
 Pure C English Overview

Pure C English Overview

(or, "What Your 'Mutter' Never Told You About Pure C")

by Dan Wilga

Document Copyright (c) 1992 by Gribnif Software

Table of Content

Pure C English Overview ... 1

Table of Content ... 1
Installation .. 2
The Pure C Environment (PC.PRG) .. 3
Editing Keys ... 3
Error Message Windows .. 3
Pure C's Help System ... 4
Help Window Controls ... 4
The Item Selector ... 4
Modifications of Menu Commands .. 5
Compiler Options ... 5
Preprocessor ... 6
Assembler Options ... 7
Linker Options .. 7
Project (.PRJ) Files ... 7
The Runtime Startup Modules ... 8
Writing Desk Accessories .. 9
Helpful Hints .. 9

Using CFG and PRJ files: .. 9
Using warning level 1: ... 9

Pre-defined Data Types .. 10
The Help Compiler ... 10
The Pure Debugger ... 12
Pure Assembler .. 13
Assembly Language Considerations: Parameter Passing ... 18
Assembly Language Considerations: Return Values ... 19

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 1 / 19

 Pure C English Overview
The Pure C package comes, as you have probably noticed by this time, with German
documentation. As this is not likely to change in the near future, we have decided to present
people who purchase the package from us with a description of the important features of the
programs in English.

Certainly, the information in this document is far from the content of the full manuals.
However, careful attention has been paid to covering those details which would not normally
be obvious without understanding the manuals.

We strongly suggest that you read as much of this document as possible. While you may
never use some of the information covered, many important features of the package may be
revealed to you by reading it fully.

Installation
Probably the easiest way to install Pure C is in the format in which it is provided. Simply
create a PURE_C folder somewhere on one of your hard drives (with about 2 Mb free) and
copy the contents of all three disks into it.

This is a description of the major files in the distribution:
• PC.PRG Programming environment
• PC.CFG Default configuration file
• CPP.TTP Pure C compiler pre-processor
• PCC.TTP Pure C compiler
• PCC.CFG Pure C compiler default configuration
• PD.PRG Pure Debugger
• PD.CFG Default configuration file
• BGIOBJ.TTP Converts BGI fonts to .O files
• DISPOBJ.TTP Display object files
• HC.TTP Help compiler
• PASM.TTP Pure Assembler
• PLINK.TTP Object file linker
• C.HLP C language help
• LIB.HLP C libraries help
• PASM.HLP Pure Assembler help
• PD.HLP Pure Debugger help
• FONTS\ Fonts used by BGI routines
• PC_FSEL\ Replacement file selector
• PC_HELP\ Help desk accessory
• INCLUDE\ Header files
• LIB\

o PC881LIB.LIB 68881/2 floating point library
o PCBGILIB.LIB Borland Graphics Interface library
o PCEXTLIB.LIB Pure C extensions library (see: ext.h)
o PCFLTLIB.LIB Floating point library
o PCGEMLIB.LIB AES/VDI library
o PCLNALIB.LIB Line A library
o PCSTDLIB.LIB Standard library (stdio, etc.)
o PCTOSLIB.LIB BIOS/XBIOS/GEMDOS library
o PCSTART.S Source for default runtime module
o PCSTART.O Object file for same

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 2 / 19

 Pure C English Overview
o PCVSTART.S Source for runtime module with extended argument (ARGV)

passing
o PCVSTART.O Object file for same
o PCXSTART.S Source for runtime module with i/o redirection as part of

command line
o PCXSTART.O Object file for same

The Pure C Environment (PC.PRG)
While the separate parts of the Pure C compiler/assembler/debugger can all be used
independently, the easiest way to manage a large project is by using the integrated
environment, PC.PRG.

Editing Keys
• Shift up arrow Scroll up one page
• Shift down arrow Scroll down one page
• Shift left arrow Move to start of line
• Shift right arrow Move to end of line
• Control left arrow Move to start of word
• Control right arrow Move to start of next word
• Backspace Delete character to left of cursor
• Delete Delete character to right of cursor
• Home Start of file
• Shift Home End of file
• Control Y Yank (cut) current line
• Click Move cursor
• Shift click Add to selection
• Double-click Select word
• Shift double-click Select an entire line
• Undo Undo last keystroke
• Insert Same as Paste

Note that using the scroll bar does not affect the cursor location. This means that if you use
the scroll bar to reposition the file being edited and then type a character, that character will
appear where the cursor was (and still is) before the window was scrolled.

