.
QUIT
Leave spatch.

See Also:

DUMP
DDUMP
PATCH

[SPATCH] Utilities

SIPUf I
SPLIT - Split a file into one or more files

Syntax:

split [output _file] * [s=size[,size] * [.]] [<input _file]

Options:

output _file
s=size[. . .]

input _file

- One or more output files
- Define number of lines to put into each

output file (default: 200)
- Source file which is being split

Examples:

split smalll small2 s=lOOO <large
split filel file2 file3 file4 excess <massive s=100,200,100
split flrstlOO nextlOO <big s=lOO,lOO.

Description:

SPLIT allows files to be split into several smaller files. Normally, the file will be
split every size lines, with the excess going into the last output file. The input file is
the standard input which should normally be redirected from the file which is to be
split.

In the first example above, the first 1000 lines of the file "large" will be placed into
the file "smalll " , and the remaining lines will all be placed into "small2".

In the second example, the first 1 00 lines of "massive" will be directed into "file1 " ,
the next 200 will go to "file2", the next 100 into "file3" , and the remainder will end
up in "file4" .

The 3rd example will place the first 100 lines of "big" into "firstlOO" and the next
100 lines into "next100" . Since the size list ended in a period (.), the remaining
characters are discarded.

SPLIT will only split text files with lines no longer than 1000 characters, and has a
limit of 40 output files.

Utilities [SPLIT]

SPLIT

See Also:

CAT

[SPLIT] Utilities

SPOOL - Spool files to a printer

Syntax:

OR
spooler d=device [p=name] [t=tmp_dir/] [+clrhouse] &

spooler " c=command" [p=name] [t=tmp _ dir/] [+clrhouse] &

spool [name] submit ffilenameix=filename] [options]
spool [name] cancel spool_id
spool [name] hold [next]
spool [name] continue
spool [name] move spovl_id position
spool [name] query
spool [name] stop
spool [name] abort
spool [name] kick

Options:

+Clrhouse - If a clearing house is installed on the network,
this option will cause the spooler to use it.

c=command- Name the command used to process and output the file.
(default: spooler prints file) .

d=device - Name the device to which the spooler is to output.
p=name - Spooler task number/name to use (default 0).

May be a digit (0-9) or an 8 character name.
t=tmp _ dir - Automatically delete any files which are in this

directory after printing. This should be a fully
specified pathname, including node number if necessary.

x=filename - Index file containing a list of files to spool.
filename - The name of the file to spool.
options - Arguments to pass to command.
spool_id - A spool-id displayed by the QUERY option.
position - The position in the spool queue.

Examples:

spooler c=list &
spooler p=nec d=$lpt &
spool su test.c

Utilities

- Create spooler using LIST.
- Create spooler with name "nee" .
- List file ' teste' .

[SPOOL]

SPOOL

spool su x=cfiles
spool su sales +e s=6 w=80
spool qu
spool ca 24
spool mo 23 1

spool 1 qu
spool nee qu
spool hold next
spool co

Description:

- List files named i n ' cfiles ' .
- List file ' sales ' with options to list.
- Query spooled files.
- Cancel spool file #24.
- Move spool file #23 to the

first position.
- Query files spooled to spooler 1 .
- Query files spooled to spooler "nee" .
- Finish current list then hold.
- Continue printing.

The SPOOL command is the user interface to the SPOOLER task in the system. To
start the SPOOLER task you must run it in background. If you wish to spool to
more than one printer you must run one SPOOLER for each printer. If you do not
specify the spooler name/number it will default to 0.

The SPOOLER may be invoked with the name of a command to run (c=) for each
file printed. This will typically be the LIST command. If you do not specify a
command the files will simply be printed to the standard output (or a named device
using the d= option) with no attempt at formatting or pagination of the data. The
SPOOLER will typically be run on the local machine which contains the printer. It
will register a network wide, global name which will be queried by the SPOOL
command to locate the SPOOLER. The TSK command may be used to print all
global names in the system.

tsk names

You can use the SPOOLER and SPOOL command for purposes other than
printing. For example, you might wish to serialize compiles. This would provide a
batch processing mode under QNX.

The subcommands to SPOOL are listed below. Any subcommand may contain a
spooler number n, to indicate one of several SPOOLER tasks in the system. By
default SPOOLER 0 will be assumed. Only the first two letters of a subcommand
need be specified.

ABORT
Abort the SPOOLER task immediately. The current file being printed will stop
and all spooled requests which have not yet been printed will be lost.

[SPOOL] Utilities

SPOOL

CANCEL
Cancel the request to print the file with the indicated spool_id. The spool-id is
listed by the QUERY subcommand.

CONTINUE
Continue printing after a HOLD.

HOLD
Hold the printing of files. If the optional next argument is specified the current file
will print to completion before the hold takes affect. Otherwise, the hold will be
immediate. Once held, printing can be restarted by using the CONTINUE
subcommand.

KICK
Kick the spooler onto the next print request. Any request currently being printed
will be aborted.

QUERY
Query all files awaiting print.

MOVE
Move the file with the indicated spool-id to a new position in the queue. The
spool-id is listed by the QUERY subcommand.

STOP
Stop the spooler after the current file is printed. All queued requests will be lost.

SUBMIT
Submit a file to the spooler for printing. The command arguments will depend on
the print command invoked by that SPOOLER command. This will typically be
the LIST command. Only the name of the file is submitted, not its contents. You
should wait until the file is actually printed before deleting it.

See Also:

COPY
LIST
SPOOLDEV
CLRHOUSE

Uti l ities [SPOOL]

SPOOLDEV - Create a Spooling pseudo-Device

Syntax:

spooldev [p=port] [f=config_file] [P=priority] &

Options:

p=port - Port to attach to for timeouts. If not specified, the first
available port will be used.

- File to read configuration from. f=config_file
P=priority - Priority to run the specified command at. This option is

Examples:

spooldev &
spooldev p=22 &

particularly useful for use with QDOS.

spooldev f=/config/spool.config.3 &

Description:

SPOOLDEV i s an optional system administrator which implements spooling
devices in QNX. Whereas physical devices have hardware associated with them
(such as serial ports); a spooling device is a logical device which becomes the
interface between a program and the print spool queue(s). Anything written to a
spool device ends up in a temporary file, which will be processed by a user
specified command when the file is closed. This command will typically submit
the file to the spool queue using the SPOOL command.

