Creating pkgadd Softwar e Packages under Solaris

The software pointed to by my Sun Freeware Web pageis archived in aformat that can be read and
installed by the pkgadd program that comes with Solaris 2.5, 2.6, 7 and 8. | gave instructions on
how to install our pkgadd software on a another page, but | did not discuss how we created the
packages. A number of people have contacted me and said "How did you do that?" The answer is
"... with some struggle and hair pulling.”

Michael Short at Berkeley first educated me on the basic steps to create a pkgadd format software
package. Here | will add to his steps and try to make them as clear as | can. No doubt, there are more
sophisticated or general waysto do this, but | will not attempt anything harder here. Comments are
welcome.

There now exists a detailed discussion of the packaging process in the Answerbook 2 on the Solaris
CD or on the Application Packaging Developer's Guide . See also updates to these basic processes
here or on the EAQ as| learn them.

The Steps

Important: You will need root access on your machine for some of this.
e Select your software

Find the source code to the package you want to compile. Read all the installation and other
instructions carefully. In particular, look at the Makefile and understand which executables are
created and how they are linked to other executables and libraries. Also figure out exactly what
parts of the compiled code, libraries, include files, data, etc. are required to run the program.
Some programs require other programs in order to run. Y ou will have to find that software and
package it also. Find the documentation, README, Copyright, manual, and any other files
that might be of use to your end users.

e Read the manuals and man pages

Asdifficult and unpleasant as thisisto do, read the man pages for at least the following
commands:

pkgadd, pkginfo, pkgmk, pkgparam, pkgproto, pkgtrans, pkgrm

There are alot of options and details that you might need to know beyond what | will describe
here.

e Set up thedirectory structure

Typically, | set up a source directory like /opt/SOURCES to contain the source. In many cases,
the default installation directory is/usr/local. For illustration, we will install aficticious
program called pr og in the directory /usr/local. Y our directory names and programs may be
different of course. Each package needs a name like SCprog. The SC gives some indication of
the author or organization that created the program.

e Compilethe program and install into /usr/local or elsewhere
Y ou how must get your program to compile and run. Go to the directory containing the source
and read the instructions. Most programs have detailed installation instructions either in a
README, INSTALL, or similar file. Once you have the program compiled you will need to
run something like "make install”. Thiswill put the filesin /usr/local or elsewhere depending
on what the Makefile saysto do.

It is often the case that you have a/usr/local on your system and when you do a"make install"
the new fileswill get mixed up with other files already there. | usually have a structure like:

/opt/SOURCES/Iocal .full

which contains all my usual working programs and afew links like:
In -s/opt/SOURCES/ocal .full /opt/SOURCES/local

In -s/opt/SOURCES/local /usr/local

Under normal compiling | have links like these, But when | want "make install” to put filesin
place where | need to package them, | do:

cd /opt/SOURCES

rm local

mkdir local

Then | do the "make install". This putsfilesin /usr/local/bin, etc. | also mkdir directories

like /usr/local/doc/prog to keep all the source documentation. Once | have all the files

in/usr/local (which isreally /opt/SOURCES/Iocal), | do the packaging discussed next.
e Createthe prototype and pkginfo files

Go into the /usr/local directory with

uni x# cd /usr/loca

and run the command

uni x# find . -print | pkgproto > prototype

Thiswill produce the pr ot ot ype filein /usr/local.

Now take your editor and edit out the line that has the prototype file nameinit. Then add a
line like

i pkgi nfo=./pkginfo
on thefirst line.

Finally, convert all the user and group ownerships from whatever they areto bin and bin. An
examplefilelooks like

i pkgi nfo=./pkginfo
d none bin 0755 bin bin

none bin/prog 0755 bin bin

none doc 0755 bin bin

none doc/docl 0644 bin bin

none lib 0755 bin bin

none lib/libl 0644 bin bin

none man 0755 bin bin

none man/ manl 0644 bin bin

none man/ manl/ prog.1l 0444 bin bin

0 0 0O —hQO —h

It is very important that you change the ownerships. The program might not work when
installed if owned by another user. Not changing these properly is one of the most common
problems we have encountered.

