
Virtual Memory vs. The File System

Michael N. Nelson

Digital Equipment Corporation
Western Research Laboratory

Palo Alto, CA 94301

Abstract

This paper examines the behavior of mechanisms for providing variable-size file data
caches. It presents the results of running virtual-memory- and file-intensive benchmarks
on the Sprite operating system [OCD88]; the benchmarks are designed to simulate real-
life applications that represent the worst case for variable-size cache mechanisms. The
results indicate that variable-size cache mechanisms work well when virtual-memory-
and file-intensive programs are run in sequence; the cache is able to change in size in
order to provide overall performance no worse than that provided by a small fixed-size
cache. However, when interactive programs are run concurrently with file-intensive pro-
grams, variable-size cache mechanisms perform very poorly if file pages and virtual-
memory pages are treated equally. In order to guarantee good interactive response, virtu-
al memory pages must be given preference over file pages.

�����������������������������
The work described here was supported in part by the Defense Advanced Research Projects Agency

(DoD) under Contract No. N00039-84-C-0107



Virtual Memory vs. The File System

1. Introduction

File data caches have been used in many operating systems to improve file system
performance. In a distributed system the use of caches can reduce both network and disk
traffic. A study of the use of caches on diskless workstations [NWO88] showed that the
use of large caches can reduce the execution time of application programs by up to 1/3.
Unfortunately, if file data caches are allowed to become too large, then they will conflict
with the needs of the virtual memory system. In particular, if there is insufficient
memory to run application programs, then the programs may slow down by factors of 10
to 100 because of excessive paging activity. Thus, if a cache is allowed to become too
large, the improvement in file system performance may be more than offset by a degrada-
tion in virtual memory performance.

In order to provide both good file system performance and good virtual memory
performance, several operating systems [BBM72, DaD68, Lea83, RaF86, Ras87] have
implemented variable-size cache mechanisms. In these operating systems the portion of
memory used for file data and virtual memory varies in response to the file and virtual-
memory needs of the application programs being executed. These mechanisms will
obviously work well when there is little or no contention for memory between file and
virtual-memory pages.

This paper examines the behavior of variable-size cache mechanisms in the worst
case; that is, the case when there is a serious amount of memory contention. It looks at
both sequential and concurrent contention. Sequential contention corresponds to a user
alternatively running programs that are either virtual memory or file intensive; an exam-
ple of this type of contention is an edit-compile-debug loop where the editing and debug-
ging are virtual-memory intensive and the compile is file intensive. Concurrent conten-
tion is when a user is running file intensive and virtual-memory intensive programs at the
same time; an example of this type of sharing is a user interacting with a window system
while a file intensive program is running.

I evaluated the behavior of variable-size cache mechanisms by running benchmarks
that simulate both sequential and concurrent memory contention. The benchmark results
indicate that variable-size cache mechanisms work well for sequential contention; the
cache is able to change in size in order to provide overall performance no worse than that
provided by a small fixed-size cache. However, when interactive programs are run con-
currently with file intensive programs, variable-size cache mechanisms perform very
poorly. The file intensive programs steal memory away from the interactive programs
causing the interactive programs to exhibit poor response time because of extra page
faults. In order to guarantee good interactive performance, virtual-memory pages should
receive preferential treatment: a file page should not replace a virtual-memory page
unless the virtual-memory page has been idle for a substantial period (e.g. 5 to 10
minutes).

The rest of the paper is organized as follows: Section 2 looks at mechanisms for
providing variable-size caches including the mechanism provided in Sprite; Section 3
describes the benchmarks that were used to evaluate the variable-size caching schemes;
Section 4 looks at the performance of fixed-size cache schemes; Section 5 sees how well
the variable-size cache schemes compare to fixed-size schemes; Section 6 examines the
effect of giving virtual memory data preference over file data; and Section 7 offers some
conclusions.