SPOOLDEV is typically invoked with the f= option, naming a file which contains
the specifications for the pseudo-devices which will be created. The syntax of
each line of the file is:

dev_name [command [arguments [directory [timeout]]]]

The dev _name is the name by which that spooling device will be known in QNX.
It is limited to 5 characters drawn from the set of (a-z,A-Z). Numbers may not be
used. The name may optionally be preceded by a dollar sign ($) in the file. If not
present, a dollar sign is assumed.

[SPOOLDEV] Utilities

SPOOLDEV

The command is used to process the spool file after the spooling device is closed.
Typically, it looks like:

"spool submit"

with the command surrounded by double-quotes (") . This is to "protect" the
embedded space between the words of the command. The default, if the user
enters a null command (" "), is " spool submit" .

The arguments are used as options to the command to control the appearance of
the printed output. An example of this is shown later.

The directory is where SPOOLDEV writes the temporary files prior to actually
submitting them for printing. The default, if the user enters a null directory (" ") , is
"/spool" .

The timeout field is optional. If you do not wish to support timeouts, specify 0, or
omit the field. This field specifies the amount of time in seconds, that output must
stop before SPOOLDEV will force a close of a spool file and process it. This
option is designed for applications which open a device for a long period of time
and submit several "print" jobs without opening and closing the device around each
job. A classic example of this is the optional QDOS package. QDOS opens the
printer and leaves it open, although multiple print "jobs" may come from the DOS
programs run under it.

A reasonable value for the timeout would be 30 seconds or more, on the theory that
if any program pauses for that length of time while printing, it has probably
finished.

Each field may be separated by one or more spaces or tab characters. If there are
embedded spaces in a field (such as the command or argument string), the field
must be enclosed in double quotes (").

If SPOOLDEV is invoked without a configuration file specified, it is the same as
invoking it with a configuration file containing the following entry:

$spool " spool submit" " " /spool 0

The following example will help to illustrate the use of configuration files . It
implements a logical device which connects to a Postscript laser printer. These
printers do not except simple text but Postscript programs as input. It is therefore
necessary to take text output and tum it into a program which will then drive the
laser printer. QNX provides a command called LPS which does just that and we
will use it in this example.

Utilities [SPOOLDEV]

SPOOLDEV

Line 1 interfaces to a simple dot matrix printer. Line 2 interfaces to a postscript
printer and uses the Courier font. Line 3 interfaces to the same postscript printer
except it prints two pages side by side in landscape mode using the Times-Roman
font. It is useful for producing program listings.

$1pt
$laser
$1aserl

" spool su"
spool list
spooOist

" f=O p=8 +p"
" f=4 c=2 p=6 +I +P"

/tmp 30
/tmp 30

In the above example, spool list is a shell file which interfaces with the Postscript
laser printer, as shown below:

setvar = s1 [1]5:/tmp/ps.tmp.#n#c
Ips #* +pc >#s1
spool nee su #s1 >$null
rm #1

The keyword "nee" indicates that the spooler associated with the NEC laser printer
is to be used (see the SPOOL command) . See the LPS utility documentation for
details about PostScript Laser printers.

If a user then executes the following command:

cp report $laser
or

cp program.c $laserl

the following command will be executed in the background, after the text is fully
written and the device closed, or no data is written for more than 30 seconds:

spool_list ltmp/file f=O p=8 +p
or

spool_list ltmp/file f=4 c=2 p=6 +I +p

.where file is replaced with the name of the temporary file created by SPOOLDEV.

SPOOLDEV does not erase the temporary file. It doesn't know when the
command which it invokes is finished with the file. It is up to the invoked
command to erase it when done.

In the above example, the shell file will erase the temporary file created by
SPOOLDEV. The SPOOLER, if started with proper options, such as:

spooler " c=cp >$mdm" t=[1]5 :/tmp/ &

[SPOOLDEV] Utilities

SPOOLDEV

will automatically erase the second temporary file after printing it.

The user may specify over-riding timeouts and/or arguments when he names the
spool-device. These are given as extensions to the device name as shown below:

dev _ name[.timeout][,arguments]

For example:

copy newfile $1aser.5,+d

specifies a 5 second timeout and an additional "+d" argument when the temporary
file is sent to the spool queue.

One fmal example may prove useful. In a multi-user system, it is sometimes
necessary to set up the parallel printer as a spooled device, but allow existing
applications that write to $lpt to continue to work. If you place the following lines
in your sys.init.nn file:

stty n=$prt >$1pt
spooler d=$prt t=/spool &
spooldev f=/config/spool.init

and the file /config/spool.init looks like this :

$Ipt

then anything written to the device $Ipt (formerly the parallel printer) will be
placed on the spool queue, eliminating multi-user printer contention. The printer
port ($1pt) was renamed to $prt so that the system may differentiate between the
physical printer (which SPOOLER will write to) and the logical printer which
applications will write to.

To run SPOOLDEV, the Timer Administrator must first be started.

timer &

See Also:

LIST SPOOL SPOOLER TIMER

Utilities [SPOOLDEV]

STTY - Set TTY options

Syntax:

stty [options]* [>device] [<device]

Options:

+echo
-echo
+efunc
-efunc
+edit
-edit
+etab
-etab
+ers

- Tum on echoing of input (default).
- Tum off echoing.
- Precede each function and cursor key code with a hex FF.
- Do not prefix function and cursor keys (default).
- Perform line editing (default) .
- Unbuffered, non-edited input mode.
- Expand TAB into spaces on output (default).
- TABS are not expanded.
- Expand RS (newline) into CR!LF on output (default).
- RS not expanded.
- Expand DEL into BS ,SPACE,BS on output (default) .
- DEL not expanded.
- Restore all options to their default values .
- Restore all options and control characters to default values.
- Tum on input gate (default).
- Tum off input gate.
- Map CR into RS (newline) on input (default) .
- CR not mapped.

-ers
+edel
-edel
+fix
+FIX
+igate
-igate
+mapcr
-rna per
+hangup - Allow hangup exceptions to be generated when carrier detect

drops .
- Disallow hangup exceptions (default).
- Support flow control with hardware.