Now in/usr/local create afile pkgi nf o with contents for your package like

PKG=" SCpr 0g"

NAME=" pr og"

ARCH="spar c"

VERSI ON="1. 00"

CATEGORY="appl i cati on"
VENDOR=" Chri stensen and Associ ates, Inc."
EMAI L="st eve@nt. vhet . net"

PSTAMP=" St eve Chri stensen"
BASEDI R="/ usr /| ocal "

CLASSES="none"

These values are fairly obvious, but they mean

PK G = the name you have chosen for the package directory
NAME = the program name

ARCH = the operating system version

VERSION = the version number for your program
CATEGORY = the program is an application

VENDOR = whoever wrote the software

EMAIL = an email contact

PSTAMP = the person who did the port perhaps
BASEDIR = the /usr/local directory where the filesinstall
CLASSES = just put none here

Run pkgmk

Now whilein /usr/local, run

uni x# pkgnk -r " pwd’

This places afile in /var/spool/pkg called SCprog.

Run pkgtrans

Now do

uni x# cd /var/spool / pkg

and then

uni x# pkgtrans -s ~pwd® /tnp/prog-1.00

Y ou will be asked to select which package you want to make. Select you package name (like
SCprog) by number.

This now creates afile called pr og- 1. 00 in/tmp.

gzip prog-1.00 and obtain prog-1.00.gz.

Now run

uni x# gzi p prog-1.00

in /tmp to produce the gzipped version pr og- 1. 00. gz that you can move to where ever you
want to store packages. This completes the packaging process. It isrelatively easy to write
scripts to do this.

Test the packaging

| usually test the pr og- 1. 00. gz file by doing anew install withit. | back up what | had

in /usr/local somewhere and then delete the directory. | store my gzipped packagesin a
directory called /opt/ SOURCES/PKG. In /opt/SOURCES/PKG, | run

uni x# gunzi p prog-1.00. gz
to get back prog-1.00. Then running as root user, | do
uni x# pkgadd -d prog-1.00

and follow the instructions to create the SCprog. | can then put /usr/local into my UNIX path
or make the executables and man pages available in whatever way | typically choose.

Once | have tested the package, | then relink

cd /opt/SOURCES
mv local local.prog
In -s /opt/SOURCES/ocal .full /opt/SOURCES/local

which moves the packages files to another directory and then relinks my working /usr/local.
Postinstall scripts

It can be that not all the files you need to install go into asingle directory like /usr/local. This
isabrief outline of how to put files other places.

Suppose | have files that need to go into /etc rather than /usr/local. What | do is create a
directory in /usr/local like /usr/local/etc. | put the files there that need to go eventually
into /etc. Then | create afile called postinstall into /usr/local. In that file | put one line

mv /usr/local/etc/* /etc

which contains the command to do what | want. (Y ou might want to put checksin the
postinstall file to first test if the files you are moving do not overwrite files that are aready
there.) A series of commands (compatible with /bin/sh) can be put there. These commands are
executed after the files are put in /usr/local by pkgadd. In order for postinstall to be used, put a

linelike:
i postinstall=./postinstall

into prototype after the first i pkginfo line. No other lines containing postinstall can be in the
prototype file.

Recently, Diethard Ohrt from Austria sent the following suggestions regarding the use of postinstall,
which may be of some value to you:

Date: Mon, 12 Jul 1999 15:32:15 +0200

From Diethard OChrt <Di ethard. Chrt @i enens. at >
To: steve@nct.vnet. net

Subj ect: pkgnk -- prototype

I'"'d like to add a remark to your section "Creating Packages" --
especially the subsection about postinstall, regarding files to be
installed "el sewhere", i.e. NOT under /usr/local in your exanple.

