
Archimedes
BASIC Compiler

Copyright © 1988 Solent Computer Products. All rights reserved.

Updates and changes copyright © 1996 Pineapple Software. All rights reserved.

Updates and changes copyright © 2016 RISC OS Open Ltd. All rights reserved.

Issue 1 published by Oak Solutions Ltd.

Issues 2-7 published by RISC OS Open Ltd.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
the publisher in good faith. However, the publisher cannot accept any liability for
any loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

All trademarks are acknowledged as belonging to their respective owners.

Published by RISC OS Open Ltd.

Issue 1 for ABC 3, November 1991 (Oak Solutions edition).
Issue 2 for ABC 4, November 2016 (updates by RISC OS Open Ltd).
Issue 3 for ABC 4, October 2019 (updates by RISC OS Open Ltd).
Issue 4 for ABC 4, May 2020 (updates by RISC OS Open Ltd).
Issue 5 for ABC 4, October 2020 (updates by RISC OS Open Ltd).
Issue 6 for ABC 4, February 2021 (updates by RISC OS Open Ltd).
Issue 7 for ABC 5, May 2022 (updates by RISC OS Open Ltd).
ii

Contents
1 Introduction 1
Interpreters and compilers 1
Compatibility 2

2 Installation 3
Elements required 3
Installation 4

3 Getting started 5
Compiling a program 5
Executing the code 6
ABCLibrary 7
Warnings and errors 9
Icon bar menu 13

4 ABC versus BASIC interpreter 17
Nature of differences 17
Structures 17
Scope rules 21
Local error handling 22
Floating point 24
@% and print formatting 26
@% and floating point in data files 28
Variables, arrays, parameters etc 28
Indirection operators 29
Pseudo variables 30
Calling machine code 32
Operating system calls 33
Assembly language 34
Banned keywords 36
1

5 Compiler directives 39
General format 39
Program directives 39
Memory directives 43
Variable directives 46
Assembly language directives 49
Warning directives 51
Optimisation directives 52

6 Manifest constants 57
Using manifests 57

7 Conditional compilation 59
Using conditional compilation 59

8 Relocatable modules 61
Module types 61
Module compiler directives 62
Command handlers 64
SWI handlers 65
An example module 66

9 Libraries 69
Library modules 69
Making a library 69
Accessing library routines 70
Implementing library routines 71
Restrictions on libraries 72
An example library 73

10 Cross referencing 75
Using the X-ref option 75
Report information 76

11 Appendix A: Significant changes 79
Version history 79

12 Index 83
2

1 Introduction

he Archimedes BASIC Compiler forms part of the Desktop Development

Environment, giving developers the option to quickly produce applications and T
modules in the familiar BBC BASIC language built in to every version of RISC OS.
Interpreters and compilers

All versions of Acorn's BBC Microcomputer and all machines which run RISC OS
have been supplied as standard with a version of BBC BASIC which runs as an
interpreter. An interpreter is a program which reads the program line by line,
analyses and evaluates the instructions, then executes them immediately.

The alternative to an interpreter is a compiler. A compiler also reads the whole
program, but without execution. Instead, the instructions of the input program
(usually called the source) are converted into machine code and the resultant
output, the object program, is normally saved as a separate file.

This compiled program can then be executed just as if it had originally been
written in machine code, rather than a ‘higher level’ or more user friendly language.
With improved processors, more memory, and larger disc space this is less
important than it used to be. ABC still has a valuable role as a means of packaging
BASIC software for release in a way that deters trivial observation of the program
code.

Interpreters have the advantage that a program can be typed in and run straight
away without any extra operations. However, they also have two major
disadvantages:

● The first is that, especially for large programs, you can never be absolutely sure
that a program is free of syntax errors. These will be found only if the
interpreter tries to evaluate the instructions in which they occur. If, when a
program runs, a particular path through the code is not followed, possible
errors in that area of the program remain undetected. Since a compiler always
processes and evaluates every instruction, such errors are always discovered
immediately.
1

Compatibility
● The second disadvantage of interpreted programs is that the speed of
execution is much lower than for compiled programs. This is because each
statement must be re-interpreted every time it is executed. Under a compiled
system, most of this analysis is done only once - during the compilation - and
so does not waste time when the compiled program executes.

The ideal is to have both an interpreter and a compiler. The interpreter is used to
develop and test logic and debug the algorithms, while the compiler fulfils two
roles. It can be used initially to detect syntax errors, and finally, when development
is complete, to produce the finished compiled program. The Archimedes BASIC
Compiler has been produced to provide you with this ideal development tool for
your RISC OS programs.

Compatibility

ABC works on all versions of RISC OS from 3.10 upwards, and with 26 or 32 bit
processors.

For compatibility with 32 bit processors you must recompile with ABC version 4.10
or later and use ABCLibrary version 4.12 or later also. This is due to changes in the
linkage scheme between the application and ABCLibrary. Programs compiled with
this combination will run on 26 or 32 bit platforms with no modifications
necessary.

For compatibility with the Vector Floating Point coprocessor you must recompile
with ABC version 5.00 or later and use ABCLibrary version 5.00 or later also. This is
due to the floating point instructions using previously undefined Arm opcodes,
therefore programs compiled with this combination will only run on platforms with
VFP accelerator support. If you require compatibility with all RISC OS platforms
you should use the Floating Point Accelerator (FPA) option instead; such programs
will run floating point calculations more slowly because they are almost always
emulated longhand, rather than using a maths coprocessor.
2

2 Installation

e detail installation for both the developer using ABC and an end user

wishing to use the resulting software created.W
Elements required

!ABC

The main Archimedes BASIC Compiler product.

Find this in the Apps.DDE directory.

Developer !System

A collection of modules required by developers using ABC.

Find this in the AcornC/C++.Developer directory.

End user !System

A smaller collection of modules required by users wishing to run software
created by ABC.

Find this in the AcornC/C++.EndUser directory.

Examples

A directory containing examples referred to in this text.

Find these in the Sources.DDE-Examples.ABC directory.

ABC is designed for use under the RISC OS desktop. On the distribution disc, the
software is present in a ready-to-run form. However, it is strongly recommended
that you should install the system onto a day-to-day working disc. You should then
put the original distribution disc away in a safe place.

Programs compiled with ABC, which includes ABC itself, make use of a run time
library called ABCLibrary. This library is encapsulated in a RISC OS module. Only
one copy of ABCLibrary needs to be loaded at once, which can serve any number of
ABC applications or modules.
3

Installation
Installation
Copy the Apps.DDE folder to your day-to-day working disc in its entirety. On a
standard RISC OS harddisc layout there will already be an Apps directory present;
this update will add the Desktop Development Environment (DDE) directory within
it.

Copy the Sources.DDE-Examples.ABC to your day-to-day working disc too.
Keep this somewhere convenient as later chapters in this Guide refer to the
examples in several places.

Merging the developer System modules

Do not use a Filer copy operation to copy the !System directory over your existing
one, as this would overwrite any newer versions of modules that have been
released since the ABC distribution disc was created.

An obey file called !SysMerge is provided to safely merge the newer resources
with your existing System. ABC works with RISC OS 3 and later and the System
update is similarly compatible.

Your licence does not permit the developer System to be redistributed.

Merging the end user System modules

For software created with ABC you will need to provide end users with a copy of
ABCLibrary and a handful of other System updates. Use the end user version for
this purpose.

Instructions are provided in an accompanying text file for how to install these
resources which varies slightly between different versions of RISC OS. As a
developer, the new modules will already have been installed in the earlier
instructions for merging the developer System modules, so no further action is
needed.

Your licence permits you to include this end user System with any software you
produce using the Desktop Development Environment.
4

3 Getting started

nce ABC has been installed onto either a working disc or your hard

disc, you will need a BASIC program to compile to try it out. This chapter O
works through the process of getting started.
Compiling a program
A very simple example called Hello is provided in the Examples directory. This
consists of the following:

10 REM >Examples.Hello
20 PRINT "Hello"

You are now ready to find out how easy the compiler is to use.

To compile the program, open a directory viewer onto the Examples directory and
drag the Hello icon from the directory viewer and drop it on top of the ABC icon
on the icon bar:

The following will appear:

This represents the object file which you are about to create.
5

Executing the code
You can, if you wish, alter the name of this file from the default, Object. To do
this, press the Delete key until the writable icon is empty and then type in the
name which you want to use, for example HelloObj.

Click select to drag the object code icon from the dialogue box to a directory viewer
where you want the file to be created. A good place to save it would be in the
Examples directory alongside the source. When you drop the icon in the
directory, the compilation will start and the following window will appear:

This confirms the path names of the source and object files and shows the progress
through the compilation in terms of both the number of problems which have been
found so far and the percentage of the compilation which has been completed.

Click Abort if you wish to halt compilation.

The compilation will take just a few moments, after which the following will be
displayed:

This verifies that the compilation has been completed successfully and provides
information about the time taken and the size of the object code produced. The
object code always contains a header block of about 2 kbytes. Hence the length of the
object will always be at least this size.

Executing the code

The object code produced during the compilation is saved using the name you
provided earlier. Therefore you should be able to see an application icon called
HelloObj (or whatever you chose to call it) in the Examples directory viewer.
6

Getting started
To execute the code, double-click on this icon. A command window will be opened
and the output from your code, the string “Hello”, will be printed in it. Then, when
execution is complete, the message

Press SPACE or click mouse to continue

will appear:

ABCLibrary

To execute the object code produced the ABC library module, ABCLib, must be
active. This library is automatically loaded when the compiler is initialised.
Therefore, if you compile a file immediately before running the object code, you
won't have anything to do.

However, if you reset your computer and then double-click on the object code icon
to execute the code, you will get the error message:

ABCLib too old or not loaded

You need to double-click on the ABCLib module before executing this code.

You may find it convenient to create an application directory to hold your object
code. Then you can add the following line to the !Run obey file so that it
automatically loads the ABCLib module for you:

RMensure ABCLibrary 0.00 RMLoad System:Modules.ABCLib
RMensure ABCLibrary 4.12 Error An older version of ABCLib is already loaded

This assumes that ABCLib is included in !System which is where you are advised to
place it. Notice how the two commands are used to firstly load the library if no
library is currently loaded, and secondly to take special care not to load the
module if it is already loaded. Loading a newer library when an older one is already
in use with other clients could result in system instability.
7

ABCLibrary
If you provide an application to someone else, you should include the end user
!System resource holding ABCLib on the disc and advise the recipient to install as
described in the instructions for Merging the end user System modules on page 4.

If your program makes use of floating point calculations it is also advisable to
check that the modules which support the coprocessors are also loaded. While
RISC OS typically includes these as part of the operating system itself, it is useful
to explicity test their presence so that you can tailor the error message that users
of your program might see:

RMensure FPEmulator 0.00 RMLoad System:Modules.FPEmulator
RMensure FPEmulator 4.09 Error MyApp needs FPEmulator 4.09 or later to run

and for programs using the Vector Floating Point coprocessor:

RMensure VFPSupport 0.00 RMLoad System:Modules.VFPSupport
RMensure VFPSupport 0.18 Error MyApp needs VFPSupport 0.18 or later to run

These examples show the minimum versions considered suitable for use with ABC
due to functions or fixes which are present in each which simplify their use. Earlier
versions may work but are not recommended.

For maximum floating point performance you might choose to provide two
versions of your application, one compiled to be run on the Vector Floating Point
coprocessor and one for the Floating Point Accelerator (see page 15 for details of
how to select this). The !Run obey file can select which one to use by combining
the above three checks:

RMensure ABCLibrary 0.00 RMLoad System:Modules.ABCLib
RMensure ABCLibrary 5.00 Error An older version of ABCLib is already loaded
RMensure FPEmulator 0.00 RMLoad System:Modules.FPEmulator
RMensure FPEmulator 4.09 Error MyApp needs FPEmulator 4.09 or later to run
Set MyApp$RunSuffix V
RMensure VFPSupport 0.18 Unset MyApp$Suffix
Run <Obey$Dir>.!RunImage<MyApp$Suffix>

This firstly checks for the earliest ABCLibrary which supported both floating point
models, then prefers to use Vector Floating Point if it is available, before falling
back to the emulated method if not. The FPA object code is called !RunImage and
the object code for VFP is called !RunImageV in this example.
8

Getting started
Warnings and errors

If the compiler discovers a problem with your BASIC program then it will stop and
display either an error message or a warning. A large range of different messages
have been implemented to allow the description of the problem to be as specific
and meaningful as possible.

● Errors are the more serious. After an error the compiler is unable to continue
generating code.

● Warnings are given when there is something wrong with the code but the
compiler has been able to make a guess at what you meant or ignore the
incorrect statement. The compiler will continue generating code after a
warning, however the object code might not do what you intended!

The compiler attempts to avoid throwing errors if it can. Notably when undefined
variables are found each will generate a warning rather than an error, but an error
will be thrown at the end of compilation. This allows you to get substantially
further through the compilation at each attempt.