If a block is selected when a normal key is pressed on the keyboard, that entire block will be
replaced with the one character, so caution should be used.

Error Message Windows
A second type of window, which cannot be edited, appears when the compiler generates error
messages. The contents of this window can be viewed like other text windows, but they
cannot be changed. To quickly jump to a particular error in the appropriate source file, simply
double-click anywhere on an error message. This action is similar to the "Find Error" menu
entry.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 3 / 19

 Pure C English Overview

Pure C's Help System
Yet another type of window which can be opened is for help messages. There are two ways to
access the help, either directly from the menu or by pressing the Help key. In the case of the
Help key, the help libraries will be searched for an entry which matches the word currently
under the cursor. This can be especially helpful for situations where you cannot remember
what parameters to pass to a library function.

Help Window Controls
• Double-click on an underlined word or phrase Jump to that help reference
• Help key while cursor is at underlined word Jump to that help reference
• Undo key Back up to previous help screen

Another use of the help system is to point out the declaration of a variable, constant, or
function within your own source code. For instance, if you are working on a program which
uses a number of header files to define variables and you want to find out how the variable
"MaxValue" is defined, you simply have to place the edit cursor on the word "MaxValue"
somewhere in the source code and press the Help key. If you have just recently compiled your
program (and Pure C's internal caches have not been flushed) then the header file in which
"MaxValue" is declared will be opened and the appropriate line will be shown. Note that this
feature cannot work if you quit Pure C and then re-run it, because the caches are flushed; you
must re-compile the program.

The Item Selector
Pure C employs (yet another!) enhanced item selector which offers many advantages to the
standard Atari item selector. All of its operations can be controlled from the keyboard:
• Alt <drive letter> Select disk drive
• Up/Down arrows Change selected file/folder
• Return Open selected folder/file
• Insert New filename
• Delete Delete selected file
• Esc Swap disks (update file list)
• Undo Back up one directory level
• Control-U Exit item selector (like Cancel button)
• Extensions (*.C, *.H, etc.) See page 15 of your Pure C Compiler

manual

One other nice feature of the item selector is the ability to select a file or folder from a long
list by simply typing the first few characters of its name.

For instance, suppose you have the following items:
*BIN
*LIB
 BAR.C
 FOO.C
 FOX.C
 ZZZ.C

To open the LIB folder, you merely have to press 'L' (select the folder) and then hit the Return
key (Open it). To open the file FOX.C, in this case, you can either press 'F' and then move the
selection down one line with the down arrow key, or you can type 'OX' to narrow the search.
In either case, pressing Return will cause the file FOX.C to be opened.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 4 / 19

 Pure C English Overview
Modifications of Menu Commands
Two menu commands have alternate forms which are not otherwise obvious:
• Control Shift Q Quit without autosaving configuration
• Shift Alt D Debug, removing PC.PRG from memory first

Compiler Options
Some of the compiler options are explained in more detail here. The remainder can be found
in the "Compiler..." dropdown menu entry.

-2 Generate 68020 code. Resulting program will not run on a 68000 CPU!
-8 Generate 68881 code.
-A Non-ANSI keywords "cdecl" and "pascal" will generate errors.
-B Write objects (.O) in DRI format, instead of Pure C format. If this switch is on,

then the Pure Debugger will not be able to use a source file window because
the DRI format does not permit extended debugging information.

-E# Maximum number of error messages before break.
-F# Maximum number of warning messages before break.
-H Force "cdecl"-style function calling. Passes parameters on stack instead of in

CPU registers.
-L# Maximum identifier length.
-M No string merging. Normally, Pure C checks to see if part of one string can

actually be defined as being the tail end of another. An example would be the
two strings "nobody" and "body", which could be merged into one string. This
option can be disabled if your code needs to modify static string contents
without affecting other strings.