- 1 -



Virtual Memory vs. The File System

2. Providing Variable-size Caches

The approach that has been commonly used to provide variable-size file data caches
is to combine the virtual memory and file systems together; this is generally called the
mapped-file approach. To access a file, it is first mapped into a process’s virtual address
space and then read and written just like virtual memory. This approach eliminates the
file cache entirely; the standard page replacement mechanisms automatically balance
physical memory usage between file and program information. Mapped files were first
used in Multics [BCD72, DaD68] and TENEX [BBM72, Mur72]. More recently they
have been implemented in Pilot [Red80], Accent [RaR81, RaF86], Apollo
[LLH85, Lea83] and Mach [Ras87].

The Sprite approach to providing variable-size caches is quite different from the
mapped-file approach. In Sprite, the file system and virtual memory system are separate.
Users invoke system calls such as read and write to access file data. These system calls
copy data between the file cache and the virtual address spaces of user processes.
Variable-size caches are provided by having the virtual memory system and file system
modules negotiate over physical memory usage. In this paper I will only give an over-
view of the Sprite mechanism; see [NWO88] or [Nel88] for more details.

In the Sprite mechanism, the file system module and the virtual memory module
each manage a separate pool of physical memory pages. Virtual memory keeps its pages
in approximate LRU order through a version of the clock algorithm [Nel86]. The file
system keeps its cache blocks in perfect LRU order since all block accesses are made
through the read and write system calls. Each module keeps a time-of-last-access for
each page or block. Whenever either module needs additional memory (because of a
page fault or a miss in the file cache), it compares the age of its oldest page with the age
of the oldest page from the other module. If the other module has the oldest page, then it
is forced to give up that page; otherwise the module recycles its own oldest page.

The advantage that the Sprite approach has over mapped-file approaches is that it
makes it easy to discriminate between file and virtual-memory pages. This makes Sprite
a good vehicle for running experiments in variable-size cache behavior. Of course,
Sprite has the disadvantage that it requires more copies than mapped-file schemes. How-
ever, measurements presented in [Nel88] demonstrate that the extra copies have an
insignificant impact on performance.

3. Benchmarks

In order to measure the performance of variable-size cache mechanisms, I
developed two benchmarks and ran them on the Sprite operating system. The results
obtained on Sprite should be similar to results obtained with the same benchmarks on
systems with mapped-files.

The first benchmark that I used is an edit-compile-debug (ECD) benchmark that
runs under the X11 window system on Sprite (see Table 1). This benchmark represents
work that is commonly done on Sprite, and is both VM and FS intensive. Each program
in the benchmark is run in sequence; no two programs are ever run concurrently. I used
this benchmark to determine how well variable-size cache mechanisms and fixed-size
cache mechanisms perform with sequential memory contention.

- 2 -



Virtual Memory vs. The File System

�������������������������������������������������������������
Phase Description FS I/O VM Image Size�������������������������������������������������������������
Edit 70 Kbytes 560 KbytesRun window-based

editor on 2500 line
file.�������������������������������������������������������������

Compile Compile VM Module 800 Kbytes 1 Mbyte�������������������������������������������������������������
Link Link the kernel 8 Mbytes 3 Mbytes�������������������������������������������������������������

Debug Run kernel debugger 4 Mbytes 8.5 Mbytes�������������������������������������������������������������
Environment -- 5 MbytesThe X window sys-

tem plus several
typescript windows
and tools.���������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

Table 1. The phases of the edit-compile-debug benchmark. The first two columns describe the
phase of the benchmark. The third column gives the number of bytes read and written by each
phase. The last column gives the size of the largest virtual memory image of the phase. The last
row is not a phase in the benchmark but rather shows the total amount of memory required by the
basic environment in which the benchmark is running.

The ECD benchmark was run on a Sun-3/75 workstation with from 10 to 16 Mbytes
of physical memory; if less than 10 Mbytes was used then the benchmark did not finish
in a reasonable amount of time because of virtual-memory thrashing. The workstation’s
files were stored remotely on a Sun-3/180 file server with 16 Mbytes of memory†.
Although the benchmark was executed on a diskless workstation, the results should be
similar to results obtained by running the benchmark on a machine with a local disk.
Each benchmark consisted of two runs through the edit-compile-link-debug loop. Each
data point was taken from the average of three runs of the benchmark.