However, what will sometimes happen is that the number of problems reaches the
point where the compiler cannot continue and the compilation must be aborted
for errors to be fixed. The Pause option must be turned on to see these warnings
during compilation.

Warnings

To see a warning, try compiling the Warn1 file in the Examples directory. This
contains the following program:

10 REM >Examples.Warn1
20 A$ = "Hello : REM a simple message
30 PRINT A$

The error is on line 20 - a double quote is missing from the end of the string.

Reporting using throwback

ABC will attempt to report warnings and errors via the throwback protocol used by
other compilers and assembler tools in the Desktop Development Environment.

This facility requires the DDEUtils module to be loaded and a throwback-capable
editor, such as SrcEdit, which can also load tokenised BASIC programs. If you
double-click on a warning/error in the throwback window then the editor will open
the source file on that line.

It is possible to disable throwback with a directive as described in Throwback
suppression on page 51.
9

Warnings and errors
Reporting without using throwback

If ABC is unable to use throwback it will open its own error reporting window which
will report the line, nature of the problem, and line number:

Having obtained a warning, you have two alternatives. You can either click on OK
to continue with the compilation or click on Edit to load the source program into
your chosen BASIC editor.

Choosing OK

If you choose the former option then the compiler will continue with the
compilation, having guessed that you meant the missing double quote to be at the
end of the line. When the compilation is complete, the dialogue box produced will
confirm that 1 warning was issued during the compilation.

If you try running the code produced by double-clicking on the object file, the
following will be printed:

Hello : REM a simple message

Although object code has been produced, it does not do what was intended, which
was to print “Hello”. Hence you should be very wary of the code produced by a
compilation which generated a warning.
10

Getting started
One reason for continuing with the compilation is that it allows you to detect
further problems using just a single run of the compiler.

However, a note of caution is required here as well. Any subsequent warnings may
be spurious. They may be generated because the compiler guessed incorrectly at
the cause of the first problem. For example, try compiling Warn2 which contains
the following:

10 REM >Examples.Warn2
20 FOR I% = 1 TO 10
30 PRINT I%
40 NET I%
50 FOR J% = 1 TO 10
60 PRINT J%
70 NEXT J%

This contains a single mistake - the NEXT on line 40 has been mis-spelt. However,
when line 40 is reached, the warning generated is:

= expected

This is because the compiler makes the (incorrect) assumption that NET is a
variable which is being assigned the value I%. Then, when the last line is reached,
the compiler still thinks that the first FOR loop hasn't been ended and so produces
the message:

Unclosed FOR loop

Choosing Edit

This option will attempt to load the source program into an editor which can load
BASIC programs, such as SrcEdit provided with the Desktop Development
Environment. The editor must already be running for this feature to work.

Errors

An error is a problem which is serious enough for the compiler to be unable to
guess what you meant. Therefore, compilation is unable to continue after an error
has occurred.

The best course of action is to immediately correct the program and start again.

With throwback in use, the errors will be listed with a higher priority alongside
warnings in the throwback window.

With throwback not in use the dialogue box which appears when an error occurs is
similar to that for a warning except that the title is “Error from ABC” rather than
“Warning from ABC”. You are still given the two options OK and Edit.
11

Warnings and errors
Because the cycle of:

● Find a bug

● Correct it

● Recompile

can be time-consuming, the compiler will do its best to avoid giving errors. The
majority of syntax problems, for example, produce just a warning with a sensible
guess being made as to what you intended.

A common cause of errors is trying to use an unassigned variable. This is a variable
which is never assigned a value within the program. This situation frequently
occurs due to the mis-spelling of variable names in expressions. However,
particularly with a large program, you may inadvertently have several such
variables. It would be very frustrating to have them reported one at a time, with you
fixing a single occurrence and recompiling from the beginning inbetween.

So, what the compiler does, is to report them as warnings as it finds them. Then, at
the end of the first pass when it is sure that no further ones exist, you will be given
the error:

Unknown object(s) found

For example, try compiling Error1. This file contains the following program:

10 REM >Examples.Error1
20 A% = a
30 B% = b
40 C% = 3
50 D% = A% * B%

The compilation will produce two warnings:

a is not defined

and:

b is not defined

Then, when the pass is complete, the following error will be given:

Unknown object(s) found

The compilation will then end. This allows you to find out about and fix all
unassigned variables with just one pass of the compiler.
12

Getting started
Icon bar menu

If you menu click on the ABC icon on the icon bar, the following menu will appear:

The first and last options are the standard ones provided by the majority of
applications.

Info

This gives you information about the application.

Options

This leads to the options dialogue, described below.

Save choices

Choosing this will save the current settings of the options so that they are recalled
automatically the next time you use ABC.

Quit

Quit ends the ABC application, removing the ABC icon from the icon bar.

Compiler options

The Options sub menu reveals the following dialogue:

Each of the option boxes represents a setting which affects how the compiler
behaves.

X-ref

When selected, this option instructs the compiler to build up details of all the
variables, procedures and functions used in the program; the calling sequence of
routines etc.
13

Icon bar menu
Then, when the compilation is complete, you can interrogate this store of
information. Full details of this option are given in the chapter Cross referencing on
page 75.

The default is for the option to be off.

Quick

When selected, this option applies a number of compiler directives to produce
code which is smaller and faster. The list is as follows:

REM {NOTRAPS}
REM {NOSTACKCHECK}
REM {NOESCAPECHECK}
REM {NOARRAYCHECK}
REM {NOZEROLOCALS}

Details of these directives are given later in the chapter Compiler directives on
page 39.

The directives make a number of assumptions about your code. Therefore, this
option should be used with care.

While most of these are unlikely to cause problems, NOZEROLOCALS is the
exception. This asserts that your code does not rely on local variables in
procedures or functions having a value of zero until they are explicitly assigned a
value. With the assertion in place an uninitialised local variable will almost always
have a non-zero value until an assignment is made. This can cause some very
mysterious bugs, so if you find that your program becomes unreliable with the
quick option turned on try adding

REM {ZEROLOCALS}

at the start of the program to override the directive. If your program then works
properly you should then either leave this in place or track down the uninitialised
variables.

The default is for the option to be off.

RAM

When selected, this option causes ABC to perform RAM-to-RAM compilation. The
alternative is for the compiler to read the source from disc, a few lines at a time,
and write out the object produced in a similar manner.

RAM-to-RAM compilation is faster but does require a larger amount of memory
and so may not be practical for compiling large programs on smaller machines.

The default is for the option to be on.
14

Getting started
Pause

When selected, causes the compiler to display a warning dialogue box every time it
finds a problem, and wait until you click on OK or Edit before continuing with the
compilation. This gives you chance to act on the mistakes and stop the
compilation if you wish.

If you de-select the option, messages will not be displayed. The only information
you will be given will be a count of the number of warnings when the compilation
is complete. Deselecting this option is particularly useful for long compilations
which you wish to leave unattended.

The default is for the option to be on.

FPA/VFP

These options select which coprocessor the code generator should use for floating
point calculations. Only one may be selected at once, so the two options use a
radio icon.

The Floating Point Accelerator (FPA) is compatible with RISC OS 3.10 and later, but
will often be slower because very few Arm processors have the FPA macrocell
implemented on the chip so must emulate it instead using the FPEmulator
module.

The Vector Floating Point (VFP) is available with most ARMv6 and later Arm
processors. There have been a few minor variations of the VFP macrocell, but these
differences are catered for by the VFPSupport module.

The default is for the option to be FPA.

Code size

This option and adjacent writeable allows you to preset a memory buffer size for
the output code. To direct the compiler to manage this automatically, leave the text
field empty and ensure that the option is not ticked.

The default is for the option to be off.
15

Icon bar menu
16

4 ABC versus BASIC interpreter

n an ideal world, it would be possible to have complete source and object

compatibility between the BBC BASIC interpreter and the ABC compiler. I
Unfortunately this is not the case, these differences are highlighted below.
Nature of differences
There are certain small differences between the syntax for some instructions, as
well as in the output generated. An existing program may, therefore, need some
minor modification before compilation.

Some of these differences are inherent in the execution of compiled or interpreted
code. Others are deliberately implemented to improve the performance of the
compiled code - since the compiler is primarily intended as a development tool,
not just a new way to run existing programs.

Structures
The compiler supports all the flow control structures available in BASIC V with just
a few minor differences.

Closed structures

The interpreter insists that there is a one-to-one correspondence between opening
and closing structure markers in the case of CASE...ENDCASE and IF...ENDIF
structures. The compiler takes this rule one step further and insists that the
one-to-one correspondence is maintained between REPEAT...UNTIL,
WHILE...ENDWHILE, and FOR...NEXT.

Multiple exits from procedures & functions

For procedures and functions, the compiler's rules are more relaxed. It does not
insist that there is only one ENDPROC for every DEFPROC and only one function
return for every DEFFN.

The rules governing the use of ENDPROC in ABC programs are as follows:
17

Structures
Procedures

The body of a procedure starts at the DEFPROC and lasts until either:

● an ENDPROC is found which is not nested within a structure

● the end of the program is reached

● another DEF is encountered.

An ENDPROC which is nested within some other structure will be compiled as a
branch to the 'real' end of the procedure.

Thus examples of legal structures are:

1000 DEF PROCex1
1010 REPEAT
1020 IF X = 0 THEN ENDPROC
1030
1040 UNTIL FALSE
1050
1060 ENDPROC

2000 DEF PROCex2
2010
2020 CASE X OF
2030 WHEN 1 : ENDPROC
2040 OTHERWISE
2045
2050 ENDCASE
2060 ENDPROC

3000 DEF PROCex3
3010
3020 IF X = 0 THEN
3030
3040 ELSE
3050
3060 ENDPROC
3070 ENDIF
3080
3090 ENDPROC

Whereas the following is not allowed:

1000 DEF PROCex4
1020 IF X = 0 THEN 1050
1030
1040 ENDPROC
1050
1060 ENDPROC

This example is not allowed because neither of the ENDPROCs on lines 1040 or
1060 are nested within some other structure. This program should be converted to
use the multi-line IF...THEN...ELSE...ENDIF to make it acceptable.
18

ABC versus BASIC interpreter
Note: PROCex1 may cause some problems for earlier versions of the interpreter.
Under BASIC IV and previous versions, the REPEAT...UNTIL loop would have been
left 'pending' if the ENDPROC on line 1020 had been executed. This was corrected
under BASIC V - this version flushes the stack and discards the loop. ABC has no
problems with this type of structure, whilst executing it does not have the concept
of 'current' structures.

Functions

The rules for the use of function returns are the same with one addition:

● No function may return values of incompatible data types.

For example, the following is not allowed:

100 DEF FNx(A)

200 IF A = 0 THEN
210 = "HELLO"
220 ELSE
230 = PI / 4
240 ENDIF

This example isn't much use anyway because just about all you can do is print it!

Multiple entry points

A listing such as:

1000 DEF PROCa
1010 DEF PROCb
1020 PRINT "Hello"
1100 ENDPROC

is treated differently under the compiler and the interpreter.

Under the interpreter, it leads to two identical procedures being available; PROCa
and PROCb. Calling either of these will result in the string “Hello” being printed.

Under the compiler, two procedures will exist but will be different.

Under the rules given in the section above, PROCa ends when the DEF on line 1010
is encountered. Hence PROCa is a null procedure which does nothing when it is
called. Note that a warning will be given to let you know that the procedure body is
unclosed.

See also the compiler directive NOTRAPS which is documented in the section
Falling into PROCs/FNs on page 53.
19

Structures
Keyword position

Under the interpreter there are strict rules about where certain keywords must
occur in the text. These rules are more relaxed under the compiler.

The compiler still insists on the THEN of a block structure
IF...THEN...ELSE...ENDIF being at the end of a line. Similarly the OF in a
CASE...OF...WHEN...ENDCASE.

However, the keywords WHEN, OTHERWISE, ENDCASE, ENDIF etc no longer have
to be the first non-space objects on a line. For example, the following is quite
acceptable:

CASE i% OF
WHEN 1:PRINT"l":WHEN 2:PRINT"2"
OTHERWISE PRINT "ERROR":ENDCASE

The 'Dangling ELSE'

The compiler corrects one of the 'bugs' in the BASIC interpreter, by correctly
handling nested single-line IF...THEN...ELSE statements.

IF A% > B% THEN IF A% > C% THEN PRINT "A"
ELSE PRINT "C" ELSE PRINT "B or C"

Under the interpreter, the first ELSE applies when either of the preceding IF
statements returns FALSE. This means the only possible output is A or C under all
circumstances. This is clearly incorrect as demonstrated in the following table:

Under the compiler, the innermost ELSE applies to the innermost IF, and the
outermost ELSE applies to the outermost IF. The correct results are returned as
follows:

A B C Output

1 2 3 C

1 3 2 C

2 1 3 C

2 3 1 C

3 1 2 A

3 2 1 A

A B C Output

1 2 3 B or C

1 3 2 B or C

2 1 3 C

2 3 1 B or C
20

ABC versus BASIC interpreter
Short cuts

The compiler does not allow the use of:

NEXT,

to terminate two (or more) FOR loops. Similarly, it does not allow the use of only
one NEXT statement to terminate more than one FOR loop, through the use of the
outer loop's control variable only.