-Nname Output file directory.
-Oname Output file name.
-P Use absolute calls (JSR's) instead of PC-relative ones. If you get a linker error

which says there is a "16-bit PC-relative overflow", this option must be used.
-S Standard stackframes, using LINK and UNLINK instructions.
-T Stack checking. An error message will be produced if insufficient stack space

has been reserved.
-Wxxx Disable (-W-xxx) or enable (-Wxxx) a compiler warning message. Similar to

the #pragma warn preprocessor directive. Options:

Adherance to ANSI standards:
-Wdup Redefinition of XXX is not identical. (default: ON)
-Wret Both return and return of a value used. (ON)
-Wstr XXX not part of a structure. (ON)
-Wstu Structure XXX is not defined. (ON)
-Wsus Suspicious pointer conversion. (ON)
-Wvoi Void functions may not return a value. (ON)
-Wzst Zero length structure. (ON)

Common Warning Messages:
-Waus XXX is assigned a value which is never used. (ON)
-Wdef Possible use of XXX before definition. (ON)
-Weff Code has no effect. (ON)
-Wpar Parameter XXX is never used. (ON)
-Wpia Possibly incorrect assignment. (ON)

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 5 / 19

 Pure C English Overview
-Wrch Unreachable code. (ON)
-Wrvl Function should return a value. (ON)

Less Common Warnings:
-Wamb Ambiguous operators need parentheses. (OFF)
-Wamp Superfluous & with function or array. (OFF)
-Wnod No declaration for function XXX. (OFF)
-Wpro Call to function with no prototype. (ON)
-Wstv Structure passed by value. (OFF)
-Wuse XXX declared but never used. (OFF)

Portability Warnings:
-Wapt Non-portable pointer assignment. (ON)
-Wcln Constant is long. (OFF)
-Wcpt Non-portable pointer comparison. (ON)
-Wrng Constant out of range in comparison. (ON)
-Wsig Conversion may lose significant digits. (OFF)
-Wucp Mixing pointers to signed and unsigned char. (OFF)
-Wrpt Non-portable pointer conversion. (ON)

-X Generate underbars. All identifier names are preceded with a "_" character.
This is mostly for compatibility with Mark Williams C modules.

-Y Add debug information for use with the Pure Debugger. This option must be
set in order to get a C-source window within the debugger.

Preprocessor
The only unusual preprocessor directive supported by Pure C is #pragma. In this
implementation, the only option is "warn", for enabling or disabling certain compiler
warnings. The syntax is always one of these:

#pragma warn -w(enable all warnings)
#pragma warn -xxx(where "xxx" is a warning type to disable)
#pragma warn +xxx(where "xxx" is a warning type to enable)

For a list of the warning types, refer to the -W compiler option.

Pure C defines several preprocessor constants:
• __LINE__ Line number.
• __FILE__ Name of file being compiled.
• __DATE__ File compilation date.
• __TIME__ File compilation time.
• __STDC__ True (1) if the "ANSI keywords only" (-A) option is used.
• __PUREC__ Contains the version number of the compiler. Useful as a check to

see if the Pure C compiler is being used.
• __TURBOC__ Same as __PUREC__.
• __TOS__ Always 1.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 6 / 19

 Pure C English Overview

Assembler Options
The -1, -2, -3, -4, -5, and -8 options can be used to prevent an error message when the
assembler encounters an instruction which is not part of the standard 68000 instruction set.
Similarly, the -S option prevents errors from being generated when a supervisor mode
instruction is encountered.

The -U option forces all undefined symbols to be considered external. This avoids having to
use the IMPORT and EXPORT assembler directives.

Linker Options
The stack size for a program depends on many factors, such as the number and size of local
variables, the level to which function calls are nested, and the number of parameters passed in
function calls. The -T (stack checking) compiler switch can be helpful for determining the
correct stack size for a particular program. Note that because Pure C normally passes function
arguments in CPU registers, the amount of stack space required by a Pure C program can be
significantly less than that required by other compilers.

Options G, L, and Y should always be set if you intend to use the resulting program with the
Pure Debugger. The program should be re-linked without these options to produce the final
version, as this consumes much less disk space.

The -F option prevents the FastLoad bit from being set in the program's header. This attribute
only affects programs which are run by TOS versions 1.4 or newer. This attribute must NOT
be set (that is, you should use the –F option) for any program which can be run as a desk
accessory, since the operating system can crash when a desk accessory has this attribute set.