If you do it your way, the problemw || be:

"pkgadd" creates the files you are nmentioning in /usr/local/etc/; then
"postinstall” noves themto /etc, but the installation process itself
does NOT control or notice that. So when you do a "pkgrn', you wll
probably get sonme warni ng nessages about files that have been renpved
from/usr/local/etc. But, nore inportant, you have to renove your files
from/etc YOURSELF, e.g. via a "prerenove" or "postrenmove" file. This
additionally makes up another problem You have to know yoursel f, which
files you have to renmove from/etc ...

So, why not nmodify your "prototype"” in a way that it installs the files
itself into the proper directories? This has the big advantage that the
files are renmoved by "pkgrn.

Suppose you have sone files etc/file_1, etc/file_2, ... that have to be
installed in /etc; the appropriate "prototype" |line would be:

f none /etc/file_1=etc/file_1 0644 bin bin

f none /etc/file_2=etc/file_2 0644 bin bin

Al'l other "prototype" lines may be | eft unchanged.
HTH,
Di et hard
N) A A e \
_ o o _ _ | -- \
_ I B B Y B | _ Di et hard | _ \
_ o o)) Onrt | -\ 0 |
/I _ o _ _ /I | |
| __---1
Di et hard. Chrt @i enens. at Steiermark - das gruene Herz Qesterreichs
SIEMENS AG / PSE TWMN G3 Styria - the green heart of Austria
A- 8054 Graz Austria Styrie - | e coeur vert d' Autriche

Anot her net hod for maki ng packages some from Jasper Aukes.

Date: Tue, 15 Feb 2000 12:09:54 +0100 (MET)
From Jasper Aukes <J.Aukes@zu.nl >

Subj ect: nmake_package

To: steve@nt.vnet. net

H Steve,

I've create the followi ng script that could hel p people creating
packages. It creates the prototype file, builds the pkginfo file after
aski ng sone questions about the software and finally builds the package
usi ng pkgnk and pkgtrans. Afterwards it gzips the package, ready to be
stored on your package-server

[You can download this file rather than copy and pasting by clicking
nmake package.

#!/ net/ bi n/ per|

#

Aut omat ed processes to create SUN packages

You can run this script after you did a 'make install' in the chrooted

environment. Run it fromthe <whatever>/ packagenane-1l. 0/ usr/local/ directory
#

JA: 06-01-2000 Initial release

JA: 25-01-2000 Beautified a little

$find = "/usr/bin/find";
$pkgproto = "/usr/bin/pkgproto";
$pkgnk = "/usr/bin/pkgnk";
$pkgtrans = "/usr/bin/pkgtrans";
$tenmp = "/tnp/ prototype$$”;
$prototype = "prototype";

$pkgi nfo = "pkgi nfo";

Sanitycheck

$pwd = " pwd’;

if ($pwd =~ "\/usr\/local') {
$pwd = $°;

}

die "Wong location, please cd to <PKGBASE>/usr/local/ and run again.\n" if ($pw

system ("$find . -print | $pkgproto > $tenmp");
open (PREPROTO, "< $tenmp") || die "Unable to read prototype information ($!')\n"
open (PROTO "> $prototype”) || die "Unable to wite file prototype ($!)\n";
print PROTO "i pkginfo=./$pkgi nfo\n";
whi | e (<PREPROTC>) {

Read the prototype information from/tnp/prototypes

chonp;

$thisline = $_;

if ($thisline =~ " prototype ") {
We don't need that |ine

} elsif ($thisline =~ "~[fd] ") {

Change the ownership for files and directories
($dir, $none, $file, $node, $user, $group) = split / /,$thisline;
print PROTO "$dir $none $file $nmode bin bin\n";

} else {
Syminks and other stuff should be printed as well ofcourse
print PROTO "$thisline\n";

}

}

cl ose PROTO
cl ose PREPROTO

Clean up
unlink $tenp || warn "Unable to renove tempfile ($!)\n";

Now we can start building the package
#

First get some info

$t hi spackage = " basenane $pwd”;
i f ($thispackage =~ '-") {
$defaul t{"nane"} = $;
$defaul t{"version"} = $';
chonmp $defaul t{"version"};
} else {
$defaul t{"name"} = $t hi spackage;
chonp $defaul t{"name"};