For example, the following program will be rejected:

10 FOR I% = 0 TO 10
20 FOR J% = 0 TO 10
30 A%(I%,J%) = 0
40 NEXT I% : REM terminate both loops

Scope rules
It is not uncommon for a program to contain several variables with the same name.
For example, there may be a global name created at the 'top' level and several
independent local versions, created within procedures and functions.

Clearly, when a variable is referenced the program must know which one to use.
This is determined by the scope rules. A variable can be referenced only when it is
in scope. So, for example, a LOCAL variable can be referenced only within the
procedure or function to which it belongs.

The scope rules for the compiler are static. This means that a specific occurrence of
a non-unique variable name in the text of the program always references the same
variable, whether local or global. Furthermore its meaning can be determined just
by looking at the program text.

This view of the scope rules is not shared by the interpreter, its scope rules are said
to be dynamic. That is, determination of which variable is referenced happens while
the program is running and may depend on code elsewhere in the program.

3 1 2 A

3 2 1 A

A B C Output
21

Local error handling
For example:

10 A = 1
20 PROCp(A)
30 END
40 DEFPROCp(X) : LOCAL A
50 PRINT X,A : PROCq(X)
60 ENDPROC
70 DEFPROCq(Y)
80 PRINT Y,A
90 ENDPROC

Under the interpreter, the value of A in PROCq depends on where PROCq has been
called from. If it is from the main program A takes the global value (1). If it is from
PROCp the variable A takes the value local to PROCp (0).

Under the interpreter this program will produce:

The compiler classes all variables as global, unless they are declared explicitly to
be local to the procedure or function in which they are used. In the example above,
therefore, the local value of A applies only to PROCp, not to any other procedure.
In the compiled version PROCq will always use the global value of A, regardless of
where PROCq was called from.

Under the compiler this program will produce:

Variables such as A are known as dynamic free variables.

An additional point to note about scope is that the use of GOTO or GOSUB to jump
from one procedure or function into a different one will produce unpredictable
results, since the variables which will be in scope after the jump are unknown.

Local error handling
ABC provides a full package of local error handling. This differs from the way in
which the interpreter handles it - the specification is as follows:

Setting local error handlers
LOCAL ERROR <stmt>
ON ERROR LOCAL <stmt>

Output Implication

1 0 A passed to PROCp in X but A made local to PROCp

1 0 X passed to PROCq in Y but A still local to PROCp

Output Implication

1 0 A passed to PROCp in X but A made local to PROCp

1 1 X passed to PROCq in Y but A is now the global value
22

ABC versus BASIC interpreter
Both mean the same thing, namely ‘set an error handler for this procedure’. The
error handler will be inherited at run-time by any PROC or FN which is called from
the scope of the local error handler.

10 ON ERROR PRINT "Error detected"
.....
99 END

100 DEF PROCone
110 LOCAL ERROR PRINT "Local error detected"
.....
150 ENDPROC

200 DEFPROCtwo
210 ERROR 1,"Crash!"
220 ENDPROC

If PROCtwo is called directly from the main program, then the error which it
generates will be caught by the global error handler which is set up on line 10.

Alternatively, if PROCtwo is called from PROCone, the local error handler set up by
PROCone on line 110 will be activated.

In a more complicated case there might be a third procedure, PROCthree, which
made calls of PROCtwo and was itself called from either the main program or from
PROCone. The error will be trapped by the global error handler if the sequence of
calls has not been through PROCone. If PROCone has been called its local handler
will trap the error.

Once a procedure returns to the place it was called from, any local error handler
which it may have set up will be deactivated. Subsequent errors will then be
trapped by the previously active error handler.

When an error occurs, the stack is wound back to the level at which the error
handler was set up and hence variables have their values restored. The interpreter
does not do this, which can be very inconvenient.

Cancelling local error handlers

Use the construct:

LOCAL ERROR OFF
ON ERROR LOCAL OFF
RESTORE ERROR

These delete the record of the error handler at the current stack level. Using them
inside a procedure which has no local error handler will have no effect.

Leaving a procedure (by ENDPROC) which set up a local error handler will
automatically remove the handler, i.e. ENDPROC automatically does RESTORE
ERROR.
23

Floating point
Global error handlers

The effect of ON ERROR and ON ERROR OFF will be to set up the global error
handler. The global error handler will only be called if either:

● the program is at the global level

● no local error handler is in force.

It must be noted that when an error occurs, compiled programs still lose track on
any stacked GOSUB/RETURN information. This is another good reason why PROCs
should be used instead!

ERL

ERL always returns the value 0.

Floating point
Floating point calculations can be performed in ABC in one of two modes: FPA or
VFP, as determined by the compiler options set. These modes mirror the different
floating point formats used by the interpreters themselves:

● BASIC V using the 5-byte sized floating point values

● BASIC VI (FPA) using 4, 8, or 12-byte sized floating point values

● BASIC VI (VFP) using 4, 8-byte sized floating point values

The latter two interpreters are variants of what is sometimes known as ‘BASIC64’.

Variable type suffixes

The BASIC interpreter uses the presence of $ and % characters to distinguish
between floating point numbers, strings and integers. This scheme has been
extended to control the different types of floating point through the use of the `
and & characters.

Note that all references to the ` character are describing the use of the character
whose ASCII value is &60 (96). This appears as the back-tick character when using
the ISO fonts and will be produced by the back-tick key on the keyboard, unless
RISC OS has been reconfigured to a different KEYBOARD or COUNTRY setting in
which case it may appear as £.

If the name of a variable

● ends in a `, the compiler will treat it as double-precision

● ends in an &, the variable is assumed to be extended-precision.
24

ABC versus BASIC interpreter
By default, the precision of a floating point variable is assumed to be single if its
name ends in a letter (A...Z or a...z), a digit (0...9) or the underscore character (_).

Thus the following program is assumed to use two single-precision (hot and cold)
and one double-precision (double`) variables.

10 REM >Examples.FP
20 hot = 27.453
30 cold = -10
40 double` = 4.6692106090

Under the BASIC interpreter, this program will run although all three variables will
be represented in BASIC's unique five-byte format.

The rules which apply to the names of simple variables also apply to arrays, thus:

10 DIM block` (1000)

will, by default, set up an array of 1000 double-precision numbers occupying 8000
bytes.

This does pose a compatibility problem with the use of & as a variable name suffix
in that the BASIC interpreter will not allow it.

Thus programs which use & to specify the use of extended precision cannot be
tested under the interpreter. However, this problem can be worked around through
the use of the TYPE compiler directive described in the chapter Compiler directives.

Extended precision format is not available when the VFP coprocessor is used.

Single-precision numbers provide only very limited accuracy, typically about six
decimal digits. Use of double-precision increases this to about 15 while
extended-precision provides up to 19. This is illustrated in the table below:

Floating Point Accelerator

The compiler makes use of the Floating Point Emulator (and hence the floating point
coprocessor if fitted) module. This allows you to choose between using single-,
double- or extended-precision formats for storing floating point numbers.

In memory, double- and extended-precision values are stored with the highest
word first.

Precision Digits Exponent range Storage per variable

Single 6 -44 to +38 4 bytes

Double 15 -324 to +308 8 bytes

Extended 19 -4950 to +4932 12 bytes
25

@% and print formatting
Vector Floating Point

The compiler makes use of the Vector Floating Point Support (and hence the on-chip
floating point coprocessor) module. This allows you to choose between using
single- or double-precision formats for storing floating point numbers.

Attempts to compile a program using extended-precision when VFP is selected will
cause a compiler error.

In memory, double-precision values are stored in the opposite order to an FPA
double-precision value. The low word is first.

A context is needed to retain the state of the VFP registers when other parts of
RISC OS want to use them while your program is not the current task. ABC will
automatically create a context on your behalf when your program starts, and
destroy it when it finally quits.

The Window Manager also knows how to manage VFP contexts and will do so
automatically on either side of a call to Wimp_Poll. It is not necessary to set bit 24
of the poll mask when using VFP for floating point calculations.

For compatibility between programs which use double-precision values kept in a
file, any values written out with PRINT# are written in the order expected by the
FPA coprocessor. When read by INPUT# the words are reversed back so that they
may subsequently be used by the VFP coprocessor.

The inline assembler has a similar compatibility mode for placing
double-precision constants in memory with EQUFD, this is explained in the
section EQUate directives on page 35.

@% and print formatting
To allow for the use of higher precision it has been necessary to change the
meaning of the print control variable @%. Each of the four bytes now has a special
meaning:

Byte four - the flags byte

This controls the format in which PRINT# sends numbers to data files as follows:

Format Bit 25 Bit 24

Single precision 0 0

Acorn 5 byte 0 1

Double precision 1 0

Extended precision 1 1
26

ABC versus BASIC interpreter
Compiled programs will read data files in any of these formats and carry out the
necessary conversion automatically. This enables full compatibility with the
interpreter. However, if your compiled program produces data to be read by
INPUT# under the interpreter, you will have to stick to the Acorn format.

Extended precision format is not available when the VFP coprocessor is used.

This byte also controls whether STR$ obeys the remaining bytes. If the top bit is
set, STR$ obeys the print formatting bytes, otherwise it does not.

The default value of the flags byte is zero.

Byte three - significant digits

The lower five bits of this byte specify the number of significant digits which are
allowed. A number will be printed in such a way that the total number of significant
digits is not more than this limit. Thus, if the number of digits before the decimal
point plus the number of decimals specified by byte two of @% is less than or equal
to this limit, then the number is printed in full using fixed-point format.

Otherwise the number will be printed in exponential format with this number of
significant digits.

Byte two - decimal places

The lower five bits of this byte specify the number of decimal places which will be
used for fixed-format numbers.

Byte one - field width

This controls the number of character places in which the number will be output. If
the number has fewer digits than this it will appear right-justified with the
appropriate number of leading spaces. If the number won't fit in the field width it is
printed in as few places as possible.

The top byte of the default value of @% is affected by the TYPE compiler directive
in order to control the default format in which floating point numbers are output to
data files.

The default value of @% always has its bottom three bytes set to &0A0A0A. This
means that, by default, floating point numbers will be printed in general format
using 10 significant digits in a field of 10 places.
27

@% and floating point in data files
@% and floating point in data files
The BASIC V interpreter use a five-byte representation for floating point numbers
in data files - marked by a type byte of &80. Earlier 6502 BASICs used &FF as the
type marker. Compiled programs will put one of &F0, &E0, &D0 or &80 in the type
byte according to the value of @%:

● &F0 Floating point, i.e. single-precision

● &E0 Floating point, i.e. extended-precision

● &D0 Floating point, i.e. double-precision

● &80 Acorn 5 byte format

The 4, 5, 8 or 12 bytes of the floating point number will be output directly to the
file, lowest byte first.

Extended precision format is not available when the VFP coprocessor is used.

Variables, arrays, parameters etc

Numeric input

Under the interpreter, the rules about what can be supplied when numeric input is
called for vary depending on the keyword used. For example, INPUT allows only
decimal numbers, whereas READ takes decimal, hex or binary numbers, variables
and some simple expressions.

Under the compiler, the rules for numeric input have been standardised. Only
numbers are allowed, but these may be given in decimal, hex or binary. So the
format required for a number in all cases is as follows:

● An optional + or - sign

● An optional radix indicator (% or &)

● A string of digits:

● Binary digits (0 or 1) if radix indicator = %

● Hex digits (0-9 & A-F) if radix indicator = &

● Decimal digits (0-9) if no radix indicator

● An optional decimal point followed by a string of decimal digits

● An optional E to introduce the exponent followed by:

● an optional + or - sign

● a string of up to four decimal digits.
28

ABC versus BASIC interpreter
Numeric conversions

Another extension supported by ABC is that VAL is allowed to take a hexadecimal
string. The interpreter restricts VAL to decimal strings. For example:

VAL ("&" + addr$)

RETURN parameters

ABC supports RETURN parameters, that is parameters to procedures or functions
which return their final values back to the variables which were used when the call
was made.

The syntax for these is compatible with that of the interpreter but there are a
couple of minor restrictions:

● The actual parameter may only be a simple variable or an array element, it may
not be an indirect expression such as base%!4.

● Each routine may have a maximum of eight RETURN parameters.