The other benchmark that I used runs a virtual-memory intensive program and a
file-intensive program concurrently. This benchmark is used to determine the impact of
variable-size cache mechanisms on interactive performance; I will refer to this bench-
mark as the IFS (Interactive-File-System) benchmark. The virtual-memory-intensive
program is a program which periodically touches many pages in its virtual address space,
dirtying some of them‡. This simulates a user who is interacting with a program. When
a user interacts with a program, the program must have its code, heap and stack pages
memory-resident in order to give good interactive response. In fact, if the user is
interacting with a program under a window system such as X11, then several programs
have to be memory-resident in order for the user to get good interactive response.

The file system component of the IFS benchmark is the UNIX sort program run on a
1-Mbyte file. The UNIX sort program is an external merge sort which uses many
�����������������������������

† In this paper the term client will be used to refer to the diskless workstation that the benchmarks
were run on and the term server will be used to refer to the workstation that stored the client’s files.

‡ The fraction of memory that the interactive program dirties each time it touches the memory in its
address space may impact the performance of the IFS benchmark. Measurements of 5 workstations run-
ning Sprite showed that between 40 and 60 percent of the memory that was being used by user processes
was dirty. For this reason the virtual-memory intensive program dirties half of the pages that it touches.

- 3 -



Virtual Memory vs. The File System

temporary files. The sort program is run concurrently with the interactive program to
simulate a file system program that attempts to grow its cache by stealing memory from
an interactive program.

The IFS benchmark was run on a diskless 8-Mbyte Sun-3/75. The file server was a
Sun-3/180 with 16 Mbytes of memory. 1.3 Mbytes of the 8 Mbytes were used by the
kernel, which left 6.7 Mbytes for user processes. The interactive program used 5.7
Mbytes of memory and left at most 1 Mbyte for sort and the file system cache. This is
small enough that sort will contend with the virtual memory system for memory.

4. Why Not Just Use Fixed-Size Caches?

The results from previous measurements of file data caches [NWO88] suggest that a
large fixed-size cache will provide the best performance for file-intensive programs.
However, for the two benchmarks used here, a small fixed-size cache is best. Figure 1
gives the elapsed time and server utilization for the ECD benchmark as a function of the
amount of physical memory available on the client and the size of its file cache. A cache
of 0.5 Mbytes provides the lowest elapsed time, and a cache from 0.5 Mbytes to 1 Mbyte
gives the lowest server utilization for the benchmark; note that this benchmark is so
virtual-memory intensive that even with the largest physical memory the smallest file
cache is best.

Figure 2 clearly shows why the smallest cache is best for the ECD benchmark. As
the cache grows in size, the number of file system bytes transferred drops. However,
larger file caches leave less memory for virtual memory, so the number of page faults
increases, resulting in more network traffic to fetch VM pages. This causes an increase
in the total number of network bytes transferred and a corresponding increase in client
degradation and server utilization.

A small fixed-size cache is also best for the IFS benchmark. This benchmark was
designed so that interactive performance would degrade if more than 1 Mbyte were used
for the file system cache. In addition, measurements in [NWO88] show that even with a
small cache the sort benchmark will only execute at most 25 percent more slowly than
with a large cache. Thus a small fixed-size cache will give instantaneous interactive
response (no page faults required) while only slightly degrading file system performance.

The results with fixed-size caches demonstrate that different cache sizes are needed
for different types of programs. The results in [NWO88] show that when purely file-
intensive programs are run, a large cache is best. However, when a mix of file- and
virtual-memory-intensive programs are run, then a small cache is best.

5. Variable-Size Cache Performance

It is clear from the previous section that different file cache sizes are required for
different types of programs. Variable-size cache mechanisms attempt to provide the abil-
ity to adjust the size of the cache based on the types of programs that are being run. This
section examines how the Sprite variable-size cache mechanism affects the performance
of the ECD and IFS benchmarks. Measurements of other variable-size cache mechan-
isms should yield similar results.