The -J option generates a new object file. This can also be used to create a linkable library
from several .O files.

The -R and -M options affect operation on the Atari TT computer, which has both fast RAM
and normal ST RAM. If your program will be performing raw disk i/o or setting the screen
display base to a block of memory it receives by way of the Malloc call, then the -M flag
should be set so that the Malloc will return a block of memory in ST RAM rather than Fast
RAM.

The segment addresses should normally be left blank. They are intended for linking position-
dependent code, such as something that will be burned into ROM.

Project (.PRJ) Files
The syntax for Project files follows. Items in braces {} are optional. A bar | denotes a choice
between two options.

{ output_file | * }
{ .L [<linker_options>] }
{ .C [<compiler_options>] }
{ .S [<assembler_options>] }
=
<module_name1> { (<dependent_files>) }
<module_name2> { (<dependent_files>) }
...

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 7 / 19

 Pure C English Overview
Each module_name can either be an asterisk "*", to represent the topmost source file window,
or one of the following:

<assembler_file> { [<assembler_options>] }
<C_source_file> { [<compiler_options>] }
<object_file>
<library_file>
<project_file>

The order in which modules appear in the list dictates the order in which they are linked. For
this reason, the startup module should always come first and the libraries should usually come
last.

This sample project file will compile the files MYACC1.C (which is the topmost window),
MYACC2.C, MYACC3.S, and will link the standard and GEM libraries. The compiler switch
for 68020 code is enabled for MYACC2.C, and the assembler switch for privileged
instructions (-S) is set globally. The file MYACC1.C depends on the file HEADER.H not
having changed since the last compilation. The output file is MYACC1.ACC.

*.ACC ; topmost window name with ACC extension
.S[-S] ; assembler options
=
PCSTART.O ; startup module comes first
* (HEADER.H) ; compile topmost window MYACC1 if it or
 ; HEADER.H has changed
MYACC2.C [-2] ; compile MYACC2.C with 68020 code generation
MYACC3.S ; assemble with options above
PCSTDLIB.LIB ; link standard library
PCGEMLIB.LIB ; link AES/VDI library

The Runtime Startup Modules
Pure C includes several different compiler startup modules, for different purposes. Most
likely, you will probably want to use the default, PCSTART.S.

Essentially, these startups all perform the same actions:
• Find out how much memory the program requires and return (Mshrink) unused memory.
• Parse the command line and prepare a list of pointers to the individual parameters.
• Prepare a list of pointers to the environmental variables.
• Determine if the computer has a floating point math coprocessor.
• Call the main portion of the program.
• Clean-up any malloc'd blocks and open files.
• Terminate.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 8 / 19

 Pure C English Overview
A program's "main" function receives three parameters: argc, argv, and envp. The first two are
common to most C compilers. The envp parameter is a pointer to a null-terminated array of
pointers to environmental variables. For example, to display a program's environment, you
could use:

int main(int argc, char *argv[], char *envp[]) {
 while(*envp) {
 printf(*envp);
 envp++;
 }
}

Please note that since the runtime startups all look at the return value from "main" and return
this to the process which executed the program, it is a good practice to always return
something, most likely zero. In the case of the sample program above, a line with "return 0;"
should be added.

Writing Desk Accessories
Pure C's startup modules all contain a test to see if a particular program is running as a desk
accessory or as a regular program. The int "_app", which is defined in AES.H, is zero if the
program is running as a desk accessory.

Helpful Hints

Using CFG and PRJ files:
• Whenever you begin a new project, it is a good idea to start by establishing a new

configuration (CFG) file. This can be done by selecting the "Load..." option in the
"Options" drop-down menu. If you press the New button in the item selector, you will be
asked for the name of a new CFG file.

• From this point, you should set the compiler and assembler options to the way you will
want them for the particular program you are compiling. You should also create a new
project (PRJ) file or select an existing one. Be sure to Save Configuration if you do not
have the Autosave option turned on.

• Now, whenever you want to work on the program further, you can simply call up the
"Load..." menu entry and give it the name of the CFG file. Another method is to use the
desktop's Install Application feature to install PC.PRG for the extension CFG. This way,
you simply have to double-click on the CFG file to get PC.PRG to come up with the
correct files loaded.