Arrays

The compiler supports all of the array handling features of BASIC IV. However, it
provides neither the extended features of BASIC V for handling whole arrays nor
the LOCAL array handling. One further restriction is that array elements may not
be used as the control variables of FOR loops. Items which are affected by this are:

● The DIM function

● The SUM functions

● Passing arrays as parameters

● Array assignment

● Array arithmetic and vector processing

● LOCAL arrays

Indirection operators
Whilst reading values from indirect expressions is fully supported, assignment to
them is restricted to use in straightforward assignment statements. The following
are allowed:

PRINT $(buffer%+I%)
PROCfred(A%?B%)
$(buffer%+I%)="Hello"

But the following types of operation are not allowed:
29

Pseudo variables
INPUT $buffer%
INPUT #file%,buf%?I%

SWAP I%!(J%+0),I%!(J%+4)
[:.labels%!I% :]
READ $buffer%
DEF PROCaction(block%?1)
LOCAL !FNfred
SYS A,B,C TO $buffer%
LEFT$(buf%)="XXX"

Pseudo variables
Under the interpreter, the pseudo variables such as PAGE and TOP hold values
defining the location of the BASIC program and the workspace it uses when
running. The interpreter also allows certain of these pseudo-variables, such as
HIMEM, to have values assigned to them by the user to limit the memory used.

Under the compiler, the values returned by these pseudo-variables are obviously
different, since the object code is in memory during execution, not the source.
Also, the compiler uses workspace differently to the interpreter.

Nevertheless, the pseudo-variables do return sensible values as follows:

● HIMEM Top of memory

● END Top of heap

● LOMEM Bottom of heap

● TOP Top of the program

● PAGE Start of the program

4kB workspace

Used stack

Free stack space

Heap

Workspace

Program

HIMEM

EXT

END = EXT LIM

LOMEM

TOP

PAGE
30

ABC versus BASIC interpreter
In addition, the compiler provides extra pseudo-variables:

● EXT Current stack pointer

● EXT LIM Bottom of stack

● QUIT Address of exit handler
31

Calling machine code
There are two different ways in which memory can be arranged whilst using the
compiler. The default method is shown below:

The alternative method applies when the NEWHEAP directive is being used. For
more details see the chapter Compiler directives.

The restriction in the interpreter which prevents pseudo-variables being used as
indirection operators does not apply to the compiler.

For example:

PRINT END?1

is allowed and will work correctly. However, assignments to pseudovariables are
not permitted by the compiler.

Calling machine code
The two keywords for calling external machine code routines are CALL and USR.
There are two different ways in which these can be used under the compiler.

Standard form
CALL/USR <expression>

The expression gives the address of the routine which is to be called. The values of
A%, B%, ..., H% are exported to the routine in the registers R0, R1, ..., R7.

4kB workspace

Used stack

Free stack space

Fixed heap

Workspace

Program

HIMEM

EXT

EXT LIM

LOMEM

TOP

PAGE

Dynamic heap

END
32

ABC versus BASIC interpreter
When used inside a procedure or function, the compiler will first try to find LOCAL
variables A%...H% belonging to that particular routine. If the procedure or function
does not have its own LOCAL A% etc, then the compiler will use the global
assignments and issue a warning that it is doing so.

Note that the global integer variables A%...Z% are always pre-declared.

Extended form
USR <expression> (param1,...,param8)
CALL <expression> (param1,...,param8) TO var1,...,var8;var9

Both USR and CALL can be followed by a list in brackets of up to eight parameters
which will be assigned to the registers R0...R7. It is not necessary to supply all eight
values, but those supplied will be assigned in sequence.

The single value returned by the USR function is the value held in R0 when the
routine ends.

CALL can be followed by the keyword TO and a list of up to eight variable names,
into which the values R0...R7 are placed when the routine ends. This provides a
method of getting several values back from a routine at once. In addition, the state
of the flags can be returned by following the variables by a semicolon and a further
variable name. For example:

CALL code%,2 TO x%,y%;flags%

In the above example, x% and y% will hold the values of R0 and R1 respectively and
flags% will hold the state of the system flags, i.e. Negative, Zero, Carry, Overflow.

Operating system calls

Handling of CALL

On a 6502 based BBC Microcomputer, operating system routines can be accessed
by calling particular addresses at the top of memory. For example:

10 A% = 138
20 X% = 0
30 Y% = 65
40 CALL &FFF4

This program calls the OSBYTE routine in the operating system to insert an A into
the keyboard buffer.

The BASIC V interpreter in RISC OS has a table of ‘legal’ 6502 entry points and
checks every CALL or USR to see if the address called is one of these. If it is, the
interpreter translates the call into the equivalent SWI.
33

Assembly language
This attempt at compatibility with earlier Acorn micros has a problem. These
addresses now lie in user memory because the very large address space and
increased amount of RAM up to and above 64kB.

Hence, if you generate object code and try to CALL it, you may be unlucky and hit
one of these special addresses. If this occurs, the 6502 routine will be called, not
your own code.

For this reason, and the fact that the compiler is aimed at helping the development
of new code rather than running existing code, this feature is not supported by the
compiler. If the compiler observes a call of this nature it will give a warning.

However, for the compiler to be able to recognise the calls, the address has to be
given as a constant. If the call is of the form:

CALL os_byte%

where os_byte% has been assigned the value &FFF4, then the compiler cannot
detect it.

SYS keyword

Use the SYS keyword in preference to CALL to call RISC OS software interrupts.
These accept up to 8 input parameters and 8 output parameters which correspond
to the Arm’s registers R0-R7.

Nine registers (R0-R8) can be returned in ABC version 4.11 and later.

Uninitialised registers can be skipped and will be set to zero as the interpreter
does, unless the directive controlling Initialising SYS registers on page 53 is in use.

Assembly language
The in-line assembler is fully supported. The facility is included for compatibility,
where this is vital. Note, however, that it is far more efficient and logical to
assemble machine code as separate external routines and then call these as
general subroutines, than to include them in a compiled program.

Remember that the assembler does not take over from the compiler, you will
actually be compiling a program which assembles a routine at run-time.

If this facility is used, certain differences should be noted.

Register names

Under the interpreter, the variables R0...R15 are assumed to automatically contain
the values 0...15, and hence refer to the registers.

Under the compiler these variables must be defined.
34

ABC versus BASIC interpreter
The compiler will perform the definition for the following variables for you if
necessary, i.e. if you have used one without defining it:

r0...r15, R0...R15, pc, Pc, pC, PC

but will issue a warning each time it does so. A compiler directive has been
provided to allow the names to be declared in one go:

REM {REGISTERS}

This is covered in more detail in the chapter Compiler directives.

OPT

Bit zero of the OPT setting (enable/disable assembly listing) is available. However,
the compiled code cannot produce a full listing because to do so would require
access to the source text.

For instance, branches are shown as the mnemonic followed by the address of the
destination. All information about the name of the label has been lost at that
stage.

Any undefined label references will be found by the compiler rather than by the
assembler. The meaning of bit one in the OPT command (enable/disable assembler
errors) is therefore altered.

An assembler directive:

REM {NOOPT}

can be used to make the compiler take no notice of OPT statements.

This is covered in more detail in the chapter Compiler directives.

EQUate directives

In addition to the standard EQUate directives for bytes, words and strings, the
following are provided:

● EQUFS EQUate Floating point Single precision

● EQUFD EQUate Floating point Double precision

● EQUFE EQUate Floating point Extended precision

● EQUF EQUate Floating point

These place the value given to them in-line in the assembly code file to their
respective precisions. In the case of EQUF, the precision is governed by the setting
of the TYPE compiler directive described in the chapter Compiler directives. EQUF will
use the same precision as will be used by a simple variable.

Extended precision format is not available when the VFP coprocessor is used.
35

Banned keywords
By default, the EQUFD assembler mnemonic will store its argument using FPA
word ordering, where the high word is stored first (in the lowest memory address)
followed by the low word. This provides consistency with the interpreter. For
correct operation with the VFP coprocessor, which expects low word followed by
high word, you must use a ‘.vfp’ suffix, i.e. 'EQUFD.vfp'. Similarly, ‘EQUFD.fpa’ can
be used if you want to be explicit about use of FPA word ordering.

Banned keywords
The following BASIC keywords are commands that cannot be used in programs
either under the interpreter or the compiler:

AUTO LVAR

DELETE NEW

EDIT OLD

HELP RENUMBER

INSTALL TWIN/TWINO

LIST/LISTO TRACE

If the compiler discovers one of these in a source program it will give a warning and
ignore it.

In addition, there are certain keywords which are allowed under the interpreter but
not under the compiler:

APPEND COUNT

CHAIN EVAL

LIBRARY SUM

LOAD WIDTH

OVERLAY

SAVE

The commands in the left-hand column are forbidden because they all load or
store BASIC programs and at run-time the source program is not available.

EVAL would require the compiled program to have access to the complete source
text of the program during execution and the means to decode it. This would be
analogous to including a copy of the interpreter with every program and is
therefore not a viable option.

COUNT and WIDTH are not implemented since they are so rarely used that the
reduction in the speed of output routines which they cause is not justified.

SUM is not supported since it forms part of the whole array manipulation package
which is not available.
36

ABC versus BASIC interpreter
Effect on TAB & SPC

Note that because COUNT is not implemented, TAB and SPC work differently.
TAB(n) outputs spaces until POS = n. SPC(n) outputs n spaces.

Effect on DATA & READ

Note also that the omission of EVAL affects DATA/READ statements. Under the
interpreter it is possible to place expressions in DATA statements and have them
evaluated when READ. This also applies to variables names: For example:

READ A%,B%
DATA X*StepX, 10*20

The above would result in A% being set to the value of X*StepX and B% to 200
(assuming both X and XStep exist).

The compiler cannot support this because it requires the expression evaluator
EVAL. Unfortunately, it is not possible for the compiler to detect this situation
since the data could be used quite legally as a string. Therefore, a program such as
this will compile but will produce different results (A% = 0 and B% = 10).

CLEAR

The keyword CLEAR is not banned under the compiler, but it does perform a
different task.

Under the interpreter it clears any existing variables and forgets about existing
procedures, subroutines etc.

Under the compiler it forms part of the memory management system and can be
used with the:

REM {NEWHEAP}

directive to release a block of memory which has previously been claimed. Its
syntax is:

CLEAR <expr>

This is covered in greater detail in the chapter Compiler directives.
37

Banned keywords
38

5 Compiler directives

BC provides some special directives which are used to control the

way in which the compiler treats the source program.A
General format
These directives mostly take the form of specially constructed REM statements and
as such are ignored if the program is used under the interpreter. A typical directive
is:

100 REM {NOESCAPECHECK}

Most ABC directives take this form, with a REM followed by some text enclosed in
curly brackets. The text must always be in upper case if ABC is to recognise it. For
directives that control and on/off state, where there is a directive to enable

REM {feature}

there is also its logical opposite

REM {NOfeature}

to disable that feature.

Some of the directives are associated with the compilation of relocatable modules
and are listed separately in the chapter Relocatable modules on page 61. Others allow
conditional compilation to be used, these can be found in the chapter Conditional
compilation on page 59. The others follow below.

Program directives

Ignoring sections

If there is a section of the program which you do not wish to be compiled, for
instance debugging procedures, you can instruct the compiler to omit it. This is
accomplished by placing the directive:

REM {NOCOMPILE}

before the section to be ignored and by placing:

REM {COMPILE}
39

Program directives
following it to resume compilation.

This provides a much better solution than 'commenting-out' a whole section. Note
that you cannot nest these directives. A warning will be given if you attempt to do
so.

For existing code, most of the differences listed in the chapter ABC versus BASIC
interpreter can be dealt with by making minor modifications. However, there may be
some circumstances in which the code required for the compiler is different to that
for the interpreter.

To avoid the need for two versions of a program, one for the interpreter and one for
the compiler, the following 'trick' can be used.

Write two procedures, with the same name, one containing the code needed for the
interpreter and one for the compiler. Place these at the end of the program, the
interpreter one first and surround the interpreter procedure by the NOCOMPILE
and COMPILE directives.

For example, when using the NEWHEAP directive, the following is useful:

REM {NEWHEAP}
.....
PROCfree(block%)
.....
END
.....
REM {NOCOMPILE}
DEFPROCfree(addr%)
IF addr% < LOMEM OR addr% > END THEN
ERROR 1,"Not a heap block"
ENDIF
ENDPROC
REM {COMPILE}
.....
DEFPROCfree(addr%)
CLEAR addr%
ENDPROC

When the program is run under the interpreter, the first version of the procedure
will be found and used. The compiler directives are simply treated as remarks and
so are ignored. The fact that the procedure name exists twice does not cause a
problem. This is because the interpreter always searches from the beginning of the
program for procedures. When the name is found the search terminates.

However, the REM statements instruct the compiler to ignore the interpreter
version of this procedure, so only the second version will be included in the
compiled program.
40

Compiler directives
Using a library of common fragments

Over time as you create several programs you may find that they contain a few
common fragments, such as a function to uppercase a string. Subsequently a bug
is found in such a function and this requires editing each of the programs by hand.

An alternative approach is to keep these common fragments in a library directory,
then only include a reference to them in the programs you write. That way, when a
bug is found and fixed, all of your programs can be updated by updating the single
library copy and recompiling using ABC.

Use the directive:

REM {INCLUDE <codelib$dir>.string.uppercase}

to include the uppercase function (which is placed in the sub-directory string in a
directory called lib). The BASIC in that file is inserted verbatim in place of the
directive.

Include directives may be nested.