- 4 -



Virtual Memory vs. The File System

e
m
i
T

d
e
s
p
a
l
E

Megabytes of Cache

900

800

700

600

500

400

300

200

100

0
6543210

11 Mbytes on client

12 Mbytes on client

14 Mbytes on client

16 Mbytes on client

n
o
i
t
a
z
i
l
i
t
U

r
e
v
r
e
S

Megabytes of Cache

25%

20%

15%

10%

5%

0%
6543210

16 Mbytes on client

14 Mbytes on client

12 Mbytes on client

11 Mbytes on client

(a) (b)

Figure 1. Elapsed time and server utilization for the edit-compile-debug benchmark with fixed-
size caches as a function of client physical memory size. In both graphs the X-axis is the size of
the client’s file cache. In graph (a) the Y-axis is the number of seconds to execute the benchmark
and in graph (b) the Y-axis is the percent of the server’s CPU that was utilized while the client
was executing the benchmark. The system thrashed whenever the amount of physical memory
left for the virtual memory system dropped below 10 Mbytes. I did not run the benchmark for
points beyond where thrashing occurred (since elapsed time more than doubles), which explains
why some curves have fewer data points than others.

- 5 -



Virtual Memory vs. The File System

d
e
r
r
e
f
s
n
a
r
t

s
e
t
y
b
M

Megabytes of Cache

80

70

60

50

40

30

20

10

0
6543210

Total bytes

VM bytes

FS bytes

Figure 2. This graph gives the number of Mbytes transferred across the network for the edit-
compile-debug benchmark with fixed-size caches and 16 Mbytes of memory on the client.
Graphs of network bytes transferred for the other four memory sizes yield similar results. The
X-axis is the size of the cache and the Y-axis is the number of Mbytes transferred. The ‘‘FS
bytes’’ line is the amount of file system data transferred across the network, the ‘‘VM bytes’’ line
is the amount of virtual memory data transferred across the network, and the ‘‘Total bytes’’ line
is the total amount of network bytes transferred which includes file and virtual memory data as
well as packet headers and control packets.

- 6 -



Virtual Memory vs. The File System

e
m
i
T

d
e
s
p
a
l
E

Megabytes on Client

1000

900

800

700

600

500

400

300

200

100

0
16151413121110

Variable

Fixed Fixed

Variable

n
o
i
t
a
z
i
l
i
t
U

r
e
v
r
e
S

Megabytes on Client

25

20

15

10

5

0
16151413121110

Figure 3. Elapsed time and server utilization for the edit-compile-debug benchmark with a
variable-sized cache and with the smallest fixed-size cache as a function of physical memory
size. In both graphs the X-axis is the amount of cache. In graph (a) the Y-axis is the number of
seconds to execute the benchmark and in graph (b) the Y-axis is the percent of the server’s CPU
that was utilized while the client was executing the benchmark.

5.1. The ECD Benchmark

For the ECD benchmark, variable-size cache mechanisms work quite well. Figure 3
shows that, in terms of elapsed time and server utilization, the variable-size and fixed-
size cache mechanisms provide nearly identical performance. The reason why the per-
formance is similar is demonstrated in Figure 4, which gives the amount of network
traffic. The variable-size cache gives consistently fewer file system bytes transferred
than a fixed-size cache, and the fixed-size cache gives fewer virtual memory bytes
transferred. However, in terms of total bytes transferred, the variable-size cache is
slightly better than the best fixed-size cache. Thus, the poorer virtual memory perfor-
mance for the variable-size cache is more than offset by the much better file system per-
formance.

The edit-compile-debug benchmark shifts between file- and virtual-memory-
intensive programs. This requires that there be constant shifts in the allocation of physi-
cal memory between the file system and the virtual memory system (see Table 2). The
minimum and maximum cache size columns from Table 2 show that the file cache varied
widely in size during the life of the benchmark, going from the minimum possible size
(0.25 Mbytes) up to over half the amount of physical memory available. As the amount
of physical memory increased, the maximum size of the cache increased as well; the
variable-size cache mechanism allowed the file system to take advantage of the extra
physical memory.