Using warning level 1:

In the Compiler Options dialog, there are three warning levels which can be used:
• 0 Ignore all warning messages
• 1 Produce some warning messages
• 2 Produce all warning messages

Experience has shown that, for most applications, number 1 is probably the best choice. This
level corresponds to the ON/OFF defaults listed in the section of this document which
describes the -W compiler switch. Level 0 ignores so many warnings that the code which is
generated may not be runable if the -H compiler switch is not used.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 9 / 19

 Pure C English Overview
Pre­defined Data Types

Type sizeof Bits Range
unsigned char 1 8 0 to 255

char 1 8 -128 to 127

enum 2 16 -32768 to 32767

unsigned short 2 16 0 to 65535

short 2 16 -32768 to 32767

unsigned int 2 16 0 to 65535

int 2 16 -32768 to 32767

unsigned long 4 32 0 to 4294967295

long 4 32 -2147483648 to 2147483647

<pointer> 4 32

Float 4 32 (+-)3.4E-38 to (+-)3.4E+38

Double 10 80 (+-)3.3E-4932 to (+-)1.2E+4932

long double 10 80 (+-)3.3E-4932 to (+-)1.2E+4932

Zeiger 4 32 0 to 4294967295

The format for floating point numbers is IEEE-standard.

The Help Compiler
Pure C includes a help compiler program (HC.TTP) which can be used to create your own
help files.

HC accepts the name of a file as its only parameter. This file must be in the following format:

<options>
<HLP_file_name>
<source_file1>
<source_file2>
...

The options available are:
L Produce a log file
N Parse source file, but do not generate help file
T=n Expand tabs to "n" characters, where 0 < n <= 9. The default is 4.
V Verbose message output
W Break on warnings

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 10 / 19

 Pure C English Overview
Here is a sample command file:

-LVT=8; log file on, verbose output, tab size=8
USR.HLP ; Help file name
USR.TXT ; Source file

The source files for the help compiler contain blocks of separated text. The basic format is:

screen("<first screen name>")
Help text here
more help text
\end
screen("<second screen name>")
Help text
\end

The screen names are the index entries which trigger the help text which follows. More than
one screen name can also be specified for the same text:

screen("Cat", "Dog", "Fish")
Household pets
\end

Context-sensitive help (which can be accessed with the Help key) can also be generated by
using the directives "sensitive" and "capsensitive":

screen("Index entry #1", sensitive("keyword"))
This text will display for "Keyword", "KEYWORD", or even "kEYwoRd"
\end
screen("Index entry #2", capsensitive("Key"))
This text will only display for the word "Key"
\end

Help screens can also be linked by using the sequence \#. The following two help messages
are linked together:

screen("First")
This is some text.
\end
screen("Second")
Double-click on the underlined part to go to the \#First\# text.
\end

The use of \# depends on the contents of the text between the markers. Another directive,
\link, can also be used so that the name of the actual help screen need not appear:

screen("Second")
\link("First") Double-click here\# to go to the first screen.
\end

Both the PC_HELP desk accessory and the on-line help in the Pure C environment look for a
file called USR.HLP. This file can contain your own help messages which will be scanned
whenever the help system is accessed by either of these two methods.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 11 / 19

 Pure C English Overview

The Pure Debugger
The majority of the options in the Pure Debugger should be self-evident. However, a few
things should be pointed out.

First of all, probably the most useful thing of all is the double-click.It can be used to change
breakpoints, file contents, variables, memory, and just about everything else. When the
Inspect option is displaying the value of an array or structure, you can even double-click on a
portion of the variable to get another window with a full display of its value. Try this with a
nested structure to see for yourself.

Setting a simple breakpoint can be accomplished by clicking once with the mouse within the
narrow column on the left side of a source file or assembly listing window. Double-clicking
will bring up a dialog with more detailed options. Remember that you can use any
combination of these options; you can even have a global breakpoint (which will break
anywhere in the program) by turning off the "Breakpoint at:" option. The program will
execute much more slowly, but this can be very useful nonetheless.

When a program is running, you can get back to the debugger at any time by pressing Alt-
Help.