Arm Image Format

Some versions of RISC OS require that all executables are prefixed with an AIF
header in order to accept that they contain runnable code, despite their filetype.

Use the directive:

REM {AIFHEADER}

to request that ABC constructs a valid AIF on the compiler’s output. The addressing
mode and three flags bytes at offset +&30 will have bit 5 set by default to denote
the addressing mode is 32 bit compatible. Alternatively, the flags word can be
overridden with the directive:

REM {AIFFLAGS = &1020}

if this is desired.

For a more detailed description of the AIF see Code file formats in the Desktop Tools
manual.

Handling large programs

By default, the compiler generates offsets within the object code using a short
addressing mode. This helps to keep the size of the object code low, however it
does place a limit of 256 kilobytes on the size of the object code. For most people
this will not be a problem.

However, if you do want to write a mammoth application, you need to include the
directive:
41

Program directives
REM {LONGADRS}

at the start of your program. Its inverse, which gives the default situation, is:

REM {SHORTADRS}

CASE statements

When ABC comes across a CASE statement it can generate the code in two
different ways. One is to generate a series of comparisons and branches:

Compare the CASE expression with the WHEN expression

Branch if not equal to the next WHEN expression

The other method is to build a jump table which contains the address of the code
to be used for each possible value of the WHEN expression. The possible values
are determined by the maximum and minimum of the range given.

For example, a CASE statement such as:

CASE var% OF
WHEN -30 : ...
WHEN 0 : ...
WHEN 30 : ...
ENDCASE

The jump table would require 61 entries, one each for the numbers -30, -29,
-28...28, 29, 30.

This method produces code which executes more quickly in general but may
occupy more memory, particularly if the table is sparsely populated, as in the
above example.

You can determine the cut off point at which the compiler chooses to use a series
of comparisons and branches rather than a jump table by using the following
directive:

REM {MAXCASES = n}

If the number of entries which would be required in the table is less than or equal
to MAXCASES, a jump table is used, otherwise the comparisons & branches are
created.

The default value is 256.

Names of operating system routines

Under the interpreter, providing the identifier of an operating system routine as a
number is more efficient than providing it as a name.

Names have to be converted into the appropriate numbers before the call can be
made.
42

Compiler directives
The compiler is capable of converting names into numbers at compile time and so
producing more efficient code. However, to do so, it needs to 'know' all the
routines being called. For example, if your code is to access a routine from a
module, then the compiler can only convert the name you supply into its number if
the module is loaded at compile time.

The compiler will always perform this optimisation where it can. In addition, if you
use the compiler directive:

REM {SYSKNOWNONLY}

ABC will produce a warning message every time it comes across the name of an
operating system routine which it doesn't know. Without this directive, no such
warning will be given so the inefficient version of the call will be generated without
you knowing about it.

The alternative is:

REM {NOSYSKNOWNONLY}

Compressed compiler output

If the directive:

REM {SQUEEZE}

is used the compiler will attempt to run the compiled code through the squeeze
program (for applications) or modsqz program (for modules) to reduce its size.

The utilities squeeze and modsqz are provided with the Desktop Development
Environment and must be located on the Run$Path for it to be found.

For code which will run on 26 and 32 bit environments you must use squeeze 5.08
or later.

The opposite directive:

REM {NOSQUEEZE}

turns off the compression step, and is the default setting.

Memory directives
There are a set of directives which control the way in which your program will
allocate memory to its various tasks. If neither of these is specified then a sensible
default setting will be used.
43

Memory directives
Stack and heap allocation

When a compiled program is running it requires three separate areas of workspace,
the ABC heap, the BASIC stack and the system area. The functions of each of these
are outlined below.

1 The BASIC heap

This is where all global variables, strings and arrays are held. It is also where
any DIM statement will claim memory from. It is located immediately above
the top of the program in memory.

2 The BASIC stack

This is where all parameters, local variables and procedure call information is
held. It is located high up in memory and grows downwards towards the top of
the heap.

3 The system area

This is a 4kB area for a small stack and some private information. This will be
at the highest address in memory which is used.

The default action is to reserve 4kB at the top of memory for the system area
and then divide the remainder equally between the heap and the stack. In
most cases this will be suitable, but some programs will need more of one type
of memory than of the other.

For example, a program which operates on very large arrays may well need
most of the memory to hold them whilst at the same time having only very
modest stack space requirements.

To give you control over this, the amount of heap and stack space required by a
program can be set in one of two ways.

Absolute values

The number of bytes to be reserved for either the heap or stack can be specified.
For example, the heap space can be specified using a directive of the following
format:

REM {HEAP = 10000}

This will reserve 10000 bytes for the heap. Alternatively, to specify the stack space:

REM {STACK = 6000}

This will reserve 6000 bytes of memory for the stack. When your program is
running, HIMEM will return the address of the top of this stack and the EXT
function will return the current value of the stack pointer. Thus, the amount of stack
space in use at any given time is:

HIMEM - EXT
44

Compiler directives
If you specify either HEAP or STACK, but not both, then the other will use up the
rest of the available memory. Thus, a good way to maximise the amount of heap
space is to specify the minimum stack size and leave the heap to grab the rest of
memory.

If both options are specified then the two areas will be adjacent in memory. There
will then be a free area of memory above the top of the system area. See the
diagrams in the description of Pseudo variables on page 30 for more details.

Percentages

Often a more useful way of specifying the space is to specify the percentage of free
memory to be used by either the heap or the stack. This can be achieved as follows:

REM {HEAP% 90}

where the number specifies the percentage of the free memory which will be
allocated to the heap. Similarly:

REM {STACK% 10}

would try to allocate 10% of the available memory to the stack.

Obviously, the total cannot exceed 100%.

These directives can be used in conjunction with the absolute versions of the
directives where appropriate. This is a useful method if you are attempting to
compile under different memory configurations.

Dynamic

There is a further directive:

REM {NEWHEAP}

which can be used in addition to a fixed heap and stack to set up an
expanding/contracting heap. Note that this can only be used by RISC OS applications.

For example:

REM {STACK = 8192}
REM {HEAP = 8192}
REM {NEWHEAP}

This sets up 8 kilobytes for the stack, 8 kilobytes for the fixed heap and a dynamic
heap as well. When both types of heap exist, the fixed heap will be used for holding
global variables and for system use.

The dynamic heap will hold strings, arrays and DIMmed memory. The keyword
CLEAR can be used in conjunction with the NEWHEAP directive, This can be used
to release memory.

For example, statements such as:
45

Variable directives
DIM fred%

will reserve blocks of memory from the expanding/contracting wimpslot heap. If
you have finished with one of these blocks, you can use:

CLEAR fred%

to free it again and make it available for other things.

The wimpslot for the application will automatically increase when necessary and
will decrease again once a sufficient block of memory at the top of the wimpslot
has been freed.

Variable directives

Variable types

ABC provides a directive to allow full control over the relationship between the
type of a variable and the last character of its name.

This is the TYPE directive. In its simplest form it can be used to force the compiler
to change the precision used for simple floating point variables. The following
program shows this in use:

10 REM {TYPE = DOUBLE}
20 INPUT x
30 INPUT power
40
50 variable = x^power
60
70 PRINT variable

All three variables (x, power and variable) will be created as eight byte
double-precision variables.

Note: The TYPE directive must be placed at the top of the program before any
executable code.

A more complex version of the TYPE directive is available which allows you to
specify the meaning of one of the special characters, thus overwriting the default
meanings. For example:

10 REM {TYPE ` = EXTENDED}

This tells the compiler to use extended-precision for all variables which end in the
back-tick character. It can be used to get around the limitation imposed by the
BASIC interpreter on the use of & to imply extended-precision.

In most cases a program will probably only want to use one sort of floating point
for all its variables. In this case, the simplest solution is to avoid using the & suffix
and to specify the same precision for variables with no suffix and for those with a `.
46

Compiler directives
For example:

10 REM {TYPE = EXTENDED}
20 REM {TYPE ` = EXTENDED}

The program can then be tested under the interpreter although the results will be
rather less accurate than those of the compiled program.

If, for some reason, you need to use two forms of floating point within a program
you can still maintain testability. Again, you should avoid use of & and specify the
precision for the other two possibilities. For example:

10 REM {TYPE = SINGLE}
20 REM {TYPE ` = EXTENDED}
30 DIM array(100000)
.....
100 num` = array(I%) * array(J%)

This program uses single-precision for the array since 100000*4 bytes is a very
large amount of memory (400kB). Using extended-precision would require three
times as much memory - 1.2Mbytes!

However, the product of two array elements is put into the extended-precision
number num`. This is useful since it is certain that the calculation will not overflow.
An extended-precision variable is easily capable of holding the square of the
largest possible single-precision number.

Extended precision format is not available when the VFP coprocessor is used.

Floating point indirection

By default, floating point indirection only transfers four bytes.

However, if the TYPE compiler directive has been used to change the size of the
simple variables to eight or twelve bytes, the floating point indirection operator
will transfer this number instead.

It is possible to force the compiler to use one particular size and thus override the
TYPE directive in the following way:

10 REM {TYPE = DOUBLE}
20 DIM block% 1000
.....
100 |{S}block% = 37.5

The {S} after the | character forces the compiler to perform a single-precision
(four-byte) transfer. {D} for double-precision and {E} for extended-precision
operations may be used in a similar fashion.

Extended precision format is not available when the VFP coprocessor is used.
47

Variable directives
Forcing integers

It is also possible to force the compiler to treat variables which do not end in the %
character as integers.

For example:

10 REM {TYPE = INTEGER}
.....
100 fred = 10.3
110 PRINT fred

This will print 10 because variable fred is an integer. Of course, the interpreter will
still treat fred as being floating point.

Note: It is not possible to change the meaning of the % and $ suffix characters.

Checking for floating point use

In some applications it is useful to know that your program is free of all use of
floating point so that the Floating Point Emulator and VFP Support modules need
not be loaded.

The directive:

REM {NOFLOAT}

will cause the compiler to fault any attempt to use floating point arithmetic (or an
attempt to use library routines which do so). Thus, if the program compiles
successfully with this directive set, then it can be assumed that it does not use the
Floating Point Emulator or VFP Support.

When the NOFLOAT directive is active, the following keywords may not be used:

ACS ASN ATN COS DEG

EXP INT LN LOG PI

RAD RND SIN SQR TAN

Note also that the ELLIPSE keyword may only be used in its four parameter format.
The fifth parameter is the angle of rotation and involves trigonometric calculations
which uses floating point numbers. Finally, the use of VAL, READ and INPUT for
integers may call up floating point operations if the data which is to be read is in
floating-point form.

Note: The use of these keywords is not forbidden but this limitation must be
observed.
48

Compiler directives
Assembly language directives

Register initialisation

In assembly language routines, the registers 0 to 15 are normally referred using the
names R0...R15. An alternative name for R15 is PC since this register holds the
program counter.

If your program includes any assembly language, it is a good idea to include the
directive:

REM {REGISTERS}

at the top of your program. This creates manifest constants with the names
R0...R15, r0...r15, PC, pc, Pc and pC which have the appropriate values.

If you don't include this directive, any of the names which you use which you
haven't created yourself as either a manifest constant or a variable, will
automatically assigned the appropriate value by ABC.

However, for every register name which has to be assigned to by ABC, a warning
will be issued. So use of the directive suppresses these warnings which can
become tedious to respond to.

In addition, it may be that you have used a variable with the name R0, say,
elsewhere in your program for some other purpose. Hence the compiler will use
the value currently assigned. For example, if R0 is holding the value 10 then an
instruction such as:

ADD R0,R0,#4

will add 4 to register 10 rather than to register R0 as intended. The REGISTERS
compiler directive is a safe-guard against this happening.

Use of OPT

Whenever the interpreter comes across an opening square bracket, [, it performs
an automatic OPT 3. Hence you need to include a statement such as:

OPT opt%

as the first statement after the bracket to ensure that the correct OPT setting is
used.

Under the compiler, you can use the directive:

REM {NOOPT}

to cause all OPT statements, whether explicit or automatic as described above, to
do nothing.
49

Assembly language directives
One method of using this compiler directive is to have:

REM {OPT}
[OPT opt%]
REM {NOOPT}

at the start of your program. The OPT directive is not strictly necessary for this state
as this is the default. It ensures that the following OPT is taken note of. Hence the
OPT setting is set to the value of opt%. The NOOPT directive then tells the
compiler to ignore all further OPT statements. Hence future:

[OPT opt%

statements generate no code.

This can have a dramatic effect of the size of the object code - for example it saved
18kB in the case of ABC itself.

Code cache coherency

Processors from ARMv4 (StrongARM) and later employ a technique to speed up
execution by splitting the caches, one for data and one for machine code. Earlier
processors used unified caches.

With a unified cache, generating machine code at run time was not a problem as
any instructions emitted by the assembler were visible to the processor core in the
cache.

With a split cache, the two halves are in parallel and it is possible that something
the assembler output is still in the data cache only, and not yet visible in the code
cache for the processor to execute. It is necessary to flush the caches to synchronise
them, a step known as making them coherent.