Table 2 also quantifies the negotiation between the virtual memory system and the
file system. As the amount of physical memory increased, the number of times that the

- 7 -



Virtual Memory vs. The File System

10 11 12 13 14 15 16
0

20

40

60

80

100

120

Megabytes on Client

M
b
y
t
e
s

t
r
a
n
s
f
e
r
r
e
d

Total - variable

FS - variable

VM - variable

Total - fixed

FS - fixed

VM - fixed

Figure 4. This graph gives the number of Mbytes transferred across the network with variable-
size and smallest-fixed-size caches and 16 Mbytes of memory on the client. The X-axis is the
amount of cache and the Y-axis is the number of Mbytes transferred. There are two lines for file,
virtual memory and total bytes transferred: one for variable-size caches and one for fixed-size
caches. The total bytes transferred lines includes file and virtual memory data bytes plus bytes
from packet headers and control packets.

��������������������������������������������������������������������
FS Asks VM VM Asks FS

Client Min Max ����������������������������������

Mem Cache Size Cache Size
(Mbytes) (Mbytes) (Mbytes)

Num Satisfied Num Satisfied
����������������������������������������������������������������������������������������������������������������������������������������

10 0.25 5.6 8125 1810 2942 1846��������������������������������������������������������������������
11 0.25 6.4 7105 1889 2610 1967��������������������������������������������������������������������
12 0.25 6.9 5840 1964 2555 2075��������������������������������������������������������������������
14 0.25 8.7 4012 1957 2669 2162��������������������������������������������������������������������
16 0.34 8.8 3652 1937 2629 2229���������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table 2. Traffic between the virtual memory system and the file system. The first column gives
the amount of physical memory available on the client. The second and third columns give the
minimum and maximum file cache sizes during the benchmark. The fourth and fifth columns are
the number of times that the file system asked the virtual memory system for the access time of
its oldest page and the number of times that it was able to get a page from the virtual memory
system. The sixth and seventh columns are the same as the previous two, except that they are the
number of times the virtual memory system asked the file system for memory.

file system attempted to get memory from the virtual memory system dropped dramati-
cally; however, the number of times that the file system was successful in stealing a page
from the virtual memory system remained fairly constant across all memory sizes. In
contrast, the number of requests for memory made by the virtual memory system to the
file system remained reasonably constant for all memory sizes, but the virtual memory
system was more successful in taking pages from the file system as the amount of

- 8 -



Virtual Memory vs. The File System

memory increased.

Table 2 suggests that the virtual memory system is much less elastic in its needs
than the file system, at least for this benchmark; I hypothesize that this is true in general.
The low success rate that the file system has when asking the virtual memory system for
memory implies that the pages in the virtual memory system are being more actively
used than those in the file system. Thus, the virtual memory system has fairly strict
memory needs regardless of the physical memory size, and it actively uses the pages that
it has. On the other hand, the file system caches files after they are no longer being used
so it will grow to fill the available memory. Since the file system does not actively use
many of its cached pages, its pages are the best candidates for recycling.

5.2. The IFS Benchmark

Variable-size caches work poorly for the IFS benchmark (see Table 3). The perfor-
mance is dependent on the length of the interactive program’s sleep interval. Short sleep
intervals correspond, for example, to temporary pauses in an editing session. Long sleep
intervals correspond, for example, to windows that have been idle because the user was
working in a different window.

Table 3 shows that the interactive response time has a high variance: sometimes it is
instantaneous and other times it takes up to 22 seconds. This corresponds to a user typ-
ing a key stroke and waiting 22 seconds for a response from the program. The response
time gets worse as the sleep interval is increased. Longer sleep intervals allow the sort
program to steal more memory which causes the interactive program to wait for pages to
get faulted in from the file server.