-hangup
+hflow
-hflow - Support flow control with XON/XOFF (CTL-Q/CTL-S) protocol

(default).
+hold - Freeze tasks when switching to another virtual console.
-hold - Don't freeze tasks when switching to another console (default).
+iflow - Enable flow control of input.
-iflow - Disable input flow control (default).
+oflow - Enable flow control of output (default).
-oflow - Disable output flow control.
+lock - Allow only one task at a time to open for write.
-lock - Allow multiple tasks to open for write (default) .
+monocurs - Perform cursor handling for the console as if the display adaptor

[STTY] Utilities

-monocurs

+no boot
-no boot
+nocolour

-nocolour
+noswitch

-noswitch
+paged
-paged
+poll
-poll
+Split

-split

ptime=n

page=n
rows=n

cols=n

break=hh
esc=hh
rub=hh
can=hh
eot=hh
ins=hh

del=hh

up=hh

Utilities

STTY

was a monochrome adaptor. Video cards which allow the use of
color software on monochrome monitors may require this option to
be set.

- Perform cursor handling appropriate to the type of display adaptor
installed. This mode is the default.

- Forbid users from rebooting from keyboard.
- Allow users to reboot from keyboard (default).
- Suppress colour output for black/white monitors which are

connected to colour cards.
- Allow colour output (default).
- Suppress console switching with the control - Alt key

combinations. Programs can still output <Escape> and a console
number from 1 to n to switch consoles under program control.

- Allow console switching with the control - Alt key combinations.
- Tum on paged flag.
- Tum off paged flag.
- Poll line printer (default).
- Printer uses interrupts. See
- Cause the serial port handling within QNX to use only the RTS and

CTS lines to implement hardware flow control. This frees the DTR
and DSR signals for other uses.

- Cause the serial port handling within QNX to use all four hardware
flow control signals (RTS, CTS, DTR, DSR). This is the default.

- Set parallel printer poll period. The default value for this setting is
1 millisecond (expressed as 1000 microseconds) . Different
printers will require that this value be adjusted so that a better
output rate can be achieved.

- Define page size (default: 0 - no pagination) .
- Set number of rows displayed on the console. On an EGA display

adaptor with the EGA graphics library mounted, a rows=43 option
is supported, allowing a 80 column by 43 line display.

- Set number of columns displayed on the console. If the display
adaptor and mounted graphics library allow, a 132 column mode
could be selected with a cols=132 option.

- Define input character which causes break (default: Ctrl-C).
- Define input char which escapes to new shell (default: Ctrl-Z).
- Define RUBOUT character (default: 7F hex).
- Define CANCEL (line erase) character (default: Ctrl-X).
- Define character which causes EOF (default: Ctrl-D).
- Define INSERT character (default: Ins on console, Ctrl-N on

terminal).
- Define DELETE character (default: Del on console, Ctrl-K on

terminal).
- Define character which recalls previous line (default: up-arrow on

console, Ctrl-U on terminal).

[STTY]

STTY

down=hh - Define character which recalls next line (default: down-arrow on
console, LF on terminal).

left=hh - Define character which moves cursor left (default: left-arrow on
console, BS on terminal).

right=hh - Define character which moves cursor right (default: right-arrow on
console, none on terminal).

type=n - Set console type.
1 - fast colour (don't wait for retrace)
2 - colour
3 - monochrome

ioport=hh - Define the 1/0 port of device controller or memory segment for
console display.

baud=rate - Define baud rate (default: 1 200).
par=parity - Define parity (odd, even, none, space, mark) (default: none) .
stop=n - Define number of stop bits (default: 1) .
bits=n - Number of data bits (default: 8).
inton=n - Enable interrupt n (2 . . 15) .
intoff=n - Disable interrupt n.
intpri=n - Define which interrupt has the highest priority.
intcp=src,dst - Copy interrupt vector src to vector dst. This option is used to

allow previously unused interrupt vectors to be set to point to
existing interrupt handlers. For example, to allow interrupt 5 on an
AT to be used for a serial port (as are interrupts 3 and 4) the
following would be used:

stty intcp=4,5

n=name - Change name of device ("$ " optional) .

Examples:

stty baud=9600 par=even stop=l bits=8 >$mdm
stty +oflow +ers -edel -igate +poll >[7]$1pt
stty page=24 >$con
stty <$mdm

Description:

STTY allows the characteristics o f a device t o be modified. The features which are
supported by the QNX device drivers can be enabled or disabled to better- support a
particular device or terminal. Device dependent parameters such as baud rate and
transmit parity can also be altered with STTY. If no arguments are given, then
STTY will display the current options which apply to the specified input device as
shown in the last example.

[STTY] Utilities

STTY

Line editing features can be changed to please the user. For example, the back
arrow key is used on the IBM keyboard as a RUBOUT character. If an ASCII
terminal is connected to the system, the Backspace key or some other key may be
more appropriate (note that any character but ASCII DEL will not "erase" input
characters from the display). Similarly, the CANCEL key may be defined as a key
which clears a line on a particular terminal.

The newline character which is used by the QNX operating system is an ASCII
Record Separator (RS , hex I E). When CR is typed on a terminal, it will normally
be mapped into a RS (+mapcr). On output, RS is normally expanded into CR/LF
(+ers) . The RS character is used within files to separate lines (records) and is
referenced in "C" programs as "\n".

The BREAK, ESCAPE, LEFT, RIGHT, UP, DOWN, INSERT, DELETE,
RUBOUT, CANCEL, and EOT characters all have special meaning to the
operating system. The features supported by these characters can be turned off by
setting these fields to zero in the device table. These characters also lose their
meaning if the EDIT option is turned off.

The BREAK key causes an interruption (break) of a running program which results
in the program being terminated if it is not prepared to handle breaks. The
ESCAPE key causes a program to be temporarily suspended, and allows the user to
type in commands to a new SHELL before the suspended program is resumed.
EOT will indicate end-of-file to a program reading from the terminal.

The UP and DOWN keys allow a user to "step" through the input buffer, one line
at a time. UP will go the the previous line, DOWN to the next (in case you have
"over shot" the line you are looking for). The LEFT and RIGHT keys allow you to
move your cursor left and right over a line of text to perform line editing .
RUBOUT will erase the last character on the line. CANCEL will erase the entire
line. The INSERT character toggles insert mode for the line currently being
entered. Further characters will be inserted before the character at the cursor until
INSERT is again detected. The DELETE character will delete the character at the
cursor.

When the EDIT option is turned off, the operating system stops supporting line
editing and all typed characters are passed directly to user programs without delay.
The following options and special characters are only valid when EDIT is on:

Options

igate

Utilities

Special Characters

esc eot
rubout ins
cancel del
break

left
right
up
down

[STTY]

STTY

Input flow control (iflow) is only supported when both EDIT and ECHO are
disabled (such as in TALK).

IOPORT is the 1/0 address of the control port(s) which are used by the operating
system to communicate with a device. Asynchronous terminals and parallel
printers use this field. In the case of console displays, this field is the segment of
the display memory.