$defaul t{"version"} = "1.0";
}
$defaul t{"pkg"} = "UMC" . substr($defaul t{"nane"}, 0, 4);
$defaul t{"arch"} = “uname -m;
chomp $defaul t{"arch"};
$defaul t{"category"} = "application";
$defaul t{"vendor"} = "G\U';
$default{"email"} = "info@gnu.org";

$l ogin = getlogin();

($user, $passwd, $uid, $gid, $quota, $default{"pstanp"}, $userlnfo, $userHone, $l
$defaul t{"pstanp"} = "Jasper Aukes" if ($default{"pstamp"} eq "");

$0s = “unanme -r’;

$os =~ "\.";

$os = "sol $' ";

chonp $os;

$defaul t{"basedir"} = "/usr/local";

Check for correctness of guessed val ues by useri nput

%guestions = (
pkg => "Pl ease give the name for this package",
nane => "Now enter the real name for this package”,
arch => "What architecture did you build the package on?",
version => "Enter the version nunber of the package",
category => "What category does this package belong to?",
vendor => "Who is the vendor of this package?",

emai|l => "Enter the emnil adress for contact",

pstanp => "Enter your own nanme",

basedir => "What is the basedir this package will install into?",
packagenane => "How should i call the packagefile?",

)

@ars = gw(pkg nane arch version category vendor email pstanp basedir packagenane
foreach $varnane (@ars) ({
$defaul t{"$varnane"} = "$name- $versi on-P$os-Parch-local" if ($varnane eq "|
get var ($var nane) ;

}

$cl asses = "none";
Create the pkginfo file

print "\ nNow creating $pkginfo file\n";
open (PKG NFQ, "> $pkginfo") || die "Unable to open $pkginfo for witingi ($')\n";
print PKGA NFO "PKG=\"$pkg\"\n";

print PKG NFO "NAME=\"$name\"\n";

print PKG NFO "ARCH=\"$arch\"\n";

print PKG NFO "VERSI ON=\"$version\"\n";
print PKG NFO " CATEGORY=\"$cat egory\ "\ n";
print PKG NFO "VENDOR=\"$vendor\"\n";
print PKG NFO "EMAI L=\"$email\"\ n";

pri nt PKG NFO " PSTAMP=\ "$pstanmp\"\n";
print PKG NFO "BASEDI R=\"$basedir\"\ n";
print PKG NFO "CLASSES=\"$cl asses\"\n";

cl ose PKG NFG,

print "Done.\n";
Build and zip the package

print "Building package\n";

system (" $pkgnk -r “pwd ");

system ("(cd /var/spool /pkg; $pkgtrans -s “pwd" /tnp/ $packagenane)");
system ("gzip /tnp/ $packagenane");

print "Done. (/tnp/$packagenane.gz)\n";

The subroutines

sub getvar {
ny $guestionname = "@";
print "$questions{$questionname} [$defaul t{\"$questionname\"}]: ";
ny $answer = <STDI N$gt; ;
chonmp $answer;
$$questi onnane
$$quest i onnane

$answer ;
$def aul t { $questi onnane} if ($$questionname eq "");

| also created a chrooted environnment creator, to enable people to just
run 'make install' in a clean environnent. | think i mailed you about
that some tinme ago, but perhaps sonethi ng went w ong.

The chrooted environnent avoids problens with /usr/local/ in an
envi ronnent where you just can't mss that directory (no way to quickly
unmount it and renount it afterwards)

Pl ease tell me if you want that story (and script) again.
When i have to create a package these days, i do the foll ow ng:

cd /tnp

tar zxvf exanple-1.4.tar.gz

cd exanple-1.4

./l configure

make # Software is conpil ed here
mkdir /tmp/exanmple-1.4/tnp

my * [tnp/exanple-1.4/tmp

setup_chroot /tnp/exanple-1.4

cd ..

chroot exanple-1.4 /bin/sh # Get a chrooted environnment (as root)
make install # Install in the chrooted environnent
exit # Back to normal node

cd /tnp/exanpl e-1. 4/ usr/ | oca

make_package # Run the above script (as user)

You got to have witeperm ssion in /var/spool/pkg as user for this.