The main difference between a Watched value and an Inspection is that when a pointer is
being examined, a Watch tends to change more often. This is because an Inspection deals with
indirected values, whereas a Watch deals with the actual value before indirection, and the
actual value is more likely to change than the place it points to.

The following reserved names for CPU registers (as well as a program's variable names) can
be used as part of an expression for most addresses, even things like the address at which to
Dump memory:

Pseudo Variable Data Type
 D0-D7 unsigned long

 A0-A7 char *

 PC char *

 FP0-FP7 long double

 USP char *

 SSP char *

Remember that if you want the Pure Debugger to use the source code in its displays, you must
not only compile C modules with the -Y option, but you must also link using the -G, -L, and -
Y options.

One hint: if your program intercepts system vectors, you should always try to make sure that
you allow it to finish before quitting the debugger.

Otherwise, very nasty things can happen.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 12 / 19

 Pure C English Overview

Pure Assembler
The format used by Pure C's assembler is essentially the same which is used by other
assemblers, such as Atari's MADMAC. The following directives are implemented. Each can
be preceded with a period ("."), though this is not required. Directives which take a "size" can
have one of the following values:

Symbol type length (bytes)
.b byte 1

.w word 2

.l long 4

.s single precision real 4

.x extended precision real 10

.p packed BCD 12

Constants can begin with various prefixes:

$ hexadecimal

0x hexadecimal

0X hexadecimal

% binary

@ octal

<none> decimal

A constant can also contain underscores (_) to separate its digits for clarity. For instance, one
million could be written 1_000_000. Floating point numbers can be written in the same
formats that a C compiler understands.

String constants begin with ' or ". A string constant must end with the same character it begins
with. A constant can even be used in normal instructions:

move.b# 'A', d0 ; set d0.b to 65

Directives:
expression = value Assign a value. For instance:ROM_base = $fc0000
*= expression Set position forward.

For instance, to leave a gap of 256 bytes: *= $100
ALIGN [expression] Fills with null bytes until the next address divisible by

"expression" is encountered. The default value for
"expression" is 2 (word alignment).

ALINE #expression Generates a Line A instruction. Ex: ALINE $10; generates
opcode $A010

ASCII string[,string...] A string of characters, without a NUL at the end. Ex: hello:
ASCII "Hello there!", "How are you?"

ASCIIL string[,string...] A string of characters, preceded by a length byte. Ex.: these
two are equivalent:
ASCIIL "Hello World!" ; and
DC.B12
ASCII "Hello World!"

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 13 / 19

 Pure C English Overview
ASCIIZ string[,string...] A string of characters followed by a NUL byte. Ex.: these two

are equivalent:
ASCIIZ "Hello World!" ; and
ASCII "Hello World!"
DC.B 0

BSS [expression] Enter the BSS segment. All subsequent instructions
BSS "name" will become part of this segment, until a DATA or TEXT

directive is encountered. "expression" can be the number of a
segment, from 0 to 3. A "name" for a segment can also be
given. When the linker links the segments, it always goes in
order from 0 to 3.

COMM label,expression Defines a block of "expression" NUL-filled bytes in the BSS
segment.

DATA [expression] Enter the DATA segment. All subsequent instructions
DATA "name" will become part of this segment, until a BSS or TEXT

directive is encountered. "expression" can be the number of a
segment, from 0 to 3. A "name" for a segment can also be
given. When the linker links the segments, it always goes in
order from 0 to 3.

DC[.size] expression [,expression...]
Defines a constant in the current segment. Each "expression"
in the list is "size" bytes long.

DCB[.size] count [,expression...]
Defines "count" repetitions of the remaining expressions. Ex.:
dcb.l 2,-2 ; result: $FFFFFFFEFFFFFFFE
dcb.w 2,3,4 ; $0003000400030004
dcb.b 3,"ABC" ; $414243414243414243

DS[.size] expression Reserves "expression" NULL bytes. Used primarily in the BSS
segment.