The default type for a colour card is TYPE=2 which will cause QNX to wait for
horizontal retrace before writing characters to the screen. This eliminates "flash"
on the screen for some colour cards. Specifying TYPE= I for colour consoles will
stop QNX from waiting for horizontal retrace. This will result in much faster
display updates, especially in the editor, for cards which do not have the flash
problem. TYPE=3 is used for monochrome cards. TYPE=O means that no monitor
is installed.

INTON allows a hardware interrupt to be recognized by the operating system (an
interrupt handler must be available to service the request). INTOFF disables the
interrupt.

See Also:

MOUNT
NACC

[STTY] Utilities

STYPE - Type arguments on the terminal (no CR!LF)

Syntax:

stype [arguments] *

Examples:

stype Compiling ...

Description:

STYPE will echo its arguments to the terminal. STYPE may be used within
command files to display progress information. No trailing CR/LF is added, so
many consecutive STYPE commands will all print on the same line. Use TYPE to
finish with a CR/LF.

STYPE is a local command which is implemented by the SHELL and therefore
does not require a command to be loaded from disk. A side effect of having the
SHELL implement the command is that output cannot be redirected.

See Also:

ECHO
TYPE

Utilities [STYPE]

TBACKUP - Archive files to QIC tape(s) (QIC02 controllers)

Syntax:

tbackup COnfig c=dma _channel i=ioport u=aleli

tbackup INit ["v=volume _name"]

tbackup Flles [arch_dir] [+summary] [+!-verbose]

tbackup NAme

tbackup SAve save_spec* [+all) [-clr] [l=levels] [options] *

tbackup REstore [disk_dir[,arch_dir]] [-create] [options] * [+Newer] [+Older]

tbackup [drive] VErify [disk_dir[,arch_dir]] [options] *

tbackup [drive] TEst (** some QIC02 controllers only **)

save_spec: disk_dir[,arch_dir] x=indexJile filename[,arch_dir]

options: +pause -verbose +tension +list-only +640k +!-hog +old
pf= [lfi/e _pattern pd=[]dir _pattern pp=[]path_pattern
+before d=dd-mm-yy t=hh:mm:ss (Use digits)
+Force (allow use of non-floppy disks)
g=group m=member
h=number 64k segments to hog
e=error JiTe - - -
"v=volume_name" (Use quotes if name contains spaces)

Description:

The TBACKUP command i s used to archive files to one o r more QIC tapes. This
command will allow a single backup to span multiple tapes, so that files larger than
the tape media may also be saved to tape. Each time a file is saved it is appended to
the end of the archive which may span many tapes. Earlier versions of the same
file will NOT be overwritten. You may restore any version of a file on the archive.

When performing a backup that spans tapes, TBACKUP will prompt for new tapes
as required. The CRON utility should also be investigated, as CRON can cause
tape backups to automatically occur overnight.

Utilities [TBACKUP]

TBACKUP

There are many options for this command and to properly use it, the Floppy and
Tape Backup technical note at the back of this manual should be read.

See Also:
BACKUP CRON FBACKUP
Floppy and Tape Backup Technical Note

[TBACKUP] Utilities

TCAP - Manage terminal capability database

Syntax:

OR

tcap append tcapJile [name] [f=database]
tcap copy name new name [f=database]
tcap create [num nodes] [f=database]
tcap delete name-[occurrence] [f=database]
tcap define name [f=database]
tcap keys [f=database]
tcap list [f=database]
tcap query [f=database]

tcap set name [f=database]

tset name

Options:

tcap Jile - TCAP database to append from.
f=database - TCAP database to use

(default: /config/tcap.dbase) .
name - Entry within the database.
new name - Name of a new entry.
num-nodes - Maximum number of nodes in network

(omit for non-networked QNX).
occurrence - Which of several entries with the

Examples:

tcap set qnx
tset qnxs

same name to use.

tcap define vt100
tcap copy qnxs vt52
tcap append old.tcap.dbase vt100

Description:

[TCAP] Utilities

TCAP

TCAP is a data base describing the capabilities of terminals connected to QNX. It
is used by commands such as ED and MAIL to determine the escape sequences
required to move the cursor, turn on attributes, recognize function keys etc . . .

The TCAP database file contains information about every terminal on every node
in the network. A terminal type need only be SET once into the database. Once set,
all full-screen applications should work properly on that terminal.

The data base is kept in a file cal led ' tcap.dbase ' under the directory 'config ' .

/config/tcap.dbase

This file is maintained by the TCAP command. A different database may be
selected by using the f= option. This is often useful when testing a new terminal
entry before committing it to the system TCAP database.

Three of the standard entries in the tcap.dbase file begin with the letters "QNX" .
They should be used in the following circumstances :

qnx - For the consoles. If you are on the console and your tcap entry is not set, it
will default to qnx. This setting lets the term() functions use high speed
video calls . The QNX terminal characteristics are fully supported.

Remote execution when invoked from the console , will behave like a qnxt
setting even if the console is set to qnx. This is because high speed video
calls only work on a local machine.

qnxs -This entry is used when a user is communicating to a QNX system using
TALK. Since TALK does not send an FF character to precede function key
codes, it does not fully support the QNX terminal characteristics. With this
tcap setting, the term_key() library will insert an FF when the +efuncs op
tion is enabled. In this way, programs like ED which use the FF character to
distinguish between data and commands will be able to work. Any data
which has the value of a function key will be taken as a command, due to
the automatic insertion of the FF. The major disadvantage to using qnxs is
that there is no means to enter foreign language characters .

This setting will throw away FF's if they come in because term_key() is
generating them on its own based on the value of the data received, so if you
have a QNX compatible terminal you should avoid using this mude.

qnxt - Used when communicating with a QNX compatible terminal trJ :mother
QNX system through a serial line. This setting assumes that the terminal
fully supports the QNX terminal characteristics (including colour). To take
full advantage of QT ALK and QTERM, this setting should be used. There
are other terminals on the market which also support this tcap setting.

Utilities [TCAP]

TCAP

Setting your tcap entry to qnxs or qnxt will never go through high speed video
calls when using the term() functions.

APPEND

This command will append the terminal entries in a specified data file to the data
file in '/config/tcap.dbase ' . For example, assume that you have just received a tcap
data file from a friend which contains several terminal definitions which you wish
to use. The APPEND command may be used to append the new definitions to the
end of your tcap data file. This might result in multiple definitions for the same
terminal. You can remove a multiple definition using the DELETE command. If a
name is specified, then only that entry will be copied over.