To preserve backwards compatibility with older programs the ABCLibrary version
4.05 and later takes the draconian approach of performing a full code cache flush
whenever CALL/USR is called. This approach is necessary because ABCLibrary
cannot deduce whether any new code has been freshly assembled or loaded from
disc in the meantime. This is a performance hit, but serves to maintain
compatibility for pre-StrongARM compiled programs.

For more efficient operation the program can declare the directive:

REM {MANUALCODESYNC}

which indicates to ABCLibrary that the programmer is managing the code cache
synchronisation, and can skip the costly cache flush on every CALL/USR.
50

Compiler directives
It will then be necessary to add the appropriate cache flushes only when they are
needed, i.e. after building inline code, or loading a code fragment from disc into
the program space. There is an Application Note called AN295 - Introduction to
StrongARM and Programming Guidelines which contains further guidance.

The default is NOMANUALCODESYNC, and this can also be set explicitly with:

REM {NOMANUALCODESYNC}

but programmers are strongly advised to use MANUALCODESYNC.

Warning directives

Global suppression

A pair of compiler directives are provided which enable you to tell the compiler
whether or not to issue warning messages. Note that these affect warning
messages only - the production of error messages cannot be turned off.

REM {NOWARNINGS}

will cause the compiler not to issue warning messages. However, the total number
of warnings will still be counted and reported when the compilation has ended.
This directive may be useful if you need to leave your compilation and so will not
be around to tell it to continue if it finds a problem.

The directive:

REM {WARNINGS}

re-enables the production of warning dialogue boxes when problems are found.

These directives may be used in pairs to mark particular sections of a program.

Throwback suppression

During compilation line numbers of warnings and errors, along with the error text,
will be sent via the throwback protocol to any registered throwback capable
editors. SrcEdit is an example of a throwback capable editor.

The directive:

REM {NOTHROWBACK}

will stop ABC from sending throwback. Its inverse, which gives the default
situation, is:

REM {THROWBACK}
51

Optimisation directives
Optimisation directives
The compiler has to be very careful when it is generating code to ensure that it
always copes with all situations which can occur. In many cases, this leads to it
having to include, for example, checks for particular cases and the code to handle
any problem ones. Including this code has two detrimental effects - it increases the
size of the object file and it makes the object code slower to execute.

There are a number of different compiler directives supplied which each look at
one particular area and allow the generation of the extra code to be turned off. If
you use any of these, you must ensure that the situation which is no longer being
handled never occurs. In some cases it will be possible for the compiler to warn
you that the situation has happened, in others it can end up overwriting memory
without warning!

Each of these situations is covered by a pair of directives, one of which returns you
to the default situation. These can be used to turn the code generation off around
a particular area of the program, for example, and then on again later. Alternatively,
you can turn the generation off at the beginning of the program and leave it off
throughout.

Stack limit checking

The stack grows downwards towards the top of the heap. If the two collide an error
is generated. Hence, by default, code is generated to check that the stack hasn't
overflowed into the heap. You can instruct the compiler to turn off the generation
of the stack checking code by using the directive:

REM {NOSTACKCHECK}

The alternative is:

REM {STACKCHECK}

Initialising local variables

By default, the compiler generates code to initialise all local variables to zero. If
you are initialising them all yourself explicitly, you can instruct the compiler to turn
off the generation of the initialisation code by using the directive:

REM {NOZEROLOCAL}

The alternative is:

REM {ZEROLOCALS}
52

Compiler directives
Initialising SYS registers

By default, the compiler generates code to initialise any of the registers R0-R7,
which aren't explicitly assigned to in a SYS call, to zero. You can instruct the
compiler to turn off the generation of the initialisation code by using the directive:

REM {NOZEROSYSREGS}

The alternative is:

REM {ZEROSYSREGS}

Initialising CALL registers

By default, when the compiler compiles a standard CALL/USR statement, it
generates code to load the values of the integer variables A%...H% into the
registers R0...R7. Similarly, when it compiles an extended CALL/USR statement, it
generates code to initialise any of the registers R0-R7, which haven't been
explicitly assigned to, to zero. You can instruct the compiler to turn off the
generation of the assignment/initialisation code by using the directive:

REM {NOCALLREGS}

The alternative is:

REM {CALLREGS}

Falling into PROCs/FNs

By default, the compiler generates code at the start of every procedure and
function definition to check that it hasn't been 'fallen into'. This can happen, for
example, due to a missing END. You can instruct the compiler to turn off the
generation of the incorrect entry checking code by using the directive:

REM {NOTRAPS}

The alternative is:

REM {TRAPS}

Escape checking

By default, the compiler will produce machine code which will respond to the
Escape key being pressed. This either calls the program's own error handler (if it
contains one) or terminates execution with the message ESCAPE. You can instruct
the compiler to turn off the generation of the Esc checking code by using the
directive:

REM {NOESCAPECHECK}
53

Optimisation directives
Note that this does not disable the normal action of Esc with respect to INPUT
operations such as GET. These will still respond in the usual way.

The alternative is:

REM {ESCAPECHECK}

Array bound checking

Arrays, when they are dimensioned, are given a range for their subscripts. For
example:

DIM pos%(9,19,29)

This means that the first subscript can be 0...9, the second 0...19 and the third
0...29. Hence pos%(4,4,4) is a valid element but pos%(14,14,14) is not because the
first subscript is too large.

By default, the compiler generates code whenever an array element is used, so that
the subscripts are checked at run-time to ensure that they are within the allowed
range. You can instruct the compiler to turn off the generation of the array bound
checking code by using the directive:

REM {NOARRAYCHECK}

The alternative is:

REM {ARRAYCHECK}

Word alignment

The ! indirection operator stores or reads four consecutive bytes of memory. By
default, the compiler assumes that the addresses are not necessarily word aligned,
i.e. the addresses at which they start are not necessarily multiples of 4. If they are,
you can instruct the compiler to turn off the generation of the general non-aligned
code, and hence produce much more efficient code, by using the directive:

REM {ALIGNEDPLING}

The alternative is:

REM {NOALIGNEDPLING}

Use of GOTOs

The compiler optimises the object code produced by remembering, in certain
cases, what it has stored in its registers. It is able to do this far more effectively if it
knows that the program doesn't contain any GOTO or GOSUB statements.

Note: When these statements are used, any line of the program is potentially the
target for an arbitrary 'jump'.
54

Compiler directives
By default, the compiler assumes that you might be using GOTOs/GOSUBs.
However, you can instruct it otherwise by using the compiler directive:

REM {NOGOTOSUSED}

The alternative is:

REM {GOTOSUSED}

If you use the NOGOTOSUSED directive and then try to use a GOTO or GOSUB, the
compiler will produce a warning.

Operating system routine names

By default, the compiler assumes that the names of routines called using SYS or
SWI have been provided as general string expressions. If you are supplying them as
string constants or variables, you can instruct the compiler to turn off the
generation of the general code by using the directive:

REM {SYSCONSTONLY}

The alternative is:

REM {NOSYSCONSTONLY}
55

Optimisation directives
56

6 Manifest constants

sing symbolic names for constants in your program is generally a beneficial

aid to writing programs that are easy to read and debug. U
Using manifests
It is generally much clearer to use named variables than to use explicit constants
within a program. However, there is a penalty to pay for this as the program will be
slower in operation and will consume more memory than if the constant approach
is used.

To solve this problem, the compiler supports the definition of manifest constants.
Hence it is possible to define a named object to represent a constant value
throughout the program.

Declaring a manifest

A manifest constant may be defined as follows:

DEF height% = 1023

Wherever height% is used within the program, the value 1023 will be substituted
instead. This helps to make programs much more readable. In addition, it is not
possible to assign a new value to a manifest constant. This helps to make
programs more secure against accidental alterations of 'constants'.

Similarly, it is possible to define string or floating-point constants. For example:

DEF text$ = "some text"
DEF approx_pi = 3.2

A good technique is to use these in conjunction with the COMPILE and
NOCOMPILE directives to set up a program which will run both under the
interpreter and the compiler, whilst at the same time allowing the compiler to
generate efficient code.

For example:

DEF minimum% = 200
DEF maximum% = 1000
REM {NOCOMPILE}
minimum% = 200
maximum% = 1000
REM {COMPILE}
57

Using manifests
Under the interpreter, minimum% and maximum% will be variables, under the
compiler they will be manifest constants.

Static integer variables

You cannot define manifest constants with the names A%...Z% or @%. These names
are reserved for the global integer variables which are always pre-declared. For
example:

DEF A% = 100

will generate the error:

DEF A% is already defined

Numeric values

You can define numerical manifests with a number given in either decimal or hex.
However, it is not possible to have negative values. Therefore, the following are
allowed:

DEF max% = 100
DEF offset% = &2C
DEF max = 2.5E10

but the following is not:

DEF min% = -100
58

7 Conditional compilation

oupled with manifest constants, conditional compilation is a powerful

technique to select options within the program at compile time.C
Using conditional compilation
Through the use of manifest constants, it is possible to control whether the
compiler looks at or ignores sections of the source program.

Basic operation

This is best illustrated with an example:

10 DEF debug% = 1

100 REM {IF debug%}
110 PRINT TAB(0,0)"Values are "I%,J%
120 REM {ELSE}
130 REM {ENDIF}

The manifest constant debug% is set to the value 1 on line 10. This will be taken as
TRUE by the IF directive on line 100 and so the compiler will compile line 110. If
debug% is set to 0, the IF directive will treat this as FALSE and line 110 will be
ignored by the compiler.

Source text between the ELSE and ENDIF directives is only compiled if the
condition is FALSE.

Nested operation

It is possible to nest conditional sections within one another. This allows, for
example, debug sections to be placed within areas which are already being
compiled conditionally for other reasons:

10 DEF debug% = 1
20 DEF demo% = 0
59

Using conditional compilation
100 REM {IF demo%}
120 PRINT "Can't do - this is a demo version"
130 REM {ELSE}
140 PROCa
150 PROCb
160 REM {IF debug%}
170 PRINT TAB(0,0)"Values are "I%,J%
180 REM {ELSE}
190 REM {ENDIF}
200 REM {ENDIF}

In addition, it allows a choice of more than two alternatives to be applied. For
example, consider the problem of creating a program so that messages are given in
a choice of English, French and German:

10 english = 0
20 french = 1
30 german = 0

100 REM {IF english}
110 PRINT "Hello"
120 REM {ELSE}
130 REM {IF french}
140 PRINT "Bonjour"
150 REM {ELSE}
160 PRINT "Guten Tag"
170 REM {ENDIF}
180 REM {ENDIF}

Note that the IF can only be followed by a simple variable - not an expression. For
example, the following is not allowed:

10 DEF lang$ = "french"

100 REM {IF lang$ = "english"}
110

The IF is interested in just two values:

● zero treated as FALSE

● non-zero treated as TRUE.

Therefore, if the value of the variable is non-zero, the IF part is compiled. Otherwise
the ELSE part is compiled.
60

8 Relocatable modules

ISC OS makes extensive use of modules to extend the functionality of the

operating system. With ABC, you can create modules from BASIC programs.R
Module types
ABC provides directives which allow the output to be formatted into a relocatable
module. There are four types of modules:

● Application

● Utility

● Service

● Library

Library modules are covered in the chapter Libraries on page 69. Each of the others
is discussed below.

Application modules

Programs which are compiled into an application module are run via a * command.
The program will make use of all the application workspace, or as much as may be
specified using the STACK and HEAP compiler directives. When the program
finishes, or an untrapped error occurs, it exits by executing OS_Exit (similar to the
effect of QUIT from BASIC).

The module can be executed directly on loading via *Run or *RMRun. It can be
re-executed using the single * command which it provides.

Utility modules

This is much like an application module with the exception that the program does
not make use of the application workspace. Instead, it uses memory claimed from
the relocatable module area. When the program finishes, or there is an untrapped
error, it exits by executing OS_Exit.

The module can be executed directly on loading via *Run or *RMRun. It can be
re-executed using the single * command which it provides.
61

Module compiler directives
Service modules

A service module can provide several * commands. As with utility modules the
program will not make use of the application workspace, instead it uses memory
claimed from the relocatable module area. When the program finishes, or there is
an untrapped error, it exits by returning to the calling program. Thus a service
module provides commands which can be called up from within another program.

The program which is incorporated within a service module is executed with the
CPU in supervisor mode. This means that certain limitations are imposed:

Assembler subroutines

Be very careful if your program includes any assembly language. In particular, you
must ensure that assembler subroutines preserve the processor mode. Also, you
should note that the use of SWI instructions when in supervisor mode causes
register R14 to be corrupted. Thus, a subroutine which calls a SWI must preserve
R14 on the stack.

To make use of floating point assembler instructions you must ensure the Floating
Point Emulator version 4.09 or later is present. Prior versions did not work when
called from supervisor mode without first manually preserving R14 on the stack.

When the VFP coprocessor is selected to perform floating point calculations the
module will be selected as the active VFP context when entered via the command
or SWI entry points, and the context automatically deactivated when finished.

