Sizing Memory for Oracle on Solaris

George Schlossnagle
george@omniti.com

0.1 Introduction

Anyone who manages or owns an Oracle database needs to know what the
performance limitations on the system are. Especially in this era of explo-
sively growing web sites and rapidly changing business priorities, being able
to accurately plan for capacity is a critical skill. Capacity planning is often
approached by measuring key performance metrics on the host system over
time, correlating them with business metrics, and extrapolating them over
time.

This is an excellent approach for planning for CPU and storage upgrades,
but the nature of the Solaris Virtual Memory architecture obscures critical
information on memory pressure, making it difficult to plan for using tra-
ditional techniques. Further, by using application specific knowledge about
our Oracle instance, we can predict memory-related performance envelopes
with a great degree of accuracy. Oracle installs driving web based appli-
cations often require a large number of simultaneous users running queries.
Each additional user session consumes memory, a limited and performance-
critical resource.

In this document we focus on using Sun and Oracle tools to gauge either
the optimal configuration for a statically sized install, or the growth capacity
for an install based on a current physical configuration.

0.2 Design Goals

Our first task is to decide what our design goals are. 'Run fast’ is a good
goal, but is rather unspecific. Since we are talking about memory here,
we will set out the goal of eliminating memory pressure. Specifically, we

9This chapter is Copyright 2001 George Schlossnagle. Reporduction of these contents
is allowed, free of charge or royalty, so long as this copyright notice is retained.

mailto:george@omniti.com

should retain sufficient memory that we avoid unnecessary paging and avoid
swapping at all costs. A swapping database system will grind to a halt.

0.3 Oracle Memory Usage

Before we start looking at some real systems, let’s look at how and where

Oracle uses memory. In Oracle terminology, memory is broken up into the
SGA (Shared Global Area), UGA (User Global Area) and PGA (Process

Global Area).

For the purposes of our discussion, we will take a more

systems-oriented view and break about memory usage into shared memory
usage and process private memory usage.

SMON
PMON
LGWR
DBWR
ARC

All of these possess very small private areas and are largely irrelevant
in analyzing memory usage.

Shadow Processes

’ Component \ Shared Size Private Size

Libraries and Binaries | system dependent 32M very small

Shared Pool shared_pool_size 0

Reserved Pool shared_pool_reserved_size 0

Large Pool large_pool _size 0

Java Pool java_pool_size 0

Oracle Buffer Cache db_block_buffers * db_block_size | 0

Sort Area 0 bounded by sort_area_size
Hash Join Area 0 bounded by hash_area _size

An efficient way of getting a good estimate for the actual private heap
areas used by sessions (in bytes) is

SELECT name, avg(value)
FROM v$session se, v§sesstat ss, v$statname sn

WHERE ss.sid=se.sid

AND sn.statistic# = ss.statistic#
AND sn.name = ’session pga memory’
GROUP BY name;

Doing more advanced statistical analysis on this field may be valuable
if you have a fixed set of jobs which perform large sorts or joins. These
numbers should be sanity checked using the pmem tool that ships with
the RMCMem package for Solaris to measure the heap memory size
of your Shadow processes.

It should be noted that a new Oracle shadow process does not have any
memory allocated for sort or join operations. As memory is used for
this functionality, the heap is grown and lessened, but memory is not
usually released to the OS. That having been said, currently unutilized
sort space will be paged out under normal memory pressure. This is
why we use the ’session pga memory’ for estimating active usage.

e Sizing the shared pool

Sizing your shared pool is a very complicated issue, and we won’t even
begin to discuss it here. Steve Adams’ website http://www.ixora.com.au/
has a number of very good scripts to help arriva at an efficient shared
pool size. For the purpose of this article, we will assume we’ve done
this already, and that the full size of the shared pool, db_block_buffers,
etc. has all been pre-determined optimally.

e Non-Oracle memory usage

Use RMC tools also provide good insight into memory usage not di-
rectly allocated by Oracle. We start by using the prtmem command to
get a broad overview of what is going on.

15:53:31(root@mysystem) [“]> /opt/RMCmem/bin/prtmem

Total memory: 7969 Megabytes
Kernel Memory: 418 Megabytes
Application: 5687 Megabytes
Executable & libs: 58 Megabytes
File Cache: 1458 Megabytes
Free, file cache: 239 Megabytes
Free, free: 126 Megabytes

e Kernel Memory

Kernel memory is allocated at boot time to hold the initial kernel code
and grows dynamically at runtime as drivers and kernel modules are
loaded, and as dynamically allocated kernel structures (like the process
table) expand.

Application Memory

This is our process memory, much of it Oracle. The RMC package
contains good tools (notably pmem) that allow good visibility into the
memory usage by individual processes. We've already used it a bit
to determine the memory usage for our Oracle processes above. The
Memtool documentation is a great source for more information.