In addition to producing poor interactive response, the use of variable-size caches
also degrades the performance of the sort benchmark. The benchmark takes up to 72%
longer to execute than the standalone case, and 50% longer than when a small fixed-size
cache is used. The performance degrades because the CPU is busy trying to fault in
pages for the interactive benchmark; if the interactive benchmark is memory resident,

����������������������������������������������������������������������
Response Time Sort Time Cache Size

Sleep ���������������������������������� Page Page �������������

Interval Min Max Avg Time Deg Ins Outs Min Max��������������������������������������������������������������������������������������������������������������������������������������������
1 0.0 4.7 0.1 79.6 33% 173 456 152 784����������������������������������������������������������������������
5 0.0 4.5 0.8 83.8 40% 437 509 157 842����������������������������������������������������������������������
10 1.9 13.3 5.9 103.4 72% 1605 1177 146 1226����������������������������������������������������������������������
30 12.5 22.0 15.8 96.3 61% 1250 983 141 2533������������������������������������������������������������������������

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 3. Results for the IFS benchmark with variable-size caches. Each data point is the aver-
age of the results from three runs of the benchmark. The first column gives the number of
seconds that the interactive benchmark slept before touching all of its memory. Columns 2
through 4 give the minimum, maximum and average number of seconds it took the interactive
benchmark to touch all of its memory when it awoke from its sleep. Columns 5 and 6 give the to-
tal number of seconds it took to execute the sort benchmark, and the amount of degradation rela-
tive to the standalone case which took 60 seconds. Column 7 is the number of pages read in from
swap files and Column 8 is the number of pages written to swap files. Columns 9 and 10 give the
minimum and maximum amount of memory in the cache in Kbytes.

- 9 -



Virtual Memory vs. The File System

then it utilizes very little of the CPU.

6. Biasing Against the File System

The results of the IFS and ECD benchmarks demonstrate that virtual memory per-
formance is the most important factor in determining overall system performance. This
was shown with the ECD benchmark where performance degraded as the size of fixed-
size file cache was increased; fortunately the variable-size cache mechanism worked well
in this case and was able to adjust the size of the cache effectively. Unfortunately, the
variable-size cache mechanism did not work well for the IFS benchmark. These results
indicate that it may not be practical to treat virtual memory and file data equally in a
variable-size cache mechanism. This section evaluates the effect of giving virtual-
memory pages preference over file pages.

6.1. Implementation

Since the Sprite mechanism treats virtual memory and file data separately it is quite
easy to implement a scheme that biases against the file system. The method used in
Sprite involves adding a fixed number of seconds to the reference time of each virtual
memory page. This makes each virtual memory page appear to have been referenced
more recently than it actually was. For example, if 5 minutes is added to the reference
time of each virtual memory page, then the file system will not be able to take any page
from the virtual memory system that has been referenced within 5 minutes of the oldest
file system page.

6.2. ECD Benchmark

Penalizing the file system has little or no effect on the performance of the ECD
benchmark. Figure 5 shows that, regardless of the penalty, the elapsed time and server
utilization are about the same. Figure 6 shows why the penalty has no effect. As the
penalty is made larger, the virtual memory performance gets better and the file system
performance worse. The result is that overall performance is about the same regardless
of the penalty.

6.3. IFS Benchmark

Penalizing the file system is very effective in improving the performance of the IFS
benchmark. Table 4 shows that the interactive response is excellent when the file system
is penalized. The 120-second penalty prevents the file system from taking any memory
away from the virtual memory system. Thus the response time is the same regardless of
the amount of time that the interactive program pauses between successive touching of
its memory.

Surprisingly, the file system penalty actually improves the execution time of the sort
benchmark relative to without the penalty (see Tables 3 and 4). When the file system is
penalized, sort takes only 25% longer than the best case. This degradation is nearly
identical to the degradation shown in [NWO88] when sort was run using only a small
cache.