Execution of the module directly via *Run or *RMRun will cause the module to be
loaded and initialised. To execute the embedded program you must issue one of
the * commands which it provides.

Module compiler directives
A number of directives are provided to specify the details of the module:

Module type

The type of module required must be specified using the MODULE TYPE directive,
thus:

REM {MODULE TYPE <type>}

The three possible types should be specified as follows:

REM {MODULE TYPE APPLICATION}
REM {MODULE TYPE UTILITY}
REM {MODULE TYPE SERVICE}
62

Relocatable modules
Title string

Use the directive

REM {MODULE TITLE <string>}

to set the title string of the module to <string>.

Version string

Use the directive

REM {MODULE VERSION <string>}

The version string of the module will be set to <string>. This will be incorporated
into the module help string as given in response to:

*Help Modules

The version string should be of the form x.yz.

Command string

This is the command which is used to run the module.

REM {MODULE COMMAND <string>}

If the command string expects any arguments it should be followed by the number
required:

REM {MODULE COMMAND <string> <args>}

If some of the arguments are optional then both the minimum and the maximum
number should be given:

REM {MODULE COMMAND <string> <min> <max>}

For service modules, there may be more than one MODULE COMMAND directive,
each additional directive found will add another command to the table that the
module will respond to.

Command help string

The command should be provided with a help string. The text of the help string will
begin with the command and then be followed by the text specified by this
directive:

REM {MODULE HELP <text>}

For service modules, there should be a corresponding number of MODULE HELP
directives – one for each command that is provided.
63

Command handlers
Module memory

For utility or service modules which use their own RAM rather than the application
RAM, it is necessary to specify the amount of memory which will be claimed when
the module is initialised.

REM {MODULE MEMORY = <size in bytes>}

The size must be at least 8 kilobytes. Usually it is possible to have a good guess
how much they need. It is simpler to overestimate than to spend time trying to
calculate the exact figure.

The way to work out how much RAM your module will require is a long and
complex process, which goes roughly as follows:

1 Count the number of real variables and multiply by 4, 8 or 12 depending on
whether they are single-, double- or extended-precision variables.

2 Count the number of integers and multiply by 4.

3 Count the number of strings and multiply by their maximum length.

4 Add the amount of RAM which has been DIMmed for use with assembler.

You must remember to include local as well as global variables in your
calculations.

32 bit compatibility

To mark the resulting module as being 32 bit compatible in its header, add the
directive:

REM {MODULE 32BIT}

Recall that a module marked as 32 bit compatible module can still be loaded on a
26 bit system, but requires a more recent ABCLibrary as described in Compatibility
on page 2.

Command handlers
Star commands are used to invoke module commands and quite often the *
command may require extra information which would generally be typed after the
command.

ABC provides a mechanism that allows the command line to be investigated so
that information such as filenames can be extracted:

LINE$ command tail

The LINE$ string variable contains the remainder of the command line after
trimming any leading spaces.
64

Relocatable modules
This variable is like any other BASIC string variable and can be treated as such. It
can therefore be scanned to see how many parameters have been passed, and you
can split the parameters up by using the INSTR function looking for space
separators.

LINEFN$ command text

The LINEFN$ string variable contains the text of the command that was invoked,
exactly as given in the MODULE COMMAND directive.

This variable is like any other BASIC string variable and can be treated as such. You
can use CASE...ENDCASE to perform differening actions depending on the
command that was entered.

SWI handlers
Service modules are capable of supporting SWI handlers. We don't recommend
that you use BASIC to create SWI handlers for commercial products because they
need to execute extremely quickly and so should be written in highly optimised
assembler.

However, you may like to experiment with SWI handlers out of interest.

You need to include one extra directive in your program:

REM {SWIBASE = n}

to define the base of the SWI chunk you wish to use. You should apply to RISC OS
Open Limited for a SWI chunk to ensure that you don't clash with any existing
products. Hence the value of n will be different for everyone.

In addition, there are two functions which are useful:

SYSDATA

This returns the address of a block of memory containing the values of R0 to R7 as
set up when the SWI was issued. You can use:

reg0% = SYSDATA!0
reg1% = SYSDATA!4
.....
reg7% = SYSDATA!28

to obtain the values. In addition, you can pass back values as follows:

block = SYSDATA
block!0 = R0%
block!4 = R1%
.....
block!28 = R7%
65

An example module
before returning.

SYSFN

This returns the SWI number code actually used. Hence, if you are supporting more
than one SWI, you can use this function to identify the one required. You can set up
names for the SWIs as follows:

DEF SYS Init = 0
DEF SYS Exit = 1
DEF SYS Error = 2

where the numbers are their offsets from SWIBASE. For example:

CASE SYSFN OF
WHEN Init: PRINT "Initialise"

FOR I% = 0 TO 7*4 STEP 4
PRINT "R";STR$(I% DIV 4);"=&";~I%!SYSDATA

NEXT I%
WHEN Exit: PRINT "Exit"

FOR I% = 0 TO 7*4 STEP 4
I%!SYSDATA = I%!SYSDATA + I %

NEXT I%
WHEN Error: ERROR 1,"Get away"
ENDCASE

An example module
The following example module illustrates the use of the various directives to
produce a service module. The module provides the command SCREEN which
must be followed by a parameter. This parameter is the textual name of the colour
to which the screen background will be set.
66

Relocatable modules
10 REM >Examples.Screen
20
30 REM {MODULE TITLE DemoModule}
40 REM {MODULE VERSION 1.00}
50 REM {MODULE TYPE SERVICE}
60 REM {MODULE COMMAND Screen 1}
70 REM {MODULE HELP Sets screen background colour}
80 REM {MODULE MEMORY = 8192}
90 REM {MODULE 32BIT}
100
110 Command$ = FNUPPER_case(LINE$)
120
130 CASE Command$ OF
140 WHEN "RED" : COLOUR 0,1
150 WHEN "YELLOW": COLOUR 0,3
160 WHEN "GREEN" : COLOUR 0,2
170 WHEN "BLUE" : COLOUR 0,4
180 OTHERWISE
190 ERROR 1,"Bad Colour"
200 ENDCASE
210
220 END
230
240 DEF FNUPPER_case(A$)
250 LOCAL I%,B$,C$
260 FOR I% = 1 TO LEN(A$)
270 C$ = MID$(A$,I%,1)
280 IF "a" <= C$ AND C$ <= "z" THEN
290 C$ = CHR$(ASC(C$)-32)
300 ENDIF
310 B$+=C$
320 NEXT I%
330 =B$

This module makes use of the LINE$ function to read the tail of the command line
which was used to start it. The operating system will already have ensured that
only one command-line argument was present following the SCREEN command as
indicated by the 1 in the MODULE COMMAND specification. Thus, all that is
necessary is to take the rest of the string and convert to upper case.

The CASE statement then checks to see whether the argument is one which it
recognises and performs the necessary COLOUR commands if it is. An error is
generated if the argument was not one of the colours which the module provides.
This error will be reported back to the program which issued the *SCREEN
command.

If an incorrect number of parameters is given, then the operating system causes an
error message to be generated. This message is constructed by the compiler from
the information about the module and is bound into it when the module is made.
It will indicate what syntax the command will accept.

The module requires the minimum amount of workspace, i.e. 8192 bytes (8kB).
67

An example module
Once the module is compiled and loaded, the *SCREEN command can be used
from another program.

For example:

10 REPEAT
20 INPUT colour$
30 OSCLI ("SCREEN " + colour$)
40 UNTIL FALSE
68

9 Libraries

ne variation on modules described earlier is a library, where a collection of

frequently used routines can be kept together to be reused many times.O
Library modules
Besides allowing you to compile stand-alone programs, ABC also provides the
facility for producing libraries of pre-compiled procedures and functions. These
libraries are in the form of relocatable modules which can be activated and killed
as required.

When one of these modules is activated, the procedures and functions within it
can be called from 'normal' programs compiled with ABC. These procedures and
functions are shared by all such programs which are currently running.

This feature allows you to split off frequently used procedures from your main
programs. Consequently, your programs become smaller and compile quicker. In
addition, you only have to worry about one version of each library procedure and
you can be sure that each program is calling exactly the same code.

Making a library
You can choose to have your source code compiled as a library by using the
LIBRARY compiler directives.

The compiler will automatically provide one star (*) command which lists the
names of the procedures and functions within it, hence producing a catalogue of
the library routines it contains. The LIBRARY INFO directive allows the command
name to use to be chosen, or set it to NONE to suppress this feature entirely.

For example, including the directives:

REM {LIBRARY TITLE BasLib1}
REM {LIBRARY VERSION 1.00}
REM {LIBRARY INFO BasLib1Info}
REM {LIBRARY 32BIT}

at the top of your source program will result in ABC producing a library module
called BasLib1 whose * command is *BasLib1Info. Not all versions of ABC can
produce 32 bit libraries, see Compatibility on page 2 for more details.
69

Accessing library routines
Accessing library routines
To call a library procedure or function you must provide a dummy definition within
the main program. This enables the compiler to produce the external procedure
call code. It also allows the compiler to check that the call to the routine has the
right number of parameters and that their types are correct.

Accessing procedures

A dummy definition for a procedure takes the form:

DEF EXT PROCprocname(arg, ..., arg) ENDPROC

The following should be noted:

● The EXT and PROC must be separated by at least one space.

● The whole definition must be on a single line.

● The procedure cannot contain any code.

● The ENDPROC is not preceded by a colon.

For example:

DEF EXT PROCfred(first%, second$, RETURN third) ENDPROC

or

DEF EXT PROCjim ENDPROC

Accessing functions

Dummy definitions of functions are similar to those of procedures. The one
difference is that they are terminated by giving the type returned rather than by the
keyword ENDPROC.

For example:

DEF EXT FNfnname(arg, ..., arg) = INTEGER

or

DEF EXT FNfnname(arg, ..., arg) = FLOAT

or

DEF EXT FNfnname(arg, ..., arg) = STRING

Note that the type of floating point number is irrelevant. FLOAT applies to
functions returning either single, double or extended-precision values.

For example:

DEF EXT FNadd(a1, a2) = FLOAT
70

Libraries
Implementing library routines
A library has to be able to distinguish between procedures and functions which can
be referenced from other programs and those which are local to the library itself.
Any routine which is to be callable externally has to be defined as:

DEF LIBRARY PROCprocname(arg, ..., arg)

or

DEF LIBRARY FNfnname(arg, ..., arg)

Procedures and functions defined in the normal manner are treated as being local
to the library and cannot be referenced from the main program.

When ABC comes across a call to an external routine in the main program, it
searches through all the currently active libraries until it finds a routine of the
correct name. Up to 32 libraries can be active at any given time. If a routine with a
particular name occurs in more than one of these then the first one found will be
used, the others will be ignored.

Note: A procedure in one library may call an external routine from another library
in the same way as the main program can. The main program checks the
parameters used when an external routine is called against those of the dummy
definition. It does not check them against those of the external routine. It is
therefore very important to make sure that the external definition matches the
dummy one exactly.

When supplying libraries to other people, you should also supply them with a file
containing the appropriate dummy definitions for them to append to their main
programs.

Note that if a procedure is declared as a library procedure, it cannot be called
directly from within that library (i.e. from the same source file). It must always be
called as a library procedure. Thus the following is illegal:

DEF LIBRARY PROCpr1(x,y)
PROCpr2(y)
ENDPROC

DEF LIBRARY PROCpr2(x)
PRINT x
ENDPROC

However, if PROCpr2 is not declared as a library procedure, then it becomes
allowed. This has an implication for recursive procedures in libraries. Each
recursive procedure, within the body of a library, which is to be exported must be
declared in two parts; the main procedure itself and a dummy library header.

For example:
71

Restrictions on libraries
DEF LIBRARY FNfactorial(x)
= FNfac(x)

DEF FNfac(x)
IF x <= 1 THEN

= 1
ELSE

= x*FNfac(x-1)
ENDIF

Restrictions on libraries
There are certain restrictions imposed on the source files which are to be converted
into Library modules. These are listed below.

Floating point

It is not possible to mix floating point instruction sets between the calling program
and the called library.

If you compile a program using the FPA coprocessor option, as described on
page 15, then only compatible FPA libraries will be searched for the matching
named routines. Similarly, a program using the VFP coprocessor would skip the
FPA libraries and only search compatible VFP ones.

Global variables

Library routines do not have access to any of the variables of the main program,
other than those passed to it as parameters and the static integer variables @%,
A%, B%, ..., X%, Y%, Z%. They cannot create their own global variables. Any attempt
to create or read a global variable will result in an error message being given at
compile time.

Since all arrays are global, this means that library routines cannot use arrays.
Hence DIM may not be used to initialise one.

GOTO/GOSUB

GOTO/GOSUB statements within library routines would be ambiguous since it is
not clear whether the line numbers they refer to are in the library code or the main
code. Therefore they are not allowed.
72

Libraries
RESTORE, READ, DATA

To be fully versatile, library routines need to be able to handle different data
depending on the program calling them. ABC adopts the convention that all data
read by library routines refers to data in the main program. This is similar to the
view taken by the BASIC interpreter to its LIBRARY routines:

● RESTORE restores to a line in the main program.