The APPEND command can also be used to change the number of node-id' s
supported. For example, to change the number of node ids to 1 2 you might enter
the following sequence of commands.

chattr n=oldtcap.dbase /config/tcap.dbase
tcap create 12
tcap append /config/oldtcap.dbase

COPY

This command will make a copy of an existing terminal entry. This is useful when
defining a new terminal which is substantially the same as an existing terminal.
After the copy you would use the DEFINE command to make and changes to the
new entry.

CREATE

This command will create the file '/config/tcap.dbase ' . The num _nodes parameter
is used by the networking version of QNX. It should be set to the node-id of the
highest node in the network. A value of zero may be used for non-networked
versions of QNX, or the field can be omitted entirely.

DEFINE

This command is used to define new terminal definitions and modify existing
definitions. The terminal capabilities are entered into several full screen menus.
Each menu is responsible for one particular aspect of a terminal defmition. The
editor documentation contains a section on terminals which may give further
insight into its operation.

[TCAP] Utilities

TCAP

When creating a new terminal definition, menu 1 should be completed on another
terminal which has an existing TCAP definition (like the console). After saving it
away you may wish to complete the definition on the terminal being defined. This
will allow you to type in the special keys on the terminal rather than having to
enter a series of escape sequences. The TCAP program uses the direct cursor
information in menu 1 to position the menu on the screen. It makes use of NO
other terminal capability .

Upon entering each menu you will be prompted for an action. Enter the first letter
of a command to select it.

CHANGE - Enter the current menu for changes
NEXT - Goto the next menu
PREV - Goto the previous menu
ABORT - Exit TCAP without saving any changes
SAVE - Exit TCAP and save any changes

The CHANGE command will move you cursor to the first menu field. When
positioned at the start of a menu field you may enter a

carriage return
space
the letter E
the letter R
the character \

goto next field
- goto previous field
- erase current field
- return to the menu
- take the next character as data

Any other character will be taken as data. The current field will be
erased and the typed character entered as data into the field. Each
successive character will be entered as data until

1. The maximum field length is exceeded.
2. A carriage return which was not preceded by a

backslash (\) is entered.

The cursor will then be positioned at the next field. If the field prompt ends with a
colon (:) then ASCII input is expected. If the field prompt ends with an equal sign
(=) then numeric input is expected. All numeric input is assumed to be decimal.

The menu for box characters and input keys will be initialized to default values
when you create a new terminal entry. These may be changed to more closely
accommodate your terminal. For the input key escape sequences you should use
particular care to avoid identical escape sequences for more than one key. For
example, the default value for the Page Up key is a Ctrl-b. If your terminal
generated a Ctrl-b as a leadin for its functions keys you will have to change the
default for Page Up to something else. As another example, some terminals return

Utilities [TCAP]

TCAP

a TAB character for their right arrow key. In this case you will have to redefine the
TAB key to be something like an ESC t or you will be unable to enter tabs.

DEFAULT KEY DEFINITIONS

Alternate

Up Arrow
Down Arrow
Left Arrow
Right Arrow

Home
End
Page Up
Page Down

Insert
Delete
Rubout
Erase line
Select
Cancel
Help
Show
Tab
Tab to begin
Tab to end

Alternate
Fl to FlO
Fl l to F20

- ESC a

- Ctrl u
- Ctrl j or Linefeed
- Ctrl h or Backspace
- Ctrl r

- ESC h
- ESC e
- Ctrl a
- Ctrl b

- Ctrl n
- Ctrl k
- Delete or Rubout
- Ctrl X
- ESC CR
- ESC -
- ESC ?
- ESC s
- Ctrl i or Tab
- ESC TAB b
- ESC TAB e

- ESC a
- ESC 1 to ESC O
- ESC ! to ESC)

NOTE: The following are the translations which are done for the function keys:

TCAP entry

Fl to FlO
Fl l to F20

Alternate Fl to FlO
Alternate Fl l to F20

DELETE

[TCAP]

=

Actual term_ keyO value

Fl to FlO
CNTL_Fl to CNTL_FlO

SHIFT Fl to SHIFT_FlO
ALt::_Fl to ALT_FlO

Utilities

TCAP

This command will delete the terminal entry specified. The terminal name
specified must be in the data base. If the occurrence option is specified, then the
n'th occurrence of a terminal entry will be deleted. This option is useful when
multiple occurrences of a single terminal exist within the tcap data file.

KEYS

This command will display the escape sequence for the special keys. These may
be generated automatically by keys on the keyboard or entered manually as multi
character sequences.

LIST

This command will list the names of all terminals in the data base.

QUERY

This command will list the name of your active terminal entry. It should match the
physical terminal which you are connected to .

SET

This command will change your active terminal entry to the terminal specified.
The terminal name specified must be in the data base.

The TSET command is provided to allow non super-users to set terminal types. It
is functionally equivalent to the TCAP SET command, but does not require the
user to be a super-user.

See Also:

TSET

Utilities [TCAP]

TIMER - Implement timing facility in QNX

Syntax:

timer [no_account_entries] &

Options:

no account entries - maximum number of queued timer requests. - -
Default is 10.

Description:
TIMER implements a timing facility in QNX. It is required by many utilities and
3rd party applications. Unless you are absolutely certain that you don't need it,
you should be running TIMER. TIMER is usually started from the sys.init at boot
time, and always left running.

If you ever do need to terminate TIMER, use the SLAY command:

slay timer

See Also:
CLRHOUSE
CRON
LOCKER
QCP
SLEEP
SLICE
SPOOLDEV

[TIMER] Utilities

TSET - Set tenninal type

Syntax:

tset [tenninal_type]

Description:

TSET allows the user to define query or define which type of tenninal i s in use for
the current $tty device. For example, if a user was logged into a QNX machine
from a vtl 00 tenninal, the command:

tset vt100

would allow QNX to recognize the tenninal type so that QNX full screen applica
tions would be able to operate correctly. This example assumes that a vt100
tenninal type is defmed in the file /config/tcap.dbase.

Typing the command:

tset

would cause the TSET command to display what the currently defmed tenninal
type is.

Note that the TCAP command could also perfonn this operation, but the user of
the TCAP command must usually be a super-user because the TCAP command
also allows the contents of the /conftg/tcap.dbase file to be modified. The TSET
command is usable by a non-super user because it does not modify the
lconftgltcap.dbase file.