Hope this is usefull. It helps me in building packages very much.
Jasper
Jasper Aukes | Unix system admninistrator

Acadeni ¢ Medical Centre Utrecht
Phone: +31 30 250 9283 | Bol ognal aan 4, Utrecht
Fax: +31 30 254 2028 | POBox 85500, 3508 GA Utrecht, NL

Date: Wed, 16 Feb 2000 10:29:13 +0100 (MET)
From Jasper Aukes <J. Aukes@zu.nl &ft;
Subj ect: Re: mmke_package

To: steve@nc.vnet. net

Hell o Steve,

Thanks for this. | have added it to ny pkgadd page

| see. Please note this script only works if a '"nake install' has been
run that installed the conpil ed package in a _clean_ usr/loca

directory froma <whatever>/ packagename-1.0/ directory.
You will need nmy 'setup_chroot' script as well. I'Il include it here:

#!/ bin/ sh

Original script by Dug Song <dugsong@M CH. EDU>, used for a chrooted

postfix environnment, adapted by Jasper Aukes <J. Aukes@zu.nl> to be used for
chroot ed package creation.

Location: /root/bin/setup_chroot

Usage:

First, create a chrooted dir with needed files (some may be left out (tcsh
etc), some mght be m ssing on your system some m ght be |ocated el sewhere.
This script is just a dirty hack and by NO neans intelligent. | should
improve it and wite it in Perl when i have tine.

/root/bin/setup_chroot /tnp/ PAKNAME

Then, tar zxvf your package into: /tnp/ PAKNAME/ t mp/

cd /tnp/ PAKNAME/ t np, configure and conpil e your package
DO NOT 'make install' just yet...

Now, cd to /tnp and run
chroot PAKNAME / bi n/sh # O /bin/tcsh if you can and if you prefer it

Check if you're really in the chrooted environment (f.e. cat /etc/passwd, it
shoul dn't be there) :-)

Now cd to your /tnp/package-versi on## # fill in the right nane
and run a make i nstal

Exit your chrooted shell and start building the SUN package fromthe
directory /tnmp/ PAKNAME/ usr/ | ocal / # O /usr, or even /

A nice page to see how this stage could see a happy ending is to be found at
http://sunfreeware. conl pkgadd. htm by Steven M Christensen

HHEHFHFHHFHFFHFFEHFHEHFEHFFEHFHEHFFEFEHFHHF S HHFR

PATH=/ usr/ bi n:/sbin:/usr/sbin

Create chroot'd area under Solaris 2.5.1 for postfix.
#
Dug Song <dugsong@M CH. EDU>

if [$# -ne 1]; then
echo "Usage: “basenane $0° <directory>, e.g.: /var/spool/postfix" ; exit 1
f

CHROOT=$1
| f CHROOT does not exist but parent does, create CHROOT

if [! -d ${CHROOT}]; then
lack of -p belowis intentiona

mkdi r ${ CHROOT}

f

if [! -d ${CHROOT} -0 "${CHROOT}" = "/" -0 "${CHROOT}" = "fusr"]; then
echo "$0: bad chroot directory ${CHROOT}"
exit 2

f

for dir in etc/default etc/inet dev usr/bin usr/lib usr/share/lib/zoneinfo \
usr/local net \
tnmp ; do
if [! -d ${CHROOT}/${dir}]; then nkdir -p ${CHROOT}/ ${dir} ; f
done
In -s usr/bin ${CHROOT}/ bi n
In -s usr/bin ${CHROOT}/ net/bin

Set the right perm ssions
chmod - R 755 ${CHROOT}

Copy sonme termnfo files
for termin v x ; do
if [! -d ${CHROOT}/usr/share/lib/term nfo/${tern}]; then \
nkdir -p ${CHROOT}/usr/share/lib/term nfo/${tern}t ; f
cp /usr/share/lib/term nfo/${ternt/* ${CHROOT}/ usr/share/lib/term nfo/ ${tern}
chnod 644 ${CHROOT}/usr/share/lib/term nfo/ ${tern}/*
done