● READ reads data from the main program.

When ABC encounters a READ statement within a library source file, it will issue a
warning to remind you that this is the case.

Note: DATA is not allowed since data in the library can never be accessed.

An example library
The Examples directory contains some example files:

● StringSrc the source of four functions for manipulating strings

● StringFns a module containing these routines as library functions

● StringDum the dummy definitions for appending to calling programs

● LibUse the source of a program which uses them

StringFns was produced by compiling the StringSrc file as a Library module. To
install the library module type:

*RMLoad StringFns

Then type:

*StringRoutines

to list the names of the routines it provides.

LibUse, which uses these routines, has already had the dummy definitions of them
appended to it. Compile this program using ABC in the usual manner and then run
the object code by double-clicking on it. It will behave as a normal program.
73

An example library
74

10 Cross referencing

ross referencing provides a detailed analysis of the of the use of variables,

arrays, procedures and functions within a BASIC program.C
Using the X-ref option
To ask the compiler to build up cross-referencing information, enable the X-ref
option in the Options menu as described in Compiler options on page 13. The next
time you compile a program, when the compilation is complete, the following
dialogue box will appear:

Extra report detail

The two options at the bottom allow you to check the program for:

● Any PROC/FNs which are never executed. This could be because no calls to
them exist or because they are only called from PROC/FNs which themselves
are never called etc. The only effect these routines are having is to make your
object code larger.

● Dynamic free variables. These are described in Scope rules on page 21. The
existence of dynamic free variables is one of the common causes of programs
producing different results under the compiler and interpreter.
75

Report information
To check your code for either of these, click on the appropriate option box. The
following dialogue box will appear:

The default filename will be UnRef or DFV depending on whether the
Unreferenced PROC/FNs or Dynamic free variables option was chosen. You can
change this, if you wish. Then, drag the file icon onto a directory viewer. A file will
be created which can be examined using Edit or a similar word processor.

Unreferenced procedures/functions will be reported as follows:

Examining PROCunused
PROCunused is never called

Dynamic free variables will appear as:

Checking PROCz
Warning: References to x% in PROCz are ambiguous!

Report information
The other options all work together to allow you to obtain various information
about objects of a particular type and name.

The default configuration is such that the cross referencer will provide all possible
information about all objects within your program when List is selected.

Name

Allows a wild-carded name to be entered. Then only objects of that name will be
checked. You can enter specific names such as colour. Alternatively you can ask for
a range of names such as col* which will match all objects whose names start with
the letters col.

The most general name is *, the default, which matches all names.

Def

Provides the definition of the object, for example:

F.P. Number Global e
PROCa
Integer Local x% belonging to PROCa
76

Cross referencing
Ref

Lists the references made to the objects.

For example:

F.P. Number Global e
This e is referred to from main program as a Global

PROCa
PROCa refers to -
Integer Local x% belonging to PROCa Twice
PROCb

Call

Provides the calling sequence for procedures and functions.

For example:

PROCa
PROCa is called from -

*** Main program ***

PROCb
PROCb is called from -

PROCa
*** Main program ***

Procedures and functions which are referenced should all lead back to the Main
program. Recursion is dealt with. A cut off occurs once the loop has been listed
twice.

Size

This option provides details of the sizes of arrays, procedures and functions.

For example:

PROCa
PROCa uses 24 bytes of stack

This allows you to calculate how much stack space your program will require.

Matching on constructs

Var

If this is selected, variables which match the name will be checked.

PROC

If this is selected, procedures which match the name will be checked.
77

Report information
FN

If this is selected, functions which match the name will be checked.

Array

If this is selected, arrays which match the name will be checked.

Int, FP, Str

Allow variables, functions and arrays to be restricted to either integers, floating
points or strings, depending on which of the radio buttons is selected. If non are
selected, then all types will be allowed and checked.

List

Carries out the checking, based on the current settings. Clicking on this option
displays a Save as dialogue box. The default name will be List. The checking
takes place when this is dropped onto a directory viewer.
78

Appendix A: Significant changes

his chapter details the significant changes made to the ABC compiler, for the

period where records exist, and the companion ABCLibrary.T
Version history

Version 3.10
● The final version from Oak Solutions. Some copies of 3.13 and 3.14 exist, but

were never formally released.

Version 3.15
● Pineapple Software takes over development.

● First version to be StrongARM compatible, with the introduction of
MANUALCODESYNC directive. Released with ABCLibrary 4.05.

Version 4.10
● First version to be suitable for running in 32 bit mode, and generating 32 bit

programs. Released with ABCLibrary 4.12.

Version 4.11
● R8 may now be used with SYS.

● The Edit button on the warning/error window now sends a DataLoad message
in the hope that a suitable editor is loaded (e.g. SrcEdit).

● A scenario where the compiler could generate an infinite sequence of errors
has been fixed.

● Throwback support added, which will be used automatically if DDEUtils is
loaded. Thanks to R-Comp for assistance with this.

● New template file added. Thanks to Paul Reuvers.

Version 4.12
● New options {THROWBACK} (default) and {NOTHROWBACK}.

● New options {SQUEEZE} and {NOSQUEEZE} (default).
79

Version history
● Several minor user interface improvements to the ABC windows.

Version 4.13
● Introduced {MODULE 32BIT} and {LIBRARY 32BIT}, though using ABC to

generate module code remains deprecated.

● ABCLibrary 4.13 fixes a bug around reading the returned flags on a 32 bit
processor from CALL, USR and SYS calls where the SWI number is resolved at
runtime rather than compile time.

Version 4.14
● Fixes a bug where {ZEROLOCALS} wouldn’t take effect whilst the Quick

compilation switch was turned on.

● ABCLibrary 4.14 fixes a bug where EQUW would fail to generate any data on 32
bit systems.

● ABCLibrary 4.15 fixes a bug with top bit set hexadecimal numbers being set to
zero in DATA statements.

Version 4.16
● Introduced the {AIFHEADER} directive. Some copies of 4.15 and 4.17 exist, but

were never formally released.

Version 4.18
● Accepts END as a function and the pseudo variable END= to adjust the

application slot size, restoring it on QUIT.

● Introduced the {AIFFLAGS} directive.

● Fix to propagate the error message on return from a SWI in a service module
when the ERROR keyword is used. Previously R0 was restored and so the
pointer to the error block was lost.

● Internal changes to avoid accidentally accessing zero page and unaligned
memory locations, and to ensure cache coherency before calling machine code
instructions produced with ABC at run time.

● Library modules no longer abort on 32 bit systems during initialisation.

● ABCLibrary 4.18 fixed to compute the addresses of external PROCs and FNs in
library modules correctly on 32 bit systems, required because the library
module is now further from application memory than the range of a branch
instruction.
80

Appendix A: Significant changes
Version 4.20
● Hexadecimal numbers are now accepted in lower or mixed case. This requires

a corresponding update to ABCLibrary 4.20 for numbers parsed at run time.

● Made END as a function to match the description given on page 30, fixing a
bug introduced in 4.17. Assignments to END= set the application slot size as
described in the change log for 4.18, above.

● Modules created by ABC now use the datestamp of the source file as the date
shown in the help string, rather than today’s date

Version 4.23
● A routine internal to the compiler has been changed which was causing many

hundreds of full instruction cache flushes during compilation of a source file.
As explained in Code cache coherency on page 50, such flushes are costly,
especially when RISC OS is aware of multiple CPU cores.

Version 4.29
● Blocks of memory can be declared as DIM LOCAL within a function or

procedure, and these will be freed on return.

● The extended forms of GCOL and COLOUR, including OF/ON, are now
supported.

● VDU as a function can be used to read the operating system VDU variables.

● Programs may now QUIT <expression> which will quit the program and set
Sys$ReturnCode to the value of the expression.

● MODE can be passed a suitable mode specifier string, or used with multiple
parameters to specify the screen parameters, as well as using a numbered
MODE as before.

Version 4.30
● Service modules may now be created with more than one * command, the

command which is being called is available via LINEFN$ for inspection.

● The service call handler, where required by a module using the application
slot, now includes a fast reject table to speed up service call handling.

Version 5.00
● Code generation can now optionally target the VFP hardware accelerator as

well as the traditional FPA instruction set. This requires an update to
ABCLibrary 5.00 for supporting maths routines and context handling.

● Modules produced by ABC can now be compressed through modsqz.
81

Version history
EOF
82

Index

{WARNINGS} 51
Symbols
@% 26-28
{AIFFLAGS} 41
{AIFHEADER} 41
{ALIGNEDPLING} 54
{ARRAYCHECK} 54
{CALLREGS} 53
{COMPILE} 39
{ELSE} 59
{ENDIF} 59
{ESCAPECHECK} 54
{GOTOSUSED} 55
{HEAP%} 45
{HEAP} 44
{IF} 59
{INCLUDE} 41
{LIBRARY} 69
{LONGADRS} 42
{MANUALCODESYNC} 50
{MAXCASES} 42
{MODULE} 62
{NEWHEAP} 45
{NOFLOAT} 48
{OPT} 50
{REGISTERS} 49
{SHORTADRS} 42
{SQUEEZE} 43
{STACK%} 45
{STACK} 44
{STACKCHECK} 52
{SWIBASE} 65
{SYSCONSTONLY} 55
{SYSKNOWNONLY} 43
{THROWBACK} 51
{TRAPS} 53
{TYPE} 46

{ZEROLOCALS} 52
{ZEROSYSREGS} 53

A
ABCLibrary 7, 50

change history 79-81
loading 7-8
split cache flush 50-51

C
Comparison with interpreted BASIC

@% and floating point in data files 28
@% and print formatting 26-27
Assembly language 34-35
Banned keywords 36-37
Calling machine code 32-33
Floating point 24-25
Indirection operators 29-30
Local error handling 22-24
Operating system calls 33-34
Pseudo variables 30-32
Scope rules 21-22
Structures 17-21
Variables, arrays, parameters etc 28-29

Compatibility
32 bit libraries 69
module flags word 64
squeeze 43
StrongARM application note 51
Vector Floating Point 2
versions of ABC 79-82
versions of RISC OS 2
83

Index
Compiling
cross reference report detail 76-78

Compiling a program 5-12
aborting 6
conditional compilation 59-60
cross referencing see Options (X-ref)

D
Desktop Development Environment 4, 9, 11, 43

modsqz 43
squeeze 43
SrcEdit 9, 11, 51, 79

Directives
Assembly language 49-51
general form 39
Library 69
Memory 43-46
Module 62-64
Optimisation 52-55
Program 39-43
Variable 46-48
Warning 51

E
Examples

Error1 12
Hello 5
Library module 73
Service module 67
Warn1 9
Warn2 11

I
Interpreters and compilers 1-2

L
Libraries

accessing 70
creating 69
directives see Directives
example see Examples
implementing 71-72
overview 69
restrictions 72-73

M
Manifests

Declaring 57-58
Numeric values 58
Static integer variables 58

Modules
command handler 64-65
directives see Directives
example see Examples
SWI handlers 65-66
types of 61-62

O
Options

Code size 15
Floating point coprocessor 15
Pause 15
Quick 14
RAM 14
X-ref 13, 75-78

S
System resource

developer 3
end user 3
installing 4
84

✃

Reader’s Comment Form
Archimedes BASIC Compiler, Issue 7

We would greatly appreciate your comments about this Manual, which will be taken into account for the
next issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

Used computers before Experienced ProgrammerExperienced User Programmer

Please send an email with your
This information will only be used to get in touch with you in case we wish to explore your
comments further

Your name and address:

comments to:

manuals@riscosopen.org

	Contents
	1 Introduction
	Interpreters and compilers
	Compatibility

	2 Installation
	Elements required
	Installation

	3 Getting started
	Compiling a program
	Executing the code
	ABCLibrary
	Warnings and errors
	Icon bar menu

	4 ABC versus BASIC interpreter
	Nature of differences
	Structures
	Scope rules
	Local error handling
	Floating point
	@% and print formatting
	@% and floating point in data files
	Variables, arrays, parameters etc
	Indirection operators
	Pseudo variables
	Calling machine code
	Operating system calls
	Assembly language
	Banned keywords

	5 Compiler directives
	General format
	Program directives
	Memory directives
	Variable directives
	Assembly language directives
	Warning directives
	Optimisation directives

	6 Manifest constants
	Using manifests

	7 Conditional compilation
	Using conditional compilation

	8 Relocatable modules
	Module types
	Module compiler directives
	Command handlers
	SWI handlers
	An example module

	9 Libraries
	Library modules
	Making a library
	Accessing library routines
	Implementing library routines
	Restrictions on libraries
	An example library

	10 Cross referencing
	Using the X-ref option
	Report information

	Appendix A: Significant changes
	Version history

	Index
	Symbols
	A
	C
	D
	E
	I
	L
	M
	O
	S