ELSE See IF.
END End assembly. Text following END is not evaluated.
ENDC See IF.
ENDIF Same as ENDC. See IF.
ENDM End macro definition. See REPT and MACRO.
ENDMOD Ends a module. See MODULE.
EQU label, expression This performs the same function as using = or SET.
label EQU expression
ERROR "message" Terminate the assembler with an error message.
EVEN Perform word-alignment by inserting a NUL byte, if necessary.
EXITM Exits a macro without processing it any further.
EXPORT label[,label...] Defines a label as being global. This is necessary for the linker

to resolve external references to a label.
FLINE #expression Generates a Line F instruction. Ex:

FLINE $10 ; generates opcode $F010
GLOBL label[,label...] Defines one or more labels as being imported into the

assembly module, or as being exported out of it.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 14 / 19

 Pure C English Overview

IFcc expression Conditional assembly.
 <statements>
[ELSE IF
 <statement>]
ENDIF

The condition code “cc” can be one of the following:
IF exp exp != 0
IFF exp exp == 0
IFB arg macro arg is not supplied
IFNB arg macro arg is supplied
IF1 first assembler pass
IF2 second pass
IFEQ exp exp == 0
IFNE exp exp != 0
IFLE exp exp <= 0
IFLT exp exp < 0
IFGE exp exp >= 0
IFGT exp exp > 0

IMPORT label[,label...] Defines a label as being contained in another module. This is
necessary for the linker to resolve external references to a
label.

INCLUDE "filename" Includes (assembles) a secondary file.
INCLUDE 'filename'
LCOMM label, expression Reserves "expression" bytes in the BSS segment with the

"label".
LIST All text following a LIST directive appears in the listing file

generated during assembly. Use NOLIST to disable the list.
LOCAL label [,label...] Defines a local label within a macro in the form

____XXXX, where "XXXX" is from 0000 to 9999. For
example:

macro absolute
 local end
 tst.w d0
 bge end
 neg.w d0
 end:
endm
absolute ; uses label ____0000
absolute ; uses label ____0001

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 15 / 19

 Pure C English Overview

• MACRO name[.size] [[param1],param2...]
 <statements>
ENDM Define a macro with name "name". For example:

Macro Push.size parm
 move.size parm,-(sp)
endm
Push.l d0 ; generates move.l d0,-(sp)
Push d0 ; generates move d0,-(sp)

 To substitute a parameter within a macro in a place which is
not preceded with a separator, the & can be used:

Macro PushData RegNumber
 move.l D&RegNumber, -(sp) ; move.l Dx, -(sp)
endm

MC68000 Selects the specific type of code to be generated by assembler
MC68010
MC68020
MC68030
MC68040
MC68851
MC68851 -
MC68881 [expression]
MC68881 -
MODULE label Defines a module with name "label". A module serves as a

convenient way of preventing the linker from treating different
occurrences of the same label within one source file as the
same occurrence. This is similar to the behavior which occurs
when multiple assembly source files are used. Note that for
library creation, all the individual routines should either be
declared as independent MODULEs, or they should be in
separate source files. A MODULE should end with ENDMOD.

NOLIST Turn off the listing feature. See LIST.
OFFSET [expression] Generate constants which define the number of bytes from the

start of the OFFSET block. An OFFSET block is terminated by
changing segments with TEXT, DATA, or BSS directives:

; Generate offsets for the elements of the C structure:
; struct list
; {
; struct list *next;
; charname[20];
; }
OFFSET
next: ds.l1 ; next gets 0
name: ds.b20; name gets 4
EVEN
TEXT
move.lnext(a0), a0
lea name(a0), a1

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 16 / 19

 Pure C English Overview
• ORG expression Advance position by "expression" bytes. Same as *=.

PAGE [expression] Set the page length for listings to "expression". If no value is
given, a form feed is generated.

PRINT ["message"] Prints a message within a listing. If no message is given, a
newline is generated.

REG label,registerlist
label REG registerlist Defines a register list for the MOVEM instruction. Ex.:

SavedRegs REG A2-A4/D3
movem.l#SavedRegs, -(sp)
...
movem.l(sp)+, #SavedRegs

REPT expression Repeat statements "expression" times.
 <statements>
ENDM
SET label, expression Same as = and EQU.
label SET expression
TEXT [expression] Enter the TEXT segment. All subsequent instructions will
TEXT "name" become part of this segment, until a DATA or BSS directive is

encountered. "expression" can be the number of a segment,
from 0 to 3. A "name" for a segment can also be given. When
the linker links the segments, it always goes in order from 0 to
3.