- 10 -



Virtual Memory vs. The File System

(b)(a)

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

10 11 12 13 14 15 16
0

5

10

15

20

25

Megabytes of Memory

S
e
r
v
e
r

U
t
i
l
i
z
a
t
i
o
n

10 11 12 13 14 15 16
0

100

200

300

400

500

600

700

800

900

1000

Megabytes of Memory

E
l
a
p
s
e
d

T
i
m
e

Figure 5. Elapsed time and server utilization with various penalties as a function of client physi-
cal memory size. In both graphs the X-axis is client memory size. In graph (a) the Y-axis is the
number of seconds to execute the benchmark and in graph (b) the Y-axis is the percent of the
server’s CPU that was utilized while the client was executing the benchmark.

- 11 -



Virtual Memory vs. The File System

(c)

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

T

l
a
t
o

M

s
e
t
y
b

Megabytes of Memory

110

100

90

80

70

60

50

40

30

20

10

0
16151413121110

10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

Megabytes of Memory

M
b
y
t
e
s

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

s
e
t
y
b
M

Megabytes of Memory

40

30

20

10

0
16151413121110

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

(a) (b)

V
M S

F

Figure 6. These graphs gives the number of Mbytes transferred across the network with various
penalties as a function of client memory size. In all three graphs the X-axis is the total amount of
client memory and the Y-axis is the total number of Mbytes transferred during the benchmark.
Graph (a) is virtual memory traffic, (b) is file system traffic and (c) is total network traffic which
includes virtual memory traffic, file system traffic and packet headers and control packets.

- 12 -



Virtual Memory vs. The File System

���������������������������������������������������������������������
Response Time Sort Time Cache Size

Sleep ���������������������������������� Page Page �������������

Interval Min Max Avg Time Deg Ins Outs Min Max������������������������������������������������������������������������������������������������������������������������������������������
1 0.0 0.4 0.03 74.8 25% 1 4 64 178���������������������������������������������������������������������
5 0.0 0.1 0.02 72.8 21% 0 0 64 168���������������������������������������������������������������������
10 0.0 0.1 0.01 72.1 20% 0 0 64 168���������������������������������������������������������������������
30 0.0 0.1 0.03 74.0 23% 0 0 64 168�����������������������������������������������������������������������

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 4. Results for the IFS benchmark with variable-size caches when the file system is penal-
ized 120 seconds. Each data point is the average of the results from three runs of the benchmark.
The first column gives the number of seconds that the interactive benchmark slept before touch-
ing all of its memory. Columns 2 through 4 give the minimum, maximum and average number
of seconds it took the interactive benchmark to touch all of its memory when it awoke from its
sleep. Columns 5 and 6 give the total number of seconds it took to execute the sort benchmark,
and the amount of degradation relative to the standalone case which took 60 seconds. Column 7
is the number of pages read in from swap files and Column 8 is the number of pages written to
swap files. Columns 9 and 10 give the minimum and maximum amount of memory in the cache
in Kbytes.

6.4. How Much of a Penalty?

The results of the benchmarks in this section show that penalizing the file system
can improve interactive response without degrading overall system performance. In
some cases, it can even make the performance of both file- and virtual-memory intensive
programs better. However, it is not clear what the optimal penalty should be. The
penalty should be large enough so that idle user programs that will be used in the near
future will not be removed from memory, but not so large that the performance of the file
system is degraded unnecessarily. The best value for the penalty will depend on the
behavior of the users of the system. In Sprite we normally set the penalty to 20 minutes.
This means that an interactive program’s pages will not be reclaimed by the file cache
until the program has been idle for 20 minutes.

7. Conclusions

Different size file caches are required for different program mixes. As a result
variable-size cache mechanisms are required to provide good performance for all types of
programs. Unfortunately, standard variable-size cache mechanisms that treat virtual-
memory and file data equally are not good enough. In order to ensure good interactive
response to users, virtual memory data accessed in the last several minutes must be kept
memory resident if possible - even if this requires removing more recently accessed file
data. Basically, the file cache should be limited to those pages that are not required by
the virtual memory system.