AFS support.

if ["“echo $CHROOT | cut -cl-4"" = "/afs"]; then
echo '\tCreating nmenory resident /dev...'
mount -F tnpfs -o size=10 swap ${CHROOT}/dev

f

Setup /etc files.

cp /etc/nsswitch. conf ${CHROOT}/etc

cp /etc/netconfig /etc/resolv.conf ${CHROOT}/etc

cp /etc/default/init ${CHROOT}/ et c/ def ault

cp /etcl/inet/services ${CHROOT}/etc/inet/services

In -s /etc/inet/services ${CHROOT}/ et c/ services

cp /usr/share/lib/terncap ${CHROOT}/ usr/share/lib

In -s ${CHROOT}/ usr/share/lib/terncap ${CHROOT}/etc/terncap
find ${CHROOT}/etc -type f -exec chnod 444 {} \;

Most of the followi ng are needed for basic operation, except

for libnsl.so, nss_nis.so, |ibsocket.so, and straddr.so which are

needed to resolve NS nanes.

cp /usr/lib/ld.so /fusr/lib/ld.so.1 ${CHROOT}/usr/lib

for libin libc libdl Iibintl libnp libnsl Iibsocket Iibwlibkstat \

libcurses libkvmlibelf libgen nss_nis nss_nisplus nss_dns nss_files; do

cp /usr/lib/${lib}.so.1 ${CHROOT}/usr/lib
rm-f ${CHROOT}/usr/lib/${lib}.so
In -s ./${lib}.so.1 ${CHROOT}/usr/1ib/${lib}.so

done

for lib in straddr |ibnp; do

cp /usr/lib/${lib}.so.2 ${CHROOT}/usr/lib

rm-f ${CHROOT}/usr/lib/${lib}.so

In -s ./${lib}.so.2 ${CHROOT}/usr/1ib/${lib}.so
done

chmod 555 ${CHROOT}/usr/1ib/*

Copy timezone database.

(cd ${CHROOT}/ usr/share/lib/zoneinfo
(cd /usr/sharel/lib/zoneinfo; find . -print | cpio -0) | cpio -indu
find . -print | xargs chnmod 555

)

Make device nodes. W need ticotsord, ticlts and udp to resolve NS nanes.
for device in zero tcp udp ticotsord ticlts; do
line="Is -I1L /dev/${device} | sed -e "s/,//"'"
maj or =" echo $line | awk '{print $5}'°
m nor="echo $line | awk '{print $6}'"
rm-f ${CHROOT}/ dev/ ${ devi ce}
mknod ${CHROOT}/ dev/ ${device} ¢ ${major} ${m nor}
done
chmod 666 ${CHROOT}/ dev/ *

Now copy sone usefull binaries

for binin expr Is dirnane cp chnod rmnv sed nkdir grep find cat \
true basenane In chown false cnp chgrp ; do
cp /usr/bin/${bin} ${CHROOT}/usr/bin

done

cp /usr/ccs/bin/strip ${CHROOT}/ usr/bin

cp /bin/sh ${CHROCT}/ usr/bin

for binin install tar tcsh make ; do
cp /usr/local/bin/${bin} ${CHROOT}/usr/bin

done

chrmod 755 ${ CHROOT}/ usr/ bin/*

exit O

Greeti ngs,

Jasper
Jasper Aukes | Unix systemadmni nistrator
| Academi c Medical Centre Utrecht
Phone: +31 30 250 9283 | Bol ognhal aan 4, Utrecht
Fax: +31 30 254 2028 | POBox 85500, 3508 GA Utrecht, NL

If you have any problems with these techniques, please study the man pages for the pkg programs
above or contact your local UNIX guru. Please report any successes or failuresin your understanding
of these instructions.

Good luck and happy packaging.

Steve Christensen

Send comments or questions to steve@smc.vnet.net

© Copyright 2001 Steven M. Christensen and Associates, Inc.