SUPER Select the supervisor instruction set.
TTL "title" Define the title for a listing file. The name of the source file

can be included in "title" by using %f. Ex.:TTL "Listing for
source file %f."

USER Select the user instruction set.
XDEF label[,label...] Exports labels for use in external modules. See EXPORT.
XREF label[,label...] Imports labels from external modules. See IMPORT.

The Pure Assembler will normally try to optimize certain instructions. For a list of which
instructions are optimized, see pages 189-190 of the Pure Assembler manual.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 17 / 19

 Pure C English Overview

Assembly Language Considerations: Parameter Passing
The Pure C compiler passes function parameters in CPU registers to improve performance.
The data registers D0, D1, and D2 are for passing char's, int's, and long's. The address
registers A0 and A1 are for passing pointers. Any parameters which cannot fit into the correct
set of registers are passed on the stack. This includes data types such as "double" and all
structures.

To determine which parameter is passed in which register, the function should be evaluated
from left to right. For instance, say we have the following function prototype:

int foo(char d1, char *p1, struct xx *p2, long *p3, int d2,
 GRECT g1, long d3)

and this function was being called as follows:

foo('A', string, xxptr, longptr,val,grect, 43L)

In this case, the compiler might generate code which looks something like this:

moveq.l #43, D2 ; parameter d3 into D2 register
lea grect+8(pc),a0 ; get address of end of grect structure
move.l -(a0), -(a7) ; push last two elements
move.l -(a0), -(a7) ; push first two elements
move val,D1 ; parameter d2 into D1 register
move.l longptr, -(a7) ; goes on stack because A0 and A1 to be used
move.l xxptr, A1 ; parameter p2 into A1 register
move.l string, A0 ; parameter p1 into A0 register
move #'A', D0 ; parameter d1 into D0 register
jsr foo ; call foo

This type of parameter passing can be defeated in two ways: either with the -H compiler
switch, or by declaring the function to be of type "cdecl". For example, to pass all parameters
to the function above on the stack, you could use:

int cdecl foo(...

Certain system vector routines (like the critical error handler) can be directly replaced by a
Pure C function if the "cdecl" type is used in the function's declaration.

Another implicit case when all parameters are passed on the stack is when the ANSI C
ellipses operator ("...") is used. One example of this is the printf function:

int printf(const char *format, ...)

The compiler uses D0-D2/A0-A2 for parameter passing and for temporary storage. This not
only means that any assembly module MUST save any other registers it uses, it also means
that any routine which calls a routine compiled by Pure C will most likely have these registers
destroyed. For this reason, special care must be taken when writing interrupt handlers using
Pure C.

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 18 / 19

 Pure C English Overview

Edited by DrCoolZic (jlg) – V1.1 - Sept.-2008 19 / 19

Assembly Language Considerations: Return Values
Return values of type char, int, and long are always returned in the D0 CPU register. Pointers
are always returned in the A0 register. More complex data types, such as "double" actually
return their values using a pointer to a variable of that type which is passed on the stack. For
instance, the following function:

double donothing(void) {
 return 1.0;
}

when called might generate something like this:
lea 10(a7), a0 ; a pre-defined storage space on the stack
move.l a0, -(a7) ; push it
jsr donothing

The function "donothing" simply takes this pointer and modifies it:

donothing:
move.l 4(a7), a0 ; get pointer to return
move.l #..., (a0)+ ; set the value...
move.l #..., (a0)+
move #..., (a0)
rts

	Pure C English Overview
	Table of Content
	Installation
	The Pure C Environment (PC.PRG)
	Editing Keys
	Error Message Windows
	Pure C's Help System
	Help Window Controls
	The Item Selector
	Modifications of Menu Commands
	Compiler Options
	Preprocessor
	Assembler Options
	Linker Options
	Project (.PRJ) Files
	The Runtime Startup Modules
	Writing Desk Accessories
	Helpful Hints
	Using CFG and PRJ files:
	Using warning level 1:

	Pre-defined Data Types
	The Help Compiler
	The Pure Debugger
	Pure Assembler
	Assembly Language Considerations: Parameter Passing
	Assembly Language Considerations: Return Values