Fortunately, the Sprite variable-size cache mechanism has the ability to favor virtual
memory pages. This is easy in Sprite because the virtual-memory system and the file
system are kept separate. We use the Sprite file system penalty mechanism as we do our
day to day work on Sprite. Since we began penalizing the file system, we have noticed
that a file intensive program is no longer capable of ruining interactive response. It is my
advice to implementors of other variable-size caching mechanisms (e.g. mapped files)
that they include in their implementation the ability to favor virtual-memory pages. This
will make interactive users happier and may even improve the performance of file inten-
sive programs.

- 13 -



Virtual Memory vs. The File System

8. Acknowledgements

I want to thank the other Sprite developers: John Ousterhout, Brent Welch, Fred
Douglis, and Andrew Cherenson. Without their efforts Sprite would not exist. John
Ousterhout, Jeff Mogul, and Anita Borg provided numerous helpful comments that
improved the presentation of this paper.

The work described here was done as part of my PhD research at the University of
California at Berkeley. It was supported in part by the Defense Advanced Research Pro-
jects Agency (DoD) under Contract No. N00039-84-C-0107.

9. Bibliography

[BCD72] A. Bensoussan, C. T. Clingen and R. C. Daley, ‘‘The MULTICS Virtual
Memory: Concepts and Design’’, Comm. of the ACM 15, 5 (May 1972).

[BBM72] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson,
‘‘TENEX, a Paged Time Sharing System for the PDP-10’’, Comm. of the
ACM 15, 3 (Mar. 1972), 1135-143.

[DaD68] R. C. Daley and J. B. Dennis, ‘‘Virtual Memory, Processes and Sharing in
MULTICS’’, Comm. of the ACM 11, 5 (May 1968), 306-312.

[LLH85] P. Leach, P. Levine, J. Hamilton and B. Stumpf, ‘‘The File System of an
Integrated Local Network’’, Proc. of the 1985 ACM Computer Science
Conference, Mar. 1985, 309-324.

[Lea83] P. J. Leach, et al., ‘‘The Architecture of an Integrated Local Network’’,
IEEE Journal on Selected Areas in Communications SAC-1, 5 (Nov. 1983),
842-857.

[Mur72] D. L. Murphy, ‘‘Storage organization and management in TENEX’’,
Proceedings AFIPS Fall Joint Computer Conference 15, 3 (1972), 23-32.

[Nel86] M. N. Nelson, ‘‘The Sprite Virtual Memory System’’, Technical Report
UCB/Computer Science Dpt. 86/301, University of California, Berkeley,
June 1986.

[Nel88] M. N. Nelson, Physical Memory Management in a Network Operating
System, Phd Thesis, University of California at Berkeley, 1988.

[NWO88] M. N. Nelson, B. B. Welch and J. K. Ousterhout, ‘‘Caching in the Sprite
Network File System’’, Trans. Computer Systems 6, 1 (Feb. 1988), 134-154.

[OCD88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson and B. B.
Welch, ‘‘The Sprite Network Operating System’’, IEEE Computer 21, 2
(Feb. 1988), 23-36.

[RaR81] R. F. Rashid and G. G. Robertson, ‘‘Accent: A communication oriented
network operating system kernel’’, Proceedings of the 8th Symposium on
Operating Systems Principles, 1981, 164-175.

[RaF86] R. F. Rashid and R. Fitzgerald, ‘‘The Integration of Virtual Memory
Management and Interprocess Communication in Accent’’, Trans. Computer
Systems 4, 2 (May 1986), 147-177.

[Ras87] R. Rashid, et al., ‘‘Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures’’, Conference on

- 14 -



Virtual Memory vs. The File System

Architectural Support for Programming Languages and Operating Systems
(ASPLOS II), Oct. 1987, 31-39.

[Red80] D. D. Redell, et al., ‘‘Pilot: An Operating System for a Personal Computer’’,
Communications of the ACM 23, 2 (Feb. 1980), 81-92.

- 15 -