See Also:

TCAP

Utilities [TSET]

TSK - Display task information

Syntax:

tsk [f= { cmoprst}] [t=tty] [u=userid]
tsk code [p=program]
tsk info
tsk mem tid . . .
tsk names
tsk size [t=tty] [u=userid] [p=program]
tsk ports
tsk tree [+tid]
tsk users [t=tty] [u=userid] [p=program]
tsk VCS
tsk who tid . . .

options: +qnx -header +physical n=node s=sortfield

Options:

- Don't include a header. -header
+physical - Display memory as 24 bit addresses. Selectors in protected

+qnx

f= { cmoprst}

n=node

S=sortfield

t=tty
u=userid
p=program
tid

Utilities

mode are mapped to real physical memory addresses.
- Use the QNX line drawing set when the tree option is used.

This is the default on the console but must be requested on a
terminal.

- Select a set of fields of information to be displayed. Each
letter included represents a field.

- Obtain information from the indicated node rather than the
local node.

- Sort the lines based upon information in the indicated field.
Each field is a column separated by blanks. The fields are
numbered as s=l (first), s=2 (second), . . .

- Only display tasks associated with the indicated tty.
- Only display tasks associated with the indicated userid.
- Only display information associated with the program task.
- Display information on the indicated task.

[TSK]

TSK

Examples:

tsk - Display a brief summary of all the tasks in the system.
- Display a listing of all tasks associated with tty 3 . tsk t=3

tsk u=bill
tsk mem

- Display a listing of all tasks associated with userid bill.

tsk mem 30c
tsk info
tsk tree n=7
tsk vcs

Description:

- Display the free memory in the system.
- Display any extra segments used by task (Tid) 30c.
- Display system configuration information.
- Display task tree on node 7 .
- Display virtual circuits to other nodes.

The TSK command allows the user to obtain a "snapshot" of the tasks which are
currently in existence. If present, the keyword after the command allows you to
select different types of information and different views of the information
displayed. You need only type the first two characters of a keyword.

There are several options common to all forms of the command. The n=node
option obtains information on another node in the network. The default is to obtain
information on the current node. The s=sortfield option allows you to sort the
displayed lines of information based upon a field. You could sort by tty, task id,
state, code size ... The +physical option maps 286/386 protected mode selectors
into real 24 bit memory addresses .

TSK
When invoked without a keyword TSK will list the name of all tasks which are
currently active. The task-id (tid), state, priority, user-number, and associated tty
are displayed for each task as well as the father-son relationship of the tasks.
Priorities range from 1 to 15 with 1 being the highest. The task flags field contains
letters to indicate the following:

A - Administrator.
C • Concurrent execution.
D - Doomed.
E - Escaped shell.
H- To be Held.
L - Locked in memory.
N • New task entry in the process of being created.
P - Privileged.

The f= { cmoprst} allows you to select which type of information you wish
displayed. Each letter specified includes a field of information as follows.

[TSK] Utilities

TSK

c • Number of programs sharing this code segment and its Code flags.
m- Memory (code/data) used.
o • Ownership (group/member).
p • Program name and task id.
r • Relationships (father/brother/son).
s • State information (statelblocked_onlpriority/flags).
t • Tty.
u • Userid.

eg: tsk f=pu (display program names and userids)

You may wish to create a shell command to invoke TSK with your favorite
options.

TSK CODE
Display information on each code segment running in the system. The programs
name and the number of links (programs sharing the code segment) to the program
are displayed. The flags field contains letters to indicate the following:

F • Uses Floating point (8087).
H - Loaded in high memory.
L • Locked in memory.
0 - Change Owner.
P • Privileged.
R • Remote creates ok.
S • Shareable.

TSK INFO
Displays information on QNX itself. This includes the version number and the
date the operating system was created. Maximums for a number of items are
displayed including number of tasks and files. The flags field contains letters to
indicate the following:

D • Memory below 1 Meg reserved for DOS.
F • 8087 installed (float).
L • Large tile system supported.
M- Memory manager task running.
P • Password protection enabled.
R • Remote creates allowed for non super-users.
S • Automatic sharing of code segments enabled.

TSK MEM
Display information on extra segment memory usage. If no arguments are

Utilities [TSK]

TSK

provided then the system memory free list is displayed. If you provide one or
more task id ' s then the extra memory segments allocated by those tasks is
displayed.

TSK NAMES
Display registered names in the system. Both names registered on the global name
server and names registered on the local machine are listed.

TSK SIZE
Display information similar to that shown when TSK is invoked without a
keyword, only replace the father/brother/son information with the tasks sizes.

TSK PORTS
Display which ports are in use and the tasks which have attached to them.

TSK TREE
Display a graph showing the relationship of tasks running in the system. The tty is
displayed at the end of each line. The +tid option will include the task id with the
name of each task in the displayed graph. You may select a subset of tasks to
match using the t=tty or u=userid options. On the console the line drawing
characters are used while on a terminal +'s , l ' s and - ' s are used. If your terminal
supports the console line drawing character set you can force it to be used with the
+qnx option.

TSK USERS
TSK will list the name of all tasks which are currently active. The task-id (tid),
userid, state, priority, user-number, and associated tty are displayed for each task.

TSK VCS
Display virtual circuits existing between this node and other nodes in the network.
The display shows each local task id and program which has a virtual circuit to
another node and task id. The virtual id' s and the size of the virtual circuit is also
displayed. You can obtain more information on the task at the far end of the
virtual circuit using the WHO subcommand and providing the local vid as an
argument.

TSK WHO
Display the tty, program name and userid running the indicated task. If you type in
a virtual id (vid) then information on the remote real task is displayed.

[TSK] Utilities

TYPE - Type arguments

Syntax:

type
type text

• This is a local shell command •

Description:

The arguments following the command are displayed on the terminal, followed by
a carriage return. This is often used within command files to display progress
messages.

See Also:

ECHO

[TYPE] Utilities

TZSET - Display or set timezone offset

Syntax:

tzset [[+-]hour[:min]]

Options:

hour - 0- 1 2
min - 0-59

Examples:

tzset
tzset +5
tzset -3:30

Description:

I f n o arguments are given, the TZSET command allows the user to display the
timezone offset on their terminal. The timezone offset is specified as a number of
hours and minutes, plus or minus, from Greenwich Mean Time (GMT). This offset
is used to adjust the internal time, which is maintained in GMT, to local time for
display purposes.