FileSystem Buffer Cache

If direct IO is not performed on your datafiles, their filesystem will do
caching to buffer writes to disk and to improve future reads. For large
filesystems, a buffer cache can exert significant memory pressure. The
filesystem buffer cache does not consume a fixed amount of memory,
but is managed by the virtual memory system and utilizes the same
memory as processes. Even on tight-memory systems severe pressure
can be exerted. Using memps -m we can get good detail on what is in
the buffer cache:

16:20:29(root@mysystem) [*]1> /opt/RMCmem/bin/memps -m
Size InUse E/F Filename

91496k Ok F /oracle (inode 1045771)
67736k Ok F /oracle (inode 1045788)
66976k 11712k F /database/redo/logl_g2.dbf
65560k Ok F /database (inode 1204)
46616k Ok F /database (inode 1206)
43376k 5232k F /database (inode 1205)
40232k 40232k F /database (inode 3242)
37216k Ok F logl_g2.dbf

30176k 30176k F /database (inode 3237)

We can see active redo logs being written to, as well as datafiles (iden-
tified by file system and inode, e.g. /database (inode 3237). Use find
mount -inum inode to identify the file.)

Note that if you use raw datafiles, Veritas QuicklIO files, or if the filesys-
tem can be mounted in ’direct’ mode, datafile accesses will bypass the
buffer cache.

e Free Memory

As we stated in our design goals, running out of memory is very bad.
Thus, we desire to keep some wiggle room.

0.4 An example

Let’s try and figure out the maximum number of processes we can support
on a given host. First, to see what we’ve got to work with.

17:58:48(root@mysystem) [7]1> /opt/RMCmem/bin/prtmem

Total memory: 7966 Megabytes
Kernel Memory: 881 Megabytes
Application: 5786 Megabytes
Executable & libs: 41 Megabytes
File Cache: 1165 Megabytes
Free, file cache: 124 Megabytes
Free, free: 0 Megabytes

So best case we have 7966 - 881 = 7085M of RAM available to play with.
Now let’s pull our SGA parameters:

1 SELECT sum(value)
2 FROM v$parameter
3 WHERE name IN (’shared_pool_size’,
4 ’large_pool_size’,
5 ’shared_pool_reserved_size’,
6% ’java_pool_size’)
SQL> /

SUM(VALUE)

202000000

1 SELECT value
FROM v$parameter
3*x WHERE name IN (’db_block_buffers’, ’db_block_size’)
SQL> /

VALUE

190000
8192

So the total allocation for shared memory, should be 1758 M. This can be
confirmed by using ipcs or pmem. If we reserve 128M for free memory, we
now have 7085 - 1758 - 128 = 5199M. The average PGA size for a process

1S:

SELECT name, (avg(value)/1000000) Megs
FROM v$session se, vPsesstat ss, vPstatname sn
WHERE ss.sid=se.sid
AND sn.statistic# = ss.statistic#
AND sn.name = ’session pga memory’
6*x GROUP BY name

gD wWwN -

sqQL> /
NAME MEGS
session pga memory 3.03488271

This basic analysis suggests a max_processes value of 5199/3.03 = 1715.
Anything past that will violate our memory restrictions.

Before we conclude, let’s investigate filesystem buffer cache usage. This
database uses QuicklO, so 1165M of fs buffer cache is large.

19:33:26(root@mysystem[~]> /opt/RMCmem/bin/memps -m
Size InUse E/F Filename
1763992k Ok F

73480k 73480k F /database/oraarch (inode 107)
65704k 65704k F /database/oraarch (inode 106)
51304k 13952k F /database/oraarch (inode 105)
37848k Ok F /database/oraarch (inode 104)
25336k 25336k F /var/adm/log (inode 12)
16384k 16264k E /oracle/product/8.1.6/bin/oracle

The first entry is not a file at all, it’s Oracle’s shared memory allocation.
Let’s look at the others. Inodes 104-107 in /database/oraarch are archive
redo logs. These files are written in one big sequential write, and the are
read back later in one sequential read when they are backed up to tape. This
means that buffering reads or writes to this file are effectively useless and

just create artificial memory pressure. We can address this by remounting
the filesystem with unbuffered 10. Remounting and rechecking memps

19:49:49(root@mysystem) [7]1> /opt/RMCmem/bin/memps -m
Size InUse E/F Filename

1763992k Ok F
144776k Ok F
25664k 25664k F /var/adm/log (inode 12)

16384k 16280k E /oracle/product/8.1.6/bin/oracle
3360k 2872k E /oracle/product/8.1.6/1ib/libclntsh.s0.8.0

Much better!

	Introduction
	Design Goals
	Oracle Memory Usage
	An example