When changing the timezone, the hour is entered first (optionally preceeded by a
plus or minus; plus is assumed). The hour may be followed by a colon (:) and a
number of minutes (which must be a multiple of 15) for the few places in the world
which are in a timezone that is not on the hour (Newfoundland, Canada for
example).

If you are in a location which periodically adjusts its clocks (for example, Daylight
Savings Time), simply adjust the timezone offset given to TZSET to maintain the
correct local time.

See Also:

CLOCK DATE RTC

Utilities [TZSET]

UNPACK - Unpack a packed file

Syntax:

unpack file* [options]*
OR

unpack <infile >outfile [options]*

Options:

- Force output to the screen.
- Suppress the removal of input files.
- Display status messages.

+display
-remove
+verbose
-time - Retain original file time. Set to current time by default.

Examples:

unpack *.z - Unpack all packed files
in current directory

unpack <packed_text >text

Description:

UNPACK expands packed files into exact duplicates of the original. UNPACK
operates on files which have been created with the PACK utility.

When the first form of UNPACK is used each file will be replaced by a flle with
the same name and the .z removed. The packed file will by default be removed.
You can suppress the removal by specifying the -remove option.

When the second form of UNPACK is used it will read from the standard input and
write to the standard output. In this case the input file will never be removed and
you have control over the name of the output file. The +display will force all
output to the screen. The input packed files will not be removed. If more than one
file is specified they will be appended together. If you were on the console the
following two command would be the same:

unpack file >$con
unpack file +display

Utilities [UNPACK]

UNPACK

This option is typically used to quickly examine the contents of a packed file.

If the +verbose option is specified each file will be printed as it is unpacked.

See Also:
PACK

[UNPACK] Utilities

[wee
WC - Word count

Syntax:

we [file] * [-chars] [-lines] [-words] [-verbose]

Options:

file - Name of a file to count. If omitted
the standard input is used.

-chars - Don't display the number of characters .
-lines - Don't display the number of lines.
-words - Don't display the number of words.
-verbose - Don't display the file name and omit

descriptive text.

Examples:

we test.c
we *.c -w
we inventory mailing_list -c -v

Description:

we will count the total number o f characters, lines and words in each of the given
files. The number of lines and words is only meaningful for text files. A word is a
maximal string of characters delimited by spaces, tabs or new lines.

If more than one filename is given, then we will also report the total number of
characters, lines and words in all the files.

See Also:

SIZE

[WC] Utilities

WHO / I
WH 0 - Who is logged-in to the system

Syntax:

who [am i I net I node*] [options] *

Options:

am i
net
node
-header
+system
-verbose

Display who you are.
- Display all users in the network.
- Display all users on this node.
- Suppress column header.
- Display system owned tasks.
- Display only owner, tty and task name.

Examples:

who
who am i
who net +S
who 3
who 3 5 7

Description:

The WHO command will display the users which are logged o n t o the system. The
output will be of the form.

Node User TTY Idle-Time Sign-On-Time Flags Command
4 opr 0 0 :00:49 Nov-23 5:21 pm • • • • sh
4 dtdodge 4 0 :02:45 Nov-23 5:06 pm • • • • sh

If invoked with no arguments, WHO will display all users logged-in to your
machine. The am i option is useful to find out who is logged on to an unoccupied
machine or a second window on the console. The net option will list all users
logged on to all machines in the network.

The NODE field will only be displayed when running the network version of
QNX.

Utilities [WHO]

WHO

A field of dashes (--- --) for the time indicates that someone forgot to set the date in
the system.

The idle time field displays how long it has been since a character was received by
that particular tty. This field is particularly useful for the detection of users who
have been idle long enough that they should be logged off.

The flags field indicates that a message is waiting to be printed on that users
console.

A - An appointment was changed
B - An APB (all points bulletin)
C - Chat request
M • A MAIL WAITING message

See Also:

LOGIN
NET

[WHO] Utilities

WS - Walk directory Structure executing a command

Syntax:

ws [directory ["command . . . "]] [options] *

Options:

dc=delete char

pc=path _char

d=date

t=time

l=levels

g=group

m=member

p=["]pattern

+abort
+before

Utilities

- This character when present in command will delete the
previous character of the expanded string. (default is a
backquote)

- This character when present in command will be replaced
by the current pathname. If the path_char is followed by a
question mark, then the two character sequence will be
replaced with input prompted for from the standard input.
If the path_char is followed by another path_char then
only the filename and not a complete pathname will be
replaced. This is sometimes useful when +replace is NOT
specified but you still want the relative name. (default is an
at-sign @)

- Match only those files which have changed since this date.
Date is of the form dd-mm-yy. (default is 01 -Jan-80)

- Match only those files which have changed since this time
on the given date. Time is in the 24 hour format hh:mm:ss.
(default is 0:0:0)

- Specifies how many levels down from the indicated
directory will be searched. The default is 1= 1 and will
cause only files at the current level to be searched, not files
under subdirectories.

- Indicates that only files whose group number matches
group will be selected.

- Indicates that only files whose group member number
matches member will be selected.

- Indicates that only files whose name match this pattern
will be selected. Up to ten p= options are allowed, in
which case files which match ANY of these patterns will
be copied. Also, if the pattern is preceded by an up- arrow
("), then files which match this pattern will NOT be
selected.

- If a command returns a non-zero status then WS will abort.
- Changes the meaning of the time and date options to mean

[WS]

ws

+directory
+error

+locked
-locked
+modified

-modified
+query

+relative

-verbose

Examples:

before. The default is now or after.
- Selects directories rather than files.
- If a command returns a non-zero status, a prompt to

continue will be displayed. (default is to ignore returned
status)

- Match only files which are BUSY.
- Match only files which are not BUSY.
- Match only files which have been modified and not

backed up using the BACKUP command.
- Match only files which have been not been modified.
- Before executing each command a prompt will be issued

requesting permission to execute. If option verbose is set
(default) then the entire command line will be prompted,
otherwise only the selected pathname is printed. A single
'y ' will execute while anything else will skip to the next
pathname.

- The WS command will usually generate complete
pathnames from the indicated directory. This option will
cause WS to do a CD command when it moves to each
new directory and the pathname will be the simple
filename at this directory.

- Suppress the printing of each command before it is
executed.

ws "frel @" - Remove all files at current directory.
ws /user/bill "frel @" 1=20

- Remove all files owned by bill.
ws /user/bill "drel @" 1=20 +d

- Remove all directories owned by bill.
ws "chattr n=@? @" p=*data*

- Change the name of all files containing the string "data" to
a new name which will be prompted for.

ws "ed @" p=*.c d=3/1/83
- Edit all C programs which were changed on Jan 3, 1 983.

ws 2:/ "type @" -v p=xyz 1=12

Description:

- Search all of disk 2 looking for the file xyz. I f found, print
its complete pathname.

WS is a utility which increases the power and scope of existing QNX commands. It
is a very powerful command and should be carefully studied. You may rarely need
it, but when you do, it will be of untold value!

[WS] Utilities

The simplest fonn of the command is:

ws " command arguments"

which will execute the command in double quotes on each file in the current
directory. The double quotes are necessary. Any occurrence of the AT -SIGN
character (@) will be replaced by the current filename. For example:

ws " type @"
ws "frel @"

- Type name of each file in current directory
- Release each file in current directory

ws

A number of options may follow the command. The two most common being
+query and -verbose. The query option will prompt you for each possible execu
tion of the command. A single "y" will execute the command, anything else will
skip execution and proceed to the next. The -verbose option suppresses the
printing of each command before execution.

WS will not nonnally descend to subdirectories in the current directory. This can
be overridden by specifying the number of directories to descend using the l=levels
option. The following example will release all files under the directory "/user/bill"
including all subdirectories. The directories are then removed. These two
commands have effectively released all a users ' files, perhaps in preparation of
removing his user id.

ws /user/joe "frel @" 1=100
ws /user/joe "drel @" +d 1=100

- Release all files
- Release directories

Note that in this case a particular directory was specified and in the second
example the +directory option matched directories, NOT files .

The time and date options allow the selection of files based upon their last change.
The default will typically select all files. The following command would
recompile all C source files which were changed today (read up on the MAKE
command for a better method).

ws " cc -c @" p=*.c d= 1=5

Note that a null string for the date defaults to today.

The p=[A]pattern option follows the same syntax as the BACKUP command and it
should be referred to for wildcard character definitions.

The AT -SIGN prompt (@?) is provided to increase the flexibility of the WS
command. There is no limit (within reason) to the number of @? prompts you may
have on a command line. For example

Utilities [WS]

ws

ws " type 1-@?-2-@?-3-@?-4-@?-5-@?-"

will prompt for each of the five arguments . Note that the @ does not need to be
delimited by spaces. This is a silly example in that it will select each file in the
current directory but does not expand it on the command line. The more realistic
example below allows the super user to interactively set the ownership on each
user directory

ws /user " chattr @ o=@?" +q

The +relative option will cause WS to issue a CD command before entering each
subdirectory. The pathnames expanded by the AT-sign (@) will contain the last
component of the full pathname. This can best be understood with an example.

ws 1 :/ " type @" 1=10
and

ws 1 :/ " type @" +r 1=10

- Type complete pathnames.

- Type simple file names.

All examples above have contained a command and some have contained an
overriding directory as their first argument.
If neither is specified then WS will operate on the current directory and prompt

for command lines from the standard input. Each input line will be executed on all
selected files and the user will then be prompted for another command. An end-of
file (Ctri-D) will terminate the command.

If a directory is specified then the syntax requires you to enter a command. If the
command is an empty string then you will be prompted as above.

ws

ws /user/bill " "

- Prompt for commands and operate
on current directory.
Prompt and operate on /user/bill

WS could be used as a filter in which it was piped a series of commands. The
following simple example assumes that the file my cmds contains a list of
commands you wish executed on all files ending in'' .c" at the current directory.

ws p=* .c <my_ cmds

See Also:

BACKUP EO MAKE

[WS] Utilities

XLA T - Translate Characters

Syntax:

xlat xfile [+raw] [+wildcard] [<input_file] [>output_file]

Options:

+raw - Tum off output character mappings (ERS, EDEL,
ET AB). This only affects output to a device.

+wildcard - Allows the use of the ' ? ' charcater to match any single
char. This is useful for removing escape sequences from
log files.

Examples:

xlat qume.xlat <lexpllinform >$1pt

Description:

XLAT will translate single characters or multi-character sequences found in
input _file based on the translations specified in xfile.

The translation file specified by xfile consists of one or more translate entries with
optional comments. A translate entry has the form:

input_seq output_seq [alt_output_seq]

where each translate entry is on a separate line. input_seq, output_seq and
alt _output _seq have the form:

char [,char]*

char may be specified as an actual character, two hex digits, or a carat (") followed
by an actual character. The last case will result in a control character if (and only
if) the actual character is alphabetic (a-z or A-Z), else the actual character will be
used (this can be useful for entering a comma (,) or carat ("), otherwise the hex
value could be given). A comma (,) is used to separate characters and white space
(spaces or tabs) is used to separate sequences.

Utilities [XLAT]

XLAT

If the alt output seq is given (it normally is not) then input seq will toggle
between the two

-
possible output sequences.

-

The following xlat table will convert all record separators, tabs and runs of two
spaces to a single space. Because only one pass is made through the translation
table, this will not reduce all "white space" to a single space.

le 20
09 20
20,20 20

This table will translate some control characters into their ASCII name with
alternates for tab and rubout.

00 <,N,U,L,>
04 <,E,O,T,>
07 <,B,E,L,>
08 <,B,S,>
09 <,H,T,> <,T,A,B,>
Oa <,L,F,>
Oc <,F,F,>
Od <,C,R,>
11 <,D,C,l,>
13 <,D,C,3,>
lb <,E,S,C,>
le <,R,S,>
7f <,D,E,L> <,R,U,B,>

You may wish to create a number of table to convert

upper case -->
ascii -->
QNX escape -->
sequences

[XLAT]

lower case
ebcdic
daisy wheel printer
escape sequences

Utilities

ZAP - Zap damaged files out of existence

Syntax:

zap file

Examples:

zap junk
zap /user/bill/junk

Description:

ONLY USE THIS COMMAND TO RELEASE DAMAGED FILES.

ZAP should be used when a file is known to contain bad disk blocks, or if a file has
been left in an inconsistent state (FILE BUSY) due to a system crash while a file
was being written.

ZAP releases files by clearing the directory entry for that file. The disk blocks used
by that file are NOT reclaimed. Repeated use of ZAP will therefore reduce the total
number of disk blocks available to the user. These can be reclaimed by running the
CHKFSYS utility when the system is idle.

Normally, a user should use the FREL, DREL, RM or RMDIR commands to
release files or directories.

See Also:

CHATTR
CHKFSYS

Utilities

DREL
FREL

RMDIR
RM

[ZAP]

